
A Goal-Directed and Policy-Based

Approach to System Management

A thesis submitted in accordance with the requirements of

the University of Stirling for the degree of Doctor of Philosophy

by

Gavin Andrew Campbell

Department of Computing Science & Mathematics

University of Stirling, Scotland, UK

December 2008

Declaration

I hereby declare that the work presented in this thesis is my own original work unless

otherwise indicated in the text, and that it has not been submitted for any other degree

or award. Where work presented in this thesis appears in publications of which I am a

named author, references are indicated in the text.

In particular, I note the following contributions from others:

• The Accent policy system and Appel policy language discussed in Chapter 3 was used

as a basis for the extensions and tools presented in this thesis. The original authors were

Stephan Reiff-Marganiec, Lynne Blair, Kenneth J. Turner and Jianxiong Pang.

• The approach to policy conflict filtering presented in Chapter 5 was research proposed

by my supervisor Kenneth J. Turner. My contribution was to develop the ontology and

tool support to implement and apply the approach.

• The goal-directed approach presented in Chapter 6 evolved through collaboration with

my supervisor Kenneth J. Turner.

Gavin A. Campbell

December 2008

i

Abstract

This thesis presents a domain-independent approach to dynamic system management

using goals and policies. A goal is a general, high-level aim a system must continually

work toward achieving. A policy is a statement of how a system should behave for a

given set of detectable events and conditions. Combined, goals may be realised through

the selection and execution of policies that contribute to their aims. In this manner, a

system may be managed using a goal-directed, policy-based approach.

The approach is a collection of related techniques and tools: a policy language

and policy system, goal definition and refinement via policy selection, and conflict

filtering among policies. Central to these themes, ontologies are used to model ap-

plication domains, and incorporate domain knowledge within the system. The Ac-

cent policy system (Advanced Component Control Enhancing Network Technologies,

http://www.cs.stir.ac.uk/accent) is used as a base for the approach, while goals

and policies are defined using an extension of Appel (Adaptable and Programmable

Policy Environment and Language, http://www.cs.stir.ac.uk/appel).

The approach differs from existing work in that it reduces system state, goals and

policies to a numerical rather than logical form. This is more user-friendly as the goal

domain may be expressed without any knowledge of formal methods. All developed

techniques and tools are entirely domain-independent, allowing for reuse with other

event-driven systems. The ability to express a system aim as a goal provides more

powerful and proactive high-level management than was previously possible using poli-

cies alone. The approach is demonstrated and evaluated within this thesis for the

domains of Internet telephony and sensor network/wind turbine management.

ii

http://www.cs.stir.ac.uk/accent
http://www.cs.stir.ac.uk/appel

Acknowledgements

I gratefully acknowledge the support of the UK Engineering and Physical Sciences

Research Council for funding this PhD work (under grant C014804), carried out as part

of the Prosen project (Proactive Condition Monitoring of Sensor Networks – http://

www.prosen.org.uk). My thanks also to fellow Prosen researchers at the Universities

of Lancaster and Strathclyde, whose collaboration contributed to the development and

application of this thesis work within the sensor network and wind turbine domain.

I would like to thank all the academic, secretarial and technical staff within the Depart-

ment of Computing Science & Mathematics who have aided me throughout the course

of my studies at Stirling.

Thank you to all the past and present PhD students within the department who have

been an invaluable support network and willingly had their (technical) ears bent from

time to time – in particular, Liam Docherty, Paul Godley, Chris McCaig and Lloyd

Oteniya.

Finally, many thanks to my supervisors Prof. Ken Turner and Prof. Evan Magill. This

work could not have been completed without their technical help and general guidance.

In the case of Prof. Turner, this gratitude extends to the marathon proof reading and

red pen assaults on drafts of this thesis, and the multitude of lengthy discussions that

helped shape the work presented here.

iii

http://www.prosen.org.uk
http://www.prosen.org.uk

To my parents, their parents, and Jordan J.

iv

List of Publications

Based on the work presented in this thesis, the following technical reports and papers

have been published, listed in chronological order.

1. G. A. Campbell. An overview of ontology application for policy-based management

using Poppet. Technical Report CSM-168, Department of Computing Science

and Mathematics, University of Stirling, UK, June 2006.

2. G. A. Campbell. Ontology stack for a policy wizard. Technical Report CSM-169,

Department of Computing Science and Mathematics, University of Stirling, UK,

June 2006.

3. G. A. Campbell. Ontology for call control. Technical Report CSM-170, Department

of Computing Science and Mathematics, University of Stirling, UK, June 2006.

4. G. A. Campbell. Ontologies for resolution policy definition and policy conflict detec-

tion. Technical Report CSM-172, Department of Computing Science and Math-

ematics, University of Stirling, UK, February 2007.

5. G. A. Campbell and K. J. Turner. Ontologies to support Call Control Policies.

In N. Meghanathan, D. Collange and Y. Takasaki, editors, Proc. 3rd Advanced

International Conference on Telecommunications (AICT’07), pages 5.1-5.6, IEEE

Computer Society, New York, May 2007

6. K. J. Turner, G. A. Campbell and F. Wang. Policies for Sensor Networks and Home

Care Networks, in Mohammed Erradi (ed.), Proc. 7th International Conference

on New Technologies for Distributed Systems, pages 273-284, ISBN 9981-9704-7-6,

June 2007.

v

7. G. A. Campbell and K. J. Turner. Policy Conflict Filtering for Call Control. In

L. du Bousquet and J.-L. Richier, editors, Proc. 9th International Conference

on Feature Interactions in Software and Communications Systems, pages 93108,

France, September 2007. IMAG Laboratory, University of Grenoble

8. G. A. Campbell. Sensor Network Policy Conflicts. In L. du Bousquet and J.-L.

Richier, editors, Proc. 9th International Conference on Feature Interactions in

Software and Communications Systems, France, September 2007. IMAG Labo-

ratory, University of Grenoble

9. G. A. Campbell and K. J. Turner. Goals and Policies for Sensor Network Manage-

ment. In M. Benveniste, B. Braem, C. Dini, G. Fortino, R. Karnapke, J. L. Mauri

and M. S. H. Monsi, editors, Proc. 2nd International Conference on Sensor Tech-

nologies and Applications (SENSORCOMM’08), pages 354-359, IEEE Computer

Society, Los Alamitos, California, August 2008.

vi

Contents

Declaration i

Abstract ii

Acknowledgements iii

List of Publications v

Contents xi

List of Figures xiii

List of Abbreviations xiii

1 Introduction 1

1.1 Thesis Statement . 1
1.2 Context Overview . 1
1.3 Objectives . 3
1.4 Approach . 4
1.5 Achievements . 5
1.6 Thesis Structure . 6

2 Application Background and Context 8

2.1 Internet Telephony . 8
2.1.1 VoIP: Internet Telephony . 8
2.1.2 The Accent Project . 9
2.1.3 Call Control Using Policies . 11
2.1.4 Internet Telephony Domain . 11

2.2 Sensor Networks/Wind Turbine Management 12
2.2.1 Wireless Sensor Networks . 12
2.2.2 The Prosen Project . 12
2.2.3 Wind Power Introduction . 13
2.2.4 Wind Farm Operation Issues . 15
2.2.5 Proactive Management . 16

vii

2.2.6 Existing Wind Farm Control Systems 16
2.2.7 Wind Farm Condition Monitoring 17
2.2.8 Sensor Network/Wind Turbine Domain 18

3 Policy-Based System Management 20

3.1 Introduction and Background . 20
3.1.1 Policy Definition . 21
3.1.2 History of Policies . 22
3.1.3 Existing Policy Systems and Languages 23
3.1.4 The Accent Policy System . 29
3.1.5 The Appel Policy Language . 31

3.2 Appel Policy Language Syntax . 33
3.2.1 Core Language Outline . 33
3.2.2 Defining Generic Policies . 36
3.2.3 Defining Domain-Specific Policies 42

3.3 Application 1: Policies for Internet Telephony 43
3.3.1 Language Requirements . 43
3.3.2 Standard Policy Language Specification 44
3.3.3 Resolution Policy Language Specification 47

3.4 Application 2: Policies for Sensor Networks 49
3.4.1 Language Requirements . 49
3.4.2 Standard Policy Language Specification 51
3.4.3 Resolution Policy Language Specification 61

3.5 Conclusion . 64
3.5.1 Chapter Summary . 64
3.5.2 Evaluation . 64

4 Policy Ontology Modelling 66

4.1 Introduction and Background . 67
4.1.1 Ontology in Computing . 67
4.1.2 Ontology Languages . 68
4.1.3 The OWL Ontology Language 69
4.1.4 Ontology Tools . 75
4.1.5 Existing Policy and Ontology Work 76
4.1.6 Motivation For Policy Ontology Modelling 76

4.2 Ontology Building . 77
4.3 Policy Ontology Approach . 78
4.4 Policy Ontology Stack . 79

4.4.1 Generic Policy Ontology . 80
4.4.2 Wizard Display Ontology . 84
4.4.3 Domain-Specific Policy Ontology 87

viii

4.5 Application 1: Ontology for Internet Telephony 89
4.5.1 Standard Policy Extensions . 89
4.5.2 Resolution Policy Extensions . 102

4.6 Application 2: Ontology for Sensor Networks 103
4.6.1 Standard Policy Extensions . 103
4.6.2 Resolution Policy Extensions . 107

4.7 Ontology Parsing and Integration . 107
4.7.1 Poppet Ontology Parser . 107
4.7.2 Poppet Architecture . 108
4.7.3 Poppet Usage Example . 110

4.8 An Ontology-Driven Policy Wizard . 111
4.8.1 Policy Wizard Re-engineering . 112
4.8.2 Policy Wizard Evaluation . 112

4.9 Conclusion . 114
4.9.1 Chapter Summary . 114
4.9.2 Evaluation . 115

5 Policy Conflict Detection and Resolution 116

5.1 Introduction and Background . 116
5.1.1 Feature Interaction (FI) Overview 117
5.1.2 Policy Conflict Overview . 118
5.1.3 Accent Policy Conflict Handling 120
5.1.4 Motivation for Automated Conflict Filtering 121
5.1.5 Existing Conflict Filtering Approaches and Tools 122

5.2 Automatic Conflict Filtering Approach 125
5.2.1 Action Effects Ontology Support 126
5.2.2 Conflict Detection Algorithm . 127

5.3 The Recap Conflict Filtering Tool . 128
5.3.1 Automated Support for Conflict Filtering 128
5.3.2 Recap Architecture . 129
5.3.3 Automated Support for Resolution 129

5.4 Generic Action Conflict Filtering Results 131
5.5 Application 1: Policy Conflicts for Internet Telephony 133

5.5.1 Telephony Conflicts Overview . 133
5.5.2 Telephony Action Effects . 134
5.5.3 Telephony Conflict Filtering Results 135

5.6 Application 2: Policy Conflicts for Sensor Networks 137
5.6.1 Sensor Network Conflicts Overview 137
5.6.2 Sensor Network Action Effects 139
5.6.3 Sensor Network Conflict Filtering Results 140

5.7 Conclusion . 142

ix

5.7.1 Chapter Summary . 142
5.7.2 Evaluation . 143

6 Goal-Directed System Management 147

6.1 Introduction and Background . 147
6.1.1 Goals vs. Policies . 148
6.1.2 Motivation for Goal-Direction . 148
6.1.3 Goal Identification and Definition 149
6.1.4 Goal Refinement . 149
6.1.5 General Goal-Based Approaches in Computing 151
6.1.6 Existing Goal-Based Policy Approaches 154
6.1.7 Optimisation Overview . 157

6.2 Goal-Directed Approach . 159
6.2.1 Overview . 159
6.2.2 Goal Definition and System State 161
6.2.3 Prototype Policies . 164
6.2.4 Offline Prototype Analysis and Instantiation 165
6.2.5 Run-time Policy Selection and Parameterisation 170

6.3 Goal System Implementation . 176
6.3.1 Goal Domain Ontology Definition 176
6.3.2 Goal and Prototype Syntax . 177
6.3.3 Goal System Architecture . 180
6.3.4 Static and Runtime Procedures 182

6.4 Application 1: Goals for Internet Telephony 187
6.4.1 Goal Domain . 187
6.4.2 Goals and Prototypes . 189
6.4.3 Static Prototype Selection . 196
6.4.4 Dynamic Refinement . 199

6.5 Application 2: Goals for Sensor Networks 205
6.5.1 Goal Domain Information . 205
6.5.2 Implemented Goals and Prototypes 210
6.5.3 Static Refinement . 230
6.5.4 Dynamic Refinement . 234

6.6 Conclusion . 239
6.6.1 Chapter Summary . 239
6.6.2 Evaluation . 240

7 Conclusion 244

7.1 Thesis Summary . 244
7.2 Achievements . 246
7.3 Strengths . 249

x

7.4 Limitations . 251
7.5 Further Work . 252
7.6 Concluding Remarks . 253

A Wind Turbine Blade Pitch and Yaw Configuration 254

B GenPol and WizPol Properties 256

B.1 GenPol Ontology Properties . 257
B.2 WizPol Ontology Properties . 258

C Recap Tool Guide 259

Bibliography 261

xi

List of Figures

2.1 Wind Turbine Components (Source: http://www.seda.nsw.gov.au) . . 14
2.2 Wind Turbine Nacelle (Source: http://www1.eere.energy.gov) 15

3.1 Accent Policy System Architecture . 30
3.2 Generic Standard Policy Triggers, Conditions and Actions 37
3.3 Generic Resolution Policy Triggers, Conditions and Actions 40
3.4 Internet Telephony Policy Language . 45
3.5 Sensor Network Policy Language . 54

4.1 OWL Ontology Example . 70
4.2 Example OWL Document (Part 1 of 2) 71
4.3 Example OWL Document (Part 2 of 2) 72
4.4 Policy Ontology Stack . 80
4.5 GenPol Standard Policy . 82
4.6 GenPol Standard Policy Triggers . 83
4.7 GenPol Standard Policy Condition Parameters 83
4.8 GenPol Standard Policy Actions . 83
4.9 GenPol Resolution Policy . 85
4.10 WizPol Class Categorisation Top Level 86
4.11 Telephony Named Triggers . 91
4.12 Telephony Inferred Triggers for the Availability Category 92
4.13 Telephony Inferred Triggers for the Call Category 93
4.14 Telephony Named Condition Parameters 94
4.15 Telephony Inferred Condition Parameters for the Address Category . . . 95
4.16 Telephony Inferred Condition Parameters for the Amount Category . . 95
4.17 Telephony Inferred Condition Parameters for the Description Category . 96
4.18 Telephony Named Actions . 98
4.19 Telephony Inferred Actions for the Call Category 99
4.20 Telephony Inferred Actions for the Update Category 99
4.21 Telephony Unit Types . 100
4.22 Telephony Additional Domain Information 101
4.23 Telephony Specific Resolution Policy Actions 102

xii

http://www.seda.nsw.gov.au
http://www1.eere.energy.gov

4.24 Sensor Network Named Triggers . 104
4.25 Sensor Network Named Condition Parameters 105
4.26 Sensor Network Inferred Condition Parameters for the Period Category 105
4.27 Sensor Network Inferred Condition Parameters for the Qualifier Category105
4.28 Sensor Network Named Actions . 106
4.29 Poppet System Architecture . 109

5.1 WizPol Generic Action Effect Categories 127
5.2 Sample Telephony Conflicts with Action Parameters 128
5.3 Recap Tool Architecture . 130
5.4 Generic Appel Policy Action Effects . 131
5.5 Internal Conflicts Identified by Recap for Appel 132
5.6 Telephony Action Effects . 134
5.7 Example Telephony Actions and Effect Categories 135
5.8 Telephony Conflicts Identified by Recap 136
5.9 Sensor Network Action Effects . 140
5.10 Sensor Network Conflicts Identified by Recap 141

6.1 Prototype Effect Statement Format . 165
6.2 Prototype and Goal Matching Process 166
6.3 Prototype Instantiation Process . 168
6.4 Runtime Policy Selection and Optimisation 172
6.5 Goal System Architecture . 181
6.6 Runtime Process of Goal Refinement . 186
6.7 Static Telephony Prototype Selection . 196
6.8 Scenario 1: Policy Selection for an Incoming Personal Call 201
6.9 Scenario 2: Policy Selection for an Incoming International Call 202
6.10 Scenario 3: Policy Selection for a Normal Bandwidth Request 203
6.11 Scenario 4: Policy Selection for a High Bandwidth Request 204
6.12 Sensor and Turbine Controlled Variables 207
6.13 Sensor and Turbine Uncontrolled Variables 208
6.14 Static Turbine and Sensor Prototype Selection 231
6.15 Scenario 1: Policy Selection for Wind Turbine Blade Vibration 235
6.16 Scenario 2: Policy Selection for Turbine Anemometer Report 236
6.17 Scenario 3: Policy Selection for Sensor Node Battery Voltage 237
6.18 Scenario 4: Policy Selection for Sensor Anemometer Report 239

A.1 Blade Pitch and Wind Direction . 255

C.1 Screen-shot of Recap . 260

xiii

List of Abbreviations

ACCENT Advanced Component Control Enhancing Network Technologies

AI Artificial Intelligence

APPEL Adaptable and Programmable Policy Environment and Language

API Application Programming Interface

CPU Central Processing Unit

EBNF Extended Backus–Naur Form

FI Feature Interaction

GenPol Generic Policy Language Ontology

GUI Graphical User Interface

GW Gigawatts

HTML Hyper Text Markup Language

JVM Java Virtual Machine

kV Kilovolts

kW Kilowatts

MW Megawatts

OWL Web Ontology Language

POPPET Policy Ontology Parser Program – Extensible Translation

PROSEN Proactive Condition Monitoring of Sensor Networks

PSTN Public Switched Telephone Network

RECAP Rigorously Evaluated Conflicts Among Policies

RMI Remote Method Invocation

SCADA Supervisory Control And Data Acquisition

xiv

SIP Session Initiation Protocol

URI Uniform Resource Indicator

URL Uniform Resource Locator

V Volts

VoIP Voice over Internet Protocol

W3C World Wide Web Consortium

W Watts

WizPol Wizard Display Ontology

WWW World Wide Web

XML eXtensible Markup Language

xv

non sine pulvere palma

xvi

Chapter 1

Introduction

1.1 Thesis Statement

The claim of this thesis is that goals and policies provide an effective approach to

managing systems. This thesis aims to show that a goal-directed policy-based approach

offers high-level control of several kinds of systems, and contributes toward proactive

management of both the system and the environment it monitors.

The domains in which the thesis ideas are evaluated are Internet telephony and

sensor network/wind turbine management. Policies have previously been applied to

telephony, but their use in the context of sensor networks and wind turbine management

has received limited prior attention. Goal-directed configuration for telephony and

sensor network/wind turbine management is an entirely new application area.

Within this thesis, each chapter deals with a different aspect of the approach to

goal- and policy-based management. Although this thesis investigates and applies goals

and policies to Internet telephony and sensor network/wind turbine management, the

overall approach is applicable to any domain specialisation of the policy language.

1.2 Context Overview

In a changing system environment, the handling of an event depends on the circum-

stances of its occurrence. The most appropriate response at any given point varies

with time, system state and other run-time factors. A management system should

1

offer customised event handling based on such conditions. Furthermore, this must be

achieved in real time without interrupting normal system service. This thesis presents

an approach to dynamic system management using goals and policies.

A goal is a general, high-level aim a system must continually work towards achieving.

Goals can be achieved through appropriate sets of actions that accomplish them. A

policy is a statement of how a system should behave for a given set of detectable events

and conditions. A goal is distinct from a policy in several ways. Goals are abstract

aims and objectives of a system, which are not immediately achievable through any

single low-level system action. In contrast, a policy is a structured description of how

a particular (detectable) system event can be handled using actions that dynamically

modify system behaviour. Goals are expressed as general aims that do not consider

the technical capabilities of the underlying system, whereas policies relate directly to

specific system behaviour. As a general example, consider a goal and a policy from a

vehicle management system:

Goal: Minimise vehicle breakdown

Policy: Run a full diagnostic checking program on the engine

when an oil warning light is activated

The goal is to avoid a vehicle breakdown. The goal itself does not specify any action(s)

to take to in order to achieve it. The policy is more detailed and defines a course of

action (run a diagnostic check) to take when a specific event occurs (a warning light

is activated). Combined, goals may be realised through the selection and execution of

policies that contribute to their aims. In the example above, the given policy might

be selected (along with other policies) to aid the given goal. In this manner, a system

may be managed using a goal-directed, policy-based approach.

Goals have been used extensively in the field of Artificial Intelligence for applications

such as robotics and agent-based programming. While the concept of goal-directed

behaviour is not new, the use of goals to direct policies is still an ongoing research

topic, and no goal-directed policy-based technique has been fully implemented or widely

adopted. Existing and related goal approaches in this field are described in detail in

2

Chapter 6, including approaches that use formal methods to define and refine goals

and policies (e.g. [35] and [93]) and policy hierarchies that view goals as more abstract

policies (e.g. [82] and [55]).

Policies originally gained popularity in the realms of system security and access

control, but their use has subsequently widened. The Accent project (Advanced

Component Control Enhancing Network Technologies [13]) supported policies for In-

ternet telephony, allowing end users to customise their call handling preferences. The

policy system framework developed as part of Accent was used as a base for the

approach presented here.

Each aspect of the approach described in this thesis is applied to the domains of

Internet telephony and sensor network/wind turbine management. The broader context

of these application areas is described in Chapter 2.

1.3 Objectives

The purpose of this work was to design a generic approach to high-level system manage-

ment using goals and policies. For testing and demonstration purposes, this approach

is applied within the separate domains of Internet telephony and sensor network man-

agement.

Building on the existing Accent policy system, the main objectives of this work

were:

• To define a language through which goals may be represented

• To design and implement a process of refining a set of high-level goals into a set

of policies that achieve them

• To define a policy language for the domain of sensor network management

• To enhance existing policy conflict handling using automated filtering of policy

actions

• To generalise the whole approach by modelling domain-specific knowledge in on-

tologies

3

• To develop supporting software tools to integrate and utilise ontology-defined

knowledge within the generic policy and goal systems and related components.

1.4 Approach

The approach is a collection of related techniques and tools: the policy language and

policy system, goal definition and refinement via policy selection, and conflict filtering

among policies. Central to these themes, ontologies were used to model the application

domain and to incorporate domain knowledge within the system.

Policies form the basic unit of event handling. A policy is defined in a particular

policy language. The language used here is an extension of Appel (Adaptable and

Programmable Policy Environment and Language [91]) which was developed previously

for Internet telephony using the Accent policy system.

Conflicts may arise between the actions of policies at run-time. Manual methods

for identifying such conflicts were previously implemented in the Accent system. This

approach has been enhanced by the construction of an automated filtering tool (named

Recap – Rigorously Evaluated Conflicts Among Policies) which analyses policy actions

and their parameters for potential conflicts. The approach is generic and applicable

to any domain specialisation of the policy language – no domain-specific information

is hard-coded in the tool. The tool also automatically generates resolution policy

templates for detected conflicts. Resolution policies are similar in structure to regular

policies but are triggered by pairs of conflicting regular policy actions instead of specific

system events. The action of a resolution policy selects one of the conflicting regular

policies for execution.

Goals are defined as an extension of Appel. The process of refining goals into poli-

cies is achieved in two stages: static filtering and dynamic optimisation. The system

is initialised for a given set of goals and prototypes (policy templates). Statically, the

prototype set is filtered: prototypes contributing toward goals are selected and instanti-

ated as policies. Dynamically, as the system is notified of events, applicable policies are

optimised against a goal evaluation function and are optionally parameterised based

on the current state of the system.

4

To ensure the generality of the system, all domain-specific knowledge is defined

within ontologies. An ontology defines the terms used to describe and represent an area

of knowledge, together with the logical relationships among these terms. A framework

of interrelated ontologies has been developed to model the generic and domain-specific

elements of the Appel policy language. Additional domain information for goal anal-

ysis and policy conflict detection is also modelled. Ontologies are made accessible to

goal and policy system components via a stand-alone query engine and parser named

Poppet (Policy Ontology Parser Program Extensible Translation).

1.5 Achievements

A goal-directed, policy-based approach has been developed and implemented. The ap-

proach has been demonstrated for Internet telephony and sensor network/wind turbine

management. A goal language (based on an extension of the Appel policy language)

has been developed, along with a system to refine goals into policies that achieve them.

A policy language for sensor networks has been defined, also using Appel. To aid

policy conflict handling, the Recap tool provides automated conflict filtering and res-

olution policy generation. Finally, a framework of ontologies has been developed to

model generic and domain-specific aspects of Appel, along with domain knowledge

pertaining to policy conflict analysis and system goals. Ontologies are utilised by sys-

tem components via the generic interface of the Poppet tool.

Success of the whole thesis approach is measured in the combined functionality of

the developed techniques and tools. The approach is entirely domain-independent in

that no components of the goal and policy system and supporting tools have hard-

coded details of any particular application area. This allows for reuse in new domains

– through customisation of an ontology.

Reuse of the approach is constrained to event-driven systems that require a degree

of autonomy in their control. Specifically, viable systems must be capable of generating

and reporting events (changes in the system environment that act as policy triggers)

and must also permit dynamic configuration of its components (services, resources or

variables in the system environment alterable via policy actions). In turn, a suitable

5

interface must be devised to enable the policy system to communicate with the managed

system.

1.6 Thesis Structure

The following chapters each describe a different aspect of the goal-directed and policy-

based approach. Each main chapter (with the exception of Chapter 2) opens with an

introduction and background to its topic, and concludes with an evaluation of the work

presented. The overall structure of this thesis is as follows:

Chapter 1: The introduction to this thesis: a summary of the context, objectives,

approach and achievements.

Chapter 2: This provides an overview of the application domains in which the thesis

work is applied. These domains are Internet telephony and sensor network/wind

turbine management.

Chapter 3: This introduces policy-based management and describes the policy system

and policy language used as a base for the approaches in this thesis. Policy

language specialisations for Internet telephony and sensor networks/wind turbine

management are described and example policies are given.

Chapter 4: This gives an introduction to ontologies and describes how they have been

used to model policies and to generalise an existing policy system user interface.

Ontologies developed to model policy language specialisations for Internet tele-

phony and sensor networks/wind turbine management are also presented.

Chapter 5: This introduces the field of policy conflict and describes a new approach

and tool for automated conflict filtering among policy actions. The tool is demon-

strated for Internet telephony and sensor network/wind turbine management poli-

cies.

Chapter 6: This chapter introduces and summarises previous goal-related approaches,

and presents new work on goal-directed policy-based management of systems. It

describes how goals are defined and refined into policies which execute them.

6

The goal-directed approach is demonstrated for Internet telephony and for sensor

network/wind turbine management.

Chapter 7: Concludes the work presented in this thesis.

Appendix A: This provides a technical explanation as to the values used to configure

certain wind turbine-related parameters discussed in Chapter 3 and used in policy

examples throughout the thesis.

Appendix B: This provides further technical properties relating to the ontologies

described in Chapter 4.

Appendix C: This describes how the Recap conflict filtering tool described in Chap-

ter 5 is used and provides a screenshot of the application interface.

7

Chapter 2

Application Background and

Context

This thesis describes generic policy-related approaches and tools which have been ap-

plied and demonstrated in two different application areas: Internet telephony and sen-

sor network management within a wind farm environment. Two contrasting domains

were selected in order to demonstrate the generality of the approach. This chapter

provides a background to these domains and describes how they are used within this

thesis. Section 2.1 introduces Internet telephony and explains how its characteristics

are modelled in this thesis. Section 2.2 describes the domain of sensor networks/wind

turbine management. A summary is given of wind farms and wind turbine operation,

including existing wind farm condition monitoring and control systems.

2.1 Internet Telephony

2.1.1 VoIP: Internet Telephony

Traditional telephony can be described as the exchange of voice messages over a circuit-

switched telephone network (commonly referred to as the Public Switched Telephone

Network (PSTN)), using fixed-line analogue or digital transmission. In contrast, Inter-

net telephony (or Voice over Internet Protocol (VoIP)) refers to the exchange of voice

data over the Internet using a packet-switched protocol that encodes/decodes speech

8

as streams of digital audio. Calls are initiated and received using a computer termi-

nal or VoIP telephone handset connected to the Internet. As Internet connectivity

has widened and bandwidth has increased (e.g. broadband network provision), VoIP

has proved a popular method of communication that is more cost effective than the

fixed-line PSTN.

Internet telephony offers similar features to a PSTN network, but for little cost and

with greater user control over how features are configured. For example, services such

as call forwarding, conference call set-up, and the ability to transmit/receive multiple

calls using the same connection are standard features of a VoIP system. In addition,

VoIP utilises an Internet connection. Calls may therefore be combined with multimedia

features such as video streaming, instant messaging, status tracking, and media file

transfer.

2.1.2 The Accent Project

Accent (Advanced Component Control Enhancing Network Technologies [13]) was a

project funded by the EPSRC (Engineering and Physical Sciences Research Council)

between September 2001 and March 2005. Research was carried out by the University

of Stirling and supported by Mitel Networks Corporation (http://www.mitel.com/).

The project aimed to develop an advanced language and system to allow individuals and

enterprises to specify policies and preferences for call processing – particularly Internet

telephony. The project developed a call control language to define user policies, to

analyse conflicts in these, and to support policies in an operational environment.

Accent is also the name given to the generic policy-based framework resulting

from the Accent project. The framework was originally applied within the domain of

Internet telephony, to enable users to manage and configure call preferences.

Specific objectives of the project were:

• To define a user-friendly policy language for call control

• To perform rigorous offline analysis to detect conflicts among policies within this

language

9

http://www.mitel.com/

• To translate policies into XML scripts that are executed in a SIP (Session Initi-

ation Protocol) server

• To detect and resolve policy conflicts at run-time

• To undertake trials to evaluate the project approach.

Notable achievements of the Accent project included Appel (Adaptable and Pro-

grammable Policy Environment and Language [91]) and its associated tool support

for execution and conflict analysis. The Accent policy system was implemented in a

three-layer architecture: a user interface layer (consisting of a policy wizard for non-

technical users to create and edit policies), a policy server layer (to store and deploy

policies), and a communications layer (to connect with the monitored system environ-

ment). For telephony, the Accent system was implemented to support three specific

communication protocols: SIP, H.323 (an audio-visual protocol used in videoconfer-

encing) and a proprietary PBX (Private Branch Exchange). The Accent support of

telephony therefore deals with common features of these particular communications

mechanisms.

Both Accent and Appel were adapted and extended for the techniques and tools

described throughout this thesis. In particular, the Appel language has been spe-

cialised for the new domain of sensor network/wind turbine management. The Ac-

cent policy system and the Appel policy language are explained in detail in Chapter

3, along with a review of other main policy-based approaches.

The Accent system was chosen for use over other established systems as it offers

a generic, readily reusable framework with strong support for policy creation and man-

agement through its policy wizard user interface. The Appel language is simpler and

less formal than other established languages that offer more complex types of policies,

and was deemed more appropriate for this thesis work. Additionally, other established

policy systems and languages have evolved from the initial policy application area of

resource management and promote features more geared towards policies for system

security and user access control, rather than more general event-based policies. Appel

is designed for more general management policies and has a core, generic set of language

10

constructs that can be easily extended and specialised for new domains.

2.1.3 Call Control Using Policies

Accent policies include handling the set-up of calls and taking customised actions

in the event of an incoming call request. The features supported in policies can be

summarised as follows:

• Policies may detect a call connection, a call disconnection or a call that goes

unanswered, and take appropriate actions.

• The caller may request an amount of bandwidth for use during a call, and either

have this accepted or rejected by the recipient.

• The presence and availability of a particular user can be used to trigger actions.

• Call handling features include adding/removing callers in an existing call and

forking/forwarding calls to other users.

• Multimedia handling includes adding/removing various call media (specifically,

the ability to include audio, video or a digital whiteboard in a call) and playing

recorded audio clips to callers.

• Policies may have conditions based on parameters associated with the call en-

vironment, such as the address of the caller/callee, the call content, type, cost,

priority, quality, and the media in use.

2.1.4 Internet Telephony Domain

The Appel policy language, designed as part of the Accent policy system, was orig-

inally specialised for the domain of telephony. In particular, the language defines the

types of triggering events, conditions and actions within a VoIP environment. These

language components are described in full in section 3.3 which describes the policy

language for this domain. The policy language for telephony was developed previously

by researchers within the Accent project, and its application within this domain un-

changed.

11

2.2 Sensor Networks/Wind Turbine Management

2.2.1 Wireless Sensor Networks

A wireless sensor network consists of sensor nodes which monitor, collect and commu-

nicate data between themselves (known as a peer-to-peer (P2P), ‘ad hoc’ or ‘mesh’

network) and/or with a central processing point. Individual sensor nodes are robust

enough to be positioned in any internal or external environment and are designed

to operate without human intervention for extended periods of time (often several

years). Each sensor node may contain one or more individual sensors. Such sensors

may measure aspects such as light, sound, motion, or environmental conditions (e.g.

temperature). To operate wirelessly over long time periods, sensor nodes sustain them-

selves using battery power and have restricted processing capability, memory and use

of bandwidth. To optimise power usage, sensor platforms have been designed that give

software applications direct access to and control of hardware modules, to conserve

energy by turning off particular sensors or subsystems within a node when not in use.

Wireless sensor networks have been applied in a wide range of applications, for

example to monitor conditions in extreme climates, to aid home security systems, to

track animals in their natural habitat, and to support military defence systems. The

advantages of such networks lie in their ability to gather data within environments

where a human presence is impractical, impossible or dangerous.

2.2.2 The Prosen Project

The Prosen project (Proactive Condition Monitoring of Sensor Networks – http:

//www.prosen.org.uk) was funded by the EPSRC (Engineering and Physical Sciences

Research Council) between 1st October 2005 and 30th November 2008. The project

combined research at the Universities of Essex, Lancaster, Strathclyde and Stirling, as

well as collaboration with industrial partners. The work presented in this thesis formed

part of the contribution from the University of Stirling.

The broad aim of Prosen was to investigate and develop new techniques for proac-

tive condition monitoring in large-scale wireless sensor networks. In the context of the

Prosen project, such techniques were developed and applied in the domain of wind

12

http://www.prosen.org.uk
http://www.prosen.org.uk

farm operation. In summary, Prosen had the following overall aims (the last three

being of particular relevance to this thesis work):

• the design of systems with a rich self-observation capability

• the construction of machines that can continuously monitor parallel streams of

input

• the development of efficient proactive control techniques

• automatic configuration and maintenance of large-scale sensor networks

• the specification and implementation of goal-driven configuration management

• the federation of software services in such a distributed and changing environment

• the integration of novel research into a practical large-scale demonstration that

encourages exploitation.

These aims were addressed through an investigation of techniques that enable the

automated control and management of sensor arrays to be proactive. To achieve these

aims, proactive control and management software was to be assisted through integration

with a “policy-driven management infrastructure that uses high-level user goals to

constrain the instrument-level proactive behaviours” [27]. The work presented in this

thesis delivers a solution to this requirement.

2.2.3 Wind Power Introduction

The basic structure of a wind turbine is shown in Figure 2.1. A wind turbine produces

electricity using natural wind power to drive a generator. Typically, turbines have three

blades which rotate around a horizontal hub called the nacelle, at the top of a steel

or concrete tower. A turbine generally starts to generate electricity at wind speeds of

8mph and can generate maximum output in speeds of 30mph. Risk of damage is liable

when wind speed reach levels of 50mph. In such circumstances, turbines must be shut

down to prevent malfunction. The height of a turbine ranges from 100-120 meters (m).

Of this, towers are generally 60-80m and the blades can be 30-40m long [26].

13

Figure 2.1: Wind Turbine Components (Source: http://www.seda.nsw.gov.au)

The internal components of a typical nacelle are shown in Figure 2.2. When in

active operation, the turbine blades face into the direction of the wind. As the wind

passes over the blades, it exerts a turning force which rotates the blades. The blades

turn a shaft inside the nacelle which is normally connected to a gearbox. The gearbox

works to increase the rotation speed for the generator. As in conventional forms of

power generation, the generator uses magnetic fields to convert the rotational energy

into electrical energy. Output power is then fed into a transformer to convert the

generated electricity (from around 700 Volts (V)) to a level compatible with regional

distribution networks or the National Grid (usually between 11 and 132 kilovolts (kV))

[26]. Within the nacelle, an electronic controller continuously monitors the condition of

the wind turbine and collects statistics on its operation. The controller communicates

bi-directionally with external systems and the operator via some communications link

(e.g. telephone, radio or fibre optics) to send alarms or to report on the status of

turbine components.

Wind speed and direction are detected using instruments on top of the nacelle. An

anemometer measures the wind speed and a wind vane measures the wind direction.

Both measurements are fed into the turbine and used to alter its operation. As the

wind direction changes, the motors within the nacelle turn or “yaw” the rotor head so

that the blades remain constantly in the face of the wind – known as yaw control. In

14

http://www.seda.nsw.gov.au

Figure 2.2: Wind Turbine Nacelle (Source: http://www1.eere.energy.gov)

addition, the blades are also angled or “pitched” to gain optimal power from the wind.

Wind turbines are monitored remotely, usually from a centralised control centre

which may be off-site. The site may house security staff or maintenance engineers, but

in general the turbines can operate effectively without direct human control.

2.2.4 Wind Farm Operation Issues

A major drawback of current wind farms is the percentage of time they can operate

effectively. A typical turbine produces power only 75-80% of operational time, gen-

erating different levels of output depending on the speed of the wind. As a result a

turbine produces only 30% of its theoretical maximum output. The lack of output from

a turbine is increased by the downtime associated with scheduled turbine maintenance

and repair time following any fault. This compares to a figure of around 50% for con-

ventional power stations [25]. Specifically, wind turbines must be turned off when wind

speed reaches gale levels of 50mph, to prevent malfunction and to reduce degradation

caused by friction within internal components. Predicting trends in the external tur-

15

http://www1.eere.energy.gov

bine environment, such as weather conditions and the impact on internal components is

not easy. The key to improving operational efficiency lies in more effective monitoring

of turbine components to detect the signs of typical problems and plan to rectify them

before component failure and turbine downtime occurs.

2.2.5 Proactive Management

Proactive management of a system involves monitoring system components in an at-

tempt to spot tell-tale signs of faults or degradation during normal operation, and take

appropriate action to prevent more serious damage or failure within the system. This

type of approach is in contrast to reactive management, which aims to take action (or

react) to system events once damage has already occurred. Proactive management is a

more preferable approach in the context of wind farms and mechanical systems in gen-

eral. For proactive approaches to work, however, system conditions must be carefully

monitored and the early signs of faults known in advance.

2.2.6 Existing Wind Farm Control Systems

Mechanical systems (including wind farms) operate using Supervisory Control and Data

Acquisition (SCADA) systems [58]. SCADA systems were originally developed in the

1960s. Since then they have evolved rapidly, and are now utilised widely through-

out industry for a variety of large-scale, industrial processes. Example systems include

traditional power stations, natural gas utilities, water and sewage utilities, and telecom-

munications [28]. SCADA networks are implemented as software packages which are

interfaced with the hardware components of a system. This provides a form of mon-

itoring at a supervisory level. Operators cannot use a SCADA system to physically

control hardware. Instead, they may gain insight into operational behaviour and make

decisions based on this [58]. While SCADA provides such monitoring capabilities, it

does not offer the means to proactively control a system. SCADA alone cannot support

self-adaptation or dynamic component configuration based on changes in external and

internal conditions. For this reason, dedicated condition monitoring can provide more

effective support in system control.

16

2.2.7 Wind Farm Condition Monitoring

Condition monitoring is the act of continually observing and analysing a system to

detect tell-tale signs of failure before fully-fledged faults develop. Previously, the main

method of identifying wind turbine faults was for engineers to physically carry out

checks on-site, using hand-held equipment and visual spot checks. Condition moni-

toring techniques can offer proactive management of wind farms, allowing operators

to monitor the internal components of a turbine as well as its external environment.

The main difference between condition monitoring techniques and existing monitoring

systems, such as SCADA, is in their proactive capabilities.

Using built-in knowledge of the wind farm environment, condition monitoring can

predict failures and output warnings, recommend actions to operators, or even issue

control commands directly. In particular, an operator is given the chance to stop a

turbine before excessive damage to components occurs [32]. Identifying potential faults

early gives the opportunity to schedule maintenance and order replacement parts in

advance. Such coordination of maintenance and repair greatly reduces the cost of

manpower, specialist equipment sourcing, and replacement of parts following excessive

damage. Furthermore, it can reduce the length of time a turbine is out of service and

hence lessen the energy lost during downtime.

Mechanical faults in wind turbines develop gradually and can be identified through

abnormalities such as “hot spots”, unusual vibration and debris in lubricants [32]. Sen-

sors placed within internal components can be used to monitor temperature. When

components become hotter than usual, it can signal frictional issues due to distortions,

component degradation or lubrication failures. Lubricant monitoring, in oil for exam-

ple, can indicate contamination by metal particles from gears and bearings. Vibration

monitoring is effective for rotating machinery. A rise in vibration frequency level over

time can indicate mechanical stress.

In March 2004, the German-based company SKF [11] installed the world’s first

large-scale, online condition monitoring system in 126 turbines throughout Germany

and France. The system, called WindCon, uses a range of vibration sensors mounted

on the main-shaft bearings, the drive-train gearbox and the generator of each turbine,

17

to continuously monitor vibration signals from rotating components [24]. The gathered

sensor data is used in conjunction with data from the standard SCADA turbine control

system to detect changes in turbine performance and to output warnings to engineers

through the system user interface.

Distress in rotor blades is also detectable by analysing changes in strain, acous-

tic and vibration signals [32]. Interpreting faults using these techniques is generally

assumed difficult due to the contribution of the wind itself in generating random fre-

quency variations across a blade. Current commercially adopted techniques use fibre-

optic strain gauges embedded on the blade surface. Smart Fibres Ltd. [12] and LM

Blade Monitoring [5] are in active production of such devices.

Ultimately, a complete condition monitoring system should offer a means of collating

monitored data, analysing it against a predefined knowledge base including trends of

component operation. The system should output warnings, recommendations and other

results to an operator.

The most common cause of turbine downtime results from mechanical malfunctions

and component failure within the nacelle – typically, the gearbox, bearings and rotor

blades. Such faults are expensive, both in terms of manpower and part replacement.

Turbines have no means to monitor mechanical components proactively to detect po-

tential failures.

Condition monitoring has been used successfully within traditional power generation

and aviation applications [32], but it is not until recently that any widespread attempt

has been made to develop similar technology for wind farms.

2.2.8 Sensor Network/Wind Turbine Domain

The results in this thesis are demonstrated for sensor network and wind turbine man-

agement. The thesis examples use both free-standing environmental sensors (referred

to as ‘sensor nodes’) and sensors that monitor turbine mechanics.

Sensor nodes are based on portable weather stations developed as part of the

Prosen project, and are physically deployed on a wind farm site. For the purpose

of this thesis, these sensor nodes are managed separately from individual wind tur-

18

bines. The reporting and sampling frequencies of the sensors on each node may be

configured, and individual sensors may be switched on or off.

It was not feasible to trial the systems and approaches presented in this thesis

with operational wind turbines due to issues of access and cost. Therefore, for demon-

stration purposes it is assumed that the policy system is interfaced with the turbine

control system and policies may use common turbine parameters. Common parame-

ters are reported to the policy system and may be configured through policy actions.

Direct actions from the policy system for simulation purposes include the modification

of certain parameters to manipulate mechanical operation. For example, the policy

system may set parameters like rotor blade pitch or rotor yaw angle, or may configure

components such as the rotor brakes, yaw brakes, generator or gearbox. More detail

on the nature of these parameters is given with a description of the policy language for

this domain within Chapter 3.

19

Chapter 3

Policy-Based System

Management

This chapter explains how policies are employed in systems to provide customised event

handling based on the preferences of users. In prior work not part of this thesis, a policy

system and policy language were developed to support policies for Internet telephony.

This work has been used as a basis for the design of a new policy language for sensor

network management. In this chapter, an overview of this existing policy work is given,

and new work that has adapted the existing policy language for the new application

domain of sensor network and wind turbine management is described.

Section 3.1 introduces the concept of a policy and summarises the history of where

policies, policy-based languages and systems have been applied. Section 3.2 outlines

the generic features of the policy language adopted for this thesis work. Section 3.3

describes how this language was originally specialised for Internet telephony, while

section 3.4 reports on a new specialisation of the language for the domain of sensor

network management in the context of a wind farm. Section 3.5 evaluates the work

presented here.

3.1 Introduction and Background

Traditionally, the features offered by a system have been centrally controlled, deployed

and accessed. This approach is inflexible as such features cannot be easily customised to

20

the preference of a user and are owned solely by the service provider or administrators

of the system. Policies have emerged as a method of controlling decentralised services

in networks, providing users with more control over how the services they use are

configured. Using policies, a user may customise a service and define high-level goals

or low-level actions a system should take depending on the context in which an event

occurs. A policy contains information that can be used to dynamically modify the

behaviour of a system, depending on whether defined conditions apply (e.g. time,

system state or user context). Traditional features do not provide this level of user

control.

The following subsections introduce the concept of a policy, provide a background to

their use in computing, and describe a variety of existing policy languages and systems.

3.1.1 Policy Definition

A policy, in general, is described as “a set of ideas or a plan of what to do in particular

situations that has been agreed officially by a group of people, a business organization,

a government or a political party” (Cambridge English Dictionary [88]). Policies are

typically formed as documents that outline the purpose of the policy, who or what the

policy affects, the date or timescale to which it applies and a set of policy statements

that describe the specific intentions, regulations and actions that the policy is creating.

Common examples include insurance policies for vehicles or properties, and political or

economic policies issued by the Government. Note that a policy is different from a law

in that it aims to guide actions toward those most likely to achieve a desired outcome,

rather than require or prohibit actions.

Stemming from this general notion, a policy in the context of computing is a high-

level statement of how the behaviour of a system should be controlled for a given set

of detectable events and conditions. Similar to general policies, these are expressed as

structured documents and contain details of the purpose, applicability, scope, timescale

and intentions of a policy. Simple high-level policy examples might be: “To ensure per-

sonal safety, when the fire alarm sounds all persons must vacate the building using the

nearest exit”, or “If the printer is out of paper during office hours, alert a technician”.

21

Computing policies are specified in a high-level language, possibly using near-

natural language phrases. Policies are defined in some structured or formal description

language for storage and analysis. This may be automatic, using a wizard or similar

user-friendly graphical interface. Collections of policies are stored and managed within

a specialist policy system. A policy system typically provides a facility to create, store

and deploy policies, and a mechanism to retrieve, process and execute eligible policies

upon receipt of state information and events that occur within the system environment.

3.1.2 History of Policies

Policies in computing were originally applied to handle security and user authentication

issues. During the past decade their use has greatly expanded, as policies have been

recognised as a practical solution to dynamic modification of a system during its opera-

tion based on events it encounters. In addition, policies are aimed at end users and can

be defined in non-technical terms, providing domain experts and system operators with

the ability to manage a system without the need for technical programming knowledge.

The earliest policies were based on security models for systems and networks. Se-

curity policies define high-level rules to regulate user and system access to data and

hardware (or software) resources [39]. Typically, security policies define whether re-

quests from a particular entity (e.g. individual or group of users) should be granted

or denied. Examples of such policy systems and models include access control matri-

ces, such as the Lampson model, otherwise known as ACL (Access Control List [76]).

Later security policy models enhanced the notion of access control, including the Bell-

LaPadula Model [36] which concerns data confidentiality and an integrity policy model

proposed by Biba [37], which describes how the validity of system data should be main-

tained as a system changes state. In 1992, the concept of Role-Based Access Control

(RBAC) was introduced as a security model by Ferraiolo and Kuhn [63]. Although the

RBAC model is not used directly for policy specification, it has gained wide acceptance

and use as a general model through which to specify and enforce organisational access

control policies. A role-based policy regulates user access to information in a system

based on the activities or responsibilities that user is defined to have [39]. A refined

22

version of the RBAC model was standardised by the National Institute of Standards

and Technology (NIST) in 2004 (INCITS 359-2004). Some policy-based frameworks

(discussed in the following sections) have implemented the RBAC security model, such

as Ponder [57] and XACML [67].

In addition to security, networking policies have been a dominant area in policy-

based management. As local area and wide area (Internet) network access has evolved

since the late 1980s, so too have policies to govern quality of service (QoS), the routing

of data, and prioritised user access to networked resources [39]. Early routing policy

frameworks formed the basis for network protocols in use currently. For example,

the COPS (Common Open Policy Service) protocol [40], published in 2000, relates to

the general administration, configuration and enforcement of policies in IP (Internet

Protocol) networks.

3.1.3 Existing Policy Systems and Languages

A policy is defined in a particular high-level policy description language which specifies

the syntax and semantics of policy components. This language typically specifies as-

pects such as the structure of a policy, and the format its rules may take. Crucially, a

policy language will define generic policy components and those particular to an appli-

cation domain. A policy system is a framework through which policies (in a particular

description language) may be stored, retrieved and executed. A policy system interacts

with both the human policy creators and the underlying system being managed.

Different policy-based approaches have been developed for different application ar-

eas, resulting in a number of policy systems and description languages in active use. In

addition, languages have evolved to utilise developments in mark-up languages such as

XML [15]. Early languages were geared entirely toward network policy specification,

such as SRL ([42]) and PPL (Path-based Policy Language [96]). Later languages took

a less domain-specific view, and began to focus on managing systems in general. PDL

(Policy Description Language [80]) was one of the first languages to formulate policies

using the Event-Condition-Action (ECA) rule paradigm, which maps a series of system

events to sets of actions, based on sets of conditions.

23

In the subsections that follow, the main established policy-based approaches are

summarised, including Accent, KAoS, Rei, Ponder, Ponder2, XACML and PMAC. Of

these, the Accent policy-based environment is the subject of the approaches presented

in this thesis, and the reasons why it was chosen over other policy-based frameworks is

explained in more detail in the following subsection.

Accent Overview and Motivation for Use

The Accent project (Advanced Component Control Enhancing Network Technologies

[13]) developed a policy-based management system together with a policy language

called Appel (Adaptable and Programmable Policy Environment and Language [91]).

Both this system and language were used as a basis for the work of this thesis. The

Accent policy system comprises a web-based user interface (a policy wizard) to create

and manage policies, a policy server and policy store, and a customisable network

interface to the system being controlled. The policy system is domain-independent and

may be reused across multiple domains. The policy system implements the Appel

policy language. Appel is a generic policy language that can be specialised for any

domain. Both the system and language are designed to support rule-based policies of

ECA (Event-Condition-Action) format.

The primary needs of a policy system to support this thesis work were: a readily

available, generic framework to create, store and deploy policies, and an extensible

policy language that could be customised for the sensor network/wind turbine domain.

A suitable user-interface to support policy creation by non-technical users was also

required. The Accent framework was chosen over other policy-based approaches as

it meets these requirements most strongly. The Accent system is generic and readily

reusable in new domains. In addition, no other framework offers a web-based user-

interface like the Accent policy wizard, and the ability to distribute major Accent

system components (i.e. the policy server, wizard and policy store) more flexible than

other approaches. The Appel language is extensible to new domains and its non-formal

method of language specification more attractive and less complex than ontology-based

approaches (such as those of KAos and Rei). The Accent framework was designed to

24

be generic and not tailored to or evolved from the domain of security or access control

(like the Ponder framework for example). Consequently, the Appel language is less

complex in that it offers fewer types of policies (two types versus three in Ponder for

example) and is deemed easier for non-technical users to create policies. The ability to

explicitly permit and forbid actions as promoted in KAoS, Rei and Ponder, and support

for policy groupings and user roles offered by Ponder, are features more suitable for

security policies and less relevant for the work presented in this thesis.

A more detailed overview of Accent and Appel is described in section 3.1.4. Other

main policy-based approaches are now outlined with reasons why each was less suited

to this thesis work.

KAoS

The KAoS framework (separate from the Kaos framework for Requirements Engineer-

ing (RE)) is a platform-independent set of services which use ontology1 concepts to

represent policies using OWL (the Web Ontology Language [19]). In KAoS, there are

generic ontologies which describe the basics for any environment. This core framework

is then extended through additional ontologies which specialise the generic concepts for

a particular domain.

The KAoS policy service offers four basic policy types which are defined as core

ontologies. These are positive and negative authorisation policies (policies that permit

or forbid some action), and positive and negative obligation policies (policies that

require some action when a state/trigger occurs, or define what action not to perform).

A domain policy is an instance of one of these basic policies, specialised for the domain

by extending the appropriate ontology with data specific to the execution environment.

Policies in KAoS are defined purely in OWL, and can therefore be read, edited and

analysed using any third-party tool supporting OWL – independent of any KAoS tools.

Unlike the Accent framework, KAoS has no readily available, distributed architecture

through which to interface policies with the system being managed. The Accent ap-

proach is also more flexible in that the policy language is specified separately from the
1An ontology defines the main concepts within a domain, the relationships that exist among these

concepts, and the properties (or attributes) they have. Ontologies are discussed in detail in Chapter 4.

25

mechanism through which policies are actually stored. KPAT (KAoS Policy Adminis-

tration Tool) was a tool previously in use to define/manage KAoS policies, although

this is no longer maintained or easily obtainable.

Rei

Rei [70] is a policy environment that supports policy specification, analysis and reason-

ing. The Rei policy language was designed to be flexible and application-independent.

The language allows users to express rules to represent the concepts of rights (positive

authorisation), prohibitions (negative authorisation), obligations (positive obligation)

and dispensations (negative obligation). Rei policies may define rules to associate an

entity (e.g. an individual or organisation) with a set of these such concepts. Rights,

prohibitions, obligations, dispensations and policy rules for a particular domain are

specified in an ontology. The ontology also describes policy actions, including target

objects on which the action may be performed, pre-conditions to be satisfied prior to

action execution, and the effects that will result following execution. Like KAoS (in

the previous subsection), Rei uses a generic ontology which can be extended through

further ontologies for a particular application domain. The ontology uses first-order

logic and RDF as its specification language. Again, Rei, like KAoS, does not provide

any graphical user interface to define policies, which is a drawback compared with Ac-

cent. Similarly, Rei focuses on the language support for policies and does not provide

the flexible, distributed policy system framework offered by Accent.

The Ponder Framework

Ponder [57] is an object-oriented, declarative programming language which can be used

to specify policies. In addition to the core policy language, the complete Ponder release

comprises a policy deployment framework and a tool-kit to support the policy life-cycle

[57]. Although Ponder is readily applicable to specifying security policies (it implements

the RBAC model discussed in section 3.1.2) and more general-purpose management

policies, it is intended to be extensible to support other types of policy. Developed by

the policy research group at Imperial College, UK, the principal application areas of

26

Ponder have been security policy creation and management, although the framework

is designed to support system management in general.

Ponder supports three core “types” of policy:

Authorisation policies: Used for security and access control purposes, these define

the services or resources a software agent or human user may, or may not, access.

Specifically, they express whether a subject is allowed (positive authorisation

policy) or forbidden (negative authorisation policy) to perform a particular action

on a target.

Obligation and Refrain policies: Used to define specific duties of a policy subject.

An Obligation policy defines what a subject must do, while a Refrain policy

defines what must not be done.

Delegation policies: Specify an action (or authorisation) a subject may delegate to

others.

Each type provides a base for a policy template that can be instantiated to ex-

press particular high-level aims via customised parameter values. Using this technique,

Ponder allows policies to be formulated in a generic manner.

Ponder also provides a means of managing policies across an application in addition

to defining them. Policies relating to the same domain or department may be grouped

together for more effective organisation and to encourage policy reuse. Policies may

also be linked semantically using a role function – such as by common subject or level of

organisational hierarchy. Such grouping is advantageous for managing security policies.

Ponder is therefore a useful solution to managing a large number of policies across an

enterprise-wide network.

Ponder offers a more complex range of policy types (e.g. authorisation, obligation

and delegation policies, versus a just user and resolution polices in Appel) and is

deemed more appropriate for managing security policies based on both the range of

policies and it’s strong support for policy grouping. The grouping and user role support

offered by Ponder policies is less relevant to the needs of this thesis work. Additionally,

a weakness of the Ponder language is the inability to define user preference data in a

27

policy (some indication from the policy designer as to how strongly policy execution

should be adhered to). Appel supports policy preferences which can aid in the process

of conflict negotiation to resolve clashes in policy execution paths by prioritising policy

execution to achieve the most desirable outcome.

Ponder2

Recently, Ponder has influenced the development Ponder2. Ponder2 is an extensible

policy framework intended for use on different levels of scale – from small embedded de-

vices to large systems. The Ponder framework is not this scalable. Ponder2 includes a

general-purpose object management system housing a domain service (hierarchy struc-

ture for managing objects), a policy interpreter (that handles rules of Event-Condition-

Action (ECA) format) and a command interpreter (accepts XML-based commands from

communications interfaces to perform invocations on managed objects via the domain

service). Ponder2 is used in [73] to achieve policy-based management in the context of

body-sensor networking. However, Ponder2 is only just emerging at the time of writ-

ing, and is not as yet a stable, publicly available framework. Indeed, at the outset of

this thesis work, Ponder2 was still in the design stages and obviously not a contending

approach for this work.

XACML

XACML (eXtensible Access Control Markup Language [67]) was developed by the

OASIS interoperability consortium (http://www.oasis-open.org/) for the purpose of

standardising security access control using XML. The standard (first issued in 2003 and

revised in 2005) defines an XML-based general-purpose access control policy language

and a request/response language. Policies in XACML are modelled in XML and specify

Subjects, Targets, Resources, and Actions. The Target is a constraint that must be

met by the Subject and Resource in order for the policy Action to be applicable. The

request/response language is used to form queries on policy actions which can be used

to grant or deny access requests (from an individual, organisation or service) to system

resources. While XACML is intended for general use, its focus is on access control

28

http://www.oasis-open.org/

rather than general system management, making it less suitable than Accent for the

work of this thesis.

PMAC

PMAC (Policy Management for Autonomic Computing [29]) was developed by IBM

in 2005. PMAC is a generic middleware platform that allows software applications to

receive input from a policy-based management system using embedded software compo-

nents. The platform is Java-based and provides two different policy languages: ACPL

(Autonomic Computing Policy Language) which is XML-based and SPL (Simplified

Policy Language) which uses more user-friendly and concise constructs in if-condition-

then-action format. The PMAC platform model provides a selection of Java-based

interfaces that allow the framework to be embedded within Java-based applications.

The advantage of this approach is that an existing Java application (or web service)

may be extended to utilise policies without the need for a separate system. For the

purpose of this thesis however, the complete, stand-alone Accent framework for policy

creation and deployment was favoured as there was no pre-existing application through

which PMAC could be used. Therefore, although PMAC provides an excellent user-

friendly language for policy definition, it is more suitable in cases where an existing

system requires adaptation or refactoring to utilise policies.

3.1.4 The Accent Policy System

Accent (Advanced Component Control Enhancing Network Technologies, [13]) is a

policy-based management system developed at the University of Stirling, originally for

use in Internet call control. Accent incorporates a generic policy language and a

system for deploying and enforcing policies defined using the language. Although ini-

tially applied for call control, the core architecture of the Accent system is sufficiently

generic to support policy handling in any application area. The major architectural

components of the system are arranged in a three-layer structure as shown in Figure

3.1 and explained below:

29

Figure 3.1: Accent Policy System Architecture

User Interface Layer: The top layer includes the Policy Wizard user interface, which

offers a user-friendly environment for defining and creating policies, and a context

system to hold information, such as user role, location, and similar characteristics.

Policy System Layer: This layer comprises a policy database, policy store and a pol-

icy server. Here, policy documents are uploaded, stored, searched and processed

on request. Context information and policies are passed to the policy server and

held in the policy store.

Network Layer: This is the base layer which connects the policy system to the ex-

ternal environment. This layer can be customised for a specific network protocol.

This architecture maintains a level of abstraction and independence of the user in-

terface from the underlying communications network, allowing for the creation and use

of policies across multiple domains. Further technical details surrounding the imple-

mentation of the system can be found in [90]. The Accent system supports rule-based

policies in Event-Condition-Action (ECA) form. In relation to the concept of ECA, a

policy rule broadly consists of three main components:

• a trigger set (events which potentially cause a policy to be executed)

• a condition set (contextual expressions used to determine whether the triggers

justify policy execution)

30

• an action set (resulting actions taken by the system upon policy execution).

A policy is eligible for execution only on the occurrence of certain triggers it defines.

When the policy server is informed of an event, applicable policies are retrieved and

executed. The policy server interprets events passed to it via the communications

network. Each event is mapped and translated to a relevant trigger term as defined

within the policy language. For example, in the context of telephony, an “incoming

call” triggers policies relating to the recipient. Policy execution depends on context

information such as who the caller is, and perhaps the current location and status of

the recipient. Trigger information is therefore derived from the protocol. Using another

example from telephony, an invite request in the SIP communication protocol would

be mapped to the ‘connect’ trigger in policy language terms. Such mapping details

are stored in the policy database. Similarly, outgoing policy actions must be reverse-

mapped to the communications protocol in use. The triggers, conditions and actions

are all specified within the policy description language used.

3.1.5 The Appel Policy Language

A comprehensive policy description language called Appel (An Adaptable and Pro-

grammable Policy Environment and Language, [91]) was designed to facilitate the cre-

ation of policies within the Accent policy system. Appel comprises a core language

schema which can be extended to support policy management for any given domain.

Originally the language was defined for (Internet) telephony and call conflict resolution,

but has since been applied to new domains.

Appel is described using an XML-based grammar – its syntax is defined by means

of an XML Schema. Each policy is stored within the Accent system as an individual

XML document. However, as policies are aimed at non-technical users of a system, the

Accent framework incorporates a policy wizard which provides a web-based interface

through which to create, edit and manage policies expressed using Appel, thus avoiding

user exposure to XML.

Appel describes the make-up of a policy, including the components it may contain

and specific triggers, conditions and actions that may be used. Specifically, a policy

31

document may contain zero or more policies. A policy consists of one or more policy

rules. Each policy rule may contain an optional trigger (a detectable event), an optional

condition (constraint on execution), and a compulsory action (the resulting system

behaviour following policy execution). Further to these main components, the language

outlines various policy attributes and variable structures, together with a range of

operators and rules governing how they may be applied to combine policy rules. In

addition, policies can be designated as active or inactive (on or off), or set to be active

within a specific time period. Each policy also has a unique ID and applies to a

particular user or domain group.

Appel distinguishes between two main types of policy document: regular policies

that let users customise system event handling, and resolution policies that allow ad-

ministrators to customise how conflicts between executable policies are resolved. The

outcome of a regular policy is to modify the behaviour of the underlying system. The

outcome of a resolution policy may be to select one of the conflicting actions for exe-

cution. Since policy conflict detection and resolution are actually out-with the policy

system, a specialisation of Appel is convenient to define resolution policies. Resolu-

tion policies are similar in syntax to regular policies, but have a modified structure. In

particular, the triggers of a resolution policy must be the actions of conflicting regular

policies.

A major feature of Appel is the incorporation of preference information. An op-

tional preference (namely “must”, “should”, “prefer”, “prefer not”, “should not”, “must

not”) allow a user to define how strongly they feel a regular policy should be consid-

ered when selected for execution. Thus, the policy system is given some insight into

the desired outcome or goal of a user. The actions of a resolution policy in Appel

may be either a generic resolution action based on the properties of the policies in

conflict (such as to apply the newer policy, or the policy with the stronger or weaker

preference), or any permitted regular policy action. The topic of policy conflict and

resolution is covered in depth in Chapter 5.

The remainder of this chapter concentrates on the Appel policy language, describ-

ing the core and domain-specific constructs of the language. The previous language

32

specialisation for Internet telephony is outlined, and new work to specialise the core

language for the domain of sensor networks and wind turbine management is described.

3.2 Appel Policy Language Syntax

The complete Appel language syntax is described in a published technical report [91].

The language is defined by a collection of XML schema documents, including the core

constructs, additional definitions for different types of policy, and domain-specific spe-

cialisations. The full collection of XML schemas may be accessed from [21]. Appel

policies are split into two types: regular and resolution policies. The following sub-

sections describe the core constructs of Appel used to define these types of policy

and explain the differences between them. Example policies in XML are provided to

highlight the language syntax.

3.2.1 Core Language Outline

Appel has a number of core features and triggers, conditions and actions which are

applicable to any domain specialisation of the language. Policy features are summarised

below, with examples in the following sections to make this more concrete.

Document Structure

Every XML document in Appel begins by defining a policy document and the as-

sociated XML Schema through which it must be validated. A policy document may

contain regular policies, resolution policies or policy variables. Each type has associ-

ated attributes. Common attributes include a unique document ID, the policy owner

(creator), the individual or group (domain) the policy applies to, and the date last

modified. Regular and resolution policies may contain one or more policy rule blocks.

Multiple rules may be joined using operators that determine which of the rules are

selected and the order in which they are executed when the policy is triggered. These

operators are:

guarded: if the first policy rule is valid, it is applied, otherwise the second rule is

applied.

33

unguarded: if one of the two rules is applicable, it is chosen and applied. If both rules

are applicable, one rule is selected at random and applied.

sequential: rules are checked in the order they are defined. If the first rule is not

valid, the second rule is checked.

parallel: the order of execution is unimportant. If both rules are valid, the policy

system chooses the order of execution.

A policy rule may optionally contain a trigger and/or condition, but must contain

at least one action.

Triggers

A trigger is an event which causes a policy to be selected for potential execution within

the policy system. Multiple triggers are combined using the operators and and or.

Conditions

Conditions are optional tests which must be satisfied before the policy may be executed.

If conditions are not satisfied, the policy is discarded despite being triggered. Multiple

conditions are combined using and, or and not. Conditions must contain a parameter

(an operand) an operator and a value (a second operand), to form a conditional state-

ment. The parameter may be an argument of a trigger, and the value may be the value

established by that trigger argument. Condition operators include “eq” or “ne” to test

for equality (=) or inequality(6=) between values, or “gt”, “ge”, “lt”, “le” meaning >,

≥, < and ≤ respectively. In addition, the operators “in” and “out” may be used to

test a set of values with the meaning “among” or “not among”. Comparisons may be

between numerical or string values depending on the context. Each condition evaluates

to either true or false.

Actions

A policy action states how the policy system environment should be modified on ex-

ecution of the policy. Multiple actions can be combined in complex ways, using the

34

operators and, or, else, andthen and orelse. Further explanation and examples of the

use of these operators is provided in the language technical report [91].

Variables

A variable is a name for a value. Variables are defined in a similar structure to policies.

A variable name must be prefixed by “:” when used in a defined policy. For example,

“:engineer email” might represent the email address of an engineer that is defined sep-

arately. Variables may be used when defining trigger arguments, condition parameters

or values, or action arguments.

Expressions

Variables can be set to an expression by calling the “set variable” action in a policy.

A variable binding is removed using the “unset variable” action. An expression may

be a literal value, the name of a variable, or a general expression. A number of string-

based functions may be used within an expression, including indexOf(given string,search

string) returning -1 for not found or 0 for found, join(separator,string,...) returning

the strings joined by the given separator (possibly empty), length(string) returning 0

for empty, and substr(string,start,count) for 0 as the start position. Expressions are

parsed left to right, with operators having equal precedence in relation to one another.

Timers

Interval (count-down) timers may be used within a policy. Each timer has a unique

identifier, and only one instance of a timer may be running at any time. A timer

becomes active when it is started, and ceases to exist when it counts down to zero. At

this point, an expiry event occurs for the timer identifier. Generic policy actions may

be used to restart or stop active timers.

State History

The policy system logs and timestamps all triggers it receives and all actions it issues.

A trigger history function (trigger count(trigger,period)) and an action history func-

35

tion (action count(action,period)) may be used when forming a condition. The trigger

history function is a condition formed as a query that counts the number of times a par-

ticular trigger was received within a specified time period. Similarly, the action history

function is a condition formed using a count of the number of occurrences of a particu-

lar action issued during a specified time period. The trigger and action arguments may

be any generic or domain-specific trigger or action respectively. The period argument

is a non-negative integer n (during the last n minutes) or a time in HH:MM:SS format

(since this time, spanning a maximum of 24 hours).

3.2.2 Defining Generic Policies

This section summarises the syntax and structure of policies in general. The constructs

described here form a generic framework which can be extended to specify policies for

a particular domain. Standard (or regular) policies are described first, followed by

resolution policies.

Generic Standard Policies

A standard policy is defined to handle detectable events within the system environment.

A standard policy may contain one or more policy rules. Each policy rule may have

zero or more triggers, zero or more conditions, and at least one action.

Generic triggers, conditions and actions for use in standard policies are shown in

Figure 3.2. These constructs are supported by functions internal to the policy system,

and are therefore usable in any domain-specific standard policy.

36

Trigger timer expiry(identifier) The timer with the given identifier
reaches zero

Condition date A date of the format YYYY-MM-
DD

day A day of the week represented by
the values 1 to 7. (Monday = 1,
Sunday = 7)

time A time of the format HH:MM:SS
Action log event(message) Logs the date, time and message

specified to a log file
restart timer(identifier) Immediately restarts the timer iden-

tified by its identifier for the original
period specified

send message(URL,
message)

Sends the given message to the spec-
ified URL which also includes the
protocol (i.e. mailto, sms, etc.)

set variable(identifier,
expression)

Sets a variable with the specified
identifier to the specified expression

start timer(identifier,
period)

Immediately starts a timer with the
specified identifier for the specified
period (of the format HH:MM:SS)

stop timer(identifier) Immediately stops the timer with
the specified identifier

unset variable(identifier) Removes the variable with the spec-
ified identifier

Figure 3.2: Generic Standard Policy Triggers, Conditions and Actions

37

An example standard policy in XML with a single policy rule is shown below, using

only generic triggers, conditions, and actions:

0 <policy document
1 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

2 xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel policy.xsd′′>
3 <policy
4 owner=′′gca@cs.stir.ac.uk′′

5 applies to=′′gca@cs.stir.ac.uk′′

6 id=′′wakeup alert′′

7 changed=′′2008-04-21T10:20:59′′

8 enabled=′′true′′

9 profile=′′personal′′

10 valid from=′′2008-10-01T12:00:00′′

11 ailed to=′′2008-10-31T11:59:59′′ >
12 <preference>should</preference>
13 <policy rule>
14 <trigger arg1=′′wakeup′′>timer expiry(arg1)</trigger>
15 <condition>
16 <parameter>day</parameter>
17 <operator>in</operator>
18 <value>1..5</value>
19 </condition>
20 <actions>
21 <and/>
22 <action arg1=′′Timer expired′′>log event(arg1)</action>
23 <action arg1=′′:gavin′′ arg2=′′Time to wake up′′>send message(arg1,arg2)</action>
24 </actions>
25 </policy rule>
26 </policy>
27 </policy document>

Based on this example policy, the constructs of standard policies can be explained

as follows.

policy document: This is the highest-level construct in Appel. It specifies the XML

Schema against which the document can be validated (lines 1-2).

policy: A standard policy has a number of associated attributes:

owner: the address of the person or entity the policy belongs to

applies to: the address of the person or entity the policy applies to

id: a unique identifier for the policy

changed: the date the policy was last modified

enabled: whether or not the policy is selectable

profile: (optional) an identifier that groups the policy with others

38

valid from: (optional) date from which the policy becomes valid

valid to: (optional) date on which the policy ceases to be valid.

preference: A policy may have an optional preference which states how strongly the

policy writer feels it should be considered for execution. Preferences are used in

the resolution of policy conflicts and are ordered from strongly positive to strongly

negative. Valid preferences are must, should, prefer, prefer not, should not and

must not.

policy rule: A policy may contain one or more policy rules. Each rule has an optional

set of triggers and/or conditions, and at least one action.

trigger: An event which triggers the policy. The example has a single trigger (line 14)

which is the expiry of a timer with the identifier “wakeup”.

condition: Conditions must be satisfied before the policy may be executed. The

example uses one condition (lines 15-19), which states that the day must be

in the range 1 (Monday) to 5 (Friday).

action: There are two actions (lines 20-24). As they are combined with an “and”

operator, both actions should be carried out. The first action logs an event

and the second action sends a message to an address represented by the policy

variable “:gavin”. At the point of policy execution, the current variable value is

substituted into the action.

39

Generic Resolution Policies

A resolution policy is similar in structure to a standard policy, except that there are

some additional restrictions in the way the constructs may be used. Language-wise,

a resolution policy differs from a standard policy in that it may not specify a profile

attribute (which is irrelevant) and cannot have a preference associated with it (recursive

resolution is not permitted). The triggers of a resolution policy are the generic and

domain-specific actions used in standard policies.

Generic triggers, conditions and actions for use in resolution policies are shown in

Figure 3.3. These constructs are supported by functions internal to the Accent policy

system, and are therefore usable in any domain-specific resolution policy.

Trigger Any generic standard policy action (refer to Fig-
ure 3.2 for details)

Condition preference[0-9] Converted to a numerical value, bound by reso-
lution triggers

variable[0-9] Converted to a numerical value, bound by reso-
lution triggers

Action apply default Internal use only, selects an action at random
apply inferior Chooses action that applies to the inferior do-

main
apply negative Chooses action with the more negative prefer-

ence
apply newer Chooses action of policy defined most recently
apply older Chooses action of policy defined first
apply one Chooses one action arbitrarily, e.g. the first one
apply positive Chooses action with the more positive prefer-

ence
apply stronger Chooses action with the stronger preference, ig-

noring positive or negative implications
apply superior Chooses action that applies to the superior do-

main
apply weaker Chooses action with the weaker preference, ig-

noring positive or negative implications

Figure 3.3: Generic Resolution Policy Triggers, Conditions and Actions

An example generic resolution policy in XML with a single policy rule is shown

below:

40

0 <policy document
1 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

2 xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel resolution.xsd′′>
3 <resolution
4 owner=′′admin@cs.stir.ac.uk′′

5 applies to=′′@cs.stir.ac.uk′′

6 id=′′Stop timer conflict′′

7 changed=′′2008-04-21T10:20:59′′

8 enabled=′′true′′ >
9 <policy rule>

10 <triggers>
11 <and/>
12 <trigger arg1=′′variable0′′>stop timer(arg1)</trigger>
13 <trigger arg1=′′variable1′′>stop timer(arg1)</trigger>
14 </triggers>
15 <condition>
16 <parameter>variable0</parameter>
17 <operator>eq</operator>
18 <value>variable1</value>
19 </condition>
20 <action>apply newer</action>
21 </policy rule>
22 </resolution >
23 </policy document>

This example aims to convey the syntax and structure of a resolution policy. The

nature of the constructs in a resolution policy can be explained as follows:

policy document: This is the highest level construct in Appel. It specifies the XML

Schema against which the document can be validated (lines 1-2).

resolution: A resolution policy has a number of associated attributes as for standard

policies except the “profile” is not used.

trigger: Resolution policy triggers are the actions of regular policy actions. Resolu-

tion policies have restricted trigger arguments: variable0 to variable9 are bound

explicitly to the arguments of resolution triggers. In the example, the arguments

for each trigger are shown bound to these variables (lines 12-13). Note also that

preference0 to preference9 are implicitly bound to the preferences of the poli-

cies which triggered the resolution – that is, the preference associated with each

resolution trigger.

condition: Resolution policy condition values are bound by resolution triggers. Con-

ditions can be expressed on the values of variable[0-9] and preference[0-9]. Pref-

erences are converted to numeric values for comparison (e.g. “must” = +3,

41

“must not” = −3). The example resolution policy has one condition (lines 15-19)

that tests if the parameters for each trigger are the same. Within resolution policy

conditions, operators “eq”, “ne”, “lt”, “le”, “gt” and “ge” perform a numerical

comparison between two parameters or a parameter and literal value. The “in”

and “out” operators are typically used to compare preferences and should be

read as “in keeping with” and “out of keeping with” – i.e. similar and opposite

respectively. (This is different from “among” or “not among” as for standard pol-

icy conditions). For example, the condition :preference0 out :preference1 should

be read as “if :preference0 is the opposite of :preference1”. So, if preference0 is

“should” and preference1 is “must not” the condition would be true. If prefer-

ence1 was “must”, the condition would be false (preferences are similar).

action: Actions of a resolution policy are either generic resolution actions or any other

generic or domain-specific actions. Generic resolution actions choose one of the

conflicting policy actions based on their properties (e.g. date created) or prefer-

ences (associated with the policy). In the example resolution policy, the action

(line 20) is to apply the action of the policy which was created most recently (the

newer of the two).

3.2.3 Defining Domain-Specific Policies

The generic language constructs described in the previous subsection may be extended

to specialise the Appel policy language for a particular domain. In this section the

general extensions required for standard and resolution policies are described. Specific

domain specialisations are given in the next section.

Standard Policy Extensions

A domain specialisation of Appel for standard policies must specify the triggers, con-

ditions and actions relevant to the underlying system, together with any associated

parameters. Both triggers and actions must be closely related to the system and its

monitored environment. Incoming event notifications received by the policy system

must be mapped to policy triggers, and outgoing policy actions must be similarly

42

translated into specific actions that modify the system.

Resolution Policy Extensions

The triggers for resolution policies are the full range of permitted generic and domain-

specific policy actions defined. The only domain customisation for resolution policies

is in the types of actions applicable to resolve conflicts. The core resolution action list

may be extended to include actions specific to the domain based on the established

environment. This is illustrated for the application of Internet telephony in the next

section.

3.3 Application 1: Policies for Internet Telephony

This section describes how the Appel policy language is specialised for the domain

of Internet telephony. The implementation of the language for this domain is not

new work, but is included here for reference as the domain is later extended for the

topic of goal direction (Chapter 6). (The policy wizard supporting Internet telephony

has also been completely redesigned as described later in Chapter 4). The telephony

policy language was developed by the original authors of the Accent policy system.

The summary of the language and the examples used in this section are adapted from

the Appel language technical report [91]. Section 3.3.1 provides an overview of the

language requirements for the domain. Section 3.3.2 describes the language for standard

telephony policies, and section 3.3.3 describes the extensions for resolution policies.

3.3.1 Language Requirements

Prior to the Accent project, policies had never been applied in the domain of tele-

phony. The requirements for the language were derived largely from the underlying

communications protocols the policy system was required to support. The protocols

trialled with the Accent system were SIP, Mitel 7000 ICS (a softswitch) and H.323.

Each of these protocols has a particular range of triggers, conditions and actions in the

policy language.

In a telephony environment, policies are aimed at ordinary non-technical users of

43

a telephone network for the purpose of customising how their calls are handled. Each

user has different preferences over when and how they may be reached depending on

conditions such as their current status, the time of day, the identity of the caller or even

the topic of call. Users may wish to take different actions depending on these conditions,

such as forward calls to a more convenient number, reject calls, or play customised voice

messages. The following subsections outline the language for standard and resolution

policies respectively.

3.3.2 Standard Policy Language Specification

The Appel specification for Internet telephony is described in full in the language

technical report [91]. The language specialisation for standard telephony policies defines

new trigger, condition and action components in addition to the core set. It also defines

a set of common environment variables usable within triggers, conditions and actions.

There are many environment variables defined for Internet telephony (e.g. band-

width, caller, callee, call type, device, medium, priority, etc.) which may be used as

condition parameters (refer to the description of telephony conditions that follow).

The language for Internet telephony defines triggers, conditions and actions specific

to this domain. These domain-specific constructs and their relationships to generic

language constructs are summarised in Figure 3.4. Further details about each telephony

construct can be found in the language technical report [91].

Example standard policies for Internet telephony that demonstrate the language

now follow. Each example gives a high-level description of the policy together with the

XML definition. For each telephony policy, an XML wrapper is required to specify the

XML schema to validate the policy against. This takes the form:

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=
4 ′′http://www.cs.stir.ac.uk/schemas/appel regular call.xsd′′>
5 ... policy body ...
6 </policy document>

44

Trigger Parameters Actions Permitted**
internal* note availability,

note presence
absent* note presence
available* topic (empty if availability

variable is ‘true’)
connect to, note availability

bandwidth request‡ bandwidth‡, callee, caller,
medium, network type

confirm bandwidth‡,
reject bandwidth‡

connect,
connect incoming,
connect outgoing,
no answer,
no answer incoming,
no answer outgoing

active content‡,
bandwidth‡, call content,
call type, callee, caller,
capability, capability set‡,
cost, destination address‡,
device, location, medium,
network type, priority,
quality, role,
signalling address‡,
source address‡, topic,
traffic load‡

add caller‡, add medium,
add party, fork to,
forward to, note availability,
note presence, play clip,
reject call, remove medium,
remove party

disconnect, discon-
nect incoming,
disconnect outgoing

call-regularee, caller,
medium, network type

note availability,
note presence, play clip

event call-regularer,
network type, topic

note availability,
note presence

present* location (empty if presence
variable is ‘true’)

connect to, note presence

register,
register incoming,
register outgoing

call-regularer, network type note presence, reject call

timer expiry* note presence
unavailable* note availability

* internal trigger that may be combined with any other

** all internal actions are also permitted:
log event, restart timer, send message, set variable,

start timer, stop timer, unset variable

‡ available with only certain communications systems

Figure 3.4: Internet Telephony Policy Language

45

Forward Incoming Call To A Mobile

This forwards an incoming call to a mobile when out of normal weekly office hours

(before 8:30am and after 5:30pm, Monday (1) to Friday (5)). The policy is valid for

one month (during November 2008). The policy preference is “should”. The policy is

owned by and applies to “gca@cs.stir.ac.uk”.

0 <policy owner=′′gca@cs.stir.ac.uk′′ applies to=′′gca@cs.stir.ac.uk′′

1 id=′′Forward Incoming Call To A Mobile′′ enabled=′′true′′

2 valid from=′′2008-11-01T00:00:00′′ valid to=′′2008-11-30T23:59:00′′

3 changed=′′2008-10-27T09:23:05′′>
4 <preference>should</preference>
5 <policy rule>
6 <trigger>connect incoming</trigger>
7 <conditions>
8 <and/>
9 <condition>

10 <parameter>hour</parameter>
11 <operator>out</operator>
12 <value>08:30:00..17:30:00</value>
13 </condition>
14 <condition>
15 <parameter>day</parameter>
16 <operator>in</operator>
17 <value>1..5</value>
18 </condition>
19 </conditions>
20 <action arg1=′′00447977123456′′>forward to(arg1)</action>
21 </policy rule>
22 </policy>

Add Whiteboard to Department Calls

This policy adds a whiteboard to calls within the same domain as the policy owner (i.e.

cs.stir.ac.uk) or with the defined location of “department”. It also logs this event.

0 <policy owner=′′gca@cs.stir.ac.uk′′ applies to=′′gca@cs.stir.ac.uk′′

1 id=′′Add Whiteboard To Department Calls′′ enabled=′′true′′

2 changed=′′2008-10-27T09:40:00′′>
3 <policy rule>
4 <trigger>connect</trigger>
5 <conditions>
6 <or/>
7 <condition>
8 <parameter>location</parameter>
9 <operator>eq</operator>

10 <value>department</value>
11 </condition>
12 <condition>
13 <parameter>caller</parameter>
14 <operator>in</operator>
15 <value>@cs.stir.ac.uk</value>

46

16 </condition>
17 </conditions>
18 <actions>
19 <and/>
20 <action arg1=′′whiteboard′′>add medium(arg1)</action>
21 <action arg1=′′Department call received′′>log event(arg1)</action>
22 </actions>
23 </policy rule>
24 </policy>

3.3.3 Resolution Policy Language Specification

This section describes the domain-specific triggers, conditions and actions used in reso-

lution policies for Internet telephony. For resolution policies, any action may be associ-

ated with a trigger. The actual parameters of resolution actions must be literal values,

or the values of variable0 to variable9 (if a trigger has bound them).

Since resolution policies are triggered by policy actions, the resolution policy triggers

for Internet telephony are identical to the set of standard policy actions for this domain.

Resolution policy conditions are the same as for standard policies for this domain.

Domain-specific resolution actions extend the core set outlined in Figure 3.3 and include

the set of domain-specific standard actions for the domain. For Internet telephony, there

are two specific resolution actions: apply caller and apply callee. These actions choose

the call action associated with the caller or callee respectively.

Example resolution policies for Internet telephony that demonstrate the language

now follow. Each example gives a high-level description of the policy together with

the XML definition. For each policy, an XML wrapper is required to specify the XML

schema to validate the policy against. This takes the form:

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=
4 ′′http://www.cs.stir.ac.uk/schemas/appel resolution call.xsd′′>
5 ... policy body ...
6 </policy document>

47

Add Medium Conflict

This detects the conflict where one party wishes to add media to the call (e.g. video)

and another party prefers not to add the same media to the call. In this scenario, the

conflicting action is add medium with identical parameter arguments. This conflict is

resolved by applying the action with the stronger associated preference. For example,

say preference0 is should and preference1 is must not. The stronger preference in this

example is must not so the medium will not be added. Note the “out” operator (line

17) should be read as “out of keeping with” or “similar”. An explanation of preferences

and the “in”/“out” operator in resolution policies is given in the resolution condition

description in section 3.2.2.

0 <resolution id=′′Add Medium Conflict′′ owner=′′admin@cs.stir.ac.uk′′

1 applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′ changed=′′2008-10-01T12:33:00′′>
2 <policy rule>
3 <triggers>
4 <and/>
5 <trigger arg1=′′variable0′′>add medium(arg1)</trigger>
6 <trigger arg1=′′variable1′′>add medium(arg1)</trigger>
7 </triggers>
8 <conditions>
9 <and/>

10 <condition>
11 <parameter>variable0</parameter>
12 <operator>eq</operator>
13 <parameter>variable1</parameter>
14 </condition>
15 <condition>
16 <parameter>preference0</parameter>
17 <operator>out</operator>
18 <value>preference1</value>
19 </condition>
20 </conditions>
21 <action>apply stronger</action>
22 </policy rule>
23 </resolution>

Call Forward/Reject Conflict

This detects a domain-specific conflict when one party wishes to forward a call and

another wishes to reject it. In this scenario, only the preferences of the call parties are

relevant: the conflict is in the action alone and it does not matter whether the param-

eter arguments are similar or not. If the preferences associated with each action are

inkeeping/similar (e.g. preference0 is must and preference1 is should), the resolution

48

is to apply the action associated with the caller.

0 <resolution id=′′Call Forward-Reject Conflict′′ owner=′′admin@cs.stir.ac.uk′′

1 applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′ changed=′′2008-10-01T12:45:00′′>
2 <policy rule>
3 <triggers>
4 <and/>
5 <trigger arg1=′′variable0′′>forward to(arg1)</trigger>
6 <trigger arg1=′′variable1′′>reject call(arg1)</trigger>
7 </triggers>
8 <condition>
9 <parameter>preference0</parameter>

10 <operator>in</operator>
11 <value>preference1</value>
12 </condition>
13 <action>apply caller</action>
14 </policy rule>
15 </resolution>

3.4 Application 2: Policies for Sensor Networks

This section describes new work of the Appel policy language specialisation for the

domain of sensor network management, which is intended to support policies for wind

farm condition monitoring as well. Section 3.4.1 outlines the initial requirements for the

language and summarises the domain it is intended to support. Section 3.4.2 describes

the language for regular sensor network policies, while section 3.4.3 describes resolution

policies. Example policies are also provided together with high-level explanations of

their function.

3.4.1 Language Requirements

Initial investigation into the features and capabilities required for a sensor network

policy language formed a variety of policy examples based on general sensor network

knowledge and the type of data the network was likely to yield. Language features

are based on the measurements and network configurations implemented for the sensor

network developed on Prosen (see section 2.2.2 for details of the project). This includes

stand-alone sensor nodes for environmental condition monitoring (e.g. ground level

wind speed, temperature, humidity, or rainfall) and wind turbine measurements and

status information (e.g. current wind speed/direction and blade pitch angle, yaw angle,

generator speed, gearbox oil temperature).

49

Appel support for timers were found to be of value for user-interface purposes,

alerts and response monitoring. Monitoring state history was also useful in allowing

policies to query previous values and recorded measurements in order to take action

based on the state of the monitored environment over time. Sensor readings are dis-

crete in that a single value is often not enough to detect and/or confirm an anomaly.

Often, appropriate decisions can only be made using multiple measurements over a

period of time. In addition, measurements across different sensors are useful in de-

tecting/confirming anomalies in the system. State history functions are a method for

dealing with this.

The sensor network domain is very different to that of Internet telephony. In the

telephony environment, events and actions are more concrete, bound by the particular

communications protocol in use. For sensor networks, configuration details are more

open. To ensure a flexible approach to sensor management, the particular sensor nodes,

types, and their capabilities may vary. Consequently, the language is not tied to specific

events and actions. This flexibility allows the underlying network structure to change

with limited impact on the language design. Changes to the specific event types and

message content are made by simply changing particular strings defined in policies.

Provided the network message format (i.e. the sequence of parameters) stays constant,

the interface can easily cope with changes in the strings representing message types,

entity names, entity instances and the values reported. Similarly, the actions of policies

can be modified in the same way.

The language was required to support potential interaction with the physical system

and network environment such as sensor nodes, turbine controllers, and other devices,

as well as software agents and operator consoles. Consequently, the language needed

to be flexible enough to easily communicate with these entities without becoming too

complex for ordinary users to construct policies.

On analysis of potential triggers and actions, the range of entities, message types

and their parameters was wide. Ultimately, the content of a particular trigger or

action varies depending on the entity sending or receiving the message. For example,

sensor nodes may supply a lot of information in a single message, including the node

50

identifier, time stamps of measurements collected, and perhaps multiple measurement

values. Triggers from other entities may be less detailed, such as a command from an

operator console. While it is possible to construct an alternative trigger and action for

each entity, this constrains the policy language, rendering its reuse with new devices or

interfaces impossible. The use of different trigger, action and parameter combinations

also makes the language more complex when constructing policies.

With system extensibility in mind, a simpler, more generic design was adopted.

Instead of a wide range of complex triggers and actions, the language uses a single

trigger and action which may be parameterised accordingly for each entity. This ap-

proach defines a single common message format for use across all interfacing entities.

The components of the language are described in the following sections.

3.4.2 Standard Policy Language Specification

The Appel specification for sensor networks is described in full in the language technical

report [91]. The approach to the language design is also discussed in a published paper

[99]. The language specialisation for standard sensor network policies defines new

trigger, condition and action components in addition to the core set. It also defines a

set of common environment variables usable within triggers, conditions and actions.

Environment variables can be used within actions, for example to output variable

values to a log file or within an operator message. There are five environment variables:

message type: Identifies the type of trigger or action. This value will vary depending

on the particular entity name. Example trigger message types might be “gen-

erator temperature”, “rotor speed” or “turbine anemometer”. Example action

types might be “set parameter” or “set rule” in the case of turbine configuration

and sensor nodes.

entity name: Identifies an entity external to the policy system that has associated

policies. Examples include physical entities like “sensor node”, “turbine” or “op-

erator console” and software entities like “policy agent”.

entity instance: Identifies a particular instance of an entity name. Not all entities

51

have instances, but common examples might include the number or ID of a sensor

node or turbine like “C1” or “alarm console”.

message period: A time period to which the trigger or action refers. The value can

be either a non-negative integer n (during the last n minutes for a trigger, in

n minutes for an action), or a time in HH:MM:SS format (since this time for

a trigger, at this time for an action). The explicit time spans a maximum of

24 hours from the point of its processing. For a trigger, if the time is currently

12:00:00, the time 11:00:00 means “since 11AM today”, and 14:00:00 means “since

2PM yesterday”. For an action at the same point in time, 11:00:00 means “at

11AM tomorrow”, and 14:00:00 means “at 2PM today”.

parameter values: An open-ended string that may consist of a single value (e.g.

“56.5” or “device active”) or a comma-separated list of values (e.g. “10,34,56.5”).

These parameters are used within the the triggers and actions defined for this do-

main. The language for sensor networks has one external trigger:

device in(message type,entity name,entity instance,message period,parameter values)

Each parameter argument corresponds to the parameters just outlined. The mes-

sage type is mandatory, but the rest are optional for a trigger message.

Similarly, the language defines one external action:

device out(message type,entity name,entity instance,message period,parameter values)

Like the device in trigger, the first parameter message type is mandatory, and the

rest are optional. The only difference between the semantics of trigger/action param-

eters is that for device in the message period refers to the time when the event or

measurement occurred, whereas in device out this time period refers when the action

should occur.

The parameters used within device in and device out are uninterpreted strings. If

52

a parameter is omitted, the default value is an empty string. The content of each trigger

and action is deliberately unconstrained so as not to restrict the types of devices or

message formats in the system. This open message format also simplifies the language

as it reduces all triggers and actions to the same format for policy designers. The

only requirement is that the strings used by the underlying network be appropriately

matched (or mapped via the policy server) with the strings defined within individual

policies.

Policy conditions may be constructed based on established trigger parameters (which

are also environment variables). Condition parameters for the sensor network language

therefore include message type, entity name, entity instance, message period and pa-

rameter values. The parameters are restricted to use different subsets of operators

when forming conditions. The message type, entity name, entity instance, may be

used with the operators =, 6=, in and out. The operators in and out check for presence

or absence of a parameter within a list of values. The remaining parameters mes-

sage period and parameter values, may be used with the full range of operators (=,

6=, >, ≥, <, ≤, in, out). The parameter values parameter may be considered as items

in an array list. For comma-separated lists of values, the first value (or only value in

the case of no list) is parameter values[0]. Subsequent list values are referred to by the

relevant index (e.g. parameter values[2] refers to the third item in the list). In the

case of generic parameters such as day, date and time, the in and out operators also

allow for range specification, such as “in 12:00:00..14:00:00” to mean a time between

12-2pm.

A summary of the relationship between these components for sensor network policies

is given in Figure 3.5.

For the purposes of this thesis work, the language is used to configure and monitor

sensor nodes and interface with a turbine controller. The policy system communicates

with free standing environmental sensor (referred to as ‘sensor nodes’) and turbine

controllers.

This sensor network consists of multiple sensor nodes, but no limits on the precise

number are defined. Each sensor node houses a number of individual sensors that

53

Trigger Parameters Actions Permitted
day* date* time* device out, log event*, restart timer*,

send message*, set variable*, start timer*,
stop timer*, unset variable*

device in entity name, device out, log event*, restart timer*,
entity instance send message*, set variable*, start timer*,
message period stop timer*, unset variable*
message type
parameter values

timer expiry* timer instance device out, log event*, restart timer*,
send message*, set variable*, start timer*,
stop timer*, unset variable*

* internal (generic) policy trigger or action

Figure 3.5: Sensor Network Policy Language

measure environment conditions such as temperature, wind speed, rainfall, humidity

and soil moisture. Each node contains the same number/type of sensors and may be

configured similarly. Each node communicates wirelessly and is powered by a battery.

The battery level and sensor measurements are reported from each node. Sensors may

be configured as follows:

• The reporting frequency of each sensor (the frequency with which measurements

are sent from the sensor node to the policy system) may be increased or reduced.

The value is a whole number representing the time interval between each report

on a sensor measurement (typically between 1 and 60 minutes). The reporting

frequency for a sensor can either be the same or lower than its sampling frequency.

• The sampling frequency of each sensor (the frequency with which measurements

are taken) may be increased or reduced. The value is a whole number representing

the time interval between each measurement (typically between 1 and 15 minutes)

with the exception of the rainfall sensor which samples continually and so may

be set only to 1 or 0.

• Each sensor may be switched on or off individually. Setting a sensor status to “1”

indicates the sensor should be operational. Setting the status to “0” indicates

the node should switch off the sensor.

54

Each sensor is configured by altering or setting “rules” on each sensor node. This

rule-based approach was developed within the Prosen project and is not part of the

approach described in this thesis. A rule defines the name of a configurable parameter,

a condition or value to set this to, and (if a condition is used) an optional action the

node should take if the condition is satisfied. Rules are set up using the command

“set rule(parameter,value,action)”. Parameter values are modified using the command

“set parameter(parameter,value)”.

As explained in section 2.2.3, a wind turbine is continually monitored using a com-

puterised controller within the nacelle. It was not feasible to trial the systems and

approaches presented in this thesis with operational wind turbines. For demonstration

(and simulation) purposes it is therefore assumed that the policy system is interfaced

with the turbine controller and that policies may use common turbine variables. Ac-

cording to the Danish Wind Industry Association [14], there are between 100 and 500

parameter values maintained by a turbine controller depending on the particular model

of turbine. These parameters may be monitored either by the controller itself or an

operator. It is assumed that the control system reports the values of these variables at

regular defined time intervals. These reports are interpreted as policy triggers. While

discrete mechanical adjustments are made in real time under the command of the tur-

bine controller, the policy scenarios described in this thesis are higher-level commands

based on monitored events. The purpose of simulating the turbine controller interac-

tion in this way is to show that the presented approaches can feasibly provide effective

high-level management of sensor-based systems.

The selection of the most common parameter values used for the examples in this

thesis are:

Turbine Rotor and Rotor Blades: The rotor speed, thickness of the rotor brake

lining, the status of the rotor and yaw brake (on or off), the current yaw and

rotor blade pitch, and the size and frequency of measured vibration in the rotor

blades.

Turbine Gearbox and Generator: The oil temperature in the gearbox and the

temperature of the gearbox bearings, the temperature, voltage and cooling fan

55

speed of the generator. The reporting frequency of these parameters may also be

configured using policies.

Nacelle Monitoring and Wind Detection: The size and frequency of vibration in

the turbine nacelle, the temperature within the nacelle, the number of power

cable twists in the turbine tower, and the power drain from fans/heaters within

the nacelle. The current wind speed and direction are also reported.

In terms of policy-related actions, some assumptions are made about each turbine

and the range of control that may be administered. It is assumed that the simulated

wind farm has multiple turbines and that all turbines are mechanically identical (typical

vertical, tri-blade design with pitch-controlled blades and yaw-controlled rotor). Indi-

vidual turbines are independently controllable and identified using a unique address

(e.g. T10). The physical layout and positioning of turbines within the wind farm, and

the topography of the surrounding landscape, are deemed irrelevant for this simulation.

Configuration of rotor blade pitch and yaw angle is explained in Appendix A.

Example regular policies for sensor networks that demonstrate the language now

follow. Each example gives a high-level description of the policy together with the

XML definition. The examples span a number of scenarios and include interaction

with sensor network nodes, wind turbine controllers and an operator console.

For each sensor network policy, an XML wrapper is required to specify the XML

schema to validate the policy against. This takes the form:

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=
4 ′′http://www.cs.stir.ac.uk/schemas/appel regular sensor.xsd′′>
5 ... policy body ...
6 </policy document>

56

Low Sensor Battery Alert

This policy handles the event of a sensor node battery failing. In this example, the

trigger is a battery level report from a sensor node. The level is below 9 volts (the

standard level). To conserve battery power, the actions are to alter the sampling and

reporting rates of the power-hungry anemometer at this node, and to switch off the

rain gauge which is also power hungry. The policy applies to all sensor nodes in the

wind farm site.

0 <policy
1 owner=′′sensor-operator@site0113.windorg.com′′

2 applies to=′′@site0113.windorg.com′′

3 id=′′Low Sensor Battery Alert′′

4 enabled=′′true′′

5 changed=′′2008-04-21T10:20:59′′>
6 <policy rule>
7 <trigger arg1=′′battery voltage′′ arg2=′′sensor′′>
8 device in(arg1,arg2)
9 </trigger>

10 <condition>
11 <parameter>parameter values</parameter>
12 <operator>lt</operator>
13 <value>9</value>
14 </condition>
15 <actions>
16 <and/>
17 <action arg1=′′set rule′′ arg2=′′sensor′′ arg3=′′:entity instance′′

18 arg5=′′[anemometer samp freq,10.0]′′>
19 device out(arg1,arg2,arg3,,arg5)
20 </action>
21 <actions>
22 <and/>
23 <action arg1=′′set rule′′ arg2=′′sensor′′ arg3=′′:entity instance′′

24 arg5=′′[anemometer rep freq,10.0]′′>
25 device out(arg1,arg2,arg3,,arg5)
26 </action>
27 <action arg1=′′set rule′′ arg2=′′sensor′′ arg3=′′:entity instance′′

28 arg5=′′[rain gauge,off]′′>
29 device out(arg1,arg2,arg3,,arg5)
30 </action>
31 </actions>
32 </actions>
33 </policy rule>
34 </policy>

57

Turbine Shutdown in High Wind

Suppose a turbine anemometer reports the wind speed is in a high range (here, over

25 m/s). This policy takes action to shut the turbine down to prevent damage to me-

chanical components. Specific actions include pitching the rotor blades to 0 degrees

and applying the rotor brakes. It also outputs a message to an operator to report that

maintenance is not possible based on predefined levels of wind-maintenance relation-

ships.

0 <policy
1 owner=′′sensor-operator@site0113.windorg.com′′

2 applies to=′′@site0113.windorg.com′′

3 id=′′Turbine Shutdown In High Wind′′

4 enabled=′′true′′

5 changed=′′2008-04-21T13:25:07′′>
6 <policy rule>
7 <trigger arg1=′′anemometer′′ arg2=′′turbine′′>
8 device in(arg1,arg2)
9 </trigger>

10 <condition>
11 <parameter>parameter values</parameter>
12 <operator>gt</operator>
13 <value>25</value>
14 </condition>
15 <actions>
16 <and/>
17 <action arg1=′′set parameter′′ arg2=′′turbine′′ arg3=′′:entity instance′′

18 arg5=′′[blade pitch,0]′′>
19 device out(arg1,arg2,arg3,,arg5)
20 </action>
21 <actions>
22 <and/>
23 <action arg1=′′set parameter′′ arg2=′′turbine′′ arg3=′′:entity instance′′

24 arg5=′′[rotor brake,on]′′>
25 device out(arg1,arg2,arg3,,arg5)
26 </action>
27 <action arg1=′′message′′ arg2=′′console′′

28 arg5=′′[Warning - maintenance prohibited due to high winds]′′>
29 device out(arg1,arg2,,,arg5)
30 </action>
31 </actions>
32 </actions>
33 </policy rule>
34 </policy>

58

Gearbox Oil Temperature Warning

This policy is triggered by a report of high gearbox oil temperature (over 60 degrees)

in turbine B12. The second policy condition (lines 17–23) checks the state history

for other oil temperature reports in the past 24 hours (assuming this type of report

is only received when the temperature is high). If the number of previous reports

in the last 24 hours is at least 3, then anomalies in measurement are ruled out (a

high temperature is consistently detected) and the turbine is put into low-power mode

(the blades are pitched out of the wind to minimise power output). The state history

function trigger count is explained in the State History description in section 3.2.

0 <policy
1 owner=′′sensor-operator@site0113.windorg.com′′

2 applies to=′′@site0113.windorg.com′′

3 id=′′Gearbox Oil Temperature Warning′′

4 enabled=′′true′′

5 changed=′′2008-04-21T10:34:12′′>
6 <policy rule>
7 <trigger arg1=′′gearbox oil temperature′′ arg2=′′turbine′′ arg3=′′B12′′>
8 device in(arg1,arg2,arg3)
9 </trigger>

10 <conditions>
11 <and/>
12 <condition>
13 <parameter>parameter values</parameter>
14 <operator>gt</operator>
15 <value>60</value>
16 </condition>
17 <condition>
18 <parameter>
19 trigger count(device in(gearbox oil temperature,turbine,B12),24:00:00)
20 </parameter>
21 <operator>ge</operator>
22 <value>3</value>
23 </condition>
24 </conditions>
25 <action arg1=′′set parameter′′ arg2=′′turbine′′ arg3=′′:entity instance′′

26 arg5=′′[blade pitch,0]′′>
27 device out(arg1,arg2,arg3,,arg5)
28 </action>
29 </policy rule>
30 </policy>

59

Operator Response Timeout

Two policies are given in this example. The first receives notification of high temper-

ature (over 28 degrees) in the nacelle. The actions are to email the operator and to

start an alert timer for 10 minutes to check for a response. The second policy triggers

when this timer expires; the action is to send a further alert to the operator console.

0 <policy
1 owner=′′sensor-operator@site0113.windorg.com′′

2 applies to=′′@site0113.windorg.com′′

3 id=′′Nacelle Temperature Alert′′

4 enabled=′′true′′

5 changed=′′2008-04-21T16:45:40′′>
6 <policy rule>
7 <trigger arg1=′′nacelle temperature′′ arg2=′′turbine′′>
8 device in(arg1,arg2)
9 </trigger>

10 <condition>
11 <parameter>parameter values</parameter>
12 <operator>gt</operator>
13 <value>28</value>
14 </condition>
15 <actions>
16 <and/>
17 <action arg1=′′alert′′ arg2=′′00:10:00′′>start timer(arg1,arg2)</action>
18 <action arg1=′′op1@site0113.windorg.com′′

19 arg2=′′Nacelle temperature above 28, please respond′′>
20 send message(arg1,arg2)
21 </action>
22 </actions>
23 </policy rule>
24 </policy>

0 <policy
1 owner=′′sensor-operator@site0113.windorg.com′′

2 applies to=′′@site0113.windorg.com′′

3 id=′′Alert Expiry′′

4 enabled=′′true′′

5 changed=′′2008-04-21T16:59:02′′>
6 <policy rule>
7 <trigger arg1=′′alert′′>timer expiry(arg1)</trigger>
8 <action arg1=′′message′′ arg2=′′console′′

9 arg5=′′[Check email logs and respond to alert message]′′>
10 device out(arg1,arg2,,,arg5)
11 </action>
12 </policy rule>
13 </policy>

60

3.4.3 Resolution Policy Language Specification

This section describes the domain-specific triggers, conditions and actions used in res-

olution policies for sensor networks/wind turbine management. For resolution policies,

any action may be associated with a trigger. The actual parameters of resolution ac-

tions must be literal values, or the values of variable0 to variable9 (if a trigger has

bound them).

Since resolution policies are triggered by policy actions, the resolution policy triggers

for sensor networks/wind turbine management are identical to the set of standard policy

actions for this domain. Resolution policy conditions are the same as for standard

policies for this domain. Domain-specific resolution actions extend the core set outlined

in Figure 3.3 and include the set of domain-specific standard actions for the domain

(i.e. device out).

Example resolution policies for this domain that demonstrate the language now

follow. Each example gives a high-level description of the policy together with the

XML definition. For each sensor network/wind turbine resolution policy, an XML

wrapper is required to specify the XML schema to validate the policy against. This

takes the form:

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=
4 ′′http://www.cs.stir.ac.uk/schemas/appel resolution sensor.xsd′′>
5 ... policy body ...
6 </policy document>

Sensor Node Configuration Conflict

This detects when two actions attempt to configure the same parameter on a sensor

node at the same time (note the message type argument must be set parameter). The

resolution is to apply the action of the newer policy (i.e. defined most recently). Note

the use of the join function within the first condition (lines 16–24) – this is an alternative

and neater way of comparing variable pairs for equality rather than using four separate

conditions (i.e. comparing :variable0 against :variable1, :variable2 against :variable3,

61

etc.). The join function is interpreted by the policy server at run-time (refer to the

description of Expressions in section 3.2.1 for further explanation).

0 <resolution id=′′Parameter Config Conflict′′ owner=′′op1@site0113.windorg.com′′

1 applies to=′′@site0113.windorg.com′′ enabled=′′true′′ changed=′′2008-10-01T12:33:00′′>
2 <policy rule>
3 <triggers>
4 <and/>
5 <trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

6 arg4=′′variable6′′ >
7 device out(arg1,arg2,arg3,arg4)
8 </trigger>
9 <trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

10 arg4=′′variable7′′ >
11 device out(arg1,arg2,arg3,arg4)
12 </trigger>
13 </triggers>
14 <conditions>
15 <and/>
16 <condition>
17 <parameter>
18 join(&,:variable0,:variable2,:variable4,:variable6)
19 </parameter>
20 <operator>eq</operator>
21 <parameter>
22 join(&,:variable1,:variable3,:variable5,:variable7)
23 </parameter>
24 </condition>
25 <condition>
26 <parameter>:variable0</parameter>
27 <operator>eq</operator>
28 <value>set parameter</value>
29 </condition>
30 </conditions>
31 <action>apply newer</action>
32 </policy rule>
33 </resolution>

Turbine Blade Adjustment Conflict

This detects a conflict between two actions that attempt to set the blade angle of the

same turbine to a different angle simultaneously. This time the resolution is domain-

specific (as opposed to a generic resolution action) as the conflict affects turbine op-

eration and it is safer to alert a human operator for further instruction rather than

choose between actions. In this case, the resolution alerts an operator to the conflict

and sets the blade pitch angle to 0 degrees (pitching the blades out of the wind and

effectively stopping the turbine for safety reasons). Note the comparison of individual

list values within the parameter values argument using array notation – “[0]” meaning

the first element in the list of values. The final condition (lines 25–29) checks that the

62

value of :variable8[0] is the literal string “blade pitch angle”. Without this check, the

resolution would be applied to any pair of device out actions with the same parameter

arguments, and not just those setting the blade pitch. A similar check for :variable9[0]

is not necessary as it is compared against :variable8[0] in the previous condition. Note

once again the use of the join function in the first condition (refer to the description of

Expressions in section 3.2.1 for further explanation).

0 <resolution id=′′Blade Pitch Config Conflict′′ owner=′′op1@site0113.windorg.com′′

1 applies to=′′@site0113.windorg.com′′ enabled=′′true′′ changed=′′2008-10-01T11:03:47′′>
2 <policy rule>
3 <triggers>
4 <and/>
5 <trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

6 arg4=′′variable6′′ arg5=′′variable8′′>
7 device out(arg1,arg2,arg3,arg4,arg5)
8 </trigger>
9 <trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

10 arg4=′′variable7′′ arg5=′′variable9′′>
11 device out(arg1,arg2,arg3,arg4,arg5)
12 </trigger>
13 </triggers>
14 <conditions>
15 <and/>
16 <condition>
17 <parameter>
18 join(&,:variable0,:variable2,:variable4,:variable6,:variable8[0])
19 </parameter>
20 <operator>eq</operator>
21 <parameter>
22 join(&,:variable1,:variable3,:variable5,:variable7,:variable9[0])
23 </parameter>
24 </condition>
25 <condition>
26 <parameter>:variable8[0]</parameter>
27 <operator>eq</operator>
28 <value>blade pitch angle</value>
29 </condition>
30 </conditions>
31 <actions>
32 <and/>
33 <action arg1=′′op1@site0113.windorg.com′′

34 arg2=′′Blade pitch angle setting conflict - take action′′>
35 send message(arg1,arg2)
36 </action>
37 <action arg1=′′set parameter′′ arg2=′′turbine′′ arg3=′′:entity instance′′

38 arg5=′′[blade pitch angle,0]′′>
39 device out(arg1,arg2,arg3,,arg5)
40 </action>
41 </policy rule>
42 </resolution>

63

3.5 Conclusion

3.5.1 Chapter Summary

This chapter introduced the concept of a policy and described how policies can pro-

vide high-level, autonomous management of a system. Policy-based management was

originally applied in computing for security purposes and low-level network manage-

ment. More recently, policy languages and frameworks have evolved, and policies are

now recognised as an effective means through which to manage systems in general.

Although a variety of policy languages exist, this chapter focused on the Appel policy

language, developed in conjunction with the Accent policy-based management system

– the result of previous research at the University of Stirling. Appel comprises a core,

generic policy language based on the notion of ECA (Event-Condition-Action), which

may be extended to specialise the language for a particular domain area. Policies in

Appel typically have a series of triggers, conditions and actions. A policy action dy-

namically affects the managed system (e.g. altering environment parameters or sending

user alerts). A policy is triggered by an event in the underlying system, and its ac-

tion(s) are executed provided its conditions are satisfied. Policies in Appel are one

of two types: standard (or regular) policies and resolution policies. Standard policies

detect and respond to events within the underlying system. Resolution policies detect

and resolve conflicts among the actions of standard policies. The core Appel policy

language was previously specialised for the domain of Internet telephony. In addition

to outlining telephony policies, this chapter described and explained a new speciali-

sation of the language for the domain of sensor networks/wind turbine management.

Sample standard and resolution policies were given to demonstrate the language for

each domain.

3.5.2 Evaluation

The core Appel policy language and its specialisation for Internet telephony were

designed and implemented by the authors of the original Accent policy system. The

language specialisation for sensor networks/wind turbine management is new research

and is the focus of evaluation.

64

Policy language extensions for sensor networks include a single external domain-

specific trigger (device in) and action (device out). These elements are generic and

may be customised using particular parameter arguments. In comparison to the lan-

guage for Internet telephony, this may seem very restrictive, but in fact reflects the

flexibility of the language to support a wide range of sensor event notifications, and to

configure devices not specific to any one type of sensor or to the wind power domain.

For instance, the parameter arguments message type, entity name and entity instance

allow for any type of measurement from any entity – from sensors and portable devices

to systems, software agents and graphical interfaces. This readily permits the language

to be extended to other application areas. For example, the sensor network policy

language specialisation has been adapted for the domain of home care networks under

the auspices of the MATCH project [99]. In this area, the same trigger and action

format is used to manage different types of sensors within a home environment (e.g.

indoor temperature, door, window and bed occupancy sensors), to configure devices

(e.g. switch off a TV or radio, adjust volume levels, and set an alarm clock) and to

send alert messages (e.g. user messages to alert/remind a person a door is open or

unlocked, or alert a carer when no movement is detected in the home during a day).

The language is therefore flexible and applicable to multiple sensor-based domains.

One issue of the language is the use of the message period parameter argument –

optionally specifiable in device in and device out. The value for this parameter states

when data was collected or sent (for a trigger) and when an action should be performed

(for an action). Due to delays in processing and transmission over a network, it is un-

likely that the times specified within this parameter will always be accurately respected.

For example, if an action is to be performed at 1pm, network delays might defer this

until 1:02pm. This factor is external to the underlying network implementation and out

of the scope of the policy language and system. However, the inclusion of the parame-

ter does give useful information even if the times are slightly skewed. How significant

this might be would depend on the domain and the measurement or configuration in

question. As the parameter is optional, it may be omitted in such circumstances. This

issue would benefit from further research and pragmatic experimentation.

65

Chapter 4

Policy Ontology Modelling

This chapter introduces the concept of ontology in a computing context and explains

how ontologies have provided an innovative solution to the issue of a domain-dependant

policy user interface. The Accent policy-based management system and the Appel

policy description language were introduced in Chapter 3. Accent is a generic policy

framework originally implemented for Internet telephony. Appel is a policy language

which may be specialised for a particular application. Motivated by a desire to reuse

the Accent system across multiple domains, this chapter describes how ontologies

have been employed to radically generalise the policy system user interface known

as the “policy wizard” – which was previously specific to telephony. The presented

approach re-engineered the policy wizard to replace hard-coded domain information

with appropriate queries on a specially structured domain ontology. Domain knowledge

is defined within an extensible hierarchy of ontologies that model the generic elements

of the Appel policy language together with user interface information and details

particular to a domain specialisation of the policy language. The result of this work is

a domain-independent policy wizard which can manage policies for any specialisation

of the Appel policy language.

Section 4.1 introduces ontologies and summarises available ontology languages and

tools. This section also distinguishes the work presented in this chapter from related

work where ontologies and policies are used, and outlines the motivation for undertaking

the work. Section 4.2 outlines an approach to creating an ontology in general. Section

66

4.3 describes the overall approach to policy modelling using ontologies, while section

4.4 describes the ontologies that were created to model the policy language. Sections

4.5 and 4.6 describe domain-specific policy language ontologies for the applications of

Internet telephony and sensor network/wind turbine management respectively. Section

4.7 explains how ontologies are integrated with the Accent policy wizard using an

ontology parser system known as Poppet. Section 4.8 describes and evaluates the

process of re-engineering the original policy wizard so it may utilise the ontologies.

Finally, section 4.9 summarises and evaluates this work.

4.1 Introduction and Background

This section introduces the nature of an ontology and its application in computer

science, together with available ontology languages and tools. The motivation for mod-

elling the Appel policy language and associated domain information in an ontology is

outlined, and related work combining the use of ontology and policies is summarised.

4.1.1 Ontology in Computing

The concept of ontology has been of great significance in the field of philosophy for a

number of decades. Since the mid 1990s however, ontology use has exploded within

the realm of computing – in particular the fields of AI, software agents, software de-

velopment and, more specifically, the World Wide Web or the Semantic Web. The

Semantic Web aims to revolutionise the Web by assigning explicit meaning to textual

information to enable machines to automatically process and integrate information in

a way not currently possible using plain text.

An ontology can be defined as the set of terms used to describe and represent an

area of knowledge, coupled with the logical relationships among these. It provides a

common vocabulary to share information in a domain, including the key terms, their

semantic interconnections, and rules of inference. Advantages of an ontology include the

ability to share a common understanding of the structure of information in a particular

domain, and the possibility to reuse this knowledge among software applications.

An ontology is distinct from existing data storage and modelling technologies such

67

as expert systems, databases and object-oriented modelling [78]. Expert systems,

knowledge-based systems and other AI techniques, present fundamentally useful con-

cepts but lack the means to collectively combine knowledge on a global distributed

scale. Ontologies can be combined and shared over the Internet.

In comparison with a relational database, an ontology differs in two major ways.

Firstly, an ontology represents a inferable data model whereas a database models have

a fixed structure and act as a data repository. Ontologies may be used to describe the

interface through which an application may access data, while actual data instances are

managed within a database. Secondly, an ontology can be queried in a more powerful

fashion than a database can. Databases may only retrieve data as it was stored, whereas

an ontology may be processed by an inference engine to reason about asserted facts

and retrieve additional implied statements.

An ontology also differs from object-oriented modelling mechanisms such as the

Unified Modelling Language (UML [20]), in that an ontology is built on logic which

permits automated reasoning. Unlike an object-oriented model, an ontology can process

the semantic associations of objects and properties.

In summary, ontologies are not a replacement for existing data storage and mod-

elling concepts. The aim is to use ontologies in conjunction with other such approaches.

4.1.2 Ontology Languages

An ontology is defined using a particular ontology language. A variety of specialised

languages exist. In general terms, ontology languages provide a mark-up to represent

machine-readable content. The earliest ontology languages such as DAML (DARPA

Agent Markup Language [3]) and OIL (Ontology Inference Layer [6]) were designed

to develop tools and ontologies for specific communities – namely medical research

and proprietary commercial applications [78]. However, following the semantic web

initiative led by the W3C, several languages emerged to provide ontology compatibility

with the World Wide Web. Specifically, a number of semantic mark-up languages

were developed based on XML (eXtensible Mark-up Language [15]). XML provides

syntax for structured documents and is closely coupled with the XML Schema language

68

[15], which restricts the content and structure of an XML document. While this is

sufficient for the purpose of exchanging data, neither XML nor XML Schema supports

the definition of semantic constraints. Consequently, a number of new languages have

evolved for ontology use – based on XML syntax.

The Resource Description Framework (RDF [17]) was the first ontology language to

be standardised by the W3C. RDF is based on XML notation and can be used to create

data models of objects and to express the relationships between them. However, as use

of RDF widened, it was found to be too limited in its expressiveness. The result was

the extension of RDF to form DAML+OIL [2] (combining aspects of DAML and OIL

language components respectively). Following early application, DAML+OIL grew and

was revised to form OWL (the Web Ontology Language [19]).

Ontologies expressed in OWL are intended for use in applications where ontological

content must be processed rather than simply extracted and presented to the human

eye. The language was officially standardised by the W3C in February 2004. It was

designed to combine and extend the customisable tagging of XML with the flexible

data representation ability of RDF, with a view to formally describing the semantics of

terminology in a domain. Consequently, OWL provides a larger function range than any

other ontology language to date. The formal semantics of OWL specify how to derive

facts not literally defined in the ontology, but entailed by the semantic expressions

associated with classes and individuals.

OWL was the language of choice for the ontologies later described in this thesis. It

was chosen primarily due to its standardisation and the benefits this brings in terms of

available software tool support.

4.1.3 The OWL Ontology Language

An OWL ontology is created by defining various classes, properties and individuals.

A class represents a particular term or concept in the domain, while a property is a

named relationship between two classes. An individual is an instance or member of a

class, usually representing real data content within an ontology. Properties are applied

to classes in the form of restrictions. A simple ontology example is shown in Figure

69

hasCapitalCity

hasCurrency

USA

Country

Currency

City
Scotland

France

USD

EUR

Paris

Edinburgh

London

hasCapitalCity

Key

Class

Property

Individual

Figure 4.1: OWL Ontology Example

4.1, describing countries, capital cities and currencies.

A property restriction describes an “anonymous” class, that is, a class of all individ-

uals that satisfy the restriction. In OWL, each property restriction places a constraint

on the class in terms of either a value (class or data type), or cardinality (number of

values the property may be related to). The language also supports inheritance within

class and property structures. A property restriction placed upon a class is automat-

ically inherited by any of its subclasses. The Web Ontology Language Reference [19]

provides a complete description of the language and its constructs.

OWL supports the sharing and reuse of ontologies by means of ontology importa-

tion. Using this mechanism, definitions of classes, properties and individuals within

an imported ontology, may be used by the importing ontology. Semantic entailments

can also thus be made based not just on a single document, but multiple distributed

ontologies that have been combined using the import mechanism. This is a key aspect

of a Web-based ontology language such as OWL.

An short example OWL document based on the “countries” example above is shown

in Figure 4.2 and continued in Figure 4.3.

The key elements to note are:

• The document begins with the usual XML version header (line 0). The first tag

declares an RDF document (as OWL is built on top of and extends previous

RDF constructs). A list of XML namespaces is given (xmlns declarations) which

70

0 <?xml version=′′1.0′′?>
1 <rdf:RDF
2 xmlns:rdf=′′http://www.w3.org/1999/02/22-rdf-syntax-ns#′′

3 xmlns:rdfs=′′http://www.w3.org/2000/01/rdf-schema#′′

4 xmlns:owl=′′http://www.w3.org/2002/07/owl#′′

5 xmlns:pm=′′http://www.example.com/owl/planet-map.owl#′′

6 xml:base=′′http://www.example.com/owl/world-map.owl′′>
7
8 <owl:Ontology rdf:about=′′′′>
9 <owl:versionInfo>World Map Ontology v.1.2. GAC 2008</owl:versionInfo>

10 <rdfs:comment>Describes countries, cities and currencies</rdfs:comment>
11 <owl:imports rdf:resource=′′http://www.example.com/owl/planet-map.owl′′/>
12 </owl:Ontology>
13
14 <!-- Classes -->
15
16 <owl:Class rdf:ID=′′Country′′>
17 <rdfs:subClassOf rdf:resource=′′pm:PlanetLandArea′′/>
18 <rdfs:subClassOf>
19 <owl:Restriction>
20 <owl:someValuesFrom rdf:resource=′′Currency′′/>
21 <owl:onProperty rdf:resource=′′hasCurrency′′/>
22 </owl:Restriction>
23 </rdfs:subClassOf>
24 <rdfs:subClassOf>
25 <owl:Restriction>
26 <owl:someValuesFrom rdf:resource=′′City′′/>
27 <owl:onProperty rdf:resource=′′hasCapitalCity′′/>
28 </owl:Restriction>
29 </rdfs:subClassOf>
30 <rdfs:subClassOf>
31 <owl:Restriction>
32 <owl:cardinality>1</owl:cardinality>
33 <owl:onProperty rdf:resource=′′hasCapitalCity′′/>
34 </owl:Restriction>
35 </rdfs:subClassOf>
36 </owl:Class>
37
38 <owl:Class rdf:ID=′′City′′>
39 <rdfs:subClassOf rdf:resource=′′pm:PopulatedArea′′/>
40 </owl:Class>
41
42 <owl:Class rdf:ID=′′Currency′′

43 <rdfs:subClassOf rdf:resource=′′owl:Thing′′/>
44 </owl:Class>

Figure 4.2: Example OWL Document (Part 1 of 2)

71

45
46 <!-- Individuals -->
47
48 <Country rdf:ID=′′Scotland′′>
49 <hasCapitalCity rdf:resource=′′#Edinburgh′′/>
50 </Country>
51
52 <Country rdf:ID=′′France′′>
53 <hasCapitalCity rdf:resource=′′#Paris′′/>
54 <hasCurrency rdf:resource=′′#EUR′′/>
55 </Country>
56
57 <Country rdf:ID=′′USA′′/>
58
59 <City rdf:ID=′′London′′/>
60 <City rdf:ID=′′Paris′′/>
61 <City rdf:ID=′′Edinburgh′′/>
62
63 <Currency rdf:ID=′′USD′′/>
64 <Currency rdf:ID=′′EUR′′/>
65
66 <!-- Properties -->
67
68 <owl:ObjectProperty rdf:ID=′′hasCurrency′′/>
69 <owl:ObjectProperty rdf:ID=′′hasCapitalCity′′/>
70
71 </rdf:RDF>

Figure 4.3: Example OWL Document (Part 2 of 2)

specifies URI locations of existing documents whose elements are referenced or

extended in this ontology, and defines the abbreviations used throughout this

document (e.g. “owl” is the abbreviation for http://www.w3.org/2002/07/owl#

shown in line 4). To separate the URI location address from an identifier reference

(e.g. named ontology construct such as a class or property name) a fragment

identifier in the form of a “hash” symbol (“#”) is appended to the URI (shown

in lines 2-5).

• The base namespace of this ontology document is defined (line 6). Note this is

just a URI and does not require a fragment identifier (“#”) like the ontology

import references above it.

• The owl:Ontology block declares optional metadata including the document ver-

sion (line 9) and a comment (line 10). Imported ontologies are listed here as well.

This ontology imports an ontology called “planet-map.owl” (specified on line 11).

Note the namespace for this ontology is defined as pm previously on line 5.

72

• Lines 16 to 44 define three OWL classes.

– The Country class (lines 16-36) is a subclass of pm:PlanetLandArea (ex-

tending a class in the imported ontology) (line 17). Property restrictions in

OWL are also defined as subclasses (using rdfs:SubClassOf) using embedded

OWL tags. The Country class has three property restrictions. The first is

a someValuesFrom property restriction associating this class with the class

Currency using the property hasCurrency (lines 18-23). This specifies ab-

stractly that some (none, one or more, but not all) individuals or subclasses

of the class Country are related to an individual or subclass of the class

Currency. Similarly, the Country class is related to the City class using the

property hasCapitalCity (lines 24-29). The final property restriction (lines

30-35) defines a cardinality – the class Country must have exactly one re-

lationship with another class/individual using the hasCapitalCity property.

In other words, a country must have one capital city.

– The City class (lines 38-40) is a subclass of pm:PopulatedArea and has no

defined property restrictions.

– The Currency class (lines 42-44) does not extend any previously defined class

and is therefore a subclass of the document root: owl:Thing (line 43). Note

that all OWL classes are inferred subclasses of this root OWL element.

• Lines 48 to 64 define individuals for each of the three classes. Referring to the

example ontology diagram of Figure 4.1, the Country class has three individuals

(instances of the class which inherit the restrictions on the class as well as those

defined by their particular restrictions). The format of an individual definition is

to begin the tag of the associated class, then specify an attribute declaring the

ID of the individual (e.g. rdf:ID=“Scotland” on line 48). Properties (links to

other individuals or classes) define the property name (the ID) and the particular

resource to link to (e.g. individual “Scotland” hasCapitalCity “Edinburgh” on

line 49). Note the use of a fragment identifier (“#”) (lines 49, 53-54) which

indicates the referenced individual is defined within the “base” ontology.

73

• Lines 68 and 69 define the properties hasCurrency and hasCapitalCity. These

are object properties that link individuals and classes with other individuals and

classes. OWL offers many other types of property, including data-type properties

that are intended to link an individual or class with a specific value (int, String,

boolean, etc.) rather than a specific ontology construct.

In addition to the OWL constructs described in the example code, classes may

include a variety of RDF or RDFS attributes such as labels, comments, version infor-

mation, or other user-defined meta-data. For example, rdfs:label can specify a human-

readable text label for a class that might be used in queries rather than the unique class

name or URI, and rdfs:comment specifies a human-readable class description useful for

applications that process the ontology and when browsing/editing the ontology in an

editor.

The OWL language is broken into three language levels that provide mounting

strengths of expressiveness to meet the needs of different users and implementers. In

descending order, these dialects are:

OWL Full: The complete OWL language, OWL Full provides maximum expressive-

ness in an ontology. It permits all the syntactic freedom of RDF but gives no

computational guarantee that statements will be logically inferable using Descrip-

tion Logic (DL) reasoning.

OWL DL (Description Logic): Designed to provide complete computational com-

patibility with Description Logic reasoners, OWL DL contains the full range of

OWL language constructs, but places certain restrictions on how they are used.

The result is an extremely expressive sub-language that can be used in conjunc-

tion with reasoning systems.

OWL Lite: The weakest dialect, providing only a subset of OWL language constructs,

OWL Lite was designed for users requiring simple constraints and a class hierar-

chy. Additionally, tool support for OWL Lite ontologies is easier to implement,

and the documents themselves are more compact. As OWL Lite is a condensed

subset of OWL DL, it also offers compatibility with reasoning tools.

74

The OWL ontologies later described in this thesis conform to the OWL DL sub-

language. A further, formal definition of the differences between OWL dialects can be

found in the OWL Semantics and Abstract Syntax guide [18].

4.1.4 Ontology Tools

The choice of tools for ontology development depends on the language used, the level

of sharing required, and how the ontology will be used and accessed by an application

or system. A number of ontologies and an ontology parser system have been developed

and are presented later in this chapter. These ontologies were written using OWL and

the tools used during development are outlined below.

OWL ontologies can be checked for consistency using syntax and semantic validation

tools. OWL syntax checking confirms the dialect of language the document conforms

to (e.g. Full, DL or Lite) based on the constructs found. OWL consistency checking

detects semantic errors including errors in referenced ontologies (i.e. any imports to

the document) and reports any inconsistencies found. The web-based WonderWeb [22]

OWL ontology validator can be used to carry out both types of checking.

An ontology editor provides a visual representation of a conceptual view of classes,

properties and individuals, while generating the raw document mark-up on the fly. Pro-

tege [9] is a free, open-source ontology editor and knowledge-base framework. Protege

offers a plug-in environment through which to create and manage ontologies, and has

built-in support for consistency checking and also automated reasoning via an external

Description Logic (DL) compatible reasoning engine. OWL ontologies are supported

through the Protege-OWL plug-in. An extensible framework, Protege is enhanced using

various third party graphical plug-ins such as OWLViz [7] and Jambalaya [4].

Jena [16] is an open-source Java-based framework, designed for use in building

semantic web applications. Given an ontology, it offers methods to access, parse and

build a scalable model of the document. Additional methods can search the model for

specific classes and properties, and can query the restrictions and constraints placed

upon them.

An inference engine (or automated reasoner) derives additional statements that an

75

OWL document does not explicitly express. Pellet [8] is an open-source Java-based

reasoner, specifically geared toward OWL DL compliant ontologies. RacerPro [10] is a

standalone commercial reasoner and inference server available under free educational

license. Both reasoners were used to develop and utilise the ontologies presented later

in this thesis.

4.1.5 Existing Policy and Ontology Work

Ontologies were originally used to represent web page content and services in the context

of the Semantic Web, with the aim of improving the accuracy and relevancy of online

Web searches. More recently, ontology languages have been used to represent and

reason with policies – in particular, the KAoS framework discussed in section 3.1.3.

However, these approaches use ontologies as a mechanism to define policies and store

policy data.

The approach presented in this chapter does not use ontologies as a policy language

or policy system. Here, ontologies describe the structure of domain-specific policies

that may be defined using the Appel language. The domain ontologies presented here

are not used to create and store policies. Instead, they provide a structured knowledge

base through which drive the policy wizard user-interface and other policy system tools

and components.

The closest related work to the approach in this chapter lies in techniques that use

ontologies to customise software components within applications or interfaces, such as

[41] and [97].

4.1.6 Motivation For Policy Ontology Modelling

The Accent policy system, discussed in Chapter 3, was originally developed for the do-

main of Internet telephony. While the policy server and network interface components

were implemented as a generic framework, the web-based policy wizard was hard-coded

to this domain. In particular, the policy triggers, conditions and actions selectable via

this interface were specific to a telephony environment. This presented a fundamental

flaw in fully utilising the Accent system for policy-based control within a different

76

application area.

The solution to this problem lay in extracting hard-coded telephony details from the

policy wizard and housing them externally in a way that could be dynamically accessed.

An extensible structure was required through which the policy language (and the policy

wizard) might easily be customised for new domains. Ontologies were chosen as the

means to model the Appel policy language and domain-specific language aspects.

Ontologies were deemed more appropriate over a flat file structure or database as

they define information at different levels of abstraction. This ability to build hier-

archical specifications of an area of knowledge is useful to model the generic aspects

of Appel and extensions for different domain specialisations of the language. Ontol-

ogy documents are also processable by software applications, therefore making them

suitable for integration with the policy wizard.

4.2 Ontology Building

This section describes a generic approach to building an ontology. While the proce-

dure may vary depending on the chosen ontology language, the tools adopted, and

the domain being modelled, there are general steps applicable when developing any

ontology:

1. Gather domain knowledge: Compile information resources and expertise to ac-

curately and formally describe the domain in question. This includes key terms

and their associations which can be modelled using an ontology.

2. Design the ontology structure: Construct a conceptual structure of the domain.

This should involve mapping gathered terms and associations into appropriate

classes and properties, and defining the nature of the relationships between them.

3. Expand the details: Following creation of a basic structure, more detail may be

added. Iteratively, concepts (classes), relationships (properties), data restrictions,

comments and individuals may be added to the level of detail necessary. However,

further details may always be included at a later date.

77

4. Perform logical checking: To verify correct form, the document syntax can be

checked against the chosen ontology language – usually automatically. Logical

tests can also be carried out to determine semantic inconsistencies among de-

fined ontology elements. Such consistency checking may also involve automatic

classification that defines new concepts based on individual properties and class

relationships.

5. Publish the ontology: Once the designer and domain experts are satisfied with

the ontology it can be published at a publicly accessible location or used in a

private application.

The approach above is generic. Tools-wise, software modelling and software re-

quirements elicitation techniques might commonly be used for step 1. Steps 2 and 3

would be tackled using an ontology editor. Graphical visualisation is useful for classes,

properties and relationships as they are constructed. Validators should be used to check

syntax and semantic consistency in step 4.

4.3 Policy Ontology Approach

With the aim of re-engineering the Accent policy wizard to incorporate ontological

data in place of hard-coded domain knowledge, developments were undertaken in three

stages:

1. The Appel policy language was modelled using ontology constructs. The on-

tology language used was OWL (the Web Ontology Language [19]), discussed

previously in section 4.1.2. Separate OWL ontologies were formed to model the

generic policy language constructs, additional policy wizard interface features,

and information specific to a domain specialisation of the language. Combined,

these three ontologies form a single, structured OWL document.

2. A system named Poppet (Policy Ontology Parser Program – Extensible Trans-

lation) was developed to parse an ontology and build an interpretable model of

its structure. In addition, an API was designed to enable an application (such

78

as the policy wizard) to query the stored ontology model and retrieve relevant

information.

3. The Accent policy wizard and associated user-interface layer components were

re-engineered to remove hard-coded telephony knowledge, and replace it with

appropriate calls to an ontology via the Poppet system interface.

Section 4.4 outlines the ontology framework (step 1), while section 4.7 describes

the Poppet system and how ontologies are parsed and processed (step 2). Section 4.8

describes how the Accent policy wizard was adapted to use these ontologies (step 3).

4.4 Policy Ontology Stack

The Appel policy language was modelled as a set of separate but interrelated OWL

ontologies. From this, domain-specific extensions to the core language were defined

through the creation of further ontology documents. Developing ontologies to describe

the core and specialist elements of Appel provides a method of separating generic

language knowledge from application-specific knowledge. This provides a generalised

ontology structure that is easily adaptable to defining policy information for different

domains. The work presented here has been published in [52], for telephony.

Domain-specific knowledge applicable to the policy system is captured within a

single ontology that imports ontologies describing the core policy language and common

policy wizard interface features. This ensures domain knowledge is defined within

a structure which relates it to policy language terms. A domain-specific ontology

is therefore constructed using a three-tier “ontology stack” or hierarchy of separate

ontology documents, as shown in Figure 4.4.

A description of each of these ontologies shortly follow, using diagrams where ap-

propriate to show the implemented ontology classes and properties. These diagrams

were created using the OWLViz [7] and Jambalaya [4] plug-ins for the Protege ontology

editor. In these diagrams, a square or oval represents an OWL class. The connecting

lines between classes either depict class inheritance (where a hollow triangular arrow

appears at the end of a line) or an OWL property restriction (where a hollow triangu-

79

genpol.owl

wizpol.owl

domain-ontology.owl

Figure 4.4: Policy Ontology Stack

lar arrow appears at the middle of a line). A class that appears with darker shading

indicates some or all of its subclasses are inferred as a result of logical reasoning. Solid

black arrows to the left or right of a class (within an oval) indicate presence of further

superclasses or subclasses respectively, which are hidden for clarity. Note that the class

owl:Thing is the top-level class of any OWL ontology and all defined ontology objects

(i.e. classes, data types, properties, etc.) are subclasses of this.

The following subsections outline the GenPol and WizPol ontology structure used

to model the core constructs of the Appel policy language only. These ontologies

also define domain information for use with the goal-directed approach (discussed in

Chapter 6) and policy conflict filtering (discussed in Chapter 5), but this content is

described later in this thesis.

4.4.1 Generic Policy Ontology

The generic policy language ontology, referred to by the acronym GenPol, describes

the core constructs of the Appel policy language. A detailed description of GenPol is

given in [49] and in [50] for resolution policies. The OWL ontology document may be

accessed from [21]. Contained within this ontology is a definition of key language terms

and how they relate to one another. This includes the concept of a “policy document”

and its various constituent parts – including policy rules, trigger events, conditions,

actions and additional attributes, variables and operators. Relationships between such

concepts are defined by way of a specified property or traditional inheritance, and de-

scribe named associations, inheritance properties and cardinality restrictions. GenPol

ultimately describes a skeleton structure of ontology classes and properties which can

80

be imported and extended within a domain-specific policy language ontology. The

following subsections describe the basic class structure. A summary of the ontology

properties defined for GenPol is included in Appendix B.

GenPol Standard Policy

Standard policies react to domain events. GenPol describes the make-up of a Stan-

dardPolicy as shown in Figure 4.5.

GenPol Standard Policy Triggers, Conditions and Actions

A PolTriggerEvent is defined as a subclass of TriggerEvent as shown in Figure 4.5.

Core policy triggers are defined in GenPol. There is one generic trigger TimerExpiry

as shown in Figure 4.6.

A PolCondition is defined to have a single association with each of PolCondition-

Parameter, ConditionOperator and PolConditionValue. The parameter and value of a

PolCondition are customisable to the domain, whereas the operator must be selected

from the subclasses of NamedConditionOp as shown in Figure 4.5. GenPol defines

generic condition parameters for use in domain-specific policy language specialisation.

These include date, day and time parameters, and state history functions for counting

triggers and actions. These parameters are defined as subclasses of PolConditionPa-

rameter as shown in Figure 4.7.

A PolAction is defined as a subclass of Action as shown in Figure 4.8. A standard

policy action can also be a trigger within a resolution policy. Therefore, PolAction is

also a subclass of ResTriggerEvent. Conversely, ResTriggerEvent is a subclass of PolAc-

tion. Generic policy actions are internal actions, including actions to start/restart/stop

a timer, set/unset a variable, log events and send messages. These actions are defined

as subclasses of PolAction as shown in Figure 4.8.

81

Figure 4.5: GenPol Standard Policy

82

Figure 4.6: GenPol Standard Policy Triggers

Figure 4.7: GenPol Standard Policy Condition Parameters

Figure 4.8: GenPol Standard Policy Actions

83

GenPol Resolution Policy

A resolution policy is used to express how conflicts between actions of standard policies

may be resolved. Resolution policies follow the same structural format as standard

policies, with differences occurring in the types of arguments and parameters of triggers,

conditions and actions. GenPol defines the make-up of a ResolutionPolicy as shown in

Figure 4.9.

4.4.2 Wizard Display Ontology

The wizard display ontology, referred to by the acronym WizPol incorporates Accent

policy wizard format and layout information used in the presentation of domain policy

information. This information is purely user-interface related and does not define actual

policy language constructs. The OWL ontology document may be accessed from [21].

Although these features are not part of the policy language itself, they are common

and useful to any domain-specific ontology that is geared towards use with the policy

system. WizPol imports the GenPol ontology, and associates generic display and user

interaction details with policy constructs. For example, WizPol defines classes that

group domain-specific triggers, conditions and actions into categories. These categories

are used to group policy options into appropriate on-screen menus and restrict the

range of policy options displayed depending on the designated user level (explained in

the following sections) of those accessing the wizard. In this way, WizPol acts as a

generic description of user interface options that can specialise the Appel language for

use with the Accent policy wizard. WizPol also defines additional class structures

used to specify wizard-related information in the form of status variables, data typing

and unit typing. The key aspects of this ontology are now outlined. A summary of the

ontology properties defined for WizPol is included in Appendix B.

84

Figure 4.9: GenPol Resolution Policy

85

WizPol Class Categorisation

The policy wizard categorises (or groups) related triggers, conditions, actions and op-

erators in a domain for processing and display purposes. Each category represents a

subset of common policy options. There are five categories defined in WizPol as shown

in Figure 4.10.

Figure 4.10: WizPol Class Categorisation Top Level

The top-level class in this structure is ClassCategorisation. Defined subclasses of

this class represent the UserLevelValue, InternalUse, and categories through which

domain-specific trigger, condition parameter and action categories can be specified.

86

WizPol User-Level Categorisation

The policy system interface supports a four-level classification of its users, offering

varying degrees of functionality depending on the expertise of a user. In particular,

each user level corresponds to a specific subset of triggers, condition parameters and

actions permitted for display and selection. Each user level is defined as a subclass of

UserLevelValue as shown in Figure 4.10.

WizPol Internal Use Categorisation

Within a domain, a trigger, condition or action may be defined which accesses or

modifies a variable stored locally in the policy system. Such instances can be classified

as having “internal usage”. WizPol provides an InternalUse class and the property

hasInternalUse. These can be used together to infer classes deemed as internal.

WizPol Trigger, Condition and Action Categorisation

Rather than displaying triggers, conditions and actions as single continuous lists, the

wizard assembles them into categories, which are presented to the user as shorter sub-

lists. This categorisation is useful not only for display purposes, but also for grouping

options with similar properties, such as by number of parameter arguments or by

related parameter data types. Such grouping makes it easier to validate user input

when defining policies.

WizPol defines top-level categories named ActionCategory, TriggerCategory and

ConditionParamCategory as shown in Figure 4.10. In a domain-specific ontology, par-

ticular named categories are defined as subclasses of these, which categorise domain-

specific policy elements.

4.4.3 Domain-Specific Policy Ontology

GenPol and WizPol are intended to be entirely reusable in defining an ontology that

represents a particular application domain for the policy system. Due to the nested

nature of the OWL import mechanism, a domain-specific ontology is required to im-

port only WizPol - importation of GenPol is inherently automatic. Once included, an

87

ontology may extend the class hierarchy of the imported ontology structure to define

additional sub-classes and properties together with applicable constraints. In partic-

ular, this includes the definition of specific trigger events, condition parameters and

actions associated with the domain in question.

Although a domain-specific ontology structure is geared towards use within the

policy wizard, there is no restriction on the inclusion of additional non-policy related

knowledge. The presence of the GenPol and WizPol ontology structure ensures com-

patibility with the Accent system, but the same ontology may contain additional

domain knowledge and an unlimited number of imported ontologies for use by other

applications, tools or agents.

A worked example of creating a domain-specific ontology is outlined in a technical

report describing the policy ontology approach [47]. In summary, the process involves

the following steps (which correspond with steps 2 and 3 in the ontology building steps

in section 4.2):

1. Create a new OWL ontology, define its namespace URI, and import the WizPol

ontology (which in turn imports GenPol)

2. Create named triggers, conditions and actions for the domain

3. Define categories of trigger, condition parameters and actions used for display

and grouping purposes within the policy wizard

4. Place property restrictions on triggers, conditions, actions and other policy com-

ponents to associate them with relevant categories

5. Optionally define additional non-policy language related knowledge about the

domain.

For compatibility with existing formal reasoning tools, both GenPol and WizPol

were designed to conform to the OWL DL sub-language. These base ontologies, and

the domain-specific ontologies which extend them, should define the structure of policy-

related knowledge but not actual policy data. Such data is separate from the actual

structure of the language or knowledge describing a domain and is therefore defined,

88

stored and processed independently by the policy system. For this reason, the developed

ontologies contain no individuals or “instances” of ontology classes. Each ontology ap-

plies constraints strictly to “anonymous” classes. That is, relationships between classes

are described in purely abstract terms. Consequently, a domain-specific ontology is in-

tended for static use by the policy system and should not be altered in any way during

normal operation. This is in contrast to a dynamic knowledge base where instances of

classes are created, modified and removed in real time to reflect the changing nature

or state of the domain.

Domain-specific policy ontologies have been developed that model the Appel policy

language specialisations for Internet telephony and sensor network/wind farm monitor-

ing. These ontologies have been used within the Accent policy system and related

software tools described in this thesis. A description of each domain ontology is given

in the following sections.

4.5 Application 1: Ontology for Internet Telephony

This section describes the ontology classes and structure defined to model the Appel

policy language specialisation for Internet telephony. This ontology extends the class

structures defined in the core language ontologies (GenPol and WizPol) to define the

triggering events, condition parameters, actions, arguments, variables and data types

specific to this domain. Additionally, the ontology describes general, non-policy related

knowledge. The ontology for Internet telephony is explained in full in a technical report

[48]. The OWL ontology document may be accessed from [21].

Section 4.5.1 summarises the main domain extensions for standard telephony poli-

cies. Section 4.5.2 summarises the main domain extensions for resolution policies.

4.5.1 Standard Policy Extensions

Telephony Class Categorisation

The telephony ontology extends wizpol:ClassCategorisation to define domain-specific

categories of triggers, condition parameters and actions. Classes defined under this

structure are used to achieve category inference throughout the ontology. Each category

89

(or grouping) usually represents a set of constructs that are logically similar or have

the same number and form of parameter arguments.

Telephony Triggers

Specific triggers for telephony are defined as subclasses of wizpol:NamedTriggerEvent

as shown in Figure 4.11.

The use of each trigger can be inferred as a subclass of a particular category (for

policy wizard display purposes) or user-level (to associate different sets of triggers with

each “admin”, “expert”, “intermediate” and “novice” designation). Association be-

tween triggers and categories is achieved by defining properties on each named trigger.

For example, the trigger BandwidthRequestEvent can be defined to have an association

with the CallTriggerEvent category using the property “wizpol:hasCategory CallEvent-

Category”. Logical inference (using an inference engine), can then determine that

BandwidthRequestEvent is a subclass of both wizpol:NamedTriggerEvent and CallTrig-

gerEvent. So a class may be defined once and associated with others simply through

the properties it is given. When the class is deleted, so too are the links to other

classes. Similarly, each trigger may be associated with user levels. For telephony, the

trigger categories are “Availability” and “Call”. Inferred subclasses of these categories

are shown in Figure 4.12 and Figure 4.13 respectively. A trigger may belong to just

one of these categories – no trigger may be associated with both.

Telephony Conditions

The full set of defined telephony condition parameters is shown in Figure 4.14. Inferred

sets of these condition parameters for each condition category (“Address”, “Amount”

and “Description”) are shown in Figure 4.15, Figure 4.16, and Figure 4.17 respectively.

90

Figure 4.11: Telephony Named Triggers

91

Figure 4.12: Telephony Inferred Triggers for the Availability Category

92

Figure 4.13: Telephony Inferred Triggers for the Call Category

93

Figure 4.14: Telephony Named Condition Parameters

94

Figure 4.15: Telephony Inferred Condition Parameters for the Address Category

Figure 4.16: Telephony Inferred Condition Parameters for the Amount Category

95

Figure 4.17: Telephony Inferred Condition Parameters for the Description Category

96

Telephony Actions

Specific actions for the telephony domain are defined as subclasses of wizpol:NamedAction,

as shown in Figure 4.18. Domain-specific action categories include “Call” and “Up-

date”. Inferred subclasses of these categories are shown in Figure 4.19 and Figure 4.20

respectively. An action is defined to be a member of one category only – no action

may be associated with multiple categories. Note that the “Call” trigger category

(CallTriggerEvent class) is different to the “Call” action category (CallAction class).

Both classes are defined under separate class hierarchies and are therefore distinctly

identified.

97

Figure 4.18: Telephony Named Actions

98

Figure 4.19: Telephony Inferred Actions for the Call Category

Figure 4.20: Telephony Inferred Actions for the Update Category

99

Telephony Unit Types

Within the telephony domain, there are three unit types typically linked with trigger,

condition and action values as shown in Figure 4.21. This is an example of additional

domain-specific knowledge defined in the ontology which does not model particular

aspects of the policy language. The “Kbps”, “general” and “seconds” unit types are

used to associate appropriate textual labels with displayed argument values within in

the policy wizard. For example, the trigger BandwidthConditionParam has a restriction

along the hasUnitType property linking it with the KbpsUnitType class.

Figure 4.21: Telephony Unit Types

100

Telephony Domain-Specific Information

While the telephony ontology primarily defines domain-specific class and property ex-

tensions to the base ontologies of GenPol and WizPol, additional knowledge is included

not directly for policy system usage. This knowledge relates to a higher level conceptual

view of the form and operation of Internet telephony, as shown in Figure 4.22. Classes

are defined to describe general aspects of a Call and CallParty that are not explicitly

obvious from the policy language alone. A Call is associated with a Caller and Callee,

and has various attributes including the type of call (such as “international”, “emer-

gency”, “conference” or “standard”), the quality, priority, topic and cost. A CallParty

can be a Caller or Callee and also has associated attributes including the role, device,

location, and capabilities of the caller/callee.

Figure 4.22: Telephony Additional Domain Information

101

4.5.2 Resolution Policy Extensions

Resolution policy extensions for the domain of Internet telephony are specific standard

actions available in this environment. The ontology defines the resolution actions Apply-

CalleeResAction and ApplyCallerResAction as subclasses of genpol:SpecificResAction

as shown in Figure 4.23. These actions are available in addition to the set of generic

resolution actions. ApplyCalleeResAction resolves policy conflict by applying the pol-

icy action associated with the callee, whereas ApplyCallerResAction applies the action

associated with the caller.

Figure 4.23: Telephony Specific Resolution Policy Actions

102

4.6 Application 2: Ontology for Sensor Networks

This section describes the ontology classes and structure defined to model the Appel

policy language specialisation for sensor networks/wind turbine management. This

ontology extends the class structures defined in the core language ontologies (GenPol

and WizPol) to define the triggering events, condition parameters, actions, arguments,

variables and data types specific to this domain. Additionally, the ontology describes

general, non-policy related knowledge. For convenience, the section and figure head-

ings in this section are shortened to “sensor network”, meaning “sensor network/wind

turbine domain”. The OWL ontology document may be accessed from [21].

Section 4.6.1 summarises the main domain extensions for standard sensor network

policies. Section 4.6.2 summarises the main domain extensions for resolution policies.

4.6.1 Standard Policy Extensions

Sensor Network Class Categorisation

The sensor network ontology extends wizpol:ClassCategorisation to define domain-

specific categories of triggers, condition parameters and actions. Classes defined under

this structure are used to achieve category inference throughout the ontology. Each

category (or grouping) usually represents a set of constructs that are logically similar

or have the same number and form of parameter arguments. Trigger, condition and

action categories are discussed in more detail within the following subsections.

103

Sensor Network Triggers

Specific triggers for sensor networks are defined as subclasses of wizpol:NamedTriggerEvent

as shown in Figure 4.24.

Figure 4.24: Sensor Network Named Triggers

For sensor network policies, there is a single external trigger called DeviceIn. The

use of this trigger can be inferred as a subclass of a particular category (for policy

wizard display purposes) or user level (to associate different sets of triggers with each

“admin”, “expert”, “intermediate” and “novice” designation). Association between

triggers and categories is achieved by defining properties on the DeviceIn trigger. For

sensor networks, there is only one additional domain trigger category (as there is only

one domain trigger) called ExternalTrigger. The DeviceIn trigger an inferred subclass

of this category.

104

Sensor Network Conditions

The sensor network ontology directly extends the top-level genpol:PolConditionPara-

meter class structure, defining subclasses representing the condition categories “Period”

and “Qualifier”. The inferred subclasses for each category are subsets of the full range of

condition parameters defined under wizpol:NamedConditionParameter. Each condition

parameter is related to exactly one category. The full list of defined sensor network

condition parameters is shown in Figure 4.25. Inferred sets of condition parameters for

each condition category are shown in Figure 4.26 and Figure 4.27 respectively.

Figure 4.25: Sensor Network Named Condition Parameters

Figure 4.26: Sensor Network Inferred Condition Parameters for the Period Category

Figure 4.27: Sensor Network Inferred Condition Parameters for the Qualifier Category

105

Sensor Network Actions

Specific actions for the sensor network/wind farm domain are defined as subclasses of

wizpol:NamedAction, as shown in Figure 4.28.

Figure 4.28: Sensor Network Named Actions

For sensor network policies, there is a single external action called DeviceOut. The

use of this action can be inferred as a subclass of a particular category (for policy

wizard display purposes) or user level (to associate different sets of actions with each

“admin”, “expert”, “intermediate” and “novice” designation). Association between

actions and categories is achieved by defining properties on the DeviceOut action. For

sensor networks, there is only one domain action category (as there is only one domain

action) called ConfigureAction. The DeviceOut action is an inferred subclass of this

category.

Sensor Network Status Variables, Unit Types and Data Types

Unlike the previous application for Internet telephony, the sensor network ontology

does not define domain-specific status variables, unit types or data types. For sensor

networks, the domain does not use specific status variables. As the policy language for

this domain was designed to be deliberately generic, the parameter arguments for the

DeviceIn trigger and the DeviceOut action as treated as Strings with no assumptions

made about their value in terms of data type (e.g. String, int, float, Date) or how to

interpret the values and allocate them unit type labels.

Sensor Network Domain-Specific Information

The ontology models the Appel policy language for sensor networks which is intended

for use in monitoring and managing a sensor network in general, and is not specialised

for any particular deployment application or environment. As such it contains no spe-

cific knowledge of sensor network operation, such as node addressing (e.g. sensor IDs

106

or network addresses), locations of individual sensors (co-ordinates, altitude or posi-

tion in physical environment) or the nature of the system or environment the sensors

are monitoring. This information is not related directly to the policy language or the

policy wizard, but would be helpful in defining the application area. Class hierarchies

can describe the generic and specific nature of components and how they are related.

For example, for a particular wind farm site, concepts of “sensor node”, “wind tur-

bine” and “sensor instance” can be defined along with other physical components and

their attributes. A sensor node might have attributes including a unique ID and ad-

dress, a location, and sensing capabilities (e.g. supported rates of sampling and report-

ing, or available network interfaces). Wind turbines might describe their capabilities

in terms of number of blades, maximum power output, generator and gearbox type,

manufacturer, and operational status. This additional detail surrounding a domain

implementation is useful for non-policy system tools such as an operator interface.

4.6.2 Resolution Policy Extensions

Resolution policy extensions for the domain of sensor network/wind turbine manage-

ment are the specific standard policy actions for this domain – namely, DeviceOut (as

there is the only standard policy action). There are no domain-specific resolution policy

extensions for the domain of sensor network/wind turbine management.

4.7 Ontology Parsing and Integration

This section describes how OWL ontologies can be parsed and queried by an application

using a generic custom-built tool called Poppet (Policy Ontology Parser Program –

Extensible Translation). The Poppet approach will be explained, together with an

example of its use.

4.7.1 Poppet Ontology Parser

Poppet (Policy Ontology Parser Program – Extensible Translation) is a generic frame-

work designed to integrate an OWL ontology with an application. The framework is

responsible for building a model of a given OWL ontology, and offers an API through

107

which an external program may query the model to extract required information. An

ontology is a structured document containing a description of a domain. The contents

of an ontology become meaningful only on appropriate processing by an application.

There are two aspects to this: parsing the ontology to build a logical semantic model,

and querying this model to extract desired facts about the domain.

The Poppet system bridges the gap between an ontology and systems that need

to use its information. Designed with maximum abstraction in mind, Poppet can be

used to parse and model any given OWL ontology. The domain or data content is

entirely irrelevant to Poppet, as is the particular dialect used (e.g. OWL Full, DL or

Lite). This gives maximum scope for its reuse and extension within multiple contexts

and by a wide range of applications. Access to the model is via an extensible API.

In summary, Poppet has the following key functions:

• accessing an OWL ontology document defined in a given location

• parsing a given OWL ontology and performing semantic inference via an external

reasoner

• constructing and storing a model of a parsed OWL ontology

• providing an interface and methods (an API) to enable external applications to

query the model.

The architecture of the Poppet system and an explanation of its operation are

given in the following subsections.

4.7.2 Poppet Architecture

The complete Poppet system architecture is shown in Figure 4.29. An entirely Java-

based system, Poppet utilises a number of pre-existing tools in its design – the Jena

Parser and Pellet Reasoner are shown in the figure below. For a recap of ontology tools

refer to section 4.1.4.

Poppet bases document parsing on the Jena [16] package. Jena is an established

Java-based framework which offers extensive support for OWL ontology parsing and

108

POPPET Server

Jena

RMI
External

Application

OWL
Ontology

Pellet
Reasoner

Parser

Figure 4.29: Poppet System Architecture

model building. Due to the strong OWL support, it was the most suitable choice

of parser over other generic ontology parsing techniques and saved considerable de-

velopment time. Poppet hides the implementation of the ontology parsing, allowing

applications to interact using a generic interface without any knowledge of ontology

model objects. Additionally, the use of Poppet combines multiple ontology-model

queries into one method call, allowing applications to interact with the ontology model

in a much simpler and more abstract fashion.

Jena provides predefined methods to reason about an ontology via a compatible

external inference engine. In order to construct an ontology model, an OWL document

is first analysed by the reasoner to infer additional information about classes defined

within it. The inference engine chosen for use within the Poppet system is Pellet

[8]. Although Jena includes its own rule-based inference engine, it is not specifically

designed for use in conjunction with OWL. Pellet was preferred as it is guaranteed to

recognise and correctly interpret all OWL constructs. Pellet has also been tested against

the Jena package, and its use is promoted in Jena documentation. This compatibility

between Pellet and the Jena framework was another motivating factor in its choice over

other available external reasoning engines.

Poppet is run as a stand-alone server application. When invoked, it is passed the

URL of an ontology to be read and modelled. Following successful ontology parsing, the

constructed model is held in memory and may be queried by an external application.

Applications connect to Poppet using Java Remote Method Invocation (RMI).

RMI enables an object running on one Java Virtual Machine (JVM) to remotely ma-

109

nipulate an object running on a different JVM (another context or physical host), by

way of a set of publicly defined methods. RMI provides a secure method of object

access using an established technique. It also allows the Poppet server to be run on

a different host machine from the application accessing it, enabling greater flexibility.

Such distribution in architecture ensures an application remains independent of the

system used to access an ontology.

4.7.3 Poppet Usage Example

API methods offered by Poppet are called from a client application via RMI and return

Strings, booleans or TreeSets (ordered sets of objects); the use of Jena-specific ontology

objects is transparent. Parameter arguments are in the form of Strings representing

either the name, label or URI of an ontology element (i.e. class or property). Client

applications must know the format and details of the ontology they are querying, but

are not concerned with how the parsing process is implemented.

As a small example, suppose there is an ontology called Drink.owl, located at the

URI: http://www.example.com/owl/Drink.owl. The ontology defines the following four

classes (the rdfs:label attribute text for each class is shown in parenthesis):

http://www.example.com/owl/Drink#HotDrink (hot drink)
http://www.example.com/owl/Drink#Coffee (coffee)
http://www.example.com/owl/Drink#Tea (tea)
http://www.example.com/owl/Drink#Chocolate (chocolate)

The classes Coffee, Tea and Chocolate are subclasses of the class HotDrink. Client

applications are aware the ontology contains a class called HotDrink but want to know

the types of hot drink available. Using Poppet, the client application may request the

subclasses of HotDrink. The client only knows the names of classes and not their full

ontology URIs. The client also wishes the returned results to be the labels of classes

(i.e. textual descriptions of the types of hot drink available) as opposed to ontology

URIs.

The following steps describe the process of this request:

110

1. The client queries the ontology model using a method in the Poppet API that

returns subclasses of a given class - in this example the class passed as a parameter

to the method is “HotDrink”.

2. Poppet then identifies the URI of the class HotDrink), and searches the on-

tology model to produce a list of its subclasses (either direct or inferred). The

properties of each subclass are then considered: if a subclass has a label at-

tribute, the text value is parsed. For example, the first subclass found might be

http://www.example.com/owl/Drink#Tea. The label of this class is “tea” and

this is returned to the client application – rather than the long class URI string.

3. The complete list of drink types (found subclass labels) are then passed back to

the client. The client application may then process the returned value set (e.g.

display results within a user interface form or menu, populate a database, or

perform further queries on the ontology).

The next section shows how the Poppet system was used to parse and process

domain-specific policy ontologies, and use this ontology knowledge within the Accent

Policy Wizard.

4.8 An Ontology-Driven Policy Wizard

As policies are aimed at non-technical users of a system, the success of the policy-

based approach relies on the presence of an efficient and user-friendly method of policy

creation and manipulation. The Accent policy system includes a web-based policy

wizard GUI to define and manage policies. However, in its original implementation the

policy wizard contained a large proportion of hard-coded knowledge of the telephony

domain. In order to generalise the wizard so it could generate a user interface specific to

any custom domain, all details related to telephony were replaced by relevant method

calls to retrieve data from an ontology via the Poppet system interface. Section

4.8.1 summarises technical extensions made to the original policy wizard. Section 4.8.2

evaluates the ontology-driven interface.

111

4.8.1 Policy Wizard Re-engineering

The core of the web-based policy wizard is implemented as a set of Java Server Pages

(JSP), using additional Java code to process requests via the user interface. This

code also handles communication with the policy server (to retrieve stored policies

and policy-related data) and constructs the HTML page output tailored to the policy

domain. Previously, the domain knowledge embedded in the wizard made use of hard-

coded strings. For example, the content of drop-down menus in HTML form fields

was hard-coded with telephony options, and text examples and tool-tips (text that

appears when the mouse is held over certain screen elements) were directly embedded

in HTML. The process of re-engineering the wizard involved removing all hard-coded

domain-specific text and page formatting, and replacing this with appropriate method

calls to retrieve data from an external source – in this case a domain ontology via

Poppet. In addition, the wizard was extended to support the creation and uploading

of resolution policies in addition to standard policies. Previously, resolution policies

had to be defined in XML and uploaded manually to the policy store. Note that the

re-engineering process targeted only system components directly associated with the

policy wizard. Remaining components, including the policy server, policy store, policy

database and additional context systems, were unaffected.

4.8.2 Policy Wizard Evaluation

In comparison with the original system, the improved policy wizard maintains all func-

tionality of the previous implementation and promotes complete domain independence.

The layout of the interface and validation of user input have also been preserved. There-

fore, in terms of functionality, the new system does not sacrifice any previous features.

This was tested by comparing the results of attempting to create and upload policies

using the old and new wizard interfaces. The pages displayed and the domain content

provided by each are identical as intended.

The new wizard has also been applied to sensor network/wind turbine management

(using the ontology described in section 4.6), and successfully integrates policy con-

structs for this new domain. This has demonstrated that the new generalised policy

112

wizard is indeed reusable for new domains.

With regard to system design and performance evaluation, the new wizard is suf-

ficiently distributed and generic in that individual components may be altered in iso-

lation. For example, it is entirely feasible to modify the Poppet ontology parser or

reasoning engine, without affecting the policy wizard or the developed ontologies. Sim-

ilarly, alterations to the policy wizard, or the web technologies it incorporates, can

be made independant of Poppet or the ontologies. From the user’s perspective, the

only noticeable difference from the previous system is in the speed with which page

requests are displayed. A slight overhead is incurred in the time taken to process and

display pages in the policy wizard, mainly attributed to the use of RMI. Typically,

the time taken to display a requested page is between one and three seconds, varying

on the number of ontology queries required to populate each particular page. This

delay is, however, implementation specific and dependent on the speed and state of

network connectivity. Although greater than for the hard-coded version of the wizard,

the delay is acceptable compared to the length of time it would take to generate a new

hard-coded wizard for each new domain. In this way, speed is sacrificed in order to

promote its reuse. However, as the process of creating policies is not time critical (only

execution of policies is handled in real-time), the overhead does not compromise overall

functionality of the policy system.

Potential solutions to performance issues include locating the Poppet system on

the same physical (local) machine as the policy wizard (to avoid routing messages over

a busy network) or using an alternative method of communication to RMI. However,

these options might reduce the benefits of distributing the system. Additionally, future

work might implement local caching of common ontology queries within the policy

wizard to optimise the number of remote method calls made.

113

4.9 Conclusion

4.9.1 Chapter Summary

This chapter introduced the concept of an ontology and described how ontologies have

been used to generalise the Accent policy wizard user interface so it may be used to

create and edit policies for any domain specialisation of the Appel policy language.

Using a series of interrelated ontologies, the core and domain-specific elements of

the Appel policy language, discussed in Chapter 3, were modelled using OWL (Web

Ontology Language). Three types of ontologies were developed: GenPol, WizPol, and

various domain ontologies. The GenPol ontology defines the core aspects of a policy in

Appel, the WizPol ontology defines additional user interface aspects (including format-

ting and display information), and a domain-specific ontology extends the constructs

of both GenPol and WizPol to define the policy language for a specific application

area. The approach has been demonstrated through the creation of domain ontologies

for Internet telephony and sensor network/wind turbine management.

The Accent policy wizard user interface was previously developed for the domain of

telephony. Using the designed ontologies, the policy wizard was re-engineered to utilise

ontology-defined language constructs as opposed to hard-coded domain information.

Integration of ontology-defined knowledge with the policy wizard was achieved using a

custom-built parser known as Poppet (Policy Ontology Parser Program – Extensible

Translation). Poppet is a Java-based system which parses a given ontology. It provides

a generic API through which an application can query the ontology and extract useful

information. The policy wizard was altered to replace hard-coded telephony knowledge

with ontology queries via the Poppet system interface.

The result of this work is a domain-independent user interface to manage policies

within the Accent system, and a flexible and extensible ontology model of the policy

language. The presented ontology framework has been extended for other policy-related

system components and tools. A policy conflict filtering tool (discussed in Chapter 5)

and a goal-based system (discussed in Chapter 6) both utilise and extend these core

and domain ontologies.

114

4.9.2 Evaluation

With regard to the implemented ontology stack, there is scope for the reuse of both

GenPol and WizPol, either as extensions of one another or independently. As the

core policy language details and wizard extensions have been defined within separate

ontologies, the policy language could potentially be specialised through direct extension

of GenPol alone. This would be useful if the language were intended for use in another

application or with a different user interface. For example, if the language were to be

applied within another policy system, GenPol could be extended directly to specify

a new language. Also, should the policy wizard be altered, WizPol could either be

adjusted accordingly or a new ontology could be created (which imported GenPol)

to describe the new interface. The implementation of domain ontologies for Internet

telephony and sensor network/wind turbine management, and their integration with

the policy wizard, have shown that ontologies are a flexible and successful method of

defining domain policy knowledge in a structured way.

The ontology-driven approach was evaluated by comparing the appearance and

functionality of the new policy wizard with that of the original hard-coded version. Use

of the new wizard is identical to the original implementation, with the only noticeable

difference to its users being a small overhead in the time taken to display each page.

115

Chapter 5

Policy Conflict Detection and

Resolution

This chapter explains the concept of policy conflict and describes a new ontology-driven

method for automated identification of potential conflicts between policies. A tool

named Recap (Rigorously Evaluated Conflicts Among Policies) has been developed

to support this approach. Its use is demonstrated for Internet telephony and sensor

network/wind turbine management. The approach presented in this chapter enhances

the existing conflict detection and resolution capabilities of the Accent policy system

and associated Appel policy language, both described in Chapter 3. Some of the work

reported in this chapter has been published in [51] and [53].

Section 5.1 introduces the concept of policy conflict, discusses related work in this

field, and outlines the motivation for this work. Section 5.2 describes the new approach

to automated policy conflict filtering, and section 5.3 outlines the Recap tool which

implements the approach. Sections 5.5 and 5.6 demonstrate conflict filtering and the

use of Recap for the domains of Internet telephony and sensor network/wind turbine

management respectively. Section 5.7 evaluates this chapter.

5.1 Introduction and Background

The following subsections provide a background and overview of Feature Interaction

(FI) and policy conflict. In particular, policy conflict handling within the Accent

116

policy system is outlined, as this framework forms the basis for the approach and tool

reported in this chapter. Existing work on policy conflict filtering (the focus of this

chapter) is given together with an explanation of how the presented work relates.

5.1.1 Feature Interaction (FI) Overview

Feature Interaction (FI) is the term used to describe the effects of interacting services

or components of a system. A “feature” is a component of a system that offers an addi-

tional function or service over core system functionality. For example, in telephony, ‘call

forward’ and ‘call waiting’ are features introduced to complement the basic functions of

making and receiving calls. Individual features may operate correctly in isolation, but

can lead to undesirable system state when combined and executed with other features.

FI is a potential issue in any system where multiple services may run concurrently.

A background to general FI issues and approaches can be found in Cameron et

al. in [45]. Feature interaction in telephony has been explored extensively in previous

work. This is mainly due to the fact telephony features are well defined and understood,

making it easier to test, demonstrate and compare FI approaches as interactions are

generally known. An early survey of FI issues in the telecommunications domain is given

by Keck and Kuehn in [72]. A more recent review is given by Calder et al. in [44].

This summarises and compares major research trends in FI analysis including software

engineering approaches, formal methods and online techniques. These techniques form

a basis for FI work in general.

Many techniques have been developed to automate feature interaction detection

at the system specification stage when features are programmed in software. Software

engineering approaches to FI analysis involves defining a model of the complete develop-

ment process, which aims to detect feature interactions early on during software service

creation. This can, for example, identify when shared system variables or interfaces

are used by a service and take necessary action in code to ensure shared components

are managed without conflict. Examples approaches include use case driven analysis

[84] [31], filtering-based analysis [74], requirements elicitation [68] and state transition

analysis [75] [87].

117

Formal methods of FI analysis encompass a range of formal description, modelling

and reasoning techniques (e.g. process algebras, finite and infinite state automata,

(temporal) logic, and languages such as SDL, Promela, Z, and LOTOS). While software

engineering approaches are geared towards the service design stage, formal methods are

used to detect feature interactions offline when services are ready for integration with

a system. Formal methods can be used to define abstract properties of a basic service

and feature in logic, with interactions identifiable through inconsistencies within the

logic [38], [65]. Alternatively, formal methods can be used to define the behaviour (or

operation) of a feature including state or temporal aspects, with interactions determined

using combinations of generic methods such as state simulation [33], [102] and deadlock

detection [86]. Formal methods can validate expected interactions and also detect

unpredicted interactions. Detecting new interactions is the aim of FI analysis, but the

majority of FI results using formal approaches have only shown to verify interactions

that are already known [44].

Online techniques are applied when a service is running on a network and con-

sequently aim to detect and resolve interactions. Online approaches include feature

manager based techniques (where a central or distributed entity is introduced solely

to observe and control call processes) such as [43] and [66], and negotiation based ap-

proaches (where individual features communicate directly to detect and resolve their

actions), such as the AI-based technique in [100].

Despite having no direct relation to policies, FI techniques have strongly influenced

approaches designed to combat policy conflict.

5.1.2 Policy Conflict Overview

Policy conflict is the equivalent of the Feature Interaction (FI) problem in a policy-

based environment – an executable policy may be thought of as a feature. A comparison

between features and policies is provided by Dini et al. in [61]. Policies offer a wide

range of customisable options for users to select. While this allows flexibility in high-

level system management, policy conflict is a possible side-effect. Conflicts among

policies occur between the actions of individual policies at run time when they are

118

eligible for simultaneous execution. The result of such conflict is that one action may

negatively affect another. For example, actions may attempt to set the value of the

same variable, or may perform contradictory functions (e.g. connecting/disconnecting,

adding/removing a system aspect, etc.). Such circumstances must be detected and

resolved appropriately.

In general, domain polices may provide large sets of actions and, in turn, complex

conflicts between them. Unless policies are reduced to a small collection of options, it

is non-trivial to predict all possible behavioural outcomes which may arise from their

simultaneous execution. In addition, policies may be created, managed and stored

across multiple domains, by different service providers, and deployed over a range of

networks. This makes it difficult to check the compatibility of policies and to maintain

control over their generation.

Conflict handling within a policy-based environment is the process of detecting

a potential conflict between two actions (prior to their execution) and attempting to

resolve it. Policy conflict handling comprises three different aspects: analysis to identify

and filter conflict-prone policies at the language level, definition of conflict detection

mechanisms at the policy level, and definition of a conflict resolution strategy. Conflict

detection can happen at three stages:

• When the policy language is being designed, conflicts between individual policy

actions can be identified and filtered during the specification stage (offline).

• When policies are defined and introduced to the policy system (offline – after the

language design stage but before policy is triggered).

• When deployed policies are triggered at run time in the policy system (online).

In the approach of this chapter, potential policy conflicts are detected and filtered

offline at the policy language design stage (the initial stage of the three above).

Conflict detection and resolution techniques for policies in general are discussed

in [56] and [81]. Closer to the work of this chapter, feature interaction for policies is

discussed by Reiff-Marganiec and Turner in [89], which outlines a generic taxonomy for

detecting and resolving conflicts between policies. This approach was implemented in

119

the Accent policy system. The purpose of the work in this chapter was to enhance

the existing conflict handling approach within the Accent system to compliment other

improvements to the policy framework covered in this thesis. Existing conflict handling

in Accent is now described.

5.1.3 Accent Policy Conflict Handling

This section describes how policy conflicts are handled by the Accent policy system

(Advanced Component Control Enhancing Network Technologies [13]), with respect to

the Appel policy language (Adaptable and Programmable Policy Environment and

Language [91]). To achieve maximum extensibility within Accent, the Appel lan-

guage was designed separately from the framework used for policy conflict detection

and resolution. This approach was implemented in the original Accent system.

Policy Conflict Detection

Conflict handling within Accent is described in [98]. Accent allows for both static

and dynamic conflict detection. Static detection can (in principle) be performed when

a policy is defined and uploaded to the policy system, while dynamic detection occurs

at run-time when policies are selected for execution. Although both methods are per-

mitted, only dynamic detection is currently implemented. This focus was intentional

since conflict detection and resolution must work in real-time.

On the detection of an event, the Accent policy server determines the subset of

policies that are triggered by it. If there is more than one action within the triggered

set, conflict detection and possible resolution are required. Conflict handling is specific

to an application domain, therefore conflicts between actions are defined external to the

policy server. Unless two actions within a domain are explicitly defined as conflicting,

they are assumed to be compatible. While this allows the policy language to remain

flexible, further mechanisms (either manual or automatic) must be used to identify and

define conflicts.

The identification of conflicts involves the consideration of all pair-wise combina-

tions of actions within a domain specialisation of the Appel policy language. A pair

120

of actions that perform contradictory functions (e.g. adding and removing the same

aspect, or setting and unsetting the same variable), may logically be identified as con-

flicting. However, this depends on the domain. Some conflicts are only identifiable

through knowledge of the domain in operation. Conflict detection is defined to be com-

mutative (e.g. if action A conflicts with action B, action B also conflicts with action

A) and associative (e.g. the outcome of a conflict is the same regardless of the way in

which actions are combined).

Policy Conflict Resolution

Conflicts in Accent are resolved by way of resolution policies which express when

and how the system should respond to conflicts. Resolution policies are defined as an

extension of the core Appel language, and therefore use the same syntax as standard

policies, but with a different vocabulary. In particular, the triggers of a resolution

policy are conflicting standard policy actions. The actions of a resolution policy provide

a solution to the conflict. Such actions may be generic (select one of the conflicting

actions based on some conditions) or specific (to apply domain-specific actions). Appel

has a built-in notion of policy preference which allows a user to indicate how strongly

they wish a policy to be applied. This allocates priorities to policies as one means of

resolving conflicts. Chapter 3 describes the language for resolution policies and provides

examples of their use. The outcome of the resolution process is a set of non-conflicting

policy actions, which may then be executed.

Resolution policies in Accent are applied in a manner similar to the process for gen-

eral domain-specific policies. However, the system does not support recursive conflict

resolution due to its impact on execution time and to avoid infinite regress. Resolution

policies provide considerable flexibility in that conflict handling is not embedded within

the policy system – it is defined externally and can be domain-specific.

5.1.4 Motivation for Automated Conflict Filtering

In the original implementation of the Accent policy system, domain-specific policy ac-

tions were analysed manually by a system expert. This included reading XML schema

121

descriptions of policy actions and applying domain knowledge in an attempt to iden-

tify actions which may conflict. Following this analysis, resolution policies to handle

each conflicting action pair were generated manually as individual XML documents,

and uploaded to the policy server. Not surprisingly, this was a time-consuming and

potentially error-prone process, as conflicting action pairs may be missed during this

analysis. In addition, there was no obvious way to view identified conflicts or to keep

track of the resolution policies created to handle them.

This chapter presents a technique to automate the previously manual phase of

analysing, identifying and filtering potential conflicts between policy actions at the

domain specification stage (when the policy language is being designed). Existing online

policy conflict detection and resolution techniques (previously implemented within the

Accent system) are not affected. The conflict filtering approach is intended to operate

offline, considering combinations of actions at the policy language design stage rather

than combinations of policies at run time.

5.1.5 Existing Conflict Filtering Approaches and Tools

This section summarises existing approaches and tools to identify and filter conflicts

between services or features of a system. In summary, the approach presented in this

chapter filters pairs of policy actions using non-formal methods, at the point when

a domain policy language is designed. Conflict is assumed when two actions affect or

utilise a common aspect or resource of the managed system environment. The approach

is implemented as a software tool which may be applied to any domain policy language

in Appel.

Interaction Filtering Approaches

The notion of “interaction filtering” was initially presented by Kimbler in [74], to im-

prove the efficiency of detecting interactions between services before they are deployed

and integrated with a system. In the proposed methodology, filtering is intended to

be the first step in a FI detection process, providing a rough and fast evaluation of

conflicts. The filtered results serve to indicate clashing between service or feature

122

types, which may be used to detect specific interactions at a later stage. The approach

uses non-formal methods to analyse services including service descriptions and pre-

/post-condition analysis. The approach is proposed and discussed with regard to FI in

telecommunications systems only.

Although not directly related to policies, Kimbler’s approach influenced the work

of this chapter. The attraction of the approach is that it achieves significant results

using simple (non-formal) methods. Although formal approaches to FI can produce a

thorough analysis of all possible service combinations, the approach is extremely time

consuming and is not proven to detect interactions on a large scale (i.e. large sets

of services or actions across multiple networks and systems). One formal verification

approach reporting this issue is [33]. Work presented here uses a form of analysis based

on Kimblers static service descriptions.

In other related work using filtering-based approaches, Nakamura et al. [84] present

a filtering technique based on Use Case Maps which is applied to telephony features.

The filtering also takes place at the feature specification stage and first identifies FI-

prone services, then analyses these to find common scenarios (patterns) of where FIs

occur. Heuristics are proposed to solve such patterns, but the approach is of limited

transferability as it is focused on solving only telephony FI issues. In [101], Wu and

Schulzrinne use preconditions and postconditions to identify inconsistencies in features

for a telephony-based scripting language called LESS (Language for End Systems Ser-

vices). The FI detection approach uses action conflict tables in LESS combined with

a tree-merging technique to detect and resolve potential conflicts. Although the rule-

based language of LESS shares similarities with rule-based policies, this language is

entirely telecommunications-specific.

Interaction Filtering Tools

There are several existing tools to support automated filtering of feature interactions.

One is a prototype outlined by Keck [71] which is based on the Kimbler approach.

The prototype detects interactions specific to a call environment and filters interac-

tions among Intelligent Network (IN) services, using simple descriptions of the static

123

structure of each service. Interactions are detected for groups of services used in par-

ticular call scenarios. The tool presented in this chapter is generic rather than geared

toward IN services, but uses similar static descriptions to detect common effects of

policy actions.

Formal approaches to interaction filtering have also been adopted, although previ-

ously noted issues surrounding scalability in domains other than telecommunications re-

main. FIX (Feature Interaction eXtractor [62]) is an example of a domain-independent

approach, although only application to telephony is reported. FIX uses the model

checker COSPAN to run consistency tests on specifications of system features or ser-

vices. In a further stage, the tool allows the user to investigate the generated scenarios

and decide on their accuracy. The tool in this chapter also offers a stage for users to

inspect and alter filtered conflicts.

Policy Conflict Filtering

The approaches to interaction filtering discussed so far have been devised for FI analysis

in general communications systems rather than a policy-based environment.

In [60], Davy et al. present a two-phase conflict analysis algorithm to detect and

filter potential conflicts between policies in a policy continuum. The algorithm consid-

ers the relationships between pairs of policies (rather than actions as in the approach

here) using a domain information model. It applies application-specific conflict pat-

terns to determine if each pairing is potentially conflicting. Potential conflicts are

flagged to system users who decide whether to ignore or resolve them. The approach

is application-independent, but has not yet been implemented or demonstrated for real

policy deployments.

Work in this chapter applies the concept of interaction filtering to policy actions,

using the Appel policy language. In related work on the Appel policy language,

Montangero et al. [83] use temporal logic to formalise the semantics of the language,

leading to a formal basis for automated detection of conflicts. This approach is tech-

nically more complex and aims to conduct more elaborate conflict detection than the

filtering methods presented here.

124

In other related work on Appel, Layouni et al. [77] present a method for dis-

covering conflicts based on the pre/post-conditions of actions. This work is closest

to the approach of this chapter as it also builds on Kimblers approach but using for-

mal pre/post-condition analysis rather than using static descriptions. In their ap-

proach, pre/post-conditions of policy actions are defined, and then conflicts among

these pre/post-conditions are defined. Using a first-order logic model-checking tool,

semantically-based inferences are then drawn about the compatibility of policy actions

based on the defined conflicts. The approach is said to be domain-independent al-

though call control is the only application so far. As the approach uses formal methods

of analysis, it is computationally expensive compared to the approach presented here.

Summary

In summary, the approach in this chapter differs from existing conflict and interaction

filtering work in the following ways:

• The presented approach and tool are generic, rather than specific to telecommu-

nications or any other particular domain.

• Formal specification of a managed system and its policies is not required. This

makes the approach simpler to set up and more intuitive, i.e. relying only on

domain knowledge rather than formal techniques. Domain experts, rather than

formalists, can therefore define the information needed for conflict filtering.

5.2 Automatic Conflict Filtering Approach

The main limitation of policy conflict handling in the original Accent system imple-

mentation was that conflicts and their resolutions had to be defined manually. This

section describes a new approach to automatically identifying policy conflicts, with

the aim of enhancing the existing conflict handling capabilities within Accent, rather

than replacing or modifying these. The foundational work presented here has been

published in [53]. For clarity, the approach is outlined using examples from the domain

of Internet telephony. Conflicts within this domain are described later in section 5.5.

125

5.2.1 Action Effects Ontology Support

Conflicts can occur between actions themselves or between the parameters of actions.

For example, actions that add and remove the same aspect are potentially in conflict,

such as the telephony-related actions add party and remove party. Other conflicts are

far more subtle, and cannot easily be identified by naming alone.

Action parameters may use enumerated types (e.g. the telephony parameter medium

has possible values audio, video and whiteboard). Where an action has an enumerated

parameter type, conflicts between instances of the same action (at the language defini-

tion stage) are likely only if the parameters are the same. For example, add medium(audio)

could be considered to conflict with a second add medium(audio). However, if the sec-

ond action wished to add video this would not be an obvious conflict. For this reason,

actions with distinct values in an enumerated parameter should be treated as distinct

actions.

Policy actions have specific effects on the execution environment. These effects

might be technical or physical (e.g. bandwidth) or more abstract (e.g. privacy). Con-

flicts are likely to occur where two actions share a common effect. In addition, any

action may potentially conflict with itself. For completeness in analysis, all (two-way)

action pairs must be considered. Effect categories will differ depending on the language

domain, and are defined by domain experts.

As discussed in section 4.4, a series of interrelated ontologies have been used to

model the generic and domain-specific aspects of Appel: GenPol, WizPol, and a

domain-specific ontology. It is convenient to define action effects in these ontologies to

reuse and extend descriptions of existing domain knowledge. The ontologies are used

to specify the effects of actions only and play no role in conflict detection or resolu-

tion. As conflict detection is not an integral part of Appel, the concept of an action

effect is defined in the WizPol ontology (rather than GenPol). This allows conflict

information to be specified outside the core language, while maintaining the advantage

of further specialisation in domain-specific ontologies. Effect information is defined in

WizPol through the ActionEffect class and the hasActionEffect property. The Action-

Effect class is a superclass of all effect categories for both internal and domain-specific

126

policy actions. Generic action effects are defined as subclasses of this class in WizPol,

as shown in Figure 5.1. Domain-specific action effects are defined as subclasses within a

separate domain ontology that imports WizPol. Each policy action is linked to the ap-

propriate effect category class using the hasActionEffect property. This relates actions

and effects, allowing a tool to infer overlapping actions.

Figure 5.1: WizPol Generic Action Effect Categories

5.2.2 Conflict Detection Algorithm

Only pairs of actions need to be considered in the analysis of policy conflicts. Poten-

tial conflicts between actions are inferred from the ontology-defined effect categories

through a two-stage algorithm:

1. Any two actions sharing at least one common effect are identified as potentially

conflicting.

2. Actions with enumerated parameter types are analysed. Where two actions share

the same parameter value then they potentially conflict, otherwise it is assumed

that no conflict exists.

The total number of action pairs, including self-conflicts, is n(n+1)
2 where n is the

number of possible policy actions. For example, the policy language for Internet tele-

phony has 21 possible actions and therefore a total of 231 action pairs.

The ontologies allow a list of actions to be inferred for each effect category. If two

actions are present in some category, they can be marked as potentially conflicting.

All action pairs deemed to conflict in this way are then automatically reviewed with

127

respect to their parameters. As explained earlier, actions with enumerated parameter

types are considered in more detail. This increases the total number of action pairings

as an action may be instantiated multiple times with different parameter values. For

example, the telephony action add medium with its parameter (one of audio, video or

whiteboard) is equivalent to three distinct actions. This allows more accurate analysis of

potential conflicts. Where actions might be treated as potentially conflicting based on

a shared effect, this might not be the case when particular parameters are considered.

To explain this more concretely, some examples for medium are shown in Figure 5.2.

An action may conflict with itself if there is a common parameter (e.g. both instances

wish to add video), and may not conflict if the parameters are different (e.g. adding

video and whiteboard respectively). Different actions with a common effect and the

same parameter indicate potential conflict (e.g. attempting to add and remove audio

simultaneously). Actions with a common effect and dissimilar parameters are assumed

not to conflict (e.g. altering the medium by adding video and removing whiteboard).

Action1 Action2 Conflict
add medium(audio) remove medium(audio) 3

add medium(audio) add medium(video) 5

add medium(video) add medium(video) 3

add medium(video) remove medium(whiteboard) 5

Figure 5.2: Sample Telephony Conflicts with Action Parameters

5.3 The Recap Conflict Filtering Tool

This section describes the tool which implements the algorithm and approach to auto-

mated conflict analysis discussed in the previous section.

5.3.1 Automated Support for Conflict Filtering

The Recap tool (Rigorously Evaluated Conflicts Among Policies) has been developed

to automate the algorithm outlined in the previous subsection. The tool is described

in more detail in Appendix C.

Recap shows pairs of actions, why they conflict (their shared effects), and when the

128

conflict was identified (either automatically or manually). Depending on the domain,

the conflicts identified by Recap may or may not be complete and correct. Conversely,

subtle conflicts that are not automatically flagged can be added manually by the user.

To ensure no such subtle domain-specific conflicts are missed, the tool allows for human

judgement in the detection process. Recap lists automatically inferred conflicts but

will produce skeleton resolution policies to handle each identified conflict only following

human confirmation that the conflicts are real.

Recap is mainly intended to analyse conflicts when a domain policy language is

initially defined, using an ontology as the source of action effects. This initial analysis

is saved to file and can subsequently be reloaded into the tool. This avoids the user and

the tool from having to repeat a prior analysis, particularly if the user has manually

modified the conflict list.

5.3.2 Recap Architecture

The Recap tool is Java-based and designed for stand-alone use. The architecture of the

tool and interfaces with the previously described Accent policy system and ontologies

are shown in Figure 5.3.

Recap communicates with a domain ontology using the Poppet system (Policy

Ontology Parser Program – Extensible Translation) described in section 4.7.1. Gener-

ated resolution policies are uploaded to the Accent policy system.

5.3.3 Automated Support for Resolution

Recap can turn a list of conflicts into a set of outline Appel resolution policies that

define the detection part of conflict handling. Generated policies define the conflicting

triggers and parameter conditions, but resolution actions must be completed manually.

The policies are automatically uploaded to the policy system, and the policy wizard

is used to define the resolutions. The policy wizard is a graphical user interface to

define and edit Appel policies and was discussed in section 4.8. In the original system

implementation, resolution polices were created manually in XML and uploaded to the

policy server. As part of this work to enhance conflict handling in the Accent system,

129

RECAP Policy System

POPPET Server

Policy ServerPolicy Upload Policy Store

Domain Ontology

RMI

Communications
Interface

Policy Wizard

RMI

ConflictDetector

ClientPoppetDriver

RMI

RECAP_GUI

Saved Conflicts
(Local File)

Properties
Configuration

File

Figure 5.3: Recap Tool Architecture

the wizard was extended to support resolution policies in a similar manner to standard

domain policies.

Resolution policies can be simple or complex, specific or generic, and dependent

on many factors including the conflicting policies and their parameters. One or more

actions may be required of a resolution. Taking another telephony example, suppose

one party wishes to add video to the call with add medium(video), while the other

party wishes to conference in a third person with add party(person). This might be

considered a conflict since the third party would be able to view the call parties and

their workplaces (affecting privacy). Using human judgement, it might be decided to

allow video and the third party. However, someone (e.g. a manager) should be included

in the call to oversee it.

In view of this complexity, Recap generates only outline resolution policies that

130

specify default policy attributes, triggers corresponding to the conflicting actions, and

default actions to resolve the conflict (e.g. choose the action with the higher prior-

ity). The outline resolutions are then uploaded and customised using the policy wiz-

ard. Resolution policy editing is handled outside Recap so that the tool may remain

domain-independent and not be constrained to a particular resolution technique or pol-

icy language. In addition, resolution policies are edited through the same interface as

regular domain policies.

On upload to the policy server, resolution policies are normally disabled (i.e. the

“enabled” attribute is set to “false”). This ensures they are ignored by the policy server

until they have been edited to include a specific resolution – avoiding accidental use of

incomplete or inconsistent resolutions. Policies in general are distinguished by unique

identifiers typically chosen by the user. Resolution policies automatically created by

Recap have machine-generated (but human-readable) identifiers.

5.4 Generic Action Conflict Filtering Results

Internal (generic) policy actions affect the policy system itself, such as setting sys-

tem properties or accessing system resources. Figure 5.4 shows the effects of internal

(generic) policy actions applicable to any domain-specific specialisation of the Appel

policy language (see Chapter 3 for an explanation of these). Effects for internal pol-

icy actions are distinct from those of domain actions, as internal and external actions

should not normally conflict.

Action Effect
log event(arg1) file
restart timer(arg1) timer
send message(arg1,arg2) channel
set variable(arg1,arg2) variable
start timer(arg1,arg2) timer
stop timer(arg1) timer
unset variable(arg1) variable

Figure 5.4: Generic Appel Policy Action Effects

131

The result of filtering internal conflicts for Appel using Recap is shown in Fig-

ure 5.5. Conflicts are numbered in the figure according to the underlying effect. As an

example, actions start timer and stop timer are in conflict because they both have a

timer effect as indicated at their intersection. The results of this analysis by Recap

was deemed correct (following examination by a domain expert) and no alterations

were necessary.

lo
g

ev
en

t

re
st

ar
t

ti
m

er

se
n

d
m

es
sa

ge

se
t

va
ri

ab
le

st
ar

t
ti

m
er

st
op

ti
m

er

u
n

se
t

va
ri

ab
le

A
ct

io
n1

/A
ct

io
n2

2 log event
3 3 3 restart timer

1 send message
4 4 set variable

3 3 start timer
3 stop timer

4 unset variable

Conflict: 1 channel, 2 file, 3 timer, 4 variable

Figure 5.5: Internal Conflicts Identified by Recap for Appel

132

5.5 Application 1: Policy Conflicts for Internet Telephony

This section provides an overview of typical conflicts within the domain of Internet

telephony and discusses their resolution. The results of analysing the policy language

using Recap are also presented.

5.5.1 Telephony Conflicts Overview

The Appel policy language specialisation for the domain of Internet telephony was

previously described in section 3.3. The language defines a large set of distinct policy

actions, few of which have enumerated parameter values. Conflicts in this domain

therefore largely result from clashes between different actions, and less so between

action and parameter instances.

Example telephony policies were given in section 3.3.2. In general, policies are

triggered when a call is initiated, received, modified, disconnected or goes unanswered.

Policy actions may include forwarding, forking or rejecting a call, adding a caller to an

existing call (e.g. conference calling), confirming/rejecting a bandwidth request, playing

a customised sound clip, and adding/removing media such as video or a whiteboard.

There are two enumerated parameters: medium and method. The add medium and

remove medium actions both specify the medium as a sole parameter, values of which

may be either audio, video or whiteboard. The add caller action takes a method as its

only parameter, the values of which may be either release, monitor, wait, conference or

hold.

Virtually any telephony action may conflict with itself if its arguments are the same

and the preferences of the caller and callee are opposite. Resolution policy examples for

telephony conflicts were given in section 3.3.3. Generic resolutions include selecting the

policy action based on time (date modified), priority (preference allocated) or domain

(the hierarchic level to which the policy applies). In addition, telephony policies may

choose to select and apply the action associated with the caller or callee. Any standard

telephony policy action may also be used (e.g. disconnecting, forwarding, forking or

rejecting a call, or playing a customised sound clip).

133

5.5.2 Telephony Action Effects

Figure 5.6 shows the effects of telephony actions. These effect categories were derived

from analysis of the language by a domain expert.

Action Effect
add caller(conference) party, privacy, bandwidth
add caller(hold) party, privacy, bandwidth
add caller(monitor) party, privacy, bandwidth
add caller(release) party, privacy
add caller(wait) party, privacy
add medium(audio) medium, privacy, bandwidth
add medium(video) medium, privacy, bandwidth
add medium(whiteboard) medium, privacy, bandwidth
add party party, privacy, bandwidth
confirm bandwidth bandwidth
connect to route
fork to route
forward to route
note availability availability
note presence presence
play clip medium
reject call call
reject bandwidth bandwidth
remove medium(audio) medium, privacy, bandwidth
remove medium(video) medium, privacy, bandwidth
remove medium(whiteboard) medium, privacy, bandwidth
remove party party, privacy, bandwidth

Figure 5.6: Telephony Action Effects

Each category is defined within the ontology for Internet telephony and linked

with the associated actions. An example of this is shown in Figure 5.7. The action

AddMediumAction is linked with MediumEffect, PrivacyEffect and BandwidthEffect.

This is because adding media to a call may affect both medium (as audio or video

may be added to the call), privacy (as the introduction of, say, video may conflict

with the callee who does not wish to have an image broadcast) and also bandwidth

(as adding media such as video or a whiteboard, will increase the bandwidth required

for the call). Together with AddMediumAction, the actions PlayAudioClipAction and

RemoveMediumAction also affect the medium category. From this it is inferred that

any pairing of these three actions could potentially result in conflict.

134

Figure 5.7: Example Telephony Actions and Effect Categories

5.5.3 Telephony Conflict Filtering Results

For convenience, domain-specific telephony actions are described here separate from

internal actions, though in practice they are combined by Recap.

The total number of action pairs, including self-conflicts, is n(n+1)
2 where n is the

number of possible policy actions. The policy language for call control has 21 possible

actions and therefore a total of 231 action pairs. Telephony actions deemed conflicting

by Recap are shown in Figure 5.8. Conflicts are numbered in the figure according to

the underlying effect. As an example, the actions fork to and forward to potentially

conflict as they both affect the route.

In the tool, actions with enumerated parameter types are displayed and compared

as separate actions. The full pair-wise list of action/parameter combinations is too large

to include in table form here, but will be summarised. For telephony, all the enumerated

parameters for the actions add/remove medium and add caller have identical effects.

Recap therefore identifies each action/parameter pairing as being in conflict with itself,

and every other enumeration for the same action. For example, add caller(hold) con-

flicts with itself, add caller(conference), add caller(monitor), add caller(release) and

add caller(wait)). Examples of enumerated parameter conflicts for add medium are

135

shown previously in Figure 5.2. On human inspection, some conflicts may not be a

real problem depending on the underlying implementation (e.g. adding or removing

the same media twice may not be a problem).

Detailed study by a domain expert confirmed that all detected conflicts but one

are real, and that no conflicts have been missed. Some conflicts are non-obvious (e.g.

add caller and add medium). There is a possible problem in that confirm bandwidth

is indicated to conflict with itself due to a shared bandwidth effect. This could be a

potential error in that it might lead to bandwidth being allocated twice. However, in

the Accent system it is harmless to confirm bandwidth more than once. Without

human guidance, this action pair would be flagged as a conflict. It should be noted

that the bandwidth effect is still required as it correctly identifies the conflict between

confirm bandwidth and reject bandwidth.

ad
d

ca
ll
er

ad
d

m
ed

iu
m

ad
d

p
ar

ty

co
n

fi
rm

b
an

d
w

id
th

co
n

n
ec

t
to

fo
rk

to

fo
rw

ar
d

to

n
ot

e
av

ai
la

b
il
it

y

n
ot

e
p

re
se

n
ce

p
la

y
cl

ip

re
je

ct
b

an
d

w
id

th

re
je

ct
ca

ll

re
m

ov
e

m
ed

iu
m

re
m

ov
e

p
ar

ty

A
ct

io
n1

/A
ct

io
n2

2,5,7 2,7 2,5,7 2,7 2,5,7 add caller
2,4,7 2,7 4 2,4,7 2,7 add medium

2,5,7 2,7 2,5,7 add party
2 2 confirm bandwidth

8 8 8 connect to
8 8 connect to

8 forward to
1 note availability

6 note presence
4 4 play clip

2 reject bandwidth
3 reject call

2,4,7 2,7 remove medium
2,5,7 remove party

Conflict: 1 availability, 2 bandwidth, 3 call, 4 medium,
5 party, 6 presence, 7 privacy, 8 route

Figure 5.8: Telephony Conflicts Identified by Recap

136

5.6 Application 2: Policy Conflicts for Sensor Networks

This section provides an overview of typical conflicts within the domain of sensor net-

work/wind turbine management and discusses their resolution. The results of analysing

the policy language using Recap are also presented.

5.6.1 Sensor Network Conflicts Overview

The Appel policy language specialisation for sensor networks was previously described

in section 3.4. In general, sensor network policies have a single external trigger (de-

vice in) or action (device out) for communicating with an external entity (e.g. a sensor

node or operator console). This trigger and action carries five parameters: the mes-

sage type (defines the nature of the trigger or action), the entity name (identifies the

external component), an entity instance (a unique identifier for the entity), the mes-

sage period (defines duration reported in a trigger or the time at which an action should

be performed), and the parameter values (a string of values that qualify the trigger

or action). The message type is mandatory, while the others are optional. Example

sensor network policies that use this language were given in section 3.4.2.

As there is only one external action, conflicts can only occur between of a pair of

device out actions. For example, one policy may wish to set the anemometer reporting

interval on sensor node instance S32 to 10 minutes, while another policy wishes to set

this to 20 minutes. Similar conflicts can arise when setting sampling frequencies or other

sensor parameters. For sensor node parameter conflicts, the parameter values string

within a device out action changes format depending on the message type string. This

allows detection of conflicting values. The values (or sub-values) in parameter values

can be compared in a resolution policy. Example resolution policies to handle this type

of conflict were given previously in section 3.4.3.

Generic resolutions select one of the conflicting actions based on some general at-

tribute. For example, choosing the earlier defined policy or the action that applies to a

higher domain (e.g. all anemometers rather than a particular one). Specific resolutions

are actions that a sensor network can perform. For example, an operator might be

alerted to the conflict and asked to take action. If the conflict is deemed to be non-

137

critical (say, backing up logs), it might be resolved by delaying one of the conflicting

actions.

Further to conflicts detectable at the language level, the nature of sensor networks

brings additional complexities which might cause conflict. For example, a policy action

might conflict with a prior action and not just a concurrent action (e.g. a policy executed

at 12:01pm switches off a sensor, while an action two minutes later requests upload of

the sensor log). A solution to this problem exists in the language. Appel supports

state history functions which can be used in policies as a way of resolving potential

conflicts without an explicit resolution (e.g. the policy requesting a sensor log checks

the action history to determine if the sensor was switched off recently). This can allow

conflicts to be detected between actions and states.

A further kind of conflict may arise within the sensor network itself. Sensor nodes

have limited memory, bandwidth, electrical power and processing capacity. Such con-

straints affect their ability to perform certain actions simultaneously. Examples include:

• Limitation on shared bandwidth from a sensor node to the policy system (e.g. a

request for the upload of log data may conflict with a request for the most recent

camera image data on cloud cover).

• Limitation on a shared sensor node processor (e.g. a request for log data to be

compressed may conflict with a request to reset all sensor sampling frequencies

to their default values).

• Limitation on sensor node battery power (e.g. setting the sampling interval for

each sensor to 60 seconds while simultaneously requesting threshold values be

checked every 90 seconds).

Superficially, actions in the scenarios above are conflict-free, but due to underlying

resource limitations (which may or may not be known to policy creators), they cannot

be carried out concurrently. While this type of indirect conflict is out of the scope of the

policy system, it is desirable to account for external resource restrictions where possible

when defining policies. One possible solution (not yet implemented) would be to model

resource information in the domain ontology. Each resource could be described along

138

with its constraints. For example, limitations could include data (bandwidth, process-

ing), parameterisation (memory, processing), and computation (processing, memory,

power). This information could be used by the policy system to link with possible

action/parameter combinations and to detect situations which may cause resource con-

flicts.

5.6.2 Sensor Network Action Effects

As the only action to conflict is device out, from the perspective of the policy language

the only possible conflict is this action conflicting with itself. The action will have

different effects depending on the specific values given to its parameters. As this action

is parameterised, it has no defined set of enumerated values at the language specification

level. Therefore, analysis is limited to detecting conflicts between the combinations of

parameters.

For this analysis, each individual parameter of the device out action is noted to have

an effect on the sensor network environment, with the exception of the message type.

As this parameter is mandatory in all device out actions, if it were assigned an effect,

the result would be that all combinations of the action conflicted. This is of little

help in the analysis. For this reason, the message type is omitted from effects. This

will become clearer on explanation of the results. The remaining parameters have the

following effects:

entity name = group configuration, single configuration

entity instance = single configuration

message period = scheduling

parameter values = configuration

Specifying an entity name indicates a potential group of entities (e.g. all anemome-

ters), but this could be a single entity (e.g. the single operator console), so this has two

potential effects. The use of an entity instance identifies a single object. Specifying

the optional message period will affect scheduling. The parameter values could affect a

number of aspects depending on the number of sub-values and how they are interpreted.

However, at the language specification stage, the only known effect is configuration.

139

To assign these effects, each specific combination of parameters of the device out

action is considered as a separate action. These combinations and their effects are

shown in Figure 5.9.

Action Effect
device out(arg1,arg2,arg3,arg4,arg5) group/single configuration, scheduling, configuration
device out(arg1,arg2,arg3,arg4) group/single configuration, scheduling
device out(arg1,arg2,arg3) group/single configuration
device out(arg1,arg2) group/single configuration
device out(arg1)
device out(arg1,,arg3,arg4,arg5) single configuration, scheduling, configuration
device out(arg1,,arg3,,arg5) single configuration, configuration
device out(arg1,,arg3,arg4) single configuration, scheduling
device out(arg1,,arg3) single configuration
device out(arg1,,,arg4,arg5) scheduling, configuration
device out(arg1,,,arg4) scheduling
device out(arg1,,,,arg5) configuration
device out(arg1,arg2,,arg4,arg5) group/single configuration, scheduling, configuration
device out(arg1,arg2,,arg4) group/single configuration, scheduling
device out(arg1,arg2,,,arg5) group/single configuration, configuration
device out(arg1,arg2,arg3,,arg5) group/single configuration, configuration

Arguments: arg1 message type, arg2 entity name, arg3 entity instance,
arg4 message period, arg5 parameter values

Figure 5.9: Sensor Network Action Effects

5.6.3 Sensor Network Conflict Filtering Results

For convenience, domain-specific actions are described here separate from Internal ac-

tions, though in practice they are combined by Recap. The total number of ac-

tion/parameter pairs, including self-conflicts, is n(n+1)
2 where n is the number of pos-

sible policy actions. The policy language for sensor networks has 16 action/parameter

combinations and therefore a total of 136 action pairs. The results for sensor network

policy conflict analysis are shown in Figure 5.10. Note that the action parameters are

abbreviated within the table for clarity (e.g. arg1 is just 1).

From the figure, all parameter combinations conflict with themselves (i.e. all actions

that specify an entity instance (no. 3) potentially conflict with any other action spec-

ifying an entity instance). As the first parameter argument (1, message type) was not

140

device out(1,2,3,4,5)

device out(1,2,3,4)

device out(1,2,3)

device out(1,2)

device out(1)

device out(1,,3,4,5)

device out(1,,3,,5)

device out(1,,3,4)

device out(1,,3)

device out(1,,,4,5)

device out(1,,,4)

device out(1,,,,5)

device out(1,2,,4,5)

device out(1,2,,4)

device out(1,2,,,5)

device out(1,2,3,,5)

A
ction1/A

ction2

2345
234

23
23

345
35

34
3

45
4

5
2345

234
235

235
d

ev
ice

ou
t(1,2,3,4,5)

234
23

23
34

3
34

3
4

4
234

234
23

23
d

ev
ice

ou
t(1,2,3,4)

23
23

3
3

3
3

23
23

23
23

d
ev

ice
ou

t(1,2,3)
23

3
3

3
3

23
23

23
23

d
ev

ice
ou

t(1,2)
d

ev
ice

ou
t(1)

345
35

34
3

45
4

5
345

34
35

35
d

ev
ice

ou
t(1,,3,4,5)

35
3

3
5

5
35

3
35

35
d

ev
ice

ou
t(1,,3,,5)

34
3

4
4

34
34

3
3

d
ev

ice
ou

t(1,,3,4)
3

3
3

3
3

d
ev

ice
ou

t(1,,3)
45

4
5

45
4

5
5

d
ev

ice
ou

t(1,,,4,5)
4

4
4

d
ev

ice
ou

t(1,,,4)
5

5
5

5
d

ev
ice

ou
t(1,,,,5)

2345
234

235
235

d
ev

ice
ou

t(1,2,,4,5)
234

23
23

d
ev

ice
ou

t(1,2,,4)
235

235
d

ev
ice

ou
t(1,2,,,5)

235
d

ev
ice

ou
t(1,2,3,,5)

Conflict: 2 group configuration, 3 single configuration, 4 scheduling, 5 configuration

Figure 5.10: Sensor Network Conflicts Identified by Recap

141

defined to have an explicit effect, the action device out(1) conflicts with no other action.

Depending on the types of messages that may be sent in a particular sensor network

implementation of the language, this action may be in conflict. For example, conflict-

ing situations might arise between contrasting commands such as starting/stopping

an alarm. On inspection in the tool, the pairing device out(1)/device out(1) would

therefore be marked as a conflict.

The detected conflicts do however provide a helpful series of generic resolution tem-

plates which can then be customised. The resolution can distinguish clashes between

similar and different parameter values. The nature of this will depend on the partic-

ular combinations of values used in each action, and could be interdependent such as

the interpretation of the parameter values depending on the message type and/or the

particular entity name.

To conclude, the flexibility of Appel is beneficial towards its reuse, but renders

conflict detection difficult without explicit knowledge of the parameter values in use.

5.7 Conclusion

5.7.1 Chapter Summary

This chapter presented a new automated approach to identifying and filtering poten-

tial conflicts between policy actions at the language specification stage, in relation to

the Accent policy system and Appel policy language discussed in Chapter 3. Policy

conflict occurs at run-time when multiple policy actions become eligible for execution

simultaneously. Unless conflicting actions are detected and resolved by the policy sys-

tem, their execution may leave the managed system in an unpredictable or undesirable

state. Previous conflict analysis and resolution generation mechanisms within the Ac-

cent system were manual, which was time-consuming and error prone.

In the presented approach, the domain ontologies described in Chapter 4 are ex-

tended to define the effects of each action on the managed system environment. Actions

with common effects are potentially conflicting. The Recap tool has been implemented

to support this approach. The tool provides a graphical user interface that displays all

pair-wise combinations of policy actions for a given domain, and marks those poten-

142

tially in conflict. Due to the complexity of policy interaction, the tool allows for manual

filtering of this list, so a human user may view and confirm inferred conflicts, and flag

any additional subtle domain-specific conflicts. As a final step, Recap automatically

generates skeleton resolution policies to handle these conflicts. Resolution policies may

in turn be edited using the policy wizard – also altered as part of this work to support

resolution policies in a similar manner to standard policies. Conflicts in the domains of

Internet telephony and sensor network policies have been outlined, together with the

results of analysing these domains using Recap.

5.7.2 Evaluation

The presented work can be evaluated in terms of the adopted approach and of the tool

which implements it.

Conflict Filtering Approach

Policy conflict is the equivalent of Feature Interaction (FI) – the issue of undesirable

or irregular system behaviour caused by interfering services in a system. Interaction

filtering was originally proposed as a first step in detecting FIs in telecommunications

services. A variety of approaches and tools have used the filtering notion, but existing

work is either specific to solving FI in telecoms and/or uses formal methods of analysis.

The approach and tool presented in this chapter analyses policy action combinations

as opposed to services, is domain-independent (not just applicable to telephony) and

uses non-formal methods of analysis.

Filtering is used here as an initial stage to detect potential policy conflicts in a

domain-specific specialisation of the Appel policy language. Existing conflict detection

handling in the Accent policy system takes place at the policy level (after the policy

language has been defined). The approach here filters conflicts between pairs of actions

and their parameters much earlier at the language specification stage. This language

level analysis is more abstract, providing a rough overview of potential conflicts based

on the effects of each action upon the system environment. At this earlier stage, filtering

allows for refactoring of the policy language in light of the types of conflicts identified

143

– a task that is not easy once the language is finalised and policies are created and

deployed.

The filtering approach is non-formal and is more scalable, pragmatic and simpler

to use than formal methods of FI and policy conflict filtering. Associating actions with

their effects is very simple compared to formal methods, but has been shown here to

give effective results. As the approach is straightforward and domain-oriented, it is

much less expensive to use than one that requires a complete formal model, and is

more likely to scale effectively for domains with larger sets of action and parameter

combinations than those documented within telephony.

The use of non-formal methods may however account for potential weaknesses in

the approach, namely omissions in allocating effects to actions and in the verification

of conflicts (the issue of false-negatives and false-positives). As the approach relies

on a definition of action effects in an ontology beforehand, incorrect linking between

categories or omissions of an action/category association may result in failure to identify

potential conflicts. This issue is partially helped by an inspection stage of the approach

which allows the user to confirm conflicts or identify conflicting combinations that may

have been missed.

False-negatives are action combinations the approach wrongly deems to be conflict-

ing, while false-positives are combinations that the approach finds non-conflicting but

are actually conflicts. In the presented approach, analysis of the telephony domain

detected all previously known conflicts, but also identified a false-negative (confirm

bandwidth conflicting with another confirm bandwidth action). This combination is

not a conflict in terms of the underlying system implementation but was flagged as a

potential conflict. In the Accent system, confirming bandwidth allocation more than

once is perfectly acceptable, but in other telephony systems this action combination

might be disallowed or looked upon as inefficient. This particular false-negative appears

due to a lack of information about how the underlying system handles bandwidth con-

firmations.

In general, false-negatives might be reduced or avoided if more detailed action de-

scriptions were introduced. Other methods of tackling the problem of false-positives

144

and false-negatives may be to use formal analysis in combination with the presented

approach. A more rigorous method of filtering could be to combine formal and non-

formal methods. For example, conflict detection techniques for Appel discussed in

section 5.1.5 (such as the formal semantic analysis by Montangero et al. [83], or the

formal approach to filtering presented by Layouni et al. [77]) might be investigated fur-

ther as possible extensions to the current approach. Additionally, in [46], Cameron et

al. present a tool called FIMAMP which groups features with similar properties. This

allows FI analysis to focus on groups of feature types rather than individual features.

This narrows down the list of potential interactions that should be considered in more

detail at a later stage. The reduction in combinatorial complexity could improve the

time and scalability issues associated with using formal methods, making the introduc-

tion of formal analysis more appealing for this work.

In conclusion, the issue of how to eradicate false positives and negatives is still

a matter of debate. Until FI analysis is applied in a wider range of system domains

(rather than predominately telephony) it cannot be said for sure whether subtle domain

conflicts can be automatically identified without the act of human checking.

The Recap Tool

As a common theme of the approaches presented in this thesis, the Recap tool enables

the Accent system (and Appel language) to be more easily reused across new domains

and to make conflict identification more friendly. Recap automates the previously

manual process of analysing pair-wise actions in a domain policy language. It allows

the user to explore inferred conflicts and to confirm and refine these conflicts prior to

generating resolution policies. This has improved the scalability of Appel, and has

substantially reduced the time and complexity of dealing with conflicts.

The Recap tool is domain-independent. Unlike many existing approaches and

tools, policies in any domain may be analysed. The tool is also useful for policy ap-

plications where action parameters play a bigger role. Recap can also be used both

initially and in later revisions of a particular policy language, to refine conflicts and

generate resolutions. Recap has also been designed for stand-alone use. Although

145

conflict data is expected to derive from an ontology, conflict information may be input

from a local file. This allows data generated by other tools or systems to feed into

Recap for conflict filtering. The only requirement for this is knowledge of the conflict

data format used by Recap.

Recap has been used to detect conflicts in two very different policy language spe-

cialisations. The tool has been shown to accurately aid conflict analysis for Internet

telephony. However, this did confirm that human guidance is still required in a very

small number of cases. Detecting conflicts in the sensor network domain is less easy

as conflicts arise between the combinations of parameters within a single action – the

specific values of which are dependent on the sensor domain. Effects attributed to each

parameter have yielded a core set of resolutions which can be customised to suit the

domain.

In terms of improvements, Recap could be given a more user-friendly interface

to change the default resolution policy structure and parameters. Currently this is

achieved by manually editing the properties file. Resolution policies generated by Re-

cap are assigned an identifier. If the identifier of such a policy is changed manually (e.g.

directly within the associated XML or via the policy wizard) there is a possibility this

could lead to duplication of a resolution policy. The tool could potentially detect this

situation by looking for overlap of resolution triggers and conditions. Another useful

feature of the tool would be to communicate two-way with the policy server. Further

to uploading resolutions to the policy server, it could read existing resolution policies

(defined manually or through the policy wizard) and update the conflict matrix with

conflicts derived from these. This would allow conflicts defined manually via the policy

wizard to be used in conjunction with conflicts identified by Recap.

146

Chapter 6

Goal-Directed System

Management

This chapter presents an approach to managing a system using high-level goals. In

the methodology developed, a goal is a user-defined aim for system operation, which

is realised through the selection, parameterisation and execution of suitable policies.

Whereas policies are only applicable when triggered, goals persist throughout the life of

the system. In this chapter, section 6.1 introduces the concept of a goal and summarises

existing goal-based systems and approaches. Section 6.2 presents a goal-directed ap-

proach and section 6.3 explains how this has been implemented as a working system.

Sections 6.4 and 6.5 demonstrate the goal-directed approach for the applications of In-

ternet telephony and sensor network/wind turbine management respectively. The final

section 6.6 summarises and evaluates the chapter.

6.1 Introduction and Background

This section outlines the differences between goals and policies, the motivation for using

goals in a policy-based environment, and summarises general goal-based approaches in

computing, and discusses prior work using goal-based policy approaches. Explanation

is given as to how the approach presented in this chapter relates to previous work in

this field.

147

6.1.1 Goals vs. Policies

A goal is distinct from a policy in several ways. Goals are abstract aims and objectives

of a system. These are not immediately achievable through any single low-level system

action (e.g. “minimise vehicle breakdown” or “increase sales of blue Smarties”). In con-

trast, a policy is a structured description of how a particular (detectable) system event

can be handled using actions that dynamically modify system behaviour (e.g. “run

a full diagnostic checking program on the engine when an oil warning light flashes”).

Goals are expressed as general aims that do not consider the technical capabilities of

the underlying system, whereas policies relate directly to specific system behaviour.

6.1.2 Motivation for Goal-Direction

The need for goal direction in a policy-based environment stems from the need to control

and manage a system from a higher-level, more abstract viewpoint. While policies

allow users to customise the way a system is managed, this flexibility is something of

a double-edged sword. For almost any application domain, there may be restrictions

imposed from a higher level. These may be administrative guidelines, health or safety

procedures, legal requirements, technical restrictions on the system concerned, or more

general business objectives. Such objectives must somehow be adhered to through

the policies executed. Conflicts must be handled between the actions of both levels.

Policies detect and handle specific system events at the moment they occur, with limited

consideration as to the state of the system as a whole. In the event of several policies

applying under the same conditions, the policy system will simply execute them all

should no conflict be determined. Using policies alone, it cannot be determined which

policies are “better” to choose. The use of high-level objectives (goals) to direct system

behaviour offers the following benefits:

• high-level management aims can be specified above technical actions

• greater autonomy is offered in system management and control

• the most appropriate triggered policy or policies may be selected for execution

depending on their contribution to the high-level goals

148

• goals exist continuously throughout the system lifetime, constantly managing and

directing low-level system behaviour.

6.1.3 Goal Identification and Definition

Goals must be identified and then defined in a structured and processable manner. Simi-

lar to software system requirements elicitation and analysis, basic information gathering

techniques can produce sample goals from the human, software or hardware actors that

interact with the system. Sources of high-level goals may be wide-ranging, including

human operators (e.g. technical and non-technical users of the system), commercial

organisations and government organisations (for security or legal requirements). User

requirements based on use cases and scenarios can be used to extract goal descriptions.

These descriptions may then be elaborated in formal languages or natural language,

expanding and breaking down individual descriptions into subgoals or actions. Once

identified, goals are defined as individual statements using a particular formal or struc-

tured language.

6.1.4 Goal Refinement

Goal refinement, or goal elaboration, is the process of incrementally breaking a goal

down into one or more subgoals (actions or policies) to achieve it. A number of areas

have taken advantage of the notion of goal refinement, including software and systems

development techniques. A goal-based approach to policy refinement views goals as

high-level abstract policies which can be refined into low-level concrete policies to realise

them. Two types of refinement can be discussed in relation to the work of this chapter:

policy-to-policy refinement and goal-to-policy refinement.

Policy to Policy Refinement

Policy-to-policy refinement (or “policy refinement”) is the act of deriving low-level

enforceable policies from higher-level more general policies. Policy refinement implies a

policy model consisting of multiple levels (a hierarchy) of policies, the top levels being

used to influence policies at lower levels. The concept of a policy hierarchy was first

149

addressed by Moffet and Sloman in [82], identifying the need for definition of broader

business objectives that could be translated into low-level system actions to achieve

them. For example, a high-level policy might be: “If the current network is overloaded,

choose another channel to route the message”. A low-level policy that could eventually

act on this might be: “If network channel 3 is free, route a message through this

channel”. The main objectives of a policy refinement process are:

• Determine the resources that are needed to satisfy the requirements of the pol-

icy. (This involves mapping abstract high-level policy entities to specific ob-

jects/devices in the underlying network.)

• Translate high-level policies into operational policies that the system can enforce.

(This ensures policies derived from the refinement process are supported by the

underlying system.)

• Verify that the lower-level policies actually meet the requirements specified by

the higher-level policy. (This ensures the incremental refinement process can be

checked for consistency and correctness at all stages.)

These objectives are aimed solely at policy-to-policy refinement, differing from the

notion of higher-level goals which are not necessarily structured in the same form as

an executable policy. The initial application described by Moffet and Sloman concen-

trated on the configuration of a network. Refinement therefore focused on the physical

network resources and sets of operations supported by the physical hardware – which

are relatively concrete to determine.

Moffet and Sloman identified two distinct phases of policy refinement. The first

phase is the translation of abstract policies into operational subpolicies. The second

phase is to map these subpolicies to specific operations or actions that configure the

system to achieve the (initial abstract) policy. Subpolicies are mapped to one or more

policy actions. Of these phases, the first is generic (a technique applied to any domain

policy sub-system), whereas the second is highly domain-specific.

150

Goal to Policy Refinement

Refinement of goals into executable policies requires plan formation and a mechanism to

either follow this plan or refine/regenerate it in response to changes in system behaviour.

Although policy-based management techniques have expanded, standard methods of

deriving executable policies from higher-level system objectives is the focus of research.

Goal direction using goals and policies requires:

• a method of representing goal-related information for a domain

• a technique for refining high-level goals into concrete policies

• a means of inferring the combinations of actions that will achieve these concrete

policies.

6.1.5 General Goal-Based Approaches in Computing

Goals are not a new concept in the context of system design and operation. Goal-driven

systems have been utilised in a variety of approaches since the early 1960s. Many goal-

based techniques and approaches exist in the form of systems, models, frameworks

and formal languages which govern how goals may be identified, defined and refined

into actions that achieve them. This section outlines the main goal-based approaches

in computing which have been influential in the design of existing goal and policy-

based systems (described in the next section) and also the approach to goal directed

configuration described in this chapter.

AI Planning

Automated planning and scheduling is a topic related to that of goal-directed config-

uration. It was formed as a general branch of Artificial Intelligence (AI) and applied

initially in the field of robotics. Planning solves problems by considering desired future

states, and then deriving a suitable action plan to describe what actions to take to

change a system from its current state to its goal state. In known environments with

available models, planning can be done offline. Dynamic environments require more

complex online approaches, where strategies need constantly revised and models of the

151

domain area need to be adapted. Such dynamic situations are largely addressed using

trial and error approaches, and ultimately the results are unpredictable. A typical

planning algorithm takes three inputs encoded in a formal language: a description of

the initial state of the world, a description of the desired goal(s), and set of possible

actions.

Agent-Based Systems and Intelligent Agents

Agent-based systems work toward achieving a given goal in a modelled environment.

There are two types of entity to model in such a system: actors (electronic or human

entities who seek to achieve objectives or goals) and resources (materials, devices,

systems, engineers, etc.). AI agent-based systems program agents based on the concepts

of belief, goal and plan. An agent tries to fulfill its goals by selecting appropriate plans,

depending on its beliefs about the environment. Through the execution of a plan, the

world and the beliefs about the world change – resulting in successful goal achievement.

Intelligent Agents provide systems with a form of autonomous control, allowing

software to reason about the environment in which it operates. To do this, agents must

have access to information about the history and operation of the system concerned. An

agent perceives the environment through sensors and acts on the environment through

actuators (output action signals) [69]. Although various types of agents exist, goal-

based, and knowledge-based agents are particularly relevant here.

Goal-based agents act to try to achieve set goals. They monitor the current state

of the system via sensor input, consider what the world would be like if each possible

action were applied, and choose the action that is most likely to eventually lead to

achievement of its goals. Specialist languages exist to support the development of

goal-directed agents, such as 3APL [1] (pronounced triple-a-p-l).

Knowledge-based agents employ first-order logic to deductively reason about an

environment – a process otherwise known as monotonic reasoning. In contrast, non-

monotonic reasoning deals with situations where conclusions may require revision in

the light of new knowledge being received [95]. Knowledge-based agents use a Knowl-

edge Base (KB) which defines facts about the world (i.e. states, goals and system

152

actions), expressed formally in a Knowledge Representation Language. Strips (Stan-

ford Research Institute Problem Solver [64]) and it’s successor ADL (Action Description

Language [85]) are two well-known representation languages.

Requirements Engineering (RE) Methods

Goal orientation has been used in Requirements Engineering (RE) to derive software

specifications in system design. A good background covering this topic can be found

in [30] and [79]. Requirements Engineering (RE) is the process of gathering, defining

and analysing the needs, conditions and functions of a system or software application.

A high-level system goal can be refined into formal specifications of software services

or operational functions. The sources of goals for such RE purposes are based on

human and organisational behaviour, with less focus on the technical requirements for

a system. Many RE systems have utilised the Kaos framework [23] to model and refine

goal-based scenarios.

Kaos (Knowledge Acquisition in autOmated Specification) is a framework for goal-

oriented requirements engineering based on temporal logic and AI refinement tech-

niques. Goals and states are rigorously defined in order to generate a formal proof

that derived requirements match the goals defined for the system. Goals are collected

through analysis of system functionality, technical documentation, and input from fu-

ture system users. Gathered goals are structured so that:

• each goal (except the top-most goals) is typically justified by at least one other

goal that explains why the goal was introduced

• each goal (except the bottom-most goals) is refined as a collection of subgoals

describing how the refined goal can be achieved.

Goals can conflict when the system reaches a state in which it cannot satisfy goals

simultaneously. Agents in Kaos are human or automated components. Each goal is

continually refined into subgoals that are assigned to and achieved by multiple agents.

The refinement process stops when the top-most goal is placed under the responsibility

of a single agent.

153

Summary and Analysis

Of the goal-related approaches just described (AI planning, agent-based systems and

RE methods), none are particularly suitable for adaptation in a policy-based domain.

AI planning methods are more effective when used in an offline environment, and

not so helpful when trying to derive policies from goals dynamically. Pure agent-

based modelling techniques are inappropriate as they concentrate on the prediction

and modelling of future outcomes as opposed to transforming current system behaviour.

The policy system environment is non-monotonic (the best plan of action is subject to

change depending on feedback from the underlying system) making knowledge-based

agents unsuitable. However, goal-based agent techniques are useful as a base for the

dynamic goal refinement approach described later in this chapter.

The use of RE methods of goal definition appear best suited to the development

of a system from scratch. The goal-directed approach presented in this chapter was

developed in an almost bottom-up fashion in that, through the Appel policy language,

the types and structure of actions into which goals can be refined were already known.

As discussed in the next section, other existing goal-based policy approaches have

utilised Kaos. While Kaos is useful for accurately modelling goals and actions and

ensuring all goals are implementable by the underlying system, the approach lacks any

mechanism to refine or implement the specification generated – extra work is required

to interpret the specification and generate appropriate actions to achieve it, making it

less suitable for the approach in this thesis.

6.1.6 Existing Goal-Based Policy Approaches

This section summarises and critically analyses existing work incorporating goals and

policies that is most relevant to the goal-directed approach presented later in this

chapter. This work includes frameworks and mechanisms for both goal-to-policy and

policy-to-policy refinement. Existing work is first outlined, followed by a summary

explaining how the work of this thesis differs.

154

Existing Approaches

In [60], Davy et al. present a formal policy continuum model and authoring process,

together with an approach to policy conflict detection in goal-derived policies. In this

approach, high-level policies are designated as goals to be achieved by refinement into

groups of lower level policies. The policy continuum is the concept of separating sets

of policies (possibly by different authors) into different levels, but in a flat structure

rather than a traditional policy hierarchy. For example, policies specifying business

objectives written by administrative users appear at one end, whereas policies that

define more complex system aspects written by technical experts are at the opposite

end. However, the framework outlines a generic methodology rather than describing a

particular implementation.

A concept termed “policy-based reconfiguration management” is presented in [55].

This approach presents a framework for creating policies dynamically at run time to

suit changing system requirements. This utilises a policy hierarchy model to refine

high-level user goals into low-level objectives.

A goal-based approach to policy refinement is presented by Bandara et al. in [35].

This approach uses the Ponder policy language and environment [57] to represent poli-

cies and goals. The system environment and goals are defined formally using Event

Calculus. Using abductive reasoning techniques, a method is shown to derive functional

sequences of operations to achieve goals.

An implementation of this approach described in [34] uses Kaos to specify goals

both informally (in natural language) and formally (using temporal logic rules). Re-

finement patterns are then used to decompose these goals into subgoals that logically

entail them. Goal refinement is based on a technique defined by Darimont and Lam-

sweerde [59]. The system also uses obstacles (negated goals) to state what the system

should not achieve. Obstacles are defined in the same way as regular high-level goals

and require similar refinement into subgoals. Obstacles are avoided by introducing new

goals. However, refined goals require conversion into policy operations (actions) before

execution.

Rubio-Loyola et al. discusses an approach using linear temporal model checking for

155

goal-oriented policy refinement frameworks [94]. The approach is based on Require-

ments Engineering (RE) and model checking techniques, using goal elaboration mech-

anisms proposed by Bandara et al. in [35]. The approach suggests formal verification

techniques to analyse policies in an attempt to aid policy refinement. An application

of the approach is outlined in [92], demonstrated using a scenario for Quality of Service

(QoS) Management, with Ponder as the policy language and environment.

This work was extended further by Rubio-Loyola to define a complete policy refine-

ment methodology [93]. This approach is deemed more applicable to realistic refine-

ment scenarios than previous work. The methodology provides a formal procedure for

defining refineable policy hierarchies and a framework to support the refinement pro-

cess. The framework allows goals and the policy hierarchy to be input, and supports a

two-stage refinement process. The first stage refines goals into other goals, effectively

placing the input goals in a hierarchy. The second stage refines each goal sub-tree into

sets of policies within the policy hierarchy. These stages both occur offline. During

system operation, administrators may select which goals to achieve. Dynamically, the

lowest-level executable policies are selected to best achieve the selected goals. The ap-

proach aims to define a complete framework to capture all processes involved in policy

refinement and management, and is not currently a working system.

Summary and Analysis

Of the existing work discussed, most approaches rely on the notion of policy and goal

hierarchies, and concentrate on goal refinement as a process of logical entailment by

analysing policies and goals at different levels of abstraction.

The approach taken in this thesis differs in the following ways:

• Common to existing approaches is the use of formal methods to define and re-

fine goals, and also to verify policy solutions. In this thesis approach, numerical

analysis is used in the form of goal measures, together with optimisation tech-

niques to govern policy selection. This is instead of inferring actions from the

goals themselves using formal methods of statement analysis as in the approach

by Bandara et al [35]. The lack of formal definition makes the task of specifying

156

a goal domain more user-friendly as no experience of formal methods is required.

• Goals are defined using similar language syntax as for ordinary policies, reducing

complexities involved in translating a goal language into policy constructs. Note

that although the same syntax is used for both goals and policies in this thesis

approach, goals are still viewed semantically as separate entities from policies –

a major difference to existing work which views goals as more abstract policies.

• The approach does not utilise goal or policy hierarchies, thus avoiding documented

issues where modifying policies at lower levels affects the aims of higher-level poli-

cies. Goal-related policies are not intended to be modified. In addition, avoiding

multiple layers of abstraction in goal and policy definition is simpler to implement

and design than the complex hierarchies developed by Rubio-Loyola [93].

• Similar to existing policy-based approaches, many goal-based systems have evolved

and have been applied within the domains of security and system management.

Existing approaches have not been applied to domains other than network ser-

vice management, thus failing to demonstrate the benefits that high-level goals

can bring to system management over the use of policies alone. The approach

presented in this thesis demonstrates a system capable of goal direction using

policies in more general domains (specifically, Internet telephony and sensor net-

work/wind turbine management).

6.1.7 Optimisation Overview

In section 6.1.5, problem solving was discussed with a view to forming a plan of actions

that ultimately allow a system to move between an initial state and a goal state.

Associated with this is the issue of “optimisation”. When attempting to form a plan

there may be several possible solutions to a problem, and some may be more favourable

than others. Determining the optimal solution depends on a number of factors including

the state of the system or environment at a given time and the constraints upon the

system imposed by its goals.

The goal-directed, policy-based approach presented in this chapter uses a numer-

157

ical form of representing the system state and optimisation to select the best set of

policies to dynamically achieve goals. The optimisation approach uses a goal function

which is similar in nature to the so-called “fitness function” associated with common

optimisation algorithms. As a background, the chief characteristics of optimisation and

common approaches are given here.

Where there are multiple options that may or may not help achieve a goal, possible

action sequences must be examined to determine their effect on the system. The optimal

solution is the sequence of actions that moves the system closest to its goal state. In

optimisation terms, the process of determining the best sequence of actions to select is

known as a “search” [95]. The set of all possible solutions to a problem is known as

the search space. As the number and type of search algorithms available is vast, only

commonly used methods are mentioned here.

The most efficient search method to use depends on the problem domain, including

the size of search space, whether it is fixed or continuous, and the distribution of good

and bad solutions within it. Search algorithms can be broadly split into two types:

generic uninformed searches (where no problem-specific information is considered) and

informed or heuristic searches (which use problem-specific knowledge to search more

efficiently) [95]. Optimisation algorithms use an evaluation function or fitness function

to numerically determine the value of a particular solution. Additionally, algorithms

may perform a local search (where only the optimal value found is important) or a global

search (where the path or steps taken to get to the optimal value are important). Local

search algorithms, such as hill-climbing and simulated annealing, search continuously

in the direction of increasing value until no neighbouring value yields a higher value.

These algorithms suffer from the problem of “local maxima” whereby higher peaks exist

elsewhere in the search space but are overlooked, and they can encounter a “plateau”

where the search space is flat and optimisation cannot progress.

Global heuristic search methods for optimisation problems include biologically-

inspired evolutionary algorithms. Two common approaches include Estimation of Dis-

tribution Algorithms (EDAs) and Genetic Algorithms (GAs), which are based on a

population of randomly generated points (or individuals) within the search space. Each

158

individual is typically represented as a binary string that is repeatedly tested against

the fitness function to iteratively select (or breed) further individuals that yield higher

fitness values. After each generation, an individual may mutate to another point in the

search space. The algorithm terminates when it exceeds a designated maximum num-

ber of generations (regardless of whether a good solution has been found), or when a

satisfactory fitness level is reached for the population. This approach relies upon input

parameters such as the initial size of population to choose, the rate of mutation, the

maximum number of generations and the time allowed before terminating the search.

Consequently, these algorithms are highly problem-specific, and their parameters are

difficult to accurately identify [95].

6.2 Goal-Directed Approach

A policy exists to handle a specific event under specified conditions, and is invoked and

executed only when those circumstances occur. A goal is intended to have an extended

lifespan. Goals define high-level abstract aims of the system, while policies provide

a means of responding to specific events with actions that modify system behaviour.

This section presents a new approach to goal-directed system management which takes

a set of goals and continually tries to achieve them by selecting and executing policies

that contribute toward their measures. This work has been published in [54].

6.2.1 Overview

Goals are abstract system objectives from the viewpoint of human users, and are not

directly implementable by a single low-level system action. Goals within a policy-

based system environment specify the desired optimal states (or classes of states) of

the system. Traditional goal-based approaches form a plan to get the system into a

goal state from some initial state. On arrival at this goal state, the aim is achieved

and the system ceases in its quest. This approach is not effective for goal direction in

a policy-based environment for two reasons. The first is that the dynamic nature of a

policy system renders it unlikely the system will remain in a single state permanently.

Thus, when a goal state is reached, external factors may well force it out of this state.

159

The second reason concerns the lifetime of the system. A policy system is intended

to operate continuously, and should not stop once a goal state is reached. In the

approach presented here, the aim is for the system to continuously adapt its behaviour

to ensure it remains indefinitely within the scope of its goals. The system does not

discard its goals or terminate when its goals are initially achieved. This approach

also differs from other known refinement approaches in that it reduces system state,

goals and policies to a numerical rather than logical form. Basing refinement on purely

numerical analysis allows the use of optimisation to select the most appropriate policies

and their parameters at run-time depending on the current values of system variables

and other state information. This technique is also more user-friendly towards non-

technical domain experts as the goal domain may be expressed without any knowledge

of formal methods.

The approach defines the system domain in terms of variables that describe its

state. Goals are associated with numerical measures which rely on state variables.

Policies have actions which modify the system state in some way. Policies are selected

to modify state variables so as to achieve goal measures. The process of selecting

policies to achieve goals is implemented in two stages. The first stage is performed

statically, where an initial set of prototypes (template policies) is matched against

goals and is instantiated as actual policies that contribute to them. This is achieved

by matching the effects of prototype actions against each goal measure. The first

stage may be involved offline, but also online when goals and policies are defined (or

removed). The second stage is performed at run time, while the policy system is

operational. When goal-related policies are triggered, goal optimisation attempts to

derive the policy combination that, when executed, will contribute most effectively to

system goals.

The following subsections outline the goal-directed approach and the algorithms

used to select and execute policies to achieve goals. Section 6.2.2 describes the goal

domain, including a definition of state variables, goals, goal measures and the overall

evaluation function. Section 6.2.3 describes the form of a prototype policy, used as a

policy template. Section 6.2.4 explains the static process of analysing and instantiating

160

prototypes to serve goals. Section 6.2.5 explains the run-time process of selecting

optimal policy sets that contribute to system goals based on the current state of the

system.

6.2.2 Goal Definition and System State

The goal domain is defined in terms of variables that describe the state of the system at

any given time. These so-called “state variables” represent aspects of the environment

subject to change while the system is operational. Such variables may include config-

urable system parameters and external values established while the system is running.

State variables are of two types:

Controlled: These variables have values that can be set dynamically by a policy action

(e.g. allocated bandwidth, sensor reporting frequency or turbine blade angle).

Uncontrolled: These variables have externally modified values that may not be known

until run-time. Commonly, these variables are established by a policy trigger

reporting on current system events (e.g. current network traffic load or current

wind speed). The value of an uncontrolled variable cannot be modified through

the actions of a policy. It is altered only as a consequence of changes in the system

environment.

Each state variable has an initial default value (used until the actual value is known)

and maximum and minimum values which establish its range within the context of the

system. The value of each variable may alter as the system changes state.

A goal is an abstract aim defined by a human operator. Every goal has a measure

which defines how a numerical value for the goal may be calculated. A goal measure is

a function comprising any mixture of controlled variables, uncontrolled variables and

optional constants. In addition to a measure, a goal has a direction in which it should

be achieved, namely “maximise” or “minimise”. Maximising a goal measure aims to

find the highest achievable value of its measure, while minimising aims to find the

lowest value.

Goals may have optional conditions which act as constraints. A goal condition is

effectively a pre-condition on the policies selected to support it, defining additional

161

requirements that must be satisfied for the goal to be achieved. Conditions may use

controlled or uncontrolled state variables, or any other parameter known to the system

at run time. The format of goal conditions must be compatible with the language used

to specify policies.

A system will likely have multiple goals as opposed to a single goal. A set of

goals should be achieved concurrently, and may contain measures which tend in differ-

ent directions – maximising and minimising different functions simultaneously. When

defining multiple goals, the same controlled or uncontrolled variable may be specified

in more than one goal measure. When defining multiple goals, a “super” measure is

required to calculate a numerical value across all goals. This combined measure is

termed the goal evaluation function and is a combination of the individual goal mea-

sures. Where the goal is to maximise a function, the measure is preceded by a plus

sign (+). Where the goal is to minimise a function, the measure is preceded by a minus

sign (−).

When combining multiple goal measures, weightings can be applied to define their

relative importance. A domain expert may determine the most appropriate weightings

to allocate, based on experience, knowledge of the calculations used in goal measures,

or a general preference as to which goals should be ranked over others. The use of

weightings also overcomes certain conflicts between goals. Conflicts can occur when

multiple goal measures share a common state variable, and at least two of these are

tending in opposite directions. That is, one goal is attempting to maximise a function,

while the other is attempting to minimise a function. Goal conflicts are different to

policy conflicts (discussed in Chapter 5) and are detected and resolved independently

of one another.

The elements of the goal approach are explained below using an abstract example.

Assuming the system domain is described using the state variables w, x, y and z, and

Alfa and Bravo are some measurable aspects of the system we wish to control, the

following two goals may be defined:

162

Goal 1: Maximise Alfa = x * y

Goal 2: Minimise Bravo = x + z + (3.14 * w)/100

Goal 1 is expressed in terms of the variables x and y. Goal 2 is more complex and

is calculated using a combination of constants and state variables. At run time, the

values of the variables w, x, y and z will vary in response to environmental events

and the actions of policies. The aim of the goal-directed system is to attempt, where

possible, to select policies whose actions result in the highest value for Goal 1 and the

lowest value for Goal 2. Suppose it is decided that it is more important to minimise

Bravo whenever possible at the expense of maximising Alfa. The two goals can be

weighted accordingly. The evaluation function is then determined as follows:

Evaluation function:

= Give Alfa weight 0.3 and Bravo weight 0.7

= + (0.3 * Alfa) − (0.7 * Bravo)

= (0.3 * (x * y)) − (0.7 * (x + z + (3.14 * w)/100))

Defining the goal domain, including the identification and specification of state

variables, goals, measures and weightings, is a task for domain experts. However, the

state variables chosen must accurately link with available actions within the chosen

policy language. In this approach, policy actions directly or indirectly influence the

modification of state variables, therefore their effects must realistically reflect the range

of actions supported by the underlying policy system. It is acceptable that a declared

state variable might not be affected by any defined prototype policy. However, it is a

static error should a prototype policy effect a variable other than those in the declared

state variable set.

163

6.2.3 Prototype Policies

Goals are refined into sets of policies whose actions may contribute to goal achievement.

As an initial stage in this refinement process, it is necessary to use a template policy

known as a “prototype”. A prototype is instantiated as an actual executable policy

with additional information which specifies the goal or goals it potentially supports.

A set of prototypes must initially be defined as input to the goal system. Prototypes

may also contain parameterised actions. The values of a parameter remain open until

policy selection time.

All prototypes must contain at least one “effect” statement. Effects are linked to

the actions of the prototype and specify how the prototype influences or modifies the

state of the system. Both controlled and uncontrolled variables may be referenced

within prototype effects. Although uncontrolled values cannot be modified through

the actions of a policy, it is possible consequential actions might influence changes in

their value. For example, an uncontrolled variable such as a message counter might be

incremented by the act of sending an email message.

Figure 6.1 specifies the format of an effect statement using EBNF notation. Note

that a prototype may have one or more effects, in a comma-separated list. In summary,

a valid effect statement must consist of a variable name (a defined controlled or uncon-

trolled state variable), followed by an operator (increment, decrement or equals), fol-

lowed by a value (a parameter or float value). The increment and decrement operators

(+=,−=) increase or reduce the current value of the controlled/uncontrolled variable

by the specified value. The equals operator indicates the controlled/uncontrolled vari-

able is assigned the specified value. Referring to Figure 6.1, supposing there exists a

controlled variable “bar height”, a valid effect statement is “bar height = 25.5”. This

indicates one action of the prototype is to assign this state variable the value of 25.5

units. Similarly, the effect could indicate a parameterised action using the notation

“bar height = $h”. Based on these effects, a prototype can be evaluated against each

goal measure. Where a prototype modifies a state variable contained within a goal

measure, it potentially contributes to the achievement of that goal. At this point, the

magnitude of the change made by the prototype on each variable is irrelevant.

164

<effects> ::= <effect_statement>(","<effect_statement>)*
<effect_statement> ::= <variable_name> <operator> <value>
<variable_name> ::= controlled_variable|uncontrolled_variable
<operator> ::= "+="|"-="|"="
<value> ::= <parameter>|"-"?<digit>+"."<digit>+
<parameter> ::= "$"<symbol>+
<symbol> ::= (a..z)|(A..Z)|"_"
<digit> ::= 0|1|2|3|4|5|6|7|8|9

Figure 6.1: Prototype Effect Statement Format

6.2.4 Offline Prototype Analysis and Instantiation

Statically, it is possible to determine whether the execution of a prototype modifies

a variable used within a goal measure. Whether this modification actually helps or

hinders the system achieve its goals depends on the context and state of the system at

run time when a policy is triggered. Consequently, the static stage of goal refinement

is limited to identifying prototypes that potentially contribute to goals.

Inputs to this initial processing are a set of goals, their measures and conditions,

and a set of prototypes. The output is a set of policies, one policy for each prototype

deemed potentially helpful to achieving at least one goal. The process is performed in

two steps. The first step is to scan the set of prototypes, matching each one to goals

it might contribute to. The second step scans this set again, instantiating prototypes

that contribute to goals and disregarding those which do not.

The first step is shown in Figure 6.2. The algorithm considers each prototype in

turn, comparing its effects against the measure for each goal. If a prototype modifies

any variable within a goal measure, it potentially contributes to that goal. For each

prototype:

• If at least one effect modifies a variable in the goal measure, the prototype is

marked as contributing to that goal, and the next goal measure is considered.

• If no effect modifies a variable in the goal measure, no contribution is made, and

the next goal measure is considered.

165

Parse effects from
prototype as a list

Get first/next
prototype effect

More
effects
in list?

Is variable in
measure?

Get first goal
measure

More
goals to
check?

Yes

End

No

More
prototypes in

set?

Yes

No

Mark prototype as
contributing to the

current goal

Yes

No

Yes

No

Get first
prototype

Get next
prototype

Get next
goal measure

Figure 6.2: Prototype and Goal Matching Process

166

The second step instantiates prototypes that contribute to goals, and filters out

currently irrelevant prototypes. The instantiation process clones each prototype and

alters the copy to be a valid, executable policy. In particular, this involves inserting

any conditions associated with goals the policy supports. Goal conditions are appended

to any existing conditions inherited from the prototype. The approach requires that

to make a contribution toward at least one goal at run time, a policy must satisfy

any prototype-inherited conditions, and at least one set of conditions associated with

a goal. For the goal set a policy contributes to, if all goals have conditions, the condi-

tions from each goal are appended to the new policy. If none or a subset of the goals

have conditions, the policy remains unchanged in its conditions. To demonstrate this

procedure, suppose a prototype has a set of conditions and is instantiated to support

three goals, the third of which has no conditions. The resulting policy conditions are

combined as follows:

<Prototype conditions> AND

(<Goal 1 conditions> OR <Goal 2 conditions> OR <Goal 3 no conditions>)

As the third goal has no associated conditions (i.e. there is an implicit “true” condi-

tion), the policy will always be eligible for execution if just its original policy conditions

hold. To avoid redundant coding and unnecessary runtime processing, the algorithm

ignores the conditions of Goals 1 and 2 during the instantiation process – inserting no

goal-related conditions. The full prototype instantiation process is shown in Figure 6.3,

and is summarised as follows:

• If a prototype is not marked as contributing to any goal, it is disregarded.

• If a prototype is marked as contributing to a single goal, the prototype is instan-

tiated as a policy and any conditions on that goal are inserted.

• If a prototype is marked as contributing to more than one goal, and none of these

goals have conditions, the prototype is instantiated as a policy.

• If a prototype is marked as contributing to more than one goal, and all of these

167

Get first
prototype

Instantiate
prototype and

insert goal
conditions

Do
all goals have
conditions?

Yes

Get next
prototype

Yes

More
prototypes in

set?

Yes

End

No

Instantiate
prototype without
goal conditions

No

Prototype
marked for any

goals?

Disregard the
prototype

No

Figure 6.3: Prototype Instantiation Process

168

goals have conditions, the prototype is instantiated as a policy and all goal con-

ditions are inserted.

• If a prototype is marked as contributing to more than one goal, but only a strict

subset of these goals have conditions, the prototype is instantiated as a policy

and no goal conditions are inserted.

On completion of this process, prototypes are no longer required for execution

(though they remain for future use when goals change). All run-time references are

made to the newly generated policies.

This two-step process of prototype analysis and instantiation must be performed

each time the goal set is altered. Alterations include the modification of goals, their

conditions or measures, state variables or prototypes. Such changes in the goal domain

should be infrequent, but it is plausible that over time the system goals will change to

reflect fresh objectives or new policy actions.

A concrete demonstration of the described process is given in the following exam-

ple. There are three goals and three prototypes, Goal 1 and Goal 2 have associated

conditions and the defined state variables are v, w, x, y and z:

Goals

Goal 1: Maximise Alfa (Conditions: x > 0 and w > 0)

Goal 2: Minimise Bravo (Conditions: w = 1)

Goal 3: Minimise Charlie

Measures

Goal 1: x * y

Goal 2: x + z + (3.14 * w)/100

Goal 3: x * z

Prototypes

Prototype 1: y += 2

Prototype 2: x = 1, z += 1

Prototype 3: v −= 5

169

Static analysis of the three prototypes gives the following results:

• Prototype 1 modifies the value of y which is present in the measure of Goal 1.

Prototype 1 is instantiated in support of Goal 1, and the conditions of this goal

are inserted into the new policy.

• Prototype 2 modifies the value of x and z. The effect on x is compared against

each goal measure. As x is present in all three goal measures, the second effect

statement referring to z need not be considered at this stage (since the prototype

is definitely needed). Prototype 2 is instantiated in support of Goals 1, 2 and 3.

As some but not all of these goals have associated conditions, no conditions are

inserted into the new policy.

• Prototype 3 modifies the value of v which does not feature in any of the goal

measures. Prototype 3 is therefore disregarded.

The result is two new policies which, when triggered, potentially contribute to the

defined goals.

6.2.5 Run-time Policy Selection and Parameterisation

The previous subsection outlined an initial stage in the approach to goal refinement,

which instantiates prototypes as executable policies to support system goals. This

section explains an approach to achieving goal-directed behaviour at run-time, by dy-

namically selecting appropriate sets of policies that move the system closer toward its

goals. This run-time process is performed when goal-related policies are triggered, and

consists of two main activities: policy selection and parameter optimisation.

The selection process applies only to goal-related (or prototype derived) policies.

When a policy is triggered, the values of state variables used within the goal evalua-

tion function are known. Depending on the current values of these variables, the goal

evaluation function might be better or worse if a triggered policy is executed. If more

than one goal-related policy is triggered, every combination of these policies must be

considered in order to determine the one that yields the highest value for the func-

tion. As part of this process, combinations that include parameterised policies must

170

be optimised to select the most appropriate value for each parameter. The outcome is

therefore a subset of triggered policies along with optimal values for any parameters

contained within them. Possible scenarios are:

• No policies are selected as every combination yields a lower value when compared

to the current state of the system. In other words, executing any of the policies

triggered will move the system further away from its goals.

• All or some of the triggered policies are selected for execution, as the combination

of their actions pushes the system closer to its goals.

The run-time selection procedure applies only to goal-related policies whose condi-

tions are satisfied. Triggered goal-related policies whose conditions are not satisfied are

automatically filtered out by the policy server. An overview of the process is described

in Figure 6.4.

The approach is summarised as follows:

1. On receipt of a trigger, the policy system retrieves all policies which are applicable

and whose conditions are satisfied.

2. All possible combinations of prototype-derived policies are considered.

3. Each combination is considered in turn:

(a) The effects of each policy are compared.

(b) If at least two policies in the combination seek to modify a common state

variable, the combination is deemed conflicting and discarded.

(c) If there are parameterised policies, the policy set is optimised against the

goal evaluation function for possible values of each parameter. The highest

score obtained for the function is noted along with the parameter values

associated with it.

(d) If no conflicts exist, and no parameterised policies are present, the combi-

nation of policies is evaluated against the goal evaluation function and the

result stored.

171

Policies are
triggered

Set of prototype-
derived policy
combinations

generated

Analyse
combination for

conflicts

Do policy
effects

conflict?

Discard
combination

Yes

Evaluate
combination and

store result

No

More
combinations?

End

No

Get next policy
combination

Yes

Parameter-
isation?

No

Yes

Find the optimal
parameter values

for this
combination and
store the result

Figure 6.4: Runtime Policy Selection and Optimisation

172

4. The combination of policies (and parameter values if applicable) resulting in the

highest score for the goal evaluation function is selected for execution. Any pa-

rameterised policies are instantiated with the chosen parameter values.

Optimisation algorithms are largely domain-dependent. While powerful optimisa-

tion techniques, such as those outlined in section 6.1.7, are suitable for specific problems,

simpler techniques may be sufficient for others. The nature of the problem space varies

across applications, with different topology and greater or fewer local maxima or min-

ima. The most efficient and effective optimisation algorithm to apply will therefore be

different for each goal domain. The approach therefore defines the inputs and outputs

of runtime optimisation without defining the exact algorithm that should be used.

The inputs to the optimisation algorithm are a set of goal-related policies, the goal

evaluation function (an expression), and a list of state variables and their current values.

Additionally, the range of values for each state variable must be known, based on the

maximum and minimum value for each. The output of the optimisation is a set of

policies, including values for any parameters contained within them.

The process of evaluating policy combinations against a goal function is demon-

strated in the following example. This example assumes three goal-related policies

have been triggered (labelled P1, P2 and P3) and that these have the effects shown

below. State variables are x, y and z, and their current values are as below. The

evaluation function is deliberately simplified in this example to easily calculate a value

for each policy combination.

Goal Evaluation Function:

(x * y) − (x * z)

Triggered Goal-related Policies:

P1: y += 2

P2: x = 1, z += 1

P3: x −= 5

173

Current State Variable Values:

x: 10

y: 10

z: 1

The result of optimising the policy set is shown in the table below.

P1 P2 P3 x y z Result

0 0 0 10 10 1 90

0 0 1 5 10 1 45

0 1 0 1 10 2 8

0 1 1 * 10 2 -

1 0 0 10 12 1 110

1 0 1 5 12 1 55

1 1 0 1 12 2 10

1 1 1 * 12 2 -

The best solution is the combination of policies that result in the highest value for

the goal evaluation function. A “*” denotes a variable that is altered by more than one

policy in the selected combination. This constitutes a conflict and the combination is

automatically discarded. In this example, P2 and P3 both seek to modify the variable

x and therefore cannot be executed together. The first row in the table represents the

state of the system before executing any of the triggered policies, using the variable

values as they are currently known. Should this value yield the highest result, no goal-

related policies would be selected for execution. In this case, the optimal solution is

to select P1, as this yields the highest value of 110. At this moment, executing P1 is

therefore the most helpful in trying to achieve the defined goals.

During the policy selection process, values for variables in any parameterised poli-

cies (within the triggered policy set) are chosen. The following example assumes the

same goal evaluation function, current state variable values and triggered policy set as

just described for policy selection, except this time P2 is a parameterised policy which

174

sets the variable z to some optimal value (noted as $T). For this example, the value

range for z is small – between 1 and 3 inclusive. The run-time parameterisation process

evaluates each value of z for every policy combination that includes P2. The results of

this are given in the table below.

Triggered Goal-related Policies:

P1: y += 2

P2: x = 1, z = $T ($T = 1 or $T = 2 or $T = 3)

P3: x −= 5

P1 P2 P3 x y z Result

0 0 0 10 10 1 90

0 0 1 5 10 1 45

0 1 0 1 10 $T=1 9

1 10 $T=2 8

1 10 $T=3 7

0 1 1 * 10 $T=1 -

* 10 $T=2 -

* 10 $T=3 -

1 0 0 10 12 1 110

1 0 1 5 12 1 55

1 1 0 1 12 $T=1 11

1 12 $T=2 10

1 12 $T=3 9

1 1 1 * 12 $T=1 -

* 12 $T=2 -

* 12 $T=3 -

175

The results show that of the possible values for z, choosing the value 1 for $T for

policy combinations that include P3, yields a higher result than choosing 2 or 1. In this

example however, the highest value overall still comes from selecting P1 alone. If say

the combination of P1 and P2 had resulted in the highest result, these policies would

have been selected and P2 parameterised with the value 1 for $T.

6.3 Goal System Implementation

The previous section outlined an approach to managing systems using high-level goals

and policies. An implementation of this approach is now described. A goal system

has been designed and interfaced with the existing Accent policy system. Goals,

prototypes and policies refined from goals are defined using an extended form of the

Appel policy language. Ontologies provide a means of defining goal-related information

that can be retrieved by the goal system at run-time. The goal system and goal-directed

approach have been evaluated for the applications of Internet telephony and sensor

network/wind turbine management. These applications are outlined in the following

sections.

Section 6.3.1 describes the use of an ontology to define the goal domain. Section

6.3.2 outlines the syntax of goals, prototypes and goal-related policies. Section 6.3.3

provides an overview of the goal system architecture. Section 6.3.4 explains how the

implemented system operates.

6.3.1 Goal Domain Ontology Definition

Information associated with the goal domain is specified and stored in an ontology.

Ontologies were previously introduced and discussed in Chapter 4. Chapter 3 described

how a collection of related ontologies was created to define the generic and domain-

specific aspects of the Appel policy language. The core, generic aspects of Appel and

other policy environment details are defined in the OWL ontology named GenPol. This

ontology encompasses a definition of high-level concepts that describe components of

the goal domain and how they relate to one another.

The goal-related concepts include definitions of controlled and uncontrolled state

176

variables and the general definition of a goal measure. Domain-specific ontologies im-

port the contents of GenPol and may then extend these high-level concepts to define

actual named variables, measures and their properties, including a maximum, minimum

and default value for each. The relationship between goal measures and state variables

is also expressed in a domain-specific ontology.

Information stored within an ontology is accessed by the goal system using the

Poppet server interface (discussed in section 4.7). A domain-specific ontology may be

queried for a particular goal measure to obtain a list of its associated controlled and

uncontrolled state variables. Similarly, the maximum, minimum and default value for

any state variable may be retrieved.

6.3.2 Goal and Prototype Syntax

Goals, prototypes and goal-related policies are defined as individual XML documents.

Their syntax uses minor extensions to the Appel policy language in the form of two

additional policy attributes:

supports goal Applicable to a policy only. A string listing the goals a policy supports.

The format is a comma-separated list of goal document IDs. This attribute and

its contents are generated during the process of static prototype instantiation.

effects Applicable to prototypes and policies. A string listing the effects of a prototype

or policy on the goal domain. The format is a comma-separated list of effect

statements.

Only policies derived from prototypes require the “supports goal” attribute above,

which acts as a link at run time to distinguish between policies defined by domain

experts and policies generated to support goals. Policies that do not contain a goal-

related attribute are not included in the optimisation process.

Defining goals and prototypes using Appel maintains consistency between the goal-

and policy-based approaches, and has several advantages when instantiating prototypes

as executable policies. Firstly, the process of creating goal-related policies is simplified

as prototype documents can readily be cloned and altered. Secondly, goal conditions

177

are already in a policy-friendly format (i.e. composed of a parameter, operator and

value) and so may be readily inserted into new policies. In addition, existing policy

system components may be reused or shared. The policy store can be used to hold

goals and prototypes, and the policy wizard can be used to create and edit goals and

prototypes in a similar way to that of user-defined policies.

A description of a goal, prototype and goal-related policy document is now given.

The XML Schema for goal and prototype documents can be accessed at [21].

Goal Document

A goal is similar to a regular Appel policy, except it cannot have a trigger. The ele-

ment type is “goal” rather than “policy” to distinguish a goal document from a policy

or prototype. A goal may have unlimited conditions but is restricted to a single action.

Two possible actions exist: maximise(arg1) and minimise(arg1). For each action,

the parameter arg1 is a String representing a goal measure which is previously defined.

The “owner” and “applies to” attributes must be a unique entity for the goal system

and not an existing policy owner. An example goal is shown below.

0 <policy document
1 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

2 xsi:noNamespaceSchemaLocation=
3 ′′http://www.cs.stir.ac.uk/schemas/appel goal.xsd′′>
4 <goal
5 owner=′′goalkeeper@cs.stir.ac.uk′′

6 applies to=′′goalkeeper@cs.stir.ac.uk′′

7 id=′′Maximise Multimedia Use′′

8 enabled=′′true′′

9 changed=′′2008-04-21T10:20:59′′>
10 <policy rule>
11 <condition>
12 <parameter>day</parameter>
13 <operator>in</operator>
14 <value>1..5</value>
15 </condition>
16 <action arg1=′′multimedia use′′>maximise(arg1)</action>
17 </policy rule>
18 </goal>
19 </policy document>

178

Prototype Document

A prototype is identical in structure and format to a policy, except the element type is

defined as “prototype” instead of “policy”. This ensures only executable policies may

be triggered within the policy server at run-time, and only prototypes are retrieved by

the goal system during the static prototype analysis stage. An example prototype is

shown below.

0 <policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

1 xsi:noNamespaceSchemaLocation=
2 ′′http://www.cs.stir.ac.uk/schemas/appel prototype.xsd′′>
3 <prototype
4 owner=′′goalkeeper@cs.stir.ac.uk′′

5 applies to=′′@cs.stir.ac.uk′′

6 effects=′′bandwidth += 256′′

7 id=′′Add Video To Call′′

8 enabled=′′true′′

9 changed=′′2008-04-21T10:20:59′′>
10 <policy rule>
11 <trigger>call incoming</trigger>
12 <condition>
13 <parameter>bandwidth</parameter>
14 <operator>lt</operator>
15 <value>1024</value>
16 </condition>
17 <action arg1=′′video′′>add medium(arg1)</action>
18 </policy rule>
19 </prototype>
20 </policy document>

Goal-Related Policy Document

Goal-related policies (i.e. those generated through prototype instantiation and not nor-

mally written by a policy developer) are defined using almost the same syntax as regular

Appel policies, but must contain values for the two additional policy attributes “sup-

ports goal” and “effects”. The presence of both attributes distinguishes goal-related

policies from user-defined policies at runtime. Only policies with both these attributes

can be processed by the goal system. Should a regular user-defined policy include these

attributes, it would be treated as goal-derived. Regular policies should therefore omit

these attributes. An example of a goal-related policy is shown below.

179

0 <policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

1 xsi:noNamespaceSchemaLocation=
2 ′′http://www.cs.stir.ac.uk/schemas/appel policy.xsd′′>
3 <policy
4 owner=′′goalkeeper@cs.stir.ac.uk′′

5 applies to=′′@cs.stir.ac.uk′′

6 effects=′′bandwidth += 256′′

7 supports goal=′′Maximise Multimedia Use′′

8 id=′′Add Video To Call Policy′′

9 enabled=′′true′′

10 changed=′′2008-04-21T10:20:59′′>
11 <policy rule>
12 <trigger>call incoming</trigger>
13 <conditions>
14 <and/>
15 <condition>
16 <parameter>bandwidth</parameter>
17 <operator>lt</operator>
18 <value>1024</value>
19 </condition>
20 <condition>
21 <parameter>day</parameter>
22 <operator>in</operator>
23 <value>1..5</value>
24 </condition>
25 </conditions>
26 <action arg1=′′video′′>add medium(arg1)</action>
27 </policy rule>
28 </policy>
29 </policy document>

6.3.3 Goal System Architecture

A stand-alone goal system has been designed to implement the goal-directed approach.

The goal system is responsible for all aspects of goal-related processing. Entirely Java-

based, it is interfaced with the Accent policy system and the Poppet ontology server

via a collection of sockets. Consequently, the location of the goal system is not restricted

to the same physical machine as the policy server or Poppet. The flexibility offered

by such system distribution is helpful as it allows dedicated resources to be used for

applications where greater power is sought. For example, a processor-intensive goal

optimisation algorithm necessitates a large amount of memory and CPU time. The

goal system might require a stand-alone machine dedicated for this purpose.

The architecture of the goal system is shown in Figure 6.5. In this figure, the previ-

ously described policy system and ontology components appear shaded. Customisable

goal system components appear with a dashed border.

The Poppet client provides the goal system with an RMI interface to query and

180

Goal System

StaticGoalSystem

DynamicPolicySelector

GoalDomainAnalyser

ClientPoppetDriver

Optimiser

OptimiserManager

Policy System

POPPET Server

Policy Server Policy Store

Domain Ontology

RMI

Communications
Interface

Policy Wizard

RMI

FunctionEvaluator

FunctionEvaluator<class>

Figure 6.5: Goal System Architecture

retrieve goal-related information from a domain ontology. The goal system is integrated

with the existing Accent system via socket connections, allowing both entities to re-

main independent. The policy server was altered to include additional hooks to the goal

system, but is otherwise unaware of goal-related activity. Effectively, the goal system

operates as an optional “plug-in” for the Accent system, so that the policy system

may operate with or without goal direction as desired. The goal system also utilises

the policy store to hold goals and prototypes. However, this is achieved transparently

as the goal system communicates only via the policy server. The mechanism used to

store and retrieve policies may be altered without affecting goal-related components.

The optimisation algorithm is customisable. The most appropriate algorithm should

be implemented to suit the application domain. An algorithm is specified by replacing

or altering the class Optimiser.

181

The goal evaluation function for a domain is also customisable, and is defined as a

subclass of FunctionEvaluator. The subclass must implement the inherited abstract

method “evaluate” with suitable code to process the goal evaluation function, including

an expression detailing each goal measure complete with any weightings. This method

is called to evaluate each combination of policies at run-time. The class must be pre-

compiled as it is dynamically loaded at runtime. Dynamic class loading allows the goal

evaluation function to be altered without the need to recompile the entire goal system.

Configurable environment variables are defined in a properties file. This includes

the policy system host machine and upload port, Poppet connection details, the sym-

bol prefix to identify parameters within goal-related policies (normally “$”), and the

“owner” of goal, prototype and goal-related policy documents (e.g. goalkeeper@cs.

stir.ac.uk). The name and location of the goal evaluation function class must also

be defined, for dynamic loading at runtime.

6.3.4 Static and Runtime Procedures

This section provides a step-by-step explanation of how the goal system works. The

initial phase of prototype instantiation is described and the complete run-time phase

is explained. This also shows where the goal-directed process fits into the context of

regular policy server behaviour, describing the process from when a trigger is received

to when actions are executed. Concrete examples of this process are detailed in the

applications demonstrated in the next two sections.

Offline Prototype Instantiation

The static prototype analysis stage takes a set of goals and a set of prototypes as its

primary input. Goals and prototypes are defined as individual XML documents stored

as separate files within the policy store. The approach to static prototype analysis and

instantiation was discussed in section 6.2.4.

The goal system is invoked independently for the initial stage. Goals and prototypes

are uploaded to the policy store via the policy server. The goal system then retrieves

and checks each goal, extracts its goal measure and action (maximise or minimise), and

182

goalkeeper@cs.stir.ac.uk
goalkeeper@cs.stir.ac.uk

retrieves a list of state variables associated with its measure from the domain ontology.

Next, each prototype is retrieved from the policy store, and its effects are compared

against the list of state variables for each goal measure. Prototypes contributing to at

least one goal are instantiated as executable policies. The technical steps involved in

prototype instantiation are summarised as follows:

1. A prototype element is cloned, and the element type of the clone is altered to be

“policy” rather than “prototype”. The prototype is no longer used at this point

by the goal system, but persists in the policy store for any future time that goals

need to be re-evaluated.

2. The attributes of the policy node are modified:

(a) the phrase “ pol” is appended to the policy_id to distinguish this policy

from the prototype

(b) the changed attribute is modified to reflect the current date and time

(c) a supports_goal attribute is added containing a comma-separated list of

goals this policy supports

3. If all the goals this policy supports have conditions, their conditions are appended

to the policy condition block.

4. The new policy is uploaded to the policy store, where it may be triggered and

retrieved by the policy server at runtime.

The final step of this process is to create policy variables to store the default value of

each state variable using information sourced from the ontology. Each policy variable is

uploaded to the policy store and shares the same “owner” as goals, prototypes and goal-

related policy documents. At run-time, these policy variables are updated to represent

the current state of the system based on event notifications to the policy server.

Run-time Policy Selection and Parameter Optimisation

The goal system comes into play whenever policies are triggered. The run-time al-

gorithm considers all combinations of triggered goal-related policies. Where parame-

183

terised policies are encountered, the algorithm considers only the maximum and min-

imum value for the variable. A policy parameter in this context is a variable that

appears at least once in the goal evaluation function.

The range of possible values for a goal-related policy parameter may be extremely

large (for example, a variable representing the duration of a call might range from 1

minute to 300 minutes). Given the real-time constraints of the policy system, the con-

sideration of every unique permutation of parameter value for every policy combination

is impracticable without the aid of an optimisation algorithm.

For the applications reported at the end of this chapter, it was acceptable to consider

only the “extreme” values for a parameter, that is, just the maximum and minimum

value. At run time, the maximum and minimum value for the parameter is evaluated

and the one that yields the higher result for the goal function is the optimal choice. A

simple parameterisation example was given in section 6.2.5. This example considered a

parameter with only 3 possible values – the minimum value yielding the highest results

for the evaluation function. Where the parameter value range is much wider and the

goal evaluation function is far more complex (such as the application scenarios presented

later in this chapter), it has been found sufficient to consider just the maximum and

minimum values. In general, the nature of the evaluation functions tested so far means

either the highest or lowest parameter value yields the best result. Depending on which

extreme value is tested, the evaluation result either increases or decreases. Effectively,

considering the extreme values gives the best and worst result for the goal evaluation.

Choosing a value somewhere in between yields a result somewhere in between these

two points. Therefore, the optimal value is one of the extreme values.

There is a clear benefit in processing overhead when considering only the extreme

values of a parameter. Suppose the number of parameterised variables within a combi-

nation of policies is vNum. If there are two parameter values to select from (the maximum

value and the minimum value) there exists 2vNum combinations of parameter values for

a combination of policies. For example, for a combination of three policies, the number

of possible solutions is as follows:

184

No parameters:

P1 P2 P3

One parameterisable value:

P1 P2 P3 p(max)

P1 P2 P3 p(min)

Two parameterisable values:

P1 P2 P3 p(max) q(max)

P1 P2 P3 p(min) q(max)

P1 P2 P3 p(max) q(min)

P1 P2 P3 p(min) q(min)

The number of solutions using extreme value parameterisation is acceptable for a small

number of parameters. However, when this number grows to five parameters, the num-

ber of combinations to be evaluated rises to 32. With a relatively small policy set, the

time taken to process the set and find the optimal solution outweighs the benefit of

run-time goal direction. For the applications tested with this approach, it was deemed

unlikely that the number of policies triggered would be large enough to merit a full op-

timisation algorithm (e.g. a GA), and the number of likely parameter values is usually

no more than two at any one time.

The average time to run the policy selection and parameter optimisation has been

found in practice to be about five seconds. This is an acceptable overhead for processing

goals in real time (since the policy system is triggered in the order of minutes not

seconds). There are further steps which might improve performance. It is possible

that the same set of policies might be triggered frequently, so caching previous policy

selections might save time and increase efficiency. This would involve storing the state

of the system, the goal-related policies triggered, and the results of policy selection and

parameterisation. Previous selections would only be applicable when the system is in

an identical state beforehand.

185

Policy Server

Policy Store

Goal System

1. Trigger received

2. Applicable policies retrieved

3. Policies passed to goal system

4. Analyse policy set and
gathers state variable data
from the policy store and
max/min variable values

from the relevant ontology

5. Optimisation performed,
policy selection made

6. Parameterised policies
instantiated with optimal values

7. Optimal policy set returned

8. Policy conflict detection
and resolution

9. Policies executed

Figure 6.6: Runtime Process of Goal Refinement

With reference to Figure 6.6, the key steps of the runtime algorithm are as follows:

1. The policy server receives a trigger.

2. Policies triggered by this information are retrieved. The policy server checks the

eligibility of each triggered policy and discards those whose conditions are not

met.

3. The policy server passes applicable policies to the goal system. If the goal system

is not connected (e.g. networking error or goals are not needed for the domain in

question), the policy server continues its normal execution process, skipping to

step 8.

4. The goal system separates goal-related policies from user-defined policies. If no

goal-related policies are found, the goal system performs no further action and

returns the list of policies to the policy server unchanged. Current values of state

variables are obtained from the policy store, and their maximum and minimum

values obtained from an ontology. The evaluation function class is dynamically

loaded.

186

5. The optimisation algorithm evaluates the set of goal-related policies, and selects

the optimal policy combination including any parameter values.

6. Parameterised policies are instantiated with their chosen parameter values if ap-

plicable.

7. The goal system returns the optimal set of goal-related policies, together with

any user-defined policies originally passed to it.

8. The policy server checks for conflicts between policy actions, resolving these as

appropriate using resolution policies.

9. The policy server executes the final set of actions. Following this, the policy

server notifies the goal system that policy execution has taken place. The goal

system then removes any dynamically instantiated policies created as a result of

parameterisation (the goal system keeps a note of the instantiated policy ID’s in

memory). Original unparameterised prototypes persist as they may be triggered

and used again.

6.4 Application 1: Goals for Internet Telephony

The first application of the goal-directed approach is Internet telephony. Section 6.4.1

describes the domain as it is implemented for goal-directed management, while section

6.4.2 lists example goals and prototypes. The process of static and dynamic policy

selection is demonstrated using a number of test cases in sections 6.4.3 and 6.4.4 re-

spectively.

6.4.1 Goal Domain

The telephony domain for goal-directed management is based on the existing Appel

policy language for call control, with some additional aspects not previously imple-

mented. Specifically, goals and prototypes rely on policy variables to represent state,

such as the call duration and the number of calls received. These aspects are imple-

mented using internal timers and policy variables that were included in the revised core

Appel language described in section 3.2.

187

State Variables

The goal domain is an extension of the policy domain for telephony. Prototypes are

based on the existing definition of the Appel policy language for call control, including

the triggers, conditions and actions described in section 3.2. Goal measures and their

relationships with controlled and uncontrolled variables are defined within the ontology

for telephony (see section 4.5). The state variables used for the domain are shown in the

table below. Each variable has an associated maximum, minimum and default value.

Variable Variable Description Max Min Default
Type Name Value Value Value
Controlled bandwidth The amount of bandwidth

allocated to a call at a
given time in Kbps.

512 32 64

call duration The length of a call in min-
utes.

300 1 0

qos rate Quality of Service (QOS)
indicator. Numerical mea-
surement representing net-
work quality (transit delay,
error rates, etc.). Option-
ally specified by the caller
(10 best, 1 worst).

10 1 10

Uncontrolled call cost rate Cost of a call per minute in
some monetary unit.

50.0 0.0 1.0

calls received The number of calls re-
ceived by a callee in some
defined period (e.g. a day).

500 0 0

Goals, Measures and the Evaluation Function

Based on general knowledge and the capabilities of the policy system implementation,

the following four goals are defined for telephony:

G01 Minimise Call Cost

G02 Minimise Interruption Time

G03 Maximise Multimedia Use

G04 Maximise Bandwidth Use

188

These goals support telephony aspects from a high-level management view. The

choice of goals aims to strike a balance between the financial impact of network use

and call quality in terms of available call features and bandwidth. These goals served

as an initial test-bed for developing and testing the goal-directed approach. G01 aims

to keep the cost of calls as low as possible, and is measured by the cost of calls and their

duration. G02 aims to reduce the time a callee is interrupted, perhaps during certain

periods in the day, or when the callee is in scheduled meetings or at lunch. This goal is

measured by the number of calls received in a certain period and their duration. G03

and G04 aim to maximise the use of multimedia and bandwidth. G03 is measured by

the bandwidth used and the quality rating expected by call parties. G04 is measured

by bandwidth and the duration of a call.

The goal evaluation function is the sum of these four goals, though other combina-

tions such as a weighted sum could easily have been used. Minimising a goal measure

means use of a minus (“−”) sign and maximising means use of a plus sign (“+”). The

goals and measures are summarised in the goal evaluation function as follows:

Evaluation Function = G01 + G02 + G03 + G04

=− Call Cost − Interruption Time + Multimedia Use + Bandwidth Use

=− (call cost rate * call duration) − (calls received * call duration)

+ (bandwidth * qos rate) + (bandwidth * call duration)

6.4.2 Goals and Prototypes

This section outlines goals and prototype policies for telephony, using pseudocode for

readability. Applicable goal conditions are preceded with “Provided”. Effects are

preceded by “For”. The triggers, conditions, actions and effects are given for each

prototype. A selection of goals and prototypes include XML notation to clarify their

syntax (the format of goals and prototypes was explained previously in section 6.3.2).

A high-level description of each goal/prototype is also provided to outline the purpose

of their use.

189

Goals

G01: Minimise Call Cost

The goal is to minimise call cost. The goal conditions state that it must be a weekday

(Monday (1) to Friday (5)) and the bandwidth must be greater than or equal to 256

Kbps.

Provided the day is in 1..5 and

Provided the bandwidth ≥ 256

Minimise Call Cost

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=
4 ′′http://www.cs.stir.ac.uk/schemas/appel goal.xsd′′>
5 <goal
6 owner=′′goalkeeper@cs.stir.ac.uk′′

7 applies to=′′goalkeeper@cs.stir.ac.uk′′

8 id=′′Minimise Call Cost′′

9 enabled=′′true′′

10 changed=′′2008-04-21T10:20:59′′>
11 <policy rule>
12 <conditions>
13 <and/>
14 <condition>
15 <parameter>day</parameter>
16 <operator>in</operator>
17 <value>1..5</value>
18 </condition>
19 <condition>
20 <parameter>bandwidth</parameter>
21 <operator>ge</operator>
22 <value>256</value>
23 </condition>
24 </conditions>
25 <action arg1=′′call cost′′>minimise(arg1)</action>
26 </policy rule>
27 </goal>
28 </policy document>

G02: Minimise Interruption Time

The goal is to minimise interruption time to the callee. The goal condition is that it

must be lunchtime (between 12:30 and 2pm).

Provided the hour is in 12:30:00..14:00:00

Minimise Interruption Time

190

G03: Maximise Multimedia Use

The goal is to maximise multimedia use. The goal condition is that it must be a

weekday (Monday (1) to Friday (5)).

Provided the day is in 1..5

Maximise Multimedia Use

G04: Maximise Bandwidth Use

The goal is to maximise bandwidth use. There are no conditions on this goal.

Maximise Bandwidth Use

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel goal.xsd′′>
4 <goal
5 owner=′′goalkeeper@cs.stir.ac.uk′′

6 applies to=′′goalkeeper@cs.stir.ac.uk′′

7 id=′′Maximise Bandwidth Use′′

8 enabled=′′true′′

9 changed=′′2008-04-21T10:20:59′′>
10 <policy rule>
11 <action arg1=′′bandwidth use′′>maximise(arg1)</action>
12 </policy rule>
13 </goal>
14 </policy document>

Prototypes

P01: Add Video On Bandwidth Request

For requests for bandwidth less than 700 Kbps, and when the current medium is audio,

the bandwidth request is confirmed and video is added to the call. This prototype has

the effect of incrementing the bandwidth by a fixed amount of 256 Kbps.

When there is a bandwidth request

If the current bandwidth is < 700 and the current medium is audio

Do confirm the bandwidth request and add video

For bandwidth += 256

191

P02: Add Video To Incoming Call

Adds video capability to the call providing the bandwidth is less than 1024 Kbps and

the medium is initially set to audio. This prototype has the effect of incrementing the

bandwidth by a fixed amount of 256 Kbps to support video capability.

When there is an incoming call

If the current bandwidth < 1024 and the current medium is audio

Do add video

For bandwidth += 256

P03: Add Whiteboard To Department Calls

Adds a whiteboard to incoming calls where the caller is in a particular (local) domain

and the medium being used is not already whiteboard. This prototype has the effect

of incrementing bandwidth for the call by a fixed amount of 500 Kbps – an assumed

amount reserved for a whiteboard.

When there is an incoming call

If the caller is @cs.stir.ac.uk and

the current media do not include whiteboard

Do add whiteboard

For bandwidth += 500

P04: Disconnect After 60 Minutes

Using an internal call timer function, the call is disconnected once a call has been active

for 1 hour. This prototype has the effect of limiting the duration of a call to 60 minutes.

When the call timer expires

If the call time is 60 minutes

Do Disconnect the call

For call duration = 60

192

P05: Extend Call On Bandwidth Request

Confirms bandwidth requests for 512 Kbps and sets a call timer to expire after 10

minutes. This prototype has the effect of setting the bandwidth to the requested

amount of 512 Kbps and extending the call duration by ten minutes. The effect is to

increase the current call duration (+=) (which may have been set by a previous policy),

rather than set the call duration to ten minutes (+).

When there is a bandwidth request

If the bandwidth request is 512

Do confirm the bandwidth request and set the call timer for 10 minutes

For bandwidth = 512 and call duration += 10

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=
4 ′′http://www.cs.stir.ac.uk/schemas/appel prototype.xsd′′>
5 <prototype
6 owner=′′goalkeeper@cs.stir.ac.uk′′

7 applies to=′′@cs.stir.ac.uk′′

8 effects=′′call duration += 10,bandwidth = 512′′

9 id=′′Extend Call On Bandwidth Request′′

10 enabled=′′true′′

11 changed=′′2008-04-21T10:20:59′′>
12 <policy rule>
13 <trigger>bandwidth request</trigger>
14 <condition>
15 <parameter>bandwidth</parameter>
16 <operator>eq</operator>
17 <value>512</value>
18 </condition>
19 <actions>
20 <and/>
21 <action arg1=′′call cut′′ arg2=′′10′′>set timer(arg1,arg2)</action>
22 <action>confirm bandwidth</action>
23 </actions>
24 </policy rule>
25 </prototype>
26 </policy document>

193

P06: Forward Call If Busy

Forwards an incoming call to the address stored for the variable “secretary” when the

callee status is set to busy. This prototype has the effect of reducing the number of

calls that might have been answered by the callee.

When there is an incoming call

If my status is set to busy

Do forward the call to :secretary

For calls received −= 1

P07: Limit Expensive Call Time

Limits the duration of calls to 15 minutes if the cost rate is greater than 40 pence. This

prototype has the effect of setting the call duration to 15.

When there is an incoming call

If the cost rate ≥ 0.40

Do set the call timer for 15 minutes

For call duration = 15

P08: Limit International Call Time

Limits an incoming international call to 20 minutes. This prototype has the effect of

limiting the call duration to 20 minutes after the call starts.

When there is an incoming call

If the call type is “international”

Do set the call timer for 20 minutes

For call duration = 20

P09: Parameterised Call Duration

Limits the duration of an incoming call when the bandwidth is greater than or equal to

512 Kbps. The duration to which the call timer should be set is a parameter (denoted

by the “$” symbol). This prototype has the effect of setting the call duration to a fixed

value decided at run time.

194

When there is an incoming call

If the bandwidth ≥ 512

Do set the call timer for ($T)

For call duration = $T

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=
4 ′′http://www.cs.stir.ac.uk/schemas/appel prototype.xsd′′>
5 <prototype
6 owner=′′goalkeeper@cs.stir.ac.uk′′

7 applies to=′′@cs.stir.ac.uk′′

8 effects=′′call duration = $T′′

9 id=′′Parameterised Call Duration′′

10 enabled=′′true′′

11 changed=′′2008-04-21T10:20:59′′>
12 <policy rule>
13 <trigger>connect incoming</trigger>
14 <condition>
15 <parameter>bandwidth</parameter>
16 <operator>ge</operator>
17 <value>512</value>
18 </condition>
19 <action arg1=′′call cut′′ arg2=′′$T′′>set timer(arg1,arg2)</action>
20 </policy rule>
21 </prototype>
22 </policy document>

P10: Reject High Bandwidth

Rejects bandwidth requests greater than or equal to 512 Kbps. This prototype has the

effect of reducing bandwidth to zero. Note that rejecting a bandwidth request at call

set-up means the call will not be allowed.

When there is a bandwidth request

If the bandwidth request is ≥ 512

Do reject the bandwidth request

For bandwidth = 0

P11: Reject Personal Calls If Busy

Rejects personal calls that occur when the callee is busy and plays a specified audio

message to the caller. This prototype has the effect of reducing the number of calls

that might have been answered by the callee.

195

When there is an incoming call

If the callee status is “busy” and the call type is “personal”

Do reject the call and play the sound clip “busy.wav”

For calls received −= 1

6.4.3 Static Prototype Selection

The static selection process looks at each prototype and compares its effects against

the controlled and uncontrolled values within each goal measure. If a prototype affects

a variable used within a goal measure, it potentially contributes to that goal. The

results of static prototype filtering against goals is shown in Figure 6.7. This shows the

prototypes that potentially contribute to each goal, with a telephone symbol indicating

applicability.

Prototype C
al

l
C

os
t

In
te

rr
u

p
ti

on
T

im
e

M
u

lt
im

ed
ia

U
se

B
an

d
w

id
th

U
se

Add Video On Bandwidth Request T T

Add Video To Incoming Call T T

Add Whiteboard To Department Calls T T

Disconnect After 60 Minutes T T T

Extend Call On Bandwidth Request T T T T

Forward Call If Busy T

Limit Expensive Call Time T T T

Limit International Call Time T T T

Parameterised Call Duration T T T

Reject High Bandwidth T T

Reject Personal Calls If Busy T

Figure 6.7: Static Telephony Prototype Selection

196

The following two examples demonstrate policy instantiation based on Figure 6.7.

The examples use XML to explain the technical alterations to policy documents. For

clarity, some document headers and other policy tags are omitted. Example 1 details

prototype instantiation in support of a single goal and its conditions, while Example 2

shows the process for a different prototype supporting multiple goals.

Example 1: Call Forwarding Policy

This example shows the instantiation of prototype P06, which forwards a call when the

callee is busy. The effect of this prototype is to decrement the calls received counter

by one. The prototype supports one goal, which has one goal condition. The XML for

this prototype is as follows.

0 <prototype
1 owner=′′goalkeeper@cs.stir.ac.uk′′

2 applies to=′′@cs.stir.ac.uk′′

3 effects=′′calls received -= 1′′

4 id=′′Forward Call If Busy′′

5 enabled=′′true′′

6 changed=′′2008-04-21T10:20:59′′>
7 <policy rule>
8 <trigger>call incoming</trigger>
9 <condition>

10 <parameter>status</parameter>
11 <operator>eq</operator>
12 <value>busy</value>
13 </condition>
14 <action arg1=′′:secretary′′>
15 forward to(arg1)
16 </action>
17 </policy rule>
18 </prototype>

From Figure 6.7, this prototype contributes to the goal “Minimise Interruption

Time”. The condition on this goal states that the time must be between 12:30pm and

2pm. This condition is copied into the instantiated prototype, combined with an “and”

operator. The new policy may only be executed when the original prototype condition

(status is busy) and the goal condition (time is 12:30pm-2pm) are both true. The new

policy is shown below in XML. The policy has a new “id” (line 6) to distinguish it from

the prototype, and a new attribute listing the goal it supports (line 8). The condition

block contains the original prototype condition (lines 13-17) and the inherited goal

condition (lines 18-22).

197

0 <policy document>
1 <policy
2 applies to=′′@cs.stir.ac.uk′′

3 changed=′′2008-09-03T11:50:33′′

4 effects=′′calls received -= 1′′

5 enabled=′′true′′

6 id=′′Forward Call If Busy pol′′

7 owner=′′goalkeeper@cs.stir.ac.uk′′

8 supports goal=′′Minimise Interruption Time′′>
9 <policy rule>

10 <trigger>incoming call</trigger>
11 <conditions>
12 <and/>
13 <condition>
14 <parameter>status</parameter>
15 <operator>eq</operator>
16 <value>busy</value>
17 </condition>
18 <condition>
19 <parameter>hour</parameter>
20 <operator>in</operator>
21 <value>12:30:00..14:00:00</value>
22 </condition>
23 </conditions>
24 <action arg1=′′:secretary′′>
25 forward to(arg1)
26 </action>
27 </policy rule>
28 </policy>
29 </policy document>

Example 2: Parameterised Call Duration Policy

This example shows the instantiation of prototype P09 (“Parameterised Call Duration”)

to support multiple goals. The XML for this prototype is as follows:

0 <prototype
1 owner=′′goalkeeper@cs.stir.ac.uk′′

2 applies to=′′@cs.stir.ac.uk′′

3 effects=′′call duration = $T′′

4 id=′′Parameterised Call Duration′′

5 enabled=′′true′′

6 changed=′′2008-04-21T10:20:59′′>
7 <policy rule>
8 <trigger>call incoming</trigger>
9 <condition>

10 <parameter>bandwidth</parameter>
11 <operator>ge</operator>
12 <value>512</value>
13 </condition>
14 <action arg1=′′call cut′′ arg2=′′$T′′>
15 set timer(arg1,arg2)
16 </action>
17 </policy rule>
18 </prototype>

198

From Figure 6.7, this prototype contributes to three goals: Minimise Call Cost

(G01), Minimise Interruption Time (G02) and Maximise Bandwidth Use (G04). The

first two goals have conditions but the third does not. Consequently, no goal conditions

are copied when the prototype is instantiated.

The new policy is shown below in XML. The policy has a new id (line 6) and a new

attribute listing the goals it supports (line 7). The policy condition block contains the

original prototype condition only and has not been altered. Note that the parameter

value “T”, representing the period of time after which to disconnect the call, is not

given a value until runtime. The parameter appears in the effect attribute (line 4) and

the policy action argument (line 15).

0 <policy document>
1 <policy owner=′′goalkeeper@cs.stir.ac.uk′′

2 applies to=′′@cs.stir.ac.uk′′

3 changed=′′2008-09-03T11:50:34′′

4 effects=′′call duration = $T′′

5 enabled=′′true′′

6 id=′′Parameterised Call Duration pol′′

7 supports goal=′′Minimise Call Cost,Minimise Interruption Time,Maximise Bandwidth Use′′>
8 <policy rule>
9 <trigger>call incoming</trigger>

10 <condition>
11 <parameter>bandwidth</parameter>
12 <operator>ge</operator>
13 <value>512</value>
14 </condition>
15 <action arg1=′′call cut′′ arg2=′′$T′′>
16 set timer(arg1,arg2)
17 </action>
18 </policy rule>
19 </policy>
20 </policy document>

6.4.4 Dynamic Refinement

This section presents the results of run-time policy selection for telephony through an

example with four scenarios: an incoming personal call, an incoming international call,

a normal bandwidth request and a high bandwidth request. Each scenario describes

an event under different conditions, triggering alternative policy sets in each case.

The results of run-time policy selection for each scenario are displayed in a radar

graph. A radar graph is a polygon with policy combinations plotted on its vertexes using

separate axes stemming from the same (central) point. The relative position and angle

199

of the axes is not important. For the graphs shown, plotted values and numerical labels

are omitted as the relationship between each policy combination is more meaningful

in this context than the values obtained. Policies are labelled using the number of

the prototype they were derived from, followed by an asterisk “*”. For example, the

policy P12* represents the policy derived from the prototype P12. The graph compares

each non-conflicting policy combination in a triggered set using the value each yields

when evaluated against the goal function. Conflicting policy combinations are policy

sets that modify a common state variable, which makes it ineffective to evaluate the

policy set against the goal function as there is no single predicted value for the state

variable concerned. Taking the policy set in scenario 1 as an example, policies P07*

and P09* both modify the variable “call duration” and are therefore considered to be

in conflict. During run-time policy selection, no combinations of P07* and P09* are

considered, and these policies do not appear together in the combinations noted in the

results graph. The best policy combination is the one that yields the highest value –

identified by the value that is closest to the outermost edge of the graph.

Scenario 1: Incoming Personal Call

The first scenario is an incoming personal call when the callee is busy. The bandwidth

required is 512 Kbps, the caller and callee are in the same local domain, the medium

is “audio”, and the call duration is zero as the call has yet to begin. Six policies are

applicable under these conditions, including a parameterised policy. An optimal value

for the parameter $T is allocated during the selection process. The extreme values for

this parameter (which represents the call duration) are 300.0 minutes and 1.0 minute.

The result of the policy selection process for all non-conflicting policy combinations is

shown in Figure 6.8.

The optimal policy selection is the set of policies “P06* P09* P03*” where the best

value for the call duration parameter is 300.0. P06* forwards the incoming call (as the

callee is busy), P09* limits the call duration (the parameter $T is set to 300.0) and

P03* adds a whiteboard for use during the call.

200

P02* Add Video To Incoming Call
P03* Add Whiteboard To Department Calls
P06* Forward Call If Busy
P07* Limit Expensive Call Time
P09* Parameterised Call Duration
P11* Reject Personal Calls If Busy

Figure 6.8: Scenario 1: Policy Selection for an Incoming Personal Call

201

Scenario 2: Incoming International Call

This scenario shows the policy selection for an incoming international call, where the

caller is not in the same domain as the callee. The bandwidth requested is 512 Kbps,

the medium is “audio”, the callee status is “available”, and the call duration is zero

as the call has yet to begin. There are four policies applicable under these conditions,

including a parameterised policy. An optimal value for the parameter $T is allocated

during the selection process. The extreme values for this parameter (which represents

the call duration) are 300.0 minutes and 1.0 minute. The result of the policy selection

process for all non-conflicting policy combinations is shown in Figure 6.9.

P02* Add Video To Incoming Call
P07* Limit Expensive Call Time
P08* Limit International Call Time
P09* Parameterised Call Duration

Figure 6.9: Scenario 2: Policy Selection for an Incoming International Call

The best policy selection is P09* and P02* with a parameter value of 300.0 for the

variable representing the duration of the call in P09*. P09* limits the call time to the

chosen parameter value of 300 minutes, and P02* adds video to the call.

202

Scenario 3: Normal Bandwidth Request

This scenario describes a request for bandwidth. The requested amount is 512 Kbps

and the current medium is “audio”. As this trigger occurs during the call setup phase,

the call duration is zero. There are three policies applicable under these conditions,

and the result of the policy selection process for all non-conflicting policy combinations

is shown in Figure 6.10.

P01* Add Video On Bandwidth Request
P05* Extend Call On Bandwidth Request
P10* Reject High Bandwidth

Figure 6.10: Scenario 3: Policy Selection for a Normal Bandwidth Request

As the effects of all three policies modify bandwidth, they may only be selected

individually without conflict. The optimal policy to select is P05*, which adds ten

minutes to the current call duration. This is favoured over rejecting the bandwidth

altogether in the case of P10* or adding video in the case of P01*.

203

Scenario 4: High Bandwidth Request

This scenario deals with a request for a high amount of bandwidth – 1000 Kbps. All

other state variables are the same as for scenario three. Under these conditions, only

one policy is applicable, “Reject High Bandwidth”: this is P10* in the results graph

shown in Figure 6.11.

P10* Reject High Bandwidth

Figure 6.11: Scenario 4: Policy Selection for a High Bandwidth Request

With only one goal-related policy, there are just two options to consider: the result

of the goal evaluation function for no policies (current state unchanged), and the result

for executing the single policy. The optimal result in this case is to select no policies.

Selecting P10* negatively contributes to the system goals when evaluated across all

goal measures. Although the bandwidth request is for a high amount, rejecting the

bandwidth (say, to minimise the call cost measure) has been deemed less helpful to the

system goals as a whole since it contributes more toward maximising bandwidth and

multimedia use.

204

6.5 Application 2: Goals for Sensor Networks

The second application of the goal-directed approach is sensor network and wind turbine

management. Section 6.5.1 describes the domain, while section 6.5.2 lists the goals and

prototypes devised. The process of static and dynamic policy selection is demonstrated

in sections 6.5.3 and 6.5.4 respectively.

6.5.1 Goal Domain Information

The domain for goal-directed management of sensor network and wind turbine man-

agement is based on the Appel policy language specialisation described in section 3.2.

As explained in section 2.2.3, a wind turbine is continually monitored using a controller

within the nacelle. Communication between a turbine controller and the policy system

is assumed via some network link. Goals for wind turbine management assume that

the parameters modifiable by the turbine controller may be set via policy actions. It is

also assumed that these values are periodically reported to the policy system so as to

trigger policies. These assumptions were taken into account when compiling goals and

goal measures.

State Variables

Goal measures and their relationships with controlled and uncontrolled variables are

defined within the ontology for sensor networks (discussed previously in section 4.6).

Figure 6.12 details the controlled state variables, and Figure 6.13 the uncontrolled state

variables. Each variable has an associated maximum, minimum and default value.

Referring to Figures 6.12 and 6.13, sampling and reporting frequencies are integer

values representing time intervals in minutes. The sampling frequency is the interval

between each measurement, and the reporting frequency is the interval between each

report of the measurements made. Note that the “rainfall sampling freq” is either 1

(on) or 0 (off) as rainfall is measured continually when the rainfall sensor is switched

on. Variables that refer to a “drain” represent the power consumption of a particular

component. Zero indicates no drain (the sensor is switched off) and 1 indicates the

sensor is operational. The maximum, minimum and default values for turbine compo-

205

nents are estimations made for the purposes of simulation and are intended only as a

plausible guide.

Goals, Measures and the Evaluation Function

The following goals devised support both sensor and wind turbine management views.

There are five goals, based on collaborative input from the Prosen project and a study

of wind farm and turbine operation:

G01 Minimise Sensor Battery Drain

G02 Maximise Sensor Data Yield

G03 Minimise Turbine Component Damage

G04 Maximise Energy Generated From Turbines

G05 Maximise Turbine Monitoring

G01 and G02 are specific to sensor network nodes, while G03, G04 and G05 sup-

port wind turbine management and monitoring. Each set of goals is achieved using

policies specific to either sensor network configuration or turbine management respec-

tively. Consequently, the measure for each goal refers to either sensor node or wind

turbine variables. G01 aims to get the most data from the sensor network in terms

of the measurements sampled from each sensor and the frequency of sensor reports to

the policy system. G02 aims to conserve battery power sensibly when the power is

falling, helping prolong sensor node life until it is serviced. This goal measures power

consumption by the sensor sampling and reporting rates as well as the status of each

sensor. G03 aims to limit and prevent mechanical damage to wind turbines. Factors

contributing to this goal measure include vibrations in the rotor blades and nacelle,

component temperatures, brake status, rotor speed, and the number of power cable

twists within the tower. G04 aims to manage the system so maximum power is gener-

ated from a turbine, wind permitting. It is measured through consideration of possible

power output and the power drain on the turbine from internal components. G05 aims

to detect potential faults or significant conditions through increased monitoring of its

206

Controlled Variables

Variable Name Description Max Min Default
Value Value Value

anemometer reporting freq Every x minutes 1 60 5
temperature reporting freq Every x minutes 1 60 5
rainfall reporting freq Every x minutes 1 60 10
humidity reporting freq Every x minutes 1 60 15
soilmoisture reporting freq Every x minutes 1 60 15
anemometer sampling freq Every x minutes 1 15 5
temperature sampling freq Every x minutes 1 15 5
rainfall sampling freq On or off 1 0 1
humidity sampling freq Every x minutes 1 20 5
soilmoisture sampling freq Every x minutes 1 15 5
anemometer drain On or off 1 0 1
temperature drain On or off 1 0 1
rainfall drain On or off 1 0 1
humidity drain On or off 1 0 1
soilmoisture drain On or off 1 0 1
gsm modem drain On or off 1 0 1
rotor speed RPM 25 0 0
blade pitch angle degrees 90 0 0
yaw angle degrees 180 0 0
generator cooling fan speed RPM 5000 0 0
rotor brake status On or off 1 0 0
yaw brake status On or off 1 0 0
internal heater power Volts (V) 230 0 0
gearbox bearing report freq Every x minutes 1 60 10
blade vibration report freq Every x minutes 1 60 10
generator report freq Every x minutes 1 60 10
turbine anemometer report freq Every x minutes 1 60 5
nacelle temperature report freq Every x minutes 1 60 5
nacelle vibration report freq Every x minutes 1 60 10
blade pitch report freq Every x minutes 1 60 10

Figure 6.12: Sensor and Turbine Controlled Variables

207

Uncontrolled Variables

Variable Description Max Min Default
Name Value Value Value
sensor battery voltage Volts(V) 12 0.0 12
wind speed m/s 50 0 0
rainfall mm/hour 100 0 0
humidity % 100 0 0
temperature degrees Celsius 40 -20 15
soil moisture mho 10−4 10−7 10−6

generator voltage Volts(V) 690 0 0
generator temperature degrees Celsius 100 -10 30
gearbox oil temperature degrees Celsius 100 -10 30
gearbox bearings temperature degrees Celsius 100 -10 30
power cable twists no. of full twists 10 0 0
wind direction degrees 360 0 0
wind speed turbine m/s 100 0 1
blade vibration size mm 100 0 0
blade vibration frequency Hertz (Hz) 100 0 0
nacelle vibration size mm 100 0 0
nacelle vibration frequency Hertz (Hz) 100 0 0
rotor brake lining thickness mm 10 2 10
nacelle temperature degrees Celsius 40 -20 15

Figure 6.13: Sensor and Turbine Uncontrolled Variables

208

components. This goal is measured using the reporting frequencies for monitored values

of turbine components.

The goal evaluation function is the weighted sum of these five goals, although a more

complex combination could be used. Minimising a goal measure is associated with a

minus (“−”) sign, and maximising is associated with a plus sign (“+”). Weights are

utilised to counteract situations where altering a single variable makes no difference

to the function value. This occurs when a variable change in a goal measure being

maximised is cancelled out in another measure being minimised. Without weightings,

there is a risk that no policies are selected as the function value appears not to change.

Weightings have been allocated assuming that, for sensor network nodes, battery

drain is more important than data yield (0.7 vs. 0.3), and for wind turbine manage-

ment, preventing component damage is given priority over energy yield and turbine

monitoring, which are deemed equally important (0.4 vs. 0.3 vs. 0.3). In this case,

the allocated weights sum to 1, but as the weights are relative this may not necessarily

be the case in every domain. As goals for sensor networks and goals for turbine man-

agement do not share any common state variable in their measures, the two groups of

goals are not likely to conflict and can be weighted independently. The goals, measures

and their weightings are shown in the evaluation function overleaf.

209

Evaluation function:

= G01 + G02 + G03 + G04 + G05

= − (0.7 * battery drain) + (0.3 * data yield) − (0.4 * component damage)
+ (0.3 * energy generated) + (0.3 * turbine monitoring)

= − (0.7 *
(gsm modem drain

+ anemometer drain * (1/anemometer sampling freq + 1/anemometer reporting freq)

+ temperature drain * (1/temperature sampling freq + 1/temperature reporting freq)

+ rainfall drain * (1/rainfall sampling freq + 1/rainfall reporting freq)

+ humidity drain * (1/humidity sampling freq + 1/humidity reporting freq)

+ soilmoisture drain * (1/soilmoisture sampling freq + 1/soilmoisture reporting freq)))

+ (0.3 *
(1/anemometer sampling freq + 1/anemometer reporting freq

+ 1/temperature sampling freq + 1/temperature reporting freq

+ 1/rainfall sampling freq + 1/rainfall reporting freq

+ 1/humidity sampling freq + 1/humidity reporting freq

+ 1/soilmoisture sampling freq + 1/soilmoisture reporting freq))

− (0.4 *
(rotor brake status + blade pitch angle + rotor speed + blade vibration size

+ blade vibration frequency + yaw brake status − yaw angle

− rotor brake lining thickness + nacelle vibration size + nacelle vibration frequency

+ power cable twists))

+ (0.3 *
(rotor brake status + blade pitch angle + rotor speed − yaw angle

− generator cooling fan speed/100 − internal heater drain/100))

+ (0.3 *
((1/gearbox bearing report freq) + (1/blade vibration report freq)

+ (1/generator report freq) + (1/turbine anemometer report freq)

+ (1/nacelle temperature report freq) + (1/nacelle vibration report freq)

+ (1/blade pitch report freq)))

6.5.2 Implemented Goals and Prototypes

This section outlines goals and prototype policies for sensor and turbine management,

using pseudocode for readability. Applicable goal conditions are preceded with “Pro-

vided”. Effects are preceded by “For”. The triggers, conditions, actions and effects are

given for each prototype. A selection of goals and prototypes include XML notation

to clarify their syntax (the format of goals and prototypes was explained previously in

section 6.3.2). A high-level description of each goal/prototype is also provided.

210

Goals

G01: Maximise Data Yield from the Sensor Network

This goal aims to gather as much information as possible about each sensor and the

environment they monitor. This might be achieved through actions such as increasing

the sampling and reporting frequencies of individual sensors.

Maximise Data Yield

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel goal.xsd′′>
4 <goal
5 owner=′′goalkeeper@cs.stir.ac.uk′′

6 applies to=′′goalkeeper@cs.stir.ac.uk′′

7 id=′′Maximise Data Yield′′

8 enabled=′′true′′

9 changed=′′2008-04-21T10:20:59′′>
10 <policy rule>
11 <action arg1=′′data yield′′>maximise(arg1)</action>
12 </policy rule>
13 </goal>
14 </policy document>

G02: Minimise Sensor Node Battery Drain

This goal aims to prolong sensor node life by minimising the battery drain where

possible. This might be achieved by switching off particular sensors when they are not

required and altering sensor sampling and reporting frequencies to reduce the battery

drain from sampling and transmission of data respectively.

Minimise Battery Drain

G03: Minimise Turbine Component Damage and Failure

This goal aims to limit and prevent mechanical damage to turbines. This might be

achieved by lowering vibrations in the blades and nacelle, taking action when com-

ponent temperatures become too high, taking preventative action when brakes show

stress or signs of failure and avoiding unnecessary strain on mechanical components

when power output is very low.

Minimise Component Damage

211

G04: Maximise Energy Generated From A Turbine

This goal aims to configure components so that maximum power is generated (wind

permitting). This might be achieved through actions such as altering rotor blade pitch

and rotor yaw, or choosing to keep the turbine operational in low winds rather than

opt for a shutdown.

Provided the generator voltage ≤ 690V

Maximise Energy Generated

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document
2 xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

3 xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel goal.xsd′′>
4 <goal
5 owner=′′goalkeeper@cs.stir.ac.uk′′

6 applies to=′′goalkeeper@cs.stir.ac.uk′′

7 id=′′Maximise Energy Generated′′

8 enabled=′′true′′

9 changed=′′2008-04-21T10:20:59′′>
10 <policy rule>
11 <action arg1=′′energy generated′′>maximise(arg1)</action>
12 </policy rule>
13 </goal>
14 </policy document>

G05: Maximise Turbine Component Monitoring

This goal aims to maximise monitoring of turbine components to detect potential faults.

This might be achieved by increasing the frequency of reports obtained from a turbine

controller on the status of particular components.

Provided the wind speed ≥ 15 m/s

Maximise Turbine Monitoring

212

Prototypes

Prototype policies numbered P01 to P18 inclusive are specific to wind turbine manage-

ment and monitoring. Prototypes P19 to P35 inclusive handle sensor network events

and monitoring. All prototypes are numbered in no particular way, although they are

grouped roughly by triggering event.

P01: Rotor Overspeed Protection

Protects the turbine rotor when the speed reaches a dangerous level (over 50 RPM) by

applying the rotor brakes and pitching the blades out of the wind to reduce the speed.

It also sends a warning to the operator. This detects a possible malfunction in the

generator, which may have overheated or disconnected from the power grid causing the

rotor to accelerate. This prototype has the effect of setting the rotor brake status to 1

(on) and the blade pitch angle to 0.

When the rotor speed goes above 50 RPM

If wind speed is less than 10 m/s

Do report rotor malfunction and apply rotor brakes and

pitch blades to 0 degrees

For rotor brake status = 1 and blade pitch angle = 0

P02: Shutdown Turbine Under High Vibration

Shuts the turbine down when there is high rotor blade vibration (over 20mm), to avoid

stress damage to the turbine. The steps taken to initiate a shut down are to warn the

operator and pitch the blades out of the wind – slowing the rotor speed. This prototype

has the effect of setting the blade pitch angle to 0.

When the blade vibration size is over 20mm

Do warn operator of possible rotor malfunction and

pitch blades to 0 degrees

For blade pitch angle = 0

213

P03: Handle Low Blade Vibration

Takes action when low levels of rotor blade vibration (over 5mm) are detected. This

prototype has the effect of decreasing the current blade pitch angle by 3 degrees, in-

creasing the yaw angle by 10 degrees (both actions intended to angle the rotor out of

the wind to lower friction), and setting the blade vibration report frequency to 3.

When the blade vibration size is over 5mm

If the blade pitch is ≥ 3 degrees and yaw angle is ≤ 80 degrees

Do decrease blade pitch by 3 degrees and increase yaw angle by 10 degrees

and set blade vibration reporting to 3 minute intervals

For blade pitch angle −= 3 and yaw angle += 10 and

blade vibration report freq = 3

P04: Handle Medium Blade Vibration

Takes action when medium levels of rotor blade vibration (over 15mm) are detected.

This prototype has the effect of decreasing the current blade pitch angle by 10 degrees,

increasing the yaw angle by 15 degrees (both actions intended to angle the rotor slightly

out of the wind to lower friction), and setting the blade vibration report frequency to

1. The XML notation for this prototype is shown below.

When the blade vibration size is over 15mm

If the blade pitch is ≥ 10 degrees and the yaw angle is ≤ 75 degrees

Do decrease blade pitch by 10 degrees and increase yaw angle by 15 degrees

and set blade vibration reporting to 1 minute intervals

For blade pitch angle −= 10 and yaw angle += 15 and

blade vibration report freq = 1

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

2 xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel prototype.xsd′′>
3 <prototype
4 owner=′′goalkeeper@cs.stir.ac.uk′′

5 applies to=′′@cs.stir.ac.uk′′

6 effects=′′blade pitch angle -= 10,yaw angle += 15,blade vibration report freq = 1′′

7 id=′′Handle Medium Blade Vibration′′

8 enabled=′′true′′

214

9 changed=′′2008-04-21T10:20:59′′>
10 <policy rule>
11 <trigger arg1=′′blade vibration size′′ arg2=′′turbine′′>
12 device in(arg1,arg2)
13 </trigger>
14 <conditions>
15 <and/>
16 <condition>
17 <parameter>message values</parameter>
18 <operator>ge</operator>
19 <value>15</value>
20 </condition>
21 <conditions>
22 <and/>
23 <condition>
24 <parameter>:blade pitch angle</parameter>
25 <operator>ge</operator>
26 <value>10</value>
27 </condition>
28 <condition>
29 <parameter>:yaw angle</parameter>
30 <operator>le</operator>
31 <value>75</value>
32 </condition>
33 </conditions>
34 </conditions>
35 <actions>
36 <and/>
37 <action arg1=′′set parameter′′ arg2=′′turbine′′

38 arg3=′′:entity instance′′ arg5=′′[blade pitch,-10]′′>
39 device out(arg1,arg2,arg3,,arg5)
40 </action>
41 <actions>
42 <and/>
43 <action arg1=′′set parameter′′ arg2=′′turbine′′

44 arg3=′′:entity instance′′ arg5=′′[yaw angle,+15]′′>
45 device out(arg1,arg2,arg3,,arg5)
46 </action>
47 <action arg1=′′set parameter′′ arg2=′′turbine′′

48 arg3=′′:entity instance′′ arg5=′′[blade vibration reports,1]′′>
49 device out(arg1,arg2,arg3,,arg5)
50 </action>
51 </actions>
52 </actions>
53 </policy rule>
54 </prototype>
55 </policy document>

P05: Alter Yaw In High Blade Vibration

Takes action when a high level of vibration (over 20mm) is detected in the rotor blades.

This prototype has the effect of setting the yaw angle to 90 degrees (intended to angle

the rotor out of the wind to lower drive), and setting the yaw brake status to 1 (apply

the yaw brakes).

215

When the blade vibration size is over 20mm

Do set yaw angle to 90 and apply yaw brakes

For yaw angle = 90 and yaw brake status = 1

P06: Fix Repeating Yaw Direction

Helps the turbine recover when the rotor has yawed too many times in the same di-

rection (indicated by the number of twists in the power cables in the turbine tower).

This prototype has the effect of setting the blade pitch angle to 0 degrees (slowing and

stalling the rotor speed) and setting the yaw angle to 90. Although not a measureable

“effect”, the final policy action sends a warning to the operator to resolve the problem

– perhaps by yawing the turbine in the appropriate direction to untwist the cables.

When reported power cable twists is over 6

Do pitch blades to 0 degrees and reset the yaw angle to 90 degrees and

warn the operator of cable twist error

For blade pitch angle = 0 and yaw angle = 90

P07: Blade Pitch Parameterised Normal Wind

Pitches the rotor blades when the wind speed is between 3 m/s to 15 m/s – normal

conditions (neither too high nor too low). The pitch angle is a parameter (denoted

by the “$” symbol). Its value is chosen at run-time during policy optimisation. This

prototype has the effect of setting the blade pitch angle to a fixed value decided at

run-time.

When the turbine anemometer reports

If the wind speed > 3 m/s and the wind speed ≤ 15 m/s

Do set blade pitch to $P degrees

For blade pitch angle = $P

P08: Cool Generator When Overheating

Cools the turbine generator when the generator temperature is reported to be over 80

degrees. This prototype has the effect of setting the generator cooling fan speed to

216

5000 RPM (revolutions per minute) and setting the generator reporting frequency to

once every five minutes.

When the generator temperature is reported

If the temperature > 80 degrees

Do set generator cooling fan speed to 5000 RPM and

set generator reporting to 5 minute intervals

For generator cooling fan speed = 5000 and

generator report freq = 5

P09: Shutdown Turbine In High Generator Voltage

Shuts down a turbine when its generator voltage is too high (over its maximum safe

level of 690 Volts). The shut down is initiated by applying the rotor brakes and pitching

the rotor blades completely out of the wind. This prototype has the effect of setting

the brake status to 1 and the blade pitch angle to 0 degrees.

When the generator voltage > 690 volts

Do apply rotor brakes and pitch blades to 0 degrees

For rotor brake status = 1 and blade pitch angle = 0

P10: Reduce Yaw If Gearbox Oil High

Alters the rotor yaw angle when the turbine gearbox oil temperature is above a safe

level (above 60 degrees). This prototype has the effect of increasing the current yaw

angle by 18 degrees.

When the gearbox oil temperature is over 60 degrees

Do warn the operator and increase the yaw angle by 18 degrees

For yaw angle += 18

P11: Set Bearing Reports To 5 Mins

Alters the frequency of gearbox oil temperature reports when the gearbox oil temper-

ature is high (equal to or above 70 degrees). This prototype has the effect of setting

the gearbox oil temperature reporting frequency to 5.

217

When the gearbox oil temperature is ≥ 70 degrees

Do set gearbox bearing temperature reporting to 5 minute intervals

For gearbox bearing report freq = 5

P12: Shutdown Turbine In Gale Force Wind

Shuts down the turbine when gales are detected (wind speeds over 25 m/s). The shut

down is initiated by pitching the rotor blades out of the wind and applying the rotor

brake. The anemometer reporting frequency is also altered – to monitor wind speed

and detect when the conditions are safe to resume turbine operation. This prototype

has the effect of setting the blade pitch angle to 0 degrees, the rotor brake status to 1

and the turbine anemometer reporting frequency to 2.

When the turbine anemometer reports

If the wind speed > 25 m/s

Do pitch the blades to 0 degrees and apply rotor brakes and

set turbine anemometer reporting to 2 minute intervals

For blade pitch angle = 0 and rotor brake status = 1 and

turbine anemometer report freq = 2

P13: Yaw Adjustment In High Wind

Adjusts the turbine yaw angle when high winds (above 20 m/s) are reported. This

prototype has the effect of increasing the current turbine yaw angle by 30 degrees

(turning the rotor out of the wind to reduce rotor speed).

When the turbine anemometer reports

If the wind speed > 20 m/s and the yaw angle < 10 degrees

Do warn operator and increase yaw angle by 30 degrees

For yaw angle += 30

P14: Low Rotation In Low Wind

Ensures the turbine rotor blades continue to rotate at a low level in the case of little

or no wind to power them. This is instead of shutting the turbine down (increasing

218

strain on mechanical components from being idle for extended periods of time). This

prototype has the effect of setting the blade pitch angle to 45 (pitching blades fully to

make use of available wind), and setting the turbine anemometer reporting frequency

to 10 (to monitor conditions and detect when wind speed increases).

When the turbine anemometer reports

If the wind speed < 1.5 m/s

Do pitch blades to 45 degrees and

set turbine anemometer reporting to 10 minute intervals

For blade pitch angle = 45 and

turbine anemometer report freq = 10

P15: Shutdown Turbine In Very Low Wind

Shuts down the turbine when there is little or no wind to turn the rotor blades without

assistance. This prototype has the effect of setting the blade pitch angle to 0 and the

rotor brake status to 1 (applying the rotor brake to keep the rotor safely stationary).

When the turbine anemometer reports

If the wind speed < 0.5 m/s

Do pitch blades to 0 degrees and apply rotor brakes

For blade pitch angle = 0 and rotor brake status = 1

P16: Blade Pitch For Stronger Wind

Alters the blade pitch for strong (safe) wind conditions between 10 m/s and 15 m/s.

This prototype has the effect of decreasing the the blade pitch angle by 20 degrees (to

slow the rotor speed and protect the turbine components from overheating).

When the turbine anemometer reports

If the wind speed ≥ 10 m/s and the wind speed ≤ 15 m/s

and the blade pitch > 40 degrees

Do reduce the blade pitch by 20 degrees

For blade pitch angle −= 20

219

P17: Blade Pitch For Low Wind

Alters the blade pitch for low winds (below 5 m/s). This prototype has the effect of

increasing the the blade pitch angle by 15 degrees (to increase the rotor speed and

generate more power).

When the turbine anemometer reports

If the wind speed < 5 m/s and the blade pitch < 31 degrees

Do increase the blade pitch by 15 degrees

For blade pitch angle += 15

P18: Heat Nacelle In Freezing Temperatures

Turns on internal nacelle heater in freezing conditions (when temperatures fall below

-10) to prevent ice forming on mechanical components and causing damage or malfunc-

tion. This prototype has the effect of setting the internal nacelle heater to full power

(230W) and the nacelle temperature reporting frequency to 4.

When the nacelle temperature ≤ −10

Do switch on internal heater and

set nacelle temperature reporting to 4 minute intervals

For internal heater power = 230V and

nacelle temperature report freq = 4

P19: Battery Level Below 9 Volts

Prototypes P19 to P27 attempt to maintain the best operational capability of a node

in the event of a failing battery. These prototypes configure the sensor node to either

reduce sampling and/or reporting frequencies of individual sensors or switch sensors off

depending on the detected battery level. Each sensor has an assumed priority based

on the importance of its measurements and the power it consumes. For example, a

rainfall sensor has the lowest priority as it consumes more power than any other sen-

sor and its measurements are less important than, for example, temperature or wind

speed. An anemometer has the highest priority as wind speed is deemed the most

crucial measurement. Low priority, power hungry sensors are switched off first to con-

220

serve power, whereas sensors of most importance to data collection remain operational

but have their sampling and reporting frequencies gradually decreased as the battery

deteriorates. The maximum battery level is 12V. Different actions are required at set

intervals of 9V, 7V, 5V, 3V and 2V.

Prototype P19 takes action when the sensor node battery falls below 9V, and sends

a warning message to the operator console. This prototype has the effect of setting the

temperature sampling frequency to once every 8 minutes, the soil moisture sampling

frequency to once every 15 minutes and the humidity sampling frequency to once every

20 minutes. The XML for this prototype is shown below.

When a sensor node reports on battery voltage

If the battery voltage < 9V

Do set the temperature sampling frequency to 8 and

set the soil moisture sampling frequency to 15 and

set the humidity sampling frequency to 20 and

send a message to the console:

“Level 1 warning, node battery low, reducing sampling rates across sensors”

For temperature sampling freq = 8.0 and

soilmoisture sampling freq = 15.0 and humidity sampling freq = 20.0

0 <?xml version=′′1.0′′ encoding=′′UTF-8′′?>
1 <policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

2 xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel prototype.xsd′′>
3 <prototype
4 owner=′′goalkeeper@cs.stir.ac.uk′′

5 applies to=′′@cs.stir.ac.uk′′

6 effects=′′temperature sampling freq = 8.0,soilmoisture sampling freq = 15.0,
humidity sampling freq = 20.0′′

7 id=′′Battery Level Below 9 Volts′′

8 enabled=′′true′′

9 changed=′′2008-04-21T10:20:59′′>
10 <policy rule>
11 <trigger arg1=′′battery voltage′′ arg2=′′sensor′′>
12 device in(arg1,arg2)
13 </trigger>
14 <condition>
15 <parameter>message values</parameter>
16 <operator>lt</operator>
17 <value>9</value>
18 </condition>
19 <actions>

221

20 <and/>
21 <action arg1=′′set rule′′ arg2=′′sensor′′

22 arg3=′′:entity instance′′ arg5=′′[temp samp freq,8.0]′′>
23 device out(arg1,arg2,arg3,,arg5)
24 </action>
25 <actions>
26 <and/>
27 <action arg1=′′set rule′′ arg2=′′sensor′′

28 arg3=′′:entity instance′′ arg5=′′[soil samp freq,15.0]′′>
29 device out(arg1,arg2,arg3,,arg5)
30 </action>
31 <actions>
32 <and/>
33 <action arg1=′′set rule′′ arg2=′′sensor′′

34 arg3=′′:entity instance′′ arg5=′′[humidity samp freq,20.0]′′>
35 device out(arg1,arg2,arg3,,arg5)
36 </action>
37 <action arg1=′′message′′ arg2=′′console′′

38 arg5=′′[Level 1 warning, node battery low, reducing sampling rates across sensors]′′>
39 device out(arg1,arg2,,,arg5)
40 </action>
41 </actions>
42 </actions>
43 </actions>
44 </policy rule>
45 </prototype>
46 </policy document>

P20: Battery Level Below 7 Volts

Takes action when the sensor node battery falls under 7V, and notifies the operator

via the console and by email. This prototype has the effect of setting the anemometer

sampling frequency to once every 5 minutes and the temperature sampling frequency

to once every 12 minutes.

When a sensor node reports on battery voltage

If the battery voltage < 7V

Do set the temperature sampling frequency to 12 and

set the anemometer sampling frequency to 5 and

send a message to the console:

“Level 2 warning, node battery low, reducing sampling rates” and

send a message to operator@wf.com:

“Level 2 warning, node battery low, reducing sampling rates”

For anemometer sampling freq = 5.0 and

temperature sampling freq = 12.0

222

P21: Battery Level Below 5 Volts

Takes action when the sensor node battery falls under 5V, and notifies the operator via

the console. This prototype has the effect of switching off the rainfall and soil moisture

sensors (rainfall and soil moisture drain set to 0), setting the anemometer sampling

frequency to once every 10 minutes and setting the temperature sampling frequency to

once every 15 minutes.

When a sensor node reports on battery voltage

If the battery voltage < 5V

Do switch off rainfall sensor and switch off soil sensor and

set the temperature sampling frequency to 15 and

set the anemometer sampling frequency to 10 and

send a message to the console:

“Node battery low, switching off rainfall sensor”

For rainfall drain = 0.0 and soilmoisture drain = 0.0 and

anemometer sampling freq = 10.0 and temperature sampling freq = 15.0

P22: Battery Level Below 3 Volts

Takes action when the sensor node battery falls under 3V, and notifies the operator via

the console. This prototype has the effect of switching off the temperature and humidity

sensors (temperature and humidity drain set to 0) and setting the anemometer sampling

frequency to once every 15 minutes.

When a sensor node reports on battery voltage

If the battery voltage < 3V

Do switch off temperature sensor and switch off humidity sensor and

set the anemometer sampling frequency to 15 and

send a message to the console:

“Node battery low, switching off temperature sensor”

For temperature drain = 0.0 and humidity drain = 0.0 and

anemometer sampling freq = 15.0

223

P23: Battery Level Below 2 Volts

Takes action when the sensor node battery falls under 2V. This is a critical power

level for the node, therefore the remaining sensor (the anemometer) is switched off and

the operator notified via console and SMS message. This prototype has the effect of

switching off the anemometer (anemometer drain set to 0).

When a sensor node reports on battery voltage

If the battery voltage < 2V

Do switch off the anemometer and send a message to the console:

“Node at critical power level, switching off anemometer” and

send a message via SMS:

“Node at critical power level, switching off anemometer”

For anemometer drain = 0.0

P24: Sensor Reporting Battery Below 9 Volts

Attempts to conserve battery power by reducing the frequency of sensor reports when

the sensor node battery falls under 9V. This prototype has the effect of setting the

temperature reporting frequency to once every 30 minutes, the soil moisture reporting

frequency to once every 40 minutes and the humidity reporting frequency to once every

40 minutes.

When a sensor node reports on battery voltage

If the battery voltage < 9V

Do set the temperature reporting frequency to 30 and

set the soil moisture reporting frequency to 40 and

set the humidity reporting frequency to 40

For temperature reporting freq = 30.0 and

soilmoisture reporting freq = 40.0 and

humidity reporting freq = 40.0

224

P25: Sensor Reporting Battery Below 7 Volts

Attempts to conserve battery power by reducing the frequency of sensor reports when

the sensor node battery falls under 7V. This prototype has the effect of setting the tem-

perature reporting frequency to once every 45 minutes and the anemometer reporting

frequency to once every 10 minutes.

When a sensor node reports on battery voltage

If the battery voltage < 7V

Do set the temperature reporting frequency to 45 and

set the anemometer reporting frequency to 10

For temperature reporting freq = 45.0 and

anemometer reporting freq = 10.0

P26: Sensor Reporting Battery Below 5 Volts

Attempts to conserve battery power by reducing the frequency of sensor reports when

the sensor node battery falls under 5V. This prototype has the effect of setting the tem-

perature reporting frequency to once every 60 minutes and the anemometer reporting

frequency to once every 15 minutes.

When a sensor node reports on battery voltage

If the battery voltage < 5V

Do set the temperature reporting frequency to 60 and

set the anemometer reporting frequency to 15 and

For temperature reporting freq = 60.0 and

anemometer reporting freq = 15.0

225

P27: Sensor Reporting Battery Below 3 Volts

Attempts to conserve battery power by reducing the frequency of sensor reports when

the sensor node battery falls under 3V. This prototype has the effect of setting the

anemometer reporting frequency to once every 20 minutes.

When a sensor node reports on battery voltage

If the battery voltage < 3V

Do set the anemometer reporting frequency to 20

For anemometer reporting freq = 20.0

P28: Increase Sampling In High Winds

Notifies the operator and increases the anemometer sampling frequency when the wind

speed is 20 m/s or above, and the sensor node battery is at least 9V (if the battery

is below 9V, the previous policies P19 - P27 may take better configuration actions).

This prototype has the effect of setting the anemometer sampling frequency to once a

minute.

When the anemometer reports

If the value is ≥ 20 m/sec and battery voltage ≥ 9V

Do set the anemometer sampling frequency to 1 and

send a message to the console:

“High wind, increasing anemometer sampling”

For anemometer sampling freq = 1.0

226

P29: Increase Reporting In High Winds

Notifies the operator and increases the anemometer reporting frequency when the wind

speed is 20 m/s or above, and the sensor node battery is at least 9V (if the battery

is below 9V, the previous policies P19 - P27 may take better configuration actions).

This prototype has the effect of setting the anemometer reporting frequency to once a

minute.

When the anemometer reports

If the value is ≥ 20 m/sec and battery voltage ≥ 9V

Do set the anemometer reporting frequency to 1 and

send a message to the console:

“High wind, increasing anemometer reporting”

For anemometer reporting freq = 1.0

P30: Reduce Sampling In Low Winds

Notifies the operator and reduces the anemometer sampling frequency when the wind

speed is low (below 2 m/s), and the sensor node battery is at least 9V (if the battery is

below 9V, the previous policies P19 - P27 may take better configuration actions). This

prototype has the effect of setting the anemometer sampling frequency to once every

15 minutes.

When the anemometer reports

If the value is < 2 m/sec and battery voltage ≥ 9V

Do set the anemometer sampling frequency to 15 and

send a message to the console:

“Low wind, reducing anemometer sampling”

For anemometer sampling freq = 15.0

227

P31: Reduce Reporting In Low Winds

Notifies the operator and reduces the anemometer reporting frequency when the wind

speed is low (below 2 m/s), and the sensor node battery is at least 9V (if the battery is

below 9V, the previous policies P19 - P27 may take better configuration actions). This

prototype has the effect of setting the anemometer reporting frequency to once every

15 minutes.

When the anemometer reports

If the value is < 2 m/sec and battery voltage ≥ 9V

Do set the anemometer reporting frequency to 15 and

send a message to the console:

“Low wind, reducing anemometer reporting”

For anemometer reporting freq = 15.0

P32: Set Anemometer Rates Normal

Sets the anemometer sampling and reporting frequencies to their default values when

the wind speed is normal (between 2 m/s and 20 m/s), and the sensor node battery

is at least 9V (if the battery is below 9V, the previous policies P19 - P27 may take

better configuration actions). This prototype has the effect of setting the anemometer

sampling frequency to once every 3 minutes and the anemometer reporting frequency

to once every 3 minutes.

When the anemometer reports

If the value is ≥ 2 m/sec and the value is < 20 m/sec and

the battery voltage ≥ 9V

Do set the anemometer sampling frequency to 3 and

set the anemometer reporting frequency to 3

For anemometer sampling freq = 3.0 and

anemometer reporting freq = 3.0

228

P33: Increase Sampling In Extreme Temperatures

Increases temperature sensor sampling and reporting frequencies in extreme conditions

– either very warm (30◦C or above) or very cold (below 1◦C), and the sensor node

battery is at least 9V (if the battery is below 9V, the previous policies P19 - P27

may take better configuration actions). This prototype has the effect of setting the

temperature sampling frequency to once every 1 minute and the temperature reporting

frequency to once every 3 minutes.

When the temperature sensor reports

If (the value is ≥ 30 or the value is < 1) and

the battery voltage ≥ 9V

Do set the temperature sampling frequency to 1 and

set the temperature reporting frequency to 3 and

send a message to the console: “Increasing temperature sampling rate”

For temperature sampling freq = 1.0 and temperature reporting freq = 3.0

P34: Set Temperature Rates Normal

Sets the temperature sensor sampling and reporting frequencies to their default values

when the temperature is normal (between 1◦C and 30◦C), and the sensor node battery

is at least 9V (if the battery is below 9V, the previous policies P19 - P27 may take

better configuration actions). This prototype has the effect of setting the temperature

sampling frequency to once every 5 minutes and the temperature reporting frequency

to once every 5 minutes.

When the temperature sensor reports

If (the value is < 30 and the value is ≥ 1) and

the battery voltage ≥ 9V

Do set the temperature sampling frequency to 5 and

set the temperature reporting frequency to 5

For temperature sampling freq = 5.0 and

temperature reporting freq = 5.0

229

P35: Alter Anemometer In High Winds

Alters the anemometer sampling and reporting frequencies when the wind speed is

high (20 m/s or above), and the sensor node battery is at least 9V (if the battery is

below 9V, the previous policies P19 - P27 may take better configuration actions). The

sampling and reporting frequencies are parameter values (denoted by the “$” symbol).

The values for $S and $R are chosen at run-time during policy optimisation. This

prototype has the effect of setting the anemometer sampling frequency to a fixed value

decided at run-time and, similarly, the anemometer reporting frequency to a fixed value

decided at run-time.

When the anemometer reports

If the value is ≥ 20 m/sec and battery voltage < 9V

Do set the anemometer sampling frequency to $S and

set the anemometer reporting frequency to $R and

send a message to the console:

“High winds, altered anemometer configuration”

For anemometer sampling freq = $S and

anemometer reporting freq = $R

6.5.3 Static Refinement

The static selection process looks at each prototype and compares its effects against the

controlled and uncontrolled values within each goal measure. If a prototype affects a

variable used within a goal measure, it potentially contributes to that goal. The result

of static prototype selection is shown in Figure 6.14. This shows which prototypes

potentially contribute to each goal, with a star indicating applicability. Prototypes

are listed alphabetically by name, with turbine-specific prototypes first followed by

sensor-specific.

230

Prototype B
at

te
ry

D
ra

in

D
at

a
Y

ie
ld

C
om

p
on

en
t

D
am

ag
e

E
n

er
gy

G
en

er
at

ed

T
u

rb
in

e
M

on
it

or
in

g

Alter Yaw In High Blade Vibration H H

Blade Pitch For Low Wind H H

Blade Pitch For Stronger Wind H H

Blade Pitch Parameterised Normal Wind H H

Cool Generator When Overheating H H

Fix Repeating Yaw Direction H H

Handle Low Blade Vibration H H H

Handle Medium Blade Vibration H H H

Heat Nacelle In Freezing Temperatures H H

Low Rotation In Low Wind H H H

Reduce Yaw If Gearbox Oil High H H

Rotor Overspeed Protection H H

Set Bearing Reports To 5 Mins H

Shutdown Turbine High In Generator Voltage H H

Shutdown Turbine In Gale Force Wind H H H

Shutdown Turbine In Very Low Wind H H

Shutdown Turbine Under High Vibration H H

Yaw Adjustment In High Wind H H

Alter Anemometer In High Winds H H

Battery Level Below 2 Volts H

Battery Level Below 3 Volts H H

Battery Level Below 5 Volts H H

Battery Level Below 7 Volts H H

Battery Level Below 9 Volts H H

Increase Reporting In High Winds H H

Increase Sampling In Extreme Temperatures H H

Increase Sampling In High Winds H H

Reduce Reporting In Low Winds H H

Reduce Sampling In Low Winds H H

Sensor Reporting Battery Below 3 Volts H H

Sensor Reporting Battery Below 5 Volts H H

Sensor Reporting Battery Below 7 Volts H H

Sensor Reporting Battery Below 9 Volts H H

Set Anemometer Rates Normal H H

Set Temperature Rates Normal H H

Figure 6.14: Static Turbine and Sensor Prototype Selection

231

Referring to Figure 6.14, the following example demonstrates the process of pro-

totype instantiation for “Cool Generator When Overheating” (P08 in the prototypes

listed in the previous section), which cools the turbine generator when an overheat is

detected. The XML for this prototype is as follows:

0 <prototype
1 owner=′′goalkeeper@cs.stir.ac.uk′′

2 applies to=′′@cs.stir.ac.uk′′

3 effects=′′generator cooling fan speed = 5000,generator report freq = 5′′

4 id=′′Cool Generator When Overheating′′

5 enabled=′′true′′

6 changed=′′2008-10-05T13:48:54′′>
7 <policy rule>
8 <trigger arg1=′′generator temperature′′ arg2=′′turbine′′>
9 device in(arg1,arg2)

10 </trigger>
11 <condition>
12 <parameter>parameter values</parameter>
13 <operator>gt</operator>
14 <value>80</value>
15 </condition>
16 <actions>
17 <and/>
18 <action arg1=′′set parameter′′ arg2=′′turbine′′

19 arg3=′′:entity instance′′ arg5=′′[generator fan speed,5000]′′>
20 device out(arg1,arg2,arg3,,arg5)
21 </action>
22 <action arg1=′′set parameter′′ arg2=′′turbine′′

23 arg3=′′:entity instance′′ arg5=′′[generator reports,5]′′>
24 device out(arg1,arg2,arg3,,arg5)
25 </action>
26 </actions>
27 </policy rule>
28 </prototype>

Referring to Figure 6.14, this prototype potentially contributes to two goals, Max-

imise Energy Generated (G04) and Maximise Turbine Monitoring (G05). As both

these goals have associated conditions, the conditions from each are copied when the

prototype is instantiated.

The instantiated prototype is shown below in XML. This new policy has a modi-

fied id (line 4) and a new attribute listing the goals it supports (line 7). The policy

condition block contains the original prototype condition (lines 14-18) and the condi-

tions inherited from the goals it supports: the condition on G04 (lines 21-25) and the

condition on G05 (lines 26-30). Note the way in which these conditions are combined.

The original condition is combined with the goal conditions using “and” and the goal

232

conditions combined using “or”. Once triggered, the policy is executable only if its

original condition plus either one of the two goal conditions are satisfied.

0 <policy
1 owner=′′goalkeeper@cs.stir.ac.uk′′

2 applies to=′′@cs.stir.ac.uk′′

3 effects=′′generator cooling fan speed = 5000,generator report freq = 5′′

4 id=′′Cool Generator When Overheating pol′′

5 enabled=′′true′′

6 changed=′′2008-10-05T14:36:07′′

7 supports goal=′′Maximise Energy Generated,Maximise Turbine Monitoring′′>
8 <policy rule>
9 <trigger arg1=′′generator temperature′′ arg2=′′turbine′′>

10 device in(arg1,arg2)
11 </trigger>
12 <conditions>
13 <and/>
14 <condition>
15 <parameter>parameter values</parameter>
16 <operator>gt</operator>
17 <value>80</value>
18 </condition>
19 <conditions>
20 <or/>
21 <condition>
22 <parameter>:generator voltage</parameter>
23 <operator>le</operator>
24 <value>690</value>
25 </condition>
26 <condition>
27 <parameter>:wind speed</parameter>
28 <operator>ge</operator>
29 <value>15</value>
30 </condition>
31 </conditions>
32 </conditions>
33 <actions>
34 <and/>
35 <action arg1=′′set parameter′′ arg2=′′turbine′′

36 arg3=′′:entity instance′′ arg5=′′[generator fan speed,5000]′′>
37 device out(arg1,arg2,arg3,,arg5)
38 </action>
39 <action arg1=′′set parameter′′ arg2=′′turbine′′

40 arg3=′′:entity instance′′ arg5=′′[generator reports,5]′′>
41 device out(arg1,arg2,arg3,,arg5)
42 </action>
43 </actions>
44 </policy rule>
45 </policy>

233

6.5.4 Dynamic Refinement

This section demonstrates run time policy selection for sensor network and wind tur-

bine management. There are four scenarios documenting the results of event handling

and policy selection for two sensor network triggers and two wind turbine triggers.

Triggers to the policy system take the form of the standard “device in” trigger for

sensor network policies described in Chapter 3. For example, turbine T03 may notify

the policy system that the blade pitch angle at 1pm was 30.8 degrees using a message

in the following format:

device_in(blade_pitch_angle,turbine,T03,13:00:00,[30.8])

Each scenario is presented in a similar fashion. The trigger is given in the format

above together with the values of any other relevant state variables, followed by a graph

of the results obtained for each applicable policy combination. For an explanation of

the graph and how to interpret the results refer to the previous section 6.4.4. Each

scenario concludes with an evaluation of the optimal result obtained.

Scenario 1: Wind Turbine Blade Vibration

This scenario demonstrates policy selection when a turbine blade vibration size report

is received. The trigger is:

device_in(blade_vibration_frequency,turbine,T03,12:30:21,[22.0])

The blade vibration size is 22.0, from the turbine T03, measured at the time of

12:30:21. This example assumes the current blade pitch angle is 42 degrees and the yaw

angle is 15 degrees. Under these conditions, four goal-related policies are applicable.

The result of goal evaluation for these policies is shown in Figure 6.15.

As the trigger was a high level of blade vibration size, suitable policies should be

aiming to take action that prevents further damage or mechanical failure. The optimal

result in this case is to select policies P05* and P02*. P05* sets the yaw angle of the

234

P02* Shutdown Turbine Under High Vibration
P03* Handle Low Blade Vibration
P04* Handle Medium Blade Vibration
P05* Alter Yaw In High Blade Vibration

Figure 6.15: Scenario 1: Policy Selection for Wind Turbine Blade Vibration

turbine rotor to 90 degrees (angling the rotor out of the wind). P02* slows the rotor

speed by pitching the rotor blades to 0 degrees (angling the blades out of the wind).

When measured across all goals, these actions are preferable over increasing the blade

pitch and yaw angle by smaller amounts as in policies P03* and P04* – actions more

appropriate for lower levels of blade vibration.

Scenario 2: Turbine Anemometer Report

This scenario demonstrates policy selection when a turbine anemometer reports the

detected wind speed. The trigger is:

device_in(anemometer,turbine,T01,16:10:51,[0.4])

235

The reported wind speed is 0.4 m/s, from the turbine T01, measured at the time of

16:10:51. This example assumes the current blade pitch angle is 35 degrees and the yaw

angle is 43 degrees. Under these conditions, three goal-related policies are applicable.

The result of goal evaluation for these policies is shown in Figure 6.16.

P14* Low Rotation In Low Wind
P15* Shutdown Turbine In Very Low Wind
P17* Blade Pitch For Low Wind

Figure 6.16: Scenario 2: Policy Selection for Turbine Anemometer Report

The trigger was a report that there was little wind. The optimal policy to select was

P15*, which shuts the turbine down by applying the rotor brakes and pitching the rotor

blades to 0 degrees (to stop the rotor rotating in any available wind). This is deemed

more favourable than allowing the turbine to rotate slowly (P14*), or increasing the

blade pitch in an attempt to operate more efficiently (P17*).

Scenario 3: Sensor Node Battery Voltage

This scenario demonstrates policy selection when a sensor node reports the battery

voltage level. The trigger is:

236

device_in(battery_voltage,sensor,S02,19:35:05,[4.8])

The battery voltage is 4.8 Volts, from sensor node S02, measured at the time of

19:35:05. Under these conditions, six goal-related policies are applicable. The result of

goal evaluation for these policies is shown in Figure 6.17.

P19* Battery Level Below 9 Volts
P20* Battery Level Below 7 Volts
P21* Battery Level Below 5 Volts
P24* Sensor Reporting When Battery Below 9 Volts
P25* Sensor Reporting When Battery Below 7 Volts
P26* Sensor Reporting When Battery Below 5 Volts

Figure 6.17: Scenario 3: Policy Selection for Sensor Node Battery Voltage

The trigger is a report that the battery voltage was at a low level. All the trig-

gered policies take action toward conserving power on a node to varying degrees. The

optimal set of policies selected is P26* and P21*. P26* sets the reporting frequencies

of sensors on the node to values recommended when the battery is below 5 volts, and

P21* sets the sampling rates of sensors to recommended levels in the same circum-

237

stances, and also switches some sensors off. This selection is logically what is expected

under the presented conditions. However, without goal-directed policy selection, any

possible combination of the six triggered policies might have been executed. From the

graph, although the combination of P26* and P21* yields the best value (20.113), there

are three other selections which are marginally worse (P21* alone (19.987), P24* and

P21* (20.056), and P21* and P25* (20.097)). All these options include policy P21*

but consider the impact of executing different combinations of policies that alter sen-

sor reporting frequencies (P24*, P25* and P26*). Although there is small difference

between the values, the value for the evaluation function (that takes into account all

goal measures) is highest using the combination including P26*.

Scenario 4: Sensor Anemometer Report

This scenario demonstrates policy selection when a sensor node reports the wind speed

from the anemometer. The trigger is:

device_in(anemometer,sensor,S15,07:45:00,[22.0])

The reported wind speed is 22 m/s, from the sensor node S15, measured at the time

of 07:45:00. Note the battery voltage on this node is recorded as 7.5 volts in the policy

store – the battery is getting low. Under these conditions, only one goal-related policy

is applicable. The result of goal evaluation is shown in Figure 6.18.

The trigger is a report of high wind speed from a sensor node with a low battery. As

the triggered policy is parameterised, the policy selection process considers the optimal

value to assign. The parameters represent the anemometer reporting frequency ($R)

and the anemometer sampling frequency ($S). The extreme values for $R are 1 and 60.

The extreme values for $S are 1 and 15. The optimal solution sets the anemometer to

report once every 60 minutes (R = 60) and to sample every 15 minutes (S = 15).

238

P35* Alter Anemometer In High Winds

Figure 6.18: Scenario 4: Policy Selection for Sensor Anemometer Report

6.6 Conclusion

6.6.1 Chapter Summary

This chapter presented a new approach to managing systems via high-level goals. The

approach was outlined together with an implementation that was illustrated for the

domains of Internet telephony and sensor network/wind turbine management.

The introductory section summarised goal-based techniques in computing and prior

work where goals have been used in policy-based environments. Goal and policy re-

finement was explained and the differences between existing work in this field and the

approach in this chapter outlined. No concrete methodology to define and refine goals

into policies has been developed by others and no complete system has been imple-

mented and demonstrated for multiple application domains.

In the presented goal refinement approach, goals are high-level objectives which are

refined into sets of policies that help achieve them. Goals and prototypes (template

goal-related policies) are defined using the Appel policy language. The state of the

239

system is described using a set of controlled and uncontrolled variables which may

be modified based on events received by the policy system and actions performed as

a result of policy execution. Each goal has an associated numerical measure that

includes these state variables. A goal evaluation function is defined which combines

and optionally weights individual goal measures. Goal refinement is achieved using

a two-stage process. Statically, prototypes are instantiated as executable policies to

support goals. At run-time, triggered sets of goal-related policies are optimised, and

parameterised if applicable. The outcome of run-time goal optimisation is a subset of

initially triggered policies which, when executed, contribute most to the goals of the

system. The developed goal system was integrated and evaluated with the existing

Accent policy system.

6.6.2 Evaluation

The goal-directed approach to policy-based management presented in this chapter has

been shown to be valuable in automatically managing and configuring a system based

on a collection of high-level aims. In general, the goal approach is applicable to any

event-based system environment manageable by policies. The approach is evaluated

through consideration of its strengths, limitations, and future work.

Strengths

The approach differs in many ways from existing goal-directed methods discussed in

section 6.1.6. A key difference between this approach and that of other goal-directed

policy approaches is that, here, numerical analysis and optimisation is used instead

of formal methods to define and refine goals into policies that achieve them. This is

advantageous as domain experts rather than formalists can specify goals, weightings

and measures with no need for prior knowledge of formal specifications. The absence of

formal notation is more user-friendly and allows the goal environment to be modelled

and understood by a wider range of people in an organisation – the mathematical and

logical symbols used in formal methods is not as easy to interpret or explain.

Goals, prototypes and policies are defined using the common language of Appel.

240

As goals are refined directly into policies, conflict detection and resolution are addressed

automatically within the Accent system, requiring no additional mechanism. In ad-

dition, the common syntax between goals, prototypes and policies is more user-friendly

as it allows goals to be defined in a similar way to policies, which is simpler than forcing

users to learn a separate language for each. Furthermore, the goal system has been de-

signed and implemented to operate independently of the core Accent policy system.

This means that goals are not essential for a domain specialisation of the policy system

– policies alone may be used to manage a system without additional goal-direction.

This is a strength of the approach as it allows the policy system and goal system to be

extended and maintained independently, and does not prevent the policy system being

used in domains where goal-direction is not desired.

Other goal and policy-based approaches, such as [55] and [93], use policy hierarchies

(layers of policy abstraction). This is not as flexible as the presented approach, as goals

and policies are more tightly associated (changes in lower-level policies have an affect

on higher-level goals and policies). Here, goal-derived policies are not intended to be

changed once deployed. The policy system thus stores and deploys both goal-derived

policies and user-defined policies together and treats them similarly.

Existing approaches have been applied to limited real life domains other than net-

work service management scenarios, thus failing to demonstrate the benefits that high-

level goals can bring to system management over the use of policies alone. A major

strength of the approach presented in this thesis demonstrates a system capable of goal

direction using policies in more general domains – specifically, Internet telephony and

sensor network/wind turbine management.

Limitations and Further Work

Although advantages of using non-formal methods of goal definition and refinement

have been discussed, one weakness of this is that verification of policy solutions is not

automatic. In the presented approach, trial and error is required when defining and

testing the goal evaluation function and goal weightings. A domain expert must also

check an appropriate set of policies (prototypes) are written to ensure contribution to

241

all defined goals. Means of overcoming these issues include more rigorous evaluation

of goals and prototypes when they are defined. For example, goal measures and proto-

types could be automatically cross-referenced (to identify any goals that have few or no

contributing policies), and prototypes grouped by trigger to determine cases where par-

ticular policies might be idle (triggered but never executed as other policies persistently

score higher values).

As both user-defined policies and goal-related policies can be triggered together, it is

possible they could conflict. This requires suitable resolution policies set up to handle

such conflicts (e.g. user-defined policies may get priority over goal-derived policies).

Goals themselves may conflict with one another but this may be determined through

inspection of their measures when goals are defined. Conflicts between goals and policies

are independently detectable (and resolvable) and are unrelated.

With regard to the detection of potential conflicts between both goals and the

prototypes selected during the static analysis stage, conflicts might be detectable by

comparing goal conditions and examining the actual triggers, conditions and actions of

prototypes in addition to just their effects. An enhancement to the goal system might

also include a mechanism to generate user-friendly explanations for changes in system

behaviour resulting from the goal-refinement process. For example, this might provide

feedback to defend why a particular action has been taken over others in relation to

the goals it achieves. This feedback might also be useful in determining whether the

weights applied to each goal are suitable or should be altered to achieve more desirable

system behaviour.

The presented approach is flexible in that it offers a generic framework that may

be adapted to use any optimisation algorithm. The optimisation method described

in section 6.3.4 is sufficient for the demonstrated application domains of telephony

and sensor networks as both domains utilise a relatively small number of policies and

parameters. However, should the number of distinct parameters to optimise be larger

for other domains, this approach is less efficient and the time overhead to process

combinations would be undesirable. Under such circumstances, the use of a more

powerful optimisation approach would be required, such as a Genetic Algorithm.

242

One improvement to this approach is to obtain more optimal parameter values.

Currently, the approach considers just two values for each parameter (its maximum

allowed value, and its minimum allowed value). To find the optimal parameter value

would require a heavy-weight optimisation algorithm in order to compute solutions us-

ing a larger selection of possible values efficiently in real time. As mentioned previously,

this is possible by implementing a different optimisation algorithm and plugging this

into the goal system framework. However, there must always be a trade-off between

the degree of optimisation and the processing overhead incurred.

In the presented approach, policy optimisation uses an evaluation function which is

a weighted sum of all goal measures. Although the test scenarios documented in this

chapter have yielded feasible optimal policy sets, it is plausible to question the impact

small changes to the goal evaluation function might have on the results. For example,

minor alterations to goal weightings or measures might yield a different optimal set of

policies. Sensitivity analysis is therefore required in order to investigate this further.

Such analysis should consider inputs to the evaluation function (i.e. measures, variables

and weightings) and track the effect that changes in these inputs have on the resulting

values (i.e. the optimal policy set). A means of automating this analysis would improve

the approach and provide assurance as to the correctness of the optimal solutions found.

The goal system adds an overhead to the policy system during run-time optimisa-

tion. Domain depending, such a delay may reduce efficiency of the overall goal-directed,

policy-based approach. Ways of improving this might be to detect and cache commonly

triggered policy sets and omit particular combinations of policies which clash in their

effects. Ultimately, this requires further practical testing and investigation.

Finally, while the presented approach has been demonstrated for Internet telephony

and sensor network/wind turbine management, it would benefit from application to

further domains, testing its scalability using a larger set of goals and prototypes, and

experimenting with other optimisation techniques. Extending the range of applications

would provide stronger evidence of the generality of the approach.

243

Chapter 7

Conclusion

The components of the goal-directed, policy-based approach proposed by this the-

sis have been presented within the past four chapters: policy-based management, a

framework of generic and domain-specific ontologies, a tool to detect and filter policy

conflicts, and a goal refinement approach. This final chapter considers the work of this

thesis as a whole, evaluating the combined effort of the individual approaches, systems

and tools.

Section 7.1 summarises the work presented. Section 7.2 reconsiders the objectives

of the thesis outlined in the introduction and describes the achievements of this thesis

work. Section 7.3 discusses the strengths of the overall approach, while section 7.4

describes the limitations of the presented work. Section 7.5 explores ways in which the

whole approach may be improved upon and taken further through future work.

7.1 Thesis Summary

This thesis presented a variety of generic techniques and tools to achieve high-level

system management using goals and policies. The overall approach built on an existing

policy-based framework known as Accent (Advanced Component Control Enhancing

Network Technologies [13]), and its associated policy description language called Appel

(Adaptable and Programmable Policy Environment and Language [91]).

The approach has been applied to the domains of Internet telephony and sensor

network/wind turbine management, the background and context of which were given

244

in Chapter 2. The Appel policy language was previously specialised for Internet tele-

phony as part of the Accent project, but reused in this work to evaluate the new tech-

niques and tools. The domain of sensor network/wind turbine management was studied

as part of the Prosen project (Proactive Condition Monitoring of Sensor Networks,

http://www.prosen.org.uk). While the original Accent system demonstrated the

use of policies for telephony, goals have not been applied in this domain prior to this

work. Neither goals nor policies have been applied to sensor networks in the context

of sensor network/wind turbine management. This thesis has demonstrated the ability

to achieve high-level goal-directed, policy-based management in both these domains.

A policy language for sensor network/wind turbine management was devised as

a specialisation of Appel and outlined in Chapter 3 together with examples of its

use. In Chapter 5, the existing Accent system support for policy conflict handling

was enhanced using an automated method to filter potential conflicts and generate

template resolutions. A tool named Recap (Rigorously Evaluated Conflicts Among

Policies) implements the approach.

Chapter 6 described the goal-directed approach. A goal language and system have

been developed and implemented to work in conjunction with the Accent policy sys-

tem. Goals are defined as an extension of Appel. Goal refinement into executable

policies is achieved in a two-stage process. Statically, template policies known as pro-

totypes are filtered against goals. Prototypes contributing to a goal are instantiated as

executable policies. At run time, as the policy system is informed of system events, the

applicable goal-related policies are optimised against a goal evaluation function, and

are optionally parameterised based on the current state of the system.

The overall approach was generalised using OWL ontologies that model domain-

specific knowledge. Chapter 4 described the ontologies devised to model the generic

and domain-specific aspects of the Appel policy language, and how these ontologies

are used within the Accent system to generalise the policy wizard user interface that

was previously hard-coded for telephony. A system named Poppet (Policy Ontology

Parser Program – Extensible Translation) was developed to enable applications (such as

the goal system, policy system and conflict filtering tool) to utilise information within

245

http://www.prosen.org.uk

ontologies. Ontologies were devised to model the domains of Internet telephony and

sensor network/wind turbine management.

7.2 Achievements

This thesis aimed to show that a system may be effectively managed using high-level

goals and policies. Combined, the techniques and tools presented here have shown

this to be the case in their application for Internet telephony and sensor network/wind

turbine management.

The objectives of this thesis were outlined in Chapter 1. These objectives are now

reconsidered together with explanation of how each has been achieved:

To define a language through which goals may be represented.

A goal language has been developed based on an extension of the Appel policy lan-

guage. The syntax for a goal is a simplified version of a policy. A goal has a single

measure (a function comprising constants and system state variables) which defines how

a numerical value for the goal may be calculated, and a direction – namely “Maximise”

or “Minimise”. A goal may also have optional conditions which act as pre-conditions

on its achievement. Goals for the domains of Internet telephony, sensor networks, and

wind turbine management have been defined and demonstrated in this thesis work.

To design and implement a process of refining a set of high-level goals into

a set of policies that achieve them.

A generic approach has been developed to achieve goal-directed configuration within a

policy-based environment. The approach has been implemented for the Accent policy

system and Appel policy language, but could in theory be reimplemented for other

policy frameworks.

The goal domain is described using a set of controlled and uncontrolled variables

which are modified based on events received by the policy system and actions performed

as a result of policy execution. Each goal has an associated numerical measure that

includes these state variables. A goal evaluation function combines and optionally

246

weights individual goal measures so that multiple goals may be achieved simultaneously.

A two-stage algorithm has been designed and implemented as a system to refine

goals into policies. Offline, prototypes (template policies) are instantiated as executable

policies to support goals. Then at run time, triggered sets of goal-related policies are

optimised, and parameterised if applicable. The outcome of run-time goal optimisation

is a subset of initially triggered policies which, when executed, contribute most to the

goals of the system. The developed goal system has been integrated and evaluated with

the existing Accent policy system. It is also demonstrated for the domains of Internet

telephony and sensor network/wind turbine management.

To define a policy language for the domain of sensor network management.

The Appel policy language has been specialised for the new domain of sensor networks

(described in section 3.4). The language supports policies for sensor networks in general,

and is used in this thesis to define policies for environmental sensors and wind turbine

control. The language is generic and flexible to support a wide range of sensor event

notifications, and to configure devices not specific to any one type of sensor or to the

wind power domain. The language builds on the core Appel policy language described

in section 3.2. Instead of a wide range of complex triggers and actions, the language

uses a single trigger (device in) and action (device out) which may be parameterised

accordingly for each entity. This approach defines a single common message format for

use across all interfacing entities. The device in trigger is used by external entities to

notify the policy system of significant events (e.g. sensor data readings, warnings and

network status information) and the device out action is used in policies to configure

sensors and send messages. The language is deliberately simple, but powerful in that

it allows for reuse across multiple sensor-based environments, and is extensible to suit

changes in underlying sensor network architecture. For example, avoiding hard-coded

triggers and actions allows different sensors to be added to the network over time, or the

capabilities of a sensor to be modified, without the need to change the policy language.

247

To enhance existing policy conflict handling using automated filtering of

policy actions.

An approach has been implemented that automatically identifies and filters potential

conflicts between policy actions at the policy language specification stage. In the origi-

nal Accent policy system, conflict analysis and resolution generation mechanisms were

manual, which made conflict identification time-consuming and error prone. The new

approach concentrates on attempting to identify conflict prone actions at the earliest

possible point when the policy language is either first defined, or being revised. The

approach is non-formal, user-friendly, scalable and domain-independent. Each policy

action is defined to have one or more effects on the managed system (e.g. on physical

resources or abstract aspects of the system environment), and conflicting actions (and

their parameters) are deemed potentially conflicting when they share a common effect.

A second stage of the approach insists on human inspection in order to confirm detected

conflicts or detect subtle domain conflicts that may have been missed.

A tool, named Recap (Rigorously Evaluated Conflicts Among Policies) implements

the approach and is presented in Chapter 5. In addition to analysing and displaying

conflicts, Recap also generates skeleton resolution policies (to handle conflicts at run

time). This approach enhances existing conflict handling in the Accent system by

automating the previously manual process of language analysis, and reduces the risk

of missing potential conflicts. Use of the approach and tool has been demonstrated for

two policy language specialisations – Internet telephony and sensor networks.

To generalise the whole approach by modelling domain-specific knowledge

in ontologies.

A series of interrelated ontologies (described in Chapter 4), have been developed to

model the core and domain-specific elements of the Appel policy language using OWL

(the Web Ontology Language [19]). Three types of ontologies were developed: GenPol,

WizPol, and various domain ontologies. The GenPol ontology defines the core aspects

of a policy in Appel, the WizPol ontology defines additional user interface aspects

(including formatting and display information), and a domain-specific ontology extends

248

the constructs of both GenPol and WizPol to define the policy language for a specific

application area. The approach has been demonstrated through the creation of domain

ontologies for Internet telephony and sensor network/wind turbine management.

Domain information in these ontologies is used in the goal approach, the policy

system and the Recap conflict filtering tool. The Accent policy wizard user interface

was previously developed for the domain of telephony. Using the designed ontologies,

the policy wizard has been re-engineered to utilise ontology-defined language constructs

as opposed to hard-coded domain information.

The result of this work is a domain-independent user interface to manage policies

within the Accent system, and a flexible and extensible ontology model of the policy

language.

To develop supporting software tools to integrate and utilise ontology-

defined knowledge within the generic policy and goal systems and related

components.

Integration of ontology-defined knowledge within the goal system, policy system and

Recap conflict filtering tool has been achieved using a custom-built parser named

Poppet (Policy Ontology Parser Program – Extensible Translation). Poppet parses

an OWL ontology and provides a generic API through which an application can query

an ontology and extract information. The Poppet system is described in section 4.7.1.

7.3 Strengths

From the end user’s perspective, the ability to express a system aim as a goal provides

more powerful and autonomous high-level management and control of a system than

was previously possible using policies alone. This additional level of abstraction from

the mechanics of a system also appeals to less technical administrators. Using goals

and policies, proactive system management is enhanced, as goals may be used to alter

monitoring and dynamic configuration of the system based on the current state of the

environment.

Success of the approach of this thesis is measured in the combined functionality

249

of the developed techniques and tools. The goal system, policy system (including the

policy wizard), and conflict filtering tool are domain-independent (neither contains

hard-coded domain details), and are customisable through information defined within

a domain ontology. This allows for reuse in new event-driven system environments.

Reuse of the approach has been demonstrated in this thesis for two separate domains

– telephony and sensor network/wind turbine management.

This thesis work has investigated and applied high-level goals and policies within

the context of a wind farm, an area where these concepts have never previously been

explored. Through the use of goals and policies, the approach in this thesis provides

‘proactive’ condition monitoring – the capability to detect potential faults and take

action before they cause damage or failure. This is an advance in this area as current

wind turbine monitoring is largely ‘reactive’ in nature. Using a goal-directed, policy-

based approach in this domain is novel, and has shown through the examples in this

thesis to be a viable means of achieving high-level management of wind turbines.

In addition, the approaches of this thesis have been used within the domain of

home care networks, as part of ongoing work within the MATCH project (Mobilising

Advanced Technologies for Care at Home, http://www.match-project.org.uk). This

project is investigating new devices and services to support users in a home care setting.

The Appel policy language specialisation for sensor networks (described in section 3.4)

has been reused to define policies for home care networks. Goals for home care have

similarly been defined and the goal approach has been used for goal-driven policy

support within MATCH. An ontology for home care networks, which builds on the

existing policy ontology framework discussed in section 4.4, has been defined and the

Accent policy wizard customised for this domain.

More technically, individual components (the goal system, the policy system, the

Recap tool, the Poppet parser and the ontologies) all communicate using socket

connections which allow them to either run on one physical machine or be distributed

across several. The flexibility of this architecture eases run-time administration and

allows one system component to be extended or altered without adversely impacting

others.

250

http://www.match-project.org.uk

The approach does not use formal methods of analysis in any of its components.

Instead, non-formal methodologies are used, which are less technically challenging (and

hence more user friendly), and less likely to suffer from the scalability and performance

issues associated with formal methods in a run-time environment.

7.4 Limitations

Although the approach is domain-independent, its reuse is constrained to event-driven

systems that require a degree of autonomy in their control. Specifically, compatible

systems must be capable of generating and reporting events (changes in the system

environment that act as policy triggers) and must also permit dynamic configuration

of its components (services, resources or variables in the system environment must be

alterable via policy actions).

In turn, a suitable interface must be devised to enable the policy system to com-

municate with the managed system. This is additional work that must be carried out

before the policy-based approach may be used, and requires expertise from technical ex-

perts to ensure that messages to and from the managed system are interpreted correctly

within the policy system.

Due to cost and risk factors, it was not feasible to deploy the goal-directed, policy-

based system within a live wind farm environment. Plausible goal and policy scenarios

were therefore devised to mimic interaction between the policy system and wind tur-

bines, in order to test and evaluate the approaches of the thesis. While these simulations

are adequate to demonstrate and initially evaluate the approach, the inability to con-

duct trials in the target environment does mean evaluation is less than complete. There

may be undiscovered usability or performance issues, or pitfalls in real-time efficiency

of using goals and policies within the wind farm domain. Until further practical test-

ing and deployment is carried out, full evaluation of the approach for wind turbine

management cannot be made.

251

7.5 Further Work

The approaches in this thesis are readily applicable to new domains. To further demon-

strate this claim, the techniques and tools may be applied in new fields through special-

isation of the Appel policy language and the creation of a new domain ontology. The

sensor network policy language is itself independent of a particular implementation and

may be reused for new sensor network applications.

Of benefit would be a longer, more rigorous practical deployment of the goal-directed

approach, to enhance the results reported here, and test the durability of the approach

over time. Deployment for Internet telephony should take place in an environment with

sufficient numbers of individual policy users, volume of call traffic and network activity

so that goal and policy system performance may be challenged. Practical testing within

a sensor network environment, or that of wind farms, should also be similarly arranged

to test the robustness of the approach.

Scalability of the goal-directed approach and the conflict filtering tool may be eval-

uated further using a policy language with a large set of policy actions (more than,

say, the 21 actions in the language for telephony). Additionally, experimentation with

larger and more diverse sets of goals, prototypes and user-defined policies would test

the robustness of the approach. Further scalability tests could include studying a large

number of user-defined policies (e.g. 200) in a multi-user environment. This could

investigate the impact in terms of potential conflicts between policies (goal-derived and

user-defined), as well as the overall efficiency of the goal-directed approach.

Enhancements and improvements specific to individual techniques and tools of the

overall approach are discussed in each main chapter. However, significant future goal-

related work worth reiterating is further investigation towards the impact on optimal

policy selection resulting from minor alterations to the goal evaluation function, for the

domains of Internet telephony and sensor network/wind turbine management. This

could use a form of sensitivity analysis based on the test cases documented in this

thesis. The specifics of this are discussed in detail in section 6.6.

252

7.6 Concluding Remarks

During the past two decades, a range of goal-based systems and policy-based languages,

systems, architectures and tools have been proposed and developed. However, despite

the evolution of such approaches, there is currently no real large-scale deployment of

goal-directed, policy-based management. Part of the reason for this may be due to a

lack of a readily implementable, generic framework that is easily customisable to new

domains. It is my hope that, together, the approaches and tools presented in this thesis

will contribute to the development and adoption of such an environment in the future.

253

Appendix A

Wind Turbine Blade Pitch and

Yaw Configuration

Chapter 3 describes a policy language for sensor networks in the context of a wind

farm. Policies are used to monitor and configure wind turbines using a set of common

parameters. This appendix clarifies exactly how blade pitch and yaw angle are config-

ured in the examples in this thesis, as the interpretation of these parameter values vary

in turbine literature.

Rotor Blade Pitch

The rotor blades are pitched into or out of the wind to control the rotation speed and the

generated power. The maximum pitch drive yield is between 0 (zero) and 90 degrees –

typically 45 degrees, although this may vary slightly depending on the particular blade

design. Pitching the blades to 0 degrees signals minimal power output (the wind passes

round the blades), and pitching to 45 degrees signals maximum available power output

(the wind catches the blades and forces the rotor to turn), as shown in Figure A.1. To

reduce or increase drive, the blade pitch angle is reduced or increased respectively.

254

Figure A.1: Blade Pitch and Wind Direction

Rotor Yaw Angle

The rotor yaw angle rotates the blades into or out of the wind to alter the generated

power. The angle of yaw is relative to the wind direction – 0 degrees signals the blades

are facing directly into the wind (maximum power output), and 90 degrees signals the

blades are facing out of the wind (minimal power output). To reduce or increase power

output, the yaw angle is reduced or increased by an angle between 0 (zero) and 90

degrees respectively.

255

Appendix B

GenPol and WizPol Properties

Chapter 4 describes how the Appel policy language and Accent policy wizard in-

terface features are modelled within separate OWL [19] ontologies named GenPol and

WizPol respectively. The properties defined for each of these ontologies are shown here

together with a brief description of their use. Italicised phrases refer to specific policy

language concepts modelled as ontology classes that are explained within Chapter 4.

256

B.1 GenPol Ontology Properties

OWL Property Name Description of Use

hasAction A PolicyRule has at least one Action

hasActionArgument An Action may have an ActionArgument

hasCondition A PolicyRule has a Condition

hasConditionOperator A Condition has a ConditionOperator

hasConditionParameter A Condition has a ConditionParameter

hasConditionValue A Condition has a ConditionValue

hasPermissibleAction A TriggerEvent has some permissible Action(s)

hasPermissibleParameter A TriggerEvent has some permissible

ConditionParameter(s)

hasPolicy A PolicyDocument has at least one Policy

hasPolicyAttribute A Policy has some PolicyAttribute

hasPolicyRule A Policy has at least one PolicyRule

hasPolicyVariable A Policy has some PolicyVariable

hasPolicyVariableAttribute A PolicyVariable may have some

PolicyVariableAttribute(s)

hasTriggerArgument A TriggerEvent may have a TriggerArgument

hasTriggerEvent A PolicyRule has zero or more TriggerEvent(s)

257

B.2 WizPol Ontology Properties

OWL Property Name Description of Use

hasAbilityToQuery Can be applied to any class in a domain-specific ontology

to indicate a form of relationship with an internally classed

variable.

hasCategory Used to categorise triggers, condition parameters, actions

and operators

hasDataType Used to relate a particular defined subclass of DataType to

a TriggerArgument or ActionArgument

hasInternalUse Used to categorise a domain-specific trigger, condition pa-

rameter or action as internal in its use in a domain

hasUnitType Used to associate particular units for display alongside a

TriggerArgument, ActionArgument or ConditionParameter

hasUserLevel Used to group triggers, conditions, actions and operators

according to user level applicability

matchValue This is an annotation property which has a special function

and is a form of meta data. In OWL, this type of prop-

erty acts as a class attribute rather than a restriction. It

is applied in a similar way to the rdfs:label, rdfs:comment

or owl:versionInfo predefined annotations defined for each

class. The matchValue is used to define an alternative ac-

tion or trigger class in a policy depending on the input value

of an argument for a trigger or action. It contains a literal

string value that links it with another ontology class. The

string is interpreted and processed by an application reading

the ontology.

258

Appendix C

Recap Tool Guide

This appendix gives a brief overview and example of the Recap tool (Rigorously Eval-

uated Conflicts Among Policies) that was developed to automate the policy conflict

filtering algorithm described in Chapter 5. A screen-shot of the tool user interface is

shown in Figure C.1. Taking the first line as an example, the tool shows pairs of ac-

tions (add medium(audio) and add medium(audio)), why they conflict (shared effect

on medium and privacy), and when this conflict was identified (either automatically or

manually).

The tool automatically constructs an underlying matrix of all policy action pairs

and highlights those deemed to be potential conflicts. Potential conflicts are displayed

along with a note of their common effects. Each action pairing appears as a single

row in a table. Rows containing a suspected conflict appear in darker shading and the

check-box in the left-most column is checked. Users may explore the matrix by scrolling

up and down the table, confirming or refining each conflicting action pair. If on closer

inspection the user decides there is no conflict, the pairing in question can be flagged

as conflict-free by unchecking the check-box in the associated row. The table may be

sorted in either ascending or descending order by clicking on any column header (e.g.

by flagged conflict, first or second action, conflicting effect(s) or the date an entry was

last modified).

259

Figure C.1: Screen-shot of Recap

260

Bibliography

[1] 3APL: An Abstract Agent Programming Language. http://www.cs.uu.nl/

3apl. Valid October 2008.

[2] DAML+OIL Language Reference. http://www.daml.org/2001/03/daml+

oil-index. Valid December 2008.

[3] DARPA Agent Markup Language (DAML) Program. http://www.daml.org.
Valid December 2008.

[4] Jambalaya knowledge-base visualiser plug-in for Protege. http://www.

thechiselgroup.org/jambalaya. Valid October 2008.

[5] LM Blade Monitoring Ltd. Home page. http://www.lmglasfiber.com. Valid
June 2008.

[6] Ontology Inference Layer (OIL). http://www.ontoknowledge.org/oil. Valid
December 2008.

[7] OWLViz Graphical ontology visualiser plug-in for Protege. http://www.co-ode.
org/downloads/owlviz. Valid October 2008.

[8] Pellet OWL DL Reasoner. http://pellet.owldl.com. Valid October 2008.

[9] Protege ontology editor and knowledge-base framework. http://protege.

stanford.edu. Valid October 2008.

[10] RacerPro reasoner and inference server. http://www.racer-systems.com. Valid
October 2008.

[11] SKF Engineering Group. http://www.skf.com. Valid October 2008.

[12] Smart Fibres Ltd. http://www.smartfibres.com. Valid October 2008.

[13] Accent project home page. http://www.cs.stir.ac.uk/accent. Valid Novem-
ber 2008.

[14] The Danish wind industry association. Home page (English). http://www.

windpower.org/en/core.htm. Valid December 2008.

261

http://www.cs.uu.nl/3apl
http://www.cs.uu.nl/3apl
http://www.daml.org/2001/03/daml+oil-index
http://www.daml.org/2001/03/daml+oil-index
http://www.daml.org
http://www.thechiselgroup.org/jambalaya
http://www.thechiselgroup.org/jambalaya
http://www.lmglasfiber.com
http://www.ontoknowledge.org/oil
http://www.co-ode.org/downloads/owlviz
http://www.co-ode.org/downloads/owlviz
http://pellet.owldl.com
http://protege.stanford.edu
http://protege.stanford.edu
http://www.racer-systems.com
http://www.skf.com
http://www.smartfibres.com
http://www.cs.stir.ac.uk/accent
http://www.windpower.org/en/core.htm
http://www.windpower.org/en/core.htm

[15] The eXtensible Markup Language (XML). http://www.w3.org/XML. Valid De-
cember 2008.

[16] The Jena Semantic Web Framework. http://jena.sourceforge.net. Valid
October 2008.

[17] The Resource Description Framework (RDF). http://www.w3.org/RDF. Valid
December 2008.

[18] The Web Ontology Language (OWL) Semantics and Abstract Syntax. http:

//www.w3.org/TR/owl-semantics. Valid December 2008.

[19] The Web Ontology Language Reference (OWL). http://www.w3.org/TR/

owl-ref. Valid December 2008.

[20] Unified Modelling Language (UML). http://www.uml.org. Valid December
2008.

[21] University of Stirling XML Schemas and Ontologies Repository. http://www.

cs.stir.ac.uk/schemas. Valid December 2008.

[22] WonderWeb OWL Ontology Validator. http://www.mygrid.org.uk/OWL/

Validator. Valid June 2008.

[23] CREDITI: A KAOS tutorial. http://www.objectiver.com/download/

documents/KaosTutorial.pdf, Sept. 1993. Valid September 2008.

[24] WindCon: SKF Condition Monitoring System. http://www.engineeringtalk.
com/news/skf/skf214.html., June 2003.

[25] BWEA. Briefing Sheet: Wind and the UK’s 10% Target. http://www.bwea.

com/energy/briefing-sheets.html., Sept. 2005.

[26] BWEA. Briefing Sheet: Wind Turbine Technology. http://www.bwea.com/

energy/briefing-sheets.html., Sept. 2005.

[27] Prosen Consortium. prosen project proposal, Jan. 2005. EPSRC, Swindon.

[28] Fibre Optics Magazine. SCADA Overview. http://www.fiber-optics.info/

articles/SCADA-overview.htm., June 2006.

[29] D. Agrawal, K.-W. Lee, and J. Lobo. Policy-based management of networked
computing systems. Network and Service Management, 43(10):69–75, Oct. 2005.

[30] D. Alrajeh, A. Russo, and S. Uchitel. Inferring operational requirements from
scenarios and goal models using inductive learning. In International Conference
on Software Engineering (ICSE), Shanghai, China, May 2006.

262

http://www.w3.org/XML
http://jena.sourceforge.net
http://www.w3.org/RDF
http://www.w3.org/TR/owl-semantics
http://www.w3.org/TR/owl-semantics
http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/owl-ref
http://www.uml.org
http://www.cs.stir.ac.uk/schemas
http://www.cs.stir.ac.uk/schemas
http://www.mygrid.org.uk/OWL/Validator
http://www.mygrid.org.uk/OWL/Validator
http://www.objectiver.com/download/documents/KaosTutorial.pdf
http://www.objectiver.com/download/documents/KaosTutorial.pdf
http://www.engineeringtalk.com/news/skf/skf214.html
http://www.engineeringtalk.com/news/skf/skf214.html
http://www.bwea.com/energy/briefing-sheets.html
http://www.bwea.com/energy/briefing-sheets.html
http://www.bwea.com/energy/briefing-sheets.html
http://www.bwea.com/energy/briefing-sheets.html
http://www.fiber-optics.info/articles/SCADA-overview.htm
http://www.fiber-optics.info/articles/SCADA-overview.htm

[31] D. Amyot, L. Charfi, N. Gorse, T. Gray, L. M. S. Logrippo, J. Sincennes,
B. Stepien, and T. Ware. Feature description and feature interaction analysis
with use case maps and Lotos. In M. H. Calder and E. H. Magill, editors, Proc.
6th. Feature Interactions in Telecommunications and Software Systems, pages
274–289. IOS Press, Amsterdam, Netherlands, May 2000.

[32] Anon. Managing the Wind: Reducing Kilowatt-Hour Costs With Condition Mon-
itoring. Refocus, 6(3):48–51, May/June 2005.

[33] P. K. Au and J. M. Atlee. Evaluation of a state-based model of feature in-
teractions. In P. Dini, R. Boutaba, and L. M. S. Logrippo, editors, Proc. 4th.
International Workshop on Feature Interactions in Telecommunication Networks,
pages 153–167. IOS Press, Amsterdam, Netherlands, June 1997.

[34] A. Bandara. A Formal Approach to Analysis and Refinement of Policies. PhD
thesis, Imperial College, UK, July 2005.

[35] A. K. Bandara, E. C. Lupu, J. Moffett, and A. Russo. A goal-based approach to
policy refinement. In IEEE Workshop on Policies for Distributed Systems and
Networks (Policy 2004), pages 229–239. IEEE Press, 2004.

[36] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical founda-
tions. Technical Report ESD-TR-278, MITRE Corporation, Bedford, MA, Apr.
1977.

[37] K. J. Biba. Integrity considerations for secure computer systems. Technical
Report ESD-TR-76-372, Hanscom AFB, Bedford, MA, Apr. 1977.

[38] J. Blom, R. Bol, and L. Kempe. Automatic detection of feature interactions in
temporal logic. In K. E. Cheng and T. Ohta, editors, Proc. 3rd. International
Workshop on Feature Interactions in Telecommunications, pages 1–19. IOS Press,
Amsterdam, Netherlands, 1995.

[39] R. Boutaba and I. Aib. Policy-based management: A historical perspective.
Journal of Network and Systems Management, 15(4):447–480, Dec. 2007.

[40] J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry. The COPS (Common
Open Policy Service) Protocol. RFC 2748, IETF, Jan. 2000.

[41] R. M. M. Braga, M. Mattoso, and C. M. L. Werner. The use of mediation and
ontology technologies for software component information retrieval. In Proc. of
the 2001 Symposium on Software Reusability, pages 19–28, New York, NY, USA,
2001. ACM.

[42] N. Brownlee. SRL: A language for describing traffic flows and specifiing actions
for flow groups. IETF Internet Draft, Aug. 1999. Expired February 2000.

263

[43] M. Cain. Managing run-time interactions between call-processing features. IEEE
Communications Magazine, pages 44–50, Feb. 1992.

[44] M. H. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interac-
tion: A critical review and considered forecast. Computer Networks, 41:115–141,
Jan. 2003.

[45] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and
H. Velthuijsen. A feature-interaction benchmark for IN and beyond. IEEE Com-
munications Magazine, 31(8):18–23, Aug. 1993.

[46] J. Cameron, K. Cheng, F. J. Lin, H. Liu, and B. Pinheiro. A formal AIN ser-
vice creation, feature interactions analysis and management environment: An
industrial application. In P. Dini, R. Boutaba, and L. M. S. Logrippo, editors,
Proc. 4th. International Workshop on Feature Interactions in Telecommunication
Networks, pages 342–346. IOS Press, Amsterdam, Netherlands, June 1997.

[47] G. A. Campbell. An Overview of Ontology Application for Policy-Based Man-
agement using Poppet. Technical Report CSM-168, Department of Computing
Science and Mathematics, University of Stirling, UK, June 2006.

[48] G. A. Campbell. Ontology for Call Control. Technical Report CSM-170, Depart-
ment of Computing Science and Mathematics, University of Stirling, UK, June
2006.

[49] G. A. Campbell. Ontology Stack for a Policy Wizard. Technical Report CSM-
169, Department of Computing Science and Mathematics, University of Stirling,
UK, June 2006.

[50] G. A. Campbell. Ontologies for Resolution Policy Definition and Policy Conflict
Detection. Technical Report CSM-172, Department of Computing Science and
Mathematics, University of Stirling, UK, Feb. 2007.

[51] G. A. Campbell. Sensor network policy conflicts. In L. du Bousquet and J.-L.
Richier, editors, Proc. 9th International Conference on Feature Interactions in
Software and Communications Systems, France, Sept. 2007. IMAG Laboratory,
University of Grenoble.

[52] G. A. Campbell and K. J. Turner. Ontologies to support Call Control Policies.
In D. C. N. Meghanathan and Y. Takasaki, editors, AICT’07, 3rd Advanced
International Conference on Telecommunications, pages 5.1–5.6. IEEE Computer
Society, May 2007.

[53] G. A. Campbell and K. J. Turner. Policy Conflict Filtering for Call Control.
In L. du Bousquet and J.-L. Richier, editors, Proc. 9th International Conference

264

on Feature Interactions in Software and Communications Systems, pages 93–108,
France, Sept. 2007. IMAG Laboratory, University of Grenoble.

[54] G. A. Campbell and K. J. Turner. Goals and Policies for Sensor Network Man-
agement. In M. Benveniste, B. Braem, C. Dini, G. Fortino, R. Karnapke, J. L.
Mauri, and M. S. H. Monsi, editors, Proc. 2nd International Conference on Sen-
sor Technologies and Applications (SENSORCOMM’08), pages 354–359. IEEE
Computer Society, Los Alamitos, California, Aug. 2008.

[55] J. Chen, Z. Zhao, D. Qu, and P. Zhang. A policy-based approach for recon-
figuration management and enforcement in autonomic communication systems.
Wireless Personal Communications Magazine, IEEE, 45(2):145–161, 2008.

[56] J. Chomicki, J. Lobo, and S. Naqvi. A logical programming approach to conflict
resolution in policy management. In A. G. Cohn, F. Giunchiglia, and B. Selman,
editors, Proc. Principles of Knowledge Representation and Reasoning, pages 121–
132. Morgan Kaufmann, 2000.

[57] N. Damianou, E. C. Lupu, and M. Sloman. The Ponder Policy Specification
Language. In Policy Workshop 2001, number 1995 in Lecture Notes in Computer
Science. Springer, Berlin, Germany, Jan. 2001.

[58] A. Daneels and W. Salter. What is SCADA? In International Conference on
Accelerator and Large Experimental Physics Control Systems, pages 339–343, Tri-
este, Italy, Oct. 1999.

[59] R. Darimont and A. van Lamsweerde. Formal refinement patterns for goal-driven
requirements elaboration. In 4th ACM Symposium on the Foundations of Software
Engineering (FSE4), pages 179–190, 1996.

[60] S. Davy, B. Jennings, and J. Strassner. The policy continuum – policy authoring
and conflict analysis. Computer Communications, 31:2981–2995, Aug. 2008.

[61] P. Dini, A. Clemm, T. Gray, F. J. Lin, L. Logrippo, and S. Reiff-Marganiec.
Policy-enabled mechanisms for feature interactions: Reality, expectations, chal-
lenges. Computer Networks, 45(5):585–603, Mar. 2004.

[62] A. P. Felty and K. S. Namjoshi. Feature specification and automated conflict
detection. ACM Transactions on Software Engineering and Methodology, 12(1):3–
27, Jan. 2003.

[63] D. Ferraiolo and R. Kuhn. Role-based access controls. In In Proceedings of 15th
NIST-NCSC National Computer Security Conference, pages 554–563, 1992.

[64] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

265

[65] M. Frappier, A. Mili, and J. Desharnais. Detecting feature interactions on re-
lational specifications. In P. Dini, R. Boutaba, and L. M. S. Logrippo, editors,
Proc. 4th. International Workshop on Feature Interactions in Telecommunication
Networks, pages 123–137. IOS Press, Amsterdam, Netherlands, June 1997.

[66] N. Fritsche. Runtime resolution of feature interactions in architectures with sep-
arated call and feature control. In K. E. Cheng and T. Ohta, editors, Proc. 3rd.
International Workshop on Feature Interactions in Telecommunications, pages
43–63. IOS Press, Amsterdam, Netherlands, 1995.

[67] S. Godik and T. Moses. eXtensible Access Control Markup Language (XACML)
Version 1.0. OASIS, Feb. 2003.

[68] M. Heisel and J. Souquiéres. A heuristic approach to detect feature interactions
in requirements. In K. Kimbler and W. Bouma, editors, Proc. 5th. Feature Inter-
actions in Telecommunications and Software Systems, pages 165–171. IOS Press,
Amsterdam, Netherlands, Sept. 1998.

[69] P. Jackson. Introduction to Expert Systems. Addison-Wesley, Harlow, England,
third edition, 1999.

[70] L. Kagal. Rei: A policy language for the me-centric project. Technical Report
HPL-2002-270, HP Labs, 2002.

[71] D. O. Keck. A tool for the identification of interaction-prone call scenar-
ios. In K. Kimbler and W. Bouma, editors, Proc. 5th. Feature Interactions in
Telecommunications and Software Systems, pages 276–290. IOS Press, Amster-
dam, Netherlands, Sept. 1998.

[72] D. O. Keck and P. J. Kuehn. The feature and service interaction problem in
telecommunications systems: A survey. IEEE Transactions on Software Engi-
neering, pages 779–796, Oct. 1998.

[73] S. Keoh, K. Twidle, N. Pryce, E. Lupu, A. Schaeffer Filho, N. Dulay, M. Sloman,
S. Heeps, S. Strowes, and J. Sventek. Policy-based Management for Body-Sensor
Networks. In Proc. 4th International Workshop on Wearable and Implantable
Body Sensor Networks (BSN 2007), pages 92–98, Aachen, Germany, Mar. 2007.

[74] K. Kimbler. Addressing the interaction problem at the enterprise level. In P. Dini,
R. Boutaba, and L. M. S. Logrippo, editors, Proc. 4th. International Workshop
on Feature Interactions in Telecommunication Networks, pages 13–22. IOS Press,
Amsterdam, Netherlands, June 1997.

[75] C. Klein, C. Prehofer, and B. Rumpe. Feature specification and refinement with
state transition diagrams. In P. Dini, R. Boutaba, and L. M. S. Logrippo, editors,

266

Proc. 4th. International Workshop on Feature Interactions in Telecommunication
Networks, pages 284–297. IOS Press, Amsterdam, Netherlands, June 1997.

[76] B. W. Lampson. Protection. Proc. of the 5th Princeton Symposium on Informa-
tion Sciences and Systems, pages 437–443, Mar. 1971.

[77] A. F. Layouni, L. Logrippo, and K. J. Turner. Conflict detection in call con-
trol using first-order logic model checking. In L. du Bousquet and J.-L. Richier,
editors, Proc. 9th. Feature Interactions in Telecommunications and Software Sys-
tems, pages 66–82. IOS Press, Amsterdam, Netherlands, May 2008.

[78] J. Lee. What is ontology? IBM Research http://www.alphaworks.ibm.com/

contentnr/semanticsfaqs, Aug. 2004.

[79] E. Letier and A. van Lamsweerde. Deriving operational software specifications
from system goals. In Proc. FSE’10 -10th ACM SIGSOFT Symp. on the Foun-
dations of Software Engineering, Charleston, Nov. 2002.

[80] J. Lobo, R. Bhatia, and S. Jaqvi. A policy description language. In Proc. Na-
tional Conference of the American Association for Artificial Intelligence. Orlando,
Florida, USA, July 1999.

[81] E. C. Lupu and M. Sloman. Conflict analysis for management policies. In Proc.
5th. International Symposium on Integrated Network Management, pages 430–
443. Chapman-Hall, London, UK, 1997.

[82] J. Moffett and M. S. Sloman. Policy hierarchies for distributed systems manage-
ment. IEEE Journal of Selected Areas in Communications, 11(9):404–14, 1993.

[83] C. Montangero, S. Reiff-Marganiec, and L. Semini. Logic based detection of
conflicts in Appel policies. In A. Movaghar and J. Rutten, editors, Proc. Int.
Symposium on Fundamentals of Software Engineering, volume 4767 of Lecture
Notes in Computer Science, pages 257–271. Springer, Berlin, Germany, Oct. 2007.

[84] M. Nakamura, T. Kikuno, J. Hassine, and L. M. S. Logrippo. Feature interaction
filtering with Use Case Maps at requirements stage. In M. H. Calder and E. H.
Magill, editors, Proc. 6th. Feature Interactions in Telecommunications and Soft-
ware Systems, pages 163–178. IOS Press, Amsterdam, Netherlands, May 2000.

[85] E. P. D. Pednault. ADL and the State-Transition Model of Action. Logic Com-
putation, 4(5):467–512, 1994.

[86] M. C. Plath and M. D. Ryan. Defining features for CSP: Reflections on the
feature interaction contest. In S. T. Gilmore and M. D. Ryan, editors, Language
Constructs for Describing Features – Proceedings of the FIREworks Workshop,
pages 163–175. Springer, Berlin, Germany, Jan. 2001.

267

http://www.alphaworks.ibm.com/contentnr/semanticsfaqs
http://www.alphaworks.ibm.com/contentnr/semanticsfaqs

[87] C. Prehofer. Play-and-play composition of features and feature interactions with
Statechart diagrams. In D. Amyot and L. Logrippo, editors, Proc. 7th. Feature In-
teractions in Telecommunications and Software Systems, pages 43–58. IOS Press,
Amsterdam, Netherlands, June 2003.

[88] P. Procter, editor. Cambridge International Dictionary of English. Cambridge
University Press, Cambridge, UK, 2001.

[89] S. Reiff-Marganiec and K. J. Turner. Feature interaction in policies. Computer
Networks, 45(5):569–584, Mar. 2004.

[90] S. Reiff-Marganiec and K. J. Turner. The Accent policy server. Technical Report
CSM-164, Department of Computing Science and Mathematics, University of
Stirling, UK, Dec. 2005.

[91] S. Reiff-Marganiec, K. J. Turner, L. Blair, G. A. Campbell, and F. Wang. Appel:
An adaptable and programmable policy environment and language. Technical Re-
port CSM-161, Department of Computing Science and Mathematics, University
of Stirling, UK, Dec. 2008.

[92] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou. A
functional solution for goal-ooriented policy refinement. In Proc. 7th IEEE In-
ternational Workshop on Policies for Distributed Systems and Networks, pages
133–144, Washington, DC, USA, 2006. IEEE Computer Society.

[93] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou. A
methodological approach toward the refinement problem in policy-based man-
agement systems. Communications Magazine, 44(10):60–68, 2006.

[94] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou, and A. L.
Lafuente. Using linear temporal model checking for goal-oriented policy refine-
ment frameworks. In Proc. 6th IEEE International Workshop on Policies for
Distributed Systems and Networks, pages 181–190, Washington, DC, USA, 2005.
IEEE Computer Society.

[95] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, Upper Saddle River, New Jersey, second edition, 2003.

[96] G. N. Stone, B. Lundy, and G. G. Xie. Network policy languages: A survey and
a new approach. In IEEE Network, volume 15(1), pages 10–21. IEEE, Jan./Feb.
2001.

[97] V. Sugumaran and V. C. Storey. A semantic-based approach to component re-
trieval. SIGMIS Database, 34(3):8–24, 2003.

268

[98] K. J. Turner and L. Blair. Policies and conflicts in call control. Computer Net-
works, 51(2):496–514, Feb. 2007.

[99] K. J. Turner, G. A. Campbell, and F. Wang. Policies for Sensor Networks and
Home Care Networks. In M. Erradi, editor, Proc. 7th. Int. Conf. on New Tech-
nologies for Distributed Systems, pages 273–284. Cana Print, Rabat, Morocco,
June 2007.

[100] H. Velthuijsen. Distributed artificial intelligence for runtime feature-interaction
resolution. Computer, pages 48–55, Aug. 1993.

[101] X. Wu and H. Schulzrinne. Handling feature interactions in the language for end
system services. Computer Networks, 51(2):515–535, 2007.

[102] T. Yoneda and T. Ohta. A formal approach for definition and detection of feature
interactions. In K. Kimbler and W. Bouma, editors, Proc. 5th. Feature Interac-
tions in Telecommunications and Software Systems, pages 202–216. IOS Press,
Amsterdam, Netherlands, Sept. 1998.

269

	Declaration
	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Thesis Statement
	1.2 Context Overview
	1.3 Objectives
	1.4 Approach
	1.5 Achievements
	1.6 Thesis Structure

	2 Application Background and Context
	2.1 Internet Telephony
	2.1.1 VoIP: Internet Telephony
	2.1.2 The Accent Project
	2.1.3 Call Control Using Policies
	2.1.4 Internet Telephony Domain

	2.2 Sensor Networks/Wind Turbine Management
	2.2.1 Wireless Sensor Networks
	2.2.2 The Prosen Project
	2.2.3 Wind Power Introduction
	2.2.4 Wind Farm Operation Issues
	2.2.5 Proactive Management
	2.2.6 Existing Wind Farm Control Systems
	2.2.7 Wind Farm Condition Monitoring
	2.2.8 Sensor Network/Wind Turbine Domain

	3 Policy-Based System Management
	3.1 Introduction and Background
	3.1.1 Policy Definition
	3.1.2 History of Policies
	3.1.3 Existing Policy Systems and Languages
	3.1.4 The Accent Policy System
	3.1.5 The Appel Policy Language

	3.2 Appel Policy Language Syntax
	3.2.1 Core Language Outline
	3.2.2 Defining Generic Policies
	3.2.3 Defining Domain-Specific Policies

	3.3 Application 1: Policies for Internet Telephony
	3.3.1 Language Requirements
	3.3.2 Standard Policy Language Specification
	3.3.3 Resolution Policy Language Specification

	3.4 Application 2: Policies for Sensor Networks
	3.4.1 Language Requirements
	3.4.2 Standard Policy Language Specification
	3.4.3 Resolution Policy Language Specification

	3.5 Conclusion
	3.5.1 Chapter Summary
	3.5.2 Evaluation

	4 Policy Ontology Modelling
	4.1 Introduction and Background
	4.1.1 Ontology in Computing
	4.1.2 Ontology Languages
	4.1.3 The OWL Ontology Language
	4.1.4 Ontology Tools
	4.1.5 Existing Policy and Ontology Work
	4.1.6 Motivation For Policy Ontology Modelling

	4.2 Ontology Building
	4.3 Policy Ontology Approach
	4.4 Policy Ontology Stack
	4.4.1 Generic Policy Ontology
	4.4.2 Wizard Display Ontology
	4.4.3 Domain-Specific Policy Ontology

	4.5 Application 1: Ontology for Internet Telephony
	4.5.1 Standard Policy Extensions
	4.5.2 Resolution Policy Extensions

	4.6 Application 2: Ontology for Sensor Networks
	4.6.1 Standard Policy Extensions
	4.6.2 Resolution Policy Extensions

	4.7 Ontology Parsing and Integration
	4.7.1 Poppet Ontology Parser
	4.7.2 Poppet Architecture
	4.7.3 Poppet Usage Example

	4.8 An Ontology-Driven Policy Wizard
	4.8.1 Policy Wizard Re-engineering
	4.8.2 Policy Wizard Evaluation

	4.9 Conclusion
	4.9.1 Chapter Summary
	4.9.2 Evaluation

	5 Policy Conflict Detection and Resolution
	5.1 Introduction and Background
	5.1.1 Feature Interaction (FI) Overview
	5.1.2 Policy Conflict Overview
	5.1.3 Accent Policy Conflict Handling
	5.1.4 Motivation for Automated Conflict Filtering
	5.1.5 Existing Conflict Filtering Approaches and Tools

	5.2 Automatic Conflict Filtering Approach
	5.2.1 Action Effects Ontology Support
	5.2.2 Conflict Detection Algorithm

	5.3 The Recap Conflict Filtering Tool
	5.3.1 Automated Support for Conflict Filtering
	5.3.2 Recap Architecture
	5.3.3 Automated Support for Resolution

	5.4 Generic Action Conflict Filtering Results
	5.5 Application 1: Policy Conflicts for Internet Telephony
	5.5.1 Telephony Conflicts Overview
	5.5.2 Telephony Action Effects
	5.5.3 Telephony Conflict Filtering Results

	5.6 Application 2: Policy Conflicts for Sensor Networks
	5.6.1 Sensor Network Conflicts Overview
	5.6.2 Sensor Network Action Effects
	5.6.3 Sensor Network Conflict Filtering Results

	5.7 Conclusion
	5.7.1 Chapter Summary
	5.7.2 Evaluation

	6 Goal-Directed System Management
	6.1 Introduction and Background
	6.1.1 Goals vs. Policies
	6.1.2 Motivation for Goal-Direction
	6.1.3 Goal Identification and Definition
	6.1.4 Goal Refinement
	6.1.5 General Goal-Based Approaches in Computing
	6.1.6 Existing Goal-Based Policy Approaches
	6.1.7 Optimisation Overview

	6.2 Goal-Directed Approach
	6.2.1 Overview
	6.2.2 Goal Definition and System State
	6.2.3 Prototype Policies
	6.2.4 Offline Prototype Analysis and Instantiation
	6.2.5 Run-time Policy Selection and Parameterisation

	6.3 Goal System Implementation
	6.3.1 Goal Domain Ontology Definition
	6.3.2 Goal and Prototype Syntax
	6.3.3 Goal System Architecture
	6.3.4 Static and Runtime Procedures

	6.4 Application 1: Goals for Internet Telephony
	6.4.1 Goal Domain
	6.4.2 Goals and Prototypes
	6.4.3 Static Prototype Selection
	6.4.4 Dynamic Refinement

	6.5 Application 2: Goals for Sensor Networks
	6.5.1 Goal Domain Information
	6.5.2 Implemented Goals and Prototypes
	6.5.3 Static Refinement
	6.5.4 Dynamic Refinement

	6.6 Conclusion
	6.6.1 Chapter Summary
	6.6.2 Evaluation

	7 Conclusion
	7.1 Thesis Summary
	7.2 Achievements
	7.3 Strengths
	7.4 Limitations
	7.5 Further Work
	7.6 Concluding Remarks

	A Wind Turbine Blade Pitch and Yaw Configuration
	B GenPol and WizPol Properties
	B.1 GenPol Ontology Properties
	B.2 WizPol Ontology Properties

	C Recap Tool Guide
	Bibliography

