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Abstract. Future homecare networks will consist of a very wide range of 

embedded services and software that will often rely on numerous other 

components to achieve their tasks. They will rarely operate in a self sufficient 
manner. The ability to discover and use services is not however a trivial task. 

Services may provide raw data, such as temperature readings, or higher contextual 

data, such as user activity and availability.  Networks may change over time and 
may not be subject to a single management regime, implying the need for a great 

deal of self-reliance for any software component seeking services from elsewhere 
within the network. This chapter describes work carried out at the University of 

Stirling to improve service discovery and allow it to operate effectively in 

networks with a significant turnover in services. Simple syntactical keyword 
lookups are insufficient, and so semantics are introduced into the discovery 

process by using ontologies. However ontologies are known to grow and change 

over time and so maintaining them can be difficult and error-prone. The described 
approach employs a hierarchical approach that fosters re-use and sharing of 

ontologies to alleviate some of the more acute problems of building and 

maintaining large ontologies.  
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Introduction 

Affordable network consumer devices have resulted in many of us having small 

computer networks in our homes. Such home networks include simple entertainment 

and communication services [1, 2], lifestyle management [3], and the provision of care 

in the home [4]. Those with an interest in computing and networks may well configure 

these and set them up to link computers, laptops, game consoles, and printers with the 

internet. Others of us may struggle. In reality we are expected to become system 

administrators, albeit for a small network. With the use of Internet television this can 

only become more challenging. How can this linking of home devices be made easier 

and become a more reliable activity? Indeed how can this become automatic? 

The automation of connecting devices together has been the subject of a large 

volume of research. The goal is to allow a new device to be placed in a home and for it 

simply “to work”. Terms such as “plug and play” are often used to describe this ideal 

and indeed some progress has been made. However it involves a great deal of 

agreement and often does not work reliability with products from different 

manufacturers.  

Such automation requires that different network components are able to work 

together. At one level this is achieved through common communication protocols such 

as those found in home wireless networks. However while this allows devices to talk to 

each other it does not promote the way devices can work together effectively. In reality 

a home network may have devices such as sensors, printers and computers, and in 



some cases these devices may be further divided into smaller components.  For 

example, a computer system may contain logically distinct components, such as a 

visual display, a webcam and a keyboard.  Home networks may also have software 

running that wants to make use of these devices. Examples here might include 

measuring temperature, or looking for movement in a room. Many of us are familiar 

with a laptop running word processing software, and carrying out the task of trying to 

configure the software to use a suitable printer.    

The software needs the ability to discover and utilize network components, which 

may be hardware devices but could also be other software. This discovery and 

interaction is typically invisible to the user, being automated as much as is feasibly 

possible. Often the components being utilized are described as service providers, where 

that service might be to print paper, or perhaps provide a room temperature. The 

interaction between a service provider and the user or client of the service can operate 

in a loosely coupled manner, where the clients need not be bound to a specific provider, 

and instead may use any service provider that is available.  

The process that allows a client component to find a service provider component is 

called component discovery. This can take the form of advertisements where the 

provider tells all the client components what services it offers, or the client can use  a 

local network component registry which acts rather like the familiar “yellow pages” 

directory.  

In order not to limit the user or the network to a specific vendor or indeed protocol, 

software is often used to bind heterogeneous components together. This software is 

often referred to as middleware. Middleware frameworks are typically used to manage 

and support the Home Network infrastructure, providing discovery mechanisms for 

service users and component description registries for providers. Middleware also 

supports the interoperation of services, independently of the particular protocols used. 

In this manner, multiple protocols may exist in the same network where a client and a 

service provider may use different communication protocols. For each protocol, there is 

often a distinct international standard where each protocol will have a different set of 

descriptions, vocabularies, attributes and schemas.  Schemas and vocabularies provide 

a language, or a terminology, for describing items.  Attributes are used to assign 

descriptive properties from the language to a particular item. It is common to refer to 

such an item here as an “entity”. It is simply something that needs to be described. 

While description schemas and attributes can differ between protocol domains, the 

meaning of the attribute values are typically identical. In other words, the attributes 

may be written differently in that they have a different syntax, but actually have the 

same meaning or semantics. This issue is especially problematic within the Home 

Network environment, which is assumed to be an ad hoc network of interoperating 

devices and services [1]. A common approach to this issue is that the middleware 

framework should insist on the component providing a description based upon the 

middleware’s vocabulary and that all components must adhere to this middleware 

standard. This chapter advocates a much more flexible approach. 

For a Home Network to be truly ad hoc, the middleware framework should not 

presume a middleware-compliant component description exists. Instead, middleware 

frameworks should rely on there being a component description which is specific to the 

protocol or platform of the component. If this were not the case, the vision of “anytime, 

anywhere” service deployment and interoperability is limited. 

This problem can be addressed by translating the component description on behalf 

of the component. In this manner, the framework accepts the component specific 



description, and translates it for itself. However this approach creates an important 

issue. Translating from the component description to the framework schema requires 

the framework (or perhaps agents acting on behalf of the framework) to either 

understand the component description or have an understanding of the schemas used. 

For this approach to succeed, the middleware requires knowledge of the relationships 

between the terms used within the component description vocabulary and the terms 

used within the framework description vocabulary. It can then classify descriptions 

from external vocabularies into descriptions using its own vocabulary. 

In computer networks it is possible to create an ontology which explains a set of 

concepts for a particular scope or setting such as a particular aspect of a home network.  

The ontology also explains the relationships between these concepts. Originally 

defined for the Semantic Web environment, ontology languages are increasingly found 

within the distributed computing environment. The Web Ontology Language
1
 (OWL) 

is a Description Logic language which has been developed specifically for describing 

and uniting domains. Using such a language provides support for the classification of 

component descriptions across a number of domains. 

This chapter describes an ontology-based approach using a description framework 

which provides universal classification in the Home Network and allows component 

discovery to operate independently from any particular protocol or middleware 

framework. This approach also allows the unification of protocols and middleware at 

the description level. This chapter describes a middeware implementation which 

applies this approach to a Home Network environment. Providing translation at the 

middleware side enables the classification of components from differing protocols and 

middleware frameworks. This provides an essential element to allow networks to 

support the automatic configuration of their components. 

1. Ontologies 

As introduced in the previous section, an ontology is able to describe concepts and 

relationships by employing an ontology language. Ontology languages are a developing 

area of logical languages. Logical languages have a rigorous mathematical formality 

designed to minimize ambiguity. They permit automatic checking of any system being 

described in the language. Ontology languages inherit these capabilities and indeed are 

designed explicitly to assist machines in decision making, through techniques such as 

classification, inference and reasoning. Consider each of the three techniques in turn: 

 

 Classification means to assign an identity to a concept or entity based upon an 

existing identity.  For example, if an entity is classified as a Car, it can be 

further classified as a Vehicle. 

 Inference means to assign descriptive properties to a concept based upon an 

existing identity.  For example, if an entity is a Car, it can be inferred that it 

must also have Windows, Wheels and Steering Control, given that these 

components would be common to all vehicles. 
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 The Web Ontology Language specification can be found at 

http://www.w3.org/TR/owl-features/ 



 Reasoning means to assign further classification based upon descriptive or 

contextual information.  For example, suppose all that was known about an 

entity was that it had Windows, Wheels and Steering Control.  It is possible to 

reason that the entity is a Car entity. 

 

These terms are related in practice as classification may lead to inference, which in turn 

may lead to reasoning and further classification.  Using ontologies, users can describe a 

domain in considerable detail, including the important concepts within that domain and 

the relationships with each other. For example, Figure 1 contains a simplified ontology 

description of a domain concerned with document classification.  Computer programs 

in the form of “search agents” can then be programmed with this knowledge and 

deployed within a particular scope or setting. It is common to refer to such a setting as 

a domain. For example, if the domain was concerned with scholarly documents, an 

academic webpage could be defined as a type of document. This is shown in Figure 1, 

where the class “Webpage” is defined as a sub-class of document. If a software agent 

was searching the network for documents about service discovery, it may include a 

standard set of articles in its search, such as journal publications and conference 

proceedings. With knowledge about academic webpages embedded within it, the agent 

could then increase its search domains to include these webpages, as it knows they are 

also considered a relevant type of document. 

 

 
Figure 1. Example Document Ontology. 

2. Unifying existing frameworks 

This section describes how ontology languages can provide a means of unifying 

existing network protocol and component descriptions. This approach is a novel way of 

combining a broad range of different protocols and components that originate from a 

wide range of sources. So rather than create a new stand alone description framework 

that will fail to encompass a sufficient number of descriptions, the aim is to build upon 

existing descriptions. Not only does this broaden the scope, but it also allows for 

updates and changes to be accommodated with greater ease. In other words the 

approach is to encourage a unification of existing frameworks, should they be ontology 

<Class ID="Document"/> 

<Class ID="ConferenceProceeding"> 

<subClassOf resource="#Document"/> 

</Class> 

<Class ID="Journal"> 

<subClassOf resource="#Document"/> 

</Class> 

<Class ID="Webpage"> 

<subClassOf resource="#Document"/> 

</Class> 



based or not.  This section will discuss the application of the approach to common 

home network existing discovery vocabularies, such as Universal Plug and Play
2
 

(UPnP).  Section 6 discusses applications of ontology description frameworks outside 

of the home network. 

Commonly, concepts contained within one existing description vocabulary are 

semantically similar to those in others; that is, they mean the same thing. This can be 

taken one step further, where ontology concepts and properties can be related to 

attributes and elements from existing protocol and middleware descriptive frameworks. 

For example, the imaginary concept Google:Webpage can be said to be identical to the 

concept Yahoo:Webpage. This way, descriptive attributes and concepts from a number 

of description frameworks can be classified together under a single classification 

concept. In order to unify these descriptive frameworks, one of the frameworks must be 

employed as a default or root description framework.  

As there is a lack of complete open-source ontology frameworks, it was necessary 

to develop an exemplar set of ontologies that describe a range of devices and services 

commonly used within a Home Network. Rather than having a single ontology, a set of 

ontologies was formed describing a wide variety of components. These ontologies also 

include related meta-data about the main entities within the domain. Meta data can be 

thought of as further detail about a particular entity, such as the type of video output 

provided by a webcam. Crucially, this set of ontologies also captures elements from 

other middleware and protocol description frameworks. In general, there is a one to one 

mapping between terms within an existing description framework, and terms within the 

ontologies. In Figure 2 the ontologies are set within a Home Network Ontology Stack. 

Developing such a stack hierarchy, rather than having a flat set of ontologies, is 

important as it allows ontology reuse. This enables concepts and terms developed at the 

lower levels to be reused and extended within the higher levels. For example, the Base 

contains a ‘Device’ concept, which is developed further within the Core level 

ontologies. [5] describes recent work with ontology reuse as a means to support 

decision support software, relying on ontology reuse to describe contextual 

environmental data from sensor input.  As will be discussed later, ontology reuse 

provides increased compatibility with other existing ontology frameworks, as well as 

aiding in the development process. 

In Figure 2 the Base Ontology level is a single ontology that simply states the basic 

concepts relevant to the Home Network domain; so concepts such as Component, 

Device, Service and Location are given. Building upon this foundation, the Core 

Ontology level contains multiple ontologies, each corresponding to a concept stated in 

the Base Ontology. For example, the Device ontology deals with concepts and 

properties relevant to (home) Devices.  This provides the ability to express abstract 

statements such as Device X, offers service, Service Y and Device X, has location, 

Location Y.  For example, using this knowledge set a Television device could be said to 

offer a Video Display service, and can be found in the Living Room.  Classifications or 

enumerations of the Service concept are defined in the Service ontology, and similarly 

for Locations, within the Location ontology.   
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Figure 2. The Home Network Ontology Stack. 

 

On top of the Core Ontology layer lies the Generic Ontologies layer which 

represent typical services and devices found within a home network. A generic device 

ontology is typically built upon a Device ontology and a Service ontology, found 

within the Core ontology level of the stack. Indeed it will reuse terms from the Service 

ontology to specify the kind of services a device can offer. In the generic layer, a 

minimal number of assumptions are made in order not to restrict the potential 

application of the ontologies. For example, a Lamp device offers a Lighting service, 

and is a sub-type of the more generic Light device. How a user (i.e. client software) 

would interact with a Lighting service is assumed to be protocol specific, and therefore 

beyond what is covered in this chapter. The Generic Ontologies provide the 

classification framework, which can be applied to external description frameworks.  

For example, if the framework is given a description of a device which offers a lighting 

service, by using the knowledge given in the Generic ontologies, the framework can 

infer that the device is (at least) a Light device. 

The Protocol layer is concerned with relating protocol specific component 

properties to those contained within the lower ontology layers. For example, a Lamp 

device controlled by the UPnP protocol would be described as subclass of the Lamp 

component in the above example. Most descriptive properties within the UPnP 

specification, such as manufacturer or friendlyName, are related to properties contained 

within the core layers of the stack. Other UPnP specific properties, such as an event or 

a subscription URLs, are unique to the UPnP ontology. While having unique properties 

in higher levels would initially seem to negate the purpose of a universal description 

framework, it allows protocol specific information to be retained within the description. 

In this way, after discovering suitable components, clients can extract this information 

to assist in component communication. For example the client can extract the events 

required by the component and a URL to allow the client to subscribe to the services 

offered by the component. In other words this layer keeps the information necessary to 

allow a client to communicate with a component. 

The Generic and Protocol ontology layers provide the groundwork for the 

component classification framework. Utilizing concepts stated in these ontologies 

supports a universal classification of existing components. An UPnP Lamp and a Lamp 



using the X.10
3
 protocol can be classified as types of the generic Lamp described 

within the Generic layer. Lamp users need now only search for instances of the 

Generic:Lamp component to discover all instances of Lamp within the network, 

regardless of specific classification. This approach has been further explored within 

sensor networks, using abstract and generic terms to discover specialized and 

contextually relevant sensor nodes[6]. Protocols can create logical distinctions between 

components at the discover layer (for example a Lamp controlled by the X.10 protocol 

would be distinct from an UPnP Lamp). Using this approach, the protocol of each 

component now becomes an attribute of the component description. While protocol 

specific attributes are retained within the component’s description, the classification of 

the component provides a link to a generic classification within the Generic ontology, 

and therefore with the description framework. The relationships between the concepts 

(and relevant levels of the ontology stack) are shown in Figure 3. The dashed lines 

represent inferred attributes of the higher level concepts; so in this example, the UPnP 

Lamp is inferred to have the category ‘Lighting’ because of the explicit category 

relationship specified between the Generic:Lamp entity and the Device:Lighting entity. 

 

 
Figure 3. Relationships between Lamp concepts. 

 

This approach can also be applied across a number of middleware platforms. Users 

are able to retrieve the attributes of available services in a similar manner. So, a Lamp 

module controlled by a particular service would be classified as a type of generic Lamp. 

In an environment where multiple instances of Lamp occur over different protocols and 

middleware, a simple search for a generic Lamp would return all relevant matches. 

In the current implementation the Protocol layer contains ontologies for UPnP and 

Jini
4
 components, in addition to some X.10 devices. This exercises the framework on 

protocols with descriptions, and protocols that do not have descriptions. So Jini is 
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 The Jini specification is now managed by the Apache River project: 

http://river.apache.org/ 
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included within the Protocol layer as it can be considered a descriptive protocol, from 

the viewpoint of an external middleware framework. 

Both the Generic and Protocol layers are not envisioned to be constrained in size, 

due to the continual development and deployment of Home Network components. 

Surrounding the Generic and Protocol ontologies is the domain for externally defined 

ontologies, which allow developers to reuse terms from all levels of the stack. 

Exposing these layers allows the range of the stack to be extended as the domain grows.  

For example, if a new 3D television is introduced to the network, the description of the 

TV may reuse many of the descriptive terms contained in the ontology stack, such as 

the services offered by a base television (e.g. Video display, volume control), or more 

simple attributes (e.g. hasPowerRating).  In addition, it may also contain a new service 

description – Project 3D Image service.  A generic representation of the service would 

first be added to the Core and Generic levels of the ontology, so as to provide a 

minimal generic description of the service.  A richer description of the service would 

then be added to the Protocol level of the ontology stack. 

3. Implementation 

The Open Standards Gateway Initiative, or OSGi, provides a well defined middleware 

framework, complete with service life cycle management allowing services to be added 

and removed. The services are provided in packages called bundles within OSGi. To 

deploy the approach within OSGi, a Semantic Service Discovery Bundle (SSDB) has 

been placed within an OSGi framework to provide ontology-based component 

discovery. The SSDB utilizes open source tools for management of the ontology stack 

(Jena) and all reasoning and inferencing (Pellet). The SSDB is capable of both dynamic 

and static description handling. Descriptions can be uploaded from a particular external 

location, or created dynamically at runtime. This is possible as the information within 

the SSDB is constantly being reasoned over, and inferred information added where 

appropriate.  For example, a new OSGi service may wish to add a new service 

description to the framework knowledgebase - e.g. Project 3D Image. On adding a 

description of 3D television and the services offered, the SSDB will be able to absorb 

the new knowledge about the 3D projection service. 

To illustrate the novel unifying approach the testbed exploits OSGi’s ability to 

accommodate a number of protocols using a set of driver bundles. The bundles act as a 

mediator between the framework and the protocol, typically during service invocation. 

By adapting driver bundles for UPnP, X.10 and Jini protocols, it has been possible to 

develop translation components which perform translation of service and device 

descriptions from their native framework into ontology descriptions grounded in the 

Ontology Stack vocabulary 

As X.10 does not have scope for carrying its own descriptions, some user 

interaction is needed to set up device addressing. In other words, an intervention is 

required to create a description of the component. However Jini and UPnP descriptions 

are translated automatically as a component joins the network. 

To facilitate the use of the SSDB by client components, a query interface called the 

Simple Query Interface (SQI) has been defined. This component is independent from 

the implementation of the SSDB and allows the testbed to operate independently from 

the specific discovery functions of the SSDB. This allows the service registry, which 

provides discovery functionality to the rest of the network, to be replaced with more 



suitable management components if required. The SQI also allows querying 

independently of ontological terms. Queries can be in the form of Simple, Complex 

(multiple queries over the same component) or Meta Queries which allow sub querying 

over meta data within the registry. For example, using the SQI a component could 

request a Lamp service which was located next to the room the user was currently 

occupying. The SSDB would first infer the desired location, by examining the current 

location and discovering the suitable location matches for ‘next room’, and then 

performs a standard search for suitable components. 

Figure 4 shows a high-level view of the system architecture. All translation 

components use the same instance of the SSDB, allowing the SSDB to have knowledge 

of all available components within a single ontology model. In the future there is 

certainly scope for a distributed approach, where an instance of the SSDB is only 

concerned with one particular protocol, with another component federating requests 

between them. Here a centric approach is described where there is a single entry point 

for components, which ensures any applicable new data, inferred or otherwise, is 

applied to all entities within the ontology model. 

4. Translation 

A translation component is responsible for translating protocol specific attributes into 

those contained in either the Protocol or Generic layers of the ontology stack. Some 

attributes will be protocol specific, and as a result have no grounding within the 

Generic layer of the stack.  For example, UPnP devices may offer a presentation URL 

for users to interact with, but this property is not common or relevant to other home 

network protocols. It would therefore be a property relevant only to UPnP descriptions. 

Other attributes can be translated into generic properties due to their relationship with 

the protocol specific ontology property. For example, UPnP devices can offer a 

serialNumber attribute. This property is translated into the UPnP:serialNumber 

ontology property described within the UPnP Device ontology. Within this ontology, 

UPnP:serialNumber is declared as a sub-property of Device:serialNumber described 

within the Device Ontology. This ontology lies within the Generic layer of the stack, 

and therefore a relationship between a protocol specific attribute and a more generic 

attribute is formed. 

 

 



 
Figure 4. System Architecture. 

 

Translation components also contain a list of associations between both protocol 

specific services and device categories, and their “peers” within the particular protocol 

domain ontology. For example, the X.10 translation components knows in advance that 

an X.10 Lamp is an instance of the X10:Lamp device described within the X.10 

ontology. Initially, this method may seem too static for a potentially dynamic 

environment. However the OSGi framework resolves this issue, as components can be 

updated after deployment, allowing for new associations to be added as new devices 

and services are developed. On retrieving an association, the translation component 

adds a new instance of the ontology device or service to the SSDB, complete with 

translated attributes. Reasoning and inference can now take place. 

The SSDB manages the whole ontology stack, adding new information as it 

becomes available. As a new translation component joins the network, the new 

protocol ontology is uploaded to the SSDB and added to the stack. Any developer-

defined ontologies provided by network components are also added onto the stack. This 

allows the SSDB to perform inference and reasoning over all available information, 

providing an accurate discovery environment. 

Each translation component only has knowledge of its particular domain ontology, 

and its relation to the lower levels of the stack. For example, the UPnP translation 

component may have knowledge of the Base, Core and Generic level ontologies, but its 

knowledge of the Protocol level is limited to the UPnP ontology. 



5. Domain Application 

This section describes implemented examples of the SSDB in use. The first example 

covers the description framework being applied to multiple protocol domains, and 

highlights how the approach simplifies component classification and discovery. This is 

followed by a second example, which discusses the use of the approach within the 

MATCH [4] project, a home-care system underpinned by Home Network technology. 

5.1. Classification in a multi-protocol domain 

Earlier the chapter describes how driver components are augmented to create 

translation components for the SSDB. Many Home Network projects describe 

examples involving unique services, such as codec translation services [7] and user 

availability services [3, 8]. Such services are usually limited to a single protocol, that is 

to say examples of these services are not commonly found across a number of 

protocols. In order to demonstrate the usefulness of the SSDB, it was necessary to 

implement an example using lamp devices across three protocols. X.10 is a protocol 

that operates along power cables such as those found in a home, and is inherently 

extremely suitable for use with existing lamps. The UPnP protocol also has schemas 

for describing light devices. However there are no such well defined interfaces for Jini, 

so a LampInterface class simulating such a component has been created for the testbed. 

Hence there are three unique instances of Lamp components within the Home 

Network; one for each protocol. While these three components are within their own 

protocol domain, the translation components allow us to interpret their specific 

characteristics into terms relative to the SSDB and Ontology Stack. The X.10 

translation component is a simple user interface, which takes input from the user. The 

UPnP translation component is built upon an UPnP control point, which retrieves 

descriptions on behalf of the component. The Jini translation component acts as a Jini 

service listener within the Jini network.  A ‘listener’ component acts on behalf of a 

protocol with respect to service discovery within the home network as a whole.  It may 

offer services found within the home network to components within its own protocol 

domain, and vice versa.  On connection to the network, the translation component for 

each protocol interprets and classifies the attributes of the particular lamp into terms 

within the Ontology Stack. For example, the UPnP Lamp is denoted as being an 

instance of the UPnP:Lamp concept (which, as shown in Figure 3 as a subclass of 

Generic:Lamp). 

As a result there are three instances of Generic:Lamp components available to the 

network. When a client component submits a SimpleQuery through the SQI to the 

SSDB to find instances of Generic:Lamp components; it is returned each component as 

a suitable match. (Remember driver components within the OSGi framework are used 

to start services across protocol boundaries.) The client chooses which device it wishes 

to use and queries the SSDB to obtain the protocol specific details, such as the device 

address which is presented in a protocol-specific manner.  How a client selects a 

service or device to use is protocol specific, and is typically handled by the 

corresponding listening/translation component. The client then passes these details to 

an agent responsible for carrying out the action. How this action is executed is 

dependent on the protocol, but as the Ontology Stack contains a layer for protocols, the 

SSDB retains the protocol specific information along with that related to the Generic 

layer. Middleware is used to blur distinctions between protocols at the invocation layer. 



What becomes clear through this example is, by using the Ontology Stack and SSDB, it 

is also possible to blur the distinction between protocols at the discovery layer. 

A broader advantage of the approach is the ability to handle complex queries that 

may include for example positional information.  This is an aspect that is particularly 

pertinent within the home. This ability emphasizes the value of the SQI. Consider a 

MetaQuery asking for a light device within the room opposite the living room. To do 

so, first form a SimpleQuery which discovers the room opposite, and then use this 

object within the MetaQuery. At an abstract syntax level, the query looks like: 

 

MetaQuery (Generic:Lamp, Device:locatedIn,  

      SimpleQuery (Location:Room, Location:opposite, Location:LivingRoom))  

 

Using such queries reduces the number of interactions required with the SSDB. 

This also has the useful property of allowing components to query using information 

they do not immediately know. 

5.2. The SSDB within the MATCH system 

Earlier chapters explain the reach of the MATCH project.  In short it is a research 

project concerned with using Home Network technologies to provide care and support 

for those at home. This aim is achieved in part through the use of existing simple 

devices and technologies to derive high-level information, feedback, and monitoring 

for stakeholders. This section briefly describes the impact of this service discovery 

approach within the MATCH architecture.  

The MATCH system [4] is built upon the OSGi framework, but communicates by 

means of a message broker system, allowing the system to abstract the communication 

from the particular platform used. This requires an extra layer to be placed upon 

component descriptions to provide details of how components can operate together. 

MATCH components own channels through which users interact with the component, 

and a set of ontologies have been developed to describe the metadata associated with 

this communication system. Where possible, ontology terms within the Ontology Stack 

have been reused within the MATCH ontologies, grounding these new ontologies 

within the established domain. For example, MATCH components have locations of 

type Base:Location and Location:Room. Similarly, components can be attributed to 

services and devices already described within the Core and Generic layers of the stack. 

A MATCH-Touch Screen Interface would inherit many of the service descriptions 

offered by the generic Visual Device and Pointing Device devices found within the 

Generic level of the stack.  While many of the functional aspects are similar, the 

communication takes place using the message broker system and so the communication 

descriptive properties are specific to MATCH components. 

This means in essence that the ontologies describing MATCH components become 

another entry within the Protocol layer of the Ontology Stack, with instances of these 

descriptions lying within the User Defined layer. The MATCH project highlights the 

extensive capabilities of the approach, by allowing emerging protocols to use their own 

description frameworks, while also grounding these within a well-defined description 

framework. 

The SSDB also acts as a repository of knowledge for the home care network.  A 

room-occupation software component will make use of the ontology registry to 

discover all locations in the home which have room or occupation sensors.  



Stakeholders can use the data from the software component to determine the locations 

used the most by the home occupier.  On discovering common behaviour patterns or 

the most popular locations, stakeholders can query the registry further to determine 

which devices or services are present in those locations, and so investigate possible 

links between occupation and activity. 

6. Alternative approaches 

Use of ontology languages within the computing domain is becoming more popular. 

Logical properties, coupled with the potential for rich descriptions, have encouraged 

researchers to apply ontology languages to conventional network domains. 

6.1.  Ontologies and Web Networks 

A wealth of ontology-based projects can be found for web services, where 

semantically-rich descriptions extend the basic WSDL
5
 documentation of a service. 

WSDL stands for Web Services Description Language and essentially a WSDL 

description is a document written in a structured format (XML) which describes a Web 

service. It specifies the location of the service, and the operations and methods the 

service offers.  

Web services contain many similarities to a Home Network environment, as both 

have services that inter-operate independently of their internal platform or protocol. 

Two major projects are currently developing schemas and vocabularies employing 

ontology languages: one is focused on the use of a language called OWL-S which 

based on OWL and was mentioned earlier; the other utilizes the Semantic Web Service 

Framework
6
 (SWSF). Both syntaxes allow developers to describe their services in such 

a way as to provide a rich description of what the service is, how the service operates, 

and how users can interact with it. In other words, the languages provide meaning or 

semantics to a description. Although these languages are popular within the research 

community [9, 10], their syntax is still under development. As the syntax may change 

in future revisions, these languages are not considered appropriate for the Home 

Network domain. In contrast the OWL syntax became a W3C recommendation in 2004. 

The World Wide Web Consortium (W3C) is an international community 

where member organizations supported by a full-time staff, work with the public to 

develop Web standards. 

6.2. Ontologies and Middleware Frameworks 

As ontology languages have matured, several ontology-based projects in the domain of 

home and P2P networking have emerged, and as a result useful development and 

management tools have appeared.  

GloServ [11] is a project which utilizes the descriptive characteristics of ontologies 

to provide a hierarchical approach to describing and locating services across peer-to-

                                                           
5
 The Web Service Description Language (WSDL) is a W3C specification for the 

use of services over networks: http://www.w3.org/TR/wsdl 
6
 The Semantic Web Service Framework is a current submission to the W3C 

organisation: http://www.w3.org/Submission/SWSF/ 



peer networks. Ontologies are used to provide a structured mechanism for locating 

registry servers based on service categories and properties.  The project is concerned 

with providing a taxonomy of services that are known to service registries, and by 

relating the location of service registries to each other.  Rather than providing detailed 

descriptions of services, it is orientated towards discovering domain information about 

the service registries, determining domain hierarchies, and locations. 

Common approaches to embedding knowledge into middleware frameworks [9, 12, 

13] utilize ontology languages to provide logical and semantically rich component 

descriptions in the framework. While this is undoubtedly a step forward in assisting 

frameworks to interpret and infer, rather than just extract component attributes, the vast 

majority of these approaches require participating services and components to adhere to 

the framework’s ontology-based vocabulary. In addition to exacerbating discovery 

issues within multi-protocol environments in general, this approach also excludes the 

majority of existing Home Network components and protocols. Some existing 

protocols, such as UPnP, are attractive candidates for applying to an ontology-based 

Home Network description framework, due to their existing description framework or 

schema. Similarly, existing middleware frameworks typically only contain their own 

description framework for their particular domain. 

Ontologies have also been used to support context aware systems [8, 13]. In such 

systems, the rich expressiveness of the language is exploited to derive high-level 

contextual information from low-level data. High-level states, such as room occupancy 

or user availability, are described using restrictions on low-level sensor data. For 

example, a meeting room is full if there are more than five people currently in it. The 

Gaia [14] infrastructure takes this reasoning to a higher level, allowing fuzzy logic to 

be used where exact states cannot be fully inferred. 

The Network Appliance Service Utilization Framework [7, 15] (NASUF) is one of 

the most promising ontology based Home Network projects. In this framework, 

services are described using an ontology-based vocabulary which is designed to 

support not only simple service description, but also dynamic service composition [12]. 

This description framework leverages the syntax developed within OWL-S. The 

NASUF also exploits the logical properties which OWL provides, reasoning over 

descriptions in an attempt to provide a best match. This framework has also been 

applied to a P2P environment [7]. 

The approach described in this chapter differs as it is concerned with reusing 

existing description frameworks, rather than defining anew and requiring all 

participating components to adhere to this new definition. In this manner, existing 

technology can be integrated into an existing Home Network environment.   In other 

words the approach seeks to exploit and use existing descriptions and effort, and allow 

such isolated work to be combined into a greater whole. The approach is to provide a 

means of cooperative working rather than constantly repeating effort and starting afresh 

each time. 

7. Motivation and comparisons 

The use of ontologies within networks is becoming a popular research area, but this 

creates two main issues which remain to be tackled. Firstly, the issue of middleware 

‘lock-in’ hampers the true interoperability of middleware frameworks at the description 

layer, as existing components are ignored and those in development tend to be domain 



or framework specific. Secondly, the lack of a standardized classification taxonomy 

limits the discovery process over multiple domains.  

The issue of ‘lock-in’ can be addressed using the logical properties of OWL which 

allow concepts from one ontology to be declared equivalent to those within another 

ontology, providing that no logical conflicts occur. That is, creating ‘meta ontologies’ 

to describe the relationships between two concepts from distinct ontologies can unify 

existing Home Network ontologies. In domains where much similarity exists, search 

agents developed for either ontology would be able to operate over both sets of 

ontology data, expanding their search domain. This would not require a modification to 

the search agent. If the agent was looking for Device concepts from ontology A and the 

Device concept from ontology B had been declared equivalent, the agent would view a 

device from ontology B as if it were from its own domain. Hence independently 

developed ontologies can be reconciled with each other, and so alleviate ‘lock in’ and 

expand the domain for the search agents. External ontologies can be incorporated into 

the Protocol level of the Ontology Stack, acting as if they are simply a new protocol, 

with a mapping ontology describing the relationships between the external and internal 

vocabulary. 

The Generic layer of the Ontology Stack provides a solution to the second issue of 

multiple domains by incorporating any existing multiple Home Network protocols 

within the component discovery process. Using concepts and vocabulary from the 

Generic layer allows classification and inference against generic and common terms 

across multiple domains. The Generic layer provides a simplified taxonomy for 

common descriptions while the higher layers of the stack provide a framework which 

ensures a rich descriptive vocabulary, where terms are tightly coupled to their protocol-

specific counterparts. 

Frequently, ontology-based projects use their own specific ontologies for 

describing network components. While the approach of applying ontologies to this 

domain is novel, this ultimately leads to the middleware framework requiring all 

components to be able to describe themselves in a way which the framework 

understands. Due to the compact and pre-programmed nature of services this is not 

always possible, and certainly rules out the vast majority of existing Home Network 

components. 

A popular approach to ontology based discovery [7, 15] is concerned with the 

inputs, outputs, pre-conditions and post-conditions of a service. The reasoning behind 

this principle is that if a client service knows what the service provider is expecting in 

terms of service input, and what to expect as service output, then services can 

interoperate without binding to a predefined service interface. This approach is slightly 

misguided. In order for true discovery to take place, users need to know what service or 

device they require before discovering how to interact with it. In existing ontology 

based frameworks, the classification of a service or device is largely a simple value, 

and assumed to be a reference to an externally defined taxonomy. 

The need for such a taxonomy has motivated researchers to develop specific 

ontologies to support the classification of Home Network components. The Foundation 

of Intelligent Physical Agents [16] is one project of note which has developed a 

substantial ontology specification, to aid the experience of intelligent agents. Other 

approaches [17] concentrate on a more generic domain of device and service ontologies 

to increase the suitability of the descriptive framework. In these approaches however, 

the domain has grown rather large and rather too generic; and indeed to be useful to a 



specific environment such as a home network, a large amount of the terminology 

would become redundant. 

Despite such efforts, researchers and developers continue to develop description 

ontologies independently of those already in existence. It is the opinion of the authors 

that the lack of a standardized ontology is due to a lack of agreement amongst peers as 

to what should be in the ontology, rather than the lack of suitable existing ontologies. 

Indeed, it is also difficult to specify a complete ontology while the domain is 

continually developing. 

Using the authors’ approach, it is possible to resolve these issues, and ultimately 

present ontologies as a valuable contributor, not only to the Home Network, but to 

other service orientated networks such as Grid Services. 

8. Looking forward 

The main contribution of this chapter has been to focus on the integration of protocol 

descriptions into the Home Network Ontology Stack and the suitability of the 

vocabulary for the environment; all of which has highlighted by work on the MATCH 

system. In order to flesh out the protocol layer of the Ontology Stack it will be 

necessary to examine other potentially suitable candidates to incorporate, such as the 

HAVi and Zigbee architectures. Difficulties may occur where protocols do not include 

a standard set of descriptive terms although, as demonstrated with X.10, this does not 

necessarily exclude such protocols from this new approach. This approach to service 

and device classification can be applied to domains other than the Home Network, such 

as web services. Rather than replace existing ontology-based description languages, 

such as OWL-S, the approach can enhance the overall discovery process. It is also 

necessary to examine the suitability of the approach in enhancing the initial discovery 

process, where agents can utilize the ontology stack for initial classification of services, 

and then exploit existing web service description languages for service usage. 
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