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Abstract. Many who suffer from Bipolar Disorder are keen to control their disease 

with as little external medical intervention as possible. Self help through websites, 
meetings, and questionnaires are commonly employed approaches. The PAM 

project has worked to help this process. It has endeavoured to form an ambient 

system of monitoring to provide objective feedback to bipolar sufferers. Particular 
effort has been made to allow the system network of sensors to be personalised 

and ambient, and operate without the need for a centralised resource. So a sensor 
system that embeds the processing of the sensor data has been developed. It allows 

the processing to be changed at run-time to allow personalisation and for changes 

in behaviour over time. This chapter describes the current status of the project; in 

particular it describes the rule-based system that the project developed, and an 

initial technical trial and its outcomes. The rule-based approach and the trial 

description should be of general interest to both technical developers and 
practitioners. The latter part of the chapter however is aimed more at the technical 

developer and focuses on the technical outcomes from the trial with a focus on the 

programmability aspects and addresses consistency issues that arise with such a 
flexible programming environment. 
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Introduction 

This chapter describes Personalised Ambient Monitoring. In particular it describes 

Personalised Ambient Monitoring (PAM) within the recent PAM research project.  

From the outset the PAM project has focussed on ambient monitoring for the mentally 

ill and in particular those with Bipolar Disorder (BD). The project has developed an 

infrastructure to allow a sensor network to be programmed at runtime to allow it to 

change its behaviour and response to sensor data. This allows the system to be tailored 

for individuals and to be altered over time as an individual’s mental state changes.  

The chapter has two aspects. The first describes general experiences from the PAM 

project that should interest both practitioner and technology developer, while the 

second aspect continues with a more technical flavour. Readers should be clear that this 

chapter really describes a work in progress. Here it describes the first tranche of work, 

but the PAM consortium (of currently four universities) is actively planning further 

efforts. This chapter describes the project from the perspective of the University of 

Stirling. 

Currently the project has developed an infrastructure for monitoring mentally ill 

patients in a home setting, and has tried this technology within a technical trial. It also 

has some very limited trial experience with patient volunteers but this is not explored 

within this book chapter. Clearly further work is planned in this direction. So this 



chapter is very much a “heads up” exploration of an exciting new application of (near) 

home monitoring of the mentally ill and the consequent essential technical 

developments. It is important for BD patients that the behaviour of the system can be 

adapted for individuals and easily altered to track their changes over time. 

Although the term “monitoring” can sound imposed, the approach of the project 

was that of self-help. Indeed the system monitors with the explicit consent of the 

patient. Moreover it is expected to report its findings to the patient and so all the data 

and its implications remain with the patient. A patient may wish to share its findings 

with a clinician or informal helper, but that remains the prerogative of the patient.  

The system described in this chapter aims to inform patients, particularly those 

using self-regulation, that their mental state is changing and may be moving towards a 

manic or depressed state. This allows a patient to be aware of these changes and take 

appropriate action.  

The chapter begins by setting the PAM project in the context of current efforts in 

ambient monitoring. This is followed by a general description of the technical aspects 

of PAM that should appeal to a wide audience. A description of the technical trial and 

its ramifications follows. Finally the more technical aspects of PAM are addressed that 

should be of interest to technical developers. In particular it considers programming 

issues that arise from such a flexible programmable approach and highlights ways that 

the coherence of the system behaviour can be maintained.  

1. Context and Setting 

The last decade has seen the emergence of mobile and environmental sensor 

technologies being used to monitor health concerns at home and in real world (or 

ambulatory) settings. Many technologies have been applied to mental health care often 

under the auspices of ambulatory assessment [1]. Ambulatory assessment techniques 

record “ecologically relevant” data in real-time by monitoring subjects in-situ rather 

than in a clinical setting. These techniques have shown advantages over traditional 

retrospective recall-based methods. In particular ambulatory assessment avoids an 

inherent bias in the collected data when asking patients to remember and recollect 

experiences. In addition by collecting multi-modal data in-situ, the recorded data is 

context-rich and can be repeatedly assessed on-the-fly [2].  

Many with BD endeavour to monitor their mental states for early warning signs of 

behavioural activity changes that alert them to impending manic or depressive episodes. 

Often such self-help includes the use of electronic or paper diaries to record mood [3]. 

These mood diaries allow BD sufferers to keep subjective records of their health. 

The application of mobile and sensor network technologies to this type of 

monitoring brings with it novel development challenges related to system 

personalization. As there are differences in the way the disease manifests itself in 

different individuals, and the disease also changes over time for a particular individual, 

mental health care requires a higher level of system personalization and technological 

integration than is typical for other types of sensor networks. The types of sensors used, 

and their patterns of usage, must match transient subject states and be acceptable to the 

subjects. A detailed picture on the use of sensor networks for psychiatric health 

monitoring written by the authors can be found in [4]. In essence many projects had 

been proposed for general medical care or homecare but, to the best of the authors’ 

knowledge, the PAM project is the first to attempt to obtain activity signatures from the 



mentally ill using a network of environmental and worn sensors. In addition the 

existing projects had not shown how they respond to sparse datasets or integrate sensor 

data with self-monitoring reports. 

The contribution of the PAM project is the introduction, within a mental health 

setting, of a rule–based approach embedded within the network. This permits dynamic 

and straightforward personalisation of network behaviour. It also supports additional 

equipment as and when it becomes available.  
 To provide a more flexible approach to ambulatory assessment in the PAM project, 

the activity signatures of individuals with BD are monitored through a set of sensors. 

The project constructed an infrastructure (PAM-I) composed of off-the-shelf and 

custom-built wireless sensors, and a rule-oriented programming architecture (PAM-A) 

to collect, process, and store data that can be related to models of care. The chapter 

describes both PAM-I and PAM-A in more detail later. The aim of PAM is to augment 

existing self-help strategies with objective information from the sensors. The driving 

philosophy is to process the data within the network close to the sensors. In addition 

the network components detect patient activity signatures and combine this information 

with electronic mood diary data. The proposition is that by monitoring activity 

signatures in naturalistic environments, the system may detect behaviour changes in 

mental health early enough to let sufferers and their care providers intervene effectively 

to prevent full-blown manic or depressive episodes.  
 A technical trial has been carried out to assess PAM-I and PAM-A reliability and 

acceptability to users. The emphasis to date has been on technical users, although a 

very limited patient trial has been performed. A longer term goal is to perform a limited 

clinical trial and to follow this with a full clinical trial.  

The technical trial took place at four sites in the homes of project team members. 

This stage did not involve BD patients, but was performed by participants selected 

from the PAM project to exercise aspects of a subsequent patient trial. Ethical approval 

was obtained from the universities within the project. In addition to sensor data 

collection, interviews were conducted to gather the views of those being monitored 

before and after each trial.  

 This chapter describes the design and development of PAM-I and PAM-A as well 

as experiences and lessons from the technical trial. Later it discusses the programming 

issues that arose from the trial and describes candidate solutions. The earlier part of the 

chapter is expected to be of more general interest, while later on the chapter has a more 

technical feel. 

2. Aspects of the underlying technology 

The PAM system has been designed to allow the system to be easily programmed at 

run-time. The chosen approach of distributing rules is discussed in more detail later in 

the chapter for technical readers, but in essence it operates by distributing short sets of 

rules across the sensor network that control the overall behaviour of the system. As the 

rules can be distributed at any time the overall behaviour can be altered when required. 

By altering the behaviour in this manner, the way the system responds to the actions of 

a patient can easily be altered when necessary. This degree of flexibility is important in 

a mental health setting. 

The rules are distributed throughout the sensor network onto a number of 

points such as mobile phones that can provide computing capabilities. It also has the 



potential to execute or obey these rules on smart sensors where a computer and a set of 

sensors are combined. The PAM system is designed for ambient mental health data 

collection and for reporting meaningful information to patients and care providers.  

The system consists of two parts. The underlying infrastructure that provides 

the sensors, computer processing capabilities, and communications was named PAM-I 

to reflect its infrastructure role. The architecture that permits the distribution and 

execution of the rules was called PAM-A. 

2.1. PAM-I 

This underlying infrastructure provides a network linking wearable wireless sensor 

nodes, mobile phones, a personal computer (PC), and environmental sensor nodes 

installed in subjects' homes. PAM-I uses the Bluetooth protocol to provide wireless 

communication between a patient’s wearable sensor nodes and their mobile phone. 

Bluetooth is a short range wireless protocol often used to link PCs and keyboards. It is 

also commonly used to link mobile phones with wireless headsets. In PAM, Bluetooth 

is also used to communicate between a patient’s mobile phone and their in-home PC. A 

number of communications standards are used to link the environmental sensors and 

the PC; these include WiFi (IEEE 802.11b/g which is the common home wireless 

protocol used for home PCs, laptops, and game consoles), mains wiring (the power-line 

X10 protocol allows communications to be piggybacked on the domestic power 

supply), and Bluetooth. The PC also requires an Internet connection for secure off-site 

data storage. 

Sensor nodes are composed of one or more sensors which are connected to a small 

embedded computer with communication facilities. The nodes may be mobile and 

require battery power, or they may be placed in a single location and be plugged into a 

wall power socket. In many cases the computing capabilities are restricted to keep a 

compact size and prolong the battery life. The technical trial involved participants 

carrying a mobile phone and two wearable devices. The first was an off-the-shelf GPS 

receiver and the other was a custom-made device with an accelerometer, light sensor 

and sound level sensor. 

Each worn device is the size of a matchbox. The wearable nodes can be worn on 

belts or strapped to arms. The GPS units can simply be carried in pockets. Data is 

streamed from the sensors to the subjects’ mobile phones using Bluetooth. This allows 

the phones to collect data from the sensors and transmit the data to PCs for storage and 

analysis. This onward transmission to PCs may take place some time later as the phone 

holds the data until it is in range of the home PC. This allows a high degree of mobility 

for the user as they may not be at home or in wireless range.  It also frees them from 

needing to use expensive mobile phones and any associated SIM contracts. Mobile 

phones control the sensor collection using rule-orientated applications. Additionally, 

momentary assessment of subject activities and moods can be collected through 

personalised on-phone questionnaires.  

Various environmental sensors are integrated into PAM-I. These sensors are used 

to collect data about in-home subject activity. General home activity is monitored using 

light and sound level detectors, along with passive infrared sensors for monitoring how 

subjects are moving between rooms. Kitchen activity is monitored using a combination 

of micro-switches placed on kitchen cupboard doors and a wide-angle camera for 

monitoring many areas of interest (such as refrigerators and ovens). Images are 

processed to extract activity data, and only the activity data is stored to preserve subject 



privacy. In addition, there are sensors for monitoring television usage and sleep 

patterns. The television usage focuses on the rate a subject changes television channel. 

2.2. PAM-A 

A number of built-in applications were written to control the transmission, storage, and 

processing of the data.  More technical detail is provided later in the chapter. Here the 

chapter simply highlights two capabilities that a patient can see: PAM-Q and PAM-

Pause. Both take the form of mobile phone based questionnaires. Crucially these phone 

applications exploit the use of rules to allow each questionnaire to be personalised for 

an individual. 

PAM-Q is a momentary assessment questionnaire application, and PAM-Pause is a 

second questionnaire to record the reasons why a subject is ‘pausing’ the monitoring 

system. Both the content of the questionnaires and the timings of the questionnaire 

presentation are configurable. The questions and answer options, along with settings 

that control the notification periods are stored in a knowledge base and are accessible 

for run-time modification without interrupting any other functionality. 

3. Investigation 

Members of the project team assessed the PAM system by installing the equipment and 

following the procedures that were developed in preparation for patient trials. This 

included two semi-structured interviews, and a raw data collection period. This form of 

investigation provided us with valuable insights regarding ambulatory assessment study 

design and technological development. The authors believe that tele-healthcare 

researchers and practitioners can gain considerable understanding by assessing their 

protocols first hand prior to studies involving patients which will resolve bias issues.  

The study participants from the PAM project team did not have Bipolar Disorder 

but followed the trial procedures with the understanding that its use would be for 

Bipolar Disorder out-patients. To be included in the technical trial the participants 

provided ongoing informed consent and were free of serious health conditions that 

could have been aggravated by monitoring. Participants were allowed to withdraw 

from any part of the trial at any point in time. The participants were briefed about the 

data collection and processing prior to beginning the technical trial, and during a 

training session that followed device installation. They were shown how to record their 

answers to the questionnaires, and were familiarised with the importance of using 

PAM-Pause to distinguish deliberate pausing from missing data values arising from 

faults in the system. 

3.1. Interview Procedures 

Qualitative semi-structured interviews were designed to capture detailed points of view 

regarding the PAM project, its technology and monitoring in general. The entrance 

interview was focused on cultural factors as well as system acceptability and 

compliance issues. The exit interview was designed to review participation and to elicit 

thoughts and feelings about system acceptability, compliance and technological 

reliability. 



3.2. Data Collection 

Equipment was given to the four participants for on-body and in-home data collection, 

including wearable sensors, mobile phones and PCs. During the trials data was 

transferred from worn and environmental sensors and from mobile phones to the PC 

applications. The data was encrypted and transferred off-site for back-up and analysis. 

PAM technical trial data collection involved sensors being worn by the participants and 

placed in their homes. Customised mobile phones were provided to coordinate sensor 

communication and collect information about the participants' activities of daily life. 

The participants were asked to record their activities using a questionnaire application 

on the mobile phone. Continuous, discreet time-based sampling strategies were used to 

cover the variety of heterogeneous devices. 

On-body device sampling rates were chosen to balance signal-processing concerns 

with the limitations of the wearable node processor and mobile phone memory 

constraints. The wearable nodes were not able to transmit accelerometer data and sound 

level data at the same time owing to hardware constraints. Instead, rules were 

customised to alternate their transmissions. One light meter reading was transmitted 

each second and transmissions alternated between five minutes of accelerometer data at 

20 recordings per second and one minute of sound level recordings at 10 samples per 

second. The ordering and time values were stored in the rule-set at these rates for data 

analysis purposes. Raw data was streamed continuously from the wearable to the trial 

mobile phone where they were stored and forwarded to the subjects’ trial PCs. The 

mobile phone also recorded data streamed from the external GPS node once every four 

seconds. 

The data collection rates here may seem high. This relates to the dual nature of the 

data collection at this early stage of the work. On one hand the PAM architecture is 

designed to limit the data collection rates and process the data close to the sensors and 

so limit transmission and battery requirements, on the other hand as an experimental 

platform it was important to have the raw data for verification purposes. This dual 

aspect of the data collection was a particularly challenging aspect and did cause some 

compromises.   

The mobile phone was set to display PAM-Q application notifications every hour. 

This sampling rate was determined in consideration of advice on time-based study 

design reported in [5]. The experiments showed that two questions in the questionnaire 

could be answered in less than 10 seconds if the application was already opened and in 

less than 20 seconds if the application needed to be launched. Notifications were 

personalised to fire every hour which minimised the self-report burden by fitting in to 

the participants’ schedules. Notifications could be ignored by the participants, and they 

could enter questionnaire data at any time regardless of notification timing. 

Timestamps were recorded for the initial display time as well as for each response entry. 

Two questions were available for answer on the mobile phone. Configurable 

response options were stored in the knowledge base. The response-set (happy, 

interested, anxious, angry, sad, ashamed, disgusted, other emotion, no emotion) for the 

question “How Are You Feeling?” was added to the rule-set and is derived from the 

basic emotions reported in [5]. The response options for the second question “What 

Are You Doing?” were personalised for each participant to correspond to activities that 

they were likely to engage in. These activities were discussed during the entrance 

interview. Activity options included a mixture of simpler activities (such as walking 



and sitting), and more complex activities (such as commuting or working). Multiple 

response options were selectable for each question. 

Most of the environmental sensors performed continuous monitoring. However the 

passive infrared sensors (PIRs), micro-switches, bed sensor, and remote control usage 

sensor transmitted data on event-triggers. The minimum time between PIR sample 

transmissions was between 6 and 10 seconds. The camera transmitted one picture of 

the kitchen every 10 seconds to the in-home PC. The images were immediately 

processed to look for activities in areas of interest and only the activity data was stored. 

The activity data is simply noting activities within view of the camera. So in a kitchen 

setting the subject may have been in the fridge or has perhaps has used the sink.  

In addition, ambient light and sound level samples were continuously streamed to 

the in-home PC over Bluetooth. 

4. Lessons learned 

The entrance interviews revealed some similarities in the participants’ thoughts and 

feelings about project characteristics. All four participants were male and had a high 

degree of exposure to the trial equipment and technical trial protocols prior to 

beginning the technical trial. They all lived with at least one other housemate and 

sought permission of their housemates prior to installing the equipment. The 

participants had no or little prior experience of being monitored outside of the PAM 

project. They all expected to have an initial period of self-consciousness at the 

beginning of the trial that they presumed would lessen, but they didn’t expect the 

monitoring to affect their general daily patterns of activity. 

The entrance interviews also revealed distinct differences between the participants. 

For three of the participants, their feelings about the degree of monitoring in society 

ranged from generally negative, but acknowledging value for medical purposes, to 

wholly positive (no response was recorded for the fourth participant). Their views 

about how much time per day they thought was appropriate to spend interacting with 

the technical trial devices ranged from one minute per day or less, up to 20 minutes.  

Participants highlighted reactivity, compliance and reliability issues to do with the 

technology and study design. Reactivity is defined in [1] to mean that the method of 

observation causes behavioural variance such as awareness, sensitisation, adaptation or 

coping strategies. For instance, three of the participants had some form factor issues 

with either the wearable unit or some of the environmental sensors. 

Interesting lessons about monitoring were revealed during the interviews of 

participant 1. He had not been monitored before and was mildly concerned about 

exposing his life patterns to the other researchers. He required assurance that the data 

was anonymous. Other members of his household were concerned with camera data at 

first, but their concerns were alleviated when shown processed camera images, as these 

contained no identifiable information. Chapter 5 of [6] provides a detailed description 

of the image processing employed in PAM. This participant consented to the 

installation of all of the equipment described in section 3.2 except for the bed sensor. 

He allowed all of the chosen devices to record data through the full duration of the 

technical trial and, according to his exit interview, did not consider ending his 

participation early. His views surrounding the installation procedures changed during 

the study participation. During his entrance interview his only installation concern was 

about making sure that the sensors would not mark the paint on the walls. However, 



during his exit interview, the participant expressed additional concerns. He described a 

sense of loss of control owing to having three people taking part in the installation and 

a feeling that the installation took too long. As a result, in a later very small scale 

patient trial considerable effort was made to offer a professional manner and 

appearance, and there were always two installers present. The project’s ethics-approval 

required that there was always more than one installer. In addition, explicit permission 

was sought to enter any space within the home. The equipment was now always fully 

configured before any installers entered a home. 

Participant 1 and his housemates adapted quickly to most of the environmental 

sensors, but reacted in an unexpected way to the camera. He expected that the 

household would be self-conscious for the first couple of days but would not react 

further to being monitored. However, he reported in the exit interview that his 

household forgot about most of the monitoring equipment quite quickly except for the 

camera (because of its distracting bright blue LED). 

Participant 1 found the system quite obtrusive and his compliance was affected by 

reliability issues. He reported poor mobile phone battery life, intermittent device 

disconnection problems, and form factor issues related to carrying three devices. He 

found the devices burdensome and worried about dropping them or leaving them 

behind. The wearable node irritated the participant because of its positioning on his belt 

as well as its intermittent communication connections. In response subsequent trials 

took steps to extend the battery life and reduce the impact of the camera. Connectivity 

was also improved.  

Participant 1 reported positive feelings towards the mobile phone’s form factor and 

screen quality, but he found the mobile phone questionnaire and transfer applications 

burdensome, and reported a fairly low compliance rate. He reported in the entrance 

interview that mobile application notifications every hour would be useful and an 

appropriate time setting, however he would have preferred the notifications to be 

triggered by changes of activity rather than timeout-based. In the entrance interview he 

believed that mobile questionnaire application interaction would be fine if it took less 

than one minute to complete per day. However, he reported that even though answering 

questionnaires was a quick process it was still overly intrusive and his compliance was 

low. Participant 1 also reported that he missed many on-screen notifications and 

preferred audio-based notifications. These findings are are in line with other research 

into interruptions such as [7] and [8].  

The PAM team investigated mobile battery life performance. This showed that 

continuous data streaming over Bluetooth reduced the battery life by about 15% and 

file writing reduced it a further 25%. To examine the mobile phone’s battery life the 

Nokia Energy Profiler version 1.2 was employed with different sensor configurations. 

It was expected that Bluetooth data streaming would be the largest power drain. Instead 

it was found that the internal GPS unit (which was subsequently disabled) and file 

writing to flash memory proved a much bigger power draw. Figure 1 shows 

consumption profiles. It compares tests starting 30 seconds into the recordings and 

running for three minutes. Profile 1 shows the mobile phone disconnected from the 

wearable node and not running any user applications. Its expected battery life was 9 

hours at 0.41 Watts on average. Profile 2 shows data streaming from the wearable node 

to the mobile phone over Bluetooth, but without any on-phone data storage. Its 

expected battery life was 7 and a half hours at an average power consumption of 0.48 

Watts. Profile 3 is the same configuration as profile 2 except that the data was being 

written to the phone’s flash memory card. There was a lot more activity for profile 3 



than there was for profile 2. Profile 3’s expected battery life was 5 and a half hours 

with an average power consumption of 0.67 Watts. Profile 4 shows the power 

consumption for accessing the mobile phone’s internal GPS. It had the highest impact 

on battery life with an average power consumption of 0.68 Watts and expected battery 

life of 5 hours. 

 

 

 

Figure 1.  Power profiles for mobile phone – wearable node connection over Bluetooth. 

 

The technical trial highlighted reliability and acceptability issues regarding on-

body and in-home technology including mobile phone battery life, on-body gateway 

communications disconnection, on-body device form factor issues, and environmental 

sensor reliability issues.  

More general issues also arise which are useful lessons for the next stage of PAM. 

The dual nature of the data collection where raw data and processed data is streamed 

together in places may affect the nature of the results. In retrospect this dual nature was 

not an ideal approach and further work may separate these streams. In addition much of 

the focus in the trial was technical and more emphasis needs to be given to the efficacy 

of the sensors used. At this stage the approach has been to use a broad range of sensors 

that echoed the direction given by the steering committee. The committee included 

members who were knowledgeable of Bipolar Disorder. The focus was on data likely 

to vary as a result of a subject’s mood swings. However more work is required in the 

future to test the efficacy of particular sources of data. 

A particular question raised by the trial related to the run-time programming ability 

of PAM; can it be ensured that the behaviour of the system remains coherent? The 

behaviour is frequently required to differ for individual users, and change over time for 

each individual. It is this particular thread that the remainder of the chapter considers. It 

is crucial component needed to allow personalized ambient monitoring to operate. 

Following a look at the more detailed aspect of the design, the chapter addresses this 

particular concern in rather more detail.  



5. System Design 

The remainder of the chapter (with the possible exception of the final conclusions) is 

by nature more technical and is less likely to be of general interest. Section 2 describes 

the more visible aspects of underlying PAM technology. Here, with the risk of some 

repetition, the text addresses the PAM technology exposing more of its hidden aspects.  

As described earlier, the system consists of two parts: PAM-I and PAM-A. 

PAM-I is composed of off-the-shelf and custom built wireless sensors, and PAM-A 

that uses rules to control monitoring data streams and processing settings. Figure 2 

shows the relationship between PAM-I and PAM-A.  This shows sensors connected to 

nodes with limited processing capabilities communicating with devices such as smart 

phones and PCs. Rules residing on these devices control the monitoring system, 

dictating how and when to collect and store the data. 

Section 2.1 describes PAM-I however Section Error! Reference source not 

found. below takes a more technical stance on PAM-A. 

 

 

Figure 2. Graphical view combining PAM-I and PAM-A. 

 

 

5.1. PAM-A 

The Personalised Ambient Monitoring Architecture (PAM-A) is composed of custom 

applications to: handle inter-device network connections, control data streaming 



frequencies, record streamed data to persistent storage, and transfer data offsite for long 

term storage and analysis. 

PAM-A is supported on the mobile phone and the home PC. Applications are 

programmed using a mixture of Java applications for device control and Prolog 

knowledge bases for rule processing to personalise the system. Data streamed from the 

devices are stored in XML documents conforming to the PAM sensor reading schema 

(PSR
1
). Sensor readings from heterogeneous devices can be stored in a single PSR file. 

The format is intended to: 

 Allow readings from different devices to be interlaced throughout the file. 

 Group readings into sets. 

 Keep verbosity to a minimum in order to maximise battery-powered device 

lifetimes. 

Four PAM-A applications were custom written for the mobile phones: PAM-

Gateway can control data capture from the wearable units, PAM-Transfer performs 

mobile-to-PC data transmission, PAM-Q is a momentary assessment questionnaire 

application, and PAM-Pause is a second questionnaire to record the reasons why the 

subject is pausing the monitoring system. The applications were programmed using 

Java ME for Symbian S60 3rd Ed. [9] phones and M-Prolog [10]. 

The PAM-Gateway application provides software services to support connections 

to wearable sensor devices and to access internal phone sensors such as Bluetooth 

encounter monitoring. The rule-set is updated at run-time to provide flexible control 

over both the set of sensors that the gateway may communicate with, and the data 

streaming rates from the sensors. The application interfaces with a rule engine that is 

used to select appropriate settings on application start-up, and upon device 

reconnection. PAM-Gateway provides a pause and resume monitoring service and 

handles device disconnection-reconnection gracefully. The application accepts 

information from the multiple data sources and stores the information in files ready for 

transfer to the home PC using PAM-Transfer. 

The PAM-Gateway application connects to the sensor nodes, controls their sensing 

characteristics, and stores readings from them. Device handler objects are instantiated 

at application start-up depending on rules in the knowledge base used to personalise the 

each user’s devices. PAM-Gateway can control on-phone sensors (such as an 

accelerometer) and external nodes through Bluetooth communication. Device control 

rules contain handler names and configuration options such as data collection 

frequencies. Once instantiated, device handlers attempt to connect to their devices and 

forward control settings to them. Handlers maintain connections and respond to 

unexpected disconnections by automatically attempting to reconnect. Each handler 

registers a corresponding listener that listens for, and responds to, new data. Responses 

include recording data or performing additional data processing actions. 

Data is written for each sensor into a PSR file corresponding to the PAM-Gateway 

session. The PSR format is designed to store readings from different sensors interlaced 

throughout the file, group readings, and keep verbosity to a minimum. Each reading 

belongs to a reading set describing the type of reading and the frequency that the 

reading was taken at. PSR files can be processed to aid in understanding of activity 

across the sensors. 

                                                           
1
 Normative and non-normative descriptions of the language and examples can be 

found online at http://www.cs.stir.ac.uk/~jmb/pam/readingXml/. 



PAM-Q and PAM-Pause are questionnaire applications that can be personalised. 

Both the content of the questionnaire and the timings of questionnaire presentation are 

configurable. Questions and answer options, along with settings controlling notification 

periods are stored in the knowledge base and are accessible to PAM-Gateway for run-

time modification without interrupting phone service. 

Applications also run on the home PC to interface with the mobile phone and the 

environmental sensors, and to backup the data for long-term storage. A Java J2SE 

application runs on the PC for interfacing with PAM-Transfer as well as securely 

storing and backing up mobile and environmental data. 

6.  Programming Sensor Networks 

PAM employs a rule-based approach to programming sensor networks. But why 

employ a rule-based approach? What alternatives are there? Currently, no consensus 

has been reached in the research community as to the best approach to programming 

sensor networks to meet these various issues. However, a rule-based approach to 

program sensor networks was chosen because of the advantages that this approach has 

over alternatives, such as distributed database models, agent-based programming and 

distributed virtual machines.  

Rule-based middleware for sensor networks has been used in a number of projects. 

Sen & Cardell-Oliver [11] point out some of the advantages to rules-based sensor 

network programming. The authors explain that the programming and concurrency 

models are simplified compared with other approaches. They believe that program 

correctness is easier to prove, and that rule-based systems remain sufficiently 

expressive at high conceptual levels and power efficient.  

Another benefit, according to Terfloth et al. [12], is that thinking about the system 

from an event paradigm applies better to sensor networks than thinking about the 

system using an imperative paradigm. Rule orientation, they argued, is a more natural 

way to express programs for sensor networks. In addition, Fei & Magill [13] showed 

that application developers using rule-based middleware are protected from 

complexities arising from tight real-world integration, network dynamics, and resource 

limitations. An interesting remaining area of concern is to what degree rule-orientated 

sensor networks have feature interactions, which will be explored further below. 

Rule-based middleware for sensor networks has been used in a number of projects 

such as [11] - [14]. These studies show that the programming and concurrency models 

are simplified compared with other approaches. Furthermore they indicate that program 

correctness is easier to prove, and that rule-based systems remain sufficiently 

expressive at high conceptual levels. Also rule notations that employ an event driven 

paradigm find favour in sensor networks; whereas an imperative paradigm does not.  

More generally rule-orientation is seen as a more natural way to express programs 

for sensor networks. It was pointed out by [11] that application developers using rule-

oriented middleware are protected from complexities arising from tight real-world 

integration, network dynamics, and resource limitations. Rule-based systems have been 

built that allow the rules to be changed at run time [13]. This is very attractive for 

personalised systems that must change over time. Maintaining a consistent set of rules 

across the system, however, is challenging.  



7. Maintaining rule consistency 

In rule-based systems where rules may originate from a number of sources and end up 

being executed across a number of destinations, there is a strong possibility of the rules 

being inconsistent and causing behavioural conflict. This has been noted in [13], where 

they discuss the importance of detecting and resolving such conflicts. However that 

work did not address a method to do it. Instead the authors limited communication 

between peer sensor nodes and only allowed communication between individual nodes 

and a single server. By only accepting rules from a single trusted server, they avoided 

this issue as the trusted server employed meta-rules [15] to ensure conflict was resolved 

within the server and so conflicting rules were simply never distributed. 

It is possible however to draw on a wider literature of programming conflict 

frequently described as Feature Interaction [16]. This topic was initially addressed in 

telephony, but has expanded to a wide range of domains experiencing program or 

control conflict; such as cars, lifts, internet services, and building control. The approach 

is to adapt the approaches developed in feature interaction to address rule conflict in 

(telecare) sensor networks. 

8. Conflict Detection 

In an ambient monitoring networked environment containing a dynamic collection of 

sensing and processing nodes that are attempting to detect unusual subject behaviour, 

network device conflicts are a common occurrence. For instance, features operating 

within and across devices could rely on synchronisation and concurrency patterns that 

may not actually arise owing to interactions between the devices and the rest of the 

network. Device conflicts reduce the levels of certainty that can be held in the care 

assessment data and the resulting conclusions that inform patients.  

The remainder of the chapter describes an approach developed by the authors that 

operates on ambient monitoring services and networks.  

8.1. Feature Interaction Problem 

This work is inspired by research on the feature interaction problem as there are many 

similarities between this problem and rule conflict. A classic telephony example from 

the feature interaction literature involves the user Alice who is subscribed to the feature 

Originating Call Screening (OCS), screening out calls to the user Charlie. The user 

Bob is subscribed to the feature Call Forwarding when Busy (CFB), forwarding calls to 

Charlie when busy. A conflict can occur if Alice calls Bob when he is busy, because 

either the call from Alice would be forwarded to Charlie, thereby invalidating OCS, or 

else the call would be blocked, thereby invalidating CFB. In either case, the operation 

of one of the two features would be invalidated by the presence of the other. 

It is important to note that this is not a traditional software error; it is not 

something that can be “debugged” and removed. Rather it is a conflict between the 

goals of the requirements of the two features. The goals of one feature simply conflict 

with the goals of the other. This cannot be resolved without changing the goals of one 

or more of the features. 

Such issues are of course easier to solve if both features are developed within a 

single organisation. But in an open market this often does not happen. Indeed even in 



one large organisation, which is often the case with large software companies, the team 

developing the features may be located in different countries and subject to distinct  

management control. This issue of independent feature development is a common 

underlying theme in incidents of feature interaction. 

It is also of note that the feature interaction problem has no formal definition. 

While rigorous descriptions are given, it does not have an agreed formal problem 

definition. This is as a result of it being a real practical problem in large software 

systems (initially telephone systems) that demanded attention. Hence it is very 

common in the literature to explain the problem by way of examples.  

8.2. Rule conflict example 

Here an example to highlight the feature interaction problem within a rule-based sensor 

network is presented. Consider a situation where a rule-based sensor system is 

employed to monitor a BD patient. A number of stakeholders may be involved in 

forming the rules: patients, clinicians, and possibly even family members. In addition 

rules for separate devices may originate from separate technical developers or 

companies. So the rules may well in fact originate from a number of separate sources.  

Independently programmed device rules may, however, interact in such a way as 

to confound the overall goals. Consider a simple case that involves three sensor nodes 

to monitor a subject with BD. This scenario provides an example of how conflict can 

emerge from a set of interacting devices. The three sensor nodes used are: a 

LocationMonitor node (such as a wearable Global Positioning System (GPS) unit) that 

monitors where the subject is in the world, an ActivityMon node that monitors activities 

in which the subject is engaged (perhaps using a custom application on a mobile 

phone), and finally a HomeMonitor node that collects information from a variety of 

sensors in the subject’s home. The nodes rely on each other to improve their 

performance, but such reliance may cause undesirable interactions. 

In this example named Brief Home Visit (BVH), a set of rules attempt to save 

battery power by limiting the volume of data monitored when the context of the user 

does not require it.  The individual device behaviours are controlled through rules on 

each device. So rule 1 of BVH, which is programmed on the HomeMonitor, stipulates 

that the HomeMonitor should only be active when the subject is located at home. Rule 

2 for the ActivityMon defines that when the subject is at home the ActivityMon should 

be limited to only selecting from relevant home activities. Rule 3 also located on the 

ActivityMon, dictates that if the subject is performing the travelling activity, then only 

the start and end locations of the journey should be recorded in order to conserve node 

resources. Rule 4 (on the activity node) governs the length of the travelling activity as 

distinct from other activities. This value could be learned from user behaviour and 

could change in time. Rule 4 is set such that if the user enters the car, drives, makes a 

micro stop (such as buying milk at the convenience store) and arrives at a macro stop 

(for instance the gym, or place of work), it is all considered as part of the same single 

travelling activity. 

This type of example can expose rule conflicts that may lead to unreliable 

behaviour. In this case, a particular type of rule conflict called Missed Trigger 

Interaction (MTI) can emerge. This can happen when the subject travels from home, 

returns home briefly, and then sets off again. When the subject initially leaves home 

the HomeMonitor is deactivated and the other two nodes enter their travelling states. 

When the subject returns home briefly (which was behaviour not considered by the rule 



authors), the HomeMonitor remains off (a trigger to turn it on is not sent by the 

ActivityMon) and so it does not capture any further abnormal behaviour patterns, 

resulting in a loss of data. When the subject leaves again, normal system data capture 

ensues. Figure 3 highlights this sequence of messages. 

Conflicts such as these are often subtle. They are not necessarily obvious to 

anyone programming an individual device, especially when the programmers are 

unaware of the behaviours of all of the devices in the network. The system, therefore, 

should handle these types of conflicts. In other words the system should be able to 

automatically detect such conflicts. 

 

 

 

Figure 3. Brief Visit Home Sequence Diagram. 

 

8.3. Types of Conflict 

Various types of FI have been reported. An established form is Marples’ FI taxonomy 

[17]. It consists of five types of interactions: Shared Trigger Interaction (STI), 

Sequential Action Interaction (SAI), Looping Interaction (LI), Multiple Action 

Interaction (MAI) and Missed Trigger Interaction (MTI). Here the chapter describes 



them briefly but more detail is available for the interested reader in a paper by Wilson 

et al. [18].  

 Shared Trigger Interaction (STI) is where more than one feature responds to a 

single action or event and the resulting operation of at least one of the features 

is different from how it would have reacted had it been the sole responder. 

 Sequential Action Interaction (SAI) is when a feature triggered in response to 

the actions of another. Such chaining of features may indeed be desirable, 

however it is still a form of conflict and may cause a feature to take action 

when it would otherwise have remained dormant.  

 Looping Interaction (LI) can be considered to be a special case of SAI, 

whereby the operation of the chained features forms to a redundant cycle. 

While SAI can potentially be beneficial, LI can never be. 

 When multiple features attempt to provide instructions or events for the same 

device, then the features have caused a Multiple Action Interaction (MAI). In 

some cases the interaction may be benign when both services send the same 

instruction to the device. However the interactions are often intolerable when 

the services send conflicting instructions. 

 Missed Trigger Interaction (MTI) is when the operation of one feature 

prevents the triggering of another. In a sense the first feature is absorbing an 

action or event destined for the second feature. The second feature may be 

blocked waiting on a trigger, causing the feature to freeze or operate 

incorrectly. In practice MTI detection and resolution has proved very 

challenging to resolve.  

8.4. Rule System 

In order to detect conflicts between rules, an analytical rule system has been developed 

that can be used to understand what happens when multiple feature rules are triggered. 

The system analyses rule execution sequences to determine whether the rules lead to 

conflict. The framework ignores the contents of the triggering messages, the actions 

that arise from being triggered, and the semantic meanings of the features. Programs 

based upon the framework, resolve goals by loading the feature rules and then 

proceeding to check for interactions between every possible pair of features (including 

checking features against themselves). 

Checking a pair of features involves two phases: initialisation and detection. The 

initialisation phase resets the environment by removing all values that have been set by 

the rules in earlier runs of the system. It then adds a number of time points (establishing 

a linear order amongst them) and initialises a message “fluent” that can be sent to the 

features. The fluent can be thought of as a value that is passed to the features, and as 

such could be considered as an event. The detection phase involves passing feature 

rules, time points and messages to a set of conflict detection rules. The conflict 

detection rules are then used to evaluate whether the feature rules are concordant or 

conflict, and to record evaluation results. The accuracy of the detection rules is crucial 

to the overall efficacy of this approach. 

To ensure the detection rules are effective, a number of feature rules are analysed, 

looking for different types of conflict: such as Shared Trigger Interaction (STI), 

Sequential Action Interaction (SAI), Looping Interaction (LI), and Missed Trigger 



Interaction (MTI). To do so, a set of scenarios based upon BD monitoring were 

developed for all five types of conflict. 

Scenarios depict how features can conflict through a particular conflict type. For 

example, to test the MTI detection rules, a scenario describes a mobile phone 

containing a feature rule that delays the transmission of a message that would activate a 

home monitoring system. Such delays may be reasonable from a phone programmer’s 

point of view to minimise bandwidth usage and maximise battery life. If the subject 

travels away from home, but returns home briefly, and then sets off again the home 

monitor would remains off because a trigger to turn it on would not be sent by the 

phone. This would lead to the system not capturing any abnormal behaviour during the 

brief return. 

8.5. Conflict Detection Rules 

Each of the conflict types are encoded as detection algorithms. These detection rules 

can be loaded into the analysis engine to check different device rules for conflict. 

Analysis involves checking whether messages hold at given points in time. 

MTI arises when the operation of a feature prevents the triggering of the operation 

of another one. The second feature may get stuck awaiting its trigger which is delayed, 

thereby causing the feature to operate incorrectly or not at all. Detecting MTI can be 

accomplished by testing device rules sequentially to ensure that a common message 

holds before being passed to each of the tested rules. The message can be considered as 

a type of triggering mechanism that should remain in a consistent state during the 

whole scenario. Such an approach need not make any assumptions about the contents 

of the message, only that the content remains the same when passed to each of the 

device rules. It is possible for a rule to modify or destroy the message, if so then the 

message no longer holds, but is terminated at that time point.  

The analytical framework evaluates a MTI concordance rule with arguments that 

consist of a pair of device rules, time points for the start times of each of the rules, and 

the message. The message initially holds prior to being passed to the first rule. Device 

rules conflict if the first rule message terminates the message prior to the execution of 

the second rule.   

STIs occur when the antecedents of multiple rules are satisfied such that they each 

perform actions in response to the same triggering event, and the operation of one or 

more of the rules are different from how it would have reacted had it been the sole 

responder. STI detection begins by loading arguments that consist of a pair of device 

rules, but ignores the time points and the message arguments. Testing for STI can be 

accomplished by querying a rule representing a feature, then resetting the query 

environment, querying a second rule, then querying a second instance of the first rule. 

If a check of the initiated actions from the first instance of the first rule does not match 

the second instance's initiated actions then the first and second rules conflict by STI. 

SAIs occur when the operation of a device rule is triggered in response to the 

actions of another device rule. SAI can be detected by testing to determine if a device 

rule performs an action that leads to actions being performed by a second rule. This can 

be accomplished by running rules sequentially within the framework and checking for 

sentences that describe actions that will be performed as a result of the firing of the two 

rules. The analytical framework detects SAI by firing rule 1, then resetting the 

environment and firing rule 2, followed by rule 1 again. The actions from each of the 

rule 1 firings are compared and SAI is detected if they are different.  



LI occurs when one rule triggers another, which in turn causes the first one to be 

re-triggered. LI, therefore, is a special case of SAI that can be defined as SAI leading to 

the triggering of the first rule's actions. This can be detected by performing SAI checks 

on the rules and examining the output for cases where two rules have SAI regardless of 

whether they are the first or second rule. In such cases the device rules will each 

perform actions that lead to the other being performed. If rule A causes an action that 

fires rule B and rule B causes an action that fires rule A, than a loop has occurred. 

9. In conclusion  

This chapter considers the infrastructure necessary to support ambient monitoring of 

Bipolar Disorder patients. It presents an architecture that gives the degree of run time 

programmability that is required to provide a personalised solution that can be 

programmed to meet an individual’s needs and can change over time to reflect how the 

condition changes over time for that individual.  

The chapter started by highlighting how the PAM system has been trialed to 

provide ambient mental health data collection and so preparing the way to report 

meaningful information to patients and care providers. The system consists of two parts. 

Firstly an infrastructure (PAM-I) composed of off-the-shelf and custom built wireless 

sensors, and secondly a programming architecture (PAM-A) that uses rules to control 

monitoring settings and stream data for processing.  

With a view to ease of programmability, the issue of rule conflict was investigated 

and the chapter concludes with a tried solution to ensure rule coherency. 

Work is in progress to develop and extend the initial trials to a larger more 

comprehensive and extensive evaluation.  However studies reported here have been 

essential in forming a useful and flexible home based personalised monitoring platform.  
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