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He who know nothing, loves nothing. He who can do nothing 
understands nothing. He who understands nothing is 

worthless. But he who understands also loves, notices, 
sees ... The more knowledge is inherent in a thing, the 

greater the love ... Anyone who imagines that all fruits 

ripen at the same time as the strawberries knows nothing 
about grapes. 
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(i) 

ABSTRACT 

The use of precision automated electronic balances has allowed 

remote quantification of instantaneous and long term body mass 

changes in breeding swallows, Hirundo rustica. By means of 

observation, experiment and optimality modelling, the extent of mass 

changes during incubation and nestling rearing are described, and the 

fitness consequences of mass changes discussed. 

An understanding of the causes and consequences of mass changes 

in swallows is developed from laboratory investigations of short term 

mass changes in canaries Serinus canarius, and from carcass analysis 

of breeding sand martins R. riparia, and swallows. 

Parent: offspring resource allocation was investigated during 

incubation in swallows. A model is developed which assumes that 

fitness is maximised in individuals which spend most time on the 

nest as a result of maximising the difference between net gain while 

foraging and clutch reheating costs, measured in units of energy. 

The model is tested, and the most frequently observed inattentive 

period proves, to be similar to that predicted to be the most energeti- 

cally profitable. 

The early decline in swallow body mass during nestling rearing 

is likely to represent a 'programmed' anorexia in females during the 

brooding phase, whereby mass loss is beneficial in reducing flight 

costs and releasing energy available for work. After termination 

of brooding, however, mass losses were associated with rapid feeding 

rates to the brood for both sexes, and were judged to be potentially 

costly in terms of adult survival. 



(ii) 

By concurrent monitoring of resources for parents and offspring, 

investment in self-maintenance relative to investment in offspring is 

calculated, and the results interpreted in the wider context of life- 

history tactics and parental investment theories. Both sexes of 

swallow invested more in 'self' relative to 'offspring' when food was 

scarce or when feeding broods of small metabolic mass. Females 

appeared to risk their body mass falling to lower levels than that of 

their mates when feeding conditions were poor. 

overall, the study showed that the costs and benefits of mass 

changes in swallows differed according to the stage of the breeding 

cycle, and that detailed knowledge of the causes of mass changes 

allows insight into the evolution of reproductive strategies of 

birds of both sexes in relation to individual quality and resource 

availability. 
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1. INTRODUCTION 

Resources gained during foraging by breeding animals may be 

allocated to either parents or their offspring. When breeding, the 

demands on a parent's time and energy are high (Drent and Daan 1980; 

Bryant and Westerterp, 1980), and those individuals which optimise the 

relative allocation of resources between self-maintenance and reproduc- 

tion, with the goal of maximising lifetime reproductive success, are 

likely to be favoured by natural selection. 

Most theories of life-history strategies assume that the reproduc- 

tive effort expended by parents has evolved to reconcile the opposing 

effects on fitness of current and future levels of effort (Williams, 

1966a, b; Charnov and Krebs, 1974; Pianka and Parker, 1975; 

Hirshfield and Tinkle, 1975; Stearns, 1976; Ricklefs, 1977; Calow, 

1979): Reproductive activities are assumed to increase physiological 

stress or predation risks for parents, and therefore effort expended 

in reproduction may reduce the expectation, of future life. Several 

studies of animals have revealed either an increase in mortality of 

breeders relative to non-breeders (Summers-Smith, 1956; Snow, 1958; 

Geist, 1971; Berger, 1972; Clutton-Brock, Guinness and Albon, 1983), 

or have shown an increased mortality rate related to increased 

fecundity (Lowe, 1969; Snell and King, 1977; Bell, 1981). 

The level of reproductive effort expended by parents is difficult 

to quantify. Some studies on birds have reported no survival 

differences between adults rearing natural broods of different sizes 

(Lack, 1966, analysing data of B. Campbell; Bryant, 1979), while other 

work has observed a positive relationship between reproductive 

performance and adult survival (Hdgstedt, 1981; Smith, 1981). 
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The number of offspring reared by adults in natural situations 

however, may be a poor measure of reproductive effort, since higher 

quality individuals may rear more youngsters and incur less breeding 

stress than individuals of poorer quality rearing fewer offspring 

(Perrins and Moss, 1975). Studies relating reproductive effort to 

future survival or reproductive success must therefore overcome the 

effects of phenotypic variation in quality amongst individuals and are 

best approached through experimental manipulation of reproductive 

effort, altering the number of offspring reared by adults and detecting 

subsequent changes in parental survival or breeding productivity 

(Askenmo, 1979; De Steven, 1980; Nur, 1984a). 

One problem in relating adult survival rates to reproductive 

effort is that the return rates of parents rearing different brood 

sizes may reflect differences in emigration rates, rather than changes 

in survival rates (HÖgstedt, 1981). Even studies of-experimental 

modification of reproductive effort in birds are subject to criticism. 

If parents adjust their body condition during incubation in accordance 

with the number of young they are genetically or environmentally 

disposed to rear, then the body condition of adults when chicks hatch 

will reflect differences in cumulative investment involved in incubating 

clutches of different sizes. If laying or incubating a clutch is 

more costly to a bird than rearing a brood of nestlings (Yom-Tov and 

Hilborn, 1981), experimental manipulation of brood size alone may not 

impose reproductive costs at the critical time. 

Evidence for the existence of reproductive costs in bird species 

is inconsistent. Double-brooded female house martins Delichon urbica 

show a higher annual mortality rate than single-brooded females (Bryant, 

1979). Individual great tits Parus major rearing large brood sizes 
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within a season have a lower survival rate than those rearing fewer 

young (Kluyver, 1971). By experimental manipulation of brood size, 

Askenmo (1979) found a reduced return rate of male pied flycatchers, 

Ficedula hypoleuca rearing enlarged broods compared with males rearing 

natural brood sizes, but no such relationship was evident amongst 

females. The return rate of female tree swallows, Iridoprocne 

bicolor was found to be similar for birds rearing enlarged and normal 

brood sizes (De Steven 1980). In contrast, female blue tits, Parus 

caeruleus showed decreased survival rates when rearing enlarged broods 

compared with control and reduced brood sizes, though no effect of 

brood size on male survival rate was apparent (Nur, 1984a). 

Parent birds obviously cannot be expected to predict changes in 

survival chances in order to evaluate options open to them at any time 

(Drent and Daan, 1980). Although the relationship between short term 

behaviour and lifetime reproductive success must be approached with 

caution (McNamara and Houston, 1982), it is feasible that breeding 

birds monitor their long term survival prospects in terms of short term 

changes in their energy balance (Drent and Daan, 1980). A short term 

deterioration in body condition may for example, be proximately 

detected by the parent through an increase in hunger motivation, 

mediated perhaps by sensory monitoring of lipid in blood plasma. 

Adult passerine birds are normally lighter in mass when rearing 

young than during incubation (Nice, 1937; Newton, 1972; Bryant, 1975a, 

1979; Dowsett-LeMaire and Collette; 1980; Freed-, 1981; Westerterp, 

Gortmaker, and Wijngaarden, 1982; Nur, 1984a), and birds rearing 

experimentally enlarged brood sizes may (Russell, 1972; Askenmo, 1977; 

Bryant, 1979; Nur, 1984a) or may not (De Steven, 1980), show increased 

rates of mass loss compared with birds rearing natural brood sizes. 
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The decreased body mass of adult birds feeding nestlings has sometimes 

been considered an indicator of physiological stress associated with 

rearing a brood (Nice, 1937; Ricklefs, 1974), and has been used as a 

predictor of subsequent adult survival prospects (Russell, 1972; 

Askenmo, 1977). However, Freed (1981) and Norberg (1981) have 

suggested that mass loss by adult birds rearing young could be bene- 

ficial to the parents in reducing power requirements for flight and 

releasing energy available for work. Alternatively parental mass 

loss during rearing could be viewed as optimising the trade off between 

the costs and benefits of losing mass in terms of an individual's 

lifetime reproductive success (Norberg, 1981; Nur, 1984a). 

One aim of this thesis is to evaluate adult body mass changes 

during breeding as an index of reproductive investment in swallows 

Hirundo rustica, through concurrent monitoring at the nest of resource 

balance for parents and young. Previous studies have generally 

considered parental allocation or offspring demands in isolation, 

although some recent work has analysed changes in adult body condition 

in direct relation to offspring demands (Fedak and Anderson, 1982; 

Ricklefs and Hussell, 1984). 

Incubation is another phase of the nesting cycle where parental 

interests in self-maintenance may conflict with the offsprings' 

interests in being hatched successfully. Since offspring demands 

are more constant during incubation than when chicks are growing in 

the nest, behavioural decisions by parents may be less variable and 

hence easier to investigate. Another aim of this thesis, then, is to 

develop a model of optimal behaviour for incubating female swallows 

which assumes that fitness is maximised for individuals which spend as 

much time as possible on the nest by maximising their net energy gains 
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while foraging between incubation bouts. Previous studies of optimal 

feeding behaviour have concentrated on animals in non-reproductive 

situations (reviews in Krebs, 1978; Krebs, Stephens and Sutherland, 

1983). Although central place foraging studies (Orians and Pearson, 

1979) have considered adult birds feeding nestlings (Hegner, 1982; 

Bryant and Turner, 1982), the theory has only recently considered how 

resource allocation between parent and offspring may influence patch 

residence time (Kacelnik, 1984). The model of-optimal incubation 

behaviour presented in Chapter 7 considers the constraints of egg 

cooling (investment in offspring), and adult feeding behaviour (invest- 

ment in self) to predict an optimal time to leave eggs unattended. 

The study species used in the investigation of parent: offspring 

resource allocation, the swallow and the sand martin R. riparia, are 

introduced in Chapter 2, and aspects of their population ecology and 

breeding biology are described. Resource allocation between parents 

and offspring is likely to depend on the quantity of resources available. 

For example, investment in brood growth during adverse conditions may 

occur at the expense of somatic maintenance by the parents. Food 

resources available to hirundines during the breeding season over the 

study period are described in Chapter 3. 

It is necessary to understand the causes of short term body mass 

changes in birds so that, for example, instantaneous adult mass changes 

while foraging can be related to energy balance. Mass changes which 

occur as a result of food ingestion, water intake, metabolic water 

losses, and defaecations have to be measured and their dynamics under- 

stood if substantial conclusions about more significant mass changes 

are to be reached. In Chapter 4a laboratory investigation of the 

causes of short term mass changes in canaries Serinus canarius (used 
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as a convenient laboratory model) is presented, and factors likely to 

be responsible for instantaneous mass changes in breeding swallows are 

described. 

If parental body mass changes are to be related to changes in the 

body condition of breeding birds, a detailed knowledge of the bird's 

energy reserves while breeding is necessary. For example, loss of 

mass by females after laying may be associated with atrophy of ovaries 

and oviducts rather than decreases in energy reserves. Hence in 

Chapter 5 long term body mass changes of sand martins during breeding 

are related to changes in lipid and protein reserves by carcass analysis, 

and comparisons are made with a smaller sample of swallow carcasses. 

Changes in the energy reserves of adult sand martins and their broods 

are considered concurrently during the rearing period. The sand 

martin is included here because of a ready availability of individuals 

for carcass analysis, contrasting with swallows where removal of 

individuals would have interfered with the study population more 

severely. 

In Chapter 6 the consequences for male reproductive success of 

female sand martins becoming heavy when they are fertile is described. 

If males are able to detect fertile females through female flight 

behaviour, itself associated with increased body mass, males may 

potentially increase their fitness by mating promiscuously with such 

females. 

Knowledge of the causes of instantaneous and long term body mass 

changes in breeding hirundines developed in Chapters 4 and 5 is 

applied to studies of reproductive investment by swallows in incuba- 

tion (Chapter 7) and during nestling rearing (Chapter 8). Through 

the use of precision automated nest balances, and by means of 
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observation, experiment, and optimality modelling, the significance 

of mass changes as a measure of reproductive investment and the 

fitness consequences of mass changes are described. 

Over the study period a dramatic reduction of numbers occurred 

in local and national (U. K. ) sand martin populations. At the same 

time a decrease in the average body size of individuals at the main 

study colony was observed. In Chapter 2, the adaptive significance 

of body size changes in bird populations is reviewed. The 

consequences of parental mass changes during breeding for theories of 

life-history tactics and parental investment are discussed in the 

final section, Chapter 9, and parent: offspring resource allocation 

in swallows is described by considering adult self-maintenance and 

investment in offspring simultaneously. 



CHAPTER 2 
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2. THE STUDY SPECIES AND STUDY SITES 

2.1 INTRODUCTION 

The fieldwork for this study was performed on the swallow, 

Hirundo r. rustica, and the sand martin, R. riparia. In North America 

the sand martin is called the bank swallow, and a different subspecies 

of swallow, the barn swallow H. r. erythrogaster, is found. All 

species are 'summer migrants to their breeding grounds. 

The breeding cycles of birds encompass a wide range of activities, 

each activity incorporating a variety of behaviours with different 

time commitments and energetic costs (Ricklefs, 1974; Bryant and 

Westerterp, 1980; Ettinger and King, 1980). In the sand martin, the 

breeding season incorporates prospecting for colonies, arrival at the 

colony, mate selection, mate guarding and sexual chases by males, egg 

formation, fertilization, and laying by females, incubation, and 

nestling rearing. Since the species is typically double brooded in 

Britain (Turner, 1980; Cowley, 1979,1983), all of the activities 

following arrival may be duplicated within the breeding season. 

Accounts of the breeding biology of the sand martin are given by 

Asbirk (1976) and Turner (1980), and similar information exists for 

bank swallows in America (Stoner, 1936; Petersen, 1955). 

Accounts of the breeding biology of the swallow are reviewed by 

Turner (1980). Only the female swallow incubates the eggs and broods 

young nestlings, whereas both sexes of sand martins (Turner, 1980) and 

barn swallows (Ball, 1983a, b) share these duties. 

In this chapter, observations on the breeding biology of sand 

martins and swallows are presented, with emphasis placed on the arrival 

patterns and populations changes of sand martins over the study period. 



9 

The analysis of arrival patterns includes an investigation of 

which birds arrived at the colony earliest, and speculation on the 

costs and benefits of early arrival for sand martins. Settlement 

patterns were investigated within a major colony, and colony selection 

was studied on a wider geographical basis. The occurrence of a 

dramatic population crash over the course of the study allowed insight 

into quantitative changes in body size within a bird population after 

a period of high mortality, and speculation about the effects of such 

over-winter selection for optimal body size during the breeding season. 

2.2 MATERIALS AND METHODS 

2.2.1 The distribution of sand martin colonies in the Stirling Region 

In order to assess the distribution and abundance of sand martins 

in the Stirling area and to select suitable study sites, surveys of 

local colonies were performed between 1982 and 1984. The area 

selected for the survey was the Stirling Region, arbitrarily defined 

for the British Association Conference at Stirling 1974 (Figure 2.2). 

The region includes part of the 1ighland boundary fault, and is 

composed of a diverse range of habitats (Timms, 1974). 

Sites were surveyed in late June and early July, corresponding to 

the period when most birds had constructed burrows for first broods 

at the main study colony at Dunblane (see results). Hence burrow 

counts are likely to estimate the maximum number of pairs attempting 

first broods at the sites surveyed. Colonies were located by 

following river courses and through contacts with -local ornithologists, 

and it is likely that all of the major colonies (>50 pairs) in the 

Stirling Region were covered at some stage during the three summers of 

the study. 
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Sand martins often construct new burrows each year, and many 

birds dig new holes for second broods (Turner, 1980, pers. obs. ). 

Burrows obviously not in use were not counted. Criteria for assessing 

occupancy were the presence of chicks, fledglings or adults at the 

burrow entrance, claw marks outside of the burrow, or lines of faeces 

below the burrow. Unused burrows often had vegetation growing out 

of them, or had cobwebs across the entrance (Harwood and Harrison, 

1977). Such burrows were excluded from the counts. 

Burrows which were not obviously out of use, but whose occupancy 

could not be confirmed were included in the counts. Hence considerable 

errors of over-estimation are possible, and the burrow counts are 

probably only of use in detecting large scale population changes. 

The main study site 

Mostobservations and studies were based at Barbush sand quarry, 

near Dunblane, Central Region (NN 787026), about 8 km north-west of 

Stirling University. The colony is the largest recorded in Scotland 

(Thom, in prep. ), with about 920 pairs present in 1982, but numbers 

showed considerable fluctuations between years. Several subcolonies 

were present each year at Barbush, and one subcolony was studied 

intensively each year, supplemented with fewer observations made at 

other subcolonies. At Barbush subcolonies ranged in size from a 

single burrow to about 390 occupied burrows. 

2.2.2 Examination of individual birds and capturing techniques 

Adult birds and recently fledged young were captured using mist 

nets. Birds were netted during the evening (18.00h-22.00h), and 

other nets were left up overnight and emptied at dawn on the following 

day. Checking of nets before dawn showed that no birds remained in 

the nets overnight. 
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Wing-length (maximum chord, measured to the nearest 0.5 mm) and 

keel-length (measured to the nearest 0.1 mm) were recorded, and all 

birds captured were ringed. Individuals could be aged (recently 

fledged young or older) by plumage characteristics, and many adults 

were sexed by brood patch criteria (Svensson, 1975). Lipid reserves 

were scored in the tracheal pit and on the posterior edge of the keel, 

each on a 0-6 point scale. The two values were combined into an 

overall fat score. The percentage coverage of lipid on the abdomen 

was also estimated when possible (Figure 2.1). 

A subsample of adults was colour marked, and the birds were 

traced back to their burrows. When parent birds were seen removing 

faecal sacs from the nests, the burrows were enlarged, and the nestlings 

were removed. Nestlings were processed and aged according to sand 

martin nestling growth curves (Turner and Bryant, 1979). 

Having calculated nestling age, and assuming that brood size 

equalled clutch size, that incubation lasted 13 days, that one egg 

was laid each day, and that incubation began when the penultimate egg 

was laid (Turner, 1980), first egg dates could be calculated. Age 

determination for the brood also allowed adult body mass and fat score 

to be related to stage of the breeding cycle. Visits to the main 

study site were spread evenly over the breeding season. 

Adult swallows were captured using mist nets, and were processed 

in the same way as described for sand martins. 

Standard meteorological measurements were obtained from the weather 

station at Stirling University. Additional measurements of shade 

temperature, barn temperature, and estimates of windspeed using the 

Beaufort Scale were made in the field. 
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2.2.3 Statistical procedures 

Statistical procedures follow Zar (1974). Stepdown multiple 

regression analysis was used, and the presentation of information for 

this technique follows the reasoning of Kennedy and Southwood (1984). 

For predictive purposes, stepdown regression should be halted 

when the next variable to be included has a non-significant t-value 

for entering the analysis. In the text, 'full analyses' included all 

variables used for the analysis, while in 'abbreviated analyses' 

computation was halted after the last significantly contributing 

variable had been entered. 

When two variables, which taken separately might be almost equal 

predictors of variation in the dependent variable are intercorrelated, 

only one, the first one entered, may appear significantly in a 

stepwise regression (Kennedy and Southwood, 1984). Correlation 

matrices for variables used in multiple regression analyses are 

therefore also presented. 

Statistics are given throughout as the mean +1s. d. unless 

otherwise stated. 

2.3 RESULTS 

2.3.1 The distribution of sand martins in Central Scotland and 
population changes 1982-1984 

The burrow counts from the 1982-1984 Stirling Region colony 

censuses are presented in Appendix 1. Counts were obtained from 27 

colonies over 3 years, with 15 sites covered in all three years. In 

1982 counts were spread over a longer period than in the two subsequent 

years. Early counts in 1982 were therefore likely to be under- 

estimates, since the Barbush study colony continued to increase after 
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counts were made at some sites. Hence the counts at such sites were 

increased by a factor which corresponded to the percentage change in 

burrow numbers at Barbush between the time when the counts were made 

and when peak numbers occurred at B arbush. 

The largest colony recorded was at Barbush (site 5 in Appendix I), 

when an estimated 920 pairs attempted first broods in 1982; The 

smallest colony was of one burrow, at Northfield quarry, Denny (site 

20) in 1983. Suitable sites for sand martin colonies can be short- 

lived, and the birds must be opportunistic in colony selection. For 

example, Roughmute sand quarry (site 18) held about 370 pairs in 1982, 

was largely reclaimed as grassland in 1982-3, and the colony has 

disappeared by 1984. Sand quarries are frequently disturbed, and 

river banks may collapse or be flooded, so sites may vary considerably 

in distribution and size from year to year. The distribution of the 

surveyed colonies in the Stirling region is presented in Figure 2.2.. 

There were few colonies in the north-west of the Region, which is 

mainly high ground and includes few rivers with sandy banks. Most 

sites were concentrated in the south and east of the Region, especially 

along river courses where suitable banks exist for burrowing, or where 

glacial sand and gravel deposits have been quarried, leaving large 

cliffs for colonisation. Most river bank nests were found along the 

Allan Water, the River Devon, and the River Eridrick. The Rivers 

Forth and Teith have few high sandy banks which are safe from flooding. 

In Figure 2.3 a frequency distribution of colony sizes is plotted 

for each of the three years of the study. The splitting of the 

River Devon sites into three was arbitrary, since the nests were 

scattered along the river, and did not lie in discrete colonies. In 

each year, most colonies were in the 1-100 burrows class. The number 
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of colonies containing more than 500 burrows 'declined from 5 in 1982 

to 1 in 1983, whilst no colony exceeded 200 burrows in 1984. 

(i) Colony site selection in the Stirling Region 

The information on colony distribution is from the 1982 data, 

when sand martin numbers were the highest during the study period. 

Sites only covered in 1983 and 1984 had their numbers modified according 

to the average population changes for the Stirling Region over the 

years concerned, giving estimates of burrow numbers for 1982. Two 

small colonies initiated in 1983 were excluded from the analysis 

(Cowie quarry, site 7, and Dunipace cemetry, site 21). 

it is estimated that in 1982 a maximum of about 4,074 pairs of 

sand martins attempted first broods in the Stirling Region. Of these, 

about 3,285 (81%) nested in sand or gravel quarries, about 723 (18%) 

nesting in river banks, 1% in a glacial esker. The calculated 

distribution of burrows in 1982 is illustrated as a pie-chart in 

Figure 2.4. 

(ii) Population changes 1982-1984 

As mentioned in Section 2.2.1, the census method was considered 

to be accurate enough only to detect large scale population fluctuations. 

Burrow counts for eight sites which were surveyed in all three years 

gives an indication of population trends over the study period. 

These sites were selected because of their lack of disturbance over 

the study period, and included 65% of all burrows counted during 1982. 

Data are presented for the five artificial and three natural sites in 

Figure 2.5. Information for a further two sites surveyed in 1983 and 

1984 only (Drumbeg and Avon Glen) is also plotted. 

Of the eight sites, five showed a decline in size between 1982 
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The distribution of sand martin burrows in different sites 

in the Stirling Region as calculated from the 1982 data. 

The proportion of burrows in natural sites is represented by 

cross-hatching. 
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and 1983, one remained the same size, and two increased in size. All 

eight sites were reduced in size between 1983 and 1984, as were the 

other two artificial sites included in Figure 2.5. 

Combined data for the eight sites during each of the three years 

is plotted in Figure 2.6. Similar trends occur in natural and in 

artificial sites. In artificial sites, 1983 numbers were 76.5% of 

1982 numbers, while 1984 numbers were 21.7% of 1983 numbers, 16.6% of 

1982 numbers. For natural sites, 1983 numbers were 74.7% of 1982 

numbers, the 1984 count was 36.7% of the 1983 total, 27.4% of the 

1982 count. Hence, overall, for the eight natural and artificial 

sites combined, sand martin burrow numbers in 1983 were 76% of the 

1982 total, while numbers in 1984 were 24.9% of 1983 numbers, and 

only 18.9% of the 1982 total. 

Mean colony size at the eight sites showed a significant decline 

between 1982 and 1984, and 1983 and 1984, though not between 1982 and 

1983 as determined by a paired sample t-test (t 1982,1983 = 1.26 ns; 

t 1983,1984 = 2.47, P<0.05; t 1982,1984 = 2.76, p<0.05, n= 16 

in all cases). 

Besides large colonies declining in size over the study period, 

five small sites became extinct, resulting in the loss of 73 burrows 

(see Appendix I for details). Although two small sites were 

established in 1983, these only accounted for 22 burrows. 

2.3.2 Colonisation patterns of sand martins at the main study site 

In this sub-section the manner in which sand martins settled at 

Barbush quarry is described. Population changes over the three year 

study period are covered, and an analysis is performed in sub-section 

2.3.6 to determine whether the birds surviving the population crash 
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of 1983-4 were morphologically different from the birds breeding at 

the colony in 1982 and 1983. 

The estimated numbers of occupied burrows at Barbush over the 

seasons 1982-1984 inclusive are shown in Figure 2.7. About 55% of 

the 1982 number of pairs probably settled at Barbush in 1983, while 

1984 numbers were 27% of the 1983 counts, 15% of the 1982 count. 

Hence the Barbush colony showed a decline in size over the three years 

of the study, especially between 1983 and 1984, as was shown by most 

other sites surveyed in the Stirling Region (section 2.3.1). 

Figure 2.7 also shows that the settlement pattern of sand martins 

in each year is more or less linear between the date of first arrival 

until at least early June, and then reaches a plateau as most birds 

will have arrived by this time. The date on which the first birds 

arrived at the colony also varied by about 20 days over the study 

period, and was probably largely dependent on spring weather 

conditions over the migration route. 

The Barbush colony was composed of several sub-colonies, which 

varied in distribution and number from year to year according to the 

distribution of sand extraction at the quarry. Nevertheless, one 

subcolony was present for all three years of the study, and was a 

relatively high, large and stable sand cliff no longer quarried and 

known as the 'main subcolony'. in each year the first birds to 

return to Barbush in Spring occupied the main subcolony, suggesting 

that it offered favoured breeding habitat, probably because of the 

cliff's stable composition, lack of disturbance and inaccessability. 

Colonisation patterns for the four largest subcolonies at 

Barbush in 1982 is shown in Figure 2.8.1982 was particularly 
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Seasonal changes in the estimated number of 

occupied sand martin burrows at Barbush, 1982-1984. 

Decreases often occurred as a consequence of sand 

cliff collapses. 
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favourable for an investigation of this type because all the previous 

year's burrows at the colony had been destroyed, so any burrows 

counted in 1982 were constructed during that year. 

The 'main subcolony' was occupied by all birds arriving before 

the-end of April. Subcolonies 2 and 8 were then utilized when the 

rate of colonisation in the main subcolony levelled off. When the 

settlement rate in subcolonies 2 and 8 reached a plateau, subcolony 

9 was initiated. The first-settled sites are probably the most 

favoured subcolonies, so one of the benefits of early arrival may be 

access to the most favourable nesting sites. 

To identify which birds occupied the 'main subcolony' an analysis 

of ringing retraps was performed. 

In 1982,251 adult sand martins, 58 fledglings, and 145 pulli were 

ringed at Barbush, and five birds were controlled, four of which were 

previously ringed at the colony. In 1983 25 birds were controlled, 

of which 22 were ringed at Barbush, and 19 were aged two years or 

older. one hundred and eighty four further adults, 74 fledged young, 

and 51 pulli were ringed. In 1984 22 birds of known age were 

controlled (including two first year birds), and a further 79 adults 

and 13 fledglings were ringed. 

The cumulative patternsof ringing recoveries in 1983 and 1984 for 

birds of known. age are shown in Figure 2.9. In both 1983 and 1984 

second year or older birds were captured before first year birds. 

In 1983 the earliest first year bird was captured on 15th May, by 

which time seven second year or older birds had been controlled. An 

influx of first year birds probably occurred in the second half of 

May, with six controls in two weeks. In 1984 the earliest first year 
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bird was controlled on 16th May, by which time 16 second year or older 

birds had been controlled. An influx of second year or older birds 

probably occurred in the first fortnight of May 1984, with 15 controls 

in two weeks. In 1984 the date of first arrival at the colony was 

later than in 1983 (Figure 2.7). Mead and Harrison's (1979a) large 

scale analysis of sand martin ringing recoveries showed that older 

birds normally arrived 2-3 weeks before first year individuals. 

In 1984 all 20 second year or older birds controlled were 

captured at the main subcolony, even though this subcolony contributed 

only a half of all burrows present. In 1983 eight of 19 second year 

of older birds (42%) were controlled at the main subcolony, while all 

of six first year birds were controlled in subcolonies other than the 

main subcolony. Thus older birds, returning to the colony at a 

relatively early date, are likely to have the largest choice of 

subcolony. 

2.3.3 Some aspects of the breeding' biology of sand martins 

In 1982 some measurements of the breeding biology of sand martins 

were made at Barbush. Mean clutch size was 4.38 + 1.39 (n = 13). 

This is slightly lower than the mean for nrthern Britain given by 

Morgan (1979) because all data was collected from a subcolony which 

was colonised at a relatively late date, probably by late arriving, 

young birds. Clutch size decreases as the breeding season progresses 

and increases with adult age in house martins (Bryant, 1979). 

In 1982 the mean brood size from nests examined over the entire 

colony was 3.65 + 0.95 (n = 49), close to the mean value of 3.58 for 

northern Britain (Morgan, 1979). 
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The seasonal trend in brood size is plotted in Figure 2.10 for 

broods aged 7-17 days. Sand martins are often double brooded (Morgan, 

1979; Cowley, 1983), and the data illustrated in Figure 2.10 is 

consistent with a seasonal decline in brood size within both first and 

second broods. Such a trend also occurs in swallows (McGinn and 

Clark, 1978). 

The timing of laying for 58 nests at one subcolony in 1982 is 

shown in Figure 6.2 (subcolony 2 in Fig. 2.8). The first egg date 

distribution was bimodal, with peaks in early June and over most of 

July. Several of the late clutches laid in late July and early 

August were later deserted when chicks were in the nest. The bimodal 

distribution of first egg dates is consistent with Morgan's (1979) 

analysis of sand martin nest record cards, though the second first 

egg date peak at this subcolony contained a higher percentage of the 

total distribution and was more prolonged than in Morgan's analysis. 

2.3.4 Predators and parasites of sand martins 

Adult sand martins at Barbush were often pursued by sparrowhawks 

(Accipiter nisus), and on two occasions pursuit resulted in successful 

capture for the hawk. All other observed predation was directed at 

well developed youngsters at burrow entrances. Sparrowhawks, 

kestrels (Falco tinnunculus) and crows (Corvus corone) were seen to 

successfully predate such young. Black-headed gulls (Carus 

ridibundus) were the most persistent visitors to burrows, however, 

and were seen to capture young martins on at least five occasions, 

often attempting to pull chicks from burrow entrances. The nestlings 

were then carried away by the gulls, and one young martin retrieved 

from a flying gull was found to be dead. There appears to be no 

previous published record of black-headed gulls as active sand martin 
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predators (as opposed to scavengers) (Mead and Pepler, 1975), though 

at Barbush they appeared to be the most successful avian predator. 

Mink (Mustela vison) tracks were often found on colony faces, 

and other potential mammalian predators observed at Barbush were 

weasels (M. nivalis) and stoats (M. erminea). With such a range of 

predators, there is likely to be intense selection for sand martins 

to choose subcolonies for nesting where predator accessibility is 

minimised. 

A stuffed sparrow hawk and stoat presented to birds at the 

colony were persistently mobbed. All of the avian predators listed 

above were normally mobbed by the martins, as were weasels, stoats, 

and'even occasionally rabbits (Oryctolagus cuniculus) which had 

burrows nearby. 

Parasites present at the colony included hippoboscid flies 

(Sterepteryx hirundinis), sand martin ticks (Ixodes lividus), sand 

martin fleas (Ceratophyllus styx) and feather lice (Mallophaga). 

Up to 800 fleas were counted at a single burrow entrance. 

2.3.5 Morphometrics of sand martins at Barbush 

(a) Body mass 

The body mass of sand martins varied according to the stage of 

the breeding cycle, the time of day, body size, sex, and food avail- 

ability. 

Variation attributable to the stage of the nesting cycle is 

described in Chapters 5 and 6. Histograms of evening body masses 

over the three years of the study for 172 females and 92 males of 

known wing-length and keel-length are presented in Figure 2.11. The 

heaviest male processed was 15.2g, birds heavier than this probably 
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being laying or prelaying females. The heaviest female captured 

was 19.7g, but is not included on the histogram because no other 

morphological measurements were made on capture. Mean female 

evening body mass was 14.56 + 1.28g, mean male evening mass 13.43 + 

0.82g, and the difference between means is statistically significant' 

(t = 7.68, P<0.001), probably because of the presence of heavy 

laying and prelaying birds in the female body mass distribution. The 

mass distributions were probably not representative of the colony as 

a whole because nestling-feeding adults which were light (Chapters 5 

and 6) were under represented in the mist net catch. The mist nets 

tended to capture laying, incubating, or brooding birds which often 

remained in their burrows on approach. 

(i) Diurnal variation in body mass 

The mean body mass of females captured at dawn was 13.77 + 1.41g 

(n = 47), compared with 14.56 + 1.28g for evening caught birds 

(t = 3.83, P<0.001). The mean body mass of males handled at dawn 

was 12.82 + 0.65g (n = 18), compared with 13.43 + 0.82g for evening 

caught birds (t = 2.97, P<0.01). Females caught at-dawn are on 

average significantly heavier than males caught at dawn (t = 2.74, 

P<0.01). Females tended to increase in average mass by 5.7% 

between dawn and evening, males by 4.8%. 

(ii) Body mass and food availability 

Evening body masses of 62 breeding male sand martins and 117 

evening masses of breeding females during 1982 were related to food 

abundance as determined by the 12.2m suction trap (Chapter 3). The 

results are shown in Figure 2.12. Both sexes were heavier when food 

was more abundant. The correlation coefficient between male mass and 

food abundance was 0.33 (P < 0.01), and a similar significant positive 

correlation occurred with females (r - 0.24, P<0.01). 
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However, when birds arrived at the colony in Spring, they tended 

to be fat and heavy (Chapter 5) at a time when food was scarce 

(Chapter 3). Pre-breeding birds arriving at the colony during a 

period of low and unpredictable food availability are likely to 

carry substantial lipid reserves to buffer against food shortages. 

Moreover, birds are likely to fatten up in the autumn before migrating, 

as has been found in house martins (Bryant, 1975a). 

(iii) Body mass and body size 

Two potential measurements of body size were investigated in the 

study: wing-length (maximum chord, measured to the nearest 0.5 mm), 

and keel-length, measured to the nearest 0.1 mm. Correlation 

coefficients between body mass, wing-length, and keel-length for all 

birds, females only, and males only are presented in Table 2.1. 

Body mass was significantly positively correlated with wing- 

length and keel-length for birds of both sexes combined and for 

females alone. Mass was significantly correlated with keel-length 

only in males. Wing-length was significantly positively correlated 

with keel-length when all birds were considered, but the correlation 

was lost when male or females are analysed in isolation. 

Hence keel-length is probably a more reliable measurement of body 

size than wing-length since it correlates with body mass in both males 

and females, and correlation coefficients of mass/keel-length 

comparisons were greater or equal to those of mass/wing-length 

comparisons. Moreover, in a stepdown multiple regression analysis 

of body mass, taking keel-length and wing-length as independent 

variables, only keel-length entered as a significant variable 

(Table 2.2). 
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Table 2.1 

Correlation matrices for body mass and morphometrics in sand martins 

(a) males, females, and birds of undetermined sex, n= 423 

wing-length (mm) keel-length (mm) 

body mass (g) 0.11* 0.15** 

wing-length (mm) 0.12* 

(b) males only, n= 115 

wing-length (mm) keel-length (mm) 

body mass (g) 0.18 ns 0.21* 

wing-length (mm) 0.09 ns 

(c) females only, n= 220 

wing-length (mm) keel-length (mm) 

body mass (g) 0.14* 0.14* 

wing-length (mm) 0.07 ns 

Tabulated values are correlation coefficients, r. 

ns not significant 

*P<0.05 

** P<0.01 

*** P<0.001 



24 

a 

U) 

4J 
(a 0 

ro 
m 
9 

N 
N 
ro 

b 
0 A 
w 0 

U) 
r. 
to 

a, 
a, 

U 
"-4 
$a 
41 
a) 
E 
0 

4 

0 
Ei 
w 
0 
U) 
N 

ro 
r. O 
N 
N 
41 

t7l 
v 

N 

W 

4J 
rl 

E ca 

a) 

O O 

N 
O 

1-4 
to 

w 

r. 
ro 
N 

ro 

b 

M 
N 

N 
LL 

ri 
b 

N 

N 

41 

4 
'L3 

a) 0 
S4 "-4 ) 

. u1 0 

it 
tyl :3 
äw 

a 

N 41 

N 

-4 
ro 

-4 0 
fL4 (n 

0 
!0., -I 

41 
ý ro 0) 0 
äw 

w 
0 

U) E 
a) 0 
a) b 
aý aý 

w 

N 
H 

ei b a ri tug 04 a, ". I bw Hý 

M 

M 

N 
ri 

Cý 1-4 CO O 

0) 0 

X II v 
M 

o w a 
O 

N 

Q1 M 

N -4 

O 

+ . }. co O 

rl N O 

M II v 
co 

0 w a 

0 0 

"q 0 
NN 

rl N 

f 
N f1 

J 
4J rn 

aa 
f 

Cc 
a) "- 
.k3 

0 
ö 

V 
a 

4' 
4' 



25 

Keel-length is also a better measurement of body size than wing- 

length in that it remains constant from year to year, and probably 

attains most of its maximum length at fledging or soon afterwards. 

(Chapter 5 shows no significant difference between the mean keel-length 

of samples of adults and fledglings. ) Retrapped sand martins have 

been found to keep the same keel-length between years, whereas their 

wing-length increases with age (see below). 

Histograms of keel-length and wing-length in male and female 

sand martins at Barbush between 1982 and 1984 are presented in Figure 

2.13. There was no significant difference in mean keel-length between 

the sexes (male mean keel-length = 19.01 + 0.63 mm (n =125), 

females 18.95 + 0.65 mm (n = 220), t=0.83, ns), and mean wing-lengths 

were not significantly different between the sexes (male mean wing- 

length = 105.26 + 2.73 mm, females 104.89 + 2.68 mm, t=1.22 ns). 

The relationship of wing-length to age is shown in Figure 2.1#, 

for average values of birds of known age, and for individuals measured 

in more than one year. Birds of known age and minimum known age are 

included in the same age class. The oldest bird controlled was four 

years or older. 

From both Figure 2.14a and b wing-length was shown to increase 

with age of the bird. The regression equation for wing-length as a 

function of age using the data in Figure 2.14a is wing-length (mm) _ 

104 + 1.28 (age), F=6.3, P<0.05, n= 46, r= 12.4%. 2 

In 20 out of 28 individuals controlled between years wing-length 

was found to increase with age, whilst in the remaining eight 

individuals, wing-length remained the same between years (Figure 

2.14b). 



Figure 2.13 

Frequency distributions of 

(a) keel-lengths and 

(b) wing-lengths 

of male and female sand martins captured at 

Barbush, 1982-1984. 
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Hence wing-length is probably not a good indicator of body size 

in sand martins both because it is not consistently correlated with 

body mass, and wing-length varies according to the age of the bird. 

2.3.6 Changes in sand martin morphometrics between years 

Changes in sand martin mean wing-length and mean keel-length 

between years at Barbush were analysed in relation to changes in 

colony size. Separate analyses were performed on a sample of birds 

of both sexes combined and on males and females in isolation. Birds 

controlled in more than one year (n = 47) were included in the 

analysis for each year they were controlled. 

(a) Wing-lengths 

Differences in mean wing-lengths between years are presented in 

Table 2.3. Although mean wing-lengths of males were consistently 

longer than those of females, in no year was the difference large 

enough to be statistically significant. When data from birds of each 

sex were combined, mean wing-length was significantly shorter in 1982 

than in both 1983 and 1984. There was no significant difference in 

mean wing-length between 1983 and 1984. The same significant trends 

seen in the combined sample of males and females occurred when females 

were considered in isolation. However, mean male wing-lengths were 

not significantly different between any of the years considered. 

The mean increment in wing-length of 10 birds recaptured in 1983 

and ringed in 1982 was 2.15 + 1.40 mm. Of these, only one (10%) 

maintained an unchanged wing-length between years, all other birds 

returned with increased wing-length. The mean increment in wing-length 

for 17 birds controlled in both 1984 and 1983 was 1.09 + 1.31 mm. 

Of these, 6 (35%) had not changed in wing-length, all other birds 

returning with increased wing-length. The difference in mean wing- 
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Table 2.3 

Changes in mean wing-length of sand martins at Barbush 1982-1984 

Analysis 1 

There was no significant difference between the means of male 

and female wing-length (Fig. 2.14); t=1.22, ns. Therefore 

combine data for males and females and birds of undetermined sex (n = 423). 

Year Wing-length (max. chord) mm, m`an + sd (n) 

1982 104.43 + 2.58 (162) 
1983 105.53 72.93 (165) 
1984 105.58 + 2.48 (96), 

t-tdsts: 
1983 1984 

1982 3.61*** 3.50*** 
1983 0.14 ns 

Analysis 2 

Using birds of known sex (n = 335,220 females, 115 males). 

Wing-length 
females x+ sd (n) males, mean + sd (n) tp 

1982 104.29 + 2.56 (93) 104.77 + 2.67 (63) 1.13 ns 
1983 105.19 3.04 (77) 105.88 2.74 (32) 1.11 ns 
1984 105.57 2.02 (50) 105.80 2.71 (20) 0.39 ns 

t-tests: 

Females Males 
1983 1984 1983 1984 

1982 2.10* 
1983 

3.06** 1982 1.90 ns 1.50 ns 
0.78 ns 1983 0.01 ns 

ns : not significant; *: P<0.05, *** :P<0.01, *** :P<0.001. 
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length increment over the two seasons was not statistically significant 

(t = 1.98). 

Cowley (1979) attributed a decrease in the mean wing-length of 

sand martins after a population crash to decreased feather growth 

during moult in a Sahel drought. The present results suggest that 

differences in wing-length between years are more likely to reflect 

differences in the age structure of the colony between years, rather 

than differences in body size between years, since wing-length is not 

always a good predictor of body mass (Tables 2.1,2.2), and wing- 

length increases with age (Figure 2.14). The significantly longer 

mean wing-length in 1983 and 1984 compared with 1982 may indicate 

increased levels of mortality in young birds during 1982-1983 and 

1983-1984 compared with 1981-1982. Juvenile mortality has been shown 

to be very high during the population crash of 1968-1969 (Mead, 1979). 

(b) Keel-lengths 

Differences in mean keel-lengths between years are presented in 

Table 2.4. There was no significant difference in mean keel-length 

between 1982 and 1983 when data for both sexes were combined. However, 

there was a highly significant reduction in the mean keel-length of 

birds captured in 1984 compared with birds measured in both 1982 and 

1983. Similar significant trends as those seen in the combined 

sample of males and females occurred when females were considered in 

isolation. No significant differences in male mean keel-length 

existed between years, although the trends were the same as in 

females. The sample sizes of males measured in 1983 and 1984 were 

small, however, totalling only 52 birds in two years. Frequency 

distributions of keel-lengths for each year are presented in Figure 2.15. 

For each graph, the most frequent keel-length class remained the same 
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Table 2.4 

Changes in mean keel lengths of sand martins at Barbush 1982-1984 

Analysis 1 

There was no significant difference between the means of male 

and female keel-lengths (Fig. 2.14): t=0.83 ns, n= 220 females, 

115 males. 

Therefore combine data for males, females, and birds of 

undetermined sex (n = 423). 

Year Keel-length mm, mean ± sd, (n) 

1982 18.99 + 0.70 (162) 
1983 19.06 0.58 (165) 
1984 18.76 70.54 (96) 

t-tests 

1983 1984 

1982 0.99 ns 2.77** 
1983 4.13*** 

Analysis 2 

Using birds of known sex (n = 335,220 females, 115 males). 

Year Females, sd, (n) - Males, mean ± sd, (n) tp 

1982 18.99 + 0.73 (93) 18.99 + 0.67 (63) 0.00 ns 
1983 19.04 0.57 (77) 19.14 0.61 (32) 0.82 ns 
1984 18.74 0.55 (50) 18.87 0.50 (20) 0.92 ns 

t-tests 

Females 
1983 1984 

1982 0.19 ns 2.12* 
1983 2.94** 

Males 

1983 1984 

1982 1.06 ns 0.74 ns 
1983 1.66 ns 

ns , not significant; *: P<0.05; ** :P<0.01; *** :P<0.001 
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(mid-interval 19 mm). Selection appeared to be acting against the 

biggest birds. In 1982 and 1983, ten of the 327 birds processed 

had keel-lengths greater or equal to 20.5 mm. By 1984 none of the 

96 birds processed had keels this long. Moreover, in 1982,32% of 

birds had keel-lengths longer than the modal class, compared with 35% 

in 1983, but only 15% in 1984. 

2.3.7 Morphometrics and breeding biology measurements of swallows 

Body size measurements of 54 swallowsprocessed between 1978 and 

1984 (including data of D. M. Bryant) is presented in Table 2.5. 

Although males captured were significantly lighter in body mass than 

females, males had significantly longer keel-lengths and wing-lengths. 

" Correlation matrices of body mass, keel-length, and wing-length 

for males, females, and both sexes combined (Table 2.6) show no 

significant correlations between variables for any groups considered. 

However, when body mass of incubating females measured by the precision 

electronic balance method at a standardised time of day was related 

to keel-length, a highly significant positive correlation existed. 

(Chapter 7). 

The mean clutch size of 58 swallow nests (including data of 

D. M. Bryant) was 4.66 + 0.70. The frequency distribution of swallow 

clutch sizes is shown in Figure 2.16. Modal clutch size was five, 

and clutches ranged in size from three to six eggs. The mean brood 

size from 40 nests was 4.28 + 0.93 nestlings, and the mean number of 

fledglings raised from 19 nests was 4.11 + 0.94. 

In 1982,16 swallow nests were inspected at least once every 

other day. From 86 eggs, 81 chicks hatched, giving a hatching success 

of 94.2%. From 81 chicks hatched, 78 (96.3%) fledged successfully. 
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Table 2.5 

Measurements of body size in swallows 

Males Females Both sexes 
(n = 23) (n = 31) t p (n = 54) 

Body mass 19.69 + 1.50 21.66 + 1.98 4.16 p<0.001 20.82 + 2.03 

Keel- 
length 21.76 + 0.89 20.95 + 1.07 3.04 p<0.01 21.30 + 1.06 
(mm) - - - 

Wing- 
length 125.73 + 3.00 124.00 + 3.01 2.09 p<0.05 124.74 + 3.10 
(mm) - - - 

Table 2.6 

Correlation matrices of swallow morphometrics 

(a) Females: body mass, 
n= 31 g 

keel-length, mm 0.32 ns 
wing-length, mm 0.22 ns 

(b) Males: body mass, 
n=23 g 

keel-length, mm 0.07 ns 
wing-length, mm 0.30 ns 

(c) Both sexes: body mass, 
n=54 g 

keel-length, mm -0.02 ns 
wing-length, mm 0.02 ns 

keel-length, 
mm 

-0.24 ns 

keel-length, 
mm 

0.10 ns 

keel-length, 
mm 

-0.03 ns 

Tabluated values are correlation coefficients, r. 

ns : not significant. 
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Of the three chick deaths recorded, only one was due to undernourish- 

ment, two others dying after falling from the nests. Hence hatching 

success and fledging success were very high in the swallows studied, 

and chick death from undernourishment was scarce. However, 1982 

appeared to be a favourable year for swallow breeding, and breeding 

success may be lower in years of low food abundance. 

Mean clutch size during the study was identical to that documented 

by McGinn and Clark (1978) for swallows nesting elsewhere in lowland 

Scotland. 

2.4 DISCUSSION 

2.4.1 The distribution, colonisation patterns, and population 
changes of the study population of sand martins 

(a) Some costs and benefits of early arrival at sand martin colonies 

Sand martins arriving early in the season at Barbush tended to be 

two years of age or older (Figure 2.9). The first arrivals at the 

colony will gain several benefits associated with the early season, 

but may also suffer some costs of early arrival. Some such costs and 

benefits will be described below. 

Older birds returning to the colony early in the season will 

have a larger choice of nesting site than younger birds arriving later. 

Burrow numbers at Barbush subcolonies in 1982 tended to increase 

until a plateau was reached (Figure 2.8), the plateau probably 

corresponding to a burrow density above which interference between 

burrows or subcolony collapse may be precipitated. 

Hence the best quality subcolonies will have limited burrowing 

sites, and early arriving birds will have first access to these sites. 

The 'main subcolony' at Barbush was the first subcolony to be occupied 
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during each of the three years of the study, and was probably favoured 

for three reasons: 

(a) The main subcolony sand cliff was high, steep, and hence 

relatively inaccessible to mammalian predators. 

Sieber (1980) found that sand martins nesting in the 

highest burrows in a colony suffered less predation by a 

beech marten (Martes foina). 

(b) The subcolony was no longer quarried and hence suffered 

little human disturbance during the breeding season. 

(c) The subcolony consisted of firm, compacted sand which was 

relatively stable and resistant to collapse. 

Hence it seems likely that the older birds which returned early 

colonised the best quality subcolony until its density reached a 

level where it became more profitable for birds to settle elsewhere. 

Colonisation patterns probably follow a model'similar to those 

developed for territoriality and breeding density by Brown (1969) and 

Fretwell (1972). Territoriality itself is unlikely to limit the 

number of sand martins settling in particular subcolonies, though 

there is likely to be a subcolony burrow density above which the 

probability of-interference between burros or subcolony collapse is 

high. A model of sand martin subcolony settlement patterns modified 

from Brown's (1969) theory of the effect of territoriality on 

breeding density is presented in Figure 2.17. 

It is assumed that three"subcolonies are available for settlement 

at a sand martin subcolony. Subcolony 1 is the highest quality 

subcolony, and could be likened to the 'main subcolony' at Barbush. 

Subcolony 1 is colonised until a critical burrow density (*n1) is 

reached, whereupon birds would improve their reproductive success by 
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moving to subcolony 2. The critical density (*n) is probably 

attained when the increased chances of burrow interference or sub- 

colony collapse are likely to reduce the potential settler's 

likelihood of breeding successfully. 

The second ranked subcolony, subcolony 2 is then settled to its 

critical density (*n2). Although in Figure 2.17 *n2 < *nl, *n2 

could be greater or equal to *nl, since inferior quality subcolonies 

may have a greater area available for burrowing than superior quality 

subcolonies. When the critical density of burrows in subcolony 2 

is reached (*n2), subcolony 3, the smallest and poorest quality site 

is colonised. When *n3 is attained, late arriving birds may increase 

their reproductive success by moving to another colony for nesting. 

The model involves birds making similar decisions as to whether 

or not they join flocks of a given size (Sibly, 1983; Pulliam and 

Caraco, 1984), and can be tested through the prediction that nesting 

attempts in all subcolonies should be equally successful. 

If all three subcolonies were of equal. quality in terms of 

nesting habitat, the trend of sequential filling of subcolonies may 

still be observed. Critical burrow densities may then be determined 

by the number of pairs which optimises predator detection or 

maximises any benefits associated with social foraging for an 

individual. 

In years of low population density most of a study population of 

Dutch titmice bred in mixed woodland, while in years of high popula- 

tion density some birds bred in pine woodland also (Kluijver and 

Tinbergen, 1953). Since titmouse reproductive success declines with 

density (Perrins, 1965), and in the Dutch study there was no 
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difference in reproductive success per pair in the two habitats, it 

is likely that individuals settled where they could expect the 

greatest reproductive success. 

Glas (1960) showed that chaffinches Fringilla coelebs, settled 

in mixed woodland before pine woodland, and settled at a higher 

density in the former habitat. Sieber (1980) found that sand 

martin burrows excavated early in the season were higher up cliff 

faces than later ones, so martins may move to other subcolonies once 

a critical density of high altitude burrows is attained. Sieber's 

study also showed that birds settled in several subcolonies with 

increasing density, so that burrows were on average spaced 27-30 cm 

from each other. 

Thus early arriving sand martins would be expected to settle in 

subcolonies which maximise their reproductive success, and the 

settlement patterns of early arriving, older birds will influence 

the manner in which later arriving, younger birds settle in subcolonies. 

Wheatear, O. oenanthe territories in which early breeding occurred 

were occupied in more breeding seasons than were territories where 

late breeding occurred and such territories were occupied by older 

males and were the first territories to be settled in at the start 

of the breeding season (Brooke, 1979). 

Early arriving sand martins may also be able to renovate old 

burrows from the previous season, rather- than spending time 

excavating new ones. However, the use of old burrows may carry a 

cost of a higher rate of ectoparasitism or chance of collapse. On 

May 9th,, 1983,34 burrows at the main subcolony, a site which 

contained a maximum of 350 burrows the previous year, had a mean 

number of 112 + 155 sand martin fleas , Ceratophyllus styx, at their 
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entrance. Twenty-eight burrows at a newly established subcolony 

examined on the same date each had no fleas at their entrances. 

Other parasites such as hippoboscid flies, Stenepteryx 

hirindinis, are also likely to be present in greater numbers in 

previously used burrows, and hippoboscids may utilise 2.7% of a house 

martin brood's assimilated energy (S. Guy, unpubl. ). Sanguinivorous 

mites reduce maximum nestling mass in purple martins, Pro e subis, 

(Wayne Moss and Camin, 1970), and Ixodes mites feeding off the 

blood of sand martin chicks may exert a similar effect. Hence any 

benefit arising from reuse of a limited supply of old burrows is 

likely to be counteracted by a significantly increased ectoparasite 

cost. 

Early arriving sand martins may be able to select high quality 

mates if birds of the opposite sex also arriving early are of the best 

quality. Early nesting pairs may also rear larger broods: brood 

size appears to decrease over the season within first and second 

broods (Figure 2.10), though to what extent this is due to less 

experienced birds laying smaller clutches later is not known. 

Probably more importantly, early arrivals may be more likely to rear 

two broods in a season than later arriving birds. In 1983 subcolony 

'NS' was not colonised until 19th May, and no second broods were 

raised here. Conversely, the 'main' subcolony was first colonised 

on 20th April, and most pairs there appeared to rear two broods. 

Late breeding may also reduce the survival prospects of the 

fledglings. In great tits, young fledged late in the season have a 

lower chance of surviving until the subsequent breeding season than 

earlier hatched chicks (Perrins, 1965). Second brood house martin 
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fledglings show higher overwinter mortality rates than youngsters 

from first broods (Rheinwald, Gutscher, and Hormeyer, 1976). 

Early arriving sand martins will be interacting with few conspeci- 

fics, and. so will experience the costs and benefits associated with 

small group size. Large groups of sand martins may be able to better 

exploit unpredictably distributed food patches than smaller groups 

(Emlen and Demong, 1975), though the advantages of social foraging 

in bank swallows is disputed (Hoogland and Sherman, 1976). Early 

arrivals may benefit from reduced competition for nesting materials, 

though pay the costs associated with increased susceptibility to 

predators with small colony sizes (Hoogland and Sherman, 1976). 

The most significant cost to early arrivals is likely to be an 

increased probability of encountering prolonged periods of food 

shortage. Suction trap catches are often low in volume for long 

periods early in the season (Chapter 3), and sand martin mortality in 

Britain appears to be highest at this time (Mead, 1979). Hence 

early arrivals often carry large lipid reserves (Chapter 5), presumably 

to buffer against such food shortages, though must pay the energetic 

costs of carrying this extra mass during flight (Chapter 8). One 

benefit of late arrival by sand martins would be the avoidance of any 

increased mortality risks associated with low levels of food abundance 

early in the season. 

(b) The distribution of sand martins in the Stirling Region 
and implications for conservation 

The British Trust for Ornithology (B. T. O. ) breeding bird survey 

of the 1970's recorded sand martins in 75% of 10 km squares in Britain, 

with confirmed breeding in 84% of these (Sharrock, 1976). The 

species was absent from large areas of south and east England where 

calcareous rock formations in places restrict the availability of 

breeding sites. 
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In 1982, when sand martin numbers were high in the Stirling 

Region, 81% of burrows surveyed were found in sand or gravel quarries. 

From an examination of sand martin B. T. O. nest record cards, Morgan 

(1979) found that 44.2% of colonies in southern Britain were in sand 

and gravel quarries, compared with 32.8% in northern Britain, suggest- 

ing a greater dependence on natural sites in northern Britain. 42% 

of sand and gravel pits surveyed in the B. T. O. Register of 

Ornithological Sites contained breeding sand martins (Fuller, 1982). 

In the Stirling Region 60% of sites surveyed were found in 

artificial situations. The Stirling Region probably has more 

artificial colonies than most areas in Britain because its rivers 

often have low banks which are susceptible to flooding, and the area 

is rich in glacial sands and gravels so there are many opportunities 

for quarrying. 

Colonies in sand and gravel quarries can be considerably larger 

than natural colonies: in 1982 the four sites with over 500 nests 

were all in sand quarries. Hence sand pits in the Stirling Region 

are not only the most frequently used sites for breeding by sand 

martins, they also hold the largest colonies. The compactness of 

sand in quarries will also probably influence the density of sand 

martins settling there: Sieber (1980) found higher burrow densities 

in less compact sand cliffs. 

It is probable that the sand martin's dependence on sand quarries 

over much of Britain for breeding has led to a change in the 

distribution or abundance of the species over the past century. In 

Figure 2.18 the production of sand and gravel in Britain between 1900 

and 1970 is plotted (from Catchpole and Tydeman (1975), based on the 

data of Archer (1972)). Sand and gravel output has increased 
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exponentially since the turn of the century, and projections up until 

1980 predicted the trend to continue (Healing and Harrison, 1975). 

Clearly the increased levels of quarrying of sand and gravel will 

have resulted in more artificial sites being available for sand 

martins, especially within the last 30 years. Parslow (1973) 

believes that the growth in the number of gravel pits in central and 

eastern England since 1950 has led to an increase in the sand martin 

population there. 

However, some sand martin colonies in natural sites in Scotland 

decreased in size at least until the 1950's (Baxter and Rintoul, 1953). 

Hence the change in available sand martin nesting habitat over the 

past century may simply have resulted in a redistribution of nest 

sites rather than an increase in the population size of the species. 

Nevertheless, the largest colony recorded in the Forth area by Rintoul 

and Baxter (1935) was 300 burrows in a river bank on the River Almond. 

The Barbush colony in 1982 was probably the largest ever to exist in 

Scotland in recent years (up to 920 pairs in 1982), whilst Drumbeg 

sand pit has had up to 600 burrows documented, making it the second 

largest site recorded in Scotland (Thom, in prep. ). Thus an increase 

in the sand martin population in Britain because of increased nesting 

habitat availability seems plausible. 

The association of swallows and house martins nesting in human 

dwellings must be of ancient origin (Hosking and Newberry, 1946; 

Tate, 1981), but clearly sand martins are largely dependent on human 

activities for breeding at present. For a species which is probably 

highly susceptible to climatic changes in its wintering grounds (see 

below), the safeguarding of nests in sand and gravel quarries during 
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population crashes could be an integral part of sand martin conserva- 

tion in Britain. 

2.4.2 Factors responsible for sand martin population crashes 

Sand martin populations declined in size severely in 1968-1969 

and 1983-1984. Such dramatic reductions in numbers are not wholly 

explicable by events on the breeding grounds, so climatic conditions 

in the wintering area will be described. 

British sand martins migrate through western France and Spain to 

spend winter in north-west Africa in the Sahel zone (12° - 18°N) south 

of the Sahara desert. The return migration is probably further to 

the east, with more ringing recoveries from the extreme north of 

Africa than in autumn (Mead and Harrison, 1979b). 

The Sahel is normally a semi-arid zone, and has a single rainy 

season (July-September), with the abrupt alternation of dry and wet 

seasons resulting in a sharp seasonal increase in plants and inverte- 

brates coinciding with the end of the northern summer period. 

Coupled with the absence of potential local competitive species, this 

usually makes the Sahel zone an ideal wintering ground for several 

bird species summering in Eurasia, including the sand martin, the 

redstart P. phoenicurus, the sedge warbler Acrocephalus schoenobaenus, 

the yellow wagtail Motacilla flava flavissima, and the whitethroat 

Sylvia communis (Morel, 1973). 

During the 1950's rainfall in the Sahel was above that normally 

expected, but since 1968 it has been much below normal (Lamb 1982), 

probably partly because of a general weakening of the global atmos- 

pheric circulation (Winstanley, Spencer and Williamson, 1974). A 

severe drought occurred in the Sahel in 1968, and since then rainfall 
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has been below average (except in 1969), resulting in severe famine 

and desertification in north-west Africa (Derrick, 1984; Walsh, 1984). 

Although the dry spell that started in 1967 may fall into a 

pattern of sparse, variable, and unevenly distributed rainfall that 

has prevailed in the region for the last 2,500 years, changes in land 

use and population growth has led to severe stresses being placed on 

fragile soils (Walsh, 1984). Moreover, the removal of vegetation, 

increased reflectivity, and reduced soil moisture induced by the 

drought have probably influenced the atmosphere in such a way as to 

strengthen the conditions that first produced the drought (Nicholson, 

1982), so the drought is probably self-accelerating. 

Precipitation during the Sahel wet season of 1968 was 25% below 

normal for the region as a whole, with rainfall the lowest since 1949 

(Winstanley et al., 1974). The 1969 British breeding population of 

whitethroats fell to a level 77% below its 1968 value (Batten, 1971), 

and sand martin numbers in a Nottinghamshire study area were reduced 

by 45% over the same period (Cowley, 1979). For both the white- 

throat and the sand martin, the population crash in Britain was 

attributed to the sudden decrease in rainfall during the 1968 Sahelian 

wet season, reducing plants and insects available to birds in their 

wintering grounds. 

During 1983 the river flood in the valley of the River Senegal 

was the lowest recorded this century, largely as a result of poor 

rainfall in the mountains of northern Guinea (Dugan, 1984). However, 

it is unlikely that a severe Sahel drought was solely responsible 

for reducing 1984 sand martin numbers in the Stirling Region to about 

25% of 1983 numbers: several other factors should be considered, 

including: 
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(i) Reduced fecundity in 1982 and 1983. 

In 1982 a cold, wet spell in June reduced aerial insect abundance 

over about two weeks (Figure 3.1), and many sand martins at Barbush 

appearedto desert first broods. The 1983 Spring was prolonged, cold 

and wet, with aerial insect abundance low in the early season and also 

later in the season (compared with 1982), when-weather conditions 

improved (Figure 3.2). Hence sand martins were late in arriving at 

the colony (Figure 2.7), and many pairs did not begin nesting until a 

relatively late date. Again, many first broods were deserted in the 

early season, and a large subcolony-(c. 200 pairs of an estimated c. 500 

at the colony) only reared one brood. Thus a reduced productivity 

during the 1982 and 1983 breeding seasons may have resulted in fewer 

birds than usual leaving Britain for the wintering grounds. 

(ii) Conditions on spring and autumn migration 

During the Spring of 1984 a persistent band'of cold weather 

occurred in the Mediterranean at a time when hirundines would be 

migrating towards Britain (Mead, 1984). Hirundines can suffer high 

mortality rates when bad weather is encountered on migration (Alexander, 

1933). Therefore many sand martins moving towards Britain in the 

Spring of 1984 may have perished in the area of the Mediterranean, or 

may perhaps have settled in Europe south of Britain. Conditions in 

the Mediterranean were probably responsible for the decline of the 

chiffchaff, Phylloscopus collybita, in Britain between 1983-1984, 

since this species winters in the Mediterranean and feeds on insects 

there (Mead, 1984). 

Hence a series of catastrophic droughts in the Sahel zone of 

Africa, being especially marked in 1968,1982, and 1983, have probably 

reduced British sand martin numbers to under 10% of their mid 1960's 
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numbers (Mead, 1984). After the severe drought of 1968 the reduction 

in sand martin numbers was largely attributable to a 3-6 fold increase 

in juvenile mortality, and a doubling of adult mortality (Mead, 1979; 

Cowley, 1979). Sand martins are relatively r-selected birds 

(Pianka, 1970) with potentially high fecundity rates, so population- 

losses may be replaced within a relatively short time. The changes 

in physical attributes of the study population over the period of the 

1983-1984 population crash will now be discussed from an evolutionary 

standpoint. 

2.4.3 Natural selection and body size changes in bird populations 

In this study keel-length was used as an index of body size 

because it positively correlated with body mass in males and females, 

attained a maximum length soon after fledging, and did not therefore 

vary with the age of the bird. 

Body size is known to have a strong hereditary component in birds, 

whether measured through body mass or morphometrics (Boag and Grant, 

1978; Smith and Zach, 1979; Van Noordwijk, Van Balen and Scharloo, 

1980; Smith and Dhondt, 1980; Garnett, 1981; Boag, 1983). 

Garnett (1976) has shown that about three-quarters of the variation in 

tarsus length, an indicator of body size in great tits at oxford, is 

caused by additive genetic variance. Thus it is likely that keel- 

length in sand martins also has a high heritable component and is thus 

likely to respond to selective pressures for changes in body size. 

Climate is believed to influence the body size of organisms as 

reflected by the latitudinal trends in size between species (Mayr, 1956), 

and by geographical variation in skeletal characters within species 

(Niles, 1973). Extremes of weather may result in reduced fecundity 

rates (Schreiber and Schreiber, 1984), or heavy mortality rates of 
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birds (Boag and Grant, 1981; Johnston and Fleischer, 1981; Price 

et al., 1984). Severe weather outside of the breeding season can 

also produce significant changes in the distributions of size classes 

within bird populations through strong directional selection (Bumpus, 

1899; Boag and Grant, 1981; Johnston and Fleischer, 1981; Price 

et al., 1984). Extreme climatic conditions can also select for a 

refinement of bodily proportions in house sparrows, Passer domesticus, 

(Fleischer and Johnston, 1982). 

Most sand martin mortality occurs outside Britain (Mead, 1979). 

In 1984 the population of sand martins in the Stirling Region was 23% 

of its 1983 level, and the population crash was probably largely 

attributable to a severe drought in the winter quarters reducing food 

availability (section 2.4.2; Mead, 1984). 

The severe Sahel climate and possibly poor conditions of spring 

migration, seemingly resulted in heavy mortality of sand martins and 

also directional selection for reduced body size (Table 2.4). 

Natural selection often affects the sexes in different ways (Johnston 

and Fleischer, 1981; Clutton-Brock, Guinness and Albon, 1982; Price, 

1984a), and the same selective pressure may favour different morpho- 

logical extremes in young and adults (Boag and Grant, 1981; Price 

and Grant, 1984). In this study the direction of overwinter selection 

acting on keel-length appears similar for both sexes, probably because 

of their similar morphology, though no statistically significant 

differences were obtained with males because of a small sample size. 

Male and female Darwin's finches, Geospiza fortis, underwent 

directional selection towards large size over a drought in 1977 (Boag 

and Grant, 1981), and similar selection has occurred in subsequent 

dry spells (Price, et al., 1984). Large birds showed a higher 
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survival rate because they were able to crack the large and hard 

seeds that predominated in the drought with their large beaks (Grant, 

1981). Additional directional selection for large size in males 

may occur through sexual selection (Price, 1984a). Directional 

selection for large size can be balanced by selection for small size 

in females (Price, 1984a) and in juveniles (Price and Grant, 1984). 

Constraints on body size in one sex may affect selection on the 

size of the other sex. As yet, heritability estimates of body size 

in birds have been similar for males and females, at least in species 

with only slight sexual size dimorphism (Van Noordwijk et al, 1980; 

Price, 1984a). Females may mate selectively with large males, which 

may be high quality parents (Price, 1984b). However, smaller females 

may be at a metabolic advantage over larger females in having a 

reduced maintenance cost and being able to devote more resources to 

reproduction (Downhower, 1976), and small females may breed when 

younger (Price, 1984a). Hence a large male mating with a small 

female may pay the cost of fathering male offspring of reduced size 

and fitness than if size-assortative mating had occurred. The father 

would benefit however from rearing smaller females which may be at a 

selective advantage later in life over larger females resulting from 

size-assortative mating. 

Extremely cold winters accentuate sexual size dimorphism in 

house sparrows, resulting in males becoming significantly larger after 

winter, females significantly smaller, this probably reducing intra- 

specific aggression over scarce food (Johnston and Fleischer, 1981). 

Great Tits in Ghent became smaller in wing-length between 1962 and 

1975, probably because provision of nest boxes allowed the breeding 

of small birds which would be excluded from limited natural nest 

sites by larger individuals (Dhcndt, Eyckerman and Huble, 1979). 
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It is easy to understand how large size could be selected for 

during food shortages if competition for food is intense and large 

birds are either more adept at foraging on scarce food (Grant, 1981), 

or if large birds are dominant to small birds and can exclude them 

from defendable food resources (Garnett, 1981). Why should small 

body size be selected for in sand martins during presumed food 

shortages however? 

Outside of the breeding season, sand martins feed on aerial 

insects in Africa (Fry, Ash and Ferguson-Lees, 1970; Waugh, 1978). 

These are likely to be distributed in an unpredictable manner 

temporally and spatially, and will not be economically defendable, 

and hence there are likely to be few opportunities for large birds 

to exclude smaller individuals from food supplies. If martins with 

long keels also had long bills, they may be able to eat a greater 

variety of prey sizes than shorter billed individuals, as found in 

robins, Erithacus rubecula, (Herrera, 1978), so there may be some 

advantage of being large when food is scarce. 

Selection for small body size is also likely to be influenced by 

the relationship of energy storage and expenditure to body size. 

Benefits of small body size may be associated with a reduced total 

energy expenditure (hence food requirements) compared with large 

birds (however, see Bryant and Westerterp, 1982,1983b, for exception), 

and reduced flight costs through being light (Pennycuick, 1969, 

1975). The benefits of being large are probably associated with an 

increased digestive capacity, lipid storage capacity (Schaffer and 

Elson, 1975), and a greater flight economy (Bryant and Westerterp, 

1982). 

The energetic costs of flight (Schmidt-Nielsen, 1972), and 
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existence energy (Kendeigh, 1970) bear an increasing allometric 

relationship with increasing body mass (related to size), while 

digestive capacity and lipid reserves (Schaffer and Elson, 1975) 

increase almost linearly on body mass increases. Hence the total 

costs of being large may increase more rapidly than the benefits 

when food is scarce, and when there are no behavioural advantages in 

being big. Small birds may thus be able to replenish reserves 

faster if food becomes available (Downhower, 1976). Small male 

red-winged blackbirds, Agelaius phoeniceus, for example have larger 

energy reserves in proportion to their size than do large males 

(Searpy, 1979). Horned larks, Eremophila alpestris, were smaller in 

areas of low productivity, though Niles (1973) interpreted this as an 

adaptation to the birds' heat budgets rather than using resource 

balance arguments. 

If small body size is selected for in severe conditions outside 

the breeding season, what are the advantages of being large? Large 

males may be favoured by sexual selection (Searcy, 1979; Price, 1984a), 

and large male house martins have a higher lifetime reproductive 

success than smaller birds (Bryant, in prep. ). Moreover, reproduc- 

tion output per season is greater in large females than in smaller 

birds, probably because of improved flight efficiency in large 

individuals (Bryant and Westerterp, 1982), though a high reproductive 

output is counter selected to some extent by a greater reproductive 

cost of increased mortality rates in females rearing two broods per 

season (Bryant, 1979). Body size in hirundines may be subjected to 

normalising selection in both males and females, with different costs 

attributable to being large and small over different stages of the 

annual cycle. Hence there are probably advantages to being big 

during the breeding season, and although small females may pay smaller 
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mortality costs of reproduction overwinter than larger females, 

potential benefits may be with smaller birds of each sex in severe 

climatic conditions outside the breeding season. 

Similar directions of change occurred in house martin morphology 

to those observed in sand martins over the same period in this study 

(D. M. Bryant, pers. comm. ). Since body mass in hirundines is 

correlated with body size (section 2.3.5, Chapters7,8), masses 

inferred as being optimal (Chapters 7,8) in a breeding population 

will be constrained by body size variation within the population, 

which in turn will be influenced by selective pressures outside the 

breeding season. 

i 



CHAPTER 3 
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3. RESOURCES AVAILABLE FOR BREEDING HIRUNDINES 

3.1 INTRODUCTION 

During the breeding season adult birds must decide about how 

much food and foraging time they allocate to themselves relative to 

allocation for reproductive activities. Parent: offspring resource 

allocation is likely to be affected by changes in environmental 

conditions or food availability. Environmental conditions have been 

shown to influence adult maintenance behaviours and brood provisioning 

rates in gray cat birds Dumetella carolinensis (Johnson and Best, 1982), 

and bobolinks Dolichonyx oryzivorus (Wittenberger, 1982). 

If food becomes scarce during the breeding period, for example 

when invertebrate prey abundance is reduced by cold temperatures, 

parents may spend relatively more time self-feeding to maintain their 

body condition than in times of prey abundance. Parents are likely 

to rank their interests above those of their offspring since brood 

survival is ultimately dependent on parental care, and fitness is 

likely to be greater among individuals surviving for more than one 

breeding season. 

British hirundines feed solely on insects (Bryant, 1975b; Waugh, 

1978; Turner, 1980), whose abundance is greatly influenced by 

prevailing weather conditions (Williams, 1961; Johnson, 1969; 

Bryant, 1975b). Previous work on aerial insect abundance in the 

Stirling areahas been reported by Waugh (1978), and Turner (1980). 

Aerial insect abundance affects nestling growth in house martins 

(Bryant, 1975b), and breeding adults are heavier when insect numbers 

are high (Bryant, 1979). Previous studies have investigated the 

effects of food availability on brood growth or adult condition in 
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isolation however, and a detailed knowledge of resource availability 

would obviously be of importance in a study of concurrent parent: 

offspring resource allocation in aerial feeding birds, the specific 

objective of this project. In this chapter some factors influencing 

the abundance of aerial insects in the study area are described and 

some implications of variation in food supply for feeding ecology, 

body condition, and the breeding biology of hirundines are discussed. 

3.2 MATERIALS AND METHODS 

Resources available for breeding hirundines were sampled by two 

methods: a suction trap at Stirling University campus, and by hand- 

net sampling in areas where breeding swallows were feeding. 

The suction trap 

The suction trap sampled aerial insects at a height of 12.2m and 

was situated in the grounds of Stirling University, 3-8 km from the 

swallow nest sites studied, and 8 km from the sand martin study colony. 

The trap samples air vertically downwards to avoid directional 

effects, and samples through 1 mm mesh gauze at a constant rate over 

the day. Samples are taken from a randomly dispersed aerial insect 

population, and the trap is non-selective with regard to insect size, 

and is neutral in attraction (Johnson, 1950; Taylor, 1962; Taylor and 

Palmer, 1972; Bryant, 1973). Massive insects not normally eatern by 

hirundines (for example bumble-bees Bombus spp) were excluded from 

the suction trap catches. 

Samples were removed from the suction trap at 10.00h daily, the 

contents stored in 10: 1 methanol: glycerol solution, and the volume of 

the catch was estimated. For analysis volumes were transformed to 

log10, since house martin breeding biology is most closely related 
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to the logarithm of insect abundance as measured by a suction trap 

(Bryant, 1973). Hence suction trap catch data is presented as log10 

(volume (cm3) + 1), abbreviated to log (v + 1). 

The suction trap catches probably give a reliable estimate of 

the quantity of resources available to breeding sand martins, which 

often forage at about trap height (Waugh, 1978). Since the swallow, 

and in poor conditions the sand martin, commonly feed closer to the 

ground than the level sampled by the suction trap (Waugh, 1978), an 

alternative method of insect capture was also employed, namely hand- 

net sampling. 

Hand-net sampling 

A 'butterfly' net with mesh of less than 1 mm diameter was used 

to sample insects by sweep netting in areas. where. swallows were 

feeding. Three arable farmland sites were sampled daily on the Carse 

of Lecropt (G. R. NS 770970) in May-September 1982 and 1983, and in 

June and July 1984. One hundred sweeps were made at 0.3-2m at each 

site, this being the most frequent feeding height for swallows 

(Waugh, 1978). Most samples were taken between 13.00h and 16.00h, 

a time when many larger Brachyceran and Cyclorrhapan Diptera have 

their main flight periods (Lewis and Taylor, 1965). 

The captured insects were killed in a killing jar by ethyl 

acetate or chloroform, and were deep frozen until analysis. Each 

site's sample was freeze-dried for a week, weighed by a four-figure 

electronic balance, and insects then counted. The number of large 

items (> 1.5 mg dry mass) in the samples were also ranked, since these 

are preferred prey items of swallows (Waugh, 1978; Turner, 1980). 

The mean values of biomass and numbers from the three sites were used 

in analysis. 
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" From the hand-net samples, Diptera, small Hymenoptera, Ephemeroptera, 

Neuroptera, Trichoptera, and small Lepidoptera were retained. 

Excluded insects were large bees and wasps, large Lepidoptera, 

flightless lepidopteran larvae and large Arachnida, and the infrequently 

flying Hemiptera and Coleoptera. Although the excluded invertebrates 

are occasionally eaten or collected by swallows, Turner. (1980) found 

that Diptera contributed 81.3% of the food items fed to first brood 

and 69.4% to second brood swallows, so the major prey items were 

probably accurately sampled. Hand-net sampling did involve striking 

the tops of vegetation, so not all insects captured were actually 

flying. Such a technique was necessary if a large sample of insects 

were to be obtained, and is likely to be representative of flying 

insects available since the hand-net samples correlate significantly 

with suction trap volumes (see Results). 

The two insect sampling methods employed each had its own merits 

and drawbacks. The suction trap caught insects more likely to be 

taken by sand martins, and sampled over a 24h period. Daytime 

catches overwhelm night catches in suction trap catches (Lewis and 

Taylor 1965), so suction trap volumes probably reliably reflected 

resources available for breeding hirundines over an entire day's 

foraging. The results from this technique may be useful in interpreting 

body mass changes of both sand martins and swallows, since the birds' 

body condition will probably reflect relatively long term changes in 

food abundance. 

Hand-net sampling catches the larger, low flying insects more 

likely to be eaten by swallows, and sampling also occurs at actual 

feeding stations. The short term nature of hand-net sampling renders 

the technique very sensitive to sudden meteorological changes. Such 
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effects may be a drawback in interpreting daily body mass changes, 

but may be advantageous in studying food delivery rates and foraging 

ecology which would be most dependent on immediate conditions in the 

sampling area. 

Meteorological data collection was as described in Chapter 2. 

3.3 RESULTS 

3.3.1 Suction trap catches 

(a) Seasonal changes in suction trap catch volume 

Suction trap catches are shown for 1982 in Figure 3.1, and for 

i 

1983 in Figure 3.2. In both years catches were low in April, with 

largest catches between May and September inclusive. The catches 

varied greatly from day to day, emphasising the unpredictable nature 

of aerial insects as a food source for hirundines. The patterns of 

insect abundance show some major differences between the two years, 

suggesting that aerial insects may be unpredictable in abundance from 

year to year, besides being unpredictable on a daily basis. This is 

further discussed in Section 3.3.3. For example, in 1982 aerial 

insect catches fell to very low levels in June, during a spell of 

unseasonably cold and wet weather. However, catches from July to 

September 1982 are generally higher than those for the same period in 

1983. 

(b) Factors influencing suction trap catch volume 

The correlation matrices for environmental factors and suction 

trap catch volume for 1982 and 1983 are given in Table 3.1. In both 

years, the catch was positively correlated with date and maximal daily 

temperature. Maximal daily temperatures were included in the analyses 

because swallow weighings were performed during afternoons, when daily 
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Seasonal variation in food abundance in 1982 

as shown by the 12.2m suction trap. 
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Seasonal variation in food abundance in 1983 as 

shown by the 12.2m suction trap. 



54 

Table 3.1 

Correlation matrices of environmental factors and suction trap 

catch, log(volume + 1) .. 

(a) 1982 :n= 130 sampling days, April 9th - September 16th 

(b) 1983 :n= 175 sampling days, March 29th - September 20th 

For all correlation, matrices, tabulated values are Pearson 

product-moment correlation coefficients, r. 

*** P<0.001 
** 2P<0.01 
*P<0.05 
ns : not statistically significant, P>0.05 

(a) 

Log (v + 1) 
suction trap catch 

Date 
(days after April 8th) 

Maximal Daily 
Temperature, °C 
(tmax) 

Windspeed, knots 

(b) 

Log Date tmax 
(v + 1) 

Windspeed Rainfall, 
mm 

0.60 0.59 -0.14 0.06 
*** *** ns ns 

0.25 0.20 0.22 
** * * 

-0.27 -0.06 
ns 

0.01 
ns 

Log Date tmax Windspeed Rainfall 
(v + 1) 

Log (v + 1) 0.54 0.63 -0.19 -0.19 

Date 0.68 -0.02 0.06 
*** ns ns 

tmax -0.19 -0.25 
* *** 

Windspeed 0.07 
ns 
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temperature was generally highest. However, in both 1982 and 1983 

maximal daily temperature (t max) and date were also positively 

correlated, so stepdown multiple regression analyses were performed 

to examine whether season and temperature contributed independently 

to variation in trap volume. In 1983, log (v + 1) was also signifi- 

cantly correlated with both windspeed and rainfall. 

The results of the multiple regression analyses are given in 

Table 3.2, and the results of the abbreviated analyses will be 

described here. Date and maximal daily temperature each exerted 

influence on log (v + 1) for both 1982 and 1983. Hence, during the 

study period, aerial insects became more abundant later in the season, 

and were more abundant at higher temperatures. Although insects 

tended to become less abundant or windspeed and rainfall increased, 

neither of these variables significantly contributed to the variance 

in aerial insect abundance in the regression analyses. 

3.3.2 Hand-net catches 

(a) A comparison of sampling sites 4 

In Table 3.3 correlated matrices are presented for insect biomass 

at the three sites sampled. In all cases catches between sites were 

significantly positively correlated except sites A and C in 1982. 

Hence different factors may influence catches at different sites, 

and 100 sweeps in only one site may not give a realistic impression 

of overall prey availability. 

Lewis (1965) and Lewis and Stephenson (1966) showed that flying 

insects tended to congregate behind shelter belts, such as hedgerows, 

during strong winds, and swallows selectively exploit such sites on 

windy days (Waugh, 1978). One of the sampling sites (site C) was 

adjacent to a hedgerow, whilst B and C were exposed. Hence biases 
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Table 3.3 

Correlation matrices of hand-net biomass from the three 

sampling sites. 

(a) 1982, n= 81 sampling sessions 

(b) 1983, n= 101 sampling sessions. 

Tabulated values are correlation coefficients, r. 

ns : not significant 
** :P<0.01 
***: P<0.001 

(a) Site A Site B 

Site B 0.32** 

Site C 0.14 ns 0.34** 

(b) Site A Site B 

Site B 0.40*** 

Site C 0.40*** 0.39*** 
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associated with sampling on windy days may have been reduced to some 

extent by including a sheltered site in the sampling programme. 

(b) Seasonal changes in hand-net catches 

Hand-net catches for the summers of 1982 and 1983 are plotted as 

a function of season in Figures 3.3 and 3.4 respectively. Plots 

are presented for hand-net biomass (mg dry mass), number of items in 

the catch, and the number of large items (> 1.5 mg dry mass) sampled. 

Little sampling occurred in July 1982, so seasonal trends for 

that year are difficult to elucidate. Nevertheless, biomass, 

number of items, and number of large items all follow similar patterns. 

In 1983 a distinct pattern for all parameters is apparent (Figure 

3.4). Each parameter takes low values for early in the season (late 

May/early June) with a progressive increase to highest values in 

mid-season, early July. Thereafter declines in insect abundance 

occur during late July/August to low values in September. 

The pattern of insect abundance during 1983 and illustrated in 

Figure 3.4, is clearly different from aerial insect abundance during 

the same year as measured by the suction trap (Figure 3.2), which 

rises to a May-September plateau, although the peak in hand-net catch 

biomass would be reduced if the data was transformed logarithmically, 

as were the suction trap data. 

(c) Factors influencing hand-net catches 

Hand-net catches were analysed according to dry mass biomass, 

number of items, and the number of large items in the catch. 

Environmental factors influencing these parameters will now be 

described. Correlation matrices of environmental factors and hand- 

net catch parameters in 1982 and 1983 are presented in Table 3.4, and 

stepdown regression analyses for all parameters in Tables 3.5-3.7. 
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Seasonal variation in food abundance in 1982 

as measured by hand-net sampling. 
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(b) Number of items 

(c) Number of large items (> 1.5mg dry mass). 
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(i) Factors influencing hand-net catch biomass 

For 1982 hand-net biomass was significantly positively correlated 

with date. For the larger sample of 1983, date had no significant 

effect, but biomass was significantly positively correlated with 

maximal daily temperature, and significantly negatively correlated 

with windspeed and rainfall. 

A stepdown multiple regression analysis of hand-net catch bio- 

mass for each of the two seasons is given in Table 3.5. For the 

abbreviated analysis in 1982, only date contributed significantly to 

the biomass variance: biomass became heavier later in the season. 

Maximal daily temperature entered as a significant variable in the 

full analysis with greater biomass occurring at higher temperatures, 

but was not significant in the abbreviated analysis. 

In 1983 the seasonal trend was reversed, and biomass became 

smaller later in the season, though, as Figure 3.4 shows, biomass and 

season were not related in a simple linear fashion, rather biomass 

peaked during mid-season. For the abbreviated analysis biomass was 

greater at higher maximal daily temperatures in 1983. 

(ii) Factors influencing the number of items in hand-net catches 

For 1982 no measured environmental variables correlated 

significantly with the number of items in hand-net catches (Table 3.4). 

In 1983, the number of items was significantly positively correlated 

with maximal daily temperature, and significantly negatively 

correlated with windspeed and rainfall. 

A stepdown regression analysis of number of items in hand-net 

catches is presented in Table 3.6. No independent variables entered 

the analysis significantly in 1982. Fewer items were present later 
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in the season in 1983, and more items occurred at higher maximal 

daily temperatures. 

(iii) Factors influencing the number of large items in hand-net 
catches 

In 1982 the number of large items in hand-net catches was 

positively correlated with date. In 1983 number of large items was 

positively correlated with maximal daily temperature, and negatively 

correlated with rainfall (Table 3.4). Stepdown regression analyses 

of the number of large items in hand-net catches in 1982 and 1983 

are presented in Table 3.7. 

In 1982 more large items were present later in the season. In 

1983 fewer large items were present as the season progressed, and more 

large items were captured at higher maximal daily temperatures. 

(iv) Mean insect mass in hand-net samples 

A correlation matrix of environmental parameters and mean insect 

mass in the hand-net samples (mg dry mass) for 1982 and 1983 is given 

in Table 3.8. Mean insect mass was significantly positively 

correlated with date and windspeed in 1982, significantly positively 

correlated with date and maximal daily temperature and negatively 

correlated with rainfall in 1983. 

In the stepdown regression analysis (Table 3.9), date had a 

significant positive influence on mean insect mass in both years, 

and maximal daily temperature had a significant positive effect in 

1983. 
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Table 3.8 

Correlation matrices of environmental factors and mean insect 

dry mass (mg) in hand-net catches 

(a) 1982, n= 49 sampling days 

(b) 1983, n= 95 sampling days. 

Tabulated values are correlation coefficients, r. 

ns : not significant 
*: P<0.05 
** :P<0.001 
***: P<0.001 

Date Maximal daily Windspeed Rainfall 
days after Temperature knots mm 
June 1st °C 

1982 Mean insect mass, 
mg dry mass 0.43** -0.16 ns 0.29* 0.01 ns 

1983 Mean insect mass, 
mg dry mass 0.31** 0.41*** -0.11 ns -0.26* 
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3.3.3 Differences in insect abundance between years 

(a) Suction trap catches 

Suction trap catches (log (v + 1)) were averaged for each month 

and plotted in Figure 3.5. Aerial insect abundance was compared 

across the same months of each year by t-tests. 

Aerial insect abundance was significantly higher in each month 

sampled during 1982 than during 1983, except for June where no 

significant difference occurred between the years. 

June 1982 was an unseasonably cold and wet month. Hence even 

over the two years of the study, aerial insect abundance was found to 

be higher for five out of six months in one summer than in another. 

(b) Hand-net catches 

An overall comparison of hand-net catches in 1982 and 1983 was 

not'considered*valid because of the sampling gap in 1982. Hence 

parameters for the two years were compared for the months of June and 

August, when samples were taken for most days during each year. The 

results are presented in Table 3.10. 

There was no significant difference for means of June biomass, 

August biomass, number of items in June, number of items in August, 

and number of large items in June between 1982 and 1983. However, 

significantly more large items were present in the hand-net sample for 

August 1982 compared with 1983, although. mean prey mass was signi- 

ficantly higher in June and August 1983 compared with 1982. 

3.3.4 A comparison of suction trap and hand-net catches 

The seasonal trend in aerial insect abundance during 1983 (Figure 

3.2) followed a different pattern from insect abundance determined by 

hand-net"`sampling during the same period (Figure 3.4). Suction trap 
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1.0 

05 

0 
April May June July August S 

Figure 3.5 

1982 

1983 

Aerial insect abundance as measured by the 12.2m 

suction trap during 1982 and 1983. Values plotted are 

means for each month + s. d. Asterisks denoted the 

significance levels of t-tests across months between 

1982 and 1982 (ns: not significant; **: P<0.01; 

***: P<0.001). 1982 values are represented by 

closed squares, 1983 values by open circles. 

Sampling dates were 9th April - 16th September 1982, 

and 1st April - 20th September 1983. 

** ns 



68 

Table 3.10 

A comparison of hand-net catch parameters in 1982 and 1983 

Note: 1A large item is one of > 1.5 mg dry mass. 

Parameter Mean s. d. nt significance 

Biomass (mg dry mass) 
June 1982 29.07 12.99 22 

1983 32.28 18.32 27 
0.72 n. s. 

August 1982 50.44 19.99 18 
0 34 n s 1983 52.88 26.74 . . . 25 

Number of items 
June 1982 15.83 8.20 22 

1983 12.91 6.26 27 
1.38 n. s. 

August 1982 19.39 7.91 18 1 53 n s 1983 15.85. 6.82 25 . . . 

Number of large itemsl 
June 1982 5.93 2.54 22 0.46 n. s. 1983 5.48 4.21 27 

August 1982 9.69 3.77 18 
4.16 *** p<0.001 

1983 5.07 3.33 25 

Mean insect mass, 
(mg dry mass) 

June 1982 1.93 0.50 22 
3.08 P<0.01** 1983 2.50 0.75 27 

August 1982 2.65 0.71 14 
2.76 ** p<0.01 1983 3.52 1.34 25 
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catches tended to stabilise at a high level between May and mid- 

September, while the hand-net catches peaked during mid-July (although 

suction trap data were transformed, hand-net data were not - see section 

3.3.2). Nevertheless, log (v+ 1) and the log of hand-net biomass 

for afternoon samples on the same day were significantly positively 

correlated in both 1982 and 1983 (Figure 3.6). 

Both suction trap and hand-net catches tended to be greater as 

maximal daily temperature increased, and this may be partly responsible 

for the correlation. Both methods yielded larger catches as the 

season progressed in 1982 (Tables 3.2 - 3.5) probably explaining why 

the 1982 correlation coefficient is higher than the 1983 value. In 

1983 suction trap catches tended to remain relatively stable from June 

to September, while hand-net catches decreased after mid-July. 

A few points on each graph in Figure 3.6 deviate substantially 

from the line of best fit (for example the three points at the top- 

left of Figure 3.6a). The hand-net catches were made over a short 

time period of about twenty minutes, while the suction trap sampled 

over twenty-four hours. Hence the hand-net catches may be strongly 

influenced by short-term meteorological changes which may be 

insignificant over the course of the whole day. 

Moreover aerial insects sampled by the suction trap may respond 

to high temperatures in a different manner. from lower-flying forms. 

On very warm days insects may remain abundant at low levels, but those 

individuals normally sampled by the suction trap may drift to high 

altitudes. On very cold days small insects may not rise to the level 

of the suction trap, whilst hand-net sampling, because of its reliance 

on striking the tips of vegetation, may have sampled some sluggish 

insects not available to feeding swallows. 
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Comparison of afternoon hand-net catches and 

suction trap catches. 

(a) 1982 :r=0.61, n= 54, P<0.001. 

(b) 1983 r=0.21, n= 95, P<0.05. 
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3.3.5 A summary of factors influencing the resources available 
for breeding hirundines 

Both suction trap volumes and hand-net catches differed in their 

response to environmental conditions between 1982 and 1983, and it 

would therefore be difficult to generalise about factors influencing 

insect availability. 

Nevertheless, suction trap catches in both years were greater 

later in the season and at higher maximal daily temperatures (Tables 

3.1,3.2). Hand-net catches were influenced by environmental 

conditions in a less consistent manner between years than were the 

suction trap catches. Seasonal effects may have been different in 

the two years of study (Figures 3.3,3.4). However, increasing 

maximal daily temperature tended to increase the biomass of, the 

number of items in, and number of large items in the catches, while 

increasing windspeed and rainfall, tended to reduce these parameters 

(Tables 3.4 to 3.7). Mean available insect mass in the hand-net 

catches tended to increase over the season in both 1982 and 1983 

(Tables 3.8,3.9). 

3.4 DISCUSSION 

Both suction trap (Figures 3.1,3.2,3.5) and hand-net catches 

(Figures 3.3,3.4, Table 3.10) show considerable variation from day 

to day and between the two years of the study. Hence both martins 

and swallows are likely to encounter an unpredictable food supply 

both in the long-term and in the short-term. Williams (1962) found 

that night-flying Diptera catches in suction traps were influenced 

by minimal temperature and windspeed, and that annual catches were 

influenced by long-term variation in minimal temperature and rainfall 

over the previous three months. 
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Martins are likely to encounter more unpredictable feeding 

conditions than swallows since insects sampled at the height of the 

suction trap are more sensitive to weather changes than lower-flying 

insects sampled by the hand-net, and aerial insect density is generally 

higher closer to the ground (Waugh, 1978). 

Although both methods of insect sampling probably reliably quantify 

the amount of insect prey available to breeding hirundines, prey 

nutrient content may sometimes be more important than overall prey 

abundance at certain stages of the nesting cycle. For example, 

specific amino-acids (Jones and Ward, 1976) or calcium (Jones, 1976; 

Schifferli, 1976) may be important constituents of a female bird's 

diet during the laying period, and hirundines may actively search for 

prey containing large quantities of such nutrients for egg formation. 

Female pheasants, Phasianus colchicus, select calcareous grit for 

ingestion during laying (Kopischke, 1966), and North American barn 

swallows supply calcium rich grit to young nestlings (Barrentine, 1980). 

Below, two aspects of the nature of the unpredictable food supply 

for swallows and martins are discussed. Firstly some implications of 

low levels of food abundance on hirundine feeding behaviour and body 

condition are covered. Secondly the implications of short and long- 

term fluctuations in food supply for hirundine breeding biology is 

investigated. 

3.4.1 The implications of low levels of food abundance on 
hirundine feeding behaviour and body condition 

In poor weather, when aerial insects are scarce, swallows and 

martins modify their feeding behaviour to exploit profitable food 

patches. On days of low food abundance martins tend to feed at lower 

levels where aerial insect density may be higher, and hirundines 
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frequently feed in areas where most insects still fly in poor weather, 

for example, behind shelter belts, over fresh water, or near to 

domestic stock, where sluggish insects may get disturbed (Waugh, 1978). 

During poor weather the rates of energy gain by hirundines are 

reduced (Turner, 1982a), so several days of low insect availability 

would be expected to reduce adult body reserves, and maybe jeopardise 

clutch or brood survival. This problem is discussed in more detail 

in Chapters 7 and 8 for incubating and nestling rearing swallows. 

There are several lines of evidence showing that prolonged bad weather 

severely affects hirundine fitness through affecting brood or adult 

condition and survival. 

Body mass of incubating and nestling-feeding swallows is positively 

correlated with temperature and insect abundance, birds becoming 

lighter at low temperatures when insects are scarce (Chapter 7). Low 

body mass in incubation may lead to clutch desertion, and indeed, three 

swallow clutches (under 5% of total clutches recorded) were deserted 

in bad weather during the study. 

The level of insect abundance also affects the timing of laying 

in British hirundines (Bryant, 1975b; Turner, 1982a), and house martins 

may suspend or interrupt laying in poor weather (Bryant, 1979). If 

bad weather persists, house martins and swallows sometimes lay fewer 

eggs than usual, and such small clutches can later be deserted (D. M. 

Bryant, pers. comm., pers. obs. ). Most hirundine mortality in the 

breeding season is associated with poor weather (Rheinwald, 1970; 

Bryant, 1975b, 1979), and a female swallow found dead with an incomplete 

clutch during the study was discovered during a cold spell when a 

nearby pair deserted a newly hatched brood. Although most mortality 

of sand martins nesting in Britain occurs outside of the breeding 
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season, the highest mortality of summering birds appears to be in 

spring and early summer (Mead, 1979), before aerial insect levels 

have reached relatively high, stable levels. Early arriving sand 

martins may have large fat reserves to buffer against bad weather 

(Chapter 5), but the birds run a high risk of encountering food 

shortages in the early season (Turner, 1982a). 

Hence low levels of food abundance may influence hirundine 

fitness through reducing fecundity (time costs of suspended layings, 

clutch desertions, brood deaths), or by directly affecting adult 

survival. 

3.4.2 The implications of short and long term fluctuations in 

food availability for hirundine breeding biology 

If available resources vary from day to day, it will pay for 

adult hirundines to carry substantial fat reserves to buffer against 

periods of food shortage. However, carrying large quantities of fat 

will increase the flight costs of birds by increasing their wing 

loadings, so the insurance benefits of fat reserves must be weighed 

against the energetic costs of carrying the fat (Chapter 8). 

Chicks will also be expected to show adaptations to overcome 

temporary food shortages. Another aerial insectivore, the swift, 

pus apus, which forages at greater heights than swallows and martins, 

and is hence subjected to an even more unpredictable food supply, 

has chicks which can reduce their metabolic rate during food shortages, 

and become torpid (Koskimies, 1950). The amount of fat carried by 

chicks of British hirundines and the swift increases with parental 

foraging height (Bryant and Hails, 1983). 

The annual fluctuations in aerial insect abundance will also have 

implications for resource allocation in aerial insectivores. If 
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year to year environmental conditions are unpredictable at the time of 

reproduction, making too early or too large a reproductive effort may 

result in a complete failure, whereas laying a smaller clutch later 

on would result in some young being produced. Such restrained 

reproductive effort, or hedging bets in the face of uncertainty, has 

been expounded by Cohen (1967), Boer (1968), and Mountford (1973), 

and may explain why tree swallows given enlarged broods do not suffer 

an increased mortality cost (De Steven, 1980). 



CHAPTER -4 
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4. PHYSIOLOGICAL ASPECTS OF SHORT-TERM 

BODY MASS CHANGES IN BIRDS 

4.1 INTRODUCTION 

Wild birds normally undergo characteristic changes in body mass 

over the course of the annual cycle. Published studies include those 

of Newton (1972) on bullfinches, Pyrhulla pyrhulla, Owen and Cook 

(1977) on mallards, Anas platyrhynchos, Coulson et al., (1983) on 

herring gulls, Larus argentatus, Wijnandts (1984) on long-eared owls, 

Asio otus, and the work of Newton, Marquiss and Village (1983) on 

sparrowhawks, Accipiter nisus. 

Breeding birds also tend to follow characteristic patterns of 

mass change (e. g. house martins (Bryant, 1975a), pied flycatchers 

(Silverin, 1981), house wrens, Troglodytes aedon, (Freed, 1981), 

kestrels (Village, 1983), and sparrowhawks (Newton et al., 1983). 

Long-term changes in body mass within individual birds during 

breeding mainly reflect changes in fat and protein reserves (Jones 

and Ward, 1976), Fogden and Fogden, 1979), and changes in the mass of 

reproductive structures (Petersen, 1955). Little work has been 

performed on how such coarse variation over the long-term relates to 

short-term variation caused by changes in rates of food consumption, 

defaecation, metabolic water loss, and gaseous exchange. if birds 

are to optimise their behaviour with respect to long-term interests of 

surviving and reproducing, they can be expected to make behavioural 

decisions over changes in their condition manifested by short-term 

body mass changes (Drent and Daan, 1980). Hence, a detailed knowledge 

of the nature and mechanisms of short-term body mass changes in birds 

may provide a useful background for interpreting behavioural decisions 

which may contribute towards a bird's fitness (Chapters 7,8,9). 
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The aim of this Chapter is to analyse the factors responsible 

for thort-term body mass changes in canaries, Serinus canarius, in 

laboratory conditions, and to provide a scale for the relative 

importance of the pathways of mass intake and output. A model of 

diurnal mass changes in canaries is developed, and some comparative 

laboratory work on short-term mass changes in sand martins is also 

presented. 

The understanding of short-term mass changes developed from 

laboratory studies is applied to the study of a free-living, breeding 

bird, the swallow. A knowledge of the factors responsible for short- 

term mass changes allows energy balance data to be collected from 

breeding birds by the use of precision automated nest balances. 

4.2 MATERIALS AND METHODS 

4.2.1 Laboratory studies 

(a) The balances 

Two Mettler PK2000 electronic balances were used in the study. 

The balances have an accuracy of + O. Olg and a capacity of 2000g. 

They incorporate an animal weighing function which averages weighings 

taken over an adjustable interval of 0.8 to 6 seconds, minimising mass 

fluctuations caused by movements. In all cases the balances were 

operated from a mains supply. 

The accuracy and consistency of the balances was tested in the 

laboratory. Twenty swallow carcases were individually thrown onto 

a pan placed on a Mettler balance, and weighings were recorded after 

five seconds, the minimum interval normally used in the field and 

laboratory. The same carcases were then weighed on an Oertling 

electronic balance accurate to 0.0001g, underneath a draught shield. 
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The Mettler weighings differed on average by 0.0076 + 0.00005g from 

the Oertling weighings, despite being made only 5s after being thrown 

onto the Mettler pan. 

Several accessories were used with the balances. A manual 

control button prompted the animal weighing function from a distance. 

This was later incorporated into an automatic timer built by Stirling 

University Shared Technical Services, allowing automatic remote 

prompting of the animal weighing function on a timescale ranging from 

five seconds to ten minutes. A remote taring foot pedal was also 

used. Data were collected on Mettler GA40 Thermal Printers. The 

apparatus is illustrated in Plate 4.1. 

(b) Laboratory studies of canaries 

Canaries were kept individually in a 3m3 aviary in a constant 

temperature room where temperature and photoperiod could be accurately 

controlled, and were trained to perch on a metal ring suspended from 

a Mettler balance. Photoperiod was kept constant at 12h light/12h 

dark throughout the study, and dark period temperature was always 10°C. 

Light period temperature was maintained at either 15°C or 30°C. 

Canary seed and water were supplied ad libitum. A total of seven 

different canaries were used in the laboratory studies. 

(c) Incubator studies 

Rate of mass loss was recorded for post-absorptive canaries and 

sand martins maintained at constant temperature in a darkened 

incubator. The configuration of the apparatus is illustrated in 

Figure 4.1. Birds were allowed to equilibrate for one hour, except 

at extreme temperatures where prolonged exposure may harm the birds. 

Hence at 0°C, and temperatures above 35°C, only 30 minutes equilibra- 

tion time was allowed. Rate of mass loss reached constant levels 



Plate 4.1 

Precision automated Mettler electronic balance 

(PK2000) and accessories used in the study. 

A: Mettler PK2000 electronic balance 

B: Mettler GA40 data printer 

C Remotieanimal weighing activation button 

D: Remote taring pedal 
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Apparatus for measuring mass loss of birds in 

laboratory conditions. 
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after 30 minutes for all temperatures considered.. Sand martins were 

brought to the laboratory after being captured at dawn, and were kept 

at room temperature until equilibration. 

(d) Field techniques 

Swallow nests were removed from beams in barn roofs, and placed 

on the balances during the incubation period. The apparatus was 

supported by planks, and the nests were attached to the balance pan 

by cementing them to hardboard platforms with evo-stick adhesive and 

moistened plaster of paris. Nests were chosen to be near to an 

electricity supply, to be sheltered from draughts, and to be observable 

from a concealed position. The configuration of the field apparatus 

is shown in Figure 4.2 and a nest balance is illustrated in operation 

in Plates 4.2 and 4.3. 

Nests were observed from a hide some 10 metres distant, and parent 

birds were colour marked and ringed when captured. Wing-length 

(maximum chord, measured to the nearest 0.5 mm), and keel-length 

(measured to the nearest 0.1 mm) were recorded. Birds were sexed by 

plumage and brood patch criteria (Svensson, 1975), and their fat 

reserves were quantified using a 12 point scoring system on fat 

deposits in the tracheal pit and on the bottom edge of the keel 

(modified from Bryant and Westerterp, 1983a, elaborated in Chapter 2). 

Only the female swallow has a well developed brood patch, and 

the female was the only sex seen to perform functional incubation 

during the study. However, barn swallows in North American often 

show functional incubation by the male (Ball, 1983a, b), and male 

swallows in the study area occasionally stood over the nests for 

several minutes (pers. obs. ). 
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Figure 4.2 
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Automated nest balance in position in the field. 



Plates 4.2 and 4.3 

Automated nest balances in operation in the field. 

Plate 4.2 

Female swallow feeding small chicks. 

Plate 4.3 

Brood of five c. 16 day old chicks awaiting feeding. 
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During the incubation and brooding phases of the nesting cycle, 

female swallows have a limited behavioural repertoire of nest 

attendance and foraging, though they may spend some time perching at 

high temperatures (pers. obs. ). Hence time budgets of birds during 

incubation were obtained from direct observation at nests, and from 

data collected by the automated timer, when incubation and flying 

were assumed to be the only activities performed by females. 

Observation periods lasted for at least one hour (range ih - 4h). 

The limited behavioural repertoire of swallows, their nesting in 

sheltered situations, their tolerance of disturbance, and their 

discrete nest cups make them amenable birds to study with nest 

balances. Because the birds deliver food to their nestlings in 

discrete boluses, and because swallow insect prey can readily be 

sampled (Chapter 3), precision nest balances can also give an insight 

into the birds' foraging behaviour over the breeding season (Chapter 

8). The accuracy of the balances allows data to be accumulated on 

short-term body mass changes of adults, changes in brood mass, and 

allows measurement of bolus masses delivered to and faecal masses 

removed from the chicks. 

Although adult masses were easily obtained when the chicks were 

young, because the adults tended to spend considerable time at the 

nest, body mass on later visits was difficult to monitor because food 

was often delivered to the brood fractionally before the parents 

landed. Adult masses were only recorded if two consecutive animal 

weighings within 0.02g of one another were obtained within 10s or if 

five consecutive masses within 0.02g of one another were recorded in 

10s when the animal weighing system was not in use. 
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Body mass of adult birds tends to increase over the course of a 

day, as the birds feed to accumulate reserves which are metabolised 

overnight (Clark, 1979, results this chapter). Hence weighings, and 

observations were made at a standardised time of day, between 14.00h 

and 16.00h B. S. T. 

Balances were placed underneath 17 different swallow nests for a 

total of 368 nest days. Of these, 104 days of incubation data were 

collected (86 control, 18 experimental days), 110 days of nestling 

feeding to control broods, and 154 days of nestling feeding to 

experimentally manipulated broods. 

4.3 THEORY AND RESULTS 

4.3.1 A model of canary body mass changes : theory 

Changes in a bird's body mass should be predictable if the routes 

and quantities of mass inputs and output are known. The theory is 

based on the Principle of the Conservation of Matter. 

1. Mass inputs are: 

(a) Food consumption (C) 

(b) Water ingestion (Dr) 

(c) Oxygen consumption (02) 

2. Mass outputs are: 

(a) Faecal and urinary output (FU) 

(b) Evaporative water loss (EWL) 

(c) Carbon dioxide output (CO 
2)' 

A schematic representation of the routes of mass input and output 

through a bird is presented in Figure 4.3. Oxygen is consumed for 

metabolism, and in birds the commonest metabolic substrate is fat, 

because of its high energy yield per unit mass (Pond, 1981). A high 



a) 

C 

Dr 

inputs 

b) 

body mass 

body mass 

FU 

CO2 

FU 

L 

Oz 

Figure 4.3 

Schematic representation of the routes of mass input 

and mass output through a bird. 

(a) during the active period 

(b) during roosting. 

inputs: C- food consumption 
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energy substrate with low mass is especially important for flying 

organisms, since increased body mass can result in increased power 

requirements for flight (Norberg, 1981). 

Carbon dioxide and water occur as by-products of fat metabolism, 

and evaporative water losses may occur either cutaneously or through 

the respiratory tract (Dawson, 1982). Water may be lost either 

evaporatively, or through faecal output, and most food consumed was 

assumed to be converted to fat rather than being catabolised directly 

(R. Q. assumed to be 0.73, section 4.3.2). 

If a bird has an R. Q. of 0.73, typical of fat metabolism, the 

mass of oxygen consumed is balanced by the mass of carbon dioxide 

produced, so 1(c) cancels out 2(c) in the list of mass inputs and 

outputs (Lasiewski, Acosta and Bernstein, 1966). 

Therefore, assuming a bird has an empty gut in the morning, as 

was found from sand martin carcass analysis, its body mass at roosting 

time (MR) should be predictable by equation 4(1). 

MR = (C + Dr) - (FU + EWL) 

Mass Inputs Mass Outputs 
Equation 4(Z) 

where C, Dr, FU and EWL are summed values for the active period. 

The factors in equation 4(1) were quantified as below: 

(a) Rate of mass increase while foraging 

This was determined by time budgeting the bird in the aviary, 

behaviours being monitored every minute. Hence the percentage time 

during each hour's observation period spent foraging (%F) could be 

calculated. The intake rate of husked seeds (I) was also recorded 

by direct observation. Since canaries husk seeds before eating them, 

the average mass of 100 husked seeds was determined as 0.0073g. 



82 

Thus hourly mass intake through foraging (Ch-1) could be calculated 

by equation 4(2). 

Ch 
1_ 

%F xIx0.0073g Equation 4(2) 

(b) Rate of mass increase through drinking 

This was not measured directly, but calculated as below. 

At 15°C a linear relationship between length of foraging period 

and mass increase while foraging was obtained for foraging periods 

when the bird was not seen to drink. A linear relationship with a 

steeper slope was obtained for length of foraging period, including 

drinking bouts plotted against mass increase through foraging and 

drinking. Regression lines for both relationshipb were highly 

significant (P < 0.01). EWL was assumed to be the same in foraging 

bouts of defined length regardless of whether or not drinking occurred. 

Mass increase through drinking was calculated as the difference 

between the predicted values from the two regression lines at the 

mean length of foraging period when drinking occurred. 

(c) Rate of mass decrease through defaecation was measured directly. 

Fortunately almost all defaecations occurred when canaries were 

perched. Mass loss through defaecation corresponded exactly with the 

mass of faeces voided for five droppings weighed within one minute of 

defaecating. Hourly defaecation rate (FUh-1) was calculated from 

recording the mean number of defaecations per hour, and multiplying 

this by mean faecal mass. Mean faecal mass was significantly heavier 

at 15°C than at 30°C (15°C : 0.0599 + 0.0188g, 30°C ; 0.0536 + 0.020g, 

n= 133, t=1.91, P<0.05) though there was no significant difference 

in defaecation rate between the two temperatures (3.75 + 1.18 h1 at 

15°C, '3.34 + h-1 at 30°C, P>0.1). 
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(d) Rate of mass loss through evaporative water loss was recorded 

directly when the birds were perched. Regression equations were 

calculated to obtain values of EWL mg. min-l. Evaporative water 

loss while foraging was calculated as (observed mass increase while 

foraging - predicted mass increase through seed intake) for foraging 

bouts which did not include drinking bouts or defaecations. 

4.3.2 Laboratory studies: short term body mass changes in 
canaries and sand martins 

(a) Diurnal body mass changes in canaries 

The pattern of diurnal body mass change for two canaries over 

three temperatures is shown in Figure 4.4. Body mass tends to 

increase relatively rapidly over the first four hours of the light 

period, thereafter the rate of increase is less rapid. The best fit 

line describing average diurnal mass changes at both 15°C and 30°C 

was one where both mass and time were transformed to loge. Equations 

are given in the legend to Figure 4.4. 

Figure 4.5 shows that this initial rapid increase in mass can be 

accounted for by an initially high rate of food consumption. At 

both 15°C and 30°C intake rates were highest during the first two 

hours of the light period. This was due to a higher seed intake rate 

rather than an increase in foraging time during the early period, 

since percentage of time spent foraging was not correlated with time 

of day (r = 0.15, n= 24, P>0.2). The mean percentage diurnal mass 

gain (+ sd) at 15°C was 5.45 + 2.20% (n = 8), and 5.49 + 0.32% 

(n = 3) at 30°C. 

(b) Short-term body mass changes in captive canaries 

Although the trend over a day is for birds to increase in mass, 

the overall net increase is composed of a series of short-term mass 

changes, as illustrated in Figure 4.6. Birds increase in mass 
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Diurnal body mass changes of two captive 
canaries. 
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lny = 3.04 + 0.06 lnx, F= 218, n= 36, P<0.001. 
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through feeding and drinking, lose mass at all times through evaporative 

water loss, and lose mass instantaneously through defaecating. 

(c) Overnight body mass changes in canaries 

Birds lose mass continuously while roosting through evaporative 

water loss, and may also defaecate. The mean overnight mass loss 

(+ s. d. ) of seven canaries at 100C was 5.02 + 1.82% (n = 29). Hence 

the birds lost almost as much mass roosting at 10°C as they gained 

during the date at 15°C or 30°C. 

The pattern of overnight mass loss for three birds is shown in 

Figure 4.7, and the mass losses while perched and through defaecating 

are illustrated. 

(d) Short-term continuous mass losses 

When canaries are perched, either during the light period or when 

roosting at night, they continuously lose mass. Such mass loss 

could either be metabolic, whereby the mass of carbon dioxide expired 

exceeds the mass of oxygen inspired, or could represent evaporative 

water loss, the water being a by-product of metabolism. Both rates 

of mass loss may be operative, and the observed mass loss a balance 

between the two processes. However, as mentioned in Section 4.3.1, 

if the canaries are functioning with a respiratory quotient of 0.73, 

the mass of carbon dioxide expired should balance the mass of oxygen 

inspired, and any mass loss should represent evaporative water loss. 

The mean R. Q. of canaries studied by Benedict and Fox (1933) was 

0.79 + 0.01 (n = 22), that of yellow buntings, Emberiza citrinella, 

fed on canary seed 0.69 (Wallgren, 1954). Hence an assumption of an 

R. Q. near to 0.73 in this study seems reasonable. 

To investigate the nature of continuous short-term mass losses 
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in more detail, post-absorptive canaries were placed in an incubator 

at constant temperature and rate of mass loss recorded, defaecations 

being excluded. Rate of mass loss as a function of temperature in 

canaries is illustrated in Figure 4.8. 

The plot follows a characteristic evaporative water loss/tempera- 

ture plot (Lasiewski et al., 1966; Moldenhauer, 1970), with little 

variation in the rate of mass loss below the thermoneutral zone. 

Above the thermoneutral zone, rate of mass loss increases rapidly 

with increasing temperature as the birds attempt to maintain body 

temperature by dissipating heat through cutaneous and respiratory 

water loss. 

A similar plot of rate of mass loss as a function of temperature 

is shown for post-absorptive sand martins in Figure 4.9, and again a 

characteristic evaporative water loss/temperature plot is generated, 

with a sharp rise in the rate of mass loss at temperatures above 

28-34°C. 

4 
(e) Continuous mass losses and activity 

In Figure 4.10(a), rate of mass loss is plotted for a range of 

activities in canaries. Roosting and post-absorptive data were 

collected in an incubator maintained at constant temperature, whilst 

the data for active, perched canaries comes from the aviary birds in 

a constant temperature room. 

A t-test matrix for mean rates of mass loss in canaries performing 

a range of'activities is presented in Table 4.1. All differences 

between means were significantly different, except for the difference 

between mean rates of mass loss while roosting at 10°C and 25°C, 

where the sample size was small. Mean rate of mass loss while 
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Table 4.1 

t-test matrix for mean rates of mass loss in canaries 

performing a range of activities (data from Fig. 4.10) 

Activity 
Roost Active, 
25°C post-absorptive 

10-25°C 

Active, 
perched 
15°C 

Active, 
perched 
30°C 

Roost, 10°C 1.6 ns 2.32* 23.8*** 6.8*** 

Roost, 25°C - 2.53* 30.9*** 8.9*** 

Active, post-absorptive 
10-25°C -- 15.8*** 10.9*** 

Active, perched 
15°C 

ns : not significant 

*: P<0.05 

** P<0.01 

*** :P<0.001 

4 

- 7.06*** 
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roosting was significantly lower than that of active birds. Data for 

post-absorptive birds was lumped for the temperature range 10°C-25°C, 

since no substantial influence of temperature on rate of mass loss was 

apparent over this portion of Figure 4.8. Rate of mass loss was on 

average significantly higher in active, perched canaries than in post- 

absorptive birds, and was significantly higher at 30°C than at 15°C, 

for active, perched canaries. 

In Figure 4.10(b) rate of mass loss is plotted for a range of 

activities in free-living swallows. Roosting incubation and daytime 

rate of mass loss in flight was calculated using the following 

assumptions: 

(a) Flight costs of swallows = 0.3063 kJ g-lh-1 (Turner, 1980). 

(b) The birds are flying with an R. Q. of 0.78, as observed in 

budgerigars, Melopsittacus undulatus, (Tucker, 1968). This 

R. Q. corresponds to a calorific equivalent of 20.08J/ml 02 

(Tucker, 1968). 

(c) Swallows lose 0.93 mg of water for every ml of 02 consumed, 

as occurs in flying budgerigars at 18=20°C. (Tucker, 1968). 

Through multiplication, these assumptions predict that swallows 

should lose 14.186 mg g-lh^1 of water during flight. The estimate 

is intermediate between directly measured values of 9.9 mg g lh 1 in 

pigeons Columba livia (Le Febvre 1964), and 20.4 mg g 
lh 1 in 

budgerigars flying at 19°C (Tucker, 1968). 

Swallows lose mass at a higher rate in daytime incubation than 

during nighttime incubation (t - 2.6, n= 119, P<0.05), and would be 

expected to lose mass more rapidly in flight than during incubation. 

The relatively small difference between rates of mass loss during 
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flight and while incubating is surprising, given that energy expendi- 

ture is considerably higher in flight than during incubation in 

swallows (Turner, 1980). However, more water may in practice be 

lost through defaecations in a continuously flying bird than in an 

incubating individual. 

4.3.3 A model of canary body mass changes : results 

The routes of mass intake and output for a canary maintained in 

an aviary at 15°C for a 12 hour light period are quantified in Table 

4.2, and plotted in Figure 4.11 as a function of time during the light 

period. EWL while perched was measured as 0.270 + 0.080 gh-1 (n = 65 

perching bouts). EWL while foraging was estimated as 0.410 + 0.170 

gh (n = 41 foraging bouts), and since on average 35.69% of the bird's 

time was spent perching, total EWL for a one-hour period could be 

calculated as 0.319 gh-l. 

The largest factor contributing to mass input was food consumption, 

whereas mass loss through evaporative water loss exceeded mass loss 

through defaecation in this instance. Total mass gain rate exceeded 

total mass loss rate, so the canary increased in body mass over the 

day. The predicted net rate of mass gain is shown by line (a) in 

Figure 4.11, whereas the actual mean rate of mass gain at 15°C for the 

study bird is depicted by line (b) on the graph. 

The predicted rate of mass gain corresponded closely with that 

observed (+ 0.057 gh-1 predicted, + 0.087 + 0.017 gh-1 (n = 52) 

observed), and the difference between predicted and observed was not 

statistically significant as judged by a normal approximation for the 

sign test (z = 0.35, n= 52, P>0.5). Hence it appears that 

quantification of consumption, drinking, defaecation, and evaporative 
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Table 4.2 

Short-term body mass changes of a canary kept at 15°C, 
in a 12 hour light period 

Mean 

MASS INTAKE 

(a) FORAGING 

(i) seed intake rite 
(n seeds min foraging) 0.020 

(ii) % time foraging 35.69 

(iii) mass intake of husked 
seeds (gh-1) 0.433 

(b) DRINKING 

Mass intake through drinking 
(gh-1) 0.168 

TOTAL MASS INTAKE (gh-1) 0.601 

MASS LOSS 

(a) DEFAECATIONS 

(i) number of defaecations 
(h-1) 3.750 

(ii) faecal mass (g) 0.060 

(iii) faecal output (gh-1) 0.225 

(b) EWL 

(i) EWL while perched 
(gh-1) 0.270 

(ii) EWL_wlhile foraging 
(gh ) 0.410 

(iii) EWL while perched for 
64.31% of time (gh-1) 0.173 

(iv) EWL while foraging for 
35.69% of time (gh-1) 0.146 

Total EWL (gh-l) 0.319 

TOTAL MASS LOSS (gh-1) 0.544 

PREDICTED MASS CHANGE (gh 1) 
+0.057 

ACTUAL MASS CHANGE (gh-1) +0.087 

Standard 
Deviation 

0.009 

13.37 

0.132 

1.175 

0.019 

0.063 

n 

157 rains 

257 mins 

24 hours 

16 
drinking bouts 

28 hours 

78 faeces 

24 hours 

65 
0.080 perching bouts 

41 
0.170 foraging bouts 

0.017 52 
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Predicted short term body mass changes of a canary at 
15°C over a twelve hour light period. 

a= predicated mass change; b= actual mass change. 

C= mass intake while foraging; Dr = water intake; 

FU = mass loss through defaecating; 

EWL - evaporative water loss. 

See text for explanation. 
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water loss can accurately predict the diurnal pattern of body mass 

changes of a canary in controlled laboratory conditions. 

4.3.4 Short-term body mass changes in breeding swallows 

Having established an understanding of the factors responsible 

for short-term body mass changes in birds under laboratory conditions, 

an investigation is now made into the factors responsible for 

instantaneous mass changes of free-living breeding swallows. 

(a) Diurnal body mass changes 

Diurnal body mass changes for three incubating female swallows 

are illustrated in Figure 4.12. The line of best fit to the data 

was a linear regression equation (P < 0.001), with birds on average 

increasing in mass by 0.113 gh-l. 

The mean percentage overnight mass loss + s. d. of seven roosting 

incubating female swallows was 4.97 + 2.05%. 

(b) Instantaneous body mass changes in swallows 

An understanding of the factors responsible for instantaneous 

body mass changes in breeding swallows would enable mass changes to be 

related to energy currency in some instances. For example, if 

swallows gain mass through feeding and the expected mass loss through 

flying can be calculated, mass gains can be transformed to energy 

values if the calorific value of prey is known, assuming no defaecations 

to have occurred. 

The short-term body mass changes associated with one typical 

incubating female swallow are shown in Figure 4.13. The mass changes 

can be interpreted as follows: 
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Figure 4.12 

Diurnal body mass changes of incubating female swallows. 

The regression equation is: 

y= 22.4 + 0.113x 

F= 14.0, n= 70, P<0.001. 
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(il mass loss while incubating. This will represent EWL whilst 

sitting on eggs. No defaecations occurred while birds were on 

the nest. Some mass may also be lost to parasites such as 

hippoboscids, but since only two hippoboscids were found on 

adult swallows during this study, such mass losses were assumed 

to be negligible. The mean rate of mass loss during 

incubation over the temperature range 12°C-28°C was -0.180 + 

0.115 mg g-1 min-1 (n = 111). 

(ii) mass changes while foraging. On feeding trips, swallows may 

gain mass by drinking or by consuming prey, and may lose mass 

through defaecating and from EWL while flying (EWLfly). The 

body mass dynamics of female swallows feeding between incubation 

bouts is therefore described by equation 4(3) 

Mass change while foraging = (C + DR) - (FU + EWLfly) 

Mass Mass outputs inputs 
Equation 4(3) 

No drinking was observed by breeding swallows at any of the study 

sites, although it is the case that migrating swallows may often be 

observed drinking. Insects present in the study area contained on 

average 72.94 + 2.30% water (Turner, 1980), so it is likely that the 

birds obtained all of their water requirements from their succulent 

insect prey. The average rate of mass change during inattentive 

periods was + 0.241 + 2.908 mg g-1 min-1 (n = 266), so incubating 

female swallows on average make a net mass gain while foraging between 

incubation bouts. 

Water loss while flying can be estimated as described in Section 

4.3.3. Hence if foraging trips where defaecations did not occur 
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could be identified, mass gains through foraging could be calculated 

and related to net energy gains. 

To minimise the chances of including defaecations on foraging 

trips when relating mass changes to energy gains, the following 

rationale was used unless otherwise stated. The mean inattentive 

period during incubation was 4.107 + 2.624 mins (n = 293) during which 

time a female swallow of average mass (22.48g) would be expected to 

lose 0.02g through water loss in flight using the assumptions developed 

in Section 4.3.3. Mean faecal mass was 0.3973 + =. 160lg (n = 9), 

and hence a defaecating swallow should lose 0.4173g at the mean 

inattentive period if no feeding occurred. To achieve a mass gain, 

prey equivalent to 3.1 times the mean load mass (0.137 + 0.006g, 

(Chapter 8)) delivered to chicks during the period of maximum food 

demand from the young would need to be consumed. Since foraging 

periods during food collection for young are on average 36 seconds 

shorter than those during incubation (Chapter 8), it was considered 

that incubating females could not collect sufficient food during the 

inattentive period to return to the nest with increased mass if they 

had defaecated. Hence inattentive periods whereby females increased 

in mass were considered not to have involved defaecations. 

4.4 DISCUSSION 

4.4.1 The use of precision automated balances in studies 
of avian body mass changes 

Most studies of mass changes in birds have involved frequent 

trapping of individuals throughout the annual or breeding cycle. 

Such studies have been performed on robins (Erithacus rubecula) (Lees, 

1949), bank swallows (Petersen, 1955), house martins (Bryant, 1975), 

and tawny owls (Strix aluco) (Hirons, Hardy and Stanley, 1984). 
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This method has a disadvantage in that frequent trapping may stress 

the birds, causing unnatural mass changes to occur. Trapping studies 

also tend to consider mean masses of different individuals at given 

times in the annual cycle, because of the problems involved in repeated 

trappings of the-same individual. Hence much variation about mean 

masses is often observed, and factors affecting body mass such as 

time of day, body size and bird age are rarely considered. 

If individual birds are weighed at habitual perches or at nests, 

these two problems may be overcome. Recent work with balances 

placed underneath or near to birds' nests includes studies on barnacle 

geese, Anser leucopsis, (Lessells, Sibly, Owen and Ellis, 1979), 

ospreys, Pandion haliaetus, (Poole, 1982), herring gulls, Larus 

argentatus, (Sibly and McCleery, 1983), starlings, Sturnus vulgaris, 

(Westerterp et al., 1983), red-throated bee-eaters, Merops bulocki; 

(Crick, 1984), hummingbirds, Selasphorus rufus, (Carpenter, Paton, 

and Hixon, 1983). In the last mentioned example, Mettler electronic 

balances were also used to determine daily mass changes of individually 

marked birds in the field. Weighing of birds at habitual perches or 

nests probably does not repeatedly' stress the birds being weighed 

and allows several weighings to be performed on the same individuals. 

If the balances are attached to a power source, and linked to a data 

logger or printer, continuous recording of adult mass changes can be 

made (e. g. Sibly and McCleery, 1983). 

Precision balances also allow accurate measurements of load 

masses to be made without collaring nestlings. Since collaring 

nestlings to prevent them swallowing food loads may affect begging 

behaviour and hence the parents' food delivery rates (Johnson, Best 

and Heagy, 1980), accurate balances can be useful in studies of 

foraging behaviour. 
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Measurements of evaporative water loss can also be made with 

precision balances. Indeed, Lasiewski et al., (1966) considered the 

direct weighing method of determining EWL to be advantageous over the 

conventional open flow technique, since measurements in the laboratory 

could be made under controlled conditions with temperatures and 

relative humidities varied independently. 

4.4.2 Short-term body mass changes in birds 

(a) Diurnal body mass changes 

(i) Canaries 

Body mass increased most rapidly during the early stages of the 

light period, and thereafter increased at a slower rate (Figure 4.4). 

Presumably either a satiation effect or a digestive bottleneck effect 

was operating (Kenward and Sibly, 1977). The canaries' guts were 

probably empty by morning (as seen in sand martins' carcasses taken 

at dawn), and were filled rapidly in the early morning when intake 

rates were high (Figure 4.5). The seed was presumably digested 

relatively slowly, and lack of space in the digestive system would have 

limited the rate of food intake during the afternoon and evening if a 

digestive bottleneck was operating. Rate of mass increase was also 

greatest during the first two and a half hours of light in captive 

white-throated sparrows, Zonotrichia albicollis, (Kontogiannis, 1967). 

If gut volume was optimised in relation to normal demands (Sibly, 

1981), reduced intake rates later in the day may occur because the 

canaries were satiated, and gut capacities may not necessarily be 

filled to capacity. 
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(ii) Swallows 

There was no evidence of a digestive bottleneck effect shaping 

the diurnal body mass changes of incubating female swallows (Figure 

4.12) since bddy mass increased in a linear fashion over the day. 

Insect. material is probably more easily digested than seeds, and 

passes through the gut more rapidly. The first identifiable prey 

remains in the faeces of a food-deprived swallow nestling appeared 

two hours after ingestion, with 90% of identifiable prey remains 

appearing in the faeces after 5-7 hours (Waugh, 1978). 

(b) Overnight body mass changes 

The rate of mass loss in roosting canaries was higher at 25°C 

than at 10°C, although the difference between means was not 

statistically significant. Kontogiannis (1967) studied overnight 

mass losses in captive white-throated sparrows at -5°C, 22°C and 30°C. 

Birds lost most mass overnight at -5°C, least at 22°C, and an inter- 

mediate amount at 30°C. 

Overnight mass losses in birds should be viewed as having two 

components: evaporative water loss while roosting (EWLroost)s and 

mass loss through defaecations. if EWL 
roost 

were the only route of 

mass loss at night, it would be expected that birds lose most mass on 

warm nights, since EWL increases with increasing temperature. However, 

during cold days, birds often have a higher food intake rate than on 

warmer days (e. g. goldcrests, Regulus regulus, Gibb, 1954), or may 

increase overall food intake by spending more time feeding on cold 

days (e. g. grey plovers, Pluvialis squatarola, Pienkowski, 1982). 

A higher food intake allows fat reserves to be accumulated to meet the 

metabolic cost of maintaining constant body temperature as ambient 

temperature falls (King and Farner, 1966; Evans, 1969). Hence a 
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higher diurnal food intake in cold conditions will result in more 

mass being lost through defaecations on cold nights, since more 

reserves need to be metabolised overnight in response to falling 

ambient temperatures. Kontogiannis (1967) showed that white- 

throated sparrows indeed lost more mass through defaecating on cold 

nights than on warm nights, and that this increasing rate of mass loss 

through defaecation overrode the reduced EWL 
roost 

to result in the 

greatest total mass loss overnight at the coldest temperature studied. 

Hence overnight mass losses are caused by an interaction of EWL 
roost 

and defaecation mass loss, both following opposing trends with 

temperature. 

Overnight body mass losses seem to be highest during the first 

few hours of darkness, when defaecation rates are highest (Figure 4.7). 

Presumably defaecation rate declines overnight as the gut becomes 

emptied. . 
Similar high initial overnight rates of mass loss have 

been shown in the white-throated sparrow (Kontogiannis, 1967), and in 

yellow-vented bulbuls, Pycnonotus goiavier, (Ward, 1969a). 

(c) Short-term continuous mass losses 

Lasiewski et al. (1966) showed that recording mass losses in 

birds using accurate balances gave measures of EWL that were comparable 

with results from the conventional open-flow technique, and indeed 

overcome some of the errors inherent in that technique. The values 

of EWL for canaries at 25°C are close to those predicted by Crawford 

and Lasiewski (1968) from the equation: 

M= 24.6 M0.585 
we 

where 

MWe is total evaporative water loss, g 24h-1 at 25°C 

M is body mass, kg. 
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Dawson's predicted value for a 23.28g bird (mean canary body 

mass) is 0.114 gh 
1, 

that measured in the incubator at 25°C was 

0.105 gh-1. 

The shape of the EWL/temperature plots for both canaries (Figure 

4.8) and sand martins (Figure 4.9) are similar. Rate of mass loss 

was relatively low and more or less constant until the thermoneutral 

zone was reached (assumed to be similar in sand martins and canaries), 

thereafter rate of mass loss increased rapidly with increasing 

temperature. Most studies of EWL show a slight and gradual increase 

in EWL with increasing temperature below the thermoneutral zone (e. g. 

painted quails, Excalfactoria chinensis, house sparrows, Passer 

domesticus, Lasiewski et al. 1966), though no such trend was apparent 

in this study for canaries, as also seen in sage sparrows, Amphispiza 

belli nevadensis (Moldenhauer, 1970). 

(d) Evaporative water loss and activity 

At any temperature, the rate at which a bird loses mass through 

evaporative water loss is likely to vary with the bird's activity. 

In Figure 4.10 it was shown that roosting canaries lost mass at a 

rate 2-3 times lower than that of active birds at similar tempera- 

tures. Moreover, active feeding birds in an aviary lost mass more 

rapidly than post-absorptive birds in an incubator at the same 

temperature. Flying swallows will also lose mass more rapidly than 

incubating birds. 

The differences in the rates of mass loss with activity will 

result from differences in the metabolic costs of activities. For 

example, since flight is energetically more expensive than resting 

(e. g. Tucker, 1968), flying birds will produce more metabolic water 

than resting individuals, hence their rate of EWL and rate of mass 

loss should be higher during flight. 
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Active birds typically have a basal metabolic rate some 24% 

greater than that of roosting birds (Aschoff and Pohl, 1970), and 

body temperature typically drops by 1°C-3°C during roosting (Walsberg, 

1983). These factors presumably explain why roosting canaries and 

swallows lost mass at a 38-47% lower rate than birds in comparable 

temperatures during the active period. 

Active canaries perched in a constant temperature aviary may 

lose mass more rapidly than post-absorptive birds in an incubator 

at the same temperature for two reasons. Firstly, in the aviary, 

mass changes were recorded in perching birds. Between perching 

bouts birds foraged actively, presumably at a higher metabolic rate 

and body temperature than when perched. This increase in metabolic 

rate during foraging could take a considerable time to fall to the 

typical resting metabolic rate, and could be in operation during the 

early stages of a perching bout. Secondly, aviary birds were 

actively processing food, while incubator birds were post-absorptive. 

Aviary birds may therefore have functioned at a higher metabolic rate 

'than post-absorptive canaries because of the influence of specific 

dynamic action (SDA). SDA is a post-feeding increase in resting 

metabolism due to deamination and digestion costs (Brody, 1945; 

Kleiber, 1975), and in some mammals, SDA may increase resting heat 

production by 30% (Kleiber, 1975). Costa and Kooyman (1984) 

measured SDA in sea otters, Enhydra lutris, and found a mean peak 

increase in resting oxygen consumption of 54%, peaking on average 82 

minutes after feeding. The ratio of SDA/BMR in birds varies from 

15-60% (Ricklefs, 1974). 

Incubating female swallows lost mass at an average of 10.8 mg. 

g1h1 (Figure 4.10b), while the prediction of Crawford and Lasiewski 



99 

(1968) for a resting bird at 25°C is 5.0 mg g-1 h-1. The increased 

rate of mass loss observed in the field may reflect the metabolic 

cost of reheating eggs during incubation. 

-Swallows are predicted to lose mass more rapidly when flying 

than during incubation (Figure 4.10b). Several studies have shown 

an increased rate of evaporative water loss during locomotion. 

Brackenbery, Gleeson and Avery (1981) found that EWL increased during 

walking in domestic fowl, G. gallus, and Pearson (1964) demonstrated 

an increase in the rate of mass loss of flying pigeons, Columba livia, 

with sealed cloacas, when compared with resting birds. Tucker (1968) 

found that flying budgerigars, Melöpsittacus undulatus, lost mass 

five times as rapidly as when resting at 20°C and twelve times as 

rapidly when flying at 35°C compared with resting birds. Torre-Bueno 

(1978) has suggested that starlings may dehydrate during flights in 

air temperatures above 7°C. 

Caution must be exercised when relating evaporative water losses 

to the metabolic costs of activities however. Although the produc- 

tion of metabolic water will undoubtedly increase as metabolic rate 

increases, the fate of the water may be difficult to ascertain. 

Birds may lose water either as reflected in continuous mass losses, or 

water may be excreted with faecal losses. No study appears to have 

attempted to partition water loss in birds into these components in 

relation to the birds' activity (Skadhauge, 1981), although five 

times as much water is lost by evaporation compared with faecal water 

losses in flying budgerigars (Tucker, 1968). 
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4.4.3 Modelling avian body mass changes in the laboratory 

The model of canary diurnal mass changes (Table 4.2, Figure 4.11), 

closely predicts the mass changes actually observed. Two sources of 

error are likely to contribute significantly to the deviation between 

observed and predicted mass changes. 

The model fails to consider any size-selection of seeds in its 

estimate of food consumption (equation 4(2)), so mass intake through 

foraging may be subject to error. Since the estimate of EWL while 

foraging depends on estimates of mass intake through foraging, it too 

may introduce inaccuracy into the model. - 

The linear prediction of body mass increase over the daytime 

period is a simplification as shown in Figure 4.4, body mass increases 

in a non-linear fashion over the light period, presumably because of 

a digestive bottleneck effect. A more precise model would consider 

this in greater detail. 

The components of a bird's daily mass budget are all likely to 

vary with temperature. For example, as temperature decreases, C and 

FU are likely to increase, while Dr and EWL should decrease. The 

modelling of avian mass changes in relation to changing temperature 

would make a profitable study. 



CHAPTER 5 
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5. THE BODY CONDITION OF BREEDING HIRUNDINES 

5.1 INTRODUCTION 

Parent birds may be expected to evaluate their long term 

survival prospects through monitoring short term increments in energy 

balance (Drent and Daan, 1980). An understanding of adult body 

condition changes during breeding may therefore produce a rigorous 

background for interpreting decisions concerning the allocation of 

resources between parent and offspring. Body mass changes may be 

related to energy expenditure (Ryer and Westerterp in prep. ), or to 

the level of work involved in feeding nestlings (Tinbergen et al. in 

Drent and Daan, 1980; Nur, 1984b, Chapter 8), and the increased time 

spent at high activity levels may be an important stress factor 

(Priede, 1977) by which parents could judge their future survival 

prospects. 

Although considerable work has been performed on the energetics 

of growth of nestlings (Ricklefs, 1967; O'Connor, 1975,1977; Bryant 

and Gardiner, 1979; Turner and Bryant, 1979; Bryant and Hails, 1983; 

Tatner, 1984), most studies of changes in adult body condition have 

considered the entire annual cycle (Hirons et al., 1984) or winter 

fattening (Farner and King, 1965; Evans, 1969; Newton, 1972). Work 

on adult body condition changes during breeding has focussed on 

changes in fat and protein reserves during laying (Jones and Ward, 

1976; Fogden and Fogden, 1979; Hails and Turner, in prep. ). 

In this chapter the body condition of adult sand martins over the 

breeding cycle is described, and changes in body condition are related 

to body mass changes. The relationship of a bird's energy reserves 

to its overall body mass is important for the interpretation of 
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swallow adult mass changes (Chapters 7,8) and a small sample of 

swallow carcasses was analysed for comparison with the more intensively 

studied sand martin. 

Changes in nestling body condition over the rearing period are 

also described for sand martins, so that adult condition changes 

during nestling rearing could be related to the energy reserves of the 

brood. The significance of a nestling's position within the brood 

hierarchy for its body composition is also investigated in sand 

martins, and the implications of changes in adult and nestling body 

condition for parent: offspring resource allocation strategies are 

discussed. 

5.2 MATERIALS AND METHODS 

A sample of 33 adult sand martins at different stages of the 

breeding cycle was killed under license for carcass analysis. Six 

fledglings were also taken, and when nestling-rearing adults were 

sacrificed, their brood was also killed for carcass analysis. 

Thirty-seven chicks from 10, broods were take in total. All bird 

except for three adults were taken at dusk, and although most birds. 

were killed through license from the Nature Conservancy Council, 

supplementary carcasses were collected after sand cliff collapses. 

Nine swallows (six adults, three fledglings) were also killed 

under license for carcass analysis. 

All birds were killed by chloroform inhalation. Carcasses 

were then dissected, freeze dried for seven days, weighed to the 

nearest 0.0001g, and then underwent lipid extraction in soxhlet 

apparatus, with five parts diethyl ether: ane part chloroform used as 

the lipid solvent. The carcasses were then freeze-dried for a 

further week, and weighed to determine lipid-free dry masses. 
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Dissected components were tail feathers, wing feathers, skin and 

contour feathers, legs (cut at hip), wings (cut at shoulder), 

pectoralis major, pectoralis minor, body shell, head, neck, oesophagus 

and gizzard (gizzard emptied), lungs, heart, liver, gut, kidneys, 

gonads, and major lipid deposits. 

Lipid indices were calculated on fat content/lean dry mass, 

water indices as water content/lean dry mass, with all masses in 

grams. 

Wing areas were determined by tracing outlines of the right 

wings of carcasses of 29 adult and five fledgling sand martins and 

multiplying by two. The mass of tracing paper accurately reflected 

wing area, with a correlation coefficient of 1.0 between paper mass 

and area. The wing area of six birds was calculated from 1 nun 
2 

graph paper and compared with the results from weighing tracing 

paper. Wing area determined by weighing tracing paper gave results 

that were on average 100.06 + 0.71% of those obtained from direct 

measurement on graph paper. Wing loadings were calculated on body 

mass/wing area, g cm-2. 

5.3 RESULTS 

In order to understand body mass changes in breeding sand martins 

in greater detail, carcass analysis was performed on 33 adult birds, 

and comparisons made with six fledgling carcasses. 

5.3.1 Lipid reserves of adult and fledgling sand martins 

(a) The distribution of lipid reserves 

On dissection, large quantities of subcutaneous lipid were noted 

in heavy adults. The distribution of this lipid is illustrated in 

Figure 5.1, the nomenclature of lipid deposits based on that of King 
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and Farner (1965). The subcutaneous lipid deposits in the claviculo- 

coracoid area, transverse abdominal lipid, and the ischio-pubic 

deposits were normally. visible in live birds and formed the basis of 

the fat scoring system for tracheal fat, fat on the posterior edge 

of the keel, and abdominal fat respectively (Chapter 2). 

Scoring of the lipid deposits of live birds was easier for 

individuals with well developed brood patches. The ischio-pubic 

deposit was often obscured by feathers in males, whose brood patches 

were never as extensively developed as those of incubating or nestling 

rearing females. 

A fat scoring system including claviculo-coracoid, transverse 

abdominal, and ischio-pubic deposits gave a higher correlation 

coefficient when plotted against body mass in females (r = 0.59, 

n= 95, P<0.001), than when only claviculo-coracoid and transverse 

abdominal deposits were correlated with body mass (r = 0.52, n= 59, 

P<0.001). Moreover, for eight carcasses examined, the three 

deposits fat score gave a higher correlation coefficient when plotted 

against lipid index than did the two deposit score (two deposits: 

r=0.80, n=8, P<0.05; three deposits: r=0.84, n=8, P<0.01). 

However, because of the difficulty in quantifying the ischio-pubic 

deposit in males, and'because a larger sample of females was available 

scored with the two deposit system, only claviculo-coracoid and 

transverse abdominal deposits are incorporated in the fat-scoring 

system in the subsequent analysis. 

The dry masses (DMs), lean dry masses (LDMs), and lipid indices 

of the dissected components of adults and fledglings are presented in 

Appendix II(a). Appendix II(b) shows a table of 't' tests comparing 

mean masses of male and female body components before and after lipid 
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extraction. There were no significant differences between mean male 

and female component DMS or LDMs, except that mean female head LDM 

in the sample was significantly lighter than mean male head LBM. In 

view of the general similarity between male and female body component 

masses, data from both sexes were lumped for a comparison with 

fledgling body component masses. In Appendix II(c), mean adult 

component DMs and LDMs are compared with those of fledglings. There 

was no significant difference between either mean DM or mean LDM of 

adult and fledgling components for pectoralis muscles, neck, oesophagus 

and gizzard, lungs, gut, kidneys, and dissectable tracheal fat, 

suggesting that these components are fully developed at fledging, and 

that there is no difference in the components' mean lipid content 

between fledglings and adults. 

Fledglings had significantly heavier mean heart masses (DM and 

LDM) than did adults in the sample. Adults had significantly heavier 

mean LDMs than fledglings for tail feathers, wing feathers, legs, 

wings, body shell, head, liver and gonads (not discernable in 

fledglings). 

When mean DMs of adult and fledgling components are not signifi- 

cantly different, but mean LDMs for the components do differ 

significantly, a difference in the percentage lipid content of the 

component between adults and fledglings is suggested. When 

significant differences occurred between mean LDMs of adult and 

fledgling components, it was always the fledgling value which was 

smaller (except for heart). Therefore, when fledgling and adult mean 

component DMs are not significantly different, but mean component LDMs 

are, a greater percentage lipid content in the fledgling component 

is implied. This-situation indeed exists for skin and contour 
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feathers (mean lipid index of adults = 39.1, fledglings 57.5), legs 

(56.1 adults, 73.6 fledglings), and body shell (54.1 adults, 67.1 

fledglings). These differences probably reflect relatively more 

subcutaneous lipid being deposited in fledglings than in adults. 

When differences occur in component DMs and LDMs of adults and 

fledglings, a difference in the percentage lipid content of the two 

classes may still exist. In such instances, 't' tests were performed 

on the mean values of component lipid indices of adults and fledglings. 

This analysis was performed for wings (mean lipid index of adults = 

42.8, fledglings 40.5, t=0.85, ns), head (29.3 adults, 28.9 fledglings, 

t=0.20 ns), and liver (38.6 adults, 29.5 fledglings, t=1.41 ns). 

Hence fledglings sampled had 9/17 body components which were on 

average lighter in LDM than adult values, while only one component 

was on average heavier in fledglings (Appendix II). Fledglings were 

thus structurally smaller than adults in most body components. 

Fledglings on average appeared to store more subcutaneous fat than 

did adults. - 

In Table 5.1, mean wet body mass, keel-length, wing-length, total 

DM, total LDM, water content, water index, percentage water content, 

lipid content and lipid index formation for adult males, adult females, 

adults of both sexes and fledglings are presented. In Table 5.2(a) 

the mean measurements of males and females are compared by 't' tests. 

None of the values was significantly different between sexes for the 

individuals sampled, so male and female values were combined for a 

comparison with fledglings (Table 5.2(b) ). 

Mean adult lean dry mass was significantly greater than that of 

fledglings, and adults also had significantly longer wings. 
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Table 5.2 

(a) Comparison of male and female carcass analysis measurements 
in sand martins. 

Tabulated values are t, ns = no significant difference between means. 
Data from Table 5.1 

Measurement t p 

Wet mass (g) 1.05 ns 
Keel-length (mm) 0.39 ns 
Wing-length (mm) 1.18 ns 
Dry mass (g) 0.70 ns 
Lean dry mass (g) 0.81 ns 
Water content (g) 1.42 ns 
Water index 1.27 ns 
% water content 0.84 ns 
Lipid content (g) 0.52 ns 
Lipid index 0.36 ns 

(b) Comparison of adult and fledgling carcass analysis 
measurements in sand martins 

Tabulated values are t, ns = no significant difference between 

means, ***, P<0.001. Data from Table 5.1 

Measurement t p 

Wet mass (g) 1.81 ns 
Keel-length (mm) 0.65 ns 
Wing-length (mm) 5.10 *** 
Dry mass (g) 1.48 ns 
Lean dry mass (g) 4.23 *** 
Water content (g) 1.39 ns 
Water index 5.00 *** 
% water content 1.86 ns 
Lipid content (g) 0.42 ns 
Lipid index 1.75 ns 
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Fledglings had a significantly higher mean water index than adults 

sampled. 

To show where most lipid was stored in the body, pie-diagrams 

breaking down total body lipid in adults and fledglings into 

component lipid contents is presented in Figure 5.2. In adults 

66.7% of total body lipid was found in the body shell, skin and 

contour feathers, wings, legs and trachael lipid deposit. This is 

probably predominantly subcutaneous lipid, most of which will be 

potentially mobilisable as an energy reserve. In fledglings on 

average 70.5% of total body lipid was stored in these places. 

In Table 5.3 a correlation matrix of the measurements made 

during adult carcass analysis and whose means are described in Table 

5.1 is presented, along with other information from carcasses.. A 

high degree of intercorrelation between variables is observed and 

pertinent correlations will be examined below. 

(b) The role of lipid reserves in body-mass changes 
of breeding sand martins 

(i) Component lipid content and total body lipid content 

The dissection of carcasses into components, their freeze- 

drying and lipid extraction is both time consuming and expensive. 

Several workers have attempted to estimate total body lipid by 

relating the lipid content of one component or the mass of a single 

lipid deposit to total lipid, and performing analyses only on the 

component lipid, if component lipid is strongly correlated with total 

body lipid. For example, Houston (1977) found that the omental 

lipid of hooded crows, Corvus corone cornix, was strongly positively 

correlated with total body lipid, and thus used the mass of omental 

lipid as an index of body condition when examining large numbers of 



Figure 5.2 

Breakdown of total body lipid into body component 

lipid in 

(a) adult 

and 

(b) fledgling 

sand martins 
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ill 

birds. Wishart (1979) showed the mass of abdominal and skin fat to 

be a good predictor of total body lipid in American wigeons, Anas 

americana. 

In sand martin adults, lipid indices for head, lung, heart, liver 

and kidney were calculated as 

component lipid content (g) 
x 100 

component LMD (g) 

Component lipid indices were then correlated with the overall 

lipid indices of -the birds, and the results are presented in Table 

5.4. Although logarithmic transformations of the data were not 

performed, in no instance did it seem likely that an allometric 

relationship better fitted the component/total lipid index comparison 

than did a linear relationship. 

Significant positive correlations between component lipid index 

and total lipid index occurred for head, lung, heart and kidney, 

though the r2 values were always relatively small, the highest being 

29.7% for the heart lipid index/total lipid index correlation. No 

correlation existed between liver lipid index and total lipid index. 

Total lipid index should ideally be corrected as (total lipid- 

component lipid)/LDM to remove any autocorrelation of component lipid. 

This would effectively reduce r2 even further, though the reduction 

in the significance of the correlations is likely to be slight, since 

component lipid content is always small compared with total body 

lipid (Table 5.4). 

The value of using body component lipid indices to estimate 

overall lipid indices must be questioned. Most mobilisable lipid is 

probably deposited subcutaneously, while much lipid in the components 



112 

U, 

ro 

ro N 

lic .. 4 

r1 

ro 
U 

N 

0 
4J 

10 

N 
a) 
U 

10 

b 

a 

a) a 

0 U 

Q) 
N 

2 
U) 
A 
0 
.H 
ro 
a) 

0 U 

IT 
ui 

x N 

Ln 
-14 

O 
°" + ak rn N M L() -4 N 

t! 1 N 0 -4 

qH O O t4 
b v N 

II 

ro 
-4 ak 

r - 

14 %D eq 0 b N m 
Q H 
a ) O 

N 

+ 

ý bH ö ' 
w V 
x u 

rn 
ö 

a, + ,4X 

a b ö 
H O O cp 

v N 

>4 

0 

03 
ui 

Co 
ö 

a 
0 

X 
00 
0 

"., 1 r"-I 

_l x 110 * + 
a Q) OD -4 
'O C m 0 
(d H 0 0 
a) v rý 
x u 

C b 
O O 41 

-4 AC 
.u a) ro r4 0 
0 ro O V .ua aý OE 

.u0 
O 4-+ 
rl O0 
N rl 
En dP 

w C ". 4 
rý+ ro a a, a, ". ý 

10 0 a 

ro 4-1 
0 

0 

b 

[ "4 O 04 
-4. -) 41 .a M 13 
trlc O 4) 

0 
-.. I a in O 
NO 
N 

w 
OP O 
v- 
Sa pý O 

NCO 
.CN +! f'. V 

O 
. 14 04 

.ý . 4w 113 . 1c 

v 
. si C) 
04. ) 

ö 

0w0 
wo 
Nv 
Q7 4J 

r. a 04 Q) 
f4 U 

CO 4-4 
". 4 W 

U 
'O O 
. "1 U 
a 

o 

O +1 U 
, -1 l" -4 -4 w 

O" -4 wß 
O s-I tT 
(C O "4 
4O U) 

a) 41 

aý 40 ++ c 
rd N "" 

41 -1-4 
y 0 

E $4 A 



113 

analysed is likely to be structural. A bird with much lipid in the 

lungs may have little fat available as an energy reserve, so the value 

of component lipid indices on an index of mobilisable lipid reserves 

is of doubtful value. 

Conversely, dissectable tracheal lipid is likely to be largely 

available as an energy reserve. A strong positive correlation existed 

between the quantity of dissectable tracheal lipid and total extractable 

lipid, r2 = 68% (Figure 5.3). Logarithmic transformation of the data 

increased the r2 value, and the relationship between tracheal lipid and 

total extractable lipid is best described by the equation 

loge TCL = -0.173 + 5.16 (loge tracheal lipid + 1) 

(r = 0.81, n= 29, r2 = 65.1%, P<0.001) 

where TCL = total corrected lipid = (total lipid - tracheal lipid). 

Hence the amount of extractable tracheal lipid is a good predictor of 

an adult sand martin's total lipid content, and probably gives a good 

indication of the quantity of mobilisable lipid reserves, since the 

4 
claviculo-caracoid lipid deposit presumably functions solely as an 

energy reserve. 

(ii) The extrapolation of carcass lipid analysis to the field 

In the field, female body mass and fat score (tracheal, posterior 

edge of the keel and abdominal deposits) were significantly positively 

correlated (r = 0.59, n= 117, P<0.001), as were male body mass and 

fat score (r = 0.28, n= 64, P<0.05). The data are plotted in 

Figure 5.4. In both cases, the relationship between the variables 

appears to be linear. The correlation coefficient is probably higher 

for females because of the greater reliability of fat scoring on 

females which have well developed brood patches. 
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in Figure 5.5a, body mass is plotted against lipid index, and a 

highly significant positive correlation exists (r = 0.68, n= 32, 

P<0.001). Fledglings were omitted from the analysis because they 

have relatively high lipid indices for their body masses. Body mass 

is plotted against extractable lipid mass in Figure 5.5b, and the 

positive correlation is once again highly significant (r = 0.67, n= 32, 

P<0.001). The close correlation between lipid index or content and 

body mass suggests that lipid mass changes closely parallel body mass 

changes, and that day to day mass changes in the field may largely 

represent changes in the size of the lipid reserve. 

How accurate is'the scoring estimation of lipid reserves in the 

field in representing actual changes in the lipid reserves of birds? 

In Figure 5.6a fat score is plotted against lipid index, and the 

correlation was positive and highly significant (r = 0.71, n= 32, 

P<0.001). Fat score was also highly significantly correlated with 

total extractable lipid mass, as shown in Figure 5.6b (r = 0.79, 

n= 32, P<0.001). In both Figures 5.6a and b, the relationship 

between the variables is a good fit to a straight line. 

Despite the apparent accuracy of the fat scoring system as judged 

by linear correlation, the method is not completely reliable, 

especially when fat scores of intermediate value are used. For 

example, a fat score of five has estimated lipid indices ranging from 

19 to 48. Hence the fat scoring system is subject to some error in 

estimating actual lipid-indices or content of sand martins, probably 

because of its subjective scoring methodology, and because it is unable 

to include some subcutaneous lipid deposits not visible in live birds. 

In Figure 5.7, lipid condition estimates of breeding female sand 

martins are compared with lipid condition as determined by carcass 
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(a) Body mass versus lipid index plot for sand martins. 
r=0.68, n= 32, P<0.001. 

(b) Body mass versus extractable lipid plot for sand martins. 
r=0.67, n= 32, P<0.001. 
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analysis. In Figure 5.7a fat scoresof individual females over the 

nesting period are plotted, lines joining successive recaptures of the 

same female. Mean fat scores over the breeding period are presented 

in Figure 5.7b, and compared with mean body mass changes as presented 

in Chapter 6. Changes in fat score closely parallel body mass 

changes, with greatest discrepancy occurring during the pre-laying and 

laying periods, when body mass is greater than expected through the 

fat-scoring system, since mass at this time includes considerable 

reproductive material (see below). In Figure 5.7c and d, lipid 

indices and extractable lipid of female sand martins are plotted over 

the breeding cycle. 

Female lipid condition was seen to be relatively high during the 

pre-laying period, fell during laying (as determined by carcass 

analysis'); increased or remained stable during incubation, and reached 

lowest values during nestling rearing. The fat-scoring results 

suggested some tendency for lipid reserves to recover during the later 

stages of the nestling rearing period. 

Male lipid condition over the breeding cycle is presented in 

Figure 5.8 from fat scoring and carcass analysis. Lipid reserves 

were highest in pre-breeders, fell during the female laying period 

(when males were mate-guarding) and during incubation, reaching lowest 

values during nestling rearing, again with a tendency for lipid reserves 

to recover towards the end of the rearing period. 

Mean lipid indices of both males and females at different stages 

of the breeding cycle are plotted on histograms in Figure 5.9. 

Fledgling values are also included for comparison. An analysis of 

variance of these data is presented in Table 5.5, and means are 

compared in a 't' test matrix. The mean lipid index of pre-laying 
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Lipid condition of male sand martins over the 
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females was the highest value recorded, and was significantly greater 

than that of nestling rearing birds of both sexes, and greater than 

the mean lipid index of incubating males. Incubating females had 

significantly higher lipid indices than nestling-feeding females. 

Pre-breeding males had a significantly higher mean lipid index 

than that of nestling rearing birds of both sexes, though no signi- 

ficant difference existed between pre-breeding males and incubating 

males, or between incubating and nestling rearing males. The lack of 

a significant difference between mean lipid indices of incubating and 

nestling rearing males which was seen in females suggests that females 

utilised more lipid between incubation and rearing than did males. 

Fledglings had significantly higher mean lipid indices than did 

nestling rearing adults of both sexes. 

5.3.2 The role of protein reserves in body mass changes 
of breeding sand martins 

Protein reserves in birds are believed to occur primarily in the 

flight muscles (Kendall, Ward and Bacchus, 1973), and conditions of 

high protein demand often coincide with a reduction in the LDM of 

pectoralis muscles (e. g. egg laying (Jones and Ward, 1976; Fogden and 

Fogden, 1979), moult (Ward, 1969b)). Hence the analysis of changes 

in protein reserves in breeding sand martins will be concerned with 

changes in the LDM. of the pectoralis major and pectoralis minor flight 

muscles. 

Pectoralis LDM in breeding sand martins was significantly 

positively correlated with body size as measured by keel-length 

(r = 0.48, n= 32, P<0.01, Figure 5.10a). Similar tendencies for 

flight muscles to increase in mass as body size increases have been 

recorded in yellow-vented bulbuls (Ward, 1969b), hooded crows 
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(Houston, 1977), Cooper's hawks, Accipter cooperi, (Marsh and Storer, 

1981), house martins (Bryant and Westerterp, 1982), gray catbirds, 

Dumetella carolinensis, (Marsh, 1984) and white-bellied swiftlets, 

Collocalia esculenta (Hails and Turner, in prep. ). To standardise 

for differences in keel-length between birds, the relative size of the 

flight muscles was quantified as 'pectoralis lean dry mass deviation' 

(PLDMD), where 

PLDMD = 
observed pectoralis LDM 
expected pectoralis LDM as a function of keel-length 

A PLDMD of one indicates that pectoralis LDM is that expected 

for a bird of given size, as predicted by the regression equation for 

pectoralis LDM as a function of keel-length (Figure 5.10a). 

Pectoralis LDM was significantly positively correlated with fresh 

body mass (r = 0.62, n= 32, P<0.001, Figure 5.10b). The correla- 

tion coefficient increased to r=0.86 (P < 0.001) when six laying/ 

prelaying females were excluded from the correlation. Such birds were 

carrying considerably more non-metabolising reproductive material 

than other birds studied, and hence their body masses were not directly 

comparable with those of birds at other stages of the breeding cycle. 

The correlation for pectoralis LDM and mass was not significant 

simply because birds are heavy through having large pectoral muscles, 

since pectoralis LDM was also significantly correlated with the 

residual LDM of the bird after removal of the pectoral muscles (r 

0.59, n= 32, P<0.001). 

PLDMD is plotted as a function of stage of the breeding cycle for 

males and females in Figures 5. lla, b, mean values for different 

stages plotted on a histogram in Figures 5. llc, d, and an analysis of 
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of variance of these means is presented with a ''t' test matrix in 

Table 5.6. 

Pre-breeding males had the highest values of PLDMD, and mean 

PLDMD of this group was significantly greater than those of nestling 

feeders of both sexes. Pre-laying females had a significantly greater 

PLDMD than that of nestling rearing females. Hence both sexes showed 

a decline in PLDMD over the course of the nesting cycle, as pectoral 

muscles became smaller relative to body size. Fledglings had the 

smallest pectoral muscles relative to their body size of all groups 

considered. 

5.3.3 The role of body water in body mass changes of 
breeding sand martins 

Water indices of male and female sand martins over the breeding 

season are plotted in Figure 5.12a. Mean values for the stages are 

plotted as histograms in Figure 5.12b and an analysis of variance of 

these values is presented in Table 5.7. 

The highest mean water index for adults was found in laying 

females, the lowest in pre-breeding males. Fledglings had the highest 

mean water index of all groups considered. Although the sample size 

of laying females was only two, the birds in this group had a signi- 

ficantly higher mean water index than incubating birds and nestling 

rearers of both sexes, and than pre-breeding males. Fledglings had 

significantly greater mean water indices than all adult groups except 

for laying and prelaying females. 
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5.3.4 The role of reproductive structures in body mass 
changes of breeding sand martins 

Changes in the dry mass of reproductive structures over the 

breeding season in male and female sand martins are illustrated in 

Figure 5.13. 

In females, reproductive structures were heaviest during pre- 

laying and laying, decreased in mass rapidly after laying, reaching 

lowest values during nestling rearing. The mass of enlarged ova and 

eggs in females during late prelaying and laying contributes 

substantially to the total dry mass of the reproductive structures. 

Testes dry mass in males was highest in pre-breeding birds, and 

declined through incubation to reach lowest values during nestling 

rearing. 

In Figure 5.14 the dry masses of eggs in oviducts (which would 

be laid the following morning), and enlarged developing ova are 

plotted from four laying and immediately prelaying females. The 

masses of the eggs were considerably greater than any of the developing 

ova, suggesting further investment in egg formation on the day 

preceding laying. The mean lipid index of two eggs dissected from 

oviducts was 41.75 + 0.52, the mean lipid index of 15 developing ova 

was 138.51 + 21.14, the difference between means being statistically 

different (t = 6.29, P<0.001). Most lipid in eggs therefore 

appears to be deposited several days prior to laying, and the rapid 

increase in the dry mass of eggs immediately before laying is due to 

deposition of other materials. 

Yolk formation occurs in the developing ova, whilst albumen is 

deposited in under 24h in species that lay one egg per day (Ricklefs, 

1974). Hence the rapid increase in egg dry mass on the day prior to 
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laying is likely to be the result of calcium deposition for shell 

formation, and increased protein allocation for albumen formation. 

Most of the lipid in the egg will already have been deposited in the 

developing ova (Hails and Turner, in prep. ). 

5.3.5 Body condition of breeding adult sand martins - synthesis 

FEMALES: 

(a) Lipid indices: 

Lipid indices were highest in pre-laying females, fell during 

laying, recovered slightly during incubation, and fell to their 

lowest values during nestling rearing. The mean lipid index of pre- 

laying birds was significantly greater than that of both incubating 

and nestling feeding females, and incubating females had significantly 

greater lipid indices than nestling feeders. 

(b) Protein reserves: 

Protein reserves in pectoralis muscle followed the same trend 

as lipid reserves over the breeding cycle. The heaviest pectoralis 

muscles occurred in pre-laying females which had a significantly 

higher mean PLDMD than during nestling feeding, when mean PLDMD was at 

its lowest. 

(c) Water indices: 

Laying females had a significantly higher mean water index than 

incubating females and nestling rearers. 

(d) Reproductive structures: 

Reproductive structures were heaviest during laying and pre- 

laying when eggs and enlarged ova were present in the hypertrophied 

reproductive tract. The mass of reproductive structures decreased 

throughout incubation to reach lowest values during nestling rearing. 
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Reproductive structures accounted for 8.61 + 3.07% of total female 

dry mass during laying/prelaying (n = 4). 

MALES: 

(a) Lipid indices: 

Lipid indices were highest in pre-breeding males, lower by 

incubation, and lowest in nestling rearers. Pre-breeders had a 

significantly greater mean lipid index than nestling rearers. 

(b) Protein reserves: 

These followed the same trend on lipid indices over the breeding 

cycle. The largest pectoral muscles occurred in pre-breeders, which 

had a significantly larger mean PLDMD than during nestling rearing. 

(c) Water indices: 

There were no significant differences in mean water index over 

the breeding cycle in males. 

(d) Reproductive structures: 

Testes DM was greatest in pre-breeders, lower in incubators, and 

lowest in nestling rearers. Testes accounted for a maximum of only 

0.37 + 0.04 % of total dry body mass in pre-breeding males. 

FLEDGLINGS: 

Fledglings had a significantly higher mean lipid index than did 

nestling-feeding adults, and significantly smaller PLDMDs than 

pre-breeding males. The mean water index of fledglings was signi- 

ficantly greater than in incubating and nestling feeding adults. 

No reproductive structures were discernable for dissection. 

A stepdown multiple regression analysis of adult dry mass is 

presented in Table 5.8, with, pectoralis LDM and lipid content entered 
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Table 5.8 

Stepdown multiple regression analysis of total dry mass 

of sand martin carcasses 

Independent Multiple r2 Degrees of Regression 
Variable x 100 Freedom Equation -t-value 

Pectoralis 
lean dry mass (g) 46.6 1,31 y=3.87x1 + 3.52, 

P<0.01** 

Lipid content (g) 80.4 2,30 1.02x2 + 1.63 7.07, 
p<0.001*** 

F= 59.6, p<0.001*** 
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on the independent variables. 80.4% of the variation in total dry 

mass was attributable to changes in the size of the flight muscles 

and lipid content. 

5.3.6 The body condition of adult and fledgling swallows 

Mean dry masses, lean. dry masses, and lipid indices of the 

dissected body components of adult and fledgling swallows are presented 

in Appendix III. Measurements taken during carcass analysis are 

summarised in Table 5.9. The sample consisted of six adults, of which 

four were nestling rearers, and also included two starved birds with 

lipid indices of 5.35 and 15.4. Three fledglings were also killed 

for carcass analysis. 

The mean lipid index of four nestling rearing adults (excluding 

the two starved birds), was 27.05 + 6.18. The mean wing loading of 

four adult swallows was 0.196 + 0.024 g cm 
2. 

As in sand martins, the fat score of male and female swallows was 

positively correlated with body mass (Figure 5.15) and both lipid 

index and extractable lipid were correlated with body mass (Figure 

5.16). Lipid index was also correlated with fat score (Figure 5.17). 

In all cases, as in sand martins, relationships between variables 

were a good fit to a straight line. Hence extrapolation from the 

more extensive sand martin body lipid condition data to a discussion 

of body condition of swallows is probably justified. 

5.3.7 Nestling body masses and body condition in sand martins 

Nestling body mass as a function of mean brood age is plotted in 

Figure 5.18. A great deal of variation in body mass occurs between 

mean brood ages 6-18 days. This is largely because nestlings 

generally hatch over 2-3 days (Turner, 1980), resulting in a range of 
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Figure 5.15 

The relationship between fat score and fresh body 
mass in swallows. 

Circles represent females, solid circles are 
incubating females. Squares represent males. 

Females: Mass = 17.49 + 0.33x, n= 22, r=0.67, P<0.001 

Males: Mass = 17.79 + 0.33x, n= 19, r=0.48, P<0.05 

All data: Mass = 17.58 + 0.34x, n= 41, r-0.65, P<0.001 

where x is fat score in regression equations. 
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r=0.60, n= 12, P<0.05. 
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nestling ages within most broods. The consequences of this age and 

size hierarchy for nestling condition within a brood will be investi- 

gated in Section 5.3.10. Nestling mass is also greater when food is 

abundant (Turner, 1980), and hence variation in food availability will 

also influence the body mass of nestlings within a brood. 

Turner and Bryant (1979) showed that sand martin nestlings 

attained peak mass at about 12d. Chicks became lighter after 12d 

during a period of mass recession (Edson, 1930) as loss of water occurs 

during tissue (especially feather) maturation (Ricklefs, 1968). Mass 

recession is most pronounced in birds which feed on or search for prey 

during long flight periods (Ricklefs, 1968), so a light mass at 

fledging may be adaptive in that flight costs are reduced for foraging. 

Hence fledglings leave the. nest at a lower body mass than the maximum 

attained during the nestling period, and their body mass continues to 

decline for at least 10d following fledging (Figure 5.18). House 

martin fledglings also lose mass for about 5d after leaving the nest, 

though after this time they increase in mass (Bryant and Gardiner, 

1979). The decline in mass in sand martin fledglings is probably 

associated with inexperience in self-feeding. To overcome this, the 

fledglings have relatively high lipid indices (section 5.3.1) and low 

wind loadings roughly equivalent to those of incubating adults, despite 

adults having significantly longer wings and hence larger wing areas 

(Discussion, Chapter 6). A relatively low wing loading may reduce 

flight costs in a period of foraging inexperience. 

in Figure 5.19, LDM, water indices and lipid indices are plotted 

as a function of nestling age, and presented with comparative data for 

adults and fledglings. LDM increased rapidly between days 3 and 18, 

by which time it had reached the value attained by fledglings. Wäter 
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indices declined over the nestling period as body tissues mature 

(O'Connor, 1977). Lipid indices increased exponentially between days 

1 and 8, after which values became variable. The lipid indices 

enclosed in a box in Figure 5.19 are for nestlings taken late in the 

season (after 18th August). Although lipid content of sand martin 

chicks is positively correlated with food abundance (Turner, 1980), 

these chicks were taken on days when food was relatively abundant, and 

the low lipid indices may therefore reflect decreased investments in 

the brood in favour of self-maintenance by parents, at a time when 

chick or fledgling survival may be low. Observations suggested that 

many chicks reared after late August in 1982 were deserted. Hence 

the lipid index graph may be unrepresentative of the normal situation 

when lipid index increases with nestling age throughout the nestling 

period (Turner and Bryant, 1979). If this were so, fledglings would 

leave the nest with lipid indices lower than those maximally attained 

while in the nest. 

5.3.8 Body component development in nestling sand martins 

The growth of body components has been related to the increase in 

total LDM by calculating allometric equations 

LDMcomponent =a LDMtotal 

where a is a constant, and b, the growth constant, is the slope of the 

log-log plot of. component LDM on total LDM (e. g. Ricklefs, 1967, 

O'Connor, 1977, Tatner, 1984). In Table 540 allometric growth 

constants for lean dry masses of sand martin body components are 

presented. 

Skin and feathers, wings, pectoralis muscles, kidneys, and liver 

had values of b greater than one, suggesting that these components grew 

faster than the body as a whole. 
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Table 5.10 

Allometric growth constants for lean dry masses of 

sand martin body components 

Slope s. d. intercept s. d. of 
Body component b b log ,. a logea 

Skin and feathers 1.48 0.04 -1.75 0.04 

Body shell 0.92 0.04 -1.94 0.04 

Head 0.63 0.02 -2.27 0.02 

Neck 0.61 0.04 -3.37 0.04 

Legs 0.64 0.03 -2.37 0.03 

Wings 1.24 0.09 -3.34 0.08 

Pectoral muscles 1.60 0.07 -3.47 0.06 

Oesophagus and gizzard 0.55 0.14 -2.03 0.12 

Gut 0.74 0.09 -2.28 0.08 

Heart 0.86 0.05 -3.86 0.04 

Lungs 0.68 0.06 -3.96 0.06 

Kidney 1.13 0.09 -4.62 0.08 

Liver 1.60 0.07 '-3.47 0.06 

loge LDM 
component - log 

ea 
+b loge LDMtotal body 

LDM(g) 

The significance of all of the allometric growth equations 

was P<0.001*** 
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To illustrate the differential growth rates of body components, 

the relative lean dry mass of each component (RLDM) was calculated as 

LDMcomponent 
RI'DMcomponent 

LDMtotal x 100 

In Figure 5.20, lean dry masses of components and their RDLMs are 

plotted as a function of nestling age. 

All components increased in LDM over the first week of nestling 

life. Skin and feathers further increased in LDM until the fledgling 

value was attained by day 15. The LDM of wing and tail feathers is 

plotted separately in Figure 5.20a and they developed rapidly after 

the feather tips sprouted on day 9. 

The relative masses of skin and feathers, wings, and pectoral 

muscles all increased over the nestling period though wings showed an 

initial drop in RLDM. 

Head, neck, and legs also increased in LDM rapidly over the first 

two weeks of the nestling period, so that fledgling values were 

attained by the fifteenth day. However, unlike the skin and feathers, 

wings, and pectoralis muscles, the head, neck and legs declined in 

relative mass over the first eight days of the nestling period. The 

head, neck and legs are all important for food acquisition, and there 

will be an early premium on obtaining and assimilating food during a 

period of rapid growth. A well developed head in small chicks occurs 

partly because of the necessity of possessing a large cranial case at 

hatching (Portmann, 1955), and also because a large bill would 

facilitate food acquisition early in the nestling period. Precocial 

development of the neck may improve the chances of obtaining food 

through begging. Early growth of the legs may facilitate an upright 



Figure 5.20 

Lean dry masses (LDMs) and relative lean dry masses 

(RLDMs) of body components as a function of nestling age 

in sand martins. 

Open circles are fledgling values (F, mean + sd) 

Open squares are adult values (A, mean + sd). 

(a) skin and feathers 

triangles - wing and tail feathers only. The 
arrow denotes the nestling age when feather tips 
sprout (Turner and Bryant, 1979). 

(b) wings 

(c) pectoralis muscles 

(d) head 

(e) neck 

(f) legs 

(g) oesophagus and gizzard 

(h) gut 

(i) liver 

(j) heart 

(k) kidneys 

(1) lungs 

(m) body shell 
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position during begging, and may allow the nestlings to move along the 

burrow towards the parents to be fed (Turner and Bryant, 1979). 

Three components of the digestive system increased in LDM early 

in the nestling period, and declined in LDM before fledging. Hence 

the RLDMs of the oesophagus and gizzard, gut and liver declined over 

the nestling period, although the liver showed an initial increase in 

RLDM. Presumably the gizzard and intestine became less important as 

energy processing sites when substantial lipid deposits are laid down 

later in the nestling period, so their relative sizes may decline. 

Heart, kidneys and lungs increase in LDM until fledgling values 

were attained by about 15 days. Heart and lung declined in RLDM over 

the nestling period, though kidney increased. Body shell increased 

in LDM between days 3 and 15, though relative growth of the body shell 

showed an initial decline. 

5.3.9 The lipid content of body components in nestlings 

In Table 5.11 the lipid content of sand martin nestling body 

components is expressed as a function of total body lipid. The slope 

b in analysis I partitions the variation in body lipid over the whole 

nestling period (O'Connor, 1977; Tatner, 1984), so that the sum of 

the slopesis one. Hence in sand martin nestlings 36% of lipid was 

stored in and under the skin (feathers have a negligible lipid content 

- section 5.3.1), compared with 22% in adults, 27% in fledglings 

(Figure 5.2), 35% in the body shell (22% adults, 22% fledglings), and 

10% around the legs (8% adults, 9% fledglings). So at least 71% of 

nestling lipid is likely to occur in subcutaneous deposits in the 

aforementioned areas. 

When the logarithm of component lipid was plotted against the 
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Table 5.11 

Fat content of nestling sand martin body components 
expressed as a function of total body fat 

Components 

ANALYSIS I 

Component fat 
as a function 
of total fat 

br 

ANALYSIS II 

log (component fat) 
as a function of 
log (total fat) 

s. d. 
b of br 

ANALYSIS III 

Component fat 
as a function. 
of 'corrected' 
total fat 

br 

Skin and feathers 0.358 0.91 1.12 0.07 0.94 0.460 0.77 

Body shell 0.349 0.95 1.12 0.08 0.93 0.488 0.89 

Head 0.017 0.79 0.58 0.06 0.87 0.017 0.78 

Neck 0.007 0.61 0.92 0.10 0.84 0.007 0.61 

Legs 0.098 0.87 0.99 0.07 0.92 0.104 0.84 

Wings 0.020 0.82 1.09 0.13 0.82 0.020 0.81 

Pectoral muscles 0.046 0.88 1.25 0.14 0.83 0.047 0.86 

Oesophagus and gizzard 0.031 0.55 0.73 0.10 0.78 0.030 0.51 

Gut 0.041 0.84 0.72 0.06 0.90 0.042 0.82 

Heart 0.003 0.79 0.81 0.13 0.76 0.003 0.79 

Lungs 0.001 0.48 0.54 0.14 0.56 0.001 0.48 

Kidney 0.003 0.44 0.92 0.18 0.66 0.003 0.43 

Liver 0.013 0.61 0.65 0.08 0.81 0.013 0.60 

b= gradient of regression line 

r= Pearson correlation coefficient 

n= 37, P<0.01 for all regression equations 
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log of total lipid (analysis II), correlation coefficients were 

normally higher than in the linear relationship of analysis I, 

indicating that allometric equations better described the relationship 

between component lipid and total lipid. Because the slopeof the 

log-log relationship was greater than unity for skin and feathers, 

body shell, wings, and pectoralis muscles, lipid was preferentially 

stored in those structures. 

Some degree of autocorrelation is inevitable if component lipid 

is plotted against total lipid, since total lipid will include the 

component lipid. Hence 'corrected' total lipid was calculated as 

(total lipid - component lipid) for all components in analysis III 

(Table 5.11). Although the correlation coefficients were reduced 

when compared with analysis I, all relationships remained highly 

significant, suggesting that, unlike adults (Section 5.3.1), the 

lipid content of nestling components can be used to accurately estimate 

the total lipid content of a chick. 

5.3.10 Lipid index hierarchies within broods 

To examine lipid undex hierarchies within broods, lipid indices 

were calculated for each chick in 16 complete broods, one brood with 

a chick yet to hatch, and five incomplete broods. Data from eight 

complete and four incomplete broods were those of D. M. Bryant (unpubl. ). 

Hierarchies were defined in terms of nestling age. Nestlings aged 

between 1 day and 7 days were aged by body mass, older chicks being 

aged by wing-length (Turner and Bryant, 1979). 

In Figure 5.2 1, lipid index hierarchies for eight broods older 

than 7 days mean age are plotted. In three cases, lipid index 

parallels nestling age, lipid index decreasing in sequence of wing- 

length. For the remaining five broods, the oldest chick had the 
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highest lipid index in only two instances, in three cases lipid index 

was highest in a chick intermediate in the age hierarchy. However, 

in all cases, the oldest chick had a higher lipid index than the 

youngest, although in one instance the youngest chick did not have 

the lowest lipid index in the brood. 

In Figure 5.22 lipid index hierarchies for eight complete 

broods of chicks, 7 days or younger are plotted. Once again, the 

oldest chick had a higher lipid index than the youngest in all but 

two instances, though linear lipid index hierarchies were not seen. 

Five young broods where one or two chicks were missing have lipid 

index hierarchies plotted in Figure 5.23. 

Lipid index hierarchies could facilitate brood reduction during 

prolonged food shortages (Lack, 1968; Clark and Wilson, 1981), or 

could reflect a staggering of nestling demands reducing the peak food 

delivery rates by adults (Russell, 1972; Bryant, 1978a; Hahn, 1981). 

Since the lightest chicks in house martin broods may starve in both 

low and high levels of food abundance (Bryant, 1978b), brood reduc- 

tion is unlikely as a sole explanation for the function of lipid index 

hierarchies. Large brood sizes increase the difference in relative 

body mass and relative wing-length of the largest and smallest chicks 

in house martin broods, and such differences are also greater later 

in the season, and are dependent on the relative masses of the hatch- 

lings (Bryant, 1978b). Hatchling masses are likely to vary according 

to the food supply during laying (Bryant, 1978a). Since lipid index 

hierarchies are not linear with respect to nestling age soon after 

hatching (Figures 5.22,5.23), it seems likely that a nestling's 

station in the lipid index hierarchy may be at least partly governed 

by pre-hatching factors, and is probably modified by post-hatching 

factors such as the food supply during the nestling period. 
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Lipid index hierarchies may also be of a greater spread in sand 

martin broods occurring outside of the period of maximum breeding 

synchrony within the colony. Bank swallows breeding only a few days 

after the peak of synchrony had a higher incidence of starved nest- 

lings or runts in their broods (Emlen and Demong, 1975). 

5.3.11 Are the youngest or least nourished chicks in the brood age 
hierarchy relatively undernourished with respect to their age? 

In 14 of 16 complete broods examined, the oldest chick had a higher 

lipid index than the youngest. The mean lipid index of 17 oldest 

chicks in broods was 31.93 + 19.63, that of 17 youngest chicks from the 

same broods 24.16 + 12.97. The difference between means is statisti- 

cally significant as determined by a paired 't' test (t = 3.64, P<0.05). 

Between days 1 and 7, lipid index increased with nestling age, no 

obvious relationship being apparent between lipid index and nestling age 

later in the nestling period (Figure 5.19). Between days 1 and 7, nest- 

ling age is a function of nestling body mass and during this period the 

relationship between lipid index and body mass can be described by 

Lipid index = 11.6 + 2.01 (body mass, g), 

(r 0.83, n= 53, P<0.001) Equation 5(1) 

The tendency for lipid index tDincrease allometrically with body 

mass over this period is described by 

Loge lipid index = 2.62 + 0.0803 (body mass, g) 

(r 0.79, n= 53, P<0.001) Equation 5(2) 

Older white-bellied swiftlets in broods of two had significantly 

greater lipid indices than their younger sibs, though when the lipid 

index of the younger sib was corrected for the difference in sib age, 

differences in lipid indices were insignificant between sibs (Bryant 

and Hails, 1983). 

Hence in sand martin broods aged between 1 and 7 days, lipid 
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index can be related to nestling age since age is related to body 

mass during this period. The lipid index of the youngest chick can 

then be compared with that expected for a nestling of that age to 

determine whether the youngest chick in the brood, is relatively 

undernourished. Between days 1 and 7 the mean lipid index of the 

oldest chick in nine broods was 27.38 + 11.44, that of the youngest 

sib 21.51 + 7.41. The difference between means is statistically 

significant when compared by a paired 't' test (t = 2.48, P<0.05). 

The expected mean lipid index of the youngest chick as determined 

by equation 5(1) was 19.73 + 4.46, and that expected from equation 

5(2) 19.28 + 3.52. Neither of'these values differs significantly 

from the mean observed in youngest chicks (equation (1), paired 't' 

= 0.78, ns, equation (2), paired 't' = 1.01 ns), hence there was no 

evidence to suggest that the youngest chick in the brood was consis- 

tently undernourished:. 

However, the oldest chick in the brood does not necessarily have 

the highest lipid index within the brood, neither does the youngest 

chick always have the lowest lipid index. Hence a comparison was 

made between the chick with the highest lipid index in a brood and 

the most poorly nourished sib. 

The mean lipid index of the chick with the highest lipid index 

in 16 broods was 33.84 + 19.60, that of the sib with the lowest. lipid 

index 23.26 + 13.80. The difference, between means is statistically 

significant (paired 't' = 5.21, P<0.001). 

Between days 1 and 7 the mean lipid index of the best nourished 

chick was 30.20 + 11.46, that of the most poorly nourished sib 20.06 

+ 7.95 (paired t=4.85, P<0.01). 
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Between days 1 and 7 the expected mean lipid index of the most 

poorly nourished chick in the nine broods examined was 21.84 + 5.80 

using equation 5(1), 21.52 + 5.47 by equation 5(2). Neither of 

these values was significantly different from the observed mean lipid 

index of the chick with the lowest lipid index within a brood 

(equation 5(1), paired t=1.3 ns, equation 5(2), paired t=1.07 ns). 

Thus, although in seven cases out of nine the observed lipid index of 

the least nourished chick in a brood was less than that expected, on 

average there was no evidence to suggest that the chick with the 

lowest lipid index was relatively undernourished. Undernourished 

chicks within a brood may indeed occur during poor conditions, but 

this tendency is usually masked by considering data averaged over a 

range of feeding conditions. 

5.4 DISCUSSION 

The adaptive significance of body reserves in breeding sand 
martins and their broods: implications for parent: offspring 
resource allocation strategies 

5.4.1 Implications for the parents 

Both pectoralis LDM and lipid content of breeding sand martins 

were positively correlated with body mass (Table 5.3, Figures 5.5, 

5.10) and 80% of the variation in adult carcass dry mass can be 

accounted for by changes in the size of the lipid reserves and LDM 

of flight muscles. Lipid reserves and flight muscle protein 

reserves are potentially the two most important energy stores in the 

bird's body. What is the potential energy storage capacity of lipid 

reserves and flight muscle protein, and do changes in the size of these 

reserves reflect changes in energetic demands placed upon the birds? 

For example, do the low levels of lipid and relatively small pectoralis 

muscles of nestling-rearing adults (Figures 5.7,5.11) reflect the 
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utilization of body reserves as a result of high energetic demands 

by the adults? 

On average, pectoralis LDM contributes 11.4% to the total dry 

mass of the birds, while lipid reserves on average contribute 25.8% 

to total dry body mass. Hence the size of a protein reserve in 

flight muscles is likely to be small compared with the size of the 

lipid reserve. Moreover, protein has a lower energy yield per gram 

than lipid (Ricklefs, 1974). 

The coefficient of variation for pectoralis major LDM in adults 

was only 10.5%, suggesting little variation in the size of a protein 

reserve, since most of the pectoralis mass will be necessary to 

provide power for flight. Any utilisation of flight muscle protein 

beyond a certain point may present an additional cost to the bird 

(beyond loss of an energy store)'in reducing flight performance. The 

coefficient of variation for extractable lipid content was 36.2%, 

suggesting considerably greater variation in the lipid reserve compared 

with flight muscle protein. 

The flight muscle LDM of starved yellow-vented bulbuls was 70% of 

the mass considered normal for birds of their wing-length (Ward, 

1969a, b). Therefore, in calculating the potential energy yield from 

protein in flight muscles, it was assumed that a maximum of'30% of 

pectoralis LDM was available for metabolism. Flight muscle protein 

was assumed to liberate 23.6 kJ g -l (Ricklefs, 1974). 

In calculating the potential energy yield from lipid reserves, 13% 

of fresh body mass was assumed to be structural lipid unavailable as 

an energy reserve (Zimmerman, 1965; Ward, 1969b). The energy yield 

from lipid catabolism was assumed to be 37.7 kJ g^1 (Ricklefs, 1974). 
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In Table 5.12 the potential energy yield from the total catabolism 

of body reserves of lipid and protein is compared with the daily 

energy expenditure of sand martins during incubation and nestling 

rearing as determined directly by the doubly-labelled water technique 

(Westerterp and Bryant, 1984). 

In both incubating females and nestling rearers of both sexes, 

the contribution to total potential energy from protein catabolism is 

small compared with the contribution from lipid catabolism. Only 

7.8% of total potential energy could be liberated through protein 

catabolism in incubating females, 12% in rearing females, 12.1% in 

rearing males. Hence the value of protein reserves in flight muscles 

as an energy reserve is small relative to the value of lipid reserves, 

contributing a maximum of 5.25% of daily energy expenditure (in 

incubating females). Most of the energy stored in the body is 

available on lipid reserves, and in incubating females such reserves 

contribute 61.7% of the energy necessary for daily existence. A 

small amount of energy may also be available from any food stored in 

the gut. 

Total lipid and protein reserves contribute a maximum of 66.9% 

of DEE in incubating females, and only 36.1-38.4% of DEE in nestling 

rearing adults. The measured reserves are for birds captured at 

dusk, so in no case considered would a bird be likely to survive 

throughout the following day without self-feeding. House martins 

have larger lipid indices than sand martins and have lower flight 

costs since they flap half as much in flight as do sand martins 

(Westerterp and Bryant, 1984). Hence house martins can probably 

survive for one or two days on their body reserves without feeding 

(Bryant and Gardiner, 1979). 
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Reserve protein in the pectoralis muscle has been shown to have 

limited value as an energy reserve. However, flight muscle protein 

does seem to provide nutrients during egg production in some species 

(Jones and Ward, 1976; Ankney and Maclnnes, 1978; Fogden and Fogden, 

1979; Drobney, 1980; Krapu, 1981), and there is evidence for the 

use of flight muscle protein during moult (Ward, 1969b). The decline 

in the protein reserve of the gray-backed camaroptera, Camaroptera 

brachyura, is small in relation'to the total protein required for egg 

formation, and may represent a store of specialised protein for egg 

production. However, in white-bellied swiftlets, Callocalia 

esculenta, lipid reserves fall over laying, while flight muscle LDM 

varies' according to feeding conditions rather than changing systema- 

tically over the laying period (Hails and Turner, in prep. ). Never- 

theless, the smallest pectoralis muscles in swiftlets are found in 

laying birds, so flight muscle protein may be drawn upon for laying 

in exceptional circumstances. The white-bellied swiftlet lays a 

clutch of only two eggs, so total protein demands during laying would 

be relatively small compared with sand martins laying 4-6 eggs. 

House sparrows, Passer domesticus, show a significant decline in 

flight muscle LDM overnight (Jones, 1980). Hence although flight 

muscles may serve as protein reserves during periods of high protein 

demand such as laying and moult, they may also be catabolised relatively 

quickly over a short time period when the demands for specialised 

protein are not obvious. Such a reserve may replace body protein 

denatured during the day (Jones, 1980). 

Lipid reserves and pectoralis LDM were both positively correlated 

with fresh body mass (Table 5.3, Figures 5.5,5.10). Moreover, 

extractable lipid and pectoralis LDM were positively correlated (Table 
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5.3) and the relationship between the variables was linear. It is 

generally assumed that birds do not utilise flight muscle tissue 

until lipid reserves are completely exhausted (Pope and Ward, 1972; 

Houston, 1977; Hirons et al., 1984). In sand martins lipid reserves 

and pectoralis LDM are intercorrelated and are both correlated with 

body mass, so some utilisation of flight muscle tissue appears to 

occur before lipid reserves are exhausted. 

Pectoralis muscles provide the power necessary for flight, and 

as body mass increases, the power required to fly increases allome- 

tricaily (Pennycuick, 1975). Pectoralis mass is positively correlated 

with body mass in Cooper's hawks (Marsh and Storer, 1981), and in 

grey catbirds (Marsh, 1984). Moreover, pectoralis muscle mass often 

increases prior to migration in several species (Fry, Ferguson-Lees 

and Dowsett, 1972), including sand martins (Fry, Ash and Ferguson- 

Lees, 1970). 

Marsh (1984) suggested that pecteralis muscle fibre hypertrophy 

may underlie changes in muscle mass, and that augmentation of muscle 

mass could make a significant contribution to flight performance. 

Hence it seems likely that the positive correlation between pectoralis 

LDM and body mass in sand martins represents a regulation of muscle 

mass according to power requirements for flight, especially in view 

of the muscle's limited value as an energy reserve. 

Thus changes in the size of the pectoralis muscles can either 

be viewed as being adaptive in that large muscles provide increased 

power for flight at high body masses, or alternatively changes in 

muscle mass may represent energetic or nutritional stress placed on 

birds with low muscle mass during periods of high energetic or 

nutritional demand. 
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Pre-breeding males which had just arrived at the colony had the 

largest flight muscles of the groups sampled (Figure 5.11), and it 

seems probable that this represented flight muscle hypertrophy as an 

adaptation to long distance migration. However, pectoralis LDM 

fell below expected levels in laying females when protein demands 

may be high (although the sample size is only two birds), and in 

nestling rearing adults when energy demands are highest (Turner, 

1980; Westerterp and Bryant, 1984). Prelaying and laying females 

generally had smaller pectoralis muscle LDMs than expected for their 

increased body mass (Figure 5.10b) prelaying and laying females were 

15-20% heavier than non-laying birds, so if pectoralis muscle mass 

could be increased rapidly, larger muscles would be expected for birds 

of such heavy body mass if pectoralis hypotrophy is adaptive. 

Hence support exists for and against flight muscle hypertrophy 

as an adaptation to reduce power requirements of flight, and flight 

muscle atrophy is greatest during two periods of high nutritional or ' 

energetic demand. Until more is known of the histology and biochemistry 

of muscles of different mass, the function of flight muscle mass 

changes cannot be clearly resolved. 

Amongst adult sand martins, pectoralis muscle masses, lipid indices 

and body masses were generally lowest in nestling rearing birds. 

Body masses of breeding birds were positively correlated with aerial 

insect abundance (Chapter 2), so birds deposited reserves in good 

feeding conditions. Winter fattening of birds is an adaptation to 

the thermoregulatory demands of low ambient temperatures (King and 

Farner, 1966; Evans, 1969). Since breeding sand martins were 

lightest when food abundance was lowest at cold temperatures, the short- 

term consequences of low temperature for body mass in sand martins 
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contrasts with long-term adaptations to low temperatures shown by 

winter fattening in other passerines. However, pre-breeding males, 

having recently arrived at the colony, tended to have high body masses 

and lipid indices (Figure 5.9, Chapter 6), and this probably represents 

an insurance lipid reserve to buffer against the high probability of 

encountering bad weather early in the year (Turner, 1982), when sand 

martin mortality in Britain is greatest (Mead, 1979). 

The costs and benefits of mass loss and reserve use during nestling 

rearing are discussed in Chapter 8. 

5.4.2 Implications for the brood 

Energy reserves of nestling sand martins were calculated using the 

results of carcass analysis, and compared with daily energy expendi- 

tures from published information. Comparisons were made with adult 

values presented in Table 5.12. 

Although Marsh (1979) provides data on the metabolic rates of 

bank swallow nestlings, his data are from the laboratory, and take no 

account of differences between daytime and nighttime metabolism, and 

do not consider the effects of brood size on metabolic rate. Brood 

size has a considerable influence on nestling metabolism (Bryant and 

Gardiner, 1979). Therefore, in calculating the potential survival 

times of unfed chicks, the field respirometry data of Bryant and 

Gardiner (1979) for house martin broods were used. Differences in 

metabolic intensities of sand martin and house martin broods were 

corrected for by the equation of Aschoff and Pohl (1970): 

M=0.0317 W0.726 

where M is energy expenditure during standard metabolism, kcal h-1 

bird-1, and W is body mass in grams. 
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Two extreme cases were considered: firstly a brood of two 14 day 

chicks taken at the end of the breeding season (3.9.82) when most 

adults had left the colony, and the chicks were undernourished with 

little chance of surviving until fledging. The chicks had a mean 

lipid index of 12.46 + 3.53, and a mean body mass of 11.90 + 1.13g. 

The nestlings carried a mean of 0.3656 + 0.1812g of lipid, of which 

10% was considered as structural, yielding a mean of 12.40 kJ/chick. 

The average daily metabolic rate (ADMR) of a brood of two house martin 

chicks is 0.98 kJ g-1 day-' (Bryant and Gardiner, 1979). Since the 

brood of two sand martins would have a metabolic intensity per gram of 

1.22 x that of an average brood of house martins at the same brood size 

and stage (Aschoff and Pohl, 1970, using house martin brood masses of 

Bryant and Gardiner, 1979), the ADMR of the sand martin brood can be 

calculated as 1.20 kJ g1 day-1, or 28.56 kJ day 
1 for the complete 

brood. Hence the sand martin nestlings would be expected to survive 

for 27.64h on the energy released from their lipid reserves (24.8 kJ) 

in the absence of feeding. One well nourished brood of five, 15 day 

chicks, had a mean lipid index of 70.83 + 12.03, and .a mean body mass 

of 18.6 + 0.46g. The nestlings carried a mean of 2.6618 + 0.5547g of 

lipid, the metabolisable component of which would yield a mean of 

98.82 kJ/chick. The ADMR of a brood of five house martin nestlings 

was 0.96 kJ g -l day -1 (Bryant and Gardiner, 1979), and this brood of 

five sand martins would have a predicted metabolic intensity 1.11 x 

that of an average brood of five house martins of the same age. The 

1 ADMR of the sand martin brood can hence be calculated as 1.07 kJ g 

day, or 99.10 kJ day-' for the complete brood. The brood has 

494.1 kJ of lipid reserves, and would hence be expected to survive for 

4.99 days without feeding. 
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Most sand martin chicks of 14-15 days normally have lipid indices 

between these extremes (Turner and Bryant, 1979), but in each case 

examined above, the potential survival time of starved chicks living 

off body reserves is longer than that of nestling-feeding adults, who 

can obtain 36-38% of their daily energy expenditure from both lipid 

and protein reserves (Table 5.12). This results from nestlings being 

able to store larger quantities of lipid than their parents (Figures 

5.7,5.19) and because adults have higher average daily metabolic rates 

than nestlings, spending considerable time in energetically costly 

flight (Bryant and Westerterp, 1980; Westerterp and Bryant, 1984). 

Moreover, chicks may be able to reduce their metabolic rates during 

fasting - swift nestlings enter a daily reversible torpor after 

several days of starvation (Koskimies, 1950). 

Nestling house martins close to fledging can survive for about 

seven days without food, whilst starved adults may only live for about 

two days (Bryant and Gardiner, 1979). The fasting ability of adult 

swifts is also much smaller than that of nestlings (Koskimies, 1950). 

When sand martin chicks are small (days 0-7), they have a high 

surface area to volume ratio, a low capacity for heat production, 

little feather coverage, and small lipid reserves (Turner and Bryant, 

1979, Figure 5.19). They are therefore liable to lose heat rapidly 

and carry insufficient lipid to buffer against long periods of parental 

inattentiveness between feeding and brooding visits. 

As the chicks grow, their lipid indices reach generally higher but 

variable levels. Their increased body mass reduces their surface 

area to volume ratio, they become covered in feathers, and bank 

swallow nestlings attain homeothermy at about 14g (Marsh, 1979). The 
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nestlings' ability to survive parental inattentiveness hence increases, 

putting less pressure on the adults to return to the nest frequently 

in bad weather, leaving more time for the adults to self feed in 

conditions of low food availability. 

Hence during the late nestling period sand martin nestlings have 

the capacity to store considerably more lipid than their parents, whose 

reserves will have declined since the early stages of nestling rearing 

(Figure 5.7). The transfer of lipid from adult to brood over the 

nestling period is probably adaptive (Bryant and Gardiner, 1979). Late 

in the nestling period, nestling demands are greatest, and adults spend 

no time brooding, but much time flying to collect food (Turner, 1980). 

Adult flight costs will be reduced by the metabolism of lipid reserves 

making the-birds lighter (Freed, 1981; Norberg, 1981), thus reducing 

energy expenditure during the period of highest energy demand during 

the breeding cycle (Bryant and Westerterp, 1980). Energy for-adult 

self-maintenance will allow parents to reduce self-feeding rates as 

lipid is catabolised (Norberg, 1981). Older nestlings can carry 

larger lipid reserves than their parents because they do not fly, and 

will pay a negligible increase in locomotory costs compared with their 

parents. These reserves will buffer against food shortages, during a 

period of high nestling demand, and enable parents to spend considerable 

time self-feeding when their own reserves are at low levels. 

Whether the reduction in adult lipid reserves over the nestling 

period is enforced or voluntary will be discussed in Chapter 8 for 

swallows. Parent birds rearing altricial young will be selected to 

look after their own interests before those of their broods, since 

succeesful fledging of the young will depend on provisioning from the 

parents, and because parental fitness may also be dependent on future 
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breeding attempts. Because of the low body reserves and high energetic 

costs of adults compared with their maturing nestlings, the selective 

- premium on adult self-maintenance behaviour in poor conditions is 

likely to be very 'high. 



CHAPTER 6 
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6. MATE-GUARDING AND SEXUAL CHASES 

IN SAND MARTINS 

6.1 INTRODUCTION 

In monogomous animal species, males can increase their fitness by 

adopting a mixed reproductive strategy, helping a mate to rear young, 

while also taking advantage of opportunities to fertilise other 

females (Trivers, 1972). Several bird species, including bank swallows 

(Beecher and Beecher, 1979), have been observed to guard their mates 

from insemination by other promiscuous males (Horn, 1968; Wolf and 

Wolf, 1976; Mineau and Cooke, 1979; Birkhead, 1979,1982; Buitron, 

1983; Power et al., 1981; Ankney and Scott, 1982; Morris and 

Bidochka, 1982; ROskaft, 1983), and mates may also seek promiscuous 

copulations themselves when chances arise (Beecher and Beecher, 1979; 

Davies, 1983; Fitch and Shugart, 1984). 

In many bird species males seem unable to forcefully fertilise 

females, and a male mixed reproductive strategy would therefore require 

a complementary female mixed strategy (Fitch and Shugart, 1984). 

Females may benefit from fertilisation with males other than their 

mates through increasing offspring variability by mating with 

genetically dissimilar males (Williams, 1975; Gladstone, 1979), and 

non-mate sperm may be genetically superior to that of a female's mate 

(Mineau and Cook, 1979). However, costs are also imposed on females 

accepting multiple paternity, such as increased intrabrood competition 

(Hamilton, 1964; Trivers, 1972), or loss of current investment if the 

mate deserts (Trivers, 1972). Avoidance of these costs may explain 

why paired females do not attempt to copulate with non-mates despite 

ample opportunity (Fitch and Shugart, 1984). 
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In this study the body condition of sand martins during the 

breeding cycle was investigated to determine the condition of birds 

rearing nestlings relative to other stages of breeding (Chapter 5)'. 

Nestling rearers were found to be in relatively poor condition 

compared with laying and pre-laying females who carried. considerable 

lipid reserves and reproductive material. Since hirundines are most 

likely to be fertile during the period of laying and immediately pre- 

laying (Leffelaar and Robertson, 1984), female sand martins may present 

flight cues to males seeking promiscuous copulations through their 

increased body mass affecting their flight behaviour. The aim of 

this chapter is to investigate whether male sand martins can increase 

their investment in offspring through multiple matings by detecting 

such cues. 

6.2 MATERIALS AND METHODS 

6.2.1 Field observations and experiments 

The terminology used in this part of the study follows that of 

Beecher and Beecher's (1979) work on conspecific bank swallows in North 

America. Males follow a mixed reproductive strategy (Trivers, 1972), 

forming monogamous pair bonds with females, but also periodically 

seeking promiscuous copulations with other females before and after 

pair bonding. Females are guarded during their fertile period by 

their mate with which they share parental duties, but the pair are 

also chased by other males seeking promiscuous copulations. This 

situation is depicted in Plate 6.1. 

All mate-guarding field studies were performed in 1982 and 1983, 

when the density of breeding pairs at Barbush was high and interactions 

between birds were more frequent, than when numbers were low during the 

1984 breeding season. 



Plate 6.1 

Sexual chase in sand martins. Bird A is 

probably a fertile female, B her mate, and Ca 

chasing male seeking promiscuous copulations. 
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To determine whether the chances of a pair being chased by one or 

more birds changed over the course of a day, observations were made 

from 05.00h to 21.30h on 20th May, 1982, when much chasing behaviour 

was occurring at the colony. One hundred random birds or groups of 

birds were noted, and the sighting was categorised as to whether a 

bird was alone, a pair was observed, or a chasing party present. 

When seasonal variation in the intensity of mate-guarding behaviour 

was recorded, data were collected within an hour of mid-day to avoid 

any biases due to diurnal variation in guarding activity. One 

hundred burrow exits from different burrows in the same subcolony were 

observed each week, and records were made as to whether a bird left 

the burrow alone, or if members of a pair left within 5s of each other. 

If the latter occurred, mate-guarding was inferred. 

This method has a bias in that it fails to consider that birds 

performing different activities leave their burrows at different rates. 

For example, incubating birds remain in burrows for a longer period than 

birds delivering food to their brood. If two counts of burrow exits 

are made, one when most birds are on eggs, one when the bulk of the 

colony are feeding nestlings, and on both occasions an equal number of 

mate-guarding pairs is present in the colony, the former count will 

record more of the mate-guarding pairs since it will take longer for 

100 burrow exits to occur. Nevertheless, if seasonal trends are 

strong, the method should pick them up. 

To examine which birds were chased and which were chasers, 

observations were made on 153 colour marked birds of known sex, body 

mass and age class (adult or fledgling) released after mist netting. 

All released birds were observed for at least one minute. If the 

bird was chased or chasing, observations continued for another two 



153 

minutes whenever possible. The number of chasers following chased 

birds was documented, and stopwatches were used to record time chased, 

and time taken for chase initiation. 

One of four events was ascribed to the released bird: 

(a) No interaction; the bird was apparently ignored by other 

individuals at the colony. 

(b) The released bird was 'investigated'. An investigation was 

defined as a pursuit lasting less than 30 seconds. All 

investigations recorded (n = 28) involved only one pursuing bird. 

(c) The released bird was 'chased'. Chases lasted 30 seconds or 

longer and may have involved more than one pursuing bird. 

(d) The bird joined a sexual chase as a 'chaser', actively pursuing 

other birds. 

The above observations should elucidate whether birds were chased 

preferentially according to sex, age class, or body mass. If a 

released bird was pursued, the chase was generally initiated within 

14 seconds of release (see results), so chasing birds must identify 

birds to chase by cues given soon after release. To attempt to 

identify cues available through flight performance, two techniques were 

used. 

Birds may be chased on the basis of their body mass affecting 

their appearance rather than because body mass influences flight 

performance. Hence a sample of six birds had their primary feathers 

tied loosely to influence flight performance over the short period 

the tie remained in place, but body mass was not changed. The 

primaries were ties with surgical thread in a single knot so that the 

thread would soon work itself loose, or could easily be removed by the 

birds. 
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6.2.2 Flight performance 

To investigate how body mass affected some aspects of flight 

performance, 34 birds captured at dawn were brought to Stirling 

University and their flight behaviour on release from the hand was 

video recorded. Two aspects of flight performance were measured. 

(a) Time taken to reach ascending flight. 

(b) wing beat frequency during the first two seconds of ascending 

flight. 

Recordings were played at 50 frames second-' for analysis. Birds 

were chosen at random for video-recording, so that the body mass of 

birds was not known at the time of release. 

A sample of seven birds was artificially weighted to the body 

mass of prelaying/laying female martins. This was achieved by 

intraperitoneal injection of 0.85% saline sterile solution. Two 

grams of water was injected into each bird, lg at a time. No ill 

effects were noted on the injected birds, and some of the sample were 

recaptured later in the season, one experimental bird being controlled 

during the subsequent breeding season. 

6.3 RESULTS 

6.3.1 Diurnal and seasonal variation in mate-guarding behaviours 

Dirunal variation in chasing behaviour on 20th May 1982 is shown 

in Figure 6.1. A hundred birds or groups of birds were observed at 

random over the day, and records were made as to whether the birds 

were alone, in pairs, or in chasing parties. The percentage of 

observations consisting of pairs pursued by one or more chasing bird 

peaked at dawn, when 85% of observations were of chasing parties, 

rather than single birds or pairs which were not chased. Chasing 
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parties were fewer during the middle part of the day, and a second but 

lower peak in observations of chasing parties occurred towards dusk, 

when 55% of observations were of chasing parties. Most pairs had 

only one chaser, but the same trends occurred for parties with one 

chasing bird, two chasers, or three chasers (Figure 6.1 (b-d)). 

Chasing males presumably invest most time in pursuing pairs at 

dawn and dusk because food availability is low and feeding is relatively 

unprofitable. Most Diptera have flight periods over the middle part 

of the day (Lewis and Taylor, 1965), and feeding at times of low food 

availability would involve considerable energy expenditure with little 

energetic return from feeding. At such times it would pay males who 

are not guarding mates, incubating, or brooding to partake in 

behaviours other than feeding, such as chasing. Great tits show a 

peak in the amount of time spent singing at dawn, when foraging is 

assumed to be unprofitable (Kacelnik and Krebs, 1983). 

It is probable that diurnal variation in food abundance influences 

mate-guarding behaviour as well as chasing. To overcome any such 

diurnal change in the intensity of mate-guarding, seasonal variation in 

guarding behaviour was investigated within one hour of mid-day. 

The percentage of departures from burrows (n = 100) involving two 

birds leaving their burrow within 5s of one another (and assumed to be 

mate-guarding) is termed the 'mate-guarding index' and is depicted 

alongside the first egg dates for subcolony 2 in 1982 in Figure 6.2. 

Female birds are most likely to be fertile during early laying and 

for several days before the first egg is laid (see below). if mate 

guarding is restricted to the female fertile period, the mate-guarding 

index should closely track the first egg date distribution. Although 

such tracking is not exact, the mate-guarding index does roughly 
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parallel the first egg date distribution: both distributions are 

bimodal and peaks occur within two weeks of one another. One 

explanation for the discrepancy between the two distributions could 

be-because the first egg date distribution was determined by back- 

calculating from broods of known age, and so represents nests success- 

ful up to about two weeks of nestling feeding, when the young were 

aged. Guarding behaviour would be expected to be linked to actual 

first egg dates within the subcolony, not to only successful nests. 

The first peak in the mate-guarding index was higher than the second 

peak, and this could be because males focus their attention on early 

arriving females, which may be of high quality. The bimodal seasonal 

trend in the guarding behaviour of sand martins is likely to differ 

from that shown by the conspecific bank swallow in North America, which 

is single brooded (Petersen, 1955). 

6.3.2 Which birds are chased by male sand martins? 

Having shown a diurnal variation in chasing behaviour and a 

seasonal variation in mate-guarding behaviour, an investigation was 

made into which birds within the colony were chased. Observations 

on 10 chasing parties involving colour marked males showed that only 

males joined parties as chasers. Data were collected on 153 birds 

released after mist-netting, the sample consisting of 90 females, 44 

males, and 19 fledged young in 1982. 

'Investigated' birds were followed after 23.52 + 14.42s (n = 7), 

and all investigations involved only one following bird. 'Chased' 

birds were followed after 13.77 + 9.22s (n = 10), and involved 

2.8 + 1.03 chasing birds observed within three minutes. 
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ANALYSIS 1: Which sex/age classes are chased? 

Of the153 birds released, only one joined a chasing party as a 

chaser, and this bird was a male. Twenty-five birds were chased, 

of which 23 were females and two were males. The observed numbers of 

birds chased in each sex/age class (male, female, fledgling) were 

compared with the expected number in each class if chasing were 

directed randomly (X2 analysis). The results are presented in Figure 

6.3a, b. In analysis 1(a) males and females are compared, while 

fledglings are included in analysis 1(b). 

For each analysis, the observed distribution of chases differs 

significantly from that expected if each sex/age class were chased at 

random (males/females comparison; X2 = 6.99, P<0.001 : males/ 

females/fledglings comparison X2 = 12.96, P<0.001). The significant 

difference between observed and expected distributions in each case was 

because a disproportionately high number of females were chased. 

Hence the observations support those of Beecher and Beecher (1979) 

in that sexual chases are directed at females. Some intermale inter- 

action may be involved in chases however, because two of the 25 chasers 

recorded were directed at males, although such cases may have been the 

consequence of poor sex identification by the chasing males. 

ANALYSIS 2: Which sex/age classes are investigated? 

A further 28 observations on the 153 released birds resulted in 

'investigations'. A comparison of the observed distribution of 

investigations compared with that expected if investigations occurred 

at random according to the number of birds in each sex/age class 

released is presented in Figure 6.3(c). The observed distribution 

almost mirrors that expected (X2 = 0.6, ns), and so no sex/age class 

in a males/females/fledglings comparison was singled out for investi- 

gation. 
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Having determined that no sex/age class was singled out for 

investigation, but that chases were directed predominantly at females, 

the next stage in the analysis was to determine which females were 

singled out for chasing. 

ANALYSIS 3 Which females are chased? 

To determine whether females of different body mass were 

selectively chased on release, the body masses of the 90 observed 

females were grouped into 0.5g classes and plotted on a frequency 

distribution in the upper portion of Figure 6.4a. A similar classifi- 

cation was performed for the 44 males which were observed in the 

study, and is plotted in Figure 6.4b. All observations were made in 

the evening, so body masses were standardised for time of weighing. 

Figure 6.4b shows the distribution of male body masses to be 

unimodal,. skewed towards lighter masses, and having a mean body mass 

of 13.21 + 0.76g. The distribution of female body mass (Figure 6.4a, 

upper portion) was bimodal, with a mean body mass of 14.23 + 1.35g. 

The distribution was probably bimodal because it included two 

subdivisions, a lighter subdivision including incubating and nestling- 

feeding birds, and a heavier subdivision consisting of females carrying 

eggs or bearing well developed reproductive structures. The lighter 

subdivision tended to follow the distribution of male body masses. 

A chasing selection index was derived as the percentage of 

females in each 0.5g body mass class which were chased on release. 

This is plotted in the lower portion of Figure 6.4a. The selection 

index was heavily skewed towards the heavier body masses, with all of 

the eight birds between 16g and 17.5g in mass being chased on release. 

The peak of the chasing selection index occurred above the higher peak 

in the body mass distribution. A comparison of the observed frequencies 
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of birds chased in each body mass class with the frequencies expected 

if chasing were directed randomly with respect to body mass gives a 

value of X2 of 22.4 (n = 15, P<0.05). Hence the chasing of females 

was not random with respect to their body mass. 

To determine whether chased females were significantly heavier 

than females which were not chased, an analysis of variance was 

performed on the body mass and behavioural data. The analysis is 

presented in Table 6.1. Data were categorised into six classes where 

more than 10 values for body mass occurred in each class. The classes 

were: 

1. Fledglings which were neither chased nor investigated (FYn/c 

2. Males which were neither chased nor investigated (Mn/c)' 

3. Males which were investigated (Mi). 

4. Females which were neither chased nor investigated (Fn/c 

5. Females which were investigated (Ft). 

6. Females which were chased (FC). 

The null hypothesis of the analysis is: 

H0 : uFYn/c = PMn/c = JMi = 11 Fn/c = pFi = uFc 

where u= mean body mass. 

The analysis of variance gives an F value of 11.9 (n - 145, P< 

0.001).. Hence at least one pair of means was significantly different. 

To determine which means were significantly different, a multiple range 

test was performed on the data (Table 6.1b). At P=0.05, chased 

females were significantly heavier than females which were neither 

chased nor investigated and all other classes. Females which were 

not chased were significantly heavier than the two lightest classes - 

fledglings and males which were neither chased nor investigated. 
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Table 6.1 

(a) Analysis of variance of body mass and behavioural data for 
sexual chases of sand martins 

1-23=4$6= 4F ý0 
n/c n/c i ýFn/c uni 

c 

Source df SS MS 

Treatments 
Error 

5 
139 

69.00 
160.76 

13.80 
1.16 

Total 144 229.76 

F= 11.9, n= 145, P<0.001 

(b) Multiple range test of body mass and behavioural data for 
sexual chases of sand martins. Tabulated values are for 
q (= ul - µ2 ) 

Mean body mass ± sd (n) Fc Fn/c Mi Fi FY. Mn/c 

Fc 15.03 ± 1.37 (23) *** 

Fn/c 14.10 ± 1.32 (49) ns ns * 

Mi 13.82 ± 0.51 (10) ns ns ns 

Fi 13.43 ± 0.81 (15) ns ns 

FYn/c 13.12 + 0.73 (16) ns 

Mn/c 13.00 ± 0.73 (32) 

1. FYn/c . fledglings which were neither chased nor investigated. 

2. Mn/c males which were neither chased nor investigated. 

3. Mi . males which were investigated. 

4. Fn/c females which were neither chased nor investigated. 

5. Fi females which were investigated. 

6. Fc females which were chased 

ns not significant 

*: P<0.05 
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6.3.3 Female body mass during breeding and sexual chasing 

The first stage in determining whether females were heaviest when 

they were fertile was to plot female body mass. as a function of stage 

in the breeding cycle. In Figure 6.5a female evening body mass is 

plotted over the nesting period for individuals, while in Figure 6.5b 

mean body masses + sd are plotted with incubation divided into three 

phases of equal duration, and nestling feeding split into days 0-6 

(brooding phase), days 7-17 (nestling demand highest), and days 18-22, 

when nestling demand falls (Turner, 1980). 

Female body mass was highest during the immediate pre-laying and 

laying period, mainly because considerable lipid reserves were 

carried at this time, and because reproductive structure§ and develop- 

ing eggs contributed considerably to overall body mass (Chapter 5). 

Body mass fell rapidly after laying and remained relatively stable 

during incubation. Lowest masses were attained when nestling demands 

were highest, and body mass rose slightly when brood demands were 

reduced at the end of the rearing period. The patternsof mass change 

were similar to those of bank swallows' recorded by Petersen (1955). 

In Figure 6.5a the mean mass of chased females is plotted, + sd. 

Twelve masses (28% of total) fell within 1 sd of the mean, of which 

75% were prelaying or laying females. 

Male evening body mass over the breeding cycle is plotted in 

Figure 6.6. The heaviest males were pre-breeders, these being birds 

captured early in the season before laying had started at the colony 

and before mate-guarding observations commenced. The small sample 

size forbids generalisations, but the two lightest birds again occurred 

during the period of high nestling demand. Only four male masses 
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after laying fell within 1 sd of the mean mass of chased females (17% 

of total). No male masses exceeded the mean body mass of chased 

females if the early arrivals are excluded. The adaptive value of 

hirundine body mass changes during breeding are discussed in Chapters 

7 and B. 

So, chasing by male sand martins was directed at heavy females, 

and females were heaviest during the prelaying and laying stages of 

the breeding cycle. Is this the time when females are most likely to 

be fertile? 

In chickens males have the greatest probability of successful 

fertilisation if insemination occurs at least 48h before the first 

ovulation (Lodge, Fechheimer and Jaap, 1981) though sperm may remain 

viable inside the female's infundibulum for over 10 days (Howarth, 

1974). Since both sperm viability and the ability of sperm to compete 

with fresh sperm declines with time (Howarth, 1974; Lake, 1975) 

there should be a premium on males fertilising females early during 

their laying period. The fertile period for ova is less than 0.5 

hours after ovulation in chickens (Howarth, 1974). Hence female 

sand martins are likely to be fertile for at least two days prelaying, 

and throughout laying when ova are being ovulated. Eight-four percent 

of copulations in tree swallows occurred during the calculated fertile 

period of 5 days before laying. until the third day after the first egg 

(Leffelaar and Robertson, 1984). 

6.3.4 Female flight performance and reproductive condition 

Natural selection should favour males which can detect fertile 

females, since male fitness is likely to be highest in birds which 

fertilize most females. Since female sand martins are heaviest during 

their fertile period, males which are able to detect fertile, heavy 

females will be selected for. 
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Flight performance and behaviour varies with body mass in birds. 

For example, stroke period increases allometrically with increasing 

body mass in passerines (Rayner, 1979), 'and flight velocity and flight 

power also vary allometrically according to body mass (Pennycuick, 

1969; Greenewalt, 1975). 

The heaviest female sand martin captured during the study weighed 

19.7g and had difficulty rising from the ground after release, suggest- 

ing that heavy individuals may encounter problems during take off. 

Moreover, one nestling close to fledging with poor flight capacities 

was chased to the ground by about 10 birds. If the chasing birds were 

males seeking promiscuous copulations, this anecdotal observation 

suggested that birds with laboured flight may present cues to chasing 

males. The above observation also suggests that 20g may be about the 

upper limit for body mass in sand martins, birds above this mass 

probably being unable to take off from level ground. 

To investigate whether birds were chased through cues given in 

flight, a sample of six birds (four females, two males) which were not 

pre-laying. or laying females had their primaries tied loosely with 

surgical thread. Hence body mass was kept constant, though flight 

performance was altered. All birds encountered problems during take- 

off and ascending flight. Observations on these six experimental 

birds are presented in Table 6.2. 

Three of the four females whose primaries were tied were chased 

soon after release, and the other bird was investigated. One of the 

experimental males was chased, the other investigated. The results 

suggest that flight cues are important in providing cues for chasing 

males. However, the chases were usually of a relatively brief 

duration, suggesting that either the thread loops fell off soon after 
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Table 6.2 

Observations on sand martins whose primary features had been 

loosely tied with surgical thread 

Sex Body mass (g) Interaction with other birds 

Female 14.3 Chased for. l min +, 1 chaser 

Female 14.0 Investigated for 12s, 1 chaser 

Female 13.4 Chased for 49s, 1 chaser 

Female 13.3 Chased for 60s, 2 chasers 

Male 13.0 Chased for 30s, 2 chasers 

Male 12.9 Investigated for 20s, 2 chasers 
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the birds were released, or that secondary cues indicating a female's 

fertility may be used by chasing males. 

If sand martins are chased, they are first followed on average 

13.8s after release (see above). In one bird whose flight was video 

recorded for 50s after release, level flight was attained only after 

7s (Figure 6.7). Flap rate decreased rapidly over ascending flight, 

and was generally lower in level flight than in ascending flight, 

especially when gliding was occurring. Because of the speed in which 

chased birds are first followed, any flight cues available to chasing 

males are likely to occur soon after release, when birds descend from 

the hand and then enter ascending flight. Hence time to reach 

ascending flight and wing beat frequency during the first 2s of 

ascending flight were quantified in a video analysis of take-off 

patterns in 32 adult birds. 

For video recording six laying or prelaying female sand martins 

were captured and ascribed to this period in the breeding cycle on the 

basis of having a heavy body mass, substantial lipid reserves, and 

abdominal swellings indicating the presence of fully developed eggs. 

A further seven females had their body mass increased by 2g (c15%) by 

interperitoneal injection with saline water. These 13 females were 

ascribed to the 'weighted birds' category for analysis. Their flight 

behaviours were compared with 19 adults which were not pre-laying or 

laying females. The take-off patterns of two fledglings was also 

video-recorded. 

Flight behaviours of the two groups are compared in Table 6.3. 

The 'weighted birds' group had a significantly higher mean body mass 

than other birds analysed. There were no significant differences in 
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mean body mass, time to reach ascending flight, or flap rate between 

experimentally weighted and naturally heavy birds in the 'weighted 

birds' category (see Table 6.3 for statistics). The mean time taken 

for weighted birds to reach ascending flight was significantly longer 

than that taken by other birds, whilst there was no significant 

difference in mean wing beat frequency in ascending flight between the 

two groups. 

The mean body mass of two fledglings whose take-off patterns were 

recorded was 11.65 + 0.35g. The mean time taken to reach ascending 

flight was 0.60 + 0.06s, and the mean wing beat frequency in ascending 

flight was 13.73 + 0.80 beats s-. 
1 

6.4 DISCUSSION 

6.4.1 Mate-guarding behaviour and coloniality in birds 

Mate-guarding behaviour in sand martins closely resembles that of 

conspecific bank swallows (Beecher and Beecher, 1979), in that chasing 

is performed by males and directed towards fertile females. Mate- 

guarding behaviour is widely distributed amongst bird species, and a 

list of published studies is given in the introduction to this chapter. 

Amongst hirundines other than sand martins, mate-guarding is found in 

rough-winged swallows, Stelgidopteryx ruficollis, (Lunk, 1962), 

swallows, (Samuel, 1971; Woods, 1982; A Moller, pers. comm. ), purple 

martins, Progne subis, (Brown, 1978), and house martins (D. M. Bryant, 

pers. comm. ). 

Generally, mate-guarding and extra-pair copulations are more 

frequently recorded in colonial bird species (Gladstone, 1979), where 

males have potential access to many females because of the high density 

of breeding pairs nearby. Moreover, breeding cölonies of birds often 
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show synchrony in breeding behaviour (e. g. Emlen and Demong, 1975; 

Feare, 1976, review in Wittenberger, 1981), so fertile females may be 

relatively abundant, temporally as well as spatially. Hence there 

will be strong selective pressure for males to guard fertile mates 

with a high density of male competitors, and probably also selection 

for males to seek promiscuous copulations amongst a high density of 

females when their mates are not fertile. When food resources are 

economically defendable, territory holding males will exclude other 

males from their defended area, and the necessity for close mate- 

guarding will be reduced. 

Colonial breeding is probably often linked to the predictability 

and distribution of food resources. An unpredictably distributed 

food supply which is superabundant when located is usually not 

economically defendable, and may be better exploited by group foraging 

(Lack, 1968; Brown, 1969; Davies and Houston, 1984). Hence the 

benefits of locating food through foraging in groups during the breeding 

season may be one factor influencing the evolution of colonial breeding. 

Although other suggestions exist as explanations for the evolution of 

colonial breeding (for example the reduction in predation pressure at 

colonies, Hoogland and Sherman, 1976), it seems probable that feeding 

ecology affects breeding dispersion in birds, and breeding dispersion 

in turn influences mating strategies (Horn, 1968, review in Wittenberger, 

1981). Since aerial insects are an unpredictable food resource 

(Bryant, 1975b), probably not economically defendable, aerial feeding 

may have contributed to the evolution of colonial nesting in sand 

martins, which increased selective pressures for promiscuous behaviour 

in males. Swallows in Britain tend to nest solitarily or in small, 

loose colonies, and feed on low-flying insects which are more predictable 
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in distribution than higher-flying forms (Waugh, 1978). Although 

mate-guarding occurs in swallows (Samuel, 1971; Woods, 1982; A. 

M$ller, pers. comm. ), chasing parties are not seen on the same scale as 

in sand martins (pers. obs. ). Territorial defence by both sexes 

probably partly explains why tree swallows do not show mate-guarding 

behaviour (Leffelaar and Robertson, 1984). 

There is substantial evidence from several bird species that 

copulations with individuals other than the mate may result in fertile 

eggs being produced. Bray, Kenelly and Guarino (1975) vasectomised 

male red-winged. blackbirds, Agelaius phoenicus, and their mates laid 

fertile eggs. Hybrid cave-x barn swallow young (Petrochelidon fulva 

x Hirundo rustica) in barn swallow nests suggests successful extra-pair 

copulations (Martin, 1980). Extra-pair copulations in sand martins 

were not seen in this study, though inter-pair copulations were only 

observed on three occasions. Copulation was once seen in a burrow 

observed from a viewing chamber, and was noted on two occasions in 

early morning when many pairs were seen mating on the ground. Pairs 

were often harassed by other individuals during these ground copula- 

tions. Beecher and Beecher (1979) noted promiscuous copulations 

resulting from sexual chases in bank swallows, and Hoogland and 

Sherman (1976) observed promiscuous copulations with stuffed birds by 

males, and found semen on the dead bird. 

Male sand martins arrive at the colony in spring with well 

developed testes, which atrophy over the course of a nesting attempt 

(Chapter 5). The opportunities for males to seek promiscuous 

copulations will probably be reduced when much time is spent incubating, 

and at its lowest during nestling-feeding. Sperm storage capacity of 

the testes is likely to be reduced during these periods of testes 

atrophy. 
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6.4.2 How body mass changes may affect flight performance in 
fertile female sand martins: cues for males to 
increase their fitness 

The results of the field observations, experiments and video 

analyses suggested that natural selection has favoured male sand 

martins to increase their fitness by detecting fertile females through 

flight cues resulting from female body condition during the pre-laying 

and laying period, and chasing such females to attempt promiscuous 

copulations. 

One cue which may be available to chasing males is the increased 

time that heavy females, likely to be fertile, take to reach ascending 

flight (Table 6.3). Such a cue may be available when birds leave 

burrows, and chasing males may be vigilant for birds which dip substan- 

tially on exit, or which have problems gaining height. 

The failure to detect differences in wing beat frequency during 

the first 2s of ascending flight is not surprising in view of the rapid 

change in flap rate over this period (Figure 6.7). Since aerodynamic 

theory predicts considerable variation in other aspects of, flight 

performance as a function of body mass (Pennycuick, 1969,1975; 

Greenewalt, 1975; Rayner, 1979), it is unlikely that the time taken 

to reach ascending flight is the only potential flight cue given by 

fertile females. 

The extra mass carried by laying and pre-laying female sand 

martins will increase wing loading, reduce the power: mass ratio, cause 

a shift in the centre of gravity, and alter the aerodynamic profile of 

the female. Indeed, the increased mass carried by laying female birds 

of prey has been used to explain why female raptors evolved to a 

larger size than their mates: the larger wing area of females relative 

to males reduces their wing loading during laying, facilitating 
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Flap rate as a function of time after release from 
the hand for one sand martin whose flight was video- 
recorded for 50 seconds. 

The data is described by 

y= 12.2 - 1.37 lnx 

r= -0.68, n= 34, P<0.001. 

The asterisk denotes time of descending flight, the pecked 
line ascending flight, the thin solid line level flight, 
during which gliding is illustrated by the thick solid line. 
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foraging by flight in a period of high energy and nutrient demand 

(Wheeler and Greenwood, 1983). 

In Figure 6.8 wing area is plotted against wing-length (maximum 

chord) for 29 adult sand martins. Between 101 mm and 112 mm wing 

area was significantly positively correlated with wing-length, (r = 

0.76, n= 28, P<0.001). The 98.5 mm wing-length point was omitted 

from the correlation because it is isolated from the remaining data, 

and may be outside of a linear relationship between wing-length and 

wing area. The inclusion of this point into the correlation still 

maintains a high level of significance between the variables (r = 0.70, 

n= 29, P<0.001). 

Hence sand martins with longer wings are likely to have lower 

wing loadings for a given body mass than are shorter winged birds. 

Male house martins become heavier as they get older (Bryant, 1979), and 

if sand martins also increased in. body mass with age, the increase in 

wing-length with age (Chapter 2) could be viewed as an adaptation to 

counteract an increased wing loading had wing area remained constant. 

The mean wing loadings of birds at different stages of the 

breeding cycle are presented in Table 6.4. The mean wing loading of 

prelaying and laying females was significantly greater than that of 

incubating birds (t = 2.36, n= 13, P<0.05), and nestling rearers 

(t = 5.36, n= 19, P<0.001). 

Hence it is likely that female sand martins are flying with 

suboptimal wing loadings during laying and prelaying. Their wings 

probably evolved for flight carrying a mass some 15-20% less than 

that during the fertile period, since laying and prelaying contribute 

at most about 5% of the annual cycle. Such a sudden change in wing 
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The relationship of wing area to wing-length in adult 

sand martins. 

Between 101 and 112 mm wing-length, wing area is described by 

y= -93.12 + 1.58x 

r=0.76, n= 28, P<0.001. 
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Table 6.4 

Wing loadings of sand martins during the breeding season. 

Breeding Stage Wing Loading mean, x ± sd (n) 
gcm-'2 

Pre-laying/laying females a 0.211 ± 0.015 (6) 

Incubating birds b 0.185 ± 0.023 (7) 

Nestling rearers 
b 0.175 ± 0.013 (13) 

Fledglings 0.186 ± 0.015 (5) 

a: Prelaying and laying female data were combined because 

females are likely to be fertile during both periods. 

There was no significant difference between the mean wing 

loading of laying females (0.203 t 0.005g cm-2 ,n= 2) and 

prelaying females (0.216 ± 0.017g cm ,n= 4), t=1.0, n. s. 
2 

b: Incubators and nestling rearers of both sexes were combined, 

there being no significant difference between mean wing 

loadings of males and females in these groups (incubators 

t=0.76, n. s., nestling rearers t=0.20, n. s. ). 
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loading during the fertile period is likely to be responsible for 

influencing female flight behaviour during this time. 

The findings of this Chapter have two implications for the study 

of parent: offspring resource allocation in swallows. Firstly, 

although mate-guarding is likely to involve substantial time and energy 

in male sand martins, male swallows (not being colonial breeders in 

this study) may expend little mating effort in guarding and chasing 

over the breeding cycle. Secondly, the flight difficulties 

experienced by exceptionally heavy sand martins during take-off 

suggests that an upper economical limit exists for body mass in 

hirundines, and such a limit may impose a ceiling on the quantity of 

reserves that a parent bird is prepared to deposit. 



CHAPTER 7 
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7. RESOURCE ALLOCATION DURING 

INCUBATION IN SWALLOWS 

7.1 INTRODUCTION 

During incubation female swallows must make decisions about when 

to warm their eggs and when to self-feed so as to maximise their 

chances of survival and reproductive success (McFarland, 1977; 

McCleery, 1978). In this chapter, the body mass dynamics of incubat- 

ing swallows are described, and incubation decisions are viewed in 

the context of parent: offspring resource allocation. 

Eggs represent a reproductive investment in offspring by parent 

swallows, especially by the female, and the clutch needs to be 

frequently warmed if successful hatching is to occur. Simultaneous 

foraging and incubating are obviously incompatible activities for 

female swallows, and it is assumed that fitness is greatest in 

individuals which maximise their energy gains while foraging between 

incubation bouts. 

A previous attempt to understand the optimal time for parent 

birds to leave eggs unattended between'incubation stints only consi- 

dered the constraint of clutch cooling rate on adult behaviour (Webb 

and. King, 1983). The time which a bird spends feeding between 

incubation bouts is also likely to depend on its foraging success 

during the inattentive period. 

A model is developed to predict the optimal time for the inatten- 

tive period in female swallows. Clutch cooling rates were 

investigated using thermistor probes inserted in swallow eggs under 

laboratory conditions, while constraints on adult foraging behaviour 

4 
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were derived from instantaneous body mass changes measured by the 

automated nest-balance system. 

7.2 MATERIALS AND METHODS 

7.2.1 The use of precision automated nest-balances 

The use of Mettler PK2000 electronic balances to monitor instan- 

taneous and long term body mass changes in breeding swallows has been 

described in Chapter 4, together with observational methods and 

morphometric measurement techniques. 

7.2.2 Field experiments 

Observations on control birds incubating their natural clutches 

were supplemented by an experiment whereby clutch size was manipulated. 

In 1984 two female swallows of similar body mass each completed a 

clutch of five eggs on the same day. Eggs were interchanged between 

their nests for one 2-day and one 3-day period so that one female 

incubated eight eggs, the other two eggs. Hence each female was 

observed incubating experimental clutch sizes of two and eight, and 

her natural clutch size of five eggs. The experimental clutch sizes 

were outside the range of clutch sizes encountered in natural 

situations in the study (Chapter 2). The experimental females were 

nesting within 30m of each other, and fed in similar areas. All 

eggs used in the experiment hatched successfully. 

7.2.3 Egg cooling rates 

Egg cooling rates were determined in an incubator in the 

laboratory. Eggs were pierced, filled with distilled water, and a 

thermistor probe was inserted. The egg was then sealed with evo- 

stick adhesive and candlewax. 
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Ambient temperatures of 5°C, 15°C, and 25°C were used in the 

experiment. Clutch size was varied from one to 10 eggs, and at 

clutch size five, egg cooling rates were recorded with and without 

the feather insulation in the nest. After the thermistor egg had 

been heated to 35.7°C, the mean maximum temperature attained by 

swallow eggs during natural incubation bouts (Turner, 1980), cooling 

rates were recorded for one hour. The heat source,. was a 100W light 

bulb. 

Cooling rates obtained by the thermistor egg were compared with 

those from two other thermistor eggs in a single trial, and no 

significant differences between the mean cooling rates obtained from 

the three eggs were found. 

The situation of swallow nests in barns resembles laboratory 

conditions in that radiative heat input to the clutch through 

sunlight and'convective heat losses in draughts are likely to be 

small in both cases. 'However, although the incubator was darkened, 

its metal surface may have reflected more heat than the wooden beams 

surrounding natural swallow nests. 

7.3 THEORY AND RESULTS 

7.3.1 Body mass dynamics of incubating female swallows 

During incubation, the body masses of female swallows show 

considerable variation between individuals, and within any individual 

female. For example, in Figure 7.1 the afternoon body masses of 

five incubating female swallows are illustrated. One bird weighed 

only 19g on its lightest day, while the heaviest incubation mass 

recorded was almost 27g. In this subsection, the reasons for this 

variation are investigated, and the adaptive significance of the body 

mass dynamics of incubating female swallows are explored. 
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Body mass changes of the five incubating female swallows. 

Lines terminate on day of hatching. 
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(a) Intersexual variation in body mass during the incubation period 

The mean afternoon body mass of 17 female swallows over 78 days 

of incubation was 22.48 + 1.41g. The mean afternoon body mass of 11 

male swallows over 17 days when their mates were incubating was 

20.46 + 0.82g. Hence, although female swallows tended to be smaller 

than males (Chapter 2), they were significantly heavier during the 

incubation period (t = 5.7, P<0.001). 

Since female swallows incubate alone, the fact that they were on 

average 2g heavier than males at the same time suggests that females 

maintained a reserve during incubation. There. was no consistent 

trend to lose mass during incubation, which would be expected if 

reproductive organs were undergoing atrophy. Moreover, the results 

from sand martin carcass analysis (Chapter 5), suggested that 

reproductive structures atrophied immediately (i. e. in less than three 

days) after laying. Since body mass was significantly positively 

correlated with fat score and lipid content in swallows (Chapter 5), 

it is concluded that female swallows are indeed maintaining a large 

lipid reserve over the incubation period. 

(b) Inter-individual variation in body mass 

Insufficiant data were available to examine the relationship 

between body mass and keel length in male swallows during incubation. 

Female swallow incubation body mass was strongly positively correlated 

with keel-length (Figure 7.2), so large females tended to be heavier 

than smaller birds. 

One explanation for this relationship is that long-keeled females 

are probably structurally bigger than individuals with shorter keels, 

having larger muscles and body organs, and hence being heavier. 

Moreover, large birds are likely to experience a higher energy 
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expenditure than smaller individuals, and may need to accumulate more 

lipid to meet this greater energetic demand. However, large house 

martins have a lower average daily metabolic rate and a lower daily 

energy expenditure than smaller birds (Bryant and Westerterp, 1982), 

so large female swallows may be more efficient at accumulating reserves 

than are smaller individuals. 

(c) Intra-individual variation in body mass 

Variation in body mass within individual incubating females was 

analysed in relation to daily temperature and food abundance. 

Body mass changes of one typical incubating female in relation 

to maximal daily temperature and food abundance on the same day are 

illustrated in Figure 7.3. Insect abundance, as measured by the 

12.2m suction trap, closely tracks maximal daily temperature, and the 

female's body mass follows each of these lines reasonably closely. 

Although insect abundance increases at higher maximal daily tempera- 

tures (Chapter 3), temperature and insect abundance may also influence 

incubation body mass independently: the former for example by modify-" 

ing cooling rates of eggs, the latter by affecting foraging success. 

(i) Temperature effects 

Lipid reserves may be mobilised more quickly in colder weather, 

when metabolic rates are higher as a result of being below the lower 

critical temperature. Moreover, at cold temperatures birds must spend 

considerable time on the nest reheating eggs and maintaining egg 

temperature, leaving little time for self-feeding. 

(ii) Food abundance effects 

Foraging efficiency is likely to be higher when insects are more 

abundant, since preferred, large items are commoner at higher tempera- 
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tures (Turner, 1980, Chapter 3), and since less time may be spent 

searching for prey when it is more frequently encountered. Increased 

foraging efficiency at high levels of food abundance could lead to 

lipid accumulation, especially if more time is available for self- 

feeding at higher temperatures. 

Correlations for female incubation body mass in relation to 

incubation stage, food abundance, and body size are presented in 

Table 7.1. 

Body mass was significantly positively correlated with food 

abundance on the day of weighing, food abundance on the days 

preceding and following weighing, maximal daily temperature, and 

keel-length. A stepdown multiple regression analysis of incubation 

body mass was performed including the suction trap measures of food 

abundance rather than the hand-net measures, since suction trap data 

gave a higher value of r2 than when hand-net data were entered as 

independent variables. In the abbreviated analysis, only keel- 

length and maximal daily temperature entered as significant variables 

(Table 7.2). The correlations of body mass with insect abundance 

on the days preceding and following weighing probably existed because 

insect abundance on the day of weighing was itself correlated with 

suction trap volume on both previous (r = 0.58, n= 60, P<0.001) 

and subsequent (r = 0.55, n= 60, P<0.001) days. 

There was no correlation between incubation stage and body mass. 

Some bird species lose mass over the incubation period by reducing 

food intake or by fasting, as seen in barnacle geese(Lessells et al., 

1979), red jungle fowl Gallus gallus (Mrosovsky and Sherry, 1980), 

black-browed and grey-headed albatrosses, Diomedea melanophris, and 

D. chrysostoma, (Prince, Ricketts and Thomas, 1981), and Canada 
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Table 7.1 

Correlations for female incubation body mass in swallows 

Variable r significance 

2Mean 
available individual prey dry mass, g 0.05 ns 

Incubation stage, days 0.08 ns 

2Number 
of insects 0.25 ns 

2lnsect biomass, g dry mass 0.29 

llog(v 
+ 1)d`l 0.37 ** 

llog(v 
+ 1) 0.38 ** 

d+l 
llog(v 

+1) d 
0 

0.40 ** 

maximal daily temperature, °C 0.38 ** 

2number of large insects (> 1.5 mg dry mass) 0.51 *** 

keel-length, mm 0.60 *** 

I. log(v + 1) is insect abundance as measured by the 12.2m 

suction trap. Measurements included in the analysis were 

made on the day of weighing (d0), the preceding day (d-1), 

and on the subsequent day (d+l). 

2. Hand-net sample measures of food abundance. 

n= 49 days, 13 females for all data 

ns : not statistically signifiant 

*P<0.05 

** P<0.01 

***: P <0.001 
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geese Branta canadensis moffitti (Aldrich and Raveling, 1983). 

Conversely, female pied flycatchers tend to increase in mass as 

incubation proceeds (Askenmo, 1982). 

Individual female swallows neither increased nor decreased in 

body mass consistently as hatching approached. Females appear to aim 

to become as heavy as possible, fattening up on days of high tempera- 

ture. However, an economically determined upper limit to female body 

mass must exist, since exceptionally heavy birds are likely to 

experience problems in taking off for flight (Chapter 6), or increased 

flight costs associated with increased mass (Chapter 8). 

7.3.2 The cost of incubation 

Daily energy expenditure during incubation is substantially lower 

than during nestling rearing in hirundines where both sexes share 

incubation duties (Bryant and Westerterp, 1980; Westerterp and Bryant, 

1984). Some recent estimates of the energy cost of incubation are 

presented in Table 7.3. Below 28°C, the rate of oxygen consumption of 

incubating zebra finches, Poephila guttata, was 20% higher than that of 

non-incubating finches sitting in a nest at the same temperature (Vleck, 

1981). Resting energy expenditure of white-crowned sparrows 

Zonotrichia leucophrys oriantha, was estimated to be 15% lower in 

incubating females than in birds perching outside of the nest but 

exposed to the same microclimate (Walsberg and King, 1978b). 

Most of the published work on assessing the energetic cost of 

incubation has been performed on species where both sexes incubate. 

The eggs are therefore rarely left unattended, and relatively little 

energy is expended in reheating them. 

For single sex incubators, the eggs are always left unattended 
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Table 7.3 

Some recent estimates of the energetic cost of incubation 

Values are expressed as multiples of basal metabolic rate (BMR) 

Species Method x B. M. R. Reference 

House Martin D2018/ 2.72 Female Bryant and Westerterp 

time budget 2.93 Male (1980) 

1Swallow 
time budget/ Turner (198 2) 
D2018 2.1 

time budget/ 
D2018 4.1 Westerterp and Bryant 

(1984) 

Wandering albatross 
Diomedea exulans mass loss 1.2 Croxall and Ricketts (1983) 

Herring gull mass changes 1.5-2.4 Sibly and McCleery (1983) 

1 
Only the female swallow incubates. Both sexes share 
incubation in the other species listed. 

2 
Based on data from one bird only. 
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when the incubating parent is foraging, and incubation costs may be 

higher than in species which share incubation duties. The energetic 

cost of incubation in a female zebra finch forced to rewarm cold eggs 

increased by 8% compared with control birds, and none of her eggs 

hatched (Vieck, 1981). The metabolic rate of starlings increased 

threefold when cold eggs were rewarmed (Biebach, 1979). Using the 

D2018 technique, Westerterp and Bryant (1984) suggested that incubation 

in female swallows may be more expensive than in sand martins or house 

martins where the sexes share incubation. 

To further investigate body condition costs during incubation in 

poor weather conditions, time budgets of incubating birds were, analysed 

in relation to instantaneous body mass changes occurring during the 

attentive and inattentive periods. 

The percentage of afternoon time spent incubating increased with 

decreasing temperature above a maximal daily temperature of about 10°C 

(Figure 7.4), allowing more time available for foraging at high 

temperatures. 

Insect abundance also decreased as temperature dropped (Chapter 3), 

to it may be expected that birds have a reduced foraging intake during 

inattentive periods when food is scarce compared with intake rates 

during periods of high food abundance. Intake rates during the 

inattentive period can be estimated by measuring the rate of mass 

change while foraging. Mass losses while foraging were first excluded 

from the analysis to minimise the chances of including foraging periods 

which had defaecations (see Chapter 4). 

In Figure 7.5 the mean rate of mass gain while foraging is plotted 

for four levels of food abundance which represent quartiles of the 

distribution of suction trap catch volumes. 
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Although the mean rate of mass gain while foraging does increase 

up to the third highest class of insect abundance, none of the 

differences between means was statistically significant. Rate of 

mass gain while foraging was not correlated with insect abundance (r = 

0.11, n= 161, ns). This lack of significance may be because when 

food is more abundant at higher temperatures, prey may become more 

mobile (Waugh, 1978; Kacelnik, 1979) and therefore more difficult for 

swallows to capture. This increase in prey mobility may counteract 

any expected increase in intake rate through prey becoming more 

abundant. However, when foraging trips resulting in mass losses were 

included in the analysis (assuming defaecation rate to be independent 

of food abundance), rate of mass change was positively correlated with 

insect abundance (r = 0.16, n= 293, P<0.01). Thus the intake rate 

of swallows may be reduced in bad weather conditions. 

Because of the limitations of reduced foraging time and probably 

a reduced intake rate at low temperatures it is likely that poor 

weather conditions encountered during incubation will result in a 

deterioration in female body condition, maybe leading to desertion in 

extremely poor conditions. 

The spring and early summer of 1983 were unseasonably cold, and 

aerial insects were often scarce (Chapter 3). In Figure 7.6 the 

diurnal body mass changes of one incubating female during a changeable 

day in June are illustrated. 

The female gained mass rapidly in relatively favourable feeding 

conditions up to 15.00h (32 flying insects captured in 300 sweeps of 

the hand-net at 14.00h). After 15.00h weather conditions deteriorated 

rapidly as rain fell continuously and ambient temperature dropped, 

with no insects captured in 300 sweeps at 20.00h. 
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In the six hours after 14.00h the female lost 9% of her initial 

body mass. During this period of atrocious weather, most of the 

pre-laying birds at the study site left the farm, presumably to forage 

at distant but more profitable feeding sites. The incubating female 

was restricted to feeding close to the nest site because the large 

time investment in incubation at low temperatures left little time for 

exploiting distant food patches. 

Hence incubating female swallows can lose mass very rapidly in 

poor weather conditions, as implied by the positive correlation 

between body mass and food abundance for daily records (Table 7.1), 

and as shown at the individual level in this example. Figure 7.7 

shows the effect of several successive days of bad weather on the body 

mass of the same female. 

Between days 8 and 12 of incubation, maximal daily temperature 

progressively decreased from 14.5°C to 10°C. Over the same period, 

female body mass decreased from 22.7g on day 7 to 19.8g on day 12. 

At point X in Figure 7.7, when her body mass was lowest, the female 

changed her incubation strategy, from incubating for a mean of 

63.06 + 9.57% of five 1-hour periods on the preceding day, to incubat- 

ing for 8.69 + 11.69% in seven 1-hour periods on day 12. At this 

stage the bird left her eggs for two inattentive periods greater than 

two hours, compared with a mean of 6.37 + 3.26 minutes (n - 15) on the 

11th day. The bird was probably near to'desertion at point X, when 

her body mass reached was close to a presumed lower critical level. 

Weather conditions improved considerably on day 13, and the female 

increased in body mass by 14.8% of her day 12 value by the afternoon 

of day 13. Hence, although female swallows may lose mass rapidly in 
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poor weather conditions, they may replace lost mass rapidly if 

conditions improve. 

7.3.3 Incubation strategies of swallows: 
a model of optimal behaviour 

A theory of an optimal inattentive period during incubation was 

developed for bird species where only one sex incubates. The model 

assumes that individuals maximise fitness by maximising their net 

energy gain during the inattentive period. The stages in the develop- 

ment of the theory are outlined in Figure 7.8. 

The parent bird will experience direct costs and gains associated 

with foraging during the inattentive period as illustrated in Figure 

7.8a. When foraging, the bird will gain energy through food intake, 

and the gross energy gain curve is likely to decelerate with increas- 

ing foraging time as the bird's gut storage capacity is filled and a 

digestive bottleneck is attained (Kenward and Sibly, 1977). Whilst 

foraging, however, the bird will expend energy while flying, and since 

the mass gain through foraging is slight (less than 1% of body mass) 

and unlikely to influence the energy requirements for flight, flight 

costs are likely to cumulate linearly over the inattentive period. 

The difference between the cumulative metabolizable energy gain 

and flight cost curves will produce a net energy gain curve (Figure 

7.8b), the shape of which depends on the form of its two component 

curves. For example, flight costs may increase rapidly in some 

species while the cumulative gain curve quickly attains a relatively 

low plateau. Then the cost of flying will soon outweigh the foraging 

benefits, and the foraging time which maximises net energy gains 

through feeding will be relatively short (Figure 7.8c). If cumulative 

gain increases steadily with time, however, and flight costs are'small, 
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the net gain curve will be largely unaffected by the influence of 

flight costs, and the foraging time which maximises net gain will be 

relatively long (Figure 7.8d). 

Whilst foraging between incubation stints, the incubating bird 

will pay another cost - an indirect cost paid on return to the nest 

and involving an energy expenditure in reheating eggs which cooled 

during the bird's absence. Because bodies cool fastest when the 

temperature gradient is greatest, and since eggs are heated to 

temperatures generally greater than ambient levels, clutch cooling 

rates will decelerate over time, and so reheating costs will be 

greatest for relatively short inattentive periods (Figure 7.8e). 

To maximise fitness, it is assumed that birds should maximise the 

overall net energy benefit attained during the inattentive period, 

that is to maximise (net gain while foraging - clutch reheating costs). 

This is illustrated in Figure 7.8f. 

7.3.4 The effects of changing costs and benefits on the 
optimality model - theory 

In Figure 7.9 two conditions of reheating costs are incorporated 

into the model of an optimal inattentive period. High and low cost 

reheating functions for the clutch are illustrated (CH and CL respec- 

tively), and optimal foraging times (i. e. when overall net energy 

benefit is maximised) for the two combinations of costs and benefits 

calculated. Net foraging gain is depicted by the NFG curve. 

Because the CL curve never crosses the NFG curve over the foraging 

times considered, feeding trips of any length result in an overall net 

energetic benefit to the bird when reheating costs are low. The NFG 

curve intersects the high cost (CH) curve at point X, so foraging trips 
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longer than X result in a net energetic loss to the bird when reheating 

costs are high. 

The optimal foraging time in each situation occurs where the 

difference between costs and benefits is greatest. In Figure 7.9, - 

NFG, CL is the optimal foraging time described by the NFG, CL curves, 

NFG, CH is described by NFG and CH. 

Because NFG, CL > NFG, CH, the optimal foraging period is predicted 

to be longer when reheating costs are lower. Reheating costs are 

likely to be greater if clutch size is increased or if ambient tempera- 

tures are lower, so the reheating cost curves are open to manipulation 

and in this way the model can be tested experimentally. The NFG 

curve may also vary with temperature, with foraging gain rates probably 

being lower when food is scarce at low temperatures (Chapter 2, section 

7.3.2). Hence predictions from the model involving the effect of 

temperature on the length of the optimal inattentive period should 

consider the manner in which both NFG and C curves vary according to 

temperature. 

7.3.5 Quantification of the Parameters included in the model 

(a)'Flight costs: Flight costs were taken from the D2018 data of 

Turner (1982a)as 0.3063 kJ gh. The average afternoon body mass 
11 

of an incubating female swallow was 22.48 + 1.41g. Hence on average 

a female swallow expends 114.76 J min-' of flight during incubation. 

(b) Foraging energy gain rates: When swallows returned to their nests 

after foraging, their body mass changes were recorded. To minimise 

the chances of including defaecations in mass changes, it was 

considered that foraging trips involving defaecations could not have 

resulted in mass gains by the birds, and so only mass gains while 
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foraging were included in the model (Chapter 4). No drinking was 

assumed to occur on foraging trips (Chapter 4). water loss during 

flight was predicted as described in Chapter 4, and mass gains through 

food consumption were converted to energy units by assuming that insect 

prey contained 72.94% water, and insects liberated 22.84 kJ g-1 dry 

mass (Turner, 1980). Seventy percent of ingested energy was assumed 

to be assimilated (Waugh, 1978; Turner, 1980; Bryant and Westerterp, 

1980), 30% of ingested energy was assumed lost via the faeces. 

The cumulative metabolizable energy gain curve could thus be 

constructed as net energy gain (from mass gains) plus energy expended 

in flight for a known time period*(using the D2018 flight cost results 

of Turner (1982a). 

(c) Reheating costs: Clutch reheating costs were calculated from the 

laboratory thermistor probe study. The cooling rate of a clutch of 

five eggs at 15°C ambient temperature in an insulated swallow nest was 

calculated. The mean mass of 34 swallow eggs weighed to the nearest 

O. Olg was 1.85 + 0.15g, and 3.3J g-1°C-1 was assumed to be expended by 

the female in reheating eggs (Ricklefs, 1974). Eggs were to be 

heated to 35.7°C during incubation (Turnet, 1980). 

7.3.6 Egg cooling rates 

In the cooling rate experiment, eggs cooled at a decreasing rate 

with time (Figure 7.10). In all experimental treatments, egg 

temperature was monitored for one hour, with readings taken every 

minute for the first 20 minutes. To compare cooling rates between 

treatments, slopes of egg temperature as a function of time were 

obtained for the first 20 minutes of cooling. All cooling rate 

regression equations were significant at P<0.001, although signifi- 
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cance may have been boosted even further by plotting the logarithm of 

egg temperature as a function of time. 

Cooling rates for 14 experimental treatments whereby ambient 

temperature, clutch size, and nest insulation were varied are presented 

in Table 7.4. An analysis of covariance of the cooling rate slopes 

between experimental treatments is summarised in Table 7.5. 

All treatments resulted in significantly different cooling rates 

except for clutch size three in an insulated nest at 15°C when compared 

with clutch sizes seven and 10 in ä non-insulated nest at the same 

temperature. No significant difference existed between the cooling 

rates of eggs in clutch sizes of seven and 10 in non-insulated nests 

at 15°C. The results are summarised below. 

(i) The effects of ambient temperature on egg cooling rate 

Cooling rates for eggs in a clutch of five are plotted in Figure 

7.11 for both insulated and non-insulated nests. In both cases eggs 

cool more rapidly at lower ambient temperatures, when the temperature 

gradient between egg and environment was greatest. Ambient tempera- 

tures of about 15°C are typical of afternoon barn temperatures around 

swallow nests (mean afternoon barn temperature in 1982 was 16.6 + 

4.0°C, n= 46), though ambient temperature may fall to 5°C in the early 

morning, and may reach 25°C or above on very hot days. At higher 

temperatures cooling rates tended to stabilise more rapidly than at 

lower temperatures. 

(ii) The effects of clutch size 

Cooling rates for eggs at 15°C with clutch sizes ranging from 

one to 10 eggs, in insulated and non-insulated nests, are plotted in 

Figure 7.12. Cooling rates were more rapid in small clutches where 
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Table 7.4 

Cooling rates of swallow eggs in fourteen experimental treatments 

Treatment AEgg 
Cooling Rate 

Treatment 
Number 

Ambient 
temperature 
°C 

Clutch 
size 

Nest 
Insulation 

°C 
b 

min-1 
+ s. d. 

1 5 5 - 0; 930 + 0.038 
2 + 0.767 + 0.025 

3 15 1 - 0.726 + 0.047 
4 + 0.542 + 0.044 

5 3 - 0.598 + 0.041 
6 + 0.481 + 0.026 

7 5 - 0.506 + 0.019 
8 + 0.397 + 0.012 

9 7 - 0.481 + 0.018 
10 + 0.379 + 0.010 

11 10 - 0.473 + 0.012 
12 + 0.322 + 0.006 

13 25 5 - 0.234 +, 0.009 
14 + 0.183 + 0.015 

A Cooling rates were recorded for 20 rains in each treatment. 
For each treatment the cooling rate slope was highly significant 
P<0.001. 
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Figure 7.11 

The effect of varying ambient temperature on swallow 
egg cooling rates in the laboratory. 

(a) non-insulated nest 
(b) insulated nest 

Clutch size = five eggs. 
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cooling rates in the laboratory. 
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there were fewer surrounding eggs to buffer against heat loss, leaving 

a greater egg surface area exposed. 

Although individual eggs cool more rapidly in smaller clutches, 

a large clutch will take more energy to reheat than a small clutch 

simply because a larger volume of eggs is present. However, it is 

predicted that individual eggs in large clutches will take relatively 

shorter to reheat than eggs in small clutches because eggs in small 

clutches lose heat more rapidly (Mertens, 1977). Because not all 

eggs in large clutches may be covered by the brood patch, incubation 

costs may increase linearly with increasing clutch size (Biebach, 1984). 

The cost of nighttime incubation in starlings increased by about 4% 

-(only below the lower critical temperature) for every egg added, even 

without reheating costs being considered. Bigger clutches also shift 

the incubating parent's lower critical temperature towards higher 

temperatures (Biebach, 1981,1984). 

(iii) The effects of egg position 

If eggs in small clutches lose heat more rapidly than those in 

large clutches because eggs in small clutches have a greater exposed 

surface area, it should follow that egg position will influence egg 

cooling rate. Eggs on the edge of clutches will have a greater 

exposed surface area and should lose heat more rapidly than those in 

the centre of a clutch. 

In a clutch size of seven eggs in an insulated nest at 15°C, a 

central egg cooled at 0.397°C min-1, an egg at the edge of a clutch at 

0.500°C min-1, the difference in cooling rates being highly signifi- 

cant (t = 21.1, P<0.001). One function of 'egg turning' in 

incubation may be to shuffle egg positions so that the same eggs are 

not consistently at the edge of the clutch where they cool more rapidly 

and develop more slowly. 
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(iv) The effects of nest insulation 

Swallows line their nests with feathers and feather insulation 

may serve to reduce the rate of heat loss from the clutch or from 

small chicks (White and Kinney, 1974; MOller, "1984a). For each 

treatment studied, eggs cooled more rapidly in a nest where the 

feather insulation had been removed compared with eggs in the same 

nest lined with feathers (Tables 7.4,7.5). 

The relationship of egg cooling rate with ambient temperature, 

clutch size, and nest insulation is summarised in Figure 7.13. As 

clutch size increased, cooling rate per egg decreased but tended to 

level off in clutches with more than five eggs. The difference in 

cooling rate was greater between 25°C and 15°C than between 15°C and 

5°C. The importance of insulation appears to be greater at 5°C and 

15°C than at 25°C. 

(v) Other factors influencing egg cooling rates not 
considered in the experiment 

(a) Egg age: Swallow eggs show an allometrical increase in oxygen 

consumption during development (Birchard and Kilgore, 1980). Since 

the capacity for embryos to produce metabolic heat increases over the 

incubation period (Drent, 1970; Walsberg and King, 1978a; Gessaman 

and Findell, 1979), older eggs may cool more slowly than younger ones. 

Ricklefs (1974) suggested that embryonic heat production was only 

significant at the end of incubation. Female swallows spent less 

time incubating as egg age increased (r = -0.32, n= 61, P<0.01), 

and the decrease in incubation time may be associated with increased 

heat production by older embryos. 

(b) Egg mass and egg composition: Large eggs will have relatively 

smaller surface area: volume ratios than smaller eggs, and although 
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Swallow egg cooling rates in the laboratory in relation 
to ambient temperature, clutch size and the presence of nest 
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large eggs will take longer to reheat, they may cool relatively more 

slowly than smaller eggs. Egg composition may also influence clutch 

cooling rates. Four swallow eggs weighed every day lost a mean of 

15.44 + 4.09% of their mass over, the incubation period, as water was 

lost through the eggshell (Rahn and Ar, 1974). Any change in egg 

composition would alter the egg's specific heat capacity and may hence 

influence egg cooling rate. 

(c) Attributes of the nest and nest microhabitat: Smaller nests may 

retain heat more efficiently than larger nests, and the positioning 

of the nest in relation to surrounding shelter will influence egg 

cooling rates. 

(d) Parental attributes: Variability in parental attributes such as 

brood patch vascularity may influence a parent's efficiency at 

reheating eggs. Adult body condition may also influence incubation 

behaviour - heavier female Canada gees, Branta canadensis moffiti, 

were more attentive to theirnests than were lighter females (Aldrich 

and Raveling, 1983), and female body condition appears to influence 

incubation behaviour in swallows (Section 7.4). 

7.3.7 A test of the model of optimal inattentive period 

(a) Energy gains while foraging 

Two hundred and seventyfour mass gains during foraging bouts of 

known duration were recorded, and converted to net energy gains 

(Figure 7.14a). Mass gains were converted to net energy gains by 

(i) Subtracting predicted mass losses through flying (Chapter 4). 

(ii) Multiplying this corrected mass by 0.27 to calculate the dry 

mass of insects ingested (see section 7.3.5), and then 

calculating energy gains by assuming that insects liberated 

22.84 kJ g -l dry mass (Turner, 1980). 
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(iii) Multiplying the energy gain by 0.7 to calculate the assimilable 

net energy gains (section 7.3.5). 

A curve is described for the net energy gain rate in the legend 

to Figure 7.14. Predicted flight costs for the foraging periods 

are also illustrated, and the cumulative metabolizable energy gain 

curve is constructed as (net energy gain + flight costs) in Figure 

7.14(b). The cost of flying exceeds the average net energy gain from 

foraging after about 5.5 minutes of feeding. 

Net energy gain levels off after about four minutes foraging 

time, suggesting that a digestive bottleneck may be reducing intake, 

rate at longer foraging periods. The maximum mass gain of 0.21 + 

0.15g occurs at foraging periods of 4-5 minutes. Since about 0.03g 

would also be lost as water while flying for this period (Chapter 4), 

an average maximum mass gain of 0.24g of insects during the inattentive 

period seems to occur in incubating female swallows. This corresponds 

to twice the maximum load mass delivered to nestlings by females 

(Chapter 8). 

Net energy gain did not level off with increasing foraging time 

partly because longer foraging periods were recorded in poor weather 

when mass gains were low. The mean mass gain for foraging trips 

longer than four minutes (mass gains remain relatively constant after 

four minutes) in conditions where greater than the average biomass of 

insects was sampled in the hand-net was 0.151 + 0.148g (n = 47). 

When the insect catch was of lower than average biomass, foraging 

trips longer than four minutes resulted in a mean mass gain of 0.139 

+ 0.090g (n = 39). This difference between means was, however, 

not significant (t = 0.4, ns). 
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Incubating female swallows lost mass rapidly when first settled 

on eggs, but the rate of mass loss declined as the incubation period 

increased in duration (Figure 7.15). The initial rapid rate of 

mass loss probably occurred because of a relatively high metabolic 

rate during the beginning of an incubation bout. Great tit breathing 

rate, for example, is also most rapid when birds first settle on 

eggs, and reaches a second peak just before the clutch is left 

(Haftorn and Reinertsen, 1982). Similarly, tachycardia is highest 

soon after resettling on eggs in incubating ptarmigan, L. lagopus, 

(Gabrielsen and Steen, 1979). Such a high initial metabolic rate may 

be the result of birds having just returned from high cost locomotory 

activity, or may represent an early burst of heat delivered to the 

eggs by the incubating bird. 

Clutch reheating costs were calculated from the thermistor 

experimental data for a clutch of five eggs (average mass 9.25g) in 

an insulated nest at ambient temperature 15°C (corresponding to 

afternoon barn temperature) for incorporation into the optimality 

model. The cost to the female swallow in reheating eggs was estimated 

by assuming 3.3J g -l "C -l was expended in warming a cooled clutch 

(Ricklefs, 1974, section 7.3.5). Three costs curves are plotted in 

Figure 7.16, for clutch size five at ambient temperatures 5°C, 15°C, 

and 25°C. Reheating costs increased as ambient temperature decreased. 

In order to test the optimality model, reheating costs must be 

subtracted from the net energy gains for foraging trips of differing 

duration. This is performed in Figure 7.17a. 

For each one minute time class overall net energy benefits were 

calculated as (net benefit while foraging - cost of reheating eggs) 
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Mass loss in female swallows as a function of time 
spent incubating. 
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in Figure 7.17b. The frequency distribution of foraging periods 

observed in the study is plotted in Figure 7.17c. 

Overall net energy gains increase up to a maxp imum for the 4-5 

minute time class. The mean foraging time of incubating swallows 

was 4.107 + 2.624 rains (n = 293) -a close approximation to the optimal 

foraging time predicted by the model. However, because the frequency 

distribution of foraging periods is skewed towards shorter inattentive 

periods, the modal foraging bout class (3-4 mins) does not precisely 

coincide with that predicted to be the most energetically profitable. 

Expected foraging bout duration classes were generated assuming 

that birds chose bout durations according-to their profitability. 

The observed bout distribution closely tracked that expected up to 

and including the 3-4 minute bout class (x2 = 0.273, n=4 classes, 

P>0.95 ns). Once the 4-5 minute bout class was included in the 

analysis however, the observed distribution became significantly 

different from that expected if birds were choosing bout lengths 

according to their profitability (X2 = 22.76, n=5, P<0.001). 

Although the 4-5 minute bout class was calculated as that which 

maximised overall net benefit while foraging, only 12.7% of bouts 

recorded were of that duration. Moreover, foraging periods longer 

than 4-5 minutes were calculated as being relatively profitable, but 

were avoided by the swallows. 

Why were longer foraging bouts avoided even though they were 

energetically profitable? There are likely to be costs associated 

with leaving the eggs unattended for long periods which are not 

considered in the model. Periodic chilling of eggs comparable with 

long parental inattentive periods may substantially reduce the 

metabolic rate of the embryos, increasing the length of the incubation 
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period, as seen in fork-tailed storm petrels, Oceanodrama furcata, 

(Vleck and Kenagy, 1980). Abnormal development of embryos is likely 

to occur at temperatures above and below the predicted optimum, as 

found in the Adelie penguin, Pygoscelis adeliae, by Weinrich and 

Baker (1978). If eggs experience prolonged spells between the optimal 

temperature and the point of zero development (usually 25-27°C), 

disproportionate development of body organs may occur (Lundy, 1969). 

Although one female swallow in -this study successfully hatched eggs 

neglected for two 2h periods on one day, frequent long inattentive 

periods may delay the hatching of the chicks, or result in abnormal 

development of the embryos. 

7.3.8 The effects of changing costs and benefits on the optimality 
model - results 

The model developed in Figure 7.9 predicts that inattentive' 

periods should become shorter when clutch reheating costs are increased. 

Low temperatures will increase reheating costs, although also 

probably depressing foraging gain rate, while manipulation of clutch 

size will only influence the form of the reheating cost curve. Both 

low temperatures and increased clutch size were therefore expected 

to decrease the length of the optimal inattentive period. The 

observed effects of temperature and clutch size on foraging times will 

be described below. 

(a) Temperature effects 

The influence of temperature on incubation behaviours varies 

considerably among bird species. Some species vary the lengths of 

both attentive spells and recesses with temperature, while others 

vary only recesses or attentive spells (von Haartman, 1956). Both 

great tits (Kluijver, 1950) and white-crowned sparrows, Zonotrichia 

leucophrys, (Webb and King, 1983) decrease the length of inattentive 
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periods at low temperatures, as predicted by the model. Experimental 

heating of pied flycatcher nests to 33°C causes female to shorten 

their attentive periods compared with controls at 16°C, though 

inattentive periods were similar for both control and experimental 

treatments (von Haartman, 1956). 

in Figure 7.18 mean afternoon inattentive periods are plotted 

(n = 532) as a function of maximal daily temperature. The longest 

inattentive periods occurred at the lowest temperatures, not at the 

highest temperatures as predicted by the model. The shortest 

recesses occurred at intermediate temperatures, and inattentive 

periods became longer at higher temperatures. Hence, although the 

model's predictions may hold between 17°C and 29°C, they ran against 

expectations below 17°C. 

If incubation is viewed in terms of parent: offspring resource 

allocation, this trend may be explained. Above 17°C, incubating 

swallows behave as predicted by the optimality model. During a 16- 

hour day, incubating female swallows cannot meet their daily energy 

requirements if temperatures fall below 8.81C or two degrees higher if 

it is wet (Turner, 1982a). Day length is normally less than 16h in 

Central Scotland over the entire breeding season (Bryant and Westerterp, 

1983b), and so the increase in the duration of swallow inattentive 

periods at 12°-15°C could be because females cannot, on average, meet 

their daily energy requirements through foraging for relatively short 

periods at these temperature. Hence at low temperatures, females may 

have problems maintaining a positive energy budget and may extend 

their foraging periods beyond that predicted by the optimality model 

to compensate for low feeding success, at the cost of prolonging egg 

development time. 
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(b) Experimental manipulation of clutch size 

The effects of changing the reheating costs but not changing 

energy gain rates on the predictions of the optimality model were 

investigated by experimentally changing the clutch sizes of two female 

swallows nesting within 30 metres of each other. Each female was 

similar in body size, body mass, clutch size, timing of laying and 

nesting situation. 

One bird was given eight eggs while the other incubated two eggs 

for two days in mid-incubation. The bird given eight eggs in the 

first experimental period was given two eggs for a three day spell in 

late incubation, when the other bird incubated eight eggs. For four 

days of incubation each female incubated a natural clutch size of 

five eggs (the control period). During the experimental and control 

periods incubation behaviours were time budgeted and body mass changes 

documented. 

The experiment is of value on two accounts: 

(i) It tests a prediction of the optimality model developed above 

with changes occurring only in the reheating costs between 

treatments. 

(ii) It may provide insight into whether clutch size in swallows is 

limited by contraints on female body condition in incubation. 

A clutch of eight eggs is greater than that found naturally (Chapter 

2), and if females incubating eight eggs are committed to long 

periods of incubation with little remaining time for foraging, their 

body condition may deteriorate to a point. where desertion is possible. 

The results for the percentage of afternoon time spent incubating, 

mean attentive periods, and mean inattentive periods for the control 

and two experimental treatments is illustrated in Figure 7.19. 
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Time budgets of female swallows incubating clutches 
of two, five, and eight eggs. 

(a) Percentage of afternoon time spent incubating. 

(b) Mean attentive period. 

(c) Mean inattentive period. 
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Percentage of afternoon time spent incubating increased with 

increasing clutch size, so that females spent significantly longer 

(11% more of their afternoon time) incubating clutches of eight eggs 

than they did incubating two eggs (t = 2.32, P<0.05). 

The mean length of the attentive period increased with increasing 

clutch size, so that females on average had longer bouts sitting on 

eggs at clutch size eight then at either clutch size five or two 

(t(8,5) = 2.93, P<0.01, t(8,2) = 3.5, P<0.001). 

The mean length of the inattentive period was considerably shorter 

than that of the mean attentive period for each treatment (t tests, 

P<0.05 all comparisons) since egg cooling rate exceeds the reheating 

rate by the female for any given time (Drent, 1973). No significant 

differences existed between mean inattentive periods for the treatments, 

though the trend was for inattentive periods to decrease with increas- 

ing clutch size as predicted by the model. 

Since the females spent longer incubating a clutch of eight eggs 

than they did two eggs, foraging time for self-maintenance may be 

limited at large clutch sizes and female condition, measured by 

changes in body mass, may deteriorate. 

The body mass changes of the two females over the course of the 

experiment are illustrated in Figure 7.20. In the first experimental 

period, the female incubating eight eggs increased in mass by 5.49% 

over two days, while the female with two eggs put on 3.52% of her 

body mass. In the second experimental period the female with eight 

eggs increased in mass by 0.69%, while the female with two eggs put 

on 2.88% of her body mass over three days. Hence female swallows 

can successfully incubate clutches of eight eggs for short periods 
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Body mass changes of two incubating female swallows 
during an experiment whereby clutch size was manipulated. 
Arrows denote day of hatching. 

During experimental period 1 (El), the female 
illustrated by solid circles incubated eight eggs, the 
female illustrated by open circles, two eggs. 

During experimental period 2(E2), the female 
illustrated by solid circles incubated two eggs, the 
female illustrated by closed circles eight eggs. 
At all other times both females incubated five eggs. 
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without any deleterious effects on their body condition, at least in 

favourable conditions for food availability. 

Condition costs may occur for birds incubating large clutches in 

bad weather, however. On June 17th maximal daily temperature dropped 

by 4°C from the previous day, and although the female incubating two 

eggs increased in mass, the female on eight eggs lost mass. This 

was the only occasion on the eight days of observations when masses 

of both females were obtained that one bird's direction of mass 

change differed from that of the other. 

Pied flycatchers also spend more time incubating experimentally 

enlarged clutches: Blagosklanov (1977) manipulated clutch sizes 

between four and 12 eggs. Females with four eggs incubated for 40% 

of their time and were not fed by their mates, while females incubat- 

ing 12 eggs spent 78% of their time on the nest and received 5.3 

feeds per hour from their mates. 

Thus the predicted effects of changing costs and benefits in 

the optimality model were not seen in relation to ambient temperature 

changes or convincingly when clutch size was manipulated. Limita- 

tions on total foraging time probably result in females not 

significantly decreasing their inattentive periods when their 

incubation commitments are substantially increased, since decreased 

inattentive periods may jeopardise a female's body condition. 

7.3.9 Motivational factors influencing swallow incubation behaviour 

Swallow incubation is to some extent a Markovian process since 

the female's future behaviour is partly dependent on her past 

behaviour: a bird returning to eggs will not leave again immediately 

because she may have filled her digestive capacity and her eggs will 

need warming (Webb and King, 1983). 
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Internal motivational factors are likely to affect incubation 

behaviours. Incubating herring gulls eat more if they had less time 

to feed in their last absence, and also eat more if they will have 

more time to feed in the next absence. Hunger motivational factors 

account for 40% of the variance in herring gull ingestion rates (Sibly 

and McCleery, 1983). 

Both time and energy factors may influence the duration of 

foraging bouts and attentive periods in swallows. For example, if a 

female leaves her clutch for a relatively long period, she may 

incubate for a relatively long period on returning to the nest. if 

a female increases in mass substantially on a foraging trip, she may 

incubate for a relatively long period to digest her large meal. A 

shorter incubation period may be expected if the female made only a 

small mass gain on her preceding foraging trip. This situation is 

illustrated in Figure 7.21. 

In Figure 7.21a foraging energy gains are constant, but the time 

required to attain the fixed energy gain is variable. Birds 

foraging for long periods incubate for long spells to meet the 

increased reheating costs resulting from long absences. Short 

foraging periods are associated with shorter incubation bouts because 

of the reduced reheating costs compared with longer foraging bouts. 

In Figure 7.21b foraging times and energy gains are both variable. 

A larger energy gain while foraging is associated with a longer 

incubation bout because birds will take longer to digest large meals 

than small meals. After a small energy gain while foraging, the 

bird may shorten its subsequent incubation bout to provide more time 

for foraging in the subsequent inattentive period. 



(a) 

longest 

(b) 

Figure 7.21 

Some ways in which time and energy factors may 
influence incubation behaviours. 

Attentive periods are represented by boxes, 
inattentive periods by solid lines. 

In (a) foraging energy gains are constant, but the 
time required to attain a fixed energy gain varies. 

In (b) foraging times and energy gains are both 
variable. 

See text for explanation. 
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The validity of this interpretation was investigated by detailed 

analyses of short-term mass changes while foraging and of incubation 

time budgets. To minimise the chances of including foraging trips 

where defaecations occurred, only foraging trips resulting in mass 

gains were included in the analysis (Chapter 4). 

The variables entered in stepdown multiple regression analyses 

and their abbreviations are presented in Table 7.6. A correlation 

matrix showing interdependence of the variables used in the analysis 

is presented in Table 7.7. 

Abbreviated stepdown multiple regression results are presented 

with 't' values for the independent variables. One hundred and sixty- 

one behavioural sequences were considered in the analysis. 

(a) Foraging time: 

FT = 4.13 - 1.85 (LOG (V + 1) + 0.015 (INCP) + 0.090 (INCS) 

t=2.32, P<0.05 4.55, P<0.001 2.72, P<0.01 

2 
(r = 29.3%, F= 23.4, P<0.001). 

Hence foraging periods were longer in conditions of low food 

abundance. The inattentive period was longer if the preceding 

incubation spell was relatively long, and if the subsequent incubation 

spell was relatively long. 

(b) Length of the preceding incubation spell 

INCP = 13.9 + 0.804 (FT) - 0.053 (BM) + 0.289 (INCS) 

t=4.88, P<0.001 2.83, P<0.001 3.97, P<0.001 

(r2 = 36%, F= 26, P<0.001). 

Incubation bouts preceding the foraging bouts considered were 

longer if the ensuing foraging time was long, and longer if the 
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Table 7.6 

List of variables entered in a stepdown multiple 

regression analysis of female swallow incubation behaviours, 

with their abbreviations 

(a) dependent variables: 

Foraging time (mins) : FT 

Length of the preceding incubation spell (mins) : INCP 

Length of the subsequent incubation spell (mins) : INCS 

(b) independent variables: 

Mass gain during foraging (g) : MAF 

Rate of mass gain while foraging (g min-1) : MOF/FT 

Body mass (g) : BM 

Maximal daily temperature (°C) : TMAX 

Suction trap catch volume : LOG(v + 1) 

Fol-aging time, and lengths of preceding and subsequent 

incubation spells were also entered as independent variables when 

not entered on dependent variables. 
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ensuing incubation bout was long. 'Incubation bouts were longer for 

birds of low body mass, although in this case body mass was not 

corrected for body size. 

(c) Length of the subsequent incubation spell. 

INCS = 18.9 + 0.500 (FT) - 0.498 (BM) - 4.51 (LOG(v + 1)) + 0.288 (INCP) 

t=2.77, P<0.01 2.54, P<0.05 2.40, P<0.05 3.64, 
p<0.001 

(r2 = 34%, F= 39, P<0.001) 

Incubation bouts following the foraging bouts considered were 

longer if the preceding foraging period or incubation period was 

relatively long. The incubation bouts were shorter when body mass 

was high and at high levels of food abundance. 

The relationship between the duration of an incubation spell and 

the length of the preceding foraging bout is illustrated in Figure 

7.22. Incubation periods exceeded the duration of the preceding 

foraging bout as shown by the regression equation in the legend to 

Figure 7.22, at least for most naturally occurring foraging periods. 

Hence time factors seemed to be important in determining the 

duration of foraging bouts and incubation periods in female swallows, 

but there was no evidence for energy gain factors being important: 

neither the magnitude of the mass gain during foraging nor the rate 

of mass gain during foraging influenced how long'the female spent 

sitting on the eggs. 
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Figure 7.22 

The relationship between the length of an 
incubation spell (INCS) in female swallows, and 
the duration of the preceding foraging bout (FT). 

The regression equation is 

y=4.90 + 0.622x 

r=0.37, n= 293, P<0.001 

Naturally occurring foraging periods (generally 
< 10 mins) are followed by longer incubation bouts. 



210 

7.4 DISCUSSION 

Incubation from a parent: offspring resource allocation perspective 

Female swallows are relatively heavy during incubation, and lose 

mass rapidly during the early stages of nestling rearing (Chapter 8). 

The adaptive significance of mass loss during nestling rearing is 

discussed in Chapter 8, but what are the advantages of being heavy 

in incubation? 

Incubating female swallows are heaviest when ambient temperatures 

are highest, when the amount of time spent flying to forage during 

incubation is greatest. During nestling rearing females lose mass 

to reduce flight costs at a time when brood demands are high and 

they must spend most of their daylight time flying. The benefits 

of losing mass for reducing flight costs will be relatively small 

during incubation, when, even on the warmest days, females spend most 

time incubating and little time flying. 

Three advantages of being heavy during incubation are: 

(a) A large lipid reserve will buffer against condition costs 

in bad weather when female self-feeding time is reduced. 

(b) Substantial body reserves may supply much of adult energy 

expenditure during the brooding phase. If weather conditions 

deteriorate during brooding, females may allocate any harvested 

food to their offspring rather than keeping it for self-maintenance. 

(c) Incubation is a relatively early stage of the breeding cycle 

when the future cumulative investment required is still high. 

If a clutch was chilled or lost to predators, a female's 

incubation body reserves may allow her to attain suitable body 

condition for relaying more rapidly than if she were lighter and 

carried less reserves. Any benefits of being heavy to allow 
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relaying rapidly decline as chicks hatch and grow and the cumulative 

future risk of offspring loss through chilling or to predators 

decreases. 

Incubation provides a situation for the study of parent: offspring 

conflict behaviours (Trivers, 1974), with the eggs representing an 

early stage of cumulative parental investment, especially for the 

female. Since incubating eggs (investment in offspring) and foraging 

(investment in self-maintenance) are incompatible activits for a 

female swallow, situations may arise whereby excessive investment in 

offspring causes body condition to deteriorate and maybe reduces the 

female's chances of survival. The desertion of eggs by females in 

poor conditions is presumably an adaptation to promote female survival 

chances when the costs of maternal care are high. 

There are several lines of evidence suggesting that incubation 

can be costly to females when weather conditions are poor, and that 

females impose a ceiling on the amount of time they invest in 

incubating their clutches. 

Although maintaining egg temperature is considered to be relatively 

cheap in energetic terms (Mertens, 1977,1980; Walsberg and King, 

1978a, b; Vleck, 1981), any cost to the female is likely to occur 

from a restriction in her inattentive time reducing her energy gain 

from foraging. Female body mass during incubation is positively 

correlated with ambient temperature (Table 7.1) and can be reduced 

rapidly in bad weather conditions (Figure 7.6), especially if poor 

weather persists (Figure 7.7). Yom-Tov and Hilborn (1981) suggested 

that an energetic bottleneck may occur during late incubation, and 

this could act as a constraint on clutch size. 
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Female swallows respond to low temperatures by spending relatively 

long spells foraging (i. e. inattentive periods) (Figure 7.18), 

although total time for feeding per day is reduced, and by not normally 

spending more than about 70-80% of their afternoon time sitting on 

eggs (Figure 7.4). The relationship between the amount of time 

spend in attentive behaviour and ambient temperature typically follows 

a rectangular hyperbola, with attentive time levelling off at a 

maximum level below a critical temperature (White and Kinney, 1974). 

Swallows in this study actually appeared to decrease their incubation 

time at the lowest temperatures recorded, the relationship between 

percentage time incubating and maximal daily temperature fitting a 

maximum function equation (Figure 7.4). 

A female's body condition will probably reflect several preceding 

days' feeding conditions, and not only immediate conditions. The 

relationship between female attentive behaviour and body condition is 

plotted in Figure 7.23, where 'body condition index' is defined as 

body mas4/keel-length, g mm -1 (to standardise for incubation body mass 

increasing with increasing keel-length, Figure 7.2). 

The percentage of afternoon time spent incubating during 67 hours 

of observation at 13 nests increased as body condition decreased down 

to a condition index of about 1.01. This is probably because females 

are normally heavier at higher temperatures when eggs need less 

reheating and more time is available for foraging. Below a condition 

index of 1.01, attentive behaviour decreased slowly until a condition 

index of 0.96, and then dropped precipitously until zero attentiveness 

was attained at a condition index of 0.92. Canada geese increase the 

amount of recess time taken during incubation once a lower critical 

body mass is attained, probably when lipid reserves are depleted 

(Alydich and Raveling, 1983). 
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Below condition indices of 0.9 desertion may be expected, even 

though birds in this body condition would be considered relatively 

heavy if they had been rearing chicks. Although the optimal mass 

of nestling-feeding birds is probably lower than that of incubating 

individuals-(Chapter 8), it is likely that incubating females would 

not risk their body condition falling to that of nestling-rearers 

since excessive mass loss may be costly (Nur, 1984a) and incubating 

birds still have considerable time available for a repeat breeding 

attempt compared with nestling-rearers (Dawkins and Carlisle, 1976). 



CHAPTER 8 
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8. RESOURCE ALLOCATION BETWEEN 

PARENT SWALLOWS AND THEIR NESTLINGS 

8.1 INTRODUCTION 

Recent theories of life history strategies have assumed that an 

individual's inclusive fitness is maximised by optimising resource 

allocation between the opposing demands of rearing offspring and 

surviving to breed again. Breeding is often believed to reduce the 

chances of adults surviving to breed again, and the greater the 

reproductive effort, the greater the assumed reproductive cost to 

the parent (Williams, 1966b; Charnov and Krebs, 1974; Stearns, 1976; 

Calow, 1979). 

In birds, four studies have provided evidence for increased 

reproductive effort reducing adult survival rates. Great tits 

rearing large brood sizes within a season have lower survival rates 

than individuals rearing fewer young (Kluyver, 1971). Askenmo (1979) 

found a lower return rate of male pied flycatchers rearing enlarged 

broods compared with controls. Bryant (1979) showed that the 

survival rate of single brooded female house martins was greater than 

that of double brooded females, and Nur (1984a) demonstrated reduced 

survival of female blue tits rearing enlarged broods. 

One way in which the survival rate of birds expending considerable 

reproductive effort is lowered may be through physiological stress, 

as shown by mass loss when rearing chicks (Nice, 1937; Hussell, 1972; 

Ricklefs, 1974). Adult energy expenditure often peaks during the 

nestling rearing phase (Bryant and Westerterp, 1980; Drent and Daan, 

1980), so this period may impose maximal physiological stress on the 

parents. Increased mass loss in adult birds rearing enlarged broods 
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compared with controls has been found in snow buntings, Plectophenax 

nivalis, (Hussell, 1972), pied flycatchers (Askenmo, 1977), and 

house martins (Bryant, 1979), but not in tree swallows, Iridoprocne 

bicolor, (De Steven, 1980). Nur (1984a) has shown links between 

increased reproductive effort, increased mass loss during nestling 

rearing, and reduced female survival rate in blue tits. 

Alternative hypotheses exist to explain mass loss in adult birds 

feeding nestlings. Norberg (1981) and Freed (1981) suggested that 

mass loss could be an adaptation to reduce power consumption in flight 

during trips to feed nestlings. Nur (1984a) hypothesised that mass 

loss during nestling rearing may be costly mainly as a consequence of 

brooding behaviour restricting adult self-feeding time. 

The aim of this chapter is to examine the adaptive significance 

of body mass changes in adult swallows feeding nestlings, and to 

relate adult mass changes to demands imposed on the parents by their 

offspring. 

8.2 MATERIALS AND METHODS 

8.2.1 The use of precision automated nest balances 

The use of Mettler PK2000 electronic balances to monitor 

instantaneous and long term body mass changes in breeding swallows, 

together with observational techniques, has been described in Chapter 4. 

Chicks in swallow nests lost mass continuously by evaporative 

water loss. When an adult arrived at the nest with a food load, 

the load mass was calculated as the mass of the brood after being fed 

minus brood mass before food delivery. To minimise errors in 

estimating load masses caused by the nestlings losing mass during 

food delivery, bolus mass was only measured for feeding trips lasting 
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less than five seconds, when loss of water from the brood and nest 

would be less than 0.01g. Adult masses were then calculated as 

(mass of parent + load mass) - (load mass). Masses of adults and 

their loads were not recorded if parents removed faecal sacs from 

the nest. When nestlings were older than about eight days, they 

usually defaecated over the edge of the nest, and faecal sac masses 

could be recorded since nestling defaecations results in instantaneous 

drops in mass which were relatively large compared with continuous 

mass losses resulting from evaporative water loss by the brood. 

8.2.2 Carcass analysis 

Carcass analysis methods have been described in Chapter 4. 

8.2.3 Field experiments 

Observations of control birds rearing their own chicks were 

supplemented by a series of experiments whereby either brood size or 

brood age was manipulated. 

(a) Brood size manipulation 

A total of five nests had nestlings added in brood enlargement 

experiments. Of these four nests had brood size enlarged within the 

first three days of the chicks hatching. Two broods of three had 

three and four chicks added, one nest which hatched four chicks had 

three added, and one nest hatching five chicks had another three 

added on the day of hatching. 

One nest underwent experimental brood enlargement when the 

brood was eight days old, with three nestlings added to three already 

present. This enlargement occurred after a replacement experiment 

(see below) which had included seven days of control data, seven days 

of experimental data. In all 49 days of data were obtained from the 

five nests which underwent brood size enlargement. 
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Three nests had nestlings removed from them in brood size 

reduction experiments. One nest had two of four chicks removed one 

day after hatching, another had three of five chicks removed on the 

day of hatching. 

In all experiments described above, introduced chicks differed 

by less than two days from chicks hatched in the nest. In the third, 

brood size reduction experiment brood size was reduced from six to 

three on day 7, but the introduced chicks were five days older than 

the nestlings which they replaced. 

Single brood size enlargement and brood size reduction experi- 

ments were run simultaneously, on two pairs with identical laying 

dates, clutch sizes and initial brood sizes. The pairs were nesting 

within 30 metres of one another on the same farm. One nest had 

three chicks added on hatching to form a brood size of eight, the 

other nest had three chicks removed from an initial brood size of 

five. 

(b) Brood age manipulation 

Brooding behaviour by female swallows generally occupies less 

than 10% of the female's afternoon time budget when the brood is 

seven days old or more. In four experiments, it was attempted to 

re-establish a high level of brooding by the female, and to observe 

the consequences for body mass of the parents by replacing chicks 

with younger nestlings at a time when daytime brooding had almost 

ceased. 

Such manipulations were termed 'replacement experiments'. In 

one nest five 7-day chicks were replaced by four 1-day chicks, in a 

second nest four 7-day chicks were replaced by four 2-day chicks. 
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One nest had an enlarged brood of six nestlings replaced by four 

2-day chicks on the eight day of rearing, and a final experimental 

nest had three 17-day chicks replaced by three 9-day nestlings. 

Seventeen days of data were obtained from the four replacement 

experiments. 

8.3 RESULTS 

8.3.1 Adult body mass changes during nestling rearing 

In order to understand the normal patterns of adult body mass 

changes during nestling rearing, comparisons have been made with 

incubation body masses in Figure 8.1 for birds rearing natural brood 

sizes. 

Mass changes of parents have been compared with brood demands by 

plotting food delivery rates (FDR's) to the broods in Figure 8. lc. 

Food delivery rates were calculated as feeding rate multiplied by 

mean load mass during the afternoon sampling periods for each day of 

observation. Food delivery rates are a more reliable indicator of 

brood food requirements than are brood masses - brood food require- 

ment is the sum of energy demands for maintenance, growth, and 

activity, which peaks in mid-growth when provisioning rates by the 

parents are highest (Bryant and Gardiner, 1979). 

Parents on average deliver roughly equal quantities of food to 

the brood (Turner, 1980, this chapter). Food delivery rates do not 

necessarily represent brood demands, since offspring demands may 

exceed the nourishment that parents are willing to provide for their 

brood (Trivers, 1974). 

The heaviest body masses recorded were those of incubating 

females. Females on average lost mass rapidly during the first week 



Figure 8.1 

Body mass changes of adult swallows during 

incubation and nestling rearing compared with 

food delivery rates to their broods. 

Data is for control pairs only, and means + 

sds of afternoon body masses are presented. 

(a) Females: n= 190 days, 14 nests, 11 females 

(b) Males: n= 104 days, 14 nests, 10 males 

(c) Food delivery rates: n- 109 days, 13 nests 
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of nestling rearing, when food delivery rates were low but brooding 

commitments high (section 8.3.3). Body mass tended to be lowest 

and relatively stable between days 8 and 21 of nestling rearing, the 

young leaving the nest on average at 31 days of age (Turner, 1980). 

Males entered the nestling rearing phase with a lower average 

body mass than females, since they were significantly lighter during 

the incubation period (Chapter 7). A period of mass loss appeared 

to occur during the first week of rearing, though this was not as 

dramatic as in females. Body masses attained relatively stable, 

low values between days 8 and 21 of nestling rearing. 

Food delivery rates rose rapidly to reach a maximum value at 

day 13, thereafter falling off until fledging occurred. Hence for 

both males and females the rate of mass loss during nestling rearing 

appeared to be greatest before peak food delivery rates to the brood 

were attained. 

Patterns of body mass change for control pairs together with 

brood growth patterns are presented in Appendix IV. A great deal of 

variation in masses was evident amongst both males and females, not 

all individuals conforming to the average patterns shown in Figure 

8.1. For example, the male and female in nest M/C G 1983 tended to 

increase in mass over the first week of nestling rearing, and males 

M/C B 1982 and g 1983 tended to remain at a relatively stable mass 

over the first week of the rearing period. 

In the subsequent subsections of this chapter, the factors 

influencing body mass changes of adults during nestling-rearing are 

considered. In Figure 8.2 the masses of one pair and their brood 

are presented as an example in relation to insect abundance measured 



Figure 8.2 

Concurrent body mass changes of a pair of swallows 

and their brood during incubation and nestling rearing 

in relation to food abundance (overlay). 

Solid triangles : female parent 

Open triangles : male parent 

Open circles : brood (brood size 5). 

The overlay shows aerial insect abundance as measured 

by the 12.2m suction trap. 

All masses are means of the afternoon sampling period. 

Day 0 is day of hatching. 
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by the suction trap. Similar factors appeared to influence body 

masses of the male, female, and the brood: on days of low food 

abundance, masses of both, parents tended to decrease, and after day 

11, the mass of the brood also fell when insects were relatively 

scarce. Hence both adults and nestlings may share the costs 

associated with food scarcity, and this is explored in more detail 

in the following analysis. 

The nestling rearing phase was considered in two phases: 

(a) The brooding phase-day 0 to day 7 of nestling rearing 

The brooding phase is defined as the stage when female afternoon 

brooding behaviour contributed 10% or more of the female's afternoon 

time budget. Food delivery rates were relatively low during this 

period. 

(b) The non-brooding phase: day 8 to day 21 of nestling rearing 

Male and female body masses on average reached relatively stable, 

low values during this period, and female afternoon brooding 

contributed less than 10% of her afternoon time budget. Afternoon 

brooding was on average terminated by day 15. 

8.3.2 Adult masses during the brooding phase 

(a) Factors influencing adult masses during the brooding phase 

An analysis was performed on 34 days of data where male and 

female body masses, female keel-length, and food abundance informa- 

tion were available for seven pairs rearing natural brood sizes. 

Correlation matrices of female mass and male mass in relation 

to season (days after June 1st), brood age, brood size, sweep net 

biomass, female keel-length, maximal daily temperature on the day of 

study and on the preceding and subsequent days and body mass of the 

mate are presented in Table 8.1. 
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Table 8.1 

Correlation matrices of male and female body mass in swallows 
during the brooding phase (days 0-7 of nestling-rearing) 

Variable female mass, g male mass, g 

season (days after June 1st) 0.259 ns -0.234 ns 

brood age, days -0.285 ns -0.187 ns 

brood size -0.088 ns 0.523** 

maximal daily temperature °C 0.681*** 0.443** 
on day of weighing 

maximal daily temperature, °C 
on preceding day 0.706*** 0.316 ns 

maximal daily temperature, °C 
on subsequent day 0.639*** 0.388* 

sweep nqt biomass, g dry mass 0.577*** 0.297 ns 

female keel-length, mm 0.724*** - 

mate mass, g 0.483*** 

Tabulate values are correlation coefficients, r. 

ns : not significant; 
*: P<0.05; 
** :P<0.01; 
***: P<0.001 
n= 34 days of data 
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Female body mass during the brooding period was significantly 

positively correlated with keel-length, sweep net biomass, and the 

three measures of maximal daily temperature. Male body mass was 

significantly positively correlated with brood size and with maximal 

daily temperature on the day of weighing and on the subsequent day. 

Within a pair, male and female body masses were positively 

correlated, suggesting that similar factors may influence the body 

masses of both sexes, even though only the female broods the young. 

Stepdown multiple regression analyses were performed on the data 

with the variables used in the correlation matrix entered as 

independent variables. The results are presented in Table 8.2. 

Variation in keel-length, brood age, brood size, and maximal 

daily temperature contributed 87.7% of the variance in female body 

mass during the brooding phase. Females with longer keels and those 

rearing larger broods were heavier, and body mass increased at higher 

maximal daily temperatures. Females tended to lose mass over the 

brooding period as the brood aged. 

Although insufficient data were available for male keel-length 

to be included in the analysis, 62.7% of the variance in male mass 

during the brooding phase was attributable to variation in season, 

brood size, and maximal daily temperature. Males were heavier 

later in the season, and, as with their mates, when maximal daily 

temperatures were higher and when rearing larger brood sizes (probably 

because larger birds reared bigger broods). There was no signifi- 

cant tendency for males to lose mass progressively over the brooding 

period as determined by the stepdown multiple regression analysis. 
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Table 8.2 

Abbreviated stepdown multiple regression analyses of male 
and female swallow body masses during the brooding phase 

(a) Females 

Independent 
Variable 

Multiple 
r2 X 100 

Degrees of 
Freedom 

Regression 
Equation t-value P 

keel-length 

mm 52.5 1,32 y=1.50x1 - 9.58 *** 

brood age, 
days 62.1 2,31 0.195x2 + -3.74 *** 

brood size 78.2 3,30 0.962x3 + 5.56 *** 

maximal daily 
temperature 
°C 87.7 4,29 0.128x4 4.75 *** 

- 17.9 

F= 51.7, P< 0.001 

(b) Males: 

season (days 

after June Ist) 

brood size 

maximal daily 
temperature 
oC 

5.5 1,32 y=0.012x1 + 2.36 

35.3 2,31 0.965x2 + 5.23 

62.7 3,30 0.091x3 4.69 

+ 13.2 

F= 16.8, P< 0.001 

* 

*** 

*ý* 

*P<0.05 

** P<0.01 

*** :P<0.001 
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(b) Daily mass changes during the brooding period and the 
cost of brooding 

Swallows of both sexes may gain or lose mass from day to day 

over the brooding period, although the average tendency is for 

females to lose mass over this period (Figure 8.1). In Figure 8.3a 

the distributions of daily mass changes for both sexes during the 

brooding phase are illustrated. Females tended to lose mass more 

frequently relative to gaining mass than did males, and the mean 

average daily mass change between the sexes was significantly 

different (t = 2.7, P<0.01), although both sexes tended to lose 

mass. There was no significant difference between male and female 

daily mass gains during the brooding phase (Figure 8.3b, t=1.0, ns), 

although female daily mass losses were significantly greater than 

those of males (t = 3.1, P<0.01). 

Female mass losses during the brooding phase may be adaptive, 

the bird shedding mass to liberate energy from lipid to reduce self- 

feeding, and to cause flight costs to be reduced (Freed, 1981; 

Norberg, 1981). Alternatively mass losses may represent a condition 

cost to the female because the large amount of time invested in 

brooding limits her self-feeding time, and she is forced to live off 

her body reserves (Nur, 1984a). Mass losses during early nestling 

rearing may also be viewed as a balance between the costs and benefits 

outlined above (Norberg, 1981; Nur, 1984a). 

To investigate these hypotheses in more detail, a series of 

replacement experiments was performed, whereby pairs were given 

younger nestlings after the brooding phase had ended. If brooding 

is necessarily costly to the female, she would be expected to undergo 

a further decline in body mass once her brooding time is increased, 
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or alternatively any costs may be directed towards the brood, which 

may show decreased growth rates if insufficiently fed. The results 

of the replacement experiments will be presented after an analysis 

of brooding behaviour by female swallows. 

8.3.3 Female brooding behaviour 

The decline in the amount of afternoon time spent brooding (% 

BROOD) as the chicks become older is illustrated in Figure 8.4. 

% BROOD declined sigmoidally as the brood aged, decreasing to under 

10% after day 8. The decline in % BROOD between days 0 and 7 is 

almost linear, and a stepdown multiple regression analysis was 

performed for this period with brood age, brood size, and maximal 

daily temperature entered as the independent variables (Table 8.3). 

Females spent less time brooding as the chicks became older and 

with larger brood sizes. An increase in brood size by one chick 

reduced % BROOD by 0.7 of a day, due in part to the reduced thermo- 

regulatory demands of larger broods (Royama, 1966a). Maximal daily 

temperature did not enter the analysis as a significant variable, 

although female gray catbirds spent more time brooding at low ambient 

temperatures (Johnson and Best, 1982). 

8.3.4 Replacement experiments 

(a) The effect on female brooding behaviour 

Female swallows markedly increased % BROOD when given younger 

chicks in replacement experiments (Figure 8.5). For example, 

female (a) had completed afternoon brooding by day 7, but spent 70% 

of her afternoon time brooding on the subsequent day after being 

given one day old chicks. 

Although % BROOD was increased to high levels in replacement 
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Table 8.3 

Abbreviated stepdown multiple regression analysis of 

percentage of afternoon time spent brooding during the 

first eight days of the nestling-rearing phase in 

female swallows 

Independent Multiple Degrees of Regression 
variable r2 x 100 Freedom Equation t-value P 

Brood size 7.1 1,76 y= -4.49x1 4.03 *** 

Brood age, 
days 65.7 2,75 -6.49x2 9.36 *** 

+ 91.5 

F= 74.8, P<0.001 

*** :P<0.001 
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experiments, it rarely attained levels expected for control broods 

of known age as determined from the regression equation in Table 8.3 

(Figure 8.6). Expected % BROOD was greater than that observed in 

nine of the 12 hours of observation, the difference between 

observed and expected being highly significant (X2 = 132.5, P<0.001). 

(b) The effect on brood growth and chick mortality rates 

Despite the slight decrease in brooding which replaced chicks 

encountered, brood masses in replacement experiments were not 

significantly different from control brood masses of the same brood 

size and age (X2 = 2.3, n= 13, ns). However, in only one replace- 

ment experiment did all of the chicks survive the brooding phase. 

In one experimental nest one chick in a brood of four died, 

whilst two complete broods of three and four died. In one of these 

nests, day 9 chicks, still requiring some daytime brooding, were 

given to parents rearing day 17 chicks, which required no brooding. 

Although the replaced chicks were fed as frequently as expected 

(1.76g of food delivered h-1 to a brood of three), they were never 

brooded and appeared to chill. Indeed, all chick mortality in 

replacement experiments was probably due to chilling rather than 

undernourishment. No nestlings in control broods died at the same 

period as replacement experiments were being conducted. 

(c) The effects on adult foraging behaviour 

The mass of food loads delivered to broods increased rapidly 

over the brooding phase, as did the provisioning rate by the parents 

(se 
4on 

8.3.7). Hence if adults are given younger chicks to rear, 

they may modify their foraging behaviour to meet the reduced demands 

of the younger chicks, or may continue provisioning the new chicks 
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according to their 'expected' behaviour as if still rearing older 

chicks. The latter situation occurs in puffins, Fratercula arctica, 

(Hudson, 1979). 

(i) Changes in load mass: 

Load mass changes during replacement experiments are shown in 

Figure 8.7 for three males and two females. In all birds load size 

increased over the control period of six to seven days, though the 

shape of the load mas 'brood age curve varied considerably amongst 

individuals. 

Both sexes at nest 'gu' brought back smaller loads when given 

younger chicks, as did the male at nest 'SLB'. Moreover, the load 

mass reduction response at nest 'gu' was immediate, with smaller 

loads returned within two hours of the experiment commencing. 

However, neither parent at nest 'G' showed any obvious tendency to 

reduce load mass when given younger chicks. 

(ii) Changes in feeding rates and food delivery rates: 

Changes in feeding rates and FDRs"during two replacement 

experiments are illustrated in Figure 8.8. 

In both cases feeding rates and FDRs fell at the start of the 

replacement experiment, and increased during initiation of brood 

enlargement experiments, showing that the parents were responding to 

the demands of the experimental broods rather than to the expected 

demands of the broods they initially hatched. Behavioural modifi- 

cation was rapid, occurring seemingly to its full extent within one 

day of the transfers. 

Daring each replacement experiment the feeding rate of the male 

parent fell below that of the female, although the male feeding 



MALES 

0.12- 

006- 

0-04- 

'T 

* 

(b) 
0 -, -- 

0SI 10 IG 

0.1 1 0.18 

0 /t 0.1 

l1 0 08 o. 

0" Y 0.04- 

ro y00 
ro 0s 10 0 

ro 

(c) 
So 

-16-I 

i 

t{ 
z 

0 

10 

"Y 

s to 

Brood age, (days) 

Figure 8.7 

Load mass changes of adult. swallows during replacement 
experiments. 

(a) Nest 'gu': day 2 chicks replaced day 7 chicks at X. 

(b) Nest 'G' : day 2 chicks replaced day 7 chicks at Y. 

(c) Nest 'SLB' : day 3 chicks replaced day 8 chicks at Z. 

Means + sds of load masses are illustrated, curves fitted 
by eye. 



M 40 
a) 
a) w 
44 1 
ö4 20 

s, 

o 

1) 41 
$4 4 

a, 

b a+ 
b n 

A 

X �°) 
4' 

p 
"o 

/.. 
0 0ýf 

W005 
10 15 20 

20 

44 

v4-1 4/ ýf 
01 10 

AJI' 

1 05 10 15 20 25 

O- 

>4 

O 

-Z 
N 
b 

b 
O 
0 0 

0- 

Figure 8.8 

The effects of experimental manipulation of brood age 
and brood size on feeding rate, and food delivery rates of 
adult swallows at two nests. 

(a) Nest 'gu'. Solid diamonds - male, open diamonds - female. 
At X day 2 chicks replaced day 7 chicks, at A brood 
size was enlarged from four to seven chicks. 

(b) Nest 'G'. Solid triangles. - male, open triangles - 
female. Solid circles represent data for both sexes 
combined. At Y day 2 chicks replaced day 7 chicks, 
at B brood size was enlarged from three to five young. 

Brood age, (days) 



229 

rate was similar to or higher than that of the female during the 

control period. There may therefore be reduced male investment 

relative to the female during replacement experiments, although it 

remains possible that males may have been more sensitive to distur- 

bance associated with manipulation than females. 

(d) The effects on adult body mass changes: 

As outlined above, if brooding is necessarily costly to a 

female in that it reduces her time available for self-feeding, 

artificially increasing her brooding time after the brooding phase 

is completed should induce the female to undergo further rapid mass 

loss. 

Parental body mass changes during three replacement experiments 

are illustrated in Figure 8.9. Both sexes tended to lose mass over 

the control period (males, r= -0.47, n= 22, P<0.05; females 

r= -0.55, n= 23, P<0.01), although neither sex lost mass signifi- 

cantly during the replacement experiments (males r= -0.26, n= 10, 

P>0.2; females r= -0.08, n= 11, p>0.5) even though % BROOD 

was increased from 0-15% to 60-70%. Hence the results from the 

replacement experiments do not support the view that female mass 

loss during the brooding phase is costly as a consequence of limited 

time for self-feeding. 

8.3.5 Adult masses during the non-brooding phase 

Between days 8 and 21 of nestling-rearing, the body masses of 

both male and female swallows attained relatively low, stable values 

(Figure 8.1). To determine the factors influencing adult body mass 

during this period, a stepdown multiple regression analysis was 

performed on 30 days of control pair data with the same independent 

variables entered as for the brooding phase analysis. A correlation 
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matrix is presented in Table 8.4, and the abbreviated stepdown 

multiple regression analysis is summarised in Table 8.5. 

Both male and female body masses correlate with similar variables 

and the correlation between males and female body mass of pairs was 

positive and highly significant. In both sexes body mass was 

positively correlated with season, temperature measurements, and 

sweep net biomass. The results from the stepdown multiple regression 

analysis show that both male and female body masses were higher if 

conditions were favourable on the previous day (tmaxd_l high), if 

current levels of food abundance were high, and if the birds were 

rearing large brood sizes. These variables contributed to 85% of 

the variance in female mass and 74% of the variance in male mass. 

There was no significant tendency for birds to lose or gain mass 

progressively over the non-brooding phase. 

Once the relatively stable, low body masses have been attained 

after the brooding phase, it is more likely that mass losses incurred 

by the parents represented body condition costs, implying a negative 

effect on survival. The relationship between adult body mass 

changes and FDRs could elucidate if high provisioning rates are 

energetically costly to the parents. For example, in pied king- 

fishers, Ceryle rudis, parents tended to lose mass when energy 

expenditure was high at a time when feeding rates to the brood were 

high (Ryer and Westerterp, in prep. ). ' 

Swallows tended to reduce their FDRs when food was scarce 

(section 8.3.8), and adult body masses also tended to be low when food 

was less abundant (see above). The percentage mass change from the 

previous day in adult swallows (including control and experimental 
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Table 8.4 

Correlation matrices of male and female body mass in 

swallows during the non-brooding phase 

(days 8-21 of nestling-rearing) 

Variable female mass, g male mass, g 

season (days after June 1st) 0.736*** 0.667*** 

brood age, days -0.058 ns 0.044 ns 

brood size -0.105 ns -0.050 ns 

maximal daily temperature, °C 
on day of weighing 0.740*** 0.682*** 

maximal daily temperature, °C 
on preceding day 0.649*** 0.563** 

maximal daily temperature, °C 
on subsequent days 0.754*** 0.669*** 

sweep net biomass 
g, dry mass 0.828*** 0.776*** 

mate mass 0.936*** - 

i 

Tabulated values are correlation coefficients, r. 

ns not significant; 
** P<0.01 
*** :p<0.001 
n= 30 days of data 
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Table 8.5 

Abbreviated stepdown multiple regression analyses of male and 

female swallow body masses during the non-brooding phase 

(a) Females: 

Independent 
Variable 

M21tiple 
rx 100 

Degrees of 
Freedom 

Regression 
equation t-value P 

brood size 1.1 1,28 y=1.16x1 + 4.04 *** 

maximal daily temp. 
on preceding day 
°C 55.9 2,27 0.220x2 + 5.20 *** 

sweep net biomass, 
mg, dry mass 85 3,26 0.019x 

9 25 
7.09 *** 

+ . 

F= 49.0, P< 0.001 

(b) males: 

brood size 

maximal daily temp. 
on preceding day, 
CC 

sweep net biomass 
mg, dry mass 

0.25 1,28 y=0.452x1 + 3.10 ** 

45.7 2,27 0.073x2 + 3.40 ** 

73.8 3,26 0.007x3 5.27 *** 

+ 15.8 

F=24.2, P <0.001 

** :P<0.01 
***: P<0.001 
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brood sizes) was negatively correlated with the bird's FDR (r = 0.37, 

n= 68, P<0.01 all data; r= -0.42, n= 32, P<0.05 males; 

r= -0.35, n= 32, P <"0.05 females), so that birds of both sexes 

tended to lose mass when their delivery rates were sustained at a 

high level. In a stepdown multiple regression of adult percentage 

mass changes with FDR and food abundance entered as independent 

variables, food abundance did not enter as a significant variable 

(t-value, > 0.05). Logarithmic transformation of FDR and mass 

changes did not improve the significance of the relationship between 

delivery rate and mass change in double-log or semi-log plots. 

Hence the relationship between FDR and percentage adult mass 

change from the previous day is äpparently linear, suggesting that 

increases in feeding rate by the adult may be physiologically costly. 

Nur (1984b) showed a linear relationship between feeding frequency 

and body mass in blue tits, though no such trend was apparent in 

males. These linear results contrast with the shape of the response 

in a female starling, where rate of mass loss increased with increas- 

ing-time spent'flying during nestling-rearing (Drent and Daan, 1980, 

analysing data of J. M. Tinbergen and co-workers). 

The difference between the slopes of male and female mass changes 

in relation to FDRs was not statistically significant (equations in 

legend in Figure 8.10: analysis of covariance, t=1.93, n= 68, ns). 

when experimental brood sizes were removed from the analysis, 

no correlation'existed between mass changes and FDR for the combined 

data set, or for males and females treated separately (all data; 

r= -0.09, n= 24, ns; females, r= -0.18, n= 12, ns; males, 

r=0.03, n= 12, ns). Individuals delivering food at faster rates 

to control brood sizes are likely to be of higher quality than birds 
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delivering food at slower'rates to their natural broods, and there- 

fore may not suffer any deterioration in body condition despite their 

rapid delivery rates. 

8.3.6 Brood size manipulation experiments 

(a) Brood size reduction 

One nest (B84) had its brood size reduced from five to two at 

hatching, while another (GR) had two of its four chicks removed one 

day after hatching. The consequences for adult body mass changes 

are illustrated in Figure 8.11. Both males maintained or increased 

body mass over the rearing period, whilst each female underwent a 

rapid period of mass loss during the brooding phase as normal, 

stabilising at a low body mass from day 8 onwards. 

(b) Brood size enlargement 

Five brood enlargement experiments were conducted, four of which 

were run throughout the rearing period. Details of the enlargement 

experiments are presented alongside Figure 8.12, where the effects 

of brood enlargements on adult body mass change are illustrated. 

In only one instance was body mass reduced to a level whereby 

immediate survival seemed jeopardised: female 'gu' lost 5.4g or 24% 

of her incubation mass after being subjected to a replacement 

experiment followed by a brood enlargement. 

Two females who reared broods of seven throughout the rearing 

period (HH, A84) dropped in mass midway through nestling rearing, but 

completed rearing with masses near to that of control females, despite 

entering the nestling-rearing phase with body masses substantially 

lower than the value for controls. Two other females which were 

given enlarged broods at an early stage of rearing (CN, SLB) lost 

substantial mass during the brooding phase. 
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Figure 8.12 

The effect of brood size enlargement experiments 
on the body mass changes of adult swallows. 

(a) Females 
(b) Males 

The following brood size enlargement experiments are 
illustrated: 

Number Initial Experimental Day of 
on graph Nest brood size brood size transfer 

1 'A84' 570 

2 'HH' 472 

3 'CN' 372 

4 'SLB' 363 

5 'gu'* 478 

* nest 'gu' underwent a replacement experiment for seven 
days before the brood enlargement. 

Thin solid lines in the figure represent the control 
period (natural brood sizes), thin pecked lines the 
experimental period of brood enlargement. 

Thick solid lines terminating in 'C' are mean afternoon 
masses of all birds of one sex raising natural brood sizes. 

Different symbols are used to illustrate some individual 
male masses. 
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The only male to deviate substantially from the body mass of 

control males was 'gu', the bird given a brood size enlargement after 

a replacement experiment. Males appeared to deviate from the body 

mass of control birds to a lesser extent than did their mates. 

To investigate the significance of brood size enlargement and 

reduction experiments in greater detail, two pairs nesting within-30 

metres of each other, and completing the same clutch size on the same 

day had their chicks transplanted on the day of hatching. One pair 

was given eight your (of which one died from falling out of the nest 

on day 8) 
, the other two young. Hence a'simultaneous brood size 

reduction and enlargement experiment occurred side by side with parent 

birds subjects to similar environmental circumstances. The 

consequences of the experiment for adult body mass changes are shown 

in Figure 8.13. 

Males of both pairs increased in mass over the rearing period, 

the male which was rearing the reduced brood size more so than the 

male rearing the enlarged brood size. Both females decreased in 

mass rapidly during the brooding phase, the female rearing brood 

size two being heavier than the female rearing brood size seven until 

day 14, after which time the female rearing the larger brood size 

increased in mass, being 1.6g heavier than the female rearing two 

chicks by day 18. 

The consequences of brood size manipulation for the body mass 

changes of swallows are not clear cut. Three salient points emerge 

from the experiments: 

(i) There is no strong evidence to suggest that rearing an enlarged 

brood normally causes deterioration in the body condition of swallows. 

Mass losses are most likely to be costly during the non-brooding 
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phase (see above). In Figure 8.14, mean daily mass changes from the 

previous day, expressed as percentages, are plotted for the non- 

breeding phase in swallows rearing either reduced, enlarged, or 

control brood sizes. Males appeared to gain mass when given reduced 

brood sizes, and to lose mass when rearing control or enlarged brood 

sizes. Females appeared to lose mass during all treatments. 

However, none of the differences between means was statistically 

significant (t-tests, P>0.05), so any effects of changing brood 

size on adult mass during the non-brooding phase appear to have been 

slight, although the sample sizes were small using the Mettler 

balance technique. Female house martins rearing reduced brood sizes 

gained mass at 0.19g day-l. Those rearing control brood sizes lost 

-0.07g day-1, while females given enlarged broods lost -0.36g day-1 

(Bryant, 1979). 

(ii) Female swallows shed mass rapidly over the brooding phase when 

brood size was reduced or enlarged. Incubation body mass,. standar- 

dised for body size by dividing by keel-length, was positively 

correlated with clutch size (Figure 8.15) in swallows. There was no 

evidence to suggest that clutch size was correlated with keel-length 

(r = 0.05, n= 25, ns). A heavy body mass in females incubating 

large clutches may be adaptive in providing considerable lipid reserves 

to buffer against the increased incubation costs of reheating a large 

clutch (Chapter 7). A female incubating a clutch of five eggs may 

'expect' to hatch five chicks, and may then shed any mass which would 

have been adaptive during incubation but costly during nestling- 

rearing regardless of how many chicks actually hatch. Mass loss 

during rearing will presumably be a function of reproductive commit- 

ments during incubation as well as demands during rearing, and 

incubation and rearing commitments would be different if fewer chicks 
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were hatched than the number of eggs laid, or if brood size were 

experimentally manipulated. 

(iii) Females appeared to deviate more from the masses of control 

birds during brood size manipulation experiments than did males. 

8.3.7 Parental foraging ecology and feeding behaviour during 
nestling rearing 

The behavioural ecology of swallow foraging has been studied in 

the context of optimal foraging theory by Waugh (1978) and Turner 

(1982b), and central place foraging theory (Orians and Pearson, 1979) 

by Bryant and Turner (1982). Previous tests of theories of avian 

foraging ecology have drawn on load size data collected by collaring 

nestlings, which may influence chick begging behaviour and load sizes 

delivered by the parents (Johnson et al., 1980). Moreover, previous 

studies of swallow foraging have made assumptions about parental 

self-feeding rates during bolus collection. The use of precision 

automated nest balances allows load masses to be monitored without 

collaring nestlings, and allows adult self-feeding behaviour to be 

investigated through an analysis of instantaneous body mass changes 

during foraging. 

Parental self-feeding behaviour while collecting food for the 

brood is central to an understanding of long-term parent: offspring 

resource allocation in swallows since adult self-feeding rates will 

be responsible for longer term changes in body mass during nestling 

rearing. In this sub-section, factors influencing load masses, 

brood provisioning rates, and adult self-feeding rates will be 

considered in the context of parent: offspring resource allocation 

strategies. 
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(a) Load masses 

(i) The effects of brood age 

Load masses delivered by both male and female swallows increased 

as the brood aged, attaining an asymptotic mass from day 8 onwards, 

although female load mass may perhaps decline towards the end of the 

rearing period (Figure 8.16). Load size increased with nestling age 

in starlings (Dunnet, 1955; Tinbergen, 1981), great tits (Royama, 

1966a), and wheatears 0. oenanthe, (Carlson and Moreno, 1982). 

Presumably the optimal load size delivered to the brood will be 

constrained in part by chick gape size (Fagerström, Moreno and Carlson, 

1983). Small chicks may not be able to swallow large loads, and it 

may be uneconomical for the parents to split one large load amongst 

the brood. Although load splitting in swallows does occur for a few 

days after the nestlings hatch, it is an infrequent event. Five per 

cent of 40 closely observed feeding visits to day 0-2 nestlings 

resulted in bolus splitting by the parents. 

The similarity between the load mass/brood age curves for males 

and females during the brooding phase suggests that female brooding 

behaviour does not modify her optimal load size over this time. Once 

the brooding phase is complete, load masses reached stable, relatively 

high values for both sexes when adult body masses had attained 

relatively stable, low values. This asymptotic load mass may be 

that which maximises parental feeding efficiency (Orians and Pearson, 

1979; Bryant and Turner, 1982) at a time when nestling demand is 

greatest (Figure 8.1). 
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(ii) Sexual differences in load mass 

Sexual size dimorphism in birds may result in a different optimal 

load mass for each parent, as seen in wheatears (Carlson and Moreno, 

1983). Male swallows in this study tended to have significantly 

longer keels than females (Chapter 2), and if differences in bill 

morphology between the sexes also occur, male and female swallows may 

deliver different load sizes to their broods. 

Male and female load masses were compared in parents rearing 

natural broods for eight females at 10 nests and three males at six 

nests for loads delivered between days 8 and 16 for the nestling- 

rearing period. The males delivered significantly smaller loads than 

females (0.115 + 0.005g males, n= 281; 0.137 ± 0.006g females, 

n= 425; t=5.2, P<0.001), despite the males having significantly 

longer keels than the females (22.98 + 0.45 mm keel length of males; 

21.82 + 0.82 mm females; t= 19.8, P<0.001). - 

(iii) The influence of adult age on load mass delivered 
to the nestlings 

Several studies have shown that adult birds forage more efficiently 

than youngsters, harvesting more energy per unit of time spent 

feeding (Orians, 1969; Dunn, 1972; Groves, 1978; Burger, 1980). 

Indeed, age differences in foraging ability may persist for several 

years in some species (Norton-Griffiths, 1968; Recher and Recher, 

1969). If the foraging ability of swallows improved with adult age, 

older adults may be able to rear more offspring than younger birds 

because of their age-related foraging efficiency. 

Two male swallows had balances placed under their nests for more 

than one year of the study. Male B47 had load sizes monitored for 

two broods in 1982 and one brood in 1983. Male B69 was studied for 
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one brood in 1982, two broods in 1983, and one brood in 1984. Mean 

load masses for these birds over days 8-16 of the nestling-rearing 

period are illustrated in Figure 8.17. Although there was a tendency 

for both these males to increase their mean load mass as they became 

older, differences in mean load masses between years were small and 

statistically insignificant (t > 0.05 all cases). 

Foraging efficiency will also be a function of the feeding rate 

of adults, but insufficient data were available to examine differences 

in feeding rate of birds of known age. 

(iv) Other factors influencing load mass in swallows 

For eight female swallows at 10 nests, load mass between days 8 

and 16 of the nestling-rearing period was significantly positively 

correlated with keel-length (r = 0.18, n= 425, P<0.001). 

Insufficient keel-length information was available for a similar com- 

parison to be made amongst males, though when male loads and female 

loads were combined, the keel-length/load mass correlation was lost 

because males, although having longer keels, collected lighter loads 

than females (see above). 

When 706 loads from 11 birds (eight females, three males) at 16 

nests were analysed, load mass was significantly negatively correlated 

with season (days after June 1st, r= -0.09, P<0.05), but was not 

significantly correlated with brood size (r = 0.03, ns) or with adult 

body mass (r = 0.07, ns). The load size delivered to second brood 

swallow nestlings was found to be smaller than that delivered to 

first broods earlier in the season by both Waugh (1978) and Turner 

(1980). 

A stepdown multiple regression analysis of load mass with the 
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above mentioned independent variables entered in the analysis resulted 

in season (t = 2.8, P<0.01), and adult body mass (t = 2.3, P<0.05) 

entering as significant variables. The regression equation was 

(100 x load mass, g) = 5.19 - 0.022 (season) + 0.442 (adult body mass, 

g) (r2 = 1.3%, F=5.5, n= 706, P<0.05). 

The suggestion that load mass was greater in heavier birds may 

be because the females sampled were significantly heavier than the 

males (t = 5.7, P<0.001), and females delivered significantly 

heavier loads than males. 

Meal mass may act as a constraint on optimal load size in humming- 

birds (De Benedictis et al., 1978) because heavier birds would have 

increased flight costs, and meal mass contributes substantially to 

overall body mass. Load mass contribues only 0.6 - 0.7% of total 

body mass in swallows, and is unlikely to significantly increase 

flight costs. Flight costs for a fully loaded house martin were 

calculated to increase by only 2.75% (Bryant and Turner, 1982). 

(b) Feeding rates and food delivery rates 

Given the considerable variation in load mass with brood age and 

between individuals, quantification of food delivered to the brood by 

monitoring feeding rates alone may be misleading (Bedard and Meunier, 

1983). This point is illustrated by one example in Figure 8.18, 

where mean load masses of a male and female feeding a brood of five 

nestlings are depicted. On day 11, the mean load mass delivered by 

the female was 0.21g, that by the male 0.14g. If the 48 feeds 

recorded in one hour's observation were split equally between the 

parents, assuming an overall average load mass of 0.175g for each 

parent would overestimate male FDR by 14.3% and underestimate female 

FDR by 17.5%. 
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Food delivery rates over days 8-16 of nestling-rearing increased 

linearly with increasing brood size (Figure 8.19). The linear 

regression was more significant than a log-log or semi-log relation- 

ships between FDR and brood size. Moreover, the slope of the linear 

relationship is 0.97, suggesting that a doubling of brood size resulted 

in a virtual doubling of food delivery rate, and that chicks in 

larger broods were not relatively undernourished. Feeding rate 

increases linearly with increasing brood size in blue tits, although 

individual chicks in medium sized and large broods did receive less 

food than nestlings in very small broods (Nur, 1981,1984b). Amongst 

the largest swallow broods, however, the pattern was probably different 

from the apparent trend across all brood sizes. Individual chicks in 

brood sizes of seven received less food (0.91 + 0.19g chick-1 h-1) 

than did nestlings in brood sizes of five (1.11 + 0.34g chick-1 h-1), 

although the difference between means is not statistically significant 

(t = 1.72, n= 30, ns), possibly because of the small sample size. 

Most studies report a decline in feeding visits per nestling as brood 

size increases, with feeding rate per chick apparently declining most 

steeply at brood sizes less than or equal to the modal brood size 

(review in Nur, 1984b). 

As the brood grows, FDRs by parent swallows increased until the 

middle of the nestling period (Figure 8.1), partly because load size 

increases over the brooding phase (Figure 8.16) but mainly because 

feeding rates increased over this period. 

In Figure 8.20 feeding rates and FDRs to three control broods are 

illustrated. Both male and female feeding rates increased over the 

early nestling period. During the brooding phase 51.77 + 20.57% of 

feeds (n = 35 hours of observation) were made by females at control 
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nests. The large standard deviation occurs because of the great 

variability in parental feeding contributions between nests. At 

one nest the female delivered all feeds to the brood over one hour, 

at another nest the female contributed only 8.3% of the total number 

of feeds. During the brooding phase females delivered food to the 

brood on almost every visit, although occasionally birds settled to 

brood without feeding the chicks (pers. obs. ). Much less variability 

in the feeding rates of males and females occurred during the non- 

brooding phase (days 8-21). On nine hours of observation, females 

delivered 54.24 + 3.05% of feeds to the brood. 

(c) Adult self-feeding on foraging trips 

When collecting food for the brood, adult birds must also 

harvest food for self-maintenance. On reaching a food patch, parents 

must decide whether to eat prey encountered themselves, or to collect 

it for the brood. Female yellow-headed blackbirds, X. xanthocephalus, 

self-fed on 77% of trips when collecting food for their nestlings, 

whilst males self-fed on 50% of occasions (Orians, 1980). 

Optimal prey size may be different for adults and nestlings. 

Adult swallows select smaller prey for self-maintenance when broods 

have hatched (Waugh, 1978), as do blue tits (Royama, 1966a), long- 

billed marsh wrens Telmatodytes palustris (Verner, 1965), and blue- 

gray gnatcatchers, Polioptila caerulea (Root, 1967). Thus any 

relatively small prey encountered by swallows when foraging for food 

for the brood may be consumed for self-maintenance before a bolus is 

collected. Theoretical aspects of optimal foraging in patches 

containing several sorts of prey have been explored by Heller (1980). 

Brood size may also influence adult self-feeding behaviour: adult 
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food intake for self-maintenance decreases as food delivery rates to 

large broods increases in starlings (Kacelnik, 1984). 

Body mass changes of five adult swallows during foraging bouts 

when food was also collected for the brood are illustrated in Figure 

8.21. Mass loss resulting from flying is also calculated using 

assumptions outlined in Chapter 4. 

Adults tended to show an increase in mass exceeding the predicted 

mass loss through flying in 42% of cases, suggesting considerable 

self-feeding when collecting food for the nestlings. The graph will 

include some trips when adults defaecate as well as feeding, so self- 

feeding may occur on more than 42% of foraging trips. 

The age of the brood may also influence adult self-feeding 

behaviour. During the brooding phase female swallows apparently 

undergo anorexia, and lose mass or gain relatively little mass while 

foraging. The rate of mass gain increases as the nestlings become 

older and adult fat reserves decline (see section 8.4). 

Mass gains while foraging were significantly positively corre- 

lated with foraging time (r - 0.45, n= 39, P<0.01), the longest 

foraging bouts resulting in the greatest mass gains for the adults. 

Load mass also increased as foraging time increased (Figure 8.22), 

but reached an asymptote after about four minutes. Hence during 

foraging trips longer than about four minutes food collected for the 

brood remained roughly constant, and increasing rates of self-feeding 

presumably occurred. The decelarating form of the loading curve may 

occur because of increased handling difficulties as load size 

increases (Bryant and Turner, 1982; Carlson and Moreno, 1982), or as 

the consequence of birds travelling different distances in different 
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conditions of prey availability (Kacelnik and Houston, 1984). Since 

time of round trip was not divided into travel time and time in patch, 

this problem cannot be resolved from the data presented here. 

Adult white-fronted bee-eaters, Merops bullockoides, eat more 

of the total food captured themselves relative to that delivered to 

the brood as foraging distance and foraging time increased (Hegner, 

1982), as seems to occur in swallows (Figure 8.21). 

8.3.8 Differences in parental investment between male and 
female swallows during nestling rearing 

(a) Body mass changes 

When adult swallows attained relatively low, stable body masses 

at the end of the brooding period, mass changes were negatively 

correlated with FDRs, and birds delivering food above a critical rate 

tended to lose mass (section 8.3.5). Hence mass losses during the 

non-brooding phase may be costly to the parents, reflecting the amount 

of work done in feeding the brood. 

To determine whether females were prepared to lose more mass than 

males during the non-brooding phase, percentage mass changes of males 

and females in contol pairs from the previous day were plotted against 

each other in Figure 8.23. 

Females and their mates showed the same direction of mass change 

on 26 of 30 days of data. The relationship between female and male 

percentage body mass changes was nonlinear, with females losing more 

mass than their mates when percentage mass losses of both sexes were 

relatively high. Since body mass was positively correlated with 

food abundance in both sexes during the non-brooding phase (section 

8.3.2), Figure 8.23 suggests that males may not be prepared to lose 
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more than a critical amount of their body mass in poor feeding condi- 

tions or when feeding rates to the brood were high, while their mates 

may lose more mass by investing relatively more in the offspring 

relative to self-maintenance (Chapter 9). 

In Figure 8.24, the ratio of female body mass to the body mass 

of their mates is plotted as a function of food abundance as deter- 

mined by hand-net catch biomass. Body masses were not corrected for 

body size in this instance, and hand-net catch biomass was chosen as 

an index of food abundance because it gave the largest r2 value of 

any measure of insect abundance considered. Female mass was greater 

than male mass above 60-70g (dry mass) of insects captured in the 

hand-net. Below this threshold males tended to be heavier than their 

mates, again suggesting that in poor feeding conditions female invest- 

ment in the brood exceeded that of their mates. 

Behavioural data from a time-budget study of swallows feeding 

nestlings supports these conclusions. 
. 

Turner (1980) found that in 

poor weather females spent less time feeding themselves than the 

nestlings, while males fed themselves for as much time as they fed the 

brood. 

(b) Food delivery rate measurements 

(i) The effects of brood mass 

During the non-brooding phase, both sexes increased their FDRs 

to heavier brood masses at more or less identical rates (Figure 8.25, 

analysis of covariance, t=0.86, ns). Logarithmic transformations 

of the data did not increase the significance of the correlation 

coefficient. Male house martins increased their feeding rates to 

larger first. brood masses at a faster rate than did females (Hails 

and Bryant, 1979). Turner (1980) found no significant difference 
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between the feeding rates of male and female swallows to large and 

small broods, though the males made slightly fewer visits to the nest 

per hour than did the female. In this study, females on average 

delivered slightly more food to their broods than did their mates 

between days 8 and 16 of nestling-rearing, although the difference 

between means was not statistically significant (female FDR = 2.35 + 

-l 1.29g h, male FDR = 2.18 + 1.36g h-l ,n= 33 hours for each sex, 

t=0.52 ns). 

(ii) The effect of food abundance 

The ratio of female FDR to her mate's FDR increased as food 

abundance decreased (r = -0.34, n= 33, P>0.05). The significance 

of the correlation is raised if female FDR/mate FDR is transformed 

to (loge) and plotted against hand-net biomass (r = -0.44, P<0.01). 

Both male and female FDRs were significantly positively corre- 

lated with food abundance, as shown in Figure 8.26a (males, r=0.54, 

n= 33, P<0.001, females r=0.40, n= 33, P<0.05). Significance 

of the relationships is increased if log 
e 

FDR is plotted against the 

loge of food abundance (males r=0.60, P<0.001, females, r=0.48, 

P<0.01), as shown in Figure 8.26b. When the log-log plot is 

considered, males increased their FDRs at a higher rate than did 

females with increasing food abundance (analysis of covariance, t= 

8.4, P<0.001), such that male FDRs were lower than those of females 

when food was scarce, but exceeded those of females at high levels of 

food abundance. Hence the reason for males not losing as much mass 

as their mates when feeding broods in poor weather is probably a 

consequence of reduced male investment in the brood, relative to the 

female, when food is scarce. 
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Food delivery rates of male and female swallows as a 
function of food abundance. 

(a) Data for pairs: symbols as in Figure 8.25. 

(b) Regression lines for log male FDR and log female FDR 
as a function of loge foood abundance. 

e 

log male FDR = -2.26 + 0.663 (loge food abundance); er0.60, P<0.001 

loge female FDR = -0.712 + 0.339 (log food abundance); 
r=0.49, P<0.001 

I 

n= 33 both cases. 

M= male FDR; F= female FDR 
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8.3.9 Factors influencing nestling growth 

The pattern of swallow nestling growth for 32 nestlings in eight 

broods weighed during afternoons in 1982 is illustrated in Figure 8.27. 

The growth curve is of the characteristic hirundine form (Ricklefs, 

1967; McGinn and Clark, 1978), with a peak mass of 24.33 + l. 00g 

occurring on day 15 followed by mass recession. The peak mass was 

intermediate between values of 23.8g and 25.3g on days 14-14+ 

documented in southern Scotland by McGinn and Clark (1978), though 

significantly heavier than the peak mass of 22.8 + 1.7g (t = 3.06, 

n =34, P<0.01) on the 14th day obtained by Turner (1980) for 

swallows in the Stirling area (which may have been weighed earlier in 

the day). 

Between days 0 and 6, swallow nestlings of unknown age could be 

aged according to body mass where afternoon body mass (g) = 1.09 + 

1.68 (age, days) (F = 774, n= 103, P<0.001). Thereafter, chicks 

were aged according-to their wing-length (maximum chord) whereby wing- 

length (mm)- -2.72 + 4.69 (age, days) (F = 1027, n= 170, P<0.001). 

4 

To determine whether similar factors influenced chick growth as 

affected adult masses during nestling rearing, nestling body masses 

over the first 14 days of the nestling period, the period of rapid 

mass gain, were related to nestling age, food abundance, and brood 

size. Afternoon masses of 56 nestlings from 11 broods of brood 

sizes two to seven were obtained to the nearest O. Olg on 468 nestling 

days. Individual nestling mass was entered as the dependent 

variable in a stepdown multiple regression analysis with brood size, 

sweep net biomass, and nestling age entered as independent variables. 

The results of the analysis are presented in Table 8.6. 
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Growth curve for thirty-two swallow nestlings 
weighed to the nearest O. Olg during afternoons. 
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Table 8.6 

Stepdown multiple regression analysis of nestling growth, 

days 0-14 

Independent Mltiple Degrees of Regression 
variable r? x 100 Freedom equation t-value P 

Brood size 0.06 1,466 

Sweep net 
biomass 
g dry mass 2.24 2,465 

y= -0.188 x1 + 2.33 

0.0199x2 + 10.50 *** 

Nestling age 
days 91.30 3,464 1.96x3 69.06 *** 

- 0.033 

F= 1643, P<0.001 

**P<0.05; ** :P<0.01; *** :P<0.001 
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The three independent variables contributed towards 91.3% of 

the variance in nestling mass. Chicks tended to increase in mass 

with age, be heavier when food was abundant (and adult provisioning 

rates were high, (section 8.3.8)), and be heavier in smaller brood 

sizes. 

Nestling growth rates were almost linear between days 2 and 11, 

(Figure 8.27) and were compared in three treatments: 

a. Experimentally reduced brood sizes of two 

b. Control brood sizes of four - six chicks 

c. Enlarged brood sizes of seven. 

Each experimental treatment had a brood size differing by at 

least two chicks from the initial clutch size. The regression 

equations for nestling growth as a function of age between days 2 and 

11, and mean peak masses of nestlings in each treatment are presented 

in Table 8.7. 

Nestling growth rates were significantly different in each 

treatment (Analysis of covariance: reduced brood sizes vs controls, 

t=3.20, P<0.01; enlarged brood sizes vs controls t=6.03, 

P<0.001; enlarged broods sizes vs control brood sizes, t=9.2, 

P<0.001). The fastest growth rates occurred in reduced brood sizes 

of two, the slowest in enlarged brood sizes of seven young. On only 

one day did a brood show negative growth during days 2-11, this being 

in a brood size of seven chicks. 

Chicks in reduced brood sizes on average attained a heavier peak 

mass than those in natural brood sizes, which in turn attained 

heavier average peak masses than chicks in enlarged broods. Nestling 

peak mass was negatively correlated with brood size (r = -0.49, 
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Table 8.7 

Nestling growth rates between days 2 and 11, and mean 

nestling peak masses in control, enlarged and reduced 

brood sizes 

Regression Equation Nestling peak mass, g 
Treatment (nest days) (number of chicks) 

Reduced brood sizes 
(2) y=2.27 + 2.4x, (42) 25.28 + 0.95, (4) 

Control brood sizes 
(4,5) 

Enlarged brood sizes 
(7) 

y= -0.20 + 2.2x, (241) 

y 0.18 + 1.18x, (185) 

24.41 + 1.36 (20) 

23.31 + 1.20 (14) 

Regression equation slopes give nestling growth rates, 

g day-'. All regression equations were significant at 

P<0.001. 
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n= 38, P<0.01). Fledging success was 100% for all broods included 

in the analysis. 

Hence although manipulation of brood size has no significant 

effect on adult daily body mass changes during the non-brooding 

period, brood size significantly influences both nestling growth 

rate and nestling peak mass. Rearing broods larger than those 

observed in natural situations may therefore reduce parental inclu- 

sive fitness if fledgling survival overwinter was related to chick 

growth rate or peak mass. Although brood size does not seem to have 

any marked influence on overwinter survival of fledgling hirundines 

(Snapp, 1973; Bryant, 1978,1979; De Steven, 1980), the frequency 

of exceptionally light young increases in enlarged broods of house 

martins, and such young may have poor post-fledging viability (Bryant 

and Westerterp, 1983b). 

8.4 DISCUSSION 

8.4.1 Optimal body mass of adult birds rearing nestlings 

Parent: offspring resource allocation decisions in birds are 

presumably made by the parent in relation to changes in body condition, 

which may in turn be related to long term survival probabilities 

(Drent and Daan, 1980). Hence an understanding of the causes of 

adult mass changes during nestling-rearing is fundamental to an 

interpretation of resource allocation decisions made by the parent 

bird. A decrease in body mass may be beneficial to the parent if it 

allows the bird to target towards an optimal mass for nestling 

rearing, but any decrease in mass below the optimum may cause adult 

body condition to deteriorate to a point whereby the bird's survival 

probability is progressively decreased. 
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The rapid rate of mass loss over the brooding phase by female 

swallows proximately represents utilisation of the bird's lipid 

reserves. The mean fat score of incubating female swallows was 

7.67 + 0.58, that during the non-brooding phase 3.78 + 1.48. The 

difference between means is statistically significant (t = 4.42, 

n= 21, P<0.001). The mass loss was not attributable to atrophy 

of the reproductive system since gonadal atrophy in female sand 

martins occurs soon after the last egg is laid (Chapter 5, Petersen, 

1955), and changes in body mass of sand martins during incubation and 

nestling-rearing are related mainly to changes in the bird's 

extractable lipid content (Chapter 5). Moreover, male swallows often 

undergo a mass decline during the early stages of nestling rearing, 

while their gonads only contribute 0.3% of carcass dry mass (Appendix 

III). Changes in the birds' protein reserves in the pectoralis 

muscles may occur in parallel with changes in lipid reserves, but 

changes in flight muscle mass are likely to be a small component of 

changes in total body mass (Chapter 5). 

Mass loss in adult birds rearing nestlings has been assumed to 

represent a body condition cost to the parents as a consequence of 

the considerable reproductive effort expended in collecting food for 

the nestlings (Nice, 1937; Hussell, 1972; Ricklefs, 1974). This 

hypothesis does not explain the pattern of mass change in adult 

swallows which are rearing nestlings because any period of rapid mass 

loss, especially marked in females, occurs before the time of 

maximum food delivery rate to the brood. If mass was lost simply 

as a consequence of an increased feeding rate to the brood, most 

mass would be lost during the middle of the rearing phase, when FDRs 

were highest. The tendency for nestling-rearing birds to lose most 
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mass before the period of highest nestling demand also occurs in 

marsh warblers, Acroscephalus palustris, (Dowsett-LeMaire and 

Collette, 1980), house wrens, Troglodytes aeddn, (Freed, 1981), 

starlings (Ricklefs and Hussell, 1984), and sand martins (Chapter 5). 

The period of rapid mass loss during the brooding phase could 

be because this period is the most energetically stressful time for 

the adult, even though feeding rates to the brood are low. The 

considerable time investment in brooding by the female may prevent 

her from self-feeding at a time when she must also collect some 

food for the brood (Nur, 1984a). However, incubating females may 

spend more time on the nest than do brooding females, (Chapter 7), 

and maintain a relatively high body mass for most of the incubation 

period. The low feeding rates by females to young chicks during 

the brooding phase seem unlikely to explain the rapid mass loss by 

females when compared with incubation masses. 

Freed (1981) argued that birds may lose mass over the brooding 

period as an adaptation to reduce flight costs in anticipation of a 

period of high nestling demand. Moreover, the energy liberated 

from mass loss would be available for use by the parents, and any 

harvested food could be diverted to the brood (Norberg, 1981). 

Excessive mass loss is likely to be costly if it increases the 

probability of starvation . 
due to a decrease in energy reserves 

(Norberg, 1981), or if it results in reduced food allocation to the 

brood, maybe causing slower nestling growth at the expense of 

parental self-maintenance. 

The hypothesis that mass loss during the brooding phase wholly 

represents the cost of brooding and feeding to the female is 

attractive at first sight since females lose more mass than males 
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during this period, and only females brood. However, the hypothesis 

can be rejected from the results of the replacement experiments, 

which did not induce females to undergo a further mass decline even 

though their brooding commitment was substantially increased and 

their nestlings grew normally. 

Although the brooding commitment of the females in replacement 

experiments was always increased-substantially (Figure 8.5), it did 

not reach the level expected if the female were brooding her own 

nestlings during a natural brooding period (Figure 8.6). 

This observation suggests that female swallows have a programmed 

and diminishing brooding response, as represented diagramatically 

in Figure 8.28. 

The brooding response of the female is simplified to a linear 

declining function of brood age, whereas the actual response may be 

sigmoidal. At any brood age, a certain amount of flexibility 

occurs about the brooding response, as illustrated by the vertical bars in 

Figure 8.28. This flexibility may be-adaptive, since if some of 

the brood dies, for example, the female would have to increase her 

brooding effort because smaller broods need more brooding than larger 

broods (Table 8.3). 

In Figure 8.28, a female is given four day old chicks in a 

replacement experiment when she is naturally rearing seven day old 

nestlings. Four day old chicks require x% brooding, but the 

female is only 'programmed' to brood for a maximum y% of her time 

at day 7. The nestlings therefore receive a brooding deficiency 

of (x - y) %. 
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Diagrammatic representation of a model of a programmed 
diminishing brooding response in female swallows. 

Vertical solid lines represent the range of a female's 
brooding response at any time. 

X is the expected level of brooding for day 4 chicks. 

Y is the maximum attainable level of brooding for a 
female with day 7 chicks. 

A female is given day 4 chicks in a replacement experiment 
when her own chicks were seven days old (asterisk). The 
newly transferred chicks experience a brooding deficiency of 
(X - Y)%. See text for explanation. 
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The inability to induce a rapid mass loss during the replace- 

ment experiments suggests that the females are undergoing an 

anorexia during the brooding phase, whereby food intake rate is also 

programmed to be reduced (Mrosovsky and Sherry, 1980). This 

hypothesis is substantiated in an analysis of the foraging intensities 

of birds during different stages of the breeding cycle. 

Foraging intensity, or food intake rate, can be estimated by 

calculating the rate of mass change of parent birds on foraging trips 

when they are collecting food either solely for themselves (incubat- 

ing females), or collecting food for themselves and for their 

offspring (nestling-rearing males and females). The rate of mass 

change between incubation bouts or between times of food delivery to 

the nestlings will indicate how much food the adult has collected 

per unit time for self-maintenance. In the analysis, rates of mass 

loss exceeding four mg g-1 h-1 have been excluded from all classes, 

since these may represent trips where defaecations occurred (Chapter 

4). Mass changes were expressed per gram of bird, although 

metabolism may normally scale in some allomettric way with mass, 

whereby mass changes would be better expressed per metabolic gram 

(g0.66). However, units of mg g-1 h-1 were used since no thorough 

study has been made on intraspecific metabolic costs in relation to 

body size, except in house martins, where large individuals actually 

have lower daily energy expenditures than smaller birds (Bryant and 

Westerterp, 1982,1983b). Rate of mass change while foraging as 

a function of stage of the breeding cycle for males and females is 

illustrated in Figure 8.29. Rate of mass change while foraging 

will hereafter be described as 'foraging intensity'. 

For females, foraging intensity was relatively high during 



rn 
ro 
O Q. g W 

0.4 

v-. a. -1 

.c 0a L) -4 

IT 
N bý 
"vü P. `ß 0.0 

W 
0 

v 
-0-2 

Figure 8.29 

Rate of mass change while foraging as a function of 
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incubation, when female body masses were also relatively high (Figure 

8.1). Female swallows aim to sustain a heavy mass during incubation 

(Chapter 7), and achieve this by maintaining a high rate of food 

intake in the limited time available for foraging. During the first 

four days of rearing, female foraging intensities remained at high 

levels, when the birds spent as much time brooding as they did 

during incubation (Figures 7.4,8.4). There are no significant 

differences between mean rates of mass change during incubation and 

days 0-1 of rearing (t = 0.4, n= 375, ns) or days 2-3 of rearing 

(t = 0.02, n= 307, ns), or between days 0-1 and days 2-3 of rearing 

(t = 0.17, n= 130, ns). A rapid mass loss by females over the 

first four days of brooding may then indeed be due in part to the 

time constraints of brooding and the energetic cost of collecting 

some food for the brood, since there was no evidence of a reduced 

foraging intensity during this period. 

However, during days 4-7 of the brooding phase, during which 

time female mass continues to fall, female foraging intensities were 

dramatically reduced, with foraging trips on days 4-5 resulting on 

average in mass losses for the females, Mean rate of mass change on 

days 4-5 of rearing was significantly lower than during incubation 

(t = 2.23, n= 307, P<0.05), and during days 1-2 of rearing (t = 

2.12, n= 132, P<0.05). The female may need to leave the nest 

during the late brooding phase to exercise her flight muscles, or to 

collect specific nutrients for self-maintenance. Although adult 

swallows must collect small prey for young chicks (Waugh, 1978), 

this is unlikely to act as a constrainton self-feeding time, since 

foraging intensities of adults were relatively high when the chicks 

just hatched, and any specialised prey for the brood must have been 

even scarcer at this time. 
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Female foraging intensity reached its incubation value again 

during days 9-20 of the rearing period (t = 0.38, n= 298, ns). 

The birds' lipid reserves are low at this period (see above, Chapter 

5), and the female will need to forage intensively to maintain her 

body condition since she can no longer subsidise her energy expendi- 

ture from body reserves. Hence female swallows are collecting 

large loads frequently for the nestlings (section 8.3.7) and 

foraging intensively for self-maintenance during the non-brooding 

phase of nestling rearing, when energy expenditure is likely to be 

at its highest level during the breeding cycle (Bryant and 

Westerterp, 1980; Drent and Daan, 1980). 

Male swallow foraging intensity was less variable than that of 

females during nestling-rearing. No significant differences 

between male mean foraging intensities occurred over the rearing 

period (t > 0.05 all comparisons), although male foraging intensity 

on days 4-5 of rearing was lower than that attained by incubating 

females (t = 2.23, n= 349, P<0.05), and females during days 0-1 

of rearing (t = 2.01, n= 170, P<0.05). Mean male foraging 

intensity on days 8-21 of rearing was not significantly different 

from that of incubating females or females rearing nestlings aged 

8-21 days (t > 0.05 both comparisons). 

Hence fitness in breeding swallows does not seem to be maximised 

by always maximising net energy gain while foraging (Caraco, 1980; 

McNamara and Houston, 1982), because birds forage at different 

intensities over the breeding cycle. A reduction in net energy 

gain during brooding in females would have fitness value in that a 

consequent drop in body mass would reduce flight costs in time for 

a period of high nestling demand. Rates of prey capture by yellow- 
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headed blackbirds gathering food for nestlings were higher than those 

of birds not gathering food for the young, as shown by Orians (1980). 

Thus mass losses during the brooding phase are unlikely to be 

costly in survivorship terms for female swallows. The energetic 

benefits from mass loss during the brooding phase, which appears to 

be at least in part the result of a programmed anorexia, can be 

calculated by considering the energy savings due to a reduction in 

flight costs, and the energy release from lipid metabolism. 

(a) The energy savings through a reduction in flight costs 

The energy savings from reducing power required for flight were 

calculated from the equation of Norberg (1981), based on the theory 

of Pennycuick (1975). 

E= T(E - BMR) [1 - (1 - a) 
1.5] 

24.3600 BMR 

where 

E= energy saving, as a fraction of the basal metabolic rate (BMR) 

of one adult during 24h, that would result from a mass loss Qf 

proportion a. 

T= flight time in s per day 

E= metabolic energy cost for flight, s-l. 

Both c and BMR are for a bird of 'normal'mass (assumed to be 

mass on the day of hatching eggs in these calculations). 

The following assumptions are included in the equation: 

(i) Female swallows spent 67% of a 16h day in flight when chicks 

were seven days old. This was directly calculated from time budget 

data, and no female was observed perching away from the nest during 

daytime in the brooding phase. 
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(ii) Females lost on average 6.5% of their body mass between the 

last day of incubation and day 7 of nestling-rearing (from Figure 8.1). 

(iii) Flight costs were 5.7 x basal metabolic rate (Turner, 1980). 

Solution of the equation implies that females may save 24.4% of 

basal metabolic rate during 24 hours on day 7 of rearing by losing 

6.5% of their body mass over the brooding phase. Assuming a basal 

metabolic rate of 28.2859 kJ bird-1 day-' (Turner, 1980), and a daily 

energy expenditure (DEE) of 108.52 kJ d-l during nestling-rearing 

(Westerterp and Bryant, 1984), the energy saving through mass loss 

is 6.90 kJ day-1 or 6.4% of daily energy expenditure during nestling- 

rearing. 

(b) The energy savings through lipid metabolism 

Female swallowson average lose 1.44g of their body mass between 

the end of incubation and the end of the brooding phase. . if this 

mass loss was all lipid, and assuming lipid to liberate 37.7 kJ g -l 

(Ricklefs, 1974), 48.68 kJ would be released over the entire brooding 

phase. Assuming energy expenditure during brooding to be equal to 

that during late rearing, 5.6% of one day's energy expenditure would 

be subsidised for lipid metabolism on each day of the brooding phase. 

Since energy expenditure during the brooding phase is likely to be 

less than that during late'rearing, the actual benefits of lipid 

catabolism could be greater. 

Hence during days 8-21 of rearing, females save about 6% of 

their DEE through having reduced flight costs compared with incubation. 

During days 0-7 of rearing, at least about 6% of DEE is subsidised 

from lipid catabolism, and there will also be a progressive energy 

saving from a reduction in flight costs over the brooding phase. 
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The two methods of energy saving hence seem to spread the energetic 

benefits of mass loss evenly over the entire rearing period. 

The maximum mass loss over the brooding phase was recorded in 

a female which lost 4.63g (19.26%) of her body mass between the end 

of incubation and day 7 of rearing during a spell of cold weather. 

Such a mass loss was calculated to save 18% of DEE during days 8-21 

of rearing through reducing flight costs compared with incubation. 

Additionally, lipid metabolism would subsidise 20.1% of one day's DEE 

during days 0-7 of rearing. Hence the potential energy savings 

from mass loss during the brooding phase in female swallows are 

substantial, even though most females achieve savings considerably 

less than the maximum recorded. 

Mass loss during nestling-rearing may also enhance flight 

performance or agility (Andersson acid Norberg, 1981), which may 

improve foraging efficiency in aerial feeders, allowing more food 

to be collected for the brood, 

In Figure 8.30 body mass changes during the brooding phase for 

six females rearing natural brood sizes are illustrated. Body mass 

is standardised for body size through dividing mass by keel-length. 

The solid, thick line represents the regression equation of mass/ 

keel (y) on a function of brood age (x) for all six females, and is 

described as 

y=1.02 - 0.0109x , 

('r = -0.52, n= 46, P<0.001). 

All birds have converged onto the line of average mass by the 

end of the brooding phase (Table 8.8). Data for one female (A82) 

has been extended to day 8 because she experienced extremely cold 
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Body mass/keel-length changes 'for six female swallows 

rearing natural brood sizes over the brooding phase. 
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Table 8.8 

Size-corrected body, mass deviations (from the average) for six 

female swallows rearing natural brood sizes during days 0 and 7 

of nestling rearing 

deviation, deviation, 
_, day 0, qmm 

1 
day 7, gmm 

1 
trend 

+ 0.09 + 0.05 

+ 0.06 + 0.02 10 
m a) tp k (a 
to 

+ 0.03 0.00 (day 8) o 

- 0.02 + 0.01 0 

a, 
- 0.04 + 0.01 

0) 

- 0.05 + 0.04 ö 
U 
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and wet weather during most of the brooding phase, and thus would have 

suffered a body condition cost. Overall, females entering the brood- 

ing phase below the average mass line tended to increase or maintain 

mass between days 0 and 7, while females starting brooding at greater 

than average mass tended to shed mass over this period. Regression 

equations were computed for the change in size-corrected mass over the 

brooding phase for each female, and the slopes of rate of mass loss 

were compared with the average trend. The three females which 

entered the brooding phase at a greater size-corrected mass than the 

average lost mass more rapidly than the average trend (O. Ol5g mm 
1 

day-1,0.014g mm-1 day-1,0.027g mm 
1 day-1, compared with O. Ollg mm 

1 

day-1 average, slopes significant at P<0.001 all cases), although 

only the largest deviation was significantly different from the 

average rate of mass loss (analysis of covariance, t=4.5, n= 53, 

P<0.001). None of the three females with a lower than average mass 

on the day of hatching showed a significant tendency to increase or 

decrease in mass over the brooding phase ('r' values = -0.18, n=5; 

-0.07, n=8; +0.05, n=7, P>0.05 all cases). 

Figure 8.30 suggests that the females are 'targetting' their 

body mass over the brooding period towards a mass which may be an 

optimum for the period of high nestling demand from day 8 to day 18 

of the non-brooding phase. Such an optimal mass would minimise 

flight costs without necessarily jeopardising adult survival or 

impairing development of the brood. This interpretation is strength- 

ened because although adult body masses were lightest. during the 

period of maximal food delivery rate to the brood, no adult starved 

to death during the study, and swallow body masses could be forced 

to levels considerably lower than those experienced by nestling 

rearers through experimental manipulation of brood demands (Figure 

8.12) 
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The evidence for a hypothesis of targetting towards an optimal 

mass accumulates when male and female masses are compared. During 

incubation, female swallows were significantly heavier than males 

(Chapter 7). By day 7 of nestling-rearing there was no significant 

difference between the masses of males and females (Figure 8.1, 

t=1.00, ns). Males and females on average feed the brood at 

similar rates (section 8.3.8), and may benefit from a similar 

optimal mass during the period of high nestling demand. 

Other bird species may target towards an optimal mass over the 

brooding phase. The mass range of female pied flycatchers shortly 

before fledging was less than half that recorded amongst incubating 

females, suggesting convergence towards a similar mass among females 

(Askenmo, 1982). Female and male pied flycatchers also attained 

similar masses shortly before the young fledged, although the 

females were significantly heavier than males during incubation 

(only females incubate) (Winkel and Winkel, 1976). 

Although mass loss during the non-brooding phase in swallows is 

interpreted largely on an adaptive, programmed anorexia, body mass 

was correlated with food abundance, and excessive mass losses on 

days of low food availability could be costly to the female. 

Because food abundance levels from day to day tend to be 

correlated (Chapter 7), then on any poor day the likelihood is that 

the next day will be poor. Hence it may pay female swallows to 

maintain reserves on poor days for insurance during the next day 

which is also likely to be poor, and targetting towards an optimal 

mass may be confounded by subsequent and predicted future weather 

conditions. 
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Mass losses during the non-brooding phase, when FDRs are high, 

probably have different ultimate causes than the mass losses during 

the brooding phase. Birds of both sexes lost more mass when feeding 

the brood at higher rates (Figure 8.10), and mass losses at high 

FDRs may represent body condition costs to the adults. The 

relationship between mass change and FDR was linear, as seen in blue 

tits (Nur, 1981,1984b). 

The effects of increasing FDRs on adult body condition are not 

straightforward however, since there was no significant tendency for 

adults rearing enlarged broods to lose more mass from day to day 

compared with adults rearing reduced or natural brood sizes (Figure 

8.14). In starlings feeding experimentally manipulated broods, body 

mass was inversely related to brood mass only at the end of the 

nestling period, and only amongst males (Ricklefs and Hussell, 1984). 

Parental responses to brood demands may differ between male and 

female birds (Howe 1979, Wittenberger, 1982). The responses of the 

two sexes of swallow to brood demands differ according to the level 

of food abundance. Females appear to be prepared to lose more mass 

than males during the non-brooding phase (Figure 8.23). Females 

also became lighter than their mates on days of low food abundance 

(Figure 8.24) as an eventual consequence of their higher feeding 

rates to the brood relative to males in poor conditions (Figure 8.26). 

Swallow parental investment has also been studied by quantifying 

mobbing responses - female swallows mob more intensively than do 

males, and mobbing is most intensive in bad weather (MOller, 1984b). 

Female starlings lost more mass than males during the second 

half of the rearing period, and this was associated with higher 

feeding rates by the females (Ricklefs and Hussell, 1984). Hence 
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in starlings mass losses during the non-brooding phase may also 

reflect condition costs associated with different levels of reproduc- 

tive effort by each sex. 

Theoretical studies of parental investment predict that invest- 

ment should be considered in relation to future expectations of 

offspring survival (Dawkins and Carlisle, 1976; Boucher, 1977). 

After the end of the brooding phase, future investment in current off- 

spring is similar for male and female swallows, since both feed the 

brood at similar rates (Ball, 1983a). Hence why should female 

swallows appear to take greater risks than males in allowing their 

body masses to fall to lower levels when food is scarce, and seemingly 

commit the 'concordefallacy' (Dawkins and Carlisle, 1976)? 

The answer may lie in consideration of future nesting attempts. 

Females probably need considerable time to attain a suitable repro- 

ductive condition for re-laying, whilst males may already be carrying 

viable sperm. A male swallow, may thus easily breed again if his 

current offspring die, whilst a female may be incapable of affording 

time for investment in new eggs, and so may take bigger risks to 

ensure the survival of her current offspring compared with her mate. 

However, males may have difficulty in finding a mate to renest with, 

especially during second broods, and so different levels of investment 

between the sexes may also be associated with different overwinter 

survival probabilities for males and females. If females are more 

likely to incur an overwinter mortality cost of reproduction, as seems 

likely in house martins (Bryant, 1979), they may be prepared to 

invest more in current offspring than males, and such higher female 

investment could further increase their reproductive costs. 
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The effect of manipulating brood size on adult mass changes was 

small and insignificant (Figure 8.14), as also found in starlings 

(Ricklefs and Hussell, 1984). There is no obvious reason to expect 

that parent swallows rearing enlarged broods should have higher 

mortality rates than birds rearing smaller rates if a bird's chance 

of dying is related to its body mass during nestling-rearing. Any 

reduction in parental inclusive fitness through rearing enlarged 

brood sizes may also be influenced by the effects of brood size on 

nestling growth and survival. In this study brood size had a more 

obvious effect on nestling growth rates and peak masses than it did 

on adult mass changes (Tables 8.6,8.7). ' Nestlings in enlarged 

brood sizes grew more slowly than chicks in control or. reduced brood 

sizes, and nestling peak mass was negatively correlated with brood 

size. If nestling overwinter survival were related to chick peak 

mass or growth rate, the inclusive fitness of parents rearing 

enlarged broods may be reduced, even though enlarged broods fledged 

more young. 

Nestlings often have lower survival rates as chicks in artifi- 

cially enlarged broods (Newton, in Lack 1966; Perrins, 1964; Ward, 

1965; Askenmo, 1977; Schifferli, 1978), although some species can 

rear more young than the number of eggs laid, and the masses of 

fledglings suggested no reduced post-fledging survival rates (Nelson, 

1964; Harris and Plumb, 1965). House martins can also rear more 

nestlings than the natural clutch size, and the survival rate of 

young from enlarged brood sizes was no lower than that of young from 

natural brood sizes (Bryant, 1975; 1979). Nestlings in enlarged 

broods of tree swallows were only lighter if reared by yearling 

females, and mortality after fledging appeared to be independent of 
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brood size (De Steven, 1980). Swallows resemble kittiwakes, Rissa 

tridactyla, (Coulson in Lack, 1966) and Japanese grey starlings, 

Sturnus cineraceus (Kuroda, 1959) whereby more young are reared in 

enlarged broods, though such young show slower growth rates. 

The significance of nestling peak mass or fledgling mass on 

subsequent survival is controversial. House sparrows that died 

within 10 days of fledging were significantly lig er 
as nestlings 

than those which survived (Dawson, 1972). However, the total lipid 

reserves of a fledgling great tit are estimated to only subsidise 

one day's energy expenditure (Garnett, 1981), so the benefits of 

fledging at increased mass may be small or short-lived, especially 

in aerial insectivores where fledging with heavy lipid reserves may 

be a liability (through increasing flight costs) if food is plentiful. 

Why do swallows not rear brood sizes larger than those normally 

observed, especially since brood size seems to have an insignificant 

effect on adult mass changes during the non-brooding phase, and 

brood size effects on fledging overwinter survival appear to be 

snail in hirundines? 

It is possible that optimal brood size may be constrained by 

factors acting outside of the nestling rearing phase. Parents may 

encounter energetic bottlenecks at the end of the incubation period 

and during laying (Yom-Tov and Hilborn, 1981). Short-term clutch 

size enlargement experiments (Chapter 7) suggest, however, that female 

swallows can successfully incubate larger than normal clutches without 

suffering any deterioration in body mass, and enlarged clutches 

hatched successfully. The experiments were of brief duration 

however, and occurred in mainly good weather conditions - females may 
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not be capable of incubating enlarged clutches in poor feeding 

conditions. 

Poor weather during nestling rearing may also constrain optimal 

brood size in swallows. In fine weather adult energy gains are 

theoretically high enough to supply the demands of an enlarged 

brood. However, in bad weather adult swallows may only collect 

sufficient food to nourish naturally-occurring brood sizes 

adequately, so the effects of weather and feeding conditions may 

limit the upper brood size in swallows (Turner, 1983). 



CHAPTER 9 

'Natural selection will modify the 
structure of the young in relation 
to the parent, and of the parent 
in relation to the young. ' 

CHARLES DARWIN (1859) 
The Origin of Species by 
Means of Natural Selection. 
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9. GENERAL DISCUSSION 

REPRODUCTIVE COSTS, REPRODUCTIVE EFFORT, 

AND PARENTAL INVESTMENT IN SWALLOWS 

9.1 Definitions 

'Reproductive effort' can be defined as the proportion of resources 

(for example time and energy) diverted to reproduction summed over the 

time interval in question (Stearns, 1976). Reproductive effort can 

be partitioned into two components (Low, 1978; Alexander and Borgia, 

1979) : 

a. Mating effort, that is, effort devoted to acquiring mates, and 

b. Parental effort, or effort invested in provisioning and rearing 

offspring. 

'Parental investment' has been defined by Trivers (1972) as: 

'any investment by the parent in an individual offspring that increases 

the offspring's chance of surviving (and hence their reproductive 

success) at the cost of the parent's ability to invest in other 

offspring'. 'Parental effort' may also be defined as the sum of 

parental investment on each offspring over the time interval in 

question. 

'Reproductive cost' has been defined, according to Hirshfield 

and Tinkle (1975), as: 'the cost of a given level of reproductive 

effort is the difference between residual reproductive value when 

reproductive effort equals zero, and that residual reproductive value 

accompanying that particular expenditure of effort'. 

It is important to distinguish between reproductive effort and 

reproductive costs. Whereas most empirical studies measure repro- 
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ductive effort as energy values, it is through the reproductive costs 

of breeding that natural selection operates (Pianka, 1976,1978). 

The extent to which the energetic costs of breeding reflect the 

reproductive costs is fundamental for an understanding of life-history 

tactics (Clutton-Brock, 1984, section 9.2). 

9.2 Body mass changes as an indicator of reproductive costs in birds 

Several studies of the reproductive biology of birds have 

suggested that mass loss while rearing chicks is an index of the 

physiological stress imposed on parents through breeding (Nice, 1937; 

Hussell, 1972; Ricklefs, 1974). Only one study has conclusively 

related differences in mass loss to differences in mortality costs of 

reproduction, and then only in females (Nur, 1984a). 

Although insufficient to account for differences in clutch size, 

the present study has shown that mass losses in birds rearing nestlings 

are complex, and may be the consequence of a programmed anorexia early 

in the rearing phase, while subsequently reflecting the cost of 

provisioning nestlings when chick demands are high (Chapter 8). 

Studies relating mass losses to the physiological stress of breeding 

should therefore be treated with caution, especially if mass changes 

were inferred as being costly over an early stage of the rearing 

period (Howe, 1979; De Steven, 1980). 

The relationship of mass changes during nestling rearing to 

parental feeding rate was linear and of negative slope for male and 

female swallows in this study, and Nur (1984b) also showed a 

negative linear relationship between the mass of female blue tits and 

their feeding rates. In female blue tits, a threshold mass during 

breeding probably exists, below which subsequent overwinter survival 

is drastically reduced (Nur, 1984a). The relationship between brood 
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size and female survival in blue tits was 'concave-up' (second 

derivative positive), with survival rate decreasing as brood size 

increased (Nur, 1984a). 

9.3 Life-history tactics and reproductive effort 

Theories of life-history tactics generally predict that repro- 

ductive effort should increase towards the end of an individual's 

lifespan in those animal species in which reproductive value declines 

with age (Fisher, 1930; Williams, 1966a, b; Gadgil and Bossert, 1970; 

Charlesworth and Leon, 1976; Pianka, 1976). Alternative theories 

are given by Fagen (1972), Goodman (1974), Hirshfield and Tinkle (1975), 

and Charlesworth and Leon (1976). Individuals with a high proba- 

bility of future reproductive success, that is a high residual 

reproductive value (Pianka and Parker, 1975; Williams, 1966b) should 

be expected to take fewer risks raising current offspring than should 

individuals with lower chances of reproducing in the future. This 

idea has been referred to as 'terminal investment theory' (Clutton- 

Brock et al., 1982; Clutton-Brock, 1984). 

Empirical evidence to date lends little obvious support to the 

theory of terminal investment in birds. Most measures of reproduc- 

tive performance, such as clutch size or frequency and fledgling 

survival usually remain constant or decline towards the end of the 

lifespan, though they may improve over the first few breeding attempts 

(Mills, 1973; Perrins and Moss, 1974; Crawford, 1977; Brooke, 1978; 

Olläson and Dunnet, 1978; Newton, Marquiss and Moss, 1981). One 

problem with quantifying reproductive effort in individuals of 

different ages is that an animal's foraging ability may improve as 

it becomes older (Groves 1978, Burger, 1980), even improving beyond 

the age of first breeding (Recher and Recher, 1969). Hence older 
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parents may rear more offspring than younger individuals simply 

because they are more efficient at collecting food for the young, and 

this increase in foraging ability would not necessarily reflect 

parents taking greater risks with age. 

Although the evidence for terminal investment during an indivi- 

dual's lifespan is equivocal (Clutton-Brock, 1984), consideration of 

reproductive effort in ways other than clutch or brood size may 

provide greater insight into the problem. For example, older 

California gulls Larus californicus, fledge more offspring than young 

or middle aged parents, probably because they feed their chicks for 

longer, and more frequently (Pugesk, 1981). Offspring born to older 

red deer, Cervus elaphus, mothers may show improved body condition and 

survival (Clutton-Brock, 1984). 

Although insufficient data were available to determine whether 

terminal investment occurred over the lifespan of swallows, the theory 

can be adapted and condensed over short time periods, such as one 

breeding attempt. Again, the expected future cumulative reproductive 

effort would be expected to influence current reproductive effort or 

parental investment. Individuals with high future cumulative invest- 

ment during one breeding attempt or season may take lower risks 

during reproduction than individuals with lower future cumulative 

investment, because individuals with high future cumulative investment 

would have more time to reinvest should the current attempt fail 

(Dawkins and Carlisle, 1976; Boucher, 1977). Terminal investment 

theory applied to one breeding attempt may also be easier to analyse 

because it is likely to remove the confounding variable of adult age 

influencing provisioning ability which is inherent in studies of 

lifetime reproductive effort. 
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Terminal investment theory therefore makes several testable 

predictions concerning the allocation of parental effort. The 

predictions are based on the theory of Trivers (1972) modified by 

Dawkins and Carlisle (1976), and Boucher (1977). 

(i) Individuals should take bigger risks when breeding later in the 

season, as the chances of renesting during that season decline. 

(ii) Individuals should take bigger risks towards the end of any 

breeding attempt, since potential future cumulative investment declines 

as the breeding attempt progresses. 

(iii) The sex with the lower probability of renesting should invest 

more in current offspring. Differential renesting probabilities 

should occur because anisogamy results in an asymmetry in early 

parental investment by the sexes. Eggs, because of their relatively 

large size, are more expensive to produce than the smaller sperm. 

Hence a female would take longer to attain reproductive condition after 

a breeding failure than a male, because for females, egg production 

may take several days (Ricklefs, 1974), while males may carry viable 

sperm throughout the breeding cycle. Females are therefore assumed 

to have a lower probability of renesting than males and expend a 

greater effort in renesting than their mates, and so should invest 

more in current offspring. Males may also attain some reproductive 

success in any season through mating promiscuously with females other 

than their mates (Chapter 6). Any potential increase in male 

reproductive success achieved by mating promiscuously is likely to be 

greater than an increase in female reproductive success by egg dumping 

(as seen in cliff swallows, Hirundo pyrrhonota, (Brown, 1984) and 

swallows (A. P. M$ller, pers. comm. )) because males are likely to 



275 

produce far more sperm than femaljes make eggs, and since females 

must presumably find a mate to help rear her own brood before dumping 

_ eggs elsewhere. 

Howe (1979) elaborated Trivers' ideas and predicted three 

behavioural patterns in monogamous biparental species as a consequence 

of differences in renesting probabilities between sexes. 

(i) More frequent male than female desertion. 

(ii) Greater and less variable female than male effort. 

(iii) Exceptional male effort only when the young most need it. 

How do the predictions arising from terminal investment theory 

over single breeding attempts stand up to tests? Firstly consider 

Dawkins' and Carlisle's theory that breeding individuals may be 

expected to accept greater risks to their survival at later stages of 

the breeding cycle when the relative difference between parents and 

offspring in expected future survival has decreased (Andersson, Wiklund, 

and Rundgren, 1980). 

One measure of parental investment is the readiness with which a 

bird performs a distraction display, attracting the attention of a 

potential predator towards themselves and away from the offspring by 

feigning injury. The distance from the nest with which female alpine 

accentors, Prunella collaris, perform distraction displays decreased 

as chicks became older, and display conspicuousness increased with 

increasing age of'eggs and nestlings (Barash, 1975). 

Other plausible anti-predator behaviours which may be-indices of 

parental investment such as alarm calling (Greig-Smith, 1980; East 

1981), nest defence (Andersson et al., 1980), and mobbing behaviour 
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(Krank, 1964; Curio, 1975; Smith and Graves, 1978; Mailler, 1984b) 

all tend to increase in frequency or intensity as the breeding attempt 

progresses, although predator persistence or abundance may perhaps 

also increase over the breeding period. 

Trivers' (1979) hypothesis of asymmetric investment by the two 

sexes during gamete production, resulting in differential investment 

in current offspring by males and females, has been criticised, 

largely because of uncertainties about the extent and costs of male 

investment as compared to egg production by females. 

The cost of the meiotic stages necessary in producing sperm cells 

are unknown, and could be more substantial than generally assumed. 

Increasing sexual activity reduces longevity in male fruit flies, 

Drosophila melanogaster (Partridge and Farquhar, 1981). Fertiliza- 

tion rates achieved by male lemon tetras, Hyphessobrvcon pulchripinnis, 

in laboratory conditions (Pisces; Characidae) decline with spawning 

frequency, and even when the number of females is not limited, males 

can only produce four times as many offspring as females (Nakatsuru 

and Kramer, 1982). Male birds may invest heavily in mating effort 

while females are producing eggs (Burger, 1981). Males may also 

courtship feed females during egg production (Royama, 1966b, Nisbet, 

1973; Niebuhr, 1981). In many birds species males guard their mates 

from other males seeking promiscuous copulations during the female 

fertile period (Chapter 6). Mate-guarding is marked in sand martins 

(Beecher and Beecher, 1979, Chapter 6), but also occurs in swallows 

(Woods, 1982, pers. obs. ), and guarding behaviour may decrease the 

time males have available for self-feeding. Male gannets, Sula 

bassana lose 6276 kJ of lipid while defending territories before 

incubation, whereas the single egg laid by the female costs only 590kJ 

(Montevecchi and Porter, 1980). 
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Nevertheless, although male swallows do mate guard, they will 

probably have a higher renesting probability than females. Even if 

they do not renest, they may obtain promiscuous copulations with 

females other than their mate should their current offspring die. 

Reduced male relative to female investment is unlikely to result in 

increased male desertion rates if the ability of males to find and 

mate with other females is low (Maynard Smith, 1977; Grafen and 

Sibly, 1978). No unilateral male or female desertion was observed 

in this study. 

Increases in the intensity of nest defence behaviours over the 

breeding cycle are thus generally explicable in terms of future 

cumulative investment prospects. The interpretation of sexual diffe- 

rences in parental investment is difficult, however, largely because 

of the problems in assessing the costs of different activities. 

Weatherhead (1979) believed that sexual differences in the nest defence 

behaviour of savannah sparrows, Passerculus sandwichensis, was best 

explained in terms of past rather than future cumulative investment. 

By manipulating the clutch sizes of red-winged blackbirds with the 

same amount of past investment, Robertson and Biermann (1979), showed 

that females defended nests with larger clutch sizes more vigorously 

than did females with smaller clutch size, suggesting that investment 

was allocated in terms of prospective cumulative investment. 

Both sexes of the North American barn swallow usually incubate, 

yet when females were detained during incubation, males did not 

significantly increase their time spent incubating. However, during 

brooding males doubled their brooding rates when their mates were 

detained, and hence males may increase their parental investment 

through increasing brooding rates when future cumulative investment 

is reduced compared with incubation (Ball, 1983a). 
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Ball (1983a) also increased the brood size of swallows during 

late rearing when female past investment is higher than that of the 

male, but future cumulative investment is similar for both sexes. 

Since both sexes increased their feeding rates to enlarged broods at 

the same rates, Ball argued that selection was acting on expected 

payoffs rather than on past cumulative investment. 

How do the data on swallow body condition obtained in this study 

accord with theories of parental investment and terminal investment? 

(i) Increased investment at later stages of the breeding cycle. 

A graphical model of parent: offspring resource allocation as a 

function of female body mass during nesting is presented in Figure 9.1. 

During breeding body mass increases as food abundance increases 

(Chapters 7,8) and an individual female's mass at any time will 

probably reflect resource availability on that day and for several 

preceding days (Chapter 8). The maximum mass attained by an incubating 

female swallow in the study was 27g, and this is assumed to be at or 

close to an economically imposed upper limit to mass (Chapter 6). 

The upper mass limit will actually depend on a female's body size 

(Chapters 7,8), but is likely to be between 22g and 27g. From the 

equation of extractable lipid as a function of body mass (Chapter 5), 

it was calculated that a swallow weighing 13.6g would carry no fat 

reserves. Since about 1.3% of total body mass may be structural 

lipid (Ward, 1969a), it is estimated that swallows of mean size weigh- 

ing about 14g were likely to die through starvation. The mean body 

masses of adult swallows which died through starvation at their 

wintering grounds in southern Africa was 13. Og in one study (Skead 

and Skead, 1970), and 13.6g as recorded by Broekhuyson (1953). 
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Since these dead birds will have lost some mass through dessication, 

14g seems a reasonable assumption for the lower critical mass 

necessary for survival in swallows. 

The rate of mass increase with increasing resource availability 

is assumed to decrease once the economical upper limit to mass is 

approached. Although extractable lipid was related to body mass in 

a linear fashion between 17g and 22g (Chapter 5), protein reserves 

may be metabolised once fat reserves are low (Houston, 1977), and 

since protein yields less energy per unit mass than lipid, the rate 

of mass decrease may accelerate at low food levels. 

Within the upper and lower limits of body mass during incubation 

and nestling rearing, various body condition thresholds are likely 

to exist for a female's behavioural options. Incubating females were 

judged likely to desert eggs at about 18.5g - one female seemed close 

to desertion at this mass in bad weather. However, swallows of this 

mass were frequently observed rearing nestlings, so the condition 

threshold (i. e. critical body mass) for clutch desertion is probably 

greater than that for desertion of nestlings. 

One female swallow was reduced in mass to 16g after a brood size 

enlargment followed a replacement experiment, but nevertheless 

successfully fledged six young. Since incubation is a relatively 

early stage of the breeding cycle, females may still have time to 

relay if they desert their clutch. Females may therefore desert at 

a relatively high body mass so that the energy investment in a new 

clutch would take less time and energy to accumulate than if they 

deserted with small energy reserves. The probability of relaying 

would be lower during nestling rearing since less time remains for 

future breeding attempts. Hence rearing females may allow their 
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body reserves to decline to lower levels than during incubation at the 

risk of extending the time to collect energy for a replacement clutch, 

because future cumulative investment in current offspring is lower in 

rearing than incubation. 

Parents will put their own interests above those of the brood, 

since adults may have renesting opportunities but offspring will not 

survive without parental care. Hence the body condition threshold 

for a female to starve the brood will be greater than that for self- 

starvation, which is estimated at 14g. Moreover, at an intermediate 

stage, it is expected that the parents will selectively starve indivi- 

dual chicks (brood reduction) which contribute least to their 

inclusive fitness before starving the whole brood. 

Obviously the above model is simple, and could be elaborated to 

consider the different thresholds for male and female desertion (males 

predicted to desert before females), for desertion by parents of 

different ages (older birds are predicted to risk body mass dropping 

to lower levels), and for deserting broods of different ages (younger 

broods deserted at a higher critical mass than older broods) on the 

basis of terminal investment theory. Moreover, the optimal female 

mass is lower during nestling rearing than during incubation (Chapters 

7,8), so the model should ideally involve deviations from the 

optimal mass. (taking into account size differences between individuals) 

as criteria for making behavioural decisions. 

(ii) Differential investment on current offspring by 
males and females 

Female swallows in this study were prepared to lose more mass 

during the non-brooding phase than their mates when rearing natural 

brood sizes, seemingly because females fed their broods more than 
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males, when food was scarce. However, both sexes increased the food 

delivery rates to larger broods at similar rates (Chapter 8). As 

yet, the analysis of parental investment in feeding nestlings has 

not considered investment in self-maintenance relative to concurrent 

allocation in provisioning offspring. This analysis is performed 

in Section 9.4, to elucidate differential investment, in current 

offspring relative to self-maintenance by the two sexes of swallows. 

9.4 Concurrent parent: offspring resource allocation in swallows 

An individual swallow's body mass during the non-brooding phase 

can be used as a measure of self-investment since mass changes during 

late rearing are related to the work done in feeding the brood 

(Chapter 8). Investment in current offspring can be quantified by 

an individual's food delivery rate (FDR) to the broods. The ratio 

of body mass during the non-brooding phase/FDR can then be considered 

as an index of investment in self relative to investment in offspring. 

This index is referred to as the 'self-investment index', and high 

values indicate substantial investment in self-maintenance relative 

to investment in offspring. 

(a) Food abundance effects 

For both males and females, the self-investment index was 

negatively correlated with food abundance as determined by hand-net 

biomass males: r= -0.38, < 0.05; females: r= -0.47, P<0.01, 

n= 34 for both sexes). A tighter fit is obtained by plotting loge 

of the self investment index against log 
e 

food abundance (males: 

r= -0.59, P<0.001; females r= -0.48, P<0.001) (Figure 9.2). 

Since both adult body mass and FDR were positively correlated with 

food abundance (Chapter 8), it is their ratio which is of interest. 
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Self-investment indices as a function of food 
abundance for male and female swallows during the 
non-brooding phase. 

(a) Males: lny = 5.25 - 0.67 lnx; 
r= -0.59, n= 34, P<0.001. 

(b) Females: lny - 3.76 - 0.36 lnx; 
r= -0.48, n= 34, P<0.001 

(c) Regression lines for males (m) and females M. 

Includes data from control and experimental brood sizes. 
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For both sexes, the negative correlation between variables 

indicates greater investment in self relative to investment in off- 

spring when food was scarce, yet the slopes of the relationships for 

males and females are significantly different (analysis of 

covariance, t=7,7, n= 68, P<0.001). Males invest more in 'self', 

relative to 'offspring', than do females when food is scarce. 

The negative correlations between self-investment indices and 

food abundance could reflect seasonal changes in parent: offspring 

resource allocation, since food abundance was low early in the season 

(Chapter 3), and parental investment theory would predict higher self- 

investment indices (and lower investment in offspring) earlier in the 

season when the chances of renesting are higher. 

The logarithms of the investment indices was entered as the 

dependent variable in a stepdown multiple regression analysis where 

the natural logarithms of food abundance and date (days after June 

1st) were entered as independent variables. For both sexes, food 

abundance entered as a significant variable (males t=3.6, P<0.01, 

females t=3.0, P<0.01), whereas date did not significantly 

influence the self-investment indices. However, data for late first 

and early second broods were mixed in the analysis, and it remains 

possible that investment indices differed between first and second 

broods, though insufficient data were available to-test this. 

Hence the prediction that investment in offspring relative to 

investment in self should increase as the breeding season progressed 

was not substantiated in this data set. House martins, however, 

increased their average daily metabolic rates when feeding second 

broods, suggesting a rise in, reproductive effort later in the season 

(Hails and Bryant, 1979). 
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Both sexes of swallow invested more in 'self' relative to 

'offspring' when food was scarce, however, males to a greater extent 

than females. Males may accept lower risks to their survival than 

their mates when food is scarce, since male renesting probabilities 

may be greater, and females may pay greater mortality costs of 

reproduction in the wintering grounds (Bryant, 1979). 

(b) The effects of brood mass 

In the analysis described below, metabolic brood mass (mass 
0.66) 

of broods aged 8-16 days was used as an approximation of brood food 

requirements. Both sexes increased their FDRs to larger brood 

masses at similar rates, although birds feeding enlarged broods did 

not lose significantly more mass on a daily basis than individuals 

rearing natural or reduced broodsizes during the non-brooding phase 

(Chapter 8). Hence, although investment in 'self' may remain constant 

for parents rearing different brood sizes, investment in self 

relative to investment in offspring may be reduced at large brood 

masses because of the higher FDRs to the larger broods. 

The most significant relationship of self-investment index and 

metabolic brood mass occurs when the investment index alone is 

transformed to natural logarithms (males: r- -0.58, P<0.001; 

females r= -0.75, P<0.001, n= 34 for both sexes). For both 

sexes investment in self relative to investment in offspring is greater 

at lower brood masses (Figure 9.3). Parents rearing larger broods 

(with heavier brood masses) have greater future benefits since they 

may fledge more young than parents rearing smaller broods. Hence 

parental investment theory successfully predicts greater investment in 

Ioffspring'relative to 'self'in swallows for larger brood sizes. 
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Figure 9.3 

Self-investment indices as a function of metabolic 
brood mass for male and female swallows during the 
non-brooding phase. 

(a) Males: lny = 4.54 - 0. lx; r= -0.58, n= 34, P<0.001 

(b) Females: lny = 4.02 - 0.085x; 
r= -0.75, n= 34, P<0.001 

(c)- Regression lines for males (m) and females (f). 

Includes data for control and experimental brood sizes. 
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The slopes of the relationships for males and females were 

significantly different (analysis of covariance, t=2.0, P<0.05), 

suggesting that males invest more in 'self' relative to 'offspring' 

when rearing broods of low mass. Hence female self-investment 

indices are lower than those of males even when expected future 

benefits are relatively low. 

Previous work on parental investment in birds has generally 

attempted to quantify 'investment' through monitoring anti-predator 

behaviours (e. g. Barash, 1975; Andersson et al., 1980; Robertson 

and Biermann, 1979; Weatherhead, 1979; Greig-Smith, 1980; East, 

1981), and such studies experience problems in that changes in 

predation pressure over the breeding season confound the quantifica- 

tion of anti-predator behaviours. Studies using precision automated 

nest balances, based on a sound knowledge of the causes and 

consequences of mass changes during breeding provide a reliable 

measure of reproductive investment in birds, and also allow simulta- 

neous, quantification of resource allocation in 'self' and 'offspring'. 

The scope for future work on reproductive investment measured 

by mass changes is promising. For example, investment by one sex 

could be experimentally manipulated by mate detention experiments. 

The study of parental investment in birds of different ages using 

precision nest balances'remains as a challenging prospect, and the 

use of such balances would greatly increase knowledge of short term 

resource allocation decisions in parent birds collecting food for 

their nestlings. 



SUMMARY AND CONCLUSIONS 
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SUHMARY AND CONCLUSIONS 

1. The distribution and abundance of sand martins in the Stirling 

Region was estimated by burrow counts at 27 sites between 1982 and 

1984 inclusive. Eighty-one percent of pairs nested in sand and 

gravel quarries. A population crash over the study period reduced 

1984 numbers to 24.9% of 1983 numbers, 18.9% of the 1982 total. 

The dramatic reduction in the breeding population of sand martins, 

both locally and throughout the U. K., was probably largely attributable 

to drought conditions in the wintering ground and poor weather 

encountered on migration. 

The mean body size of sand martins, as determined by keel-length, 

decreased significantly between 1983 and 1984 when overwinter 

mortality was assumed to be exceptionally high. Selection for 

smaller individuals appears to have occurred in the wintering ground, 

and an adaptive advantage for small body size in severe climatic conditions 

is proposed. Selection acting on size in the wintering grounds will 

constain the distribution of body sizes during the breeding season, 

and birds of a size which maximises overwinter survival prospects may 

not be of a size which maximises breeding success. 

Wing-length increased with adult age in sand martins, and was 

not consistently correlated with body mass. Older birds returned 

to the main study colony before first-year individuals, and thus had 

the widest choice of subcolony in which to nest. A model of colony 

settlement was developed which assumed that individuals nested in 

subcolonies where their reproductive success was maximised. The 

costs and benefits of early arrival at the breeding colony were 

discussed. 
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2. Resources available for breeding hirundines were measured by 

hand-net sampling over short time periods, and by a 12.2 metre 

suction trap which sampled over an entire day. Suction trap catches 

increased during the spring, generally providing a high level of 

food abundance between June and early September, except in periods of 

poor weather. Hand-net catches peaked during July in 1983, when 

sampling was performed on most days between June and September. 

Temperature and season significantly influenced the level of insect 

abundance. Net catches were correlated with suction trap catches. 

A consistently greater volume of insects was captured by the suction 

trap in 1982 than during, 1983. 

3. Short-term body mass changes of canaries and sand martins were 

investigated in the laboratory using precision automated electronic 

balances. Diurnal body mass changes of canaries could be accurately 

estimated by time budgeting birds and from knowledge of rates of mass 

changes associated with different activities. Mass gains occurred 

through foraging and drinking, instantaneous mass losses resulted 

from defaecations. Continuous mass losses were attributable to 

evaporative water loss, which varied with temperature and activity. 

An understanding of short term mass changes for swallows in the 

field was developed in the light of laboratory investigations, so 

that conclusions about more substantial mass changes during breeding 

could be reached. The use of precision balances in studies of 

avian ecology and physiology was discussed. 

4. The body condition of breeding adult sand martins was investi- 

gated by carcass analysis. Body component lipid indices were poor 

predictors of total extractable lipid, though the mass of lipid in 

the tracheal pit was strongly correlated with total body lipid. 
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Field estimates of lipid condition by fat scoring correlated with 

lipid indices and lipid content determined by carcass analysis in 

both sand martins and swallows. Body mass changes of breeding sand 

martins were related to changes in lipid and protein reserves, water 

content, and the mass of reproductive structures. Mass changes 

were largely attributable to changes in the birds' lipid reserves, 

except in laying and pre-laying females which carried considerable 

reproductive material. Small changes in pectoralis lean dry mass 

were correlated with changes in lipid content, though the significance 

of protein reserves as an energy reserve during breeding was slight. 

The body condition of adult sand martins was compared with that of 

fledglings. 

Changes in the condition of nestling sand martins were related 

to age. Body component development and the lipid content of 

components in chicks were described. The lipid content of nestling 

body components was generally a good predictor of total body lipid. 

Lipid index hierarchies within broods were investigated, and it was 

concluded that hierarchies exist partly because of pre-hatching 

factors. The oldest chick in a brood usually had a higher, lipid 

index than the youngest, though neither the youngest nestling nor the 

chick with the lowest lipid index in a brood was consistently under- 

nourished. 

Maturing nestling sand martins can potentially live for conside- 

rably longer from their energy reserves than adults in the absence of 

food, so the selective premium on adult self-maintenance behaviours 

in poor feeding conditions was considered to be great. 

S. Because female sand martins became exceptionally heavy when they 

were most likely to be fertile, their increased mass was likely to 
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present cues during flight to males seeking promiscuous copulations. 

Heavy female sand martins released from the hand were selectively 

chased in sexual chases. Breeding females were heaviest during 

laying and pre-laying, exceeding any masses normally achieved by 

breeding males. Experimental manipulation of flight feathers 

suggested that flight behaviour influenced the probability of being 

chased. A sample of naturally heavy females and birds whose mass 

had been experimentally increased to that of laying and pre-laying 

females took longer to reach ascending flight, as determined by 

analysis of video recordings, than a sample of lighter birds. It 

was concluded that this and other flight cues may be detected by 

males so that they may achieve promiscuous copulations and increase 

their reproductive success. The relationship of mate-guarding 

behaviour to colonial breeding in birds was discussed. 

6. An optimality model was developed for bird species where one sex 

incubates. The model assumed that fitness was increased in indivi- 

duals which maximised time on the nest by maximising the net benefit 

of metabolizable energy gained while foraging - energy cost of 

reheating eggs, during inattentive periods. Using laboratory data 

on egg cooling rates, and field information on instantaneous mass 

changes while foraging, and hence energy gains, the predicted optimal 

inattentive period was found to correspond closely with that most 

frequently observed. Inattentive periods longer than the predicted 

optimum were calculated to be energetically relatively profitable, 

but were avoided by swallows probably because of risks of embryo 

maldevelopment resulting from frequent inattentiveness and chilling 

of eggs. 

The effects of changing costs and benefits on the model of an 
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optimal inattentive period were considered, and investigated by 

experimental manipulation of clutch size. Females did not signifi- 

cantly reduce the length of inattentive periods` as predicted by the 

model, when clutch size was increased, probably because repeated and 

brief foraging times are likely to jeopardise body condition and 

hence survival prospects. The effect of increasing clutch size on 

female body mass was described to provide insight into whether the 

upper limit to brood size in swallows was limited by incubation 

constraints. Clutches of eight eggs were successfully incubated in 

fine weather by two females without any deleterious consequences for 

their body condition, so it was concluded that incubation constraints 

do not limit brood size, at least when food is abundant. 

Female swallows incubated for longer bouts if their preceding 

foraging period was relatively long, but neither mass gain nor rate 

of mass gain while foraging significantly influenced the duration of 

incubation stints. 

Female swallows maintained a relatively heavy body mass during 

incubation, and mass was positively correlated with ambient tempera- 

ture. The time constraints of incubating caused female body 

condition to deteriorate in poor weather conditions. Females spent 

less time incubating at high ambient temperatures, and when their 

body condition was poor. 

7. Body mass changes of swallows during nestling rearing were 

analysed to determine whether mass losses reflected the costs of 

feeding or brooding nestlings. Females lost mass most rapidly when 

brooding young chicks, before the peak food requirements of the brood 

were attained. This rapid mass loss was not caused by the cost of 

feeding nestlings. Since females did not significantly lose mass 
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when their brooding time was experimentally increased, and since mass 

changes while foraging were on average relatively low or negative 

during the late brooding phase, rapid mass loss during brooding was 

interpreted largely as a 'programmed' anorexia, whereby females 

targetted their condition towards an optimal mass in time for a period 

of high nestling demand. Such an optimal mass probably minimised 

flight costs and allowed energy release for work without jeopardising 

female survival. 

Rapid foraging after termination of the brooding phase was 

potentially costly for both males and females in that mass changes 

were negatively and linearly related to food delivery rates. 

Experimental manipulation of brood size showed no significant tendency 

for parental mass changes to be related to brood size however, 

although nestlings in larger brood sizes grew more slowly and attained 

lower peak masses than chicks in smaller broods. 

8. Female swallows were prepared to lose more mass than their mates 

after termination of daytime brooding. Females fed broods at a 

faster rate than males when food was scarce, and this probably 

resulted in the ratio of female mass/mate mass decreasing at low 

levels of food abundance. Both sexes increased their feeding rates 

to larger brood masses at similar rates. 

9. The implications of body mass changes in breeding swallows for 

theories of life-history tactics and parental investment were 

discussed by considering parental self-investment and investment in 

offspring simultaneously. Self-investment indices were derived by 

dividing parental body mass during the non-brooding phase by food 

delivery rates to the brood. Both sexes invested more in self- 

maintenance relative to offspring allocation when food was scarce, 
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and when feeding broods of low metabolic mass. Self-investment 

indices were higher for males than females at low levels of food 

abundance and at low metabolic broods masses, as predicted by parental 

investment theory. 

10. Overall, it was concluded that the use of precision balances 

can be of great value in studies of avian behavioural ecology and 

physiology. Body mass changes in the field could be monitored to 

a degree of precision not previously attained, and short term mass 

changes can be useful measures of energetic costs and benefits in 

determining optimal reproductive tactics. A detailed knowledge of 

the causes, of mass changes allows accurate quantification of 

reproductive costs and parental investment, and an understanding of 

behavioural decisions made by adult birds during breeding. 
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APPENDIX II 

BODY COMPONENT ANALYSIS FOR 

ADULT AND FLEDGLING SAND MARTINS 
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APPENDIX II 

b. A comparison of DM and LDM of adult male and female sand 
martin body components. 
Tabulated values are 't'. 
Data from Appendix II(a) 

*: P<0.05 
ns : not statistically significant 

dry mass lean dr y mass 

tail feathers 0.90 ns 1.52 ns 

wing feathers 1.16 ns 0.92 ns 

skin and contour feathers 0.06 ns 0.79 ns 

legs 0.79 ns 0.69 ns 

wings 1.13 ns 1.79 ns 

pectoralis muscles 0.67 ns 0.72 ns 

body shell 0.21 ns 0.82 ns 

head 1.85 ns 2.07* 

neck 0.31 ns 0.49 ns 

oesophagus and gizzard 1.81 ns 1.47 ns 

lung 1.03 ns 0.71 ns 

heart 0.30 ns 0.12 ns 

liver 0.39 ns 0.05 ns 

gut 0.36 ns 0.82 ns 

kidneys 0.02 ns 0.26 ns 

gonads 2.03 ns 1.96 ns 

tracheal fat 1.37 ns 1.74 ns 



APPENDIX II 

C. A comparison of DM and LDM of adult and fledgling sand 
martin body components. 
Tabulated values are 't'. 
Data from Appendix II(a) 

*: P<0.05 

** p<0.01 

*** P<0.001 

ns : not statistically significant 

dry mass lean dry mass 
(DM) (LDM) 

tail feathers 1.84 ns 2.04 

wing feathers 6.09 *** 5.97 *** 

skin and contour feathers 0.03 ns 2.84 ** 

legs 0.75 ns 2.91 *** 

wings 4.35 *** 3.18 ** 

pectoralis muscles 0.47 ns 1.42 ns 

body shell 0.69 ns 2.53 

head 6.16 *** 6.92 *** 

neck 1.51 ns 1.46 ns 

oesophagus and gizzard 1.62 ns 0.82 ns 

lung 0.64 ns 0.92 ns 

heart 2.31 * 2.74 

liver 3.22 ** 3.37 ** 

gut 0.43 ns 0.79 ns 

kidneys 1.60 ns 1.78 ns 

gonads 00 *** 00 *** 

tracheal fat 0.96 ns 0.57 ns 



APPENDIX III 

BODY COMPONENT ANALYSIS FOR 

ADULT AND FLEDGLING SWALLOWS 



APPENDIX III 

Mean dry masses, lean dry 
dissected body components 

Component 

masses, and lipid indices of 
of adult and fledgling swallows 

ADULTS n=6 

Dry mass (g) Lean dry mass(g) 
Lipid 
Index 

Tail feathers 0.1127 + 0.0216 0.1139 + 0.0190 0 

Wing feathers 0.4966 + 0.0140 0.4954 + 0.0102 0.2 

Skin and contour feathers 1.3561 + 0.1481 1.1047 + 0.0698 22.8 

Legs 0.3553 + 0.0516 0.2481 + 0.0168 43.2 

Wings 0.5968 + 0.0639 0.4562 + 0.0211 30.8 

Pectoralis major + minor 0.9708 + 0.0422 0.8674 + 0.0176 11.9 

Body shell 1.1716 + 0.1531 0.8836 + 0.0540 32.6 

Head 0.5492 + 0.0350 0.4565 + 0.0140 20.3 

Neck 0.1722 + 0.0252 0.1473 + 0.0229 16.9 

Oesophagus + gizzard 0.2156 + 0.0260 0.1904 + 0.0241 13.2 

Lung 0.0964 + 0.0192 0.0863 + 0.0160 11.7 

Heart 0.0914 + 0.0119 0.0796 + 0.0099 14.8 

Liver 0.2723 + 0.0715 0.2163 + 0.0495 25.9 

Gut 0.2289 + 0.1063 0.1706 + 0.0730. 34.2 

Kidneys 0.0684 + 0.0197 0.0560 + 0.0173 22.1 

Gonads* 0.1121 + 0.2090 0.0995 + 0.1861 12.7 

Tracheal fat 0.0245 + 0.0178 0.0029 + 0.0016 744.8 

* mean testis dry mass 

LDM 

adult sample also include 

gonad dry mass 

LDM 

0.0186 + 0.0075g (n = 4) 

= 0.0163 + 0.0064 

ss one female, 2 eggs laid: 

= 0.4858g 

= 0.4323g 



APPENDIX III (cont. ) 

FLEDGLINGS n=3 

Component Dry mass (g) Lean dry mass(g) 
Lipid 
Index 

Tail feathers 0.0904 + 0.0010 0.0896 + 0.0011 0.9 

Wing feathers 0.4287 + 0.0164 0.4272 + 0.0169 0.4 

Skin and contour feathers 1.5128 + 0.2535 1.0267 + 0.0575 47.3 

Legs 0.4534 '+ 0.0575 0.2689 + 0.0203 68.6 

Wings 0.6301 + 0.0723 0.4515 + 0.0269 39.6 

Pectoralis Major + Minor 0.8548 + 0.0999 0.7449 + 0.0924 14.8 

Body shell 1.3263 + 0.2436 0.8324 + 0.0560 60.0 

Head 0.4920 + 0.0581 0.3937 + 0.0494 25.0 

Neck 0.1732 + 0.0260 0.1392 + 0.0133 24.3 

Oesophagus + Gizzard 0.2549 + 0.0290 0.2020 + 0.0215 26.2 

Lung 0.0832 + 0.0158 0.0735 + 0.0160 13.2 

Heart 0.0830 + 0.0050 0.0703 + 0.0079 18.1 

Liver 0.2707 + 0.0195 0.2371 + 0.0198 14.2 

Gut 0.3020 + 0.0768 0.1852 + 0.0117 63.1 

Kidneys 0.0750 + 0.0171 0.0619 + 0.0129 21.2 

Gonads 

Tracheal fat 0.0812 + 0.0480 0.0056 + 0.0034 1350 



APPENDIX III (cont. ) 

ADULTS & FLEDGLINGS n=9 

Lipid 
Component Dry mass (g) Lean dry mass(g) Index 

Tail feathers 0.1053 + 0.0204 0.1058 + 0.0193 0 

Wing feathers 0.4739 + 0.0366 0.4723 + 0.0361 0.3 

Skin and contour feathers 1.4083 + 0.1895 1.0787 + 0.0734 30.6 

Legs 0.3880 + 0.0699 0.2550 + 0.0197 52.2 

Wings 0.6079 + 0.0643 0.4546 + 0.0216 33.7 

Pectoralis major + minor 0.9322 + 0.0835 0.8266 + 0.0780 12.8 

Body shell 1.2232 + 0.1883 0.8665 + 0.0571 41.2 

Head 0.5301 + 0.0493 0.4355 + 0.0414 21.7 

Neck 0.1726 + 0.0238 0.1447 + 0.0197 19.3 

Oesophagus + Gizzard 0.2287 + 0.0319 0.1943 + 0.0226 17.7 

Lung 0.0920 + 0.0184 0.0820 + 0.0163 12.2 

Heart 0.0886 + 0.0106 0.0768 + 0.0099 15.4 

Liver 0.2718 + 0.0573 0.02233 + 0.0417 21.7 

Gut 0.2532 + 0.0994 0.1754 + 0.0585 44.4 

Kidneys 0.0706 + 0.0181 0.0580 + 0.0154 21.7 

Gonads* 12.7 

Tracheal fat 0.0434 + 0.0397 0.0038 + 0.0026 1042 

* mean testis dry mass = 0.0186 + 0.0075g (n = 4) 

LDM = 0.0163 + 0.0064 (n = 4) 

adult sample also includes one female, 2 eggs laid: 

gonad dry mass = 0.4858g 

LDM = 0.4323g 



APPENDIX IV 

Body mass changes of control pairs 

of swallows and their broods 

Open circles - female masses 

Closed circles - male masses 

Closed triangles - brood masses 

All masses are means of afternoon sampling 

period. 
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1. A comparison of energy balance data collected from the 
use of Mettler electronic balances with other 
techniques used previously on swallows in the same 
study area 

Energy balance data collected through the use of Mettler 

electronic balances should be directly comparable with results 

obtained from techniques previously used with breeding swallows. 

(a) Brood energy requirements 

In Figure 8.22, the predicted load mass at the mean round trip 

lenqth is 125 mg. Such a load would yield (0.125 x 0.27 x 22.84 x 

0.7)kJ, where 22.84 is the calorific density of insect prey, kJ g- 

dry mass, 0.27 is the proportion of insect prey which is dry mass, 

0.7 is the assimilation efficiency of swallow nestlings (Turner, 

1980). 

With these assumptions, one swallow load of 125 mg would yield 

539.6j. The daily feeding rate of swallow broods containing five 

chicks > 10 days old is 403 + 117 feeds day-1 (Turner, 1980). Such 

a daily feeding rate would result in 217.46 kJ delivered to a brood 

of five swallow nestlings per day, assuming load mass to be 

constant at 125 mg over the entire day. 

Using four different methods, Turner (1983) calculated daily 

metabolized energy of five nestling swallows as 180-290 kJ day-l. 

Hence the brood energy requirements calculated using food delivery 

rates obtained with Mettler balances lies within the range of 

requirements calculated from four other techniques. 

The daily metabolized energy of a brood of five swallow nest- 

lings was calculated as 250 kJ day 
1 

from multiplying feeding rate 

by bolus assimilable energy content (Turner, 1983). Boluses were 

obtained by collaring nestlings in Turner's study, and the brood 



energy requirement calculation, as determined by measuring feeding 

rate, probably exceeded that obtained in this project because of 

differences in load masses between the two studies. 

The mean load dry mass of swallows determined by collaring 

nestlings was 73.38 + 31.90 mg (Bryant and Turner, 1982). Assuming 

insect prey to contain 73% water (Turner, 1980), the mean load dry 

masses in this study can be calculated as 31.05 mg (males) and 

36.99 mg (females) (Section 8.3.7). 

Differences in load masses between the two studies could arise 

for several reasons: load size has been shown to vary seasonally, 

between sexes, and between individual swallows (Section 8.3.7), 

and also varies according to food abundance and weather (Bryant 

and Turner, 1982). Moreover, load masses obtained from the 

collaring technique could be greater than those normally delivered 

by the parents (Johnson et al. 1980), especially if adults are 

reducing visitation rates to nests after periods of interference 

associated with collaring nestlings. 

(b) Minimal energy requirement collected on a foraging 
recess during incubation 

The daily energy expenditure (DEE) of a female swallow during 

incubation has been determined as 120.59 kJ day-1 (Westerterp and 

Bryant, 1984). To meet this expenditure, a swallow must accumu- 

late the same quantity of energy over the course of a day during 

foraging recesses. 

The mean length of a foraging recess during this study was 

4.107 + 2.624 minutes (n = 293). In foraging recesses of 4-5 

minutes, female swallows on average gained 960J, or 213.3) min-' 

through capture of insect prey (Figure 7.14b). Female swallows 



on average spend 84.21% of a day sitting on eggs during the 

incubation period (Turner, 1982a), leaving 3.79h to feed. Using 

the data presented in Figure 7.14 (showing a foraging rate of 

213.3J min-1) a female could theoretically gain only 48.50 kJ day-l, 

and hence would not meet her DEE during incubation. 

The incongruence between the calculated energy gains from 

body mass increments and energy expenditure measured by the D2018 

technique presumably results from invalid assumptions about 

defaecation rates in Figure 7.14. If it is assumed that a female 

swallow defaecates once during every foraging trip of average 

length, the following energy gains can be calculated. 

An average faecal pellet weights 397.3 mg (page 92). If a 

swallow increased in mass by this amount during every 4-5 minute 

recess by ingesting insects, an extra 1.715 kJ of energy would be 

gained per recess. If the swallow's average of 3.79h of foraging 

time during incubation were divided into 4.5 minute recesses, 50.53 

recesses would be made on average each day, amounting to an extra 

86.66 kJ of ingested assimilable energy. Hence-a total assimilable 

energy gain of 135.16 kJ day-1 is now calculated overall, this 

corresponding closely with the directly measured DEE of 120.59 kJ 

day-' (Westerterp and Bryant, 1984). Even if defaecation were not 

a feature of each departure, a DEE between 48.50 kJ day-1 and 

231.16 kJ day-' would probably closely correspond with Turner's 

(1982a) estimate of DEE (76.69 kJ day-l), which was based on time 

budget and D2018 information on incubating swallows. 

Assumptions about defaecation rate in relation to recess 

lengths are likely to influence the predictions of the optimality 



model developed in Figure 7.14. If a female always defaecates 

once per recess regardless of recess duration, the net energy 

gain curve of Figure 7.14b would be elevated by a constant amount 

over the complete range of foraging periods, and the predictions 

of the model remain unaltered. If, however, defaecations only 

occur at longer recesses, elevation of the net gain curve will only 

occur at relatively long foraging times and benefits (foraging 

energy gains - reheating costs) will increase only at longer 

recesses. Thus longer recesses would become even more profitable, 

make the model of value only for predicting why short recesses 

(when defaecations do not occur) are avoided. 

2. The rationale behind the choice of suction trap and 
hand-net catch information in the various analyses 

As described in Section 3.2, the suction trap sampled insects 

available at a height favoured by foraging sand martins, and 

sampled over an entire day. Hand net sampling was performed over 

short time intervals (about 20 minutes) in swallow feeding sites, 

at heights normally exploited by foraging swallows. 

Suction trap catches were used for all analyses of sand martin 

masses. During 1983 the patterns of suction trap volume. and 

hand net catch parameters differed over the season, with suction 

trap volume reaching a May-September plateau, whilst hand-net 

catches peaked in mid season (July) (Figures 3.2,3.4). The use 

of suction trap data in analyses of swallow breeding biology could 

be questioned in view of these differences in seasonal abundance 

between sampling methods. Nevertheless, both sampling methods 

produced results which were significantly positively correlated 

in 1983 (Figure 3.6b). 



Suction trap data were usually used in analyses of swallow 

daily body mass changes (e. g. Figures 7.3,7.7,8.2) because it 

was reasoned that daily mass changes were likely to reflect 

relatively long-term measurements of food abundance, which were 

best assessed by the suction trap. 

In correlations and multiple regressions of swallow daily 

masses, all measures of insect abundance were entered for each 

analysis, and the insect abundance measurement which contributed 

the highest r2 value was presented in the tables. Hence sweep 

net biomass was used as a predictor of swallow, afternoon mass in 

Tables 8.1 and 8.5 because inclusion of biomass as an independent 

variable in the multiple regression resulted in a higher 

coefficient of determination than if either suction trap volume, 

number of items in the hand net, or number of large items in the 

hand net was entered as an independent variable in the analysis. 

The chosen measure of insect abundance always correlated with body 

mass in the same direction as all other abundance measurements 

considered, and it was reasoned that choice of the measurement 

which contributed the greatest coefficient of determination value 

could provide the best predictive model of body mass. 

Hand net catches were always used for analyses of swallow food 

delivery rates (e. g. Figures 8.25,8.26,9.2,9.3) since a 

swallow's foraging rate was reasoned to be more strongly influenced 

by immediate food availability as determined by the hand net than 

by longer term measures of insect abundance. 


