
DIVISION OF ECONOMICS 
STIRLING MANAGEMENT SCHOOL 

 
 
 
 

Uncertainty and Climate Treaties:  

Does Ignorance Pay? 

 

 

Rob Dellink 

Michael Finus 

 

 

Stirling Economics Discussion Paper 2009-15 

July 2009 

 

 

 

Online at http://www.economics.stir.ac.uk 

 



Uncertainty and Climate Treaties:  

Does Ignorance Pay? 

 

Rob Dellink 

Environmental Economics and Natural Resources Group 

Wageningen University 

The Netherlands 

 

Michael Finus 

Division of Economics 

Management School 

University of Stirling 

UK 

 

 

 

 

Abstract 

Uncertainty and learning play an important role in addressing the problem of climate 

change. In stylized game-theoretic models of international environmental treaty 

formation, which capture the strategic interactions between nations, it has been shown 

that learning usually has a negative impact on the success of cooperation. This paper 

asks the question whether this negative conclusion carries over to an applied multi-

regional climate model. This model captures the large heterogeneity between different 

world regions and considers not only uncertainty about the benefits but also about the 

costs from climate mitigation. By exploiting differences in costs and benefits between 

regions and allowing transfers to mitigate free-rider incentives, we derive much more 

positive conclusions about the role of learning. 

 

JEL-Classification: D62, D80, Q54 
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1. Introduction 

Climate change is one of the greatest challenges to international co-operation the 

world is presently facing (Stern 2007 and IPCC 2007). Currently, a “Post-Kyoto” 

agreement is being negotiated that sets greenhouse gas emission targets for the period 

after 2012, the so-called “second commitment period”. One important element for the 

success of this new agreement is to ensure participation of all major polluters, 

including the USA, as well as the new emerging polluters China and India. 

There are four key issues that make the climate change problem so difficult to solve: 

(i) the process of climate change is effectively irreversible; (ii) there are considerable 

uncertainties about the benefits and costs from mitigating climate change; (iii) our 

understanding of these uncertainties changes over time as a result of learning more 

about climate science and possible technological responses; (iv) the problem is global, 

but since there is no global authority that can enforce a climate treaty, international 

environmental agreements (IEAs) require voluntary participation.  

The first three issues have been studied for instance by Kolstad (1996a, b), Ulph and 

Ulph (1997), Ulph and Maddison (1997) and Narain, Fisher and Hanemann (2007), 

though typically in the context of a single social planner. Depending on the model 

specification and assumptions, uncertainty either calls for laxer environmental 

standards today in order to benefit from more information about mitigation options in 

the future or calls for tougher standards in accordance with the precautionary 

principle, taking in consideration possibly high and irreversible environmental 

damages in the future. Short-term tighter environmental standards may also spur 

technological innovation, thus reducing future abatement costs, but may also cause 

lock-in effects if abatement options are associated with high fixed costs. In any case, 
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in the context of a social planner, global welfare with learning is higher than without 

learning, as better informed decisions can be taken. We call this the information effect 

from learning.  

There has also been an extensive literature, starting with Carraro and Siniscalco 

(1993) and Barrett (1994), followed by many others as surveyed for instance in 

Barrett (2003) and Finus (2003, 2008), on the fourth issue, though mainly in the 

context of perfect information. The conclusions have been rather pessimistic: while 

there are substantial benefits from cooperation, self-enforcing IEAs achieve only 

little. 

Recently, several efforts have been made to combine these two strands of literature 

(Na and Shin 1998, Ulph 1998, Ulph 2004, Baker 2005, Ingham et al. 2007, Kolstad 

2007, Dellink et al. 2008, Kolstad and Ulph 2008, 2009). Ulph (1998) demonstrates in 

a two-player-two-period model that in the Nash equilibrium, due to a negative 

strategic effect from learning as we call it, learning may lead to lower individual and 

global payoffs than no learning. Na and Shin (1998) confirm this negative conclusion 

about the role of learning in a stylized three-player model of coalition formation. By 

construction, and as in the model by Ulph (1998), players are ex-ante symmetric but 

learn to be asymmetric ex-post and hence to benefit unequally from an IEA. Due to 

what we label a negative stability effect from learning, learning leads to a smaller 

stable IEA and lower global welfare. The possibility of a negative effect from learning 

is also captured in the dynamic coalition formation model in Ulph (2004) who 

distinguishes the case of variable membership (membership may change over time) 

and fixed membership (membership is decided once and for all). He finds that in the 

case of fixed membership, as we assume in our analysis, the expected level and 
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variance of damages determine whether learning has a positive effect on the size of 

stable coalitions and global welfare.  

Kolstad (2007) and Kolstad and Ulph (2008, 2009) extend and systematize the role of 

uncertainty, learning and IEA formation of which we make use in this paper. In a two-

stage coalition formation game in which countries choose their membership in the 

first stage and their abatement strategies in the second stage, they distinguish three 

cases. 1) Uncertainty is not resolved. This is the case of no learning. 2) Uncertainty is 

not resolved before the second stage. This corresponds to the case of partial learning. 

3) Uncertainty is resolved before the first stage. This corresponds to the case of full 

learning. In the two cases with learning, learning is perfect in the sense that all 

players learn the values of all uncertain parameters and no uncertainty remains.
1
 All 

three papers confirm in a stylized model the negative role of learning.  

This negative conclusion is certainly intriguing as it suggests that in the strategic 

context of IEA formation learning is bad, questioning intensified research efforts in 

climate change in recent years as well as the dissemination of knowledge through 

international institutions like International Panel on Climate Change (IPCC). Hence, 

one may wonder whether this result holds generally or may be an artifact of the 

special construction of these models. For instance, all models exclusively concentrate 

on uncertainty about the benefits from climate mitigation, assume symmetry with 

respect to abatement costs (and often also with respect to the benefits from global 

abatement) and abstract from transfers that could mitigate asymmetries of the gains 

from cooperation among players. Moreover, in Ulph (2004), Kolstad (2007) and 

                                                 
1  Thererfore, the term “partial learning” may be confusing as it reflects the timing of learning, 

not the nature of learning, i.e. all information is revealed before stage 2. An alternative term  
could be “delayed learning”. To ease comparison with the studies of Kolstad and Ulph, we 
adopt their terminology. 
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Kolstad and Ulph (2008, 2009) the payoff function is linear, implying binary 

equilibrium abatement strategies in the second stage of coalition formation: abate or 

not abate. In order to shed some light on this issue, we extend the model of Dellink et 

al. (2008), an applied climate-economy model with twelve world regions. Different 

from their analysis, we consider not only the case of no and full learning but also 

partial learning; we furthermore introduce transfers. From our numerical simulations, 

we derive much less negative conclusions: learning is always better than no learning 

(e.g. generates higher global welfare) and full learning is better than partial learning if 

accompanied by a transfer scheme, mitigating free-rider incentives in an optimal way. 

In the following, we lay out the theoretical setting in Section 2, describe the applied 

model in Section 3 and report about our results in Section 4. Section 5 summarizes 

our main findings and draws some conclusions. 

2. The Models of Coalition Formation and Learning 

In order to relate the three models of uncertainty and learning (no learning, partial 

learning, full learning) to the standard model without uncertainty, we start by 

describing the deterministic setting. For the purpose of expositional simplicity, we 

abstract from time-dependencies in the payoff function in this section, and explain the 

dynamics in the context of our applied model in Section 3. 

2.1 Certainty 

Consider a set of N  heterogeneous players, each representing a country or world 

region. Moreover, consider the following simple two-stage coalition formation game, 

frequently applied in the analysis of IEAs.
2
 In the first stage, players decide whether 

                                                 
2  For an overview see for instance Barrett (2003) and Finus (2003, 2008). 
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to become a member of an IEA or to remain an outsider. Announcement 1ic   means 

“player i  joins the agreement” and announcement 0ic   “player i  remains an 

outsider”, i.e. remains a singleton (sometimes called a fringe player); a coalition 

structure c  is then described by the announcement vector 1 Nc ( c , ..., c ) , c C . 

Players that announce 1 are called coalition members and this set is denoted by 

 1 1ik i c , i ,...,N    . Thus, in this simple setting, a coalition structure is 

entirely defined by coalition k . Hence, we can use the term coalition structure and 

coalition interchangeably. We denote the set of coalitions by K . 

In the second stage, players choose their abatement levels. This leads to abatement 

vector 1 Nq ( q , ..., q ) . The payoff of an individual player i , i i( q,z )  depends on 

abatement vector q , i.e. the strategies of all players, due to the public good nature of 

climate change, and on a vector of parameters iz  that enter the payoff function of 

player i . 

The game is solved backward assuming that strategies in each stage must form a Nash 

equilibrium. For the second stage, this entails that abatement strategies form a 

coalitional Nash equilibrium between coalition k  and the fringe players j k : 

0 :

  

 

  

   

* * *
i k i ki k k i i k k i k

* * * * *
j j k j j j j k j j j j

( q ,q ,z ) ( q ,q ,z ) q and

j,c ( q ,q ,q ,z ) ( q ,q ,q ,z ) q

 

 
    (1) 

where kq  is the abatement vector of coalition k , kq  the vector of all players not 

belonging to k , jq  abatement of fringe player j , and jq  the vector of all other 

fringe players except j . An asterisk denotes equilibrium strategies. 
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Since in the context of our applied model the equilibrium abatement strategy vector 

*q  is unique for every coalition structure k  and a given matrix of parameters z , there 

is a unique vector of equilibrium payoffs for every coalition structure k  (see the proof 

in Olieman and Hendrix 2006). These are called valuations: *
i iv ( k, ) ( q ( k, ))z z . 

Since coalition structure k  follows from announcement vector c  we may also write: 

*
i iv ( c, ) ( q ( c, ))z z .

3
 

Also in the first stage, stability requires that strategies form a Nash equilibrium. That 

is, no member that announced 1ic   should have an incentive to change this 

announcement to 0ic   (internal stability) and no fringe player that announced 0ic   

should want to announce 1ic   (external stability), given the announcement of other 

players ic . These conditions are compactly summarized by the stability function 

s( c, )z , which assigns the value 1 to a stable and the value 0 to an unstable 

announcement vector: 

1 0

0

i i i i i i i iif  i N, c =1-c : v ( c ,c , ) v ( c ,c , )
s( c, )

else

 
    

 


z z
z

 
   (2) 

where c  is constructed by changing the announcement of one player at a time. Note 

that the singleton coalition structure is stable by definition as it can be supported by 

an announcement vector where all players announce 0ic  . Hence, single deviations 

make no difference. Consequently, existence of an equilibrium is guaranteed. 

                                                 
3  We adopt the convention that equilibrium abatement strategies are derived from payoffs that 

depend on individual parameters whereas valuations, which depend on equilibrium strategies 
of all players depend on all parameters. 
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It is worth noting that for any given set of parameters z , this function may imply 

multiple stable coalitions. We denote the set of Pareto-undominated stable coalitions 

by ( ) C z  and the number of stable Pareto-undominated coalitions by # ( ) z . In 

order to measure the success of coalition formation, we compute the average 

aggregate valuation over all Pareto-undominated stable coalitions: 

1
N

c C i is( c, ) v ( c, )
v( ( ))

# ( )




  


z z
z

z
, assuming that all Pareto-undominated stable 

coalitions are equally likely. In a similar spirit, we could compute other indicators of 

global performance like the average abatement or, as we do in our numerical 

simulations, the average concentration of CO2 (see Sections 3 and 4).  

Note finally that our assumption about the second stage abstracted from the possibility 

of transfers, i.e. *
i iv ( c, ) ( q ( c, ))z z . In the context of heterogeneous players this 

may imply quite different valuations and hence asymmetric gains from cooperation. 

This may hamper the formation of large stable coalitions and hence the success of 

cooperation as has been demonstrated for instance in Bosello et al. (2003) and 

Botteon and Carraro (1997). However, it has also been shown that the assumption 

about the particular transfer scheme can crucially affect the set of stable coalitions 

(Carraro et al. 2006). In order to avoid this sensitivity, we employ the concept of an 

almost ideal transfer scheme put forward by Eyckmans and Finus (2004), with a 

similar notion in Fuentes-Albero and Rubio (2005), McGinty (2007) and Weikard 

(2009). The idea builds on the observation that a coalition k  derived from an 

announcement vector c  is potentially internally stable ( 1PIs ( c, )z ) or potentially 

internally unstable ( 0PIs ( c, )z ) if and only if 
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 1 1 0

0

 


    
 


i i i i i i i i iPI
i k

if  i, c , c =1-c : v ( c ,c , ) v ( c ,c , )
s ( c, )

else

z z
z

 
   (3) 

In other words, if and only if 1PIs ( c, )z  there exists a transfer scheme that makes 

announcement vector c  internally stable. As shown in Eyckmans and Finus (2004), a 

sharing scheme addressing potential internal stability gives every coalition member its 

free-rider payoff when leaving the coalition, i i iv ( c ,c , ) z , plus an (arbitrary) share i  

of the surplus which is the aggregate payoff of the coalition minus the sum of free-

rider payoffs: 

 1 T
i i i i i i i i i i i i i i

i k

i, c : v ( c ,c , ) v ( c ,c , ) v ( c ,c , ) v ( c ,c , )   


 
      

z z z z   

0 T
j j j j j j jj, c : v ( c ,c , ) v ( c ,c , )   z z       (4) 

1i
i k




   

where the superscript T  implies valuations after transfers. This means that transfers 

are only paid among coalition members, these transfers balance, i.e. there are no 

external sources of transfers. This sharing scheme has some interesting properties: all 

transfer systems belonging to this scheme, irrespective of the set of shares, leads not 

only to the same set of internally stable coalitions but also externally stable coalitions 

and hence stable coalitions (robustness). This is because a coalition k  is only 

externally stable if and only if all coalitions k j  for all j k  are not potentially 

internally stable and hence not internally stable. Moreover, this transfer scheme 

stabilizes those coalitions that generate the highest aggregate welfare among those 

coalitions that can be stabilized at all (optimality), which may not be possible for 

some larger coalitions due to too strong free-rider incentives. This also means that an 
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expansion of stable coalitions through transfers from insiders to outsiders is not 

feasible (Carraro et al. 2006). In other words, this transfer scheme exhausts all 

possibilities of cooperation. 

For practical purposes of determining stable coalitions, we only have to replace 

iv ( c, )z  in (2) by T
iv ( c, )z , assuming the transfer scheme in (4). 

2.2 Uncertainty 

In a stochastic model, the matrix of deterministic parameters z  is replaced by the 

stochastic matrix Z  with distribution  i ,uf z  for a particular parameter i ,uz  in player 

i ’s payoff function,  i ,u i ,u i ,uz z ,z ,
4
  1u ,...,  , where the payoff function of all 

players comprises the same number of parameters  . We assume that this distribution 

is common knowledge. 

2.2.1 No Learning 

In the case of No Learning, in the second stage, the true parameter values are not 

revealed and thus expected payoffs have to be maximized. Thus, equilibrium 

condition (1) is replaced by  

0 :

  

 

        

         

* * *
i k i ki k k i i k k i k

* * * * *
j j k j j j j k j j j j

E ( q ,q ,Z ) E ( q ,q ,Z ) q and

j,c E ( q ,q ,q ,Z ) E ( q ,q ,q ,Z ) q

 

 
    (5) 

where    
1

1

1 1

i , i ,

i , i ,

z z

i i i i i , i , i , i ,
z z

E ( , ,Z ) ... ( , ,z )f z ,...,z dz ...dz   




   . Since in our applied 

model payoffs are linear in parameters (but not in abatement levels), certainty 

                                                 
4  These bounds can be minus and plus infinity, e.g. in the case of a normal distribution. 



 10 

equivalence holds (see Dellink et al. 2008), i.e.  i i i iE ( , ,Z ) ( , ,E( Z ))    - the 

expected payoff is equal to the payoff with expected parameter vector iE( Z ) . We 

denote the equilibrium abatement vector satisfying the inequality system (5) by 

NL*q ( c )  and derive (expected) valuations NL NL NL*
i iv ( c, E[ ]) ( q ( c, E[ ])Z Z . 

Again, we may distinguish a case without and with transfers, as mentioned for the 

deterministic setting above. 

In the first stage, stability with definition (2), replacing valuations in the deterministic 

setting by expected valuations: 1NLs ( c, ) Z  iff : NL NL
i ii v ( c,E( )) v ( c,E( )) Z Z , 

0 else.  

As in the deterministic setting, we can compute an indicator of global performance: 

1
NL NLN

NL NL c C i i

NL

s ( c, ) v ( c,E( ))
v v( ( ))

# ( )




  
 

Z Z
Z

Z
, which is the average expected 

aggregate valuation over all Pareto-undominated stable coalitions. 

2.2.2 Partial Learning 

In the case of Partial Learning, in the second stage, before players choose their 

abatement strategies, they learn the value of the stochastic matrix Z . Hence, they 

make the correct abatement decision based on realization z  of Z : 

*
i i i iv ( c, z ) ( q ( c, z ))  where again the case without and with transfers may be 

distinguished. Since players have to decide upon their membership under uncertainty, 

they will base their decision in the first stage on expected valuations: 

 
1

1

1 1

i , i ,

i , i ,

z z
PL
i i i i i , i , i , i ,

z z

v ( c,z ) E( v ( c, )) ... v ( c, )f z ,...,z dz ...dz   Z z




  . Hence, in order to 

determine stable coalitions with the stability function defined in (2), we only have to 
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replace the valuation by the expected valuation as in the case of no learning (though 

both expected values are different!): 1PLs ( c, ) Z  iff : PL PL
i ii v ( c ) v ( c )   , 0 else. 

We compute the associated indicator of global performance: 

1
PL PLN

PL PL c C i i

PL

s ( c, ) v ( c ))
v v( ( ))

# ( )




  
 

Z
Z

Z
. 

2.2.3 Full Learning 

In the case of Full Learning, players know even before the first stage the realization of 

the stochastic matrix Z . Hence, analogously to the deterministic setting, for 

realization z: 1FL
is ( c,z )   iff FL FL

i i i ii : v ( c,z ) v ( c,z )   , 0 else, with 

FL *
i i i i i iv ( c, z ) v ( c, z ) ( q ( c, z ))  .  

From an ex-ante perspective, we can assign a Stability Likelihood (SL) that coalition 

c  is stable which is  
1 1

1 1

11 11

, N ,

, N ,

z z

, N , , N ,
z z

SL( c ) ... s( c, )f z ,...,z dz ...dz   z




  .
5
 Average 

expected aggregate valuations over all Pareto-undominated stable coalitions and all 

possible realizations of Z , which is our indicator of global performance, is computed 

as 

 
1 1

1 1

1
11 11

, N ,

, N ,

FL NLNz z
FL FL c C i i

, N , , N ,FL
z z

s ( c, ) v ( c, ))
v v( ( )) ... f z ,...,z dz ...dz

# ( )




  
   

z z
Z

z





  . 

2.2.4 Relating the Three Models of Learning 

Partial and full learning are identical in the second stage. Hence, when abstracting 

from the stability of coalitions related to the first stage, for every coalition k K  

                                                 
5  This is called expected membership in Kolstad and Ulph (2009). 
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derived from some announcement vector c C , these two models of learning lead to 

the same outcome in the second stage.  

Turning to the first stage, all three models of learning are different. Though 

membership decision under no and partial learning are based on expected valuations, 

they will usually differ. In the case of no learning, expected payoffs are derived from 

maximizing expected payoffs from which an expected abatement vector is derived. In 

the case of partial learning, players derive an equilibrium abatement vector for all 

possible realizations of parameters and then derive expected payoffs by taking 

expectations over all possible realizations of parameters. Finally, under full learning 

both membership and abatement decisions are based on realizations.  

Consequently, under no and partial learning a coalition is either stable or not stable 

whereas under full learning stability depends on the realization of the parameters and 

we calculate a stability likelihood. In order to evaluate the three models of learning, 

we compute the expected aggregate payoff over all players and all Pareto-

undominated stable coalitions. 

A priori little can be predicted about the relation between the three models of learning 

in terms of the final outcome (measured by the indicators of global performance) 

because of the interplay of the three effects mentioned in the introduction 

(information effect, strategic effect and stability effect). General statements are only 

possible for very restrictive assumptions on the functional form of the payoff 

functions and the uncertainty of the parameters (see, e.g. Yi and Shin 1998, Kolstad 

2007 and Kolstad and Ulph 2008, 2009). Therefore, we turn to an evaluation based on 

numerical simulations using an applied climate model which we lay out in the next 

section. 
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3. The Applied Climate Model 

The applied climate model, called Stability of Coalitions model (STACO), builds 

upon the model as presented in Dellink et al. (2008), with a number of extensions 

inspired by Nagashima et al. (2009). We focus only on the main characteristics of the 

model; for a detailed description see Dellink et al. (2008) and Nagashima et al. 

(2009). The core of the model consists of a payoff function that represents the net 

present value of a stream of benefits and costs arising from abatement activities. In 

contrast to Dellink et al. (2008), abatement is not constant but may vary over time. 

The payoff of an individual player i  depends on the abatement matrix Q  of 

dimension N T  and on the vector of parameters iZ  of length   with iBZ  those 

parameters relating to the benefit function itB ( )  and iCZ  those relating to the cost 

function itC ( ) : 

 
1

( , ) (1 ) ( ( ; ) ( ; ))
T

t
i i it t iB it it iC

t

Z r B q Z C q Z 



   Q        (6) 

where the planning horizon is T , t  is the index for time and r  is the discount rate. 

Abatement costs depend on individual abatement itq  and benefits depend on 

aggregate abatement 1
N
it itq q  , reflecting the public good nature of climate change. 

Hence, ( , )i iZ Q  is the net present value of player i  of the stream of benefits and 

costs accruing from own abatement but also from all other players over the entire time 

horizon. We compute the equilibrium abatement path for each possible coalition 

structure which upon substitution in the payoff function delivers discounted 

valuations. They are the basis for taking membership decision and hence we assume 
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fixed membership over the time horizon T .
6
 The time horizon is 100 years, ranging 

from 2011 to 2110.  

We consider twelve world regions; USA (USA), Japan (JPN), European Union - 15 

(EU15), other OECD countries (OOE), Eastern European countries (EET), former 

Soviet Union (FSU), energy exporting countries (EEX), China (CHN), India (IND), 

dynamic Asian economies (DAE), Brazil (BRA) and rest of the world (ROW). 

Following Nagashima et al. (2009), we assume an exogenous rate of technological 

progress which reduces abatement costs by 0.5% per annum and a discount rate of 

2%; both are not subject to uncertainty. The functional form of the benefit and cost 

functions of all regions, including the assumptions about the structural parameters 

(mean, standard deviation and distribution) are summarized in the Appendix and 

discussed in Dellink et al. (2008). Here, we only briefly discuss some general 

features. 

The benefit function is a linear approximation of a three-layer carbon cycle proposed 

by Nordhaus (1994) and links current global abatement activities to a stream of future 

avoided damages. The distribution of the global benefit parameter is given by a two-

sided exponential function proposed by Tol (2005) with a mean value of 77 US$/ton. 

The mean values of the regional benefit shares are taken from Finus et al. (2006). Due 

to the large uncertainties associated with these shares, two sets are considered which 

are called Calibration I and II. For the distribution of regional shares we assume in 

accordance with Dellink et al. (2008) a right-skewed gamma distribution function that 

ensures positive regional shares. Abatement costs are given by a cubic function based 

                                                 
6  Fixed membership is a simplifying assumption, though widespread in the literature (e.g. 

Bosello et al. 2003 and Eyckmans and Finus 2006) due to conceptual and computational 
complexities. Flexible membership has only be considered in the stylized models with 
symmetric players in Ulph (2004) and Rubio and Ulph (2007). 
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on Ellerman and Decaux (1998). The stochasticity of this function is driven by a 

scaling parameter with a normal distribution, i.e. the cubic and quadratic term in the 

abatement cost function move together (cf. Dellink et al., 2008). Standard deviations 

of the benefit and abatement cost functions reflect a larger uncertainty about regions’ 

benefit than cost parameters and a larger uncertainty about the parameters of non-

OECD than of OECD regions.  

Undoubtedly, all assumptions are simplifications and some have to be based on 

“guesstimates” (especially with respect to the benefits of abatement) as no better 

information is currently available. Hence, the absolute numbers presented below 

should be interpreted with caution. Nonetheless, our calibration provides a good 

indication of the relative position of the major world regions. Furthermore, we explicit 

take account of this principal uncertainty by considering five calibration scenarios. 

Compared to the Base Scenario, scenarios 2 to 5 can be viewed as a sequence of 

sensitivity analyses in which only one assumption is modified at a time.  

1) The Base Scenario assumes the parameter values as described above and in the 

Appendix. This implies in particular a discount rate of 2 %, regional benefit shares 

under Calibration I and associated standard deviations as listed in Table A2 in the 

Appendix. 

2) The Lower Discount Rate Scenario assumes a discount rate of only 1% (as opposed 

to 2% in the Base Scenario) which reflects a pure rate of time preference of virtually 

zero (cf. Stern, 2007).  

3) The Higher Discount Rate Scenario assumes a higher discount rate of 3% (as 

opposed to 2% in the Base Scenario), reflecting a higher pure rate of time preference. 
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4) The Higher Variance of Regional Benefits Scenario assumes a standard deviation 

of regional benefit parameters twice as large as in the Base Scenario (and as listed in 

Table A2 in the Appendix), reflecting that the uncertainties in projected damage 

levels are not well-known, especially on a regional scale. 

5) The Different Regional Benefit Shares Scenario assumes alternative mean values 

of regional benefit shares as proposed in Finus et al. (2006) to which we refer as 

Calibration II in Table A2 in the Appendix.
7
 The mean shares in the Base Scenario 

(Calibration I) are relatively large for the OECD regions, due to their high GDP 

levels. In this alternative scenario (Calibration II), larger weights are given to 

damages in developing regions, especially India and Rest-of-the-World. 

Computations are undertaken with Monte Carlo Simulations, drawing 20,000 samples 

from the stochastic model parameters. Equilibrium abatement levels, payoffs, 

transfers, valuations and stable coalitions for the three models of learning are 

computed as described in Section 2.  

4. Results 

4.1 General Remarks 

Tables 1 to 5 show the results for the three models of learning for the five calibration 

scenarios described in Section 3. It is worthwhile pointing out that the reported global 

welfare and final-period concentration levels are expected values, though we may not 

mention this explicitly in the following. Moreover, one statement of caution is in 

order: though the best-performing coalitions (BPSC) in the no and partial learning 

model can be compared, they cannot be directly related to the coalition with the 

                                                 
7  Standard deviations are also adjusted in this scenario such that the ratio between standard 

deviation and mean values are the same as in the Base Scenario. 
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highest stability likelihood (HSLC) in the full learning model. In the former case, the 

largest global welfare level defines “best-performing”, whereas in the latter case the 

highest stability likelihood is the criterion for selection – other coalitions with a lower 

SL may generate higher global welfare levels but are less likely to arise. However, a 

direct comparison is possible for the indicators of global performance, which reflect 

averages over all stable coalitions. Apart from these general statements, the following 

remarks apply. 

{Insert Tables 1-5 around here} 

First, the Nash equilibrium as well as the social optimum coincide for partial and full 

learning in all tables because abatement decisions in the second stage are the same for 

each possible coalition structure.  

Second, the smaller the discount rate, the higher are discounted global welfare levels 

and the lower are final-period concentration levels in the Nash equilibrium and in the 

social optimum (see Tables 1 to 3). This simply follows from the fact that a lower 

discount rate gives more weight to the long-term future benefits from reduced 

greenhouse emissions compared to current abatement costs. The discount rate also 

matters for the potential gains from cooperation: the difference between Nash 

equilibrium and social optimum in terms of global welfare and concentration levels is 

larger for lower discount rates. As a rule of thumb, in our applied model, global 

welfare in the social optimum in all three models of learning is three times larger than 

in the Nash equilibrium. Due to the existence of a non-zero concentrations level in 

2010 and a small natural removal rate of greenhouse gases over time, the difference is 



 18 

less pronounced in terms of concentrations: on average concentrations in 2110 are 

15% lower in the social optimum than in the Nash equilibrium.
8
 

Third, in the no learning model optimal abatement strategies do not depend on the 

variance of regional benefit shares as they are based on expected parameter values. 

Hence, all entries under no learning in Tables 1 and 4 are the same. In contrast, it is 

interesting to observe for the models of full and partial learning that a higher variance 

of regional benefits shares in Table 4 increases the gap between Nash equilibrium and 

social optimum compared to Table 1. The intuition is that the potential gains from 

cooperation increase with the degree of diversity between regions. Whether and under 

which conditions such gains can be reaped through stable agreements will be analyzed 

in section 4.3 below. 

Fourth, in the social optimum regional benefit shares do not matter for optimal 

abatement strategies as the first order conditions require that each region sets 

discounted marginal abatement cost equal to the discounted sum of marginal benefits. 

Hence, the results for the social optimum in Tables 1 (Base Scenario) and 5 (Different 

Regional Benefit Shares Scenario) are the same for each model of learning. 

Fifth, in terms of the number and members of stable coalitions, outcomes are 

relatively robust for four (Tables 1 to 4) of the five calibration scenarios. For all three 

models of learning, main differences occur for different regional benefit shares (Table 

5) as they crucially determine the distribution of gains from cooperation. For no and 

partial learning without transfers there is a unique non-trivial coalition (which Pareto-

dominates the trivial coalition) for all five calibration scenarios. With transfers, the 

                                                 
8  Note that concentration levels in the Nash equilibrium are already lower than in Business-as-

usual, as some abatement is undertaken by regions. The numbers have to be viewed as an 
approximation as our model does not contain a full climate module. 
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number of stable coalitions is much larger (e.g. 105 for no learning and 41 for partial 

learning in the Base Scenario, Table 1), in line with the results from deterministic 

models (e.g. Carraro et al. 2006, Eyckmans and Finus 2006 and Nagashima et al. 

2009). For full learning, stability likelihood is always below 30% (e.g. 23.7% without 

and 15.9% with transfers in the Base Scenario, Table 1). 

4.2 Comparing the Three Models of Learning: Abstracting from Stability 

In order to analyze how the three effects described in the introduction (information, 

strategic and stability effect) influence the outcome in the three models of learning, 

we abstract from stability in a first step. This allows us to isolate the information and 

strategic effect from the stability effect. This implies that we only look at the second 

stage of coalition formation. 

Result 1: Global Welfare and Concentration Abstracting from Stability 

In each calibration scenario, and in every coalition structure, the following ranking 

with respect to global welfare levels and concentration levels applies for the three 

models of learning: 

Global Welfare:   FL=PL>NL  Concentration:   FL=PL>NL. 

First note that Result 1 can be seen in Tables 1 to 5 only in terms of the social 

optimum, corresponding to the grand coalition, and the Nash equilibrium, 

corresponding to the singleton coalition structure. The statement that this ranking 

applies to all 4084 possible coalition structures derives from additional computations 

which are available upon request.  

Second, consider the social optimum. Since all regions form the grand coalition, only 

the information effect matters. In qualitative terms, this effect implies that global 
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welfare for partial and full learning is higher than for no learning as predicted by 

theory. In quantitative terms, it is interesting that this difference is substantial in our 

applied model.
9
 Taking the average over the five calibration scenarios global welfare 

in the social optimum is almost 50% higher with learning than without learning. In 

contrast, for concentrations this relation is reversed, suggesting that regions on 

average abate more without learning. The average over the five calibration scenarios 

gives a 3.5% lower concentration level in 2110 for no learning than learning in the 

social optimum. The intuition is that under no learning regions choose abatement only 

on average correctly, which leads to overshooting on average compared to learning 

where they always get it “right”.
10

 The policy relevance of this result is that the 

conventional wisdom may be wrong that more information leads to better outcomes. 

In our applied model, this is true in terms of payoffs, but not in terms environmental 

effectiveness. 

Third, consider the Nash equilibrium. Now the strategic effect comes into play which 

is particularly pronounced because all players behave non-cooperatively. Again, 

global concentration levels are higher with than without learning (1% as an average 

over the five calibration scenarios), and this is also true for global welfare (37% as an 

average over the five calibration scenarios). As the strategic effect works in the 

opposite direction of the information effect, we can conclude that, in our model, the 

information effect dominates the strategic effect, leading to higher global welfare but 

also higher concentration with than without learning. In our model, this applies not 

                                                 
9  In the theoretical models of Kolstad (2007) and Kolstad and Ulph (2008, 2009) the 

information and the strategic effects are zero. 

10  Due to the complexity of our model with heterogeneous players and uncertainty about the 
benefit and cost parameters, we cannot analytically prove the ranking FL=PL>NL for 
concentrations, neither for the social optimum nor for any other coalition structure. Already 
Ulph (1998) pointed out that no general results with respect to abatement are available for 
the Nash equilibrium and social optimum in two period models.  



 21 

only to the Nash equilibrium with no cooperation but also to all non-trivial coalition 

structures of partial cooperation. 

Result 2: Regional Welfare Abstracting from Stability  

In each calibration scenario, and in every coalition structure, the following ranking 

with respect to regional welfare levels applies for the three models of learning: 

Non-members without and with transfers: FL=PL>NL  

Members without transfers:   FL=PL 

Members with transfers:   FL=PL>NL. 

Result 2 is interesting as a preparation for our stability analysis in section 4.3 and 

draws again on the computations for all possible coalition structures (not displayed in 

Tables 1 to 5 but available upon request). It illustrates our claim that analytical 

predictions about the outcome in the three models of learning are difficult. First, non-

members’ payoffs are always higher with learning.
11

 Since this is not necessarily true 

for members in the setting without transfers, it may well be that this results in smaller 

coalitions for learning. Second, even though with transfers all players are better off 

with learning, both the incentive to stay in a coalition and the incentive to stay outside 

the coalition increase. Hence, predictions of what this implies for stability are not 

straightforward.  

                                                 
11  One would expect that non-members are better off under no learning than under learning as 

they benefit from lower concentration levels (cf. Result 1). This is certainly true and hence 
the strategic effect from learning is negative for non-members. However, it appears that in 
our model the positive information effect from learning is stronger. 
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4.3 Comparing the Three Models of Learning: Including Stability 

We now include the first stage of coalition formation in our analysis of overall 

success of coalition formation (i.e. Global Performance in Tables 1 to 5) for the three 

models of learning. 

Result 3: Global Performance Including Stability 

In each calibration scenario, the following ranking applies:  

Expected Global Welfare 

No Transfers:   PL>FL>NL   Transfers:   FL>PL>NL 

Expected Concentration 

No Transfers:  FL>PL>NL   Transfers:   PL>FL, NL>FL. 

Result 3 suggests that in terms of global welfare both models of learning perform 

better than no learning, only the ranking of partial and full learning is reversed for 

transfers. This is in sharp contrast to the findings in stylized models that “learning is 

bad”. Na and Shin (1998) find NL>FL and Kolstad (2007) and Kolstad and Ulph 

(2009, 2009) find NL>FL>PL in most cases and in a very few cases PL>NL>FL. 

Though they do no consider transfers, even without transfers our results are just the 

opposite. 

One reason for this difference that applies to all these models is that they consider 

only uncertainty about the benefits from abatement whereas we consider also 

uncertainty about the abatement costs. In particular, in Na and Shin (1998) regional 

benefits are assumed to be negatively correlated but ex-ante all players expect the 

same benefits. Thus, learning without transfers leads to asymmetric gains from 

cooperation in their model, upsetting large stable coalitions with learning. In contrast, 

in our model, regional benefit shares are not correlated, expectations are not identical 
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without learning, possible asymmetries on the benefit side may be compensated (or 

aggravated) by asymmetries on the cost side and finally, asymmetries can be 

mitigated through transfers.  

Another reason for this difference relates to the linear payoff function in Kolstad 

(2007) and Kolstad and Ulph (2009) implying very different driving forces. In their 

model the equilibrium abatement choice is binary: abate or not abate. Consequently, 

what we call the information and strategic effects do not exist in their model. 

Moreover, in their model, stable coalitions can only be a knife-edge equilibrium: once 

a coalition member leaves, the coalition breaks apart as for the remaining coalition 

members it no longer pays to abate. This causes a positive effect from learning in 

terms of the size of stable coalitions but has a negative effect on global welfare. 

Clearly, in our model, a larger coalition size would always produce higher welfare if 

no other effects are at work. 

Result 3 also suggests that what has already been observed abstracting from stability 

considerations also holds when including stability, at least without transfers: both 

models of learning lead to higher concentration levels. With transfers this is different. 

In particular full learning benefits from transfers which make it possible to stabilize 

much larger coalitions. This translates not only into higher expected welfare but also 

into higher expected abatement and thus lower expected concentration levels. The 

ranking of partial and no learning depends on the calibration scenario. For the Base 

Scenario, partial learning implies higher concentrations, both without and with 

transfers, but this may be reversed for other scenarios.  
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Result 4: Global Performance Including Stability: The Role of Transfers 

In each calibration scenario, and in each model of learning, expected global welfare 

levels are higher and expected concentration levels are lower with transfers than 

without transfers.  

Let the relative gain from cooperation be measured by the difference between stable 

IEAs and the Nash equilibrium over the difference between the social optimum and 

the Nash equilibrium. The average relative gains from forming IEAs in the five 

calibration scenarios are given by:  

Global Welfare: 

No Transfers: NL: 2.67%, PL: 3.97%, FL: 1.2% 

Transfers: NL: 26.31%, PL: 38.73%, FL: 63.29% 

Concentration: 

No Transfers: NL: 2.11%, PL: 2.80%, FL: 1.30% 

Transfers: NL: 18.41%, PL: 29.29%, FL: 46.73%. 

Hence, without transfers, the relative gains from stable cooperation are rather small 

for all three models of learning, regardless whether this is measured in terms of global 

welfare or concentration levels. Apart from the omnipresent free-rider incentives 

well-known from the literature (e.g. Carraro and Siniscalco 1993 and Barrett 1994), 

one reason is that the gains from cooperation are unequally distributed as regions are 

quite heterogeneous in terms of benefits and abatement cost in our applied model. The 

almost ideal transfer scheme mitigates these differences in an optimal way (e.g. 

Eyckmans and Finus 2006), taking account of the regional incentive structure. This 

drastically increases the success of coalition formation for all three models of 

learning, but this is no guarantee that the social optimum is obtained. The 

improvement through transfers is particular pronounced for the model of full learning. 
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Roughly speaking, without transfers, the expected payoffs under no and partial 

learning are on average more symmetric than the “true” payoffs under full learning on 

which membership decisions are based in the first stage. This hampers the formation 

of large coalitions under full learning. However, once transfers are introduced, the 

benefits from full learning can be fully reaped. A similar driving force underlies also 

the next result. 

Result 5: Global Performance Including Stability: The Role of Diversity 

A higher variance of regional benefits in a setting without transfers (with transfers) 

implies lower (higher) expected global welfare levels and higher (lower) expected 

concentration levels for the two models of learning. 

Result 5 compares Tables 1 and 4. As pointed out above, the variance of regional 

benefits does not matter for no learning as longs as the expected parameter value 

remains the same. For the models of full and partial learning, a higher variance of 

regional benefits translates also into a higher variance in payoffs among members and 

ceteris paribus increases the heterogeneity among regions. Without transfers, this 

poses an obstacle to form large stable coalitions as it implies a more asymmetric 

distribution of the gains from cooperation. With transfers, this obstacle is removed 

and diversity is now an asset. Not only does the coalition benefit from internalizing 

the externality among its members but also from a cost-effective allocation of 

abatement duties. The larger the asymmetry, the more pronounced is the difference 

between the cost-effective coalitional and cost-ineffective Nash abatement levels and 

hence the larger are the gains from cooperation. This finding is in line with McGinty 

(2007) and Weikard (2009) who show that with transfers coalition formation may be 

more successful if players are more heterogeneous. 
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5. Summary and Conclusion 

In stylized models, which capture the strategic aspects of self-enforcing climate treaty 

formation, it has been shown that learning has a negative impact on the success of 

cooperation. This result is intriguing and runs counter to all intensified research 

efforts in climate change in recent years, aiming at reducing uncertainty about the 

impacts of climate change and the costs involved in mitigation. In this paper, we pose 

the question whether the negative conclusion about the role of learning holds more 

generally if the restrictive assumptions of the stylized models are relaxed. We use a 

calibrated climate change model with twelve world regions, which captures the 

dynamics of greenhouse gas accummulation in the atmosphere, the timing when the 

benefits and costs from climate mitigation occur and the large heterogeneity across 

regions, to address this question. The distribution of the uncertain parameters of the 

benefit and cost functions are generated through a Monte Carlo Simulation technique. 

The large uncertainties still surrounding these uncertain parameters is accounted for 

through sensitivity analyses. Three models of learning are investigated: full learning 

where all players learn the actual values of all model parameters before the game is 

played; partial learning where information is revealed after players announce whether 

to join the treaty, but before decisions are taken on abatement levels; and no learning 

where both stages of the game are played under uncertainty. 

In our numerical model, we derive much more positive conclusions about the role of 

learning. Though uncertainty leads to an overshooting of abatement efforts and hence 

ignorance can pay in ecological terms, in welfare terms, this is reversed. The same 

conclusion remains valid once stability is explicitly accounted for. This is done by 

evaluating the average success over all Pareto-undominated stable coalitions under all 

three models of learning. Even in ecological terms learning turns out to have a 
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positive impact in our model once we consider transfers. These transfers are designed 

such that they avoid a too asymmetric distribution of the gains from cooperation and 

they explicitly take into account the different incentives of the various world regions 

to leave or join a climate agreement. Under all three models of learning these transfers 

improve upon the success of climate agreements: larger coalitions can be stabilized 

and membership can be bought of regions with low abatement cost options, despite 

their little incentive to participate because of low benefits. The importance of transfer 

increases with the degree of learning. In our model this is because on average the 

gains from cooperation are more symmetrically distributed ex ante than ex post. 

Hence, without transfers, learning would have a negative impact on some regions’ 

willingness to sign a climate treaty. The importance of transfers also increases with 

the degree of asymmetry between regions. Without transfers, asymmetry is an 

obstacle for forming large and effective agreements. With transfers, asymmetry 

becomes an asset. Members of the agreement benefit from exploiting the comparative 

advantage of cooperation. This constitutes a significant counterpoint to the 

omnipresent free-rider incentive caused by the public good nature of climate change 

mitigation.  

The last point suggests one avenue of future research. Under the Kyoto Protocol and 

probably also in future climate treaties transfers are not paid in a lump sum fashion as 

we assumed. However, transfers are implicitly part of the emission permit trading 

system under the Kyoto Protocol, the European Trading System (EU-TS) and most 

likely a future US-Trading system. Hence, it will be important to work out how the 

structure of the transfer scheme which we considered in our analysis can be replicated 

through the allocation of permits if they are given out for free or how the auction 

mechanism has to be designed if emitters are expected to bid for emission rights  
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Another point we deem important in future research concerns the role of learning. 

First, learning could be modeled as a dynamic process in which agents update beliefs 

in a Bayesian sense. Second, the possibility that agents can invest in learning and the 

effect on endogenous technological change could be integrated in the analysis. Both 

points would also suggest to depart from the assumption of fixed membership and to 

allow for the revision of membership in a climate agreement over time as considered 

for instance in Ulph (2004) and Rubio and Ulph (2007). No doubt this will require 

major conceptual and computational advances in the theory of dynamic coalition 

formation with heterogeneous players. 
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Appendix: Parameters of the Applied Model 

Payoffs are the net present value of the stream of abatement as specified in equation (6) in the text. 

Benefits from abatement equal the net present value (in period t) of future avoided damages: 

    ( ; ) 0; ;it t iB is iB is t iB

s t

B q Z D Z D q Z



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Damages are a linearized link between abatement and climate impacts: 

( ; ) γ γis t iB i i s t t D sD q Z s q Y        where γi  is a scaling parameter that has no effect on benefits as 

it cancels out, is  are regional damage shares, -s t  reflects the fraction of emissions in period t still 

in the atmosphere in period s, calculated as  - 0.64 1 0.00866
s t

s t


    (cf. Nordhaus 1994). 

Furthermore, tY  is global GDP (projections taken from the MIT-EPPA model; Paltsev et al. 2005) 

and Dγ  is the stochastic scale parameter of global damages as given below.  

Concentration of CO2 starts at an exogenous level of 390 ppm in 2010; the final period 

concentration level is then calculated by adding global emissions (E) minus abatement (q) between 

2011 and 2110, taking into account their decay:   
2110
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2011
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Abatement costs are formulated following Ellerman and Decaux (1998), adjusted for an exogenous 

technological progress parameter ( =0.005) to reflect the dynamic nature of our model: 

1 13 2

3 2
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The distribution functions of the stochastic parameters are described in detail in Dellink et al. 

(2008) and are reproduced here. 
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Table A1: Characteristics of the 2-sided Exponential Distribution Function of the Global 

Benefit Parameter D. 

  Value 

 5% density -9 $/tC 

 Mode 5 $/tC 

 density at mode 13% 

 95% density 245 $/tC 

 Mean 77 $/tC 

 

Table A2: Characteristics of the Gamma Distribution Function of Regional Benefit Shares 
i

s  

Region Lower  

bound 

Mean 

Calibration I 

(Scenarios 1 to 4) 

Standard  

deviation 

Mean  

Calibration II (Scenario 

5) 

USA 0 0.2263 0.1414 0.124 

JPN 0 0.1725 0.1078 0.114 

EEC 0 0.2360 0.1475 0.064 

OOE 0 0.0345 0.0216 0.017 

EET 0 0.0130 0.0130 0.013 

FSU 0 0.0675 0.0675 0.035 

EEX 0 0.0300 0.0300 0.030 

CHN 0 0.0620 0.0620 0.062 

IND 0 0.0500 0.1000 0.171 

DAE 0 0.0249 0.0498 0.085 

BRA 0 0.0153 0.0306 0.052 

ROW 0 0.0680 0.1360 0.233 
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Table A3: Characteristics of the Normal Distribution of the Abatement Cost Parameters 
i

  

and 
i

 . 

 
i   

i  

Region Mean Standard 

deviation 

 Mean Standard 

deviation 

USA 0.00050 0.00006  0.00398 0.00050 

JPN 0.01550 0.00194  0.18160 0.02270 

EEC 0.00240 0.00030  0.01503 0.00188 

OOE 0.00830 0.00104  0.00000 0.00000 

EET 0.00790 0.00198  0.00486 0.00122 

FSU 0.00230 0.00058  0.00042 0.00011 

EEX 0.00320 0.00080  0.03029 0.00757 

CHN 0.00007 0.00002  0.00239 0.00060 

IND 0.00150 0.00038  0.00787 0.00197 

DAE 0.00470 0.00118  0.03774 0.00944 

BRA 0.56120 0.14030  0.84974 0.21244 

ROW 0.00210 0.00053  0.00805 0.00201 
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Table 1: Outcome of Coalition Formation and Learning: Base Scenario* 

Coalition Global Welfare  

(bln US$) 

Concentration  

(giga tons carbon) 

 No Learning 

Nash Equilibrium 10,427.9 1,432.2 

Social Optimum 29,490.6 1,248.4 

 No Transfers 

BPSC (JPN, EEC) [1] 10,910.9 1,428.5 

Global Performance 10,910.9 1,428.5 

 Transfers 

BPSC (USA, EET, CHN IND, 

DAE) [105] 

18,940 1,374.8 

Global Performance 15,385.8 1,398.4 

 Partial Learning 

Nash Equilibrium 14,702.7 1,445.4 

Social Optimum 43,348.3 1,287.6 

 No Transfers 

BPSC (JPN, EEC) [1] 15,475.3 1,442.1 

Global Performance 15,475.3 1,442.1 

 Transfers 

BPSC (USA, EET, CHN, IND, 

ROW) [41] 

29,374.8 1,387.8 

Global Performance 24,342.6 1,407.7 

 Full Learning 

Nash Equilibrium 14,702.7 1,445.4 

Social Optimum 43,348.3 1,287.6 

 No Transfers 

HSLC (JPN, EEC) [0.237] 15,475.3 1,442.1 

Global Performance 15,142.7 1,443.1 

 Transfers 

HSLC (EEC, OOE, EET, EEX, 

CHN, IND, DAE, BRA, ROW) 

[0.159] 

34,788.1 1,362.7 

Global Performance 30,795.9 1,381.6 

* Calibration of Base Scenario see section 3. This implies in particular a discount rate of r 0.02 , benefit 

shares with mean values under Calibration I and standard deviations as listed in Table A2. Global Welfare: 

sum of discounted expected payoffs over all regions in bln US$ in 2010; Concentration: expected 

concentration in giga tons carbon in 2110; Nash Equilibrium corresponds to singleton coalition structure; 

Social Optimum corresponds to all regions forming the grand coalition; BPSC=best performing stable 

coalition in terms of expected global welfare under no and partial learning with [..] the total number of stable 

non-trivial coalitions; HSLC=coalition with the highest stability likelihood under full learning among all 

possible coalitions with [..] the stability likelihood of this coalition; Global Performance: expected global 

welfare and expected concentration over all Pareto-undominated stable coalitions as explained in section 2; 

all numbers are rounded to the first digit. 
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Table 2: Outcome of Coalition Formation and Learning: Lower Discount Rate Scenario* 

Coalition Global Welfare  

(bln US$) 

Concentration  

(giga tons carbon) 

 No Learning 

Nash Equilibrium 36,989.3 1412.3 

Social Optimum 100,758.3 1178.9 

 No Transfers 

BPSC (JPN, EEC) [1] 38,674.7 1,407.3 

Global Performance 38,674.7 1,407.3 

 Transfers 

BPSC (USA, EET, CHN, IND, 

DAE) [105] 

65,796.3 1,337.9 

Global Performance 53,765.8 1,368.3 

 Partial Learning 

Nash Equilibrium 50,903.8 1,430.3 

Social Optimum 142,106.9 1,236.5 

 No Transfers 

BPSC (JPN, EEC) [1] 53,571.8 1,425.9 

Global Performance 53,571.8 1,425.9 

 Transfers 

BPSC (USA, EET, EEX, CHN, 

IND) [54] 

93,209 1,364.3 

Global Performance 75,858.5 1,391.2 

 Full Learning 

Nash Equilibrium 50,903.8 1,430.3 

Social Optimum 142,106.9 1,236.5 

 No Transfers 

HSLC (JPN, EEC) [0.246] 53,571.8 1,425.9 

Global Performance 52,211.2 1,426.7 

 Transfers 

HSLC (USA, OOE, EET, EEX, 

CHN, IND, DAE, BRA, ROW) 

[0.162] 

116,736.6 1,321.8 

Global Performance 101,431.7 1,349.9 

* Calibration of “Lower Discount Rate Scenario” see section 3. This implies a discount rate of r 0.01  

instead of r 0.02  as assumed in the Base Scenario; all other assumptions are the same. Notation: see Table 

1. 
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Table 3: Outcome of Coalition Formation and Learning: Higher Discount Rate Scenario* 

Coalition Global Welfare  

(bln US$) 

Concentration  

(giga tons carbon) 

 No Learning 

Nash Equilibrium 4,093.4 1,442.9 

Social Optimum 11,924.6 1,287 

 No Transfers 

BPSC (JPN, EEC) [1] 4,288.1 1,439.8 

Global Performance 4,288.1 1,439.8 

 Transfers 

BPSC (USA, EET, CHN, IND, 

DAE) [109] 

7,608 1,394.2 

Global Performance 6,137.4 1,414.2 

 Partial Learning 

Nash Equilibrium 5,826.3 1,453.7 

Social Optimum 17,925.1 1,317.8 

 No Transfers 

BPSC (JPN, EEC) [1] 6,140,9 1,450.9 

Global Performance 6,140.9 1,450.9 

 Transfers 

BPSC (USA, EET, CHN, IND, 

ROW)) [35] 

12,013.7 1,404.8 

Global Performance 10,085.7 1,420.2 

 Full Learning 

Nash Equilibrium 5,826.3 1,453.7 

Social Optimum 17,925.1 1,317.8 

 No Transfers 

HSLC (JPN, EEC) [0.247] 6,140.9 1,450.9 

Global Performance 6,005.9 1,451.8 

 Transfers 

HSLC (USA, OOE, EET, EEX, 

CHN, IND, DAE, BRA, ROW) 

[0.16] 

14,605.1 1,380.4 

Global Performance 12,578 1,399.3 

* Calibration of “Higher Discount Rate Scenario” see section 3. This implies a discount rate of r 0.03  

instead of r 0.02  as assumed in the Base Scenario; all other assumptions are the same. Notation: see Table 

1. 



 IV 

Table 4: Outcome of Coalition Formation and Learning: Higher Variance of Regional Benefit 

Shares Scenario* 

Coalition Global Welfare  

(bln US$) 

Concentration  

(giga tons carbon) 

 No Learning 

Nash Equilibrium 10,427.9 1,432.2 

Social Optimum 29,490.6 1,248.4 

 No Transfers 

BPSC (JPN, EEC) [1] 10,910.9 1,428.5 

Global Performance 10,910.9 1,428.5 

 Transfers 

BPSC (USA, EET, CHN, IND, 

DAE) [105] 

18,940 1,374.8 

Global Performance 15,385.8 1,398.4 

 Partial Learning 

Nash Equilibrium 12,899.7 1,454.4  

Social Optimum 47,127 1,295.9 

 No Transfers 

BPSC (JPN, EEC) [1] 13,815.6 1,451 

Global Performance 13,815.6 1,451 

 Transfers 

BPSC (USA, EEC, EET, EEX, 

CHN, IND, ROW) [9] 

35,757 1,359.2 

Global Performance 30,168.4 1,382.4 

 Full Learning 

Nash Equilibrium 12,899.7 1,454.4 

Social Optimum 47,127 1,295.9 

 No Transfers 

HSLC (JPN, EEC) [0.143] 13,815.6 1,451.0 

Global Performance 13,210.4 1,452.6 

 Transfers 

HSLC (grand coalition) [0.217] 47,127 1,295.9 

Global Performance 38,156.1 1,352.5 

* Calibration of case “Higher Variance of Regional Benefits” see section 3. This implies a higher variance of 

regional benefits than assumed in the Base Case (standard deviation doubled as listed in Table A2); all other 

assumptions are the same. Notation: see Table 1. 
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Table 5: Outcome of Coalition Formation and Learning: Different Regional Benefit Shares 

Scenario* 

Coalition Global Welfare  

(bln US$) 

Concentration  

(giga tons carbon) 

 No Learning 

Nash Equilibrium 10,224.5  1,433.5  

Social Optimum 29,490.6  1,248.4  

 No Transfers 

BPSC (JPN, BRA, ROW) [1] 10,829.9  1,429  

Global Performance 10,829.9  1,429  

 Transfers 

BPSC (USA, EET, CHN, ROW) 

[53] 

18,850.1 1,374.2 

Global Performance 15,456.6 1,399.3 

 Partial Learning 

Nash Equilibrium 14,360.3  1,448.7  

Social Optimum 43,348.3 1,287.6 

 No Transfers 

BPSC (IND, BRA, ROW) [1] 16,958.3  1,439.8  

Global Performance 16,958.3  1,439.8  

 Transfers 

BPSC (EEC, OOE, EET, FSU, 

CHN, IND, ROW) [19] 

33,796.5 1,374.1 

Global Performance 27,988.3 1,396.7 

 Full Learning 

Nash Equilibrium 14,360.3  1,448.7  

Social Optimum 43,348.3  1,287.6  

 No Transfers 

HSLC (JPN, BRA) [0.128] 14,484 1,448.3 

Global Performance 14,552.4  1,447.6  

 Transfers 

HSLC(grand coalition) [0.15] 43,348.3 1,287.6 

Global Performance 36,221.4  1,371.8 

* Calibration of “Different Regional Benefit Shares Scenario” see section 3. This implies regional benefit 

shares according to Calibration II, Table A2, which differ from Calibration I in the Base Scenario; all other 

assumptions are the same. Notation: see Table 1. 

 


