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A B S T R A C T

This thesis presents a novel two stage multimodal speech enhancement system, making

use of both visual and audio information to filter speech, and explores the extension of

this system with the use of fuzzy logic to demonstrate proof of concept for an envisaged

autonomous, adaptive, and context aware multimodal system. The design of the proposed

cognitively inspired framework is scalable, meaning that it is possible for the techniques used

in individual parts of the system to be upgraded and there is scope for the initial framework

presented here to be expanded.

In the proposed system, the concept of single modality two stage filtering is extended

to include the visual modality. Noisy speech information received by a microphone array

is first pre-processed by visually derived Wiener filtering employing the novel use of the

Gaussian Mixture Regression (GMR) technique, making use of associated visual speech

information, extracted using a state of the art Semi Adaptive Appearance Models (SAAM)

based lip tracking approach. This pre-processed speech is then enhanced further by audio

only beamforming using a state of the art Transfer Function Generalised Sidelobe Canceller

(TFGSC) approach. This results in a system which is designed to function in challenging noisy

speech environments (using speech sentences with different speakers from the GRID corpus

and a range of noise recordings), and both objective and subjective test results (employing

the widely used Perceptual Evaluation of Speech Quality (PESQ) measure, a composite

objective measure, and subjective listening tests), showing that this initial system is capable

of delivering very encouraging results with regard to filtering speech mixtures in difficult

reverberant speech environments.

Some limitations of this initial framework are identified, and the extension of this multi-

modal system is explored, with the development of a fuzzy logic based framework and a

proof of concept demonstration implemented. Results show that this proposed autonomous,
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adaptive, and context aware multimodal framework is capable of delivering very positive

results in difficult noisy speech environments, with cognitively inspired use of audio and

visual information, depending on environmental conditions. Finally some concluding remarks

are made along with proposals for future work.
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1
I N T R O D U C T I O N

Previous research developments in the field of speech enhancement (such as multi microphone

arrays and speech enhancement algorithms) have been implemented into commercial hearing

aids for the benefit of the hearing impaired community. In recent years, electronic hardware

has advanced to such a level that very sophisticated audio only hearing aids have been

developed. It is expected that in the future, conventional hearing aids will be transformed

to also make use of visual information with the aid of camera input, combining audio and

visual information to improve the quality and intelligibility of speech in real-world noisy

environments.

The multimodal nature of both human speech production and perception is well established.

The relationship between audio and visual speech has been investigated in the literature,

demonstrating that speech acoustics can be estimated using visual information. Amongst

others, Almajai et al. [13] investigated correlation between audio and visual features using

Multiple Linear Regression (MLR), and expanded upon this to develop a visually derived

Wiener filter for speech enhancement. Sargin et al. [160] also performed correlation analysis of

multimodal speech, but used Canonical Correlation Analysis (CCA) (Hotelling [84]) as part of

a speaker identification task.

The ultimate long term goal of the research presented in this thesis is to improve the lives

of those who suffer from deafness. Even state-of-the-art modern hearing aids can fail to cope

with rapid changes in environmental conditions such as transient noise or reverberation, and

there is much scope for improvement. The work presented in this thesis aims to develop

an initial flexible audiovisual speech filtering system, which can then be developed further

to become a cognitively inspired, autonomous, adaptive, and context aware multimodal

speech enhancement framework, using fuzzy logic as part of the speech filtering process. The

1
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research presented in this thesis takes the field of speech enhancement and utilises visual

information to extend single modality audio concepts. In recent decades, much research has

been conducted into speech enhancement in a range of different environments, and more

recently, the use of visual information to filter noisy speech has been studied in more detail.

However, there are limitations with both visual and audio speech filtering approaches, and

there are a number of requirements for plausible, real world speech enhancement. A speech

enhancement system has to be able to automatically track and extract visual information,

it should consist of a scalable framework that can be upgraded in the future, and it should

take advantage of both audio and visual information to maximise performance. It should

also make use of both speech modalities and filter speech in different ways depending on

environmental conditions.

1.1 thesis motivation

1.1.1 Multimodal Speech Enhancement

Speech enhancement, the process of improving speech quality by filtering noise, is a field with

a long history of development stretching back decades (Zelinski [189], Hussain & Campbell

[90]). Today, this field continues to be extremely active, with many recent examples of modern

speech processing algorithms in the literature such as Hussain et al. [91], Van den Bogaert

et al. [173], Li et al. [113]. There are several techniques that are commonly used, such as

beamforming, a multi microphone approach that aims to exploit the spatial diversity between

speech and noise sources to filter the speech signal (Gannot et al. [67], Griffiths & Jim [73]).

Another technique is to make use of Wiener filtering (Wiener [180]) to compare a noisy

speech signal to an estimate of the equivalent noise free signal to produce an enhanced signal

(Van den Bogaert et al. [173]). There are many different other single modality noise cancelling

techniques in the literature.
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Of growing interest in recent years has been the extension of these single modality al-

gorithms to take account of developments pertaining to multimodality. This takes account

of behavioural and physiological properties relevant to speech production and perception.

Speech is produced by vibration of the vocal cords and the configuration of the vocal tract

(which is composed of articulatory organs), and due to the visibility of some of these articula-

tors such as tongue, teeth, and lips, there is an inherent relationship between the acoustic and

visible properties of speech production. The relationship between audio and visual aspects of

communication have been established since pioneering works in 1954 by Sumby & Pollack

[168], and subsequent developments such as the McGurk effect (McGurk & MacDonald

[126]). Audiovisual speech correlation has been deeply investigated in the literature (Barker &

Berthommier [22], Almajai & Milner [10], Sargin et al. [160]), including in publications by this

author (Cifani et al. [45], Abel et al. [2]), showing the connection between lip movement and

acoustic speech.

Multimodal correlation is of interest because this relationship can be exploited to filter noisy

speech. To the knowledge of the author, the first example of a functioning audiovisual speech

filtering system was proposed in 2001 by Girin et al. [69], and this was then followed by other

related work by Goecke et al. [71], Sodoyer et al. [166, 167]. The increased processing power of

computers and improved capability of relevant technical components such as video cameras

has made the concept of utilising camera input as part of a hearing aid system feasible. There

are strengths and weaknesses with using visual information for speech enhancement, but it

has proved to have potential for further development. Following on from pioneering work by

Girin et al. [69], recent work has focused on the use of visual information for use as part of a

source separation based system (Rivet et al. [147]). Other state-of-the-art work, particularly

by Almajai et al. [13], has made use of visual information as part of a Wiener filtering speech

processing system.

The research presented in this thesis shows the correlation between visual speech features

and acoustic speech data in noisy environments, and makes use of visual information to

develop a speech enhancement system, extending an audio only two stage approach to become

multimodal. This utilises both audio only and visually derived speech filtering techniques.
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1.1.2 Multimodal Speech Filtering Framework

As part of the desire to create a multimodal speech enhancement system, it is important to

take the complete filtering framework into account. The speech filtering algorithm is just

one individual component of an overall speech processing system, especially with regard to

complex multimodal systems. There are many potential components to consider, such as the

extraction of audio and visual features from the raw speech input data of both modalities, the

individual speech processing algorithms used, audiovisual speech modelling components,

and the tracking of visual data in order to identify the ROI. Examples of a multimodal speech

filtering front end were reported by Potamianos et al. [142], Deligne et al. [52]. These authors

developed a multimodal system consisting of ROI extraction from visual frames, and audio

and visual feature extraction. This framework served as a multimodal front end for speech

processing algorithms, which in the work presented by Potamianos et al. [142], was either

speech recognition or speech enhancement.

This motivation is of interest with regard to this thesis because the work presented will

utilise multiple speech filtering techniques. This research is multi disciplinary, and proposes

to combine a number of state-of-the-art techniques from a number of different research fields.

For example, the visual tracking aspect of this system that is proposed for use in this thesis

(Nguyen & Milgram [135]) was developed originally as a standalone visual tracking system,

not specifically designed to apply to speech enhancement. Therefore, a framework that enables

all of the individual components to be successfully integrated to form a comprehensive speech

filtering system is required. Additionally, as there are a number of different techniques

involved in such a framework, a well designed framework should be both scalable and

component based to allow for the upgrading of individual aspects of the system without

requiring a complete rewrite and redesign. So in the case of the visual tracking example

mentioned above, it should ideally be possible to replace the tracking technique with an

alternative version without difficulty. The same should be true of all proposed components,
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all are the subject of research in their specific fields, and so it is desirable to design a scalable

framework that is easy to upgrade.

1.1.3 Plausible Noisy Speech Environmental Condition Testing

A crucial aspect of speech enhancement research is the evaluation process. This concerns more

than simply the approach used for testing (i.e. objective machine based scoring or subjective

listening tests), but also considers the environment and speech/noise data that filtering

algorithms are designed for. This includes factors such as the level of background noise in

comparison to the speech signal (SNR), the type of noise used (white noise, other speech,

automobile noise etc.), the approach used for mixing speech and noise sources (additive or

convolved), the composition of the test sentences used, whether these sentences consist of

simple vowel-consonant-vowel mixtures or more complex sentences, and many other factors.

Many speech enhancement approaches are optimised to work with very specific data, for

example, Milner & Almajai [130] have designed audiovisual filtering systems that are trained

and tested with data from a single speaker. Historically, early audiovisual systems were tested

using simple sentences corrupted with white noise (Goecke et al. [71]), or using test sentences

consisting of vowel-consonant-vowel combinations (Girin et al. [69]).

The evaluation approach is of interest in this thesis because in real world conditions, speech

enhancement is required to be flexible with regard to environmental conditions. As a practical

example, a hearing aid wearer is not expected to limit themselves to interacting only in specific

environments. A hearing aid would be expected to function adequately with a wide range of

input data, noise mixtures, environments and speakers. Since early pioneering audiovisual

research, evaluation of speech enhancement systems has become much more comprehensive.

Some examples of more advanced testing configurations include detailed speech sentences

(Almajai & Milner [11]), and much more realistic convolved noise mixtures from reverberant

room environments (Rivet & Chambers [152]). However, there is still a focus on evaluating
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speech enhancement in very specific and consistent environmental conditions rather than

taking account of a more plausible, changeable range of scenarios.

This thesis evaluates the performance of the system presented in this work in a range of

challenging environments, using different speakers and noises to establish the strengths and

limitations of this multimodal approach. The initial system is then extended with the ultimate

goal of becoming capable of adapting to changeable audiovisual noisy speech environments.

1.1.4 Cognitively Inspired Intelligent Flexibility

There have been many different speech enhancement systems developed, both audio only

(Van den Bogaert et al. [173], Li et al. [113]), and in recent years, multimodal (Goecke et al.

[71], Almajai & Milner [11]). These systems filter noisy speech mixtures in a variety of different

ways, with various limitations. Often, these filtering systems are designed to perform best

in very specific scenarios. One example of this is that visually derived filtering requires a

consistent source of good quality visual information. In a practical, more realistic scenario

that a speech enhancement system might be expected to deal with, a degree of flexibility

when it comes to speech processing is desirable. An example of how speech can be filtered

in a more cognitively inspired manner is seen with neurofuzzy systems (Esposito et al. [57]),

which process sound in different ways depending on the noisy speech input, and commercial

hearing aids, that may use decision rules to determine processing (Chung [44]).

The potential flexibility of a multimodal speech enhancement system is of interest because

in a real world environment, a number of conditions may vary. One real world commercial

example of this is with the Danalogic 6 6080 DVI hearing aid. This is a modern hearing aid that

contains some very advanced features such as adaptive directional sound filtering and multiple

band signal processing. However, despite this, limitations still remain. For example, informal

investigation by the author, confirming general limitations with directional filtering(Chung

[44]), has found that with this hearing aid, directional speech filtering performs well in

some situations, but in others can cause the quality of audio signal received by the listener
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to vary dramatically with very small changes in background noise. Custom programmes

can be created for different environments such as for listening to music, or for improving

intelligibility in busy environments, but in order to use them, the listener has to manually

push a button on their hearing aid. Different speech enhancement algorithms are suited to

different conditions, and no single algorithm is ideal for use in all noise environments. It is also

important to take account of potential quality issues when it comes to visual input. Although

in laboratory conditions it can be assumed that input visual frames are of good quality, in a

less restricted environment this may not be the case. For example, the speaker may turn their

head, place their hand in front of their mouth, or another person may temporarily obstruct the

view of the speaker. Because of this, it is essential that a state-of-the-art multimodal speech

filtering system is intelligent and sophisticated enough to take account of both acoustic and

visual criteria to optimise speech filtering output.

This thesis develops an initial audiovisual system further by presenting a novel framework

that utilises fuzzy logic as part of a two-stage audio and visual speech processing framework.

The addition of fuzzy logic allows for the development of an autonomous, adaptive, and

context aware system that takes account of different audio and visual environmental conditions

to filter the noisy speech in a more cognitive manner. This demonstrates that a multimodal

framework can be developed that takes account of volatile noisy speech environments.

1.2 research aims and objectives

The overall aim of the work presented in this thesis is to develop a multimodal speech

enhancement system, making use of both audio only and visually derived speech filtering

techniques. The resulting system should combine these techniques in an integrated framework,

along with state-of-the-art lip tracking and feature extraction techniques. This thesis also aims

to investigate the extension of this system to become more autonomous, adaptive, and context

aware, by developing a cognitively inspired speech filtering framework that utilises fuzzy

logic to determine the most suitable processing techniques to use on a frame by frame basis.
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There are a number of detailed objectives of this thesis. Firstly, the relationship between

audio and visual aspects of speech will be discussed, followed by an investigation into multi-

modal speech correlation, in order to demonstrate the viability of developing a multimodal

speech filtering system. Secondly, state-of-the-art techniques in a variety of research domains,

such as visual tracking (Nguyen & Milgram [135]), multimodal speech modelling (Calinon

et al. [33]), and Wiener filtering (Almajai et al. [13]) will be examined to provide the basis for

development of a two-stage multimodal speech enhancement system. Thirdly, this system will

be scalable, with the ability to be upgraded to take account of future research developments,

and will provide a solid basis for future development. Fourthly, the two-stage speech filtering

system presented in this thesis will then be evaluated in depth to identify its strengths and

limitations. Finally, the work presented in this thesis aims to extend this initial two-stage

system with the use of fuzzy logic to develop a preliminary, autonomous, adaptive, context

aware, multimodal speech enhancement framework that takes account of audio and visual

environmental conditions to filter speech in a cognitive manner.

1.3 original contributions of this thesis

The key contributions of this thesis are listed in this section, and are:

1.3.1 Investigation into Audiovisual Speech Correlation in Noisy Acoustic Environments

One original contribution of this work is an investigation into audiovisual speech correlation

in noisy environments. Given the established relationship between audio and visual aspects

of speech, it is of no surprise that speech correlation has been studied extensively in the

literature (Almajai & Milner [10], Barker & Berthommier [22], Sargin et al. [160]). However,

there has been less research into multimodal speech correlation in noisy environments, and

this thesis presents new results of an investigation into multimodal correlation in noisy speech

environments, published by the author in Cifani et al. [45].
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This investigation examines the effectiveness of using a beamformer to filter speech, by

comparing the correlation of noisy and enhanced speech. The results represent an original

contribution of this thesis. These results also successfully demonstrated the preliminary use of

several techniques used later in this thesis such as 2D-DCT and audio only beamforming. They

also validated the work of others in the literature, particularly research by Almajai & Milner

[10], by using a range of similar techniques such as 2D-DCT and Multiple Linear Regression (

MLR), but with a different corpus and the use of a beamformer, and finding a similar pattern

of results despite these differences.

1.3.2 Development of a Two-Stage Multimodal Speech Enhancement System

One significant original contribution of this thesis is the development of a two-stage multi-

modal speech enhancement system. This system builds on the idea of audio only two-stage

filtering systems such as proposed by Li et al. [114], Zelinski [189], and extends this concept

to utilise multimodal information. This combination of techniques and modalities has not,

to the knowledge of the author, been applied previously. This system contains a number of

state-of-the-art techniques. However, it is also loosely integrated and scalable, which means

that it is relatively simple for any future development to take advantage of state-of-the-art

research and upgrade individual components without any particular difficulty.

This multimodal system has also been exhaustively tested in a variety of challenging

environments, simulating a range of conditions that a real world speech enhancement system

may be expected to encounter. This includes environments such as those with an extremely

high level of background noise, or with data that the multimodal system would be expected

to perform poorly with, such as with a speaker that the visually derived filtering aspect of

the system has not been trained with. This testing identifies the strengths and weaknesses of

this novel system and highlights potential areas for improvement. The results present here

represent benchmark results, as the author is not aware of any other multimodal two-stage

speech enhancement systems in the literature.
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1.3.3 Novel Application of State-Of-The-Art Components to New Research Domains

In order to create the system developed in this thesis, a number of disparate components were

integrated. Some of these individual components have precedence for use as part of speech

processing research, but others were applied in this thesis to the domain of audiovisual speech

enhancement for the first time. One original contribution resulting from the work presented

in this thesis is therefore the investigation and application of state-of-the-art techniques to

the domain of multimodal speech enhancement. One such example of this is with the Semi

Adaptive Appearance Models (SAAM) image processing approach (Nguyen & Milgram [135]).

This is a state-of-the-art visual tracking approach that had never been previously applied

to the speech enhancement domain. The work in this thesis is built on a collaboration with

the developers of the SAAM image processing approach in order to utilise this state-of-the-art

technique for lip tracking, and subsequently lip feature extraction, as part of the overall

audiovisual speech enhancement system.

Another prominent example of applying a technique to a novel research domain is the

audiovisual speech model used. In this work, audio and visual speech features are modelled

in order to then estimate audio speech features given visual information. There are many ways

to model this, but in this work, a technique new to this domain is tested, Gaussian Mixture

Model - Gaussian Mixture Regression (GMM-GMR). This is a technique that was originally

developed and utilised by Calinon et al. [33] to train robot arm movement. In this research,

this is experimented with as part of an audiovisual speech system. This work also makes use

of fuzzy logic as part of the overall system. Although fuzzy logic processing has been utilised

as part of speech processing systems previously, to the knowledge of the author, this work

represents a novel use of fuzzy logic as part of a two-stage audiovisual speech enhancement

system.
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1.3.4 Towards Autonomous, Adaptive, Context Aware, Multimodal Speech Enhancement.

The application of intelligence to an audiovisual speech processing system using fuzzy logic

is an original contribution of this thesis. This thesis presents an initial audiovisual speech

enhancement system in chapter 4, but then expands upon it in chapter 7 to become more

cognitively inspired and make more intelligent use of audio and visual information. There are

examples of varying the processing method for noisy speech depending on the background

noise applied to audio only, single modality speech filtering systems (Esposito et al. [57]), but

to the knowledge of the author, there are no examples of the application of fuzzy logic to

multimodal two-stage speech enhancement systems. This novel contribution transforms the

speech processing system originally presented into a much more intelligent speech filtering

framework that takes account of audio, visual, and historical inputs, such as the quality of

input information available to both modalities and previous processing decisions, to make

an automatic decision of the speech processing operation to utilise on a frame by frame

basis. This original contribution represents a proof of concept multimodal framework, and

promising example results are shown.

1.4 publications arising

From the research carried out during the course of this project, the following publications

have emerged:

• A. Abel, A. Hussain. Novel Two-Stage Audiovisual Speech Filtering in Noisy Environ-

ments. In Cognitive Computation. Conditional Acceptance.

• A. Abel, A. Hussain, Q.D. Nguyen, F. Ringeval, M. Chetouani, and M. Milgram. Maximis-

ing audiovisual correlation with automatic lip tracking and vowel based segmentation.

In Biometric ID Management and Multimodal Communication: Joint COST 2101 and
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2102 International Conference, BioID_MultiComm 2009, Madrid, Spain, September 16-18,

2009, Proceedings, volume 5707, pages 65–72. Springer-Verlag, 2009.

• S. Cifani, A. Abel, A. Hussain, S. Squartini, and F. Piazza. An investigation into audio-

visual speech correlation in reverberant noisy environments. In Cross-Modal Analysis

of Speech, Gestures, Gaze and Facial Expressions: COST Action 2102 International

Conference Prague, Czech Republic, October 15-18, 2008 Revised Selected and Invited

Papers, volume 5641, pages 331–343. Springer-Verlag, 2009.

• A. Abel, A. Hussain. Multi-modal Speech Processing Methods: An Overview and Future

Research Directions Using a MATLAB Based Audio-Visual Toolbox. Multimodal Signals:

Cognitive and Algorithmic Issues: International School Vietri sul Mare, Italy, April 21-26,

2008 Revised Selected and Invited Papers, volume 5398, pages 121–129. Springer-Verlag,

2009.

• M. Faundez-Zanuy, A. Hussain, J. Mekyska, E. Sesa-Nogueras, E. Monte-Moreno, A.

Esposito, M. Chetouani, J. Garre-Olmo, A. Abel, Z. Smekal, K. Lopez-de-Ipiña. Biomet-

ric Applications Related to Human Beings: There Is Life beyond Security. Cognitive

Computation, volume 4, pages 1-16. Springer-Verlag, 2012.

1.5 thesis structure

In this section, the structure of the remainder of this thesis is provided.

Chapter two describes background research relevant to this thesis, examining the relation-

ship between audio and visual aspects of speech production and perception. Audiovisual

speech correlation is also discussed and investigated. In chapter three, a detailed literature

review is presented. A number of prominent state-of-the-art audiovisual speech enhancement

techniques are reviewed, such as visually derived Wiener filtering, audiovisual fragment

decoding, and multimodal beamforming. Speech processing techniques currently used in

commercially available hearing aids are also reviewed. Finally, a number of audiovisual speech

corpora are also reviewed.



1.5 thesis structure 13

A novel audiovisual two-stage speech enhancement system is presented in chapter four.

This chapter describes the individual components of this novel multimodal system in detail,

including audio and visual feature extraction, the SAAM lip tracking algorithm, the simulated

room environment and multi microphone array, the audiovisual GMM-GMR technique used for

speech estimation, the visually derived Wiener filtering process, and audio only beamforming.

The focus of this chapter is on the technical composition of this two-stage system. Chapter

five presents a detailed evaluation of the performance of the speech enhancement system

described in chapter four. After briefly describing some preliminary investigations to identify

the configuration of this system that delivers the best results, the two-stage multimodal system

is tested in a range of noisy environments at various SNR levels to evaluate performance in

a range of noisy speech scenarios, and the results are reported. This multimodal system is

also tested in an environment where audio-only speech filtering algorithms can struggle. This

examines a possible limitation with the system. To evaluate the system with untrained data,

experiments with data that features a novel (previously not trained with the system) speaker

are presented. Finally this chapter summarises the strengths and weaknesses with this initial

system and proposes improvements.

To overcome some of the limitations discussed in the previous chapter, the extension

of the multimodal system to become an autonomous, adaptive, context aware audiovisual

speech enhancement framework is described in chapter six. This chapter introduces and

summarises the concept of fuzzy logic, and describes the relevance of this technique to speech

enhancement. The design and implementation of this novel fuzzy based system is presented

in this chapter, integrating the components discussed in chapter four within the new fuzzy

logic framework, illustrating the inputs, rules, and processing. The way in which this novel

framework overcomes limitations identified in the previous chapter is discussed Chapter

seven then presents some evaluation of the functionality of this proof of concept framework.

Finally, chapter eight summarises this thesis, provides some concluding remarks, and

recommends a number of directions for future work.



2
A U D I O A N D V I S U A L S P E E C H R E L AT I O N S H I P

2.1 introduction

Before the overall aim of this thesis, the development of a fuzzy logic based multimodal

speech enhancement framework, can be presented, it is important that the background to

this work is discussed. This chapter presents a summary of the general research domain, and

also discusses some new experiments, performed by the author, into the relationship between

audio and visual aspects of speech. The background to human speech production is briefly

discussed, along with a definition of several speech phenomena relevant to this thesis, namely

the Cocktail Party Problem, McGurk Effect, and Lombard Effect.

After a summary of this background information, the remainder of this chapter presents an

investigation into audiovisual speech correlation. A number of speech sentences are used from

the audiovisual VidTIMIT speech database (Sanderson [157]) , and these are used to carry

out a number of experiments. The relationship between audio and visual speech features has

been deeply investigated in the literature, and a summary of this has been provided, with a

particular focus on relatively recent work by Almajai & Milner [10], however, very little work

(to the knowledge of the author) has been carried out into audiovisual speech correlation

with noisy speech. This chapter presents an investigation into the correlation between audio

and visual speech features when noise is mixed with the original speech sentences. This work

represents one original contribution of this thesis, and the majority of the results presented

here were also published in a paper by the author in Cifani et al. [45]. Several experiments are

described in this chapter, using Mel Frequency Cepstral Coefficients (MFCC) audio features,

2D-DCT and Cross-DCT for visual feature vectors, and a Transfer Function Generalised Sidelobe

14
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Canceller (TFGSC) beamformer to enhance noisy speech, with correlation carried out using

MLR (which is defined later in this chapter).

These experiments firstly examine the difference in correlation when different visual features

(2D-DCT or Cross-DCT) are used for correlation. The dimensionalities of the input vectors

(both audio and visual) that maximise speech correlation are also investigated, and finally, a

comparison of correlation in a number of noisy scenarios is carried out. This is performed

by adding a variety of noises to sentences from the VidTIMIT corpus. These noisy mixtures

are then enhanced with the use of a beamformer, and a comparison of the correlation in each

noisy scenario is performed. This work represents an original contribution of this thesis, in

that it performs a new investigation into audiovisual correlation. It also attempts to validate

other work in the literature, and finally, serves as a test of some of the techniques such as

2D-DCT and the TFGSC beamformer that are proposed for use as part of the two-stage speech

enhancement system presented later in this thesis.

The remainder of this chapter is divided as follows. Section 2.2 presents a brief background

of human speech production, and this is followed by a summary of several speech phenomena

relevant to this research domain in section 2.3. A review of audiovisual correlation research is

then described in section 2.4, and experiments by the author are reported and discussed in

section 2.5.

2.2 audio and visual speech production

2.2.1 Speech Production

The multimodal nature of human speech is established. This use of multiple modalities in

speech involves production as well as perception; indeed, speech is produced by the vibration

of the vocal cords and the configuration of the vocal tract that contains articulatory organs.

Since some of these articulators are visible, there is an inherent relationship between the

acoustic and visual aspects of speech. Moreover, the well-known McGurk effect (summarised
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Figure 1: Diagram of the components used in human speech production. Taken from (Rosistem [155]).

later in this chapter) empirically demonstrates that speech perception also makes use of

multiple modalities. The high degree of correlation between audio and visual speech has

been deeply investigated in literature, with work by Yehia et al. [184], Barker & Berthommier

[21], and Almajai & Milner [10], showing that facial measures provide enough information

to reasonably estimate related speech acoustics. This section provides a summary of human

speech production. This is a subject area which has been researched in depth, and there are

many detailed summaries in the literature, including by Almajai [9], and Owens & Lynn [137],

and this section contains a brief summary.

A diagram of the components used in speech production is shown in figure 1, with the

shape of the vocal tract decided by the articulators shown in figure 1, such as the lips, tongue

and teeth. Depending on the vibration of the vocal cords, speech can be defined as either

voiced or unvoiced. Voiced sounds include all vowels, and some consonants, caused by the

vibration of the vocal cords. Unvoiced sounds do not involve vibration, and involve airflow

passing through an opening in the vocal cords, with a noise being produced by constriction in

the vocal tract. There are also plosive sounds, which are made by closing the lips, allowing air

pressure to build, and then opening them again.
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2.2.2 Phonemes and Visemes

The speech units described previously can be split by artificial notation, both audio (phonemes)

and visual (visemes). The work presented in this thesis does not directly utilise these concepts,

but a brief description is provided here for reference purposes. There are many descriptions

of this work in the literature, and one example of a full detailed description can be found in

work by Almajai [9]. Phonemes are very basic audio speech units (Rabiner & Schafer [143]).

These are broken down from individual words, and there are many different notations used to

represent phonemes, depending on the language and source. With regard to British English,

phonemes can be broken down into four main categories, vowels, consonants, diphthongs,

and semivowels. More detail can be found in many sources, including Almajai [9].

To describe individual visual speech units, visemes are used. However, these do not map

exactly to phonemes due to the nature of the articulators used in speech production (i.e. the

lips are always visible, whereas others like the tongue are only visible intermittently). There

are a variety of ways in which these have been mapped. This is considered to be outside of

the scope of this thesis, and so has not been covered here.

2.3 multimodal speech phenomena

There are several speech phenomena referred to in this thesis. This section provides a brief

summary of these phenomena for reference purposes.

2.3.1 Cocktail Party Problem

The Cocktail Party problem was first defined by Cherry [38] in 1953, and describes the

ability of human listeners to be able to listen to a single speech source while unconsciously

filtering out irrelevant background information such as music or competing speech sources.

This phenomenon was named after the scenario of two people being able to maintain a
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conversation while ignoring the sound of a lively party with a myriad of competing speakers

and other background noise. Despite being defined in 1953, there is no definitive explanation

of this effect, and it represents a very active field of research. A detailed review of this effect

and its technological application has been carried out by Haykin & Chen [79].

This effect is of relevance to this field of research because it represents a major challenge

for those that suffer from hearing loss. The Cocktail Party effect seems to be binaural, with

implications for sound localisation, and those with hearing aids or with ’unbalanced hearing’

can particularly struggle to cope with noisy environments. There has also been much research

into solving this problem using speech filtering technology. An example of this is Blind Source

Separation (BSS), with many recent examples of research aiming to solve this problem such as

work by Rivet [151]. Current research along these lines will be discussed in depth in the next

chapter.

2.3.2 McGurk Effect

One phenomenon relevant to multimodal speech perception is called the McGurk Effect. This

was first reported in 1976 by McGurk & MacDonald [126]. The significance of this effect with

regard to the work carried out in this thesis is that it serves as a physical demonstration of

the relationship between hearing and vision in terms of speech perception. Essentially, when

a video is played of the syllable ’ga’, the viewer recognises it correctly. However, when the

video is dubbed with the audio for ’ba’, the viewer hears a third syllable, ’da’. The conflict

between the sound and the visual effect of the mouthing of a syllable results in the viewer

hearing something different.

2.3.3 Lombard Effect

The Lombard Effect, discovered in 1909 by Lombard [120], describes the tendency of speakers

to attempt to improve the audibility of their voice in loud environments by involuntarily
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increasing their vocal effort. This applies to more than just volume, as research has shown that

in very noisy environments, speakers can change their pitch, frequency, duration, and their

method of vocalisation in order to be heard more clearly. This is not a voluntary phenomenon,

in that speakers have no control of it, and an example of this effect is found in deaf people,

who often speak loudly due to their hearing loss, in order to hear their own voice more clearly.

Examples of the Lombard Effect can be found in work by Lee et al. [110], who presented the

AVICAR corpus (which will be discussed in more detail in chapter 3), with speech recorded at

different noise levels. Although the work presented in this thesis does not directly consider this

problem, it has implications for speech processing research. One example is that many visual

speech estimation or recognition models are trained on clean speech, and so performance may

be negatively affected when the input visual signal does not match the model exactly.

2.4 audiovisual speech correlation background

There is an established relationship between audio and visual aspects of both speech perception

and production. This relationship between the two speech modalities can be expressed and

calculated as the correlation between audio and visual speech features. There are various

methods of calculating correlation such as MLR (Almajai & Milner [10], Cifani et al. [45])

and CCA (Hotelling [84], Sargın et al. [159]), and a significant quantity of research has been

published investigating audiovisual speech correlation. This section presents a brief review

of recent research into audiovisual correlation, and then section 2.5 presents the results of

further investigation by the author into multimodal correlation.

Relatively early examples of audiovisual correlation can be found in research by Yehia et al.

[184], Jiang et al. [96], and Barker & Berthommier [21]. Yehia et al. [184] used Line-Spectral

Pairs (LSP) audio features and examined the correlation between these and 3D marker points

(calculated using infrared LEDs physically placed on the speaker). This early research found

an average correlation of 0.73. Barker & Berthommier [21] investigated correlation between
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face movement (not confined to lip features alone) and LSP audio features, and found a slightly

lower correlation (0.55).

More recent work by Sargın et al. [159] makes use of CCA to investigate audiovisual corre-

lation. CCA was first defined in 1936 by Hotelling [84] and was used by Sargın et al. [159] to

analyse the linear relationships between multidimensional audio and visual speech variables

by attempting to identify a basis vector for each variable, that then produces a diagonal

correlation matrix. CCA maximises the diagonal elements of the correlation matrix. The main

difference between CCA and other forms of correlation analysis is the independence of analysis

from the coordinate system describing the variables. Ordinary correlation analysis can produce

different results depending on the coordinate system used, whereas CCA finds the optimal

coordinate system.

Sargın et al. [159] made use of the commonly used MFCC technique for audio features,

and then compared the correlation when using three different types of visual features. They

utilised 2D-DCT features taken from image frames, 2D-DCT features taken from optical flow

features, and also predefined lip contour co-ordinates, and compared the correlation of each

to audio features. This work concluded by confirming that individual correlation was greatest

when performing 2D-DCT on optical flow vectors. This was then extended by Sargin et al. [160]

in later work to solve a different (speaker identification) research challenge.

Recent work by Almajai & Milner [10] also investigated the degree of audiovisual correlation

between multiple audio and visual features. Almajai & Milner [10] used filterbank vectors

(described later in chapter 4 of this thesis) and the first four formant frequencies (the most

significant distinguishing frequency components of human speech) as audio features, and

three different visual features, 2D-DCT, Cross-DCT, and Active Appearance Models (AcAMs).

AcAMs are a commonly used approach for feature extraction, first developed by Cootes et al.

[47], and operate by building statistical models of shape and appearance, based on a training

set. More details can be found in (Cootes et al. [47]).

Of the research by other authors reported in this section, it is work by Almajai & Milner

[10] that is of most interest in the context of this thesis. The correlation work performed by

Sargın et al. [159] served as a background to work by the author in Abel et al. [2] (not reported
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in this thesis). The research by Almajai & Milner [10] is expanded upon in the next section by

the author and used as a basis for new experiments into audiovisual speech correlation. While

there has been much research into audiovisual speech correlation, less investigation into the

effect of noise on audiovisual correlation has taken place, and this will be discussed in the

next section. Almajai & Milner [10] make use of MLR (described in more detail in the next

section) to calculate correlation, and primarily investigate the correlation between filterbank

vector sizes and visual feature dimensionality.

The following conclusions were drawn by Almajai & Milner [10]. As the size of the vi-

sual vector increased, correlation increased. However, this initially increased rapidly until

a dimensionality of 24, and then stabilised. Increasing the size of the vector further was

not found to make a particularly significant difference. On the other hand, decreasing the

size of the filterbank vector increased correlation. This was argued to come at the cost of

potentially useful speech information. It was also concluded that Cross-DCT resulted in a

lower correlation than using 2D-DCT or AcAMs. Due to the simplicity of using 2D-DCT visual

features rather than AcAMs, it was recommended that the 2D-DCT visual feature technique be

used for further research. Additionally, Almajai & Milner [10] found after an investigation of

phoneme specific versus global speech correlation that phoneme specific correlation analysis

also resulted in an increased correlation. This work by Almajai & Milner [10] was used as the

basis for subsequent audiovisual speech enhancement research (Milner & Almajai [130]), that

will be described in more detail in chapter 3.

2.5 multimodal correlation analysis

In addition to the audiovisual correlation work presented in the literature, additional correla-

tion research has been published by the author investigating the relationship between audio

and visual elements of speech. This research has been published by the authors (Abel et al.

[2], Cifani et al. [45]), and the work presented by the author in Cifani et al. [45] is described in

this section. There were several reasons why this particular research was of interest. Firstly,
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as described in the previous section, much research into audiovisual correlation has been

carried out by a variety of researchers; however investigation into multimodal correlation with

noisy speech mixtures is much scarcer. However, this is of deep interest with regard to the

research presented in this thesis as it concerns the effect of speech filtering on multimodal

correlation. This work also served as the preliminary to further speech enhancement research,

in that possible techniques for feature extraction were investigated and evaluated with a view

to the application of more sophisticated speech processing. Finally, this work also serves as a

comparison and validation of similar preliminary work by Almajai & Milner [10], as it uses a

different corpus but with some overlap in the techniques used.

The remainder of this section describes experiments that show audiovisual correlation (using

the MLR technique) between audio and visual features in reverberant noisy environments.

All experiments made use of the well-known MFCC technique as the audio feature extraction

method, and 2D-DCT and Cross-DCT were both tested as potential visual feature extraction

approaches. The use of AcAMs was considered, but it was ultimately decided that based on

existing work in the literature, AcAMs were not found to deliver a performance difference

of a degree to justify the complexity involved in the configuration and training of suitable

AcAMs. The first set of experiments compares individual correlation of sentences from the

multimodal VidTIMIT (Sanderson [157]) corpus to assess the difference between using 2D-DCT

or Cross-DCT as the visual feature input. The second set of experiments examines the effect

of noisy speech on audiovisual correlation, and also aims to identify the dimensionality of

audio and visual feature vectors that maximise correlation. Finally, noise was also added

to sentences from the corpus in order to test the difference in correlation between noisy

speech and filtered speech enhanced with a beamformer. The beamformer exploits the spatial

diversity of noise and speech sources to enhance speech, and makes up a part of the proposed

speech enhancement system discussed in chapter 4. The next section describes the MLR

correlation technique, and after this, section 2.5.2 presents the results of these experiments,

which are then discussed and summarised in section 2.5.3.
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2.5.1 Correlation Measurement

In order to carry out audiovisual correlation, Multiple Linear Regression is used. This is

a multivariate approach that assesses the relationship between audio and visual vectors

(Chatterjee & Hadi [36]). In the analysis discussed in this chapter, experiments have been

carried out by using an audio frame of 25ms and a video frame of 100ms. These were chosen

based on the parameters also used by existing work in the literature (Almajai & Milner

[10]). This implies that the same visual features are used for four consecutive audio frames.

For a speech sentence, each component Fa(l, j) of the audio feature vector is predicted by

means of MLR, using the entire visual feature vector Fv(l,q), where l is the time-frame index.

This approach mirrors that taken by Almajai & Milner [10], and means that using Q+ 1

regression coefficients
{
bj,0, ...,bj,q, ...,bj,Q

}
the jth component of the audio feature vector

can be represented by the visual feature vector Fv(q) = [Fv (l, 0) , ..., Fv (q) , ..., Fv (Q− 1)],

F̂a (l, j) = bj,0 + bj,1Fv (l, 0) + ... + bj,QFv (l,Q− 1) + εl (2.1)

With εl representing an error term. The multiple correlation between the jth component of

the audio feature vector and the visual vector, calculated over L frames, is given by Rs, and is

found by calculating the squared value:

Rs (j)
2 = 1−

∑L
l=0

(
Fa (j) − F̂a (j)

)2∑L
l=0

(
Fa (j) − F̄a (j)

)2 (2.2)

F̄a (j) represents the mean of the jth component of the audio features vector. In this work,

the single correlation value R is found by calculating the mean of each jth component of Rs.

By this, we mean that Rs returns a vector of correlations, with each value representing the

correlation of one audio component to the entire visual vector, and the mean of Rs produces

the single correlation value R, which represents the correlation of the entire audio vector to

the entire visual vector.
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2.5.2 Multimodal Correlation Analysis Results

Comparison of Visual feature Extraction Techniques

Twelve sentences were used from the multimodal VidTIMIT corpus, and the audio signal of

each sentence was sampled at 8 kHz, and processed at 100fps. This was converted into MFCC

features with 6 components used for correlation analysis. The matching visual signal for each

sentence was recorded at 25 fps, and was interpolated to 100fps to match the input audio

signal, before having Cross-DCT and 2D-DCT transforms performed, with 30 components used

for each. The Discrete Cosine Transform (DCT) was originally developed in 1974 by Ahmed

et al. [6], and is a close relative of the Discrete Fourier Transform (DFT). This was extended for

application with image compression by Chen & Pratt [37]. The one-dimensional DCT is capable

of processing one-dimensional signals such as speech waveforms. However, for analysis of

two dimensional signals such as images, a 2D-DCT version is required. This will be described

in more detail in chapter 4. For a matrix of pixel intensities, the 2D-DCT is computed in a

simple way: the 1D-DCT is applied to each row of the matrix, and then to each column of

the result. Thus, the transform is given by the DCT matrix. Since the 2D-DCT can be computed

by applying 1D transforms separately to the rows and columns, the 2D-DCT is separable in

the two dimensions. To be used as a feature vector, the 2D-DCT matrix is then vectorised in a

zigzag order. Cross-DCT is an alternative approach to consider and consists of taking only

the central horizontal row and vertical column of the matrix of pixel intensities and then

applying 1D-DCT to each vector. This is a much simpler method, and may contain adequate

information for lip reading because the former captures the width of the mouth while the

latter captures the height of the mouth. The two vectors are truncated and concatenated to get

the visual feature vector.

The correlation of the MFCC component for each selected sentence to the appropriate

matching 2D-DCT vector is compared to the MFCC to Cross-DCT correlation of the same

sentence. This is shown in figure 2. This graph plots matching sentence pairs of audiovisual

correlation when using the two different methods of visual feature DCT. The left side of figure
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Figure 2: Interaction plot of audiovisual correlation for twelve sentences from the VidTIMIT corpus,
showing the difference in correlation when using 2D-DCT or Cross-DCT as the visual feature.

2 shows the correlation found for each sentence when using 2D-DCT. The right side shows the

correlation found for each sentence when using Cross-DCT. Matching sentences are linked by

a line showing the difference in correlation.

Figure 2 shows that the audiovisual correlation of a sentence from the VidTIMIT corpus

found when comparing MFCC correlation to 2D-DCT visual features was greater in all tested

cases than for the equivalent correlation when using Cross-DCT. As the interaction plot shows,

this result was found with all chosen sentences. This was an expected result because 2D-DCT

makes use of all the visual information present in the mouth region of a speaker, whereas

Cross-DCT only takes a limited sample of the available visual information.

Maximising Audiovisual Correlation

This section describes experiments carried out to investigate the ideal audio and visual

feature vector dimensionalities to use for performing multimodal correlation analysis. The

performance of the beamformer was also assessed. This was done by adding white noise

to 16 sentences from the VidTIMIT corpus in order to produce noisy speech with a SNR of

-3dB, and making use of the beamformer to remove the added noise and produce enhanced
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Figure 3: Plot of enhanced speech correlation when varying audio and visual vector dimensionality. This
figure shows the results for a mean of 16 sentences from the VidTIMIT corpus.

speech. For the experiments described in this chapter, four microphones were used. The

configuration used in this work was subsequently used to produce the initial two-stage speech

enhancement system presented later in this thesis, and is described in chapter 4. To find the

right combination of audio and visual vectors that maximise correlation, the white noise was

removed with the beamformer to produce enhanced speech. The correlation of this enhanced

speech, found by performing MLR as described in the previous section, when varying the MFCC

and 2D-DCT vector sizes used is shown in figure 3. The correlation of the mean of 16 sentences

is shown in this figure, plotted against an audio vector varying between a dimensionality of 1

and 23, and a visual vector that varies in size between 1 and 70. As can be seen in figure 3, a

very clear pattern can be seen. Increasing the size of the visual vector increases the correlation,

and reducing the size of the audio vector produces a similar effect, peaking at very high (70)

visual and very low (3) audio vector dimensionalities, which initially seems to differ from that

found in the literature (Almajai & Milner [10]). Almajai & Milner [10] found that the increase

in correlation levelled off beyond a visual vector size of 30.

However, this is a misleading result. Figure 4 shows the same mean of 16 sentences, but with

the correlation of the visual vector against noisy speech. This obviously results in a lower level

of correlation being found. However, a visual comparison of the noisy and enhanced figures in
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Figure 4: Plot of noisy speech correlation when varying audio and visual vector dimensionality. This
figure shows the results for a mean of 16 sentences from the VidTIMIT corpus.

(figure 4 and figure 3) show that they have a similar shape, and where the enhanced correlation

is very large; the noisy correlation is also very large. Therefore, it becomes important to find

the audio and visual vector sizes that maximise the difference between noisy and enhanced

speech. Figure 5 shows the mean of these values.

Figure 5 shows the difference in audiovisual between noisy and enhanced speech correlation

plotted against varying audio and visual vector sizes for a mean of 16 sentences respectively.

Figure 5 shows that with a very small visual vector, the difference in audiovisual correlation

is very small, and that an initial increase results in an increased difference between noisy

and enhanced correlation. However, this increase tails off when the visual vector is increased

above thirty, with only a very small rate of increase in difference found, and that there is no

significant gain to be achieved from increasing this above thirty, matching and validating

results found in the literature by Almajai & Milner [10]. Additionally, figure 5 shows that

increasing the size of the MFCC dimensionality results in a lower difference in audiovisual

correlation and that the highest difference is found with an audio vector size of less than

five. However, this is not a practical value to use. A very low MFCC dimensionality contains

less spectral information about the input speech, and a compromise between maximising

correlation and feasibility for complex speech processing use has to be found.
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Figure 5: Plot of difference between noisy and enhanced correlation values when varying audio and
visual vector dimensionality. This figure shows the results for a mean of 16 sentences from the
VidTIMIT corpus.

Investigation of Noisy Environments

The identified audio and visual vector dimensionalities that produced the greatest difference

in correlation between noisy and enhanced speech signals were used to investigate audiovisual

correlation in a range of reverberant noisy environments. As with the previous experiments,

MLR was used to measure audiovisual correlation. Based on the results of the experiments

in the previous section, it was decided to make use of an MFCC vector dimensionality of 6,

and a visual vector size of the first 30 values. To investigate, four types of noise were added

to a selection of sentences from the VidTIMIT corpus. Three mechanical noises were chosen,

white machine noise, filtered pink noise, and recorded aircraft cockpit noise. An incoherent

human babble mixture was also chosen to simulate a busy social environment. The results of

these experiments are shown in table 1. Each row shows the mean and the variance of the

audiovisual correlation for eight sentences from the VidTIMIT corpus, mixed with different

noises, in the noisy and enhanced cases.

Table 1 shows a consistent and statistically significant difference between noisy and en-

hanced speech correlation in all four types of noise. In every case, the enhanced audio vector

for a sentence produces a higher correlation with visual information than the noisy signal
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Table 1: Selected results of Bonferroni Multiple Comparison, showing P-Value results for comparison of
audiovisual correlation in noisy and enhanced sentences from the VidTIMIT corpus.

Noise Mean Difference of Means SE of Difference T-Value Adjusted P-Value

Noisy Enhanced

Babble 0.334 0.417 -0.083 0.005 -16.40 0.000

F-16 0.252 0.410 -0.1578 0.005 -31.16 0.000

Pink 0.229 0.415 -0.1866 0.005 -36.86 0.000

White 0.239 0.408 -0.1690 0.005 -33.38 0.000

does. This was an expected result, and confirms the usefulness of the beamformer for filtering

an audio signal before audiovisual correlation analysis is performed. These experiments also

showed a much greater difference in correlation between noisy and enhanced machine noisy

speech mixtures (white, pink and aircraft noise), than for incoherent babble mixtures. This

smaller difference between noisy and enhanced values in environments containing significant

levels of background speech may be explained by the relative similarity of sentences from

the corpus and the background speech mixture. In the case of babble, while the enhanced

correlation is similar to other results, the noisy speech correlation is much higher for all

sentences, demonstrating a lower difference between noisy and enhanced audiovisual speech

correlation, due to the incoherent babble noise being similar to speech, potentially causing an

incorrect correlation result.

2.5.3 Discussion of Results

Based on the results described above, there are a number of points that can be discussed.

Firstly, the research above represented a successful preliminary test of some of the techniques

used later in this thesis for speech enhancement (which will be discussed in chapter 4). Of

particular interest is the visual feature extraction technique, with Cross-DCT proving to be

less effective with regard to correlation than 2D-DCT. It was also shown in the results above
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that the use of a beamformer to filter speech resulted in improved audiovisual correlation.

Overall, the techniques discussed in these experiments are of interest for future development.

This work also validates results published by Almajai & Milner [10]. The research presented

here has similarities, but makes use of a different corpus, and also uses a beamformer to

enhance noisy speech. However, despite these differences, the results are similar to other

published work, and find that the ideal dimensionality of the audio vector is around six

to twelve, and the ideal visual vector size is around thirty to forty, which is in line with

the findings of Almajai & Milner [10]. The individual correlation results were found to be

lower to those reported by others. It is hypothesised that this is because the work described

in this chapter makes use of a different corpus (VidTIMIT), which contains a great deal of

background noise, with some sentences having a poor audio quality. This has the effect of

producing lower levels of audiovisual correlation than would be found when using a cleaner

multimodal speech corpus.

As mentioned, the results presented here also demonstrate the effectiveness of using

a beamformer to increase multimodal correlation. This, to the knowledge of the author,

demonstrated an original contribution of this thesis, because there is very little investigation

in the literature into audiovisual correlation with noisy speech. In the results, it could be seen

that a range of noises, including white noise, aircraft cockpit noise, and incoherent speech

babble, were added to sentences from the audiovisual corpus in order to investigate the

performance of a beamformer with regard to multimodal correlation in noisy reverberant

environments. It was found that speech enhanced with a beamformer always produced a

higher audiovisual correlation, than results with noisy speech. It was also found that the

difference in audiovisual correlation was much larger when noise such as white noise or

aircraft cockpit noise was added to the corpus, than when human speech babble was added.

The addition of incoherent speech led to a much higher correlation in noisy speech, suggesting

that audiovisual correlation is much more accurate in some environments than others. This is

a justification for the stated aim of this thesis in moving towards the development of a speech

enhancement system that is able to work well in a range of different environments.
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2.6 summary

As part of the process of the development of an audiovisual speech enhancement system, this

chapter provided some information into the relationship between audio and visual aspects

of speech, briefly summarising some of the basic concepts involved in the production of

human speech. Some speech phenomena relevant to this thesis were also discussed, namely

the Cocktail Party Problem, the McGurk Effect, and the Lombard Effect. This initial part of the

chapter provides the fundamental background to the work discussed in the rest of the thesis,

covering the concepts that the contributions presented in subsequent chapters are built on.

The relationship between audio and visual aspects of speech was then discussed, describing

the extraction of audio and visual features, and the calculation of multimodal correlation.

Multimodal correlation has been investigated in the literature, and a summary of existing

research was given in this chapter, most significantly, recent work by Almajai & Milner [10].

Some novel experiments were then described. These were first reported in work carried out

by the author in Cifani et al. [45], and represent an original contribution of this thesis. The

experiments reported in this thesis served to validate existing correlation research by Almajai

& Milner [10], and also served as a preliminary evaluation of some of the techniques such

as 2D-DCT visual feature extraction, and the effect of beamforming. Several experiments were

carried out. Firstly, two different visual extraction techniques were compared. A number of

sentences were used for comparison, and correlation analysis was carried out (calculated

with MLR) on sentences using MFCC audio features and both 2D-DCT and Cross-DCT as the

visual feature vectors. It was shown that using 2D-DCT vectors as the visual feature produces

a consistently higher correlation than using Cross-DCT. An investigation into maximising

correlation was carried out, and the effect of noise and subsequent speech filtering with

beamforming was examined. These results demonstrated the positive effect of beamforming

on multimodal correlation, and represented an original contribution of this thesis.

This chapter provided a general introduction to the principles behind this work, namely the

relationship between the audio and visual speech modalities, and chapter 3 presents a more
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specific focus on the research context. Chapter 3 builds on the background presented here

to review the technical features of current hearing aids, investigate a number of multimodal

speech databases to evaluate suitability for use in further research, and crucially, provides a

detailed review of the state-of-the-art audiovisual speech enhancement work in the literature.



3
T H E R E S E A R C H C O N T E X T

3.1 introduction

As stated in chapter 1, the ultimate aim of this research is to develop a multimodal speech

enhancement framework, with a focus on long term application to future hearing aid develop-

ment. Chapter 1 introduced the thesis and presented the motivation and goals of this research.

Chapter 2 presented the justification of this work by describing the relationship between audio

and visual aspects of speech, and also investigated and demonstrated the correlation between

the two speech modalities.

This chapter presents a literature review that places the research proposed in this thesis in

context, building on the background presented in the previous chapters. Firstly, the overall

speech processing domain is briefly discussed. To place the proposed framework in the context

of commercially available hearing aid technology, a review of the methods used in modern

hearing aids is provided. This review presents examples of listening devices using directional

microphones, array microphones, noise reduction algorithms, and rule based automatic

decision making, demonstrating that the multimodal two stage framework presented later

in this thesis has established precedent in the context of real world hearing aid devices. The

other significant aspect vital to the research context of this work is the field of audiovisual

speech filtering. This chapter presents a review of multimodal speech enhancement, with a

discussion of the initial early stage audiovisual speech filtering systems in the literature, and

the subsequent development and diversification of this field. A number of different state of

the art speech filtering systems are examined and reviewed in depth, particularly multimodal

beamforming and Wiener filtering. Finally, in order to perform the experiments required in

this research, a suitable audiovisual speech database has to be chosen. In recent years, there

33
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has been a large increase in the range of available corpora, and several audiovisual speech

databases are evaluated to assess their suitability for use in this project.

The remainder of this chapter covers a number of different areas. Firstly, section 3.2 presents

a general overview of speech processing. This is followed by a review of contemporary hearing

aid technology in the next section, demonstrating that the two stage system proposed in

this thesis, and the extension of this to use fuzzy logic, has an established single modality

precedent. Section 3.4 then presents a summary of audiovisual speech enhancement research

and a detailed review of three different state of the art speech filtering techniques. A review

of lip detection and tracking is presented in section 3.5.The next section reviews a number of

audiovisual speech corpora, and finally, this chapter is summarised in section 3.7.

3.2 speech processing overview

Speech processing is an established and very active field of research with many different

areas of focus, such as recognition, enhancement, and synthesis. The work presented in this

thesis is solely focused on speech enhancement with the aim of improving speech quality

by filtering a noisy speech input signal to remove noise. In recent decades, many different

audio-only speech enhancement solutions have been proposed, such as those by Zelinski [189]

and Hussain & Campbell [90]. There are many examples of modern single modality speech

processing algorithms in the literature (Hussain et al. [91], Van den Bogaert et al. [173], Li et al.

[113]). A common technique is to use multiple-microphone techniques such as beamforming

that can improve speech quality and intelligibility by exploiting the spatial diversity of speech

and noise sources (Gannot et al. [67], Griffiths & Jim [73]). Another possible technique is to

make use of Wiener filtering (Wiener [180]) to compare a noisy speech signal to an estimate of

the equivalent noise-free signal to produce an enhanced signal (Van den Bogaert et al. [173]).

There are also approaches such as that proposed by Zelinski [189] and refined by others,

including Li et al. [113, 114], Van den Bogaert et al. [173], that propose a two stage audio-only

speech enhancement solution that makes use of both adaptive beamforming and Wiener
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filtering in a single system. There are many different other audio-only single modality noise

cancelling techniques in the literature.

This thesis focuses on the use of multimodal information for the extraction of an enhanced

speech signal from a noisy speech mixture, and so a detailed review of audio-only speech

enhancement techniques is considered to be outside the scope of this thesis. However, because

the context of this research is the development of a framework for the aid of those who use

hearing aids, the next section focuses on reviewing the technology used in current commercial

hearing aids. This places the proposed research into context, and this is followed by a detailed

description of multimodal speech filtering algorithms in section 3.4.

3.3 application of speech processing techniques to hearing aids

Introduction

This thesis considers speech filtering from the point of view of potential application to hearing

aids for the benefit of users with deafness. However, this is very much a long term focus, with

the system presented in this thesis focusing exclusively on early stage software development.

However, it is considered appropriate to provide an overview of some state of the art features

of modern hearing aids. Much of the content in this section is adapted from a detailed review

by Chung [44], and this section provides a summary of current technology.

Directional Microphones

In the detailed review by Chung [44], current hearing aid technology is divided into two

categories, directional microphones and noise reduction algorithms. With regard to direc-

tional microphones, the most relevant topics which are summarised in this thesis are first

order directional microphones, adaptive directional microphones, second order directional

microphones, and assistive array microphone devices. Overall, directional microphones are

an established technology that has been around since the 1970s (Chung [44]). They operate

on the premise that speakers are more likely to be located to the front of the listener, and so
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directional microphones are designed to be more sensitive to sounds arriving from the front

of the speaker. This technique is of relevance to this thesis because it demonstrates a practical

use of speech filtering techniques, and shows the use of multiple microphones for directional

filtering, as utilised in chapter 4 of this thesis.

first order directional microphones The most common type of directional

microphone processing was identified by Chung [44] as being first order directional micro-

phones. These are designed to direct the focus of microphone sensitivity to sounds coming

from the front of the listener and reduce sensitivity to sounds arriving from the side or rear

of the listener. Hearing aids equipped with this technology can be designed to use single or

dual microphones. In the single microphone configuration, a hearing aid has a microphone

with two ports, anterior and posterior. Sound entering the posterior port is delayed and

subtracted from the input to the anterior port. This delay is determined by physical factors

such as the distance between the two microphone ports. These have been superseded in recent

years by dual microphone hearing aids, which work in a similar fashion. These have two

omnidirectional microphones, with an anterior and posterior microphone. The microphone

inputs are combined with ’delay and subtract’ processing, similar to that discussed for single

microphone hearing aids. The difference is that the delay and therefore the directional focus

is software based and can be adjusted and programmed with signal processing algorithms

(Ricketts & Mueller [145]).

With regard to performance, it is consistently found in laboratory testing that the use of

directional microphones can lead to improved results, as discussed in Valente [172]. The

more focused the directionality is, the better the results. It was also found that optimum

performance was produced when there were less discrete noise sources, and less reverberation.

This is because a large room produces a lot of reverberation and these echoes reduce the

effectiveness of directional focus. However, in actual practical usage, many users do not

perceive the benefit of directional microphones. There are several reasons for this. Firstly,

the desired signal is not always located directly to the front of the listener, many times; the

speaker will be at an angle to the listener (Kuk et al. [106]). There are also a wide variety of
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reverberation environments in real life, with many unsuited to directional microphones, and

so the large improvements seen in laboratory experiments do not always translate well into

practical use.

Another issue is that research found that the majority of hearing aid users simply do

not use the directional setting. Modern hearing aids can come with a variety of different

settings, two of which can be omnidirectional and directional microphone modes. Studies

by Cord et al. [48, 49] found that there was little active switching by users between modes,

with the majority preferring to use the omnidirectional mode at all times. Many users did

not notice the benefit of directional microphones, or even found the performance to be worse

than using the standard omnidirectional settings. There are significant limitations to using

directional microphones in many environments. For example, in quiet environments, when

there is wind noise present, or when reverberation is at a significant level, omnidirectional

microphones are suggested, and many users prefer to use this setting at all times. These

recommendations are due to a number of technical limitations with this type of hearing

aid. Firstly, at low frequencies, wind noise can dominate and affect directional processing,

meaning that omnidirectional microphones are recommended. Also, the internal noise from

dual microphone hearing aids is louder than for the equivalent single microphone systems.

Often, this internal noise is masked by environmental noise, but louder dual microphone

noise is more noticeable. There is also the issue of low frequency roll off. This is when the

delay and subtract processing is carried out with low frequencies, and sounds are subtracted

at a similar phase. This can result in under amplification of low frequency sounds and a

’tinny’ sound quality output. So although very commonly used, directional microphones have

significant limitations.

adaptive directional microphones To improve upon the limitations of directional

microphones, adaptive directional microphone techniques have been developed. While first

order directional microphones assume a fixed source location at the front of the listener,

adaptive microphones do not make this assumption, and are designed with the aim of

maximising sensitivity in the direction of the dominant source location and minimising
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sounds originating from the opposite direction to this source. This makes adaptive dual

microphone hearing aids theoretically more suited to real world environments.

In terms of functionality, adaptive microphone hearing aids function in a similar way to the

first order directional microphones described above, but the direction and microphone settings

are not fixed. These settings (such as the posterior delay and omni or uni directional mode)

can be automatically changed with sophisticated signal processing. Different manufacturers

use a range of proprietary methods, which are not generally publicly disclosed, but Chung

[44] provides a general overview of the functionality of adaptive microphones, specifying

four steps. Firstly, signal detection and analysis is carried out. Secondly, the appropriate

microphone mode is determined. In the third stage, the polar pattern to be used is decided,

and finally, the chosen configuration is executed. The signal detection stage involves an

analysis of the inputs. Chung [44] mentions a number of sensors that various manufacturers

use in hearing aids. A level detector is often used. This measures the level of the incoming

sound, with the principle that directional microphones should only be used if the input level

is above a set threshold. A modulation detector may also be used. This can be used as a

Voice Activity Detector (VAD) to detect the presence of speech in an incoming signal. Speech

generally has a modulation between 2 and 50 Hz (Rosen [154]), and a centre modulation

between 4 and 6Hz (Houtgast & Steeneken [85]), with noise generally outside this range.

Therefore, the modulation detector can be used to estimate the presence of speech, and

also for SNR estimation. A hearing aid may also be equipped with a wind detector, and

also a front/back level detector. This detects the difference in level between front and rear

microphone inputs, which can aid with identification of the location of the dominant source.

The second step is the determination of the operational mode. This is simply the decision

whether to use the omnidirectional or directional microphone setting. Although switching

can be manual in some hearing aids, it is often automatic, and takes account of a variety

of factors, as mentioned above. Chung [44] gives a prominent example of this in the Oticon

Syncro hearing aid, which has three different operational modes. These are; full directional

mode; directional mode at certain frequencies; and omnidirectional mode. To identify the most

suitable mode, the level and modulation detectors are used, along with two alarm detectors in
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the form of a wind detector and a front/back detector. The alarm detectors are given priority,

with the microphone mode selection aiming to maximise the SNR input. More detail is given

in Flynn & Lunner [61], Flynn [60]. If the directional microphone setting is chosen, then the

most suitable polar pattern is then selected. By this, it is meant that the focus of the directional

microphone configuration, i.e. the source location identified as being the dominant speech

source, is decided. Finally, this configuration is executed.

In terms of results, Chung [44] concludes that adaptive directional microphones have not

been found to deliver a worse performance than fixed first order directional microphones in

many scenarios, but in scenarios with a very narrow angle of speech, can produce improved

results. More detailed results are given in Ricketts & Henry [144].

second order directional microphones An alternative to first order directional

microphones is to use second order directional microphone hearing aids. First order micro-

phones are normally found to result in a 3 to 5 dB SNR improvement. However, for those with

a significant hearing loss, this improvement may not be noticeable. Second order directional

microphones utilise more than two microphones, but otherwise use similar delay and subtract

processing techniques. The downside to this approach is that there is a lot of low frequency

roll off, which is difficult to amplify without having an impact on the amplification of internal

noise. Bentler et al. [24] tested one such system, the Siemens Triano, and found only small

benefits. This design of hearing aid is reported by Chung [44] as being relatively uncommon.

assistive listening array microphones The previous sections discussed hearing

aids that delivered several decibels of SNR improvement. For those with more than 15dB of

hearing loss though, the gains are still not sufficient to adequately increase the SNR of a desired

speech source in difficult environments. The traditional solution for this is to use a FM radio

microphone system. This consists of a microphone placed close to the mouth of a speaker

(such as a wearable clip on microphone), which is then transmitted via radio to a receiver

worn by a listener. This is then transmitted to the listener’s hearing aids directly. This delivers

very good performance, but comes at the cost of removing almost all background noise. It is
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Figure 6: State of the art glasses mounted microphone array, the Varibel Hearing Glasses. Image shows
glasses and charging station. Image taken from Varibel website (Varibel-Innovations [174]).

also limited to a single speaker, which is of limited usefulness in a scenario where multiple

speakers are involved. One alternative to this traditional approach is to use a microphone

array.

A multiple microphone array consists of a series of linked microphones, with the inputs

combined to provide directional focus. Delay and sum processing is used with each micro-

phone to increase the directional effect to a greater extent than for conventional hearing aids.

The array input then overrides the user’s hearing aid input. These arrays can be hand held

(i.e. a device that the listener points at the desired target), or head worn (Mens [128]). An

example of a state of the art head worn microphone array can be found with the Hearing

Glasses, manufactured by Varibel, shown in figure 6. This device has four small microphones

positioned in each arm of the glasses to provide directional sound filtering.

There are a number of advantages to microphone array devices such as these. Firstly,

because they are directed by the listener, multiple speakers can be listened to, with the listener

moving the microphone to suit. There is also the advantage of being extremely precise with
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directionality. In terms of results, Christensen et al. [43] reported a 7 to 10dB improvement,

which was backed up by Laugesen & Schmidtke [109].

However, there are limitations with these directional microphone arrays. Firstly, the extreme

directional focus results in a very significant loss in noise from other directions. This can make

it difficult to use in an environment where multiple speakers are present. Although array

microphones are theoretically designed to deal with this by being mobile, it is possible for the

listener to miss the start of utterances due to the time taken for the array to be moved and

directed correctly. Also, although a 7 to 10dB gain is reported, a traditional FM transmitter

system still has a much greater level of improvement, and is still the recommended solution

for noisy environments with a single speaker.

Noise Cancelling Algorithms

While directional microphones take advantage of the spatial differences between speech

and noise sources, noise reduction algorithms aim to exploit the spectral and temporal

differences between speech and noise. A detailed review is provided by Chung [44], and this

section presents a summary. As stated, noise reduction differs from the use of directional

microphones, and relies on speech filtering software algorithms with decision rules used to

decide the appropriate level of filtering. These rules rely on the input from various detectors

such as wind noise, signal level, and modulation detectors, as described previously. Again,

the exact configuration and use of detectors tends to be proprietary, although the use of a

modulation detector is considered to be standard practice. This is because speech tends to

have a modulation centred around 4 to 6 Hz, whereas in most cases, noise tends to have

a modulation range outside of this, and so the specific modulation of speech can often

be detected. Another type of modulation that can be detected is co-modulation. This is

generated by the opening and closing of vocal folds during voicing of vowels and voiced

consonants (Rosen [154]). The rate can be visualised as spikes on a spectrogram, with spikes

showing instances when vocal folds open and darker regions showing instances with no

speech energy. These rapid spikes are a good indicator of speech as noise generally does

not display this pattern of rapid co-modulation. This rate of co-modulation is known as the
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fundamental frequency. Chung [44] distinguishes between algorithms that detect the specific

modulation of speech (multichannel adaptive noise reduction algorithms), and those that

detect co-modulation (synchrony detection noise reduction algorithms).

multichannel adaptive noise reduction algorithms Multichannel adaptive

noise reduction algorithms are described by Chung [44] as being the most commonly com-

mercially implemented algorithms. The principle behind them is that they aim to reduce

noise interference at frequency channels where noise is dominant. These algorithms are most

effective when there is a significant spectral difference between speech and noise, but suffer

if the noise source is speech from a competing speaker. In general, these algorithms are

described by Chung [44] as having three stages. First, signal detection and analysis is carried

out. This is then followed by the application of decision rules, and finally, appropriate gain

reduction (adjustment of the ratio of output to input) is carried out.

The first stage, signal detection and analysis, is similar to that for directional microphones, in

that a variety of detectors such as wind and modulation detectors are used to analyse the input

signal, as described previously in this chapter. Two particular additional features that are specif-

ically of interest with regard to noise reduction algorithms are intensity-modulation-temporal

changes in each frequency channel (Tellier et al. [171]), and spectral-intensity-temporal patterns

across frequency channels (Kuk et al. [105]). Intensity-modulation-temporal change detection

operates on the basis that one single property is not fully adequate for correctly classifying

speech. Of the individual dimensions, intensity can be used, i.e. the amplitude of the signal.

The input is divided into events, and it is assumed that high amplitude represents speech and

low amplitude noise. This does not take account of changeable conditions though. Another

dimension, modulation, is as described previously, and the final dimension considers time

varying properties. Tellier et al. [171] examines the Conversa from Unitron Hearing, which

analyses the input signal in 16 bands and classifies the input as being either stationary noise

(e.g. automobile noise), pseudo stationary noise (e.g. incoherent speech babble), transient noise

(e.g. a door slam), or the desired input speech or music signal, using the three dimensions
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Table 2: A continuum exists between three specific characteristics found in signals (intensity changes,
modulation, and duration). and four types of noise. Taken from (Tellier et al. [171]).

Stationary Pseudo Stationary Desirable Transient

Intensity Changes smallest < ............................................ > largest

Modulation Frequency lowest < ............................................ > highest

Time Duration longest < ............................................ > shortest

described above, as seen in table 2. Spectral-intensity-temporal pattern analysis works on a

similar basis, but considers spectral information rather than modulation.

A key aspect for many hearing aids equipped with multichannel adaptive noise reduction

algorithms is to estimate the SNR in each frequency channel. The exact methods used to do

this are proprietary and vary between manufacturers, but generally, this is done by calculating

the modulation depth of the signal identified as speech. If the depth is calculated to be high at

an individual frequency channel, then it is assumed that speech is dominant at that channel.

After the initial input, the second phase is the application of decision rules. Again, this varies

between individual hearing aids, and Chung [44] reports that a range of factors such as

the level of input signal, the SNR at individual channels, and the type of noise reduction

programmed for the individual user during the hearing aid fitting process are considered. The

outcome of the decision rules is to apply gain reduction at the appropriate frequency channels.

Chung [44] states that generally, the amount of gain reduction applied at each frequency

channel is inversely proportional to the SNR of the input signal of that channel. The general

justification that forms the basis of the decision rules is that if the SNR at a frequency channel

is estimated to be high, then it is assumed that speech is the dominant signal and the channel

is not filtered. If a moderate to low SNR is estimated, then it is assumed that in that channel,

speech and noise co-exist, or noise is dominant. In this case, the gain is reduced at this channel

to decrease interference. If no speech is found, then the channel has the maximum level of

gain reduction applied.

The actual gain reduction varies between hearing aids, and the application of this is complex

and relies on both calculations and individual judgement (Tellier et al. [171]). The application
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of gain reduction considers a number of temporal constraints. The engaging/adaption/attack

time, which is the time between the detection of noise at a frequency channel and the

application of gain reduction, is considered, as well as the speed of this reduction. The time

between the detection of an absence of noise and the ending of gain reduction is also taken

into account, as well as the speed of this process. As stated, this is not an exact science, and

different balances between listening comfort and performance are found on different hearing

aids.

Overall results of these algorithms are reported as being mixed. Although positive results

have been reported in the literature by Levitt [112] and Boymans et al. [28], others have

reported no significant improvements (Alcántara et al. [7]). There is also the issue reported by

Ricketts & Dahr [146] and Alcántara et al. [7] that in broadband noise such as in an automobile,

noise reduction of this type can lead to no benefits because the algorithm reduces gain in all

frequency channels with noise domination, meaning that speech and noise is reduced at the

same rate, leading to no benefits. Generally, the bigger the difference between speech and

noise, the greater the benefits of this form of noise reduction.

synchrony detection noise reduction algorithms Synchrony detection noise

reduction algorithms take advantage of the detection of co-modulation in speech to distin-

guish between speech and noise (Elberling [56]). These algorithms essentially detect the fast

modulation of speech across frequency channels. The signal detector monitors high frequency

parts of the incoming signal and looks for the high frequency spectral spikes that indicate

co-modulation. If these rapid bursts of speech energy are detected then it is assumed that

speech is present and gain levels are kept at the default level. However, if co-modulation is

not detected, then it is assumed that speech is not present and the overall gain of the hearing

aid is gradually reduced (Schum [164]).

Chung [44] reports that this algorithm is less useful when the noise source is competing

speech because this speech also has co-modulation, and that this algorithm can be combined

as part of an overall noise reduction package combining both multichannel and synchrony

detection algorithms, rather than being used individually.
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Summary

This section described some current developments in commercially available hearing aids. It

can be seen that there exist some very sophisticated developments in modern hearing aids

that utilise the audio modality. Modern hearing aids can include multiple microphones (either

as part of an array, or as part of a directional microphone system), and may also contain noise

cancelling algorithms to emphasise speech and reduce levels of background noise. There also

exist hearing aids that include rule based decision-making to automatically adjust the degree

of speech filtering, depending on environmental conditions, as well as those that combine

both directional microphones and noise reduction algorithms. This combination of techniques

is similar to the multimodal system proposed in this thesis. The research discussed here is

entirely focused on utilising the audio modality; with no commercial audiovisual hearing aid

released as yet (to the best knowledge of the author) that combines visual information with

these audio techniques. With recent technological advances, hearing aid technology is at a

level where extremely sophisticated processing can be carried out. The concept of extending

the techniques outlined above to create a multimodal hearing aid that combines rule based

decision making, noise cancellation algorithms, multiple microphones, and visual information,

is much more feasible than was previously considered.

3.4 audiovisual speech enhancement techniques

3.4.1 Introduction

This section presents a summary of several state of the art multimodal speech enhancement

techniques. Given the audio and visual speech relationship described previously, and recent

correlation research, it was obvious that the concept of audio-only speech enhancement

systems would be extended to become multimodal. A pioneering multimodal speech enhance-

ment technique was proposed by Girin et al. [69]. This was, to the knowledge of the author,

the first example of a functioning multimodal speech enhancement system. This approach
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made use of the height, width, and area of the lips, recorded using blue lipstick and chroma

key technology to record this information and exclude other details, and made use of simple

linear regression to estimate a Wiener filter to enhance speech contaminated with white

noise. Results performed on selected data from vowel/consonant/vowel sequences showed an

improvement over similar audio-only approaches, but were limited due to the linear nature of

the filter. A non-linear artificial neural network utilising Multi Layer Perceptrons (MLP) was

proposed, and this more complex filter was found to produce improved results. This early

work demonstrated the potential of multimodal enhancement, and was developed further by

Goecke et al. [71], who proposed a linear mean square error estimation method. The research

focus of these authors was on the development of Automatic Speech Recognition (ASR) rather

than purely enhancement, but this work identified that this simple filtering approach resulted

in better ASR performance than noisy unfiltered speech. However, the authors also found that

the results of this enhanced speech were inferior to the early integration fusion of visual and

noisy audio information. Deligne et al. [52] demonstrated a non-linear approach for speech

enhancement, Audio-Visual Codebook Dependent Cepstral Normalisation (AVCDCN), which

was an extension of an audio-only Codebook Dependent Cepstral Normalisation (CDCN)

(Acero & Stern [3], Deng et al. [53]) approach. The authors found that limited experiments

using the same noise for testing as was used in training showed improved results when

the audiovisual approach was used rather than audio-only. This AVCDCN approach was also

tested by Potamianos et al. [142] as part of a speech recognition system, who found that the

non-linear AVCDCN approach outperformed audio-only processing and a linear audiovisual

model that was also examined.

Since this early work, there have been many recent advances in this research field. Three

of the most relevant state of the art developments that particularly build on this early work

are discussed in depth in this section. The concept of non-linear speech enhancement has

been built on and expanded into a more sophisticated speech filtering system by Almajai &

Milner [12]. Work by a range of authors, including Rivet & Chambers [152] (also Rivet et al.

[147, 148, 149, 150]) has expanded on the initial speech enhancement work of Girin et al. [69]

and focused on the development of algorithms for audiovisual source separation. In a manner
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similar to the AVCDCN approach mentioned above, multimodal speech fragment decoding,

developed in 2007 by Barker & Shao [18], aims to improve on existing audio-only fragment

decoding techniques. This is not exclusively a speech enhancement system as it combines

both recognition and enhancement together. Each of these three strands of state of the art

research developments will be described in detail in the remainder of this section.

3.4.2 Audiovisual Blind Source Separation

Summary of Work and Previous Papers

A range of authors including Rivet & Chambers [152] (also Rivet et al. [147, 148, 149, 150])

have been involved in the development of multimodal BSS systems, which aim to filter a

speech source from a noisy convolved speech mixture. This expands upon previous related

work by these authors, and is an extension of audio-only BSS solutions. These authors have

proposed several different ways to use visual information to overcome limitations with the

single modality BSS approach.

BSS, first proposed by Jutten & Herault [98] (also Herault et al. [81]) was designed with

the aim of separating individual speech sources from a mixture of competing speakers. The

problem of separating speech mixtures and recovering individual speech sources is one that is

of great interest to researchers due to its relevance to the Cocktail Party Problem (Cherry [38]).

It is similar to speech enhancement in that a single source can be extracted from a mixture,

but the goal is to separate sources rather than noise cancellation. It is a difficult problem to

tackle as real world speech mixtures are convolved. By that, it is meant that the sources are

mixed, reflected off of different surfaces in the speech environment and weakened before

they are picked up by the microphones. The ’blind’ aspect of the name refers to a lack of

knowledge regarding information about the number of sources and the mixing matrix.

There are a number of requirements in order for BSS to be successfully performed. Generally,

the sources must be statistically independent, i.e. each source must be independent and

uncorrelated from the others, and the speech mixture must be a linear combination of speech
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sources, with no additional background noise present. Also, in order to adequately separate

sources, the number of observations (e.g. microphones) must be at least equal to the number

of sources. If the number of microphones is less than the number of sources, then the resulting

reconstructed sources produced after BSS will not be single speech sources, but will continue to

be mixtures of speech sources. The assumption of independence between the sources is known

as Independent Component Analysis (ICA). This approach works by estimating a demixing

matrix, which is the inverse of the mixing matrix, to reconstruct a number of independent

sources.

Like alternative approaches (Almajai et al. [13], Barker & Shao [18]) to multimodal speech

processing covered in this section, this problem is tackled in the frequency domain. This

means that power spectrum density matrices are used, and for all frequency bins, the power

spectrum of a source is a diagonal matrix. Therefore, for efficient BSS, the demixing matrix

should be adjusted so that the recovered source power spectrum density is also a diagonal.

There are a number of limitations with BSS. Firstly, as mentioned above, the number of

microphones must be the same (or greater) as the number of speech sources. Secondly,

the scale of a reconstructed source cannot be determined. As a scalar multiplier could be

extracted from a source and multiplied by the mixing matrix, the amplitude assigned to a

reconstructed source is just arbitrary. The separated output could be inverted, or of greater

or lesser amplitude than the original source. Finally, BSS does not have any prior knowledge

of the sources, and so the order cannot be determined. It is not known which source is of

interest, and so while BSS may produce a separated source, it may not be the desired output.

When applying the above limitations, this means that the demixing matrix is limited by

a diagonal matrix to represent the scale, and a Permutation matrix to represent the order

indeterminacy, i.e. the source of interest. In the frequency domain, in order to ensure a good

quality reconstruction of sources, the scale and permutation need to be the same for each

frequency bin. If each permutation is the same, this means that a single reconstructed source

comes from only one original source, meaning there is no interference from other sources. If

the scale is the same, this ensures that the amplitude and reconstruction is correct. Various

audio-only approaches have been attempted with varying degrees of success.
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The research presented in this section attempts to use visual information to tackle these

limitations. A detailed review is presented in a recent paper by Rivet & Chambers [152], and

is summarised here. In all of the examples presented, visual information is used to assist with

the estimation of the permutation and diagonal matrices. This work builds upon previous

related work by Girin et al. [70], Jutten & Herault [98], Sodoyer et al. [167, 166], which has

experimented with the fusion of audio and visual information. Initial multimodal source

separation work (Sodoyer et al. [167, 166]), focused on maximising an audiovisual statistical

model in order to extract the correct signal. This was found to be computationally expensive,

especially when convolved speech mixtures were considered. One approach considered was

to maximise the relationship between audio source information and lip movement with a

statistical model, as detailed further in work by Rivet et al. [148, 147]. Another approach to

solve the permutation indeterminacy problem is arguably more computationally efficient and

makes use of a VAD to identify silent periods in speaker utterances (Rivet et al. [149, 150]), and

so extract the correct source at all frequency bins.

Key Output

An investigation of the literature identified that a state of the art example of this research

technique for multimodal speech processing was developed by Naqvi et al. [133]. This research

builds on the concept of using visual information to solve permutation indeterminacies, and

develops an audiovisual beamforming approach to solve the problem of source separation

in an environment consisting of a mixture of overlapping moving speech sources. In effect,

this is a technique for solving the Cocktail Party Problem (Cherry [38]). As described earlier

in this section, previous research work of this nature originally made use of the audiovisual

coherence between audio and lip information. However, this approach was found to be

computationally intensive with regard to the use of visual information, and so Naqvi et al.

[133] utilise a simpler approach that uses speaker tracking to identify source locations, and

then uses these coordinates for beamforming. A diagram of the system is shown in figure 7.

One significant aspect of this system is the 3D visual tracking approach utilised. Speaker

tracking is used to identify visual data and makes use of state of the art techniques. Firstly,
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Figure 7: Diagram of system proposed by Naqvi et al. [133] . Utilises 3D visual tracking and source
separation . Taken from (Naqvi et al. [133]).

some assumptions are made. It is assumed by Naqvi et al. [133] for the purposes of their

paper that a full face image of each speaker is visible at all times, and that a geometric cue

(i.e. the centre of the face) is available. The experiments are performed in a simulated office

environment (a small room), using two high quality cameras, mounted above head height

and synchronised using an external hardware trigger module. This provides a high vantage

point, and the input from the two cameras is used to convert a two dimensional view of

the room to 3D. To carry out the tracking, a Viola-Jones face detector is used (Viola & Jones

[175]). This is a face detector that operates with a cascade of boosted classifiers. In each

input image, parts of the image are sub sampled at a variety of scales and locations within

the frame. There are three stages in the face detection process. Firstly, all sub windows are

normalised in order to take illumination into account. Secondly, the cascade of classifiers,

with each classifier being more complex than the last, is then applied to each sub window in

order to identify whether a candidate for a face is present or not. The final stage of the face

detection process is the subsequent merging of overlapping sub windows that identified a

candidate for a possible face, in order to output the final identification of all faces in each

visual frame. To then track the face movement for multiple speakers, a Markov Chain Monte

Carlo Particle Filter (MCMC-PF) is used. The use of this is described in detail by Naqvi et al.

[133]. The tracking stage ultimately calculates the 3D position and velocity of each speaker,

which is used in the source separation stage.
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After receiving visual information, the second stage is to perform source separation. In

this work, the authors assume that noise is either non-existent, or considered to be a separate

source, and that the number of input sources is equal to the number of desired outputs. The

visual information is first used to determine whether the sources are moving or stationary.

This is done by considering the visual information of the sources, calculated in the tracking

stage. If the sources are considered to have been stationary for at least two seconds, then

Intelligently Initialised Fast Independent Component Analysis (IIFastICA) is used to separate

the sources. If however, the sources are determined to be moving, beamforming is used, with

the aid of visual information.

When the sources are moving, beamforming is used for source separation. Working in

the frequency domain, the mixing process is defined by Naqvi et al. [133] for M statistically

independent real speech sources s (ω) = [s1 (ω) , . . . , sM (ω)]H, with (.)H denoting Hermitean

transpose, and ω denoting discrete normalised frequency. This work states that a multichannel

Finite Impulse Response (FIR) filter producing N mixed signals u(ω) can be defined as,

u (ω) = H (ω) s (ω)

with H (ω) representing the filter. The source separation process of extracting these mixed

signals can then be described as,

y (ω) =W (ω)u (ω)

with W (ω) representing the unmixing matrix, and y (ω)the estimated sources to be output.

To calculate this unmixing matrix, the authors follow an approach defined in Parra & Alvino

[140] that utilises geometric information as one factor in the determination of the unmixing

matrix. For this, the angle of arrival, i.e. the position of the speech sources in relation to the

microphone array of each source, is calculated using the visual information. This helps to

solve the permutation problem, and focuses the direction of the beamformer to eliminate non

relevant noise for each source.

If the sources are considered to be stationary, then IIFastICA is used. This uses the estimated

FIR filter and whitening (Hyvarinen et al. [92]) to initialise the FastICA algorithm (Bingham &

Hyvarinen [25]). At each frequency bin, the FIR filter with visual information used to calculate

it and the whitening matrix are used to initialise the FastICA algorithm,



3.4 audiovisual speech enhancement techniques 52

wi (ω) = Q (ω)hi (ω)

where Q is the whitening matrix and hi (ω) represents the i− th column of H (ω). Fast

ICA is then used to separate the sources, as described in more detail in Bingham & Hyvarinen

[25]).

In the experiments reported by Naqvi et al. [133], the system is evaluated with a room

containing two speakers, with audio recorded at 8 kHz and video at 25 Hz, and audio and

visual data manually synchronised. Initially, the 3D tracking was evaluated, and was found

to be accurate and effective. The angle-of-arrival data (using visual positioning) was also

found to be correct with regard to the experimental data. With regard to the source separation

problem, various system configurations (both audio-only and audiovisual) were tested by

Naqvi et al. [133], and they found that the use of visual information improved overall results

and algorithm performance.

Strengths

There are a number of strengths with this work. Firstly, this research demonstrates the value

of using visual information as part of a speech filtering system. It builds on prior work

and shows an improvement on existing audio-only techniques (for example, using audio-

only geometric information for beamforming initialisation). The results demonstrate that the

proposed multimodal system is effective. In particular, this work uses visual data to solve the

permutation problem, i.e. it manages to successfully identify the correct source of interest. The

technique used, tracking speakers and returning 3D coordinates for further processing, does

not use detailed lip information or attempt to analyse speech content, but uses a much less

computationally intensive approach that delivers effective results. The recent state of the art

work discussed above makes used of modern 3D tracking technology and displays a nuanced

approach to speech processing. The type of source separation performed varies depending on

environmental conditions (the movement of the speech sources), showing an intelligent use of

multimodal information.
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Limitations

There are a number of practical limitations to this work. Firstly, there are a number of

assumptions made. It is assumed that the room being used is small enough to keep the

reverberation level low, and it is also assumed that good visual information is visible, with

a good quality full facial image available for each speaker at all times. This is adequate for

the limited experiments discussed in this paper, but in a practical real world environment,

these conditions are unlikely to be met. The cameras and microphones are also fixed in

position, with the microphone array in the centre of the room at all times, and the cameras

mounted above head height. This is adequate for simulations, but may produce poor results if

experiments are extended to a more realistic environment with regard to hearing aid wearers.

A hearing aid user would not be expected to remain stationary, and this means that the

cameras and microphone would be mobile, making calculations such as the angle of arrival of

different speech sources and accurate 3D tracking much more difficult. The system is also

aimed specifically at solving the source separation problem, with noise that doesn’t originate

directly from a competing speech source not considered.

Summary of Work

Overall, there are positives to this research, in that it demonstrates a nuanced use of audio

and visual information, and shows that visual information can be effectively and efficiently

used as part of a speech processing system. It also demonstrates an alternative speech filtering

approach, source separation rather than noise reduction, and uses state of the art techniques

to extend an audio-only approach to become multimodal. However, the system relies on a

number of environmental assumptions, and ultimately aims to solve the source separation

problem rather than concentrating on speech enhancement. So while the research is of interest

because of the use of visual information, it is not entirely relevant to the problem discussed in

this thesis.
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3.4.3 Multimodal Fragment Decoding

Summary of Work and Previous Papers

Multimodal speech fragment decoding, developed by Barker & Shao [18], was designed to

improve on existing audio-only fragment decoding techniques (Barker et al. [23]). This is not

primarily a speech enhancement approach as the ultimate aim of the research described here

is to develop a multimodal speech recognition system. However, in order to achieve this, an

approach is used that combines both filtering and recognition, and so the source separation

technique used is of interest with regard to this thesis. The primary problem that this system

attempts to tackle is that of speech recognition in environments where the speech source is

obscured by a competing simultaneous speech source, and this research is particularly focused

on the problem of masking.

There are two types of masking that represent a problem for speech recognition systems.

The first is energetic masking, which occurs when the speech energy of the masker is greater

than the energy of the speech source. An example of this is when a vowel from a competing

masking speaker obscures an unvoiced part of the target speech source. In general, this is

a problem that can be tolerated by many speech recognition systems as it is normally clear

which parts of an utterance are masked. The second type of masking, informational masking,

is more challenging. This is when it is unclear which part of the noisy speech input signal is

dominated by the target speaker and which by a masking speaker. This research aims to tackle

this by using visual information to identify the target speaker with greater accuracy. As stated

previously, this is primarily a speech recognition system, but the use of visual information as

part of the speech filtering process makes this research of relevance.

The idea behind audio-only fragment decoding (Barker et al. [23, 20]) is to combine source

recognition and separation in a single framework. Source separation research is inspired by

Auditory Scene Analysis (ASA) (Bregman [30, 31]), which is the process by which humans

organise sounds into meaningful elements. The concept behind speech fragment decoding

is that in a noisy speech mixture, there exist elements within this mixture (in the spectral-
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temporal domain) where speech energy is concentrated sufficiently to ensure that noise source

energy has a negligible effect. There are two elements to the fragment decoding process. The

first is the generation and identification of spectral temporal fragments, i.e. those fragments

which are dominated by one single source, either target or masking source. These fragments

are automatically labelled and are then used to create a segregation (represented by a binary

mask) of these labelled fragments. A segregation hypothesis is then searched for, where the

noisy input is then matched to statistical models of clean speech, with missing data speech

recognition performed by matching fragments to Hidden Markov Models (HMMs) (trained on

clean speech), with the type of processing dependent on the labelling, in order to produce the

best matching word sequence from the noisy input mixture.

There are practical limitations to an audio-only approach though. While it is possible to

determine whether a fragment is dominated by a single source, it can be difficult to determine

whether that source is the target speaker or background noise. In environments containing

competing background speech, this is particularly difficult. Visual information can be used to

extend and improve this approach. This system deals with both recognition and enhancement,

and visual information has a role to play in both aspects. Firstly, word recognition is improved

by the addition of a visual vector in addition to the audio. In the audio-only approach, the

recognition is done by comparing the input audio vector and a mask labelling the input, to

trained audio models. In the multimodal approach, the visual information is concatenated

with the audio and is simply treated as additional spectral information for use with trained

audiovisual models. This was developed by Barker & Shao [19, 18].

Key Output

State-of-the-art multimodal work carried out using this technique (Barker & Shao [19, 18])

utilises visual information to assist with the identity of fragments dominated by the target

speaker, as shown in an example in figure 8, where visual information is used alongside

audio to jointly identify correct fragments. In the case of labelling appropriate fragments as

dominated by target or noise, visual information helps to increase the accuracy of this. In the

simplest case, visual features can determine the likelihood of the target speaking or being
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silent at a given point in time. Trained audiovisual models can identify audio fragments that

match the equivalent visual information well, increasing the accuracy of fragment labelling.

In order to extract the audio features, the input signal is passed through a 64-channel

filterbank, and temporal difference features are computed with 5-frame linear regression and

added to the 64-channel filterbank output to create an audio vector with a dimensionality of

128. The visual features take the form of 2D-DCT features extracted from the lip region of the

target speaker, with 36 (6 by 6) low-order coefficients extracted. Temporal difference features

are added to these to create a vector with a dimension of 72. As the video is recorded at 25

fps, this is up-sampled to 100 fps to match the audio vector.

The research presented in this work takes the audio and visual inputs and combines them

in a variety of ways using HMMs, so both early stage feature fusion (concatenating audio and

visual vectors before processing), and decision fusion (visual and audio computed separately

and then merged) approaches are considered. The audiovisual information is used for both

fragment labelling and word recognition, but as speech recognition is outside the scope of this

thesis, the recognition process is not discussed here. In terms of spectral temporal fragment

identification, the authors describe visual features as a form of ’scaffolding’ that supports

the fragment identification process, as shown in figure 8. So while there may be masked

speech fragments that could be identified as a good match for the target speaker model on the

audio-only level, the addition of visual information reduces the likelihood of this, because the

masked speaker fragments are unlikely to be a good match when visual information is also

used in the speech models. Even if no phonetic information is provided, the visual information

at a fundamental level can identify the presence or likelihood of the target speaking, making

the informational masking problem less of an issue. This research required the training of

HMMs for each speaker tested.

The authors compared this approach to a similar audio-only fragment decoding approach

using sentences from the GRID Corpus (Cooke et al. [46]), and found that while the audio-only

approach produced similar results as the audiovisual system with an SNR of +6dB, as the SNR

decreased to -9dB the audio-only approach produced a much steeper drop off in performance,
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Figure 8: Example of fragment decoding system operation, using visual information to identify speech
fragments from noise within frequency groupings. Taken and adapted from Barker & Shao
[18].

with the audiovisual approach performing significantly better. This shows the benefits of a

multimodal approach.

Although this is primarily a speech recognition system, it does deal with enhancement

to an extent. It extends an existing audio-only approach, and it fuses audio and visual

information. This means that both audio and visual information is used together. It does this

while making use of commonly used feature extraction techniques, so visual information is

tracked automatically and the DCT of the lip region is extracted. As it makes use of an ICA

approach, it deals with speech mixtures containing two similar speakers, and makes use of

sentences from the GRID corpus, which is a high quality audiovisual speech database. The

system is trained for multiple speakers from this corpus, and this means it can work with

a range of subjects. In order to test performance, the authors tested their system against

equivalent audio-only systems, and it was consistently found that in adverse conditions, word

recognition of the target speaker was stronger when using the audiovisual approach. The

authors also tested the system using a variety of low resolution visual features, finding that

even with a simple 1 x 1 pixel DCT vector; an improvement was found over audio-only results.
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Strengths

The most important thing to take from this work is that visual information can be used

effectively as part of a speech filtering system. The research presented here successfully

used visual information to deal with a very challenging speech environment. Recognition

tests performed found that the use of visual information enabled this system to outperform

audio-only approaches. The use of poor quality visual information was also tested, with even

low quality visual data found to improve results. Overall, this is a very interesting approach

with scope for further development.

Limitations

While this research demonstrates the benefit of a multimodal approach, it has some limitations

with regard to specific application to this research project. In these experiments, trained HMMs

are used, and the assumption is made that the target speaker is also part of the training set.

This means that experiments have not been attempted with completely novel data, only with

a limited selection of sentences from a single corpus, and this limits the possible practical

application of this work. Individual HMMs are used for each speaker used in the testing and

training process. Also, this approach deals with enhancement and recognition in parallel,

rather than having an enhancement stage followed by a separate recognition process. This

makes the two components difficult to separate, and limits its potential relevance in terms of

speech enhancement alone. It is also tested with speech recognition rather than enhancement.

Therefore the true impact of noise cancellation is not thoroughly tested. The system as it is

makes use of visual information for both the separation and recognition, with the two linked,

limiting the relevance of this work with regard to this thesis.

Summary of Work

The fragment decoding work described here is an example of the extension of audio-only

algorithms to the multimodal domain by utilising visual information. This research considers

a challenging speech problem, that of filtering speech when a competing speech source is
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masking the target speech. This research demonstrates that in a challenging environment,

visual information (even in a crude form) can help to extend the usability of speech filtering

algorithms, with further scope for extension of this work. However, the key limitation from the

perspective of the research proposed in this thesis is that this is primarily a speech recognition

system rather than a speech enhancement system. So while visual information is utilised

for speech source separation, this is linked with the recognition aspect. Therefore, while the

concept is of interest, this system is not of particular relevance for further development in this

thesis.

3.4.4 Visually Derived Wiener Filtering

Summary of Work and Previous Papers

Almajai & Milner [12] have developed a multimodal speech enhancement system that makes

use of visually derived Wiener filtering (Wiener [180]). This approach builds on previous

published work by the same authors. Firstly, Almajai & Milner [10] demonstrated a high

degree of audiovisual correlation between the spectral output of speech and the shape of the

mouth, and then built on this to filter speech by making use of visual features to estimate a

corresponding noiseless audio signal, and then filtering a noisy audio signal (Almajai et al.

[13], Almajai & Milner [11, 12], Milner & Almajai [130]). Wiener filtering works by comparing

a noisy input signal to an estimation of an equivalent noiseless signal. This approach is

commonly used in other research fields such as the restoration of damaged or distorted

photographic images (Hiller & Chin [83]), but has also been applied to audio-only speech

enhancement (Zelinski [189]). The key problem with this approach with regard to speech

processing is the difficulty in obtaining an accurate estimation of the noise-free speech signal.

Almajai & Milner [12] first created a basic Wiener filtering approach that initially made use

of a simple joint audiovisual model and basic competing white noise, and then expanded

upon it to produce a more sophisticated and comprehensive audiovisual speech enhancement

system (Almajai & Milner [11]).
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Figure 9: Diagram of an audiovisual speech filtering system for speech enhancement, utilising visually
derived filtering, and an audiovisual VAD. Taken from Almajai & Milner [11].

Key Output

Recent work from Almajai & Milner [11] makes use of a set of 277 UK English sentences from

an audiovisual speech database, spoken by a single male speaker. Of these sentences, 200 of

them have been used as training data for the audiovisual noiseless speech estimation models,

and the remaining 77 used for testing. Visual information was recorded using a head mounted

camera, and 2D-DCT was used to extract relevant lip information. This was then upsampled to

match the equivalent audio information. The system design used in this paper is shown in

figure 9.

In a system containing a noisy time domain audio signal y(n) (with n representing sample

number) and visual information taken from the facial region v(i), with i representing frame

number, v(i) is used to produce an estimate of the log filterbank vector of the noiseless

audio signal x̂(i). This is transformed into a linear filterbank estimate Lx̂(m), with m being a

filterbank channel. This is then compared to an estimation of the noiseless speech plus noise.

A noise only estimate, Ly(m), is calculated from noise only periods of the utterance, identified

with the aid of an audiovisual VAD. The combination of the speech and noise estimates is used
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to calculate the filterbank Wiener filter Lw(m), which compares the noise-free estimate to the

speech plus noise estimate:

Lw(m) =
Lx̂(m)

Lx̂(m)+Ly(m)

The authors then interpolate Lw(m) in order to match the dimensionality of the power

spectrum of the audio signal to produce the frequency domain Wiener filter. This is used to

calculate the enhanced speech power spectrum, which is then combined with the phase of the

audio input and an inverse Fourier transform is used to return the enhanced speech to the

time domain.

With Wiener filtering, the most complex aspect is the method of estimating the noise-free

signal. A Maximum a Priori (MAP) estimate of the noise-free speech can be found with

the use of visual information. The authors make use of phoneme-specific estimation. 36

monophone HMMs, plus an additional one for silence are trained using the training dataset.

The training dataset makes use of forced Viterbi alignment to split each training utterance into

phoneme sequences, and these labelled utterances are split into vector pools, with Expectation

Maximisation (EM) clustering used to train a Gaussian Mixture Model (GMM) for each phoneme.

The resulting HMMs are then used for speech estimation.

In the test sentences, an audiovisual speech recogniser is used to identify the phoneme.

It is assumed in this work that the first few frames of the utterance are noise only, and an

estimate of the SNR is taken from these. The speech recogniser then combines audio and visual

recognition to identify the phoneme. In conditions with a low SNR, more emphasis is put on

visual information than on audio. This attempts to identify the phoneme being spoken in

each frame, which identifies the most suitable GMM to use for each frame, and returns the log

filterbank speech-only noise-free estimate, x̂(i).

To estimate the noise-alone signal, an average of the non-speech vectors preceding the

speech frame is taken. To correctly identify non-speech frames, an audiovisual VAD is used.

This uses a pair of Gaussian Mixture Models (GMMs) trained using the manually labelled

audiovisual vectors from the training dataset. It is established that in noisy speech, with

a low SNR, it becomes more difficult for an audio-only VAD to correctly label frames, so

here, visual information is used. The SNR estimate, taken from the first few frames of the



3.4 audiovisual speech enhancement techniques 62

utterance (assumed to be noise only) is used to define how much weight to apply to the audio

information. In environments with a low SNR detected, less audio information is used. The

frames identified as non speech are averaged, and this produces the noise alone estimate,

Ly(m).

The results presented are generally positive, with both objective and subjective scores

displaying the potential of this work, as shall be discussed in the next sections.

Strengths

Fundamentally, this work demonstrates the potential for using visual information purely

as part of a multimodal speech enhancement system, with the visual information used to

remove noise from speech. Recent work builds on and extends preliminary work by Almajai &

Milner [12], with refinements throughout development, such as the addition of a VAD and the

increased sophistication of the speech filtering model. The system combines audio and visual

feature extraction, a multimodal VAD, and a visually derived Wiener filtering approach. This

is a sophisticated system that takes account of the level of noise when it comes to phoneme

decoding, and filters the signal differently depending on the phoneme identified.

The authors also report good results. It can be seen that objective speech evaluation

using three commonly used measures, PESQ, Log-Likelihood Ratio (LLR), and Itakura-Saito

Distance (IS) all showed a significant improvement in speech enhancement performance

when compared to the original noisy speech and a standard audio-only spectral subtraction

approach. Subjective human listening tests also showed that visually derived Wiener filtering

was effective at removing noise from speech, with a significant improvement being found at all

reported SNR test levels from 20dB to 5dB. This improvement was not reflected in the speech

distortion level (with visually derived filtering considered worse than unfiltered speech), but

the overall speech quality was considered to be an improvement over an audio-only spectral

subtraction technique at all SNR levels.

One strength of this work is that it focuses exclusively on delivering enhanced speech.

Much of the audiovisual speech work in the literature has focused on the fusion of audio and

visual modalities for different purposes, such as biometric authentication or automatic speech
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recognition, and so this speech enhancement work is significant and pioneering, with potential

for further development. The use of 2D-DCT as a feature extraction technique is validated, as

well as the potential of using a GMM for speech estimation and Wiener filtering.

Limitations

There are a number of limitations. Firstly, when the results are analysed, the most significant

results to consider are the subjective listening tests. While the work of the authors has reduced

the noise intrusion score, this is at the cost of increasing the speech distortion score, meaning

that even at relatively low SNR levels; listeners still have a slight preference for unfiltered speech

over visually derived speech. Additionally, the results are limited to relatively high SNR levels

(+5dB to +20dB), meaning that the system has not been tested in noisy environments. The

model also makes use of a complex phoneme dependent model, and when forced alignment is

used (i.e. manual labelling of phonemes), slightly improved results are obtained over standard

automatic phoneme recognition. This is because in the presence of noise, phoneme decoding

accuracy falls to 30% at 0dB, meaning that the accuracy of this system in noisy conditions is

poor.

Another limitation with this work is the relatively constrained range of the database used

for training. An audiovisual database containing 277 utterances for a single speaker is used.

This means that although good results have been found, it is effectively only trained and

tested with input from a single speaker. The speech estimation model is also trained with

training data from the same speaker, meaning that there is a potential lack of robustness in the

GMMs used. Another issue is that the visual filtering approach makes use of visual information

tracked by a camera, with the relevant ROI acquired with the aid of AcAMs; however, the

system proposed in this research does not take account of situations where a poor visual

feature-extraction result is returned. There are many ways in which a poor result could be

returned, for example, if the AcAMs do not correctly identify the ROI due to the visual signal

being corrupted by noise or the target speaker moving unexpectedly. More fundamentally, the

camera is head mounted and aimed by the listener, and while this is adequate in a laboratory

environment, in a real situation, the listener may not always be looking at the speaker, or the
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lip region may not be seen because of room lighting conditions or obstacles in the way (e.g. a

hand over the mouth, or another person coming between listener and speaker). So there are

limitations with this system due to being dependent on visual information.

When the Wiener filtering approach makes use of a VAD to determine speech and non

speech, it then calculates a noise-only estimate. However, this estimate makes the assumption

that the first few frames of the noisy speech signal are non-speech. The noisy speech itself

is also described as “corrupted”, but it is not specified whether the noise is simple additive

noise, or whether a more complex mixing matrix is used to provide a more realistic speech

filtering challenge. There is also the issue that speech is articulated differently in the presence

of noise, as described by the well-known Lombard Effect (Lee et al. [110], Lane & Tranel [107]),

which is not accounted for in the training of this system. It is clear that although the results are

promising, there is still a lack of flexibility in the application of this speech filtering approach.

Summary of Work

The visually derived filtering work carried out by Almajai & Milner [11] is of great interest

for further research. The use of visual information as part of a Wiener filtering system has

been shown to be effective and positive results have been found. Almajai & Milner [11] also

added complexity to the system by utilising an audiovisual VAD to provide more nuanced

filtering. There is much potential for further research development. However, there are some

limitations to the work such as being trained with a limited training set, and the system as

presented being strongly reliant on visual information, and not taking account of situations

without suitable camera input.

3.5 visual tracking and detection

3.5.1 Introduction

One aspect of relevance with regard to the system proposed in this thesis is the extraction of

relevant ROI information. This research focuses on developing an audiovisual framework, and
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part of that framework is the use of a suitable lip detection and tracking algorithm. This is an

area of active research and development (Wakasugi et al. [176], Liew et al. [117]), and while it

is relevant to this research, the development of a novel lip tracking algorithm was considered

to be outside the scope of this thesis. However, an automated detection and tracking approach

is required in order to accurately extract visual information for further processing, and for the

work presented later in this thesis, an existing approach is adapted using a ROI detector (Viola

& Jones [175]) and a lip tracking technique (Nguyen & Milgram [135]). It is therefore felt to be

relevant to summarise some recent developments in this research domain.

The remainder of this section provides a brief summary of recent developments in this field.

Firstly, some developments specifically to lip tracking are briefly covered, giving a number of

recent developments in a range of categories. The development of more general ROI detectors,

particularly the seminal Viola-Jones detector (Viola & Jones [175]), is also discussed, as some

lip tracking approaches still depend on a manual initialisation in the first frame, and utilising

a ROI detector can automate this process.

3.5.2 Lip Tracking

Lip tracking is an active field of research, with many different examples in the literature, such

as Shape Models Nguyen & Milgram [135], and Active Contour Models (ACM) (Kass et al. [99]).

Lip tracking represents a challenging research area, as it can be difficult to track lip images

due to issues such as a weak colour contrast between skin and lip areas (Das & Ghoshal [51]),

and also the elastic shape and non rigid movement of the lips during speech (Cheung et al.

[39]). There is also the issue of environmental conditions, with issues such as variable lighting

conditions to be taken into account, as well as the issue of overall face movement (i.e. not just

lip movement). A brief summary of a number of recent developments is discussed here.

Cheung et al. [39] divide lip tracking approaches into two main categories, edge based

approaches, and region based approaches. Edge based approaches, as suggested by the name,

rely on colour and edge information to track movement. This can rely on identifying colour
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contrasts (Zhang & Mersereau [192], Eveno et al. [58]), key points (Eveno et al. [59]), or points

considered to be ’corners’, as proposed by Das & Ghoshal [51]. These approaches work well

under desired conditions (i.e. a clean background and distinct features), but will produce poor

results if the image is not ideal (for example, in poor lighting conditions or when the subject is

wearing cosmetics that may interfere with contrast detection (Cheung et al. [39]). Some other

approaches include the use of ACM (Kass et al. [99]), also known as ’Snakes’, to detect edges.

ACM were first proposed in 1988 by Kass et al. [99] and are designed to fit lines (hence the

reason they are known as ’snakes’) to specific shapes for feature extraction. In the context of

lip tracking, this means fitting a contour around the edge of the lips in order to identify and

extract the lip shape. Snakes are based on minimisation of energy and operate by identifying

edges. The contour is shaped by the idea of external and internal energy. Ideally, internal

energy is minimised when the snake has a shape relevant to the desired object, and external

energy is minimised when the snake has correctly identified the boundary of the desired

object. There are many implementations of this technique for edge based lip tracking, and

some examples of this approach include work by Kass et al. [99] and Freedman & Brandstein

[62]. However, these can again deliver poor results in sub-optimal conditions. There is also

the limitation that models of the lip region may not accurately fit the precise edges.

Another example of an edge based approach is to use corner detection Das & Ghoshal [51].

This technique converts images to binary images, identifies the lower half of a face, and then

uses horizontal profile projection (Ji et al. [95]) (defined as the sum of pixel intensities in each

row of an image) to identify the rows of an image corresponding to the lip region. This is done

by identifying the two maximum points of the horizontal projection vector for the lower part

of the face (assumed by Das & Ghoshal [51] to correspond to the upper and lower boundaries

of the lip region. Of this region, corners are identified, using the Harris Corner Detector

proposed by Harris & Stephens [77]. Corners are defined as points for which there are two

dominant and different edge directions in the local region, and the Harris Corner Detector

identifies these corners based on the autocorrelation of image gradient or intensity values.

Although this implementation is interesting, it appears to be untested in anything other than
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extremely basic environments, and like other edge based methods, appears vulnerable to

noise within images.

Region Based approaches primarily make use of region based information. Cheung et al.

[39] identify four main categories of interest, Deformable Templates, Region Based ACM

approaches, AcAMs and Active Shape Models (ASMs). Firstly, ASMs use a set of landmark points,

derived manually from a training set of images to create a sample template to apply to the

area of interest. When presented with a new image, the template is applied, and then the

points are iteratively moved to match the face (fitting). This is a relatively simplistic approach,

although is relatively fast. It does require intensive and time consuming training however, and

suffers from a lack of robustness with images not similar to those found in the training set.

Some examples of this include research by Luettin et al. [122], who applied manual points to

train lip images, and also Nguyen et al. [136], who used ASMs to learn lip shapes by applying

multi-features of lip regions. This algorithm was also extended by the development of the

SAAM approach, which is discussed in more depth in chapter 4, and performs lip tracking

by online training of models, and also AcAMs which were first proposed by Cootes et al. [47].

These techniques again have the limitation of being dependent on initial parameter selection,

and the initial detection phase is separate from the tracking process.

AcAMs were originally developed by Cootes et al. [47], for face recognition and operate

by creating statistical models of visual features, making use of shape (as described above)

and texture information. The shape is defined as geometrical information that remains when

location, scale and rotational effects are filtered out from an object, and the texture refers to

the pixel intensities across the object. The initial shape models are combined with grey-level

variation in a single statistical appearance model. Models are trained with manually labelled

test-sets, and can then be applied to unseen images, the points are warped to make the model

fit the image, and this produces output parameters. Using AcAMs has the advantage that

detailed models can be produced, while still being relatively computationally efficient. The

disadvantage with this technique is that the models require time consuming and intensive

training before use, and can struggle to generalise accurately when presented with novel data.
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Deformable Templates were introduced by Yuille et al. [186], and operate in a similar way to

the ACM approach described above. An initial template is specified, with parameters matching

a lip shape. The minimisation of energy approach is then utilised to alter these parameters,

and then as the parameters are adjusted, the template is altered to gradually match the

boundary of the desired lip shape. This initial approach has been extended by others (Liew

et al. [117], Chiou & Hwang [41]). The limitation of this approach is that if there is a very

irregular lip shape, or the image has a very widely open mouth, then poor performance has

been found.

Region Based ACM approaches, are similar to the ACM approaches defined above, but rather

than searching for an edge, looks specific regions within an image are inspected in order to

minimise energy by dividing images into lip and non lip regions. This approach is described

by Cheung as generally being highly dependent on initial parameter initialisation, and while it

can outperform traditional edge based ACM approaches in some conditions, can also perform

poorly with complex lip shapes. Examples of this work include Wakasugi et al. [176], Cheung

et al. [39].

Cheung et al. [39] have proposed to extend a Localised Active Contour Model (Lankton &

Tannenbaum [108]), by using colour information, to create a Localised Colour Active Colour

Model (LCACM). Briefly, this is first initialised and the parameters set in the first frame by

using a 16 point deformable model, as proposed by Wang et al. [178], using image intensity

based techniques to identify the contrast between lip and non lip regions and therefore the

initial points. These points were then utilised to create the deformable model. The tracking

process then used these initial parameters to minimise the energy in colour based difference

between areas defined as lip and non lip region. This results in a system that is adaptive to lip

movement and produces accurate results in optimal conditions. This approach is an example

of a promising technique still in the relatively early stages of development. In terms of tracking,

it appears to produce promising results, but only on very limited test data (pre-processed

faces that are presented as being straight on with no image noise). It also relies, like other

techniques, on separate parameter initialisation.
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While these represent some lip tracking options, as can be seen from the examples above,

the initial lip detection and the lip tracking are often initialised in two distinct steps (Cheung

et al. [39], Nguyen & Milgram [135]), and are dependent on initial parameters being accurately

defined. Therefore it is also of interest to consider overall ROI detection algorithms that can be

used and adapted to automatically detect regions of interest and generate initial parameters.

The system chosen for use in this thesis, as described makes use of a lip tracking algorithm

proposed by Nguyen & Milgram [135] and tested in collaboration work with the author (Abel

et al. [2]). However, the initial parameters are required to be generated, and so looking at ROI

detection is of interest.

3.5.3 Region of Interest Detection

ROI detection is a key aspect of the image processing aspect of this research. In order to be

able to automatically track images, the ROI has to be successfully identified. In the system

discussed later in this thesis, the mouth region is utilised to process visual information, and

this is required to be automatically identified by the system. As part of this ROI detection

process, the role of face detection is of relevance for discussion.

There are a number of factors that make the detection of faces in an image a challenge, as

defined by Yang et al. [183]. These include pose, occlusion, image orientation, image conditions,

facial expression, and the presence of structural components. Pose refers to the position of the

face in relation to the camera, so the face may be frontal, at an angle, and significant features

may not be visible to the camera. Occlusion is related to this, in that the pose may result in

features being occluded, but it also refers to features being blocked by other objects. There

is also the issue of image orientation and conditions, concerning different rotations around

the optical axis of the camera, and also factors such as lighting conditions. Finally, structural

components refer to facial furniture such as beards and glasses, which may affect the detection

process.
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Yang et al. [183] in a paper from 2002, and Wang & Abdel-Dayem [177] classify face detection

approaches into four key categories. Firstly, Knowledge based approaches such as proposed in

work by Kotropoulos & Pitas [103], Yang & Huang [182] are rule based systems. These make

use of rules, often defined by human experts with facial features represented by differences

and positions from each other. From these rules, features can be extracted, and candidate

features can be identified based on these rules. However, the wide range of potential facial

features can make it difficult to translate facial features to good rules that are applicable to

more general cases.

The second category outlined by Yang et al. [183] covers Feature Invariant Approaches.

These work by extracting structural features of the face, specifically focusing on identifying

features that will be identifiable, even in environments when conditions like lighting and

pose vary greatly. The theory behind this is that humans are capable of identifying faces, even

in extremely degraded environmental conditions. Some examples of this approach include

Kjeldsen & Kender [100], Yow & Cipolla [185].

The third category identified covers template matching methods. These use standard

patterns of a face which have been trained and stored, either for identifying entire faces, or

for individual features. To detect ROI information, the correlations between the input image

and stored patterns are computed for detection. This can include shape models Luettin et al.

[122] using deformable templates, and also using ’snakes’ for contour information (Kass et al.

[99]). Although these approaches are widely used in state of the art tracking and identification

applications, with regard to detection, many template tracking approaches still require a

separate initialisation of the ROI (Cootes et al. [47], Nguyen & Milgram [135]). Appearance

based approaches are more commonly used in state of the art ROI detection approaches.

Appearance based methods are the final category of approaches identified by Yang et al.

[183]. This category describes models that are learned from training images. Rather than

templates, which are manually trained and configured, appearance based approaches rely

purely on trained true or false results from the training data. This approach requires a

considerable quantity of training data in order to be effective. Yang et al. identified a number

of approaches used, such as Eigenfaces (Kohonen [102]), Distribution-Based Methods (Sung
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[169]), and Neural Networks (Agui et al. [5]). This category of approaches is the most common

approach used in state of the art research in this field, and specifically, the development of

the Viola-Jones approach, pioneered by Viola & Jones [175], is one of the most influential

developments in recent years. Much research is focused on exploring, utilised, and extending

this approach.

The Viola-Jones Detector

The Viola-Jones detector (Viola & Jones [175]) is arguably one of the most important devel-

opments in the field of face detection. This is an appearance based method, with three main

components, the integral image, classifier learning with adaboost, and an attentional cascade

structure. The first aspect of the Viola-Jones detector to consider is the integral image, also

known as the summed area table. This is a technique used for quickly computing the sum

of values in a rectangular subset of a grid. This was first introduced to the field by Crow

[50], and is used for rapid calculation of Haar-Like features (which will be explained below).

Essentially, the value at any point of an integral image is the sum of all pixels above and to

the left of that point. It can be computed efficiently, and then any rectangle in that integral

image can be accomplished quickly. This is used in the Viola-Jones detector for the calculation

of Haar-Like features.

Haar-Like features represent an improvement on calculating all image intensities. They

were adapted from Haar wavelets, and use the integral image technique to calculate the sum

of intensities in specific rectangular regions within an image of interest. The sum of intensities

can then be compared for neighbouring regions, and then the difference between each of

these regions can be calculated, so for example, a lip boundary can be identified by finding a

difference between lip and non-lip pixel intensities. The Viola-Jones detector uses comparisons

of 2, 3, and 4 rectangles as part of the detection process. The detector is trained using a very

intensive process of training, requiring many hours of training images. Trained Haar-Like

features are available as part of the OpenCV library (Bradski [29]), limiting the requirement

for further training.
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There have been refinements to the original Haar-Like features. For example, Lienhart &

Maydt [116] introduced rotated features (rectangles at a 45 degree angle to the overall image),

and rectangles with flexible sizes and overlap distances were introduced by (Li et al. [115]).

Mita et al. [131] proposed the use of joint features, based on the principle that human faces

had incidences of co-occurrence of multiple features. There are many such developments, and

a more comprehensive description of these can be found in a detailed review by Zhang &

Zhang [191].

In order to identify the optimal features to use to reduce errors, an approach known a

boosting (Meir & Rätsch [127]) is utilised by Viola & Jones [175]. This is an approach that

aims to produce a very accurate hypothesis of a classification result by combining many

weak classifiers. The initial approach utilised by Viola & Jones [175] is a modified version of

the Adaboost (Freund & Schapire [63]) algorithm. The theory behind this approach is that

the number of Haar-Like features in any image sub-window will naturally be very large,

and in order to produce a usable and quick classification, the vast majority of features must

be excluded, with focus given to a very small number of critical features. At each stage of

the boosting process, a weak learning algorithm is designed to select one single Haar-Like

feature that best separates two distinct regions with the minimum number of errors. Each

weak classifier only depends on a single feature, and at each stage of the boosting process, the

strongest weak classifiers are weighted accordingly to produce the overall classification with

the least errors. With regard to face detection, Viola & Jones [175] found that the first feature

to be selected was a large feature demonstrating a strong difference between the eye region

and the upper cheek, and the second feature was contrast in image intensity between the

two eye regions and the bridge of the nose. There have been a number of refinements to the

original Adaboost algorithm, such as Gentleboost (Friedman et al. [64], Brubaker et al. [32]),

Realboost (Li et al. [115], Bishop & Viola [26], Schapire & Singer [161]), and JS-Boost (Huang

et al. [88]). Again, a very detailed summary is given by Zhang & Zhang [191].

The final component used in the Viola-Jones detector makes use of an attentional cascade

structure. As has been stated previously, most of the many sub-windows produce a negative

result, and so are not of relevance for classification. The cascade structure proposed by Viola
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& Jones [175] aims to exploit this to reduce computation time, by using a tree (cascade) of

trained classifiers. Simpler trained classifiers are used in the early stages to reject the majority

of sub-windows, with more complex classifiers used in later stages. In practice, this means

that computationally efficient classifiers are used to discard the vast majority of sub-windows

immediately, with a second stage being called only if a positive result was found in the first

stage. If a positive result is found here, then a third stage is then used. A negative result at any

stage results in the sub-window being rejected. This was found to be an efficient approach

with regard to face detection. However, the training of classifiers at each stage was found to

be extremely time consuming, with timescales of months talked about for early versions of

face detectors.

3.5.4 Summary

Overall, based on the discussions above, the research presented in this thesis makes use of

shape models for lip tracking, following the work of Nguyen & Milgram [135], as originally

tested in the collaborative work presented in Abel et al. [2]. This is an approach which was

felt to be suitable for the initial testing of the system described in this research due to its

robust nature and accurate results in tests of sentence from the relevant speech corpora used

for overall system testing. As described above, this approach requires the initial location of

the ROI to be specified. To accomplish this, the commonly used Viola-Jones detector is used,

using features trained specifically for lip detection. This follows the basic principles outlined

above of training using a cascade of classifiers. As the training process can be extremely

time consuming (Zhang & Zhang [191]), pre-trained HAAR-like cascades available from the

OpenCV library (Bradski [29]) are used. This allows for automatic selection of the lip region

and along with the lip tracking approach used, completely automates the visual feature

detection process.
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3.6 audiovisual speech corpora review

There are a number of audiovisual corpora now available for use as part of an audiovisual

system. While there are many audio-only speech corpora available for use, good quality and

large-scale audiovisual speech databases are less widely available. Many such as Clemson

University Audio Visual Experiments (CUAVE) (Patterson et al. [141]) are small scale corpora

designed for specific tasks, with often only the collection of isolated words or digits. For

more general speech processing use, larger databases with a range of speakers and sentences

are more useful. This section presents a review of selected audiovisual speech databases.

There are many potential databases, but this thesis only considers those that meet selected

criteria. Databases that are single modality are not considered to be within the scope of this

work, and neither are invasive multimodal databases, such as those that record subjects with

physical markers on their face. Corpora such as these are considered to be outside the scope

of this research, as are the multitude of older, specialist audiovisual speech databases. Of the

databases that meet these criteria, a selection of relevant databases is described in this section.

3.6.1 The BANCA Speech Database

The BANCA audiovisual speech database (Bailly-Bailliere et al. [16]) was primarily designed for

the purpose of biometric authentication. The BANCA project was a European wide project that

aimed to develop and implement multimodal security for applications such as remote banking.

This was done by developing verification schemes using audio and visual information. One

output of this project was the BANCA database. This database was proposed at a time when the

number of publicly available multimodal speech databases were very limited (Chibelushi et al.

[40]). It consists of a wide range of speech sentences (208) recorded from across Europe, with

data recorded in four languages, and in a range of different scenarios. This last condition was

especially relevant for authentication testing, for example, in controlled environments with a

good quality camera and microphone, and also in busier scenarios with poorer equipment (as
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Figure 10: Example of a speaker from the BANCA audiovisual database (Bailly-Bailliere et al. [16]) in
different recording environments.

shown in figure 10). Two types of camera, good and poor quality were used, two different

quality audio recordings were used, and data was recorded in three different environmental

scenarios (controlled, degraded, adverse). 52 subjects were used in different scenarios. In each

recording, the speaker was expected to provide two items of speech information. Both of these

consisted of data associated with biometric authentication, i.e. a series of numbers, and a

name, address, and date of birth.

One of the strengths of this dataset is that there is a wide variety of speech in a range

of environments. In the context of the audiovisual research area covered in this thesis, the

difference between adverse and controlled environments is of relevance to this work. The

corpus is available to purchase from the University of Surrey for a fee, although at the time of

writing this, currently only English language data is available. However, a crucial limitation of

this corpus is in the lack of natural speech data. Although there are very few truly natural

speech corpora due to the artificial nature of recording, this database is very limited because

the recording is designed for authentication research, with speakers mainly limited to reading

out sequences of digits or lines from a postal address, limiting its potential for speech filtering

work.
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Figure 11: Example of a speaker from XM2VTSDB Messer et al. [129] showing frames from a head rotation
shot. Image sequence taken from the official XM2VTSDB website (XM2VTS [181]).

3.6.2 The Extended M2VTS Database

XM2VTSDB (Messer et al. [129]) is another audiovisual speech database available from the

University of Surrey. This database contains data from 295 British-English speakers, with each

speaker reading three sentences. There are also head-rotation recordings for each speaker.

This corpus is designed for authentication and biometric purposes, with a large quantity of

data to enable security-focused multimodal recognition system training. This is similar to the

aim of the BANCA corpus described above. The data was recorded on a video camera and then

transferred to computer. Each speaker recorded the same three sentences “0 1 2 3 4 5 6 7 8 9”,

“5 0 6 9 2 8 1 3 7 4”, and “Joe took fathers green shoe bench out”.

This dataset has significant limitations with regard to speech enhancement research. Al-

though it contains a large number of speakers, the recordings make use of only a very small

range of sentences in limited conditions, and like the BANCA database, are more suitable for

dedicated biometric authentication, than for speech filtering research.

3.6.3 The AVICAR Speech Database

AVICAR (Lee et al. [110]) is a multimodal speech database recorded and released by the

University of Illinois at Urbana-Champaign. This was recorded as part of the AVICAR project,

and was designed for speech recognition. It contains video files and the associated audio

files for 100 speakers from a range of backgrounds, and is recorded in a noisy environment.

As people speak differently in the presence of significant levels of background noise by
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Figure 12: Example Screenshot taken from sample AVICAR video file.

involuntary raising their voice (the Lombard effect (Lee et al. [110], Lane & Tranel [107])), this

database takes account of this effect and accommodates a range of conditions by recording

speakers in an automobile. This provides different levels of background noise (i.e. different

car speeds, with associated varying levels of engine noise and wind effects), and as shown

by figure 12, there are four cameras recording the speaker from different angles, providing

significant levels of raw data to work with. Each speaker recites a range of data, including

single digits, single letters, phone numbers, and full speech sentences. There are audio

recordings of 87 native English language subjects, and 86 matching video sets available.

This corpus has the advantage of containing a wide variety of speech recordings; all

recorded at a variety of noise levels, and with a range of phonetically balanced Timit sentences

used. The dataset also takes account of the Lombard Effect, which can have an effect on

vocalising of words, and overall, this is a good corpus to consider for more advanced speech

filtering research.

3.6.4 The VidTIMIT Multimodal Database

VidTIMIT is a non-invasive Australian-English audiovisual speech corpus, recorded by Sander-

son & Paliwal [158], Sanderson [157]. It contains videos split into image sequences (see figure

13) and matching audio files for 43 speakers reciting a number of phonetically balanced Timit

sentences. There are ten sentences recorded for each speaker, with each subject speaking a



3.6 audiovisual speech corpora review 78

Figure 13: Sample frames from the VidTIMIT database.

variety of sentences. Each subject also recorded a head-rotation sequence. This corpus was

recorded using a broadcast-quality video camera, with image sequences stored as jpeg files,

and matching audio files provided. The corpus is available for use free of charge. VidTIMIT

was used by its author for biometric authentication research, but its range of sentences and

the size of corpus means that it does not suffer from the same limitations as many other

authentication corpora. Like the other non-invasive corpora reviewed in this section, the

speech data is recorded with no invasive markers or other distractions, and the speakers have

been given permission to move their head naturally.

Because whole sentences were spoken, rather than isolated words or digit sequences, this

provides a better simulation of spontaneous speech than some of the other corpora reviewed

in this section. The corpus is freely available and is very easy to download and use. This

makes the corpus a useful one, with a suitable range of speakers and sentences. However,

the main disadvantage of this corpus is the presence of continuous background noise, as it

is recorded in an office environment, resulting in a lack of truly clean speech. This means

that there is no completely clean speech data to use for model training purposes, making this

corpus more suitable for speech recognition or biometric authentication.

3.6.5 The GRID Corpus

The GRID corpus (Cooke et al. [46]) (example frame shown in figure 14), is an English language

multimodal speech corpus developed in the University of Sheffield. It contains 1000 sentences
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Figure 14: Example of a frame from the GRID corpus.

from each of 34 speakers, 18 male and 16 female. This corpus is free to download, and comes

in the form of a number of videos of each speaker, with one video per sentence. The audio

data is also provided in a separate file, making the corpus easy to use. Like VidTIMIT, there

are no physical restrictions placed on the speaker, and there are a very large range of speakers

and sentences available. Additionally, this corpus does not have the problem of background

noise, as the data is recorded in a visually and acoustically clean environment. The sentence

structure is influenced by the Coordinate Response Measure (CRM) task (Moore [132], Bolia

et al. [27]). CRM sentences were recorded in the format of “READY callsign GO TO color

digit NOW”, with the lower case words in each recording of a sentence being replaced with

a variety of data. In the GRID corpus, this was extended to use sentences in the form of

“COMMAND COLOUR PREPOSITION LETTER DIGIT ADVERB”, with each word being

changeable, producing example sentences such as “Put red at G 9 now.” This variation results

in a very large corpus of 34000 sentences.

This corpus has some extremely useful benefits. It is very large, with a large selection

of words, speakers, and sentences. It is also recorded in a visually and acoustically clean

environment, without any significant background noise. It is also very easy to download and

use.
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3.6.6 Audiovisual Speech Corpora Summary

The number of available audiovisual speech corpora has grown significantly in recent years,

with many large databases now available. Databases like CUAVE (Patterson et al. [141]) were not

considered in this work due to the limited speech content, and single modality databases were

also not considered. Of the corpora reviewed, the three most suitable multimodal databases

were found to be the GRID corpus, VidTIMIT, and AVICAR. Of these, AVICAR was considered the

least convenient to use, and GRID and VidTIMIT were chosen for use in this thesis. VidTIMIT

was used for early correlation research, but the main speech enhancement experiments (as

described in chapter 5), utilised the GRID corpus due to the superior clean audio speech

source quality.

3.7 summary

The established relationship between audio and visual aspects of speech production and

perception and the correlation between these speech modalities was examined by the author

in chapter 2. This chapter presented a detailed review of the literature relevant to this work.

Firstly, as the aim of this research is to develop a framework with consideration of potential

long term practical applications to future hearing aid design, a summary of current hearing

aid technology was provided, describing directional microphones, noise reduction algorithms,

and microphone arrays, which are proposed to be used as part of the system presented

in this thesis. Chung [44] also gave examples of systems where several of these elements

are combined, so for example, combining directional microphones with noise reduction

algorithms, which provides precedent for the two-stage speech enhancement system proposed

in the next chapter. This chapter also showed that another feature of modern hearing aids

is that some make use of decision rules, where a range of detectors are applied to the input

signal, with subsequent speech filtering decided by application of decision rules based on

different inputs. Although these are single modality approaches, this serves as the basis for
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further development later in this thesis, when the initial multimodal system is enhanced to

utilise fuzzy logic as part of a more intelligent fuzzy-logic based speech enhancement system.

As well as placing this work in the context of audio-only hearing aid research, another

relevant research field summarised in this chapter is audiovisual speech filtering. This chapter

presented a review of current audiovisual speech enhancement research, describing the initial

speech enhancement algorithms published in the literature, as well as subsequent state-of-

the-art developments in this field. To build up a picture of state of the art multimodal speech

enhancement, three particular strands of research were focused on in detail. Audiovisual

fragment decoding (Barker & Shao [18]) was examined, as well as visually derived Wiener

filtering (Almajai & Milner [11]), and multimodal blind source separation (Rivet [151]). The

system proposed in this thesis aims to utilise techniques similar to those pioneered by Milner

& Almajai [130], as part of a novel multimodal speech enhancement system, utilising both

audio and audiovisual speech filtering techniques. In addition, a brief summary was provided

of state of the art lip detection approaches, most prominently, the widely used Viola-Jones

detector.

Finally, the development of the system described in the next chapter has to be tested with an

audiovisual speech database. There are a range of research corpora available for this purpose,

and a selection of these were evaluated to assess their suitability for use as part of the speech

filtering research discussed in this thesis. It was found that the most suitable corpora for use

were the GRID Corpus (Cooke et al. [46]), and VidTIMIT (Sanderson [157]).

With the problem defined, and the research context established in this chapter, chapter

4 presents a proposed two-stage audiovisual speech enhancement system inspired by the

audiovisual speech filtering research discussed in this chapter. The system proposed in chapter

4 follows the principle described in this chapter of using directional microphones and noise

reduction algorithms together, as found in currently available audio-only commercial listening

devices.



4
A T W O S TA G E M U LT I M O D A L S P E E C H E N H A N C E M E N T S Y S T E M

4.1 introduction

The overall aim of this thesis is to utilise the relationship between audio and visual aspects

of speech in order to develop a speech enhancement system. This proposed multimodal

speech enhancement system aims to make use of both audio-only and visually derived

filtering techniques as part of a multi-stage filtering approach. Chapter 2 described the general

background behind this research, showing the established relationship between audio and

visual aspects of both speech perception and production, and also presented research into

multimodal speech correlation. Chapter 3 built on this background work by presenting a

detailed literature review summarising current relevant audiovisual speech enhancement

work in this research domain.

This chapter builds on the previous two by providing a detailed description of the initial

two-stage multimodal speech enhancement system presented in this thesis. This represents a

combination of a variety of state-of-the-art techniques, all integrated into one novel system.

Each individual component is described in detail, covering feature extraction, audiovisual

Wiener filtering, the audiovisual model required by this filtering approach, and audio-only

beamforming. This system is described in this chapter and an evaluation of the strengths and

weaknesses of this approach is presented in the following chapter. Chapter 4 presents the

technical description of this multimodal speech enhancement system.

The remainder of this chapter is divided into a number of sections. In section 4.2, an overall

summary of the system is presented, with the motivation and the framework summarised. The

simulated reverberant room used for production of noise and speech mixtures is then described

in section 4.3. Each component of the proposed system is then described in depth, starting

82
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with the microphone array (4.4), with sections also dedicated to audio feature extraction, lip

tracking using the SAAM approach, and then visual feature extraction. The visually derived

Wiener filtering approach is then discussed in section 4.7, followed by a description of the GMM-

GMR technique used for audiovisual speech modelling. Section 4.9 presents the audio-only

noise cancelling directional microphone beamforming approach (which exploits the spatial

diversity of different speech and noise source locations to suppress signals from unwanted

directions) used in this work, and finally, section 4.10 summarises this chapter.

4.2 overall design framework of the two-stage multimodal system

The speech filtering system presented in this chapter is an extension of existing audio-

only concepts, in that it extends the concept of an audio-only two-stage filtering system that

combines multiple audio-only filtering techniques into one integrated system, as demonstrated

in examples by Zelinski [189], Van den Bogaert et al. [173]. These systems are theoretically

more powerful than those using only a single technique due to the additional filtering offered

by utilising a combination of techniques and the addition of visual information may add

more potential still. The system presented in this chapter extends this idea by combining

audio beamforming with visually derived Wiener filtering to produce a novel integrated

two-stage speech enhancement system, theoretically capable of functioning in extremely noisy

environments. The overall diagram of this multimodal system is shown in figure 15.

The overall system diagram, as seen in figure 15, shows that the system is presented with

two inputs. Firstly, there is the audio input, which consists of a mixed speech and noise source,

and there is also a visual input, in the form of a video recording of a matching speech source.

The system receives the mixed audio signal input in the form of a microphone array and

then processes the signal with first visually derived Wiener filtering and then beamforming.

Although this is a state-of-the-art filtering system, the feasibility of a hardware implementation

of these algorithms in the near future is not beyond the realms of possibility. An example

of exciting new research developments being implemented in hardware is with hearing aid
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Figure 15: Block diagram of multimodal two-stage filtering system components.

products that have a multiple microphone array and processing hardware built discreetly into

a pair of glasses (Mens [128] Varibel-Innovations [174]). This demonstrates that miniaturisation

of speech processing hardware is reaching a stage where the concept of making use of a

camera in addition to microphones to augment such a system is becoming more feasible for

the end user.

To summarise the components utilised in this system and shown in figure 15, the audio

signal is received by the microphone array, and this signal is then windowed and transformed

into the frequency domain. This audio signal is then used as the noisy input into a visually

derived Wiener filtering process. In order to carry out this pre-processing operation, associated

visual features have to be extracted. This is carried out by utilising SAAM lip tracking to extract

mouth region information from the input image sequence, and 2D-DCT features are then

extracted and interpolated to match the audio input. This DCT information is then used

along with GMMs (which are trained offline) to produce an estimate of the noise-free audio

signal in the filterbank domain. This is then used to perform Wiener filtering. After this, the

pre-processed signals are then filtered using audio-only beamforming to produce an enhanced
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frequency-domain signal. Finally, this is then transformed back to the time domain and output.

The individual components of this system are each described in full detail in the remainder of

this chapter.

As can be seen in figure 15, there are a number of different components in this novel

integrated system. One strength of this system is that these individual components are

loosely coupled. For example, with regard to visual feature extraction, the GMM-GMR filterbank

estimation approach requires visual DCT information, but this does not have to be provided

specifically by the SAAM lip-tracking approach. The system is designed so that the lip tracking

technique can be easily upgraded without having to redesign the whole system. The same is

true for the GMM-GMR speech estimation stage, and also the two individual speech-filtering

stages. The system is explicitly designed to be scalable in order to take account of future

state-of-the-art developments in each of the specific associated research domains.

4.3 reverberant room environment

In order for speech filtering to be performed in an experimental environment, the speech

and noise sources have to be mixed. There are two main alternatives, additive or convolved

mixtures. Additive mixtures are the most simple method of combining speech and noise,

and simply consist of combining speech plus noise “speech+noise” to create a noisy speech

mixture. Although this is the simplest type of mixture to calculate and filter, and is used in

the literature (Almajai et al. [13]), it is not always necessarily a realistic mixture. A simple

additive mixture does not take into account factors such as the difference in location of

source and noise, atmospheric conditions such as temperature and humidity, or reverberation

(a natural consequence of broadcasting sound in a room). Reverberation, in the context of

this research, refers to the situation where large numbers of echoes are built up during the

transmission of a sound due to environmental factors such as a small room. These echoes

take time to dissipate, and so have an effect on the input received by a microphone or human

listener. Convolved mixtures of speech and noise can provide a more realistic noisy speech
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Figure 16: Diagram of simulated reverberant room used in this work to create noise and speech mixtures.
S represents the speech source, and N the noise source. The four circles represent the
microphone array used to receive the speech mixtures.

mixture. These convolved mixtures do not simply add the sounds together, but necessitate

the construction of a mixing matrix. Convolved mixtures are used in source-separation based

speech-filtering problems Rivet et al. [147], Hussain et al. [91], and represent a better and more

detailed example of a realistic noisy speech mixture in the context of this research.

In the work presented in this thesis, the noisy speech mixtures used are mixed in a

convolved manner. To do this, a simulated room environment is used, with the speech and

noise sources transformed with the matching impulse responses. Impulse responses represent

the characteristics of a room when presented with a brief audio sample, and these are then

applied to the speech and noise signals in the context of their location within the simulated

room. This gives them the characteristics of being affected by environmental conditions with

regard to microphone input. These sources are then convolved. This process is described in

more detail in section 4.4 of this chapter.

In order to create this speech mixture, the simulated room used in this work has a number

of parameters that have to be defined. Firstly, it is assumed that the speech and noise sources

originate at different locations within this simulated room, and a diagram of this room is
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shown in figure 16. It can be seen in this figure that this room has been designed with

dimensions of 5 by 4 by 3 metres and this room is considered to be a closed room (i.e.

completely walled with a ceiling). It is assumed for the purposes of calculating speed of sound

that the air temperature is 20 degrees Celsius, with humidity of 40%. In this diagram, figure

16 also shows the positions of the speech and noise sources, with the speech source (marked

in the diagram with ’S’) located at an xyz position of 2.50 metres, 2.00 metres, 1.40 metres,

and the noise source (marked by ’N’) having xyz coordinates of 3.00 metres, 3.00 metres,

1.40 metres. Finally, the position within the room of the simulated microphone input array

is represented in the diagram by four small circles, and is located at an x coordinate of 2.20

metres, y coordinates ranging from 1.88 to 2.12 metres, and at a height (z coordinate) of 1

metre. The exact convolution calculations are discussed in section 4.4. The specific speech and

noise sources vary depending on the experiments performed and the different SNR desired,

and these are discussed in more detail in chapter 5.

4.4 multiple microphone array

The previous section described the reverberant room environment used in this thesis. This

environment consisted of a closed room with speech and noise sources originating at different

locations, as shown in figure 16 (with ’S’ representing the speech source, and ’N’ the noise

source). This figure also shows that a multiple microphone array is used to receive the

noisy speech mixtures. The reason for these multiple microphones is to allow the directional

beamforming aspect of the integrated two-stage system to function. Directional microphone

filtering is commonly used in state-of-the-art hearing aids, as summarised in chapter 3.

As shown in figure 15 and the room diagram in figure 16, in the work presented in this

chapter, the noise and speech mixtures are received by an array of four microphones, with

each microphone at the same x coordinate, the same z coordinate, but slightly different y

coordinates. The first microphone is positioned 2.20 metres along the length of the room (x

coordinate), at a height of 1 metre (z coordinate), and with a y coordinate of 1.88 metres. The
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second microphone is positioned at the same x and y coordinates, but with a y coordinate of

1.96 metres. The third and fourth microphones also have the same x and z coordinates, but

have y coordinates of 2.04 metres and 2.12 metres respectively.

In the simulated room environment, it is assumed in this work that the noise and signal come

from different sources, as shown in figure 16. In this research, the noisy speech mixtures are

received by an array of four microphones. To summarise this concept, assume M microphone

signals, z1(t), . . . , zM(t) record a source x(t) and M uncorrelated noise interfering signals

x̂1(t), . . . , x̂M(t). Thus, the m-th microphone signal is given by,

Zm(t) = am(t) ∗ x(t) + x̂m(t), 1 6 m 6M (4.1)

where am(t) is the impulse response of the m-th sensor to the desired source, and ∗ denotes

convolution. In the frequency-domain convolutions become multiplications. Furthermore,

since in this thesis there is no interest in balancing the channels, the source is redefined so

that the first channel becomes unity. Hence, applying the Short-Time Fourier Transform (STFT)

to (4.1), this results in,

Zm(k, l) = Am(k, l)X(k, l) + X̂m(k, l), 1 6 m 6M (4.2)

where k is the frequency bin index, and l the time-frame index. Thus, this produces a set of

M equations that can be written in a compact matrix form as,

Z(k, l) = A(k, l)X(k, l) + X̂(k, l) (4.3)

with,

Z(k, l) = [Z1(k, l)Z2(k, l)...ZM(k, l)]T

A(k, l) = [A1(k, l)A2(k, l)...AM(k, l)]T

X̂(k, l) = [X̂1(k, l)X̂2(k, l)...X̂M(k, l)]T

(4.4)

This produces the convolved Fourier transformed microphone mixtures of speech and noise,

represented by Z1(k, l), . . . ,Z4(k, l). Each of these represents the transformed noisy input of

an individual microphone, sampled at 8 kHz. These input signals are then used to extract

audio log filterbank features, described in section 4.5, to produce the audio log filterbank
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values Fa(1), ..., Fa(4) for each microphone input, using an audio frame of 25ms with a 50

percent overlap. At the same time, matching visual DCT features Fv are extracted from the

video recordings, which will be described in section 4.6.

4.5 audio feature extraction

The previous section described the process of receiving noisy speech signals from the micro-

phone inputs and transforming them to the frequency domain. These transformed signals

are used in the second stage of this integrated multimodal system to carry out audio-only

beamforming. Before the second filtering stage, the initial stage of the filtering process makes

use of visually derived Wiener filtering. For this, the audio input has to be transformed to

make it possible for audio to be estimated given visual data (as is described in more detail in

section 4.7). The initial Fourier transformed noise mixtures are further transformed to produce

the magnitude spectrum, and subsequently log filterbank values. These are used as part of

the visually derived filtering process.

Therefore, in the system presented in this chapter, a filterbank dimension of M = 23 filters

is used. This is motivated by other work in the literature such as Almajai et al. [13], which uses

the same size of filterbank. The relationship between linear and Mel frequency is given by,

f̂mel = 2595 · log10
(
1+

flin
700

)
(4.5)

In this implementation, the limits of the frequency range are the parameters that define the

basis for the filter bank design. The unit interval ∆f̂ is determined by the lower and the higher

boundaries of the frequency range of the entire filter bank, f̂high and f̂low, as follows,

∆f̂ =
f̂high − f̂low

M+ 1
(4.6)

the centre frequency f̂cm of the m− th filter is given by,

f̂cm = f̂low +m∆f̂, m = 1, ...,M− 1 (4.7)
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where M represents the total number of filters in the filterbank. The conversion of the centre

frequencies of the filters to linear frequency (Hz) is given by,

f̂cm = 700 ·
(
10f̂cm/2595 − 1

)
(4.8)

and the shape of the m-th triangular filter is defined by,

Hm(k) =



0 k < fbm−1

k−fbm−1
fbm−fbm−1

fbm−1
6 k 6 fbm

m = 1, ...,M

fbm+1
−k

fbm+1−fbm
fbm 6 k 6 fbm+1

0 k > fbm+1

(4.9)

where fbm are the boundary points of the filters and k = 1, ...,K corresponds to the k− th

coefficient of the K-points DFT. The boundary points fbm are expressed in terms of position,

which depends on the sampling frequency Fsamp and the number of points K in the DFT,

fbm =

(
K

Fs
· fcm

)
(4.10)

For computing the log filterbank parameters, the magnitude spectrum |Z(k)| of each mixed

noisy audio signal acts as the input for the filterbank Hm(k). Next, the filterbank output is

logarithmically compressed to produce the log filterbank audio signal for further processing,

Fa = ln

(
K−1∑
k=0

|Z(k)| ·Hm(k)

)
(4.11)

This produces the log filterbank signal Fa of each microphone input, which is used, along

with matching visual information (the extraction of which is discussed in the next section) to

carry out visually derived speech filtering.

4.6 visual feature extraction

As has been stated previously, the system presented in this thesis is multimodal. This means

that in addition to the audio features discussed in the previous sections, in order to perform
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visually derived filtering, there is an obvious requirement for visual feature extraction. The

visual filtering algorithm relies upon DCT vectors taken from lip information, and this section

discusses the extraction of these features.

In this thesis, visual lip features are extracted by using the state-of-the-art SAAM approach

pioneered by Nguyen & Milgram [135] and also used in work carried out by the author in

Abel et al. [2]. There are many different approaches to lip tracking and visual tracking in

general, with much active research and many state of art commercial solutions such as the

Microsoft Kinect, that makes use of infrared and Red Green Blue (RGB) cameras to track

skeletal frames. There are many such techniques, and the detailed exploration of these is

considered to be outside the scope of this thesis, and will not be discussed in this work. It

was decided to make use of the SAAM technique for a variety of reasons. Firstly, although

it is possible to extract lip information by manually cropping each frame, this technique is

obviously extremely time consuming. Although the approach of manually extracting each

ROI from a video sequence by cropping was used for some of the preliminary correlation

work presented in the background chapter (chapter 2), it was decided that this process had to

be automated when research was extended to a larger scale. The chosen approach had one

key advantage in that it was considered state-of-the-art, and collaborative work took place

with the developers of this technique (Nguyen & Milgram [135]) who also reported good

results with this technique, to adapt and test this system in the context of multimodal speech

processing, resulting in the publication of the first utilisation of the SAAM approach in the

context of speech correlation in Abel et al. [2]. Another benefit of using this approach was that

the chosen tracking technique was a standalone component that could be integrated into the

system without difficulty. Its loose integration with the other components of this system also

means that it is feasible for this approach to be replaced in future work with a different front

end without any difficulty. The results of informally testing this SAAM approach with a range

of different speech sentences from the GRID corpus found that the system was able to reliably

and successfully track data from this corpus; making it suitable for use in this work. Finally,

there was also the ’convenience’ aspect of using this approach. As will be explained later in
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this section, the system uses online training, and learns each sentence automatically, frame by

frame, allowing the focus of this research to be mainly on the speech filtering aspect.

There are three main components needed for the successful utilisation of visual information

as part of a speech processing system. The first is accurate ROI detection. The second is the

ability to automatically track and extract the ROI in each frame of a speech sentence, taking

into consideration that the speaker may not remain completely still throughout. Finally, each

cropped ROI frame has to be extracted and transformed into a format suitable for further

processing.

While there are many lip tracking approaches that have been proposed in the literature

(Cheung et al. [39], Nguyen & Milgram [135]), some of these require the initial identification

of the ROI, with approaches such as AcAMs (Cootes et al. [47]) being highly dependent on the

setting of initial parameters. Therefore, while the SAAM lip tracking approach is used in this

thesis, the extraction of the ROI is a separate issue. As stated, there are many examples of both

lip tracking and ROI detection in the literature (Iyengar et al. [93], Wark & Sridharan [179]), and

a summary of these was presented in chapter 3. One key point is that widely used appearance

based techniques require considerable time consuming training, due to the requirement for

manual training on images. Therefore, it was decided to make use of an implementation of

the Viola-Jones (Viola & Jones [175]) detector by (Kroon [104]). The Viola-Jones detector, and

variations of it, are amongst the most widely used ROI detection techniques for facial features,

with the implementation discussed in more detail in chapter 3.

Essentially, the Viola-Jones has three main components, the integral image, classifier learning

with adaboost, and an attentional cascade structure. The integral image (Crow [50]), also

known as the summed area table, is a technique used for quickly computing the sum of

values in a rectangular subset of a grid, and is used for rapid calculation of Haar-Like features.

Haar-Like features use the integral image technique to calculate the sum of intensities in

specific rectangular regions within an image of interest. The sum of intensities can then be

compared for neighbouring regions, and then the difference between each of these regions

can be calculated, so for example, a lip boundary can be identified by finding a difference
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Figure 17: Example of initial results from Viola-Jones Lip Detection process. Rectangles indicate a
possible candidate ROI.

between lip and non-lip pixel intensities. The Viola-Jones (Viola & Jones [175]) detector uses

comparisons of 2, 3, and 4 rectangles as part of the detection process.

The training of an appearance based lip detector can be a very intensive and time consuming

process, and so in this work, it was decided to make use of Haar-Like features that have been

specifically trained for lip detection and are available as part of the OpenCV Bradski [29]

library, limiting the need for further training. The chosen lip detection implementation runs

the algorithm on a single image frame, and then returns a number of potential candidate ROI

areas. An example of this initial output is shown in figure 17.

It can be seen in the example given in figure 17 that a number of these candidates are

correct, with the majority centred around the mouth region as would be expected. However, it

can also be seen that a number of other potential matches are found, in the example of figure

17 a number of candidates can be seen around the left eye region of the image, as well as

another candidate around the right eye. This is a common occurrence, and the final decision

was made by customising the initial code in a similar manner to other work, including by

Viola & Jones [175]. The candidate areas were divided into a number of different subsets by

firstly identifying overlapping candidates. If one candidate had an overlap with another of

65% or greater (value chosen manually after investigation of preliminary test data), then the

candidates were considered to belong to that subset. This had the effect of both dividing

the candidates into subsets, and also removing values with only a small overlap. It was
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Figure 18: Example of initial results from Viola-Jones Lip Detection process. Thinner rectangles indicate
a possible candidate ROI, and the thicker rectangle represents the final selected mouth region
to be used for tracking.

then assumed for the purposes of this research that the subset with the greatest number

of candidate members was the relevant mouth area. This is because the data used for this

research concentrates on single face scenarios.

To calculate the final ROI area, the mean of all the values within the most relevant subset

was calculated, producing a single rectangular ROI. Testing (which will be discussed in more

depth in chapter 5) of the detector identified a number of issues. Firstly, to produce a more

relevant ROI, it was found that the detected areas were smaller than ideal. This was solved by

adding 20 pixels to the width and 10 to the height in order to contain more useful data. An

example of this refined output can be seen in figure 18. This is the same image as figure 17,

but the thicker rectangle represents the final output.

The second issue was that in a very limited number of cases, the detector did not successfully

identify the lip region. The problem lies with the trained Haar-Like features, rather than in

the code, and this was solved by running a check on the initial number of candidates. If an

image was found to produce less than 7 candidate ROI areas, then a second scan of the image

was run, using different Haar-Like features. These were trained to identify the whole face,

and were found to work reliably in all tested incidences. The face region was then cropped

to produce an estimate of the lip region. This was found to be sufficient to produce a valid
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result, and was deemed to be suitable for use as part of the work presented in this thesis. Lip

detection testing is discussed in more detail in section 5.4 of chapter 5.

This lip detection was used in the first frame of the image to identify the ROI. As previously

stated, the second aspect, lip tracking, is handled by using the SAAM technique. Finally, the

extraction of visual information into a usable format 2D-DCT) is covered later in this section.

Lip tracking essentially deals with non-stationary data, as the appearance of a target object

may alter drastically over time due to factors like pose variation and illumination changes.

The lip tracking framework discussed is based on the Adaptive Appearance Models (AAM)

approach by Levey & Lindenbaum [111], which allows for the updating of the mean and Eigen

vectors of g-dimensional observation vectors vo ∈ Rg. First, the AAM technique is extended by

inserting a supervisor model (Golub & Van Loan [72]) that verifies the AAM performance at

each frame in the sequence, by using a Support Vector Machine (SVM) to filter the AAM result

for an individual frame, as shown in (4.12) ,

y (vo) = sgn

(∑
i

αiv̂iω (voi, vo) + b

)
(4.12)

Where y(vo) ∈ {−1, 1} signifies whether vo represents a good or bad result. α,b are trained

offline with the SVM (Cauwenberghs & Poggio [34]), ω (.) is the Gaussian kernel function and

voi,v are trained and observation vectors respectively. Each v̂i represents the desired output

of each example vTi from the offline training dataset.

Secondly, shape models are constructed to allow the SAAM technique to track feature points

in video sequences. To model deformation, a shape model is formed,

S◦ = S◦ + Psb (4.13)

where S◦ =
(
v◦o1, v̂◦1, . . . , v◦oj, v̂

◦
j

)
is a normalised shape and j represents a number of feature

points. To track these, it is sufficient to find the parameters,

p = [bo1, . . . ,φv,φq, θ, s] (4.14)
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where bi is the coefficient to deform S◦, and φv,φq, θ, s represent translations, rotation and

scale parameters respectively. To track a target object, the aim is to maximize the cost function

given in (4.15) as follows,

p∗ = arg max
p

(ye) (4.15)

Where ye is a negative exponential of projection error between vot and the Principal

Component Analysis (PCA) subspace created by earlier observations, defined by equation 4.16

as follows,

ye = exp

(
−
∥∥∥(vot − v̄o) −UUT (vot − v̄o)∥∥∥2) (4.16)

Note that the distance ye is a Gaussian distribution, with Eigen vectors U and mean v̄o,

ye = p (vot|p) ∝ J
(
vot; v̄o,UUT + εI

)
as ε → 0, and the inverse matrix can be solved by

applying the Woodbury formula (Golub & Van Loan [72]), given in equation 4.17 as follows,

(UU+ εI)−1 = ε−1
(
I− (1+ ε)−1UUT

)
(4.17)

The optimal parameter p∗ is found with a number of iterations. Here, empirical gradient

is used, since the cost function is evaluated in the neighbourhood of the current parameter

vector value. The tracking algorithm used in this thesis works as follows,

1. Manually locate target object in the first frame (t=1). Eigen vectors U are initialized as

empty. The tracker initially works as a template based tracker.

2. At the next frame, find the optimal parameters p∗ = argmax
({
ye
(
pωi ∗

)})
over a

number of iterations:

• For each parameter pi.

• For each ∆p and ω ∈ {−1, 1}, compute pωi (p1, . . . ,pi + c∆p, . . . ,pc+4)

• Compute i∗ = max
{
ye
(
pωi
)}

• Do p← pi∗, store ye
(
pωi ∗

)
3. Check the observation vector: vo = vo

(
Ξ
(
S
′
e,p∗

)−1)
where Ξ is a transformation

matrix, with result estimation phase as shown in equation 4.12
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Figure 19: Demonstration of tracker running on an image sequence from the GRID audiovisual corpus.
Selected frames from one sequence are shown. This figure demonstrates the automatic
movement of the ROI to maintain focus on the lip region.

4. If y (vo) = 1, this signifies a good result to add to the model. When the desired number

of new images has been accumulated, perform an incremental update.

5. Return to step 2.

The performance of this tracker is shown in figure 19, which shows selected frames from one

image sequence. The rectangle around the lip region represents the ROI, which was manually

identified in the first frame, and subsequent frames then automatically tracked this region to

maintain focus on the desired area.

After tracking a sequence of lip images with this technique, the 2D-DCT vector Fv = 2D−

DCT (v) of each image in the sequence is found. A number of different visual feature extraction

techniques have been used in the literature, but as shown in chapter 2, 2D-DCT is extremely

common and has been used by others, such as Sargın et al. [159], Almajai & Milner [10]).
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DCT was originally developed in 1974 by Ahmed et al. [6], and is a close relative of the DFT.

This was extended for application with image compression by Chen & Pratt [37]. The one-

dimensional DCT is capable of processing one-dimensional signals such as speech waveforms.

However, for analysis of two dimensional signals such as images, a 2D-DCT version is required.

For a VU x VV matrix VP of pixel intensities, the 2D-DCT is computed in a simple way:

the 1D-DCT is applied to each row of VP and then to each column of the result. Thus, the

transform of VP is given by the DCT matrix VDCT ,

VDCTm,n = VWmVWn

VU−1∑
Vu=0

VV−1∑
Vv=0

VPvu,vv cos
(
m(2Vu + 1) · π

2Vu

)
cos
(
n(2Vv + 1) ·

π

2Vv

)
(4.18)

with 0 6 m 6 VU − 1, 0 6 n 6 VV − 1,

VWn =


√
1/Vv if n=0√
2/Vv otherwise

and VWm =


√
1/VU if m=0√
2/VU otherwise

(4.19)

Since the 2D-DCT can be computed by applying 1D transforms separately to the rows and

columns, this means that the 2D-DCT is separable in the two dimensions. The first 30 2D-DCT

components of each image are vectorised in a zigzag order to produce the vector for a single

frame in an image sequence. The resulting 2D-DCT sequence of frames is then interpolated to

match the equivalent audio log filterbank matrices for the matching speech sentence. As the

video used in this work is recorded at 25fps, this means that the 2D-DCT sequence is upsampled

to match the audio features by using the same visual feature frame for four consecutive audio

frames, a technique commonly used in the literature.

4.7 visually derived wiener filtering

Wiener filtering (Wiener [180]) is a signal processing technique that aims to clean up a noisy

signal by comparing a noisy input signal with an estimation of a noiseless signal. This

technique is very commonly used in image processing for image reconstruction (Hiller &

Chin [83]) by removing noise from degraded images, and has also been experimented with

in speech enhancement to filter an audio speech signal (Almajai et al. [13], Zelinski [189]).

One challenging aspect of Wiener filtering is the acquisition of an estimation of the noiseless
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signal. Unlike some other speech filtering approaches, some knowledge of the original signal

is required.

In this thesis, visual information is used to filter speech by making use of the relationship

between acoustic and visual components of speech production as the means of producing

the estimate of the original audio signal, and comparing this estimate to the noisy signal.

This represents the first stage of filtering in this two-stage approach and acts as the pre-

processing step before the audio-only beamforming described later in this chapter. The Fourier

transformed audio signal is used as an input, in tandem with associated visual information.

In this system, the Wiener filter, W(γ), is calculated in the frequency domain from the Power

Spectrum (PS) estimate of clean speech (Ψâ(γ)) and the noisy speech mixture PS (Ψa(γ)) as,

W(γ) =
Ψâ(γ)

Ψa(γ)
(4.20)

This produces the Wiener filter to be applied to the input signal. However, as stated, this

is challenging to implement in this form, due to the difficulty of accurately calculating the

clean PS, Ψâ(γ), from visual information. Firstly, there are a variety of ways to calculate the PS

of the noisy signal. One example is utilised by Almajai & Milner [11], where a VAD is used

to identify non speech frames, and a noise alone PS is calculated. This is then added to the

estimated speech alone PS to produce an estimated noisy speech PS. However, in this work,

it was decided to use the power spectrum of the noisy speech mixture as a whole. This is a

parameter that can be varied without difficulty, and using the noisy PS on a frame by frame

basis also allows for a wide frame by frame variation in potential volume or type (aircraft,

white noise etc.) of noise source. So therefore, Ψa(γ) is simple to calculate from the noisy

audio signal, but it is less straight forward to estimate the noise free PS.

This is where the input data from visual feature information can be utilised. Although

it is very hard to estimate PS information directly from visual information, it is possible to

estimate log filterbank values. Therefore, in the system, it is proposed to make use of the log

filterbank vectors Fa(1), ..., Fa(4), as described in section 4.5, and the 2D-DCT vector Fv, which

is calculated as outlined in section 4.6, as inputs into the filter, with each audio channel being

processed separately. Previous work by others (Sargin et al. [160], Almajai et al. [13]) showed
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that it is possible to estimate audio features from visual features, and produce the estimated

noise free log filterbank vectors Fâ(1), ..., Fâ(4). The production of these estimates is described

in more depth in section 4.8. For each channel, this is then transformed into a linear filterbank

estimate of the clean audio signal, which is then interpolated to match the dimensionality

of the audio 2D-DCT Ψa(γ) with pchip interpolation (Fritsch & Carlson [65]). This produces

an estimate of the noise free power spectrum, Ψâ(γ), which can be used to find W(γ) as

shown in equation 4.20. To find the enhanced power spectrum value, Ψā(γ), the noisy power

spectrum Ψa(γ) and the Wiener filter W(γ) can be used as given in equation 4.21,

Ψā(γ) = Ψa(γ)W(γ) (4.21)

The key aspect of equation 4.20 is producing an estimate of the clean audio filterbank signal

Fâ to use as part of the filter. In this work, it is proposed to make use of Gaussian Mixture

Regression (GMR), as described by Calinon et al. [33], and outlined in section 4.8. Following

this filtering, the phase, $(γ), of each Fa is calculated and combined with Ψā(γ), to update

the frequency domain Fourier transform Z(k, l) (see equation 4.3), for further processing.

4.8 gaussian mixture model for audiovisual clean speech estimation

As mentioned in the previous section, a crucial aspect of this system is the production of

an estimate of the noise free signal for use by the Wiener filter. In order to provide such

an estimate, the joint audio and visual speech relationship has to be modelled. There are a

variety of different approaches, for example, it is possible to make use of an approach utilising

GMMs as demonstrated by Almajai & Milner [11]. There are also a range of other modelling

alternatives available, such as using a number of different GMMs for each speech phoneme,

requiring significant speech segmentation both in training and in the actual system. One

alternative to this approach though, is one that was developed by Calinon et al. [33], GMM-GMR.

This is a technique that was originally developed for robot arm training, and in the work

presented in this thesis, it has been adapted to be applied to the estimation of log filterbank

audio vectors given a training set for offline training and valid visual input data. Although the
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Maximum a Priori (MAP) approach has been used in this field previously, to the knowledge

of the author, this research represents the first example of applying this GMM-GMR technique

to audiovisual data for speech filtering. The performance of this approach is discussed in

chapter 5.

To implement this GMM-GMR approach, this work makes use a method first outlined by

Calinon et al. [33] to encode the audiovisual signals in a mixture of GMMs, by considering each

visual DCT vector Fv as an input in order to find an estimation of the equivalent noiseless

audio signal by using GMR.

A mixture model of Q components of the joint audiovisual vector Fav is defined by a

Probability Density Function (PDF),

e(Fav) =

Q∑
q=1

e(q)e(Fav|q) (4.22)

with e(q) representing the prior, and e(Fav | q) representing the conditional PDF.

To model the joint audiovisual data Fav of dimension C, an offline training set is needed to

train a mixture of Q Gaussians of dimensionality C. The performance of this aspect of the

system is dependent on the training data provided, and so a training set using the GRID

Corpus was used for this purpose, combining audio and visual data into a single training set.

The detailed composition of the training set is discussed in chapter 5. Returning to the PDF

described in (4.22), the parameters in equation 4.22 become,

e(q) = πq

e(Fav|q) = N(Fav;µq,Σq)

= 1√
(2π)C|Σq|

e
1
2 ((Fav−µq)

TΣ−1
q (Fav−µq))

(4.23)

with πq representing the prior, µq the mean, and Σq the covariance matrix of Gaussian

component q. K-means clustering is applied to the joint vector training set to produce an

initial estimate of GMM parameters, and Maximum Likelihood Estimation is performed on

the model using Expectation Maximisation. The trained GMMs can then be used to perform

GMR and with the aid of the input visual vector Fv, return an estimated value of the noiseless

filterbank audio vector. For each frame of the speech signal, the mean and the covariance
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matrix of the Gaussian component q are divided into their visual and audio components, as

defined by,

µq = {µv,q,µa,q} , Σq =

 Σv,q Σva,q

Σav,q Σa,q

 (4.24)

For each Gaussian component q, Σ̂a,q, the expected conditional covariance, of Fa,q given

Fv is defined as,

Σ̂a,q = Σa,q − Σav,q(Σv,q)
−1Σva,q

(4.25)

and Fâ,q, the conditional expectation of Fa,q given Fv is defined as,

Fâ,q = µa,q + Σav,q(Σv,q)
−1(Fv − µv,q)

(4.26)

Fâ,q and Σ̂a,q are mixed depending on the probability that q ∈ {1, . . . ,Q} has of being

responsible for Fv, as shown by,

βq =
e(Fv|q)

Σ
Q
i=1e(Fv|q)

(4.27)

For a mixture of Q components, Σ̂a, the conditional covariance, and Fâ, the conditional

expectation of Fa given Fv are defined as,

Σ̂a =

Q∑
q=1

β2qΣ̂a,q, Fâ =

Q∑
q=1

βqFâ,q (4.28)

Where Fâ represents the estimated log filterbank signal to be processed further as described

in section 4.7. This audio log filterbank estimation is then used as part of the visually derived

filtering approach, and enables the first stage of the two-stage speech filtering process to be

performed. The resulting filtered signals are then used for audio-only beamforming.

4.9 beamforming

Multiple microphone techniques such as beamforming can improve the quality and intel-

ligibility of speech by exploiting the spatial diversity of speech and noise sources to filter

speech. This is an active research field, with many different techniques developed. Within
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these techniques, one can differentiate between fixed and adaptive beamformers. The former

combines the noisy signals by a time-invariant filter-and-sum operation, the latter combine

the spatial focusing of fixed beamformers with adaptive noise suppression, such that they are

able adapt to changing acoustic environments and generally exhibit a better noise reduction

performance than fixed beamformers. The Generalised Sidelobe Canceller (GSC) is a very

widely used structure for adaptive beamformers and a number of algorithms have been

developed based on it. Among them, the general Transfer Function Generalised Sidelobe

Canceller (TFGSC) suggested by Gannot et al. [67], has shown impressive noise reduction

abilities in a directional noise field, while maintaining low speech distortion.

In this work, the TFGSC beamformer is used on the pre-processed speech and noise mixtures

as extracted in section 4.4 and pre-processed in section 4.7. This single modality technique

receives multiple microphone signals, and then utilises them to output a single filtered signal.

This follows examples of directional microphones utilised in commercial hearing aids and

multi microphone array listening aids, as summarised in chapter 3. In the system presented in

this chapter, the input signals have been pre-processed by the visually derived Wiener filtering

before being processed by audio-only beamforming. The beamforming approach used here is

loosely integrated into the system, and so can be replaced by a different filtering mechanism

to take account of further state-of-the-art research developments.

The general GSC structure is composed of three main parts: a Fixed Beamformer (FBF) G(k),

a Blocking Matrix (BM) Ḡ(k), and a multichannel Adaptive Noise Canceller (ANC) H(k, l).

The FBF is an array of weighting filters that suppresses signals arriving from unwanted

directions. The column of the BM can be regarded as a set of spatial filters suppressing

any component impinging from the direction of the signal of interest, thus yielding M− 1

reference noise signals ˜(k, l). These signals are used by the ANC to construct a noise signal to

be subtracted from the FBF output. This technique attempts to eliminate stationary noise that

passes through the fixed beamformer, yielding an enhanced output signal X̄(k, l). Thus, the

enhanced beamformer output X̄(k, l) can be written as,

X̄(k, l) = X̄FBF(k, l) − X̄NC(k, l) (4.29)
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where X̄FBF(k, l) represents the output of the FBF, and X̄NC(k, l) the noise signal to be

subtracted from the FBF. The FBF output can be described as,

X̄FBF(k, l) = GH(k, l)Z(k, l) (4.30)

with GH(k, l) , representing the FBF, and Z(k, l), the Fourier transformed microphone inputs,

as described in section 4.4. The noise signal to be subtracted from this, X̄NC(k, l) , is defined

as thus,

X̄NC(k, l) = HH(k, l)˜(k, l) (4.31)

where HH(k, l) , represents the ANC, value and ˜(k, l) the reference noise signals, defined as,

˜(k, l) = ḠH(k, l)Z(k, l) (4.32)

with Ḡ(k) being the BM and Z(k, l), as already mentioned, being the Fourier transformed

microphone inputs. The FBF and BM matrices are constructed using the ATF ratios as follows,

G(k, l) =
A(k, l)

‖A(k, l)‖2
(4.33)

Ḡ(k, l) =



−
A∗2(k,l)
A∗1(k,l) −

A∗3(k,l)
A∗1(k,l) ... −

A∗M(k,l)
A∗1(k,l)

1 0 ... 0

0 1
. . . 0

0 0 . . . 1


(4.34)

Note that the computation of both G(k) and Ḡ(k) requires the knowledge of the ATF ratios.

In this work, for simplicity, the true impulse responses am(t), are directly transformed as

defined in section 4.4, into the frequency domain. This filtering operation produces the output

frequency domain filtered output signal X̄(k, l) . To transform this signal back to the time

domain, an inverse Fourier transform is carried out, resulting in x̄(t), the production of the

final output signal of the two-stage filtered speech system. This final output is then used for

performance analysis of the system, as described in chapter 5.
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4.10 summary

In recent years, the established relationship between audio and visual aspects of speech

production and perception has been conclusively demonstrated, as summarised in chapter 2.

This relationship has been exploited by various recent developments in audiovisual speech

filtering, where audio-only algorithms are extended to become multimodal with the addition

of visual information. This has been carried out in a variety of ways in the literature, for

example, Rivet [151] developed a system where the visual information is used purely as

part of a source separation system. Another example summarised in chapter 3 was to use

visual information as part of a single stage visually derived speech filtering system (Almajai

& Milner [12]).

The multimodal speech filtering system designed by the author and presented in this

chapter was inspired by both the relationship between audio and visual speech information,

and by single modality work in the literature that combines multiple speech techniques as

part of one integrated speech enhancement system. The system described in this chapter

uses visually derived Wiener filtering in addition to audio-only beamforming as part of a

novel integrated, multimodal speech enhancement system, designed to function in adverse

environments. This chapter describes each component of this system in detail. The general

configuration of the reverberant room environment was discussed in Section 4.3, followed by

a description of the multi microphone array used for audio input. The next section, section

4.5, described the filterbank based audio feature extraction process. In section 4.6, visual lip

tracking using the state-of-the-art SAAM tracking approach, and the subsequent visual feature

extraction process using 2D-DCT was discussed. This was then followed by a description of

the visually derived filtering process in section 4.7, and then the GMM-GMR technique used

to create the audiovisual speech estimation model. Finally, the second stage of the speech

filtering process used in this system, audio-only beamforming, was described in section 4.9.

These components were combined to create a loose, scalable, framework that is possible to

upgrade with state-of-the-art developments in the future.
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However, the system presented in this chapter is in need of thorough evaluation to assess

its strengths and weaknesses. This chapter only presented a detailed system description of the

individual components, not a comprehensive performance analysis. Chapter 5 carries out a

thorough review of the strengths and limitations of this initial system.



5
E X P E R I M E N T S , R E S U LT S , A N D A N A LY S I S

5.1 introduction

As discussed in chapter 2, the multimodal nature of both human speech production and

perception is well established. The relationship between audio and visual aspects of speech

has been investigated in literature, with decades of historical work since pioneering work

by Sumby & Pollack [168] in 1954, and is further demonstrated by the well-known McGurk

Effect (McGurk & MacDonald [126]). Almajai & Milner [10] demonstrated correlation between

audio and visual features using MLR , and expanded upon this to devise a visually derived

Wiener filter for speech enhancement (Almajai & Milner [11, 12], Almajai et al. [13]). The work

presented in this thesis has utilised this multimodal speech relationship to design a two-stage

multimodal speech filtering system, making use of both audio and visual information. The

detailed system design was presented in chapter 4.

The two-stage audiovisual speech enhancement system described in chapter 4 utilised both

audio-only beamforming and visually derived Wiener filtering, and this system is evaluated

in this chapter. This approach combines the individual elements described in chapter 4

including: (a) lip detection and SAAM lip tracking, (b) visual feature extraction using the

DCT technique, (c) audio filterbank extraction, (d) visually derived Wiener filtering, and (e)

audio-only beamforming. The performance of this integrated multimodal system is evaluated

in this chapter.

This chapter presents a detailed investigation of system performance in several different

audiovisual scenarios. Initially, the results of a preliminary investigation to identify the ideal

system configuration are discussed. The findings of this preliminary investigation are used to

carry out a number of different experiments. The first experiment evaluates the speech filtering

107
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performance of the system in a range of very noisy environments. This represents an example

of a challenging real world situation that a potential user of a speech enhancement system

may encounter, for example, on an aircraft, where there is consistent intrusive background

noise that can make communication very challenging. With this type of difficult environment

in mind, this chapter presents results of experiments with speech sentences from the GRID

corpus mixed with aircraft cockpit noise at a variety of different SNR levels, ranging from

-40dB, to +10dB.

One potential limitation with audiovisual speech enhancement systems is the adaptability

of the visually derived filtering. The results in section 5.5 make use of a test-set derived from

the same set of speakers as were used for training the system, but this raises the question

of performance with an unknown speaker. In a real world environment, listeners cannot

be expected to interact only with known speakers. Work such as by Almajai & Milner [12]

focuses on very limited (e.g. single speaker) datasets, but to do this is to ignore a significant

potential limitation of visually derived speech filtering systems. This work investigates the

performance impact on this system when an unknown speaker outside of those used for

training is tested, and when a different corpus is used for training and for testing. Another

limitation of speech enhancement systems is dealing with inconsistent noisy environments.

Rather than a consistent noise, as modelled in the initially presented set of experiments, there

are many real world environments where the background noise rapidly changes in volume

and source. In this chapter, an example of an inconsistent noise source has been created by

mixing speech sentences with the sound of clapping. This noise contains silences between

claps, and the noise is inconsistent and transient.

Overall, this chapter will evaluate the performance and flexibility of the two-stage mul-

timodal system presented in this work, using both objective listening tests and subjective

evaluation by human listeners to identify the strengths and limitations of the system. The

discussion will also identify areas in which these limitations can be overcome.

This chapter is organised as follows. Firstly, the speech evaluation approaches used in this

work are discussed, with both subjective listening tests and objective measures described.

Section 5.3 presents a preliminary investigation into system performance, carried out to
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ascertain the optimum configuration with regard to training set size and the number of GMM

components to use in the audiovisual noise free speech estimation model used in the system.

This is followed by a description of the testing of the visual lip detector in section 5.4. In section

5.5, a comprehensive evaluation of the proposed audiovisual speech enhancement system

is performed. The performance of the two-stage system is evaluated using both objective

and subjective speech testing, and these results are discussed. An evaluation of potential

limitations with the system is conducted in section 5.6, an evaluation of testing the system with

a novel corpus that it has not been trained on is presented in section 5.7, and this limitation is

also explored in section 5.8. Finally, this chapter is summarised in section 5.9.

5.2 speech enhancement evaluation approaches

To evaluate the performance of the two-stage multimodal speech enhancement system pre-

sented in this work, a variety of measures are used. These come in two forms, objective

and subjective. Objective measures are those that are calculated automatically by machine.

These have the benefit of being faster to perform than subjective listening tests. There are

many different approaches with regard to objective tests such as the PESQ (Rix et al. [153])

measure, the IS (Hu & Loizou [86], Hansen & Pellom [76]), or SNR level gain. Subjective testing

is also used for the evaluation performed in this chapter, which is carried out with the use

of human volunteers, and is widely regarded to be the most accurate way of evaluating the

performance of speech enhancement algorithms Hu & Loizou [87]. In these tests, listeners

hear filtered speech sentences and score each sentence. Both objective and subjective measures

are described in more detail in the remainder of this section.

5.2.1 Subjective Speech Quality Evaluation Measures

One approach for evaluating speech is to use subjective listening tests. These are tests which

make use of human volunteers to evaluate speech. Many different approaches have been used,
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such as word identification in a sentence (Hussain & Campbell [90]), and scoring the overall

quality of speech according to the opinion of the listener. However, the number of different

approaches makes comparison of results between different publications more difficult, and a

simple measure of overall speech quality does not always provide a comprehensive picture

of listener opinion. Many speech enhancement algorithms introduce distortion as well as

removing noise, and so this should be taken into account in listening tests. In recent years, a

standardised approach has been developed by the International Telecoms Union (ITU-T), and

released as ITU-T recommendation P.835 (P.835 [138]).

The aim of the ITU-T approach is to provide clearer guidance to listeners with regard to the

evaluation of speech sentences, and this approach has been utilised in reviews of objective

test measures (Hu & Loizou [87]) and recent work by Almajai & Milner [12]. This approach

requires the listener to listen to each sentence, and then score it from one to five based on

three criteria. Firstly, a score for speech distortion level is recorded, with 1 indicating the most,

and 5 indicating the least distortion. Secondly, the listener gives a score (again between 1 and

5, with 5 indicating the least noise intrusiveness) for the level of noise intrusiveness, before

finally giving a score for the overall speech quality. These three scores were used to produce

Mean Opinion Scores (MOS) for each evaluation measure.

In the listening tests reported in the remainder of this chapter, nine volunteers participated,

and each volunteer heard sentences from the test-set at six different SNR levels (-40dB to

+10dB). Six of the nine volunteers were male and three were female, all with a good level of

hearing and all spoke English fluently (six of the volunteers spoke English as a first language,

three did not). All volunteers were postgraduate research students, although none were speech

processing specialists. These tests took place in a soundproofed room using headphones, and

each sentence was played randomly to listeners, who then assigned a score from 1 to 5, with 1

being worst and 5 best, using the three criteria discussed above (speech signal distortion, noise

intrusiveness level, and overall speech quality). For purposes of comparison, three versions

of each sentence were played. The noisy sentence with no speech processing, the sentence

processed with an audio-only spectral subtraction approach (Fritsch & Carlson [65]), and

thirdly, the sentence processed with the audiovisual approach proposed in this thesis.
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5.2.2 Objective Speech Quality Evaluation Measures

Hu & Loizou [87] state in their research into various speech measurement algorithms (Hu

& Loizou [86, 87]) that the most accurate method for speech evaluation is to make use of

subjective listening tests. However, there are a number of issues with the use of subjective

testing. Firstly, the availability of listeners can be problematic. Comprehensive listening tests

can be time consuming and dull, leading to listener fatigue, and it can be difficult to find

an adequate number of suitable volunteers (Loizou [119]). Suitable listening test volunteers

should have a good mastery of the language the speech system is tested with, and must also

have a good level of hearing. Because of these limitations, it can often be useful to run objective

tests in addition to listening tests. Objective tests are carried out automatically by machine

rather than by using the subjective opinion of human volunteers. These have the advantage

of being much quicker to conduct, and to varying extents, can correlate and confirm the

results of subjective tests. Many different measures have been devised to objectively assess the

performance of speech enhancement algorithms. Work by Hu & Loizou [87, 86], Loizou [119]

has focused on the evaluation of many of these measures, some of which were not originally

designed for assessing the performance of speech enhancement. The development and testing

of composite measures is also covered in work by Hu & Loizou [86], combining a number of

objective measures into a single, theoretically more accurate measure. This section focuses

on the relevant objective approaches used in the thesis that contribute to the creation of the

composite measures. Other measures such as the IS (Hu & Loizou [86], Hansen & Pellom [76])

are not used in this thesis, and so are not described here.

One objective measure that is very widely used is the PESQ (Rix et al. [153]) algorithm. This

has been recommended by ITU-T recommendation P.862 P.862 [139] for measurement of narrow

band telephony related speech enhancement. It is the successor to ITU-T recommendation P.861,

and has time-alignment built into the algorithm. Being a full reference approach, it compares

a clean reference signal to the speech signal to be evaluated and returns a score ranging from



5.2 speech enhancement evaluation approaches 112

Figure 20: Block diagram of PESQ Algorithm operation. Taken from Malden Electronics Ltd. [125].

-0.5 to 4.5, which means it can be compared to subjective MOS results. A description of PESQ

functionality is shown in figure 20, taken from Malden Electronics Ltd. [125].

It can be seen from figure 20 that there are a number of stages involved in this algorithm.

These are described in full detail in (Malden Electronics Ltd. [125]). Firstly there is an alignment

performed to attempt to ensure that both reference and test signal are at the same audio

level by applying a gain to both. The signals are filtered to simulate the effect of transmission

through a telephone handset. These are then time aligned in a multi stage process. The overall

signal is aligned, and then overlapping frames are aligned. The third stage then attempts to

correct any errors in the initial alignment process, and is carried out after a transformation

process. After the initial two temporal alignment stages, both signals are transformed in a

manner that simulates human hearing. Finally, disturbance processing is carried out to look

for errors in the signal being tested. This approach is widely used and is used in this thesis

both as a standalone objective measure, and as part of composite objective measures.

Another objective measure that is used in this work is Weighted-Slope Spectral Distance

(WSS). This is an established technique, devised by Klatt [101], and adjusted by Hu & Loizou

[87], and it is another full reference measure. WSS functions by comparing the spectral slope

distance in each spectral band. The spectral slope refers to the distance between adjacent

spectral magnitudes, and is measured in decibels. This measure is less complex to calculate

than PESQ, and is used in this work as part of the composite measures.

Segmental SNR (SegSNR) is a time domain objective measure. It is established that the

correlation between SNR level improvement and subjective speech quality is very poor (Hansen
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& Pellom [76]), which means that on its own, SNR level improvement isn’t an adequate

objective measure for assessing speech enhancement performance. SegSNR is a technique that

aims to improve on this by averaging SNR level estimates from frame to frame. There are also

thresholds set up due to very small and very large SNR values not being an accurate reflection

of signal quality (Hansen & Pellom [76], Hu & Loizou [87]). In this thesis, the same thresholds

(-10dB, +35dB) are used as by Hu & Loizou [87], as part of composite measures.

The final individual objective measure that will be discussed here is the LLR. This is a full

measure, requiring both clean and test signal, and is a form of Linear Predictive Coding (LPC)

based evaluation. LLR is defined in Hansen & Pellom [76] and Hu & Loizou [87] as,

dLLR

(−→a p,−→a c
)
= log

−→a pRc
−→a
T

p

−→a cRc
−→a
T

c


with −→a c representing the LPC vector of a clean reference speech frame, and −→a p being the

equivalent frame of filtered speech. Rc is defined as the autocorrelation matrix of the clean

speech signal. Hu & Loizou [87] limit the segmental LLR values to between 0 and 2 to reduce

outliers as well as using only the smallest 95% of frame values. Again, in this work, this

measure is used only as part of the overall composite measures.

In addition to making use of individual objective testing approaches, it is also possible to

combine these measures to create unified composite speech evaluation techniques. Loizou

[119], Hu & Loizou [86, 87] investigated the correlation between subjective listening tests and

a wide range of objective measures. As might be expected, there were variations into how

strong the relationship was between subjective and objective measures, which is to be expected

when it is considered that many commonly used measures were not explicitly designed for the

evaluation of speech enhancement algorithms. Furthermore, Hu & Loizou [87] point out that

research in this area very rarely assesses the performance of objective measures specifically

with regard to speech distortion, overall quality, and noise distortion. The majority of the

work generally focuses only on overall quality.

Hu & Loizou [87] carried out such an investigation, and found that the level of correlation

between subjective and objective scores for different measures varies depending on the

subjective measure considered. They state that an individual objective measure is unlikely
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to correlate highly in all three aspects (speech/noise distortion, overall quality), and one

conclusion from their work was that basic objective measures correlated very poorly with

noise distortion. With this in mind, three composite measures were then defined by Hu &

Loizou [87], that combined the strongest individual objective measures described above. The

first measure deals with signal distortion, and combines LLR, PESQ, and WSS. The second

measure is for noise distortion, and utilises PESQ, WSS and SegSNR. Finally, the overall quality

measure again combines PESQ, LLR, and WSS. These measures are related to the subjective tests

outlined in ITU-T recommendation P.835 (P.835 [138]), and described in section 5.2.1. These

composite measures are defined by Hu & Loizou [86] as,

CSIG = 3.093− 1.029 · LLR+ 0.603 · PESQ− 0.009 ·WSS

CBAK = 1.634+ 0.478 · PESQ− 0.007 ·WSS+ 0.063 · segSNR

COVL = 1.594+ 0.805 · PESQ− 0.512 · LLR− 0.007 ·WSS

In this work, these composite measures are used along with the PESQ measure to evaluate

the performance of the multimodal speech enhancement system, and subjective listening tests

are also utilised.

5.3 preliminary experimentation

5.3.1 Problem Description

This chapter presents a detailed investigation of the performance of the multimodal system

presented in this work, focusing on system performance in difficult environments, and the

particular strengths and weaknesses of this multimodal approach. Before undertaking such a

detailed investigation, it was necessary to configure a number of individual parameters in

order to optimise the system. To find the ideal system configuration, preliminary experiments

have been carried out, which subsequently enabled a full analysis to be performed. In this

section, the specific results are of less significance, and the remainder of this section provides
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an overview of the initial preliminary investigation, including the parameters to be optimised,

the training and test data used, a summary of results, and the conclusions that were drawn.

5.3.2 Experiment Setup

The main aspect of this system to be configured was the GMM-GMR audiovisual model

component. This component of the system, described in more detail in chapter 4, is used

to calculate a smoothed estimate of the noise-free audio signal, based on matching visual

information. There were two main parameters that required configuration. Firstly, the number

of GMM components, and secondly, the ideal composition of the training set. The number of

components to use was relatively straightforward to investigate. As described in chapter 4, a

single GMM with no phoneme-specific speech segmentation is used in the audiovisual speech

model, but the number of components used within this mixture model is variable. In these

preliminary experiments, models consisting of 8, 10, 12, and 16 components were trained. The

other variable is the composition of the training dataset. The detailed investigations presented

later in this chapter make use of a relatively large test-set, and so it is desirable to have a

model that is as flexible as possible. There are a number of potential training sets that can be

used. Sentences from four speakers from the GRID corpus (Cooke et al. [46]) are used as the

test-set in the work presented in this thesis, and so different combinations of training data

using these speakers are tested. These range from using 50 sentences from each speaker and

creating a large 200 sentence dataset, to simply using 100 sentences from a single speaker.

Different combinations were experimented with, with the hypothesis that using more than

one speaker as part of the training set produces a more flexible model.

To assess possible configurations of this system, a dedicated test-set was created specifically

for this investigation. This test-set was relatively small and contained three sentences from

each of the four speakers selected for use in this work, creating a 12 sentence test-set. This

dataset makes use of different sentences from those used in the training sets, and these 12

sentences are also different from the larger test-set used in the next section. In addition to
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these two variables, a further factor to consider is the performance at different SNR levels. This

has to be taken into consideration in order to ensure that system performance is consistent and

the best overall configuration for all levels was chosen, rather than selecting a configuration

that only functions effectively at a single SNR. Therefore, the combination of different possible

system configurations was also tested at three different SNR levels, -50dB, -20dB, and 0dB, to

simulate a range of noisy and less noisy environments.

5.3.3 Evaluation Approach

To assess the various combinations of GMM components and training sets, the PESQ approach

described in section 5.2 is used. This approach produces a simple output and is quick to

calculate. It was felt that at this preliminary stage, detailed listening tests were not required,

and that simple objective results would produce an adequate picture of overall performance.

However, in order to obtain a more informed opinion, informal listening was also used to

establish the overall best performing configurations. The 12 sentence test-set described in the

previous section was used, with PESQ means and peak individual scores calculated.

5.3.4 Results and Discussion

The first parameter assessed was the number of GMM components. As described above, three

different SNR levels were used, -50dB, -20dB, and 0dB, to simulate environments with different

levels of noise. A number of different training sets were also used for comparison, particularly

a dataset containing sentences from all four chosen speakers. Initially, this four person dataset

was used to train audiovisual models containing different numbers of GMM components to

be compared with the 12 sentence test-set. To evaluate performance, PESQ scores were used,

with both mean and individual best scores considered in tandem with informal listening

tests. At each SNR level with the four-speaker training set used to train the model, the test-set
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was evaluated with the system several times, each time with a different number of GMM

components used for training. The number of components was 8, 10, 12, and 16.

The results of PESQ and informal listening showed that for each SNR level considered, models

trained with the use of 12 components produced the best results. To verify this, a similar

assessment was made using a number of other training sets; GMM models with 10 and 12

components consistently produced the best scores, along with the highest audio quality

filtered sentences, with a general preference for 12 components. Therefore, for the remainder

of the work described in this thesis, the GMM used as part of the GMM-GMR speech estimation

process is trained using 12 components.

The second parameter to be decided was the composition of the training set. The training set

is used to train the audiovisual model, and so the exact composition of this dataset is crucial to

the success of the model. This training set was decided after the number of GMM components

had been confirmed, as described above, and so the optimal number of components, 12, was

used for all tests. The same three different SNR levels were also used (-50dB, -20dB, 0dB). The

composition of the training set has many potential combinations. As described earlier, the

test-set for the main investigation makes use of audiovisual speech data gathered from four

speakers. For the training dataset, it was expected that some combination of training sentences

from more than one speaker would be used. The list of combinations experimented with,

ranging from extended single speaker datasets, to combinations of 50 sentences from all four

chosen speakers is shown in table 3.

Each training set listed in table 3 was used to train a different audiovisual GMM-GMR model

with 12 components, and each of these models was then used as part of the two-stage speech

filtering system, and tested at the three different SNR levels (with the small test-set described

previously).

To evaluate the models and establish the most suitable training set, mean PESQ scores were

compared, along with individual best scores, and informal listening tests. Of the results, there

was considerable variation between the datasets, with some trained models producing filtered

sentences that contained too much distortion for the PESQ evaluation measure to function

adequately. Of the models that did not produce any failed PESQ results in the test-set, it was
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Table 3: List of potential audiovisual training datasets evaluated as part of preliminary experimentation.
All examples make use of 50 sentences from each speaker unless specified otherwise.

Number Combination of Speakers Total No. of Sentences Total Speaker No.

1 Speaker 1, 3, 4 150 3

2 Speaker 1, 3 100 2

3 Speaker 1, 2, 3 150 3

4 Speaker 1, 2, 3, 4 200 4

5 Speaker 1, 2 100 2

6 Speaker 1(100 sentences), 2 150 2

7 Speaker 3, 4 100 2

8 Speaker 2, 4 100 2

9 Speaker 2, 3, 4 150 3

10 Speaker 1 (100 sentences) 100 1

found that the most consistent and effective training sets of those listed in table 3 at all SNR

levels were number 4 (all four speakers) and number 7 (combining two speakers). Therefore,

it was decided for the remainder of this work to make use of the four speaker training set.

In summary, the informal trials described in this section, using objective measures and

informal listening tests, produced the conclusion that the best configuration of the audiovisual

model used in this work is for the GMM to make use of 12 components, and for the training

set to make use of sentences from all four speakers.

5.4 automated lip detection evaluation

5.4.1 Problem Description

To successfully exploit audiovisual information, it is important that the appropriate visual ROI

(in this case lip-region information) is correctly identified and tracked. Manual frame by frame
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identification of the ROI is time consuming and represents an impractical approach. In the

work presented in this thesis, a lip tracker, as described in chapter 4 has been utilised in order

to extract the lip-region automatically in each frame of an image sequence. One issue with this

approach is the identification of the initial ROI in the first frame of the sequence. Initially, this

was successfully carried out by manually selecting the corner points of the relevant region

in the first image of a sequence. However, although feasible for small scale demonstrations,

this solution does not represent a realistic solution, and does not take account of current

developments in the field of audiovisual ROI detection (Viola & Jones [175], Li et al. [115]).

In this work, a Viola-Jones (Viola & Jones [175]) detector has been implemented to automat-

ically identify the initial lip-region. This has been described in more depth in chapter 4. This

approach is widely used in the literature (Wang & Abdel-Dayem [177], Kroon [104], Scherer

et al. [162]). The detector used in this work is a standard ROI detector, utilising commonly

available parameters (Haar cascades) to specifically detect the lip-region. These parameters

are available for use as part of the OpenCV library (Bradski [29]). Some customisation was

made to the initial code in order to handle potential poor results (as will be discussed later

in this section) and identify the final ROI to use. The remainder of this section describes the

testing of this lip detector.

5.4.2 Experiment Setup

To assess performance of the lip detector, images from both of the main corpora used in this

thesis (GRID and VidTIMIT) are used. Six speakers from the GRID corpus are used, along

with four speakers from the VidTIMIT database. These speakers are split by gender (six male

speakers, four female), as well as representing a number of different ethnicities, in order to

test a range of speakers. This data was used to create several test-sets. The first test-set used

images from both corpora, and consisted of the first image from a single sentence sequence,

producing a small test-set of 10 images. The aim of this first test-set was to test the initial

implementation of the detector and refine any problems that were identified. The second
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Figure 21: Example image frames from the GRID (top and bottom left) and VidTIMIT (top and bottom
right) Corpora.

test-set created was used for the main evaluation of the detection approach. This consisted of

sixty images from the ten speakers. Two images from three different sentence sequences from

each speaker were used, the first image and then one chosen from the sequence at random (to

provide different mouth shapes). A number of example images used in the test-set are shown

in figure 21. The final test-set consists of a number of video files from the GRID Corpus. The

three sentences were chosen from each of the six speakers, resulting in 18 videos. The aim of

this test-set was to inspect whether after identifying the correct ROI, the tracker could correctly

use this location to track the correct location in subsequent frames.

5.4.3 Evaluation Approach

In order to assess the performance of the lip detection approach, a subjective evaluation is used

because it is difficult to objectively assess the performance of a lip detection system without

visual inspection. Therefore, for this aspect of the speech filtering system, the Viola-Jones

detector discussed in section 4.6 of chapter 4 is evaluated by performing an inspection of a
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number of test-sets. As discussed in chapter 4, the Viola-Jones detector initially produces a

number of potential candidates for the object it is tracking. In this work, the primary aim is to

identify the lip-region, and so the detector initially produces a number of potential lip-region

candidates, before selecting one final ROI to use. To evaluate the effectiveness of this approach

(i.e. whether the final lip-region is identified correctly), the initial candidate locations are

visually compared to the final chosen ROI.

The testing approach described in this section firstly uses a small test-set to identify initial

issues, followed by a larger set to perform a full evaluation. Finally, an inspection of subsequent

tracking performance using video files is made.

5.4.4 Results and Discussion

As described above, the results in this section were produced by visual inspection, as this was

felt to be a reliable method to assess the performance of the lip detector. The first dataset was

used to identify bugs and test refinements. The lip detector was initially found to successfully

identify a range of possible ROI candidates and then select a suitable final ROI (based on

the technique outlined in chapter 4) in 9 of the 10 initial images. Examples of successfully

detected ROI can be seen in figure 22. It can be seen that a number of possible mouth objects

are detected (thinner rectangles), and then the final chosen ROI is correctly identified. One

image was found to produce an incorrect result (shown in figure 23). Figure 23 shows that the

problem with this image (confirmed by other informal tests on additional images to replicate

the result) is the lack of detected candidates, rather than a problem with the final ROI. This

is a problem with the standard trained model, and it was felt that to correct this would be

outwith the scope of this research, due to the focus of this thesis not being exclusively on lip

detection. As discussed in earlier chapters, training a Viola-Jones detector from can be very

time consuming and intensive, and so the widely used standard Haar features are felt to be

an acceptable compromise.



Figure 22: Example of candidate lip-regions, indicated by narrow rectangles. The thicker rectangle shows
the final chosen ROI.

Figure 23: Poor selection performance by the initial lip detection approach. It can be seen that only
a single candidate location was identified (resulting in a narrow rectangle around the eye
region), resulting in an incorrect final ROI output.
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Figure 24: Example of successful face detection.

Figure 25: Comparison of mean face detection location, compared to incorrect lip-region identification
(narrow rectangle), showing final cropped lip-region output.

This problem was solved by checking the number of resulting potential candidates before

outputting a final ROI. The solution was described in depth in section 4.6, but to briefly

summarise, the number of output candidate lip-regions was identified. If the number was

below a threshold (manually defined in this work as 7), it was decided that this was insufficient

to guarantee a correct result. A full face detector is then run on the image (which was found to

work without any problems in a variety of tests), and the mean face location is then cropped

to only keep the approximate lip area. This was found to be a solution which resulted in error

free results with the larger dataset.

After the refinement of the detector, the second set of 60 images was tested. All were

visually inspected to check whether the final chosen ROI was appropriate, and also to observe
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the number of initial candidates. All images were found to identify the lip-region correctly.

Where a sufficient number of candidates were identified, the correct ROI was chosen (as can

be seen in figure 22), and in cases with a smaller number of candidates, then the face detector

was run, and the automatic cropping identified an acceptable ROI, as shown in figure 25.

The final tests involved checking if the detected image would allow for the image tracker

(as described in chapter 4) to function correctly. The video test-set described previously was

tested by combining the lip detector and the tracker. In all of the 18 tested cases, the tracker

functioned correctly with no problems and tracked the correct region.

As a result of the successful testing described above, it was felt that this lip detection

approach was suitable for use as part of the work discussed in this thesis. The chosen lip

detector uses a standard Viola-Jones (Viola & Jones [175]) approach, with some modifications

to identify the correct final output region. This is a widely used approach (Li et al. [115],

Mita et al. [131], Scherer et al. [162]). However, there are some limitations with this approach.

Firstly, as described above, it was found that the lip detector did not work in every situation.

A solution was found to this problem, however; this could be further improved on. The

other limitation identified with this work is that the detector has only been tested with

images using a single speaker in the frame. In order to identify the correct speaker if there

is any conflicting visual information, further research would have to be performed, and an

appropriate audiovisual VAD would have to be utilised. However, it is felt that this is outside

the scope of this thesis. Also, this approach was tested only on data from the GRID and

VidTIMIT corpora, meaning that while it functions well with these relatively clean corpora, it

has not been fully tested in more difficult situations. Overall, it is felt that this represents an

effective solution to the problem of automatically identifying the correct mouth ROI for lip

tracking.
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5.5 noisy audio environments

5.5.1 Problem Description

One key challenge for speech enhancement algorithms is achieving performance in extremely

noisy environments. A real world example of one such environment is on board an aircraft.

In this environment, it can become very difficult for conventional hearing aids to function

due to the extremely high level of background noise. The use of visually derived filtering in

addition to conventional audio-only beamforming adds an extra level of speech enhancement

capability and should theoretically allow for successful filtering in very noisy environments

where conventional single stage speech filtering may perform badly.

This section focuses on the evaluation of the speech filtering system described in the

previous chapter. To do this, we test the system in a very noisy and difficult environment,

simulating the real world problem outlined above. Aircraft cockpit noise was added to the

simulated room environment as the noise source at a variety of SNR levels, ranging from being

relatively quiet (+10dB), to levels in which it is impossible for human listeners to feasibly

identify a speech source from noise (SNR levels as low as -40dB). The speech source (sentences

from the GRID Corpus (Cooke et al. [46])) was mixed with this noise to create a convolved

mixture of speech and noise.

The noisy speech mixtures were then processed by the multimodal two-stage speech

enhancement system, and the resulting filtered speech sentences were then evaluated by both

subjective listening tests and a variety of objective measures.

5.5.2 Experiment Setup

In order to assess the performance of this system in extremely noisy environments, the

multimodal approach described in chapter 4 was tested with speech and noise mixtures

that were combined in a simulated room environment. The resulting noisy-speech mixture
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is received by an array of four microphones. The room environment used is the same as

described in chapter 4. These microphone signals are processed with visually derived Wiener

filtering and beamforming to produced filtered speech. The parameters required by the

audiovisual GMM were defined by the investigation described in section 5.3. The number of

components used in the GMM was set at 12, and the training set contained 200 sentences from

four speakers from the GRID Corpus.

To provide the speech source data, sentences from the GRID audiovisual corpus were used.

For testing, 61 different sentences were used. These sentences were different from those used

in the training set, but made use of speakers that the audiovisual model had previously

encountered. Each sentence was three seconds in length and when divided up into frames,

produced 299 frames per sentence. The noise source was provided by using recorded F16

aircraft cockpit noise. These sources were mixed in the simulated room to produce the noisy

speech mixture. Each test sentence was mixed with the aircraft noise at six different SNR levels,

ranging from +10dB (a relatively quiet level of noise) to -40dB (a very loud noise source). For

evaluation, the commonly used PESQ measure is used, along with listening tests for additional

verification. Three versions of each speech sentence were compared at each SNR level. Firstly,

the noisy sentence without filtering was used. Secondly, an audio only spectral subtraction

approach (Lu & Loizou [121]) was used to produce a filtered signal, and finally, these two

sentences were compared to sentences enhanced using the two-stage multimodal system

described in chapter 4.

5.5.3 Evaluation Approach

The PESQ objective measure is used in this investigation to evaluate the filtered sentences. The

recently developed composite measure (described in section 5.2) is also used.

It was also felt that a more accurate approach than only using objective speech evaluation

measures would be to also carry out subjective listening tests using human volunteers. Nine

volunteers participated in these tests, and each volunteer was played sentences from the
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test-set at six different SNR levels (-40dB to +10dB), as described in section 5.2.1. For purposes

of comparison, three versions of each sentence were played to the volunteers. The noisy

sentence with no speech processing, the sentence processed with an audio only spectral

subtraction approach (Lu & Loizou [121]), and thirdly, the sentence processed with the new

audiovisual approach presented in this thesis. This produced three MOS for the three different

approaches, one for the overall score, one for speech distortion, and one for background noise

intrusiveness. These scores were analysed and compared to the objective scores.

5.5.4 Results and Discussion

For this experiment, 61 test sentences from the GRID audiovisual corpus were used, as

described above. The test sentences use the same speakers as the training set mentioned in

section 5.3, but different sentences. Each sentence was mixed in a simulated room environment

with aircraft cockpit noise at a variety of different SNR levels to produce convolved noisy speech

mixtures. These mixtures were then filtered with two-stage audiovisual speech enhancement

to produce enhanced speech signals. Two objective measures, PESQ and composite, were

utilised, and listening tests were also used. The performance of this system in very difficult

environments is of particular interest, and the focus was on very low SNR levels (-40 to +10

dB).

PESQ was used for initial comparisons, and mean PESQ scores of noisy unfiltered speech

sentences were compared to sentences filtered with the audiovisual method. The results of

this comparison are shown in table 4.

Table 4 shows that at very low SNR levels, enhanced speech consistently scores higher than

noisy speech, with significantly improved results at all levels from -40dB to 0dB (p<0.05). This

shows that in very noisy environments, this approach is capable of delivering statistically

significant improvements, as seen by the p-values in the table, calculated by a repeated

measures analysis of variance. In a quieter environment with less noise present (+10dB), the

unprocessed noise scores higher, suggesting that distortion introduced by the filtering makes
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Table 4: Mean PESQ Scores at Varying SNR Levels.

SNR Level Noisy Speech Audiovisual Filtered Speech Adjusted P-value

-40dB 1.232 1.697 0.000

-30dB 1.220 1.462 0.008

-20dB 1.187 1.580 0.000

-10dB 1.412 1.958 0.000

0dB 1.757 1.985 0.020

+10dB 2.207 1.975 0.016

the signal less clear. However, there needs to be a degree of caution in interpreting these

results. It can be seen in table 4 that there is a clear difference between the noisy and enhanced

PESQ scores but it could be argued that this difference is not as large as might be expected.

When listening to the unfiltered signal at very low SNR levels, it was often impossible to

identify speech, which was not reflected in the PESQ results. Therefore, it was felt that a more

comprehensive objective measure had to be used.

Composite measures (which are described in more detail in section 5.3) are used in this work

for objective evaluation of test sentences. The results for the Overall score (COvl), Background

score (CBak), and Signal score (CSig) are shown in figures 26, 27, 28, with data also displayed

in tables 5, 6, and 7. The enhanced audiovisual filtered speech (Avis) results were compared

to noisy unfiltered speech (Noi), and speech filtered with audio only spectral subtraction

(Spec). Interaction plots for the means of each composite measure (for overall score, noise

intrusiveness, and speech signal distortion) are shown in figures 29, 30, and 31 respectively.

Considering speech signal distortion first, it can be seen in figure 27 that at very low SNR

levels, both unfiltered speech and spectral subtraction results produced a small negative

value at -40dB and -30dB, a very small result at -20dB, and a very low positive result at

-10dB. This is because the testing algorithms were unable to identify an adequate level of

speech in these results to assign a quality score. However, speech filtered with the audiovisual

approach produced much better scores at these SNR levels, returning positive scores at all
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Figure 26: Composite objective mean test scores for overall speech quality, for Unprocessed Noisy Signal
(Noi), Spectral Subtraction (Spec), AV Enhancement (Avis).
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Figure 27: Composite objective mean test scores for noise distortion level for Unprocessed Noisy Signal
(Noi), Spectral Subtraction (Spec), AV Enhancement (Avis).
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Figure 28: Composite objective mean test scores for speech distortion level for Unprocessed Noisy Signal
(Noi), Spectral Subtraction (Spec), AV Enhancement (Avis).
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Figure 29: Interaction plot for overall composite objective mean score at varying SNR levels, showing
Unfiltered Noisy speech, Spectral Subtraction, and Audiovisual Filtering scores.

Figure 30: Interaction plot for noise intrusiveness composite objective score at varying SNR levels,
showing Unfiltered Noisy Speech, Spectral Subtraction, and Audiovisual Filtering scores.
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Figure 31: Interaction plot for speech distortion composite objective score at varying SNR levels, showing
Unfiltered Noisy speech, Spectral Subtraction, and Audiovisual Filtering scores.

levels, increasing as the SNR level increased. At higher SNR levels (0 and +10 dB), spectral

subtraction and unfiltered speech produced much improved results, with only a small, but

statistically significant improvement (p<0.05) over the unfiltered and audio only options seen

when two-stage filtering is used. This can be seen more clearly in the interaction plot in figure

31, and the results of Bonferroni multiple comparison in table 5. As it was found that the

results for unfiltered speech and audio only spectral subtraction were very similar, table 5

focuses only on the p-values between unfiltered speech and audiovisual filtering.

The noise intrusiveness scores show slightly different results. The results show that there

is significant improvement for noise intrusiveness at low SNR levels when using audiovisual

filtering, as shown by the interaction plot in figure 30 and the selected p-values given in

the results of Bonferroni multiple comparison in table 7. The difference between the three

scores is not as great as might be expected, and this difference tends to be lower than the

signal distortion scores. At +10dB, spectral subtraction slightly outperforms the audiovisual

method. However, the most important scores to consider are the overall mean scores presented

in figure 26, and the associated interaction plot in figure 29. These show that at low SNR

levels, the audiovisual approach significantly outperforms conventional spectral subtraction,

as confirmed by selected Bonferroni multiple comparison results in table 6. However, when
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Table 5: Selected results of Bonferroni Multiple Comparison, showing p-value results for difference
between Unfiltered Speech and Audiovisual Filtering for speech distortion composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 1.789 0.069 26.084 0

-30dB 1.786 0.069 26.035 0

-20dB 2.202 0.069 29.495 0

-10dB 1.971 0.069 28.737 0

0dB 1.415 0.069 20.627 0

+10dB 0.695 0.069 10.135 0

Table 6: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Unfiltered Speech and Audiovisual Filtering for overall composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 1.184 0.066 17.974 0

-30dB 1.081 0.066 16.421 0

-20dB 1.282 0.066 19.475 0

-10dB 1.321 0.066 20.064 0

0dB 0.847 0.066 12.869 0

+10dB 0.230 0.066 3.497 0.075

there is less background noise present, the benefits are less obvious, with very similar overall

scores for all three methods at +10dB. This suggests that the audiovisual filtering approach is

most effective in extremely noisy environments, with relatively little improvement found in

environments containing a lower level of noise.

To confirm the objective composite measure results above, subjective listening tests were

used. As described in section 5.2.1, nine volunteers participated in listening tests, and each

volunteer was played sentences from the test-set at six different SNR levels (-40dB to +10dB).

These tests took place in a soundproof room using noise cancelling headphones, and each
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Table 7: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Unfiltered Speech and Audiovisual Filtering for noise intrusiveness composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.734 0.037 19.660 0

-30dB 0.634 0.037 16.981 0

-20dB 0.690 0.037 18.457 0

-10dB 0.732 0.037 19.593 0

0dB 0.470 0.037 12.586 0

+10dB 0.153 0.037 4.107 0.007

−40 dB −30 dB −20 dB −10 dB 0 dB +10 dB

1

1.5

2

2.5

3

3.5

4

M
O

S
 −

 O
ve

ra
ll 

Q
u

a
lit

y

MOS For Overall Quality at Different SNR Levels

 

 

Noi

Spec

Avis

Figure 32: Mean Opinion Score for overall speech quality for unprocessed noisy signal (Noi), spectral
subtraction (Spec), audiovisual enhancement (Avis).

sentence was played randomly to listeners, who then assigned a score from 1 to 5, with 1

being worst and 5 best, for three criteria, speech signal distortion, noise intrusiveness level,

and overall speech quality. As with the composite measure above, for purposes of comparison,

three versions of each sentence were played. The noisy sentence with no speech processing,

the sentence processed with an audio only spectral subtraction approach, and thirdly, the

sentence processed with the audiovisual approach. The MOS for the three different approaches

are shown in figures 32, 33, and 34. In addition, interaction plots of each measure (overall

score, speech quality, noise intrusiveness) are shown in figures 35, 36, and 37 respectively.

Firstly, looking at the overall results, it is clear that the listeners were consistently unable

to hear unprocessed speech at very low SNR levels, and spectral subtraction was also of little
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Figure 33: Mean Opinion Score for speech distortion level for unprocessed noisy signal (Noi), spectral
subtraction (Spec), audiovisual enhancement (Avis).
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Figure 34: Mean Opinion Score for noise intrusiveness level for unprocessed noisy signal (Noi), spectral
subtraction (Spec), audiovisual enhancement (Avis).

Figure 35: Interaction plot for overall MOS score at varying SNR levels, showing Unfiltered Noisy speech,
Spectral Subtraction, and Audiovisual Filtering scores.
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Figure 36: Interaction plot for speech quality MOS score at varying SNR levels, showing Unfiltered Noisy
Speech, Spectral Subtraction, and Audiovisual Filtering scores.

Figure 37: Interaction plot for noise intrusiveness MOS Score at varying SNR levels, showing Unfiltered
Noisy speech, Spectral Subtraction, and Audiovisual Filtering scores.
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Table 8: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Unfiltered Speech and Audiovisual Filtering for overall MOS scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 1.167 0.736 15.837 0

-30dB 1.448 0.736 19.658 0

-20dB 1.585 0.736 21.519 0

-10dB 1.363 0.736 18.502 0

0dB -0.015 0.736 -0.201 1

+10dB -1.119 0.736 -15.180 0

use. However, in these noisy environments, the audiovisual approach produced higher scores,

with the listeners able to identify speech. This pattern is mirrored for speech distortion levels,

and also for noise, with the audiovisual approach demonstrating a large improvement at low

SNR levels, showing that in very noisy environments, this two-stage approach can produce

significantly improved results when it comes to speech quality and the overall score. This

closely and accurately matches the results found with the composite measures. With regard

to the significance of these results, it can be seen from the interaction plots that the mean

scores for unfiltered speech and spectral subtraction are very similar, especially at very low

SNR levels and so the focus is on the difference between unfiltered speech and audiovisual

filtering. The relevant results of Bonferroni multiple comparison are summarised in tables 8,

9, 10, showing the difference between audiovisual filtering and unfiltered speech for each of

the three MOS results, with p-values of p<0.05 showing that the difference at low SNR levels is

statistically significant for all three measures.

However, at higher SNR levels (0dB and +10dB), it can be seen in figure 32 that the overall

score of the two-stage system is lower than at lower SNR levels, and this is especially noticeable

in the signal quality level. Analysing the results in detail, it can be seen that spectral subtraction

outperforms the multimodal approach at 0dB, with listeners assigning a higher overall MOS

to spectral subtraction, and a very similar score to noisy and two-stage filtered speech. At a



Table 9: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Unfiltered Speech and Audiovisual Filtering for speech quality MOS Scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 1.396 0.732 19.084 0

-30dB 1.763 0.732 24.095 0

-20dB 1.778 0.732 24.298 0

-10dB 1.015 0.732 13.870 0

0dB -0.600 0.732 -8.201 0

+10dB -1.481 0.732 -20.250 0

Table 10: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Unfiltered Speech and Audiovisual Filtering for noise intrusiveness MOS Scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 1.259 0.083 15.152 0

-30dB 1.444 0.083 17.380 0

-20dB 1.533 0.083 18.450 0

-10dB 1.411 0.083 16.980 0

0dB 0.363 0.083 4.367 0.020

+10dB -0.289 0.083 -3.476 0.079
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SNR of +10dB, the audiovisual method performed very poorly, with a very low overall MOS in

comparison to both noisy and spectral subtraction sentence scores. Looking at these results in

detail, it can be seen that the main drop in audiovisual filtered MOS is displayed in the speech

distortion score. The noise intrusiveness score for audiovisual filtering increases between

-40 and -10dB, but there is a small drop at 0dB, followed by another drop at +10dB. The

most relevant result is the speech distortion score. It can be seen that at 0dB, the audiovisual

output speech quality is significantly reduced. The p-values in table 8 show that there is no

significant difference between the overall scores at 0dB, but individual speech and noise scores

are significantly different. At +10dB, the speech quality score is extremely low in comparison

to all other approaches, and tables 8, 9, 10 show that the audiovisual approach performs

significantly worse. This suggests that the main reason for the low overall score is because of

the level of speech distortion introduced, and listening to filtered sentences confirmed this.

This represents a more accurate picture than presented by the objective results alone and

shows that although objective measures are valuable, they need to be supplemented with

listening tests.

One hypothesis is that this distortion is due to problems with the visual filterbank estimation

approach. The approach evaluated in this paper, GMR, was originally designed to calculate

efficient robot arm movement, and while it is shown in this work that it can be applied

to audiovisual data, the resulting signal is not always accurately calculated, and so this

technique can introduce distortion into the speech. Filtering at lower SNR levels produces good

results, but when there is less background noise to remove, more distortion is introduced into

the speech. A key solution to improving results in future work is to consider an improved

audiovisual speech estimation model.

State-of-the-art work by Almajai & Milner [12] makes use of a MAP GMM approach and

also further enhancements such as a VAD and using a number of different GMMs to represent

individual speech phonemes. It was also shown in previous work by the author in Abel et al.

[2] that a degree of asynchrony between audio and visual frames may also improve results, so

there are many ways in which this initial audiovisual two-stage system can be improved in the

future. While this two-stage approach produces improved results in very noisy environments,
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the use of visual information is not always helpful. The potential availability of audio and

visual information in a more realistic speech environment also has to be considered. This

work makes use of a simulated environment, with pre-recorded visual information and static

speech and noise sources, but in a more realistic environment, such as one which a hearing

aid might be expected to function in; there may be multiple inconsistent moving noise sources.

Furthermore, visual information may not always be usable. Changes in light, pose, and

actions by the speaker such as placing a hand over their mouth may render some frames of

visual information unusable. Therefore, in addition to improving the visually derived filtering

approach as described above, it is also important to consider how a multimodal system can

best take advantage of audio and visual information to deliver good results on a frame by

frame basis.

Overall, the results show that visual information can be used as part of a speech en-

hancement system. In very noisy environments, it can be seen that the two-stage speech

enhancement system presented in this thesis is capable of successfully filtering speech, as

proven by PESQ, composite objective scores and subjective listening tests. While the poor scores

at high SNR levels indicate that that the individual components of the system can still be

refined further, for example, with a more sophisticated audiovisual speech model, the initial

system has been shown to successfully filter speech in challenging environments.

5.6 untrained visual environment

5.6.1 Problem Description

One issue with using a visually derived filtering model is that the system may only be able

to process data similar to that which the system was trained with. When presented with

entirely new data such as a brand new speaker, the system may struggle to generalise. In the

specific case of this system, the limitation is that while the system has been trained using

data from four speakers, when presented with visual data from an unknown speaker, it
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Figure 38: Screenshots of speakers used for training and test datasets.

can be hypothesised that speech enhancement results will suffer due to a lack of training.

This represents a limitation with the current system in that a real world environment is

extremely unlikely to only contain known speakers. A potential user of a multimodal speech

enhancement system would be expected to interact with a variety of different speakers in

various environments. Unknown speakers may have different mannerisms and communication

styles to those speakers that the system is trained on.

To evaluate this hypothetical limitation, the results of the multimodal speech filtering

experiments described in section 5.5 were compared to audiovisual filtered results of sentences

spoken by a novel speaker that the audiovisual model had not encountered in training. This

simulated encountering a previously unknown speaker.

5.6.2 Experiment Setup

The speech enhancement system parameters used in this experiment are the same as used in

section 5.5. The preliminary investigation discussed previously identified that a GMM model

containing twelve components and trained using sentences from four different speakers

produced good results, and these parameters are used in this experiment.
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Figure 39: Screenshot of speaker used for testing with previously unseen data.

The training and test-set primarily utilised in this work makes use of data from the GRID

audiovisual corpus. The preliminary investigation summarised in section 5.3 identified that a

model trained with data from four different speakers delivered positive results, and so the

primary test-set made use of the same four speakers. An image of the chosen speakers is

displayed in figure 38. To compare the test-set results from this dataset to unknown speakers,

11 sentences from an alternative speaker in the GRID corpus (as shown in figure 39), which

was not used in the audiovisual mixture model training process, were selected and used for

testing. These were then compared to the results of the test-set from known speakers.

To match the test-set, the same noise source is used. Aircraft cockpit noise is added to

a simulated room environment as the noise source at a number of different SNR levels (-

40dB, -30dB, -20dB, -10dB, 0dB, +10dB). The same simulated room and audiovisual system

configuration was used as has been described in the other experiments in this chapter.

5.6.3 Evaluation Approach

To evaluate this work, a small test-set was used for comparison. It was considered suitable to

run the objective PESQ speech evaluation measure. 11 sentences from a different speaker were

compared to the equivalent PESQ scores from speakers the system had encountered in offline
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Figure 40: Two way analysis of variance comparison for previously trained versus unseen speaker,
comparing PESQ scores at different SNR levels.

training (the results described in section 5.5). The two sets of PESQ scores were evaluated at

each chosen SNR and a two way analysis of variance was run on the means of this data, using

Bonferroni multiple comparison. This means that the p-values were compared and the means

plotted.

5.6.4 Results and Discussion

After performing speech enhancement on the noisy audio files from the previously unseen

speaker, PESQ scores were calculated for each sentence at each SNR level. The individual scores

were then combined to produce a mean value at each SNR level (from -40dB, to +10dB). These

were then compared to mean values produced from test sentences from speakers that had also

been used for training. As explained previously, although sentences from the same speakers

had been used for training, the specific sentences used for the test data were new to the

audiovisual model. The means of both the new speaker data and the previously trained

speaker data at each SNR level are plotted in figure 40.

It can be seen from the interaction plot in figure 40 that the means of unseen versus trained

speaker are different at each SNR level plotted. The novel speaker can be consistently seen
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Table 11: Results of two way analysis of variance for comparison of trained and untrained visual data,
showing adjusted P-Value.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -0.313 0.113 -2.765 0.392

-30dB -0.435 0.113 -3.845 0.009

-20dB -0.636 0.113 -5.61 0

-10dB -0.839 0.113 -7.41 0

0dB -0.987 0.113 -8.72 0

+10dB -1.226 0.113 -10.83 0

to produce lower PESQ mean scores at all SNR levels, from -40dB to +10dB. As the SNR level

increases, the difference between means also increases. To assess the significance of the result,

the results of the two way analysis of variance were examined to assess significance, with

particular focus on the adjusted p-value. The results are shown in table 11, and show that

the difference is not significant at -40dB, due to the low PESQ mean score for data, but at all

other SNR levels, the difference between the previously seen and the unseen speaker data is

statistically significant, with the novel speaker producing significantly worse performance.

This experiment identifies a limitation of the system. Positive performance results reported

in previous sections of this thesis, and also in similar research (Almajai & Milner [12, 11])

cannot currently be applied universally. There is a lack of generalisation, and when the system

is applied to new data from a speaker that it was not directly trained with, despite the

data being from the same corpus and consisting of similar sentences, results are poor. This

weakness was expected, due to the limitations in the mixture model utilised (as discussed

previously), and is in line with expectations, due to previously reported work of a similar

nature (such as that by Almajai & Milner [12, 11]) being trained and tested with only a single

speaker corpus. Although the visual tracking approach used in this work removes many

differences in the raw visual data such as background, eye data, clothing etc. there are still

differences in the lips and in the manner of speech (emphasis, tone, speed, accent, etc.). To
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explore this limitation further, the next section tests this approach with data from a completely

different corpus, the VidTIMIT audiovisual speech corpus Sanderson [157].

5.7 testing with novel corpus

5.7.1 Problem Description

As mentioned in section 5.5, one key challenge for speech enhancement algorithms is achiev-

ing performance in extremely noisy environments, such as on board an aircraft. In this

environment, it can become very difficult for conventional hearing aids to function due to the

extremely high level of background noise. However, there is another limitation to consider,

the performance of the system with speakers outside the range that it has been trained with.

This is a known limitation with the approach, with Wiener Filtering work by Almajai [9]

(also Milner & Almajai [130], Almajai & Milner [11, 12]) explicitly being trained with a single

speaker corpus, and then tested with the same corpus. Although four speakers were used

for training this system rather than one, it can be seen from the results presented in section

5.6 that the system performs poorly with an unknown speaker from the GRID Corpus. This

suggests a limitation with this approach that should be explored in more depth.

This section also evaluates the speech filtering system described in the previous chapter. In

order to be able to successfully compare the results in this section to the results reported in

section 5.5, many of the parameters are similar to the noisy environment evaluation discussed

previously. Therefore, the same noise source is used (aircraft cockpit noise), and this is mixed

with speech at a variety of SNR levels, ranging from being relatively quiet (+10dB), to levels

in which it is impossible for human listeners to feasibly identify a speech source from noise

(SNR levels as low as -40dB). The key difference with the results presented in this section is

that a completely different corpus is used as the speech source. Sentences from the VidTIMIT

audiovisual corpus (Sanderson [157]) are used to create the convolved noisy-speech mixtures.

This allows for a direct comparison between the results of using a new corpus (not previously
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trained with those speakers, different recording conditions, different accent and sentence

composition), and the results presented in section 5.5. Although the results presented in

section 5.5 use sentences that the system has not been trained with, they are spoken by the

same speakers as the system was trained with.

The noisy VidTimit based speech mixtures were then processed by the multimodal two-stage

speech enhancement system, and the resulting filtered speech sentences were then evaluated

by objective measures for comparison to the results presented previously.

5.7.2 Experiment Setup

To assess the performance of this system in extremely noisy environments, the multimodal

approach described in chapter 4 was tested with speech and noise mixtures that were combined

in a simulated room environment, in the same manner as described in section 5.5. Therefore,

the room is the same as described in chapter 4, and the parameters required by the audiovisual

GMM were defined by the investigation described in section 5.3. The number of components

used in the GMM was set at 12, and the training set contained 200 sentences from four speakers

in the GRID Corpus.

To provide the speech source data, sentences from the VidTIMIT audiovisual corpus were

used. For testing, 66 different sentences were used. As these sentences were from the VidTIMIT

corpus, this meant that the system was completely untrained with speakers from this corpus.

This corpus uses different speakers, speaking Australian-English, different sentences (TIMIT

sentences rather than the simpler commends in GRID, with each sentence around four seconds

in length. The noise source was provided by using recorded F16 aircraft cockpit noise. These

sources were mixed in the simulated room to produce the noisy-speech mixture. Each test

sentence was mixed with aircraft noise at six different SNR levels, ranging from +10dB (a

relatively quiet level of noise) to -40dB (a very loud noise source). To evaluate the resulting

sentences, the three composite objective measures used in section 5.5 were used.
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5.7.3 Evaluation Approach

The recently composite measure described in section 5.2 is used in this investigation to

evaluate the filtered sentences. For purposes of comparison, three versions of each sentence

were compared. The noisy sentence with no speech processing, the sentence processed with

an audio only spectral subtraction approach (Lu & Loizou [121]), and thirdly, the sentence

processed with the audiovisual approach presented in this thesis. The results were also

compared to the results in section 5.5.

5.7.4 Results and Discussion

For this experiment, 66 test sentences from the VidTIMIT audiovisual corpus were used,

as described above. As the system is trained with data from the GRID corpus, this is a

completely novel corpus. In order to be able to compare the results in this section to the

findings presented in section 5.5, the same mixing procedure was used. Each sentence was

mixed in a simulated room environment with aircraft cockpit noise at a variety of different

SNR levels to produce convolved noisy-speech mixtures. These mixtures were then filtered

with two-stage audiovisual speech enhancement to produce enhanced speech signals. The

composite objective measures were used to produce the results in this section, with the

performance of this system in very difficult environments (very low SNR levels) being of

particular interest.

Composite measures (which are described in more detail in section 5.3) are used in this work

for objective evaluation of test sentences. The results for the Signal score (CSig), Background

score (CBak), and Overall score (COvl), are shown in figures 42, 44, and 46, with data also

displayed in tables 12, 13, and 14. As with previous experiments, the enhanced audiovisual

filtered speech (Avis) results were compared to noisy unfiltered speech (Noi), and speech

filtered with audio only spectral subtraction (Spec). Interaction plots for the means of each
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Table 12: Selected results of Bonferroni multiple comparison of VidTIMIT corpus, showing P-Value
results for difference between Unfiltered Speech and Audiovisual Filtering for speech distortion
composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.534 0.045 11.883 0.000

-30dB 0.494 0.045 10.997 0.000

-20dB 0.584 0.045 12.990 0.000

-10dB 1.336 0.045 29.730 0.000

0dB 2.190 0.045 48.730 0.000

+10dB 3.239 0.045 72.07 0.000

composite measure (for speech signal distortion, noise intrusiveness, and overall score) are

shown in figures 41, 43, and 45 respectively.

Considering speech signal distortion first, it can be seen in figure 42 that at all SNR levels

the best performing sound file was the unfiltered noisy signal. The difference between the

unfiltered signal and the enhanced signal was statistically significant (p<0.05) as shown by

table 12, and was also confirmed by listening to the files. The spectral subtraction approach

was found to produce files that introduced some noticeable distortion, as confirmed by the

difference between the scores, particularly at higher SNR levels. As expected, the audiovisual

method performed particularly poorly with regard to speech distortion. This was expected,

due to the limitations of the Wiener filtering approach, and confirmed the findings in section

5.6, that the system performed poorly when tested with completely novel data. As the SNR

increased, the speech distortion score decreased. This was confirmed by listening to the files.

The noise intrusiveness scores show slightly different results. The results show that there

is significant improvement for noise intrusiveness at low SNR levels when using audiovisual

filtering, as shown by figure 44 and the selected p-values given in the results of Bonferroni

multiple comparison in table 13 (and also the associated interaction plot in figure 43). At SNR

levels of -40dB, -30dB, and -20dB, the audiovisual approach is found to produce a significant

improvement over the unfiltered noisy signal, showing that it is capable of performing some



Figure 41: Interaction plot for speech distortion composite objective score of VidTIMIT corpus at varying
SNR levels, showing Unfiltered noisy-speech, Spectral Subtraction, and Audiovisual Filtering
scores.
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Figure 42: Composite objective mean test scores of VidTIMIT Corpus for noise distortion level for
Unprocessed Noisy Signal (Noi), Spectral Subtraction (Spec), AV Enhancement (Avis).
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noise removal. However, at higher SNR levels, the difference is not found to be statistically

significant at -10dB, and then the audiovisual approach is found to produce significantly

worse results at 0dB and +10dB. The findings of the speech and noise composite measures are

backed up by the overall score. This is shown in table 14, and the associated interaction plot

in figure 45. It can be seen that the noisy unfiltered file produces the best overall results at all

SNR levels. Table 14 shows that the difference is not significant at low SNR levels (-40dB, -30dB),

but the unfiltered speech score is significantly better than the audiovisual filtering score at

higher SNR levels. It can also be seen from table 14 that the unfiltered score also outperforms

the spectral subtraction approach.

There are several reasons for these findings. Firstly, the limitations with the audiovisual

model, as discussed in section 5.5 are repeated with the results presented in this section. At

higher SNR levels, distortion is introduced to the filtering, resulting in poor results at these

levels. Secondly, as discussed in the corpus review in chapter 3, the VidTIMIT corpus is

recorded in an environment with some background noise present. The objective measures

work by performing a comparison of the processed file with the original file. If the original

clean speech sentence contains noise, then this will affect the final scores. In this case, noisy

sentences are being compared to clean sentences which also contain noise, resulting in higher

results for noisy sentences than might be expected. Finally, as stated, these results also confirm

the limitations with the visually derived filtering approach as found in section 5.6, and also

identify limitations that were not explored in similar work by others (Almajai & Milner

[11, 12]).

In addition to the results presented above, a comparison of these results with the findings

presented in section 5.5 was also made. Firstly, a comparison of the unfiltered overall com-

posite results for the GRID and VidTIMIT results (presented in section 5.5 and this section

respectively) is shown in figure 47.

The overall unfiltered scores in figure 47 are of interest, because it can be seen in this figure,

as well as table 15 and the interaction plot in figure 48, that the overall composite score of

sentences from the GRID corpus is significantly lower than for sentences from the VidTIMIT

corpus. As discussed previously, this is due to the audio quality of the clean sentences in



Table 13: Selected results of Bonferroni multiple comparison of VidTIMIT corpus, showing P-Value re-
sults for difference between Unfiltered Speech and Audiovisual Filtering for noise intrusiveness
scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -0.532 0.035 -15.14 0.000

-30dB -0.557 0.035 -15.85 0.000

-20dB -0.468 0.035 -13.34 0.000

-10dB 0.094 0.035 2.682 1.000

0dB 0.796 0.035 22.672 0.000

+10dB 1.513 0.035 43.11 0.000

Figure 43: Interaction plot for noise intrusiveness composite objective score of VidTIMIT corpus at
varying SNR levels, showing Unfiltered noisy-speech, Spectral Subtraction, and Audiovisual
Filtering scores.
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Figure 44: Composite objective mean test scores for speech distortion level of VidTIMIT Corpus for
Unprocessed Noisy Signal (Noi), Spectral Subtraction (Spec), AV Enhancement (Avis).

Table 14: Selected results of Bonferroni multiple comparison of VidTIMIT corpus, showing P-Value
results for difference between Unfiltered Speech and Audiovisual Filtering for overall composite
scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.176 0.058 3.018 0.405

-30dB -0.011 0.058 -0.190 1.000

-20dB 0.240 0.058 4.130 0.006

-10dB 1.123 0.058 19.277 0.000

0dB 1.958 0.058 33.619 0.000

+10dB 2.965 0.058 50.91 0.000
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Figure 45: Interaction plot for overall composite objective mean score of the VidTIMIT Corpus at varying
SNR levels, showing Unfiltered noisy-speech, Spectral Subtraction, and Audiovisual Filtering
scores.
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Figure 46: Composite objective mean test scores of VidTIMIT corpus for overall speech quality, for
Unprocessed Noisy Signal (Noi), Spectral Subtraction (Spec), AV Enhancement (Avis).
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Figure 47: Composite objective mean overall scores, for unfiltered noisy-speech, comparing unfiltered
noisy GRID (left) and VidTIMIT (right) mean scores at varying SNR levels.

the VidTIMIT corpus. As there is a degree of noise already present in the clean sentence,

then this results in a higher score for noisy sentences than might be expected, and so has an

impact on all results. It demonstrates a limitation with using a purely objective result, and is

an issue with the corpus and the measurement technique rather than anything to do with any

particular filtering approach.

In addition to a comparison of overall composite scores for unfiltered speech, the same

comparison was also made of composite overall scores for sentences from the GRID and

VidTIMIT corpora filtered using the audiovisual approach presented in this thesis. The results

are shown in figure 49.

As was expected, taking into account the limitations of testing the audiovisual speech model

on unseen data previously discussed in this section, and also the effect of the noisy corpus

on overall scores, sentences from the GRID corpus were found to have a significantly higher

mean score than sentences from the VidTIMIT Corpus. This was confirmed by the comparison

of means in table 16 and the interaction plot in figure 50. Overall, these results confirm the

limitation identified previously, that the system performs poorly when it is tested with data

that is unrelated to the chosen training set. This is an expected result, as other similar research

that uses a similar visually derived filtering technique such as work by Almajai & Milner

[12] makes use of test data that closely matches the training set (i.e. the same single speaker



Table 15: Selected results of Bonferroni Multiple Comparison of unfiltered speech, showing P-Value
results for difference between GRID Corpus Unfiltered Speech and VidTIMIT Corpus Unfiltered
Speech for overall composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.987 0.047 21.117 0.000

-30dB 1.015 0.047 21.695 0.000

-20dB 1.224 0.047 26.175 0.000

-10dB 1.778 0.047 38.010 0.000

0dB 1.913 0.047 40.910 0.000

+10dB 2.008 0.047 42.940 0.000

Figure 48: Interaction plot for overall composite objective mean score of GRID and VidTIMIT sentences
at varying SNR levels.
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Figure 49: Composite objective mean overall scores, for speech filtered with the audiovisual approach,
comparing GRID (left) and VidTIMIT (right) mean enhanced scores at varying SNR levels.

Table 16: Selected results of Bonferroni multiple comparison of audiovisual filtered speech sentences,
showing P-Value results for difference between GRID Corpus filtered Speech and VidTIMIT
Corpus filtered Speech for overall composite Scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -0.372 0.086 -4.327 0.001

-30dB -0.192 0.086 -2.231 1.000

-20dB -0.299 0.086 -3.478 0.035

-10dB -0.666 0.086 -7.750 0.000

0dB -0.892 0.086 -10.390 0.000

+10dB -1.186 0.086 -13.81 0.000
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Figure 50: Interaction plot for overall composite objective mean score of the GRID and VidTIMIT corpora
at varying SNR levels.

corpus is used for training and testing). In order to improve this aspect of the system, an

improved audiovisual model could be considered, making use of more sophisticated filtering

and a much more varied training set.

5.8 inconsistent audio environment

5.8.1 Problem Description

Section 5.5 presented results that showed that when the two-stage system developed in

this work was presented with a consistent noisy-speech environment, good results were

found. This section focuses on a different issue, that of speech filtering in an inconsistent

audio environment. Many audio-only source separation algorithms perform well in stable

environments, but less strongly when the audiovisual environment is volatile and changeable.

A real life example of this is with modern hearing aids that contain sophisticated algorithms

to utilise microphones to filter speech, but in changeable environments, output speech quality

can suffer.
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This section will demonstrate the effects of using a less consistent environment. Rather than

a consistent noise as described in section 5.5, a different kind of noise containing silences and

loud noises (in the form of inconsistent clapping) is mixed with speech. This simulates an

environment where the noise source is inconsistent and changeable. The effects of using the

two-stage audiovisual speech enhancement system is compared to the results of using audio

only beamforming.

5.8.2 Experiment Setup

The system was set up in the same manner as described in sections 5.5 and 5.3.

Speech sentences from the GRID Corpus are used again in this experiment. Like in section

5.5, these sentences have not been used for training the audiovisual system directly, but are

spoken by the same speakers as used for training. The key difference from other experiments

in this chapter is that rather than consistent aircraft noise being used as the noise source,

a completely different type of noise is used. Speech sentences from the GRID Corpus are

mixed with loud and inconsistent clapping at an SNR of -10dB. The noise is shown in the

spectrogram in figure 51 and the waveform in figure 52. It can be seen that the noise contains

a period of silence at the start, and then the clapping is irregular and loud. Clean sentences

from the corpus, with an example of a spectrogram and waveform shown in figures 53 and 54

respectively, are mixed with this noise to produce the noisy-speech mixture. The resulting

combined noisy-speech mixture is shown in figures 55 and 56.

To compare the effects of audio-only and two-stage filtering, the noisy-speech mixture was

filtered in two different ways. Firstly, the noisy mixture was processed using the standard

audio-only beamformer. Secondly, this was then compared to filtering the same sentence with

the two-stage audiovisual approach. In this section, a single example sentence was selected to

be representative of all findings, as a very similar outcome was found for all speech sentences.



Figure 51: Noise source spectrogram for inconsistent noise environment experiment.

Figure 52: Noise source waveform for inconsistent noise environment experiment.
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Figure 53: Clean speech spectrogram for inconsistent noise environment experiment.

Figure 54: Clean speech waveform for inconsistent noise environment experiment.
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Figure 55: Speech and noise mixture spectrogram for inconsistent noise environment experiment.

5.8.3 Evaluation Approach

To evaluate this experiment, it was felt that a visual comparison of results would be adequate

for representation in this section because the difference between the two filtering approaches

was found to be very clear for every test sentence tried, and so it was decided that the

most appropriate way to represent this was to show a visual comparison of the outputs in

spectrogram and waveform form.

5.8.4 Results and Discussion

After creating the mixture of speech and noise as described above and shown in figures 55

and 56, this was filtered using two different approaches. Firstly, the noisy-speech mixture was

filtered using audio only beamforming. This was then compared to the same sentence, filtered

using the two-stage audiovisual approach developed in this work.



cockpit

Figure 56: Speech and noise mixture waveform for inconsistent noise environment experiment.

Figure 57: Spectrogram for inconsistent noise environment experiment, result generated by audio only
speech filtering.
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Figure 58: Waveform for inconsistent noise environment experiment, result generated by audio only
speech filtering.

Figure 59: Spectrogram for inconsistent noise environment experiment, result generated by two-stage
audiovisual speech filtering.
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Figure 60: Waveform for inconsistent noise environment experiment, result generated by two-stage
audiovisual speech filtering.

An example of the results found with audio-only processing is shown in the spectrogram

and waveform in figures 57 and 58. It can be seen from a visual examination of the waveform

that the sound completely fails to match the clean speech signal (figure 54). Listening to the

file confirmed that the sound produced was not an accurate match for either clean-speech or

noise.

In contrast to the simple audio-only processing (figures 57 and 58), when the additional

pre-processing is used as part of the audiovisual filtering, then an improved result is produced.

This can be seen in the spectrogram in figure 59 and also the waveform in figure 60. The

comparison shows that a much-improved sound is produced as a result of filtering, which

when compared to the original clean speech source spectrogram in figure 53, and the waveform

figure 54, matches much more closely than using simple audio only filtering.

Overall, this section indicates that adding visually derived filtering may increase the

flexibility of the system, as shown by the representative example result presented in this

section. This shows that the addition of visually derived filtering can overcome limitations
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with single modality speech filtering, which can make it much more useful in environments

where the noise source rapidly changes in SNR, volume, content, or when it can be difficult for

audio only filtering to correctly distinguish between speech and noise.

5.9 summary

The established relationship between audio and visual aspects of speech (described in chapter

2) has been exploited by others in recent years to create multimodal speech filtering systems,

as summarised in chapter 3. In this thesis, a novel two-stage audiovisual speech enhancement

system has been presented, that also exploits the relationship between audio and visual

aspects of speech. This new system was described in chapter 4. In this chapter, the results of a

thorough evaluation of the performance of this multimodal speech enhancement system were

presented. Firstly, the speech evaluation measures, both objective measures and subjective

human listening tests, were outlined, and the remainder of the chapter described experiments

carried out to thoroughly assess the performance of the multimodal speech enhancement

system.

Section 5.3 presented a summary of an investigation into the optimum parameters to use in

more formal experiments. This preliminary investigation evaluated the use of different sizes of

training sets and the number of GMM components to use to train the audiovisual clean speech

estimation model, and concluded that the use of a training set from four different speakers and

12 GMM components delivered the best results. Section 5.5 used objective and subjective testing

to present a thorough evaluation of the performance of the two-stage multimodal speech

filtering system in very noisy environments, using aircraft noise at a variety of SNR levels,

from -40dB to +10dB. These results were compared to the results of using noisy unfiltered

speech sentences for evaluation and also audio only spectral subtraction. The results showed

that at lower SNR levels, the audiovisual approach was by far the best performing system, and

produced promising results. At higher SNR levels however, it was found that the multimodal

approach performed poorly.
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Three other scenarios were also presented. Firstly, in section 5.6, one limitation of this

multimodal system, a failure to function adequately with novel speakers, was identified. This

was demonstrated by comparing the results from the main test-set (comprising sentences

that the system had not been trained with, but from the same speakers as the training set),

and a new test-set, using a completely different speaker from the same corpus that had not

previously been encountered during training. A comparison of mean PESQ results confirmed

that sentences from an unknown speaker produced worse results than for known speakers,

confirming a limitation of using visually derived filtering. In addition, the performance of

the system using completely novel data from a different speech corpus was also evaluated

in section 5.7, and confirmed the limitation with regard to performance with novel speakers.

However, section 5.8 showed one of the strengths of this new system, that of coping with an

inconsistent noise environment. An inconsistent clapping noise was used in the experiments

described in section 5.8, with periods of silence and varying speeds of clapping to simulate a

challenging noisy-speech environment. An audio only beamforming approach was compared

to the multimodal system, with a comparison of outputs showing that the multimodal system

added a degree of flexibility to speech filtering and produced better results.

Overall, the discussion of results shows that while this new two-stage system has limitations,

it produces promising results in challenging environments, and is flexible in comparison

to single modality speech enhancement systems. However, there are occasions (such as at

high SNR levels) when the additional filtering produces increased distortion, and so there is

still scope for refinement. The visually derived Wiener filtering approach could be improved.

This work used a relatively simple noise free speech estimation approach, making use of the

GMM-GMR approach. This was originally developed for robot arm training by Calinon et al.

[33] with the emphasis on producing an efficient and smoothed output, and so alternative

methods could be considered. Recent work by Almajai & Milner [12] makes use of a more

complex noise free speech estimation system, with phoneme specific mixture models used,

suggesting that a more sophisticated visual filtering approach can deliver improved results.

The results given in this chapter also suggest that there is not one single speech enhancement

approach that is guaranteed to produce optimal results in all circumstances. The results
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presented in this work show that while this two-stage approach produces improved results in

very noisy environments, the use of visual information can sometimes be counterproductive.

The potential inconsistent availability of audio and visual information in a more realistic speech

environment also has to be considered. This work makes use of a simulated environment, with

pre-recorded visual information and static speech and noise sources, but in a more realistic

environment which a hearing aid would be expected to function in there may be multiple

moving sources or good quality visual information may not always be available. Changes in

light, pose, and actions by the speaker such as placing a hand over their mouth may render

visual information unusable. Therefore, it is important to consider how a multimodal system

can best take advantage of the variation in audio and visual information to deliver the best

results on a frame by frame basis.

The extension of this system to become more autonomous, adaptive and context aware

is feasible. This would automatically select the most appropriate speech filtering technique

on a frame by frame basis, depending on the quality and availability of audio and visual

information. For example, in a very noisy environment with good quality visual information

readily available, it would be appropriate to use multimodal two-stage audiovisual speech

enhancement, whereas if less noise was present, or if visual frames were found to contain

inadequate information, it would be better to use audio only speech filtering. Taking inspi-

ration from systems which process speech in different ways depending on the type of noise

such as Neurofuzzy methods (Esposito et al. [57]), and the decision rules used in commercial

hearing aids, the next chapter discusses the extension of the system evaluated in this chapter,

to present a novel, proof of concept, multimodal fuzzy logic based speech enhancement

framework.



6
T O WA R D S F U Z Z Y L O G I C B A S E D M U LT I M O D A L S P E E C H F I LT E R I N G

6.1 introduction

The main aim of this thesis is to develop a multimodal speech enhancement system. After

an investigation of state-of-the-art research in chapter 3, chapter 4 proposed a new two-stage

audiovisual speech enhancement system that makes use of both audio and visual information

to filter speech. The results of comprehensive testing of this system were presented in chapter

5, and a number of key strengths and weaknesses were identified. It was concluded that

although there were strengths with this system, in that good results were found in extremely

noisy environments showing that this new system was capable of producing results in

challenging environments, and that it demonstrated the feasibility of speech enhancement

using visual information, there were also limitations found. For example, the system was

found to introduce speech distortion at a high SNR. Chapter 5 concluded by identifying some

potential refinements to the system, one of which was to extend the initial system with the use

of fuzzy logic to make more cognitively inspired use of audio and visual speech information.

This chapter extends the system evaluated in chapter 5 and presents a multimodal fuzzy

logic based speech enhancement framework. Firstly, some limitations with the initial system

are discussed, explaining why a single speech enhancement system is not suitable for use in

all circumstances. The decision to make use of a fuzzy logic based system is then justified. The

requirements of an autonomous, adaptive, and context aware speech enhancement system are

discussed, followed by an assessment of why a fuzzy logic based approach is considered to be

a suitable method for extending the system initially presented in chapter 4. An introduction to

the use of fuzzy logic in the context of this system is also provided. This chapter also provides

a brief review of several other potential alternative approaches to fuzzy logic.

167
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The chapter then presents a novel, multimodal, fuzzy logic based speech filtering framework.

The utilisation of the audio and visual input data, the inputs to the fuzzy inference system

(the detectors), and the resulting fuzzy sets are described. The rules for the fuzzy logic based

system, based on these fuzzy sets are then discussed. Finally, the challenges of thoroughly

evaluating this initial system are then briefly discussed. While the work presented in this

chapter does not represent a final and completed system, it is intended to demonstrate the

feasibility of such an approach as an extension of the initial system presented previously in

this thesis, showing that making more intelligent use of multimodal information is viable.

The remainder of this chapter is divided as follows. Section 6.2 discusses the limitations

of the current system, and the justification for extending the initial system to utilise a fuzzy

logic controller is described in section 6.3. This includes the requirements and the suitability

of implementing a fuzzy inference system. Some alternative approaches are then briefly

discussed in section 6.4. The extended fuzzy logic framework, utilising the feature extraction

techniques and speech processing techniques discussed in previous chapters is then described

in section 6.5, detailing how fuzzy logic can be integrated into the existing system, and

describing the input fuzzy variables and rules in detail, with a discussion of evaluation

approaches presented in section 6.6. Finally, section 6.7 sums up the chapter.

6.2 limitations of current two-stage system

The two-stage speech enhancement system presented previously in this thesis was shown

in chapter 5 to be capable of producing positive results in environments where audio-only

speech enhancement techniques were found to perform poorly. However, the results also

identified a number of weaknesses with this two-stage approach, most significantly that

when the SNR was relatively high, the two-stage approach was outperformed by audio-only

approaches due to the distortion introduced in the audiovisual filtering process. There were

also limitations that apply more generally to visually aided speech filtering systems. These

systems, whether visually derived Wiener filtering approaches (Milner & Almajai [130]) that
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estimate the noise-free audio signal with visual information, or multimodal beamforming

systems (Rivet et al. [149]) that use visual information for directional focus, rely on a clean

source of visual information. The majority of multimodal speech research in the literature

make the assumption that a good quality source of visual information is available at all

times. The work presented previously in this thesis makes the same initial assumption. This is

acceptable for laboratory simulations, where a pre-recorded speech corpus is often used for

research and development. However, in real world environments, such visual information is

not always guaranteed to be present.

Visual speech information is particularly vulnerable to corruption. Consider a hypothetical

scenario where a person is listening to a speaker. The listener may not always be looking

directly at the speaker; their attention may be directed elsewhere at points during the con-

versation. There may be situations where the speaker turns their head, places a hand over

their mouth, or another person walks between the speaker and listener, temporarily blocking

the view of the speaker’s face. The light level may also change, making it difficult to identify

speech. These problems can affect both tracking and filtering, and in a real world scenario,

have to be accounted for.

There are also a number of other limitations that are not specific to visual information but

apply to the audio domain. These were described in more depth in chapter 3, but essentially

there are many examples of certain types of speech filtering being vulnerable to environmental

conditions. For example, directional microphones are often only recommended for wind-free

environments. If there is wind present, it is recommended that omnidirectional mode is used.

Omnidirectional mode (with the directional setting disabled) is also recommended for very

quiet environments without background noise present (Chung [44]). There are also scenarios

where speech algorithms in hearing aids that reduce gain in frequency channels can perform

poorly (for example, in broadband noise, such as in an automobile).

The conclusion that can be drawn from this, and from the results discussed in chapter 5,

is that there is no single specific speech processing algorithm that is guaranteed to perform

strongly in all scenarios. Different approaches have their own weaknesses, so while visually

derived filtering is vulnerable to missing visual data; beamforming is vulnerable to transient
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noise such as an unexpected loud handclap. Although the system presented in the previous

chapters can offset these weaknesses to an extent, it introduces some of its own. To solve

problems with real data, as discussed in chapter 3, some commercially available audio-only

hearing aids make use of decision rules to determine the extent and type of processing to

apply to an input signal, based on various input detectors, and this allows for the adjustment

of hearing aid settings to filter the input sound in a suitable manner.

6.3 fuzzy logic based model justification

After consideration of the limitations identified with the system presented in the previous

chapters and speech enhancement systems generally, it was concluded that no single pro-

cessing method was considered to be ideal for use in all scenarios, with results showing

that audio-only, two-stage, and even no processing were suitable options, depending on the

speech environment. It was also concluded that a real world environment is inconsistent and

changeable, and a degree of flexibility is desirable with regard to speech processing. In order

to take account of this, examples of how real world speech filtering systems deal with this

problem were discussed in chapter 3. Chapter 3 described existing commercially available

hearing aids, and identified that many state-of-the-art hearing aids are very sophisticated and

make use of decision rules to decide on the level of speech filtering to apply. For example,

as reported by Tellier et al. [171], hearing aids exist that can take account of a number of

detectors to analyse the input signal in order to classify the noise. Such an idea can also be

seen in neuro-fuzzy systems such as by Esposito et al. [57] that again seek to classify noise.

Various audio input detectors can be used as an input to a set of decision rules, which then

may apply different degrees of filtering, depending on the input. For example, in the case of

hearing aids equipped with noise reduction algorithms, varying levels of gain reduction are

carried out depending on the input (Chung [44]).

This chapter extends this idea by proposing a switching system that makes use of a set

of rules in order to determine the most suitable means of processing individual speech
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frames when there is a choice between no processing, audio-only beamforming, or two-stage

audiovisual speech processing. There are a number of requirements for such a system, and

this section discusses these requirements. In addition, it was decided that a suitable choice to

implement such a system was fuzzy logic (Zadeh [187]), and so the remainder of this system

provides an introduction to fuzzy logic and a justification of the use of this technique. The

preliminary proof of concept fuzzy logic based speech enhancement framework presented

in this chapter extends the concept of decision rule based hearing aid algorithms to become

multimodal, by using a fuzzy logic controller to determine the most suitable processing option

to use for a frame of speech. To the best knowledge of the author, this is a novel framework,

with no prior examples of multimodal two-stage fuzzy logic based speech enhancement in

the literature.

6.3.1 Requirements of Autonomous, Adaptive, and Context Aware Speech Filtering

As discussed in section 6.2, it can be concluded that the use of one single speech filtering

technique is not ideal in all circumstances, with the system presented in chapter 4 performing

strongly in some conditions, but not others. Therefore, it is proposed to extend the initial

multimodal system to make use of audio and visual information in a more autonomous,

adaptive and context aware manner. Any such system has a number of requirements. Firstly,

it has to be intelligent and context aware. By this, it is meant that the system takes account of

the audio and visual speech environment and varies the processing decision depending on

changes in the environment. It also has to be adaptive. Although many speech processing

systems are trialled heavily in laboratory environments and clinical trials, as reported in

chapter 3, the improvements found in these controlled environments are often not found

to match up to real world trials, and so any proposed system has to be able to successfully

process unpredictable environments. Any proposed system should also be autonomous. As

discussed in the review of directional microphone research in chapter 3, Cord et al. [48, 49]

reported that if the user was expected to manually determine the most suitable microphone
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setting (for example, omnidirectional or unidirectional) and switch their hearing aid to it

when appropriate, then in the majority of cases, users would simply keep their hearing aids

in omnidirectional mode. This was because of the user not being able to perceive any obvious

immediate benefits of directional microphones, poor advice during the fitting process, or

simply because of the inconvenience. Therefore, any proposed system should be automated,

in order to deliver the optimum performance.

It is also important to consider the ease of future development. While this is less important

with respect to the early stage system specifically being discussed in this thesis, commercial

hearing aids currently make use of a wide range of proprietary detectors in order to determine

the most suitable level of gain or directionality to apply at different frequencies (Chung

[44]). As discussed in chapter 3, this varies between hearing aids and between manufacturers.

Therefore, it should be possible for the system proposed in this thesis to be capable being

extended to make use of an increased number of detectors, satisfying a requirement to be

scalable. Another requirement of any state-of-the-art speech filtering system is that it should

be capable of being tweaked and tuned without great difficulty. Hearing loss can vary widely

between individuals, including hearing loss at specific frequencies or frequency ranges, and

this wide variety of loss is not always handled well by existing theory behind hearing aids

(Allen et al. [8]). Accordingly, when a modern programmable hearing aid is provided, patients

are expected to undergo fitting sessions, where their hearing aid is programmed to better

fit their individual hearing loss and comfort levels. Therefore, any proposed system should

contain accessible parameters that can be tweaked and tailored in order to adapt to the hearing

ability and preferences of the user.

6.3.2 Fuzzy Logic Based Decision Making

It was decided that one technique that met these criteria was fuzzy logic. Fuzzy logic was

first proposed by Zadeh [187], and allows uncertainty to be represented using the concept

that a variable may belong to a set to an extent, but not completely. This moves away from
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the traditional mathematical concept of data either belonging or not belonging to a set, and

uses the concept that a value can partially belong to a set. These sets are then used to create

rules based on expert knowledge that can be evaluated to give an output based on uncertain

input. Fuzzy inference is used in many applications, such as to the control of radio controlled

vehicles (Tanaka et al. [170]) and noise cancellation (Chang & Shyu [35]). It is important to

clarify the distinction between fuzzy logic and probability. Fuzzy logic is not concerned with

mathematically modelling a system (for example, HMMs Ghahramani [68])), and instead uses

expert rules. While they both represent uncertainty, the semantics are different. For example,

probability is based on the concept that a value has x probability of belonging to a set. This

means that it may belong to the set, or it may not. On the other hand, an example of a fuzzy

statement would say that a value belongs to a set to x extent. This is an important distinction.

This is relevant because this concept can be applied to speech input, for example, audio input

conditions can vary, depending on environmental conditions.

As fuzzy logic will be discussed in depth in the next two chapters of this thesis, a number

of terms will be formally introduced:

Fuzzy Sets

Classically, values are represented with crisp sets (Hellmann [80]). These are sets of values

where the values within it are clear and explicit, meaning that a value can easily be defined

as part of a set or not. A crisp set is adequate for many applications, however, in the case

of the work discussed in this thesis, it could be argued that there is not a clear-cut off and

strict separation between, for example, low noise and high noise environments. Fuzzy logic

allows for a relaxation of these crisp sets to create fuzzy sets. A hypothetical example of the

difference between fuzzy and crisp sets is shown in the example presented in figure 61. It

can be seen in the hypothetical example that the crisp set represents values that either are

members of the set or not. However, the fuzzy set shows a different meaning. Values in the

example shown range from 1 to 0, just like the crisp set. Values of 1 represent a definite

membership of the set, however, values of less than 1 but greater than 0 represent a partial

membership of the set.Values of 0 indicate non-membership of that set.
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Figure 61: Representation of a traditional crisp set (top), showing values as either belonging to a set, or
not belonging, compared to an example of a fuzzy set (bottom), showing that a value can
definitely belong to a set (if it has a value of 1), or it may partially belong to that set if it has a
value between 0 and 1, or not belong to a set if it has a value of 0.

There can be several membership functions for an input, making it possible for an input to

be a partial member of several sets simultaneously. So for example, a hypothetical input audio

value can be part of a "low noise" set, part of a "high noise" set, or possibly a partial member

of both sets. These membership functions are defined as showing the extent of participation

of each input (Hellmann [80]). These membership values are used by the rules to determine

outputs.

Application of Fuzzy Operator

Fuzzy sets can then be used to perform a number of operations, including intersection (AND),

unification (OR), and negation (NOT). This allows for the construction of rules. Rules make

use of expert knowledge, and are expressed using variables described by fuzzy sets. Each rule

consists of two components, an antecedent and a consequent. The antecedent consists of the

part of each rule before the ’Then’ (e.g. IF a AND NOT b), and the consequent is the output

(e.g. THEN c). These are used to create a series of rules, using each of the fuzzy sets. Each

of the rules is evaluated to evaluate the extent to which it belongs to a chosen output. As a

fuzzified input may belong to several sets, this means that several rules may be fired.
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Figure 62: Example of the an aggregated fuzzy output. The output singleton value (a single defuzzified
output number) is calculated from this. This can take several forms, including a centroid of
the aggregation (a), or the middle of the maximum value (b).

Aggregation

In order to produce an output value, each of the individual rule outputs is aggregated into

a single fuzzy set. By this, it is meant that each rule is evaluated, producing the output

fuzzy values described above. Each rule is then combined to produce a single fuzzy set that

encompasses all the rule outputs that were applicable.

Defuzzification

The final stage of a fuzzy inference system is the determination of a final output. This is

known as Defuzzification, and refers to the process of obtaining a single output value from

the aggregated fuzzy set. It is generally considered useful to obtain one final decision from the

fuzzy-system, and so the aggregated fuzzy set described above must be defuzzified. Figure 62

represents a hypothetical aggregated fuzzy output set. In order to output a single value, one

value must be chosen. There are several different methods, including centroid (the centre of

the total aggregated area), middle of maximum (the average of the maximum value of the

output set), and largest of maximum. An example of a single output value using the centroid

method is shown in figure 62 by (a), and an example of middle of maximum is shown by (b).

Since the development of fuzzy inference systems, there have been many areas where fuzzy

logic has been applied, such as for the control of vehicles (Tanaka et al. [170], Abdullah et al.

[1]), noise cancellation (Chang & Shyu [35]), speech recognition (Halavati et al. [74], Avci &

Akpolat [14]), and image enhancement (Choi & Krishnapuram [42]). It is a very versatile
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approach, combining expert knowledge and uncertainty, and it was determined that this

approach was suitable for use as part of the speech filtering system presented in this chapter.

6.3.3 Suitability of a Fuzzy Logic Approach

Several approaches were considered for use as part of this system, such as making use of

Artificial Neural Networks (ANNs), GMMs, HMMs, or a hybrid of these approaches, such as

neuro-fuzzy approaches, which use fuzzy inference inputs into a neural network (Esposito

et al. [57], El-Wakdy et al. [55]). As discussed previously, the proposed intelligent system had

a range of requirements, and fuzzy logic was considered to be a suitable approach for several

reasons. Firstly, a fuzzy based system fulfils the requirement of being context aware, adaptive,

and autonomous. Fuzzy logic is an approach that allows for uncertainty to be represented,

therefore it is context aware, in that it is capable of responding to different changes in the

environment, based on inputs into the system. It is also adaptive, in that it can respond to

these inputs, so in the system presented in this chapter, the different inputs (which will be

discussed later in this chapter) provide information about the environmental context (such

as the level of noise), the fuzzy-system makes a decision regarding the suitable processing

choice, depending on this input. Fuzzy logic is also autonomous, and can make decisions

without manual input. This can be seen in examples of other fuzzy inference systems, such as

for controlling autonomous vehicles (Abdullah et al. [1]).

Another reason that fuzzy logic is considered more suitable than other approaches is because

of the philosophy behind fuzzy logic, as opposed to probability based approaches. Fuzzy logic

is not concerned with mathematically modelling a complete system in the manner of HMMs

and GMMs, but instead makes use of expert rules, which is more in line with the approach

discussed in this chapter, as it is similar to the rules and processing used in contemporary

hearing aids.

One key advantage to using fuzzy logic rather than equivalents such as ANNs and GMMs is

that fuzzy logic is based on expert knowledge; this means that there are a number of rules that
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can be programmed. Rather than requiring complete training, or the use of a mathematical

model, there are a number of rules that are defined. This is of relevance, because as discussed

above, a future requirement for a practical implementation of this system is that it should

be possible to adjust settings and programs to suit individual users. As discussed in chapter

3, current commercial hearing aids offer a range of programs and settings (Chung [44]),

and users are expected to attend fitting sessions to customise their hearing aids for their

specific hearing loss. The use of a fuzzy based system allows for this customisation to be

applied. For example, different users may have a different interpretation of what constitutes a

"very noisy environment", and so this can be customised in a fuzzy based system in a more

straightforward manner than (for example) training ANNs or GMMs.

The same applies to the scalable potential of using a fuzzy based system. As discussed

in chapter 3, hearing aids make use of a number of different detectors for determining gain

control or directionality. These can represent inputs into rule based decision systems regarding

gain or algorithm adjustment, and the number of detectors and the rules used in specific

devices are both proprietary and can vary greatly between manufacturers. The use of fuzzy

logic represents a logical extension to this concept, as it represents a system that can easily be

extended to take account of additional rules, scenarios, and inputs. The preliminary system

represented here makes use of very basic detectors, and could theoretically be represented

using a different approach, such as with HMMs. However, it was decided that it was important

to demonstrate a fuzzy-system, as it would arguably be more difficult to extend, train and

implement a more sophisticated version of a Hidden Markov Model (HMM) based system in

future, whereas a fuzzy logic system is easier to refine and extend, due to its use of expert

knowledge and the clearly defined rule base. For example, the addition of a wind detector

in a future implementation would require the tweaking and addition of rules, rather than

complete retraining of the system.

Overall, although there were several feasible alternative approaches, as will be discussed in

section 6.4, it was decided that fuzzy logic was a suitable approach for the system proposed

in this chapter.
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6.4 potential alternative approaches

6.4.1 Hidden Markov Models

HMMs (Ghahramani [68]) are statistical Markov models, and are a type of temporal Bayesian

network. While simpler Markov models have directly observable states, in a more complex

hidden model, the states are hidden, and only the output values and their probabilities are

directly observable. This approach is often used for time series data, where the data does not

depend on previous time steps, but is theoretically only limited to that step. As described by

Ghahramani [68], HMMs are defined by a set of states, an alphabet of changes between states,

a transition probability matrix (giving probabilities of transitions from state to state), and an

emission matrix (giving the probabilities of the outputs). There have been many different

examples of making use of HMMs in the literature, with application to a range of problems,

including speech recognition and enhancement (Bansal et al. [17], Hershey & Casey [82]),

robot control applications (El-emary et al. [54]), multimodal emotion recognition (Zeng et al.

[190]), and many other tasks. A detailed overview of HMMs is provided by Ghahramani [68].

There are a number of general benefits to making use of HMMs. Firstly, they have a solid

statistical grounding, with statisticians able to perform mathematical analysis of the results

and manipulate the training process. Also, although hidden, there is also transparency, in

that it is possible for the model to be read, so it is not a complete ’black box’ solution. Finally,

it is possible to incorporate prior knowledge into the model. By this, it is meant that prior

knowledge can be used to constrain the training process, and the model can be initialised

close to something believed to be the correct final output. This reduces the required training

process.

HMMs are considered to be suitable for classification, decoding, and learning problems. In

classification problems, given a HMM and an observation sequence, then the probability of the

next observation can be calculated. In decoding problems, given the model and sequence, then

the most likely sequence of hidden states can then be calculated. Finally, there are learning
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problems. Given some training sequences and a model, the problem is to determine the

parameters most suitable for the model.

The most significant practical limitation is that there is a lack of potential flexibility in a

speech filtering system designed using a statistical approach. While an initial system could

feasibly be designed and trained, it would be designed for a very specific set of circumstances.

As discussed elsewhere in this chapter, hearing aids are customised for individual users in

fitting sessions, where individual parameters such as gain control are adjusted to the comfort

and hearing loss of that individual. It is hypothesised that with different levels of hearing

loss, there are different levels of listener comfort and different processing thresholds that are

considered to be suitable, due to very specific differences in how individuals with hearing loss

perceive specific sounds, showing that one solution may not be suitable for all users (Allen

et al. [8]). When hearing aids are fitted, patients are required to undergo at least one fitting

session to adjust the hearing aid to their individual hearing loss. A fuzzy logic system makes

use of expert knowledge, and it is feasible for individual fuzzy set thresholds to be tweaked

in a hypothetical fitting process.

If using a HMM, in order to adjust to the comfort of an individual, a new model would have

to be trained to suit, with the training data being labelled in order to match the comfort of an

individual listener. This would result in a different model for each listener, and is a far more

complex procedure than a domain expert (such as a trained audiologist) being able to tweak

thresholds with a rule based model.

There is also an issue with extension of the model. Although the initial system proposed in

this chapter is relatively simple, making use of a limited number of detectors, there is scope

for future refinement of this system to take account of a different range of detectors, in order

to improve performance. For example, processing could vary depending on the type of noise

(Esposito et al. [57]), rather than just the presence. In such a scenario, the extension of a fuzzy

logic system is less complex than extending a statistical approach like using HMMs or GMMs.

The extension of a fuzzy logic system would require new rules to be devised and new fuzzy

sets to be created, whereas the extension of a statistical model would require a completely
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new model to be trained with different hidden states, and accordingly, a different transition

matrix, which could grow to become unwieldy in a more complex model.

Finally, there is the issue of training a model. Even a relatively simple approach with a

limited number of states and outcomes will be expected to take account of a wide range of

input data. This necessitates the acquisition of considerable quantities of labelled data, in

order for the model to be able to be able to determine the appropriate output. There are also

the standard machine learning difficulties of overfitting (see Ghahramani [68]) to consider,

as well as the operation of a HMM based approach being potentially slow due to having to

evaluate the complete model on a frame-by-frame basis.

Overall, although it is possible for the initial system presented in this chapter to be developed

using a statistical approach such as HMMs, and these have been applied to a wide range of

domains such as speech recognition Luettin et al. [122], Bansal et al. [17], emotion recognition

(Zeng et al. [190]) and speech filtering (Hershey & Casey [82]), it was determined that a system

implemented with this approach is less practical when the future proposed usage of this

system is taken into account.

6.4.2 Neural Networks

Artificial Neural Networks (ANNs) (Zurada [193], Zayed et al. [188], Haykin [78]) are considered

to be a biologically inspired machine learning approach as they are theoretically similar to the

structure of the brain (i.e. the biological connections between neurons). Generally, ANNs consist

of input and output processing nodes, which are connected to a network using weighted

connections. Neurons receive weighted values from incoming nodes, sum the received values,

apply an appropriate activation function, and then pass the output to other nodes. The transfer

function of an individual neuron refers to the threshold required before the neuron fires

an output. There are many different types, including the commonly used logistic or tanh

sigmoid function used commonly in Multilayer Perceptron (MLP) networks (Rumelhart et al.

[156]), which activates when the input exceeds a threshold level, and also Leaky Integrate-and-
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Fire (LIF) neurons, first proposed by Adrian [4], which are used in spiking networks (Maass

[123]), where the inputs to a neuron are received in the form of input peak signals known as

spike trains. If enough cumulative spike inputs are received, then the neuron fires then resets,

but if spikes are not received, neuron activity gradually dissipates (hence the term "leaky").

There are many different topologies that are used, meaning that there are a multitude of

network designs that have been used in the literature. The most common are what are known

as Feedforward Networks (Haykin [78]). These are networks that receive inputs and then pass

them through one or more hidden layers, before being output. The values of this network are

fully determined by inputs. Training of these networks is carried out with various forms of

gradient descent, including error-backpropogation (Rumelhart et al. [156]).

Another topology that is used (although less commonly than feedforward networks) is

recurrent neural networks. This particular topology is currently the subject of much study, in

particular the area of Reservoir Computing (Schrauwen et al. [163]). The difference between

feedforward network and recurrent networks is that connections exist both backwards and

forwards through layers in the networks. There are also delays between connections, and

so these networks effectively have a form of memory as information remains circulating

inside the networks. This memory makes recurrent networks especially suitable for temporal

problems. Recurrent neural networks have been used for a variety of purposes, including

instrument classification (Newton & Smith [134]) and robot arm control (Joshi & Maass

[97]). A variety of different recurrent network designs have been used, including Echo State

Machines (Jaeger [94]), and Liquid State Machines (Maass et al. [124]). These basically rely on

setting up a neural network with a reservoir of randomly initialised weighted neurons. The

reservoir network is then left untrained, with only an output layer trained. An example of this

is work by Newton & Smith [134], who have made use of such a network to classify musical

instrument sounds based on onset spikes, and multimodal laughter detection by Scherer et al.

[162]. However, recurrent networks can be difficult to train, due to their nature, and have slow

convergence rates (Hammer & Steil [75]).

There have been many different utilisations of neural networks in the literature. A full

summary is considered to be outside the scope of this thesis. But neural networks have been
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used for many different problems in a range of domains such as classification problems

(Newton & Smith [134]), decision support (such as for cancer care, which is summarised by

Lisboa & Taktak [118]), speech filtering (Hussain & Campbell [89], Esposito et al. [57]), and

character recognition (Gader et al. [66]).

Overall, there are many different topologies of neural networks, each with their own

strengths and weaknesses, and with many different applications in a range of fields. Like

HMMs, ANNs are good for information processing and tasks such as classification problems,

and some topologies (such as echo state networks) can also make use of temporal information.

They are capable of solving complex problems, and have been used in the speech processing

domain, such as in neuro-fuzzy systems (Esposito et al. [57]) and speech enhancement

(Hussain & Campbell [89]). It is potentially feasible for a neural network to be developed to

make a decision regarding the most suitable processing method when presented with novel

information.

However, there are some issues with using this approach. Like the HMM method discussed

previously, there is the fundamental issue of customising a neural network based approach

for individual listener comfort. While fuzzy logic can be set by adjusting some rules to

suit, a neural network based approach may require considerable retraining for each user,

using training data that would be difficult to acquire. If the training process is not suitable

(and during the fitting of hearing aids, patients often have follow up sessions to tweak their

settings), then the network would have to be retrained until suitable. The same issue (lack

of training data) applies to many other machine learning approaches such as support vector

machines and GMMs. Although they could feasibly solve the particular problem discussed in

this chapter, their general purpose utilisation in a future system becomes more problematic.

Neural network approaches also have the issue of being effectively a "black box" system.

Tweaking and refining is not a simple matter.

In summary, although neural network approaches can theoretically be used to solve the

problem outlined in this chapter, it was considered more practical to make use of a fuzzy logic

based system.
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6.5 fuzzy based multimodal speech enhancement framework

In light of the limitations with both the audiovisual system presented earlier in this thesis,

and other speech enhancement limitations that have been outlined earlier in this chapter,

the initial multimodal two-stage speech enhancement system presented in chapter 4 has

been extended to become more sophisticated by developing a fuzzy logic based system. As

discussed previously in this section, it was felt that using fuzzy rules represented the most

practical solution, and could theoretically be implemented and modified in future designs

of hearing aids. To do this, a fuzzy logic controller has been implemented to determine the

most suitable method for processing an individual frame of speech. There are several possible

processing options, (i) applying no filtering to the speech frame, (ii) audio-only processing

with a beamformer, or (iii) the two-stage audiovisual speech filtering approach discussed in

chapter 4. To determine the most suitable processing option, a set of rules are used, which

receive fuzzy inputs from detectors based on the input data. This initial implementation is

evaluated in chapter 7. The remainder of this section discusses the proposed fuzzy logic based

framework in detail.

6.5.1 Overall Design Framework of Fuzzy System

To integrate the fuzzy logic controller into the multimodal two-stage speech enhancement

system described in chapter 4, the initial system shown in figure 15 is extended further by the

integration of a fuzzy logic controller and the subsequent adjustment of the speech filtering

options. The basic components introduced in chapter 4 are unchanged. Visual tracking and

feature extraction is handled in the same manner, as is the audio feature extraction process.

With regard to speech processing, the two processing options used, visually derived Wiener

filtering and audio-only beamforming remain unchanged. However, the difference is that one

or both of these stages may be bypassed on a frame-by-frame basis, depending on the inputs

received by the fuzzy logic controller. This redesigned framework is shown in figure 63.
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Figure 63: System diagram of proposed fuzzy logic based two-stage multimodal speech enhancement
system. This is an extension of figure 15, with the addition of a fuzzy logic controller to
receive inputs and decide suitable processing options on a frame-by-frame basis.

The diagram in figure 63 shows the high level extended system diagram with the alternative

speech processing options. Depending on the inputs to the fuzzy logic controller, the type

of processing performed on the input signal may vary from frame-to-frame. So for example,

if it is detected that there is very little audio activity in a particular frame, then it may be

decided to leave that frame unfiltered. Alternatively, if a moderate amount of audio energy

is detected, then it may be decided that audio-only beamforming is the most appropriate

processing method. If however, a lot of audio activity is detected in a particular frame and

the visual information is considered to be of good quality, then the full two-stage process as

described previously in this thesis may be used.

The decision as to which option is to be used is taken with the aid of a number of detectors

applied to the input signal. As previously stated in chapter 3, audio-only hearing aids make

use of a wide range of proprietary detectors such as level, wind and modulation detectors.

In the initial implementation presented in this chapter, three detectors are used. An audio

level detector is utilised. This does not consider speech or noise separately and is not a VAD,

but simply considers the level of audio activity in each frame. Similarly, a visual quality

detector has been developed to apply to the input DCT vector as an evaluation of the visual

signal quality. The final detector used in this system is simply a feedback input of the

processing decision made in the previous frame. This aims to minimise the chopping effect if

the chosen processing method changes substantially from frame-to-frame. These fuzzy inputs

are described in more detail in the next section.
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Figure 64: Diagram of fuzzy logic components, showing the three chosen fuzzy inputs and the list of
rules to be applied.

Fuzzy logic rules are then used to determine the most suitable processing method, depend-

ing on the input. Each individual frame is processed in a manner judged by the fuzzy logic

controller to be most suitable. The next sections first discuss the input detectors in detail, and

then describe the operation of the fuzzy logic rules used in this novel framework.

6.5.2 Fuzzy Logic Based Framework Inputs

The fuzzy logic controller builds a relationship between system inputs and the rules used to

define the processing selection. In order to accomplish this, it takes a number of input variables

and applies these to fuzzy logic rules. As discussed in section 6.3, each input variable must

be decomposed into a set of regions (or fuzzy sets), consisting of a number of membership

functions. The composition of these membership functions can vary in size and shape, based

on the preference of the designer (Bagis [15]), and for the work in this thesis, it was decided

to make use of trapezoid membership functions for all inputs in order to ensure consistency. .

The fuzzy-system diagram is shown in figure 64, and it can be seen that there are three inputs

to consider, audio level, visual quality, and previous frame processing decision.
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Visual Quality Fuzzy Input Variable

The first input variable is the visual quality. This measures the level of detail found in each

cropped ROI. As the system is audiovisual, visual information is a key component of the

processing. However, this information can be of varying quality. There are occasions when the

entire lip region is visible, but there are also occasions when the lip-tracker returns an incorrect

result due to scenarios such as the speaker turning their head. There are also occasions when

the lip region may be blurred due to movement, or only a partial ROI is returned. This is

not such an issue with regard to the audiovisual speech databases utilised in the previous

evaluation (in chapter 5), when a custom corpus is used, there are many more examples of

poor visual data to take account of.

As there were many different potential speakers, an approach with as much flexibility

as possible was required. One potential approach was to make use of a machine learning

technique such as a HMM to create a model to evaluate the ROI and return a score to use

as a fuzzy input variable. However, it was felt that this was not required for the initial

implementation presented in this thesis. Instead, a simpler approach was devised that made

use of the input DCT vector.

In order to determine the most suitable input variable, a custom corpus was recorded using

real data from a variety of volunteers. This is discussed in more depth in chapter 7.5, and

a number of trial videos were evaluated to calculate the most suitable value, with various

variables investigated, such as the DCT input vector, and the tracker parameters of the actual

cropped images. An investigation identified that the fourth DCT coefficient was consistently

a better representation of the accuracy of the cropped DCT than any other single factor, and

so this was used to create a mean value. As the DCT transform represents pixel intensity,

it was calculated that while the value of this would vary from image to image, the fourth

coefficient value would remain relatively consistent. Therefore, for each frame, the absolute

value (converting negative values to positive) of the fourth DCT coefficient was calculated. This

was then compared to a moving average of up to the 10 previous frames that were considered
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Figure 65: Switching logic input parameter: visual detail level. Depending on the level of visual detail,
the estimated parameter can be considered to be ’Good’ or ’Poor’ to varying extents.

to also be of good quality, and the difference between this moving average and the coefficient

represented the visual input variable.

To create this moving average, one assumption was made, that the first value of each

sentence was successfully identified with the Viola-Jones detector (Viola & Jones [175]). This

first value was used as the initial moving average mean value. For the second frame onwards,

the new value was compared to the mean of the moving average. If the new value was

considered to be within a threshold (preliminary trials identified an appropriate threshold

to be 2000), then this value was considered to be suitable, and so was added to the moving

average. To take account of variations in speech from frame-to-frame, only a maximum of the

10 most recent values were considered as part of the moving average. This moving average

threshold aims to minimise incidences of incorrect results being added to the moving average.

Preliminary trials found that examples of poor quality visual information tended to result

in a greater difference from the mean than good information, and so this approach was found

to be suitable. The trapezoidal membership functions are shown in figure 65. Although the

choice of membership functions can vary depending on the preference of the designer, it was

felt that it would be suitable to use trapezoidal membership functions for all variables in order

to ensure consistency.
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Figure 65 shows that there are two membership functions, ’Good’ and ’Poor’. The lower

the input value, the closer to the mean and therefore the better the frame of visual data was

considered to be. However, as values for individual speakers could vary depending on factors

such as the size of the detected ROI and the degree of emotion in their speech (for example,

affecting the size of mouth opening), there was no fixed value that was guaranteed to work

for every speaker, and therefore a crisp set was not considered to be suitable. As a fuzzy

membership function was used, it was considered that a visual quality value of less than 800

was definitely an example of a good frame of visual information. Between 800 and 2000, then

it could be sometimes considered a partial member of the good set in that there was some

ambiguity depending on the speaker, and also there were examples of partial frames (where

only part of the ROI was accurate). This justified the decision to use fuzzy input variables.

Although alternative techniques could potentially be used, a detailed evaluation of the

performance of this input variable (described in chapter 7) demonstrated the suitability of

using this input as part of the system.

Audio Power Fuzzy Input Variable

The second input variable to be used is the audio power level. This considers how much

acoustic activity there is in an individual frame of speech. The membership functions are

shown in figure 66. This variable does not consider the problem of voice activity detection,

and so does not attempt to distinguish between speech and noise. One reason for this is that

the system is designed to be tested in extremely noisy environments, and audio-only VAD

techniques do not always perform well in these environments. As shown in the results in

chapter 5, at an extremely low SNR, no speech at all can be identified in noisy input speech

mixtures. It is possible to devise an audiovisual VAD (Almajai & Milner [11]), and this could

represent future potential development, but it was felt that the most important factor with

regard to the proof of concept system presented in this chapter was identifying the level of

the audio input as in a real environment the level of noise does not remain consistent, and can

change from frame-to-frame. In terms of the various conventional hearing-aid input detectors
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Figure 66: Switching logic input parameter: audio frame power. Depending on the level of audio power,
the estimated parameter can be considered to be ’None’, ’Low’, or ’High’.

mentioned in chapter 3, this input variable functions in a similar manner to a level detector

(Chung [44]), and is suitable for calculating the level in very noisy environments.

To calculate the audio power in each input speech frame, the frame is first converted back

to the time domain to return the amplitude waveform for that frame of speech. The mean of

the absolute values of the frame is then found. This represents the level of the audio power.

The fuzzy set that the audio power input variable belongs to is then calculated based on this

input, as shown in figure 66.

To take account of extremely noisy input variables, due to the extremely low SNR that the

system is tested with, it can be seen from figure 66 that the largest trapezoidal membership

function is the ’High’ value, which has a maximum value of 25. Figure 67 shows the same

membership functions, but shows only the fuzzy membership functions for values less than

1.5.

Figure 67 shows that if the level is recorded as being very low (less than 0.015), the input

level is considered to belong to the ’None’ membership function. However, as the level detector

is very sensitive, it can be seen that any positive level (ranging from 0.009 to 0.5) is also part

of the ’Low’ fuzzy-set to an extent. Finally, any values greater than 0.4 were considered to

be a member of the ’High’ set to an extent, and values greater than 0.9 were considered to

fully belong to the ’High’ set. These values were set by using trial data, and in the evaluations
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Figure 67: Switching logic input parameter: audio frame power, showing only membership functions for
values ranging from 0 to 1.5. Depending on the level of audio power, the estimated parameter
can be considered to be ’None’, ’Low’, or ’High’.

presented in chapter 7, the effect of different levels of audio power (represented by varying

the type of noise and the SNR on the fuzzy output is discussed in section 7.7.7 of chapter 7.

Previous Frame Fuzzy Input Variable

The third input variable is the previous frame fuzzy logic output. This is simply a feedback

variable that passes in the fuzzy logic controller output from the previous frame. As stated,

there are three different processing options, and this can be seen in figure 68, which is valid

for the representation of both the controller output and the third input. The reason for this

third input is to act as a smoothing function in marginal cases. For example, the audio and

visual inputs may produce input variables that lie near the thresholds between two possible

processing options. Small changes in subsequent frames may produce a radically different

processing decision from frame-to-frame. As a consequence, the output sound quality may

be of poor listening comfort (as is sometimes found in conventional hearing aids when

the engaging/adaption/attack configuration is set poorly, resulting in a ’choppy’ sound, as

discussed by Chung [44]). The use of the previous frame in marginal scenarios is designed

to limit this. This input performs the role of engaging/adaption/attack configuration in this

preliminary system, as it introduces what is effectively a small delay into processing changes.

An evaluation of the role of this input variable on the output decision is discussed in chapter 7,
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Figure 68: Switching logic input parameter: previous frame output. This input variable considers the
processing method chosen in the previous frame. Therefore, this input fuzzy set diagram
matches the output choice. This input is useful in marginal examples, as will be discussed
later in this chapter.

demonstrating that this input variable plays an important role in limiting changes in the fuzzy

output. In addition to this evaluation of using the previous frame, the use of a mean of several

frames as part of an input variable was also considered, and the results of an evaluation of

using a different number of frames as an input variable is presented in chapter 7. It was

concluded from this evaluation that there was no noticeable improvement when using a mean

of 3, 5, or 10 previous frames. Therefore, it was considered suitable to use the single previous

output value as an input variable.

Figure 68 shows the three trapezoidal membership functions (again using this shape for

reasons of consistency) representing the possible processing choices.

There are three membership functions, with each one corresponding to a processing

decision ’None’ (meaning to leave the frame unprocessed), ’Aud’ (meaning to use audio-only

beamforming), and ’Avis’, meaning to use the audiovisual approach. These match the output

decision fuzzy sets. For a sentence of audiovisual data, each frame is processed to extract the

three input variables, these inputs are passed into the fuzzy logic controller, and fuzzy rules

are then applied to produce the processing decision.
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6.5.3 Fuzzy Logic Based Switching Supervisor

Fuzzy Rules for the Switching Decision

Fuzzy logic control can be used for intelligent switching as in, for example, the work of

Tanaka et al. [170], who used fuzzy logic for stable control of a radio controlled hovercraft.

In the preliminary framework presented in this chapter, the fuzzy logic controller is used to

determine the most suitable speech processing method to apply to an individual frame of

speech, based on the fuzzy input variables defined in the previous section. The rules were

decided after preliminary experimentation and use the three input variables defined in the

previous section, with the fuzzy sets as shown in figure 65, figure 66, and figure 68. As

discussed in section 6.3, one difference between simple rules with crisp sets and fuzzy-based

rules is that the rules are fired to varying degrees, depending on the extent to which the input

variables are part of potentially overlapping membership functions. If an input variable is part

of more than one membership function (for example, the audio level may be considered to be

part of both the ’None’ and ’Low’ sets, then contrasting rules may be fired, with the strength of

each rule depending on the extent to which the input variable is part of the relevant fuzzy set.

As discussed in section 6.3, these rule outputs are aggregated to produce one fuzzy output set

encompassing all of the rules that were fired. Finally, this is defuzzified (again, as described

in section 6.3) to produce one single fuzzy output decision value. In this work, the centroid

value was used (see figure 62 for an example of this).

The input variables to the fuzzy-system are described above and are the audio level (audSig-

Pow), visual quality (visQuality), and the previous frame controller output (prevFrame). The

input variables and the possible membership functions that the values may belong to are

shown in table 17. An input variable may simultaneously belong to more than one fuzzy set

to varying extents.

The processing output options are no processing (a), audio-only processing (b), or two-stage

audiovisual processing (c). The complete set of rules used in this system is listed as follows:

• Rule 1: IF audioSigPow IS low AND visQuality IS poor THEN process is b
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Table 17: Fuzzy input variables and possible membership functions.

Input Variable Potential Membership Functions

visQuality Good Poor

audSigPow None Low High

prevFrame None Aud Avis

• Rule 2: IF audioSigPow IS none AND visQuality IS poor THEN process is a

• Rule 3: IF audioSigPow IS high AND visQuality IS good THEN process is c

• Rule 4: IF audioSigPow IS none THEN process is a

• Rule 5: IF audioSigPow IS low AND visQuality IS Good AND prevFrame IS avis THEN

process is c

• Rule 6: IF audioSigPow IS low AND visQuality IS Good AND prevFrame IS aud THEN

process is b

Chapter 7 presents an evaluation of the system, and in particular, section 7.7.7 focuses on an

investigation of the effect of input variables on the fuzzy output decision. This evaluation

found that the system functioned as expected. Rule 1 activates audio-only processing if the

audio input variable belongs to the ’Low’ fuzzy set and the visual quality is defined as being

’Poor’. Rules 2 and 4 ensure that the frame is left unfiltered if the audio level is found to be so

low that the audio level is defined as being ’None’. Rule 3 activates audiovisual processing if

there is a sufficient level of noise, and if visual information of an adequate quality is available.

Rules 5 and 6 are designed to take effect in scenarios where the potential choice of processing

algorithm is ambiguous. If the audio level is defined as ’Low’, but ’Good’ quality visual

information is available, then the previous frame input is also considered. Rule 5 activates

audiovisual processing if the previous frame output was also audiovisual, and rule 6 activates

audio-only processing if the previous frame decision was audio-only. This is intended to

ensure continuity between frames and prevent rapid frame-by-frame changes that act as an

irritant to listeners.
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Figure 69: Demonstration of rule selection for an example where the audio level is very low, resulting in
a decision to use no speech filtering.

Fuzzy Inference Procedures for Switching Logic

This section provides some examples of the theoretical operation of the rules defined above. At

each frame of speech, the three input variables are calculated and input to the fuzzy rules. The

first example is shown in figure 69. This is a scenario where the audio frame power is recorded

as being very low (0.01), the visual quality is defined as being ’Poor’ (2960), and the previous

frame value is set to 5.67. In this case, rules 2 and 4 are fired, indicated that no processing is to

be used. The second example presented has an audio power of 0.45, a visual quality value of

951, and a previous frame value of 1.68. These parameters are a good example of fuzzy logic

in action because both rule 1 and 3 are fired. As can be seen in figure 70, the audio power

falls within the overlap area for both high and low fuzzy sets, and the visual information

quality is also applicable to both ’Good’ and ’Poor’ membership functions. Despite both rules

firing, figure 70 shows that rule 1 is dominant, and so the defuzzified output indicates that

audio-only processing should be used. The third example, shown in figure 71, is much more

clear-cut. With an audio level of 4.06 and a visual quality value of 156, only rule 3 is fired,

indicating that audiovisual processing should be used with this hypothetical speech frame.

The final two examples demonstrate the purpose of the previous frame input variable. Both

examples, shown in figure 72 and figure 73 have an audio input variable which is defined as



Figure 70: Demonstration of rule selection for an example where the audio level is estimated to be at a
moderate level with a low quality of visual information, with the outcome that the system
selects audio-only speech processing.

Figure 71: Demonstration of rule selection for an example where the audio level is very high, and good
quality visual information is available, resulting in the use of audiovisual processing.

195
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Figure 72: Demonstration of rule selection for a marginal example. Good quality visual information is
available, and the audio level is measured as being applicable to both moderate and high
levels. In this case, the previous frame output information is used, which in this example was
audio-only processing, and so the audio-only option is chosen again.

being 0.454. This is a value which belongs to two potential fuzzy sets. The visual quality level is

set to 847 in both examples, meaning that this visual information is considered to be a member

of both the ’Good’ and ’Poor’ membership functions. As the examples show, both rules 1

and 3 are fired, and both have a similar level of dominance when it comes to establishing the

output. These values mean that small changes in the audio variable in successive frames may

result in an entirely different type of processing being used from frame-to-frame, despite there

being potentially only a very small change in environmental conditions. This is undesirable

because to the listener, rapid and unnecessary switching between processing methods can

often result in an unpleasant listening experience. As can be seen in figure 72, although rules

1 and 3 are fired, rule 6 is also fired. Rule 6 considers the previous frame, and as this is

defined in this example as using audio-only processing, this becomes dominant, and so when

defuzzification takes place, audio-only processing is chosen. Figure 73 uses the same audio

and visual variables, but with the previous frame input variable being defined as audiovisual.

In this case, the audiovisual technique is chosen by the fuzzy logic controller.
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Figure 73: Demonstration of rule selection for a marginal example. Good quality visual information is
available, and the audio level is measured as being applicable to both moderate and high
levels. In this case, the previous frame output information is used, which in this example was
audiovisual processing, and so the audiovisual option is chosen again in this frame.

6.6 evaluation approach

In order to evaluate the capability and potential of the system presented in this chapter, an

evaluation needs to be carried out with challenging real world data. Any evaluation should

use scenarios that are as natural as possible. By this, it is meant that the test data should use

data with varying noise levels, with speakers who are moving, and with data not trained

previously with the system. So for example, the quality of visual data must vary, representing

the speaker turning their head, moving quickly, or changes in light or visibility. With regard

to audio information, in a real world scenario, the noise level is not always consistent and so

the use of the consistent aircraft cockpit noise, as used in chapter 5, is not sufficient. There

is also the Lombard Effect to consider (Lombard [120]), when the vocalisation of a speaker

changes in response to environmental conditions.

Because of these issues, it could be argued that the corpora used in this thesis, GRID (Cooke

et al. [46]) and VidTimit (Sanderson [157]) are not suitable for further testing. Both are recorded

in a clean visual environment without distractions. Speakers from both corpora speak only

single sentences, without moving their head to any great degree, and there are no frames

where the visual information is of poor quality or unavailable. Therefore, the corpora would
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need to be artificially edited in order to be useful for testing the fuzzy logic system presented

in this chapter.

Another issue with the corpora is with the audio data. The GRID corpus has good quality

audio recording available for each sentence, with no background noise. While there is a small

level of noise present in the background of the VidTimit recordings, this is at a consistent

low level. While noise has been added during previous testing, as shown in the simulated

room environment in chapter 5, this is artificial, and means that the speaker has not adjusted

their speech and mannerisms to take account of noise in accordance with the Lombard

Effect. The sentences are also very short, and do not take account of scenarios such as longer

discussions and turn taking. To successfully evaluate the system, speech recorded in more

natural conditions is required. This will be discussed in more depth in the next chapter.

6.7 summary

The goal of this thesis is to present a multimodal two-stage speech enhancement framework

that works towards being autonomous, adaptive, and context aware. After an investigation

of state-of-the-art research in chapter 3, an initial audiovisual speech enhancement system

was presented in chapter 4 that filtered noisy speech in very difficult environments. Although

results were positive, a thorough evaluation of the system identified a number of limitations

with the system, such as distortion introduced at a high SNR. This, along with more general

weaknesses with speech enhancement systems, suggested that there was still scope for

improvement.

This chapter extended the system first presented in chapter 4 by integrating a fuzzy logic

controller into the system and providing alternative processing options for each frame of

speech, meaning that depending on the audio and visual input data, the fuzzy logic controller

will determine whether to process each individual speech frame using the full audiovisual

two-stage approach presented previously, audio-only beamforming, or to leave the frame

entirely unfiltered. This chapter first discussed the limitations of the two-stage system current
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implemented in section 6.2, as well as more general limitations with speech enhancement

systems, and justified the use of a fuzzy logic controller to overcome these limitations in section

6.3. Some alternative approaches were discussed in section 6.4, concluding that although there

is potential for making use of alternative approaches such as neural networks or HMMs, it was

considered that making use of a fuzzy logic system represents a solution that is potentially

easier to implement and directly use in future hearing aid technology and so was chosen for

use in the framework presented in this chapter. The preliminary framework presented in this

chapter was then described, specifying the inputs used, the associated fuzzy membership

functions, and the rules for deciding the appropriate filtering option to use. It was emphasised

that this system is a proof of concept, with much scope for further development, and so does

not represent a finalised system.

To evaluate the system, while limited experimental scenarios with artificial adjustments

made to pre-recorded corpora are of interest, this does not adequately simulate the conditions

that a real world fuzzy logic based system would be expected to process, and where noise has

an effect on both audio and visual modalities. The next chapter describes an evaluation of the

system, using more natural recorded data.



7
E VA L U AT I O N O F F U Z Z Y L O G I C P R O O F O F C O N C E P T

7.1 introduction

This thesis presented a novel two-stage speech enhancement system in chapter 4, which

was then thoroughly tested in chapter 5. As a result of these tests, although promising

results were found, some limitations with both this system and speech enhancement systems

generally were identified, including limitations with the visually derived filtering utilised in

this thesis. This resulted in the development of a proposed fuzzy logic based two-stage speech

processing system that uses fuzzy input variables to determine the most appropriate method

of processing an individual frame of speech. This preliminary system was described in depth

in chapter 6, along with a review of other alternatives to using fuzzy logic, including machine

learning techniques such as ANNs and HMMs.

This chapter presents an evaluation of this preliminary system, firstly discussing the need

for testing, and the requirements of for testing a system that is designed to deal with more

realistic speech processing scenarios. However, there are a number of limitations with the

system in its current implementation that prevent a full testing programme from being

successfully concluded, including limitations with the system in its current state, issues with

the individual speech processing techniques, as discussed in chapter 5, and also hardware

limitations. To present a full description of the limitations with the system in its current

preliminary state, and to better meet the requirements of more realistic test scenarios, a new

corpus is used, recorded specifically to provide challenging audiovisual data. This corpus is

then used as part of a series of challenging experiments in order to evaluate the performance

of this system.

200
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The remainder of this chapter is divided as follows. Section 7.2 provides a brief reminder of

the fuzzy logic system. This is then followed by a description of the requirements for testing

this system in a more real world environment in section 7.3, and in section 7.4, the difficulties

with applying these tests to the proposed system are outlined. The next section describes

the recording of a novel corpus with more challenging audiovisual speech data. This corpus

is then used to test the fuzzy input variables used in the system in section 7.6, followed by

noisy speech processing tests in section 7.7. The results of the testing process are discussed in

section 7.8, which is followed by the summary of the chapter in section 7.9.

7.2 system overview

The fuzzy logic system presented in chapter 6 is evaluated in this chapter. This system is

similar to that presented in chapter 4, with automatic lip-tracking, audio-only beamforming

and two-stage audiovisual speech processing. However, as discussed in chapter 6, the key

difference is that the initial system was extended to incorporate a fuzzy logic controller. This

controller was intended to add flexibility to the initial system by evaluating and adjusting the

chosen speech filtering decision on a frame-by-frame basis, depending on the values of the

fuzzy input variables.

The quality of each frame of input data was determined by making use of three fuzzy input

variables. There were an audio level detector, a visual quality indicator, and the previous fuzzy

output decision. These were used to activate a number of rules to different extents, depending

on the fuzzy input values, which were then aggregated and defuzzified, as described in

chapter 6. This produced a single output value between 0 and 10. A value of less than 4

resulted in the frame being left unprocessed. If the value was greater than 7, the frame was

processed using the two-stage audiovisual approach, and a value between 4 and 7 meant the

audio-only approach was used without visual information being utilised. A full description

of this system is given in chapter 6.
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7.3 testing requirements

To test the system presented in chapter 6, it is not possible to simply use sentence from the

GRID corpus as utilised in chapter 5. This corpus does not contain the suitable variation

in audio and visual data quality that is required to fully test a fuzzy logic based system,

and this limitation is shared by many other publicly available corpora (such as VidTIMIT).

Therefore, there are two possible approaches to test this initial system, limited experimental

scenarios involving artificial modification of sentences from existing corpora, or recording

new audiovisual speech data that represents more realistic scenarios.

7.3.1 Limited Experimental Scenarios

One option for testing the fuzzy logic based system is to use limited experimental scenarios.

These scenarios could utilise the existing corpora used previously in this thesis (such as the

VidTIMIT (Sanderson [157]) and GRID (Cooke et al. [46]) audiovisual speech databases), but

would require artificial modification in order to make them more suitable for testing the fuzzy

logic based system. So for example, the audio modality may require artificial noise to be

added, and the visual data may need individual cropped frames altered in order to simulate

the effects of data variation such as the user turning their head, or changes in light conditions.

Using such an approach has the advantage that it uses existing corpora, so can be compared

to other results. It also allows more precise control over environmental conditions. Also, if

the corpus has been used previously to train the system, then as shown in chapter 5, the

audiovisual filtering performs better with new sentences from the same corpus, and so it

allows a focus more on the testing of the fuzzy-based selection, without the issue of poor

results due to poor audiovisual filtering performance.

However, using limited artificial scenarios severely limits the extent of testing. Simply

editing frames is not fully representative of the conditions a tracker will be expected to

process, and short artificial sentences without interruption are not representative of data
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that a system is likely to be expected to process successfully, where there may be examples

of turn-taking, long monologues, interruptions, emotional speech, and the Lombard Effect.

Therefore, more realistic speech data is required.

7.3.2 Realistic Speech Data

By realistic speech data, it is meant that the audiovisual data should be a closer match to

scenarios that a finalised hardware implementation of this system would be expected to

successfully process. This means that the audio data should ideally contain noise of different

levels, with the speaker then adjusting their speech correspondingly as they would in a

real situation (as explained by the Lombard Effect). Conversational scenarios should also

be of longer length than simple two or three second sentences, with possible examples of

overlapping speakers, silences, turn-taking, and emotional speech. The visual data should

also be of variable quality, with examples such as speakers who have moved their head away

from the camera, put their hands over their mouth, or are speaking in a more natural manner.

The key benefit of using more realistic data is that it can be used as part of an extremely

rigorous analysis of a speech processing system. It represents data which a hypothetical

fuzzy logic based system would be expected to process, and this makes it easier to identify

limitations with the system.

However, given the current preliminary implementation of the system (as will be discussed

in more depth in section 7.4), it is extremely challenging to fully evaluate the system with

more realistic speech data. With the fuzzy logic based system presented in this chapter still

in a preliminary stage of development, the output filtered speech results using real data

should be interpreted with a degree of caution. Some prior examples of audiovisual data

tests in the literature include work by Almajai & Milner [11], who train and test with the

same single speaker corpus using consistent broadband noise at a relatively high SNR, and

audiovisual source separation by Naqvi et al. [133]. Although Naqvi et al. [133] make use of

more realistic data, they make a number of assumptions regarding room size and availability
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of visual information (i.e. good quality visual information is always available). The prior work

in the literature demonstrates that audiovisual speech filtering systems at an early stage of

development are often tested with fairly limited parameters. Using more realistic speech data

also makes it more challenging to present a precise hypothesis of the exact processing option

the system is expected to choose from frame-to-frame, which can be useful for observing

fuzzy process switching performance. Overall, the use of realistic speech data is recommended

when possible, but it is more suited to a system in a more advanced state of development

than the preliminary system presented in this chapter.

7.4 experimentation limitations

In order to test the system with more realistic speech data, the recording of a suitable novel

corpus was required. This was anticipated to be an extremely challenging process, and so the

potential issues with this were investigated. An initial test scenario was attempted to record

data in a fully real environment. To achieve this, a simple scenario was devised. This involved

a volunteer speaking a number of sentences in a quiet room. Two microphones placed in

slightly different locations were used to record audio data, and a webcam connected to a pc

via usb was used for the equivalent video data. The intention of this test was to establish the

level of difficulty involved with recording real data. In this early trial, additional noise sources

were not considered, which would be required to fully simulate real noise from different

locations. Hardware limitations (in this case, the quality of audio equipment available for

use) prevented this from being fully tested. The recorded audio and visual data was then

processed. A number of hardware and software issues were identified with this process.

Firstly, as mentioned above, there were some issues with the availability of equipment

available for use during this research project. In order to simulate the discrete noise sources

with real data required for beamforming to be successfully carried out, a number of output

devices capable of producing extremely loud noises were required, but were unavailable. This

meant that any noise that the beamformer could potentially remove had to be added in the
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simulated convolved room scenario described in chapter 4. Using the simulated room software

to add noise meant that the impulse responses could easily and accurately be calculated, which,

as described in chapter 4, is a requirement for beamforming to be successfully performed.

Recording of noisy data by adding a noise source was attempted, but as expected, the system

was not able to successfully and reliably process this data, and so this data was not used in

the final implementation of the system. Another related issue concerned data synchronisation.

Because multiple microphones were required, the data was required to be synchronised for

accuracy. As the microphones and camera were recorded individually, the separate audio

and visual streams were unsynchronised, and although the tracks could be synchronised

by hand (matching the audio and visual data by inspection and adjustment), it proved to

be an extremely time consuming task. Some other potential issues with the system in its

current early stage of implementation were also identified. Firstly, as the system is currently

implemented in MATLAB and is not capable of functioning in real time, data had to be loaded

into memory to be processed, which was particularly resource intensive when processing

large video files. Therefore, smaller individual speech clips were used for the final speech

dataset (which will be described in section 7.5).

There were also some limitations identified with the initial system presented in chapter 4

and tested in chapter 5. Firstly, as discussed previously, there are limitations with the visually

derived filtering. Although positive results were found, it was also confirmed that when

the system was tested with novel speakers from different audiovisual corpora, it did not

generalise well, and so when tested with real data, it is expected to perform poorly, based

on the results discussed in chapter 5. Another issue is that the simulated room environment

(with mixtures of speech and noise sources) was designed explicitly to demonstrate the

effectiveness of beamforming, and so tests using this scenario provide an artificial benefit

to using beamforming that would not be expected in a real environment (a similar issue to

the improvement in results with using directional microphones in laboratory environments

rather than in real environments, as discussed in chapter 3). Overall, it is understandable why

other similar speech enhancement work such as by Almajai & Milner [10] and Rivet et al. [148]

makes use of very limited experimental scenarios.
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The system in its current implementation is an extension of the thoroughly tested two-

stage filtering approach discussed in chapter 5. Like other early-stage audiovisual speech

enhancement work, such as by Almajai & Milner [12], it is currently in a very preliminary

stage of implementation. Therefore, any evaluation with real data will provide limited results.

To demonstrate this, section 7.7 presents a series of evaluations of this system with newly

recorded challenging audiovisual speech data.

7.5 recording of challenging audiovisual speech corpus

In order to demonstrate the performance of the fuzzy logic based system presented in chapter

5, it was considered a requirement to demonstrate the effect of making use of more challenging

real world speech data. For this, it was considered necessary to record novel data, as none of

the corpora reviewed in chapter 3 were considered to be suitable for this purpose.

7.5.1 Requirements of Corpus

As discussed in section 7.3, the corpus used previously in this thesis for evaluation were

not considered to be entirely suitable, due to limitations in content and variation of quality.

Therefore, it was felt that it was appropriate to record some real data in order to evaluate the

preliminary system presented in chapter 6. The recording of new audiovisual speech data

means that several of the limitations present in the existing corpora could be avoided. Firstly,

the requirement of the corpus to have variable, yet natural visual data could be met. Rather

than artificially replacing single frames, the speaker can be allowed to move in a more natural

manner, performing actions such as turning their head and placing their hand over their

mouth.

This requirement for natural data can also be extended to the audio aspect. As discussed in

chapter 2, the Lombard Effect means that people change their style of speech in the presence

of noise, which is not reflected when noise is artificially added to the corpus afterwards.
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Recording of a natural corpus potentially allows for this effect to be taken into consideration.

There are also real world events such as pauses for turn-taking, multiple speakers, and

emotional speech that can be taken account of.

7.5.2 Corpus Configuration

Scenarios

In order to provide a diverse range of audiovisual speech data, and to provide challenging

data that the pre-existing corpora used previously in this thesis (GRID and VidTIMIT) fail to

supply, volunteers were asked to perform two tasks. Firstly, a reading task, where they read

either a short story or a news article. For this task, they were recorded reading for a minute in

a quiet environment, and then a minute in an environment with a variable level of noise (a

mix of music tracks, with the volume varied randomly). This allowed for both good quality

audio data, and also poorer quality raw data to be collected (with the Lombard Effect having

an impact on resulting visual data). As this was a continuous reading task, the speech data

gathered from each speaker was longer than the approximately three second clips provided

in the GRID and VidTIMIT corpora.

However, it was found that using the noisy recorded speech data presented problems,

in that the results were found to vary wildly, and the beamformer did not remove noise

when (as expected), therefore these recordings were not used. The second scenario was a

conversational task, where volunteers were encouraged to speak in a more natural manner.

Volunteers were recorded in pairs at a table facing each other, with one speaker recorded

at a time. By this it is meant that while the speakers were facing each other and making

conversation, the camera was only pointed at one speaker. This allowed more natural and

relaxed speech, and the volunteers were also told that they were allowed to move freely and

did not have to look directly into the camera at all times. This allowed for more challenging

noisy data such as head turning, speakers placing their hands over their mouths, and blurring

in individual frames due to motion. Volunteers were given a choice of topics to choose from,
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such as a TV programme, something that interested them in the media, or could choose their

own conversation topic. This resulted in a wide range of conversations, from gossip about

friends, to recent events in the media. Due to this being a conversation rather than continuous

speech from a single recorded speaker, there were occasional silences, or speech from the

other participant in the conversation. This provided challenging data which the system has

not been trained with. Again, similarly to the last scenario, each speaker was asked to speak

for one minute in a quiet environment, and one minute in a noisy environment, although the

noisy data was subsequently not used.

Both scenarios provided extremely challenging data. They used novel speakers, and con-

tained considerably different sentences from those that the system had been trained with,

both in length and in content. The resulting visual data was of variable quality, with examples

of turning and movement, as well as varying audio quality due to noise. Overall, it was

considered that this new audiovisual speech dataset represented extremely challenging data

for a speech filtering system to process successfully.

Equipment and Recording

To record volunteers carrying out the tasks described above, a single camera was used with

an integrated microphone. A Microsoft VX2000 Lifecam was used to record speech in a quiet

room, without any noticeable background noise. Both audio and visual streams were recorded

with this single camera as this ensured that there were no issues with synchronisation of

data. The visual data was recorded at a resolution of 640 x 480. As discussed in the previous

section, there were two scenarios that volunteers were asked to record, and the recording

took place in pairs to encourage more natural and relaxed speech. Each speaker was asked to

read for one minute in a quiet environment, and then one minute in an environment with

variable background music. The second scenario was a conversation task where speakers were

explicitly told that they did not have to remain still or look directly at the camera. Again, they

were recorded for one minute without noise, and one minute with noise. This meant that for

each speaker, there were four minutes of initial raw data theoretically available, although as
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discussed, subsequent trials identified that the noisy data was unsuitable for use, so in reality,

only two minutes were available.

However, there were some issues with the recording process. Firstly, the video camera had

automatic brightness adjustment enabled, and so a small number of frames were considerably

darker due to occasional automatic readjustment. An example of this can be seen in the lower

image in figure 74. There were also a number of glitches in the recording that were discovered

afterwards during the review of the data. An example of this can be seen in the top image

in figure 74. In this image, the camera has not recorded the head of the speaker in a single

frame, although in subsequent and preceding frames, the head is not missing. One other issue

was that the recording did not function correctly for one speaker, with some synchronisation

issues between audio and visual data. For this reason, there is limited data available from one

pair of volunteers.

Finalised Corpus Description

The final corpus contained data from eight speakers, four male, four female. Six of the eight

speakers spoke English (five with a Scottish accent and one English), and two were recorded

speaking Bulgarian. For each speaker, four minutes of raw data were theoretically available,

one minute of quiet conversation, one minute of variable noisy conversation, and then one

minute each of noisy and quiet reading. Some example frames of the recorded volunteers are

shown in figure 75.

As discussed previously, there were some issues with the recording in the form of glitches

and light adjustment, as shown in figure 74. Also, as part of the requirement for the visual

data to be challenging and of variable quality, speakers were expected to move naturally.

This led to variable quality visual data, with some examples shown in figure 76. The top

image shows an example of the speaker in the process of moving their hand in front of their

mouth, meaning that lip information is not available, and the ROI therefore cannot be correctly

identified. The lower image shows an example of the speaker turning their head to one side.

This is a challenge to the tracker, and is also an example of data that was not used in the



Figure 74: Examples of poor quality visual data due to issues with recording. The top image shows an
example of a glitch during recording, resulting in the face region being removed. The bottom
image shows a situation where light conditions have changed, resulting in a temporarily
darker image.
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Figure 75: Speakers from recorded corpus, using sample frames taken from videos.
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initial training of the visually derived filtering process. There is also blurring present in this

image due to movement.

Of the initial 32 minutes of raw data, approximately 6 minutes was unavailable due to

the recording problems described earlier. The data was divided into 20 second clips because

of processing and testing requirements. This sentence length was significantly longer than

available in the pre-recorded corpora, and was felt to be long enough to test the operation of

the fuzzy-system, while still being short enough to process relatively efficiently. A number of

these 20 second clips were then chosen for use as part of the testing process. These were chosen

to represent a mixture of different conditions and data quality. As mentioned previously, only

the sentences without noise were used.

7.6 fuzzy input variable evaluation

The previous chapter presented a description of a fuzzy logic based speech processing system,

which made use of three fuzzy input variables, the audio power within a frame, visual data

quality, and also the output decision of the previous frame, which is fed back in as an input.

While the audio input variable is very closely related to the audio signal, the effectiveness of

the other two input variables is of great interest. This section presents an evaluation of the

suitability and performance of these variables, and justifies the decision to use them as part of

the fuzzy-based system.

7.6.1 Visual Quality Fuzzy Indicator

Problem Description

As described in section 6.5, one input variable used in the system was the visual quality

variable. There was an assumption made that the initial frame was accurately detected, and

subsequent frames were calculated in terms of the difference from the mean of the absolute

value of the fourth DCT coefficient. To take account of natural movement over time, a moving



Figure 76: Examples of poor quality visual data due to speaker actions. The top image shows a frame
where the speaker has their hand over their mouth due to gesturing during emotional speech.
The bottom speaker is in the process of quickly turning their head, and as a result the mouth
region is partially obscured, and the face is blurred.
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average of the previous 10 frames was used, with only frames that were considered to be

within a threshold added to the moving average. This value was then used as the visual fuzzy

input value.

The assumption made was that if the absolute value of the fourth coefficient was similar

to the mean, then the lip image was likely to be very similar, and therefore a good quality

image. It was then calculated that the higher the difference from the mean, the less likely the

image was to be a good quality lip image. This section will evaluate the performance of this

approach by comparing the generated fuzzy input values to a manual estimation of the lip

image quality, and evaluating the accuracy of this approach with a variety of different input

values.

Experiment Setup

20 sentences from the corpus described in section 7.5 were used for evaluation. This included

10 sentences recorded in a quiet environment, and 10 recorded in an environment with some

noise present. In addition, to ensure that a range of different visual challenges was represented,

10 reading examples, and 10 conversation examples were used, from a number of different

speakers. This ensured that challenging data was used and provided a rigorous test of this

fuzzy input variable.

For each sentence, a manual review of each cropped lip image was performed. This involved

inspecting each frame and assigning it a value. A frame that was considered to be of good

quality (in that it showed the whole lip-region) was given a score of 1. An image that was

considered to be of lower quality (either showing only part of the lip-region or the wrong

region) was given a score of 2. Finally, an extremely poor result (one where no ROI at all was

identified) was given a score of 3. This was then compared to the fuzzy input variable.

Evaluation Approach

The manual input estimation of every frame of each sentence was compared to the equivalent

fuzzy input variable. As the variable can vary in value between 0 and 6000+, with a lower

value indicating less difference from the mean, then based on preliminary trials, a value of less
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Figure 77: Examples of lip images regarded to be successfully detected. It can be seen that the images
are of varying dimensionality, and also include varying levels of additional facial detail
depending on the results of the Viola-Jones lip detecter.

Figure 78: Examples of lip images regarded to be unsuccessfully detected. It can be seen that the images
are of varying dimensionality, with issues such as identifying the wrong area of an image as
the ROI, tracking only part of the lip-region, or poor quality information due to blurring and
head motion.

than 1000 was given a score of 1 (some examples of this are shown in figure 77), a value of less

than 4500 but greater than 1000 was given a score of 2 (as shown by the examples in figure 78),

and anything greater than 4500 was given a score of 3, representing examples where no ROI

was identified, as shown in figure 79 . These values represented similar boundaries to those

used in the relevant fuzzy set. This allowed the visual input variable output to be mapped to

the manual estimation.

For each sentence, to ensure consistency, the interpolated number of frames was used

for comparison, and the fuzzy score was compared to the manually estimated value. The

difference between the estimation score and the actual score was then calculated.
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Figure 79: Examples of lip images where noROI was identified and cropping was not successful. It can
be seen that this is due to the speaker turning their head or obscuring their face.

Table 18: Overall perfomance of visual quality fuzzy input variable compared to manual scoring, consid-
ering each frame of all 20 speech sentences.

Number of Frames Percentage

Correct 36836 92.15%

Incorrect 3139 07.85%

Total 39975 100%

Summary of Results

Firstly, when taking 20 all sentences into account (whether recorded in a quiet or noisy

environment, or as part of a reading or conversation task), after interpolation there were

a total of 39975 frames of data. Of these, 92.15% produced a correct result (one where the

fuzzy manual score matched), and 7.85% produced what was considered to be an incorrect

result, as shown in table 18. Taking into account that 10 of the 20 sentences consisted of active

conversation, this was a considered to be a good overall result.

To analyse the results in more detail, a comparison of the number of frames assigned each

score is shown in table 19. This table shows the number and percentage of frames assigned

each score both manually and using the fuzzy input variable. When observing the manually

categorised frame scores, 90.89% were considered to be good frames, 7.93% were considered

to be incorrectly assigned frames, and 1.18% of frames were considered to have identified

no correct ROI. In comparison, the estimated fuzzy scores were calculated slightly differently.

94.51% of frames were considered to be good frames, 4.38% were estimated to be incorrect,

and 1.12% were considered to have identified no correct ROI.
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Table 19: Comparison of assigned values for overall 20 sentence dataset, showing difference in estimated
value for manual inspection and fuzzy logic variable.

Method Assigned Value Number of frames Percentage of total

Manual 1 36334 90.89%

Manual 2 3168 7.93%

Manual 3 473 1.18%

Fuzzy 1 37779 94.51%

Fuzzy 2 1749 4.38%

Fuzzy 3 447 1.12%

Table 20: Error between estimated visual fuzzy input and manual value for each frame of all 20 speech
sentences.

Estimated Value Manual Est. Fuzzy Est. Difference Difference Percentage

1 36334 37779 1445 3.977%

2 3168 1749 1419 44.79%

3 473 447 26 5.497%

Table 19 shows that the number of frames considered to have no ROI were very similar,

with the greatest difference being that a higher number of fuzzy scores were estimated to

be suitable than for a manual inspection. This is unsurprising due to the variation between

speakers, sentences, cropped ROI dimensionality, and represents a justification for the use

of a fuzzy logic variable. The difference in estimated values between the manual and the

fuzzy approach is shown in table 20.This table shows that 3.98% of frames were incorrectly

categorised as being good values (i.e. the difference between the ground truth and automatic

values), 5.5% were incorrectly estimated to identify no ROI, and 44.8% were estimated to

incorrectly be estimated as having a value of 2 (i.e. an incorrect/blurry/partial region). This

was unsurprising as the difference between good and poor values could sometimes be very

small, and indicates that the detector may have limitations with regard to precise identification

of incorrect but partial regions.
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Table 21: Overall perfomance of visual quality fuzzy input variable compared to manual scoring, consid-
ering each subset of 10 sentences, for reading task .

Reading Task Number of Frames Percentage

Correct 19513 97.64%

Incorrect 472 2.36%

Total 19985 100%

Table 22: Overall perfomance of visual quality fuzzy input variable compared to manual scoring, consid-
ering each subset of 10 sentences, for conversation task.

Conversation Task Number of Frames Percentage

Correct 17323 86.66%

Incorrect 2667 13.34%

Total 19990 100%

To analyse the incorrect classification results shown in table 20, the complete dataset of 20

sentence was divided into subsets. Firstly, the sentence was divided into two subsets, one

for the conversation task, and the other for the reading task. This was expected to make a

difference to the results, as it was expected that there would generally be less challenging

visual data for the reading task. The overall results for the 10 reading task sentences are shown

in table 21.

Table 21 shows that 97.64% of fuzzy frames were estimated to correctly classified to match

the manual score, with only 472 out of 19985 frames not considered to be correct. This is a

very low error. In comparison, the overall score for the conversation subset is shown in table

22.

It is very clear from the values in table 22 that the conversation task had a much lower

correct score, suggesting that there are more misclassified frames for active conversation, as

expected. To analyse this in more detail, tables 23 and 24 show the classification difference

between fuzzy estimation and manual for the conversation and reading tasks respectively.



Table 23: Comparison of assigned values for 10 sentence reading dataset, showing difference in estimated
value for manual inspection and fuzzy logic variable.

Method Assigned Value Number of frames Percentage of total

Manual 1 19607 98.11%

Manual 2 189 0.95%

Manual 3 189 0.95%

Fuzzy 1 19494 97.54%

Fuzzy 2 337 1.6%

Fuzzy 3 154 0.77%

Table 24: Comparison of assigned values for 10 sentence conversation dataset, showing difference in
estimated value for manual inspection and fuzzy logic variable.

Method Assigned Value Number of frames Percentage of total

Manual 1 16727 83.68%

Manual 2 2979 14.90%

Manual 3 284 1.42%

Fuzzy 1 18285 91.47%

Fuzzy 2 1412 7.06%

Fuzzy 3 293 1.47%
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Table 25: Error between estimated visual fuzzy input and manual estimated value for each frame of 10

speech sentence conversation task subset.

Estimated Value Manual Est. Fuzzy Est. Difference Difference Percentage

1 16727 18285 1558 9.31%

2 2979 1412 1567 52.60%

3 284 293 9 3.17%

Table 26: Error between estimated visual fuzzy input and manual value for each frame of 10 speech
sentence reading task subset.

Estimated Value Manual Estimation Fuzzy Estimation Difference Difference Percentage

1 19607 19494 113 0.58%

2 189 337 148 78.31%

3 189 154 35 18.52%

Tables 23 and 24 show a very clear division between the data subsets. The conversation

task has 86.68% of frames manually estimated to be of good quality, compared to 98.11% for

the reading task. This can be partly explained by the additional movement and emotional

speech in the conversational task resulting in more tracking errors. However a score of

86.66% accuracy in even the most challenging of scenarios suggests that the visual tracker is

performing as well as could be expected. In the reading task, a very small number of frames

when inspected did not produce a satisfactory result, and in the majority of cases, this can be

explained by examples such as the mouth of the speaker being briefly covered.

The difference between the estimated classifications is shown in table 25 and 26 for conver-

sation and reading tasks respectively.

Tables 25 and 26 show that there are some differences in classification errors. A comparison

of these percentage errors for each task with the overall values given in table 20 is shown in

table 27.

Firstly, it can be seen in table 27 that when it comes for incorrect estimation of a good

frame, the conversation task has a much higher percentage error of 9.31%, compared to the
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Table 27: Percentage error difference comparison between visual fuzzy input variable and manual
estimated value for overall dataset, and reading and conversation subsets.

Est. Value Overall Percent Error Reading Percent Error Conversation Percent Error

1 3.98% 0.58% 9.31%

2 44.79% 78.31% 52.60%

3 5.50% 18.52% 3.17%

reading task error of 0.58%. This suggests that in conversation tasks, the fuzzy input variable is

incorrectly categorising a number of frames as being of good quality rather than poor quality.

This can be partly explained by the relative simplicity of the fuzzy input variable, and also

that this input variable could possibly be further improved by a more sophisticated technique

possibly using some form of machine learning, such as a HMM. It is important to consider that

the input variable is a generalised value and due to the differences between speakers that

there will be errors in classification. With regard to the error percentages in classifying a value

as 3, or 2, the numbers are very small as shown in tables 25 and 26. Overall, it shows that

when it comes to correctly classifying a frame, the system performs well, although there are

some issues with identifying a frame as being of poor quality (wrong area/partial).

Table 25 shows that 2979 conversation frames were manually identified as being partial

or incorrect, whereas the fuzzy-system identified only 1412 frames. The equivalent values

for the reading task in table 26 show that 189 frames were manually identified as being

partial or incorrect, whereas the fuzzy-system identified 337 frames. One hypothesis for this

is that the larger number of incorrect frames in the conversational task comes from the tracker

selecting an incorrect area and taking a number of frames to return, whereas this was not

such an issue for the reading task due to the speaker moving less. Again, this is challenging

to fully take account of due to differences between speakers and sentences, without manual

inspection, and so the fuzzy variable is designed to take account of this uncertainty. Overall,

the error is extremely small for the reading task as might be expected, and while larger for

the conversation task, is still considered to be acceptable, with scope for improvement.
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Table 28: Comparison of assigned values for 10 sentence reading dataset, showing difference in estimated
value for manual inspection and fuzzy logic variable.

Sentence No. Correct Perc. Correct No. Incorrect Perc. Incorrect Total Frames

1 1933 96.70% 66 3.30% 1999

2 1992 99.65% 7 0.35% 1999

3 1974 98.75% 25 1.25% 1999

4 1985 99.30% 14 0.70% 1999

5 1880 94.05% 119 5.95% 1999

6 1926 96.59% 68 3.41% 1994

7 1952 97.65% 47 2.35% 1999

8 1915 95.80% 84 4.20% 1999

9 1957 97.90% 42 2.10% 1999

10 1999 100% 0 0% 1999

In addition to a comparison between different tasks, it was also considered to be of interest

to compare the error in individual sentences in order to identify if differences between the

fuzzy estimation and the manual evaluation were evenly split, or were concentrated in specific

sentences. Each of the 10 sentences in each conversation subset was evaluated to compare the

difference in results. Considering the reading task first, the results are shown in table 28.

Table 28 shows that as expected, the percentage of matching fuzzy and ground truth values

predicted is above 94% in all cases, with only a very small number of results where the fuzzy

estimation does not match the manual evaluation. In comparison, table 29 shows the match

between the fuzzy estimation and the manual evaluation for the 10 sentences chosen for the

conversation task.

Table 29 shows that the variation between individual sentences is much higher, which is to

be expected considering the issues the tracker faces with conversational speech. Although 6 of

the 10 conversational sentences have a higher correct percentage than 90%, there is particular

error concentrated in one sentence, with 66.18% of frames showing a difference between the
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Table 29: Comparison of assigned values for 10 sentence conversation dataset, showing difference in
estimated value for manual inspection and fuzzy logic variable.

Sentence No. Correct Perc. Correct No. Incorrect Perc. Incorrect Total Frames

1 1836 91.85% 163 8.15% 1999

2 1432 71.64% 567 28.36% 1999

3 1999 100% 0 0% 1999

4 1947 97.40% 52 2.60% 1999

5 1840 92.05% 159 7.95% 1999

6 1930 96.55% 69 3.45% 1999

7 676 33.82% 1323 66.18% 1999

8 1689 84.49% 310 15.51% 1999

9 1978 98.95% 21 1.05% 1999

10 1996 99.85% 3 0.15% 1999

manual and fuzzy estimation. An inspection of this specific cropped image sequence identified

that the reason for this was the performance of the tracker. While the tracker initially identifies

a correct ROI, there is an issue in that due to the specific features of this face, a large number

of frames are considered to be partial and only show a percentage of the mouth. While a

manual inspection resulted in these being classified as partial results, the majority of the

mouth was shown in these frames, as shown in figure 80, and so the difference was relatively

small, resulting in the fuzzy value assigning these a score that was within the range of being

considered good quality data. This indicates the difficulties with giving a precise score of 1, 2,

or 3. Again, this is a justification for using a fuzzy variable rather than a crisp set. Overall,

there is a larger error for conversation tasks as expected, with a greater variation between

sentences.

In summary, the visual input fuzzy variable was considered to be very accurate, with the

majority of frames being correctly classified. It can be seen that the majority of errors were

found when conversation data was used, where there was expected to be a greater variation in
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Figure 80: Examples of lip tracker extracting an incorrect image for a sequence of frames. These frames
were consecutive frames from a single sentence and show that while a manual investigation
may identify this as a partial result, the fuzzy input may be more nuanced, due to most of the
mouth being present.

data due to factors such as changes in mouth shape, and more emotional speech. In particular,

one specific sentence in the test-set was shown to have a greater error than any other sentence,

and an inspection of the data demonstrated that this could be identified as due to potential

ambiguity over the quality of the visual data, thus justifying the use of fuzzy logic rather than

crisp sets, and demonstrating that the chosen thresholds are reasonably accurate and lead to

correct classification in the majority of cases. There is scope for improvement using a form

of machine learning such as a HMM to build a classification model, but it was felt that the

technique used to calculate the input variable was suitable for this project, as shown by the

results presented in this section.

7.6.2 Previous Frame Fuzzy Input Variable

Problem Description

As described in section 6.5, one input variable used in the system was the previous frame

fuzzy output decision. As discussed in chapter 6, the aim of this variable was to prevent

rapid switching from frame-to-frame when the input data could theoretically be processed by

more than one processing option and there were very small differences from frame-to-frame,

meaning that a small change in environmental conditions may result in rapid changes in

processing decision from frame-to-frame. Rapid oscillation between processing options can

reduce listener comfort, and should be minimised. Although it was decided to make use of the

previous single output decision, it was also possible to make use of a mean of several previous
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decisions. It was possible that using a moving average of the previous outputs could be more

effective in reducing switching than using a single value, and so this section investigates the

effect of making use of the single previous output and compares this to using a mean of the

previous 3, 5, and 10 previous output decisions.

In addition, the aim of using this input variable was to reduce oscillation, and so the

effectiveness of using this variable is evaluated by comparing the output from the system

when the rules relating to this input variable were enabled to the equivalent output when

the rules were disabled (and so ignoring the previous frame input variable entirely). It is

important to note that this section is not focused on analysing the output signal quality, but

on evaluating the difference in processing decision from frame-to-frame.

Experiment Setup

To evaluate the effect of varying the previous frame input variable, a small dataset of 3

sentences from the corpus described in section 7.5 was used for evaluation. Broadband

machine noise was added to these sentences using the simulated room environment at

varying SNR levels to produce 18 noisy speech sentences with a range of audio and visual

fuzzy input variables. In addition to this 3 sentences that did not have noise added to them,

but were recorded in a noisy environment were also used, producing a total of 21 sentences.

This input was then evaluated using the fuzzy logic system, and the output decision for

each frame was recorded. In addition, the fuzzy rules pertaining to the previous frame were

disabled, and the 21 sentences were evaluated again, and the decision (this time effectively

only using two input variables) for each frame was also recorded.

Evaluation Approach

The 21 sentences were evaluated four times using the fuzzy logic system, using the single

previous output decision, the mean of the value for the previous 3 outputs, the mean of

the previous 5 outputs, and the mean of the previous 10 outputs as the input variable. The

resulting output processing decision from the fuzzy logic system was then compared to the

decision from the previous frame to calculate the difference between frames. As the system
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is fuzzy, it is possible for the output decision to vary very slightly from frame-to-frame,

without the difference being large enough to affect the processing decision (i.e. no processing,

audio-only, or audiovisual), and so it was felt of more relevance to focus on frames where

there was a difference in output decision from the previous frame greater than ± 1.

Summary of Results

Initially, an investigation is carried out into whether using the single previous output decision,

or whether a moving average of the previous 3, 5, or 10 output decision values will result in

the greatest reduction in difference between frames. The 21 sentences described previously

were used to evaluate the system using a different previous frame input variable. The fuzzy

output decision for the same sentence can vary depending on the SNR that the speech and

noise are mixed at. This means that the output decision of the fuzzy-system can be different

when the SNR is different, even if the type of noise and the visual input variable is the same.

This will be investigated in more depth in section 7.7.7. Again, the aim of this section is to

investigate the output decision of the fuzzy logic system, rather than the output audio value.

To demonstrate the difference in fuzzy output decision depending on the difference in

SNR, figure 81 shows an example of the same sentence mixed with noise at four different SNR

levels. The output decision (which can range from 0 to 10, as discussed previously) of each

frame is shown. (a) Shows the sentence with a moderate amount of noise. Although there

are small changes from frame-to-frame, as shown by the axis, there is a very small difference,

with the output decision varying between 5.03 and 5.05, which means audio only processing

is chosen for all frames. (b) Shows a sentence with a high SNR. Audio only processing is

chosen for the majority of frames, but it can also be seen that the fuzzy output decision

also drops to a much lower value for some frames, meaning that the system is changing

between audio-only processing and no filtering. (c) Shows a sentence with a lower SNR. It

can be seen that the output decision varies between audiovisual processing and audio-only

processing. Finally, (d) shows the same sentence with the lowest SNR, and it can be seen that

the output decision is predominantly high, which means audiovisual processing is used. This

demonstrates that a change in SNR can have a big difference on the processing decision, and
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this will be examined in more depth in section 7.7.7. In this section, the difference in output

value from frame-to-frame is of the most interest.

Figure 81 shows that there are occasions when a change in fuzzy output decision does not

result in a change in processing option, due to the change being very small, but it can also

be seen that there are occasions when the processing decision will change rapidly between

frames. The use of the previous fuzzy output decision as an input into the subsequent frame is

intended to reduce this effect. This section evaluates whether the difference in output decision

between frames is affected by using the previous value alone, or a mean of the previous 3

outputs, the previous 5 outputs, or the previous 10 outputs. Firstly, table 30 shows the number

of frames where a difference of any value is found from the previous frame, showing the

total number of frames with a difference and the percentage of the total frames, for the four

different previous input variables.

Table 30 shows that the number of frames with a change in decision varies widely , with

sentence 16 demonstrating a difference in almost every frame, whereas sentence 7 only had

a difference in 12% of frames. This was to be expected, and it demonstrates that the fuzzy

inference system is capable of reacting to changes in input data using the fuzzy input variables.

However, as discussed previously, the magnitude of the difference is also relevant. As the

processing choice is determined by the output value, it can be argued that a small change

in the output decision (for example, from 5.03 to 5.05) is not generally expected to make

a difference to the processing decision. Therefore, it was decided to filter the data by only

considering values where from the previous frame is greater to or equal plus or minus 1.

Table 31 shows the same sentences as processed in table 30, but only considering frames with

a difference greater than or equal to ± 1.

Table 31 shows that compared to table 30, the number of frames where a difference

is recorded is reduced considerable, suggesting that although the fuzzy output decision

frequently changes, the majority of changes are not expected to result in a change in processing

decision from the previous frame. Table 31 indicates that there was a difference between

frames that may result in a change in processing method from the previous frame on a

relatively low number of occasions, as low as 0%, and as high as 8.7%. Again, the difference



Figure 81: Difference in fuzzy output system for same sentence, with different levels of noise added.
(a) represents a system with a moderate level of noise, (b) shows a sentence with a low level
noise, and (c) and (d) show the fuzzy decision with lower SNR levels.
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Table 30: Number and percentage of frames with any difference in fuzzy output decision compared to
previous frame.

Prev. Frame Mean of 3 Frames Mean of 5 Frames Mean of 10 Frames

Sent. No. Diff % Diff No. Diff % Diff No. Diff % Diff No. Diff % Diff

1 1908 94.45% 1894 94.75% 1889 94.50% 1888 94.45%

2 1896 94.85% 1859 93.00% 1847 92.40% 1852 92.65%

3 1889 94.50% 1880 94.05% 1875 93.80% 1868 93.45%

4 1996 99.85% 1996 99.85% 1996 99.85% 1995 99.80%

5 1834 91.75% 1834 91.75% 1834 91.75% 1834 91.75%

6 1035 51.78% 1035 51.78% 1035 51.78% 1035 51.78%

7 252 12.61% 252 12.61% 252 12.61% 252 12.61%

8 1962 98.15% 1957 97.90% 1955 97.80% 1952 97.65%

9 1724 86.24% 1690 84.54% 1679 83.99% 1671 83.59%

10 1978 98.95% 1978 98.95% 1978 98.95% 1978 98.95%

11 1998 99.95% 1998 99.95% 1998 99.95% 1998 99.95%

12 1561 78.09% 1561 78.09% 1561 78.09% 1561 78.09%

13 1048 52.43% 1048 52.43% 1048 52.43% 1048 52.43%

14 1937 96.90% 1902 95.15% 1901 95.10% 1904 95.248%

15 1586 79.34% 1546 77.34% 1535 76.79% 1520 76.038%

16 1998 99.95% 1998 99.95% 1998 99.95% 1998 99.950%

17 1574 78.74% 1574 78.74% 1574 78.74% 1574 78.739%

18 886 44.32% 886 44.32% 886 44.32% 886 44.322%

19 225 11.26% 225 11.26% 225 11.26% 225 11.256%

20 1978 98.95% 1977 98.90% 1977 98.90% 1977 98.899%

21 1959 98.00% 1922 96.15% 1913 95.70% 1908 95.448%
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Table 31: Number and percentage of frames with a difference in fuzzy output decision greater than or
equal to ± 1, compared to previous frame.

Prev. Frame Mean of 3 Frames Mean of 5 Frames Mean of 10 Frames

Sent. No. Diff % Diff No. Diff % Diff No. Diff % Diff No. Diff % Diff

1 40 2.00% 39 1.95% 40 2.00% 40 2.00%

2 119 5.95% 120 6.00% 120 6.00% 122 6.10%

3 34 1.70% 34 1.70% 34 1.70% 34 1.70%

4 9 0.45% 16 0.80% 17 0.85% 18 0.90%

5 10 0.50% 13 0.65% 14 0.70% 18 0.90%

6 24 1.20% 30 1.50% 30 1.50% 29 1.45%

7 22 1.10% 22 1.10% 22 1.10% 22 1.10%

8 109 5.45% 112 5.60% 110 5.50% 110 5.50%

9 120 6.00% 118 5.90% 118 5.90% 121 6.05%

10 0 0% 0 0% 0 0% 0 0%

11 43 2.15% 68 3.40% 74 3.70% 64 3.20%

12 64 3.20% 77 3.85% 84 4.20% 87 4.35%

13 48 2.40% 48 2.40% 48 2.40% 48 2.40%

14 167 8.35% 169 8.45% 171 8.55% 172 8.60%

15 174 8.70% 174 8.70% 174 8.70% 174 8.70%

16 4 0.20% 4 0.20% 4 0.20% 4 0.20%

17 12 0.60% 16 0.800% 17 0.85% 15 0.75%

18 11 0.55% 11 0.550% 11 0.55% 11 0.55%

19 8 0.40% 8 0.400% 8 0.40% 8 0.40%

20 4 0.20% 4 0.200% 4 0.20% 4 0.20%

21 110 5.50% 108 5.403% 108 5.40% 109 5.45%
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Table 32: Number and percentage of frames with any difference in fuzzy output decision compared to
previous frame, showing mean difference of all sentences (41980 frames).

Prev. Frame Mean of 3 Frames Mean of 5 Frames Mean of 10 Frames

Diff. No. Diff Perc Diff. No. Diff Perc Diff. No. Diff Perc Diff. No. Diff Perc Diff.

> ± 0 33224 79.142% 33012 78.637% 32956 78.584% 32924 78.428%

> ± 1 1132 2.697% 1191 2.837% 1208 2.878% 1210 2.882%

between individual sentences is to be expected considering the different noise conditions.

Subsequent tables will consider mean values of all sentence frame differences. The means of

the sentences used in tables 31 and 30 are compared in table 32 for different sizes of input

variable

It can be seen in table 32 that considering any change in decision, there is a slight drop from

79.14% when using a single value, to 78.43% when a mean of 10 frames is used. However,

when only considering larger changes, table 32 shows that increasing the number of previous

decisions used as part of the mean input variable actually results in a very small increase

in difference. When only the single previous output decision is used as the input variable,

1132, or 2.7% of the total 41980 frames show a change in decision. Using a mean of the 3

previous decisions results in a change of 2.8%, increasing to 2.9% when a mean of 5 previous

decisions, and then finally 2.9% when a mean of the 10 previous decisions is used. Overall,

the difference between frames when using an increased number of previous decisions as part

of the input mean variable was considered to be so small that it had no particularly noticeable

difference. Therefore, it was felt that it was suitable to use only the previous decision as an

input variable into the fuzzy logic system.

The second aspect of this evaluation concerned the impact that this fuzzy input variable

had on reducing the oscillation from frame-to-frame. To investigate this, the test-set described

above was evaluated with the system. The fuzzy logic system was adjusted to disable the

rules concerning the previous input variable, in effect meaning that the system made use of

only the audio and visual input variables at all times. The mean results of this evaluation are

shown in table 33.



7.6 fuzzy input variable evaluation 232

Table 33: Number and percentage of frames with any difference in fuzzy output decision compared
to previous frame, showing mean difference of all sentences (41980 frames), evaluated when
previous frame rule is disabled in fuzzy-system.

Prev. Frame Mean of 3 Frames Mean of 5 Frames Mean of 10 Frames

Diff. No. Diff Perc Diff. No. Diff Perc Diff. No. Diff Perc Diff. No. Diff Perc Diff.

> ± 0 13239 31.536% 13239 31.536% 13239 31.536% 13239 31.536%

> ± 1 2460 5.856% 2460 5.856% 2460 5.856% 2460 5.856%

The results presented in table 33 are of interest for several different reasons. Firstly, because

no previous frame rules are enabled, there is no change at all when a different number of

previous decisions are part of the mean input variable. This confirms that this input variable

has a role in affecting the output decision. Another difference of interest is that removing the

rules pertaining to this input variable results in only 31.54% of frames showing a difference

from the previous frame. This is lower than the 79% shown when using various versions

of the previous frame input variable with the rules enabled, again, showing that this input

variable is having an effect on the output decision.

However, this figure is for all differences, including those that are very small. When only a

difference equal to or greater plus or minus 1 is considered, it can be seen that whereas with

the rules enabled, as shown in table 32, the frames with a recorded difference varies from

2.7% to 2.88%. With this input variable not used, 5.86% of frames record a difference in output

decision from the previous frame. Therefore, it can be concluded that the use of this input

variable successfully limits processing decision variation from frame-to-frame, justifying the

decision to make use of it as an input into the fuzzy logic speech filtering system presented in

this thesis.
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7.7 detailed system evaluation

7.7.1 Problem Description

The initial two-stage system presented in the previous chapters of this thesis was found

to be effective at performing speech enhancement in noisy environments with a very low

SNR. However, examples were also highlighted of situations where both conventional single

modality speech processing and the two-stage audiovisual speech enhancement system were

found to be inadequate. The previous chapter proposed an extension of the initial two-stage

system to utilise a fuzzy logic based system that aimed to overcome some of these limitations.

The proposed novel framework is intended to add increased flexibility and versatility to

the initial audiovisual speech enhancement approach that was presented in chapter 4. The

previous section justified the use of the fuzzy input variables, demonstrating through detailed

evaluation that it was possible for the visual input to be accurately fuzzified for a range of

data. It was also demonstrated that using the previous fuzzy decision output as an input

variable for the subsequent frame could also reduce the degree of oscillation between different

processing options.

This section focuses on the evaluation of this multimodal fuzzy logic based speech enhance-

ment framework. Due to the limitations discussed in section 7.4, there were some conditions.

Firstly, in order to adequately represent conditions that a fuzzy-based system would be

expected to successfully process, real audiovisual speech data was required, with examples

of variation in audio and visual conditions. This was achieved by making use of the newly

recorded corpus discussed in section 7.5. Again, due to the limitations discussed previously,

it was not possible to record a truly noisy corpus that was compatible with this preliminary

system, and so noise was added to the system using the simulated room environment dis-

cussed in chapter 4. This has the advantage that it is compatible with the system, and so

results can be achieved. It also allows for the fuzzy switching system to be demonstrated.

However, the limitation with this approach is that the simulated room with clearly defined
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noise and speech sources represents an ideal scenario that an audio-only beamformer would

be expected to process without difficulty. Because of this, and also the limitations with the

audiovisual approach when presented with novel data (as discussed in chapter 5), the results

presented in this section should be interpreted with a degree of caution. Noises were added

to speech sentences, with the SNR varying between -40dB and +10dB, and the visual data was

processed using the automatic lip-tracking approach. There are some limited examples of the

Lombard Effect, in that the speaker is taking part in an animated conversation and so adjusts

their voice to take account of both parties talking, but this is not considered to be a major part

of the chosen test-set.

This noisy speech mixture was then processed by the fuzzy logic based framework and

evaluated. The fuzzy logic based output processed by this proof of concept framework is

compared to the equivalent output using other techniques, including the two-stage system

demonstrated previously. The performance of the fuzzy logic controller is also evaluated by

investigating the fuzzy switching process.

7.7.2 Experiment Setup

The system described in chapter 6 was evaluated by making use of 10 sentences selected from

the newly recorded audiovisual corpus described in section 7.5. To provide a range of data, 5

of the 10 sentences were taken from the reading task, and 5 from the conversation task. Each

sentence represented a 20 second snippet of conversation or reading, with different content

and visual information depending on the specific sentence. The sentences were chosen on the

basis that they provided a wide range of content, and the only assumption made was that the

lip-region could be successfully identified in the initial frame. As discussed in section 7.6, there

are tracking errors, as expected. Each sentence was split into frames, producing approximately

1999 frames per sentence (the precise number of frames varied slightly depending on the

sentence).
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Figure 82: Waveform (top), and spectrogram (bottom) of broadband washing machine noise used for
objective and subjective tests.

In a similar manner to chapter 5, noise is to speech with the simulated room environment at

a range of SNR levels, from -40dB to +10dB. Two different noises are used. Firstly, broadband

noise is added to the speech. This consisted of a recording of a washing machine, as shown in

figure 82. It can be seen in figure 82 that the amplitude of the signal varies over time, with a

gradual decrease in amplitude throughout the recording segment. This noise was used for the

objective tests described in section 7.7.4, and also for the subjective listening tests in section

7.7.5.

To compare the results of using broadband noise with using a different noise source, an

inconsistent clapping noise is also used. As discussed in chapter 5 previously, this inconsistent

clapping noise is designed to be difficult for the beamformer to process due to the use of

silences and transient sounds. This is used for the objective tests discussed in section 7.7.6,

and is shown in figure 83.

A number of different versions were compared of each speech sentence. For the objective

tests, the audiovisual approach presented in chapter 4 was used, along with an audio-only

beamforming approach to serve as a comparison. In addition to this, the spectral subtraction

approach used in chapter 5 and the unfiltered noisy signal were also used. These results were

compared with results from the fuzzy logic based system. For the subjective listening tests,
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Figure 83: Waveform (top), and spectrogram (bottom) of clapping noise used for objective tests.

the three processing methods used for comparison were the two-stage audiovisual approach,

the beamforming approach, and the fuzzy logic approach (only three methods were used in

order to prevent listener fatigue).

7.7.3 Evaluation Approach

As the input variables were evaluated individually in the previous section, this section focused

on the audio performance of the fuzzy switching system. To do this, the composite measures

(Hu & Loizou [87]) used in chapter 5 are used to perform a detailed evaluation. This provides

composite mean values that can be analysed. The output of using the fuzzy logic processing

system was compared to mean values calculated by using a number of other techniques,

including spectral subtraction, the two-stage audiovisual approach, audio-only beamforming,

and the unfiltered noisy speech.

In addition to this, it was felt that it would be suitable to run a number of listening tests to

evaluate the subjective quality of the speech. As the speech sentences were considerably longer

than the original speech sentences used for evaluation in previous chapters (20 seconds rather

than 3 seconds), there were concerns that testing the entire dataset would be challenging due



7.7 detailed system evaluation 237

to listener fatigue (10 sentences of 20 seconds length, with each sentence being processed in

5 different ways at 6 different SNR levels). Therefore, to reduce listener fatigue, only three

versions of each conversation snippet were evaluated, audiovisual, audio-only, and the fuzzy

logic approach, and the number of 20 second conversation snippets was reduced from 10 to 5.

These are then tested with volunteers to produce suitable MOS. The results of these listening

tests are discussed in section 7.7.5.

In addition to the audio output, the fuzzy switching is also evaluated. To do this, individual

sentences are inspected to assess the effect of various factors, such as adjusting the SNR, the

effect of poor visual information, and the difference between individual sentences. This is

evaluated by a visual inspection and comparison. The fuzzy output decision on a frame-by-

frame basis is then inspected. This is discussed in section 7.7.7.

7.7.4 Objective Testing With Broadband Noise

As discussed above, each 20 second snippet of either conversation or reading had broadband

machine noise (as shown in figure 82) added to it at different SNR levels, ranging from -40dB

to +10dB. Each mixture of speech and noise was then evaluated with the composite objective

measures developed by Hu & Loizou [87]. Five versions of each sentence were compared,

firstly, the audiovisual two-stage system presented in chapter 4. As this approach was shown

in chapter 5 to perform poorly with completely novel speakers, then it was expected that this

approach would perform poorly when tested with the newly recorded corpus. In addition to

this, the results of performing audio-only beamforming are also presented. As the simulated

room is designed to demonstrate the performance of the beamformer, it is expected that the

results of using this technique will be extremely good. The noisy unfiltered sentence is also

used, along with the spectral subtraction approach used for evaluation in chapter 5. These are

compared to the results of using the fuzzy-based system presented in the previous chapter.

The means of the composite overall, speech distortion, and background distortion at different

SNR levels are provided in tables 34, 35, 36, and figures 84, 44, 45 respectively.



Table 34: Composite objective mean test score table for overall speech quality for speech with washing
machine noise added, for audiovisual speech, audio-only beamforming, fuzzy-based processing,
audio-only spectral subtraction, and unprocessed speech.

Level Avis Beamforming Fuzzy Spectral Noisy

-40dB 1.482 3.5078 1.110 2.136 2.557

-30dB 1.672 3.802 1.108 2.341 2.445

-20dB 1.798 3.994 2.054 1.904 2.233

-10dB 1.720 4.063 3.534 1.806 1.818

0dB 1.315 4.089 3.903 2.573 2.485

+10dB 0.665 4.102 3.800 3.117 3.083

Table 35: Composite objective mean test score table for speech score speech quality for speech with
washing machine noise added, for audiovisual speech, audio-only beamforming, fuzzy-based
processing, audio-only spectral subtraction, and unprocessed speech.

Level Avis Beamforming Fuzzy Spectral Noisy

-40dB 1.649 4.415 1.373 2.121 2.561

-30dB 1.786 4.642 1.401 2.292 2.490

-20dB 1.874 4.790 2.391 2.059 2.394

-10dB 1.729 4.846 4.226 2.199 2.253

0dB 1.128 4.870 4.676 3.021 3.000

+10dB 0.115 4.882 4.536 3.625 3.682
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Table 36: Composite objective mean test score table for noisy speech quality for speech with washing
machine noise added, for audiovisual speech, audio-only beamforming, fuzzy-based processing,
audio-only spectral subtraction, and unprocessed speech.

Level Avis Beamforming Fuzzy Spectral Noisy

-40dB 1.842 2.770 1.630 1.995 1.957

-30dB 1.910 3.001 1.591 2.116 1.889

-20dB 1.917 3.331 2.101 1.847 1.753

-10dB 1.835 3.750 3.285 1.774 1.476

0dB 1.620 3.799 3.592 2.224 1.898

+10dB 1.359 3.816 3.429 2.519 2.341
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Figure 84: Composite objective mean test scores for overall speech quality for speech with washing ma-
chine noise added, for audiovisual speech, audio-only beamforming, fuzzy-based processing,
audio-only spectral subtraction, and unprocessed speech.

Considering the overall score first, the audio-only beamformer produced the best overall

score, which was expected. The unfiltered and spectral subtraction scores are very similar,

which matches expectations based on the results in chapter 5. It can also be seen that the

audiovisual approach is the worst performing method, which again matches expectations. As

seen in chapter 5, as the SNR increases, the audiovisual score decreases, which matches the

results when tested on the VidTIMIT corpus in chapter 5.

The performance of the fuzzy-based system is of interest. The interaction plot for the overall

score is shown in figure 87 and the results of Bonferroni multiple comparison for the difference

between the audiovisual and fuzzy logic approach, and the audio-only and fuzzy approach

are given in tables 37 and 38. The difference of means in table 37 shows that at a very low
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Figure 85: Composite objective mean test scores for speech distortion level for speech with washing ma-
chine noise added, for audiovisual speech, audio-only beamforming, fuzzy-based processing,
audio-only spectral subtraction, and unprocessed speech.
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Figure 86: Composite objective mean test scores for noise distortion level for speech with washing ma-
chine noise added, for audiovisual speech, audio-only beamforming, fuzzy-based processing,
audio-only spectral subtraction, and unprocessed speech.
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Figure 87: Interaction plot for overall composite objective mean score of speech with washing machine
noise added at varying SNR levels, showing audiovisual speech (black and circle markers),
audio-only beamforming (red with square markers), fuzzy-based system (green with diamond
markers), spectral subtraction (blue with triangles), and unfiltered noisy speech (orange with
triangles).

SNR (at SNR levels of -40dB, -30dB, -20dB), the fuzzy logic approach is the worst performing

approach. However, although it is the worst performing approach the difference between

the audiovisual and fuzzy approaches was not statistically significant (p>0.05). This suggests

that as the noise level is extremely high, the fuzzy logic system makes use of the audiovisual

method, which explains the lack of difference.

At higher SNR levels, when there is less noise, the fuzzy-system makes more use of the

audio-only approach, and so as shown by the comparison of means in table 38, the difference

between the fuzzy-system at these higher SNR levels is not statistically significant (p>0.05).

However, the scores do not match exactly. This is because, as will be discussed in section 7.7.7,

the fuzzy-system does not make use of the same approach in all frames, as it switches in

response to precise changes in input variables. Similar results can be seen for the composite

speech distortion score, with the interaction plot shown in figure 88 and the comparison of

means in tables 39 and 40. The speech distortion introduced by the audiovisual approach is

reflected in the difference in the audio-only score and the fuzzy logic approach at -10dB being

significantly different (p<0.05), which is not the case for the overall composite score. Likewise,
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Table 37: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audiovisual Filtering and Fuzzy Processed Speech with washing machine noise added
for overall composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -0.372 0.144 -2.589 1.000

-30dB -0.564 0.144 -3.926 0.053

-20dB 0.256 0.144 1.782 1.000

-10dB 1.814 0.144 12.639 0.000

0dB 2.588 0.144 18.030 0.000

+10dB 3.135 0.144 21.84 0.000

at -20dB, the difference between the means of the audiovisual and fuzzy-based approach is

statistically significant (p<0.05), which reflects the improvement seen when the fuzzy-based

approach uses a greater number of audio-only frames.

The composite noise distortion score is very similar, as shown in the interaction plot in

figure 89 and the comparison of means in tables 41 and 42. The difference between the means

of the audio-only and fuzzy-based approach is significant (p<0.05) at SNR levels of -40dB to

-10dB and also at +10dB, suggesting that at +10dB, the system is using the unfiltered approach

in a number of frames, so some background noise is included in the output.

To verify these results, it was felt suitable to conduct listening tests of this data, and this

will be discussed in section 7.7.5.

7.7.5 Subjective Testing with Broadband Noise

The previous section discussed the results of objective tests of speech mixed with broadband

machine noise. This section reports the results of listening tests performed on this dataset (the

same sentences with the same noise added as shown in figure 82). The listening tests were

conducted in a manner similar to those discussed in chapter 5. 10 volunteers took part in

listening tests in a quiet room, using noise cancelling headphones. All of the volunteers spoke



Table 38: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audio-only beamforming and Fuzzy Processed Speech with washing machine noise
added for overall composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -2.398 0.1435 -16.70 0.0000

-30dB -2.694 0.1435 -10.18 0.0000

-20dB -1.940 0.1435 -13.52 0.0000

-10dB -0.529 0.1435 -3.68 0.1317

0dB -0.187 0.1435 -1.31 1.0000

+10dB -0.302 0.1435 -2.104 1.0000

Figure 88: Interaction plot for speech distortion composite objective mean score of speech with washing
machine noise added at varying SNR levels, showing audiovisual speech (black and circle
markers), audio-only beamforming (red with square markers), fuzzy-based system (green
with diamond markers), spectral subtraction (blue with triangles), and unfiltered noisy speech
(orange with triangles).
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Table 39: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audio-only beamforming and Fuzzy Processed Speech with washing machine noise
added for speech distortion composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -3.043 0.129 -23.59 0.000

-30dB -3.241 0.129 -25.12 0.000

-20dB -2.399 0.129 -18.60 0.000

-10dB -0.620 0.129 -4.81 0.001

0dB -0.195 0.129 -1.51 1.000

+10dB -0.346 0.129 -2.680 1.000

Table 40: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audiovisual Filtering and Fuzzy Processed Speech with washing machine noise added
for speech distortion composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -0.276 0.1290 -2.14 1.0000

-30dB -0.386 0.1290 -2.99 1.0000

-20dB 0.516 0.1290 4.00 0.0398

-10dB 2.497 0.1290 19.36 0.0000

0dB 3.548 0.1290 27.501 0.0000

+10dB 4.421 0.1290 34.27 0.0000
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Figure 89: Interaction plot for noise intrusiveness composite objective mean score of speech with
washing machine noise added at varying SNR levels, showing audiovisual speech (black
and circle markers), audio-only beamforming (red with square markers), fuzzy-based system
(green with diamond markers), spectral subtraction (blue with triangles), and unfiltered noisy
speech (orange with triangles).

Table 41: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audio-only beamforming and Fuzzy Processed Speech with washing machine noise
added for noise intrusiveness composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -1.140 0.098 -11.62 0.000

-30dB -1.410 0.098 -14.38 0.000

-20dB -1.231 0.098 -12.55 0.000

-10dB -0.466 0.098 -4.75 0.002

0dB -0.207 0.098 -2.11 1.000

+10dB -0.387 0.098 -3.95 0.049
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Table 42: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audiovisual Filtering and Fuzzy Processed Speech with washing machine noise added
for noise intrusiveness composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -0.212 0.098 -2.164 1.000

-30dB -0.318 0.098 -3.247 0.605

-20dB 0.184 0.098 1.873 1.000

-10dB 1.450 0.098 14.789 0.000

0dB 1.972 0.098 20.115 0.000

+10dB 2.070 0.098 21.11 0.000

English as a first language, and none reported any abnormalities with their hearing. There

were 6 male subjects and 4 female subjects, with an age range between 21 and 37. Listeners

were played sentences randomly from the test-set, and were asked to score each between 0

and 5 based on the same criteria as in 5. They were asked to score speech signal distortion,

noise intrusiveness level, and overall quality.

As there were concerns over listener fatigue due to the potential duration of listening

tests using the entire dataset tested in section 7.7.4, a smaller subset of the test-set was used.

5 sentences were selected (again, a mix of reading and conversation tasks), from different

speakers, and broadband noise was added at 6 different SNR levels. 3 different processing

methods were used, the audiovisual approach, the audio-only approach, and the fuzzy-based

system. The overall, speech distortion, and noise intrusiveness MOS results are shown in tables

43, 44, and 45, with the equivalent data shown in figures 90, 91, and 92 respectively.

An inspection of figures 90, 91, 92 shows that the scores for subjective listening tests look

very similar to the results presented in section 7.7.4. Just as in reported in results in the

previous section, the audiovisual approach is consistently identified to have the worst output

scores, and the audio-only technique returns the best results. The fuzzy-based approach



Table 43: MOS table for overall quality for speech with washing machine noise added, for audiovisual
speech, audio-only beamforming, and fuzzy-based processing.

Level Avis Beamforming Fuzzy

-40dB 1.392 3.400 1.196

-30dB 1.650 4.130 1.604

-20dB 1.774 4.374 1.988

-10dB 1.950 4.364 3.650

0dB 1.436 4.370 3.986

+10dB 0.872 4.414 3.787

Table 44: MOS table for speech distortion for speech with washing machine noise added, for audiovisual
speech, audio-only beamforming, and fuzzy-based processing.

Level Avis Beamforming Fuzzy

-40dB 0.940 2.840 0.752

-30dB 1.470 3.800 1.274

-20dB 1.730 4.370 2.020

-10dB 2.050 4.330 3.662

0dB 1.740 4.440 4.460

+10dB 1.130 4.650 4.370
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Table 45: Composite MOS table for noise intrusiveness for speech with washing machine noise added,
for audiovisual speech, audio-only beamforming, and fuzzy-based processing.

Level Avis Beamforming Fuzzy

-40dB 2.730 4.620 2.740

-30dB 2.350 4.700 2.336

-20dB 2.210 4.380 2.190

-10dB 2.005 4.190 3.630

0dB 1.260 4.110 3.660

+10dB 1.000 4.390 3.450
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Figure 90: Mean Opinion Score for overall speech quality for speech with washing machine noise added,
for audiovisual speech, audio-only beamforming, and fuzzy-based processing.
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Figure 91: Mean Opinion Score for speech distortion level for speech with washing machine noise
added, for audiovisual speech, audio-only beamforming, and fuzzy-based processing.
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Figure 92: Mean Objective Scores for noise intrusiveness level for speech with washing machine noise
added, for audiovisual speech, audio-only beamforming, and fuzzy-based processing.

249



7.7 detailed system evaluation 250

Figure 93: Interaction plot for overall MOS at varying SNR levels, showing audiovisual speech (black
and circle markers), audio-only beamforming (red with square markers), and fuzzy-based
system (green with diamond markers).

performs poorly at a very low SNR, but has an improved output at a higher SNR. A more

detailed analysis is conducted on the results, using Bonferroni multiple comparison. Figures

93 and 94 show the interaction plots for overall and speech distortion MOS, and the difference

of means is given in tables 46, 47, 48, and 49.

It can be seen that the trend of results is very similar to the objective scores discussed in

section 7.7.4. At a lower SNR, the audiovisual and fuzzy-based scores are very similar, with

no significant difference. This signifies that there was a far greater preference by listeners

for the sentences processed with audio-only beamforming. When the SNR is increased, the

fuzzy-based approach produced an improved score, with a similar output to the audio-only

approach, with the results of Bonferroni multiple comparison showing that at SNR levels of

-10dB, 0dB, and +10dB, the overall and speech distortion scores were not significantly different

(p>0.05). This indicates that listeners found these sentences to be very similar in terms of

overall results, and also when considering the speech in isolation.

The MOS for noise intrusiveness are also very similar to the equivalent objective results

presented in the previous section. The interaction plot is shown in figure 95, and the results of



Figure 94: Interaction plot for speech quality MOS at varying SNR levels, showing audiovisual speech
(black and circle markers), audio-only beamforming (red with square markers), and fuzzy-
based system (green with diamond markers).

Table 46: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audio-only beamforming and Fuzzy Processed Speech for overall subjective scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -2.204 0.180 -12.23 0.000

-30dB -2.526 0.180 -14.02 0.000

-20dB -2.386 0.180 -13.24 0.000

-10dB -0.714 0.180 -3.96 0.012

0dB -0.384 0.180 -2.13 1.000

+10dB -0.627 0.180 -3.479 0.081
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Table 47: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audiovisual Filtering and Fuzzy Processed Speech for overall subjective scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -0.196 0.180 -1.088 1.000

-30dB -0.046 0.180 -0.255 1.000

-20dB 0.214 0.180 1.188 1.000

-10dB 1.700 0.180 9.434 0.000

0dB 2.550 0.180 14.151 0.000

+10dB 2.915 0.180 16.18 0.000

Table 48: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audio-only beamforming and Fuzzy Processed Speech for speech quality subjective
scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -2.088 0.169 -12.34 0.000

-30dB -2.526 0.169 -14.93 0.000

-20dB -2.350 0.169 -13.89 0.000

-10dB -0.668 0.169 -3.95 0.013

0dB 0.020 0.169 0.12 1.000

+10dB -0.280 0.169 -1.655 1.000
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Table 49: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audiovisual Filtering and Fuzzy Processed Speech for speech quality subjective scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -0.188 0.169 -1.111 1.000

-30dB -0.196 0.169 -1.158 1.000

-20dB 0.290 0.169 1.714 1.000

-10dB 1.612 0.169 9.527 0.000

0dB 2.720 0.169 16.076 0.000

+10dB 3.240 0.169 19.15 0.000

a comparison of means, comparing the audio-only and fuzzy-based MOS is shown in table 50,

with the fuzzy and audiovisual comparison in table 51.

There is one particular feature of interest that is also reflected in the objective tests. Regarding

the noise intrusiveness score, table 50 shows that the noise intrusiveness MOS for the fuzzy

logic based system at a SNR of +10dB is significantly different (p<0.05), which reflects the

increased use of the unfiltered processing option. Although this lower MOS is reflected in the

overall score, it is not reflected in the speech distortion comparison of means, suggesting that

the addition of noise at this SNR does not have an impact on speech intelligibility.

Overall, these results confirm the validity of the objective test results. The overall, speech

distortion, and noise intrusiveness scores are very similar to the objective scores, and the

interaction plots and comparisons of means confirm that the audio-only approach signifi-

cantly outperforms the audiovisual approach. They also confirm that the fuzzy-based system

performs as expected. At lower SNR levels -40dB to -20dB), the MOS is very similar to the

audiovisual MOS, with small but not significant differences, as shown by the results of a

comparison of means. At SNR levels of -10dB and 0dB, the audio-only and fuzzy-based results

are very similar, suggesting that audio-only processing is used more often. At a high SNR, the

significantly different noise intrusiveness score between audio-only and fuzzy-based scores

shows that the system is making use of some unfiltered data. However, the results also show



Figure 95: Interaction plot for noise intrusiveness MOS at varying SNR levels, showing audiovisual
speech (black and circle markers), audio-only beamforming (red with square markers), and
fuzzy-based system (green with diamond markers).

Table 50: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference be-
tween Audio-only beamforming and Fuzzy Processed Speech for noise intrusiveness subjective
scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -1.880 0.213 -8.82 0.000

-30dB -2.364 0.213 -11.09 0.000

-20dB -2.190 0.213 -10.28 0.000

-10dB -0.560 0.213 -2.63 1.000

0dB -0.450 0.213 -2.11 1.000

+10dB -0.940 0.213 -4.410 0.002
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Table 51: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audiovisual Filtering and Fuzzy Processed Speech for noise intrusiveness subjective
scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.010 0.213 0.047 1.000

-30dB -0.014 0.213 -0.066 1.000

-20dB -0.020 0.213 -0.094 1.000

-10dB 1.625 0.213 7.624 0.000

0dB 2.400 0.213 11.261 0.000

+10dB 2.450 0.213 11.50 0.000

that similarly to the objective results in the previous section, the audiovisual MOS is the worst

performing technique, and the audio-only approach far outperforms this method. However,

these results should be interpreted with a degree of caution. As discussed in this chapter, the

audio-only beamforming was expected to perform well, as the simulated room environment is

designed specifically to demonstrate the performance of this technique. Section 7.7.6 presents

the results of objective tests of speech mixed with a different noise, one designed to challenge

the audio-only approach.

7.7.6 Objective Testing with Inconsistent Transient Noise

The objective and subjective testing in the previous sections (sections 7.7.4, and 7.7.5) identified

that the audio-only beamforming approach produced the strongest results. As expected, the

audiovisual approach performed poorly when tested with novel data that it had not been

trained with, and the fuzzy logic approach produced output that resulted in a poorer score

than the audio-only approach due to the fuzzy switching system. However, as mentioned

previously, there should be a degree of caution in interpreting these results. Firstly, although

the output audio quality for the fuzzy logic processing approach produces lower objective

and subjective scores, this is due to limitations with the audiovisual processing approach,
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Table 52: Composite objective mean test score table for overall speech quality for speech with tran-
sient clapping noise added, for audiovisual speech, audio-only beamforming, fuzzy-based
processing, audio-only spectral subtraction, and unprocessed speech.

Level Avis Beamforming Fuzzy Spectral Noisy

-40dB 1.016 0.194 1.018 -0.208 0.367

-30dB 1.072 0.194 0.609 -0.067 0.443

-20dB 0.937 0.194 0.557 0.026 0.632

-10dB 0.833 0.194 0.500 0.631 1.295

0dB 0.939 0.194 1.159 1.421 2.003

+10dB 0.710 0.194 0.655 2.302 2.695

rather than with the fuzzy switching. Secondly, although the audio-only results have been

identified as producing the strongest results, this is in a scenario with broadband noise from a

fixed source, where a beamformer would be expected to perform well.

In this section, a different noise is used, one with silence and clapping, that represents a

greater challenge. A mixture of clapping and silence is used as the noise source (as shown in

figure 83), and the 10 speech sentences described above are mixed with the noise source at a

range of SNR levels, from -40dB to +10dB. These noisy sentences are then processed using the

techniques also used in section 7.7.4. The objective composite measures used in section 7.7.4

are also used to evaluate the filtered speech sentences.

The means of the composite overall, speech distortion, and background distortion at

different SNR levels are provided in tables 52, 53, 54, and figures 96, 97, 98 respectively.

Considering the overall scores first, it can be seen that the audio-only beamformer returns

the same score at all SNR levels. This is shown in the interaction plot in figure 99. Listening

to the audio output confirmed that the reason this score was so low and so consistent was

because no audio signal was returned. The audiovisual score was also poor, but listening to

the output confirmed that an audio signal could be heard, hence the higher score. However,

as can be seen in figure 99, the overall score is still very low, as expected. As discussed in

the previous sections, the audiovisual approach performs poorly with novel data. The results



Table 53: Composite objective mean test score table for speech score speech quality for speech with
transient clapping noise added, for audiovisual speech, audio-only beamforming, fuzzy-based
processing, audio-only spectral subtraction, and unprocessed speech.

Level Avis Beamforming Fuzzy Spectral Noisy

-40dB 1.039 -0.446 0.292 -0.749 0.049

-30dB 1.018 -0.446 -0.146 -0.598 0.153

-20dB 0.763 -0.446 -0.233 -0.349 0.440

-10dB 0.446 -0.446 -0.279 0.486 1.308

0dB 0.439 -0.446 0.365 1.548 2.280

+10dB -0.515 -0.446 0.105 2.640 3.200

Table 54: Composite objective mean test score table for noisy speech quality for speech with tran-
sient clapping noise added, for audiovisual speech, audio-only beamforming, fuzzy-based
processing, audio-only spectral subtraction, and unprocessed speech.

Level Avis Beamforming Fuzzy Spectral Noisy

-40dB 1.617 1.700 2.017 0.984 1.203

-30dB 1.667 1.700 1.830 1.062 1.239

-20dB 1.593 1.700 1.802 1.080 1.315

-10dB 1.593 1.700 1.830 1.319 1.575

0dB 1.606 1.700 2.199 1.649 1.859

+10dB 1.730 1.700 1.814 2.100 2.223
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Figure 96: Composite objective mean test scores for overall speech quality for speech with transient clap-
ping noise added, for audiovisual speech, audio-only beamforming, fuzzy-based processing,
audio-only spectral subtraction, and unprocessed speech.
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Figure 97: Composite objective mean test scores for speech distortion level for speech with transient clap-
ping noise added, for audiovisual speech, audio-only beamforming, fuzzy-based processing,
audio-only spectral subtraction, and unprocessed speech.
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Figure 98: Composite objective mean test scores for noise distortion level for speech with transient clap-
ping noise added, for audiovisual speech, audio-only beamforming, fuzzy-based processing,
audio-only spectral subtraction, and unprocessed speech.
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7.7 detailed system evaluation 259

Figure 99: Interaction plot for overall composite objective mean score of speech with transient clapping
noise added at varying SNR levels, showing audiovisual speech (black and circle markers),
audio-only beamforming (red with square markers), fuzzy-based system (green with diamond
markers), spectral subtraction (blue with triangles), and unfiltered noisy speech (orange with
triangles).

of Bonferroni multiple comparison, as shown in tables 55 and 56 show that despite the lack

of output signal, the difference between the fuzzy output and the audio-only output is only

significant at a SNR of -40dB, and 0dB (where p<0.05). The difference between the audiovisual

and fuzzy output scores was not significant at any SNR level.

This low score is clearly reflected in the speech distortion composite scores, as shown in

figure 97 and also in the interaction plot in figure 100. It can be seen that the scores are

extremely low, confirming that there was consistently no speech identified in the filtered

output value. Despite the high noise level of the input signal (when audiovisual processing

would be expected to be used), the results of Bonferroni multiple comparison in table 55

showed that the difference was not significant (p>0.05) at most SNR levels.

Again, similar results were found for the noise composite scores, as shown in the interaction

plot in figure 101 and the results of Bonferroni multiple comparison in tables 59 and 60.

Overall, the results demonstrated that the audio-only beamforming results presented in the

previous sections should be interpreted with a degree of caution. The fuzzy logic based results

presented in this section are very dependent on the techniques used for processing speech.



Table 55: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audio-only beamforming and Fuzzy Processed Speech with transient clapping noise
added for overall composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.824 0.148 5.585 0.000

-30dB 0.416 0.148 2.816 1.000

-20dB 0.363 0.148 2.462 1.000

-10dB 0.307 0.148 2.079 1.000

0dB 0.965 0.148 6.543 0.000

+10dB 0.461 0.148 3.124 0.905

Table 56: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audiovisual Filtering and Fuzzy Processed Speech with transient clapping noise
added for overall composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.002 0.148 0.011 1.000

-30dB -0.463 0.148 -3.138 0.864

-20dB -0.380 0.148 -2.577 1.000

-10dB -0.333 0.148 -2.254 1.000

0dB 0.220 0.148 1.490 1.000

+10dB -0.056 0.148 -0.379 1.000
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Figure 100: Interaction plot for speech distortion composite objective mean score of speech with transient
clapping noise added at varying SNR levels, showing audiovisual speech (black and circle
markers), audio-only beamforming (red with square markers), fuzzy-based system (green
with diamond markers), spectral subtraction (blue with triangles), and unfiltered noisy
speech (orange with triangles).

Table 57: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audio-only beamforming and Fuzzy Processed Speech with transient clapping noise
added for speech distortion composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.738 0.152 4.856 0.001

-30dB 0.300 0.152 1.973 1.000

-20dB 0.213 0.152 1.399 1.000

-10dB 0.167 0.152 1.099 1.000

0dB 0.811 0.152 5.336 0.000

+10dB 0.550 0.152 3.621 0.166

261



Table 58: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audiovisual Filtering and Fuzzy Processed Speech with transient clapping noise
added for speech distortion composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB -0.746 0.152 -4.91 0.001

-30dB -1.164 0.152 -7.66 0.000

-20dB -0.996 0.152 -6.553 0.000

-10dB -0.725 0.152 -4.767 0.002

0dB -0.074 0.152 -0.485 1.0000

+10dB 0.620 0.152 4.078 0.030

Figure 101: Interaction plot for noise intrusiveness composite objective mean score of speech with
transient clapping noise added at varying SNR levels, showing audiovisual speech (black
and circle markers), audio-only beamforming (red with square markers), fuzzy-based system
(green with diamond markers), spectral subtraction (blue with triangles), and unfiltered
noisy speech (orange with triangles).
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Table 59: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audio-only beamforming and Fuzzy Processed Speech with transient clapping noise
added for noise intrusiveness composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.316 0.093 3.404 0.356

-30dB 0.130 0.093 1.401 1.000

-20dB 0.101 0.093 1.089 1.000

-10dB 0.130 0.093 1.398 1.000

0dB 0.499 0.093 5.368 0.000

+10dB 0.114 0.093 1.227 1.000

Table 60: Selected results of Bonferroni Multiple Comparison, showing P-Value results for difference
between Audiovisual Filtering and Fuzzy Processed Speech with transient clapping noise
added for noise intrusiveness composite scores.

Level Difference of Means SE of Difference T-Value Adjusted P-Value

-40dB 0.400 0.093 4.300 0.012

-30dB 0.163 0.093 1.758 1.000

-20dB 0.209 0.093 2.245 1.000

-10dB 0.237 0.093 2.549 1.000

0dB 0.594 0.093 6.386 0.000

+10dB 0.085 0.093 0.909 1.000
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7.7 detailed system evaluation 264

Although previous sections reported that the audio-only approach produced clearly better

results, this was when the noise was one which the beamformer was capable of processing.

Likewise, the audiovisual results were shown to be limited due to the system not being

trained with data similar to that used for testing. Therefore, although the fuzzy logic system

is functioning as expected and is switching between techniques, the results are limited by

limitations in the specific speech processing techniques. In addition to an evaluation of the

output audio signal, the next section presents an investigation of the specific fuzzy switching

performance.

7.7.7 Detailed Fuzzy Switching Performance

In addition to an analysis of the audio output, it is of interest to assess the performance

of the fuzzy switching system. As discussed previously in this chapter, it can be seen that

the fuzzy logic output varies depending on factors such as the SNR level and the previous

output decision value, and the results of subjective and objective tests show that the output

mean scores are often similar, but not identical to either the audio-only output scores or

the audiovisual scores. However, as a range of sentences (with different associated visual

quality fuzzy values), noises, and SNR levels were tested, it was felt suitable to examine the

performance of the fuzzy switching approach in detail. This section reports the results of a

detailed inspection of the fuzzy logic switching system.

Fuzzy Switching with Varying Noise Type

Firstly, the difference between sentences mixed with the two different noises used in this

chapter is examined. To do this, two sentences are compared, with different noise added. The

fuzzy output decision from frame-to-frame of a sentence with transient noise is compared

to the frame-by-frame output decision of the same sentence, except with the machine noise

added at the same SNR. Firstly, noise was added at a SNR of 0dB to the sentence, and the

output is shown in figure 102. In order to ensure that good quality visual information was

available at all times, an example of a sentence from the reading task was chosen.
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Figure 102: Comparison of fuzzy logic output decision depending on noise type at SNR of 0dB. (a)
shows the input visual information. It can be seen that all values are below 600, therefore
every frame is considered to be good quality. As the visual information is unchanged,
then this is the same for both transient and machine noise speech mixtures. (b) shows the
transient mixture fuzzy input variable. (c) shows the associated transient noise mixture
output processing decision. (d) shows the machine noise mixture fuzzy input variable. (e)
shows the machine noise mixture output processing decision.
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Figure 102 shows the difference in the fuzzy output decision, depending on the input noise

variable. As the visual information, SNR, and sentence content was the same for both values,

the only difference was the noise type. In figure 102, (c) Shows the fuzzy output decision,

based on the visual input variable in (a), and the audio input variable in (b). It can be seen

that the noise is of a relatively low level, and so the system alternates between making use

of the audio-only and the unprocessed speech options, which is to be expected when it is

considered that this noise consists of handclaps and silences. (e) Shows the fuzzy output

decision, based on the visual information in variable (a), and the audio input in variable

(d). It can be seen that the fuzzy decision is different, as the noise input variable is different.

The machine noise is a broadband noise, and so there is more noise present. As can be seen

in figure 82, the noise amplitude gradually decreases over time, and this is reflected in the

fuzzy output, which uses the audio-only output decision consistently, and as the noise level

decreases, the unfiltered output is chosen on some occasions. This is in line with expectations

and shows that the system is performing as expected with different noise types. To confirm

this, the same sentence and noises are compared again in figure 103, except with the speech

and noise mixed at a SNR of -20dB.

Again, the key information is shown in the fuzzy output decisions in (c) and (e) of figure

103. With the transient noise, it can be seen in (c) that there are two large quiet periods, which

are also shown in figure 83. In these periods, either the unfiltered or audio-only options are

chosen, otherwise, the audiovisual output is chosen as expected. In (e), although the noise is

gradually decreasing as shown in (d), as the SNR is very low the audiovisual output is chosen

in all frames.

In summary, it can be seen that the fuzzy output decision varies based purely on the noise

type. Figures 102 and 103 show that when the same speech sentence with the same quality of

visual information is mixed with noise at the same SNR, with the only difference being the

type of noise, the frame-by-frame fuzzy output decision is different. This demonstrates that

the fuzzy-based system is capable of adapting to different noise types.
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Figure 103: Comparison of fuzzy logic output decision depending on noise type at SNR of -20dB. (a)
shows the input visual information. It can be seen that all values are below 600, therefore
every frame is considered to be good quality. As the visual information is unchanged,
then this is the same for both transient and machine noise speech mixtures. (b) shows the
transient mixture fuzzy input variable. (c) shows the associated transient noise mixture
output processing decision. (d) shows the machine noise mixture fuzzy input variable. (e)
shows the machine noise mixture output processing decision.
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Fuzzy Switching with Varying Visual Information

The previous examples considered a sentence with good quality visual information available

at all times, but it was also considered to be of interest to observe the effect that varying the

quality of visual information had on the fuzzy decision. As discussed in chapter 6, if the audio

input level was considered to be high, then the fuzzy logic system would use audiovisual

processing, but only if the visual information was considered to be of good quality (i.e.

the visual input fuzzy variable was low). To test this, a number of different sentences are

compared, and the fuzzy outputs compared. These are shown in figures 104, 105, 106, and

107. In all sentences, machine noise is mixed with the speech signal at a SNR of -30dB to

ensure consistency, and provide a noise where audiovisual processing would be expected to

be chosen for all frames if good quality visual information is available. Figure 104 shows an

example of a sentence with good quality visual information available at all frames.

In figure 104 , (a) represents the visual input variable, (b) represents the audio input variable

and (c) shows the fuzzy output decision. As can be seen, the visual information quality is

considered to be good for all frames, and so audiovisual processing is chosen at all frames.

However, figures 105, 106, and 107 show different sentences with all other conditions kept the

same.

Again, in 105, 106, and 107, (a) represents the visual input variable, (b) represents the audio

input variable, and (c) shows the fuzzy output decision. It can be seen that despite the noise

type and SNR being the same in each figure, the visual input variable (which was shown

to be accurate in section 7.6) varies, and so the system only uses audiovisual processing

when it is considered to be suitable. This demonstrates that the system only uses audiovisual

information when it is considered to be appropriate, and adapts to different sentences.

Fuzzy Switching with Varying SNR Level

In addition to considering the effect of noise type and visual information, the effect of mixing

the speech and noise sources at varying SNR levels is of interest. For this example, one sentence

was chosen, with a small number of frames with poor quality visual information, and the



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500
a) Visual Input Variable          

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5
b) Audio Input Variable         

Fuzzy Output at −30dB SNR

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10
c) Fuzzy Output Decision         

Figure 104: fuzzy logic output decision depending on quality of visual information, for sentence with
no frames considered to be of poor quality. (a) shows the input visual variable. It can be
seen that all values are below 600, therefore every frame is considered to be good quality. (b)
shows the audio input variable, with machine noise added to speech at an SNR of -30dB. (c)
shows the fuzzy output processing decision.
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Figure 105: fuzzy logic output decision depending on quality of visual information, for sentence with
several frames considered to be of poor quality. (a) shows the input visual variable. It can be
seen that there are a small number of frames where there is considered to be poor visual
input. (b) shows the audio input variable, with machine noise added to speech at an SNR of
-30dB. (c) shows the fuzzy output processing decision.
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Figure 106: fuzzy logic output decision depending on quality of visual information, for sentence with
several frames considered to be of poor quality. (a) shows the input visual variable. It can be
seen that there are a number of frames where there is considered to be poor visual input. (b)
shows the audio input variable, with machine noise added to speech at an SNR of -30dB. (c)
shows the fuzzy output processing decision.
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Figure 107: fuzzy logic output decision depending on quality of visual information, for sentence with
several frames considered to be of poor quality. (a) shows the input visual variable. It can be
seen that there are a small number of frames where there is considered to be poor visual
input. (b) shows the audio input variable, with machine noise added to speech at an SNR of
-30dB. (c) shows the fuzzy output processing decision.
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Figure 108: fuzzy logic output decision depending on SNR level. (a) shows the input audio waveform,
with speech and noise mixed at a SNR of -40dB. (b) shows the audio input variable. (c)
shows the visual input variable, with a small number of frames considered to be of low
quality. Finally, (d) shows the fuzzy output decision.

noise source was the broadband machine noise. The sentences were then mixed at different

SNR levels, varying from -40dB to +10dB. Figure 108 shows the effect of mixing the sources at

an SNR of -40dB.

In figure 108, (a) represents the mixed audio waveform, and (b) the associated fuzzy input

variable. (c) Shows the visual input variable and (d) shows the fuzzy processing decision

output. It can be seen that as the noise is considered to be consistently high, audiovisual

information is used whenever good quality visual information is available. This is very similar

to the output for the same sentence, but with a SNR of -30dB. This is shown in figure 109.

Figure 109 shows that the output decision (d), is very similar to figure 108. This is to

be expected. If the two figures are compared closely, it can be seen that there is a slight

difference in that slightly more frames result in an audio-only processing decision, but this
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Figure 109: fuzzy logic output decision depending on SNR level. (a) shows the input audio waveform,
with speech and noise mixed at a SNR of -30dB. (b) shows the audio input variable. (c)
shows the visual input variable, with a small number of frames considered to be of low
quality. Finally, (d) shows the fuzzy output decision.
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Figure 110: fuzzy logic output decision depending on SNR level. (a) shows the input audio waveform,
with speech and noise mixed at a SNR of -20dB. (b) shows the audio input variable. (c)
shows the visual input variable, with a small number of frames considered to be of low
quality. Finally, (d) shows the fuzzy output decision.

is an extremely small difference. In figure 109, which shows the same sentence and noise

mixture, but at a SNR of -20dB, there is a much more noticeable difference.

Again, in figure 109, (a) represents the mixed audio waveform, and (b) the associated

fuzzy input variable. (c) Shows the visual input variable and (d) shows the fuzzy processing

decision output. It can be seen that initially, the audiovisual processing option is chosen

where appropriate. Later in this sentence though, when there is considered to be lower

quality visual information available, the system chooses audio-only processing. Unlike figure

109, the decision does not quickly change back to audiovisual processing, but continues to

choose audio-only processing for a much greater number of frames. This is because of the

increased SNR, demonstrating that the fuzzy logic system adapts to different noise inputs.

This adaptability is also shown in figure 111.
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Figure 111: fuzzy logic output decision depending on SNR level. (a) shows the input audio waveform,
with speech and noise mixed at a SNR of -10dB. (b) shows the audio input variable. (c)
shows the visual input variable, with a small number of frames considered to be of low
quality. Finally, (d) shows the fuzzy output decision.
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Figure 112: fuzzy logic output decision depending on SNR level. (a) shows the input audio waveform,
with speech and noise mixed at a SNR of 0dB. (b) shows the audio input variable. (c) shows
the visual input variable, with a small number of frames considered to be of low quality.
Finally, (d) shows the fuzzy output decision.

Firstly, in figure 111, it can be seen in (a) that the speech is more visible in the waveform,

which is a reflection on the increased SNR level. It can be seen in (d) that as the input level

variable decreases, the fuzzy logic system chooses the audio-only option for much of the

second part of the sentence, which is very different from previous examples of the same

sentence with the same noise but a lower SNR. Figure 112 shows that at a SNR of 0dB, the

audiovisual option is no longer chosen in any frames, and most frames make use of audio-only

processing, with a small number of frames making use of the unprocessed option (reflected in

the lower fuzzy output value).

Finally, figure 113 shows that at a SNR of +10dB there are a much greater number of

examples of the fuzzy logic system choosing to not filter the frame of speech. Overall, it is

shown that the system will adapt to changing audio input levels, with an example of the same
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Figure 113: fuzzy logic output decision depending on SNR level. (a) shows the input audio waveform,
with speech and noise mixed at a SNR of +10dB. (b) shows the audio input variable. (c)
shows the visual input variable, with a small number of frames considered to be of low
quality. Finally, (d) shows the fuzzy output decision.

sentence, with the same visual input variable, and the same type of noise source, producing a

different decision from frame-to-frame, depending on the SNR, and therefore the level of noise.

Fuzzy Switching Conclusions

In conclusion, it can be seen that although there are limitations with the specific audio-only

and audiovisual techniques, as identified in previous sections, this section has demonstrated

that the fuzzy logic switching system is functioning as expected in a range of different

conditions. It has been shown to perform differently when the same speech sentence has been

mixed with different types of noise, demonstrating that it is capable of adapting to different

types of noise. It has also been shown to function as expected with a number of different

sentences, with different visual quality input values. This shows that the system is versatile

enough to adapt to different speakers and content, and also only makes use of audiovisual
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processing when there is considered to be good quality visual information available. Finally,

an inspection of the same sentence with the same noise, but at different SNR levels shows that

as the SNR changes, the processing output decision also changes; again demonstrating the

adaptability of this fuzzy logic based switching system.

7.8 discussion of results

Firstly, the evaluation performed in this chapter confirmed that the fuzzy-based system

performs as expected. The system switches between processing options when considered

appropriate, as confirmed by the results in section 7.7.7. It can be seen that at a very low

SNR, the system will switch to making use of audiovisual information, but only if that visual

information is available. Section 7.6 presented an evaluation of the input variables, and it

was concluded that the initial visual fuzzy input variable can successfully be used to classify

visual information. It was shown with a range of challenging conditions and widely varying

conversation snippets from different speakers that the method correctly identified the quality

of visual information in the majority of cases. Tracking errors due to animated movement of

the speakers was generally correctly identified. This section justified the use of fuzzy variables

by showing that different speech sentences had different input values, matching the manually

estimated predictions, and the values chosen for the fuzzy thresholds were suitable to cover a

wide range of potential input data.

However, there are further improvements that could be made to this approach. There are

occasions when data that was manually identified as being of poor quality, was classified as

being correct by the detector. To improve the accuracy of the fuzzy input variable, it could be

possible to create an improved input variable using a machine learning technique discussed

in the previous chapter, such as a HMM or ANNs, to improve the accuracy of the input variable.

Section 7.6 also discussed the use of the previous fuzzy controller output value as an input

into the system for the subsequent frame. The aim of making use of this system is to reduce

rapid switching between processing options on a frame-by-frame basis. The potential benefit
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of using the single previous frame or a floating mean of 3, 5, and 10 previous outputs was

investigated. The results showed that although using a floating mean smoothed the input

variable on a frame-to-frame basis, it made very little difference to the fuzzy output value,

justifying the use of a single frame. This section also evaluated the effect of using the fuzzy

variable the rapid switching of processing options from frame-to-frame. Switching processing

options rapidly can cause potential listener discomfort due to the different audio output from

different processing options, and while it is expected that the processing option will change in

response to environmental conditions, rapid oscillation should be prevented where possible.

To investigate this, the fuzzy rules pertaining to the previous input variable were disabled

and the system was run with a number of sentences at different SNR levels. The results,

when compared to running the system with the rules enabled demonstrated that using the

previous variable fulfilled the requirement of reducing the oscillation from frame-to-frame.

This, combined with the positive evaluation result of the visual fuzzy variable, demonstrated

that the input fuzzy variables were successfully used to provide inputs into the fuzzy logic

based system.

However, there are a number of ways in which these inputs could be improved. As discussed

above, a model could be trained to accurately identify the quality of an image. Also, in addition

to the relatively basic audio power input, additional detectors such as a VAD could be used to

positively identify the presence or absence of speech. This would serve as an additional input

into the fuzzy-based system (and so would require the writing of additional rules), as used in

some current commercial hearing-aids. This could also include specific front-back or wind

detectors, to add versatility to the system. These detectors were discussed in more depth in

chapter 3.

With regard to the audio output of the system, it can be seen from the evaluation that the

results are of limited value. When making use of washing machine noise, the audiovisual

filtering produces a significantly worse result than using beamforming. This was discussed in

chapter 5, where the result was found to be significantly worse when used with data not similar

to that which the system had not previously been trained with. Therefore, poor results were

expected with novel data. In this scenario, the audio-only approach produced significantly
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stronger results than any others, again, as expected. The simulated room environment is

specifically designed for demonstrating the performance of the system, therefore, the audio-

only approach is the best performer, as shown by the objective tests in section 7.7.4. This

was also confirmed by the listening tests presented in section 7.7.5, where the beamforming

approach resulted in the highest MOS.

The fuzzy results are of interest because they demonstrate that the fuzzy-based system

performs as expected. At a very low SNR, the system makes use of the audiovisual processing

option, and at a high SNR, the system predominantly makes use of the audio-only approach as

expected. However, at even the lowest SNR, the objective and subjective scores are not identical

to the audiovisual scores. This is because the fuzzy-based approach makes use of different

processing options, depending on the fuzzy input variables, and so there is a difference

in scores. A similar pattern can be seen at a higher SNR, when the audio-only approach is

predominantly used, but again, it is not used in all cases, and is dependent on the input fuzzy

variables. However, the score is again rated as lower than the beamforming approach.

This would initially suggest that the beamforming approach is always better; however,

this result has to be interpreted with a degree of caution. Section 7.7.6 discussed the results

of objective tests when using an inconsistent clapping noise with transients and silences,

designed to be extremely challenging for a beamformer. In this scenario, it was found that the

audio-only approach produced no results of value, as shown by the extremely low objective

scores. However, the audiovisual approach also performed poorly, due to the limitations

discussed previously. Accordingly, although the fuzzy-based approach performed as expected,

the limitations identified with the speech processing techniques also show that the system is

currently only suitable for testing in specialised environments, and needs further development

before being suitable for more general purpose use.

Overall, when testing the system with more challenging data, in terms of audio output,

there are significant limitations with the evaluation of the system in its current condition.

When tested in more general scenarios outside of specific conditions, the techniques proposed

in this work for processing speech are in need of improvement. This was a limitation discussed
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in more depth in chapter 5, when it was concluded that the audiovisual approach was limited

with regard to data that it had not been trained with.

Despite the limitations identified above, an investigation of the performance of the fuzzy

switching system has shown that the system switches between inputs as expected. In noisy

environments with a high SNR, the system automatically selects a different form of processing

(in this case audiovisual), but only when there is only suitable associated visual information.

Section 7.7 uses an example of a noise that is gradually decreasing. It can be seen that at some

SNR levels, as the noise decreases, the processing option accurately switches to an alternative

processing mode, as expected. This demonstrates that the system is capable of adapting

to a range of different audiovisual environments, and is capable of solving the problem of

lack of availability of visual information. The use of the fuzzy input variable for a previous

frame was also shown to reduce the rate of oscillation between frames, and so despite the

limited audio output results, the system was shown to perform as expected with regard to the

fuzzy switching. It should be emphasised that this is a preliminary system, and future work

specifically with regard to this aspect of the system could involve adding additional detectors

and rules to perform more sophisticated analysis of the input data. Future work would also

investigate the processing cost of using such a system, and potential performance savings to

be gained from using different processing options.

Overall, this preliminary system demonstrates that there are limitations with the system

in its current form, primarily in the limitations with the specific processing options, as

outlined in chapter 5. In order to improve this system, the most important aspect is that

the audiovisual filtering approach needs to be improved and refined. The results show that

there is considerable scope for improvement when using data that the system has not been

trained with. This limitation was tested and explains the limited objective and subjective

results. Another significant improvement needed is to further develop the system to enable

more accurate evaluation. The results showed that the beamforming results were good with

the appropriate type of noise, but extremely limited with an unsuitable noise, and so therefore

had to be treated with caution. Future work would involve the development of this system to

be able to use a true multi-microphone environment rather than a simulated room, to fully
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and accurately evaluate the system. This would involve further refinement, but would also

require the acquisition of improved hardware to use for testing. This improved hardware

would allow for improved data synchronisation, correct acquisition of impulse responses and

directional information, and would allow for noise to be added during recording rather than

afterwards, taking more account of the Lombard Effect. However, the fuzzy-system was shown

in this chapter to successfully switch between processing options based on input variables. A

number of improvements could be made, such as the addition of further detectors such as a

VAD. Overall, this chapter demonstrated that a fuzzy logic system could be used to accurately

switch between processing options depending on fuzzy input variables.

7.9 summary

In addition to the two-stage filtering system discussed in chapter 4 and tested in chapter 5, this

thesis also explores the concept of utilising fuzzy logic as part of an autonomous, adaptive,

and context aware system. The limitations of the two-stage system were discussed in chapter 6,

with a preliminary fuzzy logic system also presented. This fuzzy logic system used a number

of fuzzy inputs and rules to determine the most suitable method of processing each frame of

speech, either by audio-only filtering, two-stage audiovisual speech enhancement, or simply

leaving the frame unprocessed. In this chapter, the results of initial testing of the fuzzy logic

system were presented. Firstly, the requirements of these tests were discussed, including the

need for visual data of varying quality, more challenging speech sentences, and novel data not

previously tested with the system. Some issues with the system in its current preliminary state

of implementation with regard to recording and testing of challenging real data were also

described. With these limitations taken into account, along with the requirements for testing a

system with challenging data, the recording of a novel corpus containing this challenging data

was discussed in section 7.5. This corpus contained examples of reading tasks, more animated

speech, made use of longer conversation snippets rather than simple two second sentences,
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and a varying quality of visual data. This corpus was then used to present an evaluation of

the preliminary system.

Firstly, the fuzzy input variables were evaluated, demonstrating that the visual input

variable was a reasonable estimation of the input data, and could accurately represent varying

input data over a range of sentences. The use of a previous frame for input was also justified,

showing that this presented a smoother output with less switching from frame-to-frame.

However, the audio output results were of less significance, as discussed in section 7.7, the

performance is very much dependent on the audio-only beamforming, which varied widely

in performance depending on the noise that was used. The audiovisual method also produced

a poor quality output, as expected. Therefore, in order to evaluate the system more fully,

the speech processing techniques should be improved in future work. Additional hardware

resources are also required in order to fully test the beamforming performance. The results

also demonstrated that the proposed system performed as expected, with the fuzzy logic

controller adjusting the output depending on the input variables. This showed that a fuzzy

logic approach can be applied to speech processing, and that it is context aware and capable

of adapting to environmental conditions.

The final chapter concludes the thesis as a whole, providing an overview of the research

and the original contributions presented in this work, and outlining some proposed future

research directions.



8
C O N C L U S I O N S A N D F U T U R E W O R K

8.1 conclusions

The speech enhancement research presented in this thesis was motivated by several factors.

Firstly, the development in recent years of audio-only hearing aids that utilise sophisticated

decision rules to determine the appropriate level of speech processing served as an inspiration.

A second motivational factor was the exploitation of the established cognitive relationship

between audio and visual elements of speech to produce multimodal speech filtering systems.

Another motivation was the desire to utilise audiovisual speech filtering to extend the concept

of audio-only speech processing to become multimodal, from the perspective of potential

application to hearing aids. Based on these motivations, the goal of the work reported in this

thesis was primarily to develop a flexible two-stage multimodal speech enhancement system,

working towards the development of a fuzzy logic based speech enhancement framework that

is autonomous, adaptive, and context aware. The novel proof of concept framework presented

in this thesis makes use of audio-only beamforming, visually derived Wiener filtering, state-

of-the-art lip tracking with Viola-Jones ROI detection, and a fuzzy logic controller, to present a

novel speech enhancement framework.

This thesis presented two review chapters. The first, chapter 2, presented a brief background

to the research domain. This summarised the background research into the relationship

between the audio and visual speech modalities with respect to speech production and percep-

tion. This chapter also briefly provided a definition of some speech phenomena of relevance

to this thesis, summarising the Cocktail Party Problem, the McGurk Effect, and the Lombard

Effect. Previous research into audio and visual correlation by others was also described, and

one original research contribution was presented, an investigation into audiovisual correlation

285
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and the change in multimodal correlation when beamforming is applied to noisy speech. The

second review chapter provided a detailed description of the specific research context to the

work presented in this thesis. Firstly, a review of commercial hearing aid technology was

presented, describing speech filtering techniques utilised in modern hearing aids. This in-

cluded techniques such as directional microphones, noise cancelling algorithms, and decision

rules. This chapter also provided a review of state-of-the-art audiovisual speech enhancement

techniques in the literature. The historical development of this field was described, and a

number of recent research developments were then examined, such as audiovisual source

separation, multimodal fragment decoding, and visually derived Wiener filtering, and also a

review of ROI detection technology. Finally, the chapter also evaluated a number of audiovisual

speech databases, including GRID, VidTIMIT and others, in order to determine the most

suitable corpora to use for developing and testing the framework subsequently presented in

this thesis.

The key original contributions of this thesis were presented in chapters 4, 5,6, and then

chapter 7. Chapter 4 provided a detailed description of the novel two-stage speech enhance-

ment system. The feature extraction process for audio and visual features was described. The

automated lip tracking approach used in this thesis was also summarised. The two-stage

audiovisual speech filtering framework was then discussed in this chapter. Noise free speech

estimation using GMM-GMR (to the knowledge of the author, this was a novel application

of this technique to this research domain) with the use of 2D-DCT features as an input was

described, along with visually derived filtering and audio-only beamforming, and the two

filtering techniques used as part of this two-stage system. In chapter 5, this system was

then evaluated using objective and subjective testing. Experiments in a range of challenging

scenarios confirmed that this system is capable of delivering encouraging results, and the

strengths of this system were identified. The results presented in this chapter, to the best

knowledge of the author, represent benchmark results, with no pre-existing two-stage mul-

timodal speech enhancement system to use for comparison. However, some limitations of

this system were also discussed, with issues such as the introduction of distortion at a high

SNR due to limitations of the two-stage approach, particularly the chosen GMM-GMR approach,
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and also the poor performance of the two-stage system when tested with a corpus it was not

trained with.

Chapter 6 refined and expanded the system first presented in chapter 4 to present a

preliminary, novel, fuzzy logic based, multimodal, two-stage speech enhancement framework.

The limitations of the initial system tested in chapter 5 were discussed in depth, and a

justification of the decision to use a fuzzy logic system was presented, along with a review

of other potential techniques such as HMMs. This proof of concept framework used the same

fundamental components as discussed in the previous chapters, but introduced a number

of fuzzy input variables to determine the most suitable speech processing option to apply,

depending on the audio and visual input data. For each frame, there is a choice of applying

audio-only speech processing, leaving the frame unprocessed, or applying audiovisual two-

stage processing. Finally, chapter 7 presented an evaluation of this preliminary concept,

evaluating the performance of the fuzzy input variables, and then presenting subjective and

objective testing of the fuzzy-based system. Initial evaluation results, concluded that although

there is potential with the system, significant further refinements are needed in order to

improve on the initial limited results in terms of audio output quality. However, the fuzzy

switching system performed as expected, switching between processing options depending

on the fuzzy input variables.

Based on the initial investigation of speech correlation, the experiments carried out with the

two-stage system developed in this thesis, and then the examination of the novel preliminary

fuzzy-logic based multimodal speech enhancement framework, the following conclusions can

be drawn:

• The thesis explores the relationship between audio and visual elements of speech in

the literature, and presents work published by the author into the effect of noise on

audiovisual correlation. Performing an investigation of audiovisual correlation using

the MLR technique, and adding noise to speech and comparing results to speech with

the noise filtered concluded that, as expected, multimodal correlation can be improved

with the use of filtering. This corroborated work in the literature and served as a test of

some of the initial components used in this thesis.
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• The work presented in this thesis showed that relevant individual components from

different research domains, specifically modelling techniques designed for robot arm

training and image tracking, can be successfully integrated into a novel multimodal

speech enhancement system. The successful use of fuzzy logic as part of a multimodal

speech enhancement framework was also novel (as far as the author has been able to

ascertain), and the integration of GMM-GMR for speech estimation was also novel (again,

to the best knowledge of the author). The use of these components as part of the same

framework represented an original contribution of this work.

• The relationship between audio and visual aspects of speech production can be effectively

used to successfully develop a multimodal speech enhancement system, combining both

audio-only and audiovisual speech filtering elements. This thesis presented a two-stage

audiovisual speech enhancement system, and a thorough evaluation confirmed that

this system performed well in very noisy environments, when the SNR is extremely low,

and speech is very difficult to identify from the noisy speech mixture without filtering.

However, in less noisy environments, it was found that using visually derived filtering

could add distortion to the speech and produce poor results, so there are both strengths

and weaknesses to using this two-stage system. Overall, the discussion of these results

concluded that while the system described in this chapter had limitations, it was capable

of producing results in extremely noisy environments, and the extension of audio-only

ideas to the multimodal domain added flexibility and functionality when compared to

single modality speech enhancement systems.

• The novel fuzzy logic based multimodal speech enhancement framework presented

in this thesis has been shown to successfully perform speech enhancement in limited

experimental scenarios. The chosen fuzzy input variables have been shown to correctly

determine the most appropriate technique for processing a noisy speech frame, de-

pending on the quality of the input data from both speech production domains. The

fuzzy-logic system was found to produce less conclusive results due to the limitations

identified with the audiovisual technique and the recording environment. However, it
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was demonstrated that the system was able to successfully switch between different

processing techniques depending on the input variables, with the oscillation limited.

This framework extends ideas found in hearing aids in the audio modality, with the

use of audio and visual speech input, and also the use of fuzzy logic. Although the

framework has been found to be autonomous, adaptive, and context aware in terms of

being able to switch between processing decisions on a frame by frame basis, further

development is needed in order to improve performance.

Overall, this thesis presents a novel audiovisual speech enhancement system. The initial

system combined a number of state-of-the-art techniques such as lip tracking, beamforming,

and audiovisual Wiener filtering (using GMM-GMR), to develop a two-stage speech filtering

system. The strengths and limitations of this system were thoroughly examined, and from this,

a preliminary proof of concept novel fuzzy based multimodal two-stage speech enhancement

framework was demonstrated.

8.2 future work recommendations

8.2.1 Improvement of Individual Speech Processing Components

As discussed in chapter 5, limitations have been identified with some of the individual speech

processing components presented in this system which could be improved. One significant

example of this is the Wiener filtering approach used in this thesis. The current implementation

is fairly basic, utilising GMM-GMR to provide an estimation of the noise free speech signal in

the filterbank domain and interpolating this. A single GMM is also used for speech estimation.

However, this has limitations due to the relative simplicity of its implementation. The GMM-

GMR approach was originally devised by Calinon et al. [33] to calculate efficient robot arm

movement. Although this thesis experimented with the novel application of this technique

to the domain of speech filtering, the results suggest that this technique is ultimately not as

accurate as the MAP GMM approach utilised by Almajai & Milner [11]. Furthermore, the speech
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modelling technique used does not make use of some of the most recent developments in

speech enhancement, which may improve results. So for example, Almajai & Milner [11] make

use of phoneme specific GMMs that attempt to identify the phoneme spoken, and then apply a

specific GMM to this portion of speech.

Other state-of-the-art beamforming techniques could be investigated to consider for inte-

gration within this framework, and alternatives to using GMMs, such as reservoir computing

(Maass et al. [124]), an area which has been recently applied to the signal processing do-

main for tasks such as multimodal laughter detection and music classification (Scherer et al.

[162], Newton & Smith [134] can also be considered, to improve on the visually derived

filtering approach used in this thesis and improve results.

8.2.2 Extension of Overall Speech Filtering Framework

One outcome of the work presented in this thesis is the initial development of a novel, scalable,

speech processing framework that extends from feature extraction to speech filtering, with

the use of a fuzzy logic controller. However, there is still much potential for extension of this

framework. In addition to future work to upgrade the existing components of the system

and investigate new speech enhancement techniques, it is also possible to add additional

components to the framework. Some examples include the possibility of adding additional

inputs such as spike trains Maass [123], Smith & Fraser [165] to potentially improve the

filtering process. Other speech processing research (for example, by Sargin et al. [160] and

also the author in Abel et al. [2]) has found that asynchrony can also result in an improved

audiovisual speech relationship, and this could be exploited in future work.

Another way the framework can be extended is to include a number of more sophisticated

input detectors, such as wind and front-back detectors, as discussed in chapter 3. Work by

Almajai & Milner [12] has resulted in a speech enhancement system that uses a VAD to identify

areas of speech and non speech in the input signal. This additional detector has precedent for

being used in the literature, and may improve the fuzzy logic aspect of this system greatly. If
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the system was to be extended to successfully process real world data, then some of the other

detectors discussed by Chung [44] such as wind detectors and front back detectors could also

be integrated into the system, all of which would add sophistication and feasibility to the

framework presented in this thesis.

8.2.3 Further Development of Fuzzy Logic Based Switching Controller

The fuzzy logic controller presented as part of this novel speech enhancement framework

in chapter 6 is a very basic implementation, demonstrating that this framework could be

developed further. Although it has been demonstrated that the fuzzy-based system is capable

of responding to environmental conditions as expected, the results of running tests with real

data have to be treated with some caution, due to the limitations of the test environment,

the preliminary nature of the system (in that it is not implemented in real time), and the

limitations with the filtering techniques identified in chapter 5. Although tests have been

carried out using more challenging data, in order to test the system still further hardware

based tests using multiple microphones and more real data is needed.

Additionally, the range and quality of input variables and fuzzy sets could be improved. As

stated in chapter 6, the three variables used, audio frame power, visual DCT detail level, and

previous frame selection, represent fairly simple detectors to use as fuzzy inputs. Although

these are sufficient for demonstrating the novel framework presented in this thesis, an

extension of this would naturally investigate the use of the detectors mentioned earlier, such

as modulation and wind detectors, as inputs to the fuzzy switching system. These could then

be used to develop the rules further. Although the current rules are adequate for demonstrating

proof of concept, there are potential areas of improvement such as tweaking the weighting of

the rules to give priority as suitable, rewriting the rules to cope with potential new inputs, and

considering other aspects such as engaging/adaption/attack time when it comes to selection

of the processing option. As discussed in chapter 7, additional refinement could also be carried

out with regard to the visual input variable. Although the initial implementation was found
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to function well, it could be improved further by using a machine learning technique such as

a trained HMM or an ANN! (ANN!) to classify input lip images.

It is also important that any future work carries out further testing of the refined framework.

As stated previously, the current proof of concept framework has only undergone limited

evaluation with it being concluded that further refinement is needed. Listener comfort is of

particular importance. The system is designed with the considerations of users with hearing

loss in mind, and is designed to automatically switch between processing options as needed,

but it is important that this is done in a manner that does not cause irritation to the listener.

Although the fuzzy inputs were shown to minimise frame to frame oscillation, this could be

investigated and evaluated further in future work.

8.2.4 Practical Implementation of System

The system is currently purely implemented through software and simulations. MATLAB

has been used for development, and testing has been carried out using a pre-recorded

corpus, mixed with noise using a simulated room. Future development of this system would

be to extend this initial software implementation (and the proposed refinements discussed

previously in this section) and work towards the development of an initial hardware prototype.

This would implement the improved fuzzy logic based speech enhancement framework

physically, and would be expected to function with live data and real world noise, rather

than simply with pre-recorded corpora. An example of a potential implementation strategy

would be to make use of Field-Programmable Gate Arrays (FPGAs). These are semiconductor

devices that can be programmed after manufacturing and thus allow for rapid prototyping

and debugging. For this reason, they are commonly used in initial hardware development of

technology. The evaluation process could also be improved by hardware implementation, in

that it would be possible to carry out listening tests in a truly noisy environment, taking full

account of the Lombard Effect, room impulse responses, and data synchrony, providing a full

evaluation of a real time system able to function with a wide range of challenging data.
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