
DIVISION OF ECONOMICS 
STIRLING MANAGEMENT SCHOOL 

 
 
 
 

The Role of Uncertainty and Learning for the  

Success of International Climate Agreements 

 

Michael Finus 

Pedro Pintassilgo 

 

 

Stirling Economics Discussion Paper 2009-16 

August 2009 

 

 

 

Online at http://www.economics.stir.ac.uk 

 



The Role of Uncertainty and Learning for the Success 

of International Climate Agreements 

Michael Finus* 
 

and  
 

Pedro Pintassilgo** 
 

Abstract 

Technological developments intensify linkages between nations, making unilateral policies 
less effective. Though transnational externalities (e.g. trade, contagious diseases and terror-
ism) warrants coordination and cooperation between governments, this proves some times 
difficult. This is particularly true for international environmental agreements. One reason 
for meager success is the public good character of environmental protection encouraging 
free-riding. Another reason one might suspect are the large uncertainties surrounding most 
environmental problems, and in particular climate change, providing sufficient excuse to 
remain inactive. Paradoxically, some recent papers have concluded just the opposite: the 
veil of uncertainty can be conducive to the success of international environmental co-
operation. This sheds serious doubts on the benefits from research on better understanding 
environmental impacts. In this paper, we explain why and under which conditions such a 
pessimistic conclusion can be true. However, taking a broader view, we argue that these 
unfavorable conditions are rather an exception than the rule. Most important, we suggest a 
mechanism that mitigates the negative effect of learning and which may even turn it into a 
positive effect. Our results apply beyond the specifics of climate change to similar 
problems of cooperation in the presence of externalities. 
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1. Introduction 

Technological developments intensify linkages between nations, making unilateral policies 

less effective. Though transnational externalities (e.g. trade, contagious diseases and terror-

ism; see e.g. Sandler 2004 and Yi 1996) warrants coordination and cooperation between 

governments, this proves some times difficult. One of the greatest challenges to interna-

tional co-operation the world is currently facing is climate change, as emphasized by the 

two prominent studies, the Stern and the IPCC Reports (Stern 2006 and IPCC 2007). 

International response to this challenge can be traced back to 1988 when the IPCC was 

founded – an international body that gathers and synthesizes current world-wide scientific 

evidence on climate change. However, it was not until 1997 that 38 countries agreed to 

specific emission ceilings under the Kyoto Protocol, which was not ratified before 2002, 

after several concessions had been granted to various participants and after the US had 

declared that it would withdraw from the treaty altogether. Currently, a “Post-Kyoto” 

agreement for the period after 2012 is being negotiated, with the aim to tighten emission 

limits, encourage the participation of the US and the “new” emerging polluters China and 

India. 

One important problem for effective cooperation is free-riding. For a common property 

resource this well-known since Hardin (1968) and has been reiterated in the specific 

context of self-enforcing international environmental agreements (SEIEAs) by Barrett 

(1994), Carraro and Siniscalco (1993) and Hoel (1992). Later papers, using richer models, 

either with an empirical (e.g. Bosello et al. 2003, Finus and Tjøtta 2003 and Weikard et al. 

2006) or theoretical (e.g. Asheim et al. 2006, Barrett 2001, 2006, and Rubio and Ulph 2007) 

focus, have suggested some possibilities to make SEIEAs more effective, but have 

confirmed the general negative conclusion more or less.1  

                                                 
1  Surveys are provided in Barrett (2003) and Finus (2003). 
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Another important problem is the large uncertainty surrounding the impact of greenhouse 

gases on the climate and caused environmental damages. Predictions about abatement costs 

are also difficult (IPCC 2007 and Stern 2006). For instance, the former US President 

George Bush used uncertainty as one argument for his decision to withdraw from the 

Kyoto Protocol. In a letter to Senators, dated March 13, 2001, as quoted by Kolstad (2007), 

he wrote: “I oppose the Kyoto Protocol … we must be very careful not to take actions that 

could harm consumers. This is especially true given the incomplete state of scientific 

knowledge”.  

Recently, a literature has emerged, which combines free-riding with uncertainty and learn-

ing, using simple SEIEA-models with a static payoff function2 (Kolstad 2007, Kolstad and 

Ulph 2008, 2009 and Na and Shin 1998). Their main conclusion is that in the strategic 

context of the formation of climate agreements, learning leads to worse outcomes than no 

learning. This “negative” result, though interesting, is intriguing as it runs counter to 

increased research efforts on climate change world wide. This motivates the three research 

questions posed in this paper. What are the driving forces to generate this result? How 

general is this conclusion? Is there a way to fix this problem? Short answers to these ques-

tions emerging from our results are: in the context of uncertainty and coalition formation 

there is an information, a strategic and a distribution effect from learning; there can be 

instances where learning is bad if the last two effects are negative and dominate the first 

positive effect; these instances are rather exceptions than the rule, and if they occur, then 

they can be fixed through appropriate hedging strategies. For more detailed answers, it is 

informative to take first a wider view at some of the economic literature on uncertainty and 

learning. 

                                                 
2  That is, it captures the public bad nature of greenhouse gases but not their dynamics as 

stock pollutants. 
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2. Literature Review and Driving Forces 

In the context of incomplete information, the cases of symmetric (analytical) and asymmet-

ric (strategic) uncertainty can be distinguished. A classical contribution showing that asym-

metric uncertainty can be conducive to cooperation is Kreps et al. (1982) and the later 

generalization by Fudenberg and Maskin (1986). In a finitely repeated prisoners’ dilemma 

(some small amount of) uncertainty about other players’ strategies is sufficient for estab-

lishing cooperation for some time.3  

For symmetric uncertainty, which is the framework we are considering, Iida (1993) comes 

mainly to a negative conclusion about the prospects of international policy coordination 

under uncertainty. In his informal discussion, citing many interesting examples of real 

world politics, he basically identifies two driving forces. First, there is a tendency to under-

estimate the benefits from coordination under uncertainty compared to the non-coopera-

tive status quo.4 Second, governments find it difficult to agree on the “correct” model. For 

instance, in terms of monetary policy, one government may believe in the Keynesian 

model, the other in the monetary model. Frankel and Rockett (1988) even argue that 

macroeconomic policy coordination leads to worse outcomes than if countries pursue non-

cooperative policies. As Gosh and Masson (1991) point out this conclusion may be overly 

pessimistic if a policy choice under uncertainty is compared with the correct ex-post model. 

Nevertheless, even if evaluated ex-ante, if governments negotiate policy coordination based 

on different macroeconomic models which suggest different (and sometimes contradictory) 

                                                 
3  Probably the most convincing motivation for this result is to assume uncertainty about 

other players’ payoffs such that a conditional cooperative strategy of other players could be 
a rational choice. Then, at least for some time, players have an incentive pretending to 
follow a cooperative strategy.  

4  This argument is formalized, for instance, in Fernandez and Rodrik (1991). See the 
discussion below. 
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policy conclusions, the bargaining outcome under uncertainty may be worse than no 

coordination.5 

As Frankel and Rockett (1988) stress for macroeconomic policy, also in climate change the 

number of models, assumptions, and hence different policy conclusions, are abundant (see 

e.g. IPCC 2007). However, this is not the underlying problem in our model. We abstract 

from such controversy about optimal policy levels. This is because we assume that players 

have symmetric expectations about the parameters of the payoff function and policy co-

ordination always pays in our public good game. However, uncertainty affects optimal 

policy levels, which works through the information and the strategic effect from learning, 

as we call it, and the distribution of the gains from cooperation, which we call the distribu-

tional effect from learning.  

We consider a two-stage coalition formation game where countries choose their member-

ship in the first stage, and their policy levels in the second stage. The game is solved back-

ward assuming that players play a Nash equilibrium in each stage. In our model, the social 

optimum is reproduced if all players join the agreement (grand coalition), and the non-co-

operative equilibrium if all players remain singletons (singleton coalition structure). But 

there are also intermediate cases of cooperation, with some though not all players joining 

the agreement. It is then tested in the first stage which of these coalitions are stable. 

Following Kolstad (2007) and Kolstad and Ulph (2008), in this setting we can not only 

distinguish between a no learning scenario (information is neither available in stage 1 nor 2) 

and a full learning scenario (all information is available before stage 1), but also a partial 

learning scenario (information is available before stage 2, but not before stage 1). 

                                                 
5  There is also a literature that analyzes the value of information in the context of public 

goods (e.g. Arce and Sandler 2001 and Sandler et al. 1987) or oligopolies (e.g. Einy et al. 
2003 and Vives 1984), though this is restricted to a non-cooperative setting (Bayesian Nash 
equilibria). 
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The choice of optimal policy levels of coalition members and non-members in the second 

stage benefits from information (information effect) but they interact strategically as long 

as not all players are in the agreement (strategic effect). Suppose for the sake of the argu-

ment that the grand coalition would form which chooses the policy level of the social plan-

ner. Then, the value of information through learning cannot be negative. This is in accor-

dance with the general wisdom that “learning is good” – only the information effect is 

present.6 Now suppose the singleton coalition structure would form. In this non-coopera-

tive setting, players interact strategically and the value of information can become negative 

as shown in Gollier and Treich (2003) for three economic examples.  

For illustrative purposes, suppose as in Ulph (1998) that all players have ex-ante symmetric 

expectations but turn out to be asymmetric ex-post. Assume that asymmetry means only 

different marginal benefit functions from global abatement, though no differences in 

marginal abatement cost functions from individual abatement. Then, no learning leads to a 

symmetric whereas learning to an asymmetric equilibrium. Both equilibria are inefficient 

(each country sets marginal abatement cost only equal to own but not the sum of marginal 

benefits) but the equilibrium under no learning is at least cost-effective (i.e. marginal 

abatement costs equalize). Thus the strategic effect from learning can be negative. Taken 

together, in our coalition model which captures not only full or no cooperation but also 

intermediate cases of partial learning, information and strategic effect are at work in the 

second stage. 

                                                 
6  This would obviously also be true in a model with a dynamic payoff structure (see footnote 

2) where uncertainty calls on the one hand for early action due to the irreversibility of 
accumulated emissions in the atmosphere, following the precautionary principle, and, on 
the other hand, for delayed action, anticipating cheaper abatement options in the future 
and to avoid log-in-effects from non-retrievable investment in abatement technology. See 
Kolstad (1996a, b), Gollier and Treich (2003), Ulph and Maddison (1997), and Ulph and 
Ulph (1997). 
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Finally, there is the distributional effect from learning. Generally speaking, there are two 

contradictory conclusions regarding this effect in the literature. Fernandez and Rodrik 

(1991) consider pure uncertainty about the distribution of the gains and losses from a trade 

policy reform which is beneficial at the aggregate. They conclude that there is a bias 

towards the status quo whenever gainers and losers cannot be identified beforehand, 

despite agents being risk neutral.  

In our model, also assuming risk neutrality, when exclusively considering the case of distri-

butional uncertainty, we find just the opposite. The intuition is along the lines of Young 

(1994), borrowing the concept of the veil of uncertainty from Brennan and Buchanan 

(1985), who argues that agreements are easier if potential participants do not know the 

distributional consequences. This has been illustrated in a simple two-player model in Helm 

(1998) and in Kolstad (2005). In our model with N  players, distributional uncertainty 

affects the participation decision in the first stage of coalition formation. For instance, 

under full learning, only small coalitions are stable which renders this scenario less effective 

than no learning. However, we show that this problem can be mitigated, and, in fact, may 

even be transformed into an advantage if hedged against with an appropriate transfer 

scheme. Then, heterogeneity is an asset, leading to larger and more effective agreements. 

Taken together, our contribution is threefold. First, we qualify the negative results of 

previous papers by using more general assumptions (which we make explicit in the course 

of the analysis). Second, we work out the driving forces (information, strategic and distri-

butional effect) and relate them to the three learning scenarios (no, partial and full learning) 

and the kind of uncertainty (level, distribution or both) about the benefits from coopera-

tion. This will stress that our results apply to many other policy problems beyond the 

specifics of climate change. Third, we show that if there is a negative distributional effect 
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from learning, transfers can mitigate this effect and even transform it into a positive effect. 

Then diversity can be an asset.  

In the following, we outline our coalition model and describe the three “learning scenarios” 

and three “uncertainty cases” in section 3. Section 4 derives the model solutions for stages 

1 and 2 and gives already a hint regarding the driving forces that affect the overall results 

presented in section 5. Section 6 summarizes the main conclusions and proposes some 

issues for future research. 

3. Model Outline 

3.1 Coalition Formation Game 

International environmental agreements are typical single agreements with voluntary par-

ticipation and open membership, i.e. a country can neither be forced into nor excluded 

from participation. Therefore, we model coalition formation game as a two-stage open 

membership single coalition game. In the first stage, players (i.e. countries in our context) 

decide whether to join an agreement (i.e. a climate treaty in our context) or remain an out-

sider as a singleton. In the second stage players choose their policy levels (i.e. abatement in 

our context). The game is solved backward assuming that strategies in each stage must 

form a Nash equilibrium. 

This game has also been called cartel formation game with non-members called fringe 

players. It originates from the literature in industrial organization (d’ Aspremont et al. 1983) 

and has been applied widely in this literature (e.g. Deneckere and Davidson 1985, 

Donsimoni et al. 1986 and Poyago-Theotokay 1995; see Bloch 2003 and Yi 1997 for 

surveys) but also in the literature on self-enforcing international environmental agreements 

(e.g. Barrett 1994, Carraro and Siniscalco 1993 and Rubio and Ulph 2007; see Barrett 2003 

and Finus 2003 for surveys).  



 8

In the first stage, players’ membership decisions lead to a coalition structure, 

{ , }n mK S 1 −= , which is a partition of players, with n  being the total number of players, 

m  the size of coalition S , m n≤ , and N  the set of players, S N⊆ . Due to the simple 

structure of this coalition formation game, i.e. there can be at most one non-trivial coali-

tion, coalition structure K  is entirely determined by coalition S . Typically, we will denote 

a member of S  by i  and call it a signatory and a non-member of S  by j  and call it a non-

signatory.  

In the second stage, given that some coalition S  has formed, players choose their abate-

ment levels iq  in our setting.7 The decision is based on the following payoff function: 

(1) ( )
n

i i k i i
k 1

B q C qΠ
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  , i N∈  

where ( )iB •  is country i ’s concave benefit function from global abatement (in the form 

of reduced damages, e.g. measured against some business-as-usual-scenario) and ( )iC •  its 

convex abatement cost function from individual abatement. The global public good nature 

of abatement is captured by the benefit function which depends on the sum of all abate-

ment contributions. For a start, we assume that all functions and their parameters are 

common knowledge and introduce uncertainty in the next section. 

Working backward, we assume that the coalition derives its optimal economic strategies in 

the second stage as a (coalitional) Nash equilibrium between coalition S  with its m  

members and the n m−  singletons. Thereby, the coalition acts de facto as a single or meta 

                                                 
7  An alternative specification of payoff functions, comprising damage cost functions from 

global emissions and benefit functions from individual emissions, produces equivalent 
results. This equivalence holds as long as non-negativity constraints are observed, as 
discussed for instance in Diamantoudi and Sartzetakis (2006) and Rubio and Ulph (2006).  
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player (Haeringer 2004). The equilibrium is derived by assuming that coalition members 

maximize the aggregate payoff of their coalition  

(2) ( ) ( )
S

n
' '

i i k i i
q i S i S k 1

max . S B q C qΠ
∈ ∈ =

⎛ ⎞
⇒ =⎜ ⎟

⎝ ⎠
∑ ∑ ∑  i S∀ ∈  

whereas as all singletons maximize their own payoff 

(3) ( ) ( )
j

n
' '

j j k j jq k 1

max . S B q C qΠ
=

⎛ ⎞
⇒ =⎜ ⎟

⎝ ⎠
∑  j S∀ ∉  

where Sq  is the vector of abatement levels of those players that belong to coalition S , '
kB  

and '
kC  are the derivatives of kB  and kC  with respect to kq , respectively. The simultane-

ous solution of first order conditions (F.O.C.s) in (2) and (3) delivers equilibrium abate-

ment levels *( )iq S  of signatories and * ( )jq S  of non-signatories. The F.O.C.s in (2) are the 

Samuelsson conditions for the optimal provision of a public good, though they hold only 

for coalition members; the F.O.C.s in (3) are those in a non-cooperative equilibrium.8 

Substituting the equilibrium abatement levels for a given coalition S  into the payoff 

functions delivers the payoffs of signatories, * ( )i S SΠ ∈ , and non-signatories, * ( )j S SΠ ∉ , in 

the second stage of the coalition formation game. This assumes no transfers. However, 

given the assumption of joint welfare maximization of coalition members and the fact that 

we allow for asymmetric payoff functions, it is perceivable that coalition members share 

their total payoff * *( )S ii S
SΠ Π

∈
=∑  through transfers it  such that the “corrected” payoffs 

are *( )i iS tΠ +  with 0ii S
t

∈
=∑ . 

                                                 
8  Note that if =S N  (i.e. all players form the grand coalition) the equilibrium abatement 

vector corresponds to the social optimum and if either { }S i=  or =∅S  (i.e. all players act 
as singletons) this corresponds to the Nash equilibrium. 
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In the first stage, stable coalitions are determined by invoking the stability concept of inter-

nal and external stability, which is de facto a Nash equilibrium in membership strategies. 

Consider first the version without transfers: 

(4) internal stability:   ( ) ( )* * \{ }i iS S iΠ Π≥  i S∀ ∈  

(5) external stability:   ( ) ( )* * { }j jS S jΠ Π> ∪  j S∀ ∉ . 

That is, no signatory should have an incentive to leave coalition S  to become a non-signa-

tory and no non-signatory should have an incentive to join coalition S . In order to avoid 

knife-edge cases, we assume that if players are indifferent between joining coalition S  and 

remaining outside, they will join the agreement. Coalitions which are internally and exter-

nally stable are called stable and the set is denoted by *S . In case there is more than one 

stable coalition, we apply the Pareto-dominance selection criterion. We denote the set of 

Pareto-undominated stable coalitions by * *SΨ ⊇ . If non-trivial coalitions are stable, they 

Pareto-dominate the singleton coalition structure. Note that the coalition structure 

comprising only singletons is stable by definition and hence existence of an equilibrium is 

guaranteed.9  

In the case of transfers, many schemes are perceivable which typically lead to different sets 

of stable coalitions. In order to avoid this sensitivity, we follow the concept of an almost 

ideal sharing scheme (AISS) proposed by Eyckmans and Finus (2009). They argue that if 

and only if: 

(6) potential internal stability:   ( ) ( )* * \{ }i i
i S i S

S S iΠ Π
∈ ∈

≥∑ ∑   

                                                 
9  The reason is that the singleton coalition structure can be generated by =∅S , i.e. all players 

announce not to join the agreement. Then if one player changes her announcement, such that 
{ }S i=� , the coalition structure remains the same. 
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holds, then there exists a transfer system which makes S  internally stable. A transfer 

system for which every potentially internally stable coalition is internally stable belongs to 

the AISS, which gives each coalition member its free-rider payoff, *( \{ })i S iΠ , plus some 

positive share of the surplus ( S )σ = * *( ) ( \{ })i ii S i S
S S iΠ Π

∈ ∈
−∑ ∑ . For every transfer 

system belonging to the AISS coalition S  is externally stable if and only if all larger coali-

tions { }S j∪ , including a fringe player j S∉ , are not potentially internally stable. Conse-

quently, for every transfer system in this class the set of internally, externally and hence 

stable coalitions is the same. Most important, among those coalitions that can be poten-

tially internally stabilized (which may not be possible for large coalitions), i.e. ( )S 0σ ≥ , 

AISS stabilizes (in the sense of internal and external stability) those with the highest aggre-

gate welfare over all players. Their conclusion hinges on only one structural property, 

namely the property of (weakly) positive externalities from coalition formation. It means 

that whenever a non-signatory j  joins coalition S , such that S j∪  forms, non-members 

are better or at least not worse off. It is straightforward to prove that this property (in its 

strong version) holds in our cartel formation game where players choose abatement strate-

gies according to (2) and (3) based on payoff function (1).  

3.2 Three Learning Scenarios 

We now assume that some parameter values of the payoff functions are uncertain. 

Following Kolstad and Ulph (2008, 2009), we assume risk-neutral agents as players are 

governments and not individuals, and distinguish three learning scenarios: 1) full learning, 

2) partial learning and 3) no learning. Full Learning (abbreviated FL) can be considered as a 

benchmark case in which players learn about the true parameter values before taking the 

membership decision in the first stage. Hence, uncertainty is fully resolved at the beginning 

of the game. For Partial Learning (abbreviated PL) it is assumed that players decide about 

membership under uncertainty but know that they will learn about the true parameter 
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values before deciding upon abatement levels in the second stage. Hence, the membership 

decision is based on expected payoffs, under the assumption that players will take the 

correct decision in the second stage. Finally, under No Learning (abbreviated NL) also the 

abatement decision has to be taken under uncertainty. That is, players derive their abate-

ment strategies by maximizing expected payoffs. The membership decisions are also taken 

based on expected payoffs, though these payoffs differ from those under partial learning, 

given that less information is available.  

It is worthwhile pointing out that our assumption implies that learning takes the form of 

perfect learning (Kolstad and Ulph 2008, 2009). That is, if players learn about parameter 

values, no uncertainty remains. Hence, partial learning is de facto delayed learning, though 

we stick to the terminology introduced by Kolstad and Ulph. Full learning is certainly an 

optimistic and no learning a pessimistic benchmark about the role of learning in the con-

text of climate change. Partial learning approximates (because beliefs are not updated in a 

Bayesian sense) the fact that information becomes available over time. For instance, 

between the signature of the Kyoto Protocol in 1997, and its entry into force in 2002, with 

compliance in 2008-12, more information has emerged, as documented by various updated 

issues of IPCC reports. 

3.3 Three Uncertainty Cases  

3.3.1 Introduction 

We now turn to the assumption about the uncertain parameters of the payoff functions 

which are summarized in three uncertainty cases. Due to the complexity of coalition forma-

tion and the three effects mentioned in the Introduction, the consideration of a particular 

payoff function, as well as the parameters that are uncertain and their distributions is 

required. In order to avoid the exclusive focus on the binary equilibrium choices “abate” or 

“not abate” in the second stage, as for instance in Kolstad (2007) and Kolstad and Ulph 
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(2008, 2009), and to capture the information and the strategic effect, we consider a strictly 

concave payoff function which is still simple enough to derive analytical results:10 

(7) 
2n

i
i i k i

k 1

qb q c
2

Π
=

= −∑  , i N∈ , ib 0> , ic 0>  

where ib  is a benefit parameter, 
n

i k
k 1

b q
=
∑  is the benefit from global abatement, ic  is a cost 

parameter, and 
2

i
i
qc
2

 is the abatement cost from individual abatement. 

Generally, the benefit as well as the cost parameters could be uncertain. However, follow-

ing Kolstad (2007), Kolstad and Ulph (2008, 2009) and Na and Shin (1998), in the climate 

context uncertainty about the benefits from reduced damages appears to be more impor-

tant than uncertainty about abatement costs. Hence, we simplify the model, by dividing 

payoffs by the cost parameter ic , define the benefit-cost ratio by i i ib / cγ = , and hence 

payoff function (7) reads: 

(8) 
2n

i
i i k

k 1

qq
2

Π γ
=

= −∑  , i N∈ , i 0γ >  . 

Henceforth, we call iγ  the benefit parameter. If this parameter is uncertain, then it is repre-

sented by the random variable iΓ , with associated distribution 
i

fΓ . The assumptions 

regarding our three uncertainty cases are displayed in Table 1.  

                                                 
10  A similar payoff function has been used for instance by Barrett (2006) and Na and Shin 

(1998) but also by many others.  
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Table 1: Three Uncertainty Cases about the Benefit Parameters 

Case Ex-ante 
Expectations of 

Parameters 

Ex-post 
Realizations of 

Parameters 

Interpretation 
of Parameters 

Uncertainty about

1 symmetric symmetric common level of benefits 
2 symmetric asymmetric individual distribution of 

benefits 
3 symmetric asymmetric common and 

individual  
level and 

distribution of 
benefits 

 

In all three cases, uncertainty is symmetric as all players know as much or little about their 

own as about their fellow players’ payoff functions. We first lay out the specific assump-

tions and then provide a wider interpretation. 

3.3.2 Assumptions 

Case 1: Uncertainty about the Level of Benefits 

The setting of case 1 is considered in Kolstad (2007) and Kolstad and Ulph (2008, 2009), 

which the authors call systematic uncertainty as it relates to a common parameter. All players 

have the same expectations ex-ante, and once uncertainty is resolved, all countries have the 

same benefit parameter ex-post, which we call symmetric realization, i.e. i kΓ Γ=  

i, k N∀ ∈ . Thus, uncertainty is correlated. However, we find it more illuminating to point 

out that in this case uncertainty is de facto about the level of the benefits from global abate-

ment. For the later analysis, it is helpful to point out that this implies that the sum of 

marginal benefits is uncertain with a positive variance. 

Compared to the studies mentioned above, our case 1 appears to be more general in two 

respects. First, our payoff function does not restrict abatement strategies to a binary choice 

and hence optimal abatement strategies are a function of the benefit parameter, a prerequi-

site for the information and strategic effect to work. Second, we do not assume any par-

ticular distribution for the uncertain benefit parameters. 
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Case 2: Uncertainty about the Distribution of Benefits 

The setting of case 2 is considered in Na and Shin (1998); uncertainty relates to individual 

parameters. Though expectations about the benefit parameters are symmetric, their realiza-

tions are asymmetric among players. Like in Na and Shin (1998), we consider that the 

random variables iΓ , i N∀ ∈ , are perfectly correlated across all players. Unlike the model 

of Na and Shin (1998) with three players, we consider an arbitrary number of players. 

Because of the larger complexity, we adopt a specific distribution for parameter iΓ , namely 

a uniform distribution: 

(9) ( )
1

0
i

i
i

for k , k N
f n

otherwise
Γ

γ
γ

⎧ = ∈⎪= ⎨
⎪⎩

 

which implies expected value, [ ]iE Γ , and variance, [ ]iVar Γ , as follows: 

(10) [ ] 1

2i
nE +

=Γ  and [ ]
2 1

12i
nVar Γ −

=  . 

We model perfect correlation by assuming that all players have a different benefit parame-

ter: i k , i k NΓ Γ≠ ∀ ≠ ∈ . Thus, vector ( )1 n,...,Γ Γ Γ=  is composed of all the elements 

of N , i.e. 
1

n

i
i

N
=

=Γ∪ . The sum of marginal benefits is fixed and consequently its variance 

is zero. 

Here perfect correlation implies that uncertainty is purely about the distribution of the benefits 

from global abatement as the level of global benefits is constant. That is, vector Γ  can be 

viewed as different shares of the global benefits from abatement, as for instance modeled 
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in Dellink et al. (2008).11 Different from Na and Shin (1998), we also consider the case of 

partial learning and most important, the possibility to mitigate asymmetries through trans-

fers, which, as we show later, plays a crucial role for the outcome under full learning. 

Case 3: Uncertainty about the Level and Distribution of Benefits 

Case 3 is a combination of the previous two cases and hence there is uncertainty about 

common and individual parameters. This translates in our setting into uncertainty about the level 

and distribution of the benefits from global abatement. This is captured by assuming the 

same uniform distribution as in case 2, except that all random variables, iΓ , 1i ,...,n= , are 

identically and independently distributed, and therefore uncorrelated. Hence, the sum of 

marginal benefits is uncertain with positive variance which is larger than in case 2, but 

smaller than in case 1. Different from Kolstad and Ulph (2009) our distribution allows for 

more than two values of the random variables, abatement strategies are not binary and, 

again, most important we study the role transfers. 

3.3.3 Interpretation of the Three Uncertainty Cases 

All three cases capture an important aspect of the uncertainty surrounding climate change. 

There is much uncertainty about the absolute level of the benefits from reduced damages 

but also much debate about their regional distribution: which countries will be suffering 

more from climate change? (Tol 2005). Hence, case 3 is the most comprehensive case, but 

cases 1 and 2 are useful benchmarks in order to isolate effects. As the random variable iΓ  

is the benefit-cost ratio and the only variable in this simple model, it exclusively determines 

the gains from cooperation. Hence, we de facto model uncertainty about the level and/or 

                                                 
11  Let 

1

n
i i k ik

Lγ λ γ λ
=

= =∑  where iλ  denotes the share of global benefits of player i , with 
n

kk 1
1λ

=
=∑ , and n

kk 1
L γ

=
=∑  the level of global benefits. Then, in case 2 

( ) /L n n 1 2= + , and /( ( ))i 2 j n n 1λ = + , { }1 2j , ,...,n∈ . 
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distribution of the gains from cooperation – a problem which certainly applies to many 

economic problems with externalities. 

A common feature of all three cases is that there is not only symmetric uncertainty, but all 

players share the same beliefs about the distribution of the uncertain parameter and conse-

quently are ex-ante symmetric. This is a simplification and requires that some coordination 

has taken place ex-ante on which we comment in section 6. It avoids the problems of dis-

agreement about optimal policy levels under uncertainty as mentioned in the Introduction. 

Even under learning, with possible asymmetric realizations of the random variables in cases 

2 and 3, disagreement about policy levels is not an issue, as coalition members maximize 

their joint welfare. However, disagreement will figure in indirectly when it comes to decide 

on the participation in the agreement. Then, under full learning, asymmetry causes little 

participation if not balanced by transfers. The degree of ex-post asymmetry increases from 

our case 1 (no asymmetry) over case 3 (some asymmetry) to case 2 (maximum asymmetry). 

In contrast, under partial and no learning, participation is based on expected payoffs which 

are symmetric for our assumptions.  

4. Model Solution 

In this section, we solve the model for the three learning scenarios and the three uncer-

tainty cases. As pointed out above, we solve the game backward, starting with the second 

stage. 

4.1 Second Stage of Coalition Formation 

In the full and partial learning scenarios, players know the realization of the random vari-

ables kΓ , which are denoted as kγ . Hence, given that a coalition structure { }1( n m )K S , −=  

has formed in the first stage, the optimal abatement levels of the members of coalition S  

and the singletons j S∉  follow from the maximization procedure described in (2) and (3), 

based on payoff function (8), which delivers:  
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(11) ( )*
i

S
q S γ

∈

=∑ A
A

 i S∀ ∈ , ( )*
j jq S γ=  j S∀ ∉ , ( )*

i j
i S j S

Q S m γ γ
∈ ∉

= +∑ ∑  

with *( )Q S  denoting total abatement. Hence, total abatement increases in the benefit 

parameter and in the size of the coalition. 

In the no learning scenario, players do not know the realization of the random variables 

kΓ . Hence, they derive their equilibrium abatement levels from taking expectations over 

the payoffs in (2) and (3), respectively, and maximizing these expected payoffs. As payoffs 

are linear in the random variables kΓ , certainty equivalence holds. That is, maximization of 

expected payoffs is equivalent to the maximization of payoffs under certainty for 

[ ]k kE=γ Γ . This delivers equilibrium abatement levels: 

(12) ( ) [ ]**
i i

i S
q S E Γ

∈

=∑  i S∀ ∈  , ( )**
j jq S E Γ⎡ ⎤= ⎣ ⎦  j S∀ ∉ ,  

( ) ( ) [ ]2**
kQ S m m n E Γ= − +  

where we use two asterisks in order to stress the difference to full and partial learning. 

Note that (12) are also the expected abatement levels. Again total expected abatement 

increases in the coalition size and the expected benefit parameter.  

Despite the fact that we have not yet determined stable coalitions in the first stage, for the 

three learning scenarios and the three uncertainty cases, it is already informative to conduct 

a comparison of the outcomes of the second stage. This allows us to isolate the informa-

tion and strategic effect from the distributional effect in a first step. In a second step, our 

analysis of the size of stable coalitions, presented in the next subsection, will allow us to 

isolate the distributional effect. Both steps provide useful information for the interpretation 

of the overall outcome discussed in section 5.  

For the first step, we take an ex-ante perspective and compute expected abatement also in 

the cases of full and partial learning. Ex-ante, players do not know whether they are signa-
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tories or non-signatories. For a coalition with m  members, the probability of being a signa-

tory is m / n  and the probability of being a non-signatory is ( ) /n m n−  as all players are ex-

ante symmetric. Consequently, expected individual abatement is computed as m / n  times 

the expected abatement of a signatory plus ( ) /n m n−  times the expected abatement of a 

non-signatory, or, equivalently, 1/ n  times expected total abatement. Hence, relations 

between the three learning scenarios in terms of expected individual abatement follows 

immediately from the relation of expected total abatement. The same link holds for 

expected payoffs which we analyze below. 

Proposition 1: Expected Abatement in the Second Stage 

Let { }n mK S ,1 −=  be some coalition structure with coalition S  of size m . Under all three learning 

scenarios, and all three uncertainty cases, the following relation holds for expected total abatement and 

expected individual abatement levels: 

FL PL NL= = . 

Proof: Follows immediately from (11) and (12). (Q.E.D.) 

From Proposition 1 it is evident that in our model differences (similarities) between the 

three learning scenarios in terms of the overall outcome of coalition formation with respect 

to abatement – analyzed in section 5 – must exclusively stem from different (the same) 

stable coalition(s). This is obvious for full and partial learning as they are anyway identical 

in the second stage. As suggested by Proposition 1, this also holds for no learning in our 

model. 

By inserting equilibrium abatement levels (11) into payoff functions in the case of full and 

partial learning, and taking expectations over the random variable iΓ , we can compute 

expected payoffs. A similar procedure applies to no learning by using (12).  
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Proposition 2: Expected Payoffs in the Second Stage 

Let { }n mK S ,1 −=  be some coalition structure with coalition S  of size m . Then for the three learning 

scenarios the following relations hold for expected total payoffs and expected individual payoffs: 

Case 1:  FL PL NL= >  

Case 2:  FL PL NL= ≤  with strict inequality if S N≠  

Case 3:  FL PL NL= >  . 

Proof: See Appendix 1. (Q.E.D.) 

The intuition behind Proposition 2 is quite informative for the understanding of the driv-

ing forces of our model. First, as mentioned above, full and partial learning are identical as 

there is no difference in the second stage. On the one hand, this suggests that differences 

or similarities between this two learning scenarios in terms of overall success can exclu-

sively be attributed to stability in the first stage and must stem from the distributional 

effect. On the other hand, full and partial learning can be summarized under the heading of 

learning for the subsequent comparison with no learning.  

Second, consider the grand coalition, S N= . Then the strategic effect is zero by definition. 

The first order conditions require setting the sum of marginal benefits over all players equal 

to individual marginal abatement costs. Under no learning, the sum of marginal benefits is 

unknown in uncertainty cases 1 and 3 as there is uncertainty about the level of benefits. 

However, in case 2 this information is available as there is only uncertainty about the dis-

tribution of benefits. Therefore, the information effect from learning is positive in case 1 

and 3, but is zero in case 2.  

Third, consider any coalition different from the grand coalition, S N≠ . Hence, the strate-

gic effect is not necessarily zero anymore. Moreover, also in case 2, under no learning, 
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neither do non-signatories know their individual marginal benefits nor do signatories know 

the sum of marginal benefits of their coalition. Hence, also in case 2, the information effect 

from learning is positive.  

Now consider case 1. Under no learning, equilibrium expected abatement either implies a 

systematic overshooting or undershooting of abatement levels compared to learning. 

Systematic means that signatories and non-signatories abatement levels are simultaneously 

either too high or too low. This relates to the systematic uncertainty about a common 

parameter, which is about the level of benefits. Though overshooting implies higher 

benefits, this is costly due to convex abatement costs. Overall, the net gain from over-

shooting is smaller than the net loss of undershooting and hence learning leads to higher 

expected total and individual payoffs than no learning. Hence, together the information 

and strategic effect from learning are positive. 

Now consider case 2. Lack of information still leads to over- and undershooting, but this is 

not systematic anymore as there is only uncertainty about the distribution but not the level 

of benefits. Overshooting of signatories is accompanied by undershooting of non-signato-

ries and vice versa under no learning. This translates into a smaller variation of signatories’ 

and non-signatories’ abatement levels compared to learning. Because all players have the 

same abatement cost function, this translates into lower expected costs under no learning 

than under learning (though expected benefits are the same). Hence, the strategic effect is 

related to cost-effectiveness in our model; it is stronger and works in the opposite direction 

of the information effect from learning. 

Since case 3 combines features of case 1 and 2, it also combines the driving forces of both 

cases. For our model assumptions, it turns out that the features of case 1 dominate and 

hence we have the same ranking as in case 1. 
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3.2 First Stage of Coalition Formation 

In this section, we determine stable coalitions based on the equilibrium abatement strate-

gies derived for the second stage. Now we have to distinguish also between full and partial 

learning because under partial learning the realizations of the random variables are not 

known in the first stage. Nevertheless, the expected payoffs under partial learning are 

different from those under no learning as players have more information. Subsequently, we 

skip all technical details which we provide in Appendix 2. Moreover, since the interplay 

between signatories and non-signatories requires at least three players, we henceforth 

assume 3n ≥ . 

We start with the cases of partial and no learning as they do not require distinguishing 

between no transfers and transfers. This is because for each of these scenarios expected 

individual payoffs within the group of signatories and within the group of non-signatories 

are the same. Hence, transfers cannot improve upon stable coalitions.  

Proposition 3: Equilibrium Coalitions under Partial and No Learning 

Under the partial and the no learning scenario, in uncertainty cases 1, 2 and 3, the expected equilibrium 

coalition size *E[ m ]  without and with transfers is given by: 3* PL * NLE m E m⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ .  

For no learning the intuition is straightforward. As pointed out above, due to certainty 

equivalence, equilibrium abatement levels under no learning correspond to those under 

certainty if the parameters kγ  are equal to the expected value of kΓ . Due to ex-ante sym-

metric expectation in all three uncertainty cases, the expected value is the same for all 

players. Thus, the outcome is the same as that of a game with certainty and symmetric pay-

off functions. For payoff function (8) and symmetric players it is well-known from the 

literature (see e.g. Finus 2003) that the stable coalition comprises three signatories if 
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3n ≥ .12 Also under partial learning the ex-ante symmetry leads to the same stable coali-

tions, though certainty equivalence does not hold. In other words, in our model, the infor-

mation and strategic effect work only through the second stage but do no affect the stabil-

ity in the first stage. Hence, only differences in the second stage can explain differences in 

the final outcome between partial and no learning. 

In the full learning scenario, ex-post realizations are symmetric in uncertainty case 1. 

Hence, we also do not require considering transfers and get the same size of stable coali-

tions as in the no and partial learning scenario. This is different in uncertainty cases 2 and 

3. Therefore, without transfers, stable coalitions are smaller, but with transfers this can be 

quite different.  

Proposition 4: Equilibrium Coalitions under Full Learning 

Under the full learning scenario, the expected equilibrium coalition size * FLE[ m ]  is given by:  

Uncertainty Case 1: No Transfers and Transfers 

3* FLE m⎡ ⎤ =⎣ ⎦  where all possible 3-player coalitions are stable. 

Uncertainty Case 2: No Transfers    Uncertainty Case 2: Transfers 

1 3

2 4
* FL if n

E m
if n

=⎧⎡ ⎤ = ⎨⎣ ⎦ ≥⎩
    

( )
3 8

3 9
* FL if n

E m
f n if n

≤⎧⎪⎡ ⎤ = ⎨⎣ ⎦ > ≥⎪⎩
 

where in the case of no transfers, for 4n ≥ , the only stable coalition is formed by the two players with 

highest iγ . In the case of transfers, all possible 3-player coalitions are stable if 8≤n , and if 9n ≥  no 

stable coalition comprises less than three players and ( )f n  increases in n . 

                                                 
12  Note that similar small coalitions are obtained for other strictly concave payoff functions as long 

as one does not assume Stackelberg leadership of signatories (see Finus 2003). 
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Uncertainty Case 3: No Transfers    Uncertainty Case 3: Transfers 

( ) 3* FLE m g n and nγ⎡ ⎤ = < ∀⎣ ⎦    
( )

3 4

3 5
* FL if n

E m
h n if n

≤⎧⎪⎡ ⎤ = ⎨⎣ ⎦ > ≥⎪⎩
  

where in the case of no transfers g( n )  is a strictly increasing function with ( ) 3
n
lim g n
→+∞

= . In the case of 

transfers, all possible 3-player coalitions are stable if 4≤n , and if 5≥n  no stable stable coalition 

comprises less than three players and ( )h n  increases in n . 

In case 2 without transfers, the expected coalition size falls short under full learning 

compared to those under partial and no learning. This also applies to case 3 without trans-

fers, although no closed form solution exists for full learning.  

It is interesting to observe that with transfers asymmetry may no longer be an obstacle for 

forming large coalitions but may even be conducive. Due to the assumption about the dis-

tribution of the variables iΓ , the degree of asymmetry among players (measured as the 

variance of the elements of the vector Γ ) increases with the number of players n . Hence, 

above a threshold, 9n ≥  in case 2 and 5n ≥  in case 3, larger coalitions can be stable than 

in the case of symmetric players. The intuition is the following.  

Cooperation among some players compared to the non-cooperative status quo typically 

serves two purposes. First, internalizing an externality among coalition members by 

choosing higher abatement levels than under no cooperation. This is a benefit every coali-

tion member enjoys and, in fact, also non-signatories. Second, equalizing marginal abate-

ment costs across coalitions members and hence reaping the gains from cost-effectiveness. 

This is a benefit the coalition enjoys as a group but does not spread to non-signatories. The 

first benefit from cooperation also applies to symmetric players, though not the second 

one. Hence, the potentials aggregate gains from cooperation are higher among heterogene-

ous than among homogeneous coalitions members, including an exclusive component. 

However, these gains can only be enjoyed by using a transfer scheme that optimally 
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mitigates free-rider incentives; otherwise larger fruits can be picked but because some 

members receive a too small share they do not participate in cultivating and harvesting 

them. 

The main conclusion from Propositions 3 and 4 to be reminded for the subsequent analysis 

is that there is no difference in stability between partial and no learning. Hence, all differ-

ence in the final outcome must stem from the second stage, related to the information and 

strategic effect. This is also true for all three learning scenarios in uncertainty case 1. In 

uncertainty cases 2 and 3, there may be differences in the size of stable coalitions between 

full and partial learning, as well as between full and no learning, depending on the number 

of players n  and whether there are transfers. Differences between full and partial learning 

are exclusively due to the first stage, related to the size of stable coalitions, and hence stem 

from the distributional effect from learning. Thus, the most complicated comparison is 

between full and no learning in cases 2 and 3, as all three effects make their mark. 

5. Model Results 

We now pull together the first and second stage of coalition formation to derive overall 

results. For the interpretation, we can draw on our extensive analysis of the information, 

strategic, and distributional effect, in section 4. Again, we take an ex-ante perspective for 

the comparison of the three learning scenarios, under the three uncertainty cases, in terms 

of expected abatement and payoff. 

5.1 Case 1: Uncertainty about the Level of Benefits 

In case 1, players are ex-ante and ex-post symmetric. Hence, under all three learning 

scenarios, stable coalitions comprise three players (Propositions 3 and 4). Consequently, 

what we know about total abatement (Proposition 1) and total payoffs (Proposition 2) 

from the second stage of coalition formation directly translates into Proposition 5 below. 
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Proposition 5: Outcome with Uncertainty about the Level of Benefits 

In uncertainty case 1, under the full, partial, and no learning scenario, expected equilibrium total abatement 

levels and expected total payoffs are ranked as follows: 

1)  Total Abatement: FL PL NL= =   
         n 2∀ ≥  
2) Total Payoff:  FL PL NL= >  

Proof: Follows immediately from Propositions 1 to 4. (Q.E.D.) 

Our results indicate that if there is only uncertainty about the level of the benefits from 

global abatement, “learning is good” in terms of payoffs. This result is in stark contrast to 

Kolstad (2007), and Kolstad and Ulph (2008, 2009). They find that though full learning 

leads to larger stable coalitions than no learning, expected total payoffs are smaller. For 

partial learning they find multiple equilibria for some parameter values, and conclude that 

the most likely equilibrium leads to lower membership and lower expected aggregate pay-

offs than full and no learning. Thus, in terms of payoffs, they suggest: NL FL PL> > . So 

what leads to this different result? 

In their model with a linear payoff function, equilibrium abatement strategies in the second 

stage of coalition formation do not depend on the benefit parameter. Equilibrium choices 

are “abate” or “not abate” where the first is an equilibrium choice in the social optimum, 

and for signatories in sufficiently large coalitions, whereas the second is an equilibrium 

choice for non-signatories. Consequently, different from our model, there is neither an 

information nor a strategic effect in the second stage. Hence, in our framework, the 

conclusions would be: learning must be superior to no learning because of larger coalitions. 

Why is this different in their model? 

In their model, stable coalitions can only be a knife-edge equilibrium: once a coalition 

member leaves, the coalition breaks apart as for the remaining coalition members it does 

no longer pay to abate. This threshold depends on the parameter γ ; the larger γ , the 
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higher the benefits from cooperation and the less coalition members are needed to form a 

profitable coalition. Hence, the size of stable coalitions is decreasing in the benefit 

parameter γ  and, as the authors show, this is a strictly convex function. Therefore, 

expected membership is higher under full than under no learning. In contrast, an increasing 

value of γ  has two opposite effects on total payoffs. On the one hand, it implies higher 

payoffs because of higher benefits; on the other hand, it leads to lower payoffs because of 

lower membership. As the latter effect dominates, totals payoffs are strictly decreasing and 

concave in γ . Hence, expected welfare under learning is lower than under no learning.  

5.2  Case 2: Uncertainty about the Distribution of Benefits 

In case 2, players are ex-ante symmetric though ex-post asymmetric. For partial and no 

learning this does not affect coalition formation compared to case 1 because players take 

their membership decisions based on expected payoffs. This does not apply to full learning. 

Hence, transfers only matter for full learning.  

Proposition 6: Outcome with Uncertainty about the Distribution of Benefits 

In case 2, under the full, partial and no learning scenario, expected equilibrium total abatement levels and 

expected total payoffs are ranked as follows: 

No Transfers 

1) Total Abatement: NL PL FL= >   

2) Total Payoff:  
3

4

NL PL FL if n
NL PL FL if n

= > =⎧
⎨ > > ≥⎩

 

Transfers 

1) Total Abatement: 
8

9

FL PL NL if n
FL PL NL if n

= = ≤⎧
⎨ > = ≥⎩
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2) Total Payoff:  

3

4 8

9

10

FL PL NL if n
NL FL PL if n
NL FL PL if n
FL NL PL if n

= = =⎧
⎪ > = ≤ ≤⎪
⎨ > > =⎪
⎪ > > ≥⎩

 

Proof: See Appendix 3. (Q.E.D.) 

The superiority of no learning over partial learning entirely stems from the second stage of 

coalition formation (Propositions 1 and 2) as there is no difference in the size of stable 

coalitions (Proposition 3). As long as 4n ≥ , the grand coalition is not stable and the strate-

gic effect explains the difference in total payoffs. In the absence of transfers, the superiority 

of partial over full learning solely stems from differences in the size of stable coalitions 

(Propositions 3 and 4, case 2) as the second stage outcomes are the same (Propositions and 

1 and 2). This is due to the distributional effect from learning. 

Hence, if the level but not the distribution of the total benefits from cooperation is known, 

the more we learn, the worse is the final outcome. Thus, the veil of uncertainty mitigates 

the strategic behavior of players (i.e. NL>PL for total payoffs) and avoids low participation 

due to anticipated small shares of the gain from cooperation for some players (i.e. PL>FL 

for total payoffs and abatement levels).  

However, once coalition members are ensured that they receive their “fair share” through 

an appropriate transfer scheme, the lack of sufficient participation under full learning can 

be avoided. In fact, heterogeneity becomes an asset, leading to larger coalitions. This distri-

butional effect from learning explains the superiority of full over partial learning for 9n ≥ . 

This effect also overrides the negative strategic effect from full learning compared to no 

learning for 9n ≥  in terms of global abatement, and for 10n ≥  in terms of global payoffs.  

Thus, we generalize the negative result of Na and Shin (1998) about the role of learning by 

considering more than three players and including the intermediate case of partial learning 
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in the analysis. Even more important, we qualify their conclusion by considering transfers 

and showing that this conclusion can be reversed, at least for full learning.   

5.3 Case 3: Uncertainty about the Level and Distribution of Benefits 

Like in case 2, in case 3 players are ex-ante symmetric but ex-post asymmetric. The average 

degree of asymmetry is positive, therefore larger than in case 1, but smaller than in case 2. 

Not surprisingly, this improves upon the relative performance of full learning compared to 

case 2, but weakens it compared to case 1, if there are no transfers. With transfers, like in 

case 2, heterogeneity becomes an asset under full learning. 

Proposition 7:  Outcome with Uncertainty about the Level and Distribution of  
 Benefits 

In case 3, under the full, partial, and no learning scenario, expected equilibrium total abatement levels and 

expected total payoffs are ranked as follows: 

No Transfers 

1) Total Abatement:  
29

29

FL PL NL if n
FL PL NL if n

< = <⎧
⎨ > = ≥⎩

 

2) Total Payoff:  
29

29 32

32

PL NL FL if n
PL FL NL if n
FL PL NL if n

> > <⎧
⎪ > > ≤ <⎨
⎪ > > ≥⎩

 

Transfers 

1) Total Abatement:  
3 4

5

FL PL NL if n n
FL PL NL if n

= = = ∨ =⎧
⎨ > = ≥⎩

 

2) Total Payoff:  
3 4

5

FL PL NL if n n
FL PL NL if n

= > = ∨ =⎧
⎨ > > ≥⎩

 

Proof: See Appendix 4. (Q.E.D.) 
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For a given coalition structure, expected total abatement levels are the same under all three 

learning scenarios (Proposition 1) and expected total payoffs under full and partial learning 

are identical but higher than under no learning (Proposition 2). Since there is no difference 

between partial and no learning in terms of coalition size, the equality in terms of expected 

total abatement and the superiority in terms of expected total payoffs follows immediately. 

Moreover, differences between partial and full learning must solely stem from different 

coalition sizes. For transfers, coalitions are never smaller but may be larger under full than 

under partial and no learning, which gives full learning an advantage. For no transfers, the 

distribution effect is more subtle as there are two dimensions. First, the expected coalition 

size under full learning * FLE m⎡ ⎤⎣ ⎦  is always smaller than under partial and no learning. 

Second, the average benefit parameter of the members of stable coalitions is higher under 

full learning than under the other two learning scenarios, implying higher total abatement. 

As * FLE m⎡ ⎤⎣ ⎦  increases with the number of players n , the first (negative) effect becomes 

smaller with increasing n  and the latter (positive) effect dominates. It is for this reason that 

for n 29≥  ( 32n ≥ ) full learning generates higher expected total abatement (expected total 

payoffs) than partial learning. A similar explanation applies to explain the relation between 

full and no learning.  

Taken together, in case 3 partial learning is always better than no learning and once 

transfers are introduce full learning ranks first. Only without transfers full learning may 

rank last but, compared to case 2, this does not happen always, as the degree of asymmetry 

is smaller. If we view case 3 as the most relevant case of actual negotiations because it 

captures uncertainty about the level and the distribution of the gains from cooperation, 

both relevant in climate change, then our results come to a far less negative conclusion 

than the previous literature. Even in a strategic context, more information must not neces-

sarily be detrimental to the self-enforcing provision of a public good. However, the larger 
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the uncertainty about the distribution of the gains from cooperation, the more important it 

is to hedge against free-riding through an appropriate transfer scheme. 

6. Summary and Conclusions  

This paper addressed the role of uncertainty and learning for the formation of self-enforc-

ing international environmental agreements (SEIEAs). The central question was whether 

the veil of uncertainty aggravates or mitigates free-riding and on what this depends? The 

answer is not straightforward. Though more information certainly helps actors to make 

rational policy choices (information effect), they do not act in isolation: first because there 

are externalities across nations and second because not all nations adhere to the rules of 

environmental treaties. When signatories and non-signatories choose their optimal policy 

levels more information might turn out to be worse as they interact strategically and 

choices are mutually depended (strategic effect). The veil of uncertainty might also be help-

ful when it comes to commit to cooperation by joining an agreement when the gains from 

cooperation could be unevenly distributed (distribution effect). Knowing ex-ante the total 

size of the pie is advantageous but receiving confirmation that the individual slices of 

participants might be quite unequal may cause problems.  

In our SEIEA-model these issues were systematically analyzed. One the one hand, we dis-

tinguished three learning scenarios. The benchmark cases of no and full learning, and the 

intermediate case of partial learning where countries have to take their membership 

decision under uncertainty before they learn the true parameters of their payoff function. 

On the other hand, we considered three uncertainty cases. All cases assume that if there is 

uncertainty, all players know as much or little about their own as well as their fellows’ pay-

off function. Thus, uncertainty is symmetric. Two benchmark cases considered uncertainty 

either about the level or the distribution of the gains from cooperation whereas the inter-

mediate case allowed for both.  
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Roughly speaking, the larger the uncertainty about the distribution compared to the level of 

the gains from cooperation, the stronger is the strategic and the distributional effect 

compared to the information effect from learning. The strategic effect can be negative with 

the outcome the more we learn the worse it is. The distributional effect from learning only 

affects full learning, as only then the distributional consequences when deciding about 

membership are known. The impact of this distributional effect from learning increases 

with the variance of the shares of the gains from cooperation. Without transfers, this effect 

is negative, allowing only small agreements to be stable. With transfers, this effect is posi-

tive, and heterogeneity becomes an asset. Overall our conclusions are twofold. 

First, the negative conclusion about the role of learning in previous work by Kolstad 

(2007), Kolstad and Ulph (2008, 2009) and Na and Shin (1998), though certainly important, 

is less evident from our model when taking a broader view. Only if there is pure uncer-

tainty about the distribution of the gains from cooperation can we confirm that learning is 

bad. As we have argued, this is most unlikely in the climate change context. Moreover, 

should the problem be virulent, it can be mitigated, fixed or even turned into an asset 

through an appropriate transfer scheme.  

Second, it is this last comment which we think should receive particular attention. As in 

most economic problems involving externalities and heterogeneous agents, it is certainly 

also naïve to expect that the gains from cooperation will be evenly distributed ex-post. In 

order to secure the total gains from cooperation some safety valve has to be built in. We 

considered the most obvious one, namely the commitment to an ex-post transfer scheme. 

We have done so in a stylized way by assuming away any transaction cost associated with 

such redistribution. This is an optimistic view, but certainly a benchmark. With 

heterogeneity participants of an agreement enjoy not only the benefits from internalizing an 

externality from which non-members cannot be excluded, but they also enjoy the exclusive 
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benefits from a cost-effective allocation of their coordination efforts. Clearly, this cost 

saving potential increases with diversity. Our transfer scheme could also be implemented 

indirectly through an emission permit trading scheme as it is currently in place in the 

European Union to meet Kyoto targets. Through the initial allocation of permits, our 

optimal transfer scheme could be replicated.  

Despite we generalized some aspects of previous models, our model also shares some of 

their limitations. We pick only two which we believe are the most policy-relevant. First, we 

assumed that all players share the same beliefs which requires some agreement about the 

current scientific evidence. Similar, like in the literature on macroeconomic policies, there is 

currently no shared scientific evidence on climate change. Therefore, it would be interest-

ing to analyze whether an evolvement to more similar views, e.g. through intensified inter-

national research collaborations, political dialogues, and institutional coordination through 

international bodies are conducive to the success of cooperation and on what this depends. 

Second, we did not consider uncertainty about the abatement cost parameters with possible 

asymmetric realizations. We expect that this would improve the effect of learning and 

would certainly provide further relief to the scientific community that more information 

does no harm to the global good. 

References 

Arce M., D. G. and T. Sandler (2001), Transnational Public Goods: Strategies and Institu-
tions. “European Journal of Political Economy”, vol. 17, pp. 493-516. 

Asheim, G.B., C.B. Froyn, J. Hovi and F.C. Menz (2006), Regional versus Global Coopera-
tion for Climate Control. “Journal of Environmental Economics and Management”, 
vol. 51(1), pp. 93-109. 

d’Aspremont, C., A. Jacquemin, J.J. Gabszewicz and J.A. Weymark (1983), On the Stability 
of Collusive Price Leadership. “Canadian Journal of Economics”, vol. 16(1), pp. 17-25. 

Barrett, S. (1994), Self-enforcing International Environmental Agreements. “Oxford Eco-
nomic Papers”, vol. 46, pp. 878-894. 

Barrett, S. (2001), International Cooperation for Sale. “European Economic Review”, 
vol. 45(10), pp. 1835-1850. 



 34

Barrett, S. (2003), Environment and Statecraft: The Strategy of Environmental Treaty-mak-
ing. Oxford University Press, New York. 

Barrett, S. (2006), Climate Treaties and “Breakthrough” Technologies. “American Eco-
nomic Review”, vol. 96(2), pp. 22-25.  

Bloch, F. (2003), Non-cooperative Models of Coalition Formation in Games with Spill-
overs. In: Carraro, C. (ed.), The Endogenous Formation of Economic Coalitions. 
Edward Elgar, Cheltenham, UK et al., ch. 2, pp. 35-79. 

Bosello, F., B. Buchner and C. Carraro (2003), Equity, Development, and Climate Change 
Control. “Journal of the European Economic Association”, vol. 1(2-3), pp. 601-611. 

Brennan, G. and J.M. Buchanan (1985), The Reason for Rules: Constitutional Political 
Economy. Cambridge University Press, Cambridge, UK. 

Carraro, C. and D. Siniscalco (1993), Strategies for the International Protection of the 
Environment. “Journal of Public Economics”, vol. 52(3), pp. 309-328. 

Dellink, R., M. Finus and N. Olieman (2008), The Stability Likelihood of an International 
Climate Agreement. “Environmental and Resource Economics”, vol. 39(4), pp. 357-377. 

Deneckere, R. and C. Davidson (1985), Incentives to Form Coalitions with Bertrand 
Competition. “The RAND Journal of Economics”, vol. 16(4), pp. 473-486. 

Diamantoudi, E. and E.S. Sartzetakis (2006), Stable International Environmental Agree-
ments: an Analytical Approach. “Journal of Public Economic Theory”, vol. 8(2), pp. 
247-263. 

Donsimoni, M.-P., N.S. Economides and H.M. Polemarchakis (1986), Stable Cartels. 
“International Economic Review”, vol. 27(2), pp. 317-327. 

Einy, E. D. Moreno and B. Shitovitz (2003), The Value of Public Information in a Cournot 
Duopoly. “Games and Economic Behavior”, vol. 44, pp. 272-285. 

Eyckmans, J. and M. Finus (2009), An Almost Ideal Sharing Scheme for Coalition Games 
with Externalities. Stirling Discussion Paper Series, 2009-10, University of Stirling. 

Fernandez, R. and D. Rodrik (1991), Resistance to Reform: Status Quo Bias in the 
Presence of Individual-Specific Uncertainty. “American Economic Review”, vol. 81(5), 
pp. 1146-1155. 

Finus, M. (2003), Stability and Design of International Environmental Agreements: The 
Case of Transboundary Pollution. In: Folmer, H. and T. Tietenberg (eds.), International 
Yearbook of Environmental and Resource Economics, 2003/4, Edward Elgar, 
Cheltenham, UK, ch. 3, pp. 82-158. 

Finus, M. and S. Tjøtta (2003), The Oslo Protocol on Sulfur Reduction: The Great Leap 
Forward? “Journal of Public Economics”, vol. 87(9-10), pp. 2031-2048. 

Frankel, J.A. and K. Rockett (1988), International Macroeconomic Policy Coordination: 
When Policy Makers Do not Agree on the True Model. “American Economic Review”, 
vol. 78(3), pp. 318-340. 

Fudenberg, D. and E. Maskin (1986), The Folk Theorem in Repeated Games with 
Discounting or with Incomplete Information. “Econometrica”, vol. 54(3), pp. 533-554. 



 35

Gollier, C. and N. Treich (2003), Decision-making under Scientific Uncertainty: The 
Economics of the Precautionary Principle. “Journal of Risk and Uncertainty”, vol. 27(1), 
pp. 77-103. 

Gosh, A.R. and P.R. Masson (1991), Model Uncertainty, and the Gains from Coordination. 
“American Economic Review”, vol. 81(3), pp. 465-479. 

Haeringer, G. (2004), Equilibrium Binding Agreements: A Comment. “Journal of 
Economic Theory”, vol. 117(1), pp. 140-143. 

Hardin, G. (1968), The Tragedy of the Commons. “Science”, vol. 162(3859), pp. 1243-
1248. 

Helm, C. (1998), International Cooperation behind the Veil of Uncertainty. “Environ-
mental and Resource Economics”, vol. 12(2), pp. 185-201. 

Hoel, M. (1992), International Environment Conventions: The Case of Uniform Reduc-
tions of Emissions. “Environmental and Resource Economics”, vol. 2(2), pp. 141-159. 

Iida, K. (1993), Analytical Uncertainty and International Cooperation: Theory and Applica-
tion to International Economic Policy Coordination. International Studies Quarterly, vol. 
37, pp. 431-457. 

IPCC (2007), Climate Change 2007, Synthesis Report. 

Kolstad, C.D. (1996a), Fundamental Irreversibilities in Stock Externalities. “Journal of 
Public Economics”, vol. 60(2), pp. 221-233. 

Kolstad, C.D. (1996b), Learning and Stock Effects in Environmental Regulation: the Case 
of Greenhouse Gas Emissions. “Journal of Environmental Economics and 
Managament”, vol. 31(1), pp. 1-18. 

Kolstad, C.D. (2005), Piercing the Veil of Uncertainty in Transboundary Pollution 
Agreements. “Environmental and Resource Economics”, vol. 31(1), pp. 21-34. 

Kolstad, C.D. (2007), Systematic Uncertainty in Self-enforcing International Environmental 
Agreements. “Journal of Environmental Economics and Managament”, vol. 53(1), pp. 
68-79.  

Kolstad, C.D. and A. Ulph (2008), Learning and international environmental agreements. 
“Climatic Change”, vol. 89(1-2), pp. 125-141. 

Kolstad, C.D. and A. Ulph (2009), Uncertainty, Learning and Heterogeneity in Interna-
tional Environmental Agreements. Mimeo. 

Kreps, D.M., P. Milgrom, J. Roberts and R. Wilson (1982), Rational Cooperation in the 
Finitely Repeated Prisoners’ Dilemma. “Journal of Economic Theory”, vol. 27(2), pp. 
245-252. 

Na, S.-L. and H.S. Shin (1998), International Environmental Agreements under Uncer-
tainty. “Oxford Economic Papers”, vol. 50(2), pp. 173-185. 

Poyago-Theotoky, J. (1995), Equilibrium and Optimal Size of A Research Joint Venture in 
an Oligopoly with Spillovers. “The Journal of Industrial Economics”, vol. 43(2), pp 209-
226. 

Rubio S. J. and A. Ulph (2006), Self-enforcing International Environmental Agreements 
Revisited. “Oxford Economic Papers”, vol. 58(2), pp. 233-263. 



 36

Rubio S. J. and A. Ulph (2007), An Infinite-horizon Model of Dynamic Membership of 
International Environmental Agreements. “Journal of Environmental Economics and 
Management”, vol. 54(3), pp. 296-310. 

Sandler T. (2004), Global Collective Action. Cambridge University Press, Cambridge. 

Sandler, T., F. P. Sterbenz and J. Posnett (1987), Free Riding and Uncertainty. “European 
Economic Review”, vol. 31. pp. 1605-1617. 

Stern, N. (2006), Stern Review: The Economics of Climate Change. Report prepared for 
the HM Treasury in the UK. Now published 2007: Cambridge University Press, 
Cambridge, UK. 

Tol, R.S.J. (2005), The Marginal Damage Costs of Carbon Dioxide Emissions: An 
Assessment of the Uncertainties. “Energy Policy”, vol. 33(16), pp. 2064-2074. 

Ulph, A. (1998), Learning about Global Warming? In: Hanley, N. and H. Folmer (eds.), 
Game Theory and the Environment. Edward Elgar, Cheltenham, UK et al., ch. 13, 
pp. 255-286. 

Ulph, A. and D. Maddison (1997), Uncertainty, Learning and International Environmental 
Policy Coordination. “Environmental and Resource Economics”, vol. 9(4), pp. 451-466. 

Ulph, A. and D. Ulph (1997), Global Warming, Irreversibility and Learning. “The 
Economic Journal”, vol. 107(442), pp. 636-650. 

Vives, X. (1984), Duoploy Information Equilibrium: Cournot and Bertrand. “Journal of 
Economic Theory”, vol. 24, pp. 71-94. 

Weikard, H.-P., M. Finus and J.C. Altamirano-Cabrera (2006), The Impact of Surplus 
Sharing on the Stability of International Climate Agreements. “Oxford Economic 
Papers”, vol. 58(2), pp. 209-232. 

Yi, S.-S. (1996), Endogenous Formation of Customs Unions under Imprefect Competition: 
Open Regionalism is Good. “Journal of International Economics”, vol. 41, pp. 153-177. 

Yi, S.-S. (1997), Stable Coalition Structures with Externalities. “Games and Economic 
Behavior”, vol. 20(2), pp. 201-237. 

Young, O. (1994), International Governance: Protecting the Environment in a Stateless 
Society. Cornell University Press, Ithaca, New York. 



 I

  

Appendix13 

Appendix 1: Proof of Proposition 2 

In the case of full and partial learning, using equilibrium abatement levels in (11) and insert-

ing them into payoff functions in (8), gives ex-post payoffs: 
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Taking expectations in order to compute ex-ante payoffs, gives: 

Case 1: 

 ( )
2

2

2
FL PL
i S i

mE S , m n EΠ Γ Γ=
∈

⎛ ⎞
⎡ ⎤ ⎡ ⎤= − +⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠
  

(II) ( ) 2 21

2
FL PL
j S jE S , m n m EΠ Γ Γ=
∉

⎛ ⎞⎡ ⎤ ⎡ ⎤= + − −⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
  

( ) ( )FL PL 2 2
k

m 1E S , m n n n m E
2 2

Π Γ Γ= ⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤= − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠
 

                                                 
13  For some proofs we only provide the intuition due to space limitations. Details are available 

upon request. 



 II

Case 2: 
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where in (II) 2
kE Γ⎡ ⎤⎣ ⎦  remains unspecified, as in case 1 no assumption about the distribu-

tion of the random variables kΓ  is necessary for the analysis.  

In the no learning scenario, certainty equivalence holds. Thus, in the three uncertainty 

cases, payoffs are the same as those under certainty with [ ]k kEγ Γ=  k N∀ ∈ : 
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where in cases 2 and 3 [ ] ( )kE n 1 / 2Γ = + . In case 1, using (II) and (V), we find: 

( ) ( )FL PL NLE S , E S ,Π Γ Π Γ=⎡ ⎤ ⎡ ⎤− =⎣ ⎦ ⎣ ⎦ [ ]kVar Γ , where [ ]kVar 0Γ >  by assumption. In 

case 2, using (III) and (V), we find ( ) ( )FL PL NLE S , E S ,Π Γ Π Γ=⎡ ⎤ ⎡ ⎤− =⎣ ⎦ ⎣ ⎦  
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−  which is strictly negative for n m> , implying S N≠ , and 

zero if n m= , implying S N= , for all m,n N∈  and m n≤ . Finally, in case 3, using (IV) 
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strictly positive for all m, n N∈  and m n≤ . 

Appendix 2: Proof of Propositions 3 and 4 

Proposition 3: For partial learning we use expected payoffs in (II), (III) and (IV) for the three 

uncertainty cases, respectively, and apply definition (4) of internal and definition (5) of 

external stability which delivers the result. For no learning, we use expected payoffs (V) and 

again apply the definitions of internal and external stability. For both learning scenarios, it 

is straightforward to see that the stable coalition of three players Pareto-dominates the 

singleton coalition. 

Proposition 4: For full learning, in case 1, the equilibrium coalition size immediately follows 

from symmetry. For no transfers, in cases 2 and 3, we note that there are γ -vectors with 

asymmetric entries. Consequently, *[ ] 3<FLE m , as it can be shown, using payoffs in (I) and 

the definition of internal stability in (4), that for all non-symmetric γ -vectors no coalition 

of three or more players is internally stable. For case 2, the particular result that only the 

single coalition is stable if 3=n  and comprises the two players with the highest iγ  if 4≥n  

is also immediately derived by using (I) and (4). As for case 3 no closed form solution 

exists, we consider all possible γ -vectors and compute the average size of Pareto-undomi-
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nated coalitions. Repeating this for different values of n  gives ( )g n , which is a strictly 

increasing function. This procedure was implemented through an algorithm programmed 

with the software package Matlab. 

For transfers in cases 2 and 3, we first prove that all coalitions of three or less players are 

potentially internally stable using payoffs in (I) and the definition of potentially internal 

stability in (6). Given the relation between potential internal stability and external stability, 

it follows that all coalitions strictly smaller than 3 must be externally unstable and hence 

cannot be stable. Thus, *[ ] 3≥FLE m  follows. Now it suffices to show that potential internal 

stability is violated for all coalitions larger than three players if 8≤n  in case 2 and if 4≤n  

in case 3 by considering all possible γ -vectors in cases 2 and 3, respectively, up to these 

thresholds (and hence *[ ] 3FLE m =  follows). Above these thresholds, we show that there is 

at least one γ -vector of the form (1,2,3, )n  in case 2 and of form (1,1,1, )n  in case 3 for 

which potential internal stability holds. Since either these 4-player coalitions or larger coali-

tions are externally stable, we can conclude that *[ ] 3>FLE m . 

Appendix 3: Proof of Proposition 6 

As a preparation for the following proofs note that in our setting a property holds, which 

we call “Global Efficiency from Cooperation” (GEC). It means that whenever a non-sig-

natory k  joins coalition S , such that the coalition size changes from m  to ˆ 1= +m m  

(hence 
∈∑ ii S
γ  and 

∉∑ jj S
γ  become 

∈
+∑ i ki S

γ γ  and 
∉

−∑ j kj S
γ γ ), total abatement 

and total payoffs strictly increase. For partial and full learning this can be shown using (11) 

for total abatement and (I) for total payoffs (hence it also holds when taking expectations) 

and for no learning using (12) and (V), respectively. 
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The relations between partial and no learning in Proposition 6 follow directly from 

combining Propositions 1 and 3 for expected total abatement levels, and from Propositions 

2 and 3 for expected total payoffs.  

Comparing full and partial learning we note that second stage outcomes are the same 

(Propositions 1 and 2). Hence, we concentrate on first stage outcomes (Propositions 3 and 

4). Consider first no transfers. If 3n = , then 3 1* PL * FLE m E m⎡ ⎤ ⎡ ⎤= > =⎣ ⎦ ⎣ ⎦ . Since expected 

total abatement is given in (12) (which is taking expectations over (11)) and the expected 

total payoff is given in (III), and both increase in m , the result immediately follows from 

property GEC. If 4n ≥ , then 3 2* PL * FLE m E m⎡ ⎤ ⎡ ⎤= > =⎣ ⎦ ⎣ ⎦ , but the 2-player coalition 

under full learning comprises the players with the highest benefit parameters, 1n −  and n . 

Hence for full learning we insert this information into (11) and (I), and for partial learning 

we insert this information into (12) and (III). We get:  
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Consider now transfers. Up to 8n ≤ , coalition sizes are the same (Propositions 3 and 4) 

and hence relations follow directly from Propositions 1 and 2. If 9n ≥ , the expected coali-

tion size under partial learning with three players is smaller than under full learning (Propo-

sitions 3 and 4) and hence relations follow from property GEC.  

For the comparison between no and full learning, we can use the relations established 

above between no and partial learning, and between partial and full learning, except for 

expected total payoffs if 9n ≥ . For the same coalition size, no learning would lead to 

higher payoffs than full learning (Proposition 2), but full learning leads to larger coalitions 
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(Propositions 3 and 4). In particular, the expected size of stable coalitions under full learn-

ing, 3f ( n ) > , increases in n . Hence, we compute the expected total payoff (based on (I)) 

over all Pareto-undominated stable coalitions under full learning by considering all possible 

γ -vectors for various 9n ≥  up to 20=n . This is compared to the expected total payoff 

under no learning using (V) and 3* NLE m⎡ ⎤ =⎣ ⎦ ; it is evident that the ranking NL FL>  

changes to FL NL>  from 10n ≥ . For large n , this is confirmed with the software pack-

age Matlab. 

Appendix 4: Proof of Proposition 7  

The relation between partial and no learning follows directly from the second stage (Propo-

sitions 1 and 2) as coalition sizes do not differ (Proposition 3). For transfers, the relation 

between full and partial learning follow directly from the first stage as second stage out-

comes are the same. Up to 4n ≤  coalition sizes are the same, but if 5n ≥  full learning 

produces equal or larger stable coalitions than partial learning and hence the result follows 

from applying property GEC mentioned in Appendix 3. The relation between no and full 

learning follows from the relations between no and partial learning as well as partial and 

full learning, as established above. For no transfers, though 3* FLE m⎡ ⎤ < =⎣ ⎦
* PL NLE m =⎡ ⎤⎣ ⎦ , 

the identity of players matters under full learning. For partial and no learning expected total 

abatement is given by (12) and expected total payoffs by (IV) and (V), respectively, using 

3* PL NLE m =⎡ ⎤ =⎣ ⎦ . For full learning, using an algorithm programmed in Matlab, all possible 

γ -vectors for each n  are generated, then all Pareto-undominated stable coalitions are 

selected, and finally the associated expected total abatement and total payoffs are 

computed, based on (11) and (I), respectively. 


