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Abstract 

Comparing data from different subfields of research may help in understanding emerging 

patterns and refining interpretations. This is especially true in neuroscience because brain 

functions can be studied at multiple levels of analysis, spatially and temporally, and with a 

variety of complementary measurement techniques. Within the ERP domain, several subfields 

of research have evolved over time, typically reflecting the specific time-window of interest 

and brain function investigated. The current investigation focused on three widely studied ERP 

effects reflecting a variety of key brain functions: the N400 effect, the P3b effect and the Left 

Parietal effect. The N400 effect has attracted researchers interested in language processing, the 

P3b effect researchers interested in attentional processes and the Left Parietal effect 

researchers focused on episodic recollection.  

 

 

Even though the ERP technology constitutes a common thread across these sub-fields, there is 

often a lack of communication across groups of researchers. The literatures on the N400 effect, 

P3b effect and Left Parietal effect have been written by relatively non-overlapping groups of 

researchers, and as such the kind of analysis carried out in the current thesis is not a common 

one, as it compares effects investigated within different subfields. Specifically, the approach 

taken in the current thesis involves assessment of the comparative reliability of the three 

effects of interest, and at the same time allowing  refining their validity. Results showed that 

all three effects were found to be reliable at the group level and the N400 effect and the P3b 

effect were also found to be reliable at the single participant level. A correlational analysis 

involving all three effects yielded a significant correlation between the P3b and the Left 

Parietal effect but not between the P3b and the N400, or between the Left Parietal effect and 
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the N400. Following up on the significant correlation, suggesting a convergence between the 

P3b effect and the Left Parietal effect, a probability manipulation of the Left Parietal effect 

was carried out to investigate if the old/new effect is sensitive to probability changes similarly 

to the P3b. The size of the Left Parietal effect was found to be sensitive to the relative 

probability of old and new items, in a manner consistent with the P3b effect‟s sensitivity to 

probability manipulations. The results pointing to a relationship between the P3b effect and the 

Left Parietal effect suggest that attentional processes sensitive to probability may temporally 

overlap and confound memory processes as indexed by the Left Parietal effect. 

 

 

The N400 effect, in the initial correlational study, was found to be independent from 

attentional processes as reflected by the P3b, and from episodic recollection as indexed by the 

Left Parietal effect. The validity of the N400 effect as a measure of semantic processing was 

then assessed by manipulating associative relationships while keeping constant semantic 

relationships, with results showing that the effect can be clearly modulated by associative 

changes when semantic relatedness is kept constant. The same association norms were then 

used in an old/new recognition experiment to assess if the Bilateral-Frontal old/new effect 

behaves in reaction to association relationships similarly or differently from the N400, in the 

attempt of assessing if the N400 is only a measure of associative relationships or also a 

measure of the process of familiarity. The observed pattern suggests independence between the 

N400 and the Bilateral Frontal effect. Overall, the N400 effect was found to be independent 

from memory processes occurring in the same time window, but, contrary to the dominant 

interpretation of the effect, the effect was modulated by changes in association strength while 

keeping semantic relatedness constant, suggesting that the N400 effect may be sensitive to a 

contiguity-based associative learning process not constrained to the linguistic domain.  
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Introduction 

 

 

Scientific advancement may occur by investigating one specific domain in a 

progressively more detailed manner, or by comparing results obtained across different 

subfields of research. In the case of brain research, an experimental effect may be 

considered to index a specific brain function, but such an interpretation might be 

refined when data across subfields are compared. Comparisons across subfields may 

illuminate what an experimental effect measures, establishing the effect's wider 

validity (Kerlinger, 1986). In the current work we explicitly compared experimental 

effects within different sub-domains of the electrophysiology literature to investigate 

their functional independence or interdependence, with the ultimate goal of refining 

their validity.  

 

 

Validity assessments are however only possible after an effect has been shown to be 

reliable. In the case of biological sciences including neuroscience, where variability is 

an intrinsic component of the investigated subject matter (Donahoe, 2003) and where 

the measured variables are often not as stable as in other scientific domains (e.g. brain 

activity is not as stable as the length of a table), reliability assessments are especially 
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important. The variability intrinsic to neural phenomena needs to be understood and 

controlled for, and in turn the measurement tools used to describe variables need to be 

reliable and capable of adequately addressing the subject matter. 

 

 

Reliability is typically defined as the degree to which a measurement procedure yields 

the same results across repeated tests (Kerlinger, 1986). In short, it is the stability or 

consistency of a measurement across time. An example of a reliability assessment 

across time would be repeating a test within the same laboratory, while keeping the 

same exact procedure and equipment constant, to test if results are consistent across 

repetitions. An example of a reliability measurement across space would be testing the 

same procedure in different laboratories (with the same or different equipment). 

 

 

A measurement procedure is said to yield stable or consistent results when the same or 

similar values are obtained with repeated testing. If results are not reliable across 

laboratories and research groups, scientific progress may slow down as conflicting 

patterns of results may be found across laboratories.  Such a scenario could create 

contrasting theories and interpretations without solid foundations. By regularly 

checking for reliability across laboratories, unnoticed technical issues may be 

discovered.  Such a practice may thereby facilitate further research and favour 

selection over time of strong and reliable results. 
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When we speak of reliability we are not only referring to reliability across laboratories. 

An experimental effect may be reliable at the group level but may be less reliable than 

another experimental effect at the single participant level. For instance, Effect A may 

be measurable in all participants and Effect B may be measurable only in a portion of 

the participants, while still being replicable at the group level. When the effect is not 

measured in some individuals, the experimenter may ask the question: "Why was the 

effect not present in this specific participant?" One option is to consider the data 

exclusively at the group level and treat the proportion of participants not showing the 

effect as "statistical noise", a natural form of variation present within normally 

distributed groups. 

 

 

An alternative option consists in taking a pragmatic approach and asking what could 

be done procedurally to tighten the relationship between the independent and the 

dependent variable so that the effect of interest will be clearly measurable in each 

participant. It has been argued in fact that if psychology is the science involved in 

studying the behaviour of individuals (and not groups or populations) then an 

experimental effect should theoretically be measurable in all participants (Sidman, 

1960). It is possible, however, that procedural adjustments would not increase the 

degree of experimental control. In that case, the measured variability across 

participants may be due to the phylogenetic history of the individual. Those sources of 

variability may in some cases be controlled for to a degree but not completely 

eliminated, even with tight procedures. 
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Even if reliability is a necessary prerequisite for a validity assessment, a reliable 

measurement does not imply validity, as the experimenter may be reporting a 

measurement that is consistent and stable but inaccurate (see Figure 1). While the 

validity of non-abstracted measurements such as weight might be determined narrowly 

by the quality of measurement tools, abstract variables present many more potential 

sources for inaccuracy. 

 

 

Validity is traditionally divided into different types: construct validity, predictive 

validity and external validity. Construct validity reflects the adequacy of the 

operational measurement in representing the theoretical construct to be assessed. 

Construct validity requires generalizing from the raw measured variable to a 

conceptual label considered to be representative of what has been measured.  For 

example, when it is said that a neuroscientific measurement is considered to reflect 

language processing, what are the bases upon which such labeling occurs? What are 

other possible ways to conceptually label such measurements? Can some experimental 

data be 'explained' by multiple conceptual labels and, if that is the case, do the different 

conceptual labels overlap? If they overlap, which criteria should be used to decide 

what conceptual label is more appropriate? Predictive validity refers to how well the 

score obtained with a specific measurement tool predicts other variables (e.g. how the 

score on a test supposed to measure a psychotic personality trait is able to predict 

future psychotic behaviour). External validity, similarly to construct validity, involves 

a form of generalization: how do the results obtained in the laboratory within a 
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carefully controlled environment generalize to other, less controlled, situations? How 

relevant are the results obtained in the laboratory to the 'outside world‟?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Graphic analogies of possible reliability/validity combinations. The top 

left quadrant shows research outcome of a measurement tool that does not 

measure the variable of interest and also yields unstable results over repeated 

measurements. The top right quadrant shows the outcome of a measurement 

tool that yields consistent results across repeated measurements but does not 

measure the variable of interest. The bottom left quadrant shows a fairly valid 

but relatively unreliable measurement. The bottom right quadrant shows 

outcome of a measurement tool that measures the variable of interest and at the 

same time yields consistent results across repeated measurements (Adapted 

from http://web.idrc.ca/en/ev-56604-201-1-DO_TOPIC.html).  

 

 Neither Valid nor Reliable                                            Reliable but not Valid 

     Valid but not Reliable                                                    Valid and Reliable 

http://web.idrc.ca/en/ev-56604-201-1-DO_TOPIC.html
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Validity can also be convergent or discriminant. Convergent validity refers to the 

degree to which different measures that are theoretically connected by the same 

overarching conceptual label are indeed tightly interrelated. For example, a 

behavioural and a neural measure of episodic memory should converge with each 

other. The related concept of discriminant validity refers instead to measures that are 

theoretically not supposed to be covered by the same conceptual label and in practice 

are found not to be interrelated. 

 

 

In the current work we investigated how adequately specific conceptual labels cover 

several neuroscientific variables of interest. By investigating empirically the 

convergent and discriminant validity of the neuroscientific variables we attempted to 

refine current perspectives on their construct validity. Specifically we investigated the 

validity and reliability of three widely studied neuroscientific effects in the field of 

electrophysiology (see Chapter 1 for a description of the Event Related Potential 

technique used in the current thesis). The effects of interest are the N400 effect, the 

P3b effect and the Left-Parietal old/new effect. They occur in different, partially 

overlapping, time windows following stimulation and, importantly, are considered to 

reflect distinct linguistic, attentional and memory processes (see Chapters 2, 3 & 4 for 

detailed descriptions of each effect). The N400 effect is, in fact, typically described as 

a language-specific effect (e.g. Kutas, 2011; for alternative interpretations see Chapters 

2 and 8; see also Rhodes & Donaldson, 2008). The P3b is considered to reflect 

stimulus categorization, attentional, processes (e.g. Polich, 2007). The Left Parietal 
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effect is found in memory tasks and is considered to reflect the process of recollection 

(e.g. Rugg & Curran, 2007). Taken together the effects allow providing a 

comprehensive picture of reliability and validity of neuroscientific effects across some 

of the most important brain functions and across a variety of time-windows.   

 

 

A possible outcome of the current reliability analysis could be that there are 

differences in inter-individual reliability across experimental effects: some effects may 

be more reliable than others. Differences in reliability measures across effects would 

suggest a higher level of inter-individual variability for an effect compared to others. A 

higher degree of inter-individual variability in an effect compared to the others could 

be interpreted in terms of the phylogeny or ontogeny of behavioural and neural 

variables. Specifically, there may be differences across individuals in the set of genes 

involved in expressing a specific brain function or, given the same genetic endowment, 

different strategies used across individuals in the experimental tasks (e.g. in memory 

tasks some individuals may rely more on imagery than others) or there may be an 

interaction between genes and experience-related strategies (e.g. genetic differences 

may lead to increased inter-individual variability when a behavioural strategy but not 

another is adopted).  

 

 

Despite the fact that the effects studied in the current thesis have been widely 

investigated, there is still no consensus about what they are a measure of. There are 
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uncertainties about the accuracy of the generalization from the raw measured variable 

to the correspondent conceptual label. As we will describe in Chapters 2 & 8, the 

widespread agreement that the N400 is a neural correlate of language/semantic 

processing is put into question by a variety of experiments suggesting that a more 

general associative process may be involved. The P3b has also not been clearly 

characterized in terms of its validity. There is some agreement that the P3b reflects a 

form of stimulus categorization/evaluation (see Chapter 3), but so far the effect has 

eluded a definitive interpretation. Moreover the Left-Parietal old/new effect, 

considered by memory researchers to be a correlate of conscious recollection (see 

Chapter 4) has also been described (Andreassi, 2006; Polich, 2007) not as an 

independent effect, but as a subset of the P3b. It is therefore clear that for each of these 

effects the validity has yet to be completely explored, and the current thesis represents 

a step towards that direction.  

 

 

To achieve those goals a correlational study with a large number of participants 

(N=64) was initially setup to investigate the reliability of the effects (Chapter 5) and 

their discriminant/convergent validity, i.e. their independence or inter-dependence 

(Chapter 6). For instance, a significant correlation between the P3b and the Left 

Parietal effect would suggest that the two temporally overlapping effects may be 

influencing or confounding each other. Conversely, an absence of a relationship 

between the investigated effects would instead suggest (with all the cautions necessary 

in interpreting null results) that in spite of the temporal overlap they represent 
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independent measures of neural activity. Targeted studies were then carried out to 

further investigate validity of the effects of interest. Specifically, since the 

correlational study revealed correlations between the P3b and the Left-Parietal effect 

but not between the P3b and the N400 or between the Left-Parietal effect and the 

N400, the follow-up studies were then designed to:  

 

1. Further investigate if the P3b and the Left parietal effect may be influencing or 

confounding each other by assessing if the Left-Parietal effect is sensitive to 

probability similarly to the P3b (Chapter 7).  

2. Investigate the N400's validity by assessing its sensitivity to changes in degrees 

of association, while keeping semantic relatedness constant (Chapter 8). If the 

effect is modulated by changes in degree of association even when semantic 

relatedness is kept constant, then the typical conceptual labels applied over the 

N400 describing the effect as a measure of semantic processing may need to be 

revised.   

3. Once assessed the N400 effect's sensitivity to association relationships, we 

explored (Chapter 9) the possible overlap between the N400 and the Bilateral 

Frontal old/new Effect (a neural correlate of episodic familiarity, see Chapters 

2 & 4). Some researchers have in fact argued that the two effects are 

indistinguishable and therefore reflect the same underlying process.  
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4. As a corollary, the experiment described in Chapter 9 also allowed refining the 

conceptual label applied over the Bilateral Frontal effect as a measure of 

episodic familiarity.  

 

Summarizing, Chapters 2, 3 and 4 describe the ERP effects explored in the current 

thesis: the N400 effect, the P3b effect and the Left-Parietal effect. Chapters 5, 6, 7, 8 

and 9 present the empirical results of the experiments carried out in the current work. 

Specifically, Chapter 5 focuses on inter-laboratory and inter-individual reliability of 

the three effects of interest; Chapters 6 and 7 focus on the validity of the P3b and the 

Left Parietal effect; Chapters 8 and 9 focus instead on what the N400 effect is (Chapter 

8), and is not (Chapter 9) a measure of, therefore refining current perspectives on its 

validity. Chapter 10 summarizes all empirical results and describes possible theoretical 

implications. 
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Figure 2 The diagram shows the experiments carried out within the current thesis. The 

initial correlational study yielded a significant correlation between the P3b and the Left 

Parietal effect but not between the P3b and the N400 or the Left Parietal effect and the 

N400. Following up on the initial study, a probability manipulation of the Left Parietal 

effect was carried out to investigate if the old/new effect is sensitive to probability changes 

similarly to the P3b. The N400 effect, found to be unrelated to the P3b and the Left-Parietal 

effect in the initial correlational study, was investigated by manipulating association 

relationships while keeping constant semantic relationships, to investigate if the effect can 

be elicited solely by associations – and therefore refining its validity by showing the effect 

is not a measure of semantic processing. Finally, the same association norms were used in 

an old/new recognition experiment to assess if the Bilateral-Frontal old/new effect behaves 

in reaction to associative relationships similarly or differently from the N400, to assess if 

the N400 is only a measure of association relationships or also a measure of familiarity 

memory. 
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Chapter 1 

Event Related Potentials 

 

As the current thesis focuses on the validity and reliability of some of the most widely 

studied late Event Related Potential effects, we will briefly introduce 

Electroencephalography and the relationship between Electroencephalography and 

Event Related Potentials (ERPs). We will also give an overview on ERP data analysis 

before directly addressing the reliability and validity of the ERP effects of interest.  

 

 

1.1 Neural Origins of ERPs 

Electroencephalography (EEG) has proven to be a fundamental tool in investigating 

brain activity and its relation to behaviour and cognition (Swartz & Goldensohn, 

1998). The first measurements were carried out by Hans Berger (Berger, 1969) and 

throughout the last century the nature of the EEG signal has been extensively 

investigated. We now understand that EEG is a measure of brain activity typically 

originating from electrical dipoles produced by large populations of pyramidal 

neurons. However, EEG measures do not allow the experimenter to make inferences 

about how the brain responds to specific stimuli. To achieve that goal, scientists started 
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measuring Event Related Potentials (ERPs). ERPs are obtained by time-locking EEG 

activity to the presentation of stimuli and investigating the average neural response to 

many presentations. The electrophysiological response obtained is a waveform 

depicting changes in voltage overtime that are reliably associated with the specific 

event of interest. 

 

 

The ERP technique has allowed a vast amount of research to be carried out in many 

domains, and the high temporal resolution – in the order of the millisecond – makes 

ERPs important in investigating moment-to-moment changes in brain activity, since 

brain activity itself takes place at the millisecond speed. The purpose of this chapter is 

to describe how neurons generate the electrical activity that is measurable at the scalp, 

to describe EEG measurements and the ERP technique, and to show how ERP data are 

analyzed and interpreted. Finally, the concepts of reliability and validity, core elements 

of the current thesis, will be discussed in relation to ERP measurements.  

 

 

1.1.1 Neurons and synapses 

The neurosciences, considered as a subset of biological sciences, have investigated the 

fundamental constituents of the nervous system (Glickstein, 2006). Specifically, an 

important assumption underlying modern neuroscience is that neurons, the cells 

comprising the nervous system, are the basic building blocks - both from a structural 

and a functional perspective (Cajal, 1909). The structure of a neuron typically 
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comprises a body (also described as “soma”), “dendrites” and an “axon”. The soma is 

the part of the neuron that contains the nucleus and where protein synthesis occurs. 

The dendrites are branched projections of the neuron responsible for conducting into 

the soma stimulation originating from other neurons. By contrast the axon is a single 

projection, originating from the soma, responsible for conducting stimulation to other 

neurons (see Figure 1.1). 

 

 

Neurons are linked to each other via an intercellular space called "synapse" that 

typically connects the axon of the presynaptic neuron with the dendrites of the 

postsynaptic neuron (e.g. Palay, 1956). The pre-synaptic neuron may send an 

excitatory or an inhibitory signal to the post synaptic neuron, and typically different 

neurotransmitters (molecules generated within the soma and released at the synaptic 

button at the end of the axon) have excitatory or inhibitory functions (e.g. glutamate is 

a typical excitatory neurotransmitter while GABA is an inhibitory neurotransmitter 

(e.g. Mattson & Kater, 1989). The neural dendrites are extensively branched and 

receive excitatory or inhibitory signals from many presynaptic neurons. When 

excitatory or inhibitory neurotransmitters enter the synaptic cleft, they reach receptors 

on the dendritic membrane of the postsynaptic neuron (e.g. AMPA receptors) and 

determine variations in the post-synaptic potential. When variations in the post-

synaptic potentials exceed a specific threshold neuronal depolarization occurs, leading 

to an action potential (e.g. Giuliodori & Zuccolilli, 2004).  
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Figure 1.1 The structure of a neuron with dendrites, a soma and an axon. 

The figure also shows multiple synaptic connections between the 

presynaptic neuron and the postsynaptic neurons. (Adapted from Giuliodori 

& Zuccolilli, 2004). 

 

 

1.1.2 Generating an EEG signal 

Neurons typically have a negative electrical potential (-60mV) between the inside and 

the outside of their cellular body, determined by the relative selectivity of the sodium-

potassium “pump” (e.g. Morth et al, 2007). When depolarization takes place, sodium 

channels open and there is a temporary change of 100mV in electrical potential across 

the membrane. Concurrently, an action potential is generated. Action potentials are 

considered to be all-or-none expressions of brain activity, as they do not vary in 

intensity or magnitude. Similarly to digital means of communication, action potentials 

carry information via frequency or rate (e.g. Alle & Geiger, 2006). Although action 

potentials are a central part of neural activity, the neural activation measured by EEG 
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though is not the action potential, but the post-synaptic potential. Importantly the post-

synaptic potentials vary continuously in their magnitude and are therefore an analogue 

transmission of signal (e.g. Teplan, 2002).      

 

 

When active each neuron generates an electrical dipole: a difference in electric 

potential between the soma and the apical dendrites. The dipole generated by a single 

neuron, however, is too small to be detected using scalp electrodes. Simultaneous 

activity of a large number of neurons (thousands to millions) is required to generate a 

dipole measurable at the scalp level (Wood & Allison, 1981; Luck, 2005, pp. 29-31). 

In addition to simultaneous activation, measurement of postsynaptic potentials requires 

that the neurons in question be aligned with each other: many neurons with the same 

orientation will functionally become one dipole whose voltage affects scalp electrodes. 

If neurons in the same area are not oriented in the same direction, dipoles may cancel 

each other (Allison, Wood, & McCarthy, 1986). Also, as the distance of the neurons 

from the scalp electrodes increases, it becomes less likely that their activity will be 

measured. Thus, an EEG recording generally measures well-aligned cortical pyramidal 

neurons (Kutas & Dale, 1997), and changes in post-synaptic potentials from deep 

structures are less likely to be captured by scalp electrodes (Luck, 2005, pp. 29-31).  

 

 

An important factor to be taken into account when discussing the neural origins of 

EEG is the electrical conductance of the structures surrounding the brain itself. The 
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structures between the brain and the surface electrodes are the meninges, the skull and 

the scalp. While the meninges and the scalp are good conductors of electric signals, the 

skull is not - it significantly attenuates the magnitude of the electrical signal (Koles, 

1998).  

 

 

1.2 Recording Brain Activity 

1.2.1 Active Electrodes 

EEG measures voltage differences across different sites using electrodes placed over 

the scalp. As the interest is on voltage differences, at least two electrodes are necessary 

to measure EEG: the active electrode and the reference electrode. Moreover, since the 

EEG will also record a certain amount of noise (e.g. due to external electromagnetic 

sources) a third electrode is fundamental in any basic EEG recording: the ground 

electrode. Oscillations in activity originating from the ground electrode will be 

removed by subtraction, leaving only the voltage between the two scalp electrodes of 

interest.  The most widely adopted arrangement and naming classification for scalp 

electrodes is the International 10/20 system (Jasper, 1958). The international 10-20 

system can be described in terms of electrodes placed on different scalp locations, 

from fronto-polar, frontal, centro-frontal, central, centro-parietal, parietal, parietal 

occipital to occipital sites (see Figure 1.2). The electrodes located closer to the midline 

are usually described as superior electrodes, while the electrodes located farther from 

the midline are termed inferior. Electrodes on the left side of the head have odd 
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numbers, while electrodes on the right side of the head have even numbers; electrodes 

on the midline are labeled with a “z” (e.g. Fz, Cz, and Cpz). In the 10/20 system 

electrodes are placed 10 and 20 percent of the distance from specific points of 

reference in the human head (nasion, inion and preauricular points).  As the number of 

electrodes placed on the scalp increases, it is possible to discriminate with a higher 

spatial resolution the distribution of experimental effects over the scalp (Gevins, 

1990). In many research laboratories there has been an increase over time in the 

number of electrodes adopting an extension of the 10/20 system, including up to 256 

electrodes (Tucker, 1993).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Electrodes placed over the scalp according to the 

International 10/20 system. Black circles indicate the position of 

the original 10/20 system; gray circles indicate the additional 

positions introduced with the 10/10 system. (Adapted from 

Oostenveld & Praamstra, 2001). 
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1.2.2 Reference Electrodes 

If the experimenter is interested in measuring EEG activity from many electrodes at 

the same time, it is important to use a common reference electrode. The level of 

electrical activity measured from the reference site will contribute equally to all the 

other electrodes and therefore voltage differences between the active electrodes will 

not be influenced (Dien, 1998). Throughout the history of EEG research many 

reference sites have been used, and their choice depends on the specific experimental 

questions involved (Osselton, 1965), but typically researchers have chosen reference 

sites as neutral as possible: sites that do not generate a brain signal such as the ear 

lobes, the tip of the nose and the mastoid bones. Using the linked mastoids as a 

reference is a common solution within cognitive neuroscience, because it has the 

advantage of avoiding measuring an inflated activation in one of the two hemispheres 

(Miller, Lutzenberger & Elbert, 1991). Other options exist, however, such as using an 

average of all electrodes as a reference (Bertrand, Perrin & Pernier, 1985). 

Importantly, because reference sites contribute equally to all electrodes, the choice of 

reference will not influence the scalp distribution of ERPs.   

 

 

1.2.3 Analogue to Digital Conversion 

As noted above, because of its neural origins, brain activity detected by surface 

electrodes can be considered equivalent to an analogue signal. Modern amplifiers and 

computers convert the continuous analogue voltage into a discrete digital signal, 

allowing further processing and analysis to be carried out. The analogue signal is 
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sampled at a specific rate (e.g. 250Hz: one data point every 4 millisecond) that needs 

to be high enough to avoid aliasing (see Figure 1.3). According to the Nyquist 

Theorem undersampling may lead to aliasing (i.e. the digitized function does not 

reflect the sampled analogue function) when the sampling rate is less than twice the 

highest frequency in the analogue signal (Srinivasan, Tucker & Murias, 1998). By 

implication, the sampling rate will have to vary accordingly to the highest sampling 

rate present in the ERPs of interest.  

 

 

Figure 1.3 Analogue to digital conversion occurring at increasing sampling rates. The top and 

bottom left quadrants show aliasing due to a low sampling rate compared to the frequency of 

the analogue signal. The top and bottom right quadrants show adequate digital sampling.  

 

 

 

1.2.4 Filtering 

When recording brain activity the EEG data is typically filtered to decrease various 

sources of noise, including environmental noise and noise due to the participant 
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moving or sweating during the experiment (Nitschke, Miller & Cook, 1998). Typically 

high and low-pass filters are controlled during recording via the data acquisition 

software, directly by the amplifiers, or are applied as one of the post-experimental 

processing steps. Typical high and low-pass filters values used in neuroscientific 

research are 0.1Hz high pass and 40Hz low pass. These values vary necessarily as a 

function of the frequency of the specific ERPs to be measured. For example 

measurement of the early auditory brainstem ERPs requires special attention in the 

choice of both high and low-pass filters (e.g. see Doyle & Hyde, 1981). Similarly 

when investigating “slow” ERPs such as the Contingent Negative Variation the choice 

of high pass filter would need to be set in such a way (e.g. 0.01Hz) to avoid 

eliminating the frequencies of interest (e.g. see Chiu, Ambady, & Deldin, 2004). 

 

 

1.3 From EEG to ERPs 

1.3.1 Ocular Artifact Reduction 

In the raw EEG data the neural signal is inevitably contaminated by different kinds of 

artifacts. The main artifacts that need to be eliminated from the EEG are muscular 

noise, blinks (the eye can be considered a dipole whose movements are detected by 

electrodes in close proximity) and electrical noise picked up by the surrounding 

environment (e.g. 50Hz noise). A common solution to eliminate blink artifacts is to 

measure blink activity during the experiment by placing electrodes below and above 

one of the eyes (VEOG), and to also measure activity due to horizontal eye movements 
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(HEOG). A correction procedure can then be applied to eliminate blink artifacts. The 

procedures involved typically employ a regression technique to compute regression 

coefficients for each electrode: a percentage of EOG activity can then be subtracted 

from every electrode. Typically the subtraction is more substantial at fronto-polar and 

frontal electrodes compared to central and parietal electrodes, reflecting the 

distribution over the scalp of an average blink (Lins et al., 1993). Key reasons for the 

prevalence of these correction procedures (Brunia et al., 1989) are 1) that they allow 

larger number of trials to be retained for subsequent analysis than would otherwise be 

the case (i.e. trials that would be otherwise rejected) and 2) they allow participants not 

to attend to their own blinking behaviour. A possible downside to the described 

subtraction techniques is however that the EOG activity removed via correction 

procedures may incorporate some EEG signal, and some real effects may therefore 

disappear with the procedure (especially when investigating frontally distributed 

effects).      

 

 

An alternative approach to ocular artefact reduction consists in rejecting all the trials 

contaminated by EOG artifacts. One problem with this method is that it requires the 

experimenter to set a threshold for rejection of the contaminated trials. The threshold 

will not allow the rejection of very weak blinks (of magnitude comparable to the ERP 

signal) because a similar threshold would also reject ERP activation. Because of this 

limitation, rejecting trials contaminated by eye blinks may lead to a more subtle 

contamination by non-detected weak blinks (Croft & Barry, 2000). Moreover, this 
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approach may unintentionally lead to an arbitrary selection of a subset of trials that are 

not representative of the whole population – because there is a close relationship 

between blinking behaviour and cognition (Anthony, 1985). Another possibility 

consists in instructing participants not to blink, or to only blink only at set times (e.g. 

in between trials). This option would however super-impose another task over the 

often already quite complex behavioural tasks typical of experimental procedures. 

 

 

Although blink artifacts are a potentially major issue it is important to recognize that 

they are not inherent to ERPs per se. For example if the experimenter is interested in 

studying ERP components occurring in the first 50ms post stimulus (e.g. brainstem 

evoked potentials) it is unnecessary to monitor ocular artifacts as the latency of time-

locked artifacts would be longer than the epoch under consideration (Picton et al., 

2000).  

 

 

1.3.2 Averaging 

ERP signals are relatively small compared to the typical EEG signal. EEG data is in 

fact very rich in variability and a large part of the EEG signal is unrelated to stimulus 

presentation and therefore not of interest for the experimenter. Also, extraneous 

sources of noise related to movements or environmental noise are a part of the EEG. 

All of these elements of the EEG are effectively noise that limit the experimenter from 

detecting the signal of interest. These limitations can be overcome by averaging 
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together the portions of the EEG of interest measured over multiple trials. By 

extracting epochs and averaging them the experimenter can increase the signal to noise 

ratio and make sure that the subsequent statistical analysis is not contaminated by 

noise and is instead focused on the subset of brain activity correlated with the 

experimental manipulation. Importantly, the signal to noise ratio will increase as a 

function of the square root of trials included in the average (Perry, 1966), so including 

more trials will improve the ratio, but to obtain successive increases in signal to noise 

ratio progressively higher number of trials will have to be added to the average.  

 

 

While averaging is considered to be fundamental for increasing the signal to noise 

ratio, one important limitation of averaging is introduced by latency jitter (see Figure 

1.4). When the latency of an ERP signal varies, averaging may lead to a substantial 

misrepresentation and distortion of the averaged waveform compared to the raw data 

(see Brazier, 1964). Another potential problem related to averaging is due to the fact 

that background noise can potentially be not completely random in relation to the 

signal. For example, participants may move slightly when stimuli from one condition 

(but not another) are presented, leading to the muscular artefacts to be averaged in and 

becoming a potential confound any subsequent statistical analysis.  
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Figure 1.4 The diagrams show how latency jittering yield a distorted 

average waveform. Peak amplitude and latency of the average waveform 

do not reflect the corresponding measures of the original trials. (Adapted 

from Luck, 2005).   

 

 

 

 
 

1.4 Interpreting ERPs 

When ERPs have been processed the experimenter typically describes and interprets 

the data in relation to the initial experimental hypothesis. As ERPs are used in a wide 

variety of fields, descriptions and interpretations will depend on the background 

specific to the experimenter. Nonetheless, there are some general ways to describe 

ERP data that are common across fields, related to specific characteristics of the ERP 

components. In particular, two criteria used to describe ERPs are the latency and 

polarity of ERP components. 
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1.4.1 Components and Effects 

Originally ERPs were identified based on their latency and polarity. For example, the 

P300 effect was named as such because its peak had positive amplitude occurring 

around 300ms post stimulus. Similarly, the N400 label derived from the fact that the 

component had a negative peak maximal 400ms after stimulus presentation. While in 

some cases this initial way to describe ERPs proved to be accurate and has survived to 

current research, in other cases the initial descriptions were found not to be entirely 

accurate and were adjusted. For example peak latency in the P300 was found to be 

variable and therefore the P300 name did not reflect accurately the described 

phenomenon (Luck, 2005, p. 11). The N400 component, on the other hand, was found 

to be remarkably consistent in terms of peak latency, independently from which 

procedures or modalities were used in the experiment. The “N400” label is still widely 

popular, while the “P300” label has been replaced by the P3a and the P3b ones, as the 

initial P300 component was found to be actually the summation of two 

subcomponents, the P3a and the P3b, distinguishable both in terms of their timing and 

their scalp topography (Comerchero & Polich, 1999; see Chapter 3). 

 

  

Importantly, researchers found a useful way to investigate brain functions by 

subtracting ERPs to stimuli elicited by experimental conditions from one another. For 

example, in memory research the Left Parietal effect (see Chapter 4) is obtained by 

subtracting ERPs to correctly classified new items from ERPs to correctly recognized 

old items. The subtraction procedure allows for common processes occurring across 
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conditions to be excluded from the analysis, and to focus instead on differential 

processing occurring across experimental conditions. For example, subtracting ERPs 

to new items from ERPs to old items may help isolating the active memory function 

while excluding sensory-perceptual processes common across conditions. In general, 

„component‟ is a term referred to individual waveforms while „effect‟ is referred to a 

difference across waveforms.   

 

 

1.4.2 Descriptions based on Topographical Considerations 

Another way to describe ERP results relies on the specific scalp distribution of the 

effect. The Left-Parietal Old/New effect is an important example for the present thesis. 

Although the time course of the effect is important, typically occurring between 500-

700ms post stimulus, the distribution of the old/new difference over the scalp – or 

topography – is what essentially defines the effect (e.g. Wilding, 2000). Similarly, the 

early Bilateral-Frontal effect – occurring prior to the Left-Parietal Effect – and the late 

Right-Frontal effect – occurring after – are also defined based on their topography 

(Allan, Wilding & Rugg, 1998; Friedman & Johnson, 2000; Rugg, 1995; Rugg & 

Curran, 2007).  

 

 

1.4.3 Descriptions based on Procedural and Behavioural Variables 

Other ERP effects, such as the Mismatch Negativity (MMN) or the Error Related 

Negativity (ERN) are defined in relation to procedural and behavioural variables. In 
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the case of the MMN the effect is defined as an early negativity (occurring 150-250ms 

post stimulus) following presentation of a mismatching, or deviant, stimulus compared 

to other standard stimuli (Näätänen et al., 2007). In the case of an auditory experiment 

for example, the deviant may be different from the standard stimuli in terms of its 

frequency (Hz). The deviant stimulus typically yields an early negativity compared to 

the standard stimuli, so the name of the effect reflects the relation between the 

procedure and typical ERP results. The ERN represents an early negativity typically 

detected in the ERPs at the moment when participants responded incorrectly in 

reaction-time tasks (Falkenstein et al., 1990; Gehring, 1992). Although the ERN is 

typically maximal at fronto-central areas of the scalp, the denomination of the effect is 

not based on its topographic distribution, but purely on the relation between 

behavioural and electrophysiological variables.  

 

 

1.4.4 Making Inferences from ERPs 

1.4.4.1 Differences in Topography and differences in Magnitude 

Within the context of ERP experiments there are two ways in which positive results 

are typically interpreted. If the difference in the experimental effect across conditions 

entails the topographic distribution (and if this difference survives further analysis with 

rescaled data, McCarthy & Wood, 1985), then the experimenter can assume different 

neural generators being responsible for the two topographies (or at the very least that 

there are differences in the relative contributions of a common set of generators, e.g. 

Wilding, 2006). If, on the other hand, the topography of the effect is consistent across 
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experimental conditions, but the magnitude of the effect differs, then the experimenter 

can conclude that the same neural generators are differentially involved across 

conditions. It is important to note, however, that absence of differences, both in 

topography and magnitude, are hard to interpret because they may be due to a lack of 

statistical power, an inadequate statistical analysis or to the fact that EEG/ERP 

measures only detect a subset of brain activity.  

 

 

1.4.4.2 Time-course of the Effects 

Another factor that plays an important part in interpreting ERP data is the timing of the 

effects. In fact, both topographic and magnitude differences considered above may 

also involve the timing factor. If, for example, one of two topographies occurs later 

than another or, in the case of the magnitude difference, if, for example, the effect with 

lower magnitude occurs earlier than the effect with higher magnitude. In that specific 

case, given equal topography but different timing and magnitude across conditions, the 

experimenter could make inferences about the reason why the same set of neural 

generators are involved differentially at different points in time.  

 

 

The time course of different ERP effects may also overlap in time. Consequently, to 

avoid possible confounds, ERP researchers try to develop experimental procedures that 

allow for a clean temporal separation of different experimental components and 

effects. One example relevant to the current thesis is represented by the P3b 
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component, a very large amplitude component whose presence may mask other, 

smaller components such as the N400. In priming experiments, for example, 

researchers have developed a specific procedure (e.g. see Hill, 2005) that postpones 

responding to a specific target until a subsequent probe has appeared. This allows the 

N400 component to be measured after the target because the P3b occurs after the 

probe; if the N400 and P3b were allowed to overlap in time the P3b would completely 

overshadow the N400 (see also Chapter 8).  

 

 

1.4.4.3 Source Location 

There is one kind of inference that the ERP researcher cannot safely make about ERP 

data relating to localization of the source generating the effect. In fact, given that a 

specific scalp distribution can originate from a potentially infinite number of 

combinations of sources, it is not possible to deduce what neural generators are 

involved (Helmholtz, 1853). Typically when ERP researchers apply source 

localizations algorithms to their data they also have to introduce a number of 

parameters about the supposed location of the generators themselves (Luck, 2005). To 

some degree this (necessary) input from the experimenter renders the subsequent 

analysis to some degree subjective and influenced by the experimenter's 

assumptions/perspective. Moreover, because of the fact that the same topography 

could theoretically be determined by an infinite number of sets of generators, an 

important cautionary comment is warranted. If two topographies are consistent with 

one another, both visually and statistically, it does not necessarily imply that the effect 
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has been generated by the same neural populations across conditions – because  

different sets of generators can potentially lead to the same topography.  

 

 

1.4.4.4 Statistical Analyses 

Once averaged ERPs are formed the waveforms are compared using statistical tests, 

allowing the magnitude and topography of any ERP differences to be characterized. 

Typically the experimenter will first decide which specific dimension of the ERPs to 

analyse (e.g. differences in mean amplitude, in peak amplitude, in peak to peak 

amplitude or in peak latency). Within the cognitive domain the most common 

approach is analysis of mean amplitudes within a specific time-window (because peaks 

are not always reliably measurable at the individual level). There are however some 

cases though in which peak measures are most prevalent, as in the case of the P3b, 

whose peak latency has been extensively investigated in relation to a large number of 

independent variables (Polich, 2007). The choice of mean amplitude measures is 

especially important when investigating slow components (e.g. the Contingent 

Negative Variation, the Lateralized Readiness Potential, the Left Parietal old/new 

effect) in which there are usually no detectable peaks.   

 

 

Event Related Potential data are typically analysed by means of repeated measures 

ANOVAs. In particular, it is common to investigate the distribution of the effect over 

the scalp by including a factor of location (where each location represents a horizontal 
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chain of electrodes from frontal to parietal sites) that allows, for example, assessing 

whether an effect is frontally distributed or parietally distributed, or perhaps evenly 

distributed over the scalp. Similarly, distributional patterns are assessed using the 

factor of hemisphere, which allows an effect to be described as symmetrical or 

asymmetrical over the scalp. In general, choice of factors to include in the ANOVA 

depends on the specific distribution of the ERP effect, and should allow the 

experimenter to describing the effects in the most accurate way. For example, the 

factor "hemisphere" is fundamental in assessing effects whose distribution is typically 

asymmetrical (e.g. the Left-Parietal old/new effect). 

 

 

As mentioned earlier, topographic analyses represent an attempt to discern qualitative 

differences across conditions in the distribution of the effect over the scalp. This 

assessment is complicated by the fact that differences in dipole strength are 

multiplicative, while ANOVAs are based on an additive model, potentially leading to 

differences in magnitude to be mistaken for differences in topography. For example, a 

condition by location interaction may in fact be the outcome of the same neural 

generators being differentially activated across conditions. To avoid this possibility, 

the condition by location interaction can be followed by a similar analysis carried out 

using rescaled data that are normalized to minimize the multiplicative effect 

(McCarthy & Wood, 1985).  
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1.5 Reliability and Validity of ERPs 

1.5.1 Reliability of ERPs 

Within ERP research there are have been many studies reporting the reliability of ERP 

components and effects (e.g. Pekkonen, Rinne & Naatanen, 1995; Roth et al., 1975; 

Kuperman et al., 1995; Alexander et al., 1994; Gasser, Bacher & Steinberg, 1985; 

Tello et al., 2010; Segalowitz & Barnes, 1993; Segalowitz et al., 2010). For instance, 

ERP research has shown that the auditory N1 (a negative deflection occurring 

approximately 100ms post-stimulus) has high replicability (Roth et al., 1975). Another 

study was carried out by two separate laboratories in Germany investigating reliability 

of the early ERP components involved in visual information processing (Busch et al., 

2006), with results showing consistency across laboratories with respect to both 

latency and topography of the ERP effects. 

 

 

Kuperman and colleagues (1995) assessed reliability of ERP data across six different 

research centers to be able to pool data together in the creation of large data sets. The 

N400 effect was chosen by the authors to carry out the reliability assessment and,  

except for the participants and the experimenters, everything else in the experiment 

was kept constant. More specifically all the laboratories involved used the same type 

of cap, amplifier, acquisition hardware and software. Analysis of the ERP data across 

laboratories did not reveal significant differences across conditions (see Chapter 2 for 

further details). A similar multi-centre comparison (Alexander et al., 1994) using the 
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P3b as the ERP effect to be compared across locations yielded similar results across 

experimental locations (see Chapter 3 for further details). 

 

 

In general there are three main goals to achieve when assessing the reliability of ERP 

results across laboratories (Kuperman et al., 1995).  

 The results from each test should not differ significantly from each other 

 The overall shapes of the waveforms from each of the tests should be similar 

 The designed paradigm should produce components and effects that are 

analogous to those seen in other investigations in the ERP literature.  

 

If the reliability investigation involves examining the same effect across different 

laboratories – as in the current thesis – the experimenter should assess if the effect 

being investigated is topographically consistent with descriptions of the effect in the 

literature (e.g. in the case of the N400 effect elicited with written stimuli there should 

be a centro-parietal maximum validated by a significant Condition x Location 

interaction) within a time window similar to the ones used traditionally (e.g. 300-

500ms post stimulus in the case of the N400 effect, see Chapters 2 & 8). Importantly, 

this topographic characterization within a time-window compatible with previous 

established research should be consistent across laboratories. After topographic 

reliability has been assessed, the experimenter should also evaluate if the magnitude of 

the effect is consistent across laboratories.  
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1.5.2 Inter-individual reliability: the example of the Mismatch Negativity 

Inter-individual reliability of ERPs – the consistency of ERP effects across individuals 

– was investigated by Pekkonen and colleagues (1995) within the context of a 

Mismatch Negativity (MMN) experiment.  The MMN is considered to reflect 

automatic stimulus discrimination (Näätänen, 1992). While the effect showed high 

overall stability, a large variation of the MMN amplitude was found across individuals. 

Inter-subjective variability is considered to be due to the underlying physiological fact 

that each individual has a specific folding pattern of the cortex (and the mapping of 

specific functions to specific areas also varies across participants). The specific cortical 

folding pattern in each individual will necessarily influence the alignment and 

direction of the electrical dipoles measured by ERPs, and consequently the shape of 

the waveforms and the size of the experimental effect may vary considerably across 

individuals (Luck, 2005. pp. 17-20).  

 

 

1.5.3 Validity of ERPs 

When assessing the validity of ERP measures, the goal of the experimenter is to 

evaluate if the ERP measure is actually quantifying what it is supposed to quantify. In 

practice, however, there are a number of strategies that can be adopted when assessing 

the validity of ERP effects. One strategy consists of finding correlations with other 

variables that have already been subjected to a validation process. For example, 

correlations with behavioural variables often serve this purpose. In that case validity is 
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assessed by comparing different levels of analysis. Another possibility is validating an 

ERP effect by comparing it with other established ERP effects whose validity has 

already been assessed. Similarities in the time-course, waveform shape and 

topographical distributions may point towards similarities in the processes involved, 

especially if in both cases there is also a correlation with behavioural variables.  

 

 

Validation in neuroscientific research proceeds by successive approximation: often 

what an effect is deduced by excluding what an effect is not, given the previous 

literature. New experiments are often designed to limit the interpretative scope with 

regards to an effect: by excluding some interpretations the interpretations that are still 

standing will be stronger. For example, to answer the questions: “does the Left-Parietal 

effect measure recollection?”, or “is the amplitude of the P3b a measure of stimulus 

categorization?”, it is therefore necessary to gradually exclude alternative hypothesis 

and refine how the effects measure what they measure.  

 

 

1.5.3.1 Example: Validating the Mismatch Negativity 

An interesting example of validation of an ERP effect is represented by the Mismatch 

Negativity (MMN). The mismatch negativity, considered to be an automatic form of 

discrimination occurring in the auditory cortices, has been deeply investigated to 

understand exactly what kind of discrimination it is correlated with. Does it measure a 

relatively simple form of memory present in the auditory cortices and, if so, is this 
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form of memory dependent on the physical characteristics of the stimuli or on their 

relative probability? As MMN experiments typically involve the presentation of 

standard stimuli (high probability) intermixed with deviant stimuli (low probability), 

experimenters have tried to understand if the differential activation of auditory cortices 

occurred as a function of the different probabilities, or of the physical dissimilarities 

between standard and deviant stimuli, or was independent from those factors.  

 

 

A key experiment investigating the MMN allowed excluding two of the possible 

interpretations. Tervaniemi and colleagues (1994) showed how the MMN did not 

depend on probability or physical features of the stimuli. The experiment used 

regularly descending pitch sequences intermixed with an ascending tone. The MMN 

negativity was present in the contrast between ERPs to descending pitch stimuli with 

ERPs to the deviant ascending tone, independent of the probability or physical features 

of the stimuli. Those results suggest that the MMN is sensitive to deviations to 

preceding stimulation, even when the preceding stimulation constitutes an “abstract 

rule”, such as a descending sequence of tones. The validation process used to examine 

the MMN led to the conclusion that the effect is the product of a discrimination 

process where the deviant stimulus is incongruent with the memory representation of 

the preceding stimulation (Naatanen et al., 2007), regardless of the probability or the 

physical characteristics of the deviant.  More generally this example illustrates the 

importance of a gradual exclusion of alternative hypothesis when investigating what an 

experimental effect is actually measuring. Similarly in the current work we 
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investigated what the N400 effect is and is not a measure of, by showing the effect‟s 

sensitivity to association relationships when semantic relationships are kept constant 

(Chapter 8) and excluding the possibility that the N400 effect and the Bilateral Frontal 

old/new effect reflect the same underlying phenomenon (Chapter 9).     

 

 

1.5.3.2 From validation to Application 

When the validity of an ERP effect has been assessed, the effect can then be used in 

applied and clinical settings, for example, as a diagnostic tool. Assessing the validity 

of ERP measurement is therefore a necessary prerequisite before the measure of 

interest reaches clinical and other applied domains. Importantly, however, the validity 

of an ERP measure is necessary but not sufficient in assessing its utility in applied 

settings (similarly to reliability being a necessary but not sufficient prerequisite for 

validity). The degree of importance of an ERP measure within the applied domain will 

be a function of many factors, including for example how the ERP measure 

discriminates between clinical and non-clinical populations, how reliable the ERP 

measure is at an individual level.  

 

 

Importantly, reliability of ERPs at the individual level is a fundamental criterion in 

assessing if an ERP measure can be used as a diagnostic tool. If an ERP effect is not 

reliably seen at the individual level, but is seen only at the group level, it cannot be 

included by clinicians among their diagnostic tools. Results presented in Chapter 5 and 
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further discussed in Chapter 10 suggest that amongst the three effects investigated in 

the current thesis, the N400 effect and the P3b effect are reliably seen at the individual 

level and can have potential applied and clinical applications, while the Left Parietal 

old/new effect is measured reliably only at the group level.  

 

 

1.6 Summary 

ERPs are the product of postsynaptic potentials reliably associated with experimental 

stimuli of interest, originating mainly from cortical pyramidal neurons. ERPs are 

extracted from the raw EEG, measured by placing electrodes over the surface of the 

scalp while participants perform experimental tasks. Once the raw EEG is digitized, 

filtered and artifacts are removed the stimulus-locked sections of the EEG are averaged 

to obtain waveforms reliably concomitant with experimental stimulation. Using this 

approach the experimenter is able to compare different experimental conditions and 

examine specific ERP effects. Critically, differences may reveal useful information 

about the underlying processes engaged during task performance.  

 

 

Validation of what an ERP effect is a measure (or an index) of may be achieved by 

finding correlations across experimental effects (e.g. see Chapter 6)  or with already 

validated behavioural variables, morphological similarities with other validated ERP 

effects and, more generally, by designing experiments to gradually exclude alternative 
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hypothesis about what the effect may be a measure of (e.g. see Chapters 8 & 9). 

However, whilst  validity assessments are dependent on the reliability of measurement 

tools, reliability itself does not imply validity. Critically, it is only once both reliability 

and validity of ERPs have been assessed that the effects can become useful tools in 

applied and clinical settings. In the ERP literature studies of reliability have typically 

focused on the reliability of ERP effects across laboratories and within laboratory, and 

when inter-individual reliability was investigated (e.g. Pekkonen et al., 1995) it was 

not investigated across effects. To our knowledge, inter-individual reliability of ERPs 

has yet to be investigated within the same pool of participants on a range of established 

effects representing different cognitive functions (see Chapter 5). 
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Chapter 2 

The N400 Effect 

 

The N400 is one of the three late ERP effects investigated in the current thesis. 

Enormous amounts of research on the effect have been carried out since its discovery 

in 1980 but, as for to the P3b and the Left Parietal Effect (described in Chapters 3 & 4, 

respectively), some questions remain about what the effect is actually measuring. The 

purpose of the current chapter is to describe factors influencing the N400 effect and to 

review existing perspectives on its validity and reliability, providing a context for the 

experimental accounts described in Chapters 5, 8 & 9.  

 

2.1 What is the N400 effect?  

The N400 effect is a modulation of the N400 component obtained originally by 

contrasting ERPs to congruous sentence endings with ERPs to incongruous endings 

(Kutas & Hillyard, 1980, see Figure 2.1). Specifically, the incongruous ending was 

found to elicit a relative negativity compared to the congruous ending, and this 

difference was named the N400 effect. Topographically the effect has a broad 

distribution, maximal over centro-parietal electrodes with written words (see Figure 



   Chapter 2: The N400 Effect 

56 
 

2.2) and more frontally distributed with pictures. The effect onsets around 200-250ms 

post stimulus in experiments with written stimuli. Experiments with auditory stimuli 

have shown an earlier onset (e.g. Anderson & Holcomb, 1995; Holcomb & Neville, 

1991), but in general the N400 effect‟s timing, maximal within the 300-500ms 

interval, is remarkably stable across a variety of procedures (e.g., Kutas & Hillyard, 

1980; Van Berkum, Hagoort, & Brown, 1999).  

 

 

 

 

 

 

Figure 2.1 The graph, representing a grand average of ERPs across 

participants, shows the timing of word presentation for three sample 

sentences composed of seven words. An N400 effect was obtained by 

contrasting ERPs to congruous sentence endings (solid line) with ERPs to 

incongruous endings (dashed line). The dotted line represents instead ERPs 

to words within a sentence ending with a physically deviant word. Negative 

is plotted up. (Adapted from Kutas & Hillyard, 1980).   

 

Linguistic experiments with the N400 have been performed not only with spoken and 

written words, but with a variety of stimuli including sign language, drawings, pictures 

and sounds (Kutas, Neville, & Holcomb, 1987; Holcomb & Neville, 1990; Federmeier 

& Kutas, 2001; McPherson & Holcomb, 1999; Van Petten & Rheinfelder, 1995; Kutas 
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& Federmeier, 2011; Chao, Nielsen-Bohlman, & Knight, 1995; Ganis & Kutas, 2003; 

Ganis et al., 1996; Nigam, Hoffman, & Simons, 1992).    

 

 

 

 

 

Figure 2.2 Example N400 effect obtained in a semantic priming experiment with written 

word-pairs by contrasting ERPs elicited by related targets to ERPs elicited by unrelated 

targets. The waveforms and the topographic map show the centro-parietal distribution of 

the effect in the 300-500ms time-window.  

 

 

2.2 Factors influencing the N400  

2.2.1 Amplitude  

The amplitude of the N400 has been found to be influenced by a number of factors. A 

strong predictor of N400 amplitude in experiments using sentences as stimulus 

300-500 ms 
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material is “cloze probability”, that is the percentage of experimental participants 

mentioning a word as the most likely to end a sentence. The higher the cloze 

probability, the more positive is the N400 component, and the larger is the N400 effect 

compared to a low cloze probability baseline (e.g. Kutas & Hillyard, 1984). In other 

words, a large N400 effect can be elicited by contrasting unexpected sentence endings 

to expected sentence endings.  

 

 

As a component, the N400 can be considered a relative negativity that is more 

pronounced with unexpected stimulation (given the preceding context), and reduced 

given predictable stimulation. However, not any kind of “unexpected” stimulation has 

been found to elicit the N400 effect. N400 amplitude, in fact, does not appear to be 

influenced by grammatical errors (Kutas & Hillyard, 1983) or syntactic violations 

(Ainsworth-Darnell, Shulman & Boland, 1998). The kind of unexpected violation 

considered to be responsible for the effect is generally described as meaning-related in 

nature (Kutas & Federmeier, 2011).  
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Figure 2.3 Example of variations in N400 amplitude across different 

experimental paradigms and stimulus materials. (Adapted from Kutas and 

Federmeier, 2000).  

 

 

Within entirely congruent sentences, for example, the amplitude of the N400 

component elicited by each of the words within a congruent sentence decreases as 

word position increases (Van Petten & Kutas, 1990, 1991; see Figure 2.3 for examples 

of N400 amplitude modulations across paradigms and stimulus materials). The 

amplitude of the N400 component has also been found to be larger for low-frequency 

compared to high-frequency words (e.g. Van Petten & Kutas, 1990), and is enhanced 

by tasks requiring imagery (West & Holcomb, 2000). Furthermore, words used 

metaphorically elicit a larger N400 component compared to words used literally 
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(Coulson & Van Petten, 2002; 2007). The amplitude of the N400 component is also 

found to be reduced by stimulus repetition (Van Petten et al., 1991; Olichney et al., 

2000). Importantly, in experiments with word-pairs presented in the auditory modality, 

the N400 effect is sensitive to the delay between the priming and the target stimulus. 

Specifically, the N400 effect is larger with a Stimulus Onset Asynchrony (SOA) of 

800ms compared to 0 and 200ms (Anderson & Holcomb, 1995). 

 

 

The amplitude of the N400 component is also influenced by the abstract logical 

structure of a sentence. For example, negative sentences (e.g. X is not Y) will elicit a 

larger N400 peak compared to positive sentences (e.g. X is Y), regardless of whether 

they constitute accurate descriptions (Fischler et al., 1983). This pattern of results 

points to the interpretation that the N400 effect is indicative of brain responses 

occurring in a preliminary stage of language comprehension, where a negative 

sentence such as “X is not Y” is interpreted as a mismatch, even if it may actually 

constitute an accurate statement (e.g. “the dog is not a building”). According to 

Fischler and colleagues comprehension of negative statements such as “X is not Y” 

occurs at later processing stages compared to the 300-500ms N400 time window. 

While negative sentences seem to be automatically evaluated as mismatches during the 

N400 time-window, Figure 2.4 shows how in positive statements such as “X is Y” the 

N400 effect appears to index differences between true and false statements (Fischler et 

al., 1985), both when a behavioural response is required and when the task involves 

purely language comprehension.  
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Figure 2.4 Example of N400 effects elicited by true and false 

statements. The column on the left shows the effect across five 

midline electrodes when an overt response requirement was 

present; the column on the right shows the effect across the same 

midline electrodes when no overt response requirement was 

present. (Adapted from Fischler et al., 1985).  

 

 

2.2.2 Duration and Latency  

The duration of the N400 effect is, similarly to its amplitude, influenced by procedural 

variables. For instance in semantic priming experiments with word pairs, the time 

course of the N400 effect is a function of the SOA between the prime and the target. 

Specifically, in an experiment with written word pairs (Anderson & Holcomb, 1995), 
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an SOA of 0 yielded a more temporally extended N400 effect, lasting into 500-800ms 

post stimulus, compared to asynchronies of 200 or 800ms; moreover an SOA of 0 

yielded a later onset of the effect compared to the 200 and 800 SOA conditions.   

 

 

Compared to N400 amplitude and duration, the N400 latency is typically stable across 

experimental procedures. However, it has been found to decrease from childhood to 

adulthood (Kutas & Iragui, 1998; Holcomb, Coffey, & Neville, 1992), and then to 

increase again in the elderly at the average rate of 2ms per year (Kutas & Iragui, 1998). 

Moreover, there are two interesting exceptions to the stability of the N400 latency 

within participants. The first is that N400 latency, in a bilingual population, is shorter 

for L1 compared to L2 (Ardal et al., 1990), denoting perhaps a different speed of 

processing in the native language compared to languages that were acquired later on in 

life. The second exception is revealed by experiments (Kutas, 1987) in which 

sentences with anomalous endings are shown with a fast rate of presentation of each 

word (e.g. 100ms per word), causing the effect to be delayed by 80-100ms compared 

to a slower presentation rate.  

 

 

Effects on N400 latency have also been shown during sleep. The N400 effect is 

measurable during sleep, proving to some degree the relative automaticity and 

independence from "controlled" processes in the generation of the N400. However, 

during sleep the effect occurs in a later time window compared to during a wakeful 
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state, depending on the specific sleep stage considered. Brualla et al. (1998) recorded 

ERPs during a semantic priming paradigm involving presentation of word-pairs while 

the participants were awake and while they were asleep, during sleep stages REM and 

II. Importantly, N400 peak latency varied significantly between the awake condition 

and the sleep conditions. As can be seen from Figure 2.5, while, as expected, peak 

latency for the awake condition was 430ms post stimulus, for the REM condition peak 

latency was found to occur at 570ms post stimulus and occurred even later – 680ms 

post stimulus –  during sleep stage II.  

 

 

Not finding distributional differences across conditions, Brualla et al. suggested that 

the same neural generators may be active across conditions, with the experimental 

manipulation influencing exclusively the latency of peaks and effects. More 

specifically, the authors proposed that the reduction in arousal levels between the 

awake and sleep conditions could be responsible for the latency increase, causing the 

lexical processes supposedly involved in generating the N400 effect to slow down. The 

typical consistency of the N400 effects and peaks seen across modalities and 

paradigms could, then, be attributed to the relatively constant degree of arousal across 

modalities, procedures and experimental subjects in awake participants. After having 

described some of the variables influencing N400 amplitude and latency, the following 

section will address evidence and perspectives on the effect's validity.  
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Figure 2.5 Example of variations in N400 latency across different sleep 

stages. The graphs show the typical N400 latency during wakefulness 

and a delayed onset during REM stage and especially during Sleep-

stage II. (Adapted from Brualla et al., 1998).  
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2.3 N400 Validity 

What is the N400 a measure of? Is it a measure of semantic processing, as most of the 

contemporary literature suggests, or is it perhaps a measure of a more general 

contiguity-based associative process as suggested by some recent evidence (Rhodes & 

Donaldson, 2008)? Does the ERP effect parallel the behavioural phenomenon of 

priming? Is the N400 independent from other effects occurring in the same time-

window such as the Bilateral-Frontal old/new effect (also described in Chapter 5, in 

relation to the Left-Parietal old/new effect)? What does the clinical literature suggest in 

terms of the effect's validity? The following sections will attempt to answer these 

questions, some of them outstanding despite more than three decades of research. 

 

 

2.3.1 N400 and priming   

Priming experiments have shown that participants are typically slower when reacting 

to a word preceded by an unrelated context compared to a word preceded by a related 

context (Neely, 1991), where the context may be represented for instance by another 

word, a sentence or a picture. Typically behavioural priming and the N400 effect have 

been found to mirror each other, however there are important exceptions. For instance 

a dissociation between behavioural semantic priming and the N400 effect has been 

found in stimulus degradation experiments. Holcomb (1993) has, in fact, shown that in 

a priming procedure an experimental condition with a degraded target-stimulus yielded 

an increase in the size of behavioural priming effect (compared to a condition 



   Chapter 2: The N400 Effect 

66 
 

presenting intact targets), while the N400 effect did not vary in size as a function of 

stimulus degradation. This pattern of results lead the author to propose that the kind of 

processing indexed by the size of the N400 effect is different from the priming indexed 

by RT data.  

 

 

Another dissociation between behavioural priming and the N400 effect has been found 

in experiments using masked and non-masked priming (Brown & Hagoort, 1993). 

While a significant behavioural priming effect was measured both in the masked and 

the non-masked priming conditions, the N400 effect was measured only in the non-

masked priming condition.  

 

 

In general, while the evidence for behavioural masked priming is strong, the evidence 

for an N400 masked priming effect is scarce (Deacon & Shelley-Trembley, 2000), 

leading to the interpretation that the N400 effect requires conscious attention to be 

measured, while the behavioural priming effect is still measured in conditions not 

requiring conscious attention from the participants.  Therefore if the neural generators 

(i.e. the neural substrates producing the signal) involved in the N400 and in 

behavioural priming overlap, they only overlap partially.  
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2.3.2 Is the N400 effect language specific? 

Current reviews on the N400 effect point to the conclusion that the effect is an index 

of semantic processing (e.g. Kutas & Federmeier, 2011). In investigating the validity 

of the effect it is, of course, important to verify the accuracy of such a statement by 

looking at the available evidence. In fact, if the effect does not index semantic 

processing, many published sets of results would have to be reinterpreted.  

 

 

Because of the fact that the N400 effect was discovered within the context of an 

experiment involving linguistic stimuli (Kutas & Hillyard, 1980, see Figure 3.1), its 

initial interpretation, which has had an heavy influence of subsequent research and 

interpretations, consisted of describing the N400 as a neural correlate of semantic 

processing (Kutas & Hillyard, 1984; Kutas et al., 1984; Heinze at al., 1998; Kutas & 

Federmeier, 2011; Federmeier & Laszlo, 2009; Luck et al., 1996; Bentin et al., 1995). 

The semantic interpretation of the N400 implies that linguistic stimuli, or more 

generally stimuli that carry a degree of semantic information, require special treatment 

(e.g. dedicated processing modules) at the neural level. Why would linguistic stimuli 

be somehow different from other forms of stimulation? One possibility is that perhaps 

human beings have a specific genetic predisposition for acquiring and producing 

language. Another possibility is that, even in absence of a specific predisposition for 

language, other more general human properties (e.g. the ability to learn through 

observation via a mirror neurons system, as discussed by Stamenov, 2002) may 

indirectly mediate language acquisition, comprehension and production.  
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The idea that human beings have a genetic linguistic predisposition was suggested by 

Chomsky (e.g. 1975). Chomsky proposed that natural selection has equipped humans 

with a Language Acquisition Device (LAD) that, via social triggers, allows the child to 

learn a very large number of verbal stimuli and to recombine them in novel ways 

without explicit training. Chomsky (e.g. 1965) also proposed the idea of inherited 

Universal grammar (UG) to explain syntactic regularities across languages and 

cultures. Both ideas have been questioned (e.g. Behme & Deacon, 2008), leading to 

the possibility that a second hypothesis, i.e. that human linguistic capabilities are 

related to a general learning process, may constitute a valid alternative in describing 

how human beings acquire and produce language.  

 

 

If the first hypothesis is correct, then describing the N400 effect as a manifestation of a 

process uniquely tied to semantic processing would be justified. By contrast, if the 

second hypothesis is accurate the N400 can be described as an effect undoubtedly seen 

with linguistic stimulation, but not constrained to such forms of stimulation and, more 

importantly, not necessarily reflecting semantic-specific processes. In fact, while the 

N400 is typically interpreted as a neural correlate of semantic processing, there are 

reasons to think that the effect may reflect a more general process, non-specific to 

language. 
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Figure 2.6 Topographic maps showing N400 effects elicited by the semantic and the 

arithmetic conditions during an early, a maximal and a late N400 time window. 

(Adapted from Niedeggen, Rosler and Jost, 1999b).  

 

  

Experiments with mathematical operations (see Figure 2.6) and with intra-

experimentally created associations using nonsense stimuli and trigrams have in fact 

shown that any contrast between associated and non-associated pairs of stimuli may 

lead to an N400 effect (e.g. Niedeggen, Rosler & Jost, 1999). Associations between 

nonsense stimuli created via matching to sample procedures lead to N400 effects, 

suggesting that the effect is content independent (Haimson et al., 2009; see also Barnes 

Holmes et al., 2005). Of course, it may still be possible to affirm that any association 
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implies semantic processing, but such a broad definition would raise doubts about the 

specificity of semantic processing and the usefulness of considering language as an 

independent cognitive domain, as had been suggested by Chomsky. Overall the results 

of the experiments described in this section point to a possible alternative 

interpretation of the N400 effect, described in more detail in the next section.  

 

 

2.3.3 The associative hypothesis  

Recent evidence from ERP studies (Rhodes & Donaldson, 2008) points directly to the 

fact that the N400 effect is elicited by association relationships and not semantic 

relationships. Indeed, if the effect is not a measure of semantic processing but instead 

reflects a more general associative process, then the applied and clinical studies using 

the N400 as a tool to measure directly language comprehension may have to be 

reinterpreted as studies measuring a general contiguity-based learning process relevant 

in many domains including the linguistic one. This conceptual difference may appear 

to be somewhat subtle, but in investigating validity it is important to be as precise as 

possible in describing what exactly the experimenter is measuring.  

 

 

2.3.3.1 Temporal contiguity and association relationships  

The associative hypothesis is supported by ERP experiments (e.g. Deacon et al., 1998) 

in which disruption of contiguity between prime and target eliminates the N400 effect 

(see also Chapter 8). Temporal proximity between stimuli has in fact been found to be 



   Chapter 2: The N400 Effect 

71 
 

a fundamental variable in the formation of associations at several different levels of 

analysis, starting from the molecular level (temporal contiguity is a key variable in 

developing Long Term Potentiation), to a relatively elementary form of learning such 

as respondent conditioning (e.g. sensory preconditioning). The importance of temporal 

contiguity between stimuli in the formation of associations seen at different levels of 

analysis does not, however, necessarily point to a single contiguity-sensitive process. It 

suggests instead that the sensitivity to contiguity-based associations has been selected 

phylogenetically at different levels of analysis as an adaptive mechanism to shape 

neural substrates according to the regularities present in the surrounding environments. 

When B reliably follows A it is important to learn this association relationship, 

especially if the relationship has a functional consequence for the organism (e.g. 

stimulus A is reliably followed by a reinforcer or a punisher).  

 

 

2.3.4 Clinical Evidence and Validity 

After having suggested that the N400 effect could reflect a general process that goes 

beyond semantic processing and linguistic capabilities, it is useful to review the 

clinical factors affecting the N400 effect to assess if the clinical evidence is consistent 

with the predominant semantic-processing interpretation. One way to investigate 

semantic involvement in generating the N400 has been to compare clinical populations 

with linguistic deficits to controls. For example, the amplitude of the N400 effect has 

been shown to be decreased, and latency delayed, in patients who suffered a stroke in 

the left-temporal lobe, leading to the possibility of using the N400 effect as a tool to 
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quantify deficits in language comprehension (Connolly & D‟Arcy, 2000; Marchand et 

al., 2002).  

 

 

The N400 effect has also been used to investigate language comprehension deficits in 

patients with Broca's and Wernicke's aphasia. Patients with Wernicke's aphasia have 

been found to be particularly impaired in language comprehension. The impairment 

was assessed by Zurif et al. (1974) by showing participant triplets of words, and then 

asking which two out of the three words could be considered to be related. While 

Wernicke patients were unable to perform the task correctly, Broca patients' 

performance was instead close to normal. Similarly, the N400 effect has been found to 

be diminished in Wernicke‟s patients compared to Broca‟s patients.   

 

 

The hypothesis that the N400 effect reflects linguistic processing appears also to be 

supported in studies investigating the heritability of linguistic deficits. The relationship 

between the N400 and linguistic deficiencies was investigated in fathers of children 

with Specific Linguistic Impairment (SLI), starting from the notion that children with 

SLI often have a family history of language disorders. Ors et al. (2002) found that 

fathers of SLI children displayed a smaller N400 effect compared to controls, 

suggesting either a genetic or behavioural link in the linguistic deficit across 

generations.  Overall the clinical evidence appears to support the notion that areas of 

the brain involved in language comprehension are also involved in generating the 
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N400 effect.  The described pattern of results can however be interpreted in two ways: 

either that language comprehension – carried out in Wernicke‟s area – is fundamental 

in the elicitation of the N400 effect, or that the areas damaged in Wernicke's patients 

may be involved in learning association relationships, which are in turn fundamental in 

linguistic capabilities. A more precise look into the neural generators involved in 

eliciting the N400 may help understanding if it reflects a general associative process or 

if it is exclusively a measure of semantic relationships.    

 

 

2.3.5 Neural generators of the N400 and Validity 

Reviewing the neural generators involved in eliciting the N400 effect may help answer 

questions related to its validity. For instance, are the areas typically involved in 

language comprehension and production involved in generating the N400 effect? The 

neural generators involved in producing the N400 effect have been studied in 

experiments using intracranial electrodes (typically in drug-resistant epileptic patients 

who may benefit from a surgical intervention) to reveal the areas where the effect 

originates (i.e. the parts of the brain where the largest difference in 

electrophysiological response is measured). An N400 similar to the one measured by 

surface electrodes is typically measured in the anterior portion of the Medial Temporal 

Lobe (aMTL). This aMTL N400 is measured by contrasting, for instance, the 

electrophysiological response to semantically unrelated/related words in word pairs 

(Nobre, Allison & McCarthy, 1994; Nobre & McCarthy, 1995). Similarly to the 

surface N400 the aMTL N400 is reduced by stimulus repetition (e.g., Smith, Stapleton, 
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& Halgren, 1986; Grunwald, Lehnertz, Heinze. Helmstaedter, & Elger, 1998). The 

sources of the aMTL N400 are most likely located within the rhinal cortex, specifically 

the perirhinal cortex (McCarthy, Nobre, Bentin, & Spencer, 1995).  

 

 

It has to be considered that the medial temporal lobe is in most cases the area where 

electrodes are implanted in epileptic patients, as it typically contains epileptic foci, and 

therefore the number of studies focused on this area investigating the neural sources of 

the N400 may be slightly overrepresented. However, the described intracranial results 

are corroborated by neuropsychological evidence showing that the anterior part of the 

medial temporal lobe is the one involved in a measured loss of semantic knowledge 

known as semantic dementia (Bozat et al., 2000). FMRI data do not converge strictly 

with the intracranial evidence supporting the idea the aMTL constitutes one of the 

main neural generators of the N400, showing instead activation of a wide variety of 

areas, but this may be due to an overall lower signal to noise ratio in fMRI studies 

compared to ERP studies
1
 (Van Petten & Luka, 2005). In general however, the areas 

involved in generating the N400 as detected by several neuroimaging techniques, 

appear to converge with the areas involved in semantic processing (Kutas & 

Federmeier, 2011). 

                                                
1 Another reason for this discrepancy is the fact that the scalp-measured N400 may, at least in 

part, be a function of phase resetting of ongoing oscillatory activity without an actual increase 

in stimulus-induced EEG power (Fell et al., 2004). Since phase resetting does not lead to an 

overall change in neuronal activation, it is not measurable by fMRI.   
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Overall, studies investigating the neural generators of the N400 suggest that the parts 

of the brain involved in elicitation of the N400 are responsible for semantic 

processing. By contrast, however, evidence described in section 2.3.1 appears to go 

against the semantic interpretation of the N400 in favour of an associative 

interpretation. Taken together, therefore, there appears to be a strong need for an 

experimental investigation of the N400 effect in relation to the two kinds of 

relationships described, and such an experimental assessment is described in Chapter 

8.   

 

 

2.3.6 Are the N400 and the Bilateral Frontal Effect the same effect? 

A useful way to refine the validity of an ERP effect is to find out if and how it overlaps 

with other experimental effects. A recent debate in the ERP literature involves the 

possibility that the N400 and the Bilateral Frontal Effect, typically considered to be a 

neural correlate of familiarity memory (see Chapters 5 & 10), might reflect the same 

underlying neural phenomena. The Bilateral Frontal Effect, a frontally distributed 

difference between correctly classified old and new items in a recognition memory 

paradigm, occurs in fact in the same time window as the N400 effect (300-500ms post 

stimulus) and the distributions of the two effects can in some cases be considered to be 

overlapping. While the N400 effect typically has a centro-parietal distribution with 

words, it has in fact been shown to have a more frontal distribution with other stimulus 

materials, pointing to the possibility of an overlap with the topography of the Bilateral 

Frontal Effect.  
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Recently Voss and Federmeier (2010) have proposed that the Bilateral Frontal and the 

N400 effects both reflect semantic processing; specifically that the Bilateral Frontal 

Effect reflects semantic processing occurring during recognition memory procedures. 

These authors suggest that the two effects are similar in morphology and timing and 

compatible in their topographic distribution. While the N400 appears to have a centro-

parietal distribution compared to the Bilateral Frontal Effect, Voss and Federmeier 

argue that, for example, concrete words and pictures elicit a frontal N400 comparable 

with the Bilateral Frontal Effect. Moreover they propose that the presence of the Left 

Parietal Effect (described in Chapter 5) in recognition memory paradigms, compared 

to its absence in language comprehension experiments, may distort the observed 

distribution of the N400 yielding an exceedingly frontal topography.   

 

 

Voss and Federmeier also describe how in repetition experiments with a very short 

delay between repetitions, where familiarity memory should be maximal, the Bilateral 

Frontal Effect is present for meaningful stimuli but not for non-meaningful stimuli 

(Danker et al., 2008), further strengthening their perspective that ties together the 

N400 effect and the Bilateral Frontal effect. Moreover they point out that a large 

number of published studies do not demonstrate that the Bilateral Frontal effect is 

related to familiarity memory, but instead that the Bilateral Frontal Effect is not related 

to recollection (another process involved in episodic remembering and reflected by the 

Left Parietal old/new effect – see Chapter 5). They propose that this logical flaw has 

contributed to a misinterpretation of the effect. For example, Voss & Paller describe 
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how in the pivotal experiment by Curran (2000) a manipulation that affected the Left 

Parietal old/new effect (plurality reversal) did not affect the Bilateral-Frontal old/new 

effect, showing that the Bilateral-Frontal Effect is dissociable from the Left-Parietal 

old/new correlate of recollection, but not necessarily that it is a correlate of familiarity 

memory. Importantly, if the N400 and the Bilateral-Frontal Effect are the same 

phenomenon, this would suggest a possible alternative  interpretation of the Bilateral-

Frontal Effect, namely that it reflects a form of priming, and not a form of familiarity 

memory, as indeed some researchers have proposed (e.g. Paller, Voss & Boehm, 

2007).  

 

 

In the work currently presented we had the chance to examine the relationship between 

the two effects by manipulating association relationships between words within word 

pairs. Specifically, we had both low association and high association word-pairs in two 

different experiments: one a semantic priming paradigm and the other a recognition 

memory paradigm (see Chapters 8 & 9). Even though it is a between-subjects 

comparison, the results are meaningful as they show how the two ERP effects appear 

to behave differently (see Chapter 10 for a discussion), suggesting that the N400 does 

not reflect the same process as the Bilateral-Frontal Effect.  
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2.4 N400 Reliability 

While the N400's validity is still subject to debate, the effect appears to be reliable – as 

discussed in the current section.  When discussing the reliability of ERPs, it is 

important to take into account two forms of reliability: inter-laboratory reliability or 

how the effect is consistent when measured across different laboratory settings, and 

inter-individual reliability, or how the effect is measurable consistently across 

participants (see also the Introduction and Chapter 1). While N400 inter-laboratory 

reliability has been thoroughly assessed in the literature, its inter-individual reliability 

still needs to be adequately described, especially in relation to other ERP effects.  

 

 

2.4.1 Inter-laboratory Reliability 

Kuperman et al. (1995) carried out a thorough investigation on the inter-laboratory 

reliability of the N400 effect. A large number of participants took part in the study 

(N=90; N=15 for each of the six research laboratories involved). The study consisted 

of a semantic priming study involving three experimental conditions: primed words, 

unprimed words and non-words, with ERPs measured after target word presentation.  

Results (see Figure 2.7), showing electrode Cz for each of the 6 research facilities 

involved, reveal a broad consistency of the effect across laboratories. This study 

constitutes strong evidence in favor of the idea that the effect is reliable across a range 

of laboratories and across different samples of participants.   
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Figure 2.7 The waveforms show the N400 effect measured across 

the six laboratory locations involved in a reliability study. The graph 

shows a broad consistency of the effect across laboratories. The 

apparent inconsistency between the laboratory located at MO 

compared to the other sets of results did not prove to be statistically 

significant  (Adapted from Kuperman et al., 1995).  
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2.4.2 Inter-individual Reliability 

Clinical studies have shown the presence of the N400 effect in most of the participants 

having an intact central nervous system; the proportion of participants showing the 

N400 effect has been shown to decrease substantially only when severe damage had 

occurred. The N400 has, in fact, been shown to vary across participants with different 

levels of consciousness due to clinical conditions.  Specifically, Shoenle and Witzke 

(2004) used the N400 successfully to discriminate between clinical patients in a 

vegetative state, in a near vegetative state and affected by severe brain damage. During 

the experiment patients listened to sentences with congruous or incongruous endings. 

An N400 effect was found in 12% of the vegetative state patients, 77% of the near 

vegetative state patients and 90% of the severe brain damage patients, suggesting the 

N400 can be used as an effective tool in assessing levels of consciousness in the 

absence of any behavioural forms of communication. It appears therefore that the 

N400 is less likely to be elicited when in a vegetative state compared to the sleeping 

experiments described by Brualla et al. (1998), suggesting that the N400 is a strong, 

reliable, component present at several degrees of consciousness as long as the brain 

has not reached a vegetative state due to a clinical condition.  

 

 

Even though most N400 ERP studies only report group averages, some studies also 

show (typically a subset of) results at the single participant level. For example, 

Fischler et al. (1985) report individual data from five participants (shown in Figure 
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2.8) and all participants show an N400 effect. However, the proportion of participants 

showing the effect is typically not reported in N400 studies.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 The waveforms show the N400 effect 

measured in five participants. Waveforms show the N400 

component to be more negative for false statements 

compared to true statements across participants and 

experimental conditions (Adapted from Fishler et al., 

1985).  
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In the current thesis we investigated N400‟s inter-individual reliability in a large pool 

of participants (N=64); importantly the effect‟s inter-individual reliability was 

compared with the reliability of the other two late ERP components investigated in the 

current work, the P3b and the Left Parietal Effect. Specifically, we focused (see 

Chapter 5) on comparing the proportion of participants showing the effect of interest 

across experimental effects, a kind of analysis that, as far as we are aware, has not 

been carried out in the previous literature.  

 

 

2.5 Summary 

The N400 effect is one of the most widely studied late ERP effects. Discovered in 

1980 in experiments investigating language processing, its amplitude is highly 

sensitive to a number of factors but primarily to how expected/unexpected current 

stimulation is compared to the preceding context. N400 latency, even if considered 

relatively stable compared to its amplitude, is sensitive to factors including the rate of 

presentation of the experimental stimuli. However, the N400's validity is still debated. 

While there is a large number of researchers describing the effect as reflecting 

semantic processing, there is also some experimental evidence suggesting that the 

effect may actually reflect associative learning. This possibility is further explored in 

an experiment described in Chapter 8. Moreover, the N400 effect has been proposed to 

reflect a similar process as the process indexed by the Bilateral Frontal Effect within 

the same 300-500ms time window. In Chapters 9 and 10 we will further discuss the 
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relationship between the two effects. Chapter 5, on the other hand, will expand current 

perspectives on the N400 inter-individual reliability, not examined in the literature as 

thoroughly as its inter-laboratory reliability, especially in relation to the other effects 

described in the current thesis.  
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Chapter 3 

The P3b Effect 

 

Another late ERP effect investigated in the current thesis is the P3b effect. Similarly to 

the N400 effect, large amounts of research on the effect has been carried out on the 

P3b since its discovery, but it is not yet completely clear what the effect actually 

measures. The purpose of the current chapter is to describe factors influencing the P3b 

effect and review existent perspectives on its validity. Previous research on the P3b‟s 

inter-laboratory and inter-individual reliability will also be described.       

 

 

3.1 What is the P3b effect? 

Although it was originally named P300 because its peak latency occurs close to 300ms 

post stimulus in young adults performing a simple discrimination task, subsequent 

findings show that the P300 is better characterized as a group of sub-components (e.g. 

Jentzsch & Sommer, 2001). In the rest of the Chapter we will describe the P300 

subcomponents and in particular the P3b, shown in Figure 3.1, which is distributed 

parietally and obtained with stimuli presented with a relatively long Inter-Stimulus 

Interval (ISI), and is distinguished from other centro-frontal components that are 
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sensitive to sequence effects and typically obtained with shorter ISIs (see also section 

3.2.2).  

 

 

The P300 was first discovered in 1965 when several studies reported a large positive 

component elicited by task relevant stimuli (Sutton et al., 1965). Importantly it also 

became immediately clear that the amplitude of the positive component was inversely 

related to the probability of the task relevant stimuli. Moreover, researchers found that 

participants had to attend to the stimuli for the effect to be elicited (i.e. the effect could 

disappear if the participant listened only passively to the train of standard and target 

stimuli while engaged in other activity). A number of factors have since been shown to 

influence the P3b, some of them procedural (e.g. probability, task relevance) and some 

are intrinsic to individual characteristics (e.g. clinical factors, age, intelligence), as 

described in the next section. Other members of the "P3 Family" such as the P3a and 

the no-go P3 will be discussed next, however, with the goal of reviewing the P3b's 

validity, i.e. understanding what the effect is a measure of in relation to other closely 

related components/effects. With the same goal, current interpretations of the effect 

will then be discussed, before the final part of this chapter assesses the effect‟s 

reliability both across laboratories and across individual participants, to provide a 

complete P3b background for the experimental investigation proposed in the current 

thesis.  
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Figure 3.1 Example of P3b effect obtained in an oddball experiment with 

auditory stimuli, contrasting ERPs elicited by targets to ERPs elicited by 

standard stimuli. The waveforms and the topographic map (target minus 

standard) on the right show the classic parietal maximum of the effect in 

the 275-400ms time window (Adapted from Chapter 5).  

 

 

3.2 Factors influencing the P3b effect 

3.2.1 P3b Amplitude 

The amplitude of the P3b effect increases as the relative probability of discriminated 

target stimuli decreases compared to the probability of standard stimuli
2
 (see Figure 

                                                
2 Leading directly to the experimental hypothesis underlying the probability manipulation of 

the Left-Parietal old/new effect described in Chapter 7. 

ms 

275-400 ms 
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3.2). Moreover, P3b amplitude increases as the target-to-target interval increases 

(Gonsalvez and Polich, 2002; see Figure 3.3). Rapid stimulus presentation (while 

keeping target probability constant) leads in fact to an overall decrease of P3b 

amplitude, compared to slower rates of presentation, leading to the interpretation that 

attentional resource allocation may be a fundamental variable in regulating P3b 

amplitude (Polich, 2007).  

 

 

Other work has revealed that the P3b is sensitive to “consequences” (e.g., Roger & 

Galand, 1981; Miltner, Larbig & Brown, 1986; Sommer, 1987; Sommer & 

Schweinberger, 1992). For example, Sommer and Schweinberger delivered 

reinforcement contingent on peaks with large amplitudes, but not to the peaks with 

small amplitudes, to see if amplitudes were sensitive to their consequences. In a yoked 

control condition, consequences were delivered randomly. Only in the condition in 

which reinforcement was contingent on large amplitudes did the amplitudes increase, 

thereby suggesting a reinforcement effect. Similarly, Miltner, Larbig and Brown 

(1986) reported that behavioural reaction times were significantly shorter in a 

condition where large amplitude P3b waves were reinforced compared to those in a 

condition in which small amplitude P3b waves were reinforced. Moreover, as the 

amplitude of the ERP response increased, reaction times decreased (see also Holm, 

Rantaaho, Sallinen, Karjalainen & Müller, 2006; Begleiter, Porjesz, Chou & Aunon, 

1983; Donchin & Lindsley, 1966; Gonsalvez & Polich, 2002; Bahramali, Gordon, Li, 

Rennie, Wright & Meares, 1998). 
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Figure 3.2 P3b Amplitude as a function of target probability. 

The size of the P3b clearly increases as target probability 

decreases (Adapted from Duncan-Johnson and Donchin, 

1977).   
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Johnson (1986; 1988) has proposed that there are three general factors involved in 

determining P3b amplitude. Two of these factors, subjective probability (see also 

section 3.2.4) and stimulus meaning are both modulated by a third factor representing 

the overall amount of stimulus information transmitted. According to the model 

presented by Johnson (1986; 1988) the amplitude of the P3b is therefore a function of 

the amount of information transmitted to the participant, multiplied by the effects of 

subjective probability and stimulus meaning which sum together. For Johnson stimulus 

meaning indicates the salience that a stimulus has given its emotional content, the fact 

that it contains relevant feedback information and the fact that it is a target stimulus in 

the task.  

 

 

Although Johnson accounts for the modulation of the P3b in healthy adults, clinical 

factors have also been found to influence P3b amplitude. For example, reliable 

differences have been found in P3b amplitude between Alzheimer patients and 

controls (Polich & Pitzer, 1999). Moreover, the effect has been used to study clinical 

psychiatric disorders such as alcoholism, schizophrenia and depression (e.g. Pritchard, 

1986; Courchesne, 1990; McCarley et al., 1993; Begleiter & Porjesz, 1995; Bruder et 

al., 1995; Boutros et al., 1997). For example, the size of the P3b effect has been found 

to be reduced in individuals at risk of alcoholism compared to controls (Porjesz & 

Begleiter, 1990). The P3b is clearly reduced in alcoholic individuals but the reduction 

is not due to the short term effects of alcohol on the brain, as even after prolonged 

sobriety its reduced amplitude persists (Duncan et al., 2009).  
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Figure 3.3 P3b Amplitude as a function of target-to-

target interval. Both with auditory and visual 

stimulation the figures show an increase in 

amplitude of the P3b as target-to-target interval 

increases (Adapted from Gonsalvez and Polich, 

2002).  
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Schizophrenic patients also show a reduced P3b amplitude; interestingly this reduction 

is seen for auditory but not for visual stimuli (Duncan et al., 1987) and is also seen in 

first degree unaffected family members (Price et al., 2006). Individual differences in 

intelligence have also been found to affect P3b amplitude, producing a correlation with 

fluid intelligence in an auditory discrimination experiment (De Pascalis, Varriale & 

Matteoli, 2007). Specifically, high ability participants displayed larger P3b amplitudes 

compared to lower ability participants. Higher ability participants have moreover been 

found to perform better at discriminating auditory pattern violations compared to lower 

ability participants. This superiority in performance is itself correlated with larger P3b 

amplitude (Sculthorpe, Stelmack & Campbell, 2009).  

 

 

In sum therefore, P3b amplitude has been shown to be influenced by a number of 

procedural, clinical and individual factors. Among the procedural factors, subjective 

and objective probability of target stimuli, together with target-to-target interval, 

appear to be critical variables in influencing the effect's amplitude. P3b amplitude has 

also been found to decrease in a number of clinical conditions, including alcoholism 

and schizophrenia, but to increase in individuals showing a higher degree of fluid 

intelligence. The next section will examine factors influencing P3b latency.  
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3.2.2 P3b Latency 

P3b latency is typically considered to reflect the timing of stimulus 

evaluation/categorization. Early studies suggested that P3b latency was a measure of 

stimulus categorization speed, uninfluenced by response selection processes (Kutas, 

McCarthy & Donchin, 1977; Duncan-Johnson, 1981), such that peak latency and 

behavioural reaction time could be manipulated independently (McCarthy & Donchin, 

1981). According to this view, overt reaction times represent the summation of 

stimulus evaluation and response selection processes, with P3b peak latency a measure 

of the former but not the latter. One of the arguments typically brought in favor of this 

hypothesis is the fact that P3b peak latency can occur after the behavioural response, 

leading to the idea that the P3b could not be involved in response preparation and 

execution
3
. Smulders et al. (1995) studied P3b latency as a function of stimulus 

degradation and response complexity. Response complexity was defined by requiring 

in certain trials a single button press (simple condition) while requiring in other trials a 

specific sequence of button presses (complex condition).  P3b peak latency was found 

to be sensitive to stimulus degradation regardless of response complexity (see Figure 

3.4), further strengthening the idea that P3b Latency reflects stimulus 

evaluation/categorization processes independently from response selection processes.    

                                                
3
 This finding (Kutas, McCarthy, & Donchin 1977) was observed especially after "error" trials, 

and might have been confounded by the fact that, unknown at the time, error trials are typically 

followed by a late error positivity (Falkenstein, Hoormann, Christ, & Hohnsbein, 2000). 
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Figure 3.4 P3b Latency as a function of stimulus degradation and 

response complexity. The figure shows how P3b latency increases 

when stimuli are degraded, regardless of response requirements 

(Adapted from Smulders et al., 1995). 

 

 

Contrary to the stimulus categorization interpretation, Verleger (1997) has described 

how, when responding is fast, peak latency appears to be influenced by both stimulus 

categorization and response selection. In fact, Verleger et al. (2005) have also 

suggested that the P3b may not represent an index of stimulus categorization at all, but 

instead it may reflect mediation between stimulus categorization and response 

selection. This hypothesis receives support from data showing that P3b amplitude does 
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not vary between response locked and stimulus locked ERPs, and that peak latency 

varies as a function of response speed in both stimulus and response locked ERPs. 

Verleger and colleagues also suggested that the P3b cannot be a measure of decision 

making process, because in response locked averages the P3b peak occurs 

approximately at the same time as the behavioural response, and therefore the moment 

at which the decision occurred must have been at least 100ms prior to the behavioural 

response (and to the P3b peak).  

 

 

To complicate matters further some researchers (e.g., Hohnsbein, Falkenstein, 

Hoormann, & Blanke, 1991; Falkenstein, Hohnsbein, & Hoormann, 1994) have 

distinguished between a stimulus related P3 and a response related P3 (named P-SR 

and P-CR), involved in stimulus updating and response updating, respectively. 

Similarly to P3b amplitude, P3b latency has been found to correlate with fluid 

intelligence in an auditory discrimination task (Pascalis, Varriale & Matteoli, 2007). 

Specifically, high ability participants display shorter P3b latencies compared to lower 

ability participants. 

 

 

Overall, P3b latency appears to be influenced by the time required to 

evaluate/categorize a stimulus in an experiment. When responding is fast, however, 

P3b latency has been found to be influenced by both stimulus categorization and 

response selection processes. Similarly to P3b amplitude, individuals with higher 
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levels of fluid intelligence show shorter P3b latencies. The next section will examine 

the P3b across different experimental tasks.   

 

 

3.2.3 Experimental Tasks 

The P3b component can be elicited in a single stimulus task, where the target stimulus 

is presented at varying intervals with no standard stimuli presented (see Figure 3.5). It 

can also be elicited in an oddball paradigm where standard and target stimuli are 

presented intermixed with each other (and the target is typically presented less 

frequently than the standard stimulus). Additionally, the P3b can also be elicited in a 

three stimulus paradigm, where, together with the standard and the target stimuli, 

infrequent distractor stimuli are also presented. In this context distractors have been 

found to elicit a component whose timing and distribution is different from the 

component elicited by target stimuli. These distractors effects occur earlier and are 

more anteriorly distributed compared to the P3b component elicited by targets. This 

distractor effect has been labeled the P3a effect (see Figure 3.5; discussed further in 

Section 3.3.1). Importantly, however, in all three paradigms ERPs to target stimuli 

(recorded in young adults) elicit a component that is maximal at parietal sites, with a 

peak latency of 300ms post stimulus for auditory stimuli, and 400ms for visual stimuli 

(Polich, 2004; Johnson, 1993).  
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Figure 3.5 Panel a) shows an example of P3b effects obtained in 

three different paradigms: the single stimulus paradigm, the oddball 

paradigm and the 3 stimulus paradigm (Adapted from Polich, 2007). 

Panel b) shows differential topographic distribution of the P3a 

(shown at the top) and the P3b effects. The distribution of the P3a 

shows a central maximum while the distribution of the P3b shows a 

parietal maximum. (Adapted from Conroy & Polich, 2007). 

 

3.2.4 Task Relevance 

Task relevance can be described as the amount of attention an individual is paying to a 

form of stimulation. For example, in an oddball paradigm a P3b effect is measured 

when the participant is listening to the stimuli and pressing the button to the target 

stimulus, but might not be present if the participant is engaged in another activity such 

a) b) 

P3a 

P3b 

__________ 

______ 

_______ 
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as reading a book. Importantly, the task relevance effects and the probability effects 

interact with each other in such a way that, if the participant is not attending to the 

train of stimuli, the relative probability of standard and target items is not going to be 

relevant. Moreover, even when the participant is attending to the stimuli and the 

relative probability of target and standard stimuli is equal, ERPs to targets are still 

more positive than ERPs to standard stimuli, indicating that the P3b is sensitive to the 

task-relevance, or targetness value, of the presented stimuli (Katayama & Polich, 1996, 

see also Chapter 6). Mecklinger and Ullsperger (1993) carried out a study in which the 

stimuli were five words, all equally probable, finding that any stimulus that was 

defined as the target had higher P300 amplitude. Based on these findings  Rosenfeld et 

al. (2005) conclude that stimulus categorization (and therefore target vs. non-target 

categorization) may play and important role in determining subjective probability and 

therefore in influencing P3b amplitude.   

 

 

A clear example of the importance of task relevance is seen when several trains of 

stimuli are presented concurrently to the participant; the P3b is larger to stimuli the 

participant is instructed to attend to. For example, if two separate trains of stimuli are 

presented in the left and the right ear, both of them involving frequent and infrequent 

stimuli, the P3b effect will be measured exclusively in relation to the ear the 

participant has been instructed to pay attention to, so that the stimuli presented to the 

ear that has been ignored will be essentially irrelevant in terms of the elicited ERPs 

(Hillyard et al., 1973). In experiments involving sensory/perceptual ERP effects such 
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as the Mismatch Negativity (see also Chapter 1), it is often difficult to "eliminate" the 

subsequent large P3b due to the fact that the participant is attending to the stimuli. As 

the MMN is considered to reflect a form of memory originating mainly from 

perceptual sensory cortices, it is not necessary for the participant to be attending to the 

train of (standard and deviant) stimuli presented. In fact researchers interested in the 

MMN typically present a train of auditory stimuli while the participant is engaged in 

another activity (such as watching images from a TV). The purpose of the other 

activity is to "capture" the participant's attention, thereby leaving the concurrent MMN 

effects uninfluenced by the P3b presence. It should be acknowledged, however, that in 

spite of the experimenter's effort, in some cases attention can "involuntarily" shift to 

the unattended task, especially when it involves presentation of highly meaningful 

stimuli (Graham & Hackley, 1991).  

 

 

The complexity of evoking “attention” as an explanatory factor is highlighted by 

findings from sleep studies. Findings show that even during sleep, participants may 

still be “attending” to stimuli as detected by the P3-like effects (similar to the N400 

measured during sleeping described in Chapter 2). Passive attentional processes might 

be engaged during sleep, specifically in Stage II, as shown by a variety of experiments 

describing a large positive component in a time window between 400 and 800ms (e.g. 

Salisbury, 1992) in reaction to infrequent stimuli presented in an oddball paradigm. 

Moreover, during paradoxical sleep participants have been shown to respond 

differentially to their own name compared to other names, while keeping stimulus 
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probability constant (Perrin, 1999). In summary, therefore, it is clear that task 

relevance plays a fundamental role in the elicitation of the P3b effect. If the participant 

is not attending to a train of stimuli, the effect may disappear. However researchers 

have also found that there may often be some residual attention occurring when the 

participant is engaged in concurrent activity and even during some sleep stages. Within 

a train of stimuli, target stimuli typically show a larger P3b, and it has been proposed 

that this effect may be due to the subjective probability of target stimuli being lower 

compared to the subjective probability of non-targets. The next section will examine 

the P3b's validity in relation to other P300 subcomponents and will also examine 

neural sources involved in generating the effect, in an attempt to elucidate what the 

P3b is a measure of. Finally, with the same goal in mind, theoretical interpretations of 

the effect will also be described.  

 

 

3.3 P3b Validity 

Given the large amount of P3b research carried out in the past 40 years it might be 

expected that there would be clear consensus on what the P3b is and is not a measure 

of. However, in spite of the considerable number of studies, researchers have still to 

reach agreement on what the P3b is measuring. The following section describes some 

effects that are part of the P3 “family”, whose descriptions may help elucidating what 

the P3b is by describing how it is different compared to the P3a, the novelty P3 and the 

no-go P3. Subcomponents of the P300 that are differentially sensitive to sequence 
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effects, and similarities with the old/new Left Parietal effect (described extensively in 

Chapter 4), will also be discussed. Moreover neural sources and explanatory theories 

will be discussed in addressing questions related to the P3b's validity.    

 

 

3.3.1 The P3a, novelty P300 and no-go P300.  

The P3a, the "novelty P300" and the no-go P300 are considered to be part of a family 

of ERP components distinguished from the P3b. While the P3b is elicited by task 

relevant stimuli, task irrelevant infrequent stimuli have also been shown to elicit a 

positive waveform (Polich, 2007; Squires at al., 1975). This positivity, whose peak 

occurs earlier compared to the P3b, has been named P3a (shown in Figure 3.5). The 

"novelty" P300 is elicited by perceptually novel stimuli (e.g. dog barking) in a train of 

non-novel stimuli, and the no-go P300 is elicited by non-novel stimuli used as 

distractors in a three-stimulus paradigm (Polich, 2007). The results of Principal 

Component Analysis (PCA) suggest that the novelty P300 can be distinguished from 

the P3b, but not from the P3a (Simons et al., 2001). Polich and Comerchero (2003), 

using visual stimuli, and Combs and Polich (2006), using auditory stimuli, 

demonstrated in turn that the novelty P300 and the no-go P300 reflect the same ERP 

component. As noted above Figure 3.5 shows the difference in topography between 

the P3a, displaying a central maximum, and the parietal maximum P3b (Conroy & 

Polich, 2007). The P3a, and novelty processing in general, are considered to reflect 

contextual effects while the P3b - since it involves repetition of stimuli - is considered 

to engage top-down processes (Ranganath & Rainer, 2003). Compared to the P3b the 
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P3a has a relatively shorter latency and habituates more rapidly (Courchesne et al., 

1975; Knight, 1984), is considered to reflect frontal lobe activation (Friedman and 

Simpson, 1994; Knight, 1997) but like the P3b is measurable across modalities 

(Yamaguchi and Knight, 1991; Fabiani et al., 1998). The next  section will show how 

Independent Component Analysis (ICA) has also helped fractionating the P300 into 

subcomponents differentially sensitive to sequence effects.  

 

 

3.3.2 Sequence Sensitive P300 Subcomponents.  

ICA has shown the P300 component to comprise a number of different 

subcomponents, some of which are sensitive to sequence effects – that is a specific 

sensitivity to repetitions and alternations of stimuli. Behavioural reaction times and 

P300 amplitude have both been shown to be affected by lower order and higher order 

sequence effects. For example analyses conducted by Jentzsch and Sommer (2001) 

showed that the P300 component can be divided into at least three subcomponents, of 

which two, more centrally distributed, are sensitive to sequence effects, while the third, 

parietally distributed, did not show sequence sensitivity (see Figure 3.6). Jentzsch and 

Sommer suggest that the parietally distributed subcomponent is likely to represent 

what in the literature typically refers to as the P3b: "The sequence-insensitive ICA 

component shows a parietal distribution in line with the often reported Pz-maximum of 

the classical P300 component as observed, for example, in response to rare target 

stimuli (..) it is tempting to speculate that the parietal component may reflect the lion‟s 

share of what is usually termed the P3b component, whereas the more anterior 
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sequence-sensitive components are separate phenomena." (Jentzsch and Sommer, 

2001, p. 615). In the next section we examine the possibility of a relationship between 

the P3b and the Left Parietal old/new effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 P300 subcomponents extracted via Independent 

Component Analysis show the two subcomponents at the top 

to be more centrally distributed, to be sequence sensitive and 

hand specific. The subcomponent at the bottom was instead 

found to be distributed left-parietally, not to be sensitive to 

sequences and not to be hand specific (Adapted from Jentzsch 

and Sommer, 2001). 

 

3.3.3 The P3b and the Left Parietal effect 
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One important way to investigate the validity of ERP effects is via a direct comparison 

of effects that are supposed, based on previous experimentation, to be measuring 

different variables, but nonetheless show some morphological similarity of the 

waveforms, temporal overlap, or topographical resemblance. On this basis the P3b and 

the Left-Parietal old/new effect have often been considered related: both are large 

parietal positivities, occurring within overlapping time-windows. In the current thesis 

we investigate directly the possibility that the P3b and the Left Parietal effect may not 

be independent from each other (see also Chapter 4 for a detailed description of the 

Left Parietal effect and Chapters 6, 7 and 10 for experiments and further discussions 

about the relationship between the two effects). Here we anticipate some background 

information on the Left Parietal effect to start drawing a comparison between the 

old/new effect and the P3b effect.  

 

 

ERP scientists involved in memory research consider the Left Parietal old/new effect 

as indicative of episodic recollection, predominantly on the basis of correlations with 

behavioural measures such as source memory performance. For example, the size of 

the Left-Parietal effect is in typically enhanced (e.g. Wilding & Rugg, 1996) for trials 

in which participants correctly recognized an item as old and also remembered specific 

contextual details about the trial (e.g. the part of the screen in which the word was seen 

during study) compared to trials in which participants correctly recognized an item as 

old but did not remember contextual details. Similarly, if ERP data are split according 

to Remember-Know judgments expressed at test, the size of the Left-Parietal Effect is 



   Chapter 3: The P3b effect 

 

 104 

larger for the trials in which participants Remember the specific study trial, compared 

to trials in which participants simply Know the item is old (e.g. Smith, 1993), 

suggesting that the Left-Parietal effect is correlated with the participant recollecting 

the specific episode, as compared to having a feeling of familiarity unaccompanied by 

contextual details. However, despite the specific link with episodic memory, some 

textbooks report that the Left Parietal Old/New effect is as a subset of the P3b 

(Andreassi, 2006), even though evidence to the contrary has been also described 

(Herron et al., 2003). Based on Section 3.2.4 (and later in Chapters 6 & 7), if the Left 

Parietal old/new effect is a subset of the P3b then the relative positivity of old 

compared to new items in a recognition memory experiment may simply reflect the 

task relevance/target value of old items compared to new items in recognition memory 

tasks. As proposed by Rosenfeld et al. (2005) this targetness effect may be due to the 

lower subjective probability of target (old) items compared to non-target (new) items, 

leading to a P3b-like probability effect between old and new items even when the 

objective probability of old and new items is kept equal, as in the typical old/new 

recognition experiment.  

 

 

It has also been proposed that if the P3b is involved in a comparison between external 

stimulation and an internal representation (see Section 3.3.4), where a "match" or 

"mismatch" decision is made, with matching stimuli having higher amplitude than 

non-matching stimuli. From this perspective it makes sense to describe the Left 

Parietal old/new difference as a subset of the P3b, in line with the description given by 
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Polich (2007): "Stimulus representations (words, objects) maintained in memory from 

previous exposures such as in a working memory or recognition task can produce P300 

components to the reoccurrence of that stimulus that are larger than those from 

stimulus items not previously encountered". Chapters 6 & 7 will directly explore the 

relationship between the P3b and the Left Parietal effect, to investigate if the apparent 

temporal and topographic overlap between the two effects may be due to what 

Andreassi and Polich have proposed. As a background for the empirical studies the 

next section will review evidence regarding neural generators of the P3b, to verify the 

accuracy of proposed interpretations of what the P3b is a measure of (e.g. stimulus 

categorization), and to provide further evidence regarding the apparent independence 

between the P3a and the P3b.  

 

 

3.3.4 Neural Sources 

Initial studies on the neural sources involved in generating the P3b component were 

focused on the hippocampal formation, starting from the notion that the P3b reflects 

attentional and memory processes. Many studies using intracranial recordings have 

also investigated the role of the hippocampal formation in generating the P3b, as 

intracranial electrodes are often implanted in the medial temporal lobes of epileptic 

patients for diagnostic and monitoring purposes. These studies suggested an 

involvement of the hippocampal formation in generating the P3b (e.g. Halgren et al., 

1980; McCarthy et al., 1989; Halgren et al., 1995). Specifically an intracranially 

recorded version of the P3b, named the Medial Temporal Lobe-P300 (MTL-P300) 
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because it is recorded from Medial Temporal Lobe areas, is elicited by rare stimuli in 

an oddball paradigm and originates directly from the hippocampus proper (e.g., 

Halgren et al., 1980; Grunwald et al., 1999). Follow-up scalp recordings on human and 

non-human animals that had undergone excision of the hippocampus found, however, 

that the hippocampal formation may only indirectly contribute to generating the P3b, 

as the P3b was found to be unchanged between hippocampal and non-hippocampal 

participants (Polich and Squire, 1993). In fact a wide variety of areas have been shown 

to contribute to the scalp-recorded P3b, but the temporal-parietal lobe junction appears 

to be especially important (Johnson, 1993; Verleger et al., 1994).  

 

 

Evidence from other forms of imaging such as MEG and PET (Halgren, Marinkovic, 

& Chauvel, 1998) also suggests that a variety of areas are involved in generating the 

P3b, specifically the amygdala, hippocampal formation, cingulate cortex, temporal 

lobe, thalamus, inferior parietal lobe, orbital frontal cortex and dorsolateral prefrontal 

cortex. Event Related fMRI experiments have found that processing of low probability 

visual stimuli is associated with a BOLD signal present in the posterior cingulate, 

inferior parietal lobe and middle frontal gyrus (McCarthy, Luby, Gore, & Goldman-

Rakic, 1997). Overall MEG, PET and fMRI evidence suggests activation of a wide 

variety of areas during tasks that typically elicit a P3b effect as measured from the 

scalp. Together with the issue mentioned in Chapter 2 about phase resetting being at 

least partially involved in scalp-measured ERP cognitive components such as the N400 

and P3b, and not measurable in itself by fMRI, it has to be noted that the low temporal 
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resolution of those imaging techniques makes it difficult to discriminate between 

temporally contiguous ERP components such as the N2 and the P300, and therefore 

the areas detected as active during those experiments may be involved in generating 

both components. In general it is not clear why such a wide variety of brain areas 

should be involved in stimulus categorization, leading some researchers (Verleger et 

al., 2005) to formulate alternative hypothesis about the functional role of the P3b, 

namely a mediating function between stimulus evaluation and response selection. 

Controversy also exists regarding the specific role of the temporo-parietal junction 

(noted above) in generating the P3b, which does not fit well with  is working memory 

accounts of the P3b (described in Figure 3.7). Furthermore neuropsychological 

evidence suggests that the frontal lobe has a fundamental role in the elicitation of the 

P3a component, as patients with frontal lobe lesions show a clearly reduced P3a effect 

to distractor stimuli, but a typical parietal maximum P3b effect for target stimuli 

(Knight, 1984; Knight, 1990; Knight et al., 1995).   

 

 

At the molecular level it has been proposed (Polich, 2007) that different 

neurotransmitter systems are involved in the elicitation of the P3a and the P3b. 

Specifically, the P3a is thought to be regulated by the dopaminergic system and the 

P3b by the noradrenergic system. The hypothesis that the P3b is regulated by the 

noradrenergic system originates mainly from experiments measuring ERPs in non-

human animals (Nieuwenhuis et al., 1995). Specifically Nieuwenhuis et al. describe 

how neurons in the Locus Coeruleus (LC), primarily responsible for noradrenergic 
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activity, are selectively activated by target stimuli that are both task relevant and 

infrequent (two variables know to influence the P3b) and are only weakly activated or 

not activated at all by non-target stimuli including, for example, rewarding stimulation. 

Importantly, during reversal learning training, neurons in the LC started responding to 

the new targets before any observable change was detected in the overt behavioural 

responses. Similarly to the P3b, phasic LC responses to target stimuli are found to be 

larger when the target is presented on 10% of the trials, compared to 50% of the trials, 

and the second presentation of a target stimulus typically elicits a smaller LC response 

suggesting sensitivity to local probability (Aston-Jones et al., 1994).   

 

 

Evidence in favor of the idea that the P3a is regulated by the dopaminergic system is 

indirect and comes from ERP studies showing a P3a reduction in patients with Restless 

Leg Syndrome (RLS) compared to controls, with a similar P3b across groups. Since 

RLS is thought to originate from dopaminergic deficits, it is possible that the P3a is 

linked to the dopaminergic system. However, the same study describing this finding 

(Trenkwalder & Winkelmann, 2003) also shows both the P3a and the P3b to be greatly 

reduced for patients affected by Parkinson's compared to controls. Since Parkinson's is 

well known to originate from a deficit in dopaminergic production, it seems to be 

implausible that the dopaminergic system is only involved in the P3a and not the P3b.  

Overall, experiments investigating the neural sources involved in generating the P3b 

do not point to a single generator, but instead to distributed sources, with an important 

role for the temporo-parietal junction. The sources involved in generating the P3b 
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appear however to differ from the ones involved in generating the P3a, strengthening 

the idea put forward in Section 3.3.1 that the P3a and the P3b are dissociable 

phenomena. A distinction between the neurotransmitter systems involved in generating 

the P3a and the P3b has been proposed in the literature, but which suggests that the 

noradrenergic system plays an important role in generating the P3b and the 

dopaminergic system in generating the P3a. Findings from Parkinson's patients 

complicate the picture however, pointing to a role for dopamine in both the P3a and 

the P3b. In the next section we will describe some theoretical models used in the 

literature to explain the P3b effect.  

 

 

3.3.5 Theoretical interpretations 

There have been several theoretical interpretations of the P3b, but there is still no clear 

consensus. For instance, P3b amplitude has been considered to be a function of the 

amount of attentional resources allocated to the oddball task in dual tasks paradigms: 

when the participant is engaged in two tasks simultaneously (e.g. a cognitively 

demanding task and an oddball task) the amplitude of the P3b relative to the oddball 

paradigm will be dependent on how difficult the concurrent task is, suggesting that the 

P3b is a function of allocation of attentional resources (Kramer et al., 1985; Wickens et 

al., 1983). Another theoretical interpretation of the P3b describes the effect as 

indicative of the revision of a memory representation induced by incoming 

stimulation. According to this "context updating" view (Donchin, 1981; Polich, 2007) 

the process of interest is attention driven. After sensory processing a comparison is 
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drawn between the current stimulus representation present in working memory and 

incoming stimulation, and a mismatch would elicit a P3b effect. This mismatch is 

considered to occur independently from sensory perceptual mismatches occurring in 

earlier stages of processing (Polich, 2007; see Figure 3.7).  

 

 

 

 

 

 

 

 

 

 

Figure 3.7 The context updating theory of the P300, one of the 

most influential models of the effect in the literature (Adapted 

from Polich, 2007).   

 

A similar perspective (Kok, 2001) describes the P3b as an index of “event 

categorization”, in which a comparison is made between the external incoming 

stimulation and an internal representation. A "match" or "mismatch" decision is then 
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made, and, given equal presentation probability, matching stimuli have higher 

amplitude than non-matching stimuli. Squires et al. (1973) found that the closer the 

match of a stimulus was to a template, the larger was the P300 (see also Chapter 6). 

These perspectives underscore the role of memory in elicitation of the P3b.  

 

 

The P3b effect may also be described as sensitive to the difference in neural activation 

between stimuli that evoke a behavioural response (S
D
) and stimuli that do not evoke a 

behavioural response (S
∆
). This interpretation fits with simple discrimination 

procedures, but it may seem at odds with the P3 effect measured after no-go trials in 

go/no-go procedures. Go/no-go procedures represent, technically, a form of 

conditional discrimination where a specific stimulus A evokes a behavioural response 

if followed by a stimulus B, but not a third stimulus C. Since stimulus A is typically 

presented before either B or C, it is legitimate to infer that the behavioural response is 

strengthened by A regardless of the fact that the following stimulation will be either a 

go or a no-go stimulus. After presentation of Stimulus A the response is strengthened; 

when B is presented the response is overtly evoked and if C is presented the overt 

response is inhibited. Amplitude of the go and no-go responses is similar at parietal 

sites, leading to the possible interpretation that perhaps inhibiting a response 

constitutes a form of responding in itself (or that maybe the P3b represents in both 

cases a form of inhibition of a response – either the response that was strengthened by 

presentation of the A stimulus or, in the case of the go response, inhibition of other 

competing responses). Importantly, however, the amplitude of go and no-go P3 differs 
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at frontal sites (Roberts et al., 1994), with the amplitude relative to the no-go trials 

larger than the one at go trials, as seen in Figure 3.8.  

 

Figure 3.8 The Grand average waveforms show both 

the frontal distribution of the “no go” effect compared 

to the “go” condition and the equivalent parietal 

magnitude of the two effects (Adapted from Roberts 

et al., 1994). 

 

 

The difference between the go and no-go waveforms may therefore represent a 

difference in magnitude of the inhibitory process involved, in general, in generating 



   Chapter 3: The P3b effect 

 

 113 

the effect. From this perspective as the strength of the competing response(s) to be 

inhibited increases, the topography of the effect is more frontally distributed. This 

interpretation fits well with the fundamental characteristic of the P3a effect as 

distracting, perceptually novel, stimuli not have a discriminative function (i.e. do not 

lead to a behavioural response) they need to be inhibited because of the lack of clear 

“meaning” within the constraint of the three-stimulus paradigm. Therefore after novel, 

surprising, stimulation has elicited a clear sensory/perceptual response, it is inhibited 

from eliciting also a motor response (which behaviourally would represent a 

“mistake”). Accordingly, a clear parietal distribution may represent elicitation of a 

strong response (compared to the competing responses) that did not require a high 

degree of inhibitory “support” in the process of the motor response being selected and 

executed. Consistently with this view, it has been proposed (Polich, 2007) that the P3b 

effect may index inhibition of extraneous brain activity during transmission of 

information from frontal areas (P3a) to temporo-parietal areas (P3b).  

 

 

There are problems with the inhibition account however. For example, an 

anteriorization of the P3b effect is seen in silent counting tasks (Salisbury et al., 2001), 

where theoretically no inhibition is involved. Salisbury et al. (2001) compared the 

P300 component elicited by a go task to a P3 component elicited by a silent counting 

task. The P300 component to the go task was frontally diminished compared to the 

silent counting task. This reduction was due to a broad negativity that was present for 

the go task, but not the silent counting task, and to an asymmetrical negativity 
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contralateral to the hand involved in the behavioural response in proximity to the 

motor cortex. The authors argued that the behavioural response generated a motor 

related negativity, whose time-course overlapped with the “pure” P300, thereby 

cancelling part of the frontal distribution of the effect. Thus from this perspective the 

differential distribution of the P300 across the go task and the silent counting task 

reflects the response execution demands that are present in one but not the other 

procedure (see also Kok, 1988).  

 

 

In summary, overall, no proposed interpretation of the P3b has gained unanimous 

consensus in the literature: each appears to have explanatory advantages and 

weaknesses. The event categorization and context updating interpretation arguably 

provides the most accurate description of the observed phenomena. While there is still 

no clear consensus regarding what the P3b is a measure of (i.e., on its validity), the 

effect has nonetheless been shown to be highly reliable both at the group and at the 

individual level, as discussed in the next section.   
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3.4 P3b Reliability 

3.4.1 Inter-laboratory Reliability 

While it is not yet completely understood what the P3b reflects, leaving the debate on 

its validity open, the effect is large in its size and clearly seen across individual 

participants and groups: it is reliable both at the inter-laboratory and inter-individual 

level. Inter-laboratory validity was investigated by Alexander et al. (1994) within the 

context of a large scale multi-laboratory experiment, as a prerequisite to carrying out 

research on the relationship between genetics and alcoholism. The researchers 

involved in this study were interested in finding out if variables that are known to 

affect the P3b but which are difficult to match in large scale studies involving many 

laboratories, might possibly lead to unreliability of P3b results.  

 

 

Each of the six laboratories involved in the study was identical to the others in terms of 

the equipment used and the number of participants (N=15). The paradigm used was a 

typical oddball with auditory stimuli: participants were instructed to press a button 

after the target tone but not after the standard tone, and the ratio of targets/standards 

was 12.5/87.5. Results across laboratories are shown in Figure 3.9, showing a pattern 

of general consistency across laboratories. Statistical analyses showed that the mean 

amplitude of standard and target stimuli  did not differ significantly across laboratory 

locations, nor did the electrode factor interact with the laboratory location.  
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Figure 3.9 Waveforms relative to the P3b Effect obtained in an oddball experiment with 

auditory stimuli by contrasting ERPs elicited by targets and standard stimuli. The 

waveforms show compatible effects across the six laboratory locations involved in the 

reliability study, with a parietal maximum observed consistently across laboratories in the 

275-400ms time window (Adapted from Alexander et al., 1994). 

 

 

3.4.2 Inter-individual Reliability 

Similarly to the inter-laboratory reliability, the P3b appears to have a strong inter-

individual reliability (see also Chapter 5). Most P300 studies only report group 

averages, however some studies also show a subset of results at the single participant 

level. For example, Lembreghts et al. (1995) report individual data from five 

participants (shown in Figure 3.10) and all participants show a P3b effect. In the 

current thesis we investigated P300 inter-individual reliability in a large pool of 

participants (N=64); the effect‟s inter-individual reliability was compared with the 
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reliability of the other two late ERP components investigated in the current work, the 

N400 and the Left Parietal Effect. Specifically, we focused (see Chapter 5) on 

comparing the proportion of participants showing the effect of interest across 

experimental effects. Those results suggest a strong inter-individual reliability and 

other work, discussed in the next section, suggests that the effect is also measurable in 

non-human species.  

 

Figure 3.10 P3b Effect obtained in an oddball experiment with auditory stimuli by 

contrasting ERPs elicited by targets and standard stimuli. Results, displayed negative up, 

are shown from five participants and indicate that the P3b effect is highly reliable at the 

individual level (Adapted from Lembreghts et al., 1995).  
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3.4.3 Inter-species Reliability 

Consistently with claims that a perspective that the P3b is a very reliable ERP effect, 

ERPs morphologically similar to a P3b effect have been measured in non-human 

animals. Specifically, Wilder, Farley and Starr, (1981) were able to measure the P3b 

effect in cats, and Arthur & Starr (1985) described the effect in monkeys (see also 

Glover et al., 1986) – previous experiments describing the component did not require a 

response from the animal in relation to the discriminative, or target, stimulus and 

therefore could not be fully considered P3b effects. An experiment by Jodo et al. 

(1995) investigated the P3b experiment in rats. Experimenters used an oddball 

paradigm manipulating target probability (30, 50 or 70% of the trials). A large slow 

deflection in the ERP was detected peaking 400-500ms post-stimulus, while such a 

deflection was not elicited by the standard tones in all probability conditions. The 

authors describe the large positivity to be very similar to the one detected in humans 

and, similarly to the results obtained with human participants, the amplitude of the 

positive deflection increased as the probability of the target stimulus decreased (see 

Figure 3.11).  

 

 

Human studies in which presentation of a stimulus is omitted during a train of 

regularly occurring stimuli have shown what has been described as the “missing 

stimulus potential”: a positive deflection in the ERP resembling a P3b component 

(Bullock, 2003). The timing of the missing stimulus potential is a function of time of 

the first missing stimulus in a train of stimuli. The missing stimulus potential is 
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therefore defined as an electrophysiological response in absence of external 

stimulation. A series of studies have shown the missing stimulus potential in a wide 

variety of species, including invertebrates (Ramón et al., 2001), suggesting 

commonalities across many species in the processes involved in elicitation of ERPs 

that are broadly part of the P300 “family”.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Grand average ERPs for 8 rats to the target 

and standard stimuli at the 3 probability conditions. 

Data, displayed negative up, shows an effect 

morphologically compatible with the human P3b 

(Adapted from Jodo et al., 1995). 
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3.5 Summary 

The P3b represents an interesting example of an effect whose validity is uncertain, but 

whose reliability is nonetheless strong. The P3b, of the three effects investigated in the 

current thesis, is the only one whose inter-species reliability has been studied and 

demonstrated. This effect therefore provides a solid baseline to which results from 

other components can be compared. Procedural and individual variables influencing 

the amplitude and latency of the P3b are well known: however the high degree of 

experimental control over the effect in this case does not translate automatically to 

clear theoretical understanding. Moreover, insights from source location analyses do 

not help elucidate what the effect is a measure of, instead pointing to a high degree of 

complexity. The Left Parietal old/new effect by comparison, discussed in the next 

chapter, has been accepted as a neural correlate of recollection within dual process 

theory of recognition memory, but we will describe some evidence questioning this 

conclusion. The Left Parietal effect's inter-individual reliability, moreover, is not as 

high as the reliability of the N400 effect and the P3b effect. 
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Chapter 4 

The Left Parietal Old/New Effect 

 

A late cognitive component investigated in the current thesis is the Left Parietal 

old/new effect. While the inter-laboratory reliability of the N400 and P3b has been 

previously assessed, the inter-laboratory reliability of the Left Parietal effect has yet to 

be directly investigated. Moreover, similarly to the other two effects considered in the 

current thesis questions remain about the effect‟s validity, specifically about the 

relation between the Left Parietal effect and the P3b effect. The purpose of the current 

chapter is to describe factors influencing the Left Parietal effect, with the goal of 

reviewing its validity and reliability, and thus providing a complete background for the 

experimental work carried out in the current thesis.  

 

 

4.1 What is the Left Parietal effect?  

Recognition memory is supported, according to dual process theories, by the two 

distinct processes of recollection and familiarity, and ERP signatures have been 

identified and associated with both (for reviews see Friedman & Johnson, 2000; Allan, 

Wilding & Rugg, 1998; Donaldson, Allan & Wilding, 2002). ERP correlates of 

recognition memory are obtained by contrasting correctly recognized old items (Hits) 
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to correctly classified new items (Correct Rejections). Typically ERPs to Hits are more 

positive than ERPs to Correct Rejections in a variety of time windows, starting from 

300ms post stimulus to approximately 700ms post stimulus, with the scalp distribution 

of the positivity varying over time. This positivity, comprising different topographic 

patterns, is typically described as the “Old/New effect”. 

 

 

The ERP correlate of recollection, known as the Left Parietal effect (see Figure 4.1), 

consists of one part of the positivity for correctly recognized old items compared to 

correctly recognized new items occurring typically between 500-700ms post-stimulus, 

distributed maximally over left parietal sites. This Left Parietal effect is thought to 

reflect remembering of a specific episode, often including contextual details, such as 

the place and the time a specific object has been encountered before. The effect, whose 

parietal distribution is not always left sided (see for example Mecklinger, 2000), has 

been found with different kinds of stimulus materials, including words and pictures 

(Duarte et al., 2004; Schloerscheidt & Rugg, 1997; 2004; Ranganath & Paller, 2000). 

 

 

Historically, the Left Parietal effect has been first described as a repetition effect (e.g. 

Rugg & Doyle, 1994) and later has been re-interpreted in relation to the process of 

recollection (e.g. Wilding, 2000; Schloerscheidt & Rugg, 2004; Smith, Dolan & Rugg, 

2004). The idea that the effect was simply a correlate of repetition was ruled out as 
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studies did not find the effect elicited by old items incorrectly classified as new 

(misses). Moreover the effect was also never reported to be elicited by new items 

incorrectly classified as old (false alarms) showing that the effect is not just a correlate 

of making an „old‟ response  (Rugg and Doyle, 1992; Sanquist et al., 1980). 

 

 

 

 

 

   

 

 

Figure 4.1 Example Left Parietal effect obtained in a recognition memory 

experiment with visual verbal stimuli by contrasting ERPs elicited by correctly 

classified old (Hits) and new (Correct Rejections) items. The waveforms and the 

topographic map on the right show the classic parietal distribution of the effect, 

maximal in the left hemisphere, in the 500-700ms time window (Adapted from 

Chapter 5).    

 

500-700 ms 
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4.2 Factors influencing the Left Parietal effect 

4.2.1 Size of the Left Parietal Effect  

Experiments involving a source judgment task (e.g. Wilding & Rugg, 1996; Senkfor & 

Van Petten, 1998; Trott, Friedman, Ritter & Fabiani, 1997) show that the effect's 

amplitude increases as a function of the amount of contextual information remembered 

at test. Typically a source task involves recognizing an item as “old”, and then 

remembering some contextual details relative to the study trial. For example, 

remembering that a specific word had appeared in the top-left corner of the screen. 

Results typically show the size of the effect to be proportional to the amount of 

contextual information remembered at test (Figure 4.2), and the same results have been 

found with source tasks involving, for example, the modality in which the stimuli were 

presented at study (Wilding, Doyle & Rugg, 1995) or the gender specificity of the 

voice speaking at study (Wilding & Rugg, 1996).  

 

 

 

 

 

 

Figure 4.2 Example Left Parietal Effect obtained in a recognition memory 

experiment with correct and incorrect source judgments. The size of the 

old/new difference increases as a function of the amount of source 

information remembered (Adapted from Wilding, 1999).   
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The size of the Left Parietal effect has also been manipulated in associative recognition 

experiments, in which word pairs are presented at study and then are either presented 

again intact at test or are presented in recombined, or rearranged, pairs (thereby 

creating pairs that were not presented during study). In this context the amplitude of 

the Left Parietal effect is typically found to be larger for intact compared to rearranged 

pairs (e.g. Rugg et al., 1996; Rugg et al., 1998). Importantly associative recognition 

studies, from a behavioural perspective, are traditionally considered to selectively 

engage recollection (e.g. Hockley, 1992; Yonelinas, 1997).   

 

 

Studies manipulating depth of processing have also shown an effect on the size of the 

neural correlate of recollection. The amplitude of the Left Parietal difference was in 

fact found to increase as a function of depth of processing (e.g. Paller & Kutas, 1992). 

Moreover, recognition memory studies involving remember-know judgments, initially 

carried out by Smith (1993), typically show the effect to be larger
4
 in trials where the 

participants judges to be “remembering” the specific episode as compared to trials in 

which the participant affirms to “know” that the item has been encountered in the 

study phase (e.g. Vilberg, Moosavi & Rugg, 2006; Mark & Rugg, 1998; Curran, 

                                                
4 Although recollection and remembering are procedurally defined by using source tasks and 

remember-know judgments, recollection does not necessarily involve remembering contextual 

details. It is in fact theoretically possible to recollect seeing a specific item without recollecting 

contextual information.  
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2004). In addition the Left Parietal effect is typically elicited during an explicit 

memory test, but has been shown to disappear if the behavioural task during the test 

phase involves implicit memory retrieval (Rugg et al., 1998) and to be more positive 

for Hits than for False Alarms, but only in poor performers and not in good performers 

(Curran, Schacter, Johnson & Spinks, 2001). Overall, therefore, evidence from several 

procedures points to the observation that the size of the Left Parietal effect increases as 

the amount of information remembered from the study episode increases. The next 

section will review the Left Parietal effect‟s validity, and specifically how the 

conceptual label of "recollection" allows the effect to be dissociated from other data 

explained by the conceptual label of "familiarity", both from an electrophysiological 

and a neuroanatomical perspective.  

 

   

 4.3 Validity of the Left Parietal Effect 

4.3.1 Dissociation between the Left Parietal and the Bilateral Frontal Effect 

The Left Parietal Effect has been dissociated from another, early, old/new effect  

named the early Bilateral Frontal Effect, already described in Chapter 3 when 

discussing the N400‟s validity (see Chapters 8 & 9 for an example of this dissociation 

provided in the current experimental work). The Bilateral Frontal old/new effect, 

shown in Figure 4.3, is a positivity in the ERPs occurring between 300-500ms post-

stimulus for correctly recognized old items compared to correctly classified new items 

(e.g. Curran & Cleary, 2003), widely considered to be a neural correlate of familiarity-
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based remembering
5
. Familiarity-based remembering represents a form of episodic 

memory where an object is recognized as having been seen before, but with a lack of 

recollection of the remembered episode.  

 

 

Figure 4.3 Waveforms and topographic map showing the early Bilateral Frontal effect. ERPs 

are shown for Hits  (red lines) and Correct Rejections (blue lines). Waveforms are shown for 

three fronto-central electrodes (FC5, FCZ, FC6). The topographic map on the right shows the 

distribution of the old/new effect in the 300-500ms time window (Adapted from Chapter 9). 

 

 

The Bilateral Frontal effect was initially considered to be insensitive to depth of 

processing manipulations (Rugg et al., 1998), leading for the first time to the 

hypothesis that the effect may be dissociable from the Left Parietal effect and represent 

a neural correlate of familiarity. Later evidence, however, showed familiarity memory 

to be sensitive to depth of processing manipulations (e.g. Yonelinas et al., 1998). 

Stronger evidence in favour of a dissociation between the Bilateral Frontal effect and 

                                                
5 The proposed interpretation that the early bilateral frontal effect indexes familiarity has been 

questioned. Other proposed interpretations of the bilateral-frontal effect involve the conceptual 

priming hypothesis (e.g. Yovel & Paller, 2004) and a novelty detection mechanism (Tsivilis, 

Otten & Rugg, 2001). The general consensus seems, however, to be oriented towards the 

familiarity interpretation (e.g. Bridson et al., 2006; Rugg & Curran, 2007).    

 

300-500 ms 
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the Left Parietal effect comes from experiments showing the early correlate of 

recognition, but not the later Left-Parietal effect, present for both Hits and False 

Alarms (e.g. items incorrectly classified as old). Specifically, Curran (2000) presented 

words in one form during study (e.g. frog) and then reversed in plurality during test 

(frogs); the early Bilateral Frontal effect, but not the Left Parietal effect, was present at 

test both with old items and with lures (items whose plurality had been reversed), 

denoting the fact that familiarity is at least in part influenced by the similarity of the 

item between study and test. This similarity does not have to be physical as the same 

pattern has been shown with mirror-reversed pictures (Curran & Cleary, 2003). This 

pattern of results suggests a clear dissociation between the Left Parietal effect and the 

Bilateral Frontal effect and, provided the two effects are valid measures of recollection 

and familiarity (but see Chapters 5 & 10), a dissociation between the two processes 

involved in episodic recognition.  

 

 

4.3.1.1 Neuroanatomy and Validity of Measures of Recollection 

From a neuroanatomical perspective, and consistent with the dissociation described at 

the ERP level, familiarity and recollection are generally considered to be supported by 

separate structures within the medial temporal lobes. Specifically, recollection is 

thought to involve Hippocampal activity and familiarity is considered to be supported 

by the Perirhinal Cortex (e.g. Eichenbaum, Yonelinas & Ranganath, 2007; Yonelinas 

et al., 2005). 
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The hippocampus‟ high internal connectivity allows it to play a fundamental role in the 

pattern completion activity, considered to be a prerequisite for successful recollection 

(e.g. Montaldi & Mayes, 2011). For instance, in an experiment involving a source 

judgment task the stimulation presented during the test phase is typically a subset of 

the stimulation that had been presented during study, and hippocampus-mediated 

pattern completion allows that subset of the original stimulation to elicit additional 

neural responses, leading to neural activation that more closely corresponds to the 

neural response that had occurred during study. The phenomenological counterpart of 

this process is conscious recollection (e.g. Meiser & Sattler, 2007).  

 

 

Even though the hippocampus appears to have a fundamental role in supporting 

recollection, another area, the left inferior parietal lobe has been shown in fMRI 

studies to be involved in recollection (Wagner et al., 2005). It is therefore probable that 

the left inferior parietal cortical areas comprise the neural generators responsible for 

the Left Parietal effect, particularly given that cortical areas are more likely than 

subcortical structures (such as the hippocampus) to elicit scalp potentials such as 

ERPs.  By contrast, evidence suggests that familiarity is supported by the perirhinal 

cortex
6
 (e.g. Haskins et al., 2008; Holscher, Rolls & Xiang, 2003), strengthening the 

idea that the two processes can be neuroanatomically dissociated.   

                                                
6 The perirhinal cortex is a polymodal-polysensory associative cortex receiving stimulation 

from different modalities (e.g. visual and auditory) sensitive to complex forms of stimulation. 

The perirhinal cortex is located in the ventral visual stream and receives inputs from all other 
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There is in fact clear evidence that the perirhinal cortex is sensitive to recency and 

familiarity of stimuli (e.g. Fahy, Riches & Brown, 1993), leading to the possibility that 

the perirhinal cortex supports object processing that involves temporal but not spatial 

information. This sensitivity to the temporal dimension in responding to objects fits 

well with the characteristics of familiarity, but could also be characterized as a 

sensitivity to contextual information – which fits the definition of recollection equally 

well. Within the memory literature, therefore, a distinction is drawn between intrinsic 

and extrinsic context. From this perspective one argue that recency, familiarity and 

novelty are types of information on the temporal dimension that refers to a single 

object and are not therefore, in themselves, the same kind of contextual information 

typically recollected in source memory tasks, where the relevant contextual 

information appears to be of the extra-item kind.  

 

 

As mentioned above, the Perirhinal cortex is located in the ventral portion of the visual 

stream, considered to be the “what” or the “object” pathway (i.e. involved in the 

processing of stimulus features) as compared to the parietal portion of the visual 

stream considered to be the “where” or “spatial” pathway, involved in processing of 

                                                                                                                                        
higher-order neocortical fields from each modality, and is therefore in a perfect position to 

have important associative functions (i.e. the function served by the perirhinal cortex may be 

dependent on its connections more than on its specific internal anatomy). These associative 

functions appear to be important specifically in object identification, especially when to 

identify an object it is important to integrate polysensory and polymodal information (Murray 

& Bussey, 1999).  
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the spatial context in which objects are immersed (Mishkin, Ungerleider & Macko, 

1983). It is therefore not surprising that the Perirhinal cortex involvement in perception 

and memory appears to be limited to specific object features and does not involve 

broader contextual or spatial information.  

 

       

Some researchers (e.g. Squire, Wixted & Clark, 2007) have however argued against 

the neuroanatomical dissociation between recollection and familiarity. Theoretically 

the Hippocampus is in the ideal neuroanatomical position to be involved both in 

familiarity and in recollection: it receives stimulation regarding both item and context. 

On this point Wais, Squire & Wixted (2011) have suggested that the hippocampus may 

be involved in both familiarity and recollection, an idea that they investigated using 

fMRI during a source memory task. Specifically the authors compared trials in which 

the source was correctly retrieved compared to trials in which the source was not 

retrieved, and by equating confidence strength across the two kinds of trials the 

authors suggest that they are able to avoid a common confound in source judgment 

experiments where memory strength is typically not matched across successful and 

unsuccessful source retrieval attempts. The authors did find similar hippocampal 

activity across successful and unsuccessful source retrieval attempts, and in both cases 

hippocampal activity was more pronounced compared to forgotten items. Differential 

activation, higher for successful than unsuccessful source retrievals, was however 

found in the pre-frontal cortex. The authors suggest that the trials where the source was 

successfully retrieved are trials in which recollection is occurring, and the trials in 
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which the source was not retrieved are trials where familiarity is occurring. Given 

similar hippocampal activation in both kinds of trials, they suggest hippocampal 

involvement in both processes.  

 

 

A problem with this interpretation (as suggested by Montaldi and Mayes, 2011) is the 

assumption that unsuccessful source retrievals constitute a case of “pure” familiarity, 

uncontaminated by recollection. While the specific contextual details necessary to 

perform adequately in the source judgment task were not retrieved, it is difficult to rule 

out the possibility that other contextual information has been retrieved, and in general 

it is impossible to rule out that item recollection has occurred. Certainly, this is a 

confound inherent in all source memory experiments and must be kept in mind even 

when memory strength is equated. In another study (Kirwan, Wixted & Squire, 2008) 

the authors propose the idea that medial temporal lobe activation, regardless of the fact 

that it involves the hippocampus or the perirhinal cortex, is correlated to subsequent 

memory strength, while pre-frontal cortex activation is predictive of subsequent 

recollection.  

 

 

While it is reasonable from a neuroanatomical perspective to support the idea that the 

hippocampus may be involved in both familiarity and recollection, it is not 

immediately evident how the perirhinal cortex, given its position and internal structure, 

could be involved in recollection. The perirhinal cortex in fact appears to lack the 
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structural organization to support pattern completion, considered to be fundamental 

prerequisite of the process of recollection. While the perirhinal cortex is involved in 

associations (Murray & Bussey, 1999), the associations integrated by the perirhinal 

cortex appear to be relative to different features of a specific object, independently 

from spatial/contextual information.  

 

 

Evidence from lesion studies appears also to point towards the hypothesis that the 

hippocampus and the perirhinal cortex support different processes. For instance the 

Left Parietal effect is diminished or not present in patients with hippocampal damage 

(e.g. Mecklinger et al., 1998), while the Bilateral Frontal effect has been measured in 

Alzheimer‟s patients with hippocampal atrophy (Tendolkar, Doyle & Rugg, 1999). 

Moreover in recognition memory studies selective hippocampal damage has been 

shown to produce a recollection-specific deficit while leaving unaffected familiarity 

(e.g. Mayes et al., 2002; Aggleton et al., 2005; Düzel et al., 2001). At the same time, 

lesions involving both the hippocampus and the perirhinal cortex have been shown to 

produce a deficit in both recollection and familiarity (e.g. Yonelinas et al., 2002).  

 

 

One alternative to the idea that there is a recollection-familiarity division of labour 

within the medial temporal lobe is based on the hypothesis that the Hippocampus 

supports a “strong” form of memory with regards to the studied episode, while the 

perirhinal cortex supports a “weak” form of memory. However, there is strong 
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evidence against this interpretation from a clinical case study (Bowles et al., 2007) 

involving a patient whose portion of the anterior medial temporal lobe had been 

removed including the perirhinal cortex, while leaving intact the Hippocampus. This 

patient exhibited an impairment in familiarity while leaving recollection intact, thereby 

providing evidence in favor of both dual process theories of recognition memory and a 

division of labour based on the recollection-familiarity dichotomy within medial 

temporal lobe structures.   

 

 

In general neuroanatomical evidence is consistent with the idea that the Left Parietal 

effect and the Bilateral Frontal effect, considered as measures of recollection and 

familiarity memory, are supported by distinct brain circuitry. Summarizing, the fact 

that the Left Parietal effect appears to be independent from the Bilateral Frontal effect  

is overall consistent with the available neuroanatomical evidence. In the next section 

we ask if the Left Parietal effect is also independent from another effect with 

overlapping time-course: the P3b effect (described in Chapter 3).  

 

 

4.3.2 The Left Parietal Effect and the P3b 

The P3b has a centro-parietal distribution over the scalp and peaks between 300 and 

800ms post stimulus presentation. There is, therefore, an overlap between the P3b and 

the Left Parietal effect both in time course and scalp distribution (see also Chapters 3, 

6 & 7). Moreover, given the fact that both effects reflect large parietal positivities, the 
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Left Parietal effect has often been considered as closely related to the P3b. The Left-

Parietal old/new effect has in fact been described as the “P300 old/new difference” 

(Johnson, 1995) and the “P600 old/new effect” (Curran, 1999; Rugg & Doyle, 1992) 

and has been considered to co-occur with the P3b (Bentin & McCarthy, 1994; Spencer, 

Vila Abad, & Donchin, 2000). From this perspective the relative positivity of correctly 

recognized old (Hits) compared to new (Correct Rejections) items may be due to the 

relatively lower subjective probability of Hits yielding a "target" effect (see also 

Chapter 3; Neville et al., 1986). This target effect has also been proposed to emerge 

when the test item matches an episodic memory trace. The positivity for Hits may 

therefore represent matching instead of recognition, as matching judgments are 

associated with a positivity compared to mismatches (Squires et al. 1973). 

 

 

The discussion about the putative independence between the Left Parietal effect and 

the P3 effect is clearly important in investigating the validity of the two effects. In fact, 

if the two effects are shown to be related then a number of possibilities arises. For 

instance: is the Left Parietal effect to be considered a part of the P3 family and, if so, 

would it be correct to describe the P300 family as sensitive to memory in broad terms? 

Is the P300 effect actually reflective of the memory demands of the task – even in the 

simple oddball paradigm typically used to measure the P3b, what the participant is 

doing is responding differentially to stimuli presented repeatedly.  
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An analysis of the memory and oddball paradigm suggests that the difference between 

the two procedures and definitions appears largely to be quantitatively related to the 

number of repetitions involved. According to this perspective the Left Parietal effect is 

not elicited by incorrectly classified old items, or misses, simply because these stimuli 

are not attended to and encoded in the first place, making it hard to rule out entirely the 

possibility that the Left Parietal Effect indexes repetition.  

 

 

There are a number of ways in which memory and probability sensitivity could be 

separated experimentally. For example if the topography of the Parietal old/new effect 

is invariant to different procedures and modalities, one would in fact expect to see a 

Left-Parietal effect obtained by contrasting the second correctly discriminated target 

presentation compared to the first one, including therefore the typical oddball 

paradigm used to elicit a P3b effect. Moreover, if the Left Parietal effect is exclusively 

sensitive to recollection, there are no theoretical reasons to believe that the relative 

probability of old (Hits) and new (Correct Rejections) items in the test phase of a 

recognition memory experiment should have an influence on the size of the ERP 

correlate of recollection. We investigated directly this experimental question in 

Chapter 7.  
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4.4 Reliability and Validity of the Left Parietal Effect  

Inter-laboratory reliability of the Left Parietal effect has not been directly investigated, 

as far as we are aware, therefore the results presented in Chapter 5 are novel within the 

ERP literature. However, inter-individual reliability of the Left Parietal effect has been 

directly investigated on a large group of participants (MacLeod & Donaldson, 2011), 

finding a majority of participants showing the Left Parietal effect, but a minority of 

subjects (32 over 122) not displaying the effect (see Figure 4.4). MacLeod and 

Donaldson conclude that "changes in the size of the Left Parietal effect do not reflect 

difference in memory performance", as the subgroups showing different 

electrophysiological patterns did not differ behaviourally in their sensitivity, response 

bias or reaction time.  

 

 

In terms of the validity of the effect, the independence of the electrophysiological 

pattern from all behavioural variables of interest shown by MacLeod and Donaldson 

puts into question the role of the Left Parietal effect as a neural correlate of 

recollection. Assuming that the behavioural performance in the old/new recognition 

task implemented by MacLeod and Donaldson is not entirely based on familiarity 

memory, there should be in fact a relationship between the size of the Left Parietal 

effect and recognition performance. This problematic lack of relationship between the 

Left Parietal effect and relevant behavioural variables is further discussed in Chapters 

5 & 10.  
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Figure 4.4 Waveforms and topographic maps showing the Left Parietal 

effect from two subgroups of participants from a pool of 122 subjects. The 

data on the left show a group displaying the typical Left Parietal effect 

(N=58); on the right a group showing a reversed pattern, a parietal negativity 

(N=32). Groups do not differ behaviourally in their sensitivity, response bias 

and reaction time.  
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4.5 Summary 

The Left Parietal effect is considered to be an index of recollection within dual process 

theories of recognition memory, as shown by the fact that its size increases as the 

amount of remembered information increases. The Left Parietal effect is a measure of 

recollection, but not familiarity memory: the parietal old/new effect has been in fact 

dissociated from the Bilateral Frontal effect, a neural correlate of familiarity memory. 

However, some researchers consider the putative correlate of recollection to belong to 

the P300 'family'. Inter-laboratory reliability of the Left Parietal effect has not been 

directly assessed in the previous literature, therefore the results of the reliability 

analysis presented in Chapter 5 constitute a novel contribution. There is some evidence 

however pointing to the fact that the Left Parietal effect has a relatively weak inter-

individual reliability and validity, since it has been shown that the size and polarity of 

the effect appear to be unrelated to several behavioural parameters measured during a 

recognition performance. The next Chapter presents results of an inter-laboratory and 

inter-individual reliability analysis carried out for all three experimental effects of 

interests considered in the current thesis.      
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Chapter 5 

Reliability Assessment 

 

As mentioned in the Introduction and in Chapter 1, brain activity as measured by the 

EEG has a high degree of variability in the single subject and across subjects, and it is 

important to understand the factors controlling this variability and at the same time to 

have precise measurement tools yielding the smallest possible measurement error. 

Since reproducibility and internal consistency are different but equally important 

aspects of reliability, in the current assessment we investigated both reliability across 

laboratories and inter-individual reliability of the N400, the P3b and the Left Parietal 

effect, three of the most important effects in the ERP literature considered to involve 

linguistic, attentional and memory processes, with the two-folded purpose of a) 

assessing the precision of measurement tools used in this form of neuroimaging, and b) 

of investigating inter-individual reliability across experimental effects.  

 

 

5.1 Reliability  

5.1.1 Reliability across Laboratories 

When assessing reliability of ERPs across laboratories there are many technical 

variables that can potentially influence the outcome of such an assessment. The present 



                                                                                     Chapter 5: Reliability Assessment 

     

 141 

study was conducted to verify if reproducible results can be obtained across different 

laboratories using the same experimental procedure, but different technical equipment. 

The study was carried out across two ERP research laboratories in Scotland, one 

located in Aberdeen and the other located in Stirling, having different data acquisition 

systems (BioSemi in Aberdeen and Neuroscan in Stirling - see methods section for 

details). Importantly, the data processing steps were kept constant across laboratories 

and so any detected difference across laboratories would have to be due to differences 

in the experimental apparati or differences across the two pools of participants.  

 

 

The BioSemi and the Neuroscan acquisition systems differ in many perspectives. For 

instance, BioSemi ActiveTwo uses electrodes that integrate the first stage of 

amplification into the Ag-AgCl electrode, allowing theoretically very low noise in the 

measurement at the electrode level, without skin preparation. By contrast, Neuroscan's 

electrodes do not have any amplification at the electrode level and therefore require 

skin preparation to obtain the required impedance levels. Another important difference 

across the two systems is that in the BioSemi system the conventional ground 

electrode, used in the Neuroscan system, is replaced with two separate electrodes: a 

Common Sense Mode (CSM) active electrode and a Driven Right Leg (DRL) passive 

electrode (see also Methods section). These two electrodes form a feedback loop that 

allows the average potential of the experimental participant to be as close as possible 

to the reference voltage of the analogue to digital box, yielding 40 dB extra CMRR 
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(Common Mode Rejection Ratio) at 50 Hz, where a high CMRR is an important factor 

in achieving a higher signal-to-noise ratio (Huhta & Webster, 1973).   

 

 

An important difference across laboratories to be taken into account is that data in 

Aberdeen were recorded in DC (Direct Current) mode (the default mode for the 

BioSemi system), while in Stirling data were recorded in AC (Alternating Current) 

mode. Many ERP laboratories prefer using AC rather than DC amplifiers because they 

tend to be easy to calibrate and generally yield more stable EEG compared to a DC 

system. An AC circuit functions in fact as an analogue filter, attenuating and phase 

shifting the input voltage based on the amplifier's time constant (e.g. Gasser et al., 

1982; Elbert & Rockstroh, 1980). By comparison a DC recording is considered to be a 

form of "true recording", as the AC amplifier's time constant can potentially lead to a 

distortion of low frequency ERP components. While a DC amplifier does not exclude 

any low frequencies, and has the advantages of capturing slow activity, it also has the 

disadvantages of being more susceptible to drift artifacts (Hennighausen et al., 1993).  

 

 

As the ERP components involved in the present reliability investigation do not belong 

to the slow component category the difference in amplification modality should not 

yield detectable discrepancies across laboratories, but nonetheless it is an important 

factor to be taken into account when investigating consistency of results across 

facilities collecting electrophysiological data.  Overall, the current assessment will 
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clarify whether or not the technical differences present across laboratories are relevant 

when measuring ERP effects that are clearly established in the neuroscientific 

literature.  

 

 

5.1.2 Inter-individual Reliability 

Inter-individual variation, selection and retention of genetic, behavioural and neural 

information have been described as fundamental factors in allowing species to be 

adaptive within a potentially changing environment (Donahoe, 2003). From a 

statistical perspective however, variation, selection and retention in a population of 

individuals can be described in terms of changes in "signal-to-noise" over time (i.e. 

how a distribution's mean and standard deviation vary over time as a function of 

environmental feedback). Inter-individual variability will in turn determine the degree 

of inter-individual reliability of experimental effects: the higher the degree of 

variability across individuals, the lower the degree of inter-individual reliability. 

 

 

Reliability of results across individuals is especially important in behavioural and 

neuroscientific research where the measured variables typically have a high degree of 

variability (Yarkoni & Braver, 2010). Measurements across individuals in 

psychological research have in fact shown important individual differences in 

cognitive, emotional, social and perceptual functioning and this person-to-person 

variation seems to increase with age (MacDonald et al., 2006). To describe inter-
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individual variability in neural activity, behavioural variables such as accuracy 

(Callicott et al., 1999; Gray, Chabris, & Braver, 2003) and reaction time (Rypma, 

Berger, & D'Esposito, 2002; Rypma & D'Esposito, 1999; Schaefer et al., 2006; Wager, 

Sylvester et al., 2005) have been used as predictors of brain activation.  

 

 

In practice the results of between-subjects individual difference analysis and within 

subject analysis have often been found to converge (Gray et al., 2003; Lee et al., 

2006). Nonetheless, there are cases in the literature in which within subject results are 

conflicting with individual difference analysis. For example the Left Ventrolateral 

Prefrontal Cortex (VLPFC) is considered to support resolution of proactive 

interference (Jonides & Nee, 2006), but individuals who are better at resolving 

proactive interference show decreased VLPFC activation than individuals who are 

worse (Nee, Jonides, & Berman, 2007). Discrepancies between the group level and the 

individual level of analysis point to a higher variability, or decreased reliability, across 

individuals compared to examples of consistencies between the individual and the 

group levels. In the ERP literature, as described in Chapters 1-4, studies of reliability 

were typically focused on the reliability of ERP effects across laboratories and within 

laboratory, and when interindividual variability was investigated (e.g. Pekkonen et al., 

1995) it was not investigated across effects. To our knowledge, interindividual 

reliability of ERPs has yet to be investigated within the same pool of participants on a 

range of established effects representing different cognitive functions.  
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5.2 Methods 

5.2.1 Participants – Aberdeen 

Thirty-two (11 male) right-handed native English speakers participated for course 

credit. Participants mean age was 19.5 years (range 18-24) and all reported normal or 

corrected to normal vision with no history of neurological disorders. Informed consent 

procedures were approved by the Psychology ethics committee at the University of 

Aberdeen. 

 

 

5.2.2 ERP Recording Parameters and Analysis - Aberdeen 

EEG was recorded using a Biosemi Active-Two amplifier system (Biosemi, 

Amsterdam, Netherlands) from 64 locations based on the International 10-20 system 

(Jasper, 1958). Electrodes, placed in an elastic cap, were active Ag–AgCl and two 

additional electrodes named "Driven Right Leg" and "Common Mode Sense" were 

used as ground and online reference (www.biosemi.com/faq/cms&drl.htm; see also 

Metting Van Rijn, Peper, & Grimbergen, 1990, 1991). All channels were re-referenced 

offline to averaged mastoids reference. The EEG was sampled at a 512Hz rate and 

downsampled offline to 250Hz. Vertical and horizontal EOG were recorded from pairs 

of electrodes placed above and below the left eye, and on the outer canthi, to allow 

ocular artifact reduction. Electrode offsets were kept between ±25 mV.  
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Data was processed using Neuroscan Edit 4.3 (www.neuroscan.com). EEG was band 

pass filtered between 40 and 0.1Hz, and segmented into 2040ms epochs, starting 

104ms before stimulus onset. Waveforms were baseline corrected and smoothed over a 

5-point kernel. Ocular artifacts were removed using linear regression (Semlitsch et al., 

1986), and trials were excluded if drift exceeded ±75 μV, or if in any point during the 

epoch activity exceeded ±100 μV. The mean number of trials contributing to ERPs in 

each condition for the N400 effect were: Unrelated 80.31, Related 80.06; for the P3b 

effect: Standard 248.31, Target 34.46; for the Left Parietal effect: Hits 55.18, Correct 

Rejections 55.9. Statistical analyses were performed on mean voltage data relative to 

the pre-stimulus baseline period, using repeated measures ANOVA. The Geisser–

Greenhouse correction for nonsphericity of data was applied as appropriate and 

corrected df and F values are reported.  

 

 

5.2.3 Participants – Stirling 

Thirty-two (16 male) right-handed native English speakers participated for payment 

(£5 an hour). Participants mean age was 20.1 years (range 18-24) and all reported 

normal or corrected to normal vision with no history of neurological disorders. 

Informed consent procedures were approved by the Psychology ethics committee at 

the University of Stirling. 
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5.2.4 ERP Recording Parameters and Analysis - Stirling 

EEG was recorded using a Synamps
2
 amplifier and Acquire 4.3 software 

(Neuromedical supplies; www.neuroscan.com). Data was sampled from 62 extended 

10-20 (Jasper, 1958) scalp sites using Ag–AgCl electrodes embedded in an elasticised 

cap (Quickcaps, Neuromedical Supplies; www.neuroscan.com). All channels were 

referenced to an electrode placed between CZ and CPZ and then re-referenced offline 

to averaged mastoids reference. Vertical and horizontal EOG were recorded from pairs 

of electrodes placed above and below the left eye and on the outer canthi to allow 

ocular artifact reduction. Impedances were maintained below 5kΩ. The data were 

digitised at a rate of 250Hz and band pass filtered during recording between 40 and 

0.1Hz. The mean number of trials contributing to ERPs in each condition for the N400 

effect were: Unrelated 96.59, Related 97.18; for the P3b effect: Standard 310.25, 

Target 44.78; for the Left Parietal effect: Hits 68.03, Correct Rejections 69.59. Data 

processing and analysis followed the same criteria used in processing the data 

collected in Aberdeen.  

 

 

5.2.5 Reliability Analysis Parameters 

The 58 electrodes common to both acquisition systems were FP1, FP2, FPZ, AF3, 

AF4, FZ, F1, F2, F3, F4, F5, F6, F7, F8, FCZ, FC1, FC2, FC3, FC4, FC5, FC6, FT7, 

FT8, CZ, C1, C2, C3, C4, C5, C6, T7, T8, CPZ, CP1, CP2, CP3, CP4, CP5, CP6, TP7, 

TP8, PZ, P1, P2, P3, P4, P5, P6, P7, P8, POZ, PO3, PO4, PO7, PO8, OZ, O1, O2, and 

reliability analyses were conducted on a subset of those electrodes representing all 
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locations and superior and inferior sites from frontal to parietal areas(F1, F2, F5, F6, 

FC1, FC2, FC5, FC6, C1, C2, C5, C6, CP1, CP2, CP5, CP6, P1, P2, P5, P6). 

Consistently with the existing literature (e.g. Duncan et al., 2009; Rugg & Curran, 

2007; Alexander et al., 1994) the N400 effect was analyzed in the 300-500ms time-

window; the P3b effect in the 275-400ms time-window and the Left Parietal effect in 

the 500-700ms time-window. Analysis of the Left Parietal effect was performed on 

correctly recognized old (Hits) and new (Correct Rejections) items.   

 

 

To investigate reliability across laboratories a comparison of behavioural variables was 

first conducted for each effect. Electrophysiologically, the ERP effects of interest were 

statistically characterized first separately for each of the laboratories, investigating the 

statistical significance of the difference across experimental conditions (unrelated-

related for the N400; standard-target for the P3b and hits-correct rejections for the Left 

Parietal Effect) and its distribution across scalp sites. The next step comprised directly 

investigating possible differences across laboratories by statistically comparing 

difference waves. After the assessments of reliability across laboratories were carried 

out, inter-individual reliability was investigated by pooling results from both 

laboratories and calculating for each effect a) the proportion of individuals showing the 

effect, b) the signal to noise ratio, c) cronbach alpha and d) split-half r, all considered 

to be measures of reliability and internal consistency of results (Cronbach, 1951; 

Kaplan & Saccuzzo, 2001; Yarkoni & Braver, 2010).  
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5.3 N400 Effect  

5.3.1 Methods 

Two hundred and four word pairs were created taken from the MRC Psycholinguistic 

Database (www.eat.rl.ac.uk). The words were divided into two experimental 

conditions: word pairs with no association and word pairs with high association (see 

Table 5.1 for examples). Association ratings were taken from the Edinburgh 

Association Thesaurus (Kiss et al., 1973) a word production norm indexing the 

strength of associative links between words in terms of the probability that a specific 

word will come to mind in association with another one.  

 

 

            

 

 

 

 

 

 

 

 

 Table 5.1 Examples of word pairs across experimental conditions. 

 Unrelated                                              High Association 
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While the degree of association between words was manipulated, semantic distance 

was kept statistically constant across experimental conditions. Semantic distance was 

indexed through a semantic space model, which assesses numerically how 

interchangeable a specific word is with other words within a context that is provided 

by a large language corpus. The psychological validity of the interchangeability index 

has been shown in studies (Huettig & Altmann, 2005; Huettig et al., 2006) 

demonstrating that interchangeability measures behaved similarly to other indices of 

semantic relatedness, including empirical indices of feature overlap (Cree & McRae, 

2003). Word frequency (assessed using the Kucera and Francis frequency norms, 

1967), word length and imagability (assessed using the MRC psycholinguistic 

database and the Cortese and Fugett norms, 2004) of the individual words within each 

pair were also statistically matched across conditions assuring that the degree of 

association would be the independent variable of interest.   

 

 

The experiment involved presentation of the 204 experimental word pairs. ERPs were 

recorded while participants were performing a judgement of relatedness task. Two 

words (prime and target) were presented, separated by a stimulus onset asynchrony of 

800ms. Each word was presented visually using a white uppercase 18-point Courier 

New font against a black background. 
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Participants were instructed to read the first word, then wait for the second word, read 

it, and then wait for a question appearing on the screen asking them either 

"RELATED?" or "UNRELATED?". Participants were instructed to say "Yes" or "No" 

by pressing the extreme left and right hand button using a 5 button response-box (the 

mapping of responses to buttons was counterbalanced across participants). 

Presentation of the question "Related" or "Unrelated" following each pair was 

randomized. It is important that participants do not know what to press when the target 

is presented so that a P3b component elicited after the target can be avoided. The P3b 

is a very large component and it would most likely overshadow the smaller N400. By 

having participants making a choice not after the target but after the question it is 

possible to elicit and record a "pure" N400 not contaminated by P3b (Hill et al., 2005).  

 

 

Each trial began with a fixation cross (+) presented in the centre of the screen for 700 

ms, followed by the prime, presented for 150ms. Each prime was then followed by a 

blank screen for 650ms. The target was then displayed for 1000ms. After a delay of 

200ms the question would appear and stay on the screen until the participant had 

responded; it would disappear after 2 seconds if no response was made. Following the 

response a new trial began with a fixation cross.  
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5.3.2 Results 

5.3.2.1 Behavioural Comparison across Laboratories 

A repeated measures ANOVA was performed on reaction times to targets using a 

within subject factor of condition (unrelated, high association) and a between subjects 

factor of Laboratory (Stirling, Aberdeen) yielding a main effect of condition [F(1, 62) 

= 178.38; p <.001] but no differences across laboratories [F(1, 62) = .70; p = .405], 

showing that reaction times to highly associated targets were quicker than reaction 

times to unrelated targets, and that the resulting priming effect did not differ across 

laboratories.   

 

 

5.3.2.2 N400 effect - Stirling Laboratory 

The N400 ERP effect measured at the laboratory in Stirling was investigated with an 

initial ANOVA with factors of Condition (unrelated-related), Location (frontal, fronto-

central, central, centro-parietal, parietal) and Site (superior: sites 1 & 2; inferior: sites 5 

& 6), yielding a main effect of Condition [F(1, 31) = 141.42; p < .001], a significant 

Condition x Location interaction [F(1.192, 36.947) = 14.79; p < .001], a significant 

Condition x Site interaction [F(1, 31) = 114.57; p < .001], and a significant Condition 

x Location x Site interaction [F(1.965, 60.93) = 6.28; p < .004]. Follow up ANOVAs 

on each separate location revealed the effect to be significant at all locations [Frontal: 

(F(1, 31) = 80.02; p < .001); Fronto-Central: F(1, 31) = 106.74; p < .001,  Central: F(1, 

31) = 138.3; p < .001; Centro-Parietal: F(1, 31) = 169.83; p < .001; Parietal: F(1, 31) = 

163.77; p < .001]. Overall these results show a broadly distributed effect, with a 
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centro-parietal maximum, larger at sites closer to the midline, as can be seen from 

Figures 5.1 and 5.2.    

 

 

5.3.2.3 N400 effect – Aberdeen Laboratory 

The same ANOVA performed on the N400 data from the Stirling laboratory was also 

performed on the Aberdeen results. The analysis yielded a main effect of Condition 

[F(1, 31) = 106.57; p < .001], a significant Condition x Location interaction [F(1.545, 

47.89) = 12.05; p < .001] and a significant Condition x Site interaction [F(1, 31) = 

43.51; p < .001]. Follow up ANOVAs on each separate location revealed the effect to 

be significant at all locations [Frontal: (F(1, 31) = 59.25; p < .001); Fronto-Central: 

F(1, 31) = 80.57; p < .001,  Central: F(1, 31) = 116.07; p < .001; Centro-Parietal: F(1, 

31) = 120.57; p < .001; Parietal: F(1, 31) = 118.50; p < .001]. Consistently with the 

results from the Stirling Laboratory (see Figure 5.2) these results show an effect with a 

centro-parietal maximum, broadly distributed and larger at sites closer to the midline. 
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Figure 5.1 Comparison across laboratories of the N400 effect. Panel a) shows grand average waveforms of the effect relative to the Stirling 

Laboratory; Panel b) shows grand average waveforms effect measured at the laboratory located in Aberdeen.  Nine electrodes are shown for 

each laboratory from frontal to parietal locations; data is displayed positive up. 
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5.3.2.4  N400 Effect – Comparison across Laboratories 

After characterizing the effect in each of the laboratories, a direct comparison across 

laboratories was carried out using difference waves, by means of an ANOVA with the 

same factors used in the initial analyses and an additional between subjects factor 

(Laboratories: Stirling, Aberdeen). This analysis did not yield any significant 

differences across laboratories. To further investigate possible differences at the single 

electrode spatial resolution a between subjects ANOVA with a factor of Laboratory 

was carried out for each individual electrode in the analysis. As Figure 5.2 and Table 

5.2 show, the size of the effect did not differ across laboratories significantly at any of 

the electrodes. Overall, therefore, the results suggest a statistically reliable N400 effect 

was present in both laboratories, and no significant differences were detected across 

laboratories. 

 

  

 

 

 

 

Figure 5.2 Topographic maps showing the N400 effects 

elicited in the inter-laboratory reliability comparison 

across Stirling and Aberdeen. In both cases the 

distribution of the effects has a clear centro-parietal 

maximum.    
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Table 5.2 Across laboratories comparison of the N400 effect at 

the single electrode spatial resolution. For each electrode in the 

analysis the F and the p values are reported.  

 

 

5.4 P3b Effect 

5.4.1 Methods 

ERPs were elicited by randomized presentation of binaural auditory stimuli (600Hz 

and 1600Hz). Duration of the stimuli was 80ms and there was an inter-stimulus 

interval of 1.5s. One of the two stimuli was presented 12.5% of the trials, and the other 

Site F p 

F5 1.19 .279 

F1 .04 .831 

F2 .00 .973 

F6 .00 .959 

FC5 .24 .621 

FC1 .00 .980 

FC2 .15 .696 

FC6 .24 .621 

C5 2.1 .151 

C1 .03 .848 

C2 .02 .878 

C6 .00 .993 

CP5 .73 .395 

CP1 .00 .998 

CP2 .01 .895 

CP6 .76 .387 

P5 1.4 .241 

P1 .23 .629 

P2 .00 .949 

P6 .17 .676 
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the 87.5% of the trials. Participants were instructed to press the central button of a 

five-button response box after hearing the infrequent, or “target”, stimulus and the use 

of left vs. right hand in responding to targets was counterbalanced across participants. 

Moreover, having a high or low pitch target stimulus was also counterbalanced across 

participants to ensure the P3b effect would not be confounded by the physical features 

of the stimuli.  

 

 

5.4.2  Results 

5.4.3 Behavioural Comparison 

Accuracy in the oddball task was 99.18% for participants in Aberdeen and 99.81% for 

participants in Stirling. Mean reaction time to targets was 294.94ms in Aberdeen and 

273.88ms in Stirling. Reaction time data to targets were found not to differ statistically 

across laboratories [F(1, 62) = 1.32; p = .254].   

 

 

5.4.4 P3b Effect – Stirling Laboratory 

The P3b effect measured at the Stirling laboratory was investigated by means of an 

initial ANOVA with factors of Condition (standard-target), Location (frontal, fronto-

central, central, centro-parietal, parietal) and Site (superior: sites 1 & 2; inferior: sites 5 

& 6). The analysis yielded a main effect of Condition [F(1, 31) = 210.424; p < .001], a 

significant Condition x Location interaction [F(1.216, 37.688) = 53.76; p < .001], a 

significant Condition x Site interaction [F(1, 31) = 78.71; p < .001], and a significant 
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Condition x Location x Site interaction [F(1.744, 54.060) = 10.03; p < .001]. Follow 

up ANOVAs on each separate location revealed the effect to be significant at all 

locations [Frontal: (F(1, 31) = 70.63; p < .001); Fronto-Central: F(1, 31) = 115.51; p < 

.001,  Central: F(1, 31) = 175.14; p < .001; Centro-Parietal: F(1, 31) = 266.07; p < 

.001; Parietal: F(1, 31) = 309.54; p < .001]. Overall these results show a broadly 

distributed effect, maximal over parietal and centro-parietal areas and larger at sites 

closer to the midline.   

 

 

5.4.5 P3b Effect – Aberdeen Laboratory 

The same ANOVA performed on the data from the Stirling laboratory was also 

performed on the P3b results from the Aberdeen laboratory. The analysis yielded a 

main effect of Condition [F(1, 31) = 99.47; p < .001], a significant Condition x 

Location interaction [F(1.440, 44.627) = 72.86; p < .001], a significant Condition x 

Site interaction [F(1, 31) = 41.17; p < .001], and a significant Condition x Location x 

Site interaction [F(2.835, 87.883) = 2.78; p < .05]. Follow up ANOVAs on each 

separate location revealed the effect to be significant at all locations [Frontal: (F(1, 31) 

= 42.69; p < .001); Fronto-Central: F(1, 31) = 63.48; p < .001;  Central: F(1, 31) = 

89.88; p < .001; Centro-Parietal: F(1, 31) = 120.73; p < .001; Parietal: F(1, 31) = 

147.79; p < .001]. These results show an effect maximal over Parietal and Centro-

Parietal areas, broadly distributed effect and larger at sites closer to the midline, 

consistently with the topographic distribution found in the ERP laboratory in Stirling.   
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5.4.6 P3b Effect – Comparison across Laboratories 

After characterizing the effect in each of the laboratories, a direct comparison (see 

Figures 5.3 and 5.4) across laboratories was carried out using difference waves, 

employing by an ANOVA with the same factors used in the initial analyses and an 

additional between subjects factor (Laboratories: Stirling, Aberdeen). The analysis did 

not yield any significant differences across laboratories. To further investigate possible 

differences another between subjects ANOVA with a factor of Laboratory (Stirling, 

Aberdeen) was carried out for each individual electrode in the analysis, yielding the 

results shown in Table 5.3. The two effects were found not to differ across laboratories 

at the single electrode spatial resolution. Overall the results reveal a set of P3b effects 

that are consistent both with the previous literature and with each other across 

laboratories.  

 

 

  

 

Figure 5.3 Topographic maps showing the P3b effects 

elicited in the inter-laboratory reliability comparison 

across Stirling and Aberdeen. In both cases the 

distribution of the effects has a clear parietal maximum.  

  

 

Stirling Aberdeen 
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Figure 5.4 Comparison across laboratories of the P3b effect. Panel A shows grand average waveforms and topographic distribution of the 

effect relative to the Stirling Laboratory; Panel B shows grand average waveforms and topographic distribution of the effect elicited at the 

Aberdeen Laboratory.  Nine electrodes are shown for each laboratory from frontal to parietal locations; data is displayed positive up.  
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Table 5.3 Comparison of the P3b effect across laboratories at 

the single electrode spatial resolution. For each electrode in 

the analysis are reported the F and the p values.  

 

 

5.5 Left Parietal Effect 

5.5.1 Methods 

Stimuli consisted of 176 words presented visually taken from the MRC 

Psycholinguistic Database. Mean word frequency (and standard deviation) was 13.79 

(10.25) counts per million, and word length ranged between 3 and 9 letters. The 

experiment was divided into four study-test blocks. During each study phase 22 words 

Site F Sig. 

F5 .68 .412 

F1 .67 .415 

F6 1.89 .173 

F2 1.06 .307 

FC5 1.93 .169 

FC1 1.59 .212 

FC6 2.41 .125 

FC2 1.14 .289 

C5 .26 .610 

C1 1.33 .253 

C6 1.06 .307 

C2 2.07 .154 

CP5 .33 .568 

CP1 1.64 .205 

CP6 2.83 .097 

CP2 2.85 .096 

P5 .22 .641 

P1 1.27 .263 

P6 .90 .346 

P2 1.69 .198 
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were shown and participants judged if the words referred to living or non-living 

objects. In each test phase 44 words were shown, half of them old and half of them 

new, while participants performed an old/new recognition task. Across participants 

each word served equally frequently as an old or new item. For the study phase each 

trial began with a fixation cross presented for 2100ms, followed by the experimental 

stimulus for 300ms. The stimulus was followed by a blank screen during which the 

participant performed the living/non-living judgement. Each test phase trial started 

with a fixation cross presented for 2100ms, followed by the stimulus for 300ms and by 

a blank screen for 2700ms. During the blank screen participants performed the old/new 

recognition task by pressing the extreme left and right buttons of a 5 button response 

box. Mapping of old and new responses to buttons was counterbalanced across 

participants.    

 

 

5.5.2 Results  

5.5.2.1 Behavioural Comparison across Laboratories 

Behavioural consistency across laboratories was investigated by  comparing a measure 

of discriminability called „sensitivity‟ (Snodgrass and Corwin, 1988), computed by 

subtracting the probability of committing a False Alarm from the probability of 

making a Hit. The ANOVA did not yield a significant result [F(1, 62) = 2.30; p = 

.134]. Moreover response bias, the tendency of participants to be more conservative or 

liberal in choosing “old” during the recognition memory test was analysed to assess 

possible differences across laboratories. The ANOVA did not yield a significant result 
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[F(1, 62) = .02; p = .880]. Additionally, reaction time data to Hits [F(1, 62) = .34; p = 

.559] and Correct Rejections [F(1, 62) = .11; p = .741] were also found not to differ 

statistically across laboratories.    

 

 

5.5.2.2 Left Parietal Effect – Stirling Laboratory 

The ERP effect was investigated statistically with an initial ANOVA, employing  

factors of Condition (Hits, Correct Rejections), Location (Frontal, Fronto-Central, 

Central, Centro-Parietal, Parietal and Parietal-Occipital), Hemisphere (Left, Right) and 

Site (superior: sites 1 & 2, PO3, PO4; inferior: sites 5 & 6, PO7, PO8). The 

Hemisphere factor and the PO electrodes were introduced to best characterize the 

typical parietal and asymmetrical nature of the Left Parietal effect. The ANOVA 

yielded a significant effect of Condition [F(1, 31) = 28.34; p < .001], a significant 

Condition x Location interaction [F(1.220, 37.817) = 6.07; p < .02], a significant 

Condition x Site interaction [F(1, 31) = 8.51; p < .008], and a significant Condition x 

Location x Site interaction [F(2.620, 81.216) = 6.38; p < .002].  

 

 

Follow up ANOVAs on each location found the effect to be significant at all locations 

[Frontal: (F(1, 31) = 10.70; p < .004); Fronto-Central: F(1, 31) = 18.11; p < .001,  

Central: F(1, 31) = 27.64; p < .001; Centro-Parietal: F(1, 31) = 28.84; p < .001; 

Parietal: F(1, 31) = 25.09; p < .001; Parietal-Occipital: F(1, 31) = 24.35; p < .001]. A 

subsidiary analysis focused on parietal locations (Cp, P & PO) found the parietal effect 
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to be larger on the left hemisphere compared to the right hemisphere, as reflected by a 

significant Condition x Hemisphere interaction [F(1, 31) = 4.59; p < .05]. Overall these 

results reflect a broadly distributed effect that is statistically largest over left-parietal 

sites.    

 

 

5.5.2.2 Left Parietal Effect – Aberdeen Laboratory 

The effect was investigated statistically with the same ANOVA performed on the data 

from the Stirling laboratory. The ANOVA yielded a significant effect of Condition 

[F(1, 31) = 27.95; p <.001], a significant Condition x Location x Site interaction 

[F(3.23, 100.11) = 3.62; p <.02] and a significant Condition x Hemisphere interaction 

[F(1, 31) = 6.48; p < .02]. Follow up ANOVAs on each location found the effect to be 

significant at all locations [Frontal: (F(1, 31) = 10.73; p < .004); Fronto-Central: F(1, 

31) = 14.75; p < .002;  Central: F(1, 31) = 32.44; p < .001; Centro-Parietal: F(1, 31) = 

35.53; p < .001; Parietal: F(1, 31) = 28.53; p < .001; Parietal-Occipital: F(1, 31) = 

23.91; p < .001]. A subsidiary analysis focused on parietal locations (Cp, P & PO) 

found the parietal effect to be larger on the left hemisphere compared to the right 

hemisphere, as reflected by a significant Condition x Hemisphere interaction [F(1, 31) 

= 5.32; p < .03]. Overall these results reflect a broadly distributed effect largest over 

the left hemisphere particularly at parietal electrodes.  

 

 

 



                                                                                     Chapter 5: Reliability Assessment 

     

 165 

 

5.5.2.3 Left Parietal Effect – Comparison across Laboratories 

After characterizing the effect in each of the laboratories, a direct comparison across 

laboratories (see Figures 5.5 and 5.6) was carried out using difference waves, by 

means of an ANOVA with the same factors used in the initial analyses and an 

additional between subjects factor (Laboratories: Stirling, Aberdeen). The analysis did 

not yield significant differences across laboratories. To further investigate possible 

differences another between subjects ANOVA (with a factor of Laboratory: Stirling, 

Aberdeen) was carried out at the single electrode spatial resolution. As Table 5.4 

shows, the size of the effect did not differ across laboratories significantly at any of the 

electrodes.  

 

 

Figure 5.5 Topographic maps showing the Left 

Parietal effects elicited in the inter-laboratory 

reliability comparison across Stirling and Aberdeen. 

In both cases the distribution of the effects has 

parietal maximum, and the distribution of the effect 

is slightly broader over the left hemisphere for the 

effect measured in the Aberdeen laboratory.   

Stirling Aberdeen 
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Figure 5.6 Comparison across laboratories of the Left Parietal effect. Panel a) shows grand average waveforms and topographic 

distribution of the effect relative to the Stirling Laboratory; Panel b) shows grand average waveforms and topographic distribution of 

the effect relative to the Aberdeen Laboratory. Nine electrodes are shown for each laboratory from frontal to parietal locations. 
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5.6 Inter-individual Reliability 

After revealing that the elicited experimental effects were consistent both with the 

previous literature and across laboratories, an important consideration regards the 

overall inter-individual reliability of the ERP effects. As the variability of an effect 

across participants decreases, reliability measures such as the signal-to-noise ratio will 

increase. Conversely, as the inter-individual variability of the effect increases, its 
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signal-to-noise ratio will decrease. Consistency of results across participants was 

investigated by pooling results from both laboratories and calculating for each effect a) 

the proportion of individuals showing the effect, b) the signal-to-noise ratio, c) 

cronbach alpha and d) split-half r. Histograms in Figure 5.7 show inter-individual 

variability of the effects, measured over a set of electrodes where the effects were 

maximal (CZ, CPZ, PZ for the N400 effect; CP1, CP3, CP5 for the Left Parietal effect; 

CZ, CPZ, PZ for the P3b effect). The number within each bar represents the number of 

participants showing an effect of that magnitude, and the magnitude is indicated on the 

x axis.  

 

It is worthwhile noting that in the case of the N400 all the participants showed the 

effect and in the case of the P3b one participant did not show the effect, whereas in the 

case of the Left Parietal effect eleven participants did not show the effect, suggesting 

that the N400 and P3b effect have an overall higher level of inter-individual reliability. 

The results of the Left Parietal effect inter-individual reliability analysis are 

compatible with the corresponding data collected by MacLeod and Donaldson (2011), 

previously discussed in Chapter 4 and further discussed in Chapter 10. 
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Figure 5.7 Histograms representing the distribution of the magnitude of each effect across participants. The number within each bar represents the number of 

participants showing an effect of that magnitude. Red numbers represent participants not showing the effect. All participants displayed a N400 effect; 11 

participants did not display a Left Parietal effect and one participant did not display the P3b effect. Values on the x axis are expressed in microvolts.    
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Mean amplitude (and standard deviations) across all participants are reported for each 

effect in Table 5.5. The table also shows the signal-to-noise ratio for each of the effect, 

calculated (e.g. Lütkenhöner, 1995) as the average signal power (mean) divided by 

average noise power (standard deviation). Note that even though the P3b effect has a 

much larger magnitude than the N400, the signal-to-noise ratio for the two effects is 

similar, showing that a higher absolute magnitude does not imply a higher signal-to-

noise ratio.  

 

 

 

 

 

Table 5.5 For each investigated effect are reported the mean, standard 

deviation, signal to noise ratio, Cronbach α and Split-Half r.  

 

Internal consistency of results was also assessed for each effect by calculating 

Cronbach's α, a widely used measure of reliability (Cronbach, 1951) sensitive to how 

closely related a set of individual results are as a group. Typically, Cronbach's alpha 

gets higher when the inter-correlations among individual values increase. For the N400 

and the P3b effects very high internal consistency of results was found (α = .97; α = 

.98, respectively) across the 64 participants, while for the Left Parietal effect internal 

consistency – although not as high as the other effects – was still found to be at high 

levels (α = .86). Split-half reliability measures (Kaplan & Saccuzzo, 2001) found 

 
Mean Std. Dev. SNR Cronbach α Split-Half r 

N400  -4.1 1.92 2.13 .97 .98 

Left Parietal 2.64 2.54 1.03 .86 .89 

P3b  13.67 6.26 2.18 .98 .99 
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similar results (N400: r = .98; P3b: r = .99; Left Parietal: r = .89). By convention, 

reliability coefficients of .8 are considered adequate in most domains of psychological 

research, and coefficients of .9 or more are generally considered high (Yarkoni & 

Braver, 2010). These results are consistent with the signal-to-noise values and with the 

proportion of the sample showing each effect, leading to the overall conclusion that all 

three effects can be considered reliable at the group level, albeit with the N400 and the 

P3b exhibiting a higher degree of reliability than the Left Parietal effect.  

 

 

The levels of inter-individual variability relative to the P3b and N400 point to their 

reliability both at the group and at the individual level, while the Left Parietal effect 

appears to be reliable only at the group level as there is a portion of participants not 

showing the effect. To investigate if the subset of participants not showing the Left 

Parietal effect was doing so because of a comparatively poor performance, a 

comparison of relevant behavioural variables, sensitivity and response bias, was 

carried out between subjects showing the effect and subjects not showing the effect. 

The ANOVA did not yield significant differences [sensitivity: F(1, 62) = 1.36; p = 

.247; response bias: F(1, 62) = .01; p = .901] suggesting that behavioural variables are 

not responsible for the absence of the effect, therefore confirming the discrepancy 

between the individual and the group level described for the Left Parietal effect (see 

Table 5.6). 

 



                                                                                     Chapter 5: Reliability Assessment 

     

 172 

The observed lack of behavioural differences between the participants showing the 

Left Parietal effect and the participants not showing the effect is consistent with the 

results described in Chapter 4 by MacLeod and Donaldson (2011), showing, within a 

large group of participants (N=122), that the proportion of participants showing a 

„negative‟ Left Parietal effect (i.e. an effect opposite in polarity compared to the one 

typically observed) did not display a different behavioural pattern compared to the 

majority of participants showing the typical parietal old/new positivity.    

 

 

Behavioural Indices F Sig. 

Response Bias .016 .901 

Sensitivity 1.364 .247 

RT Hits .197 .658 

RT CRs .527 .471 

 

Table 5.6 Lack of behavioural differences in response 

Bias, Sensitivity and reaction Times for Hits and Correct 

Rejections between the participants showing the Left 

Parietal effect and the participants not showing the 

effect.  

 

 

5.7 Discussion  

The results of the reliability assessment of the P3b, N400 and Left Parietal Effect point 

to two main conclusions. The first is that all three of the effects investigated yielded 

reliable results, both behaviourally and electrophysiologically, across laboratories. The 
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shape of the waveforms and the topographic distribution of the effects were in fact 

consistent across laboratories and, importantly, the elicited effects were strictly 

consistent with descriptions in the respective literatures. This conclusion is important 

because it shows how the specific laboratories involved in the study are equipped with 

apparati capable of similarly capturing a range of ERP effects that reflect different 

cognitive functions and time windows, allowing data-pooling across laboratories with 

important consequences for future collaborative research.  

 

 

The other important conclusion is that the Left Parietal effect, compared to the P3b and 

the N400, has a higher degree of inter-individual variability, as shown by reliability 

indices. This may be due to genetic variability across individuals or may be a sign of 

differential effects of experience-dependent plasticity across individuals, as brain 

structures are known to be modified as a consequence of the specific environmental 

variables influencing the individual's behaviour. Genetic and environmental variables 

may interact in generating a higher degree of inter-individual variability, and - in the 

case of the Left Parietal Effect - perhaps the use of different encoding and recollecting 

strategies may play a role in determining a higher degree of inter-individual variability 

compared to the P3b and the N400 effect.  

 

 

It is important to acknowledge however that reliability indices for the Left Parietal 

effect, even though lower than reliability indices for the N400 and the P3b, are still 
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high enough to consider the effect robust at the group level. Since research in cognitive 

neuroscience typically relies on within-subject and between subjects experimental 

designs involving a relatively large number of participants, the degree of inter-

individual variability seen in the Left Parietal effect should only have negligible 

consequences. Nevertheless, if the Left Parietal effect is to become a reliable measure 

of recollection memory at the single subject resolution (and be used in clinical and 

forensic settings), then progress needs to be made in terms of understanding the factors 

that contribute to its measured inter-individual variability.  

 

 

From a validity perspective, however, the lack of difference in behavioural pattern 

between the participants showing the Left parietal positivity and the participants not 

showing the Left Parietal positivity is problematic. Validation of indices of episodic 

memory needs to rely on a reliable relationship between the effect and a behavioural 

dependent variable. As described in Chapter 4, the size of the Left Parietal effect is 

considered to reflect the amount of information retrieved, and as such there should be a 

difference in sensitivity performance across the group showing the parietal positivity 

and the group not showing the positivity. The lack of difference across those groups 

shown in the current Chapter and in the study performed by MacLeod and Donaldson 

(2011) described in Chapter 4 suggests that perhaps a more specific measure of 

behavioural recollection is needed to validate the Left Parietal effect (i.e. a source 

memory task instead of generic sensitivity), as the strongest evidence in favor of the 

idea that the Left Parietal effect indexes episodic recollection comes in fact from 
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source memory studies. It is possible however that in the current study and in Macleod 

and Donaldson‟s study the proportion of participants not showing the effect was able 

to perform adequately in the recognition test not by remembering but by knowing they 

had seen the old items before (i.e. using the process of familiarity and not recollection; 

see Chapter 4 for a review of the two processes in relation to ERP effects and Chapter 

10 for further discussion on the Left Parietal effect‟s validity).   
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Chapter 6 

 
The Left Parietal Effect and the P3b Pt. 1: 

A Correlational Study 

 

When validating the P3b effect and the Left Parietal effect, it is essential to investigate 

if the two effects are independent from each other (discriminant validity, see 

Introduction) or if there is a degree of overlap between the two effects. Ideally the P3b 

effect and the Left Parietal effect should be entirely independent to be considered as 

highly precise measurement tools of attention and memory. But as we saw in Chapters 

3-4 there is some evidence suggesting that the variables measured by the two effects 

may be overlapping. In the experiment described in the current chapter we therefore 

investigated directly this possibility by conducting a correlational study with a large 

number of participants (N = 64) to detect possible correlations across the effects. If 

common processes are present between the two effects, such a correlational 

investigation should be sensitive enough to detect them. Importantly, the N400 effect 

was also measured within the same participants providing a direct example of  

discriminant validity.    
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6.1 Introduction 

The Left Parietal effect, considered to be an electrophysiological correlate of 

recollection in recognition memory experiments (see Chapter 4), consists of an 

enhanced positivity of ERPs elicited by correctly recognized old items (Hits) 

compared to correctly classified new items (Correct Rejections). The difference 

between Hits and Correct Rejections is typically maximal in a time-window between 

500 and 700ms post-stimulus presentation, and the effect is distributed parietally with 

a maximum in the left hemisphere (e.g. Rugg & Curran, 2007).  

 

 

The P3b effect, on the other hand, is typically elicited in an oddball paradigm, where 

the participant is instructed to respond to the targets but not to the standard stimuli 

(Polich, 2007; see Chapter 3). The P3b effect consists of a large positive deflection 

elicited by target stimuli compared to standard stimuli. The size of the P3b effect is a 

function of the relative probability of target and standard stimuli, and as the relative 

probability of targets decreases the difference in amplitude between ERPs to target and 

standard stimuli increases (see p. 88; Duncan-Johnson & Donchin, 1982; Squires et al., 

1976). Importantly, even when the objective probability of target and standard stimuli 

is equal, ERPs to targets are still more positive than ERPs to standard stimuli, 

indicating that the P3b is sensitive to the targetness value, or task-relevance, of the 

presented stimuli, possibly due to the lower subjective probability of target items 

compared to non-targets (see Chapter 3 and Figure 6.1).  
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Figure 6.1. The Figure shows amplitude of the P3b effect while manipulating 

task relevance of stimuli. Specifically, the two lines represent mean 

amplitude of targets and non-targets while keeping probability of 

presentation constant at 10%. Mean amplitude is higher for targets compared 

to non-targets (Adapted from Katayama & Polich, 1996).  

 

As discussed in Chapters 3 and 4, the P3b has a parietal distribution over the scalp, 

and, depending on the experimental procedure and modality involved, it may peak 

between 300 and 800ms post stimulus presentation. Peak latency depends in fact on 

the amount of time required to categorize the stimulus (Kutas, McCarthy & Donchin, 

1977; McCarthy & Donchin, 1981) and while for simple auditory discriminations it 

typically peaks around 300ms post stimulus, for complex tasks it may peak after 400-

800ms or later (see Donchin, 1981; Pritchard, 1981). There is therefore an overlap 
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between the P3b and the Left Parietal effect in their time course and scalp distribution. 

Historically, the fact that in some experiments P3b amplitude was larger to items part 

of an original memory set, compared to non-members (similarly to the difference 

observed between target and non-target items in a P3b experiment), contributed to 

descriptions in the psychophysiological literature of the Left Parietal effect as a subset 

of the P3b effect (Andreassi, 2006). The Left-Parietal old/new effect has also been 

considered to co-occur with the P3b (Bentin & McCarthy, 1994; Spencer, Vila Abad, 

& Donchin, 2000) and, as mentioned in Chapter 5, has also been described as the 

“P300 old/new difference” (Johnson, 1995) and the “P600 old/new effect” (Curran, 

1999; Rugg & Doyle, 1992). Andreassi (2006) observes that "the P300 represents an 

efficient way to study recognition memory because it is reliably larger to previously 

learned materials than to new information" (p. 199). 

 

 

Andreassi's observation is potentially justified by the possibility that old items in a 

recognition memory paradigm may have greater targetness value compared to new 

items, considered that instructions typically emphasize detection of old items. This 

target effect may be due to the target-nontarget categorization influencing the 

subjective probability of stimuli, specifically lowering the subjective probability of old 

items and therefore increasing their ERP amplitude. Similarly, Karis et al. (1984) have 

also proposed that the enhanced positivity for Hits in recognition memory paradigms 

may be partially due to a P300 "target effect". This target effect is proposed to be the 

outcome of the test item matching an episodic memory trace, compared to a test item 
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not matching a memory trace, and the enhanced positivity for Hits may reflect 

matching in general rather than recognition, as suggested by the fact that matching 

judgments are typically associated with an enhanced positivity compared to 

mismatching judgments. For instance, the closer the match of a stimulus to a template, 

the larger and earlier the P300 was found to be by Squires et al. (1973). 

 

 

The independence of the Left Parietal effect from the P3b effect has been questioned 

directly by Spencer et al. (2000). The authors argued specifically that the relative 

positivity found in ERP recognition memory experiments involving a remember/know 

procedure (e.g. Smith, 1993; see Chapter 3), was not due to a specific effect 

representing the mnemonic process of recollection. Instead Spencer et al. suggested 

that the component measured by Smith (1993) was a P300 and the remember/know 

putative mnemonic modulation was due to differences in P300 jittering across 

remember and know conditions, due to the fact that "remember" decisions were 

reached with a more consistent latency compared to "know" decisions.  The authors 

therefore considered the interpretation that the Left Parietal effect is a specific 

correlate of recollection independent from the P3b to be inaccurate, at least within the 

constraints of a remember/know procedure. However some other evidence (Herron et 

al., 2003), described in detail in Chapter 7, suggests that the Left Parietal effect and the 

P3b constitute independent effects. 
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It is apparent that in the ERP literature there is no consensus regarding the relationship 

between P3b and the Left Parietal effect. In the current experiment we investigated 

directly the potential relationship between the P3b and the Left Parietal by eliciting the 

two effects in a group of sixty-four participants and examining correlations between 

the effects. If the two effects are entirely independent no significant correlations are 

expected; on the other hand if some processes are shared, then significant correlations 

may point to commonalities. Importantly we also collected an N400 effect to provide a 

neutral term of comparison within the correlational analysis.    

 

 

6.2 Methods 

6.2.1 Participants, ERP recording parameters and experimental procedure 

Sixty-four (27 male), thirty-two from Aberdeen and thirty-two from Stirling, right-

handed native English speakers participated for course credit (Aberdeen) or for 

payment of £5 an hour (Stirling). Participants mean age was 19.8 years (range 18-24) 

and all reported normal or corrected to normal vision with no history of neurological 

disorders. Informed consent procedures were approved by the psychology ethics 

committee at the University of Aberdeen and at the University of Stirling. Data 

analysed in the current chapter correspond to the ERPs described in the reliability 

analyses presented in Chapter 5; ERP recording parameters and experimental 

procedures match therefore to the ones presented in Chapter 5.  Correlational analyses 

were conducted on chains of electrodes where the effects were maximal (CZ, CPZ, PZ 
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for the N400 effect; CP1, CP3, CP5 for the Left Parietal effect; CZ, CPZ, PZ for the 

P3b effect). These regions of interests correspond to descriptions in the literature of 

typical distribution of the effects: centro-parietal distribution for the P3b and N400 and 

left parietal distribution for the Left Parietal effect (e.g. Rugg & Curran, 2007; Duncan 

et al., 2009).  

 

 

6.3 Results 

Results presented in Chapter 5 show that the effects‟ time-course and topographic 

distribution was consistent with the previous literature and, importantly, that there 

were no significant differences in the effects of interest across the two laboratories 

where the study was carried out. A correlational analysis was then conducted between 

the Left Parietal effect and the P3b effect. The relationship between mean amplitudes 

of the Left Parietal effect and the P3b effect is presented in Figure 6.2. As can be seen 

from the graph, a significant correlation was found between the Left Parietal and the 

P3b effect (p <.05). Further correlations were calculated between the P3b effect and 

the N400 effect and between the Left Parietal effect and the N400 effect. These 

correlations served the purpose of having a term of comparison in the current 

correlational analysis, as no significant correlations between the P3b and the N400 and 

between the Left Parietal effect and the N400 are theoretically expected.
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Figure 6.2 The Figure shows (a) the significant correlation between mean amplitude of the P3b Effect and the Left Parietal effect, (b) the absence of 

correlation between the N400 effect and the Left Parietal effect and (c) the absence of correlation between the N400 effect and the P3b effect. All values are 

expressed in microvolts.  

a) b) c) 
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Results in Figure 6.2 show an absence of significant correlations between the P3b 

effect and the N400 effect and between the Left Parietal effect and the N400 effect. 

Overall the analyses conducted show a significant correlation between the Left Parietal 

effect and the P3b effect, and an absence of significant correlations between the Left 

Parietal effect and the N400 effect and between the P3b and the N400 effect.  Having 

assessed a significant correlation between the P3b and the Left Parietal effect, further 

correlations were run between the P3b effect and Hits and between the P3b effect and 

Correct Rejections. Significant correlations were found between the P3b effect and 

Hits and between the P3b effect and Correct Rejections (Figure 6.3, see Table 6.1 for 

all correlational results).  

 

Figure 6.3 The Figure shows a) the significant correlation between mean amplitude of the P3b 

Effect and mean amplitude of Hits and b) between the mean amplitude of the P3b Effect and the 

mean amplitude of Correct Rejections. All values are expressed in microvolts.  

b) 
a) 
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Table 6.1 The table shows Pearson Correlation coefficients and significance values for the correlational analysis involving the 

P3b effect, the Left Parietal effect (including Hits and Correct Rejections) and the N400 effect.  

Correlations 

 Left Parietal Hits Correct Rejections P3b N400 

Left  Parietal Pearson  1 .567 -.062 .253 .039 

Sig.   <.01 .629 <.05 .760 

Hits Pearson   1 .787 .582 -.126 

Sig.    <.01 <.01 .320 

Correct Rejections Pearson    1 .515 -.182 

Sig.     <.01 .150 

P3b  Pearson     1 .082 

Sig.      .521 

N400  Pearson      1 

Sig.       
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6.4 Discussion 

A straightforward interpretation of the current results based on the suggestion by 

Hillyard, Squires, Bauer, and Lindsay (1971) is that since signal detection is occurring 

both in P3b and Left Parietal experiments, the commonalities seen across the two 

effects may reflect the signal detection component common to both procedures. In 

other words, both P3b and Left Parietal experiments could be considered variations of 

the same signal detection procedure since in both cases the effect is obtained by 

contrasting ERPs to Hits (targets) to ERPs to Correct Rejections (standards). 

Specifically in an auditory detection experiment Hillyard, Squires, Bauer, and Lindsay 

(1971) examined ERPs for the four outcomes in a signal detection task, finding that the 

P3b wave was evoked only by hits, but not by misses, false alarms or correct 

rejections. Moreover, the size of the P3b component was found to increase in 

amplitude with increased detectability of the signal. 

 

 

Another possible interpretation for the significant correlation found between the P3b 

and the Left Parietal Effect is, as mentioned in the introduction, that in a recognition 

memory task old items have higher targetness value compared to new items, as 

memory tests typically tend to emphasize detection of old items compared to rejection 

of new items. As the P3b is sensitive to the targetness value of stimuli, the measured 

relationship between the two effects in the current experiment may reflect precisely a 

target processing function necessary to perform adequately in both tasks. Moreover, 
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even in preparations in which probability of stimuli is kept constant (as in the Left 

Parietal experimental paradigm used in the current experiment) the targetness effect 

may be due to the perceived lower subjective probability of targets. As mentioned in 

Chapter 3, Mecklinger and Ullsperger (1993) performed a study in which the stimuli, 

five words, were equally probable. They found that any word, when instructed as the 

target, had higher P300 amplitude, leading Rosenfeld et al. (2005) to propose that 

stimulus categorization (and therefore target vs. non-target categorization) plays an 

important role in determining subjective probability and therefore in influencing P3b 

amplitude. The correlation between P3b and Left Parietal effect found in the current 

experiment may therefore be due to the fact that in this kind of recognition memory 

experiment participants are explicitly instructed to detect old items, and they therefore 

operate an explicit target vs. non-target categorization leading to a lower subjective 

probability for old compared to new items.  

 

 

If it is true, as suggested by the current correlational analysis, that the targetness effect 

may be due to the perceived lower subjective probability of targets, a straightforward 

way to investigate the nature of the relationship would be to carry out an objective 

probability manipulation during a recognition memory test. Such manipulation would 

involve the relative probability of correctly classified old and new items. The P3b is in 

fact very sensitive to the probability of target items and if the Left Parietal effect is 

influenced by P3b-like probability effects, a strong probability manipulation should 

yield some control over the size of the memory effect. Specifically, in an experimental 
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condition with low probability Hits and high probability Correct Rejections, the size of 

the Left Parietal effect should be larger compared to a condition in which the relative 

probability of Hits is larger than the probability of Correct Rejections. The following 

chapter describes precisely such a manipulation.  

 

 

 

6.5 Summary 

A consensus has not been reached in the ERP literature regarding the relationship 

between the P3b Effect and the Left Parietal Effect. If there is a relationship between 

the two effects a correlational analysis with a large number of participants comparing 

the two effects should be sensitive enough to detect it. We carried out such analysis 

and found a significant correlation between the Left Parietal effect and the P3b effect 

but, importantly, not between the Left Parietal effect and the N400 effect and the P3b 

effect and the N400 effect. These results may be due to a target effect for old items in 

the recognition memory experiment, possibly caused by a lower perceived subjective 

probability. Following up on the correlational analysis, the next chapter will address 

directly the relationship between the Left Parietal effect and the P3b effect by 

manipulating the objective relative probability of Hits and Correct Rejections in a 

recognition memory test. Since P3b amplitude is very sensitive to the relative 

probability of standard and target stimuli, we hypothesize that if the Left Parietal effect 
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is sensitive to probability a manipulation of the relative probability of Hits and Correct 

Rejections should yield differences in the size of the Left Parietal effect.  
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Chapter 7 

The Left Parietal Effect and the P3b Pt. II: 

A Probability Study 

 

 

There is uncertainty in the ERP literature regarding how the Left Parietal effect and the 

P3b effect represent "pure" measures of memory and attentional processes, 

respectively. The idea that the two effects may be measuring overlapping processes is 

implicitly present in the literature (see Chapters 3, 4 & 6), and is confirmed by results 

presented in Chapter 6. The experiment presented in the current chapter follows up on 

those results and investigates directly if the Left Parietal effect and the P3b effect are 

measuring overlapping processes. If they are, then the two effects cannot be considered 

"pure" measures of attention and memory, and perhaps there is a "contamination" 

across effects in measuring the two functions.  
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7.1 Introduction 

The correlational evidence presented in Chapter 6 points to overlapping processes 

between the P3b effect and the Left Parietal effect, and the significant correlation 

found may be due to a target effect, perhaps due to the lower subjective probability of 

old items compared to new items. A direct way to investigate the relationship between 

the P3b effect and the Left Parietal effect is to carry out an objective probability 

manipulation within a recognition memory paradigm. Typically in recognition 

memory experiments the relative probability of correctly recognized old items (Hits) 

and correctly classified new items (Correct Rejections) is kept equal, but if we 

hypothesize that the P3b effect and the Left Parietal effect "behave" similarly under 

analogous manipulations a clear prediction (see Figure 7.1) can be made about the way 

the Left Parietal effect should be influenced by probability changes. 

 

 

If the relative probability of Hits is lower than the relative probability of Correct 

Rejections the size of the effect should be larger compared to a condition in which the 

relative probability of Hits is larger than the relative probability of Correct Rejections. 

The mean amplitude of Hits, already typically more positive than the mean amplitude 

of Correct Rejections, should in fact become even more positive as Hits probability 

decreases. Conversely the mean amplitude of Correct Rejections, already typically 

more negative than the mean amplitude of Hits, should become even more negative as 

Correct Rejections probability increases. 
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Figure 7.1 The Figure shows the experimental hypothesis relative to the 

current experiment. If the Left Parietal effect and the P3b effect behave 

similarly under equivalent manipulations, the size of the Left Parietal should 

be larger in an experimental condition in which the probability of Hits is low 

and the probability of Correct Rejections is high, compared to an 

experimental condition in which the probability of Hits is high and the 

probability of correct rejections is low.   

 

The effect of probability on the Left Parietal effect was first assessed by Smith and 

Guster (1993) in a recognition memory experiment in which either old or new items 

worked as infrequent target items. The Parietal old/new effect was observed  

regardless of the fact that the infrequent target item was old or new, but a limitat ion of 

that study was the very limited stimulus set (10 stimuli) making it hard for those 

results to be generalized to the typical recognition memory experiment, where stimuli 

are not repeated multiple times at test. Friedman (1990) also manipulated the 

probability of old and new items (33/66 ratio), finding no effect of probability on the 

old/new effect. However, the paradigm chosen by the experimenter - continuous 

recognition - makes it hard to rule out the possibility that probability would have an 
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effect within the canonical study-test paradigm. Herron et al. (2003) also investigated 

the role of probability on the Left Parietal effect, using a probability ratio of 25/75. 

Herron et al. also did not find the probability of old and new items to affect the Left 

Parietal effect in a statistically significant fashion; however a trend towards the 

hypothesis described in Figure 7.1 can be inferred from their ERPs (see Figure 7.2). 

Overall, the null results described so far could be due to the choice of relatively weak 

probability manipulations. By observing Figure 7.3 it should in fact be apparent that to 

show a clear P3b probability effect between target conditions with different 

probabilities a 70/30 ratio manipulation may not be sufficient, while a 90/10 ratio 

manipulation should unequivocally yield a probability effect if there was one. 

 

 

 

 

 

 

 

Figure 7.2 The Figure shows the experimental results of the study 

carried out by Herron et al. (2003). ERPs show a trend for low 

probability conditions to be higher in amplitude compared to high 

probability conditions, consistently with the hypothesis described 

in Figure 8.1. (Adapted from Herron et al., 2003).   
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In the current experiment we therefore chose a strong probability manipulation (90/10 

ratio). If the Left Parietal effect is sensitive to probability in a similar way to the P3b 

effect, then we would expect the Low Probability Hits - High Probability Correct 

Rejections condition to yield a larger Left Parietal effect compared to the High 

Probability Hits - Low Probability Correct Rejections condition.  

 

Figure 7.3 The Figure shows sensitivity of target conditions within a P3b experiment to 

different probability levels. The 90/10 ratio contrast at the top of the figure shows a 

clear effect of the probability manipulation compared to the 70/30 ratio shown at the 

bottom. (Adapted from Duncan-Johnson and Donchin, 1977).   
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7.2 Methods 

7.2.1 Participants   

Forty-one right-handed native English speakers participated for payment (£7.50 an 

hour). Data from nine participants was discarded due to poor behavioural performance. 

Of the remaining thirty-two participants
7
, twenty-four (eleven male) had more than 

sixteen trials in all critical experimental conditions and were included in the reported 

analyses. Participants‟ mean age was 19 years (range 18-25) and all reported normal or 

corrected to normal vision with no history of neurological disorders. Informed consent 

procedures were approved by the Psychology Ethics Committee at the University of 

Stirling. 

 

 

7.2.2 Materials and Procedure 

Stimuli consisted of 1008 words taken from the MRC Psycholinguistic Database, word 

length ranging between 4 and 9 letters. The experiment was divided into four study-

test blocks. During each study phase 162 words were shown and participants judged if 

the words referred to living or non-living objects. In each test phase 180 words were 

shown, 10% (18) of them new and 90% (162) old in A blocks and 10% (18) of them 

old and 90% (162) of them new in B blocks, with alternating A and B blocks, while 

                                                
7 These thirty-two participants correspond to the subjects who also took part in the N400 

experiment described in Chapter 8. Order of experiments was counterbalanced across 

participants: half of the participants started with the experiment described in the current 

chapter and half of the participants started with the experiment described in Chapter 8.  
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participants performed an old/new recognition task. For the study phase each trial 

began with a fixation cross presented for 2100ms, followed by the experimental 

stimulus for 300ms. The stimulus was followed by a blank screen lasting 1500ms 

during which the participant performed the living/non-living judgement. Each test 

phase started with a fixation cross presented for 2100ms followed by the stimulus for 

300ms and by a blank screen for 2700ms. During the blank screen participants 

performed the old/new recognition task by pressing the extreme left and right buttons 

of a 5 button response box. Mapping of old and new responses to buttons was 

counterbalanced across participants.    

 

 

7.2.4 ERP Recording Parameters  

ERP Recording parameters correspond to section 5.4.4 in Chapter 5. The mean number 

(all conditions >16) of trials contributing to ERPs in each condition were: Low Hits 

20.34, High Hits 202.66, Low Correct Rejections 23.64, High Correct Rejections 

188.37. The Left Parietal effect was investigated within the 500-800ms time window 

(as compared to the 500-700ms time window analyzed in the other Chapters) to allow 

carrying out a direct comparison with the correspondent experiment by Herron et al. 

(2003).  
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7.3 Results 

7.3.1 Behavioural Results 

Performance during the recognition memory task was assessed via a measure of 

discriminability called „sensitivity‟ (Snodgrass and Corwin, 1988), computed by 

subtracting the probability of committing a false alarm from the probability of making 

a hit. A repeated measures ANOVA was performed to assess differences in sensitivity 

across conditions. No significant differences were found across conditions [F(1, 23) = 

.2; p =.659], as clear from Figure 7.4.  

                                                               

                                              Low-Hits/High-CRs    High-Hits/Low-CRs 

 

 

 

 

 

Figure 7.4 Behavioural performance during the 

recognition test. Sensitivity did not differ 

significantly across experimental conditions.  

 

 

Additionally response bias - the tendency of participants to be more liberal or 

conservative in choosing "old" during the test phase of the recognition experiment - 

was also assessed. Previous behavioural research (Ratcliff et al., 1992) in recognition 

memory experiments involving a probability manipulation of old and new items has in 
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fact shown a more liberal response bias in the High-Hits/Low-CRs condition 

(compared to Low-Hits/High-Correct Rejections). As expected the ANOVA yielded a 

significant difference (see Figure 7.5) across conditions [F(1, 31) = 6.95; p <.02].  

 

                                                                  Low-Hits/High-CRs    High-Hits/Low-CRs  

 

 

 

 

 

 

Figure 7.5 Behavioural performance during the 

recognition test. Response bias differed 

significantly across conditions; a more liberal 

response bias was found for the High-

Hits/Low-CRs condition.   

 

 

7.3.2 ERP Results 

Grand average waveforms for the two experimental conditions are shown in Figure 

7.6. The Low-Hits/High-CRs condition shows a positivity for Hits compared to 

Correct Rejections maximal over parietal sites and lasting approximately until 800ms 

post stimulus presentation. For the High-Hits/Low-CRs condition the positivity of Hits 

compared to Correct Rejections appears to be reduced. For each experimental 

condition, the effect was investigated statistically with an initial ANOVA with factors 
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of Old/New (Hits, Correct Rejections), Location (Frontal, Fronto-Central, Central, 

Centro-Parietal, Parietal and Parietal-Occipital), Hemisphere (Left, Right) and Site 

(superior: sites 1 & 2, PO3, PO4; inferior: sites 5 & 6, PO7, PO8).  

 

 

For the Low-Hits/High-CRs condition the initial ANOVA yielded a significant 

Old/New effect [F(1, 23) = 17.67; p<.001], a significant Old/New x Location x 

Hemisphere interaction [F(1.33, 30.66) = 10.95; p <.002], a significant Old/New x Site 

interaction [F(1, 23) = 41.06; p < .001] and a significant Old/New x Location x Site 

interaction [F(1.991, 45.79) = 15.29; p < .001]. A follow up ANOVA focused on 

parietal sites [P1, P5, P2, P6, PO3, PO7, PO4, PO8] yielded a significant Old/New 

effect [F(1, 23) = 13.84; p<.001], a significant Old/New x Hemisphere interaction 

[F(1, 23) = 6.65; p<.02] and a significant Old/New x Site interaction [F(1.742, 40.07) 

= 18.59; p<.001]. Overall these analyses show a relative positivity for Hits compared 

to Correct Rejections maximally distributed over left parietal electrodes.  

 

 

For the High-Hits/Low-CRs condition the initial ANOVA did not yield significant 

effects [all ps>.321]. Follow up ANOVAs focused on parietal sites [P1, P5, P2, P6, 

PO3, PO7, PO4, PO8] did not yield significant results [all ps>.207]. Overall these 

analyses show the lack of a significant Left Parietal effect in the High-Hits/Low-CRs 

condition. To assess directly differences across experimental conditions the size of the 

Left Parietal effect was compared statistically across the Low-Hits/High-CRs and the 
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High-Hits/Low-CRs conditions in the same left parietal electrodes analyzed in Chapter 

6 [CP5, CP3, CP1], yielding a significant effect of Condition [F(1, 23) = 12.44; p < 

.003], showing that the size of the Left Parietal effect was larger for the Low-

Hits/High-CRs condition compared to the High-Hits/Low-CRs condition (See Figures 

7.6 and 7.7).  

 

 

 

 

 

 

 

 

 

Figure 7.6 The Figure shows Hits and Correct rejections across levels of 

probability at the left parietal electrode P3. Compared to the results by Herron et 

al. (2003) shown in Figure 7.2 the figure shows that the current probability 

manipulation was effective in yielding low probability conditions to be higher in 

amplitude than to high probability conditions, consistently with the hypothesis 

described in Figure 7.1. 
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                       Low-Hits/High-CRs                                                                     High-Hits/Low-CRs 

 

 

 

 

Figure 7.7 ERPs relative to the Low-Hits/High-CRs condition (Panel A) compared to the High-Hits/Low-CRs condition (Panel B). In both 

panels, Hits are shown in red and Correct Rejections are shown in Blue. Topographic maps show a Left Parietal distribution of the effect 

(500-800ms) evident only for the Low-Hits/High-CRs condition.  
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7.4 Discussion 

The results presented in the current chapter show that when the relative probability of 

old and new items differs objectively, such that Hits are relatively infrequent and 

Correct Rejections are frequent, then the Left Parietal effect is detectable. But when 

Hits are frequent and Correct Rejections are infrequent, the Left Parietal effect 

disappears. Differently from what proposed by Herron et al. (2003) ERP probability 

effects as detected by the P3b can be confounds on ERP memory retrieval effects as 

measured by the Left Parietal effect, as the former spatio-temporally overlap with the 

latter. In other words, probability can trigger positivities that mask neural activity 

reflecting memory retrieval (see also Chapter 10 for further discussion). These results 

are consistent with the results presented in Chapter 6 showing a significant correlation 

between the P3b and the Left Parietal effect, plausibly due to a target effect for old 

items due to a lower subjective probability.  

 

 

The observed pattern of results suggests that previous similar experiments (e.g. Herron 

et al., 2003) did not yield significant results because they did not use a strong enough 

probability manipulation. Moreover, the absence of a significant difference in response 

bias across conditions in Herron et al.'s (2003) study, at odds with the existing 

behavioural research on the topic (e.g. Ratcliff et al., 1992), points to the overall 

inadequacy of the chosen probability manipulation. Our results suggest instead that, if 

the carried out probability manipulation is strong enough, differences in response bias 
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will be detected across conditions and the size of the Left Parietal effect will be 

sensitive to the probability manipulation.  

 

 

Behaviourally, the absence of differences in discrimination performance across 

conditions may be explained with the fact that while a common memory process was 

activated and constant across conditions, the subset of (attentional) neural processes 

influenced by probability was independently manipulated. This interpretation is 

consistent with a fMRI recognition memory experiment (Herron et al., 2004) in which 

the relative probability of old and new items was manipulated similarly to Herron et al. 

(2003). The fMRI study showed that while a group of brain regions showed greater 

activity elicited by correctly classified old compared to new items, independently of 

probability, another group of regions responded accordingly to the probability 

manipulation. The regions showing greater activity for old compared to new items 

independently from probability are possibly the ones responsible for the mnemonic 

portion of recognition performance.  

 

The Left Parietal effect may therefore be confounded, because of temporal overlap, by 

neural generators affected by probability manipulations. But the fact that a Left 

Parietal negativity (an effect equal in size but opposite in polarity) was not produced 

by the High-Hits/Low-CRs condition, as would be expected if the Left Parietal effect 

was identical to the P3b effect, together with the absence of differences in behavioural 
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sensitivity across conditions, suggests that the Left Parietal effect also reflects memory 

processing independent from neural processing sensitive to probability. These results 

overall point to the fact that ERP recollection effects can be confounded by 

overlapping probability related P3b effects.  

 

 

The fact that attentional processes sensitive to probability appear to overlap and 

confound a recognition memory performance is not surprising considered that 

participants need to be able to discriminate the stimuli and act accordingly. But while 

discriminating the stimuli is a fundamental prerequisite in recognition memory, the 

participant must also be able to remember if that specific stimulus has been shown 

during the study phase or not. Indeed it could be argued that a recognition memory 

experiment is a complex version of a simple oddball paradigm in which the participant 

to perform well has to remember many stimuli instead of only two stimuli (leading to 

stronger memory activation compared to the simple oddball). Conversely, it could be 

said that the oddball procedure requires a relatively simple form of recognition 

memory compared to a typical recognition memory experiment.  

 

 

Hypothesizing that the probability-sensitive attentional processes manipulated 

successfully in the current experiment are constant across oddball and recognition 

memory procedures, the difference between oddball and recognition procedures, at 
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least as reflected by ERPs, may be due to the quantitative “memory load” involved in 

performing adequately in the two procedures.   

 

 

From a neuroanatomical perspective repeated stimulation is known to determine a 

decreased hippocampal activity over trials (e.g. Ries et al., 2008). Given the large 

number of repetitions of both target and standard stimuli in an oddball experiment 

compared to the typical very low amount of repetitions in recognition memory 

experiments, it is plausible that the hippocampal disengagement present in the oddball 

paradigm is not matched in recognition experiments. During the test phase of a 

recognition memory experiment in fact typically half of the stimuli are seen for the 

first time in the experiment and the other half is seen for the second time, possibly 

leading to an overall higher recollection-related hippocampal activation compared to 

the oddball paradigm characterized by overlearning.  

 

 

Another possible interpretation (further discussed in Chapter 10) is that the P3b and 

the Left Parietal effect reflect the same probability-sensitive neural signal. This would 

fit with the idea that old items are more positive in amplitude because they have a 

lower subjective probability compared to new items, due to their task relevance and 

targetness (see Chapters 3 & 6). In the High-Hits/Low-CRs condition effects due to 

subjective and objective probability might have cancelled each other, leading to the 

disappearance of the effect. While the lower subjective probability for old items 
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(categorized as targets in a recognition memory experiment) would cause amplitude of 

Hits to be higher than amplitude of Correct Rejections (as it happens typically when 

objective probability of old and new items is matched), the lower objective probability 

for Correct Rejections would cause the amplitude of Hits to be lower than the 

amplitude of Correct Rejections, leading to the subjective and objective probability 

effects to cancel each other and for the Left Parietal effect to disappear.  This 

interpretation would tie parsimoniously together the P3b and the Left Parietal effect as 

a single probability-sensitive phenomenon, and would also explain the lack of validity 

for the Left Parietal effect described in Chapter 5 and further described in Chapter 10. 

Section 10.3 will propose possible future research meant to test which of the two 

proposed interpretations more accurately describes the observed data.  

 

 

7.5 Summary 

The results presented in the current chapter suggest, together with the evidence 

presented in Chapter 6, that there are common processes shared by the P3b effect and 

the Left Parietal effect. A possibility is that both effects involve attentional activation 

sensitive to probability of stimuli and that the two effects differ in the amount of 

memory activation engaged. The memory load of recognition experiments is typically 

much higher than the memory load present in oddball experiments, where the same 

few stimuli are presented repeatedly throughout the experiment, yielding perhaps a 

stronger recollection-related hippocampal activity. From a validity perspective the Left 
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Parietal and the P3b effect can be said, based on the current results, to overlap with 

each other, being both sensitive to attentional and memory processes. If this 

interpretation is correct, neither the P3b effect nor the Left Parietal effect can be 

considered a “pure” measure of attention or memory. Another interpretation is that the 

P3b and the Left Parietal effect reflect the same probability-sensitive phenomenon, old 

items having a more positive amplitude because they have a lower subjective 

probability compared to new items, due to their task relevance and targetness.  
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Chapter 8 

Validity of the N400 Pt. I: 

Semantic or Association Relationships?  

 

In the process of assessing the validity of the N400 effect it is important to question if 

the dominant views on what the effect is a measure of are accurate. In Chapter 2 we 

reviewed the previous literature and described how the interpretation of the effect has 

been essentially the same since the early experiments, an interpretation based on the 

idea of semantic mismatch that puts the effect strictly into a linguistic domain. The 

effect is currently considered to be a neural correlate of language processing, in spite 

of a series of experiments that either put into question that kind of specificity or dilute 

the definition of what is "semantic" to a point in which one wonders about its 

usefulness. When a definition does not yield clear criteria for exclusion, such that an 

element can be left out of a category defined in a specific way, then it is hard to falsify 

any hypothesis based on such a definition. In other words, it is not very useful to say 

that the N400 effect is a measure of semantic relationships if one is unable to say what 

is not a semantic relationship. Many definitions of semantics have been given, most of 

them very broad or circular. In the current experiment, designed to investigate what the 

N400 is a measure of, we adopted a definition of semantic relationships based on the 
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concept of interchangeability of words within a specific linguistic context. After 

having defined what we mean by semantic relationship, we also defined association 

relationships as the likelihood that hearing a specific word will bring to mind another 

word. Based on previous evidence (Rhodes & Donaldson, 2008) we had reason to 

think that the N400 effect may be sensitive to associations rather than semantic 

relationships, and we therefore created a manipulation to assess if the N400 effect is 

sensitive to association relationships when semantic relationships are held constant. 

We used the described norms to parametrically vary the strength of association 

between words within word-pairs, while holding constant their degree of semantic 

congruency. This manipulation allowed us to compare N400s elicited by unrelated 

prime-target word pairs with N400s generated by related prime-target word pairs of 

either low or high degrees of association. 

 

 

In the current chapter we show that even when semantic relationships are held 

constant, N400 modulations can still be observed if prime-target stimuli differ in the 

strength of their associative relationship. Larger N400 effects occurred in fact for 

highly associated versus lowly associated pairs despite the fact that no differences in 

terms of semantic congruency existed between pairs belonging to the highly and lowly 

associated conditions. These findings are important in investigating the validity of the 

N400, because they demonstrate that the N400 is modulated by associative 

relationships independently of semantics and help refining current interpretations on 

what the N400 is a measure of, suggesting that the effect is highly sensitive to 
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association relationships even in absence of semantic differences, casting a doubt over 

the current dominant interpretation of the N400. The current results suggest that the 

N400 effect indexes a general process, not confined to the linguistic domain, sensitive 

to the contiguity of distinct elements within one‟s past experience. The experiment 

presented in the current Chapter also allowed assessing within-laboratory reliability, 

by comparing the N400 effect obtained by the participants taking part into the current 

study with the N400 effect measured in the N400 experiment described in Chapter 5 

(Stirling Laboratory).  

 

 

8.1 Introduction 

The N400 Event-Related Potential (ERP) component is one of the most widely studied 

neurophysiological effects in the cognitive neuroscience literature (see Chapter 2; 

Kutas & Federmeier, 2011). First discovered in studies of language processing (Kutas 

& Hillyard, 1980), N400 modulations are typically evoked when a mismatch occurs 

between a stimulus and its preceding context. It is generally accepted that the 

mismatch responsible for the N400 effect reflects meaning-based processing (Bentin et 

al., 1995; Federmeier & Laszlo, 2009; Heinze at al., 1998; Kutas & Hillyard, 1984; 

Kutas et al., 1984; Kutas & Federmeier, 2011; Luck et al., 1996), but the specific 

functions involved remain unclear. Here, we review the distinction between associative 

and semantic types of relationship, which has been investigated within the cognitive 

literature on priming but has been essentially ignored within the N400 literature. This 
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leads us to hypothesize that the N400 could be sensitive to associative relationships, 

independently of semantics, and we provide new evidence that this is the case, based 

on prior proposals from Rhodes and Donaldson (2008) who suggested that the N400 

may be sensitive to experience-dependent associative relationships and not semantic 

relationships. 

 

 

Associative relationships in language depend on contiguity, i.e. how often two words 

occur together in a specific order. Thus, the definition of associative relationships does 

not depend on the structural content (Anderson & Charles, 1977) of verbal stimuli: any 

two words can be associated with each other as long as one word tends to follow the 

other in everyday usage (Kiss et al., 1973). In practice, the contiguity between words 

in language that causes individuals to learn their associative relationship can happen 

for many reasons. Sometimes the reason is that there are overlapping features in (the 

referents of) words that co-occur together. It is the presence of such featural overlap 

constitutes one basis for a semantic relationship – i.e. a relationship that exists 

independent of any associative relationship. So for example, distributed models of 

semantic memory (e.g. see Kawamoto, 1993; Masson, 1995; Moss et al., 1994) 

typically define semantic relationships in terms of the presence of overlapping 

features. By this definition, the words pig and dog are semantically related because 

their referents share the common features of four legs, a tail, ears, etc. According to 

this view, the way semantic relationships are organized is dependent on the similarity 

of overlapping features of the referred objects.  
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Another way to define semantic relationships is based on the how interchangeable 

words are within a specific linguistic context. Interchangeability (Huettig et al., 2006) 

has the advantage of being a more comprehensive index of semantic relationships than 

measures of feature overlap (which are typically limited to indexing concrete objects). 

Words can be interchangeable within a linguistic context because they share physical 

features, but often the overlap is of a conceptual kind without apparent shared physical 

features (e.g. god and divine conceptually overlap but it is not clear what physical 

features would be overlapping since the referents do not exist). Interchangeability 

provides therefore an index of semantic relatedness both in presence and in absence of 

physical shared features.  

 

 

The distinction between associative and semantic relationships is reflected by 

differences in how each kind of relationship is measured. Indices of semantic 

relationships are inherently bi-directional, whereas associations are not – two words 

may have very different forward and backward associations (e.g., bar-mars compared 

to mars-bar). Associative relationships are also defined in terms of the likelihood that a 

word will evoke, or bring to mind, another word (i.e., "presentation of stimulus A 

increases the chance of response B"). For example, reading "traffic" leads to the 

response "jam" (Postman & Keppel, 1970). Unlike semantic features, however, 

associative relationships are not constrained to linguistic stimuli. Logically, any 

response to a stimulus can lead to another response, regardless of the nature of the 

stimulus. Importantly, associative relationships are defined empirically (experientially) 
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and not a-priori. The experimenter does not decide which two words are associated 

with each other and which are not: rather, databases such as the Edinburgh Association 

Thesaurus (Kiss et al., 1973) have been created by presenting a word to a large number 

of participants and then asking them what other word came to mind. 

 

 

Neuropsychological studies have clearly dissociated semantic and association 

relationships in patients with Alzheimer‟s (Glosser & Friedman, 1991) and in children 

with reading disabilities (Nation & Snowling, 1999). Similarly, within the behavioural 

literature on priming, associative and semantic relationships have also been shown to 

exert independent effects. Priming experiments typically show behavioural facilitation 

(decreases in reaction time) after the presentation of a target word (butter) preceded by 

a related prime (bread), as compared to an unrelated prime (chair). Experimentally, 

priming can be obtained for semantic relationships alone (McRae & Boisvert, 1998; 

Perea & Rosa, 2002) and for associative relationships alone (Ferrand & New, 2003; 

Perea et al., 1997; Williams, 1996). In a recent meta-analytic review Lucas (2000) 

reveals that the effect size of associative priming is larger than for semantic priming; 

moreover the effect was also enhanced (associative “boost”) for word-pairs that shared 

both associative and semantic relationships as compared to semantic relationships 

alone (see also Moss, Ostrin, et al., 1995).  
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The distinction between associative and semantic relationships has not, however, been 

made as clearly within N400 research (though see Koivisto and Revonsuo, 2001). 

Consequently, previous ERP studies have either not controlled for the associations 

between words, or more commonly have failed to distinguish between associative and 

semantic relationships (e.g., Federmeier & Kutas, 1999; Heinze et al., 1998; Kuonios 

& Holcomb, 1992; ; Kutas & Hillyard, 1980, 1984; Kutas, 1993; Kutas & Iragui, 1998; 

Luck et al., 1996; Neville et al., 1986). Moreover, in N400 experiments with sentences 

a semantic mismatch is thought to be more predictive of the N400 effect than the fit of 

the specific word within the sentence itself (Federmeier & Kutas, 1999). Despite the 

ubiquity of the semantic mismatch view of the N400 effect there are existing data that 

appear contradictory or at least difficult to account for. For example, Nieuwland & 

Van Berkum (2006) suggest that the N400 modulation can in fact be entirely context-

dependent, based on the finding that N400 effects following the final word of a 

sentence can be modulated by the content of a paragraph read prior to reading the 

sentence itself. Nieuwland & Van Berkum‟s results suggest that the N400 effect is not 

dependent on long-term memory category structure per se. 

 

 

To our knowledge, the distinction between associative and semantic relationships has 

been examined empirically in only one prior study. Rhodes and Donaldson (2008) 

investigated the effect of varying associative and semantic relationships on N400 

modulations evoked by visually presented pairs of words. Using unrelated word pairs 

as a baseline (e.g. alarm-cloud), Rhodes and Donaldson observed N400 modulations 
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only when word pairs were associatively related (e.g. traffic-jam), or associatively and 

semantically related (e.g. lemon-orange), but not when they were only semantically 

related (e.g. cereal-bread). These findings are important because they throw light upon 

the nature of the mechanism reflected by the N400, and in particular they suggest that 

a key factor is not the existence of a semantic relationship per se, but rather the 

presence of an associative relationship between stimuli.  

 

 

In the current experiment, we test the associative N400 hypothesis (Rhodes and 

Donaldson, 2008) using a parametric manipulation of associative relationships. If the 

processes reflected by the N400 are indeed sensitive to associative relationships, it 

should be possible to modulate their activity by controlling the strength of this 

relationship between cue–target pairs within a typical N400 paradigm. In particular, if 

the processes reflected by the N400 are specifically sensitive to associative 

relationships, we should be able to observe a modulation of the effect even if we hold 

the degree of semantic relatedness constant across conditions.  

 

 

8.2 Methods 

8.2.1 Participants and materials 

Thirty-two (13 male) right-handed native English speakers participated for payment 

(£7.50 an hour). Participants mean age was 19 years (range 18-25) and all reported 
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normal or corrected to normal vision with no history of neurological disorders. 

Informed consent procedures were approved by the Psychology Ethics Committee at 

the University of Stirling. Three hundred and six word pairs were created (3 to 11 

letters in length) taken from the MRC Psycholinguistic Database (www.eat.rl.ac.uk). 

The words were divided into three experimental conditions: Unrelated word pairs, 

word pairs with Low Association and word pairs with High Association. The 

Unrelated and High Association conditions correspond to the ones described in the 

N400 experiment presented in Chapter 5 (Section 5.3.1). A Low association condition 

was added in the current experiment to investigate the possibility that increasing 

degrees of association would modulate the N400 effect while keeping semantic 

relatedness constant. Table 8.1 summarises the associative differences, as well as other 

controlled factors, between the stimuli in each condition.  

 

 

Compound word meaning was assessed according to the Collins English Dictionary 

online (www.collinsdictionary.com/dictionary/english/) to make sure proportion of 

word-pairs having compound word meaning would be constant across the low and 

high association conditions. In the unrelated condition no word-pairs had compound 

word meaning. The percentage of word-pairs having compound word meaning was 

24% for the low association condition and 30% for the high association condition. 

Importantly, the proportion of word-pairs having compound word meaning did not 

differ statistically across the low and the high association conditions [χ
2
(1, N= 204) 

http://www.collinsdictionary.com/dictionary/english/
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=.609; p=.435]. The experimental procedure corresponds to the one described in the 

N400 experiment presented in Chapter 5 (Section 5.3.1).   

 

 Unrelated Low High Significance 

Association .000 (0) .068 (.003) .357 (.012) p < .00001 

Semantic Distance .28 (.01) .28 (.015) .29 (.016) p > .05 

Word Frequency 1 33.5 (4.5) 32.1 (3.5) 32.1 (8.2) p > .05 

Word Frequency 2 45.9 (6.3) 54.8 (7.3) 62.8 (8.6) p > .05 

Word Length 1 5.34 (.15) 5.4 (.16) 5.3 (.14) p > .05 

Word Length 2 5.13 (.14) 5.15 (.15) 4.79 (.14) p > .05 

Imagability 1 514.6 (9.9) 502.2(10.3) 502.7(10.4) p > .05 

Imagability 2 510.8 (10.6) 513.0 (9.5) 533.3 (9.9) p > .05 

 
 

Table 8.1 Degree of association between words within word pairs was manipulated while 

keeping constant all other relevant parameters. Values reported are means (and standard error 

of the mean). 

 

 

8.2.2 ERP Recording parameters  

EEG was recorded according to the parameters described in Section 5.4.4. The mean 

number of trials (all conditions >16) contributing to ERPs in each condition were: 

unrelated 92.71, low association 92.68; high association 92.37.  
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8.3 Results 

8.3.1 Behavioural Results 

Reaction time data for the judgement of relatedness task were analysed conducting an 

ANOVA with a factor of degree of association (3 levels: unrelated, low, high). The 

analysis yielded a significant result [F(2, 62) = 72.3; p < .001] and follow up pairwise 

comparisons (Bonferroni corrected) showed all experimental conditions to differ 

significantly from each other (all ps < .001). Reaction times were longest for the 

unrelated condition and shortest for the high association condition, with low 

associations in between.  

 

 

Participants judgments of relatedness yielded the following outcome (results are mean 

and standard deviation, where 1 = related and 5 = unrelated): high association = 1.54 

(.35); low association 1.85(.37); unrelated 4.1(.42). An ANOVA with a factor of level 

of association (unrelated, low, high) found a significant difference across conditions 

[F(2, 62) = 429.6; p < .001] and Bonferroni corrected pairwise comparisons found all 

three conditions to differ from each other significantly (all ps < .001).  

 

 

8.3.2 ERP Results 

Grand average ERP waveforms are shown in Figure 8.1. Relative to the unrelated 

baseline condition both the low and the high association conditions exhibit a clear 
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modulation of the N400 component, starting around 300ms post stimulus. Figure 8.2 

illustrates the topographic distribution of the N400 effects (based on unrelated minus 

high and unrelated minus low difference waveforms) during the classic 300-500ms 

N400 time window. As the topographic maps make clear, both the high and the low 

association conditions elicited an N400 effect consistent with the previous literature 

(e.g. Duncan et al., 2009). Following previous studies (e.g. Kutas & Hillyard, 1984; 

Van Berkum et al., 2003) statistical analyses were performed on data from the 300-

500ms time window, using ANOVA with factors of relationship type (unrelated, low, 

high), hemisphere (left, right), site (superior: sites 1 & 2; inferior: sites 5 & 6), and 

location (Frontal, Fronto-Central, Central, Centro-Parietal, Parietal).  
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Figure 8.1 Grand average ERPs for the unrelated, low and high association word-pairs, 

shown from pre-stimulus to 1000ms. Twelve electrodes are shown across frontal, central, 

parietal and parietal-occipital scalp locations. Waveforms show a modulation of the N400 

effect with the size of the effect directly proportional to the degree of association.  

LOW ASSOCIATION 
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The ANOVA revealed a main effect of Relationship [F(1.43, 44.34) = 48.43; p < 

.001]. A significant Relationship x Site interaction [F(1.44, 44.91) = 22.99; p < .001] 

was also present, reflecting the fact that the differences were larger at midline than 

inferior electrodes. In addition, results revealed a significant Relationship x Location 

interaction [F(2.37, 73.56) = 7.17; p < .001]. Subsidiary ANOVAs were conducted on 

each of the five locations, finding an effect of relationship type at each location 

[Frontal: (F(1.63, 50.66) = 33.47; p < .001); Fronto-Central: F(1.44, 44.88) = 39.59; p 

< .001,  Central: F(1.50, 46.53) = 46.04; p < .001; Centro-Parietal: F(1.51, 47.02) = 

48.65; p < .001; Parietal: F(1.62, 50.38) = 46.56; p < .001]. Importantly, Bonferroni 

corrected pairwise comparisons showed all three relationship types to differ from each 

other significantly at all locations (all ps < .008), except for at the frontal location, 

where low and high did not differ significantly.  

 

 

Overall these analyses reflect a reduced negativity, with a centro-parietal maximum, 

for both the low and the high association word pairs compared to unrelated word pairs. 

But the critical finding for the associative N400 hypothesis is that ERPs to low 

association word pairs were significantly more negative than ERPs to highly 

associated word pairs, confirming the graded N400 pattern evident across Figures 8.1 

and 8.2. 

 

 

 



                                Chapter 8: N400 Validity Pt. I: Semantic or Association? 

 222 

 

 

 

 

 

 

Figure 8.2 Topographic maps showing the 

distribution of the N400 effect obtained by 

subtracting the low (topographic map on the left) 

and the high (topographic map on the right)  

association conditions from the unrelated 

condition. The scale bar indicates the size of the 

N400 effect in microvolts. 

 

 

8.3.2.1 Topographic Analyses 

Topographic analyses were performed on difference waveforms (unrelated minus low 

and unrelated minus high) using rescaled data (McCarthy & Wood, 1985). ANOVA 

was used to assess differences across experimental conditions in the scalp distribution 

of the N400 effect, employing factors of condition (low, high), hemisphere (left, right), 

site (superior: sites 1 & 2; inferior: sites 5 & 6), and location (Frontal, Fronto-Central, 

Central, Centro-Parietal, Parietal). Results revealed no main effect of condition or 

interactions involving the condition factor, suggesting no differences in the neural 

generators of the N400 in the low and high associative conditions.  
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Figure 8.3 Correlation of mean amplitude within the 300-500ms 

time window relative to the high (x axis) and low (y axis) 

association conditions, subtracted from the unrelated condition and 

rescaled according to McCarthy & Wood (1985). Each data point 

reflects a single electrode location. The linear correlation confirms 

high topographic similarity across conditions shown in Figure 8.2.   

 

 

Additionally, the rescaled results for all the 62 electrodes were used to investigate 

topographic similarity via a Pearson product-moment correlation analysis. The mean 

amplitude over the 300-500ms interval was obtained for each electrode (averaged 

across participants), within each experimental condition (unrelated minus low and 

unrelated minus high), and these values were compared across conditions (see Figure 
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8.3). This analysis revealed a significant positive correlation between the high and low 

condition N400 effects (r = .93; r
2 

linear = .86; n = 62; p < .001) that emphasises the 

tight topographic similarity in N400 effects across conditions. Importantly, even when 

difference waves were not calculated (therefore excluding the unrelated condition from 

the analysis) the correlation between the low and the high association condition was 

still found to be significant [p < .001].  

 

 

8.3.2.2 Within Laboratory Reliability 

To provide additional elements to the reliability analysis described in Chapter 5, we 

compared the N400 results collected in Stirling in the reliability across laboratories 

reliability experiment (Chapter 5) with the N400 results collected in the same 

laboratory in the experiment described in the current Chapter. The N400 experiment 

described in the current Chapter had three experimental conditions (no association, low 

association and high association), and to allow the current within laboratory 

comparison only the no association and the high association conditions were 

considered, as they correspond to the unrelated and high association conditions 

described in the N400 preparation presented in  Chapter 5.  
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Figure 8.4 Topographic maps showing the N400 effects 

elicited during Experiment 1 (left) and Experiment 2 

(right). In both cases the distribution of the effects has a 

clear centro-parietal maximum.    

 

 

Topographic maps shown in Figure 8.4 show the effect‟s distribution across 

experiments. Possible differences were investigated via a repeated measures ANOVA 

on difference waves, using within subjects factors of Location (Frontal, Fronto-

Central, Central, Centro-Parietal and Parietal), Site (superior: sites 1 & 2; inferior: sites 

5 & 6) and a between subjects factor of Experiment (Experiment 1, Experiment 2). The 

analysis did not yield significant results involving the Experiment factor. To 

investigate differences at the single electrode spatial resolution, a between subjects 

ANOVA with a factor of Experiment was run on each of the electrodes used in the 

analysis. Results are shown in Table 8.2, revealing no statistical differences in the size 

of the N400 effect at any electrode within the 300-500ms time window. Overall the 

within laboratory reliability analysis shows reliable results consistent with the inter-

laboratory reliability analysis described in Chapter 5.       
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Table 8.2 Results at the single electrode spatial resolution of the between 

subjects comparison relative to the within laboratory N400 comparison. 

For each electrode in the analysis are reported the F and the p values.  

Site F Sig. 

F5 .04 .831 

F1 .05 .815 

F2 .16 .684 

F6 .34 .561 

FC5 .13 .715 

FC1 .26 .609 

FC2 .08 .774 

FC6 .05 .809 

C5 .14 .702 

C1 .17 .679 

C2 .03 .851 

C6 .04 .842 

CP5 .00 .953 

CP1 .02 .884 

CP2 .00 .983 

CP6 .05 .816 

P5 .21 .646 

P1 .04 .830 

P2 .04 .832 

P6 .07 .790 
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8.4 Discussion 

We investigated whether the N400 effect is modulated by changes in associative 

strength, reflecting sensitivity to differences in contiguity of distinct stimuli within 

one‟s past experience. We employed a cue-target priming procedure, and we 

manipulated the degree of association between the cue and the target word while 

keeping their semantic relatedness constant. Behaviourally we found that participants 

were able to clearly discriminate between levels of association and also found robust 

priming effects, with reaction times to targets modulated by the degree of association. 

N400 effects, obtained by subtracting the high and the low association conditions from 

the unrelated condition in ERPs to targets, were found to be maximal over centro-

parietal regions from 300-500ms post-stimulus. Critically, the N400 effect was graded 

in size, being largest for targets primed by highly related words. Overall, these 

findings suggest that the degree of association between words can modulate N400 

generators, even when the degree of semantic relatedness between words does not 

differ across conditions. In short, the present findings support the associative N400 

hypothesis (Rhodes & Donaldson, 2008), and underline the importance of 

experientially formed associations for the generation of the N400.  

 

 

Besides the results of the current experiment and of Rhodes & Donaldson (2008), 

experiments demonstrating N400 effects elicited by phonological mismatches are 

particularly difficult for a semantic account to accommodate (e.g., see Perrin et al., 
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2003). In addition, previous work using arithmetical statements (Niedeggen et al., 

1999a; 1999b) point towards the inadequacy of an account of the N400 based 

exclusively on semantic relationships. Niedeggen et al. (1999a; 1999b) showed 

participants stimuli such as “7x4”, followed either by a correct target (“28”) or by an 

incorrect target (“26”), and observed N400 modulations by contrasting ERPs evoked 

by the correct versus incorrect targets. Whilst a semantic interpretation of such effects 

is not readily apparent, an association-based interpretation readily explains the results. 

Participants have a long history of saying “28” after they read or hear “7x4”, whereas a 

“26” after a “7x4” constitutes a clear associative mismatch given previous experience.  

 

 

More broadly, the alternative „associative mismatch‟ account is attractive because it 

allows links to be forged with the wider stimulus equivalence literature which defines 

“meaning” as the by-product of intra-experimentally created associations among novel 

stimuli (Barnes Holmes et al., 2005). A number of studies have found N400 effects 

using intra-experimentally created associations (Haimson et al., 2009; and see also 

Barnes Holmes et al., 2005), using trigrams (SIG, BEH, POR) and nonrepresentational 

forms (e.g. abstract black and white shapes considered to be difficult to name). These 

studies have measured the N400 during the development of arbitrary associations 

among stimuli, showing that the effect emerges as a function of the training procedure. 

For example, Haimson and colleagues found that during the first 60 training trials no 

N400 effect was detected, while during the last 60 trials there was a measured N400 

effect. Overall, the fact that the N400 has been measured with trigrams, 
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nonrepresentational forms and numbers, as well as verbal stimuli, with extra and intra-

experimentally created associations, serves to emphasise the generality of the 

associative mechanism that it may reflect. 

 

 

The current study emphasizes that the N400 is sensitive to how often two stimuli were 

presented contiguously within an individual's past experience. In addition, the 

associative account also suggests that the temporal dynamics of one‟s experience may 

be important for the processes revealed by the N400. It is well known that particular 

temporal patterns of stimulation are important for the acquisition of associations, based 

on findings from many different levels of analysis. For example at the synaptic level 

close temporal proximity in the occurrence of neuronal responses is fundamental for 

the induction of long-term potentiation (e.g. Gustaffson et al., 1987; Levy & Stewart, 

1983; Gustaffson et al., 1987), the mechanism that strengthens synaptic associations. 

Behaviourally, the significance of temporal contiguity can also be seen in associations 

created through sensory preconditioning paradigms (e.g. Rescorla, 1980), where 

repeated pairings can be sufficient in establishing relationships between otherwise 

arbitrary unrelated stimuli. 

 

 

Temporal contiguity is also an important factor for priming. If associated prime-target 

stimuli are presented sequentially, a facilitating effect will be measured in decreased 

reaction times after presentation of the target stimulus; but an interposition of 
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unrelated items between the two associated ones has been shown to decrease this 

facilitating effect (Ratcliff & McKoon, 1981). Some evidence of sensitivity to such 

timing parameters does exist from prior ERP experiments showing that the presence of 

an intervening word between a prime and a target disrupts the N400 effect (Deacon et 

al., 1998). Similarly, language comprehension studies (using auditory garden path 

sentences, e.g., I took off my shirt and tie) have shown that the N400 effect is reduced 

by the introduction of either silence (MacGregor et al., 2010) or disfluency (Corley et 

al., 2007), both of which may be viewed as primarily disrupting temporal contiguity. 

We would argue that these prior findings are naturally accommodated within the 

associative account of the N400.  

 

 

Finally, we would point out that the associative account provides a useful way to 

operationalize the term “meaning”. When we speak of a “meaningful” association, or a 

meaningful sentence, we tend to refer to an association or a sentence consistent with 

our previous experience. “traffic-jam” or “speech-therapy” are meaningful word pairs 

because we have seen or heard the words comprising the pair many times together. 

Presentation of sentences with anomalous endings, such as I drink my milk with cream 

and dog, are not consistent with our previous experience, and we may therefore 

consider such sentences “meaningless”. However, even one repetition of a 

“meaningless” sentence will attenuate the N400 component measured after the final 

word, showing that one exposure to that specific association makes it less anomalous 

(Besson et al., 1992). From this perspective the N400 effect does not reflect the 
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transient activation of semantic knowledge. Rather, the N400 may reflect the 

acquisition of meaning via associations formed and maintained by the contiguity of 

distinct elements within one‟s experience. 

 

 

Results presented in Section 8.3.2.2 strengthen the idea that the N400 effect is highly 

reliable, showing within laboratory reliability results consistent with the inter-

laboratory reliability results described in Chapter 5. What does, however, the 

experiment presented in the current Chapter suggest with regards to the validity of the 

N400 effect? Does the N400 measure what it is supposed to be measuring? Starting 

from the perspective that the N400 measures strictly semantic relationships, then it 

could be argued, based on Rhodes and Donaldson (2008) and the current results that 

the N400 is not a valid measure of semantic relationships. On the other hand if the 

N400 is re-defined as a measure of a process sensitive to association relationships, not 

limited to the linguistic domain, then it can be concluded that the N400 appears to be a 

valid measure of such a process. To rule out the possibility that the N400 is indeed 

constrained to the linguistic domain it would be important to test if the effect can be 

measured, using arbitrary intra-experimentally created associations, with non-human 

species. Other ERP effects such as the P3b have been measured in non-human species 

(see Chapter 3) and a direct investigation of the N400 effect in non-human species has 

yet to be carried out. If the effect is somehow directly related to language intended as 

an ability typical of humans, then it should not be possible to measure the effect in 

non-human species. If, on the other hand, the effect is measured in non-human species 
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than it would be further proof that it may be a reflection of a general process sensitive 

to contiguity-based associations.   

 

 

8.5 Summary 

The results presented in the current Chapter point towards the need to redefine what 

the N400 is a measure of. It appears in fact that the N400 could be a measure of a 

process sensitive to contiguity-based association relationships and not to semantic 

relationships. Moreover the results presented in the current Chapter also allowed 

assessing within-laboratory reliability by comparing N400 effects carried out across 

two different experiments. Overall, while the reliability of the effect appears to be 

high, the validity of the effect might have to be redefined. If the effects is considered 

as a measure of semantic relationships, then its validity - given the current results - 

cannot be considered as high. If the effect is however considered as a measure of 

association relationships, then it could be considered as highly valid.     
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Chapter 9 

Investigating the Validity of the N400 Pt. 2: 

Are the N400 and the Bilateral Frontal Effect 

indexing the same process? 

 

 

9.1 Introduction 

In Chapter 8 we investigated how the N400 effect behaves when participants are 

exposed to varying degrees of associations while keeping semantic relationships 

constant across conditions. The experiment was carried out to investigate the 

possibility that the effect may reflect a contiguity-based process sensitive to 

associations, and the results appeared to offer a new perspective on what the N400 is a 

measure of. The possibility that the N400 represents a measure of association 

relationships is not the only validity-related issue yet to be resolved. Voss and 

Federmeier (2011) have in fact recently proposed that the N400 and the Bilateral 

Frontal Effect (also described as FN400), a frontally distributed old/new effect 

occurring in the same time-window as the N400 effect, may actually reflect the same 

underlying process. Voss and Federmeier propose that both effects reflect semantic 
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processing, specifically that the Bilateral Frontal effect reflects semantic processing 

occurring during an old/new recognition procedure.    

 

 

Even if the N400 does not reflect semantic processing, as we have proposed in 

Chapters 2 & 8, the assertion that the N400 and the Bilateral Frontal effect reflect the 

same phenomenon warrants a direct investigation because, if that was the case, a large 

number of studies in the ERP recognition memory literature would have to be 

reinterpreted from a N400 perspective. To investigate directly the possibility that the 

N400 and the Bilateral Frontal effect are a measure of the same phenomenon, in the 

current chapter we describe an old/new recognition experiment, using as the same low 

and high association word-pairs described in Chapter 8, designed to assess if the 

putative old/new effect behaves similarly or differently compared to the N400. More 

specifically, the current experiment relies on an associative recognition procedure to 

investigate the early Bilateral Frontal effect as a function of association relationships.  

 

 

As described in Chapter 4, associative recognition (Rhodes & Donaldson, 2007; see 

also Opitz & Cornell, 2006) requires discrimination between word pairs that are intact 

(i.e. the same as at study) or rearranged (i.e. recombined into new pairings), compared 

to a baseline of correctly rejected new pairs (i.e., unstudied). Within the theoretical 

framework of dual process theory (see Chapter 4) associative recognition was 

traditionally thought to rely solely on recollection (e.g. Hockley, 1992; Yonelinas, 
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1997) and early ERP studies (e.g., Donaldson & Rugg, 1998; 1999; Jager et al., 2006) 

revealed clear Left Parietal old/new effects consistent with this view. More recently, 

however, ERP studies have demonstrated that associative recognition can engage 

familiarity in some circumstances. In particular Rhodes and Donaldson (2007) 

examined recognition of associatively related pairs (“Traffic-Jam”) compared to 

unrelated pairs (“Carpet-Razor”), using free association norms to generate these two 

classes of stimuli. They found that while all word pairs elicited the left parietal 

correlate of recollection, only associated pairs elicited the Bilateral Frontal effect. 

 

 

The experiment presented in the current chapter not only offers the possibility to 

investigate if the N400 and the Bilateral Frontal effect behave similarly or differently 

to word-pairs with varying degrees of association. As an interesting corollary, 

investigating how the Bilateral Frontal effect varies as a function of association 

relationships allows in fact potentially to gain new information on the nature of the 

early old/new effect. If the notion that the effect reflects a measure of familiarity 

memory (see Chapters 2 & 4) is true, the current experiment allows asking whether a 

change in the strength of association between words systematically influences the 

familiarity their pairing engenders during recognition – as indexed by the Bilateral 

Frontal old/new effect.  

 

As described above, in their study Rhodes and Donaldson (2007) examined associative 

recognition using unrelated (0 association) and moderately associated (.206) word 



          Chapter 9: N400 Validity Pt. II: Same or Different from Bilateral Frontal Effect? 

 236 

pairs, finding the Bilateral Frontal old/new effect for associated word pairs only. The 

current experiment examines associative recognition using low (.068) and high (.357) 

levels of association (the same values used in the N400 experiment described in 

Chapter 8), allowing to compare the Bilateral Frontal effect with the N400 and to 

examine the effect of increasing associative strength on familiarity. This manipulation 

from low to high associative strength could lead to either an enhancement or a 

reduction in the size of the bilateral frontal effect.  

 

 

On the basis of Rhodes and Donaldson‟s (2007) existing data we predicted that 

increasing levels of association could enhance familiarity. This prediction is illustrated 

in Figure 9.1A, which extrapolates from existing data points in Rhodes and Donaldson 

(2007). If the Bilateral Frontal effect behaved according to this prediction, then it 

would be consistent with the N400 results described in Chapter 8, where the size of the 

N400 effect increased as the degree of association increased. A second possibility is 

that familiarity will decrease as a function of associative strength (as illustrated in 

Figure 9.1B). This view is predicated on the assumption that the strength of the 

familiarity signal generated within the context of the experiment is calculated relative 

to one‟s pre-experimental exposure to the pair, i.e. to its baseline familiarity (for a 

recent discussion of different forms of familiarity, including relative familiarity, see 

Coane et al., 2011). By definition highly associated pairs have a higher baseline level 

of pre-experimental familiarity than low associated pairs, therefore relative familiarity 

would be stronger during recognition of low vs. high associative pairs. If this is the 
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case, the bilateral frontal effect may be larger in magnitude when elicited during the 

associative recognition of low vs. high associative strength pairs. Moreover, if the 

Bilateral Frontal effect behaved according to this prediction, then it would be 

inconsistent with the N400 results described in Chapter 8, where the size of the N400 

effect increased as the degree of association increased, suggesting, contrary to what 

suggested by Voss and Federmeier (2011), that the N400 and the Bilateral Frontal 

effect are not the same phenomenon. In sum, the primary aim of the experiment 

presented in the current chapter is to investigate if the Bilateral Frontal effect behaves 

similarly or differently compared to the N400 effect in reaction to the same degrees of 

associations. As a secondary aim, the experiment allows exploring the nature of the 

Bilateral-Frontal old/new effect interpreted as a familiarity signal contributing to 

associative recognition.  

 

Figure 9.1 Competing predictions for the relationship between associative strength and the size of 

the familiarity signal during associative recognition. Black bars show existing data points from 

Rhodes and Donaldson (2007). Grey bars depict two contrasting hypotheses. Panel a) illustrates the 

„baseline familiarity‟ view, whereby increasing associative strength leads to stronger familiarity. 

Panel b) illustrates the „relative familiarity‟ view, whereby increasing associative strength, acting 

as an index of one‟s prior exposure to the pairing, leads to weaker familiarity.  
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9.2 Methods 

9.2.1 Participants and Materials 

Twenty-four (16 female) right-handed native English speakers participated for 

payment (£5 an hour). Participants‟ mean age was 21 years (range 18-30) and all 

reported normal or corrected to normal vision with no history of neurological 

disorders. Informed consent procedures were approved by the Psychology Ethics 

Committee at the University of Stirling. Three hundred and six word pairs were 

created (3 to 11 letters in length) taken from the MRC Psycholinguistic Database 

(www.eat.rl.ac.uk). The words were divided into two experimental conditions: word 

pairs with low association and word pairs with high association, according to the same 

criteria presented in Chapters 5 & 8; note that the high and low association stimuli 

were randomly intermixed during study and test phases, such that participants were 

unaware of the conditions. 

 

 

9.2.2 Procedure, ERP recording Parameters and Analysis 

Word pairs were presented visually (one above the other, in central vision) using a 

white uppercase 18-point Courier New font against a black background. The 

experiment was divided into 17 study-test blocks. Study blocks comprised 12 word-

pairs. Test blocks comprised 18 word-pairs, 6 of which were the same as presented at 

study (intact), 6 were in a different pairing from study (rearranged), and 6 were 

entirely new. Study and test lists were rotated across participants to avoid item effects. 

http://www.eat.rl.ac.uk/
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At study, participants were instructed to read and remember each word-pair.  

 

 

Each trial began with a fixation cross (+), presented in the centre of the screen for 1000 

ms, followed by the word-pair for 1500 ms, and a further blank screen for 1250ms. 

After each study block an associative recognition memory test was performed. Test 

trials began with a 1000 ms fixation cross, followed by the word-pair for 2000 ms and 

a 1750 ms blank screen. Participants were asked to respond with either an intact, 

rearranged or new judgement, using a 5-button response-box. All participants made 

"Rearranged" responses using the middle button; rearranged pairs were not of primary 

interest and behavioural and ERP data are therefore not analysed further; their 

inclusion was however important to force participants to respond "intact" only when 

they remembered the specific relationship between members of a word-pair, not just 

that both words in the pair were old. "Intact" and "New" responses were made using 

the extreme left and right hand buttons, and the mapping of responses to buttons was 

counterbalanced across participants.  

 

 

EEG was recorded according to the parameters described in section 6.4.4. ERPs were 

formed (time-locked to the onset of stimuli at test) for correct responses to intact and 

new pairs, allowing old/new differences to be examined as a function of associative 

strength. Both intact and new pairs were separated based on strength of association: 

low-association intact and new pairs comprised the low-association condition and 
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high-association intact and new pairs comprised the high-association condition. Trials 

were excluded if drift exceeded ±55 μV, or if in any point during the epoch activity 

exceeded ±100 μV. The mean number of trials (all conditions >16) contributing to 

ERPs was: low association intact 24.5; low association correct rejections 27.29; high 

association intact 24.79; high association correct rejections 27.83. ANOVAs were 

conducted on twenty-four electrodes divided into four channels groups: left anterior 

(FP1, AF3, F7, F5, F3, F1), right anterior (FP2, AF4, F8, F6, F4, F2), left posterior 

(CP3, CP1, P3, P1, PO5, PO3) and right posterior (CP4, CP2, P4, P2, PO6, PO4).  

 

 

9.3 Results 

9.3.1 Behavioural Results 

Mean accuracy (and standard deviation) for intact pairs was .79(.12) for the low 

association condition and .82(.08) for the high association condition; for new pairs 

.91(.1) for the low association condition and .91(.09) for the high association 

condition. These data were analysed using repeated measures ANOVA with factors of 

association (low, high) and response (intact, new). A significant main effect of 

response [F(1, 23) = 16.3; p< .001] reflects participants‟ greater accuracy at rejecting 

new pairs than recognizing intact old pairs, independent of associative strength. By 

contrast there was no main effect of association, or association x response interaction 

[F(1,23) = 1.16; p = .293; F(1,23) = .83;  p = .371], suggesting that associative strength 

did not influence overall levels of discrimination.    
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9.3.2 ERP Results 

The grand average ERPs elicited by low association word-pairs are shown in Figure 

9.2A. The waveforms diverge about 200ms post-stimulus onset, with the ERPs for 

intact pairs becoming more positive than correct rejections, a difference maximal over 

frontal sites. Positive activity is also observed over parietal sites for intact in 

comparison to correct rejections (see Figures 9.2A and 9.2B). This parietal positivity 

emerges around 500ms and is maximal over left-parietal sites for both low and high 

association word-pairs.  

 

 

Consistently with the previous literature data were divided into time windows of 300-

500 and 500-700ms for analyses related to the Bilateral Frontal and the Left Parietal 

old/new effects, respectively. Choice of the 300-500 time window also allows directly 

comparing the Bilateral Frontal effect described in the current chapter with the N400 

effect described in Chapter 8. Figure 9.3 illustrates the topographic distribution of the 

old/new effects (based on intact minus correct rejection difference waveforms) during 

time windows that capture the ERP correlates of familiarity and recollection. The data 

were analysed using ANOVA, initially conducted separately for low association and 

high association to characterise the old/new effects for each condition, before carrying 

out comparisons across conditions. 
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9.3.2.1 Bilateral Frontal old/new effect 

Analysis employed ANOVA with factors of Response (Intact, New), Hemisphere 

(Left, Right) and Location (Anterior, Posterior). For the low association condition 

analyses revealed a main effect of Response [F(1,23) = 31.02; p< .001] and a 

significant Response x Location interaction [F(1,23) = 4.81; p< .04], showing the 

effect to be larger at the anterior compared to the posterior location. Follow up analysis 

focused on the anterior location found an effect of Response [F(1,23) = 27.07; p< .001] 

and, consistently with the typical distribution of the bilateral frontal effect, no response 

x hemisphere interaction [F(1,23) =.002; p=.96]. ANOVA examining the high 

association condition found a significant main effect of Response [F(1,23) = 7.02; p< 

.02] but no Response x Location interaction effects or interactions [F(1,23) = .14; 

p=.170]. Follow up analysis on the anterior location found a marginally significant 

effect of Response [F(1,23) = 4.09; p=.055] and no Response x Hemisphere interaction 

[F(1,23) =1.17; p=.28].  

 

 

A magnitude analysis was performed using data from the anterior channels groups 

with factors of Condition (Low Association, High Association), Response (Intact, 

New) and Hemisphere (Left, Right) to assess directly differences in the size of the 

Bilateral Frontal old/new effect across experimental conditions. This ANOVA 

revealed a significant Condition x Response interaction [F(1,23) = 4.5; p <.05], 

showing the larger magnitude of the effect for the low compared to the high 

association condition.  
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9.3.2.2 Left Parietal old/new effect 

As can be seen in Figures 9.2 and 9.3, both the low and high association conditions 

appear to exhibit left parietal old/new effects. Consistent with previous literature (e.g. 

Curran, 2004) the left parietal effect was examined by focusing on two posterior 

channels groups, using ANOVA with factors of Response (Intact, New) and 

Hemisphere (Left, Right). For the low association condition ANOVA revealed a 

significant effect of Response [F(1,23) = 26.89; p< .001] and a Response x 

Hemisphere interaction [F(1,23) = 7.86; p< .02], showing the effect to be larger over 

the left than right hemisphere. Analysis of the high association condition also revealed 

a significant effect of Response [F(1,23) = 16.34; p< .002], and a Response x 

Hemisphere interaction [F(1,23) = 6.39; p< .02] showing again the effect to be larger 

over the left than right hemisphere.  

 

 

A magnitude analysis with factors of condition (Low Association, High Association), 

response (Intact, New) was then carried out using data from the left posterior channel 

group, to assess possible differences in the size of the left parietal old/new effect 

across experimental conditions. This ANOVA revealed no significant condition x 

response interaction [F(1,23) = 1.19; p = .286] suggesting that the size of the left 

parietal effect was equivalent across conditions. 
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Figure 9.2 Topographic maps showing the distribution of the 

old/new effects in the low and high association conditions 

separately for early (300-500ms) and late (500-700ms) time 

windows.  
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Figure 9.3 ERPs for low (Panel a) and high (Panel b) association word-pairs, shown time locked to stimulus onset, for the recognised intact 

pairs (red lines) and rejected new pairs (blue lines). Waveforms are shown for nine electrodes (FC5, FCZ, FC6, CP5, CPZ, CP6, PO5, POZ, 

PO6), from frontal to parietal sites, in each experimental condition.  
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9.4 Discussion 

The current experiment allowed comparing the Bilateral Frontal effect to the N400 

effect as described in Chapter 8 by using the same stimulus set and experimental 

conditions, and it also gave insight on the nature of the familiarity signal involved in 

associative recognition memory. The observed pattern of results, taken together with 

results from Chapter 8, suggests that the Bilateral Frontal effect behaves differently 

compared to the N400 effect, whose size was larger for stimuli with high levels of 

associative strength (see Figure 9.4 and 9.5). As clear from Figure 9.5, the two effects 

not only display opposite patterns as a response to increasing degree of association, but 

also appear to show a different distribution of the effect, centro-parietal for the N400 

effect and fronto-central for the Bilateral Frontal effect.  

 

 

While the opposite pattern of the N400 effect and the Bilateral Frontal effect as a 

function of degree of association is most likely related to the fact that the effects reflect 

different processes, the difference in distribution may be due to the fact that the two 

procedures required different SOAs. While in the N400 priming procedure there was 

an SOA of 800ms between prime and target stimuli, in the Bilateral Frontal 

experiment the SOA was 0ms, as required by the associative recognition procedure. 

From the existing data therefore it cannot be suggested that the observed distributional 

differences are due to differences in the underlying neural generators, as the SOA has 
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been shown to be an important variable in determining the timing and distribution of 

the N400 effect (Anderson & Holcomb, 1995).    

 

 

 

 

Figure 9.4 Bar graphs show the size (in microvolts) of the 

Bilateral Frontal effect (current Chapter) and the N400 effect 

(Chapter 8) at electrode Cz within the 300-500ms time-window. 

The two effects behave differently to low and high degrees of 

association relationships. The size of the Bilateral Frontal effect 

decreases as the degree of association increases, while the size of 

the N400 effect increases as the degree of association increases. 

 

 

As discussed in Chapter 2, Voss and Federmeier (2011) have carried out a within 

participants topographical comparison between the N400 effect and the Bilateral 

Frontal effect. The authors did not find any topographical differences across the two 

BILATERAL FRONTAL N400 

μV 
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effects. It has to be noted however that Voss and Federmeier did not describe a 

statistically well-characterized distribution for either effect. While in the N400 studies 

presented in the current thesis (Chapters 5 & 8) and for the Bilateral Frontal effect 

presented in the current Chapter we were able to topographically characterize the 

effects via significant condition by location interactions, yielding statistical proof for 

the typical centro-parietal distribution of the N400 effect and the frontal distribution of 

the Bilateral Frontal effect (or FN400), Voss and Federmeier found in both cases 

broadly distributed effects not varying statistically across electrode locations. It is 

therefore not surprising that the topographic analysis carried out in their study did not 

yield significant differences. The same topographic analysis would have to be repeated 

when the two effects are characterized more precisely than a broad positivity. Until 

then, such a null result has to be interpreted with caution.  

 

 

The difference in the way the two effects behave in relation to association relationships 

is moreover hard to reconcile with the idea that the N400 and the Bilateral Frontal 

effect are indistinguishable. As Figure 9.4 and 9.5 show, the size of the N400 effect 

increases as the degree of association increases (Unrelated minus Low Association < 

Unrelated minus High Association), while the size of the Bilateral Frontal effect 

decreases as the degree of association increases (Low Association Hits > High 

Association Hits). If the same process was underlying both ERP effects, it would be 

plausible to expect the effects to react in the same direction, not opposite directions, to 

varying degrees of association. We instead suggest that the opposite pattern observed 
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across effects warrants different interpretations as the two effects appear to be 

measuring different phenomena. In Chapters 2 & 8 we have suggested an 

interpretation of the N400 effect based on results indicating sensitivity to association 

relationships. In the following section we provide, within dual process theory of 

recognition memory, an interpretation of the Bilateral Frontal effect based on the 

possibility that the effect reflects a form of relative familiarity.  

 

 

 

 

 

 

 

 

 

 

Figure 9.5 Topographic maps showing how the N400 effect and 

the Bilateral Frontal effect behave differently to the same 

degrees of association relationships. The size of the N400 effect 

increases as the degree of association increases (Unrelated 

minus Low Association < Unrelated minus High Association), 

while the size of the Bilateral Frontal effect decreases as the 

degree of association increases (Low Association Hits minus 

CRs > High Association Hits minus CRs). 
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The data presented in the current Chapter suggest that a relative familiarity signal 

(Coane et al., 2011) is generated by word-pairs during associative recognition, and that 

associative strength has selective effects on neurophysiological correlates of 

familiarity and does not alter recollective processing, at least so far as it is indexed by 

ERP old/new effects. It is worth pointing out here that behaviourally, participants were 

well able to recognise the stimuli, with equivalent levels of performance for the low 

and high association conditions. One might therefore consider the recognition data to 

be inconsistent with the claim that familiarity contributed more to performance in one 

case than the other. However, while overall recognition rates are a function of 

recollection and familiarity (Yonelinas, 2001), the way in which the processes 

combine to support behaviour is not yet known (e.g. Cohen et al., 2008). In essence, no 

„process pure‟ measure exists to directly assess familiarity, which is why we used the 

ERP old/new effects to index retrieval processing instead.  

 

 

A more pertinent issue, however, is the nature of the mechanisms that are indexed by 

the Bilateral Frontal old/new effect, because the familiarity interpretation has not 

attracted unanimous support. Specifically, some authors have argued that the effect 

could be a correlate of changes in conceptual fluency due to priming (e.g. Voss & 

Paller, 2004; Paller et al., 2007), while others have argued that the effect reflects 

neither familiarity nor priming (De Chastelaine et al., 2009). However, our findings, 

along with other recent results which indicate that the Bilateral Frontal effect is graded 

according to familiarity strength, (Yu and Rugg, 2010) add to existing evidence 
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difficult to reconcile with these contrasting interpretations (Groh-Bordin et al., 2006; 

Stenberg et al., 2009). In what follows below, we therefore utilize the prevalent view 

that the bilateral frontal effect is a neural correlate of familiarity (e.g. Curran, 2000; for 

review see Rugg and Curran, 2007). 

 

 

Our data clearly rule out the first of our two predictions; i.e., that increases in 

associative strength lead to monotonic increases in familiarity. Instead, our data, along 

with previous findings (Rhodes & Donaldson, 2007) fit well with operational 

definitions of familiarity as a relative signal (Coane et al., 2011; Mandler, 1980; Rugg 

et al., 1995). By definition our high association pairings have a greater amount of pre-

experimental exposure, such that the experimental presentation should elicit a 

relatively small increase in familiarity. Conversely, the encounter with a low 

association pair during the memory test should produce a relatively large increase in 

familiarity compared to pre-experimental „baseline‟ levels. As Coane et al. (2011) 

make clear, stimuli with a lower degree of pre-experimental exposure receive a 

relatively greater boost in familiarity from a recent presentation compared to stimuli 

with a higher degree of pre-experimental exposure. Thus, the current findings extend 

those of Rhodes and Donaldson (2007), demonstrating that since the bilateral frontal 

old/new effect indexes relative familiarity, as the degree of pre-experimental exposure 

increases the frontal old/new effect can decrease.  
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In the study by De Chastelaine et al. (2009) noted above, it was reported that the 

frontal effect does not increase in size with repeated intra-experimental exposure to 

single item stimuli. Within a multiple study-test repetition paradigm (in which old 

items were constantly repeated and new items were replaced at each study-test 

repetition) they found that the bilateral frontal effect decreased with repetitions of old 

items. The topography of their old/new effects also shifted gradually from frontal to 

parietal across the four test phases, suggesting an increased reliance upon recollection.  

 

 

In effect, De Chastelaine et al. therefore demonstrate that changes in intra-

experimental exposure lead to a disappearance of the Bilateral Frontal effect, and we 

would argue that this is broadly consistent with the effect being a correlate of 

familiarity assessed relative to one‟s level of exposure to a stimulus. If this alternative 

interpretation is valid, our findings along with those from the study by De Chastelaine 

et al (2009) indicate that the bilateral frontal effect is more pronounced when 

familiarity is evoked by more novel stimuli. Furthermore, our present findings (and see 

Rhodes and Donaldson, 2007) suggest that a common relative familiarity signal is 

evoked during both item recognition and associative recognition. 

 

 

It is worth pointing out that the present findings fit well with neural accounts of 

familiarity that stress the experience-dependent plasticity of brain areas generating the 

signal. One of the important features of the inferior temporal circuitry that supports 
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familiarity is the repetition sensitivity which allows sharpening of representations 

(Brown & Aggleton, 2001). In particular, repetition sensitive neurons in the perirhinal 

cortex are known to respond differentially to novelty (Xiang & Brown, 1998) such that 

stimuli with more pre-experimental exposure are less sensitive to repetition. Our data 

suggest that such differences in prior exposure may be captured by the numerical 

indices of associative strength that we used to form the low and high associative 

strength pairs.  

 

 

9.5 Summary 

Results presented in the current Chapter suggest that the N400 effect and the Bilateral 

Frontal effect are not reflecting the same neural phenomena, as the effects show 

opposite patterns in reaction to the same degrees of association relationships. We 

therefore propose different interpretations for the two effects, and while an 

interpretation of the N400 effect based on a general process sensitive to contiguity-

based association relationships has been described in Chapters 2 & 8, here we 

interpreted the pattern of Bilateral Frontal effect‟s results within dual process theory of 

recognition memory as measure of relative familiarity. The following Chapter 

summarizes all the results and theoretical implications proposed in the current thesis.  
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Chapter 10 

 

General Discussion 

 

 

Results presented in the current thesis showed that all measured effects were consistent 

with the time course, morphology and topography described in the respective 

literatures. The effects were found to be reliable across laboratories at the group level 

and the P3b and the N400 effects were also found to be highly reliable at the single 

participant level. Regarding the effects' validity, results presented in Chapters 6 & 7 

point to the fact that P3b probability effects may overlap with the Left Parietal effect, 

especially when the relative probability of old and new items is not matched. This 

finding is highly relevant in assessing the Left Parietal effect's validity: when the 

probability of old and new items is not matched the effect may disappear while the 

person is recollecting.  

 

 

The N400 effect was found to be independent from attentional processes as reflected 

by the P3b, and from episodic recollection as indexed by the Left Parietal effect. 
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Having established the independence of the N400 effect from the other two sub-

domains investigated in the current thesis, we proceeded to investigate if the effect is a 

valid measure of what it is typically considered to index, i.e. semantic relationships 

(Chapter 8). When we discovered that the effect is sensitive to associative relationships 

in absence of semantic differences we used this sensitivity of the N400 to associative 

relationships to investigate the independence of the N400 effect from another effect 

occurring within the same time window – the Bilateral Frontal effect, typically studied 

by memory researchers. Results of Chapters 8 & 9 taken together suggest that the 

N400 effect is a valid measure of associative relationships, independent from both 

semantic memory and the episodic memory process of familiarity. The following 

sections will summarize the results and elaborate on the theoretical interpretations 

presented in the current thesis for each experimental effect considered.     

 

 

10.1 The P3b 

Results from Chapter 5 show a high degree of reliability for the P3b effect both at the 

group and at the individual level, with only one participant (from sixty-four) not 

showing the effect (see Figure 10.1). Together with the evidence discussed in Section 

3.4.3 showing a P3b-like effect in several non-human species, the P3b, among the 

three effects considered in the current thesis, might be considered overall the most 

reliable. The N400 effect in fact showed a high degree of reliability both at the group 

and individual level (see Section 10.4), but its inter-species reliability has not yet been 
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explored. One might ask: why is inter-species reliability important in an overall 

evaluation of a neurophysiological experimental effect? A key reason is that 

consistency across species is important in establishing the generality of a process. 

Some of the most important processes discovered in psychology (e.g. operant 

selection) have been measured in a large number of species. From this perspective the 

P3b represents a neurophysiological effect with strong evolutionary foundations, 

representing processes (perhaps due to convergent evolution) common among many 

species. The fact that the processes indexed by the P3b are not completely understood, 

as described in Chapter 3, that it is not agreed upon yet what the effect is a measure of, 

represents a temporary limitation on the current conceptualization on its validity.  

 

 

In the current work we are able to add a contribution to understanding what the P3b is 

a measure of, as the P3b amplitude appears not to be independent from Left Parietal 

effect's amplitude (as described in Chapters 6, 7 and in Section 10.3). In essence the 

P3b effect either overlaps with the Left Parietal effect during the same time window, 

making the effects difficult to separate, or the two effects share common sensitivity to 

subjective and objective probability. This latter interpretation leaves open the 

possibility that the P3b and the Left Parietal effect may actually be the same 

probability-sensitive phenomenon emerging in different ERP sub-fields (see Section 

10.3).  
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                 Stirling                                  Aberdeen   

 

a)                                                                                           b) 

 

Figure 10.1 The graph shows a) inter-laboratory and b) inter-individual reliability of the P3b 

effect. The waveforms on the left (showing the target condition in red and the standard 

condition in blue, from 100ms pre-stimulus to 1000ms post stimulus) show the similarity of 

the effect across laboratories. The histogram on the right shows a normal distribution of the 

size of the effect across participants, with only one participant over sixty-four not showing the 

P3b effect. Data shown in the histogram is relative to the 275-400ms time-window post 

stimulus presentation (Adapted from Chapter 5).   

 

 

10.2 The Left Parietal effect 

The Left Parietal effect, while reliable at the group level, was not found to be as 

reliable as the P3b effect at the individual level, with eleven participants (from sixty-

four) not showing the effect (see Figure 10.2). While this result does not constitute a 

limit within the constraints of a typical cognitive neuroscience experiment, it does 

represents a limit for the putative correlate of recollection when entering applied and 

clinical settings, where single-subject reliability is a basic prerequisite. The results 
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presented in Chapter 5 show that, compared to the N400 effect and the P3b effect the 

Left Parietal effect tends to display a larger degree of inter-individual variability – a 

finding that is compatible with MacLeod and Donaldson's (2011) results described in 

Chapter 4. A full explanation of the lack of inter-individual reliability clearly requires 

further experimentation, and may be related to either different strategies adopted by 

individuals during the recognition memory experiment, or perhaps to differences in the 

folding of parts of the cerebral cortex involved in eliciting the Left Parietal effect.  

 

                     Stirling                                  Aberdeen   

 

a)                                                                                               b) 

 

Figure 10.2 The graph shows a) inter-laboratory and b) inter-individual reliability of the Left 

Parietal effect. The waveforms on the left (showing Hits in red and Correct Rejections  in blue, 

from 100ms pre-stimulus to 1800ms post stimulus) show the similarity of the effect across 

laboratories, while the histogram on the right shows the distribution of the size of the effect 

across participants, with eleven participants over sixty-four not showing the Left Parietal 

effect. Data is relative to the 500-700ms time-window post stimulus presentation (Adapted 

from Chapter 5).  
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As mentioned in Chapter 5, from a validity perspective the absence of difference in 

behavioural pattern between the participants showing the Left Parietal effect and the 

participants not showing the effect is problematic, because validation of indices of 

episodic memory relies on a relationship between the ERP effect and a behavioural 

dependent variable considered to index the process of recollection. As the size of the 

Left Parietal effect is considered to reflect the amount of information retrieved there 

should be a measurable difference in sensitivity performance across participants 

showing the Left Parietal effect and participants not showing the effect. As described 

in Chapter 5 perhaps a more specific measure of behavioural recollection, such as 

source memory performance, would be needed to validate the Left Parietal effect. 

Theoretically, at least, it is possible that in the results presented in Chapter 5 and in 

Macleod and Donaldson‟s study the subgroup of participants not showing the effect 

was performing via the process of familiarity and not recollection.    

 

 

Even if there is a possibility that the participants not showing the Left parietal effect 

were able to display equivalent behavioural sensitivity by using a familiarity process, it 

has to be noted that all other behavioural parameters (response bias and reaction times 

for both Hits and Correct Rejections) measured during the recognition memory task 

did not come close to differ significantly across the participants showing the Left 

Parietal effect compared to the subjects not showing the effect, once again consistent 

with the results reported by MacLeod and Donaldson (2011). These sets of results are 

overall problematic for the Left Parietal‟s effect validity because they show an 
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independence of all measured behavioural variables from the electrophysiological 

variable of interest.  

 

 

The results presented in Chapter 7 also contribute to the idea that the Left Parietal 

effect is weakly related to behavioural indices of episodic memory. Results show that 

the size of the Left Parietal effect is sensitive to the relative probability of old and new 

items, pointing to the important suggestion (validity wise) that the Left Parietal effect's 

capability of indexing recollective processes may disappear when the relative 

probability of old and new items is not matched. Participants in the experiment 

described in Chapter 7 were behaviourally able to perform well and discriminate 

between old and new items in all experimental conditions, but the Left Parietal effect 

was only present when the probability of old items was lower than the probability of 

new items (see Figure 10.3).  

 

 

From a methodological and clinical perspective these results, together with the 

reliability results, suggest that before the Left Parietal effect can be used in clinical and 

applied settings as a valid measure of recollection further experimentation is required 

at the basic research level. One important step to be carried out would be to 

systematically study the sub-group of participants that typically do not show a Left 

Parietal effect under different kinds of experimental procedures and stimulus materials. 

If a participant does not show the effect with a typical study-test recognition paradigm, 
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would the effect instead be measurable under other circumstances such as a continuous 

recognition memory procedure? Or does the effect appear when participants perform a 

task that necessarily requires recollection, such as source memory? And is the effect 

absent when participants recollect other kinds of stimulus material? 

 

 

If the effect is measurable when performing some memory tests but not others, and 

with some kinds of stimulus materials but not others, then the effect's validity could be 

refined more specifically as a function of the specific procedures and materials. If, on 

the other hand, some participants do not show the effect under any circumstances, then 

those participants could be studied via MRI to investigate if a specific difference in the 

way their cerebral cortex folds may be causing significant differences in the way 

dipoles are oriented in generating the Left Parietal effect. Until it is clearly understood 

why some individuals do not show the effect it is not possible, for instance, to say that 

an individual is not recollecting based on an absence of Left Parietal effect, as the 

individual may be recollecting but may be part of the sub-group of individuals that 

typically do not show the Left Parietal effect.  
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Figure 10.3 Results from Chapter 7 show how the size of the Left Parietal effect is sensitive to 

the relative probability of old and new items, and specifically how the effect disappears when 

the probability of old items is higher than the probability of new items. Conversely, the bar 

graph on the right shows an absence of difference in behavioural sensitivity across probability 

conditions (Adapted from Chapter 7).   

 

 

In summary, the current investigation found the Left Parietal effect to be reliable at the 

group level but not at the single participant level. The reliability results for the Left 

Parietal effect appear to be relatively weak compared to the corresponding results for 

the P3b and the N400 effect. From a validity perspective the results of the current 

work presented in Chapters 5 and 7, together with the evidence described by MacLeod 

and Donaldson (2011) lead to doubts about the validity of the Left Parietal effect as a 

measure of episodic recollection, as there does not appear to be a clear relationship 

between the electrophysiological putative measure of recollection and correspondent 

behavioural measures.    
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10.3 The P3b and the Left Parietal effect  

Results presented in Chapter 6 show correlational evidence suggesting a relationship 

between the Left Parietal effect and the P3b effect, but not between the Left Parietal 

effect and the N400 or the P3b effect and the N400. This relationship may be due to a 

target effect for old compared to new items, driven by the lower subjective probability 

of old items (Rosenfeld et al., 2005). The relationship between the Left Parietal effect 

and the P3b effect was further investigated in Chapter 7 via an objective probability 

manipulation applied during a recognition memory test. As the P3b effect is known to 

be very sensitive to the relative probability of standard and target stimuli, the relative 

probability of Hits and Correct Rejections was manipulated, potentially introducing to 

a difference in the size of the Left Parietal effect, if indeed it was sensitive to 

probability similarly to the P3b.  

 

 

Results, shown in Figure 10.4, revealed a sensitivity of the Left Parietal effect to 

probability consistent with the typical behavior of the P3b under probability 

manipulations. One interpretation of these results illustrated in Figure 10.5 is that the 

memory effect typically seen in the Left Parietal effect was still present in the High-

Hits/Low-CRs condition but was attenuated (to the point of disappearance) by a 

counter-acting, probability sensitive, P3b effect. This possibility is suggested by the 

absence of difference in sensitivity performance across conditions and by the fact that 

in the High Hits/Low Correct Rejection condition the Left Parietal effect was not 
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reversed into a negativity. According to this interpretation the P3b effect simply acts as 

a confound when measuring the temporally overlapping Left Parietal effect.   

 

 

 

 

 

 

                    Low-Hits/High-CRs      High-Hits/Low-CRs 

                    

Figure 10.4 Summary of results from Chapters 6 & 7. The correlations at the top show 

the significant relationship found within 64 participants between the P3b effect and the 

Left Parietal effect, and also between the P3b and Hits and the P3b and Correct 

Rejections (all values are expressed in microvolts). The waveforms at the bottom show 

the Left Parietal effect's sensitivity to the relative probability of old and new items 

within a recognition memory paradigm. Specifically, the key result is the Left Parietal 

effect's disappearance when new items have low probability and old items have high 

probability.   
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Figure 10.5 Schematic of an interpretation of the results from the the High-

Hits/Low-CRs condition from Chapter 7. The recollection effect typically seen in the 

Left Parietal effect is still present, but is attenuated  by a counter-acting P3b effect 

sensitive to the objective probability of old and new items in the recognition 

experiment.  

 

 

Another possible interpretation (cf. Figure 10.6) is that the P3b and the Left Parietal 

effect both reflect the same probability-sensitive phenomenon. If this is the case, the 

relative positivity for old items seen in the typical recognition memory test may be due 

to the lower subjective probability of old items, which are effectively targets in a 

recognition test. The results of the High-Hits/Low-CRs condition presented in Chapter 

7 could then be explained in terms of the objective probability effect working against 

Summated Potential 

Recollection effect 

Objective Probability effect 
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the typically seen subjective probability/target effect, leading to the cancellation of the 

Left Parietal effect. 

 

 

 

 

 

 

 

                              

  

  

 

 

Figure 10.6 Schematic of an interpretation of the results from the the High-

Hits/Low-CRs condition from Chapter 7. The Left Parietal effect, due to the lower 

subjective probability of old items perceived as target items, is still present but 

attenuated  by a counter-acting effect sensitive to the objective probability of old and 

new items in the recognition experiment.  

 

 

The first interpretation proposed, that in the High-Hits/Low-CRs condition the P3b 

probability effect counteracted/confounded the recollection memory effect, is 

conservative in that it does not question the status quo of the Left Parietal effect as an 
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index of recollection. The second interpretation instead opens the possibility that what 

we call "P3b effect" and "Left Parietal effect" may actually be the same probability-

sensitive phenomenon emerging in different subfields of research. To rule out this 

option a possible experiment would be a "novelty detection" experiment, identical to 

the typical old/new recognition experiment, in which participants would still be 

required to recollect to perform adequately in the task, except where the emphasis is 

put on the detection of new items instead of the detection of old items. If the second 

interpretation proposed is correct, and the relative positivity for old items in 

recognition memory experiments is actually due to a subjective-probability-driven 

target effect, then correctly classified new items should yield a relative positivity 

compared to old items.  

 

 

Moreover, if the second interpretation is correct, the typical results seen in a source 

memory task, in which the ERPs to correctly recognized old items whose source is 

remembered (Hit-Hits) are more positive than the ERPs to correctly recognized old 

items without source retrieval (Hit-Misses), may be due to the fact that Hit-Hits have a 

higher targetness value, and lower subjective (and perhaps objective) probability than 

Hit-Misses, in a procedure that emphasizes detection of old items and especially 

remembering contextual details relative to the study episode. This interpretation would 

reconcile the discrepancies observed in the current thesis and in MacLeod and 

Donaldson (2011) between behavioural and electrophysiological results, assuming 

that, for example, the participants displaying a „negative‟ Left Parietal effect are 
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behaviourally engaged in detecting new items instead of old items. They are still 

required to recollect to discriminate between old and new items, hence the same 

behavioural pattern, but if their „targets‟ are the new items then the reversed Left 

Parietal pattern described by MacLeod and Donaldson (2011) would be expected.  

   

 

10.4 N400 Effect 

The N400 effect was found to be highly reliable both at the group and at the single 

participant level (see Figure 10.7). In fact, all participants in the inter-laboratory 

experiment described in Chapter 5 displayed an N400 effect. This result encourages 

the possibility of using the N400 effect in clinical and applied work. However, the fact 

that the effect has not been clearly measured in non-human species constitutes a 

limitation in assessing the generality of the process indexed by the effect, especially if 

(as suggested in Chapters 2 & 8) it appears that the process indexed by the N400 effect 

is sensitive to contiguity-based associative relationships (as associative learning is seen 

amongst a large number of species).   

 

 

We have investigated the N400's validity in three different ways. First, in Chapter 5 we 

saw that the size of the N400 effect did not correlate with the size of the P3b or the 

Left Parietal effect, suggesting an independence (discriminant validity) of the N400 

compared to the other two effects of interest. In Chapter 8 we directly investigated 
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what the N400 is a measure of, by showing that the effect can be elicited by varying 

degrees of association even when keeping semantic relatedness constant, suggesting 

that the effect may be sensitive to associative relationships even in the absence of any 

semantic manipulation (see Figure 10.8).   

 

                Stirling                                   Aberdeen   

 

a)                                                                                        b) 

 

Figure 10.7 The graph shows a) inter-laboratory and b) inter-individual reliability of the 

N400 effect. The waveforms on the left (showing ERPs to related targets in red and to 

unrelated targets in blue, from 100 ms pre-stimulus to 1100 ms post stimulus) show the 

similarity of the effect across laboratories, while the histogram on the right shows a normal 

distribution of the size of the effect across participants, with all sixty-four participants 

showing the N400 effect. Data is relative to the 300-500ms time-window post stimulus 

presentation (Adapted from Chapter 5).  

 

 

The results provided in Chapter 8 do not prove conclusively that the N400 effect is 

modulated exclusively by association relationships. While the results show that 

associative relationships clearly modulate the N400 effect in absence of semantic 

differences, they do not show that semantic differences do not modulate the N400 
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effect. However, as the results of another study (Rhodes & Donaldson, 2008) have 

shown the N400 effect to be modulated by association and not by semantic 

relationships, we feel the interpretation provided in the current thesis of the N400 

effect as a measure of a general process sensitive to contiguity-based association 

relationships is justified.  

 

 

 

 

 

 

 

Figure 10.8 Grand average ERPs for the unrelated, low and high 

association word-pairs, shown from pre-stimulus to 1000ms at 

electrode Cz. Waveforms show a modulation of the N400 effect 

with the size of the effect directly proportional to the degree of 

association (Adapted from Chapter 8).  

 

 

The results presented in Chapter 8, taken together with the results of Rhodes and 

Donaldson (2008) point to the idea that there might have been a confound in the 

previous ERP literature. That is, due to the fact that the associative and semantic 

dimensions were not investigated independently, leading to the possibly premature 

conclusion that the N400 is an index of semantic processing. In answering the 
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important question in a validity investigation: "What is the N400 a measure of?" we 

can now add the strong suggestion that the effect indexes associative relationships.  

 

 

Together with experimental evidence, there are also theoretical reasons for considering 

an alternative to the semantic interpretation of the N400 effect. It has been proposed 

(e.g. Sidman, 1994) that linguistic capabilities are based on the human ability to learn 

associations that were not explicitly trained or reinforced. This view receives support 

from results in the stimulus equivalence literature, which shows that human 

participants can easily learn "untrained" relationships. For instance, after learning XY 

and YZ, via a matching to sample procedure, a number of other relationships "emerge" 

such as YX and ZY  – also known as symmetrical relationships – and XZ and ZX,  

known as transitive and equivalence relationships, respectively (see Figure 10.9).  

 

 

The emergence of the non-trained relationships has so far been seen in humans, but not 

in non-human organisms (although see Schusterman & Kastak, 1993), leading to the 

possible interpretation that perhaps human language is in itself defined by the ability to 

continuously learn associations that were not explicitly reinforced. This ability could 

be supported at the neural level by the number of polymodal and polysensory 

associative areas present in the human brain, compared to the brain of other species 

(Donahoe & Palmer, 1994). If the theory proposed by Sidman is accurate, it would 

lead to a direct prediction of an N400 effect being observed by contrasting ERPs 
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elicited by emergent (untrained) associated stimuli and ERPs elicited by stimuli that 

are not associated with one another.     

 

 

 

 

 

 

 

 

 

Figure 10.9 The graph shows development of 

untrained associative relationships (ZY, YX, XZ, ZX) 

as a function of trained associative relationships (XY, 

YZ) via a matching to sample procedure. Sidman has 

proposed that linguistic abilities may be develop as a 

function of the ability to learn untrained associative 

relationships (Adapted from Hayes & Hayes, 1992).    

 

 

If the N400 effect does reflect a general process sensitive to contiguity-based 

associations, future research could further investigate how such associations can be 

created intra-experimentally with a variety of "meaningless" stimuli. As a first step, 

research might investigate N400 „development‟ in directly trained associations. For 

example, experimental questions could involve a precise measurement of the 
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development (over time) of the N400 effect via a matching to sample procedure (e.g. 

How many training trials does it take for a reliable N400 effect to develop?). The 

matching to sample procedure could also be used to assess if an N400-like effect 

develops in non-human animals, because variants of the matching to sample procedure 

are widely used in experiments with non-humans. If the effect can be observed and 

experimentally controlled in non-human animals using arbitrary and meaningless 

stimuli, then it would be difficult to still describe the N400 effect as a neural correlate 

of language and semantic processing, unless language and semantic processing are 

then considered to be faculties extended to other species.   

 

 

If the N400 effect is not shown to be present in other species, then it may reflect a 

contiguity-based associative process restricted to human beings, perhaps because of 

the large amount of polysensory and polymodal associative cortices present in humans 

but not in other animals. Future research could then focus on human research on the 

behavior of the N400 in the development of untrained, emergent, relationships which 

so far have been clearly measured only in humans. If the N400 effect is not measurable 

in non-human animals, an interesting parallel may be drawn with the fact that 

equivalence relationships appear to be found uniquely in human beings.  

 

 

Regardless of whether the N400 is uniquely human, the results of the present thesis do 

clearly rule out one current interpretation of the N400 effect. Namely the results show 
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that the N400 and the Bilateral Frontal effect do not index the same underlying 

phenomenon, contrary to some perspectives present in the literature (Voss & 

Federmeier, 2011). Taken together the results presented in Chapter 8 and 9 suggest 

that the N400 is independent from the Bilateral Frontal old/new effect. While in the 

results presented in Chapter 8 higher levels of association lead to an increase in the 

size of the N400 effect, the results of the experiment presented in Chapter 9 - carried 

out with the same stimuli as the one presented in Chapter 8 - showed the opposite 

pattern of results (see Figure 10.10).  

 

 

While results presented in Chapter 8 suggest that the N400 may be a measure of 

associative relationships, data shown in Chapter 9 point to the interpretation that the 

Bilateral Frontal effect appears to be a measure of relative familiarity, suggesting a 

separation of the associative domain from the memory domain within the 300-500ms 

post stimulus time window. From this perspective, Chapter 9 helped refine what the 

N400 is a measure of by excluding the possibility that it is a mnemonic measure of 

familiarity. This result is interesting because it leads to a dissociation between the 

component and the effect. The N400 component (i.e. peak) in itself cannot be 

considered as reflective of a specific brain function, without also assessing how 

differences in amplitude (i.e. effects) are influenced by different procedures. 

Compared to the results obtained in the current thesis, showing the N400 effect and the 

Bilateral Frontal effect to behave differently in relation to degrees of association, the 
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results presented by Voss & Federmeier represent a null finding as they were not able 

to find differences between the two effects.  

 

 

Figure 10.10 Bar graphs on the left show the size of the Bilateral Frontal effect (Chapter 

9) and the N400 effect (Chapter 8) at electrode Cz. The two effects behave differently to 

low and high degrees of association relationships. The size of the Bilateral Frontal effect 

decreases as the degree of association increases, while the size of the N400 effect 

increases as the degree of association increases. The same data are shown in topographic 

form on the right, adapted from Chapters 8 & 9.  

 

 

 

Summarizing, results presented in Chapter 8 suggest that the N400 effect, consistently 

with previous research (Rhodes & Donaldson, 2008), appears to be closely related to a 

learning process sensitive to contiguity-based association relationships. Importantly, 

the results described in Chapters 8 & 9 taken together rule out the possibility that the 

N400 effect is a measure of familiarity memory. The N400 effect and the Bilateral 

Frontal effect were in fact found to show opposite patterns in reaction to the same 

μV 

μV 



                                                                                       Chapter 10:  General Discussion 

276 

 

degrees of associative relationships. Finally, even though prominent N400 researchers 

(e.g. Kutas & Federmeier, 2011) present the thirty years of N400 research concluding 

that the effect reflects semantic/meaning processing, we believe interpreting the effect 

as a reflection of semantic processing represents a circular argument (the N400 is 

defined as meaning processing and meaning processing is determined by the presence 

or absence of the N400). Defining the N400 effect in terms of which procedural 

variables produce an N400 effect, especially when intraexperimentally creating 

associations between meaningless stimuli, would instead constitute, we believe, a more 

useful alternative to operationally define the N400 phenomenon and, perhaps, 

„meaning‟ itself.  

 

 

10.5 Conclusion 

The P3b effect, according to the literature and the inter-laboratory and inter-individual 

reliability analysis presented in the current thesis, is a highly reliable effect. The high 

degree of experimental control over the effect is however not paired with an 

equivalently good theoretical understanding of what the effect actually measures. 

Moreover, the strong sensitivity of the P3b effect to subjective and objective 

probability manipulations may create a confound within the time window in which the 

Left Parietal effect is typically measured. The Left Parietal effect is considered to 

reflect the memory process of recollection, but in the current work we did not find the 

expected relationship between behavioural measures and the putative 
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electrophysiological index of recollection. The Left Parietal effect has moreover not 

been found to be reliable at the individual level and is confounded by probability 

sensitive attentional processes when the relative probability of old and new items is 

not matched. The N400 effect on the other hand has been found to be highly reliable 

and it has been proven to be a valid measure of contiguity-based association 

relationships. Table 10.1 and Figure 10.11 summarize the reliability and validity of the 

three investigated electrophysiological effects, based on the previous literature and the 

results presented in the current thesis.   

 

 

 

 

 

 

 

 

 

Figure 10.11 Visual analogy of the reliability and validity of the effects described in the 

current thesis, based  on Figure 1 from  the Introduction. The P3b can be considered as a 

highly reliable effect, but the large amount of research on the effect carried out so far has not 

clarified what the effect is measuring, and specifically it is not clear if the P3b constitutes a 

measure of stimulus categorization independent from response selection processes. The Left 

Parietal effect, reliable at the group level, is however poorly reliable at the individual level 

and, within the constraints of the current thesis, unrelated to behavioural indices measured 

during the recognition task showing poor validity as a measure of of recollection. The N400 

effect is highly reliable both at the individual and the group level and  appears to be a valid 

measure of a learning process sensitive to contiguity-based associative relationships.   

P3b                                               Left Parietal                                                N400        
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Table 10.1 Summary of reliability and validity of the N400 effect, P3b effect and Left Parietal effect based on the previous literature and on the 

results presented in the current thesis.  

  N400 P3b Left Parietal 

Reliability 

Group Excellent Excellent Good 

Single Excellent Very Good Poor 

Inter-species No Yes No 

Validity 

What does it measure? 

A learning process sensitive 

to contiguity-based 

associations 

Probability sensitive  

categorization process 

 

Unclear if P3b is sensitive or 

not to response selection 

processes 

Source memory studies suggest the effect 

indexes episodic recollection but evidence 

from the current thesis and from MacLeod 

and Donaldson (2011) does not validate 

such a statement 

It has shown  

independence from? 

1.Semantic Processing 

2.Recollection 

3.Probability-sensitive 

attentional processes 

4. (Relative) Familiarity 

1. A learning process 

sensitive to contiguity-based 

associations 

 

1. (Relative) Familiarity 

2. A process sensitive to contiguity-based 

associations 

It has not shown 

independence from? 
  

Probability sensitive categorization process 

when probability of old and new items is not 

matched 
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