
UNIVERSITY OF STIRLING

Martin L. Gill

Department of Mathematics and Computing Sciences

Combining MAS and P2P Systems: The Agent Trees Multi-Agent System (AT-

MAS)

Submitted for the degree of Doctor of Philosophy

October 2005

Declaration

I declare that this thesis has been composed by myself and that the research reported therein

has been conducted by myself unless otherwise indicated.

Stirling, October 2005

Martin L. Gill

i

Acknowledgements

This work has been funded during the earlier years by the Universal Information Technology

Group Ltd. (UniTech). In the later years, by the Department of Computing Science and Math-

ematics, University of Stirling, and finally through the sale of my flat.

A large number of people have made this work possible. First and foremost, I’d like to thank my

main supervisor Professor Leslie Smith, secondary supervisor Dr. Simon Jones, and everyone in

the Department of Computing Science and Mathematics at the University of Stirling. There are

too many people to name individually, but all have been helpful, friendly and provided solutions

to problems which caused me many bitten fingernails!

My family have been incredible; my parents Eileen & Pat, my brother Philip, my sister-in-law

Ann, and my sister Katherine, have been great. Without their support and occasional food

parcel, this would have been impossible.

I’d like to offer my thanks to Audrey who never really understood why I needed to complete a

PhD, but knew how much it meant to me. My love and best wishes go to her and her children;

Kenny and Bex.

My friends also deserve credit; Cathy, Simes (Dude!), Scott & Georgina, Guiness, Nicki, Susan

& Jim, Jeudi and Jules. Thank you for your patience - it has been very much appreciated.

Geddy Lee, Alex Lifeson & Neil Peart - collectively known as Rush who have provided the

soundtrack to most of my life.

Finally I’d like to thank Karla and Auntie J. who was there for me during the darkest moments.

You helped me understand. For that and so much more, I’ll always be in your debt.

ii

Abstract

The seamless retrieval of information distributed across networks has been one of the key goals

of many systems. Early solutions involved the use of single static agents which would retrieve

the unfiltered data and then process it. However, this was deemed costly and inefficient in terms

of the bandwidth since complete files need to be downloaded when only a single value is often

all that is required.

As a result, mobile agents were developed to filter the data in situ before returning it to the user.

However, mobile agents have their own associated problems, namely security and control.

The Agent Trees Multi-Agent System (AT-MAS) has been developed to provide the remote

processing and filtering capabilities but without the need for mobile code. It is implemented as

a Peer to Peer (P2P) network of static intelligent cooperating agents, each of which control one

or more data sources.

This dissertation describes the two key technologies have directly influenced the design of AT-

MAS, Peer-to-Peer (P2P) systems and Multi-Agent Systems (MAS). P2P systems are conceptu-

ally simple, but limited in power, whereas MAS are significantly more complex but correspond-

ingly more powerful. The resulting system exhibits the power of traditional MAS systems while

retaining the simplicity of P2P systems.

The dissertation describes the system in detail and analyses its performance.

iii

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Scope . 12

1.3 Contribution to Current Research . 13

1.4 Structure of the Thesis . 14

2 Intelligent Agents 16

2.1 Definition of an Agent . 16

2.1.1 Definition 1: Autonomous Servants . 16

2.1.2 Definition 2: An object with ’attitude’ . 19

2.1.3 Definition 3: A ’rational’ software entity 20

2.2 Definition of an Agent - part 2 . 23

2.3 Key Features of an Agent . 25

1

2.3.1 Autonomy . 26

2.3.2 Robustness . 29

2.3.3 Intelligence . 30

2.3.4 Adaptability, Personalization and Learning 32

2.3.5 Communication and Social Awareness . 35

2.3.6 Environment . 35

2.3.7 Mobility . 40

2.3.8 Personality, Emotion and Believability . 45

2.4 Agent Architectures . 47

2.4.1 Deliberative Architectures . 48

2.4.2 Reactive Architectures . 52

2.4.3 Hybrid, or Layered Architectures . 55

2.5 AT-MAS and Intelligent Agents . 55

2.6 Chapter Summary . 56

3 Multi-Agent Systems 58

3.1 Definition of a MAS . 58

3.1.1 Societies of Agents . 58

3.2 Types of MAS . 63

2

3.2.1 Open Systems . 63

3.2.2 Closed Systems . 69

3.3 MAS Communication . 74

3.3.1 Cooperation without Communication . 74

3.3.2 Nonverbal Communication . 76

3.3.3 Cooperation with full Communication . 80

3.4 AT-MAS and Multi-Agent Systems . 91

3.5 Chapter Summary . 91

4 The Information Environment 93

4.1 Client/Server . 96

4.2 The Semantic Web . 98

4.3 Web Services . 100

4.4 Client/Peer Oriented . 101

4.5 Peer to peer (P2P) . 102

4.5.1 Hybrid P2P Systems . 107

4.5.2 Pure Peer-to-peer . 108

4.5.3 Super-peer . 114

4.5.4 Overlay Systems . 115

3

4.5.5 Agent Based P2P Systems . 117

4.6 Computational Grids . 122

4.6.1 Virtual Organisations . 124

4.6.2 Grid Services . 125

4.7 AT-MAS and the Information Environment . 126

4.8 Chapter Summary . 127

5 The Agent Trees Multi-Agent System (AT-MAS) 129

5.1 An Overview of the AT-MAS Network . 129

5.1.1 The AT-MAS system in operation . 130

5.1.2 Building the Agent Tree . 130

5.1.3 Discovering other agents in the Network 132

5.1.4 Expanding the Search Horizon . 134

5.1.5 Returning Results . 137

5.2 Components of an AT-MAS Node . 137

5.2.1 The Client Applet . 138

5.2.2 The Front-End Server . 139

5.2.3 The Logger Application . 141

5.2.4 The Admin Application . 142

4

5.2.5 The AT-MAS Agent . 142

5.3 The AT-MAS Agent dissected . 144

5.3.1 The Knowledge Base . 144

5.3.2 Communications Component . 145

5.3.3 The Planner Component . 147

5.3.4 The Status of Actions . 148

5.4 AT-MAS Communications . 150

5.4.1 Message Format . 151

5.4.2 Message Fields . 152

5.4.3 Conversation Format . 152

5.4.4 The AT-MAS Language . 153

5.4.5 Support for Other ACLs . 157

5.5 Chapter Summary . 157

6 Evaluating the AT-MAS System 159

6.1 Evaluation by Results . 159

6.1.1 Obtaining the Results . 159

6.1.2 Scalability Testing . 161

6.1.3 Knowledge Base Updates . 163

5

6.2 Evaluation by Definition . 166

6.2.1 Is the AT-MAS agent a true agent? . 166

6.2.2 Is AT-MAS a Multi-Agent System? . 169

6.2.3 Is the AT-MAS system a viable alternative to existing MASs 169

6.2.4 Is the AT-MAS system a viable alternative to Mobile Agents 169

6.2.5 Is AT-MAS a P2P System? . 171

6.2.6 Is the AT-MAS system a viable alternative to P2P 171

6.3 Chapter Summary . 172

7 Conclusions 174

7.1 Evaluation of the work undertaken . 174

7.2 Evaluation of the AT-MAS system for different users 175

7.2.1 Research - General . 175

7.2.2 Research - Specific . 176

7.2.3 Commercial . 176

7.2.4 Leisure . 177

7.3 Problems and Limitations of AT-MAS . 177

7.3.1 Attack From Within . 177

7.4 Future Work . 180

6

7.4.1 Identifying Malicious Agents . 181

7.4.2 Use of a GUID instead of an address . 182

7.4.3 Caching to allow for Transient Connections 182

7.4.4 Requesting Knowledge Base Information 183

7.4.5 Enhancements to the AT-MAS ACL . 183

7.4.6 Increasing the Parsing Abilities of the AT-MAS Agents 185

7.4.7 An Intelligent Interface Agent . 185

7.5 Final Thoughts . 186

7

List of Figures

3.1 The AgentCities Architecture . 65

5.1 An Agent Tree . 129

5.2 Snapshot of an Agent Tree Intranet . 131

5.3 Screenshot of the AT-MAS Client . 138

5.4 Pattern of Connections 1 . 144

5.5 Pattern of Connections 2 . 144

6.1 The actual results for the chain of agents A-B-C-D. The top line shows the total time

taken for the sequence, the next line shows the time taken for agent B, the third for

agent C, and bottom line for agent D. 161

6.2 The distribution graphs for the 4 agents shown in figure 6.1. The first run has been

omitted. Plotted points show the histogram frequency counts (sum is 49). 162

6.3 A Comparison of Timings for Different Chain Sequences. The 15 results are each from

an average of 50 runs. 163

8

6.4 A Comparison of Timings for Different Tree Sequences. The 7 results are each from

an average of 50 runs. The X axis shows the number of agents contacted. Each line

shows timings for contacting each agent. The Endpoint shows the total time taken. The

leftmost lines show A contacting B, A contacting C, and A contacting D. The middle

lines shows A contacting B and C, A contacting B and D, A contacting C and D. The

rightmost lines show A contacting B, C and D. 164

6.5 A Comparison of Timings for Different Numbers of Goals 165

6.6 Knowledge Base values varying as random queries are processed 166

9

List of Tables

5.1 ’Contacted Field’ Results for a Chain of Agents . 133

5.2 ’Contacted Field’ Results for a Tree of Agents . 133

5.3 Bypassing Agents without Data . 136

5.4 The AT-MAS ACL Required Message Fields . 152

5.5 The AT-MAS ACL Context Specific Message Fields 153

5.6 The AT-MAS ACL Conversation Format . 154

6.1 The computers used for testing . 159

6.2 A Summary of the Knowledge Base Levels after 2,000 runs with initial Knowledge Base

value of 50% . 167

10

Chapter 1

Introduction

This thesis describes the Agent Trees Multi-Agent System (AT-MAS) and its relationship to

other existing work.

Two key technologies have directly influenced the design of AT-MAS: Peer-to-Peer (P2P) systems

and Multi-Agent Systems (MAS). P2P systems are conceptually simple, but limited in power,

whereas MAS are significantly more complex but correspondingly more powerful. AT-MAS is a

combination of these two different technologies but with a number of other features. The intention

is that the resulting system exhibits the power of traditional MAS systems while retaining the

simplicity of P2P systems.

1.1 Motivation

The AT-MAS project was partly motivated by the desire to simplify the general design concepts

of these systems by replacing the mobile agents with static agents and introducing a much

simpler protocol for interaction based on some of the concepts used in P2P systems. While it

is unlikely that the AT-MAS system will cause a revolutionary re-design of the techniques for

11

designing MASs, it is hoped that it may cause some consideration as to whether the current level

of complexity in most systems is required and how it may be reduced in future.

The second motivation for this work is the desire to produce a functionally equivalent (or better)

system to replace mobile agents, but which does not suffer from the same limitations e.g. security,

control. While much of the simplicity of the AT-MAS system stems from the comparative

simplicity of the protocol, the use of static agents instead of mobile agents has contributed

greatly to security and to a reduction in the infrastructure required to support the agents.

Thirdly, when considering the current level of complexity of the underlying design of P2P system,

it seems remarkable that little work has been done in extending the application-level facilities

available to the user. By replacing the simple file-handling of the current generation of P2P sys-

tems with a more sophisticated level of data manipulation abilities based around XML elements,

AT-MAS creates a usable information filtering and retrieval resource which helps to bridge the

gap between MAS and P2P Systems.

1.2 Scope

There are three underlying technologies; Intelligent Agents, Multi-Agent Systems and Internet

based Technologies. These elements relevant to the design AT-MAS are described in detail.

Aspects which have influenced the design particularly, such as P2P networks are discussed in

more detail.

The various methodologies and frameworks such as Gaia[190], JADE[16, 56], LEAP[17, 120], etc.

used to create various Agent Systems are not described as they are by their nature, development

tools, and as such are incidental to the study of functioning agent systems. While they do provide

many benefits in terms of speed of development, they limit the possible forms that such agent

systems can take.

12

Thus, it has been important to develop novel agent systems such as AT-MAS from scratch.

AT-MAS system was both positively and negatively influenced by the design of other modern

MASs. As a result, AT-MAS is an unconventional MAS, owing much of its inspiration to the

development of P2P systems. Similarly P2P frameworks such as Jxta[171, pages 163-179] have

also been excluded from the development process for the same reasons.

The whole purpose of the agent frameworks and development is to make the process of building

agent systems easier. In doing so, they provide a pathway; a simple route to creating agent based

systems, unless the final destination is radically different from that envisaged by the framework

designers. By providing tools, modules, interfaces and off the shelf components to assist with

creating the agents and the infrastructure to support them, these systems provide a tempting

easy solution which may cause the original idea to become diluted.

Additionally many of the social aspects of the technology such as the ongoing legal concerns

regarding P2P music downloading and copyright issues have also been excluded from this work

as they are beyond the scope of this thesis. For a historical and non-technical introduction to

P2P and music sharing, the reader is directed to the book ’SonicBoom’ by John Alderman[4].

1.3 Contribution to Current Research

By showing that it is possible to combine P2P techniques with Multi-Agent Systems to produce

a system which is simple in comparison to existing MASs, yet powerful, it is hoped that it will

prompt other researchers to reconsider the complexity of their designs, leading to a simplification

in the design of Multi-Agent Systems. Additionally, extending the range of information process-

ing available to P2P system, may prompt researchers to consider more ambitious applications

for their systems, leading to convergence.

Further, it is hoped that the simple AT-MAS communications protocol can be used as the basis

13

for interaction between different P2P systems which are currently designed and implemented

to function separately. While it is acknowledged that a number of Agent Communication Lan-

guages (ACLs) and protocols exist, they are, in general, more complex than required for simple

information retrieval and processing tasks. Conversely, the current proprietary protocols used

by P2P systems allow only file retrieval and as a result are too limited.

1.4 Structure of the Thesis

Chapter 2 starts with a discussion of the problems concerning finding a reasonable definition

of Intelligent Agents. In addition to the more general definitions, three different definitions are

given to illustrate the range of viewpoints that can be considered when viewing the field. This

is followed by a discussion of a number of the criteria that should be considered which create an

agent. Finally, a number of architectures are considered.

Chapter 3 considers groups of agents. This chapter, much like the field of research, concentrates

mainly on communication between the agents. Both open and closed systems of agents are

considered.

Chapter 4 concerns the environment of AT-MAS, namely the internet. Firstly, the problems

caused by its scale, and lack of regulation are described. The sections following this describe the

rapidly expanding range of application which it supports.

The next chapter (5) introduces the AT-MAS system. The chapter starts with an overview of the

system, followed by a description of the system in operation in which key operations and design

decisions are explained. The following section details the separate components which provide

support for the agent along with the services that they provide, leading into a dissection of the

agent. This gives further detail about the components and their functionality. Although this

chapter concerns the AT-MAS system, other systems are referred to where they have directly

14

influenced the design of AT-MAS.

Chapter 6 evaluates the various aspects of the system. Both quantitive evaluations (based on

the results of tests carried out) and qualitative evaluations (based on general comparisons with

other types of system) are described.

In chapter 7 of this thesis, a final evaluation of the success of the system is given. This is

followed by a description of the future work that may be carried out on the system to improve

its operation.

15

Chapter 2

Intelligent Agents

2.1 Definition of an Agent

When presenting any complex topic in detail, it is important to define the common terms. This

is especially important if the terms are a new or altered definition of terms that are already in

common use elsewhere. Agent is one term that this applies to. In our everyday lives we come

across specific kinds of agent: Travel Agents, Estate Agents and we hear stories about Secret

Agents but the question remains What is an agent?

As with most topics, the answer to this question depends on who asks the question. It is for this

reason that three different, but closely related definitions of an agent are presented.

2.1.1 Definition 1: Autonomous Servants

According to the dictionary, the term agent is as follows;

agent: . . . a person who acts on behalf of another person or organisation.[49, page 15]

16

By replacing the first occurrence of the word person with program we are closer to a definition

that applies to the computing domain, but this definition is still not close enough. The problem

is that every piece of software is a program, but not every piece of software is an agent. However,

when this word is replaced with the words software entity, and the sentence re-worded to improve

clarity, the definition is as follows:

An agent is a software entity which acts on behalf of a person or organisation.

This is very similar to a number of the more general definitions of an agent:

Many agents are meant to be used as intelligent electronic gophers - automated errand

boys. Tell them what you want them to do - search the Internet for information on

a topic, or assemble and order a computer according to your desired specifications -

and they’ll do it and let you know when they’ve finished.[165]

Intelligent agents are software entities that carry out some set of operations on behalf

of the user or another program with some degree of independence or autonomy, and in

so doing, employ some knowledge or representation of the user’s goals or desires.[63,

page 2]

These definitions, while still valid, are too broad for all but the most general-purpose agents.

Unfortunately finding the balance between a definition that is too vague and one that is too

specific can be a problem. Any vague definition will often give false credibility to a number of

programs that should really not be defined as agents, whereas any definition which is too specific

will exclude a large number of legitimate agents.

I find little justification for most commercial offerings that call themselves agents.

Most of them tend to excessively anthropomorphize the software, and then conclude

17

that it must be an agent because of that very anthropomorphization, while simulta-

neously failing to provide any sort of discourse or ”social contract” between the user

and the agent. Most are barely autonomous, unless a regularly scheduled batch job

counts. Many do not degrade gracefully, and therefore do not inspire enough trust

to justify more than trivial delegation and its concomitant risks.[59]

A more sophisticated definition of an agent can be found at the start of Gerhard Weiss’s book;

Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.

An agent is a computational entity such as a software program or robot that can

be viewed as perceiving and acting upon its environment and that is autonomous in

that its behavior at least partially depends upon its own experience. As an intelli-

gent entity, an agent operates flexibly and rationally in a variety of environmental

circumstances given its perceptual and effectual equipment. Behavioral flexibility and

rationality are achieved by an agent on the basis of key processes such as problem

solving, planning, decision making, and learning. As an interacting entity, an agent

can be affected in its activities by other agents and perhaps by humans.[181, page 1]

The problem is that while the definition is valid for a large number of agent systems, not all

agents exhibit all of the characteristics mentioned and as a result, some agents are excluded.

It’s difficult to find a succinct definition that includes all of the things that most

researchers and developers consider agents to be, and excludes all of the things they

aren’t.[165]

The task of choosing a definition is further complicated by the number and range of different

agents; each with different attributes, different purposes and programmed to operate in different

environments. As a result, they are given different names to reflect this.

18

So now we have synonyms including knowbots (i.e. knowledge-based robots), softbots

(software robot), taskbots (task-based robots), userbots, robots, personal agents,

autonomous agents and personal assistants.[126]

In many ways, these definitions applied to the agents correspond to the roles or job descriptions in

human society. Agents are defined as softbots and userbots in the same way human occupations

are defined as Doctor, Lawyer, Scientist, Estate Agent, etc. In addition, even the more general-

purpose agents may be known as software agents, intelligent agents, autonomous agents, or

similar.

Usually it depends upon the agent’s creator(s) to determine what modifiers, if any, are to be used

when describing their agents - if, of course, the programs being described are actually agents.

2.1.2 Definition 2: An object with ’attitude’

As most programmers are aware, an object may be described as a computational model of its

real-world equivalent. This is also the case with agents.

But agents are not simply objects by another name. This is because an agent is a

rational decision making system: we require an agent to be capable of reactive and

pro-active behaviour, and of interleaving these types of behaviour as the situation

demands.[186, page 29]

With agents, we are trying to create an simple abstract model of an independent living organism.

Due to the incredible complexity of most living organisms, agents and agent based applications

may be very complex in terms of the number of lines of code, processor and memory requirements

when compared to other computer programs. However, they are usually very simplistic when

19

compared to their real-world counterparts1. As a result the model (agent) must reflect this.

When describing a user interface containing both objects, Tom Erickson provides a simple com-

parison:

. . . objects and agents can be used in the same interface, but they are clearly distin-

guished from one another. Objects stay what they are: nice, safe, predictable things

that just sit there and hold things. Agents become the repositories for adaptive func-

tionality. They can notice things, use rules to interpret them, and take actions based

on their interpretations.[54, page 94]

In practical terms, this means that while objects are called programmatically and return results,

when requests are made to an agent it can perform a number of different actions. It may, for

example, ignore the request, refuse the request or attempt to complete it. As a result, agents have

sometimes been referred to as objects with attitude[24, page 382], or more recently as complex

objects with attitude[157]. This contrasts with the sort of object that make up Java and C++

programs.

2.1.3 Definition 3: A ’rational’ software entity

In the third definition of an agent, we consider it as an intentional system, and concentrate on

its internal mental state rather than its anthropomorphic outward appearance.

For some researchers - particularly those working in AI - the term ’agent’ has a

stronger and more specific meaning than that sketched out above. These researchers

1The exceptions to this are reactive agents which are modelled on simple living organisms such as insects.

These are described in section 2.4.2.

20

generally mean an agent to be a computer system that, in addition to having the prop-

erties identified above2 is either conceptualised or implemented using concepts that

are more usually applied to humans. For example, it is common in AI to characterise

an agent using mentalistic notions, such as knowledge, belief intention, and obliga-

tion. . . Some AI researchers have gone further, and considered emotional agents.[189]

By creating agents which are modelled with human-like reasoning, we are reducing the possibility

of uncertainty in their actions. This means that given an agents beliefs (knowledge) and desires

(goals), we can work out what the agents intentions are. This allows us to predict with some

degree of certainty what the logical course of action in the current situation will be: in other

words, the agent will behave rationally.

One way of achieving this is for the agent to use its own knowledge and its perception of the

current state of the environment to create plans in order to achieve its goals. These plans will

be executed by the agent which will monitor the effect(s) of its actions. If the plan fails, then

the agent will have to re-plan. In some cases the environment may change in such a way that

a number of actions in the plan may not be required. When this happens, the agent should

recognise this and revise its plan accordingly. If the agent is not able to complete a particular

goal then it must also recognise this.

If an agent has been designed in this way it may be referred to as using a number of different

terms - strong agents, rational agents, BDI (Belief, Desire, Intention) agents.

Strong agents are defined by the same set of properties to that of weak agents, and

are constructed using a cognitive approach which bases design of the agent on how a

human may solve the problem, using knowledge, belief and intention.[174]

An obvious problem is how to conceptualize systems that are capable of rational

2The attributes referred to are; Autonomy, Social Ability, Reactivity and Pro-activeness

21

behaviour . . . One of the most successful solutions to this problem involves viewing

agents as intentional systems . . . whose behaviour can be predicted and explained

in terms of attitudes such as belief, desire, and intention . . . The rationale for this

approach is that in everyday life, we use a folk psychology to explain and predict the

behaviour of complex intelligent systems: people.[186, page 30]

This use of folk psychology has extended into the communications aspect of agents. As a result,

most, if not all communication between agents is carried out using Speech Acts. These are

intentional statements such as TELL, ASK, REGISTER which allow an agent to communicate

its intentions rather than carry them out directly.

Briefly, the key axiom of speech acts theory is that communicative utterances are

actions, in just the same sense that physical actions are. They are performed by a

speaker with the intention of bringing about a desired change in the world; typically

the speaker intends to bring about some particular mental state in the listener. Speech

acts may fail in the same way that physical actions may fail: a listener generally has

control over her mental state, and cannot be guaranteed to react in the way that the

speaker intends.[189]

By defining communication in this way, it is possible for an agent to incorporate communication

actions into plans. This is important when the system contains more than one agent (see chapter

3).

22

2.2 Definition of an Agent - part 2

The above definitions show that the word ’agent’ can mean different things to different people.

From a general point of view, the idea of a simple electronic entity3 is an appealing metaphor.

It allows us to abstract away all of the details and leaves us with a simple assistant that we can

delegate tasks to - as we would any subordinate.

From a more technical point of view, it is possible to make comparisons between objects and

agents. This is because both are abstract computation models of real-world items. However,

agents are models of independent thinking entities and the models (agents) must reflect this. As

a result, agents can, and often do, refuse requests from other agents. In contrast, an object has

no control over its own behaviour when it receives a message from another object.

The third definition is the most complex. In this, the agent is viewed as a rational computational

entity with beliefs, desires and intentions. It must make decisions based on information that it

knows or has learned, and use this information when creating rational plans in order to achieve

its goals. As part of this model, the agent is given human-like thought processes, which include

beliefs, desires, intentions, and in some cases emotions. Agents which fulfill the criteria of this

third definition are known as either strong, rational or BDI agents.

Having examined the various definitions of an agent, it can be seen that the topic is a wide

and varied one. It is important to note that each of the definitions is an attempt to provide

an abstraction; whether it is anthropomorphic, object-oriented, or mentalistic. As such, all

definitions are valid, but the most appropriate one will depend upon the context.

In his 1992 Extended Abstract ”Distributed Intelligent Agents”, Stanley J. Rosenschein com-

ments on the use of agents as a metaphor for complex computer systems.

3often created as a simple computational servant

23

The notion of an ”agent” is often useful in these circumstances because it abstracts

away from the particulars of how information is encoded or what specific actions are

produced and focuses instead on the content of the information to be encoded and

the goals to be achieved by the system.[147]

So, we are left with a number of definitions which provide a useful abstraction - removing all

of the detail, and giving us a number of general descriptions based on how we view the agent.

However, this leaves the problem that there is still no single all-encompassing definition of an

agent.

So, what exactly is an agent? Must it be intelligent? Adaptive? Itinerant? There are

almost as many opinions on this as there are agents themselves, leading to frequent

debates flaring up on several Internet forums In any case, as a practical matter we

should always ask the question, What is so special about an entity that it may be

called an agent? or What does calling it an agent buy us? The answer would not

be the same in each case, but it should be nonempty for the notion of agency to be

nonvacuously applied.[83, page 1]

Unfortunately, it is unlikely that there ever will be a single complete definition. Therefore, it

will be more useful to move on to discuss the attributes that an agent may possess.

There is as much chance of agreeing on a consensus definition for the word ’agent’ as

there is of AI researchers arriving at one for ’artificial intelligence’ ! When necessary

an agent is defined as referring to a component of software and/or hardware which

is capable of acting exactingly in order to accomplish tasks on behalf of its user.

However, it is would be preferable to say that is an umbrella term which covers a

range of more specific agent types, and then go on to list and define what these other

agent types are.[125]

24

2.3 Key Features of an Agent

While there is a lot of disagreement about what an agent is, there is more agreement about what

an agent is not. Instead, many researchers base their definitions around a list of the attributes

that they believe an agent should possess.

It has become common to define an appropriate notion of agency by specifying the

necessary attributes that all agents of the particular kind one has in mind are required

to share . . . There has been much of debate, however, what set of properties exactly

qualifies an entity, such as a single human decision maker, a firm in the market, a

computer program, a robot or an unmanned autonomous vehicle, for an autonomous

or intelligent agent.[173]

This next section highlights some of the more important features that should be considered when

designing an agent. Unfortunately, this list does suffer from the same problem as the definition:

there are many different types of agent with different abilities, attributes and domains. In fact,

the only attribute which researchers agree is essential is autonomy i.e. the agent must be able

to exhibit some level of independent behaviour.

Essentially, while there is a general consensus that autonomy is central to the no-

tion of agency, there is little agreement beyond this. Part of the difficulty is that

various attributes associated with agency are of differing importance for different

domains.[187, page 15]

All of the other attributes - including intelligence - are optional depending on the agent. In each

case, attributes may be implemented in different ways; or to different levels.

25

2.3.1 Autonomy

Considering the range of agents, their possible attributes, and the struggle to find an all-

encompassing definition which is universally acceptable, it is reassuring to find that there is

complete agreement about the need for agents to be able to work autonomously. However, as

before, there is a great deal of discussion about what autonomy implies.

Even a very simple definition of autonomy requires that the agent is able to survive and pursue

its goals in a potentially complex environment without the need for continuous user assistance.

The user may delegate tasks to the agent which it will attempt to complete - yet the agent must

be able to work alone if required. Other tasks/goals may arise from either conditions within the

environment or from the agents own needs, and these must also be acted upon.

Agents function asynchronously and as such, are not restricted to the command, response, com-

mand, response, command, response style of interaction generated by traditional software. As a

result, they are always listening for commands and/or information from the user, other agents,

and the environment. By working this way, an agent is able to respond to any events which have

the potential to affect it.

The agent operates without direct intervention (e.g. in the background) to the extent

of the user’s specific delegation. The autonomy attribute of an agent can range from

being able to initiate a nightly backup to negotiating the best price of a product for

the user. [29]

The real world is complex, unpredictable and dynamic. It is simply not possible

for a designer to foresee all of the circumstances that might be faced by an agent

in continuous long-term interaction with such an environment. Any truly intelligent

agent must therefore possess a considerable degree of autonomy. It must be capable

of flexibly adapting its behavioral repertoire to the moment to moment contingencies

26

which arise without being told what to do in each situation.[15, page 169]

An autonomous agent is a computational system that has a set of goals and oper-

ates completely autonomously in an unstructured, dynamic environment. It tries to

achieve its goals by interacting with the environment through sensors and effectors.

An example of an autonomous agent would be a ”robot pet” that ”lives” in an ev-

eryday house and tries to survive and receive attention from its human house mates.

Another example would be an animated figure that inhabits a simulated 3D world

(e.g. An adventure world video game).[108, page 1]

Although computer games and robotic pets can be switched off, the example given hints at

another important part of autonomy; the fact that the agents often have a long ’lifespans’. This

persistence is one of the key concepts associated with autonomy, and with agents in general; the

agent must be able to survive for long after its initial goals have been completed.

Any ”proper” computational or biological autonomous agent can also be expected to

be at least somewhat persistent, that is, to ”live on” beyond completing a single task

on a single occasion. In case of software agents, persistence makes an agent different

from say a subroutine of a computer program whose ”turning on and off” is controlled

from outside of that subroutine.[173]

However, this means that there will be times when an agent has no specific goals to complete

for the user or for other agents. Many researchers believe that for an agent to be autonomous it

must also be pro-active and make use of these times - to gain knowledge or perform other tasks

which may assist it in carrying out tasks in the future. These self-assigned goals may include

exploring its environment, optimizing its own internal states, etc.

While much of this work performed by an agent will be of limited use, since it is carried out

when the agent would otherwise be sitting idle, the cost is essentially zero. However, there is

27

a potential gain as the information discovered may allow the agent to respond more quickly to

future requests.

However, this activity must be balanced against the possible effects on other agents and/or

resources. In a distributed application, the number of query messages sent out by an agent in an

effort to find out more information must be balanced against the additional network load that

the agent generates. Similarly if an agent regularly locks a shared database in order to update

its own information, this could have a adverse effect on the overall efficiency of the system.

Therefore it is important to limit any potentially detrimental effects.

In his report ”What’s an agent, Anyway? A Sociological Case Study”, Leonard Foner[59] de-

scribes a chatterbot4 ’Julia’ which exists and interacts with the users in the TinyMud5 environ-

ment.

A more autonomous agent can pursue agenda independently of its user. This requires

aspects of periodic action, spontaneous execution and initiative, in that the agent

must be able to take pre-emptive or independent actions that will eventually benefit

the user. [Julia] carries out many independent actions in the MUD. In fact, most of

her time is spent pursuing a private agenda (mapping the maze), which is nonetheless

occasionally useful to her users (when they ask for navigational assistance).[59]

But this poses the question: ’If an agent like Julia didn’t map the maze, or perform some other

tasks in its spare time, could it still be classed as autonomous, but more importantly, would it

4A chatterbot is a an agent which has been designed as an artificial person. Chatterbots have their own

personalities, preferences, moods and motives. However, they are generally designed to be helpful and provide

assistance when requested.
5TinyMUD is an example of a Multi-User Dungeon (MUD); originally an environment - combining the features

of both chatrooms and text adventures - for online role-playing. MUDs typically consist of a number of virtual

rooms where users communicate by typing messages to each other. Moving between rooms and performing other

actions may done by typing simple commands; eg. GO NORTH, TAKE SWORD, EAT FOOD, etc.

28

still be an agent?’ While mapping a maze is a useful task, it could be argued that this pro-

active behaviour does help the case for agency, the lack of it does not always indicate a lack of

agency. In this case, the perception of believability would be shattered if Julia were to remain

motionless and inert between performing tasks for the users. Therefore it is important for Julia

to be pro-active at times.

In other systems where believability is not a requirement, continuous activity may be necessary

for other reasons.

2.3.2 Robustness

One of the key goals of Software Engineering is to produce programs that are robust. That is,

all software should be able to cope with changes and unexpected circumstances; whether it is

the lack of an expected response or an unpredictable environment change.

For agents, especially those which operate in dynamic environments, changes and unpredictable

events are commonplace. Agents must be able to cope with a multitude of changing circum-

stances; changes to the environment; and changes to the agents goals. It is also possible that

some of the actions attempted by an agent may not succeed. If this happens, the agent must be

able to detect the failure and alter its plans accordingly. If the failure of an action means that a

key goal has become un-achievable, then the agent must also recognise this - there is no point in

continuing if an essential data item is unavailable.

In the Seaworld simulation created by Steven Vere & Timothy Bickmore[178, 177] the agent

Homer is equipped with a camera. If the camera became damaged, then Homer would still be

able to perform all of the tasks given to him, except for those which required him to photograph

objects.

For reactive agents, this is especially important as their designers have made a conscious decision

29

to make robustness a key feature. By creating artificial animals; whether robotic as in the case

of the robots created by Rodney Brooks[26, 27, 28], or software based as in the work carried out

by David Cliff[46], Toby Tyrrell and John Mayhew[175] researchers have been able to produce

very simple, but robust agents which can survive in real world environments.

Insects are not usually though of as intelligent. However, they are very robust devices.

They operate in a dynamic world, carrying out a number of complex tasks. . . No

human-built systems are remotely as reliable. . . Thus I see insect level as a noble goal

for artificial intelligence practitioners. I believe it is closer to the ultimate right track

than are the higher level goals now being pursued.[46]

2.3.3 Intelligence

What is intelligence? Like the definitions for agent and autonomy, intelligence means different

things to different researchers. To some, an agent may be classed as intelligent if it is able to exist

within the its environment and react appropriately to the events. To others, the ability of an

agent to create (and execute) plans based on its own knowledge, experience and the current state

of the environment in order to achieve its goals is a more appropriate indicator of intelligence.

In some circumstances, the intelligence of an agent is indicated by its ability to appear intelligent

to observers. This is the case for believable agents (see section 2.3.8 for more information) whose

main purpose is to give the illusion of life - whether real or artificial. However, this may achieved

by using either of the previous philosophies, or a combination of both, and therefore believability

may be considered a possible result rather than a method of achieving intelligent behaviour.

It could be argued that autonomy, when combined with pro-activeness, implies a level of in-

telligence, but this is not always the case. Reactive agents (see section 2.4.2) are autonomous

and can react to events within their environment, and are pro-active when there are no events

30

to react to. However, their actions correspond more to instincts than to higher level thought

processes and reasoned behaviour. Programmatically, these agents are simple - they store very

limited knowledge - if any - and their actions and responses are hard-coded.

This leads on to another important element of agent design: an agent should only ever be as

intelligent as it needs to be for the domain in which it is operating. Similarly, the type of

intelligence is important to consider; whether it is a fast, reactive intelligence, or a slower more

deliberative approach that is required.

The only intelligence requirement we generally make of our agents is that they can

make an acceptable decision about what action to perform next in their environment,

in time for this decision to be useful. Other requirements for intelligence will be

determined by the domain in which the agent is applied: not all agents will need to

be capable of learning, for example.[186, page 28]

One researcher, Ben Shneiderman is unhappy with the idea of ”intelligent agents”:

A generally troubling issue is the choice of ”intelligent” as a label for much of agent

technology. The obvious comparison is to humans. But is such a comparison a

good thing? The metaphors and terminology we choose can shape the thoughts of

everyone from researchers and designers to members of congress and the press. We

have a responsibility to chose the best metaphor for the technology we create.[154]

He continues by listing a number of points which may be summarized as follows:

1. Use of the word ”Intelligence” limits our thinking by limiting our frame of reference to

human terms,

31

2. ’Intelligent’ implies creativity and adaptability, which in turns implies a reduction in control

for the user,

3. The idea of an intelligent computer (or agent) absolves us of responsibility. People already

blame computers for their mistakes. If the computers were classed as intelligent, this

tendency would increase,

4. Machines will never be people but if we treat them as people, we may end up treating

people as machines.

Although Shneiderman makes a number of interesting points, the fact remains that we already

have agents which exhibit a limited (in comparison to humans) form of intelligence however we

choose to describe it. The word intelligent, like the word agent is just a convenient label that

we can use. Choosing a different word may change our perceptions and expectations, and as a

result may change the direction of research, but who is to say that the new word will be more

appropriate? Most likely, any new description of an agent will take its place alongside existing

words such as autonomous, intelligent, strong, weak, and software.

2.3.4 Adaptability, Personalization and Learning

Depending upon the type of agent and the environment in which it finds itself, an agent’s ability

to adapt may have differing consequences. These may range from the ability of an agent to

search three database systems instead of only two in a certain timescale, through to determining

whether of not the agent will be able to survive6.

In a changing, unpredictable, and more or less threatening environment, the behavior

of an animal is adaptive as long as the behavior allows the animal to survive. Under

6It should be noted that for agents, the term ’survive’ means to continue to function successfully.

32

the same conditions, the behavior of a robot is considered to be adaptive as long as the

robot can continue to perform the task for which it was built. Now the survival of an

animal is intimately involved with its physiological state and the successful operation

of a robot depends upon its mechanical condition. Under these circumstances, it

is obvious that one can associate with an animat - whether the term indicates a

simulated animal or an autonomous robot - a certain number of state variables upon

which the survival or successful operation depends.[117]

In the example of the animat7 environment, a successful predator would have to learn not to

attack a group of animates which may fight back, but would instead adapt and learn to wait until

it could isolate its prey. Another example of a robot that is able to adapt to its surroundings

would be a military robot, which must be able to use all of the available cover on a battlefield

to prevent it from being destroyed by the enemy.

For an internet agent, adapting quickly to its environment is less important, as there are no

predators. However, as stated earlier, survival is not the only reason that an agent must be

aware of and able to adapt to its surroundings. For example, an agent which is given the task of

trading in stocks and shares online must be able to react quickly to any sudden change in value

of the shares.

Another type of agent for which survival is not an issue is the Intelligent Assistant. Instead, the

form of adaption required for an agent of this type is personalizability. These agents must be

able to remember the preferences, habits and personal information of other key agents or users

in the environment. For example; personal assistant agents will remember the user’s working

preferences, internet search agents will remember locations of various resources, and email agents

will remember how to deal with the different types of messages.

7An animat is an agent which is modelled on an animal. Often, the nature of the animal is unspecified, but

it has predators, prey which affect its actions.

33

Chatterbots such as Julia will remember the personal information for the users within the en-

vironment. For example, if she is given someone’s email address then she will remember it and

use it as part of a description of the person when prompted.

One important way that an agent adapts is by learning; sometimes from its own mistakes, other

times from observing the actions of other robots, agents and/or humans in its environment.

Alternatively, the agent may be given the information directly by the user. For an agent to be

effective, it must be able to make sense of this information, whatever its source, and use it to

improve its efficiency.

The machine learning approach is inspired by the metaphor of a personal assistant.

Initially, a personal assistant is not very familiar with the habits and preferences of his

or her employer and may not even be very helpful. The assistant needs some time to

become familiar with the particular work methods of the employer and organization

at hand. However, with every experience, the assistant learns, either by watching

how the employer performs tasks, by receiving instructions from the employer, or by

learning from the other more experienced assistants within the organization. Gradu-

ally, more tasks that were initially performed directly by the employer can be taken

care of by the assistant.[109, pages 148-149]

In a system where there is more than one agent (see chapter 3), it is also possible for an agent

to ask for advice from other agents.

Additionally, the agent can learn from experience which agents are good sources for

suggestions. It can learn to trust agents that in the past have proven to recommend

actions that the user appreciated.[109, page 149]

34

2.3.5 Communication and Social Awareness

Although it is possible for an agent to be programmed with fixed goals and work autonomously

without ever needing to communicate, this tends to be rare. The best examples of these systems

are the Predator/Prey simulations such as that created by Toby Tyrrell and John Mayhew[175],

and the robotic insects created by Rodney Brooks.[26, 27, 28]

More often, agents are created with the intention of communicating - some agents such as Homer

in the Sealife simulation[178, 177] only communicate with the user to receive tasks, request

information and report their progress, whereas for chatterbots, intelligent assistants, and other

social agents such as the Oz agent[12, 11], communication is critical to the success of the agent.

In a Multi-Agent System (see chapter 3) the agents may be required to communicate with each

other in order to cooperate to perform goals which cannot be achieved by a single agent on its

own. For example, a robot may be too small to move an object on its own, but with the assistance

of another robot, the object may be moved. In other cases, such as in swarm systems, (see section

3.2.2) cooperation between the agents is coordinated through changes to the environment such

as scent-laying; so called stigmergic signalling.

2.3.6 Environment

An agent’s environment can have a significant impact on its chances of successfully completing

its goals. Complex dynamic environments can produce complex effects which the agent must be

able to respond to in order to survive. However, designing a simulated environment can be a

difficult task.

A major design issue concerned the degree of realism and complexity in the envi-

ronment. We needed to create a balance between several factors. On the one hand

35

we wanted to minimise the time spent on programming the environment and also

keep the complexity of the environment within manageable limits so that we could

maintain a good understanding of its dynamics. On the other hand we wanted to

make the environment fairly realistic so as to avoid the dangers of abstraction ap-

parent in classic AI and other fields. . . and we also wanted to make the environment

fairly complex so as to pose a difficult challenge to any behavioural strategy. Another

factor was our desire to make the environment quite realistic so as not to prejudice

the testbed by building into it our expectations of the solution. [175, page 264]

For some researchers, the importance of the interaction between an agent and its environment

cannot be overstated.

One particular class of agents; reactive agents (see section 2.4.2) are very closely dependent upon

their environment. Any events within the environment which are detected by the agent trigger

simple reactions - instincts - and as a result these agents are able to produce a fast response to

any situations which occur.

Autonomous agents are situated in some environment. Change the environment and

we may no longer have an agent. A robot with only visual sensors in an environment

without light is not an agent. Systems are agents or not with respect to some envi-

ronment. The AIMA agent . . . requires that an agent ”can be viewed” as sensing and

acting in an environment, that is there must exist an environment in which it is an

agent.[63]

When moving an agent from an environment in which it can function to one in which it cannot,

it seems a little extreme to state that the system is no longer an agent unless the core of the

agent is changed. For example, a submarine is still fundamentally a submarine when it is not

in water. . . it is just not a very effective one. Similarly, a robot with only a visual sensor in the

36

dark is still a robot even though it will have greater difficulty trying to achieve its objectives.

This scenario hints about another important detail concerning an agent and its environment.

Most environments are complex, yet it is often the case for an agent to have been designed with

a comparatively limited set of sensors.

If this is the case, then the agent will be completely oblivious to some of the possible environ-

mental effects. For example, in a simulated world there may be heating fluctuations ranging

from freezing to boiling, but if the agent is not able to detect these changes then they will only

ever effect the agent indirectly - by melting ice, or freezing water.

An agent’s environment provides context and support for its abilities. Being able to

hear has no great advantages in an environment that does not support sound.[107]

Essentially this leads to the important point that an agents environment is only ever as complex

as its effect on the agent; whether it is a direct or indirect effect.

Another important feature of any real environment is time. While time can be slowed down,

speeded up, and adjusted as required in simulated environments such as the Sealife simulator

created by Vere & Bickmore[178, 177], this luxury is not possible in real-world systems. In other

simulated environments such as the Pyrosim[149] fire-fighting simulation, real-time operation is

an important requirement for the agents.

The environment demands real-time action from the Agent. The fire is not stopping.

The world is both dynamic and dangerous for Agent Goals (e.g.: survival). The Agent

needs to be constantly perceiving the environment and to act accordingly. However,

there might not be enough time/resources to perform an exhaustive analysis to decide

the ”best” action to be taken. Agents might need a mechanism to adapt their response

time to environment requirements and a method to balance the amount of time spent

37

on environment analysis and action control.[149, page 103]

Everything is dependent upon time and as a result, agents are limited in the planning and

reasoning that they can carry out. For example, an agent acting as a computer game character,

or as a chatterbot cannot remain motionless and mute while planning a course of action for too

long or the illusion of believability will be destroyed. Instead it must be able to plan and react

in a similar time frame to a normal human.

While many simulations require that agents react in real-time, there are many other factors of the

environment which can affect the success of an agent. As a result, there are many researchers

who believe that creating physical robots which operate in the real world is a better way of

researching that creating simulations. This is especially true since many of the simulations will

produce results which will eventually used in the real world.

. . . we believe . . . the world is its own best model . . . When running a physically

grounded system in the real world, one can see at a glance how it is interacting.

It is right before your eyes. There are no layers of abstraction to obfuscate the dy-

namics of the interactions between the system and the world. This is the elegant

aspect of physically grounded systems[26, page 13]

This is in contrast to a model or a simulation:

A model is always approximate to reality. This means that there will always be

aspects that are not fully covered by the model. . .

It is assumed that the human designer constructs these models. Although this is often

done with great ingenuity, such a design is necessarily based on what the designer

believes the task will be and what the environment is going to look like. This makes

38

model-based systems inflexible and brittle. As soon as there are situations that are

not foreseen by the designers they will break down.[161]

By building robots rather than simulations and software agents, researchers are attempting to

remove these problems. By making a system which can function continuously within the real

world, they can be sure that it is robust.

A critical problem in the construction of both mobile robots and assembly robots

proves to be the handling of uncertainties of the real world. So many systems which

worked wonderfully in an ideal simulation world have foundered upon this rocky

problem.[111]

In a reply to researchers such as Rodney Brooks[26, 27, 28] who believe that the only way to

create robust agents is to model them as physical robots, Oren Etzioni from the University of

Washington argues that the UNIX operating system provides an effective real time software

environment in which to test agents.

The softbot paradigm escapes these quandaries by committing to full realism at every

step. Softbots operate in dynamic, real-world environments that are not engineered

by the softbots’ designers. In the UNIX environment, for example, other agents

(particularly humans) are continually changing the world’s state by logging in and

out, creating and deleting files, etc. Softbots are forced to cope with changes to their

environment (where did that file go?) in a timely fashion. To succeed, softbots have

to make sense of the flow of information through their limited bandwidth sensors and

respond appropriately.[55, page 2]

This is important since building physical robots is costly and often problematic.

39

In principle, mobile robots offer excellent testbeds for AI research. In practice, build-

ing intelligent systems that successfully interact with an unpredictable physical en-

vironment is a rigorous challenge, given the current technology. The cost of such

robots (including laser range finders, sonars, grippers, television cameras, etc.) is

non-trivial, and the effort and expertise required to assemble and operate such an

apparatus are considerable.[55, page 5]

In Multi-Agent Systems (MAS) (see chapter 3), numerous agents occupy the same environment

- whether it is an internet server or simulation, etc. When this happens, the actions of one agent

may have an affect on the other agents. It has been found that a number of reactive agents can

produce intelligent behaviour - even when the agents themselves are simple and unintelligent.

These systems are known as Complex Adaptive Systems (CAS) and are most often based on

simulations of insect behaviour such as ant or wasp colonies (see section 3.2.2 for further details).

Another real-world environment which provides a challenge for agents is the Internet (see chapter

4). This is partly due to the fact that large areas of it are constantly changing, yet some

areas have remained static for some time. One example of a part of the Internet which may

be considered static for the purposes of an agent, is the ’Showroom’ section of the Triumph

Motorcycles website (http://www.triumph.co.uk). This section is usually only updated each

year, or when the company launches a new model of motorbike. An example of a fast changing

part of the Internet is an electronic newspaper or other daily news service, such as the BBC

(http://www.bbc.co.uk), which would certainly change at least daily, but could be updated at

any time depending on what news was occurring.

2.3.7 Mobility

In the terms of this dissertation, mobility refers to an agents ability to migrate from one host

computer to another. Agents of this type were initially developed for use in situations where

40

http://www.triumph.co.uk
http://www.bbc.co.uk

large amounts of information are stored at remote locations on a network. Rather than drag

megabytes, or potentially gigabytes of data back across the network to be processed locally when

all that is required is an email address; a mobile agent can be dispatched. The agent will travel

from system to system searching the data until it finds specific information that it requires. It

will process the information and then return with it to the user.

Given the large volumes of data that are involved, it is desirable to perform as much

analysis as feasible at the sites where the data is located and transmit only the

results of analysis rather than flooding the network with data. This calls for the use

of mobile software agents that can transport themselves to appropriate sites, carry

out the computation on site and return with useful results.[193]

Mobile Agents are programs that can migrate from host to host in a network, at

times and to places of their own choosing. The state of the running program is saved,

transported to the new host, and then restored, allowing the program to continue

where it left off. Mobile-agent systems differ from process-migration systems in that

the agents move when they choose, typically through a ”jump” or ”go” statement,

whereas in a process-migration system the system decides when and where to move the

running process (typically to balance CPU load). Mobile agents differ from ”applets”,

which are programs downloaded as the result of a user action, then executed from

beginning to end on one host.[97]

Mobile agents offer many potential advantages over traditional approaches. By mov-

ing the computation to another host, it is possible to collocate the computation

with an important database, allowing high throughput, low latency access to that

database. Compared to more traditional client server approaches, mobile agents can

avoid transmitting a large amount of data across the network, which is of particular

41

value when the network is slow or unreliable. The mobile agent can move, with par-

tial results from one server to another until it has accomplished its task, then return

to the originating host.[98]

In the early days of mobile agents, there were numerous problems of control, security and trust.

Once an agent was dispatched there was no way that a user could communicate with it to obtain

progress and status reports, or update its goals. In addition there was no way of knowing whether

an agent (or host) was malevolent or benevolent.

In response to these concerns, mobile agent frameworks were developed.

While there is still no way of determining an agents intentions, agent frameworks include security

measures which prevent an agent from accessing host facilities which they do not have permission

to use. In addition to this, the frameworks also provide services which agents can access. Since

these services do not have to be provided by the agent, the agent is smaller and therefore the

cost of moving it from one host to another is greatly reduced.

Therefore the success of a mobile agent system depends on the ability of the agent to interact

with the environment provided by the host that it travels to. Currently there is a great deal of

research into open systems (see section 3.2.1). These are systems which are open in the sense

that agents can enter and leave at any time. Consisting of a number of platforms, services and

agents, they provide the means for new agents to both advertise services that they provide, and

request services from other agents in the system. Open systems are described in chapter 3.

Key to this advancement has been the creation and updating of Agent Communication Languages

such as the Defense Advanced Research Projects Agency (DARPA) developed KIF/KQML com-

bination and the Foundation for Intelligent Physical Agents (FIPA) developed FIPA-ACL which

allows agents to perform all of the actions needed to participate within the system. The only

problem is that in order to implement this functionality, the complexity and therefore the size

42

of the mobile agent must be significantly increased.

While the implementation of mobile agent systems has improved greatly, the original motivation

for mobile agents has remained. Information is dispersed widely and unevenly across networks,

and moving an agent to where the information resides to process it is often more cost effective

than moving the information to the agent.

The uneven distribution of information means that some mechanism is required to locate the

server(s) with the required information. For an agent to simply move at random across the

network would be inefficient. Instead, some form of semantic routing is required. This is where

either the agent itself, or a central repository, maintains a list containing the information about

the data stored on each server. Researchers at IBM described how this process might work:

A user requesting specific information or any other service would express his or her

needs in (something like) natural language and the query would be transmitted to

a consultant agent. The consultant agent would reformulate the natural language

query into vocabulary and syntax of the Agent Language. It would then consult

its own index and possibly the indices of other consultants to identify one or more

servers likely to be able to satisfy the query. The consultant would then forward the

query to these servers and the results would be returned directly to the requesting

client. . . . Thus the initial query submitted by the user is routed based on its semantic

content.[40]

They continue by stating that:

Although mobile agents certainly facilitate several aspects of this process, there is

again nothing here that can be performed exclusively by agents or indeed significantly

better than by other means.[40]

43

Maintaining an index of this type increases the size of the agent which in turn means that the code

takes longer to move across the network. Alternatively, this knowledge base could be maintained

on the client’s computer and the mobile agent would be given the relevant data before the it is

dispatched. However moving the services information across the network from the servers to the

client’s computer would cause the same problems which mobile agents are designed to solve.

The server/services location problem is one of the many problems that must be overcome if an

agent is to use software mobility. In each case, every technical problem returns to the balance of

functionality verses size of the code. This is due to the fact that there is a maximum size beyond

which it becomes impractical to move the agent from host to host. As a result, there is a limited

amount of space available for other functionality.

This space is further reduced since mobile agents have to interact with other agents in order to

gain access to the resources of the remote system or the agents currently on the system, they

must have the ability to communicate. Whilst it is possible for an agent to have a simple com-

munications protocol, FIPA-compatible agents require a comprehensive communications system

(see chapter 3.3). Whatever the level of communications ability of the agent, this further reduces

the space available for searching and filtering capabilities. In contrast, static agents do not have

such limitations since there is no requirement to move the agent from server to server.

Whilst the researchers at IBM conclude that;

With one rather narrow exception, there is nothing that can be done with mobile

agents that cannot be also done with other means. The exception is remote real-time

control when the network latency prevents real-time constraint being met by remote

command sequences. [40]

This conclusion is not strictly true since a locally installed agent could provide such services.

However, apart from this exception, their conclusion is valid - there are no specific tasks that

44

specifically require mobile agents. Despite this, there is a general trend towards the use of mobile

agents as part of Multi-Agent Systems (MAS). These are described in detail in chapter 3

2.3.8 Personality, Emotion and Believability

One justification for producing believable agents with accurately modelled emotions, is that users

will be able to identify with the agents and as a result be more productive. This productivity

may be in terms of the users interaction with the agent as a personal assistant, with the agents

as the other characters in a computer game. In each case, the agent/s within the environment

must sufficiently realistic that the human user is not constantly aware that they are working

with a computer program.

If humans identify with and accept an agent as human instead of machine-like, they

may be more able to trust the agent and better able to communicate with it. This

type of agent could then be a personal assistant, a companion to shut-ins, a counsellor,

or even a nurse who actually listens to your concerns and attempts to explain things

to you and comfort you. But giving a program more than a rudimentary imitation of

emotion will not be an easy thing. We don’t even understand how human emotions

work. This, however, brings us right to the point that solving this problem is a

perfect AI task. By trying to model emotions, perhaps we can learn more about

them. By learning more about them, we can create more realistic models for use by

the agents.[134]

In his paper, The Society of Objects, Mario Tokoro describes the intimate computer ; a future

version of a Personal Digital Assistant.

Intimacy implies security, peace of mind, trustworthiness, reliability, and respect.

The intimate computer is intended to inspire users with such a feeling. It has a

45

face, and it understands natural languages, so that it presents you with a completely

different user-computer interface from those we are used to today.[172]

Although the intimate computer has not been developed, many of the techniques that it will rely

on, are already in use at the moment; albeit in a much simpler form. Currently it is possible

to download animated characters such as the Microsoft Agents[10, 118, 77] which can then be

customised by the developer. These are the same characters that can be found as part of the

Microsoft Office suite of programs - these simple help wizards which are modelled on; a paperclip,

a dog, a robot, and change shape to show limited emotions. For example, the paperclip, changes

shape to a question mark when it is asking about input. However, anthropomorphism can become

a problem for some users:

The anthropomorphic styles are cute the first time, silly the second time, and an

annoying distraction the third time.. . . Anthropomorphic terms and concepts have

continuously been rejected by consumers, yet some designers fail to learn the lesson.

Talking cash registers and cars, SmartPhone, SmartHome, Postal Buddy, Intelligent

Dishwasher, and variations have all come and gone.[154, page 101]

With the current level of technology allowing high-definition screens to be created, it is possible

to create computer generated characters that are realistic, but in some cases, these characters

are too realistic.

The ”Uncanny Valley” is a problem which was first described by the Japanese roboticist, Masahiro

Mori. It occurs when models (whether they were computer generated characters or created via

other media) are realistic enough to appear human at first glance, but on closer inspection are

artificial. When this happens, the level of empathy from the viewer to the character drops

dramatically.

46

As characters become more photo-realistic, you start to believe in them more and

more. With humans characters, you get to a certain point of realism. What happens

is there are characters that are so realistic you want to believe they are actually

human. Then you notice their deficiencies. They have very plastic skin or very

wooden eyes. All of the sudden they just become creepy. They are like zombie

people, rather than appealing computer people. The appeal of the character rises,

then drops dramatically, then rises again as you approach photo-realism.[176]

One solution to this problem is not to attempt to make the characters too realistic. By creating

a character that is definitely artificial, the ”Uncanny Valley” problem is avoided. There are

many ways that this can be done; from the simple cel-shaded techniques of traditional animated

characters, through to detailed, but non-human entities; such as robots, aliens and other simple

items that can be given personality through their actions.

2.4 Agent Architectures

The design of an agent is dependent upon both its application and the environment in which it will

need to function. The two main approaches are the deliberative and the reactive architectures.

Each have their advantages and disadvantages. More recently, attempts have been made to

combine the two approaches to produce hybrid architectures which combine the positive aspects

of the previous two approaches.

Current robotic systems are deliberative (plan and use knowledge representation), re-

active or hybrid. Deliberative systems rely mainly on symbolic reasoning and world

representation whereas reactive systems are reflective. The speed of a response of

a robotic system increases as it becomes more reactive. On the other hand, the

47

predictive capabilities of the system increase while the system becomes more delib-

erative. Also deliberative systems depend on accurate and complete world models

while reactive robotic systems don’t tend to use models at all.[194]

2.4.1 Deliberative Architectures

Deliberative architectures such as Homer[178, 177], IRMA[139] and SNePS[100] are based on the

symbolic reasoning approach used in traditional AI systems. The agents created in this way, also

referred to as Belief-Desire-Intentions (BDI) architectures, are rational and deliberative: they

can reason about their goals and current state of the environment and produce definite plans to

achieve their goals. Structurally they are implemented with separate components e.g. Planners,

Executors, Knowledge Bases, etc.

The most common way of creating an agent is to provide it with the ability to reason. That is,

the agent is able to create plans based on its knowledge (beliefs), in order to achieve its goals

(desires). An agents intention is expressed by its creation of a plan. If the agent had no intention

of completing the goal, then it would not create a plan.

. . . in the context of BDI agents we may assume that all relevant aspects of the

environment of the agent are modelled as mental attitudes of the agent, we may

assume that agents determine the course of action based on these mental attitudes.[50]

Rao and Georgeff . . . are usually credited with the first full implementation of an agent

technology of this kind. A ”Belief-Desire-Intention” (BDI) agent is able to monitor

its environment, and maintain a database that symbolically represents the state of

that environment (its beliefs). It can operate under the influence of a set of data-

structures that refer to states of the agent’s environment, or the state of the agent’s

knowledge of the environment, that it would like to bring about (its desires). Lastly,

48

BDI agents can assess whether their beliefs are consistent with their desires and, if

not, adopt plans of action (intentions) that are expected to bring its environment or

its knowledge into line with them.[62]

However, deliberation is a time-consuming process and therefore unsuitable for environments

which change rapidly. The practical implication is that while an agent is deliberating, the

environment may change to a point where the beliefs upon which the agent based its plans are

no longer valid.

Beliefs

An agents beliefs may come from a number of different sources. They may be based on informa-

tion from the user, the agents perception of the environment, its interpretation of other agent’s

actions (in the past have they been; cooperative, uncooperative, hostile, deceptive), etc.

These beliefs constrain an agent’s actions by reducing them from the complete list of possible

actions that an agent may perform, to the list of actions that an agent may perform (with the

possibility of success) at that particular time. This is important in two ways. Firstly, it may

reduce the number of possible plans significantly, which in turn reduces the time taken to create

the plans and as a result there is less chance of the environment changing as the plan is formed.

Secondly, as it ensures that the plan formed and the actions taken by the agent are relevant to

its current situation.

We are familiar with intelligent agents from everyday life because our common-sense

accounts of behaviors of other human beings are linguistically couched in terms of

this model. Roughly speaking, our everyday account of human activity is centered

on the collection from the world through the external senses and its use for attaining

goals. The information collected is used by people to update and maintain a set of

49

beliefs that encode what they know (or think they know) about the world, and these

beliefs are identified by their propositional content or by sentences expressing that

propositional content, e.g. the belief that it is raining.. . . These beliefs. . . are time

varying collections of elements, and certain invariant rationality conditions are typi-

cally satisfied, along with certain conditions relating the states of these components

to sensory inputs and action outputs.[147]

One problem concerning an agents beliefs is that some of them are transient: that is, they are

dependent to a large extent on the current state of the environment. If the environment changes,

then beliefs may no longer be relevant. This may be due to a number of factors; including the

action of other agents - whether intentionally, or as an unintended consequence of their own

actions. This is most likely in dynamic systems such as the Tileworld simulation[140] in which

an agent creates plans to clear blocks from an area. If an agents beliefs are no longer valid, then

the plans and goals which are dependent upon these beliefs must be re-considered by the agent.

Desires

An agents desires are its goals. That is, the new state of the environment that the agent desires

to bring about. In many cases, the goals are provided by the user - an agent has an implicit

objective of attempting to fulfil goals provided by the user. However an agent is also capable of

creating its own goals - for example, a robot may create a goal of re-charging its internal battery

when the energy levels fall below a certain value. For a software agent, self generated goals may

involve exploring the environment.

The system is guided in its activities by certain goals or desires, i.e., chosen states or

behaviors that the system should attempt to accomplish. These desires or goals may

be many, may possibly conflict with one another, may alter over timer, and may be

determined and shaped by the environment.[65]

50

As with beliefs, an intelligent agents desires constrain the agent in its choice of actions.

An Intelligent System performs actions in order to achieve a particular goal. Action

not oriented to a specific goal is meaningless, and this random behavior is not a

feature of intelligence. In most cases, a goal is described as a desired property of the

world state. The mission of the system is to transform the current world state into a

state where this property is held (goal state). [103, page 5]

Intentions

An intention is a desire which the agent is committed to achieving. This commitment is shown

by an agent through its creation of a plan to complete the goal.

When should an agent stop to reconsider its intentions? One possibility is to recon-

sider intentions at every opportunity - in particular, after executing every possible

action. If option generation and filtering were computationally cheap processes, then

this would be an acceptable strategy. Unfortunately we know that deliberation is not

cheap - it takes a considerable amount of time. While the agent is deliberating, the

environment in which the agent is working is changing, possibly rendering its newly

formed intentions irrelevant. [187, page 78]

One consideration that must be made when designing a deliberative system is the frequency with

which the agent reconsiders the world state, its plans, and the state of its goals. This is a fine

balance between spending time in deliberation and checking the current state of its environment

to ensure that the goals that it is attempting are still possible and that its plans to achieve the

goals are still valid.

51

If the deliberation process takes too long and the environment changes (see also section 2.3.6),

then the agent may have to re-plan, or in some cases abandon its goal. When an agents goals

become un-achievable, then the agent should no longer be committed to them. However an agent

should not perform some action in order to make the goals unobtainable thereby removing its

obligation and commitment. In the paper ”Intention is choice with commitment”, Cohen, and

Levesque[48] gives the example of a fictional household robot, which when asked to fetch a bottle

of beer for its owner, smashes it.

Back at the plant when interrogated by customer services as to why it abandoned

its commitments, the robot replies that according to its specifications, it kept its

commitments as long as required - commitments must be dropped when fulfilled

or impossible to achieve. By smashing the last bottle, the commitment became

unachievable.[48]

While this is technically a valid solution for the robot, it is clearly unacceptable for the owner.

Therefore there must be an incentive for an agent to achieve the goals that it is given. However,

if the robot has a number of concurrent goals, these must be prioritised. For example, if the

robot was going to run out of power when collecting the bottle of beer, it should recharge/change

its batteries before attempting the task - preferably after informing its owner that the task would

take longer to complete.

2.4.2 Reactive Architectures

While it is possible to build Deliberative agents which can reason about their goals and own

internal beliefs, this is not always appropriate. In rapidly changing environments, such as the real

world, where the agent must react quickly to external events, there may not be the time available

for an agent to perform many of the time-consuming actions such as planning, and introspection.

52

Instead, an agent with a Reactive or Behavioral architecture may be more appropriate.

These differ from the deliberative architecture in that agents have a very limited set of beliefs -

in most cases none at all, and instead of explicitly defined goals their actions are determined by

a set of behaviours which are triggered by events within the environment. The most well-known

reactive architecture - the subsumption architecture developed by Rodney Brooks[181, page 49],

is created as a number of behaviors8 - which are implemented as Finite State Machines (FSMs).

In her paper detailing the Agent Network Architecture (ANA), Pattie Maes describes the main

characteristics of the reactive, behaviour based architecture:

. . . there are no central functional modules, such as a perception module, a reasoning

module, a learning module, and so on. Instead, the agent consists of a completely

distributed decentralized set of competence modules (also called behaviors). These

modules do all the perception, ”reasoning”, learning and representation necessary for

achieving a particular competence. There are no forms of consistency imposed among

the modules cooperate (locally) in such a way that the society as a whole functions

properly. Competence modules are directly connected to the relevant sensors and

actuators and run all in parallel. This guarantees fast and robust actions from the

overall agent.[108, page 115]

However, it is possible for a number of behaviours to be triggered by the same stimuli. Therefore

it is essential that agent is able to choose between a number of potentially conflicting actions

within a short period of time.

Some behaviors normally take precedence over others. Some behaviors are mutually

exclusionary (i.e. any behaviors which utilize the same motor apparatus for incom-

patible actions).[15]

8each behaviour may be though of as an individual action function[181, page 49]

53

The typically fast-acting, instinctive behaviour is directly suited to modelling biological systems

such as the predator-prey simulations, artificial life, and other biological-based systems. In

particular, swarm intelligence (see section 3.2.2) systems are a popular application for reactive

architectures.

Although this level of stimulus-response between the agent and its environment has been criticised

on the grounds that blind response to an event or situation cannot be considered to be intelligence,

researchers have argued that responses of this type are analogous to reflexes.

When there is a rigid relationship between a stimulus and a response in an animal, the

response is referred to as a reflex response. Reflex responses provide the animal with

protective behaviors. Such responses have been shown to be present in animals which

have been isolated from birth and is thus considered instinctive. Reflex responses are

elicited independent of environmental factors[6]

Reflexes allow an animal to quickly adjust its behavior to sudden environmental

changes. Reflexes are commonly employed for such things as postural control, with-

drawal from painful stimuli, and the adaption of gait to uneven terrain.[15]

Rodney Brooks and his team at MIT have created a simple robotic insect which illustrates this

philosophy.

Squirt is the smallest robot we have built. It weighs about 50 grams and is about

5/4 cubic inches in volume.

Squirt incorporates an 8-bit computer, an onboard power supply, three sensors and

a propulsion system. Its normal mode of operation is to act as a ”bug”, hiding in

dark corners and venturing out in the direction of noises, only after the noises are

54

long gone, looking for a new place to hide near where the previous set of noises came

from.

The most interesting thing about Squirt is the way in which this high level behavior

emerges from a set of simple interactions with the world.[26, page 10]

2.4.3 Hybrid, or Layered Architectures

A third approach which is becoming more popular is the layered approach. By combining the

two previous approaches, it is possible to provide a reactive agent which is able to form long-term

plans which responding to events in the short-term.

Hybrid Architecture are a marriage of the reactive and deliberative components of

agent modelling and combining them to produce a more powerful model. It will not

necessarily make the agent more ”intelligent” and will in fact suffer from the same

”transduction problem” (of mapping the real world to a symbolic representation) as

deliberative approaches. The benefit would be in a well-defined problem domain with

”static knowledge” in the environment for the deliberative part, and a reactive part

that can handle the environmental events.[174]

The 3T architecture[23], Atlantis[64] and the Touring Machines[58, 57] are based on three layers.

InteRRaP[187, page 101] has two layers, but there are no definite rules as to the specific number

of layers required. Usually, three layers of abstraction are sufficient.[169]

2.5 AT-MAS and Intelligent Agents

The AT-MAS system described in chapter 5 was created with agents that function as intelligent

assistants. AT-MAS agents are autonomous in that they are able to receive a number of goals

55

from different sources simultaneously and form plans in order to achieve these goals. Further-

more, the agents are persistent which allows the to gradually build up knowledge about their

environment and the other AT-MAS agents within it.

Although the AT-MAS agents owe more to the Deliberative architecture than to the Reactive

architectures their reasoning abilities are limited in comparison as they possess no symbolic

reasoning abilities. However, they are significantly more intelligent than Reactive agents.

2.6 Chapter Summary

This chapter describes a number of different definitions of agents. Although each are valid for

different viewpoints, none are truly effective in explaining the concept. This is due to the fact

that the more general descriptions are too vague to be of more than limited use, but the more

specific definitions are too limiting.

As a result, many researchers limit their definitions to listing the attributes that agents may

possess. Of these, the only attribute that all researchers could agree was essential was autonomy.

This, and other attributes and features that should be considered when designing agents are also

described.

The final section describes Agent Architectures. Firstly, Deliberative architectures are described.

These are based around the idea of viewing agents in terms of mentalistic attitudes such as Beliefs,

Desires and Intentions.

The second architecture, developed to address the shortcoming of the Deliberative architecture,

is the Reactive architecture. This is used for creating simple agents which must respond quickly

to the effects of their environment. However, the simple hard-wired programming of these agents

and their action : response and their lack of internal representations means that long term

56

planning is not possible.

The third type of architecture integrates the previous two architectures - Hybrid, or Layered

architectures usually consist of three layers; a low level reactive layer which provides the instant

responses to dynamically occurring events, a top level layer to provide the higher level processes

such as planning and knowledge representation, and a middle layer to coordinate the two other

layers.

The final section of this chapter relates the AT-MAS agents to the information presented in the

chapter. In this, the agents are discussed in terms of the the general definition which is most

suited, the attributes that their possess and their architecture.

57

Chapter 3

Multi-Agent Systems

3.1 Definition of a MAS

Much of the work of agent theory involves applying the aspects of humanity that we see as impor-

tant, to the field of computing. Intelligence, knowledge manipulation, reasoning, independence

and autonomy are all programmed with a view to creating an effective artificial entity.

As with people, many of the tasks that an agent need to carry out require the assistance of others.

These may be tasks that are too large (either geographically, or conceptually), too complex or

require knowledge and/or skills that the agent does not possess. In some cases, the nature of

the tasks may require cooperation of more than one agent. Another reason that multiple agents

may be used is that it is just more efficient than using only a single agent.

3.1.1 Societies of Agents

In human society it is common for groups consisting of people with similar or complementary

interests and skills to be formed. These may be sports clubs, book clubs, amateur dramatics

58

societies, debating societies, unions, project teams, etc. Other groups may be formed by indi-

viduals through necessity - for example, children in a class at school, or the jury in a trial. In

each case, the members of the group adopt the the social norms and roles required by the group

or risk exclusion from the group. This is also true for agents.

A group of agents can form a small society in which they play different roles. The

group defines the roles and the roles define the commitments associated with them.

When an agent joins a group, it joins in one or more roles and acquires the commit-

ments of that role. Agents join a group autonomously but are then constrained by

the commitments for the roles they adopt. The group defines the social context in

which the agents interact.[83, page 19]

Some groups are more transitory than others. For example, a group consisting a class of school

children will have a longer existence than the audience of a play. However, while the class may

have a longer lifespan, it can be more dynamic than the audience of the play1.

While the society dictates the possible roles that an agent can play (depending, of course, on

the agents abilities to carry out the actions required by the role), the role played by each agent

dictates its position within the organisation and its communication with other agents.

When using the clichd example of contacting a travel agent to arrange a holiday, a client (also

referred to as a consumer) would contact the travel agent (broker) passing on the details of the

holiday that they required. The travel agent would check with the tour operators (producers) to

find out if there was a package deal that could be offered. If there was no package deal, then the

travel agent would contact the airline companies to enquire about flights. They would contact

1I am basing this observation on my own experiences: since I grew up in Germany and attended a British

Forces school, it was a regular occurrence to find new pupils joining my class, and others leaving. Similarly my

experience of classical concerts and operatic performances is that people are not generally allowed to enter or

leave auditorium while the concert or play is in progress

59

the tourist board in the area to find a list of hotels in the area, and then contact the hotel staff

to find a list of rooms and their prices. Then they would contact the local car hire companies

to find out the cost of car hire. The travel agent would then return with a price for the holiday

and some form of negotiation would take place between the client and the travel agent. If the

client and the travel agent could agree on the price and the other terms then the money would

be exchanged and all of the contingent parts of the holiday would be booked.

At each stage of the process there is communication which may lead to cooperation and compe-

tition. Cooperation results in the common goal being achieved (in this case, the completion of

the transaction), and the competition between the agents is to receive the best possible result -

i.e. the lowest price for purchasing, and the highest price for selling.

In the example above, the travel agent acts as a broker - by purchasing the individual parts of

the holiday from the producer, and the selling them to the consumer for a slightly higher price.

However, brokers cannot charge too high a commission as they are in competition with other

brokers to provide the best prices for the same or equivalent products and services. An alternative

to completely brokered transactions is the use of matchmakers which recommend producers to

the consumer, allowing the consumers to contact the producer directly. Alternatives to the

brokering process are possible and these are described later in this chapter.

One important point that should be taken from the above example is that most agents are self-

interested and therefore required to be motivated to help each other - either by the promise

of assistance with its own tasks, monetary reward, and/or the desire for a common goal to be

achieved. In the case of eCommerce systems although there is the common goal of the transaction

being completed, each agent will be competing to achieve the best results for itself.

Even in altruistic systems such as the Optimal Aircraft Sequencing using Intelligent Scheduling

(OASIS)[106] air traffic control system, where cooperation between the agents is essential to the

success of the system, the agents still have to negotiate to achieve the best solutions, both for

60

themselves and for the overall good of the system. In the case of OASIS, the agents (representing

aircraft) will compete with each other for the use of resources such as runways, and air space.

In all MASs, the individual agents have an incomplete knowledge of their environment[169, page

80]. This may be due to its size or complexity. Even if the environment is small enough for

a single agent to manage, the presence of other agents will still add uncertainty to the system.

This is because an agent cannot view the internal state of another agent - it is only possible for

an agent to reason about the other agents possible actions based on the agents previous actions

or the possible rational choices within the environment. Similarly, the agents own motivations

remain hidden unless it makes them known through its actions or by communication.

In open systems such as AgentCities[185, 184, 197] which allow unknown agents to enter and

leave the system as required, it is not possible to reason about the possible behaviour of different

agents as there is no way of judging an agents abilities and motivations and attitudes (is the

agent benevolent, hostile, or neutral?). Usually, the agents in these systems are self-interested

- they only perform actions which benefit themselves, unless they have a reason to assist other

agents. However agents provided by the system are benevolent; operating to ensure the smooth

running of the system.

In particular, the personal assistants do not act benevolently unless it’s in their

interest to do so. The do not necessarily share information, they do not necessarily

do things that other agents ask them to do unless they have a good reason for doing

so.[146, page 354]

In contrast, closed systems such as the OASIS air traffic control system, which do not allow

agents from unknown sources to enter the system will not suffer from this problem. The agents

in these systems are mostly benevolent[187, page 190] and cooperate in order to achieve both

their own goals and the overall goals of the system. If unknown agents were allowed access to the

system they cause disruption or waste a valuable resources with potentially disastrous results.

61

One of the key characteristics of a MAS is the level and type of communication available to the

agents. It is possible for agents in an MAS to co-exist, and in some cases cooperate, without

being able to communicate. However, for the system to be classed as a MAS, the presence

and actions of the agents must be able to influence the other agents. This may be directly -

through the agents actions and communications with other agents, or indirectly by altering the

environment in a way that influences the behaviour of other agents.

This is especially true in the case in systems of animat systems (artificial life simulations) such

as the one created by Toby Tyrrell and John Meyhew[175] in which a predators and prey are

simulated. Neither will cooperate, but each is aware of the presence of the other and will modify

its behaviour accordingly. Therefore there is interaction between the entities, and by definition

this is also a MAS.

If there is no interaction - either directly, or indirectly between the agents it is not accurate to

call the system a Multi-Agent System. This point can be illustrated by referring to the internet.

Although the internet hosts a number of both single agent systems and Multi-Agent Systems,

they do not interact and do not affect each other except by co-incidence. Therefore it would be

wrong to class the internet as a MAS and all agents within it (even single agents) as part of a

Multi-Agent System.

Simply having a number of single agents operating on the same system is not enough. The agents

must be aware of some aspect of the other agents presence and allow it to influence them. This

may seem a vague definition as it does not require the agents in the system to cooperate, but as

the definition of an agent requires that it is an independent entity, there is no necessity that the

agents do communicate or cooperate even if they are able to.

62

3.2 Types of MAS

Multi-Agent Systems can be divided into two distinct categories: open and closed systems.

Open systems, often based around the FIPA2 standards for agent interaction, are designed with

the intention that agents from any source can enter and leave at any time without having a

detrimental effect on the running of the system. The biggest challenge in developing open

systems is in the design of the agent middleware. This is a set of system agents and services

that allow agents to find and contact other agents and services. These link agents requesting

the services and the suppliers of the services - providing assistance in the form of brokering and

mediation as required.

Closed systems are systems which have been developed for specific applications where allowing

access to un-trusted agents could have an adverse affect on operation. They are often used for

specific application and use propriety protocols and standards since there is no need for the

system to cope with agents from other sources. For example, agents from the Tileworld[140]

system created by Pollack and Riguette would be unable to function in another system such as

the Touring machines[58, 57] system created by Ferguson.

3.2.1 Open Systems

Open Agent systems are systems in which agents can enter and leave at any time. This means

that it is difficult to predict what agents will be present and what their capabilities will be.

The characteristics of such as system are that its components are not known in

advance, can change over time, and may be highly heterogeneous (in that they are

implemented by different people, at different people, at different times, using different

software tools and techniques).[88, page 6]

2(Foundation for Intelligent Physical Agents)

63

Ideally, Multi-Agent Systems are highly dynamic open systems, with an ever-changing

population of agents: new agents emerge (or are created), existing agents die, move,

learn/forget etc. The dynamics of such systems are hard to predict. The number

of agents in large scale distributed applications such as eBusiness applications (vir-

tual shopping malls and auctions), Internet-wide data warehouses, and navigation

systems, can vary considerably over time.[25]

Another factor which can cause complications is that different agents may have been created

by different developers and/or different companies. Despite this, they must be able to work

together.

For example, you have a personal digital assistant, you might have one that was

built by IBM, but the next person over might have one built by Apple. They don’t

necessarily have a notion of global utility. Each personal digital assistant or each

agent operating from your machine is interested in what your idea of utility is and in

how to further your notion of goodness.[146, page 354]

In these systems, there tends to be no specific organisation imposed on agents visiting the

system. This is because agents can enter and leave the system at any time. If there was a

complex structure, then new agents entering the system would need to be allocated places in the

structure. Similarly, as agents leave the system, gaps would appear in the structure which might

cause disruption to the system.

The Open Agent System[47, 41, 115] uses a complex hierarchy of blackboards (see section 3.3.3)

controlled by a server agent.

The server is responsible both for storing data that is global to the agents, for iden-

tifying agents that can achieve various goals, and for scheduling and maintaining the

64

flow of communication during distributed computation. All communication between

client agents must pass through the blackboard.[47]

More commonly, open MASs such as AgentCities[185, 184, 197], RETSINA[167, 168] and Kasbah[38,

110] consist of a number of agent platform (or agent server) installed on a number of hosts. Each

agent platform can host a number of mobile agents (see section 2.3.7) simultaneously. They also

provide both a mechanism which allows the agents to migrate from one host to another, and

services and/or Middle Agents which agents on the platform may interact[193].

Agents can exist only by virtue some kind of agent platform. Such a platform runs on

a relatively small collection of machines and provides basic facilities such as creating

and running an agent, searching for an agent, migrating agents to other platforms,

and enabling the basic communications with other platforms that host an agent.[182,

page 6]

In addition to the platform specific services

Figure 3.1: The AgentCities Architecture

and agents, almost all Multi-Agent Systems

rely on the continuous functioning of cen-

tralised middleware. This may be in the

form of databases, active directories or Mid-

dle Agents. which any agent entering or

leaving the system must notify. This allows

agents to be contacted whichever platform

they are on. Without these directories the

system will not function. Figure 3.1, taken

from the paper The Agentcities Network Ar-

chitecture by Wilmott et al[185] shows the three central directories which are required by the

AgentCities system.

65

However, this reliance on a small number of well-known agents and directories means that the

system is vulnerable to denial of service attacks and overload caused by the volume of traffic.

The current Network-support services are very simple and rely on centralized or star

topologies with a single point of failure and no means for distribution of authority.

The security and robustness of both Network-support services and individual agent

platforms are also rudimentary. Each of these areas poses major challenges to be

addressed as the Network grows.[185]

Naming and capability-mediation infrastructure services are indispensable for finding

agents and they constitute a fundamental functionality of MASs. The scalability of

naming and capability-mediation services is therefore crucial for the overall scalability

of MASs [130]

The Anthill[8] system distributes these global directories across each of the platforms in an

attempt to improve the robustness and scalability of the system. Anthill is described in section

4.5.5 - Agent Based P2P Systems.

Since MASs can be very dynamic, it can often be a problem for an agent moving to the platform

to locate agents which provide specific services. For example, an agent sent by a client to purchase

a specific item such as coffee, may not know which agents are able to sell the product. In order

to locate suppliers capable of providing assistance, the agent contacts one of the system agents.

Middle Agents . . . assist in the discovery of service providers based upon a desired ser-

vice capability description. For example, Middle Agents may help service requesters

locate agents that provide stock purchasing services or those that return the ticker

price for a given stock. Middle Agents may mediate communication between providers

and requesters, . . . and support service discovery.[132]

66

These middle agents, known in various systems as facilitators, mediators, matchmakers and

brokers are able to access the various system directories, and at the very least, return a list of

agents capable of supplying the requested services.

The solution that have been proposed rely instead on well-known agents and some

basic interactions with them matchmaking and brokering. Standard agent communi-

cation languages (i.e., KQML) even define specific ’performatives’ RECRUIT, BRO-

KER, FORWARD) for these behaviors. These behaviors are also common in human

open systems as well.[51, page 2]

Cooperation among the agents of an OAA system is . . . normally structured around

a 3-part approach: providers of services register capabilities specifications with a

facilitator; requesters of services construct goals and relay them to a facilitator, and

facilitators coordinate the efforts of the appropriate service providers in satisfying

these goals.[115, page 7]

Matchmakers, Mediators and various types of Facilitator agent all perform different but related

functions within a system. In different systems, the same terms are used in different ways.

As variations on a general theme, matchmaking can follow many different specific

modes. For example, the consumer might simply ask the matchmaker to recommend a

provider that can likely satisfy the request. The actual queries then take place directly

between the provider and the consumer. The consumer might ask the matchmaker

to forward the request to a capable provider with the stipulation that subsequent

replies are to be sent directly to the consumer (called recruiting). Or, the consumer

might ask the matchmaker to act as an intermediary, forwarding the request to the

producer and forwarding the reply to the consumer (called brokering).[101, page 93]

67

Agent brokers provide addresses of agent servers and support mechanisms for uniquely

naming agents and agent servers.[193]

InfoSleuth[13, 61, 179] is another open system which contains a number of different static system

agents. Users communicate with their User Agents via a web browser, which in turn communicate

with a number of different server agents.

When a user agent receives a request, it passes it to an Ontology Agent which returns the

appropriate ontology. Having received the ontology, the user agent then makes a request to a

Broker Agent for a Task Execution Agent which is capable of processing the request. The Broker

Agent returns the identity of a Task Execution Agent to the User Agent and the user agent

submits the User’s request to the Task Execution Agent.

When the Task Execution Agent generates a plan, it asks the Broker Agent for a set of agents

which can respond to the query. This is made possible since all agents advertise their capabilities

to the Broker Agents when they are created by the system. If the query requires the results

of more than one agent, then the Task Execution Agent will pass the complete query to a

Multiresource Query Agent which will assign the sub-query parts to the resource agents that

are capable of completing them. If the query was made by a Multiresource Agent, then it will

receive the results from the individual Resource Agents and use them to create a single set of

results which it then returns to the Task Execution Agent. The Task Execution agent takes the

results and returns them to the User Agent which made the original request. Finally, the User

Agent returns the data to the user.

However, this level of complexity is not always required in MASs.

The overall design philosophy behind AgentScape is ”less is more” and ”one size does

not fit all.” The AgentScape middleware provides minimal but sufficient support

for agent applications. In addition, the middleware is adaptive or reconfigurable

68

such that it can be tailored to specific applications or operating systems/hardware

platforms.[182]

As mentioned previously, open MASs must provide a minimum set of services which must remain

operational for the MAS to work properly. If different MASs use/provide different services and

different protocols for interaction then the agents from one system will not be able to move to

another system. In order to allow MASs to support agents from a wide range of sources, different

organisations such as FIPA have proposed standards.

In AgentScape, interoperability between agent platforms can be realized . . . by con-

forming to standards like FIPA . . . or OMG MASIF . . . These agent platform stan-

dards define interfaces and protocols for interoperability between different agent plat-

form implementations. For example, the OMG MASIF standard defines agent man-

agement, agent tracking (naming services), and agent transport amongst others. The

FIPA standard is more comprehensive in that it defines also agent communication

and agent message transport, and even defines an abstract architecture of the agent

platform.[128]

3.2.2 Closed Systems

In closed systems, only the agents created specifically for the system are supported. No other

agents are allowed. Closed systems are mainly used for specialized applications; such as the

Intelligent Manufacturing-Simulation Agents Tool (IMSAT)[121], the OASIS Air Traffic Control

System[106]. Other applications might be to control of a nuclear power station, to provide

tactical support of army units[170], or to provide maintenance support for a transport network

such as the European Railway Online Maintenance Project(EuROMain)[116].

Other closed systems are used for simulations: the SeSAm simulation[95] tool allows its users

69

to create a number of simulations such as ant colonies3, bee hives and forest fires. Another

simulation - Pyrosim[149] - also simulates the spread of forest fires and their control through the

use of agents.

The Pyrosim platform simulates a forest-fire scenario in which a team of Agents

(firemen) cooperates to control and extinguish the fire, while simultaneously trying

to minimize the overall damage and losses. In Pyrosim, Agents have to deal with

dynamic fire-fronts, terrain constraints and their own physical and logistic limitations.

Factors such as wind intensity, vegetation density and terrain slopes, are taken into

account in simulating the progression of fire-fronts.[149]

By preventing agents from entering the system, it is possible to create agents with specific

capabilities. The MASSIVE[96] system was created to model the battle scenes in The Two

Towers - the second film in the ”Lord of the Rings” trilogy directed by Peter Jackson. Each

combatant is modelled as an agent with a different set of attitudes, skills and reactions, making

both the individual fights and the overall battles look realistic on-screen. As the system is a

closed one, the designers were able to alter the parameters for agents on each side and ensure

that the battles went as planned - ie, the correct side won.

For other applications, disallowing external agents allows the designers to impose a structure on

the agents. The IMSAT system is one system which has been organized as a hierarchy with the

decision making agents positioned at the top of the hierarchy and a number of monitoring agents

further down the hierarchy. In other systems, middle agents are also used.

The system consists of multiple organization levels. The decision-making functions

residing at different levels interact with each other during the operation of the system.

3These systems, known as swarm systems are discussed later in this section

70

Typically, reports flow from lower-levels agents to higher-level agents. The directives

flow in the reverse direction.[121, page45]

There are other closed systems which have complex structures, although it is important that

the structure relates to the domain and application of the system. It is important to note that

middle agents are also to coordinate the actions and interactions of the agents in some closed

systems.

Swarm Intelligence

One type of closed Multi-Agent System which is worthy of comment are Swarm Intelligence

systems. These are also known as Complex Adaptive Systems (CAS) and are MASs which are

populated by reactive agents (see section 2.4.2) with very limited abilities. Instead, it is the

agents interaction with other agents through the use of the environment which produce the

complex behaviour. In general, these systems are modelled on social insects such as ants, wasps

or bees which cooperate altruistically for the good of their society.

Swarm Intelligence is a property of systems of unintelligent agents of limited in-

dividual capabilities exhibiting collectively intelligent behaviour. An agent in this

definition represents an entity capable of sensing its environment and undertaking

simple processing of environmental observations in order to perform an action chosen

from those available to it. These actions include modification of the environment

in which the agent operates. Intelligent behaviour frequently arises through indirect

communication between the agents, this being the principle of stigmergy. It should be

stressed, however, that the individual agents have no explicit problem solving knowl-

edge and intelligent behavior arises (or emerges) because of the actions of societies

of such agents.[180]

71

This system[180] uses a number of digital ants for network routing. When a packet is to be

dispatched, an ’ant’ is created and send out into the network. As it passes from node to node,

the ant will lay a trail of pheromones. As subsequent ants follow the trail, the level of pheromones

will be increased. Since the level of network congestion at a particular network node will affect

the time that the ant will take to visit and return from its destination, the routes with the

least congestion will allow the most ants to travel, and as a result will have a higher level of

pheromones deposited. The packets will then be routed along the links that have been marked

with the most pheromones.

Individual ants are behaviourally very unsophisticated insects. They have a very

limited memory and exhibit individual behaviour that appears to have a large random

component. Acting as a collective however, ants manage to perform a variety of

complicated tasks with great reliability and consistency.[151, page 5]

In other ant-based systems, the ants are dispatched to find resources. As they look, the ants

wander aimlessly within the environment. When an ant locates the required resource, it will

return to its nest laying a pheromone trail. When another ant encounters the trail it will follow

it to the resource. As more ants travel from the resource back to the nest, the pheromone trail

increases in strength. When the resource is depleted, then the ants, will be unable to retrieve

the resource and return to random wandering within the environment. When this happens, the

pheromone trail will gradually fade until it disappears completely.

Reactive agents do not have representations of their environment and act using a

stimulus-response type of behavior; they respond to the present state of the environ-

ment in which they are situated. They do not take history into account or plan for

the future. Through simple interactions with other agents, complex global behavior

can emerge.[169]

72

Other similar systems use swarms of ’social insects’ such as ant, wasps or bees to navigate

over rough terrain, or perform explorations of unknown environments, or other forms or agent

coordination. Since these are simple agents with no means of direct communication, the actions

of the agents must be synchronized in other ways. In these systems, the insects lay pheromone

trails which can be detected by the other agents.

Stigemergy is a form of indirect communication through the environment. Like other

insects, ants typically produce specific actions in response to specific local stimuli,

rather than as part of the execution of some central plan. If an ant’s action changes

the local environment in a way that affects one of these specific stimuli, this will

influence the subsequent actions of the ants at that location.[151, page 5]

It is the interaction of the simple insects through the environment that produces the complex

behaviour. As a result, when the various definitions of an agent are considered (see section 2.1),

there appears to be a good case for arguing that the agents in these types of system are not

really agents. This is because the complex and intelligent behaviour is a product of the system

as a whole, and not by the individual entities within the system.

However the individual entities within the system are autonomous, and react independently to

their environment, which is one of the few attributes which the various researchers can agree on

when defining agents. From this we can say that since the system as a whole generates a form of

intelligent, but limited, behaviour and the system contains a number of individual autonomous

software entities which interact, then the system is a Multi-Agent System.

73

3.3 MAS Communication

This section of the thesis deals with cooperation and communication between agents within a

MAS. In order to provide examples, a hypothetical Multi-Agent version of the Tileworld[140]

simulation created at SRI is used as an example when discussing the need for communication as

a requirement for effective cooperation. Jeffrey Rosenschein and Gilad Zlotkin describe such a

system:

A multiagent version of the tile world, originally introduced by Martha Pollack, is an

example of a worth-oriented domain. We have agents operating on a grid, and there

are tiles that need to be pushed into holes. The holes have value to one or both of

the agents, there are obstacles, and agents move around the grid and push tiles into

holes.[146, page 360]

3.3.1 Cooperation without Communication

In this scenario, the agents work independently of each other. There is no communication between

them and the only cooperation is due to the fact that they are working towards the same goals.

There is great potential for duplication of effort and also for agents getting in the way of each

other. However there are advantages if the agents are able to coordinate their actions without

the need for communication.

In the system created by Sandip Sen, et al[152] two agents are given the task of pushing a block

along a predefined route. However, the agents are unable to communicate with each other.

These agents can therefore act independently and autonomously, without being af-

fected by communication delays (due to other agents being busy) or failure of a key

agent (who controls information exchange or who has more information), and do not

74

have to worry about the reliability of the information received (Do I believe the in-

formation received? Is the communicating agent an accomplice or an adversary?).

The resultant systems are therefore robust and general-purpose.[152, page 510]

Each agent is continuously monitoring the trajectory of the block along the target path. By

altering the angle and force which the agents are able to coordinate their effort based of the

other agents’ influence on the block.

The most surprising result of this paper is that agents can learn coordinated actions

without even being aware of each other.4 [152, page 514]

The agents have a number of possible goal outcomes, which may possibly conflict. For example,

if there were a number of possible goal locations and as a result number of paths that the block

could be pushed along, there is the likelihood that agents actions may conflict.

To converge on the optimal policy, agents must repeatedly perform the same task.

This aspect of the current approach to agent coordination limits its applicability.

Without an appropriate choice of system parameters, the system may take consider-

able time to converge, or may not converge at all.[152, page 514]

Using the example of the Tileworld system in which there is no predefined path, it is possible

that the agents could cause deadlock by both attempting to push the same tile from opposite

directions, and neither of them giving up. Alternatively, the agents may each realise that another

agent was also attempting to move the tile and abandon its own attempt. If this were to happen

then the tile would remain unmoved.

4While this seemingly contradicts the definition of a Multi-Agent System provided earlier (see section 3.1) in

that the agents are not directly aware of each other, the agents are affected by each others presence.

75

In a simple mobile robot simulation, a number of robots may be placed in the same environment

with the same goals. If there was no communication between the robots, then their interaction

would mainly consist of avoiding each other.

A different system where multiple agents were able to cooperate towards a common goal without

the need for communication is in retrieving the pages for an internet based search engine. Each

agent would retrieve the contents of a number of URLs not caring whether or not the results had

already been retrieved by another agent. Since the URL on the remote server is not changed,

and the only problem with updating the same record in the database more than once is the time

wasted, then it may actually be more effective to allow this occasional duplication rather than

add communicative abilities to the agents.

3.3.2 Nonverbal Communication

As with humans, one of the key features in the design of any agent is that no other agents in the

system have the ability to view its internal state directly. As a result, its motivations, beliefs,

desires and intentions remain hidden unless made known through its actions or by stating them.

However, humans have emotions - expressed through the use of facial expressions - which allow

other humans an insight into our current state of mind.

In her paper, ”Agents that Reduce Work and Information Overload”, Pattie Maes, describes an

intelligent assistant which communicates via icons which change as the agents emotions change.

The agent communicates its internal working state to the user via its facial expres-

sions. These appear in a small window on the user’s screen. The faces have a

functional purpose: they make it possible for the user to get an update on what

the agent is doing ”in the blink of an eye”.. . . The agents have deliberately all been

drawn as simple cartoon faces, in order not to encourage unwarranted attribution of

76

human-level intelligence.[109, page 154]

Current work in this field is more aimed towards Human-Agent interaction rather than Agent-

Agent interaction[135, 11, 160, 191, 109]. Instead, in the Multi-Agent Systems which contain

agents with emotions, emphasis is placed on the interaction purely as a way of making the

characters in the virtual world appear more believable.

If the agents within an information retrieval or resource coordinating Multi-Agent System, of

which there are numerous examples, such as InfoSleuth[13, 124, 123], were able to display very

simple emotions, then the other agents would be able to learn which agents were busy (looking

stressed out or confused), available for work (looking calm), or hostile and use this information

when assigning tasks and making requests of the agents.

Gestures are another form of nonverbal communication - the wave of a hand may be a greeting,

agreement, disagreement, an insult, any one of a number of different messages depending upon the

gesture, its context and the existing shared knowledge of the sender and receiver of the message5.

In the book, Embodied Conversational Agents[31, pages 6–11], Justine Cassell considers such

gestures and splits them into three separate groups;

Emblems These are gestures with cultural significance - a V for victory signal, or its reverse

as an insult; Thumbs up and Thumbs down signals; the nod or shake of the head. All of

these gestures are based on a shared culture, and often don’t translate between cultures.

For example, in Britain and America, the nod of the head indicates agreement, whereas in

other countries, such as Greece and Albania, agreement is signalled by a shake of the head.

Propositional Gestures This class of gesture is the nonverbal equivalent of a speech-act. It

is a planned gesture - for example, pointing at a location - usually as a supplement to a

spoken command such as ”put the box there”.

5For the purposes of this work, Sign Language is not classed as simple signalling as it allows people to

communicate effectively using a complete vocabulary

77

Spontaneous Gestures The third class of gesture is the most common. These are performed

involuntarily by the speaker in order to emphasis certain aspects of the conversation. They

tend not to be noticed consciously by the speaker or the listener, but they do affect the

listeners perception of the speaker and what he/she is saying. In the book, Cassell uses

the example of a colleague, Mike Hawley:

As is his wont, in the picture [not shown] Mike’s hands are in motion, and his

face is lively. As is also his wont, Mike has no memory of having used his hands

when giving this talk. . .Mike’s interlocutors are no more likely to remember his

nonverbal behavior than he is. But they do register those behaviors at some level

and use them to form an opinion about what he has said. . . [31, page 6]

Facial expressions and gestures aren’t the only form of nonverbal communication that it is possible

for an agent to observe. Any action that has an effect on the environment which can be observed

may be considered as a form of communication. For example, when a homeowner builds a fence

or a wall they are marking their property as having an owner.

If an agent locks a resource for its own use, it is making an observable change to its environment,

and is by its action communicating the fact that it requires the resource. In other words, if a

resource is not available, then it is currently in use by another agent.

Again using the Multi-Agent Tileworld example, an agent would know not to push a tile that

another agent was pushing. However, since the agents would not be able to communicate directly,

both agents may form similar plans to push the same tile. However, only one agent would be

able to complete its plan and the other agent would have to abandon its plan when it saw the

other agent pushing the tile. If both agents, reasoned that the other agent was pushing the tile

and abandoned their plans to move that particular tile then the tile would remain where it was.

The use of some form of communication would allow the agents to more effectively coordinate

78

their actions so that they were working together rather than independently. By using a commonly

agreed signal the agents coordinate their actions. One way of doing this would be to force an

agent to mark the tiles that it was intending to move. An agent would not be able to mark a

tile which had already been marked and would be forced to move any tiles that it had marked

before marking any more.

One real world example of signalling occurs when driving. The use of brake lights, indicators and

reversing lights, combined with a limited number of possible options - speed up, slow down, stop,

follow the road ahead, turn off the road - mean that it is possible to predict with a high level of

accuracy, the actions and intentions of a competent driver. However, as with any autonomous

entity, the signal of intention from a driver, does not always guarantee that the action will be

performed (One could signal left and turn right, for example). Therefore, road users have to be

alert for unpredictable events.

In general, a signal is a simple action which implies a longer message. However, signalling is

a very impoverished method of communication - very little information is passed between the

agents, and as a result, this is not always the most appropriate method. For simple systems such

as Swarm Intelligence (see section 3.2.2) systems, the limited communication is enough to direct

the agents. However, while the pheromone trails provides a message which means ”There may

be food at the end of this trail.”, it is not possible to provide any detailed information about the

location or any hazards that the agent may encounter on the way.

Another feature of signalling is that it is a broadcast method of communicating. This may be

either an advantage or a disadvantage depending upon the situation. For example, when driving

a car, it is important that all road users know a drivers intentions and actions. But when an

agent is negotiating for the use of a resource, it may be detrimental for an agent if its competitors

were to learn of its offer.

For nonverbal communication to be a viable alternative, or even to supplement conventional

79

language, the act of viewing and identifying the facial expression or gesture would have to be as

efficient as querying the agent and receiving the response.

3.3.3 Cooperation with full Communication

While acknowledging that indirect communication does exist and is used effectively in a number

of systems, it is important to realise the majority of communication in a MAS is direct commu-

nication. As a result, the remainder of this chapter will concentrate on the most common form

of direct communication: language.

If the agents in the Tileworld example were able to communicate, they would be able to tell

each other that they were going after a particular tile. By communicating, the agents would be

able to coordinate their actions and ensure that they do not get in the way of each other. The

communication would have to be short and succinct since the various holes into which the tiles

are pushed open and close at random, but this would allow the agents to coordinate their efforts

and avoid duplication of plans.

Additionally, there are a number of Multi-Agent Systems where direct and complex communica-

tion is not just a desired feature, but a prerequisite. An example of this would be a system where

each of the agents controlled a resource - such as the multi-media channels for a particular user.

For the users to contact each other, the agents would have to communicate and cooperate to

establish a communications link. See [104] for an example of a Multi-Agent based conferencing

system.

Coordination Between Communicating Agents

Having located groups of agents which may exist - possibly through the use of a mediator or

facilitator (see 3.2.1), the agent must negotiate with them in order to purchase their services

80

and/or products. However, in order to do this, a standard conversation (see section 3.3.3) is

initiated.

The most common type of transaction conversation is the Contract Net protocol[187, pages

194–196].

The activity modelled by this protocol, termed Contract-Nets, is task sharing, where

agents help each other by sharing the computation involved in the subtasks. More

precisely, an agent who needs help, decomposes a large problem into subproblems,

announces the subproblems to the group, collects bids from the agents, and awards

the subproblems to the most suitable bidders. In fact, this protocol gives us the best

negotiation process for dynamically decomposing problems because it was designed

to support task allocation. It is also a way of providing dynamically opportunistic

control for the coherence and the coordination of agents.[37, pages 49–50]

In some cases, the most suitable bidder is not the agent which agrees to complete the problem

for the lowest price. Other considerations are also relevant such a the timescale and the level of

trust between two agents (see section 3.3.3). Often when a bid is made, it is not always accepted.

Negotiation may take place with offers being exchanged between the agents until agreement is

reached, or until either agent ends the negotiation by declining to make a further offer. Tuomas

Sandholm and Victor Lesser describe a variation of the Contract Net protocol which allows

for these occurrences in their paper Issues in Automated Negotiation and Electronic Commerce:

Extending the Contract Net Framework [148]

Other alternatives to the Contract Net are also possible. In both the HEARSAY II[143] and

IMSAT[121] systems, the coordination is performed through the use of blackboards. These are

shared data areas which act as a communications area for the agents. IMSAT agents towards the

lower end of the hierarchy place information about onto the blackboard where it will be used by

81

agents further up the hierarchy.The Open Agent Architecture (OAA) is another system which

uses blackboards to coordinate the actions of agents.

Individual agents can respond to requests for information, perform actions for the

user or another agent, and can install triggers to monitor whether a condition is

satisfied. Triggers may make reference to blackboard messages (e.g. when a remote

computation is completed), blackboard data, or agent-specific test conditions (e.g.

”when mail arrives. . . ”).[47]

The Open Agent Architecture (OAA) extends this concept by creating a hierarch of blackboards

which allow requests to be passed between the blackboards.[47] This is similar to the Super-

peer/Reflector node concepts used in P2P networks (see 4.5.3 for details).

Speech Acts

Most, if not all communicating agents make use of a communication concept known as speech

acts.

The main approach to agent level communication in the literature like KQML or ACL

of FIPA are based on speech act theory. One of the basic insights of speech act theory

is that the communication of a message not only consists in making a statement, but

in a more broader sense constitutes a communicative action: making a promise,

begging, informing, etc. are all different kinds of communicative actions.[73, page 77]

In practical terms, this means that the main agent languages are based around a relatively small

number of preformatives - verbs which define the actions which are to be carried out: inform,

promise, request. As a result, the agent’s conversations tend to be very direct.

82

Agent Communication Languages

KQML A first attempt to produce an ACL that was both standard and general came

out of the DARPA knowledge sharing initiative. The Knowledge Query and Ma-

nipulation Language (KQML) was originally devised as a means for exchanging

information between heterogeneous knowledge systems. However, because of the

generality of its high level primitives and its message orientated structure, KQML

also functions well as language for agent communication.[52]

Due to the fact that KQML has been used in a wide number of different systems, many

developers have used the ability to add their own performatives. This is allowed by the

language providing that any existing performatives that are implemented are implemented

to the common standard. Another important point is that an agent need not implement

all of the core performatives, so it is possible to have a group of KQML-speaking agents

which have an almost completely non-standard set of performatives.

Although KQML, has a predefined set of reserved performatives, it is neither a

minimal required set nor a closed one. A KQML agent might choose to handle

only a few (perhaps one or two) performatives. The set is extensible; a commu-

nity of agents might choose to use additional performatives if they agree on their

interpretation and the protocol associated with each. However, an implementa-

tion that chooses to implement one of the reserved performatives must implement

it in the standard way.[102]

This diversity of application is important in that it allows a large number of different

problems to be considered. This means that the language is continuously being developed.

The assumptions made about the required behaviour of KQML agents were very

weak, and the resultant semantics of KQML messages were much more permissive

than FIPA-ACL. As is now well know, this permissiveness allowed wide latitude

83

in KQML implementations, and contributed to the proliferation of different and

incompatible KQML dialects.[53, page 5]

An unfortunate consequence of this many dialects of the language existing is that few

KQML-speaking agents will be able to communicate with agents outside their immediate

group. However, this has been noticed and is not considered to be a problem:

Although existing KQML implementations tend not to interoperate, this is mainly

due to the lack of a real motivation. Agent-based systems research is still at an

early stage, and there has been no benefit to individual research groups in focus-

ing on interoperability issues.[102, page 47]

The other main drawback of a language that is this flexible is in that it cannot be formally

specified in the same way that the other main ACL can be. Relatively recently, in an

attempt to address these concerns, a number of researchers looked at re-writing KQML,

and came up with a second version of the language which can be specified in a similar way

to the FIPA-ACL.

FIPA-ACL The Foundation for Intelligent Physical Agents (FIPA) is the controlling body that

created and now defines standard for the FIPA-ACL. This language was created after

KQML and was intended to address the main concerns of developers.

One of the results of this is that the language has been formally specified and as a result

is much stricter about what is allowable and what is not. However, the FIPA specification

covers more than just the language and as a result, a developer wanting to create a FIPA

compatible agent must implement a full BDI (Belief, Desire, Intention) Architecture - which

is a non trivial task.

As of spring of 1998, there were no published, deployed systems claiming to use

FIPA ACL.[102, page 50]

84

Since this time, FIPA has gained widespread acceptance within the MAS community and

a number of important systems such as RETSINA[167, 168] and AgentCities[185, 184, 197]

have been developed which use it.

The designers of one agent system describe one of the features of KQML which they used

in their system. It should be noted, that the FIPA-ACL also allows new performatives to

be defined, however this is can only be achieved by combining existing performatives since

FIPA-ACL has been formally proved.

In FIPA-ACL, the set of primitives is smaller than in KQML (but new performa-

tives can be defined by formally combining primitives) and this set also includes

assertives or directives as in KQML.[36]

Other Languages In addition to KQML and FIPA-ACL, many developers have written their

own languages; these include DAISY[29, pages 190–192], sACL[137, page 164], AGENT-

0[155], and KAoS[66, 74]. However the agents within these systems will be limited to

communicating with other agents from the same type of system.

Conversations, Conversation Policies

Humans by nature are communicative, and it is fair to say that a large percentage of what

we, as individuals say, is aimed at emphatic rather than information transfer. We talk of the

weather, our opinions, and any other things that we think of. Agent communication, due to

the comparative simplicity of agents when compared to humans, tends to be limited in scope

but more directed. In contrast, conversations between agents are short and very focused. The

domain is task oriented and the goal of the communication is to exchange as much information

as required, or reach agreement in the shortest possible time.

A conversation among agents is an exchange of messages made towards the accom-

85

plishment of some task or the achievement of some goal. In its simplest form it is a

sequence of messages in which, after the initial message, each is a direct response to

the previous one. More complicated structures occur when subdialogs are needed[119,

page 147]

. . . an agent will perform a certain communicative act with a certain expectation of

getting a reaction of the receiving agent. For instance, a request for information is

send with the expectation that the other agent will give that information or tell that

it does not have that information (or does not want to give that information).[52,

page 10]

For agents, these conversations need to be as short as possible while still allowing all of the

relevant information to be shared. For many agent systems, due to the number of communication

acts - questions/statements and responses - that are possible between agents and the fact that

statements may refer to data obtained from the previous responses, the sequence of messages are

in many cases, too complex to be chosen on an Ad-hoc basis.

. . . for powerful ACLs, there is a many-to-many mapping between externally visible

messages an agent produces and the possible internal states of an agent that would

result in the production of the message. This would be a significant but manageable

problem, except that agent interaction does not consist of agents lobbing isolated and

context-free directives to one another in the dark. Rather, the fact that problems

of high communicational complexity may be delegate to agents dictates that those

agents must participate in extended interactions.[67, page 119]

Instead, a number of researchers have developed Conversational Policies in order to try and

alleviate this problem. A conversation policy is a way of reducing the number of message options,

ensuring that the agents remain focussed on the conversation and goal currently being pursued.

86

Any public declaratively-specified principle that constrains the nature and exchange

of semantically coherent ACL messages between agents can be considered a conver-

sation policy. A given agent conversation will typically be governed by several such

policies simultaneously. Each policy constrains the conversation in different ways, but

there is no requirement that every policy be relevant or active in every interaction.[67,

page 123]

When a set of communication acts among two or more agents is specified as a unit,

the set is called a conversation. Agents that intend to have a conversation require

internal information structures that contain the results of deliberation about which

communication acts to use, when to use them, whom the communications should

address, what responses to expect, and what to do upon receiving the expected

responses. We call these structures conversation specifications, or specifications for

short.[136, page 133]

The KQML specification already has support for response-type messages through its use of the

in-reply-to field. However Mihai Barbuceanu and Mark S. Fox[9]propose that a conversation-id

field is added to allow a conversation policy to be included with the message. This idea is echoed

by Marian Nodine and Damith Chandrasekara[123] who explain one of the potential problems

in identifying the current conversation.

Conversation Identification is an issue that is usually ignored in ACLs and often

causes problems. For example KQML supports the chaining of messages using the

:reply-with and :in-reply-to fields, which are predicated on a request-response

model. Therefore one would have trouble chaining together messages in conversations

that do not follow that model. Suppose an agent were to submit a query involving a

large computation. At some point, the agent wishes to cancel the query or possibly

87

amend the query to provide additional restrictions because it is taking too long.

However, since no response has been received there is no incoming message to chain

the discard message to. Therefore it is evident that it is necessary to be able to

specify which conversation a message belongs to.[123, page 9]

Ontologies

The command ’Open a window’ a window causes a different action to be performed depending

upon whether the context is a room or a computer system. In some cases, the context can be

deduced, from the environment in which the conversation is taking place, but in other cases the

terms in the request may be ambiguous or unclear to the other agent.

In human conversations, new words can be added to a language and words can have their meaning

changed - just by people using them in a certain way. It is the way that language evolves, and

it the reason that dictionaries are revised and updated on a regular basis. If a new word is used

in human conversation and queried by one of the participants, the conversation may be paused

while the word is explained. However agents are not usually sophisticated enough to be able to

learn new words and concepts during a conversation. In addition, since the agent conversations

are carried out in part fulfilment of a task, the agents are unlikely to have time to learn new

words.

In some applications, it is important to define constant values such as the current rates of tax

which must be applied to commercial transactions. For other agents, scales such as units of

measurement - whether calculations need to be imperial or metric. If one agent was using one

scale, and another agent was using a different scale then the effects could be disastrous. Although

the systems involved were not agent systems, the disastrous 1999 NASA Climate Orbiter mission

to Mars, illustrates what may happen when two different scales of measurement are used.[87]

So to provide a common point of reference, many designers have equipped their agents with the

88

ability to understand ontologies. By referring to the same ontology, agents can guarantee that

they are using the same units of measurement, the same currencies, and the same timescales.

But an ontology is more than this as it defines everything that may be different between agents

within a domain.

Generally, A specification of the objects, concepts, classes, functions and relationships

in the area of interest. For a given area, the ontology may be explicitly represented

or implicitly encoded in an agent. More specifically, to support the sharing and

reuse of formally represented knowledge among AI systems, it is useful to define the

common vocabulary in which shared knowledge is represented; a specification of such

a common vocabulary for a shared domain of discourse is called an ontology.[181,

page 598]

EDEN (Environmental Data Exchange Network) is one system that makes use of ontologies;

The ontology used in the EDEN pilot project focuses principally on the relation-

ship between contaminated sites, the wastes that cause the contamination, and tech-

nologies used to remediate specific kinds of contamination in specific media at each

site.[61]

Sincerity, Deception and Trust

One of the key concepts of Speech Acts is the notion that the speaker is sincere. In other words, if

the speaker makes promise, then he/she is under an obligation to fulfil the promise. So an agent

should not make commitments that it does not intend, or is not able to keep. Unfortunately,

there is no definite way for one agent to tell if another is attempting to deceive it.

89

In general, in open environments, agents cannot safely determine whether or not

another agent is sincere.[158]

The designers of the GOLEM[32] system have pointed out that there were three types of deception

possible from one agent to another.

1. Deception about capabilities

2. Deception about personality

3. Deception about goals and plans

In general, an agent has very little to lose from making false claims, but it is possible for it

to benefit from deceiving other agents. Sometimes, deception is not only possible, but for the

smooth running of various processes, is required.

There are certain circumstances where sincerity is certainly desirable, for example

commercial activity, but there are others where it is not, e.g. certain role playing

games. Examples of the latter include the board-game Diplomacy, where players

connive their way to European conquest, and in an electronic setting, Multi-User

Dungeons, where some players act by tricking their way into the confidence of another,

before assassinating them. Even in the former case, though, while desirable, sincerity

is routinely flouted (only we do not call it lying, we call it ’marketing’ or ’advertising’).

More seriously, many Multi-Agent Systems are being developed for some kind of

electronic commercial activity and underpinning these applications is the concept of

negotiation. The idea of sincerity is somewhat compromised under these circum-

stances. ... For example, in negotiation an agent may bid some price as its opening

90

bid, but be willing to accept some other price to conclude a deal. To be more pre-

cise, much human social activity requires the freedom to be ’economical with the

truth’.[138]

3.4 AT-MAS and Multi-Agent Systems

The AT-MAS system is a Multi-Agent System in which the agents communicate directly without

the need for Brokers, Facilitators or Mediators. In addition, the agents are benevolent and

cooperate as required eliminating the need for negotiation. As a result, the AT-MAS language

used is simple in comparison to KQML and FIPA-ACL.

3.5 Chapter Summary

This chapter details Multi-Agent Systems (MAS). As in the previous chapter, it begins with a

definition. Here they are is defined as a systems in which the actions performed by each agent

can affect the other agents in the group. This interaction may be direct or indirect. In these

systems, each agent adopts a role within the group.

Following this, the types of MAS are described. Firstly, open systems are described. These

are systems where agents are allowed to enter and leave at will. They often consist of an agent

platform and a number of system agents and services which are provided by the platform. Mobile

agents enter the system, move between the platforms as required, and then leave. In order to

enter the system, the agent must complete a registration process. This information is stored

in a global database or directory (this varies from system to system). However, the use of

global datastore introduces a single point of failure into the system. Other open MASs such as

InfoSleuth[13, 61, 179] contain static agents which may appear and disappear. However, as with

91

mobile agent MASs, these agents also rely on system agents in order to locate other agents.

In contrast, closed systems do not allow agents to enter or leave. They tend to be developed

for specific applications, such as simulations and process control. One specific type of system -

swarm intelligence - is described.

Next the types of MAS communication and cooperation are discussed. These vary from cooper-

ation with no communication through to cooperation with complete communication.

Finally the AT-MAS system discussed in context of the information presented in the chapter.

92

Chapter 4

The Information Environment

As highlighted in section 2.3.6, the environment in which an agent operates has a direct effect

on its success or failure.

With over 11.5 billion web pages[70] and rapidly growing, the internet can accurately be described

as the largest and most significant repository of knowledge and information on the planet. How-

ever, like the fictional book The Hitch-hikers Guide to the Galaxy described in the eponymous

novel[1], the Internet has ”many omissions and contains much that is apocryphal, or at least

wildly inaccurate”.

In the prefix to his book ”An Introduction to MultiAgent Systems”[187], Michael Wooldridge

explains the problem of providing reliable references to internet based documents.

It would be hard to write a book about Web-related issues without giving URLs as

references. In many cases, the best possible reference to a subject is a web site, and

given the speed with which the computing field evolves, many important topics are

only documented in the ’conventional’ literature very late in the day. But citing Web

pages as authorities can create big problems for the reader. Companies go bust, sites

93

go dead, people move, research projects finish, and when these things happen, Web

references become useless. For these reasons, I have therefore attempted to keep Web

references to a minimum.[187]

As a result of the unregulated ad-hoc organisation of this resource, locating specific information

can be problematic. This problem is made worse by the ever-changing nature of the internet;

the web pages represented as links appear and disappear without warning. In other cases, links

may remain current, but it is the information that becomes out of date.

Some kinds of information, such as scientific facts remain relevant for a very long time. It is very

rare that the laws of physics become obsolete, but occasionally a theory is disproved and a new

theory replaces it. Other types of information such as share prices and news stories have a very

limited lifetime. Seconds can mean that a share price is outdated - often with disastrous results

for stockbrokers and the people concerned with share trading.

Unfortunately, there are no guarantees that information retrieved is the latest, most up to date

version. This problem is made worse by the fact that there is no obligation to label information

as either current or historical, and no obligation to remove out of date information either. In

1999, researchers investigated the problem of retrieving accurate information from the internet

and found the following:

People searching the internet for information are more likely to find the correct answer

than a wrong one. The catch is that you’re most likely not to find an answer at

all. Researchers at Ohio State University in Columbus (Reference and User Services

Quarterly, vol 38, p360) used search engines to carry out keyword searches on 60

simple questions such as ”What is the population of Columbus, Ohio?”, and found

that 64 per cent of Web pages either didn’t contain the answer or no longer existed. Of

the remainder, 27 per cent had the correct information. The others were wrong.[122]

94

This problem is due to worsen since the number of online publications is continuously increasing.

This trend looks set to continue.

Soon the volume of data in scientific data archives will ’vastly’ exceed the information

- journal articles etc - in current commercial databases. Even now, ’printed’ infor-

mation constitutes only 0.003 per cent of the total information content stored. What

is more, future journal articles will contain references - and links - to particular data

sets within some of the vast repositories that already exist.[72]

Further problems are caused by both the wide range of languages 1 and the wide range of formats

that the information is published in. As well as being in either HTML or one of its many variants

(shtml, sgml, xml, dhtml) the information may be in a completely different format and either

embedded into the page, or available as a downloadable file. Possible file formats include; pdf;

mp3; mpeg; gif; jpg; avi; wav; png; xls; doc; ps; tar.Z and zip to name just a few.

. . . even though Google, at the time of writing , runs a cluster of 10,000 machines

to provide its services, it only searches a subset of available Web pages (about 1.3 x

108 to create its database. Furthermore, the world produces two exabytes (2 x 1018)

bytes each year but only publishes about 300 terabytes (3 x 1012 bytes) i.e. for every

megabyte of information produced, one byte gets published. Therefore, finding useful

information in real-time is becoming increasingly difficult.[171, page 30-31]

Although search engines have been developed in an effort to make searching easier, they are

limited, not only by the sheer scale of the problem, but also by the way that the bulk of the

online information is structured. This information, often referred to as either the Deep Web or

the Invisible Web[18, 164], is stored in databases and the web pages containing it are created

1A study carried out in 1999 found that English is the most popular language for Internet publishing and is

used for 80% of the published documents. However 43% of the online population do not understand English.[131]

95

dynamically from a template when the page is accessed. As a result, a small number of templates

can be used to generate a massive number of pages.

The use of dynamic pages also allows the site to be tailored to the individual user. The disad-

vantage of this, is that the majority of pages cannot be indexed by external search engines and

therefore searches must be conducted from within the site using whatever facilities are provided.

Sixty of the largest Deep-Web sites collectively contain about 750 terabytes of infor-

mation – sufficient by themselves to exceed the size of the surface Web forty times.[18]

Within recent years the Internet has become home to a diverse range of applications which exist

outside the realm of search engines. The increasing popularity of these alternative applications

and the information that they manage, means that the World Wide Web is becoming increasingly

less important in comparison. However, web browsers frequently provide the interface to these

new technologies.

The World Wide Web, Web Services, Grid Computing, Peer-to-Peer networks and open Multi-

Agent Systems all have the potential to interact so gradually the interfaces between them are

becoming blurred. One key development that assisted this, was the creation of XML (Extensible

Markup Language) which includes meta-data in the form of an XML Schema that allows the

information to be more easily processed by other applications.

4.1 Client/Server

The Internet is the most well known example of the client/server topology. In it, the client

application (in this case referred to as an Internet/Web Client/Browser) connects to a Web

Server and requests an HTML page from one of the web sites that it is hosting. Multiple clients

can connect to the same server/web site simultaneously. However, there are practical limits to

96

the number of clients that a server can support at any one time. This means that during periods

of high demand it is possible for the server to become overloaded and the web sites that it hosts

to become swamped.

When a server becomes unavailable due to the deliberate actions of others, it is known as a

Denial of Service (DOS) attack. The same effect may also be caused by a surge in the number

of genuine visitors to a web site. This is known as the Slashdot effect[112] an is often caused

when a web site on a small server or reachable from a low bandwidth connection is linked via a

more popular web site. One example of this occurred when slashdot.org ran an article about the

music sharing program ”Mojo Nation” which caused an increase in download requests from 300

copies per day to 10,000 per day and completely overloaded the server.[183]

For sites which regularly receive a high volume of requests, clusters of servers may be used in

order to reduce the chance of overload during periods of very high demand. The popular search

engine Google[76] uses a cluster of 10,000 computers in order to run its service.[171, page 30]

Clients may also request data from a number of different servers at the same time. This occurs

most often when a web page contains links to images or program code which resides on a different

server from the one which is hosting the page which references it. While it is possible for a client

to connect to many servers and for a server to process the requests of many clients, it is not

possible for a component to communicate directly with a component of the same type. I.e.,

Clients cannot connect to other clients, and servers cannot connect to other servers.

It is possible for a number of different clients connected to the same server to communicate via

the server providing the server software allows it. This technique is used in numerous Internet

applications such as chatrooms and online games.

In the past a client request resulted in the download of a simple HTML page - possibly with

images. More recent versions of both Internet client and server software mean that the that the

data returned by the server is more rich - often containing multimedia files, XML data or program

97

code such as javascript code, java applets and/or ActiveX controls to be executed by the client.

However, client applications are not restricted to Web Browsers; early internet agents such as

Bullseye[85, 86] connect directly to a wide variety of servers and download data as though they

were browser based clients. This becoming increasingly common since most modern languages

contain libraries which allow programmers to access the HTTP protocol engine.

Similarly a web page may contain a call to another type of server-based program such as a

Web Service or Common Gateway Interface (CGI) Script. These are not downloaded to the

client application, but are instead, activated when data is submitted from the client. When this

happens, the results are generated by the program on the server and then returned to the client.

4.2 The Semantic Web

The Semantic Web, proposed by Tim Berners-Lee (credited with creating the original World

Wide Web) is an attempt to bring structure to the data stored online through the use of meta-

data. The purpose of this is to allow applications - such as intelligent agents (see chapter 2) to

extract content information easily from a page.

Most of the Web’s content today is designed for humans to read, not for computer

programs to manipulate meaningfully. Computers can adeptly parse Web pages for

layout and routine processing – here a header, there a link to another page – but in

general, computers have no reliable way to process the semantics . . .

The Semantic Web will bring structure to the meaningful content of Web pages,

creating an environment where software agents roaming from page to page can readily

carry out sophisticated tasks for users. . . all this without needing artificial intelligence

on the scale of 2001’s Hal or Star Wars’s C-3PO.[19]

98

In order to do this, the author of the page includes hidden tags within the page which define key

data elements. For example, the text of a page may include the following:

. . .my postcode is<Postcode>AB12 3CD</Postcode> and my age is <Age>36</Age>. . .

However, in addition to the tags highlighting the appropriate data fields, the author must create

a RDF (Resource Description Framework) which describes the relationship of key elements by

using a triple consisting of element association element, e.g.

<age><is an><integer>

<M. Gill><is a><student>

<M. Gill’s email><is an><email address>

<M. Gill’s email><belongs to><M. Gill>

By using these two sets of tags, the designers intend to provide structure to the Web - a somewhat

ambitious task, considering the amount of data currently in existence. However, by converting

key repositories of data, it will be possible to convert a useable subset of the Web to this format.

Though some doubts have been expressed as to whether encoding data with the content of a web

page is the best route to take.

If the aim is really to make databases more accessible via the web then perhaps we

should start by having more portals that point to databases and simply give them

better web based front ends. It is certainly more cost effective to load data into a

database than into web pages and it is certainly not beyond the wit of man to devise

a graphical query format tied to the conceptual model which defines the database

structure.[162]

It seems likely that a large amount of the pages created for the Semantic Web will be generated

dynamically using fields from a database and a standard template. As a result, there will be

little cost to the author of the system since the template can be re-used for each database record.

99

However, there may be some pages in which the data is uniquely structured and cannot be stored

easily in a database. In some cases, the amount of meta-data to be included may either be too

great to manage easily, or too trivial for people to be concerned with. Therefore, the tools must

be available to ease the process of including the meta-data into future pages to a point where

little or no additional effort is required. Otherwise, meta-data will simply not be included.

Since there will be the same lack of regulation as for the existing Web, then it is very likely that

the Semantic Web will be plagued by the same problems of accuracy and omissions that the

World Wide Web is currently suffering from. The eventual success of the Semantic Web will be

dependent upon how well these gaps in the data can be dealt with.

4.3 Web Services

In the same way that the Semantic Web is intended to add structure to web pages, Web Services

provide a standard for server-based programs such as the databases and other applications called

by a client application.

As with any other server based program, when the client connects and makes a request to

the server, it will return the results. However two fundamental differences exist; firstly, all

communication between the client application and the web service must be performed using

XML conforming to service interface, i.e. the WSDL (Web Services Description Language), and

contained within a message conforming to the SOAP (Simple Object Access Protocol) standard.

Secondly all public Web Service must be registered with one of a number of central repositories

such as the UDDI (Universal Description, Discovery, and Integration) Repository which can be

searched by either a developer, or a program. Each public UDDI is linked, and all use the same

protocol so that searches can span a number of repositories. Alternatively it is possible for a

company or organisation to create its own private UDDI.[159, pages 96–100]

100

These two requirement combine to produce a framework which allows clients to easily locate

and access independently created Web Services. As a result, Web Services are often created

to support other technologies from some Multi-Agent Systems (see section 3.2.1) through to a

number of Grid Applications (see section 4.6).

However, for some, Web Services are too complex for the objective that they are trying to achieve.

When speaking at the Free and Open Source Software Developer’s meeting in Brussels, Andy

Oram, an editor at O’Reilly & Associates made the following comments:

Web services are hot right now, but their infrastructure has turned out big and scary,

which is not what the web was meant to be.. . . SOAP tries to cover every eventuality.

You hardly get a chance to say what you were going to say by the time you’ve said

everything you have to say about what you’re going to say. And in trying to solve

the presence and discovery problems, Microsoft and IBM and others have created

an enormous superstructure resembling CORBA or COM, all implemented between

angle brackets.[127]

4.4 Client/Peer Oriented

One of the distributed processing systems which has gained popularity in recent years is the

seti@home[82] system which is used to process data from radio telescopes in an attempt to identify

signals which may indicate the presence of extraterrestrial life. The system is implemented as

a screen saver which, when active, downloads data from a central server. The data is then

processed during the times when the user’s computer is idle and then the results are uploaded.

The process is then repeated for new data.

Due to the success of the concept, numerous other systems have been created such as the ”Fight

101

Aids at Home” system[78]2. Often these systems are confused with peer to peer (P2P) systems

(see section 4.5) such as Napster and Gnutella. Like P2P systems, these harness the power of

the client computers - in this case to provide the computing power for a number of high profile

processor-intensive projects.

Although these systems came to prominence at the same time as the early P2P systems and

are sufficiently different in concept from traditional web applications in terms of design to be

associated with the P2P systems in the minds of many people, they cannot be classed as P2P.

The reason for this is that in a P2P system, the clients are able to communicate directly with

each other. In the seti@home system, and all other systems of this type, the clients have no

direct contact. Instead, seti@home uses client/server technology: a number of separate clients

contact a single server even though the bulk of the processing carried out is performed by the

client rather than by the server.

One phrase that has been used to describe these systems is peer oriented [166], however this

phrase does not seem completely accurate since the clients in the system do not have any contact

with each other as peers as in a P2P system do. Therefore I would suggest that the terms client

oriented or client-based processing systems are more appropriate.

4.5 Peer to peer (P2P)

Peer to peer (P2P) computing is a concept that the majority of its users have probably never

heard of, but mention music downloads, file sharing, Napster[81] or, more recently, Gnutella[79]

and the picture is likely to be very different.

2In addition to these systems, readers wishing to participate in many of the various distributed computing

projects available are advised to visit the distributed.net web-site[75] which provides access to a number of other

projects as well.

102

P2P computing isn’t all that new. The term P2P is, of course, a new invention, but

basic P2P technology has been around at least as long as USENET and FidoNet -

two very successful, completely decentralized networks of peers. P2P computing may

be even older . . . The bottom line is that many of the people using P2P applications

today weren’t even using computers when the first P2P applications appeared.[166]

While these applications have been beneficial, they haven’t been as popular or as well known

as the current of P2P systems. The launch of Napster in 1999[4, page 103] generated massive

interest both from ordinary users of the system and also researchers.

. . . network traffic measurements at the University of Wisconsin suggest that in the

period of April 2000, Napster-related traffic represented the 23% of their total network

traffic, while at the same time web-related traffic only accounted for 20% . . . Although

Napster traffic has been reduced . . . the percentage of peer-to-peer traffic (in total) has

actually increased. For example, [more] recent measurement[s] from the University of

Wisconsin suggest that in October 2001, peer-to-peer traffic reached more than 30%

of the total traffic while at the same time, web-related traffic was little more than

19%[113]

While there is no indication as to the volume of traffic generated by either the P2P or web-

based systems, these figures ”. . . represent a significant and continually increasing percentage of

the overall network traffic. . . ”[113] This rapid increase in the popularity of P2P applications

and resulting network traffic means that any discussion concerning networks must consider P2P.

However, in order to evaluate the types of P2P system available, it is important to define them.

As with Agents (see chapter 2), there are a number of different definitions for P2P systems. In

the simplest definitions, a peer to peer system consists of a network of nodes which communicate

on an equal basis. In other words, all of the nodes in the network can initiate a connection,

103

and all nodes can make and respond to requests. This is in contrast to a client/server system

in which a central server responds to the requests made by a number of clients. The group of

researchers from the European Grid of Solar Observations state:

A P2P application is different from the traditional client/server model because the

applications involved act as both clients and servers. That is to say, while they are

able to request information from other servers, they also have the ability to act as a

server and respond to requests for information from other clients at the same time.[42]

This has lead to the term servent - a concatenation of SERVer and cliENT - which is often used

to describe the nodes in a P2P network.

For one researcher, Clay Shirky, the traditional definitions of P2P systems do not explain the

shift in computer usage caused by P2P.

This literal approach to peer-to-peer isn’t plainly not helping us understand what

makes P2P important. Merely having computers act as peers on the Internet is

hardly novel, so the fact of peer-to-peer architecture can’t be the explanation for the

recent changes in Internet use.[153]

Instead, he provides an alternative definition about what makes P2P unique:

If you’re looking for a litmus test for P2P, this is it: 1) Does it treat variable con-

nectivity and temporary network addresses as the norm, and 2) does it give nodes at

the edge of the network significant autonomy?

If the answer to both these questions is yes, the application is P2P. If the answer to

either question is no, its not P2P.[153]

104

The first criteria of the definition relates to the fact that there are a limited number of IP addresses

which means that the majority of devices connected to the Internet operate using dynamically

generated IP addresses. While this is not a problem for applications acting as clients, traditional

servers require fixed addresses so that they can be located by the clients. Since most P2P servents

have dynamic IP addresses which may change for each session, nodes in the network must be

able to cope with this.

There does appear to be some disagreement about the length of time that nodes remain con-

nected to a P2P network. Matei Ripeanu[144, page 5] produced results from traces taken during

November 2001, February/March 2001 and May 2001, which show that 40% of nodes are con-

nected to the Gnutella network for less than 4 hours. In contrast, results by Stefan Saroiu et

al[150] taken during May 2001 show that both for Gnutella and Napster, user sessions lasted

approximately 1 hour. Similar work done using the ”Mojo Nation” P2P system show that 80%

users of user sessions last for less than an hour.[183]

The variations in the different sets of figures generated may be attributed to a number of factors;

the types of software used to capture the data, the dates and times that the data was acquired,

and the way that the raw data was converted into actual statistics, etc. However one thing is

clear - P2P networks are transitory and a successful P2P network must be able to deal effectively

with nodes appearing and disappearing without prior warning. The frequency at which nodes

appear and disappear is referred to as the rate of churn.[39].

Although it could be argued that all devices on a network should be able to deal with the failure

of connected devices, this is frequent occurrence in a P2P network. While it is possible for web

servers to be unavailable, it is rarely the case as they almost always use fixed IP addresses and

permanent connections.

While P2P networks are generally resilient to the arrival and departure of nodes, this volatile

and unpredictable nature is not without consequence. As nodes are added and removed at

105

different points, the network structure becomes uneven; gaps appear and some nodes become

more important to the structure of the network than others. If a key node is removed, the

network splits into different fragments which cannot be reconnected since a new node can only

join one fragment of the network, and not re-unite disparate fragments.

It has been shown that if 4% of the most highly connected nodes are removed from

Gnutella, the network will severely fragment, rendering it useless. . . . Gnutella’s ro-

bustness to random failure and vulnerability to malicious attack is not unique. Indeed,

the Internet has similar characteristics; an attack on 5% of nodes would result in a

total collapse of the internet.[94]

The second requirement of the definition distinguishes P2P networks from the more traditional

client/server model. In the client/server model, it is the clients which are at the edge of the

network. They can make requests, but cannot process requests. The servers can receive requests,

but cannot make requests. In P2P networks, all nodes can both make and receive requests.

It is important to note that the definition uses the words significant autonomy. If the definition

required that all nodes required equal autonomy then both hybrid (see section 4.5.1) and super-

peer (see section 4.5.3) systems would have to be excluded from the definition. However, since

all of the nodes can perform a minimal set of operations; requesting a file and preforming a file

transfer, the definition is still valid for these systems.

However, Shirky’s definition does not exclude Client/Peer Oriented (see section 4.4) systems de-

spite the fact that they rely on a central server and there is no communication between the peers.

While this is intended, it does contradict one of the basic characteristics of P2P architectures -

that the peers in the network can communicate directly. Instead he suggests an alternative view

of P2P based on:

Another way to examine this distinction is to think about ownership. It is less about

106

”Can the nodes speak to one another?” and more about ”Who owns the hardware

that the service runs on?” The huge preponderance of the hardware that makes Yahoo

work is owned by Yahoo and managed in Santa Clara. The huge proponderance of the

hardware that makes Napster work is owned by Napster users and managed on tens

of millions of individual desktops. P2P is a way of decentralizing not just features,

but costs and administration as well.[153]

While Shirky’s definition does highlight two important characteristics of modern P2P system, the

requirement for peers to communicate directly cannot easily be ignored. After all, it distinguishes

P2P systems from the client/server model.

The name ”peer-to-peer” suggests a egalitarian relationship between peers and, more

importantly, suggests direct interaction between peers.. . .

But not all distributed computing is P2P computing. Distributed applications like

SETI@home and the various distributed.net projects exhibit little interesting peer-

to-peer interaction, and are therefore not really P2P according to the definition

above.[166]

4.5.1 Hybrid P2P Systems

In a hybrid P2P system, all of the nodes in the network must connect to the server. If for any

reason, a server is not present, then the system cannot operate. How much assistance the server

provides is dependent on the system. In some, it simply acts as a name server - merely providing

a list of the currently logged on peers. In other systems, the server could provide a list of the

content that is available for download as well. Napster[81] opted for this second approach.

When a user searches using Napster, the search is passed to the server which returns a list of

results - files, their locations, and other relevant information. The users selects a file from the

107

list returned, and the node initiates a direct connection to the node containing the requested file

and downloads it.

More recently, BitTorrent[14, 22] was developed to use a hybrid approach. However, rather than

incorporate the search facility into the P2P servent as in other systems, Bit Torrent requires users

to download a data file from the web site.3 This file can then be loaded into the Bit Torrent

application which will retrieve the data requested. One distinctive feature of Bit Torrent is that

the files are split into chunks and multiple copies spread around the network. This allows the

node downloading to retrieve data from a number of locations before rebuilding the files when

the download is complete. Since the system is mainly used for large media files, such as films,

this allows downloads to continue even when a node leaves the network.

4.5.2 Pure Peer-to-peer

In contrast, pure P2P systems such as Gnutella[79], Freenet[141] do not rely on access to any

server or web site. Instead, the nodes within the network provide all of the services required.

The two most notable P2P systems are; Gnutella[79] and Freenet[45, 44, 141] although other

systems such as OceanStore[99] and DISCWorld[156] also exist.

Since there is no central server, when a node joins a pure P2P network, it must be given the

name of one operational node. In general, the process by which a new node joins the network is

similar with the main difference being that the first time a Freenet node is activated, it creates

a unique key to identify itself.

The node joins the network by connecting to one Gnutella node, which can be any

node on the network making it generally easy to join in a decentralized fashion.

Once it has joined the node discovers other nodes through the first node by issuing

3The most popular web site for Bit Torrent download files is http://www.supernova.org

108

http://www.supernova.org

ping and receiving pong descriptors from peers accepting connections. [171, page 40]

When the Freenet node joins the network, the messages passed between the node include the

keys used to identify the nodes. These keys are stored by the nodes in a routing table which is

used when searching.

By using the ping and pong messages, a new node is able to discover and connect to existing

nodes without the need for a central server. However, this process can generate significant traffic.

The traces showed that Pings and Pongs messages were just over 50% of the network

traffic seem on the network, and that Queries were another 40% of packets seen in

the traces.[5, page 5]

More recent analysis[144, page 5–6] in June 2001, shows that ping and pong messages only

accounted for approximately 8% of the traffic on the network even though the number of node

had grown from 2,063 in November 2000 to 48,195 nodes in May 2001.

This is due to a redesign of the Gnutella servent which lead to a decrease in the number of Ping

and pong messages required, and introduced Super Peers (see section 4.5.3).

. . . careful engineering led to significant overhead traffic decreases over the last six

months. Second, the network connectivity of Gnutella participating machines im-

proved significantly . . . Finally, the efforts made to better use available networking

resources by sending nodes with low bandwidth at the edges of the network eventually

paid off. . .

Apparently, by June 2001 these engineering problems were solved with the arrival of

newer Gnutella implementations: generated traffic contained 92% QUERY messages,

8% PING messages and insignificant levels of other message types.[144, page 5-6]

109

While the continuous development of Gnutella has reduced much of the bandwidth consumed

by the node discovery process, concerns have are frequently raised about the scalability of the

system. This is due to the broadcast method of searching for files which is costly in terms of

bandwidth consumed.

Gnutella nodes typically connect to three nodes and then search by broadcasting

their search request to all connected neighbours.. . . Each neighbour repeats this search

request to his/her neighbours and so on, which is known as flooding the network.[171,

page 40]

In order to prevent the query messages from being passed around the network indefinitely,

Gnutella packets include a time-to-live (TTL) parameter - usually with a default value of 7.

As the message is received by a node the TTL is decremented. If the value for the TTL is

positive, then the message is forwarded to all of the connected nodes except for the node that it

was received from. In addition, each message also contains a unique ID which is used to prevent

messages from being sent to nodes which have already received them.

The ”standard” TTL is 7 hops, so, how far is that? A 7-hop radius combined with

network conditions (i.e. 4 connections) means that around 10,000 nodes are reachable

within a fully connected network.[171, page 104]

The range of the search, as dictated by the TTL, is referred to as the search horizon, and although

it is an artificial limit, it is a necessary one. Without it a query would pass throughout the network

until the whole network was processing the query. While in theory, flooding the network with

requests to find as much information as possible is a good idea, the network becomes swamped

very quickly.

Free Riding[2] is a problem highlighted by researchers at Xerox Palo Alto Research Center. This

110

occurs when users downloads files from the network but does not make any files available for

others to download.

In our analysis we consider two types of free riding. In the first type, peers that

free ride on Gnutella are those that only download files for themselves without ever

providing files for download by others. The second definition of free riding considers

not only the amount of the downloadable content a producer has, but how much of

that content is actually desirable content. This is essentially a quantity verses quality

argument that also poses a social dilemma when there is a cost to the provider to

make desirable files available to others. In the ”old days” of the modem-based bulletin

board services (BBS), users were required to upload files to the bulletin board before

they were able to download. In response to this requirement users would upload their

own bad artwork or randomly generated text files and would be able to download

high quality content generated by others . . . [2]

As a result of this activity, it was found that a large percentage of the files were provided by a

very small number of users.

Specifically, we found that nearly 70% of Gnutella users share no files, and nearly

50% of all responses are returned by the top 1% of sharing hosts.[2]

This has a number of effects on the network.

Firstly, the uneven distribution of the files means that the nodes with large amounts of data are

acting as servers. This means that these nodes perform the bulk of the data transfers, and may

become overloaded. Since they are more critical to the operation of the network than nodes with

no data, their absence from the network reduces the amount of data that can be located. This,

in essence, creates the same dependencies as in a client/server network - something which a well

balanced P2P network avoids.

111

Secondly, the number of empty nodes dramatically reduces the search horizon. This occurs

because even nodes with no data still affect the TTL. Rather than a message passing between,

for example, 7 nodes with data; it may only pass between 2 nodes with data, and 5 empty

nodes. An extreme possibility is that the network includes nodes which are out of range of any

significant stores of data.

Despite the use of the TTL to create a search horizon, the search requests which flood the

network account for a high percentage of the traffic leading Jordan Ritter, one of the creators

of the original Napster system, to write a paper titled ”Why Gnutella Can’t Scale. No, Really.”

which was published during February 2001. In this document, he calculated that the sending a

single simple search message - ”grateful dead live” - consisting of an 83 byte data packet across

the network, generated 800Mb of search and response data for the single query.

On a slow day, a GnutellaNet would have to move 2.4 gigabytes per second in order

to support numbers of users comparable to Napster. On a heavy day, 8 gigabytes per

second.

. . . it should also be noted that only search query and response traffic was accounted

for, omitting various other types of Gnutella traffic such as PING, PONG, and most

importantly, the bandwidth costs incurred by actual file transfers. 2.4GBps is just

search and response traffic, but what about the obnoxiously large amount of band-

width necessary to transfer files between clients?[145]

Later versions of the Gnutella protocol have incorporated mechanisms which are intended to

improve the scalability. These include the use of caching to reduce the cost of a new node joining

the network, and the introduction of super-peers (see section 4.5.3) which are described later in

this chapter.

Rather than use a network flooding approach, Freenet uses a more sophisticated search mecha-

112

nism. When a users searches for a specific file, the search is used to generate a coded key which

is 128 bits long. The Freenet servent contains a routing table with a list of other nodes and the

keys that they contain.

When a node receives a request for a file, it checks its own storage space. If the file is not found,

the node selects the remote node with the key closest to that of the file to be retrieved. The

request is forwarded to that node. If the response from the remote node is that the request has

failed, then it chooses the next best node from its list of known nodes. The process is repeated

until there are no more nodes to contact, or the file is found.

In order to prevent loops from forming in the chain, each request contains a GUID - a unique

ID - which is checked by the receiving node. If the GUID is recognised, then the message has

been received previously and so a ’request failed’ message is returned. The other condition which

causes a ’request failed’ message to be generated is that of the limit of the search horizon.

When a file is located, it is passed back along the chain of nodes to the source of the request.

Each node of the chain stores a copy of the file. This results in the more popular documents

being distributed more widely throughout the network.

Such caching services form the basic building blocks of the Freenet network since

each peer contains a routing table, similar in principle to the Gnutella super-peers

or Napster indexes. The key difference is that Freenet peers do not store locations

of the files at all, rather they contain file keys that indicate the direction in the key

space where the file is likely to be stored.[171, page 156]

As the space available at each node is finite, when new files are to be stored, the older files are

deleted. This means that the files which are requested least gradually expire.

More recently, techniques have been developed which improve the usability of Freenet.[43] The

key feature of the new routing mechanism is that nodes in the network collect statistical infor-

113

mation about the other nodes in the network, ”including response times for requesting particular

keys, the proportion of requests which succeed in finding information and the time required to

establish a connection in the first place”[43]. The second enhancement to Freenet involves the

sharing of this data between nodes in order to improve searching when a new node joins the

network.

4.5.3 Super-peer

In 2001, the Gnutella network was changed to include super-peers (also known as Ultra-peers,

Hubs, & Reflector Hubs) in order to improve its scalability.

The following quotation, taken from a technical report by Yang and Garcia-Molina describes one

of the limitations of pure P2P systems in general, but the early versions of Gnutella:

Another source of inefficiency is bottlenecks caused by the very limited capabilities of

some peers. For example, the Gnutella network experienced deteriorated performance

- e.g. slower response time, fewer available resources - when the size of the network

surged in August 2000. One study . . . found these problems were caused by peers

connected by dial-up modems becoming saturated by the increasing load, dying, and

fragmenting the network by their departure. However studies . . . have shown consid-

erable hetrogeneity (e.g. up to 3 orders of magnitude difference in bandwidth among

the capabilities of participating peers. The obvious conclusion is that an efficient

system should take advantage of this hetrogeneity, assigning greater responsibility to

those who are more capable of handling it.[192]

By re-designing the Gnutella servent to allow for the use of super-peers, the problems with

scalability were greatly reduced.

114

Super-nodes act as caching servers to connected clients and perform a similar opera-

tion to Napster servers. So, rather than propagating the query across the entire set of

nodes, the super-peer will check its own database to see if it knows the whereabouts

of the requested file and if so, it returns the address to the client, just like Napster. If

not, it performs a Gnutella-type broadcast across the decentralized set of super-peers

to propagate this across the network. This means that a client can search an entire

network without consuming vast quantities of bandwidth.[171, page 126]

By granting super-peer status to some nodes in the network, designers have created a hierarchy

based on resources. Theoretically there is no limit to the level of hierarchy in a super-peer

network; super-peers could, quite easily, become part of a group controlled by a super-super-

peer.

Comparisons have been noted between the newer versions of Napster with its cluster of servers,

and the Super-peer version of Gnutella.

It is interesting to note that both Gnutella and Napster converged towards a central-

ized/decentralized topology, even though they came from completely different sides

of the coin. Gnutella started life as a decentralized system and Napster started life as

a centralized search architecture, with brokered communications. However, Gnutella

inserted super-peers and Napster duplicated its centralized search engine for scala-

bility, both resulting in a similar design topology. . . [171, page 127]

4.5.4 Overlay Systems

However, Super-peers are not the only alternative to hybrid and pure P2P systems. Researchers

have experimented with the idea of overlay systems. These are systems where the designers

have imposed a topology on top of the P2P network. One system; Chord[163, 7], uses a ring

115

topology. Pastry[35, 34], Skipnet[71] are other overlay systems which also use ring topologies but

differ from Chord in the way that the routing information is structured and used. Other overlay

systems such as CAN[7] and Tapestry[7, 196] are based around different topologies.

All overlay systems function in similar ways, with a key being generated and stored in a specific

location dependant upon its value, in order to improve the efficiency of searches. The strategy

for dividing the address space between the nodes is very much dependent upon the topology of

the overlay, although different algorithms may be used with the same basic topology depending

upon the properties that are desired.

In these systems. . . files are associated with a key (produced, for instance, by hashing

the file name) and each node in the system is responsible for storing a certain range of

keys. There is one basic operation in these . . . systems, lookup (key), which returns

the identity (e.g., the IP address) of the node storing the object with that key.[142]

In order to improve the searching, each Chord node maintains an index referred to as a finger

table4 which contains routing information. Each entry in the table points to the successor of the

nodes spaced exponentially around the ring. This allows queries to be directed to the approximate

location of the key rather than for every node between the source of the request and the node

containing the key needing to be contacted.

Each chord node needs routing information for only a few other nodes (only 0(log

N) for an N-node system in the steady state), and resolves all lookups via 0(log N)

messages to other nodes. Performance degrades gracefully when routing information

becomes out of date due to nodes joining and leaving the system; only one piece of

information per node need be correct in order for Chord to guarantee correct(though

slow) routing of queries.[7, page 18]

4This is known as a Distributed Hash Table (DHT) or Routing Index (RI) in other systems

116

However, due to the way the overlay systems work, with keys being distributed between the

nodes, maintenance needs to be performed whenever a node enters or leaves the network.[33]

The minimum work involved required redistributing the keys between the current set of nodes

in the network.

To maintain a mapping when a node n joins, certain keys previously assigned to

n’s successors are reassigned to n. When n leaves the network, all of its keys are

reassigned to n’s successor. No other changes in assignment need to occur.[105]

While this is true for the very basic operation of the chord network, it does not take into account

the updating of the finger tables of the nodes that referenced the departing node. As a result

the number of messages may be significantly more;

In contrast [to pure P2P systems], churn does cause significant overhead for DHTs. In

order to preserve the efficiency and correctness of routing, most DHTs require 0(log

n) repair operations after each failure. Graceless failures, where a node fails without

beforehand informing its neighbors and transferring the relevant state, require more

time and work in DHT’s to (a) discover the failure and (b) re-replicate the lost data or

pointers. If the churn rate is too high, the overhead caused by these repair operations

can become substantial and could easily overwhelm nodes with low-bandwidth dial-up

connections.[39]

4.5.5 Agent Based P2P Systems

Considering the current popularity of both agents and P2P system it is in some ways surprising

that there are not more systems that combine the two. However, there are researchers that

consider many existing MASs such as RETSINA[167, 168] and AgentCities[185, 184, 197] to be

117

P2P systems due to the fact that the agents communicate on an equal basis. Instead, this section

concentrates on systems which are structurally designed to take specific advantage of the P2P

topology, i.e. systems where instead of global system-directories, each node is self-contained with

its own directories.

Most commonly Agent-based P2P systems are created with each node functioning as a complete

MAS.

. . . we propose an architecture where each participant/partner (i.e., a peer of the P2P

network) has its own MAS. . . [129]

Anthill[8] is one system of this type. It consists of a series of nests (the P2P nodes) and dynam-

ically created ants (mobile agents) which can move between them. Each nest contains its own

set of middleware.

Ants are generated in response to user requests; each ant tries to satisfy the request

for which it has been generated. An ant will move from nest to nest until it fulfills

its task, after which (if the task requires this) it may return back to the originating

nest. Ants that cannot satisfy their task within a time-to-live (TTL) parameter are

terminated.[8]

The Squirrel MAS[30] is based on the foraging and storage behaviour of squirrels. Its purpose is

to ensure that documents are distributed evenly across the disk space available in the network.

As with the Anthill system, the peers in the Squirrel environment are self contained and do

not rely on global directories and centralized middleware. However, as with Anthill, the agents

(squirrels) are able to travel between the peers (locations).

The Squirrel MAS system consists of a P2P environment of locations. Each location

has one or more caches where squirrels hoard acorns. Squirrels live in these locations

118

in small groups. When they have acorns, they go through the locations ”sniffing” to

find a cache suitable for the acorn. . . [30]

JEAP (Java Environment for Agent Platform)[129, 133] and PeerGroups[21], were created using

on the Jxta[171, page163–179,199-216] framework. This is a set of protocols which allow peer to

peer services to be developed for a wide range of devices including PDAs, servers and desktop

computers.

JEAP contains three levels; Wrappers which provide an agent based interface to the resources

in the system, Mediators perform the pre-processing of the query - converting it into a set of

actions which are passed to the various information sources via the Wrapper agents. The final

layer of the structure contains the facilitator. This allows agents to locate other agents with the

services they require.

In order to provide for situations where the local knowledge is not sufficient to answer a query,

the mediators and the facilitators are able to communicate with their corresponding levels on

other nodes. This allows node and services information to be exchanged between the different

nodes.

In contrast to these systems, NeuroGrid[89, 90, 91, 92, 93] is a P2P system in which each node

is a single entity. Each node maintains its own knowledge base which is used to determine which

agents to contact for assistance.

Each NeuroGrid node facilitates search of the network by forwarding queries to a

subset of nodes that it believes may possess matches to the search query. . . . Each

node maintains a knowledge base of keywords-node associations that are based on

the nodes belief about the contents of remote nodes. So, for example, given that a

node receives an incoming search consisting of keywords A, B & C, the node will

consult its knowledge base and retrieve any remote nodes that are associated with

119

these keywords. The nodes retrieved from the knowledge base are ranked depending

upon the degree of match to the search query. . .

NeuroGrid nodes utilize the results of searches in order to update their knowledge

bases and add new connections to the nodes that provide results to search queries.

The best analogy is to think of the nodes as humans, that know something about

what their friends know about, and when asked can put you in touch with a friend,

who may well be able to put you in touch with a friend who . . . and so on.[89]

Despite this learning ability and the maintenance of a knowledge base, the designers prefer not

to consider the nodes as agents even though the nodes are as powerful as many reactive agents.

One could go further, and suggest that all the nodes in a p2p network such as Neuro-

Grid are themselves agents, in as much as they learn from experience, communicate

with one another, even behave ”autonomously” . . . However, there does not seem

much to be gained from applying such a label, so let us consider the elements of the

p2p network simply as nodes, leaving any relevance to agents down to the general

needs of any ”agent” that must operate in a distributed environment.[89]

The Information Retrieval (IR) system created by Haizheng Zhang et al[195] is similar to Neu-

roGrid in that nodes contain a single entity - in this case, the nodes are recognised as agents.

The system is described as a ”mediator-free information retrieval system for P2P networks”.

This search involves locating and retrieving relevant documents distributed among

one or more databases. We assume each data-base is associated with an intelligent

agent that is cooperating with other agents in the distributed search process.

. . . each agent maintains an independent index and IR search engine for its local

document collection. However, we do not introduce any further restrictions on the

120

local search engines and thus the network can be populated by agents with very

different local search engines.[195]

The agents in this system build up their knowledge of other agents in the network by exchanging

agent-views.

The agent-view structure, also called the local view of each agent, contains informa-

tion about the existence and structure of other agents in the network and thus defines

the underlying topology of the agent society. The functionality of an agent-view is

analogous to the routing table of the network router. In practice, the agent-view

structure contains the collection model of the collections and other related informa-

tion about these agents. . .

agents exchange their local agent-view s to expand the scope of their local agent-view

so that each agent is more informed about thre content distribution over the entire

network.[195]

The agent is able to use this information on which agents are available, and their information

content. As a result, queries can be routed to the correct agents.

In the absence of a mediator, agents must cooperate to forward the queries among

themselves so as to locate appropriate agents, rank the collection , and finally return

and merge the results in order to fulfill the information retrieval task in a distributed

environment.[195]

In the discussion section of their paper, they propose a new design which includes a mediator as a

way of reducing the communications overhead of the system. However, from the brief description

given, the mediator will act in a similar way to a super-peer node (see section 4.5.3 for further

details).

121

4.6 Computational Grids

The Grid is an attempt to provide an global network of high performance computers which can

be accessed as a single resource without the need for separate passwords and access protocols. By

removing the barriers that prevent the separate computer systems from working effectively, the

grid provides a way of pooling resources so that larger and more complex computing problems

can be tackled effectively. Although the name suggests that the grid is a single infrastructure,

numerous grids exists, and interact.

Science is driving the creation of grids because it already has problems that push the

limits of supercomputers, such as analyzing supercollider data, simulating weather

and creating a virtual observatory. Three major grid projects (TerraGrid in the U.S.,

the National Grid in the U.K. and a Dutch grid interconnected through SURFnet)

were recently announced despite existing technical challenges. Engineering and biotech

firms are likely to follow because of the complexity of the problems they face.[84, page

1]

Legion is another grid project with this same goal:

Our vision of Legion is a system consisting of millions of hosts and billions of objects

co-existing in a loose confederation united through high-speed links . . . Users will have

the illusion of a very powerful desktop computer through which they can manipulate

objects.[68, page 40]

With Legion, as with other computational grids, the intention is to create the high-performance

equivalent of a national electricity grid.

The Grid dream is to allow users to tap into resources off the Internet as easily as

electrical power can be drawn from a wall socket. . . . For example, imagine when you

122

plug in your kettle, your only concern is, have you filled it with water. You should

not have to worry about where the electricity comes from, whether it is brought from

other countries or generated from coal, windfarms, etc. You should simply take for

granted that when your appliance is plugged in it will get the power it needs.[171,

page 57]

Merely providing a system which allows users the ease of use of the power grid is not enough. For

the Grid to be successful, separate and often diverse resources must be managed and integrated

to provide a system which is both powerful and flexible. In order to provide these services,

systems such as Legion must perform a number of complex tasks in order to simplify the view

of the system which is presented to the user.

Legion is responsible for supporting the abstraction presented to the user, transpar-

ently scheduling application components on processors; managing data migration,

caching, transfer, and coercion, detecting and managing faults; and ensuring that the

users’ data and physical resources are adequately protected.[68, page 40]

While for many grid researchers, the idea of a global network is the ultimate goal, there are

currently numerous incompatible grids. This is similar to another physical grid: the transport

system, which consists of a number of grids which overlap and in some places intersect (airports,

and harbours are the most common locations for this to occur). Often users of the transportation

system must use a number of different grids in order to achieve their goals. For example, a

businessman starting in Edinburgh and travelling to New York will need to use both road and

air transport to reach his destination.

In reality, however, there is not one single ”Grid”, rather there are many different

types: some are evolving, some private, some public, some regional, some global,

123

some specific (e.g. dedicated to one specific application) and some generic. Such

Grids have realistic goals but do not attempt to solve the whole Grid problem. It

will be some time before the power grid analogy becomes reality (if ever).[171, page

58]

4.6.1 Virtual Organisations

In order to make the management and use of these separate grids easier, Virtual Organisations

(VOs) are created. These are flexible groupings of (possibly geographically distributed) users

and resources which may possibly span several organisations. In this model, it is possible for

both participants and resources to be part of a number of different organisations at the same

time.

One example of a VO is that of a group of researchers working on a complex problem. Although

based in the different laboratories, they are able to share the total resources of the group - data,

processor cycles and the results without problems. Similarly, it is possible for researchers to be

members of a number of different VOs at the same time.

Virtual Organisations may enable scientists from numerous countries and backgrounds

to work together to analyse and interpret a new discovery from a deep space radio

telescope. Organisations in Australia and the UK may pool their processing resources

into a Virtual Organisation so that while one country sleeps, the other country, on the

opposite side of the world, may use the processing power of its peer’s idle computers.[3]

124

4.6.2 Grid Services

In the earlier days of Grid Computing, systems were always developed independently. However,

this changed with the creation of the Globus Toolkit. The Globus Toolkit was based around the

I-WAY environment and ”allowed the assembly of unique capabilities that could not otherwise

be created in a cost-effective manner”.[171, page 60] As a result, Globus became the basis of

many of the modern Grid systems.

Grid technologies have evolved through at least three distinct generations: early ad

hoc solutions, de facto standards based on the Globus Toolkit (GT), and the current

emergence of more formal Web services (WS)-based standards within the context of

the Open Grid Services Architecture (OGSA).[60]

Although the OGSA services have received criticism from the Web services community and as

a consequence have been redesigned, they provide a significant improvement in the development

of Grid technologies.

Open Grid Services Architecture (OGSA) is an open standard at the base of all of

these future grid enhancements. OGSA will standardize the grid interfaces that will

be used by the new schedulers, autonomic computing agents, and any number of

other services yet to be developed for the grid. It will make it easier to assemble the

best products from various vendors, increasing the overall value of grid computing.

More information about OGSA can be obtained at http://www.globus.org/ogsa.[20]

OGSA services, or Grid services, extend Web services . . . to add features that are

often needed within distributed applications. Specifically, OGSA adds state to Web

services in order to control the remote services during its lifetime. Whereas Web

services are stateless, . . . OGSA services are stateful.[171, page241]

125

OGSA is likely to become one of the most commonly used Grid architectures, open-

ing the possibility of standardisation, widespread InterGrid communication, and the

emergence of the Grid itself.[3]

However concern was expressed that Grid Services did not conform fully to the Web services

standards. As a result, further work was carried out to develop the Web Services Resource

Framework (WSRF) to replace OGSA. While the functionality of OGSA and WSRF services are

the same, the difference is in the interface. This interface, referred to as the OGSI specification

”defines a component model by using extended WSDL and XML schema definitions.”[171, page

246].

The essential difference here is that OSGI uses the same construct to represent a Web

service and a stateful resource, whereas WSRF uses different constructs for both.[171,

page 251]

4.7 AT-MAS and the Information Environment

The AT-MAS network of agents functions mainly as a pure P2P network such as Gnutella or

Freenet. However, each AT-MAS agent is also able to act as a server to a simple AT-MAS client.

This client/server interaction is important as it allows users without data to use the system

without the need to run an agent with either no data or worthless data. As a result of this, the

problem of Free Riding is almost eliminated completely.

Free riding is further reduced since the AT-MAS agents will only sends messages to the agents

most likely to be able to assist. When a request is sent, the AT-MAS agent will record the

result of the request and use it to influence the decision of whether to contact that agent in

the future. This means that the routing of requests is based on the agent’s experience of the

126

making similar requests in the past. In other words: successful interactions improve the chances

of future interactions taking place, whereas unsuccessful requests will cause the agent to request

assistance elsewhere.

However, the main difference between AT-MAS and other P2P systems is that it allows single

data elements to be transferred around the network, whereas other P2P systems are concerned

with the movement of complete files.

4.8 Chapter Summary

This chapter begins with a description of the internet as a environment for agents. The internet

can accurately be described as a vast unregulated, unstructured source of information. Since

there are over 11.5 billion web pages, finding information is a difficult; often impossible task.

This is further complicated by the fact that the available search engines such as Google are only

able to index a fraction of the content due to its size.

Another of the problems of retrieving information from the internet is that most of the infor-

mation is only accessible through dynamically generated web pages which act as an interface

to database systems and other data stores. This information is referred to as the Deep Web

and is estimated to be at least 40 times the size of the existing surface web. However, as this

information is contained within databases, it has structure and as a result is potentially more

accessible to applications other that web browsers.

This is followed be a description of the different technologies that can be used to access the in-

ternet. This include; Client/Server, the Semantic Web, Web Services, and Client/Peer Oriented,

Peer to Peer, and Grid systems which are described. Of particular interest in connection with

the AT-MAS system is the section describing Agent Based P2P Systems (see section 4.5.5).

127

The final section briefly compares the AT-MAS system with P2P systems.

128

Chapter 5

The Agent Trees Multi-Agent System

(AT-MAS)

5.1 An Overview of the AT-MAS Network

The purpose of the AT-MAS system is to

Figure 5.1: An Agent Tree

provide distributed information retrieval, fil-

tering and processing facilities across a net-

work of intelligent agents. The system com-

bines the conceptual simplicity of a P2P net-

work with the power and flexibility of intel-

ligent agents. It was originally inspired by

the desire to find an alternative to mobile

agents which posed fewer security risks while allowing remote processing to take place.

AT-MAS is an open system - any agent can join the network providing that it adheres to the

simple communications protocol and conversation format that has been defined. Similarly, a

129

simple client application can be created which can request information and services from any

agent. As a result of this, the range of applications are not limited to those provided by the

existing AT-MAS agents.

5.1.1 The AT-MAS system in operation

When the user connects to an agent, using a simple java applet, they will typically submit a task

consisting of a number of goals. Some these goals may be carried out by the agent to which the

client is connected to - referred to as the root agent - other goals may need to be passed to other

agents. In order to decide how the goals are to be dealt with, the agent will form a set of plans

- each consisting of a number of actions - for each of the goals.

When all of the plans for a goal have been created, the first one is attempted. If a plan is

completed successfully then the goal has been achieved and the next goal is attempted.

If any of the actions in the plan fail then the plan is considered to have failed and next one is

tried. This process is repeated until one of the plans is completed successfully or all of the plans

have been failed. If all of the plans for a goal fail then the goal has failed and the next goal is

attempted. Frequently the success of one goal is dependent upon the successful completion of a

previous goal. If this is the case, and the earlier goal fails, then the latter goal will also fail. The

planning process is described in section 5.3.3

5.1.2 Building the Agent Tree

Due to the scale and diversity of the information on the internet, it is likely that a significant

percentage of requests for information cannot be satisfied by the local agent alone. Instead, the

assistance of other agents may be required. When this happens, the root agent will send out

messages to other agents in a process that mirrors the process of the client connecting to the

130

root agent. These agents may in turn contact other agents which may also contact other agents.

It is this expanding tree pattern of connections that gives the system it name (see figure 5.1).

It should be noted that agents are prevented from contacting a node that is already part of

the tree. In figure 5.1, agent I is refused a connection to agent G because agent F has already

successfully contacted it.

This rule can easily be enforced since clients and remote agents are not able to contact other

agents directly. Instead, they must contact a front-end server to obtain an authorization code

known as a Task ID and the address of the port that the agent will use to communicate. For

further details of the server, see section 5.2.2).

As well as this, receiving a task ID from the

Figure 5.2: Snapshot of an Agent Tree Intranet

server, if the request is a new one i.e. from a

client rather than from an agent, the server

will create a Tree ID which uniquely iden-

tifies the query. This is then included with

every request made to a server or agent. If

the server receives a request with the same

Tree ID of one which it has already received,

then the new request will be refused. As a

result repeated requests; whether accidental, or deliberate, are refused and agents will not become

bogged-down performing the single task.

Although the figure 5.1 gives an image of a single Agent Tree, in reality, the agents in the system

are able to handle more than one task at a time, and as a result a system of agents is most likely

to look as follows (see figure 5.2);

131

5.1.3 Discovering other agents in the Network

During the design of the agent trees system, there were two key goals concerning the way that

discovering new agents should be handled. Firstly agents should know as many other agents

as possible - so that the chances of network fragmentation would be reduced. Secondly, the

mechanisms used to obtain this knowledge should have as little effect on the network load as

possible, unlike Gnutella. Additionally, these goals should not conflict with the any of the other

existing design goals - such as keeping each node independent.

Part of this independence requires that each node maintains its own knowledge base, listing all

of the other agents that a particular agent knows. As each agent maintains its own knowledge

base, the list of other agents known will differ from agent to agent. Under normal circumstances,

this can lead to fragmentation of the network. This is most likely to occur when all of the nodes

of the network end up communicating via a single node. This is a problem because it means

that if the key node fails or is removed from the system then the network is split with no easy

way of re-combining the nodes[156].

The most obvious way of preventing network fragmentation is to ensure that all of the agents

know about all of the other agents, although in a massively distributed system this is not possible

unless a central server is used. Instead the agents in the Agent Trees will attempt to learn about

as many other agents as possible. This is so that there will always be a large number of links

to other agents , thereby the possibility of all queries passing through a single node are greatly

reduced.

In the current design, this is achieved by using a <Contacted></Contacted> tag within the

new task and task complete messages. When the root agent (for example Agent A) requests the

assistance of another agent (Agent B), it adds its address to the contacted field. This process is

continued until the final agent of the current branch of the tree is called. This means that the

agents towards the end of the query will learn about the agents that assisted earlier in the query.

132

Agent A B C D

initial KB B C D -

outward - A AB ABC

return ABCD BCD CD D

final KB ABCD ABCD ABCD ABCD

Table 5.1: ’Contacted Field’ Results for a Chain of Agents

Agent A B C D

initial KB BC - D -

outward - A A AC

return ABCD B CD D

final KB ABCD AB ACD ACD

Table 5.2: ’Contacted Field’ Results for a Tree of Agents

When the final agent has completed its processing, it will pass its name to the calling agent via

the contacted field of the task complete. This process is repeated all the way along the branch

of the tree until the root agent receives the task complete from the agent that it had called.

This is illustrated by table 5.1 which shows the results from a small network1.

However when a complete tree is created, as is the norm, the results are slightly less effective.

Table 5.2 was generated for a tree in which the root agent A called two agents B and C. From

this, agent C called agent D. However, the contacted field does not give as good results for a tree

which has more than one branch.

From the tables, it can be seen that each node will learn of any new nodes between itself and the

1Since the tests were carried out using University computers with long names, the names have been changed

to improve the readability.

133

root node - referred to as the path to root - and any new nodes in the subtree that it creates. In

the case of nodes B there is no subtree so only the root node is added to Agent B’s Knowledge

Base. Similarly, the subtree for node D is empty but its path to root consists of nodes A and C.

For node C the path to root also consists of node A but the subtree of C consists of nodes D.

Each time the agent receives a message containing the contacted field, it will extract the names

of agents that it was not previously aware of and add them to its knowledge base for future

use. This allows an agent to learn of new agents without the need for a central name server, or

repeated ’Ping’ messages as required by some other P2P systems. All that is required for this

method to work is for each agent to be given the name of at least one other agent when it is

installed.

In addition to this technique, the capability exists for the agent to request information from

other agents, and also respond to such requests. One proposed enhancement to the system is to

allow agents to query other agents during quieter times. This would enable an under-utilized or

newly installed agent to improve its own knowledge of the network. However, it is not intended

as the primary method for an agent to gain knowledge, as it would lead to increased network

load. This is discussed further in section 7.4.

5.1.4 Expanding the Search Horizon

One of the key goals of any distributed system is to locate information efficiently and the AT-MAS

system is identical in this respect.

Like many P2P systems (see section 4.5), Agent Trees has to restrict the number of computers

that are searched during a query in order to prevent the network from getting swamped. Unlike

P2P systems such as Gnutella and Freenet which just attempt to limit the search horizon, Agent

Trees uses two variables instead of a single one.

134

The Tree Depth variable is the equivalent to the Time To Live and Hops To Live variables found

in Gnutella and Freenet. It is an integer value which is included in the messages sent by the

Client to root agents. At each stage of the query, the Tree Depth is decremented until its value

is 0. At this point, the tree is considered complete and the results are returned. If an agent has

an initialization file value for the Tree Depth which is less than the current value, then the lowest

value is used.

The second variable used to define the tree is similar to the first. The Tree Spread determines

the maximum number of other agents that can be contacted by the agent in order to assist with

a query. As with the Tree Depth, the Tree Spread is included in messages by the client, and an

agent acting as a client. As well as being included by the client, the value is also specified in the

agents initialization file. However unlike the Tree Depth, this value is not decremented for each

node contacted.

Initially this value was set at 4, as this is the default value used by Gnutella. However is is

possible to adjust this value to allow more or fewer agents to be contacted as required. As with

the previous variable, if the Tree Spread value in the agent’s initialization file value is less than

the current Tree Spread value, then the lowest value is used. If a Tree Spread of 1 is used then

a chain of agents is produced rather than a tree.

The default values for both variables are set in the agents initialization file and can therefore

be changed to suit the conditions of the host on which the agent resides. However, the agent

includes an internal limit of 6 for each variable in order to prevent deliberate flooding of the

network with queries.

Instead, by maintaining Knowledge Bases, the agents in the Agent Trees system are able to direct

searches in an effort to find information efficiently without the need for flooding. In practice this

means that the agents which are most likely to be able to provide the data will be contacted

first. Each result, or lack of result, is noted and contributes both to a score for the reliability of

135

Depth 1 2 3

Query 1 A B C!

Query 2 A C! D!

Table 5.3: Bypassing Agents without Data

the agent and also the knowledge of the subject/application that the agent possesses.

By using a directed search (also known as a Semantic Routing), it is possible for the agents

to by-pass agents that have either no data or irrelevant data. Instead searches are directed to

agents which are most likely to be able to assist effectively. This means that the search horizon

is extended each time a query involving the same subject is run. This is the same technique as

used by the NeuroGrid P2P system, which was described in section 4.5.5.

If, for example, the first time that a query is run, a list of random agents is chosen. If any of

the agents in the tree that is created produces a result, then their score in the Knowledge Base

of any agents between the source of the data and the root agent will be increased so that the

likelihood of the agent being chosen for the next similar query is high compared to the other

agents.

In the table 5.3, the Tree Depth is set to a value of 3. Agent A contacts agent B, which in turn

contacts agent C. In the first query, only agent C is able to provide results - this is signified by

the ! symbol next to the agent name. During the second run, agent C is contacted by agent A

and this results in agent D being included in the search as well as agent C. Since Agent B has

no relevant data, it is excluded from the searches - thereby extending the search horizon.

136

5.1.5 Returning Results

One of the original design rules required that when results were returned, duplicate results were

removed at each stage of the tree in order to reduce the network load. This meant that if three

result messages with the same value arrived at a node then the result value would be kept but

the sources would be merged - reducing the three messages to one;

<result>3.14</result><source>B</source>

<result>3.14</result><source>C</source>

<result>3.14</result><source>D</source>

would become;

<result>3.14</result><source>B,C,D</source>

While this reduces the network load, it does increase the time taken since the agent must wait

until all of the results have been received before it can combine the messages and forward them

to its requesting agent.

5.2 Components of an AT-MAS Node

All of the code of the AT-MAS system was written in Java[80] for the simple reason that it is a

portable, multi-threaded modern language with a rich set of libraries.

Each node of the system contains the minimum of an Agent and a Server and a number of

datasources. Two addition applications a Logger and an Admin application are optional. These

components are described below.

137

5.2.1 The Client Applet

Although it is possible for any application to connect to the AT-MAS network providing it

adheres to the simple communications protocol required (see section 5.4) and make requests, a

simple java applet (see figure 5.4) has been developed to demonstrate the system. To use it, the

user types in the list of goals into the top window and presses the submit button. The applet

Figure 5.3: Screenshot of the AT-MAS Client

will contact the server to obtain the Task ID, the Tree ID, and the full Agent Address which

consists of the name of the server and the port number on which the agent will listen for the

138

client connection. The client applet will then contact the agent directly.

In many respects, Agent Trees is very similar to existing P2P systems. However there is one

important difference; the nodes in a P2P system are usually run by individual users. As a result,

many nodes may appear and disappear frequently as users connect and disconnect from the

internet. The situation is becoming more stable with the increasing popularity of ADSL and

similar technologies but it will be a long time before the majority of users machines will be

permanently connected to the internet. Even then, few users will be willing and able to provide

the amounts and kinds of data that will justify running an agent. In general users tend to be

information consumers rather than information providers.

As a result, it was decided to separate the client connection from the individual agents themselves.

By doing this, the need for free riding (see section 4.5.2) is removed. Only users/organisations

that have data, and wish to make it publicly available, need to. As a result of this, there are

fewer ’empty nodes’ in the network.

The additional advantage of separating the clients from the agent nodes is that it becomes more

feasible to create interfaces for mobile devices due to the small client requirements. It is possible

to have the client connections as agents - in fact, any application can connect to the network

providing it adheres to the correct protocol. This could eventually lead to AT-MAS clients being

integrated with numerous other application such as operating systems, word processors, etc. In

the current version of Agent Trees, clients are only able to connect to an agent and submit their

requests via a java-enabled web-browser.

5.2.2 The Front-End Server

Since the system has been designed to be open, it is more vulnerable to malicious attacks or

accidental damage than a closed system. Therefore, the front end server was added in order

139

to provide an additional level of security and robustness. If the server suffers from a denial of

service attack or any similar overload then the agent will still be able to continue working and

complete the existing tasks.

One concern about the server that was expressed was that it would complicate the system to

little advantage. However, this has not been that case since the server is only contacted at the

start and the end of the agents interaction.

As the agents in the network learn about other agents and the information that they control,

there is the possibility that the load on some nodes would be too high. This occurs because

the information distribution across the network is not consistent and therefore some information

could only be accessible by contacting certain agents.

Although the agents are not directly subject to the Slash-dot effect[112] in which a web-site

receives popularity and is swamped as a direct result of people visiting it, a similar effect may

occur when a large number of users request the same information and the agents with access

to the information are overloaded. Rather than allowing the agents to simply become swamped

with requests, the system has been designed so that each agent is protected by a small server.

Initially, a client will contact this server and if the agent is able to process the request, then

the address of the agent is passed to the client along with a task ID. The task ID is also passed

to the agent and used to ensure that only valid messages are responded to. When a request is

completed by the agent, it sends a message to the server. The server then removes the task from

its list of current tasks.

If an agent becomes overloaded with requests, the server will refuse to accept any more until

some of the existing requests have been completed by the agent. This refusal will be reflected in

the remote agents knowledge base scores for the agent. As a result, agents which are consistently

overloaded will be relied on less. This, in turn will cause the loading on the agent to decrease

and the network load will spread between other nodes.

140

Although this functionality could be performed by the agent itself, it was decided to implement

a separate server. The reason behind this was so that if the server was subject to attack then

the agent would still be able to function independently - it would just not be able to begin any

new tasks.

Any agent which is refused a connection by another remote agent will make a note of this failure

and it will be used to influence its choice for future requests in the short-term.

Similarly, if a server is the victim of a denial of service (DOS) attack, this will be limited to the

single node of the network, and the remaining nodes in the network will route their messages to

other servers and agents. This means that the network is more robust than other MASs because

there is no single point of failure. There is no dedicated name server and no node relies completely

on any other node. If a node fails then the rest of the network will continue unaffected except

for occasionally checking to see if the node has been restored. In the current implementation of

the system, the agent must reside on the same computer as the server. However with only minor

changes to the code, it will be possible to allow a single server to protect a number of agents on

different computers.

5.2.3 The Logger Application

Although not required during the normal day to day operation of the AT-MAS system, the

Logger is a useful means of obtaining and managing the timings for the client, server and agent.

These are sent to the logger by the various components and when a complete set of results are

obtained, the logger writes a line to the log file. Use of the Logger requires that its address

is sent by the front-end server to the client (or remote agent) as part of the Request Accepted

message. This allows the client to send a message to the Logger when the task complete message

is received from the agent. Use of the logger is determined by settings in the agent initialization

file and was necessary to obtain the results in chapter 6.

141

5.2.4 The Admin Application

A simple admin application has been created in order to allow system commands to be sent to

the other components in the system. For reasons of security, the Admin application can only

affect the components on the same host machine. When this component is activated, it reads

the initialization file and retrieves the Admin port number and the security key which are used

in all of the messages that are sent. This guarantees that the messages are genuine.

Although the Admin application has been designed so it is possible to send a number of different

messages (by providing a different command-line parameter when the component is run), only

one message has been implemented. This message allows all of the AT-MAS applications on a

single host to be closed down at the one time. It then sends shutdown messages to the server,

agent and, if it is active, the logger. Upon receipt of a valid message (i.e. a message received

from the the correct address and containing a valid security key), each system component will

end its execution. After sending the messages, the admin application will close.

5.2.5 The AT-MAS Agent

The agent has been designed as a number of multi-threaded components which operate in parallel

so that multiple tasks can be processed at the one time. In addition, extensive use is made of

thread pools which allow a group of threads to monitor a message queue. When the agent is

waiting for input for the task - for example results from another agent - the task is placed in

a paused Queue until either the inputs arrive, or a timeout occurs. While this means that the

tasks may take longer to process, it also means that a task will not be stalled while the running

task waits for results to be returned from another agent and as a result the agent works more

efficiently.

One of the critical decisions made was to restrict each node to a single agent rather that creating

142

each node as an MAS. In a very early design, the agents were transitory - they were created

as needed and shared information via a blackboard system. This design was abandoned as it

became clear that a single persistent agent with its own knowledge base would be preferable for

a number of reasons.

Firstly, having a number of transitory agents means that there is a higher maintenance overhead.

This increased time would be taken up with the creation of new agents, and their destruction

after a task has been completed which would waste resources and reduce the number of tasks

that an agent can carry out at the one time. Since the single agent is designed to work on a

number of different tasks at the one time, there is no real advantage in having a number of

different agents active in each node at the one time.

Secondly, if each node was contained within an MAS there would be two distinct levels of

communication; the inter-node communication and the in-node communication. With a each

node containing a single agent, only the inter-node communication is required, reducing the

overall communication significantly. One solution to this would have been to use a blackboard

approach (see section 3.3.3) but it was felt that this would add unnecessary complexity to the

system.

Additionally, multiple agents introduce data consistency problems since each agent would have

its own knowledge, potentially causing conflicts. Whilst it is acceptable for the agents in dif-

ferent nodes to contain different information, different agents within the same nodes containing

inconsistent information may lead to some queries being handled differently.

It is important to note that although AT-MAS was created as a network of single agents for the

reasons given, it is possible to create re-code the system so that each node contains a complete

MAS. Providing that the agent conforms to the communications protocol, there is no requirement

for an agent/agent system to be implemented in a certain way. Therefore it is possible for other

AT-MAS Agent nodes to be implemented in different ways.

143

5.3 The AT-MAS Agent dissected

5.3.1 The Knowledge Base

When an agent creates and sends messages

Figure 5.4: Pattern of Connections 1

Figure 5.5: Pattern of Connections 2

requesting assistance with a task, it doesn’t

send them out to all of the other agents that

it knows. Instead, the agent searches its own

knowledge base for the best set of agents to

contact for assistance.

Since there is no central server or directory

providing information about the agents and

the various services that they can provide,

the decision about what constitutes a best

set of agents for a particular task is based

solely on the agents previous experience. In

order to build up this information, the agent

keeps track of the results of any requests

that it makes: every successful result, and

every failure is noted, and these are used to influence future queries.

Due to the wide range of tasks that an agent may be required to assist with, it is important that it

gathers as much information about the other agents as possible - rather than relying on a single,

or small number of values. The reason for this is that the distribution of information within

the network is not consistent. This means that some agents may be more suited to answering

questions about books, others may have access to personal data; names, addresses and telephone

numbers, etc. In other words, the most suitable set of agents will be different for every subject,

144

and this must be taken into consideration at the appropriate time.

For example, in a trained2 network of agents, a request for the subject of Astronomy may produce

the pattern in shown in the figure 5.4, whereas a request for a specific email address may produce

the pattern in the second figure 5.5. As a result of this monitoring process, an agent is able to

learn the strengths and weaknesses of the other agents in the network. This in turn provides the

agent with the information about which agents to contact for assistance.

Even after the optimal set of servers has been found, the agent will still attempt to contact some

agents outwith the set. This exploration is needed so that any new agents with knowledge of

a particular subject or any existing agents that have acquired new knowledge can be identified.

This is important since removing the dependence of external directories means that there is no

effective way for an agent to advertise its new capabilities, without having to resort to sending

information request messages.

Additionally, each agent stores a server index for every remote agent that it is aware of. This

is used to give an indication of the agents reliability and level of cooperation. Every time that

an agent assists with a query - even if the query is ultimately unsuccessful, its index value is

incremented. A refusal to assist means that the index is decremented. However, for agents which

start a transaction, but do not finish it, the penalty is more severe - with a larger decrement.

The reasoning is that this is more costly to the agent making the request as it has committed

resources to contacting the remote agent.

5.3.2 Communications Component

One key design decision when creating the AT-MAS was to maintain the connections to other

clients, servers, and agents simply for the length of time that they would be needed. This

2A trained network is one in which the agents have been functioning for some time and have gained knowledge

about the other agent in the network

145

is in contrast to P2P systems such as Gnutella which maintain a small number of permanent

connections.[171, page 129] The reasoning behind this decision was that it would reduce the

load on the network and allow the agent to connect easily to any currently active agent in the

network. How much load this is depends upon the connection but certainly HTTP (for example)

use short-lived connections and this is seen to help with efficiency.

Many of the problems caused when creating the AT-MAS agents were as a direct result of the

communications. This is due to the complexity of the Communications component which must

be able to function in a number of different ways depending on the type of connection:

1. Connections must be maintained until explicitly closed by the initiator.

2. The agent must be able to receive connections from clients, the local server, remote servers

and remote agents.

3. The agent must be able to initiate connections to remote servers and remote agents

4. Communications are asynchronous with messages being sent and received at any stage in

the process.

A brief summary of the agent communications process is as follows;

1. The agent receives a message from the server with a port number, client information and

task information.

2. The agent opens the port specified by the server and waits for a message from the client,

3. The client connects to the agent, which must keep this connection open for further mes-

sages3,

3see section 7.4 - Future Work for information about changing the code to add support for transitory connec-

tions

146

4. Finally, the agent breaks the connection and closes the port after all of the data has been

sent.

In addition, due to the nature of the system, the agent must also be able to behave like a client.

1. The agent must contact a remote server, as though it were a client.

2. The server will provide the task information and port number of the remote agent.

3. The agent will close the connection to the server and contact the remote agent on the port

specified.

4. The agent sends a ”New Task” request to the remote agent and when it receives an ”Request

Accepted”, it sends the question (consisting of a number of goals) to the remote agent.

5. Finally the agent waits for a number of results messages - if appropriate to the question,

followed by a ”Task Complete” message which provides details such as the number of goals

completed and the number of results messages that should be received.

5.3.3 The Planner Component

The first part of the planning process involves the agent checking its own rule base to find a

goal condition associated with the request. If the agent finds a command which satisfied this

condition it will link together actions until it finds the combination that will produce the required

end result.

Numerous combinations of actions may exist so it is important to find the best plan in the

situation. In order to do this, when a plan is created, it is assigned a value which is based on

both the chance of the plan succeeding and the cost of carrying it out. This allows the plans

to be stored in order of effectiveness so that the least costly plans with the highest chance of

success will be attempted first. In order to do this, the following calculation is used.

147

plan fitness (Fplan) = CFA1 ∗ CFA2 ... ∗ CFAN

COSTA1 + COSTA2 ... + COSTAN

Each action in the plan Ai has an associated confidence factor (CFAi). This figure represents

the probability that the action can be completed successfully. Since all of the actions in the plan

must be completed for the plan to be completed, the product of these values is the chance that

the plan will be completed successfully.

Similarly, each action has an associated cost value CostAi). This represents the cost in terms of

processing resources and time that completing the action uses. By taking the sum of the costs for

the actions in the plan,it is possible to obtain a value for the total cost of the resources required

for the plan. Both the confidence factor and the cost values are stored in a system file and may

be altered to suit the local system.

It is possible for a more complex evaluation to be made concerning the success of the plans,

but it was felt that this may impact on the efficiency of the planning process, and reduce the

effectiveness of the agent.

5.3.4 The Status of Actions

When the actions in a plan are executed, the agent checks the result before attempting any

further actions. This is necessary since a failed action results in the failure of a plan, and forces

its abandonment. For some actions, such as searching one of the locally stored databases, the

result status is available immediately.

However for other actions, such as contacting a remote agent, the agent must wait until the result

status of the action is known. In order to allow other tasks to be processed during this time, the

task for which the result is not yet known is paused until the result is available.

Any action which produces a delayed result, generates a pending status message which is sent

148

to the ProcessStatus object. This message is stored in a message queue until the result of the

action is known. At this point in time, the task is paused while a separate process completes the

action. When the action is completed, a status message is generated which is also sent to the

ProcessStatus object. The two messages are matched and processed.

Depending upon the nature of the action, different numbers of status messages may be required

to generate a pass result. For some, only a single successful result is required, but for others, all

of the results must be successful for an overall pass result.

When the required number of passes have been received, the statusPending field of the pend-

ing status message is parsed. This contains information that allows variables to be set, up-

dated, deleted, or to have values appended. For example, when a new task request mes-

sage is sent to another server, the status pending field contains the following information;

goal|SERVERS ASKED|[receiver]|append

When processed, this information causes the name of the remote server to be appended to the

list associated with the SERVERS ASKED variable. Multiple variables and updates are possible

depending upon the different circumstances. This allows the Post-conditions of the action to be

set and ensures that the plan is up to date.

Another set of variables which can be changed are those which are used to determine when the

task is removed from its paused status, ready for the next action or next plan depending upon

the result. When a number of messages are sent to remote servers, the task remains paused

even when a pass result is known. This allows the agent time to receive and process the result

messages from the remote agents before continuing with the plan execution. In this case, the

task is restarted by the ProcessMessages object which processes all of the incoming messages

received by the agent.

149

5.4 AT-MAS Communications

The initial idea was to use a dialect of KQML for the communications. This was in part due to

the fact that FIPA standards were being developed and at the time of the initial design of the

system.

In addition, KQML was chosen in preference to FIPA-ACL since it allowed for the language to

be extended providing that none of the existing performatives were redefined. This is important

as the agents in the system needed to be able to request the services of other agents without

the need to Register, and Advertise their services with other agents. Instead, it was felt that a

version of an Ask performative would be more suited to this task.

As the structure of the conversations between the client (local agent),the remote server, and the

remote agent were defined, it became clear that the existing languages were not suited to the

conversations/interaction planned for the AT-MAS agents, but were instead more appropriate for

implementing the advertisement based systems commonly found. The most obvious difference

is that both KQML and FIPA-ACL include performatives that allow an agent to subscribe to

a system and advertise its services via a Middle Agent (see section 3.2.1). In AT-MAS, this

capability is redundant since there are no Middle Agents.

Further differences become apparent when considering the AT-MAS requirement for the Task ID

and Tree ID fields which neither KQML or FIPA-ACL currently possess. While both languages

included a MessageID and an In-reply-to field, these were not really suitable. The reason for this

is that the Tree ID refers to the complete query and therefore is used by a number of different

agents, but the Task ID is assigned by the server and is used both as a reference and as a security

key. Therefore it is preferable that the Task ID is not known outside the conversation between

the two agents.

150

5.4.1 Message Format

Another important design decision concerning the communications was the choice of language

to use. Although lisp was the original choice for KQML, and subsequently FIPA-ACL, some

work has been done to update the messages to use XML[69]. However, it has always been the

intention to implement the language using a simple form of XML for a number of reasons.

The first reason is that it is possible to extend the message format easily. New fields can be

added as the language is developed, and unused fields can be omitted. Similarly, it is easy for

an agent to simply ignore the fields that it is not expecting, or does not require. For example, if

the AT-MAS protocol was used as a container for a different language, then an XML tag would

need to be included to specify this. In cases where the language used is the AT-MAS ACL, then

this tag is redundant and is omitted.

<RECEIVER>nomad:agent:1234</RECEIVER>

<SENDER>magellan:agent:1237</SENDER>

<ACTION>New Task</ACTION>

<LANGUAGE>FIPA-ACL</LANGUAGE>

<QUESTION> ... </QUESTION>

Secondly, the XML allows complex nesting to be used when required. This means that a message

can include XML data fields if required. The following example is the EOD field of the task

complete message from the agent.

<EOD>

<GOAL ID = ”g1” MESSAGES = ”4”>

<GOAL ID = ”g2” MESSAGES = ”1”>

</EOD>

151

Field Name Description

Sender The address of the agent to receive the message

Receiver The address of the agent sending the message

Action The action/request to be carried out or message type

Tree ID The query identification code

Task ID The authorisation code from the server

Security Key Authenticate messages passed between the agent & server

Table 5.4: The AT-MAS ACL Required Message Fields

5.4.2 Message Fields

The message fields in the AT-MAS ACL can be divided into two categories. The first category

contain the fields which are required as part of every query made to the agent. These include the

address of the message sender; the address of the intended recipient; the action field, which either

contains the action which the message is intended to perform; e.g. Ask, Tell, Accept, Refuse,

etc; or the type of the message e.g. Result or Task Complete. In addition, the Task ID and the

Tree ID are also required. The Security Key is a required field in messages that are exchanged

between the server and the agent. This is used to ensure that the messages are genuine. The

required messages are summarized in table 5.4.

The second set of fields are only required in certain messages. These are summarized in table

5.5.

5.4.3 Conversation Format

Conversations in the AT-MAS system are based on a simple protocol. As mentioned in sections

5.1.2 and 5.2.2, the client (or an agent acting as a client) must contact the server in order to

152

Field Name Description

Question This is the list of goals submitted to the agent

Result This is the result of a goal

Source This is the name of the agents which supplied the result

EOD This contains a list of the goals and the number of results sent

Data This is a container tag for miscellaneous information.

Table 5.5: The AT-MAS ACL Context Specific Message Fields

obtain a Task ID or Tree ID (if required) and the address of the Agent. Following this, the client

can send either a simple or a complex task to the agent.

Complex tasks consist of a number of goals to be completed which involve searches and processing

of information which the agent must either retrieve from its local databases or from other agents.

The results of these tasks may require any number of results messages to be returned to the client.

Simple tasks are formed as simple Ask commands which can be answered with a single TELL

message. The most common type of simple query is a basic request for information, this returns

two lists; the first is a list of remote servers that the agent knows, and the second list is of the

subjects that the agent knows.

The format of the agents conversations is summarized in the table 5.6. However for the sake of

clarity, refusal messages from both the server and agent have been omitted. These messages can

be sent at any point during the conversation and effectively terminate it.

5.4.4 The AT-MAS Language

The AT-MAS language consists of a four simple commands, although a further three commands

are planned for future versions - see section 7.4.5 for more details.

153

Contacting the Server

Source Destination Message Description

Client Server New Task Requests access to the agent

Server Agent New Task Task ID + Tree ID + Client Address

Server Client Accept Task ID + Tree ID + Agent Address

Contacting the Agent - Complex Request

Source Destination Message Description

Client Agent New Task Task ID + Tree ID + Question

Agent Client Processing Please wait...

Agent Client Result(s) Repeated for each unique result

Agent Client Task Complete Includes the No. of Messages

Agent Server Task Complete Allows the server to update its task count

Contacting the Agent - Simple Request

Source Destination Message Description

Client Agent Ask Task ID + Tree ID + Question

Agent Client Tell Answer

Table 5.6: The AT-MAS ACL Conversation Format

154

Find This is the main command that is used to retrieve data from the system. It requires four

variables:

subject Although each agent may implement its data storage, and consequently, its re-

trieval methods differently, this variable contains that subject of the query. In the

basic system, the value of this field corresponds to the name of the XML data file that

is to be searched for the answer to the query.

Again, future versions of the system will allow an initialization file switch that will

specify the behaviour of the system if the subject has been left blank. For systems

with small amounts of data, it may be feasible to search all of the data repositories

if the subject has been left blank. However, for agents controlling large amounts of

data this may not be practical.

Value to Find This may consist of either a single value, or a list of comma separated

values. This is the name of the field containing the value(s) which are to be returned

to the user. If more than one value is requested, then the values are returned in the

order that the field names appear in the query. For example, the results returned

from a request with a value to find list of ’name,age,email’ will be different from the

results returned when the value to find list consists of ’name,email,age’.

Value to Query This is the field name that the search criteria is to be matched against.

Query Criteria The criteria can either consist of a full string, or a string containing the

’*’ wildcard. This will be compared to the data and if a match is made, then the data

will be processed to obtain the results.

It should be noted that this command has different effects depending upon whether the

command is being executed by a root agent or not. If the agent is not a root agent then

the data will be returned to the agent that requested the search. If, however, the agent

was the root agent, then that results of the query are not returned to the client but are

instead stored until they are required in the completion of another goal.

155

<GOAL ID=”g1” SUBJECT=”music”>find ’title,artist’ for year ”20*”</GOAL>

The above example is of a query which would return the title, artist and price for any music

that was released since, and including, the year 2000.

Return As mentioned in the previous description, the results of a query are only returned if the

agent is not a root agent. This is to allow the client the option of not receiving the results

from a particular query. If the client requires the results to be returned, then this must be

done by using the return command. This command only takes a single parameter which

is the identifier of the goal which has the results to be returned. A typical example of this

command in use may be as follows:

<GOAL ID=”g2”>return g1</GOAL>

Since the parameter is solely the name of the goal, it does not need to be enclosed in curly

braces ’’ and ’’ like the email command.

Email This command is similar to the previous command (Return) in that it is only executed

by the root agent. The command takes two variables which are the Text String to be sent

and the email address of the person that the data is to be sent to. Due to the way that

the agent is able to locate information and use it in later goals, it is possible that both the

Text String and the Email Address be obtained through the completion of previous goals.

If goal data is to be included in this way then the name of the goal must be included in

curly braces.

<GOAL ID=”g5”>email ”Hello {g1.result}. How are you?” to {g2.result}</GOAL>

This is in contrast to the return statement which does not need braces around the goal

reference.

Message The message command allows an agent to TELL the calling agent/client an item of

information. This is similar to the return command except that all agents can use it, and

156

that the Text String returned may consist of more than just results. As this is the case,

results from a goal must be enclosed in the curly braces.

Although these simple commands are adequate to test the system, it will be possible to add

commands at a later date. These new commands are described in section 7.4.5 as part of the

future work to be carried out on the system.

5.4.5 Support for Other ACLs

Although this aspect of the system has not been extensively tested, the message format allows

for messages in other languages to be passed on by the agent. When this happens, the agent

acts as a proxy. The messages are passed on to other agents which can process them, and the

results are returned to the calling agent of the client. This is similar to the process which occurs

when the agent is not able to provide information on a specific subject. A further similarity is

that the agent will store information about the other agents which can use different languages

and can direct the requests to the correct agents in future.

<RECEIVER>nomad:agent:1234</RECEIVER>

<SENDER>magellan:agent:1237</SENDER>

<ACTION>New Task</ACTION>

<LANGUAGE>FIPA-ACL</LANGUAGE>

<QUESTION> . . .</QUESTION>

5.5 Chapter Summary

This chapter describes the Agent Trees Multi-Agent System (AT-MAS). Firstly the an overview

and the basic operation is described. This includes a description of the how the basic tree is

157

formed and how the agents are able to discover new agents during the normal running of the

system.

The second main section of this chapter details the separate components of the AT-MAS system.

Of these, the most complicated component is the AT-MAS Agent. This is described in detail,

with many of its internal components described.

Finally, the AT-MAS communications are described.

158

Chapter 6

Evaluating the AT-MAS System

6.1 Evaluation by Results

6.1.1 Obtaining the Results

In order to test the system a small dedicated network of 4 computers was used, each of which

were running Microsoft Windows XP Professional with Service Pack 2. The computers were all

running Java Runtime Environment 1.4.2 03. and were connected by a 100Mbps network.

Name Processor Memory Free disk space

A Intel Pentium III, 648MHz 384MB 2.64GB

B Intel Celeron, 299MHz 128MB 401MB

C Intel Pentium III, 548MHz 128MB 6.25GB

D Intel Celeron, 299MHz 128MB 637MB

Table 6.1: The computers used for testing

159

In addition to the Agent and the Server, the Logger (see section 5.2.3) application was activated.

This waits for timing summary messages from the Server, Agent and the Client. When it receives

them, the logger writes a summary line to a log file. Although running the Logger application has

an effect on the timings of the system, it is not possible to obtain accurate timings without using

the Logger application. This means that the exact difference in timings cannot be determined.

Therefore, for the purpose of the testing, the effect is assumed to be consistent across the whole

range of computers. This is acceptable for the tests carried out since they are based around the

relative timings of the system.

In each case, the same set of 5 goals are used.

<GOAL ID="g1" Subject="books">find ’price’ for title "1984"</GOAL>

<GOAL ID="g2">return g1</GOAL>

<GOAL ID="g3" Subject="contacts">find [one] email for name "Audrey Tosh"</GOAL>

<GOAL ID="g4">return g3</GOAL>

<GOAL ID="g5">email "The information you requested is {q1}" to {q3.result}</GOAL>

In the tests, each set of results is made up of the average timings for 50 runs. This is intended

to reduce the effect of factors such as network load and delays due to multi-tasking or paging

- however, these inconsistencies cannot be eliminated completely. In tests which take a shorter

length of time, such as those involving a single agent, the effects are more noticeable.

The graph in figure 6.1 shows a complete set of results for the first of the tests to determine the

scalability of a chain of agents. It is assumed that the high values for the first run are due to the

computers paging the agent code into memory.

This is further illustrated by figure 6.2 which shows the separate frequency distribution graphs

for each of the agents.

160

Figure 6.1: The actual results for the chain of agents A-B-C-D. The top line shows the total time taken

for the sequence, the next line shows the time taken for agent B, the third for agent C, and bottom line

for agent D.

6.1.2 Scalability Testing

The first set of tests were carried out to determine whether the system has the potential to scale.

Figure 6.3 shows the increasing run times when contacting longer chains of agents. The linear,

rather than exponential increases in timings, while not proving conclusively that the system can

scale, supports the claim that it can. An exponential graph would have strongly suggested that

the system was not scalable.

Figure 6.4 shows the results of a number of tests in which different agents were contacted at the

same time. One important feature of this graph is that some the data lines are of an unusual

shape. This is due to the fact that when an agent contacts a number of different agents, there

161

Figure 6.2: The distribution graphs for the 4 agents shown in figure 6.1. The first run has been omitted.

Plotted points show the histogram frequency counts (sum is 49).

is no way of determining the order in which the results messages are received from the remote

agents. However, the graph shows that the final (endpoint) timings are linear.

In graphs 6.3 and 6.4, each data line represents the timings for a different sequence of agents

and as a result it can be seen that the order in which the agents are contacted does not matter

to the timings.

Having shown that the AT-MAS system scales in a linear fashion for both chains (see Figure

6.3) and trees (see Figure 6.4) of agents, tests were carried out to see if the number of queries

that an agent performed had a significant impact of the timings. Previously, the agent had been

tested using the same query containing 5 goals. In the following test, used to determine the

162

Figure 6.3: A Comparison of Timings for Different Chain Sequences. The 15 results are each from an

average of 50 runs.

scalability for different numbers of goals, a single agent was given between 1 and 10 identical

goals to complete as part of the same task.

Although the results in figure 6.5 are not completely linear, they show a general trend towards

linearity. However, since the length of the query is very short with the queries taking between

1.2 and 1.8 seconds, any randomness introduced by the operating system (for example paging or

process switching) will have a considerable effect.

6.1.3 Knowledge Base Updates

Under normal circumstances, the knowledge levels for each subject in the Knowledge Base are

based on percentage values which represent the agents knowledge of a subject. As the network is

run, the values are incremented and decremented depending upon whether a query was completed

163

Figure 6.4: A Comparison of Timings for Different Tree Sequences. The 7 results are each from an

average of 50 runs. The X axis shows the number of agents contacted. Each line shows timings for

contacting each agent. The Endpoint shows the total time taken. The leftmost lines show A contacting

B, A contacting C, and A contacting D. The middle lines shows A contacting B and C, A contacting B

and D, A contacting C and D. The rightmost lines show A contacting B, C and D.

successfully or not.

Figure 6.6 shows how the levels for 8 subjects in an agent’s Knowledge Base vary when 75

separate goals were run in a random order until 2,00 queries had been completed. In this test,

the agent has access to data which allows it to answer some, but not all of the queries. As the

number of runs increases, the level of information in the Knowledge Base begins to reflect the

actual level of information that the agent has access to.

The results of these tests were inconclusive. While random testing seemed to be the best way

of performing the experiments since it most closely mirrors the normal operation of the system,

the fact that there were an uneven number of queries meant that some were being run more

often than others. As a result, the levels in the Knowledge Base changed unevenly and never

accurately reflected the levels of knowledge in the agents knowledge base.

164

Figure 6.5: A Comparison of Timings for Different Numbers of Goals

For example, from the distribution of queries, it is most likely that a query for the subject of

music will be run with a 15% chance - compared to queries on the subject of films with a 3%

chance. In addition, successful queries had a higher chance of affecting the queries, with 31 out

of 52 queries being passable.

This is summarized in table 6.2.

Since the tests were performed, the algorithms have been re-examined. One feature of the algo-

rithm which was used to update the knowledge base is that all of the increments and decrements

are for the same amount:

increment = (1+
−(50 − subject)/50))

with the value being added to/subtracted from to the subject depending upon whether the update

represents a success or a failure. As a result, the probability is that the queries for subjects which

have a greater than 50% chance of succeeding will eventually force the knowledge level to 100%

and the queries with less than a 50% chance will be forced to 0%. Instead, if the increments and

decrements were set as follows:

165

Figure 6.6: Knowledge Base values varying as random queries are processed

increment = k.(1 − x)

decrement − k(x)

then the values should stabilize.

6.2 Evaluation by Definition

There are a number of criteria by which both the system and the entities within it must be

compared if the project is to be classed as a success. Since the AT-MAS system is the result

of a combination of different technologies - specifically Intelligent Agents, Multi-Agent Systems

(MAS), Mobile Agents and Peer to peer (P2P) systems - it is important to evaluate it in com-

parison to them.

6.2.1 Is the AT-MAS agent a true agent?

By the more simple definitions, the AT-MAS agents are true agents as they are able to complete

a set of tasks for the user without the need of every set of the process explicitly defined by the

166

Subject Passable Queries Percentage Passable Actual Results

Books 9/13 69% 97.89%

Contacts 8/12 66% 83.01%

Music 9/20 45% 7.28%

Bibliography 5/7 71% 91.70%

Astronomy 0/7 0% 1.08%

Films 0/4 0% 4.90%

Vehicles 0/5 0% 4.70%

Computer games 0/7 0% 1.27%

Table 6.2: A Summary of the Knowledge Base Levels after 2,000 runs with initial Knowledge Base

value of 50%

user. When the user makes a request like -

<GOAL ID=”abc”>Find ”album,artist,price” for artist ”REM”</GOAL>

- a plan is formed and the actions in the plan executed. If the agent has direct access to the data,

then the goal is easily completed. It is slightly more complicated than if the user were to type

an SQL statement and send it to a local database. Instead, the agents abilities become apparent

when the data cannot be found locally. The ability of the agent to make judgements about the

probable location of the data indicates a level of intelligence - however limited - and the ability

of the agent to try a number of different techniques to complete the goals set indicates a level of

autonomy.

A further indication of autonomy is that the agents are persistent. They will continue to function

even when there are no tasks to be completed for the users.

167

One factor that counts against the claim for agency is that the agents are cooperative. That is,

they will automatically attempt any task that is requested rather than deliberate about whether

the task is in the best interests of itself or its owner. This lack of self-interest may be seen as a

drawback, but there are numerous MASs in which automatic cooperation does occur.

A second argument against claim for agency is that the agents are not pro-active. The agents

react to user requests but they do not pro-actively search for information on their own. In section

2.3.1, it was suggested that pro-activeness, while not being a defining criteria in the same way

that autonomy was, still counted added weight to the claim of agency.

In distributed applications, pro-active behaviour which increases network load should be kept to

a minimum whenever possible. Consequently, such behaviour has been considered as a future

enhancement - see section 7.4.4 for further information. It is possible to implement pro-active

behaviour by altering the code so that when there are no outstanding tasks, a system task would

be generated by the agent that would query other agents to enquire about their capabilities. It

was subsequently decided that this would be undesirable due to the additional network traffic

generated.

Each AT-MAS agent contains its own Knowledge Base storing its current beliefs. Their goals

are provided by the users - and the agents have an implicit intention of attempting to complete

them. Furthermore, the agent has commitments in that it continues to attempt a goal until it

discovers that the goal is no longer possible.

In spite of this, these agents cannot realistically be considered as strong as their have only very

limited knowledge base both in terms of form and structure - as the knowledge only consists

of the other agents known, and the local agents knowledge of the subjects that the other agent

can assist with. There is no capacity within the agent for storing more general knowledge. In

addition, there is no capability for the agents to perform reasoning about the knowledge that

they posses.

168

6.2.2 Is AT-MAS a Multi-Agent System?

Having established that the AT-MAS agents can be accurately classed as agents, the classification

of AT-MAS as a MAS is relatively easy. By the definition provided in chapter 3, a MAS is a

group of agents which interact - the actions of each agent must be able to affect the other agents

in the system, either directly or indirectly.

The basic operation of the AT-MAS system involves this kind of interaction; agents request

information from other agents in the system and, in turn, provide information to other agents

(or clients) in the system. Therefore it is possible to accurately describe AT-MAS as a MAS.

More completely, it is accurate to describe AT-MAS as an open MAS since agents from unknown

sources can participate.

6.2.3 Is the AT-MAS system a viable alternative to existing MASs

AT-MAS was intended to be a very simple MAS. It achieved this by reducing the reliance on

middle agents and supporting services. Similarly, some of the features; such as support for mobile

agents, ontologies and brokered/mediated transactions are not present in the system. However,

the success of the AT-MAS system proves that these are not always required.

6.2.4 Is the AT-MAS system a viable alternative to Mobile Agents

As stated before, mobile agents are a way of allowing data to be filtered/processed on remote

computers so that only the required information is transmitted across the network. However, in

order to do this, the code of the mobile agent must be transported to the remote computer.

In order to allow this, the administrator/owner of the system must install an agent framework

169

consisting of an agent platform which hosts a number of system agents and/or services which

the remote agent can interact with.

A number of different agent frameworks exist; each with different levels of support and interfaces.

In spite of all of the safeguards present, it still remains the fact that the agents are often created

by an unknown third-party. As such, trust is always an issue - trust that the agent is well

behaved, trust that the MAS and support services are robust enough to prevent any malicious

actions from disrupting the system. In AT-MAS, the administrator/owner has complete control

of all of the code and data on his/her system. All that enters the system are the requests from

the other agents.

The cost of moving mobile agent code from one computer to another is significant when com-

pared to the cost of sending messages. The disadvantage of the AT-MAS system when compared

to mobile agents is that currently, the system does not take account of transitory network con-

nections - for example, connections to mobile devices which may be broken. By this, it is meant

that a when a query is executed, the connection must be maintained for the duration of the

execution.The effects of this can be reduced by implementing a caching system which allows the

messages to be stored and sent when a connection is available. This is discussed in section 7.4.3.

In addition, the ability to have the results emailed to a person instead, does partially compensate

for this deficiency.

However, the AT-MAS network topology is not fixed and as a result can cope with agents joining

and leaving the system by bypassing the agents which are no longer present and utilizing the

ones which are.

170

6.2.5 Is AT-MAS a P2P System?

Although the core of the network - the agent to agent communication is P2P, the client con-

nections to the root agent are client/server. However it is possible for any client written in the

form of an application rather than as an applet, to connect to the agent and communicate as

effectively as any other agent. Since this is that case, it is possible to class the AT-MAS system as

a P2P system which has the additional benefit of being able to support clients in a client/server

fashion.

The main criteria for excluding AT-MAS from the category of P2P is that it makes no provision

for agents which do not have a valid IP address or hostname. Whilst it is possible for an agent

to use an IP assigned by NAT instead of having a fixed IP, this causes problems as it means

that the agents address can change. Since there is no mechanism which allows for the other

agents to learn of such changes and update their knowledge bases, the old information about the

agent becomes worthless, and new information must be collected. This limitation is addressed

in section 7.4.2

In spite of this limitation, AT-MAS still provides an ”egalitarian relationship between peers and,

more importantly, suggests direct interaction between peers.”[166] and by these terms it is a P2P

system.

6.2.6 Is the AT-MAS system a viable alternative to P2P

The key advantage of AT-MAS compared with P2P systems is that its basic unit of operation is

not the file or document, but can be as small as a single fact; a number, name, or email address,

etc. This increases the range of data processing that can be carried out, and as a result, the

range of possible applications has also been increased. This also reduces the network traffic as

the files are analysed locally and only the data required is transferred.

171

However, the increased range of applications means that instead of a compact and simple pro-

tocol for searching, with single bits used to specify the action to be performed, AT-MAS uses

comparatively large messages. Another consequence of this flexibility is that rather than simply

forwarding queries as existing P2P systems, the agents in AT-MAS form plans before carrying

out any actions.

As a result the searching within AT-MAS will never be as fast as a P2P system such as Freenet

or Gnutella, which are optimised for a small range of tasks, specifically locating and downloading

files. However, while AT-MAS is not intended to compete directly with these systems, it can

provide the services1 that P2P systems can, and also those of many others.

Another factor in AT-MASs favour is that users can connect to a node without having to make

data available to the system. As a result, free riding is not a problem since it is only the agents

with data that are contacted during a search.

6.3 Chapter Summary

This chapter evaluates the AT-MAS system. It begins with a short description of the network

used to perform the testing and the method used to obtain the results. An example of the

complete timing data of one the tests is given along with the frequency distribution graphs for

that data. This is used to support the decision to use the average of 50 query runs to obtain the

results for a single data line.

This is followed by a number of tests designed to prove that the AT-MAS system is scalable.

In each of the tests the results are linear, suggesting that the system will scale consistently.

Following this, a number of tests were conducted on the agents knowledge base. These tests

were not as conclusive as the scalability tests.

1with the current exception of the file download - see section 7.4.5 for details of how this may be implemented.

172

The second part of this chapter discusses the AT-MAS system and compares it to the technologies

such as Multi-Agent Systems (MASs) and Peer to Peer (P2P) systems which have influenced it.

173

Chapter 7

Conclusions

7.1 Evaluation of the work undertaken

In their paper, ”Pitfalls of Agent Oriented Development”[188], Wooldridge and Jennings argue

that designers should always develop using one of the many existing agent architectures already

developed. They continue by stating that if a system is developed without using an existing

architecture then any existing de facto standards should be followed.

From that viewpoint, the AT-MAS system is flawed: it was developed ”from scratch” with a pro-

prietary communications protocol. However, in terms of flexibility, this is one of its advantages.

As mentioned in chapter 1, the decision was made not to use any agent based development tools

since it was felt that they would unduly influence the development of the AT-MAS system.

1. The AT-MAS is an unconventional MAS, owing much of its inspiration to the development

of P2P systems. As such, it was important to make a conscious departure from the tradi-

tional MAS design. This is especially true since the AT-MAS system has been influenced

both positively and negatively by existing MASs.

174

2. The whole purpose of the agent frameworks and development is to make the process of

building systems easier. In doing so, they provide a pathway - a simple route to creating

the agent - unless the final destination is different from that envisaged by the framework

designers. However, by simply providing tools, modules, interfaces and off the shelf com-

ponents to assist with creating the agents and the infrastructure to support them, these

systems provide a tempting easy solution which may cause the original idea to become

diluted.

3. The ”one size fits all” nature of agent frameworks, means that simpler agent systems can

be easier to develop without them. This principle extends to systems such as AT-MAS

which a large amount of non-agent (i.e. P2P) code.

7.2 Evaluation of the AT-MAS system for different users

Due to its flexibility, the AT-MAS system is of interest to a number of different groups of users.

This section gives a brief description of how the system may be of use to them.

7.2.1 Research - General

As a general research tool, AT-MAS allows users to search a wide variety of data sources. How-

ever, as with any search tool, its effectiveness is ultimately limited by the data available. Cur-

rently it is possible for searches to be carried out on XML and BibTEX (LATEX bibliography) files.

As the system is developed, other structured datasources, whether static files, web services, etc.

may be integrated, improving the range of data available to the agents.

One important feature of the system is that the data comes from a known source. This allows

facts to be checked, copyrights to be enforced and sources to be verified through other means.

175

In doing so, it provides some slight regulation to the internet that P2P systems do not.

7.2.2 Research - Specific

This work provides no specific technical breakthroughs for the research community. Instead AT-

MAS bridges the gap between between two distinct, but related, disciplines. As such, it is of use

to researchers from both fields.

To P2P researchers, it shows that by expanding the range of data types handled, it is possible

to vastly increase the range of applications possible.

To MAS researchers, the use of static agents in an open system shows that it is possible to create

a MAS without the need for complex naming and brokerage services.

Furthermore, the simple protocol may allow researchers from both fields to further collaborate;

spawning a network of both P2P and MAS nodes cooperating effectively. Although no research

has been done on this possibility, it may be of use to the Grid Computing community which

specializes in the integration of disparate online resources.

7.2.3 Commercial

Although some work needs to be done to prepare the AT-MAS system for widespread use, it has

the potential to be usable in a wide range of situations such as client to business eCommerce.

However, commercial systems of this type have had a mixed reception since their users are no

longer required to visit retailers websites.

. . . a third of the online CD merchants accessed by BargainFinder blocked all of its

requests. One reason was that many merchants don’t want to compete on price

176

alone. Value-added services offered on merchants’ Web sites were being bypassed by

BargainFinder and therefore not likely considered in the consumer’s buying decision.

However, Andersen Consulting also received requests from an equal number of smaller

merchants who wanted to be included in BargainFinder’s price comparison. In short,

companies competing on price and welcoming exposure wanted to be included; the

others didn’t.[110]

The only problem arising from the use of AT-MAS is the possible inclusion of adverts by the

remote agents. The effects of this can be reduced through the use of a reputation system as

described in the section 7.4.1 later in this chapter.

7.2.4 Leisure

Depending upon the information available, AT-MAS can potentially provide a wide variety of

information based services. Its is anticipated that a wide range of data will be available such

as; from genealogy information for people tracing their family histories, recipes, computer game

cheats, through to profiles for online dating sites. Since XML is used, almost any data can be

represented and distributed. In addition, enhancements are proposed to the system (see section

7.4.5) which will allow users to download files, and make online purchases.

7.3 Problems and Limitations of AT-MAS

7.3.1 Attack From Within

One disadvantage of AT-MAS is that it is vulnerable to attack from within. Since AT-MAS is

intended to be open to all agents, this is a serious limitation. However, P2P systems also suffer

177

from the same complaint - namely that there are no security mechanisms that prevent a corrupt

or badly behaved node from causing disruption to the network.

Locating a willing resource provider does not guarantee the user will be satisfied with

its service. Selfish peers may offer resources to maintain the impression of cooperation,

but not put in the necessary effort to provide the service. Worse, certain nodes may

join the network, not to use other peers ’ resources, but to propagate false files or

information for their own benefits. . . Accessing invalid or falsified resources can be

expensive in terms of time and money.[114, page 92]

This can be shown by the use of altered nodes to collect statistical information from the network.

Although this is a benign change, it could have just as easily been a malevolent one. Either way,

the common P2P protocols do not prevent or detect this behaviour. Instead, provided that a

client conforms to the protocol, it is accepted as part of the network.

There are a number of different ways that a corrupt AT-MAS agent could cause disruption;

Information Overload: While the Front-End Server (see section 5.2.2) prevents the agent

from becoming overloaded by too many tasks, the agent may become overloaded due to

the amount of data that another agent can send to it. In theory, a malicious agent could

send gigabytes of data to a different agent in the system as the reply to valid requests with

possibly disastrous consequences.

One way of preventing this, is for a requesting agent to specify the maximum number of

results and/or the maximum amount of data that it is prepared to receive in response

to a request. When this amount has been reached, the receiving agent would close the

connection in order to prevent overload. However, a malicious agent would still be able to

send invalid data up to the maximum amount specified.

178

Although not specifically malicious, it would be possible for an agent to send additional,

but irrelevant data along with the requested results. This may be as part of requested data

received from commercial web sites. However, if the message is structured correctly, this

information will be discarded during either the removal of duplicate results, or the final

root agent processing. As a result, there is little incentive for companies to send spurious

data except as part of the results.

Privacy of Requests and Data: In the current implementation, there is no way of protecting

the privacy of the results as they are passed back along the tree. In fact, this is contradictory

to the philosophy of the system as the agents are designed to filter and process the results

as they are received.

In some specific situations, the privacy is essential. In order to allow this, a simple encryp-

tion scheme can be implemented. In this, if a request contained a <Public Key></Public Key>

tag, the agent receiving it would know that it needed to return the results of the request

within an <Encrypted></Encrypted> tag.

However, this would only be possible for direct transactions such as online purchases (see

section 7.4.5) since a malicious or deceptive agent contacted could substitute its own public

key in place of the one provided when contacting other agents. When it received the results,

it would be able to re-encrypt them using the original agents public key and return them.

This invasion of privacy would be undetectable without some form of cross-referencing

amongst the agents in the network.

Guaranteed Validity of the Data Similarly, in the current system, there is no way of pre-

venting an agent from maliciously altering information that it receives before passing it

back along the tree. Again, this problem could be tackled through the use of encryption

to ensure that the data could not be altered, but as before, this would only be possible for

direct communications.

One solution that was proposed was to allow a proxy to be specified as part of a request.

179

If this were to happen, the agents that followed the proxy agent in the tree would return

their results directly to it, instead of to any of the intermediate agents. Unfortunately this

idea suffers from the same problem as the encryption. A malicious agent could substitute

its own address instead of the proxy address - unless the proxy address is restricted to that

of the root agent. However this would also be open to abuse since a malicious agent could

forward the query as its own - in essence, becoming a root of a new query.

As a result of these deficiencies, AT-MAS cannot currently be recommended for use with any

form of sensitive data. However, as a general data retrieval tool, for retrieving publicly available

information from trusted sources, the AT-MAS is a valuable tool

7.4 Future Work

Although the core of the system has been implemented, a number of enhancements have been

devised during the life-cycle of the project. However, these have not yet been implemented for

a number of reasons. This has mainly been due to timescale, but also due to the fact that they

are not strictly relevant to the system functionality.

As with any alteration to a system, it is important to consider the effect on the system before it

is implemented. In particular with the AT-MAS system, it is important to take into account the

effect on the network bandwidth. For example, tests may prove that it is impractical for agents

to request copies of other agents knowledge bases on a regular basis. Similarly, the ability to

download files may be to the detriment of the network.

180

7.4.1 Identifying Malicious Agents

As mentioned in the previous section, the main disadvantage of the AT-MAS system is its lack

of security and its lack of resilience to attack from malicious agents within the system. Since

AT-MAS is designed to be open, this is a serious concern.

In addition to the simple solutions proposed (download limits and encryption) it would be a

valuable enhancement to the system if a reputation system[114] was implemented.

This could be implemented as part of the Knowledge Base by extending the Index attribute (see

5.3.1) which provides a very general indication of whether a remote agent is likely to respond to

a request. If information about how an agent was likely to respond to a request was stored as

well, potentially malicious agents could be identified, and avoided.

These techniques are already in use with other systems. In the NeuroGrid P2P system, the user

is able to provide his/her own feedback.

As the user receives potential matches from other nodes the local node monitors

whether the user ignores them, or performs some feedback activity, either implicit

- bookmarking the match, or explicit - clicking a ”spam” button. Depending upon

the feedback the local node adjusts the relation between the query keywords and the

remote node that provided the recommendation. Thus node that consistently provide

results unsatisfactory to uses will not be queried in future.[93]

However, in order to provide a user feedback service, changes would need to be made to the

client applet, the AT-MAS agent, and also the AT-MAS ACL.

181

7.4.2 Use of a GUID instead of an address

One of the limitations of AT-MAS compared to P2P systems is that it relies on agents with fixed

addresses. If however, the agents were given a GUID (Globally Unique Identifier) in addition, this

would allow the address of the agent to frequently change without consequence as the Knowledge

Base would contain both the GUID and address of the other agents and would refer to the GUID

rather than the address.

7.4.3 Caching to allow for Transient Connections

The increasing use of mobile devices which are not permanently connected to the internet cur-

rently provides a problem for the AT-MAS system. This is due to the fact that the AT-MAS

network requires a permanent connection. However, with slight changes to the message structure

system, it is possible to cater for these short term connections.

The first part of the agent conversation would remain the same, however, after the agent sends its

”Processing: please wait” message, the client would break the connection. As the agent received

the results, it would store them. The client would then reconnect later and request the results

which the agent would send. In order to ensure that the correct results were given to the correct

client, the agent would require that the client address, the Task ID and the Tree ID would match

the values that were assigned when the client made the original request.

It would not be possible for a client to make a new request until the existing data had been

retrieved. This would prevent clients from making many requests and overloading the agent. If

the client does not reconnect within a certain timescale - set in the agents initialization file -

then the results would be discarded.

182

7.4.4 Requesting Knowledge Base Information

Although it is not required by the design of the system, one simple enhancement would be

to provide the facility for a new agent to contact an existing agent and request a copy of its

Knowledge Base. Currently, the agent’s Knowledge Base is populated from a servers file which

is loaded during the agents initialization process. However, since this is a static file, the values

it contains will very quickly become out of date.

This improvement is similar to those made to the routing mechanism used by the latest versions

of Freenet (see section 4.5.2) and is currently used in the IR system (see section 4.5.5). Further

work must be carried out to determine the affect of this increased network load. If it is found

that the load on the network is not detrimental, the idea can be extended. Rather than only

requesting initialization information, agents will be able to request Knowledge Base data from

other agents during times when they are not processing any other tasks. However, the balance

between the agents being too pro-active and not proactive enough must be carefully considered

along with the implications for network bandwidth.

Either in addition to or as an alternative to the solution proposed above, it would be a useful

enhancement for the agent to create backups of its Knowledge Base data at regular intervals.

7.4.5 Enhancements to the AT-MAS ACL

While the AT-MAS system can provide a number of basic information retrieval services, it is

limited in that it is currently unable to allow users to download files, or make online purchases.

In order to remedy this, three new commands will have to be implemented

choice: This command is different from the existing AT-MAS commands since it is a client

based. If the users applet supports it, the command will cause a list of options to be

183

displayed based on the results of a previous goal. The first parameter - hidden from the

user is the value returned as the result of the command when the user selects one of the

options.

download: Since one of the main influences in the design of the system was P2P systems, it

seems appropriate that the AT-MAS network is able to download files. It is anticipated

that the command would require a two parameters; the local file or directory name, and

the remote filename. It is intended that remote filename parameter would allow wildcards

to be specified so that groups of files can be downloaded at the one time. This command

would be a root-only command so that files can be downloaded directly to the client.

However, safeguards would have to implemented to limit the number of files downloaded or

the network would quickly become swamped. The following example shows how the find,

choice and download commands can be combined to provide a simple file download system.

<GOAL ID=”g1” SUBJECT=”music”>find ’title,price,url’ for artist ”Rush”</GOAL>

<GOAL ID=”g2”>return g1</GOAL>

<GOAL ID=”g3”>choice g2.url ”g2.title,g2.artist,g2.price”</GOAL>

<GOAL ID=”g4”>download g3.result</GOAL>

purchase: The inclusion of a choice command, when combined with a purchase command will

make it possible for a user to make online purchases from participating suppliers. This

example shows how the AT-MAS commands, can be used to allow purchases to be made.

As before, the purchase command uses the find and choice commands, however a new

variable - authorization is required as well. This could either be an encrypted payment

token, or an account number that would the purchaser to make a payment for the specific

item.

<GOAL ID=”g1” SUBJECT=”music”>find ’title,price,code’ for artist ”Rush”</GOAL>

<GOAL ID=”g2”>return g1</GOAL>

<GOAL ID=”g3”>choice g2.code ”g2.title,g2.price”</GOAL>

<GOAL ID=”g4”>purchase g3.result authorization</GOAL>

184

7.4.6 Increasing the Parsing Abilities of the AT-MAS Agents

Currently the AT-MAS agents are able to extract information from simple XML files and BibTEX

files. However, despite the increasing popularity of XML, there are many more structured data

formats in existence and therefore it would be an important upgrade to increase the number of

data formats that the AT-MAS agents can parse. At this stage of the project, no decision has

been made as the which additional formats will be supported.

7.4.7 An Intelligent Interface Agent

A final long term goal for development of the system would be to provide an agent driven front

end instead of the basic applet. The interface agent would be able to communicate effectively

with the user and translate his/her requests into goals that can be distributed across the network.

As well as this, by using an agent, rather than an applet it is possible to store information about

the user. This allows the agent to adapt to the users style of working (see section 2.3.4).

In addition, the agent would be able use AT-MAS to assist the user in other ways such as;

• Ensuring the drivers required by the user’s computer are kept up to date by locating and

downloading drivers as required. This would be done either during the installation process,

or more commonly when new hardware is installed or new driver versions become available.

• Locating documents and files of possible interest to the user. The agent would maintain a

list of the users preferences and periodically search the network for information relevant to

these preferences. This may include the creation of a daily newspaper based in information

retrieved from news website agents.

• Scheduling appointments. To do this, the users agent would first of all locate the remote

agent representing the person with whom the meeting was to be requested. It would then

185

request a list of times that the remote user was free from his/her agent - this information

would be stored in a calendar/schedule file which could be searched by the remote agent.

When the list of times were returned, a list would be presented to the local user. who

would be able to choose the one or more suitable times. The agent would then contact the

remote agent which would request confirmation or refusal from the remote user. If a time

was agreed, both of the agents would update their calendar/schedule files as required.

7.5 Final Thoughts

In creating AT-MAS, I set out to build a system which would provide a powerful, robust and

flexible network of agents which did not rely on agent middleware in order to function correctly.

It would provide the remote processing capabilities of mobile agents without the security risks

and control issues. The system would be open; allowing any agents to connect to/disconnect

from the network at any time.

The simple communications protocol and language, influenced by both KQML and FIPA-Acl,

was developed to both support the basic operation of the system, and allow for expansion of

the language as the system is developed. No support was included for the use of mediators,

facilitator, and brokering as it is not required.

By these criteria, the system is a success.

186

Bibliography

[1] Douglas Adams. The Hitch-hikers Guide to the Galaxy. Pan Books, 1979. ISBN 0-330-

25864-8.

[2] Eytan Adar and Bernardo A. Huberman. Free riding on gnutella. Technical report, Xerox

PARC, August 2000. URL http://citeseer.ist.psu.edu/adar00free.html.

[3] Simon Adcock. How does the grid extend the internet, and what is the future vision for

this development?, December 2002. URL http://citeseer.ist.psu.edu/554105.html.

[4] John Alderman. SonicBoom. Fourth Estate, 77-85 Fulham Palace Road, London W6 8JB,

2001. ISBN 1-84115-513-6. URL http://www.the4thestate.com.

[5] Kelsey Anderson. Analysis of the traffic on the gnutella network. Technical Report CSE222

Final Project, University of California, San Diego, March 2001.

[6] Tracy L. Anderson and Max Donath. Animal behavior as a paradigm for developing robot

autonomy. In Pattie Maes, editor, Designing Autonomous Agents: Theory and Practice

from Biology to Engineering and Back, pages 145–168. MIT/Elsevier, 1990. ISBN 0-262-

63135-0.

[7] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-

to-peer file sharing technologies. Technical report, Electronic Trading Research

Unit (ELTRUN), Athens University for Economics and Business, 2002. URL

http://www.eltrun.gr/whitepapers/p2p 2002.pdf. White paper.

187

[8] O. Babaoglu, H. Meling, and A. Montresor. Anthill: A framework for

the development of agent-based peer-to-peer systems, July 2002. URL

http://citeseer.ist.psu.edu/babaoglu02anthill.html.

[9] Mihai Barbuceanu and Mark S. Fox. Cool: A language for describing coordination in

multiagent systems. In Victor Lesser and Les Gasser, editors, Proceedings of the First In-

ternational Conference oil Multi-Agent Systems (ICMAS-95), pages 17–24, San Francisco,

CA, USA, 1995. AAAI Press. URL http://citeseer.ist.psu.edu/barbuceanu95cool.html.

[10] Don Barker. Microsoft’s new animated agent technology. URL

http://www.botspot.com/pcai/article1.html.

[11] J. Bates. The role of emotion in believable agents. Communications of the ACM, 37(7):

122–125, 1997. URL http://citeseer.ist.psu.edu/bates94role.html.

[12] J. Bates, A. B. Loyall, and W. S. Reilly. Broad agents. Sigart Bulletin, 2(4):38–40, 1991.

URL http://citeseer.ist.psu.edu/bates91broad.html.

[13] R. J. Bayardo, Jr, W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,

T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M Rusinkiewicz, R. Shen, C. Unnikrishnan,

A. Unruh, and D. Woelk. Infosleuth: Agent-based semantic integration of information in

open and dynamic environments. In Michael N. Huhns and Munindar P. Singh, editors,

Readings in Agents, pages 205–216. Morgan Kaufmann, San Francisco, CA, USA, 1997.

URL http://www.mcc.com/projects/infosleuth.

[14] Doug Bedell. Bittorrent snaps up hollywood bit by bit, August 2004. URL

http://www.freep.com/money/business/moore26e 20040826.htm.

[15] Randall D. Beer, Hillel J. Chiel, and Leon S. Sterling. A biological perspective on au-

tonomous agent design. In Pattie Maes, editor, Designing Autonomous Agents: Theory

and Practice from Biology to Engineering and Back, pages 169–186. MIT/Elsevier, 1990.

ISBN 0-262-63135-0.

188

[16] F. Bellifemine, A. Poggi, and G. Rimassa. Jade - a fipa-compliant agent framework. In In

Proceedings of Practical Application of Intelligent Agents and MultiAgents (PAAM ’99),

pages 97–108, April 1999.

[17] F. Bergenti and A. Poggi. Leap: a fipa platform for handheld and mobile devices, 2001.

URL http://citeseer.ist.psu.edu/bergenfi01leap.html.

[18] Michael K. Bergman. The deep web: Surfacing hidden value, 2000. URL

http://www.brightplanet.com.

[19] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web, May 2001. URL

http://www.scientificamerican.com/2001/0501issue0501bernerslee.html.

[20] Viktors Berstis. Fundamentals of grid computing. Technical report, IBM, November 2002.

28 pp. URL http://www.ibm.com/redbooks.

[21] D. Bertolini, P. Busetta, M. Nori, and A. Perini. Peer-to-peer and multi-agent systems

technologies for knowledge management applications. an agent-oriented analysis.

[22] Bit torrent, September 2003. URL http://bitconjurer.org/BitTorrent/index.html.

[23] R. Peter Bonasso, James Firby, Erann Gat, David Kortenkamp, David P. Miller, and

Marc G. Slack. Experiences with an architecture for intelligent, reactive agents. Journal

of Experimental & Theoretical Artificial Intelligence, 9(2/3):237–256, April 1997. URL

http://citeseer.ist.psu.edu/article/bonasso97experiences.html.

[24] Jeffrey M. Bradshaw, Stewart Dutfiled, Pete Benoit, and John D. Woolley. Kaos: Towards

an industrial-strength open agent architecture. In Jeffrey M. Bradshaw, editor, Software

Agents, pages 375–418. AAAI Press / The MIT Press, 1997. ISBN 0-262-52234-9.

[25] F. Brazier, M. van Steen, and N. Wijngaards. On mas scalability. In T. Wagner and

O. Rana, editors, Proceedings of Second International Workshop on Infrastructure for

189

Agents, MAS, and Scalable MAS, pages 121–126, Montreal, Canada, May 2001. URL

http://citeseer.ist.psu.edu/article/brazier01mas.html.

[26] Rodney A. Brooks. Elephants don’t play chess. In Pattie Maes, editor, Designing Au-

tonomous Agents: Theory and Practice from Biology to Engineering and Back, pages 3–15.

MIT/Elsevier, 1990. ISBN 0-262-63135-0.

[27] Rodney A. Brooks. Intelligence without reason. In Proceedings of the Twelveth Interna-

tional Joint Conference on Artificial Intelligence, pages 569–595, Sam Matoo, California,

1991.

[28] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–160,

1991.

[29] Alper K. Caglayan and Colin G. Harrison. Agent Sourcebook. Wiley Computer Publishing,

1997. ISBN 0-471-15327-3. 349 pp.

[30] Sergio Camorlinga, Ken Barker, and John Anderson. Multiagent systems for resource

allocation in peer-to-peer systems.

[31] Justine Cassell. Nudge nudge wink wink: Elements of face-to-face conversation for embod-

ied conversational agents. In Scott Prevost Justine Cassell, Joseph Sullivan and Elizabeth

Churchill, editors, Embodied Conversational Agents. MIT Press, 2000.

[32] C. Castelfranchi, R. Falcone, and F. de Rosis. Deceiving in golem: How

to strategically pilfer help. In Autonomous Agent ’98: Working notes of

the Workshop on Deception, Fraud and Trust in Agent Societies, 1998. URL

http://citeseer.nj.nec.com/article/castelfranchi98deceiving.html.

[33] Miguel Castro, Manuel Costa, and Antony Rowstron. Should we build a gnutella on a

structured overlay?

190

[34] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Anthony Rowstron. Proximity neighbor

selection in tree-based structured peer-to-peer overlays, 2003.

[35] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron. One ring

to rule them al: Service discovery and binding in structured peer-to-peer overlay networks.

[36] B. Chaib-Draa and F. Dignum. Trends in agent communication language. Computational

Intelligence, 18(2), 2002.

[37] B. Chaib-Draa, B. Moulin, R. Mandiau, and P. Millot. Trends in distributed artificial

intelligence. Artificial Intelligence Review, pages 35–66, 1992.

[38] A. Chavez and P. Maes. Kasbah: An agent marketplace for buying and selling goods.

In First International Conference on the Practical Application of Intelligent Agents and

Multi-Agent Technology (PAAM’96), pages 75–90, London, UK, 1996. Practical Applica-

tion Company. URL http://citeseer.ist.psu.edu/chavez96kasbah.html.

[39] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making

gnutella-like p2p systems scalable, August 2003.

[40] David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile agents: Are they a godd

idea? Technical Report RC 19887, IBM Research Division, December 1994.

[41] Adam Cheyer and David Martin. The open agent architecture.

[42] Luigi Ciminiera, Andrea Sanna, and Claudio Zunino. Survey on grid and peer-to-peer

network technologies. European Grid of Solar Observations, October 2002.

[43] Ian Clarke. Freenet’s next generation routing protocol, July 2003. URL

http://freenet.sourceforge.net/index.php?page=ngrouting.

[44] Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg, and Brandon Wiley. Pro-

tecting free expression online with freenet. IEEE Internet Computing, January/February:

40–49, 2002. URL http://computer.org/Internet/.

191

[45] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:

A distributed anonymous information storage and retrieval system, 2000. URL

http://www.freenetproject.org/index.php?page=papers.

[46] David Cliff. Computational neurothology: A provisional manifesto. In Animals to Ani-

mates. First Int’l Conf. Simulation of Adaptive Behavior, pages 29–38, 1991.

[47] Philip R. Cohen, Adam Cheyer, Michelle Wang, and Soon Cheol Baeg. An open

agent architecture. In Michael N. Huhns and Munindar P. Singh, editors, Readings

in Agents, pages 197–204. Morgan Kaufmann, San Francisco, CA, USA, 1997. URL

http://citeseer.ist.psu.edu/article/cohen94open.html.

[48] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial

Intelligence, 42:213–261, 1990.

[49] The collins paperback english dictionary, 1991.

[50] M. Dastani, F. Dignum, and J. Meyer. Autonomy and agent deliberation, 2003. URL

http://citeseer.ist.psu.edu/dastani03autonomy.html.

[51] Keith Decker, Mike Williamson, and Karia Sycara. Matchmaking and brokering, December

1996. URL http://citeseer.ist.psu.edu/decker96matchmaking.html.

[52] Frank Dignum. Agent communication and cooperative information

agents. In Cooperative Information Agents, pages 191–207, 2000. URL

http://citeseer.ist.psu.edu/article/dignum00agent.html.

[53] Frank Dignum and Mark Greaves. Issues in agent communication: An introduction. In

Frank Dignum and Mark Greaves, editors, Issues in Agent Communication, pages 1–16.

Springer, 2000.

[54] Thomas Erickson. Designing agents as if people mattered. In Jeffrey M. Bradshaw, editor,

Software Agents, pages 79–96. AAAI Press / The MIT Press, 1997. ISBN 0-262-52234-9.

192

[55] Oren Etzioni. Intelligence without brooks (a reply to brooks), 1994.

[56] The Jade FAQ. http://jade.tilab.com/community-faq.htm.

[57] I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents.

PhD thesis, University of Cambridge, Cambridge, UK, 1992.

[58] I. A. Ferguson. Touringmachines: Autonomous agents with

attitudes. IEEE Computer, 25:51–55, May 1992. URL

http://citeseer.ist.psu.edu/article/ferguson92touringmachines.html.

[59] Leonard N. Foner. What’s an agent, anyway? a sociological case study, 1993.

[60] I. Foster, N. Jennings, and C. Kesselman. Brain meets brawn: Why grid and agents need

each other, 2004. URL http://citeseer.ist.psu.edu/article/foster04brain.html.

[61] Jerry Fowler, Marian Nodine, Brad Perry, and Bruce Bargmeyer. Agent based in-

teroperability in infosleuth. Technical Report mcc-insl-006-99, MCC, 1999. URL

http://www.mcc.com/projects/infosleuth.

[62] John Fox, Martin Beveridge, and David Glasspool. Understanding intelligent agents: anal-

ysis and synthesis.

[63] Stan Franklin and Art Graesser. Is it an agent or a program?: A taxonomy for autonomous

agents. In Proceedings of the Third International Workshop on Agent Theories, Architec-

tures and Languages. Springer-Verlag, 1996.

[64] Erann Gat. Integrating reaction and planning in a heterogeneous asynchronous architecture

for mobile robot navigation.

[65] M. P. Georgeff. Situated reasoning and rational behavior. Technical Report Technical Note

21, Australian Artificial Intelligence Institute, 1991.

193

[66] M. Greaves, H. Holmback, and J. Bradshaw. Cdt: A tool for agent conversation design,

1998. URL http://citeseer.ist.psu.edu/greaves98cdt.html.

[67] Mark Greaves, Heather Holmback, and Jeffrey Bradshaw. What is a conversation policy?

In Frank Dignum and Mark Greaves, editors, Issues in Agent Communication, pages 118–

131. Springer, 2000.

[68] Andrew S. Grimshaw, Wm. A. Wulf, and the Legion team. The legion vision of a worldwide

virtual computer. Communications of the ACM, 40(1), January 1997.

[69] Benjamin Grosof and Yannis Labrou. An approach to using xml and a rule-based con-

tent language with an agent communication language. Technical Report RC 21491, IBM

Research Division, May 1999.

[70] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages, 2005. URL

http://www.cs.uiowa.edu/ asignori/web-size/size-indexable-web.pdf.

[71] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A

scalable overlay network with practical locality properties, March 2003. URL

http://citeseer.ist.psu.edu/harvey03skipnet.html.

[72] Tony Hey. Why engage in e-science? Library + Information Update, 3(3):25–27, March

2004.

[73] Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer.

Semantics of communicating agents based on deduction and abduction. In Frank Dignum

and Mark Greaves, editors, Issues in Agent Communication, pages 63–79. Springer, 2000.

[74] Heather Holmback, Mark Greaves, and Jeffrey M. Bradshaw. Agent a, can you pass

the salt? - the role of pragmatics in agent communication, October 1998. URL

http://citeseer.ist.psu.edu/holmback98agent.html.

[75] Distributed.net Homepage. http://www.distributed.net.

194

[76] Google Homepage. http://www.google.com.

[77] Microsoft Agents Homepage. http://www.microsoft.com/msagent.

[78] The ’Fight Aids At Home’ Homepage. http://www.fightaidsathome.org.

[79] The Gnutella Homepage. http://www.gnutella.com.

[80] The Java Homepage. http://www.java.sun.com/.

[81] The Napster Homepage. http://www.napster.com.

[82] The Seti@home Homepage. http://setiathome.ssl.berkeley.edu/.

[83] Michael N. Huhns and Munindar P. Singh. Chapter 1: Agents and multiagent systems:

Themes, approaches, and challenges. In Michael N. Huhns and Munindar P. Singh, editors,

Readings in Agents. Morgan Kaufmann Publishers, Inc., 1997.

[84] Grid computing: Distributed advantage, November 2001.

[85] Official intelliseek website, 2000. URL http://www.intelliseek.com/.

[86] Will web search ever catch up to web content?, 1999. URL

http://www.intelliseek.com/prod/iw whitepaper.htm. Copyright 1999-2000, IntelliSeek

Inc.

[87] Douglas Isbell and Don Savage. Mars climate orbiter failure board releases reports, 1999.

URL http://solarsystem.jpl.nasa.gov/whatsnew/pr/991110A.html.

[88] Nicholas R. Jennings and Michael J. Wooldridge. Applications of intelligent agents. In

Nicholas R. Jennings and Michael J. Wooldridge, editors, Agent Technology: Foundations,

Applications, and Markets, pages 3–28. Springer-Verlag: Heidelberg, Germany, 1998. URL

http://citeseer.ist.psu.edu/jennings98applications.html.

195

[89] Sam Joseph. Adaptive routing in distributed decentralized systems: Neurogrid, gnutella

& freenet. URL http://www.neurogrid.net/publications/publications.html.

[90] Sam Joseph. An extendible open source p2p simulator.

[91] Sam Joseph. P2p metadata search layers. URL http://citeseer.ist.psu.edu/567253.html.

[92] Sam Joseph. NeuroGrid: Semantically routing queries in peer–to–peer net-

works. In International Workshop on Peer-to-Peer Computing, 2002. URL

http://citeseer.ist.psu.edu/joseph02neurogrid.html.

[93] Sam Joseph and Takashige Hoshiai. Decentralized meta-data strategies: Effective peer-to-

peer search, June 2003.

[94] Pedram Keyani, Brian Larson, and Muthukumar Senthil. Peer pressure: Distributed re-

covery from attacks in peer-to-peer systems.

[95] Franziska Klgl and Frank Puppe. The multi-agent simulation environment sesam.

[96] Dan Koeppel. Massive attack, 2004. URL http://www.popsci.com/popsci/print0,21553,390918,00.html.

[97] D. Kotz and R. S. Gray. Mobile agents and the future of the inter-

net. ACM Operating Systems Review, 33(3):7–13, August 1999. URL

http://www.cs.dartmouth.edu/ dfk/papers/kotz:future2.pdf.

[98] D. Kotz, R. S. Gray, and D. Rus. Future directions for mo-

bile agent research. IEEE Distributed Systems Online, 2002. URL

http://cmc.cs.dartmouth.edu/cmc/papers/kotz:dwta.pdf.

[99] John Kubiatowicz, David Bindel, Yan Chen, and Steven Czerwinski. Oceanstore:

An architecture for global-scale persistent storage, November 2000. URL

http://oceanstore.cs.berkeley.edu.

196

[100] Deepak Kumar and Stuart C. Shapiro. Architecture of an intelligent agent in sneps.

SIGART Bulletin, 2(4):89–92, 1991. URL http://doi.acm.org/10.1145/122344.122362.

[101] Daniel Kuokka and Larry Harada. Matchmaking for information agents. In Michael N.

Huhns and Munindar P. Singh, editors, Readings in Agents, pages 91–97. Morgan Kauf-

mann, San Francisco, CA, USA, 1997.

[102] Yannis Labrou, Tim Finin, and Yun Peng. Agent communication languages:

The current landscape. IEEE Intelligent Systems, 14(2):45–52, 1999. URL

http://citeseer.nj.nec.com/labrou99agent.html.

[103] Michail G. Lagoudakis. Planning and intelligent sysytems: An introductory overview, 1996.

[104] Kuo-Chu Lee, William H. Mansfield, Jr., and Amit P. Sheth. A framework for controlling

cooperative agents. COMPUTER, pages 8–15, July 1993.

[105] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evolution of

peer-to-peer systems.

[106] Magnus Ljungberg and Andrew Lucas. The OASIS air-traffic management system. In

Proceedings of the Second Pacific Rim International Conference on Artificial Intelligence

(PRICAI ’92), Seoul, Korea, 1992. URL http://citeseer.ist.psu.edu/ljungberg92oasis.html.

[107] Robert Logie, Jon H. Hall, and Kevin G. Waugh. Beliefs, desires and intentions in a hybrid

coached agent architecture.

[108] Pattie Maes. The agent network architecture (ana). SIGART, 2(4):115–120, 1991.

[109] Pattie Maes. Agents that reduce work and information overload. In Jeffrey M. Bradshaw,

editor, Software Agents, pages 146–164. AAAI Press, 1997.

[110] Pattie Maes, Robert H. Guttman, and Alexandros G. Moukas. Agents that

buy and sell. Communications of the ACM, 42(3):81–91, 1999. URL

http://citeseer.ist.psu.edu/article/maes99agents.html.

197

[111] Chris Malcolm and Tim Smithers. Symbol grounding via a hybrid architecture in an

autonomous assembly. In Pattie Maes, editor, Designing Autonomous Agents: Theory and

Practice from Biology to Engineering and Back, pages 123–144. MIT/Elsevier, 1990. ISBN

0-262-63135-0.

[112] Rob Malda. What is the ’slashdot effect?’, June 2000. URL

http://slashdot.org/faq/index.shtml.

[113] Evangelos P. Markatos. Tracing a large-scale peer to peer system: an hour in the life of

gnutella. In 2nd IEEE/ACM Int Symp. On Cluster Computing and the Grid, 2002.

[114] Sergio Marti and Hector Garcia-Molina. Limited reputation sharing in p2p systems, May

2003.

[115] David L. Martin, Adam J. Cheyer, and Douglas B. Moran. Building distributed software

systems with the open agent architecture.

[116] Jerg Meller. Business applications for agent technology. In 6th European Agent Systems

Summer School (EASSS 06), July 2004. URL http://www.agentlink.org.

[117] Jean-Arcady Meyer and Agnes Guillot. Simulation of adaptive behavior in animats: Review

and prospect.

[118] Microsoft agent user interface, 2003. URL http://www.microsoft.com/msagent/using/userinterface.asp.

[119] S. A. Moore. On conversational policies and the need for exceptions. In Frank Dignum and

Mark Greaves, editors, Issues in Agent Communication, pages 144–159. Springer, 2000.

[120] Antonio Moreno, Ada Valls, and Alexandre Viejo. Using jade-leap to implement agents in

mobile devices, 2002. URL http://jade.tilab.com/papers/EXP/02Moreno.pdf.

[121] Gajanana Nadoli and John E. Biegel. Intelligent manufacturing-simulation tool (imsat).

ACM Transactions on Modelling and Computer Simulation, 3:42–65, January 1993.

198

[122] Newswire. Web of mystery. New Scientist, 164(2215):17, December 1999. URL

http://www.newscientist.com.

[123] Marian H. Nodine and Damith Chandrasekara. Agent communication lan-

guages for information-centric agent communities. HICSS, 1999. URL

http://citeseer.nj.nec.com/article/nodine99agent.html.

[124] Marian H. Nodine, Brad Perry, and Amy Unruh. Experiences with the infosleuth agent

architecture.

[125] H. S. Nwana and D. T. Ndumu. An introduction to agent technology. BT Technol J., 14,

October 1996.

[126] Hyacinth S. Nwana. Software agents: An overview. Knowledge Engineering Review, 1996.

[127] Andy Oram. A free software agenda for peer-to-peer, February 2002. URL

http://www.openp2p.com/lpt/a/1596.

[128] Benno J. Overeinder, Etienne Posthumus, and Frances M. T. Brazier. Integrating peer-

to-peer networking and computing in the agentscape framework. In Proceedings of the

2nd IEEE International Conference on Peer-to-Peer Computing, pages 96–103, Linköping,

Sweden, September 2002. URL http://citeseer.ist.psu.edu/overeinder02integrating.html.

[129] Mauizio Panti, Louis Penserini, Luca Spalazzi, and Simone Tacconi. A multi-agent system

based on the p2p model to information integrration.

[130] M. Paolucci and K. Sycara. An exploration in mas scalability. URL

http://www.cs.cmu.edu/People/softagents/papers/paolucci.pdf. Tracking Number 794.

[131] Penelope Patsuris. Lost in the translation, August 1999. URL

http://www.forbes.com/tool/99/aug/0827/feat.htm.

[132] Terry R. Payne, Massimo Paolucci, Rahul Singh, and Katia Sycara. Communicating agents

in open multi agent systems.

199

[133] Louis Penserini, Mauizio Panti, and Luca Spalazzi. Agent-based transactions into decen-

tralised p2p (preliminary report).

[134] Lynellen D. S. Perry. Emotionware, 1996. URL http://www.acm.org/crossroads/xrds3-

1/emotware.html.

[135] R. Pfeifer. Artificial intelligence models of emotion, 1988. URL

http://citeseer.ist.psu.edu/pfeifer88artificial.html.

[136] Laurence R. Phillips and Hamilton E. Link. The role of conversation policy in carrying

out agent conversations. In Frank Dignum and Mark Greaves, editors, Issues in Agent

Communication. Springer, 2000.

[137] Jeremy Pitt and Abe Mambani. Communication protocols in multi-agent systems: A devel-

opment method and reference architecture. In Issues in Agent Communication. Springer,

2000.

[138] Jeremy Pitt and Abe Mambani. Some legal aspects of inter-agent communication: From

the sincerity condition to ’ethical’ agents. In Frank Dignum and Mark Greaves, editors,

Issues in Agent Communication. Springer, 2000.

[139] Martha Pollack and John F. Horty. There’s more to life than making plans. The AI

Magazine, 20(4):71–84, 1999. URL http://citeseer.ist.psu.edu/pollack99theres.html.

[140] Martha Pollack and Marc Ringuette. Introducing the tileworld: experimentally evaluating

agent architectures. In Thomas Dietterich and William Swartout, editors, Proceedings

of the Eighth National Conference on Artificial Intelligence, pages 183–189. AAAI Press,

Menlo Park, CA., 1990. URL http://citeseer.nj.nec.com/pollack90introducing.html.

[141] The Free Network Project. http://freenetproject.org/index.php?page=index.

[142] Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. Routing algorithms for dhts: Some open

questions, 2002. URL http://citeseer.ist.psu.edu/article/ratnasamy02routing.html.

200

[143] M. Reddy and G. M. P. O’Hare. The blackboard model: a survey of its application, 1991.

[144] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network, 2001.

[145] Jordan Ritter. Why gnutella can’t scale. no, really., February 2001.

[146] Jeffrey S. Rosenschein and Gilad Zlotkin. Designing conventions for automated negotiation.

In Michael N. Huhns and Munindar P. Singh, editors, Readings in Agents, pages 353–370.

Kaufmann Publishing, Inc., San Fransisco, California, 1997.

[147] Stanley J. Rosenschein. Distributed intelligent agents. In F. H. Vogt, editor, Personal

Computers and Intelligent Systems, pages 61–63. Elsevier Science Publishers B. V. (North-

Holland), 1992.

[148] Tuomas Sandholm and Victor Lesser. Issues in automated negotiation and electronic com-

merce: Extendin the contract net framework. In Michael N. Huhns and Munindar P. Singh,

editors, Readings in Agents, pages 66–73. Morgan Kaufmann, San Francisco, CA, USA,

1997. URL http://www.mcc.com/projects/infosleuth.

[149] Lus Morais Sarmento. An emotion-based agent architecture, March 2004.

[150] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement

study of peer-to-peer file sharing systems. In Proceedings of Multimedia Comput-

ing and Networking 2002 (MMCN ’02), San Jose, CA, USA, January 2002. URL

http://citeseer.ist.psu.edu/article/saroiu02measurement.html.

[151] Ruud Schoonderwoerd, Owen E. Holland, Janet L. Bruten, and Leon J. M. Rothkrantz.

Ant-based load balancing in telecommunications networks. Adaptive Behavior, 5(2):169–

207, 1996. URL http://citeseer.ist.psu.edu/schoonderwoerd96antbased.html.

[152] Sandip Sen, Mahendra Sekaran, and John Hale. Learning to coordinate without sharing

information. In Michael N. Huhns and Munindar P. Singh, editors, Readings in Agents,

pages p353–370. Kaufmann Publishing, Inc., San Fransisco, California, 1997.

201

[153] Clay Shirky. What is p2p and what isn’t, 2000. URL

http://www.oreillynet.com/pub/a/p2p/2000/11/24/shirky1-what isp2p.html.

[154] Ben Shneiderman. Direct manipulation verses agents: Paths to predictable controllable

and comprehensible interfaces. In Jeffrey M. Bradshaw, editor, Software Agents, pages

97–106. AAAI Press, 1997.

[155] Yoav Shoham. Agent-oriented programming. In Michael N. Huhns and Munindar P. Singh,

editors, Readings in Agents, pages 329–349. Kaufmann Publishing, Inc. San Fransisco,

California, 1997.

[156] Andrew Silis and K. A. Hawick. The discworld peer-to-peer architecture. Technical Report

DHPC-028, University of Adelaide, January 1998.

[157] V. Silva, A. Garcia, A. Brandão, C. Chavez, C. Lucena, and P. Alencar. Taming

Agents and Objects in Software Engineering, pages 1–26. Springer-Verlag, 2003. URL

http://twiki.im.ufba.br/pub/Aside/NossasPublicacoes/TAO.pdf.

[158] Munindar P. Singh. A social semantics for agent communication languages. In Frank

Dignum and Mark Greaves, editors, Issues in Agent Communication. Springer, 2000.

[159] James Snell, Doug Tidwell, and Pavel Kulchenko. Programming Web Services with SOAP.

O’Reilly & Associates, 1005 Gravenstein Highway North, Sebastopol, CA 95472, January

2002. ISBN 0-596-00095-2.

[160] Daniel Thalmann Soraia. Virtual humans’ behaviour: Individuals, groups, and crowds.

URL http://citeseer.nj.nec.com/580141.html.

[161] Luc. Steels. Exploiting analogical representations. In Pattie Maes, editor, Designing Au-

tonomous Agents: Theory and Practice from Biology to Engineering and Back, pages 71–88.

MIT/Elsevier, 1990. ISBN 0-262-63135-0.

[162] G. Stephenson. The semantic web - will it work?, May 2001.

202

[163] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of

SIGCOMM 2001, August 2001.

[164] Danny Sullivan. Invisible web gets deeper, August 2000. URL

http://www.searchenginewatch.com/sereport/index.html.

[165] Todd Sundsted. An introduction to agents. How-To Java, June 1998. URL

http://javaworls.com/jw-06-1998/jw-06-howto.html.

[166] Todd Sundsted. The practice of peer-to-peer computing: Introduction and history. develop-

erWorks, 2001. URL http://www-106.ibm.com/developerworks/library/j-p2p/index.html.

[167] Katia Sycara and Joseph Giampapa. The retsina mas infrastructure, January 2001.

[168] Katia Sycara, Joseph Giampapa, Brent Langley, and Massimo Paolucci. The retsina mas,

a case study, 2003.

[169] Katia P. Sycara. Multiagent systems. AI Magazine, pages 79–89, 1998.

[170] Austin Tate, John Levine, Peter Jarvis, and Jeff Dalton. Using ai planning technology for

army small unit operations. URL http://www.aiai.ed.ac.uk/ oplan.

[171] Ian Taylor. From P2P to Web Services and Grids. Springer-Verlag, 2005. ISBN 1-85233-

869-5.

[172] Mario Tokoro. The society of objects. In Michael N. Huhns and Munindar P. Singh, editors,

Readings in Agents, pages 421–429. Kaufmann Publishing, Inc., San Fransisco, California,

1997.

[173] Predrag T. Tosic and Gul A. Agha. Towards a hierarchical taxonomy of autonomous

agents, 2004. URL http://citeseer.ist.psu.edu/710000.html.

203

[174] Stuart J. Tuck. Software agents; a general guide to agent-oriented project development,

1998. URL http://www.spiralnebula.demon.co.uk/Agent/agent.htm.

[175] Toby Tyrrell and John E. W. Mayhew. Computer simulation of an animal environment,

1991.

[176] Robert Valdes. In the mind of the enemy: The artificial intelligence of halo 2. How Stuff

Works, November 2004. URL http://stuffo.howstuffworks.com/halo2-ai.htm/printable.

[177] Steven. A. Vere. Organization of the basic agent. SIGART, 2(4):164–168, 1991.

[178] Steven. A. Vere and Timothy Bickmore. A basic agent. Computational Intelligence 6, pages

41–60, 1990.

[179] The Infosleuth Website. http://www.mcc.com/infosleuth/.

[180] T. White and B. Pagurek. Towards multi-swarm problem solving in net-

works. In Y. Demazeau, editor, Proceedings of the 3rd International Confer-

ence on Multi-Agent Systems (ICMAS’98), Paris, France, 1998. IEEE Press. URL

http://citeseer.ist.psu.edu/white98towards.html.

[181] Gerhard Wiess. Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-

gence. Massachusetts Institute of Technology, 2001.

[182] Nick Wijngaards, Maarten van Steen, Benno Overeinder, and Frances Brazier. Supporting

internet scale multi-agent systems.

[183] Bryce Wilcox-O’Hearn. Experiences deploying a large-scale emergent network. In Proceed-

ings First International Workshop on Peer-to-Peer Systems (IPTPS’02), Cambridge, MA,

March 2002. URL http://www.cs.rice.edu/Conferences/IPTPS02/188.pdf.

[184] Steven Willmott, Jonathan Dale, Bernard Burg, Patricia Charlton, and Paul O’Brien.

Agentcities: A worldwide network open agent architecture.

204

[185] Steven Willmott, Matteo Somacher, Ion Constantinescu, Jonathan Dale, Stefan Poslad,

David Bonnefoy, Jerome Picault, and Juan Jim Tan. The agentcities network architecture.

[186] Michael Wooldridge. Agent-based software engineering. IEE

Proceedings Software Engineering, 144(1):26–37, 1997. URL

http://citeseer.ist.psu.edu/article/wooldridge97agentbased.html.

[187] Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, Ltd,

Baffins Lane, Chichester, West Sussex,PO19 1UD, England, 2001. ISBN 0-471-49691-X.

[188] Michael Wooldridge and Nicholas R. Jennings. Pitfalls of agent-oriented development.

[189] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory

and practice. HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-html.h

(Hypertext version of Knowledge Engineering Review paper), 1994. URL

http://citeseer.ist.psu.edu/article/wooldridge95intelligent.html.

[190] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia methodology for

agent-oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3):

285–312, 2000. URL http://citeseer.ist.psu.edu/article/wooldridge00gaia.html.

[191] I. Wright. Emotional agents. Technical report, University of Birmingham, 1997. URL

http://citeseer.nj.nec.com/wright97emotional.html.

[192] Beverly Yang and Hector Garcia-Molina. Designing a super-peer network.

[193] J. Yang, V. Honavar, L. Miller, and J. Wong. Intelligent mobile agents for information

retrieval and knowledge discovery from distributed data and knowledge sources, 1999.

[194] Sule Yildrum, Turhan Tunah, and Pavel Petrovic. A hybrid task planner architecture for

pick and place sequencing, 2003.

[195] Haizheng Zhang, W. Bruce Croft, Brian Levine, and Brian Lesser. A multi-agent approach

for peer-to-peer based information retrieval systems, July 2004.

205

[196] Ben Y. Zhao, Kubiatowicz, and Antony D. Joseph. Tapastry: An infrastructure for fault-

tolerant wide-area location and routing, April 2001.

[197] Y. Zou, T. Finin, L. Ding, H. Chen, and R. Pan. Taga: Trading agent competition in

agentcities, 2003. URL http://sherry.ifi.unizh.ch/zou03taga.html.

206

	Introduction
	Motivation
	Scope
	Contribution to Current Research
	Structure of the Thesis

	Intelligent Agents
	Definition of an Agent
	Definition 1: Autonomous Servants
	Definition 2: An object with 'attitude'
	Definition 3: A 'rational' software entity

	Definition of an Agent - part 2
	Key Features of an Agent
	Autonomy
	Robustness
	Intelligence
	Adaptability, Personalization and Learning
	Communication and Social Awareness
	Environment
	Mobility
	Personality, Emotion and Believability

	Agent Architectures
	Deliberative Architectures
	Reactive Architectures
	Hybrid, or Layered Architectures

	AT-MAS and Intelligent Agents
	Chapter Summary

	Multi-Agent Systems
	Definition of a MAS
	Societies of Agents

	Types of MAS
	Open Systems
	Closed Systems

	MAS Communication
	Cooperation without Communication
	Nonverbal Communication
	Cooperation with full Communication

	AT-MAS and Multi-Agent Systems
	Chapter Summary

	The Information Environment
	Client/Server
	The Semantic Web
	Web Services
	Client/Peer Oriented
	Peer to peer (P2P)
	Hybrid P2P Systems
	Pure Peer-to-peer
	Super-peer
	Overlay Systems
	Agent Based P2P Systems

	Computational Grids
	Virtual Organisations
	Grid Services

	AT-MAS and the Information Environment
	Chapter Summary

	The Agent Trees Multi-Agent System (AT-MAS)
	An Overview of the AT-MAS Network
	The AT-MAS system in operation
	Building the Agent Tree
	Discovering other agents in the Network
	Expanding the Search Horizon
	Returning Results

	Components of an AT-MAS Node
	The Client Applet
	The Front-End Server
	The Logger Application
	The Admin Application
	The AT-MAS Agent

	The AT-MAS Agent dissected
	The Knowledge Base
	Communications Component
	The Planner Component
	The Status of Actions

	AT-MAS Communications
	Message Format
	Message Fields
	Conversation Format
	The AT-MAS Language
	Support for Other ACLs

	Chapter Summary

	Evaluating the AT-MAS System
	Evaluation by Results
	Obtaining the Results
	Scalability Testing
	Knowledge Base Updates

	Evaluation by Definition
	Is the AT-MAS agent a true agent?
	Is AT-MAS a Multi-Agent System?
	Is the AT-MAS system a viable alternative to existing MASs
	Is the AT-MAS system a viable alternative to Mobile Agents
	Is AT-MAS a P2P System?
	Is the AT-MAS system a viable alternative to P2P

	Chapter Summary

	Conclusions
	Evaluation of the work undertaken
	Evaluation of the AT-MAS system for different users
	Research - General
	Research - Specific
	Commercial
	Leisure

	Problems and Limitations of AT-MAS
	Attack From Within

	Future Work
	Identifying Malicious Agents
	Use of a GUID instead of an address
	Caching to allow for Transient Connections
	Requesting Knowledge Base Information
	Enhancements to the AT-MAS ACL
	Increasing the Parsing Abilities of the AT-MAS Agents
	An Intelligent Interface Agent

	Final Thoughts

