Gl [

H'l!lHliH Dt PHESTHT TR YRR T E PR R L D SR LI R ORI) ety | HHHHEI (AR R RN RERT]

Department of Computing Science and Mathematics
University of Stlrlmg

e el

P o 3

(SRR P

VR I B O BRI FEO R RO B L L R OB b b epiane IHHHIIHEI (AR R RN RERT|

The ACCENT Policy Server

Stephan Reiff-Marganiec and Kenneth J. Turner

Technical Report CSM-164

ISSN 1460-9673

December 2005

Department of Computing Science and Mathematics
University of Stirling

The ACCENT Policy Server

Stephan Reiff-Marganiec and Kenneth J. Turner

Department of Computing Science and Mathematics
University of Stirling
Stirling FK9 4LLA, Scotland

Telephone +44-786-467421, Facsimile +44-786-464551
Email srm13@le.ac.uk, kjt@cs.stir.ac.uk

Technical Report CSM-164

ISSN 1460-9673

December 2005

Abstract

The designs expressed in this report are copyright of the University of Stirling. Certain aspects may also
be protected by patents held by Mitel Networks Corporation. Publication of this report does not confer the
right to use or adapt these designs in whole or in part.

The ACCENT project was concerned with developing a practical and comprehensive policy language for call
control. The project therefore studied a number of distinct tasks: the definition of the language, and also a three-
layer architecture for deploying and enforcing policies defined in the language. This document focuses on the
policy system layer of the three-layer architecture. The policy system layer is concerned with storing, deploying
and enforcing policies. It represents the core functionality of the three-layer architecture. This report discusses
the prototype implementation at a technical level. It is intended as supporting documentation for developers
continuing to enhance the prototype, as well as those wishing to gain an insight into the technical details of the
policy server layer.

Relative to the version of November 2003, this Technical Report has been updated as follows:
e The procedure for securing the policy database has been described (section 3.1).
e The users policy database table required by the policy wizard has been described (section 3.1).
e More information on running the policy store has been provided (section 3.2).
e The policy server configuration file has been extended (section 3.3).
e More information has been provided on starting the policy server (section 3.3).
e An improved description has been given of the user layer/policy server interface (section 5).

e The policy server QUERY interface has been extended to include the type of information to be returned and
the id of the tuple required (section 5.1.1).

e Brief mention has been made of the H.323 and Mitel 7000 ICS protocol message handlers (sections 3.1,
6.7.2 and 6.7.3).

Relative to the version of August 2004, this Technical Report has been updated as follows:

e The description has been brought into line with the current definition of the policy language and the current
implementation of the policy server.

e More information has been provided on setting up MySQL and TSpaces (section 3.1).
e Configuration properties have been added and renamed.
e Configuration properties are no longer maintained in the policy store.

o A ContextHandler class has been defined in the protocol package (section 6.7.4). All protocol classes have
been moved to this package.

e QUERY now carries a parameter identifying the policy/variable identifier (section 5.1.1). The identifier “*’
now means all policies/variables in a DELETE or QUERY.

e The description of environment variables has been shortened as these are now defined by the policy language
Technical Report (section 6.3.2).

e The Mitel 7000 ICS interface code has been described in detail (section 6.7.3).

Relative to the version of May 2005, only minor editorial revisions and technical revisions to the Mitel 7000
Interface have been made.

Contents

Abstract
1 Overview
2 Policies for Call Control

2.1 The Communications Layer e
2.2 The Policy Server Layer e e e e e
2.3 The User Interface Layer e
2.4 Language Support and System Limitations oL

Running The Policy System

3.1 Running The Policy Database e
3.2 Running The Policy Store e e e e e
3.3 Running The Policy Server e e e e
Interface to the Call Control Layer

4.1 From Call Control Layer to Policy Server,
4.2 From Policy Server to Call Control Layer

Interface to the User Layer

5.1 Message StrUCIUIE v v v v e o e
5.1.1 User Layer to Policy Server e
5.1.2 Policy Serverto User Layer
Policy Server
6.1 Archifecture e
6.2 Implementation oL e e e e e e e e e e e e
6.3 The uk.ac.stir.cs.accent.environment Package o oL
6.3.1 General Principles e
6.3.2 Currently Defined Environment Variables
6.4 The uk.ac.stir.cs.accent.interaction Package o o
6.5 The uk.ac.stir.cs.accent.server Package 0oL oL
6.5.1 The UploadHandler Class ittt
6.5.2 The MessageHandler Class i
6.5.3 The PolicyApplicator Class i v v i i et e e e e e
6.5.4 The PolicyEvaluator Class i it e e e
6.5.5 The PolicyResponse Class
6.6 The uk.ac.stir.cs.accent.store Package L oL oo
6.7 The uk.ac.stir.cs.accent.protocol Package oL oL
6.7.1 The SIPMessageHandler Class
6.7.2 The H323MessageHandler Class v i it it i e
6.7.3 The Mt7000MessageHandler Class
6.7.4 The ContextHandler Class i it ittt e e
6.8 The uk.ac.stir.cs.accent.utility Package oL oL

ii

11
11
13

14
14
15
16

A Worked Example based on SIP

Addition of Further Protocols

8.1 Adding anew handlerclass
8.1.1 Adding to The Policy Database
8.1.2 ClassOutline

8.2 Adapting PolicyResponse

Addition of Further Environment Variables
9.1 ClassOutline

10 Further Ideas

iii

30

33
33
33
35
35

37
37

39

List of Figures

2.1

4.1

6.1

8.1

Overview of the Policy System Architecture 3
Message Flow between Call Control Layer and PolicyApplicator 12
Overview of the Policy Server 19
Alternative Message Flow for Specific Protocol Handlers 34

v

Chapter 1

Overview

The ACCENT project is concerned with developing a practical and comprehensive policy language targeted at the
call control domain. As such we are concerned with a number of distinct tasks: the definition of the language
(discussed in [10]) as well as the definition of a three layer architecture for deploying and enforcing policies
defined in the language. The latter has been discussed in [11] and a prototype implementation is underway.

This document focuses on the policy server layer of the three layer architecture. The policy server layer is
concerned with storing, deploying and enforcing policies. It represents the core functionality of the three layer
architecture and thus is of most interest to us. In this document we discuss the prototype implementation at a
technical level. This document is seen as supporting documentation for developers continuing to enhance the
prototype as well as those wishing to gain an insight into the technical details of the policy server layer.

In the following sections we consider the context of the software discussed in this document briefly; for a
fuller account we refer the reader to [11]. We then discuss startup and shutdown of the policy server, and describe
the interfaces to the underlying call control layer as well as the policy definition (or user interface) layer. We
then consider implementation details, looking at the individual classes in this project, and discussing their role
and interworking. The architecture is open and as such can be extended. In fact we document two foreseen
extensions: the addition of further protocols if we wish to use additional call control architectures, and support
for further environment variables to be used in policies. Finally we consider further ideas and suggestions for
continuation of the work.

The reader should consider other supporting documentation, in particular the papers mentioned before ([10,
11]). Technical reports describe the ACCENT Policy Language ([12]) and the ACCENT Policy Wizard ([14]).
Further and related information is available on http://www.cs.stir.ac.uk/accent.

Note that much of the following document is related to our current setup, but this does not need to be restrictive.
In fact we discuss some extensions which invariably will change the exact class setup (by adding further classes
to packages). While we have chosen an IBM tuple space implementation for the policy store and MySQL as a
database, though these are not strictly required.

http://www.cs.stir.ac.uk/accent

Chapter 2

Policies for Call Control

We proposed a three layer architecture consisting of (1) the communications layer, (2) the policy layer and (3) the
user interface layer. A three-tier architecture is used in completely different ways for other applications. However,
a three-tier policy architecture emerges naturally for this work.

When we consider existing call control architectures, similar architectures have been in use some time. For
example, in the IN the three layers are given by the SSP (Service Switching Point), SCP (Service Control Point)
and SCE (Service Creation Environment). The functionality of each of these layers is similar to the respective
layers in the proposed architecture. Similarly in a SIP [4] environment, the Communications Layer is provided
by SIP proxies, while additional functionality can be added to the proxies in form of CPL [8] or CGI scripts
(essentially providing the control functionality of the policy server layer). Clearly we expect that there are tools
available to create such scripts, which then forms a SIP service creation layer.

However our proposed architecture differs in several key aspects, the details of which we discuss throughout
the paper. With reference to Figure 2.1:

e The Policy Servers can communicate with each other to negotiate goals or solutions to detected problems.
This is not the case in the IN or SIP.

e The User Interface Layer provides end-users with a mechanism to define functionality. IN does not provide
any such mechanism, although this was partially a goal of Parlay [9] and JAIN [7].

e The User Interface Layer and the Policy Servers make use of Context information to provide new capabili-
ties. To our knowledge this has not been done before.

e The Policy Server layer is independent of the underlying call architecture. That means that we can work
across several communications architectures if required. Advances at the communications layer will not
adversely impact on the higher layers.

e No complex intra-layer signalling is required, as effectively the call path is rerouted through the Policy
Servers.

The architecture makes the underlying communications network transparent to the higher layers. It enables
end-user configurability and provides communication between policy servers which can be used for interaction
handling. We will briefly discuss next the details of each layer.

2.1 The Communications Layer

The communications layer represents the chosen call architecture. For this paper, we assume a general structure
consisting of end-devices and a number of switching points. The switching points can be SSPs as in the IN, proxy
servers as in SIP, PBXs or any other entity one might expect along a call path. End-devices can be traditional
phones, soft-clients or any other communications device.

We impose two crucial requirements on the communications layer. (1) The policy servers must be provided
with any message that arrives at a switching point; routing is suspended until the policy server has dealt with the

USER INTERFACE LAYER

s l/

V0|ce ul

Web-based Voice Ul - N
Gul N ‘. GUI =~

< 0 Y 0

PoLicy SERVER\LAYE.h

Context

Policy Store

COMMUNICATIONS LAYER

} —7Z— &”-@% — & @U

A

Figure 2.1: Overview of the Policy System Architecture

message. (2) A mapping of low level messages of the communications layer into more abstract policy events must
defined.

In this paper we will not be concerned with any further details of this layer and simply assume that both
requirements are fulfilled. Our investigations have shown that this is a realistic assumption.

2.2 The Policy Server Layer

The policy server layer is probably the most interesting layer. This layer contains a number of policy servers that
interact with the underlying call architecture. It also contains a number of policy stores, that is database or tuple
space servers where policies can be stored and retrieved by the policy servers as required. We assume that several
policy servers might share a policy store, and also that each policy server might control more than one switching
point or apply to more than one end device.

The policy servers interact with the user interfaces in the policy creation process as will be discussed in section
5. They also interact with the communications layer where policies are enforced; this will be discussed in detail
in section 4.

A further role of the policy server is to detect and resolve (or suggest resolutions of) conflict among poli-
cies. To enable richer resolution mechanisms, communication between policy servers for information exchange is
permitted.

Further, the policy servers have access to up-to-date information about the user’s context details which are
used to influence call functionality.

2.3 The User Interface Layer

The user interface layer allows users to create new policies and deploy these in the network. A number of inter-
faces can be expected here: graphical or web-based interfaces, voice-controlled mechanisms, or administrative
interfaces, each providing functionality targeted at certain types of users and devices.

We would assume the normal user to use a web-based interface for most functions. However mobile users
might not have the capability to use such technology, so voice controlled interfaces are more appropriate. These
also suit users that simply want to activate or deactivate policies. A voice interface is essential for disabled or
partially sighted users. Both web and voice interfaces should guide the user in an intuitive way, preferably in

natural language or in a graphical fashion. We also envision libraries of policies that users can simply adapt to
their requirements and combine to obtain the functionality required, in a similar way that for example clip-art
libraries are common today.

The administrative interfaces are system-oriented and exist mainly for system administrators to manage more
complex functionality.

The policy definition environment provides access to contextual variables which are instantiated at runtime by
the policy servers with actual context information. For example, ‘secretary’ in a forwarding policy could be filled
in from a company organisation chart in conjunction with holiday and absence information. Also, the location of
a user could be determined from an active badge system.

2.4 Language Support and System Limitations

The policy server supports nearly all of the APPEL language described in [13]; the communication server modules
that underlie the policy server are rather more limited. The following observations refer to the current version
(1.5) of the policy server:

e Policies must be explicitly triggered (i.e. by an external call, presence or availability event). Although a
policy can defined without a trigger (e.g. a policy that depends on time only), it will be activated only if an
external event causes it to be considered.

o The and operator always applies actions in the same order as the policy. The or and or else operators always
choose the first action in the policy.

e Presence and availability may be checked only for another user on the same policy server. Injudicious or
malicious use of note_availability or note_presence may lock the policy server up by causing a direct or
indirect loop of checks.

e The send_message action is implemented only for an email address parameter and a plain text message
(though variable substitution is allowed in this).

e Static detection of policy conflicts has not been implemented. Dynamic detection of policy conflicts is
limited to a single server. A single level of resolution checking is supported; conflicts among resolutions
are not detected.

e The policy server does not verify the source of any call or policy information. Thus any Internet system
may maliciously provide incorrect information or may access private policies.

e The policy database stores policy wizard passwords in clear, so it is essential that only authorised users can
read the accent database. Passwords are also stored in various policy system configuration files, so again
these should be readable only by authorised users. Passwords are passed between system elements in clear,
so there is no protection against eavesdropping or spoofing.

e The policy wizard does not support resolution policies. Resolution policies must be prepared manually in
XML. They can then be entered using the ‘Add Policies’ button on the policy server GUI. However they
cannot subsequently be edited within the policy system (except by adding a replacement in the same way).
More seriously, they cannot be deleted (except by emptying the entire policy store); a work-around is to add
a replacement that is not enabled.

e Ifitis planned to run the policy database on a Mitel 7000, note that the GNU librwap library provided in the
current version (3.0 SP2) has a bug that prevents MySQL working over a network connection. Correct this
by running yum upgrade glibc, which will typically upgrade glibc and glibc-common from version 2.2.5-40
to version 2.2.5-44.

e If it is planned to run the policy database on a Mitel 7000, note that the current version (3.0 SP2) requires
some changes to the firewall settings if MySQL needs to be accessed from outside the Mitel 7000 (e.g. by
the policy wizard).

The SER module supports only the following:

triggers: connect, connect_incoming, connect_outgoing, disconnect, disconnect_incoming,
disconnect_outgoing

actions: add_medium for audio and video, connect_to, forward_to, reject_call.
The GNU GK module supports only the following:

triggers: bandwidth_request, connect, connect_incoming, connect_outgoing, disconnect disconnect_incoming,
disconnect_outgoing, no_answer

actions: confirm_bandwidth, forward_to, reject_bandwidth, reject_call.
The Mitel 7000 module supports only the following:

triggers: connect, connect_incoming, connect_outgoing, disconnect, disconnect_incoming,
disconnect_outgoing

actions: forward_to, play_clip, reject_call: play_clip must currently be the last (external) action of a policy;
reject_call takes an autoattendant number as its argument.

Chapter 3

Running The Policy System

The policy server is written entirely in Java. It makes use of a properties file to establish local settings. The policy
server uses a policy database and a policy store. The policy server requires Java 1.4 (or above), as some String
handling functions are not available in older Java versions. The policy server makes use of a relational database
server as a policy database (currently MySQL) to store static policy information such as protocol terms and user
information. The policy server also makes use of a tuple space server as a policy store (currently IBM TSpaces)
to hold dynamic policy information, policies and policy variables.

3.1 Running The Policy Database

The policy database is a conventional relational database, currently using MySQL (http://www.mysqgl.
com/). In principle, any SQL database could be used. It is assumed that a system administrator has already
installed and configured MySQL. This might be used only by the policy system, but may also be shared with
unrelated applications. Everything needed by the policy system is in the accent database.

Typically a system should be configured to start the policy database automatically on boot-up. The policy
database must be running before the policy server is started. If the database is started and stopped manually,
database-specific commands should be used (e.g. mysqld or mysqladmin for MySQL).

Since the policy database contains user passwords, it should be configured to allow only authorised users. A
typical setup would allow user accent, with a specified password on all remote hosts and the local host, to read
and modify the accent database. (There is no necessity for the policy user or database to be called accent as these
are configurable settings.)

The database administrator might typically do this as follows. The file lib/mysql_setup.sql contains this code.
The accent password will need to be placed in other policy system configuration files.

CREATE DATABASE accent;

REVOKE ALL PRIVILEGES ON accent.x FROM "%"@"&";

GRANT ALL PRIVILEGES ON accent.* TO accent@"%" IDENTIFIED BY ’'password’;

GRANT ALL PRIVILEGES ON accent.* TO accent@localhost IDENTIFIED BY ’'password’;
FLUSH PRIVILEGES;

The database provides information to the policy server as to which protocols are currently supported and cru-
cially about the mappings between the policy terminology and the respective meaning in protocol terms. Currently
the database contains values for the SIP, H.323 and Mitel 7000 ICS protocols.

The protocols table specifies a list of protocol names indexed by a numeric id. The file lib/protocol_setup.sql
contains this code.

CREATE TABLE protocols (
id int AUTO_INCREMENT,
protocol text NOT NULL,

http://www.mysql.com/
http://www.mysql.com/

PRIMARY KEY (id)
)i

INSERT INTO protocols VALUES (NULL,’SIP’);
INSERT INTO protocols VALUES (NULL,’H323");
INSERT INTO protocols VALUES (NULL,"Mt7000");

The terminology mapping is the more interesting table, as it specifies a list of terminology mappings indexed
by a numeric id. Each row in this table contains a protocol name, a policy term and the related protocol term.
Policy terms are exactly the text that will occur in the XML of the policy (e.g. add_medium(video) or ‘con-
nect_outgoing’). For details of the policy terms, we refer the reader to the documentation of the APPEL policy
language [13]. Protocol terms can be longer, for example adding a video channel might be more than a simple
operation. It is the role of the protocol specific protocol handler to evaluate the link between policy and protocol
terms and arrange for appropriate actions to be initiated. The isAction field should contain ‘no’ or ‘yes’ to indicate
an input to the policy server or an output from the policy server. It determines how the data found in the field will
be used: actions are translated from policy terms to protocol actions, non-actions are translated from protocol to
policy terms (e.g. to identify triggers). The file lib/terminology- setup.sql contains the following code:

CREATE TABLE terminology_mapping (
no int AUTO_INCREMENT,
protocol text NOT NULL,
PolicyTerm text NOT NULL,
ProtoTerm text NOT NULL,
isAction text NOT NULL,
PRIMARY KEY (no)

)i

INSERT INTO terminology_mapping

VALUES (NULL, " SIP’ ,’ connect_incoming’,’ INVITE:in’,’no’);
INSERT INTO terminology_mapping

VALUES (NULL, ' SIP’ ,’disconnect_incoming’,’BYE:in’,’no’);

Before starting the policy server, the user should ensure that these two tables exist and are filled with the
required values. The policy server reads the contents of the two tables only at startup and maintains its own copy.
During the runtime of the policy server no further mappings can be added.

Note: It is not fundamental to the architecture that mappings are only added at startup time. This is simply
a restriction of the current implementation. It would be conceptually possible to modify and add mappings at
runtime.

The database also holds information needed by the policy wizard, specifically the currently registered users
and their details.

CREATE TABLE users (

code INT AUTO_INCREMENT, -— 1, 2,

username VARCHAR (32), -— e.g. marc

password VARCHAR(32), -— e.g. abx123

address VARCHAR (32), -— e.g. marc@sa.fr

locale TEXT, -— en-gb, fr-ca

stage INT NOT NULL, -— 0 beginner, 1 intermediate,

—-— 2 expert, 3 administrator
PRIMARY KEY (code)
)i

This table must be populated by at least an entry for the policy system administrator, always called admin. To
avoid confusion between the administrator account and any account that this individual might have, the adminis-
trator should have a distinct email address (even if it is an alias). Entries for other users can be pre-loaded into
the database, but this is not required as the policy wizard allows users to be added, modified and deleted. The file
lib/user_setup.sql contains the following code:

INSERT INTO users VALUES (
NULL, ’'admin’, ’some_password’, ’admin@cs.stir.ac.uk’, ’'en-gb’, 3

)i

3.2 Running The Policy Store

The policy store is a tuple space, currently using IBM TSpaces (http://www.alphaworks.ibm.com/
tech/tspaces/download/). In principle, any XML database could be used. It is assumed that a system
administrator has already installed and configured TSpaces. This might be used only by the policy system, but
may also be shared with unrelated applications. Everything needed by the policy system is in the Policies tuple
space.

TSpaces requires a configuration file. Among other things, this defines how policies are checkpointed (i.e.
stored). This allows policies to be preserved in the event of system failure or shutdown (though recently written
data may be lost). In general, avoid shutting TSpaces down abruptly as data may be lost. An example configu-
ration is provided in tuples.properties. The configuration file should be readable only by whichever account runs
TSpaces, as it contains the administrator username and password. Similarly, the cache and checkpoint files should
be readable/writable by only this account. The following is an extract of the configuration file; see the TSpaces
documentation for the details. (This example is for a Windows system. On a Unix system, remove the "C:”
prefixes.)

[Server]

CheckpointDir = C:/usr/local/tspaces/ts—checkpoint
CheckpointInterval = 10.0

checkpointWriteThreshold = -1

DeadLockInterval = 15

ExpireInterval = 15

ResultOrderFIFO = false

Port = 8200

[HTTPServer]

ClassesDirectory = ./

HTTPAdminSupport = false

HTTPServerSupport = true

HttpPort = 8201

[FileStore]

CacheDir = C:/usr/local/tspaces/ts—cache
[AccessControl]

ACVerifierClass = com.ibm.tspaces.security.AccessControlVerifier
AdminUser = some_user

AdminPassword = some_password

AdminGroup = AdminGroup

CheckPermissions = true

TopGroup = UserGroup

[Group-UserGroup]
accent

root

Group AdminGroup

[Group—-AdminGroup]

root

[DefaultACL]

accent Read Write

root Read Write Admin
UserGroup Read

http://www.alphaworks.ibm.com/tech/tspaces/download/
http://www.alphaworks.ibm.com/tech/tspaces/download/

[CreateACL]
accent Create
root Create

Typically a system should be configured to start the policy store automatically on boot-up. The policy store
must be running before the policy server is started. Conversely, the policy server should be stopped before the
policy store is stopped. Convenience scripts ts-start, ts-stop and ts-admin are provided with the policy system
distribution. These allow TSpaces to be started, stopped and administered.

Start up TSpaces. The ts-admin script can then be run to bring up a GUI that allows tuple space access to
be controlled. The GUI also allows TSpaces to be shut down cleanly. Log in the with administrative user and
password specified in the configuration file.

In the ‘Group and User Hierarchy’ pane, right click on the ‘Users’ symbol to ‘Add A New User’ — in this case,
accent. Then right click on accent to ‘Set User Password’. This password will need to be entered into other policy
system configuration files.

The policy system stores policies in the Policies tuple space. Once this exists (it may not until the policy server
is first run), set the ACL (Access Control List) for this tuple space. Typically allow user accent permissions for
Read and Write, and the system administrator permissions for Read, Write and Admin.

To set up user accent, in the ‘T Spaces Names’ pane, click on ‘Policies’. Right click in the ‘ACL’ pane to
‘Add ACL Entry’. Give user accent the permission ‘Read Write’. Finally, click on ‘Apply’. In the administrative
application, use ‘Shutdown’ to cleanly close down TSpaces.

The tuple space server requires access to the Java classes of all objects that might be stored in the server.
Furthermore all these objects must be serialisable. Access is provided by including the classes in the classpath
when TSpaces is started. Since the tuple space is used to store XML objects, the xml4j.jar file must be on the class
path.

The tuple space server can be started at the command line: ts-start. In the event of data corruption or starting
TSpaces from scratch, use the ‘-b’ option with this script to start with a blank tuple space. An even more severe
choice is to use the ‘-B’ option that also wipes out any stored access control information. Do not use either option
lightly!

A web interface allows the contents of the tuple space to be inspected by a web browser at port 8201 on the
system running TSpaces. Whether this is enabled depends on the configuration file. The ‘-S’ option to ts-start
will ensure that the web interface is provided. However this is a security risk (users could view any policy) and is
discouraged in a production installation.

3.3 Running The Policy Server

The policy server is controlled by a configuration file that contains Java properties. The exact format is therefore
not critical. A typical example is given below for the system guilder.cs.stir.ac.uk running the policy server and the
policy database. The outgoing email server is smtp.cs.stir.ac.uk, and the policy store server is dubloon.cs.stir.ac.uk.
The policy database and policy store can run on different systems or on the same system as the policy server.

policy.message.port 9998
policy.upload.port 9999
policy.log.directory ../../1log

mail.server smtp.cs.stir.ac.uk
mail.port some_port
mail.password some_password
mail.subject Policy System Message
database.server guilder.cs.stir.ac.uk
database.port 3306
database.username some_username
database.password some_password
database.name accent

database.table terminology_mapping

tuples.server dubloon.cs.stir.ac.uk

tuples.port 8200
tuples.username some_username
tuples.password some_password
tuples.name Policies

policy.*: These entries concern the policy server: the port for messages from the communications layer, the port
for policy/variable uploads from the policy wizard, and the location of call logs. If a policy invokes a
log_event action, the log entry is written to this directory. Entries are appended to the file user.log for each
individual user. A relative path for the log directory is relative to wherever the policy server was started (e.g.
the bin directory containing ps-start). An absolute path may be given (e.g. C:/Temp/calls); on a Windows
system ensure that backslashes are given twice in the configuration file (e.g. C:\\Temp\ \calls).

mail.*: These entries concern outgoing email: the mail server name, the subject of messages sent by the policy
system, the mail server port number (optional), and the password used with the mail server (optional).

database.*: These entries refer to the policy database: its server name and port, the username and password
used to access it, the name of the policy system database, and the name of the protocol-policy terminology

mapping.

tuples.*: These entries refer to the policy store: its server name and port, the username and password used to
access it, and the name of the tuple space used by the policy system.

On startup, the policy server reads this file and creates a Java properties object. The configuration file normally
resides in the parent PolicyServer directory. The server.properties file is the default one, but any file can be named
on the command line when the policy server is started up.

The PolicyServer directory includes subdirectories bin (compiled code), doc (JavaDoc for the code), lib (re-
quired jar files) and src (Java). The code is in packages named uk/ac/stir/cs/accent/*.

The convenience script ps-start is provided to start the policy server. Note that it includes a number of required
jar files from the /ib directory. The script can be edited to use anything other than the default configuration file.
The main class uk.ac.stir.cs.accent.server. PolicyServer accepts the command-line options ‘-¢’ (console output, the
default), ‘-g’ (GUI output), ‘-h’ or *-?” (for help). These may be followed by the name of the properties file to be
used.

The policy server may have to run on a system without any GUI support (e.g. the Mitel 7000). An al-
ternative main class PolicyServer.java.nogui is provided for this purpose. It accepts the same command-line
options, but ‘-g’ (GUI output) id disallowed. If the source code is available, copy PolicyServerjava.nogui in
src/uk/ac/stir/cs/accent/server to PolicyServer.java and recompile. If the source code is not available, copy Poli-
cyServer.class.nogui in bin/uk/ac/stir/cs/accent/server to PolicyServer.class.

When running via a plain console, log messages are sent to the terminal. When running via a GUI, log
messages appear in various windows. Facilities are provided to add policies from XML files, to clear out all
policies in the tuple space (not recommended!), to save the logs to a file, to empty the logs (which will otherwise
build up over time), and to quit the policy server (not recommended in a live system!). In the event of system
failure or shutdown, the policy server will recover on startup.

10

Chapter 4

Interface to the Call Control Layer

The policy server interacts with the call control layer when enforcing policies on ongoing communications. This
interaction is handled by two interacting parts: a module in the communications architecture and the message
handler class of the policy server. The policy server provides a TCP/IP socket for interaction with the call control
layer. The information exchanged across this interface is defined by structured strings. An incoming (from the
policy server viewpoint) string will be processed by a number of classes before the policy applicator considers
the policies that are applicable. The same classes will construct another string as response which needs to be
decomposed by the call control module. Figure 4.1 depicts the overview of the message flow in the implemented
SIP solution, although other protocols will be handled in a similar fashion.
We will now consider the structure of the strings that are exchanged in some more detail.

4.1 From Call Control Layer to Policy Server

The call control layer will be at some suitable point be enhanced with a module that allows us to observe and
control the underlying message flow. For example in a SIP context the module can be placed on a proxy server,
in H.323 the Gatekeeper might be the appropriate place. The SIP module extracts the current SIP message and
passes it to the policy server, suspending processing until a response has been received.

However, rather than just passing the SIP message to the policy server some additional information must be
included. This is required to maintain the protocol independence of the policy server. The additional information
required includes a protocol identifier and possibly some environment information.

A string passed from the call control to the policy server has the following grammar:

<msg> ::= <protocol>\n<envvarlines>\nMSG\n<message>\n\n
<envvarlines> ::= <envvarline> | <envvarline><envvarlines>

<envvarline> ::= <envvar>: <value>

<protocol> ::= SIP | H323 |

<message> ::= a raw sip message | an empty message string |

<envvar> ::= a variable that is understood by the policy applicator
<value> 1= a suitable value for the given variable

For details on envvar, please refer to section 6.3. What defines a suitable value for an envvar should be
obvious from the variables. protocol can be any string that would be legal as a class name in Java — the reason
being that this string will be prefixed to MessageHandler to determine the protocol specific handler class to handle
communications from this protocol.

Finally, message will be the raw message as passed from the call control layer to the protocol specific message
handler for further processing and data extraction. Should all information have been extracted in the call control
side and be passed as <envvarlines>, the message can possibly be an empty string. If a raw message ends in a
double newline, this must be stripped off, as <msg> concludes in a double newline.

11

[euo 110
‘zuo 1108
‘Tuo 119e]
'SBUTIIS JO 1S ipadu

SanjeA uilniay uonoung

[en jea 108 [gns] 199 Igns
[en jea wo14] 19| [ea
[en rea 01] 99 | [ed

[zan jea] Z leAnua

[ten jea] T JeAAUD

an [ea Kay

'3 |qe Jyseq

Siolaweled uonoung

[(0)s@suodsauHvd
(" ‘g)sesuodsayHvd
“(r ‘z)sesuodsayHvd
(*+ ‘z)sesuodsayHvd
(‘T)s@suodsayHvd]

:sasuodsagHvd 40 1S ITpayu I

SanjeA uiniay uonoun4

abessau d IS me
BuTIS

[zan jea] Z leanua
[ten jea] T JIeAAUD
an [ea Kay

9 |qe IyseH

sialaweled uonoung

5000 **"2000 ** "Z000 * * "T000BU |

0000 " **

dI/dD1 elA Buiis painppnis

uy\
u\abessau d IS mel
u o

u\ zen |eA :glJeAnus
u\Tan [eA T JeAAUS
udis

di/dD1 elA Buis paimonis

a3Ixid

[[[
S9SUOdSaYHYd ' Buns Buo .
40 351| SE 50U « m:ok. SIpayul] ssed 01U BTBUBIEOUOD puE B .
suonoe [09030.d J0 1S1| 0 4 “_Z el u oM wm“_oamwm1<n_u:m>:ou "
suonae Adljod Jo 11| UBAUOD ' * '
. . (.
: / : / /
I
" .y .y " .y .y .y - " M - O_J—UOE
JoreoljddyAoljod ' 1a|pueHBSNCIS ' Ja|pueHbsyol0id Ja|pueHabessap | Axoid
[[(=
-y - - < < ¥ W\ dIS
]] e
‘_o&om £a110d [0J3U0D [[eD
[] [] LN
[}] [
3|qejysey ol ojul a|geiysey a|geysey (]
11y pue abessaw asAfeue pue afessaw ssed 4 OJUI UOITRWLIONUI AUD |l x]
. J3|pueHBsy ((T) ul abessaw BuLs asAeue pue pea)
' 4O Ul IS1Y) dIS SrenuBISU 4 '
[. [
[[[
Janas Aaljod ! ! J1an18s Aaljod !
+— ; —————P4——DI4103dS-100010¥8d pig . pig J14103dS 10001L04d—»

aIxid

Figure 4.1: Message Flow between Call Control Layer and PolicyApplicator

12

4.2 From Policy Server to Call Control Layer

The response from the policy server is a single long string, which is obtained in a multi-step process. The policy
applicator presents the protocol specific handler with a list of actions in policy terms. The protocol specific handler
retrieves the meaning of these actions and creates a list of PolicyResponse that matches the list of actions but is
specific to the underlying protocol.

The list of PolicyResponse is passed through the message handler, which will construct the long string to be
sent to the call control layer. Each individual PolicyResponse is converted to a string using the foString() method
of the PolicyResponse object. The strings are then concatenated. The exact structure of the strings obtained from
a PolicyResponse object depends on particulars of the object and is discussed in detail in section 6.5.5.

The final string is prefixed with a four-byte representation of an integer (least significant byte is last) which
represents the length of the response in bytes. The long string is finally decomposed in the call control layer
module and the actions are committed to the call control.

13

Chapter 5

Interface to the User Layer

The policy server provides a TCP/IP port for policy management. In this section we discuss the interface that can
be used by applications in the user interface layer.

The UploadHandler class provides the policy server side of the interface. Essentially communication between
the user interface and the policy server is achieved by exchange of messages on the policy upload port (default:
port 9998) on the policy server. The messages are structured strings, which are discussed next. For convenience,
two implementations of classes (Java and PHP) have been provided to simplify the exchange, but are not discussed
here.

Please also refer to section 6.5.1 for details on the UploadHandler class.

It has been decided to provide a direct interface between the policy server and the application layer, in contrast
to using the underlying communications architecture to manage policies. This decision has been motivated by
several key factors:

e independence of underlying protocols: if the underlying protocol were used to manage policies it would be
required to support the functionality that is needed. This might be possible for SIP (e.g. by piggy-backing
the information on register messages), but can not be seen to hold universally.

e possibility of richer feedback: by providing a custom interface, it is simpler to provide the required informa-
tion to the policy server but also possible to receive any feedback that is required. This point is in particular
important when a policy management operation fails: informative feedback can be provided to the user, and
the user has the option to resolve the problem.

o several different interfaces are possible: it is envisioned that user interfaces must be provided depending on
the technical skills of users (system administrators might wish for richer possibilities than lay end-users)
as well as interfaces for different devices (mobile phone users might prefer voice interfaces, whereas from
within an office environment a web interface would be the preferable option).

5.1 Message Structure

The messages between the policy server and the application layer are structured strings, although a future extension
could be to use a more standardised protocol such as SOAP.
The current protocol allows for six operations:

e upload policy

update policy

delete policy

enable policy

disable policy

e query policies

14

Each of these corresponds to a message in the proprietary protocol. There are two types of messages: requests
and responses. The former are sent to the policy server, the latter are returned by the policy server.

A message has the following general structure, where the lines are separated by newline. This implies that any
XML included in the commands cannot contain newline characters. A message is terminated by a double newline
(meaning a newline character on its own in a line). A subset of the following is used according to the specific
request or response:

EVENT\n

UNIQUE POLICY ID\n
USER\n

POLICY\n

SUGGESTED SOLUTIONS\n
COMMENT \n

REASON\n

\n

To simplify parsing, requests are named in upper case: UPLOAD, UPDATE, ENABLE, DISABLE, DELETE,
QUERY. Responses are also given in upper case: SUCCESS, FAIL. Request parameters typically include:

e polid: a unique policy identifier, formed by concatenating the address of the owner, a ‘*’ symbol, and the
policy identifier:

bob@acme.comxreject incoming

DELETE and QUERY accept ‘*’ as a policy identifier to mean all tuples belonging to the owner.

e policy: the policy information as one line of XML; examples for a policy and a variable could be:

<?xml version="1.0" encoding="UTF-8"?>
<policy id="reject incoming" enabled="true" owner="bobCacme.com"
applies_to="bob@acme.com" changed="2005-02-13T16:40:00">

</policy>

<?xml version="1.0" encoding="UTF-8"?>
<variable id="wife" value="alice@Rfirm.com" owner="bob@acme.com"
applies_to="bob@acme.com" changed="2005-02-13T16:40:00"/>

5.1.1 User Layer to Policy Server
UPLOAD

This command is used to upload a new policy to the server.

UPLOAD
polid
policy

UPLOAD will succeed if there are no conflicts and the polid has not been used. It will fail otherwise, reporting
on the reason for failure and including the problematic policies in the list of policies of the response message.

UPDATE
This command is used to update an existing policy (i.e. for edit).

UPDATE
polid
policy

UPDATE will succeed if there are no conflicts and the policy in question exist. It will fail otherwise, reporting on
the reason for failure and including the problematic policies in the list of policies of the response message.

15

ENABLE
This command is used to activate an existing policy.

ENABLE
polid

ENABLE will succeed if there are no conflicts and the policy exists. It will fail otherwise, reporting on the reason
for failure and including the problematic policies in the list of policies of the response message.

DISABLE
This command is used to deactivate an existing policy.

DISABLE
polid

DISABLE will succeed if there are no conflicts arising from the deactivation and the policy exists. It will fail
otherwise, reporting on the reason for failure and including the problematic policies in the list of policies of the
response message.

DELETE
This command is used to delete an existing policy.

DELETE
polid

DELETE will succeed if there are no conflicts arising from the deletion and the policy exists. It will fail otherwise,
reporting on the reason for failure and including the problematic policies in the list of policies of the response
message. If the policy identifier part of polid is ‘*’, the effect is to delete all tuples associated with the owner
(‘policy’, ‘resolution’ or ‘variable’).

QUERY
This command is used to request an existing policy or variable.

QUERY
owner

type

id
This gives the owner’s username, the type of information required (‘policy’, ‘resolution’ or ‘variable’) and the
id of the tuple (“*’ to query all tuples, or the id of a specific tuple). If all tuples are queried, only the top level
policy/variable elements are returned. In addition, the value of a long variable is replaced by a string such as
‘>>>152" to mean it is 152 Kbytes long. (In the code, long is defined by the constant largeLength, currently
1024 bytes.) This is to allow a list of large audio clips to be queried efficiently.

QUERY will always succeed. However, there might be a number of responses. Usually it will return an

empty policy document or one populated by a number of policies/variables. The former case occurs when no
policies/variables exist for the user, the latter when they do.

5.1.2 Policy Server to User Layer
SUCCESS

This response is used to report success to the user. There are two versions: either a one-liner just containing
SUCCESS for all requests but QUERY; or a longer version that contains a policy document as response to a
QUERY request.

SUCCESS
[policydoc]

16

FAIL

This response is used to report failure to the user.

FATL

policydoc
suggestionsdoc
reason

comment

e policydoc will contain a list of conflicting policies, or if there was a problem related to the id (existence or
absence of a policy with this id) just the policy under consideration.

o suggestionsdoc will contain a list of possible solutions if there was a conflict. Such solutions could be
automatically determined.

e reason will contain either the string CONFLICT, the string ID or the string GENERAL FAILURE to identify
the nature of the problem. Again, the reason codes will be in upper case. General failure will occur when
a command has not been recognised or is incomplete (e.g. an UPLOAD attempt not providing a policy or
containing a policy in invalid XML).

e comment will contain additional information with respect to the problem. In the case of a conflict, a textual
(human readable) description of the conflict is provided.

17

Chapter 6

Policy Server

6.1 Architecture

The policy server layer consists of policy servers and policy stores as discussed in [11]. Here we are only con-
cerned with the architecture of a policy server.

A policy server is inherently multi-threaded and complex. If we consider the tasks a policy server needs to
perform, we can identify key functionalities that are reflected in the design of packages and classes. The structure
of the policy server is depicted in Figure 6.1.

Briefly, a policy server needs to handler policy deployment and policy enforcement, possibly a multitude of
both requests simultaneously. Hence the core of a policy server provides a mechanism to handle multiple incoming
requests of each type: deployment and enforcement. For each of these two fundamental actions we provide a class
to handle them: UploadHandler and MessageHandler.

An upload handler only deals with policies and hence is relatively straightforward: it accepts management
requests and performs the associated actions. Part of the upload process is detecting policy conflict. As conflict is
a central (and, in enforcement, recurring) problem a special package is provided to handle conflict.

A message handler is more complex. Here we had to consider extensibility in the design. Two obvious
extensions are support for further protocols and further policy environment variables. As these two extensions are
foreseen, the functionality required for each is again extracted into separate packages. A message handler will
instantiate an appropriate message-specific handler to translate message information into policy information. The
policy handling, as performed by a policy applicator, is then independent of the underlying protocol.

6.2 Implementation

The policy server is written entirely in Java and consists of six packages. The following sections discuss the
individual packages.

The existing classes have dependencies on some standard libraries, all of which are publicly available. The
policy store makes use of a tuple space implementation; the chosen one is available from IBM (http://
www.alphaworks.ibm.com/tech/tspaces/download). Several parts require database access, and
the chosen database is MySQL (http://www.mysqgl.com/) together with the MySQL connector library
(http://dev.mysgl.com/downloads/connector/3/3.0.html). SIP messages may be processed
with the NIST-SIP parser (http://dns.antd.nist.gov/proj/iptel/). TSpaces, NIST-SIP and the
developed code itself require access to several other libraries (antlrall, Xerces). The NIST-SIP distribution in-
cludes antlrall.jar, while xerces.jar is available from Apache (http://www.apache.org).

The main class is uk.ac.stir.cs.accent.server. PolicyServer, which initialises the system and starts all required
threads. The other classes in the server package are concerned with multi-threading and core functionality of the
policy server. Details are discussed in section 6.5. The utility package (section 6.8) provides some functions that
are independent of the policy server project. The store package provides the implementation of the data storage
used by all other parts of the system (section 6.6). As policy interactions need to be dealt with, and as this has been
foreseen as a major part of the policy server, interaction handling has been separated into the interaction package
(section 6.4). The remaining two packages, protocol (section 6.7) and environment (section 6.3), provide parts of

18

http://www.alphaworks.ibm.com/tech/tspaces/download
http://www.alphaworks.ibm.com/tech/tspaces/download
http://www.mysql.com/
http://dev.mysql.com/downloads/connector/j/3.0.html
http://dns.antd.nist.gov/proj/iptel/
http://www.apache.org

PolicyServer

TSPolicyStore

ConnectionHandler

MessageHandler

ProtoMsgHandler

PAHResponses

SIPMsgHandler

PolicyApplicator

PolicyEvaluate

IHResponse

InteractionHandler
(dynamic_analysis)

ConnectionHandler

UploadHandler

IHResponse

InteractionHandler
(static_analysis)

ﬁ@@

Policy Store

Proprietary Protocol
UPLOAD id xml
UPDATE id xml
DELETE id
QUERY uid
ACTIVATE id
DEACTIVATE id
SUCCESS [xml]

Policy Wizard

Proprietary Protocol
A Structured Strings

PSCON

4

SER

mysql db

Figure 6.1: Overview of the Policy Server

19

FAIL xml xml reason comment

the system that are core, but dependent on the underlying protocol and the environment variables used in policies
respectively. It is these two packages that are most likely to require extensions.

The following sections are aimed at providing a more conceptual overview of the packages and classes. Addi-
tionally, the code is documented using JavaDoc.

6.3 The uk.ac.stir.cs.accent.environment Package

6.3.1 General Principles

Each policy refers to a number of concepts such as time, caller or subject. A more complete list of these concerns
has been specified in [10]. Each of these concepts will be compared to actual values in a policy body: this forms
the policy conditions. A typical example is time It 12:00, stating (informally) that it currently should be before
midday.

In this package there is a class for each concept; the classes are derived from the abstract class Evaluate. Eval-
uate is implemented by EvaluateDefault which provides standard implementations for all comparison operators
(eq, ne, gt, It, ge, le, in, out) that can be used in policies. The default implementation will simply return false for
all operations, ignoring the argument.

An implementation should exist for all operators for each environment variable. For example for time an
implementation is provided by EvaluateTime which checks the relation of the current time to the value provided
by the policy. As an example, in tests whether the current time is in a given list. Using the in operator, caller could
be checked against a list of addresses. Not all operators make sense for all environment variables, in which case
irrelevant operations may return false. We return to this in Chapter 9.

6.3.2 Currently Defined Environment Variables

The current implementation provides environment variables for the concepts identified as important in [10]. The
specific list of environment variables is defined in [13]. Evaluation classes have been provided for most of these.
It is important to note that for some classes it is expected that the values are provided by the communications layer
or are extracted from the message, while other classes will get the information from databases with context infor-
mation. For those classes that require information from the message/communications architecture it is essential
that values are provided by the protocol-specific message handler in the environment variable hash table indexed
by the names provided here. Values in this hash table are generally key—LLinkedListpairs. As the values need to
be compared to the values provided in the policies, their types are important. This is also relevant, as the types
must be independent of the underlying protocol: a caller identifier in H.323 is simply a number, in SIP it is a SIP
URI — the policy will just talk about a general domain entity. Some types are fixed collections.

Some variables must have meaningful values, due to a fundamental role; others can have meaningful values.
However, we assume that all variables are initialised. The more variables are instantiated with values, the better
the match from the policies will be: in general if a policy expresses a condition based on a specific variable and that
variable has no associated value the condition will evaluate to false (and hence the policy might not be applied).

The term ‘domain identifier’ needs some explanation. Currently we use Internet/email like style for domains:
e.g. a specific user can be xyz@here.com, but we might wish to talk about the domain, e.g. here.com. However,
this requires some further investigation, as it might not be suitable to express all the values that we require and the
use of an LDAP directory name could prove more fruitful.

There are only two mandatory variables. Note that they are special in that there is no key—LinkedList but rather
a key—value pair, and that there is no Evaluate class for them. The mandatory variables are SERVER_NAME and
user with example instantiations SERVER_NAME: cs.stir.ac.uk and user: kjt@cs.stir.ac.uk.

SERVER_NAME: Domain Identifier, used to determine whether this is an outgoing or incoming communication.

user: Domain Identifier, used to identify the user for whom policies should be retrieved.

‘Optional’ variables are filled from the message/communications layer; see [13] for the details. (Note again
that triggers has no Evaluate class.) Variables filled from databases or the context information are defined by
key—value pairs. Again, see [13] for the details.

Note that the split in the two above classes might not prove appropriate in the future; it merely represents
the current implementation. Also, the types stated might not prove to be the best possible choice. However, we

20

would hope that as many concepts as possible can be expressed in a small number of types. This motivated the
use of domain identifiers for locations (4B59@cs.stir.ac.uk could be a room), roles (e.g. secretary@cs.stir.ac.uk)
and capabilities. (While one could argue that a Java expert will always be a Java expert, the person might choose
not to act as such outside a particular domain.)

Further variables are instantiated in the protocol-specific message handlers for purposes that are specific to the
handler, hence they are not discussed here.

6.4 The uk.ac.stir.cs.accent.interaction Package

The interaction handler package provides the classes InteractionHandler, and InteractionResponse and Action-
Type. InteractionHandler is instantiated whenever interactions need to be dealt with. Interaction handlers can be
instantiated for the static context (i.e. policy deployment) and dynamic context (i.e. policy enforcement). An inter-
action handler object provides methods for interaction detection and handling: staticAnalysis for static interaction
detection and dynamicAnalysis for dynamic detection and resolution.

Static analysis is required during policy management to determine whether policies conflict. In particular the
purpose of static analysis is to determine that:

1. a new/newly enabled/updated policy of a user is consistent with respect to other policies by that user.

2. a new/newly enabled/updated policy of a user is consistent with respect to other policies imposed on that
user by the organisation (as far as they are known).

3. adisabled/deleted policy does not lead to any conflicts between other policies by that user

4. a disabled/deleted policy does not lead to any conflicts between other policies imposed on that user by the
organisation (as far as they are known).

In the case that a conflict is detected, it is essential that a description of the conflict and preferably some
possible solutions are reported. Static detection is less time-critical than dynamic analysis.

In the current version of the policy server, static detection has not been implemented. Static detection methods
from the feature interaction context could be applied, and several such methods have been suggested in [11]. In
addition, the algorithm described in [15] could be useful.

Dynamic analysis is more complex: algorithms here are applied at runtime, i.e. while communications mes-
sages are actually being routed and call control is performed. Hence, any algorithm must be fast, work on minimal
information, detect all possible conflicts, and resolve the detected conflicts. The worst-case resolution is that none
of the policies is applied (i.e. all the user’s wishes are ignored), but we should be able to do much better than that.
Ideas here involve run-time methods from the feature interaction community (see [10, 11]). The policy server
architecture allows communication between policy servers which can be used for negotiation in the case of con-
flicts. The important concept of user preferences (as expressed in the policy language) is also useful to determine
the outcome that violates the user’s wishes the least.

In the current version of the policy server, dynamic detection has been implemented only for the case of a
single server. Language constructs for handling dynamic conflict resolution are defined in [13]. The approach
implemented for dynamic analysis is described in [1]. Resolution policies resemble call policies but differ in the
following respects:

e The triggers of a resolution policy are the actions of a call policy. The arguments of these triggers are named
variablel to variable9 for use in resolution conditions.

e The conditions of a resolution policy resemble those of call policies, but are extended to include preferencel
to preference9 and variablel to variable9.

e The actions of a resolution policy resemble those of call policies, but are extended to include various apply
operators that allow generic resolutions to be defined.

Initially, all the actions resulting from call policies are determined. The policy applicator is then instanti-
ated recursively to check these against the available resolutions. Conflict detection and resolution are effectively
defined by the same resolution policy. If there is a conflict, the resolution policy determines the outcome. If reso-
lution does not lead to a single action, an effectively arbitrary choice is enforced. Note that there is just one level
of conflict handling: conflicts among resolution policies are not handled. This could be important if resolutions
are defined at multiple levels in an organisation.

21

6.5 The uk.ac.stir.cs.accent.server Package
The server package provides the core functionality of the prototype. This package contains the following classes:

e ConnectionHandler

e H323Response

o LogFilter

e MessageHandler

e PolicyApplicator

e PolicyEvaluator

e PolicyResponse

e PolicyServer and PolicyServerNoGUI
e UploadHandler

PolicyServer is the main class. (PolicyServerNoGUI is for use on systems that have no GUI, e.g. the Mitel
7000.) On startup, the policy server notes the system environment from the properties file, a policy store object
is created, and a connection to the policy store is established. Failing to connect to the policy store will lead to
termination. The properties are then saved to the policy store. Information on the supported protocols and the
relation between policy and protocol terminology is obtained from a database and stored as hash tables in the
policy store. Finally two ConnectionHandler objects are created and the corresponding threads started: one will
handle the communication with the user interface layer, the other with the communications layer. Each thread will
respond to messages received on one of the two ports specified in the properties (default: 9999 for User Interface
and 9998 for Communications messages).

A connection attempt to the ConnectionHandler will create a further thread. The thread for communication
with the user interface simply starts an UploadHandler thread for each communication attempt. The Connection-
Handler for communications events starts a MessageHandler thread for each communication. Next we consider
the workings and purposes of the UploadHandler and the MessageHandler in more detail.

We will return to discuss the PolicyApplicator and PolicyEvaluator classes as well as the class PolicyResponse
in sections 6.5.3 to 6.5.5.

6.5.1 The UploadHandler Class

The upload handler provides the point of connection between the user interface layer and the policy server. In
particular it provides the interface for policy management by the users.

An upload handler reads a message from the input stream, attempts to perform the action requested by the
message, and then provides feedback on the output stream before terminating.

Each thread communicates directly with the remote end. To simplify the task of the user interface developers,
two classes have been implemented that can be used on the remote end of the communication: one for PHP
(lib_polserver.php), one for Java (Connectorjava). These classes are not discussed further here, but see section 5
for more details.

A request from the user interface consists of two or three lines separated by newlines followed by a final
double newline character. The first line determines the operation required (either UPLOAD, UPDATE, ENABLE,
DISABLE, DELETE or QUERY). The remaining lines contain arguments (policy identifier, user identifier and
policy text (XML) as required). Details of the request and response structure has been discussed in section 5.

The upload handler processes each of these requests, and then commits a response to the user interface. The
response can be in one of three forms, with lines again separated by newlines.

SUCCESS is sent when the requested operation concluded successfully. This does not apply to the QUERY
operation.

SUCCESS XMLDOC is sent when a query operation concludes successfully. In this case XMLDOC is an XML
document containing the policies applicable to the user.

22

FAIL XMLDOCI1 XMLDOC?2 STRINGI STRING? is sent when the operation failed. In this case more infor-
mation is provided to allow the user to resolve the issue. STRINGI contains a reason code (ID, GEN-
ERAL_FAILURE or CONFLICT), STRING?2 contains further information documenting the reason. An ID
reason will occur when the id of the policy does not exist (in case of update en/disable and delete) or exists
(in the case of upload). CONFLICT occurs if a policy conflict has been detected. GENERAL_FAILURE
points to any system problems. XMLDOCI! contains an XML document with the problematic policies,
XMLDOC?2 contains an XML document with suggestions for possible solutions. Both XML documents
might be empty documents (<policy_document/>).

Each operation is implemented by a method. The general operation of the methods is similar as discussed
next: the policy store is queried for the existence of a policy with the provided id. This might raise an /D failure as
discussed before, which will lead to a termination of the operation. If this succeeds, a static interaction handler will
be created and the policy will be checked for conflicts. If a conflict occurs, a CONFLICT error will be reported.
Assuming that no conflict occurs, the operation proceeds. If no system problem occurs, success will be reported,
otherwise GENERAL_FAILURE is issued to the user interface.

XML Documents are serialised from their DOM tree representation into Strings using the XML serialiser
provided by org.apache.xml.serialize. XMLSerializer.

6.5.2 The MessageHandler Class

Each message handler thread is responsible for processing a single message passed from the underlying call
architecture. A message handler reads a structured text message as discussed in Chapter 4.

The first line of the string is used to identify the corresponding protocol specific message handler (for SIP
this would be SIPMessageHandler). The following lines contain data that is not part of the raw message, each
structured in key—value pairs. The message handler will add values from this to a hash table, hashed by the
respective key. This is ended by the text string MSG on its own on a line. Everything following is the raw message
and will be passed to the specific message handler together with the environment variable hash table.

Message handler then awaits a response from the protocol-specific handler, which is assumed to be a linked
list of PolicyResponse. This linked list is serialised into a long text string maintaining the order in the list and
making use of PolicyResponse.toString(). The string is finally sent to the output stream and the thread terminates.

Note: It might be required to make message handlers semi-persistent. Currently a transaction as seen from the
message handler is receiving an incoming message, processing it, generating and sending the respective response.
However, it might be necessary to extend the scope of a transaction to include the successful processing at the
remote end — especially if we wish pre and post negotiation.

6.5.3 The PolicyApplicator Class

The policy applicator applies policies to a message. This applicator is protocol-independent as it purely works on
policies. The applicator makes use of a (dynamic) interaction handler to determine any conflicts. The applicator
receives a hash table containing environment information as instantiation data. The data in the hash table is
extracted by the protocol-specific handler from the message and further information is provided directly by the
call architecture. A policy applicator returns an ordered list of actions that need to be performed (the order is first
in list, first to be done). Again, this response is protocol-independent.

The hash table containing the environment information passed to the policy applicator requires some further
explanation. The table consists of key—value pairs, where the keys are the environment variables as defined in
section 6.3, and the values are linked lists (using Java’s LinkedList ADT) containing none, one or many values of
the appropriate type as was identified in section 6.3. For example, the triggers environment variable will provide
a list of the triggers such as [all calls, incoming calls]; caller might just be mapped to a list with a single domain
identifier.

This class makes some assumptions about the structure of the XML policy document: the document is assumed
to be a policy document as specified by the policy language schema. We assume here that the top-level nodes
within a policy document are policy nodes that have as one descendant a policy_rules node. Anything below the
level of a policy_rules node is processed by a PolicyEvaluator object.

A policy applicator follows a four step algorithm to determine what actions are taken:

23

1. retrieve applicable policies: This step retrieves policies from the policy store that are enabled and are appli-
cable to the given user or domain. The attributes enabled and applies_to from a policy element are evaluated
to determine this.

2. filter policies based on conditions: however, not all policies retrieved in step 1 will be applicable at all times.
This step refines the list of found policies. The given policies are checked to determine whether they are
triggered (if they have a trigger) and whether their conditions are satisfied. If a condition is satisfied the eval
attribute of that condition will be set to true, otherwise it will be set to false. If a policy is triggered (or in
fact does not specify a trigger, i.e. is a goal) the triggered attribute of each policy_rules node will be set to
true (or false otherwise).

3. call interaction handling functionality: once we have determined which policies should be applied, they are
tested for consistency. Interaction handling is discussed in more detail in section 6.4.

4. produce list of actions to be taken: after the applicable and non-conflicting policies have been identified a
response needs to be created. This response is an ordered (first in list means first to be done) list of all the
actions that should be performed to satisfy the policies. Note that this list is expressed as actions in policy
terminology.

6.5.4 The PolicyEvaluator Class

A policy applicator requires evaluation of policies. The questions here are which policies are triggered, and which
conditions are satisfied. We also need to know which actions need to be performed. All these aspects are handled
by traversing the DOM (Document Object Model) of the policy XML document.

A PolicyEvaluator object provides methods for exactly this traversal. Clearly this means that the code in this
class is linked very closely to the underlying XML document structure, with the result that changes to the policy
definition (the XML schema) need to be reflected in this class.

The main methods in this class provide answers to the questions above: hasRulesTriggered determines for a
given policy_rule or policy_rules node whether the policy rule is triggered. evalConditions evaluates the condi-
tions of a conditions node. Both return a boolean result, but also set the respective attributes (as described above).
Finally getRulesActions produce a list of actions to be performed.

Determining the triggering or satisfaction of a condition, as well as the appropriate actions of a policy, is reliant
on an understanding of the semantics of the policy language. While we currently do not have a formal semantics
(and have not found a reason to have such) an informal discussion is provided in [12].

6.5.5 The PolicyResponse Class

PolicyResponse represents a data type that encapsulates the communication between the protocol specific message
handlers and the MessageHandler. Any message passed from the message handler to the protocol specific handler
will be analysed and policies will be applied to it. The response from the specific handler is a list of actions that
should be performed. It is these actions that are encoded using PolicyResponse.

The protocol specific handler constructs the list of responses. The message handler only converts the individ-
ual responses into strings using the foString() method of the PolicyResponse object and simply joins the strings
maintaining the order of the list. The final string is then sent to the underlying call architecture, where an interface
module needs to interpret it and enforce the actions.

This use allows for PolicyResponse to be subclassed for use in protocol-specific handlers where PolicyRe-
sponse is not suitable. For more details see section 8.

The current PolicyResponse type implements 8§ cases: they are identified by a type number ranging from O to
7 where the type number identifies the action to be taken. The meaning of the types is as follows:

e type 0: End of Responses
o type 1: Generate Reply

e type 2: Generate Request

type 3: Process Original

type 4: Add Header

24

e type 5: Replace Header
e type 6: Add Body

e type 7: Replace Body

End of responses will always be the last action to be taken. Generate reply and generate request produce new
(currently stateless) messages. Adding headers and body simply appends further information to the respective
message part, whereas replacing removes existing information and places new information at the same place (if
empty strings are provided as new information, this simply removes data). Each of the operations requires a
number of arguments, as determined by the appropriate constructors for PolicyResponse.

It is worthwhile considering the toString() method, as the result is dependent on the type of the PolicyResponse.
Let us consider each type in turn:

e type 0: the four byte string 0x0000 is constructed.

e type 1: a reply consists of a reply code, and reply text, the response string will be as follows: the type
(0x0001) followed by a 4 byte representation of the reply code, followed by a four byte representation of
the length of the response string followed by the actual response string.

e type 2: a request consists of 6 text fields; the string representation will have the type encoded (0x0002)
followed by six 4-byte integer and text pairs, where each integer encodes the length of the following string.

e type 3: the four byte string 0x0003 is constructed.

e type 4: this type specifies the header as text, hence the response string is 0x0004 followed by a 4-byte
integer representing the text length and the actual text.

e type 5: this type specifies the new header and the old header as text, hence the response string is 0x0004
followed by two 4-byte integer and text pairs representing the text length and the actual text of the two
headers.

e type 6: same as add header, apart from the type code which is 0x0006.

e type 7: same as replace header, apart from the type code which is 0x0007.

Note: Reply and request might be required to be stateful. How this can be handled and whether it is required
must be explored. It then also will be an issue to determine whether state must be maintained in the call processing
architecture or in the policy server.

6.6 The uk.ac.stir.cs.accent.store Package

The policy server requires access to data storage for several purposes. Foremost, a place to store user policies is
required. However, parts of the system require access to configuration data as well as quick access to values that
are stored in a database. This package provides an interface to all the storage functionality that is required. The
interface Storelnterface has been implemented by StoreTuples, providing the functionality required using the IBM
Tuple Space. The PolicyStore class extends the interface and implementation with methods of general utility.

The methods provided by the interface can be grouped into several categories: methods to place into and
remove environment information from the store (getHash, getProperties, putHash, putProtocols, putProperties),
methods for more global functionality (emptyStore, serverShutdown), as well as methods operating on policies in
the store (addTuple, addTuples, changeTuple, deleteTuple, enableTuple, existingTuple, readTuples).

The first group allows to place system-wide environment information into the policy store and retrieve the
same. The second group is concerned with completely clearing the store (this removes all stored policies and
environment information) or removing information that should only be maintained while the server is running
(i.e. removing environment information, but not stored policies). The last group is the most important, as methods
in this group are used when policies are uploaded, modified or deleted from the store, as well as when they must
be retrieved to be applied.

25

The reference implementation for the policy store has been based on TSpaces, a tuple space implementation
from IBM. It is justified to ask the question why TSpaces has been chosen. We will attempt to answer this in the
next few paragraphs, and present alternatives and thoughts.

Early on in the project we had a suggestion that a tuple space might be as suitable storage for policies, partly
based on the fact that it is possible to have a fast hardware implementation of a tuple space. Tuple spaces are
based on Linda ([2, 3]) and essentially provide a distributed communications space with in and out operations.
This model is suitable for policies; they can be stored into the tuple space and they can be read from the tuple
space.

Also, tuple spaces store tuples, which would serve for a somewhat flexible structure of the stored elements:
that is some tuples could have three elements while others could have six. This would provide a certain flexibility.
However, for retrieval the structure needs to be known, as tuples are retrieved by providing a template tuple that
has the same structure and matches some or all elements directly or by placeholders.

As we are using Java, two prominent implementations stood out in 2002: TSpaces and JavaSpaces. For
our purpose it was important that a template returns all matching tuples, not just one. This is not supported by
JavaSpaces and hence it did not seem a suitable choice. Hence we decided on TSpaces, which also supports
storage and retrieval of XML in a straightforward fashion: A special XML Tuple can be created from XML
documents and stored easily; retrieval is via a subset of XQL (XML Query Language).

Note: It might be worthwhile to investigate XML databases and migrate the policy store to an XML database.
Such a migration should be straightforward, as the functionality is encapsulated by an interface. Hence the changes
to the policy server code would be minimal (essentially the PolicyServer class requires the policy store variable to
be of a different type).

6.7 The uk.ac.stir.cs.accent.protocol Package

The MessageHandler class in the server package instantiates a ProtocolMessageHandler whenever a message
needs to be processed, and then calls the handleMessage method on the newly created instance. An instance of
ProtocolMessageHandler essentially deals with the protocol of the underlying message, and dynamically instan-
tiates the appropriate protocol-specific handler.

Every protocol specific handler object is derived from the abstract class GenericProtocolHandler and should
be included in the prorocol package. Several implementations of the abstract class are included in the standard
distribution. DefaultMessageHandler will be chosen by the system if no specific handler can be found.

6.7.1 The SIPMessageHandler Class

The SIPMessageHandler class is designed to interface with a module specially written for the Fraunhofer Institute
SIP Express Router (SER). The SIP message handler performs operations that are specific to SIP messages. In
particular, it parses SIP messages and prepares data for the policy applicator. The response from the policy appli-
cator is converted back into SIP terminology by this class. This class should be seen as a reference implementation
for developers who are extending the policy server to include further protocols.

The initialisation of this class sets the local reference to the store and then loads the SIP-related terminology
mappings: the mapping from policy to SIP actions, and the mapping from SIP events and conditions into their
respective policy counterparts.

The class then parses the SIP message. The parsed structure is analysed and the hash table (as received from
the message handler) is completed with the information that was extracted from the message — making use of
the events and condition mapping. At this point the hash table contains only information in policy terminology
ready for processing by a policy applicator — hence a policy applicator is instantiated, and its applyPolicies method
returns a list of actions to be taken. The final step is to convert the list of policy actions into actions at SIP level
(making use of the action mapping).

Note: While this is suitable for SIP, developers for other protocols might decide to parse the message dif-
ferently. We will discuss this in more detail in section 8, which is a ‘must read’ for developers intending to add
support for other protocols.

26

6.7.2 The H323MessageHandler Class

The H323MessageHandler class deals with messages received from an H.323 gatekeeper (GNU GK). Responses
to these messages are handled by the H323MessageResponse class. The details of H.323 message handling are
not discussed further here, since they are described in a Technical Report [5] and in a journal article [6].

6.7.3 The Mt7000MessageHandler Class

The policy system interface module is located in package uk.ac.stir.cs.accent.mt7000 containing the following
classes:

e Mt7000Interface is the main class that sends call messages to the policy server and applies the responses it
receives in return.

e The Policy7000 class handles communication with the policy server. It maps between policy server user
addresses and Mitel 7000 extension numbers using the interface.properties configuration file.

e The Mt7000Command class encapsulates commands to the Mitel 7000; it corresponds to the same class in
the policy server.

e The ThirdPartyCC class supports third-party call control of the Mitel 7000. It has been adapted and extended
with the permission of MKC Networks as the copyright holder.

e The Constants class defines key Mitel 7000 values. It is used with permission of MKC Networks as the
copyright holder.

e The Base64Coder class is an adaptation of open source code by Christian d’Heureuse (http://www.
source—code.biz). It converts audio clips to/from Base64 format encoding.

The ServiceListener class needs to be installed in /usr/share/telephony/com/mitelknowledge/b2bua. This class has
been adapted with the permission of MKC Networks as the copyright holder.

The script pi-start is provided to start the policy interface on the Mitel 7000. So it can be compiled (though
not run) outside the Mitel 7000, a number of required jar files are provided in the /ib directory. On a Mitel 7000,
the code accesses jar and classes files in the /usr/share/telephony directory.

The pi-start script can be edited to use anything other than the default configuration file. The main class
uk.ac.stir.cs.accent.mt7000.Mt7000Interface takes no command-line parameters.

The Mitel 7000 package is configured by a Java properties file interface.properties in the root directory of the
code. The exact format is not critical. The following example is for the interfacing code and the policy server
running on a Mitel 7000 as the local host.

General properties

attendant.first 8800
attendant.last 8809
policy.host localhost
policy.port 9998

Phone numbers and user addresses

2000 anne
2001 bert
2002 cath
2003 dave

attendant.*: These entries define the first and last autoattendant numbers used by the policy code for playing
audio clips. The Mitel 7000 does not directly support playing audio clips in the current system version (3.0
SP2). The play_ clip action cannot be followed by any other in the current implementation.

27

http://www.source-code.biz
http://www.source-code.biz

Playing an audio clip is achieved by redirecting a call to an autoattendant. On the Mitel 7000, autoattendant
files are stored in directories like /opt/mksip/prompts/SAM/8800. Separate within-hours and out-of-hours
prompts may be stored in the files welcomeDay.wav and welcomeNight.wav.

The autoattendant pool is used in cyclic order, storing the audio clip to be played in the next autoattendant
to be used. In the above example, autoattendants 8800 to 8809 are used in sequence and then cycle back
to 8800. In principle, several autoattendants may be used concurrently if there are concurrent play_ clip
actions. However, it has not been yet checked if this might cause interference problems.

Messages may be recorded for other autoattendants for use with the reject_call action. These autoattendant
numbers may then be cited when this action is defined. For example, reject_call(8810) may used for a
general ‘you could not be connected’ audio response. Other, more specific, responses could also be defined
(e.g. to report policy conflicts).

policy.*: These entries define the policy server host and port number. In the above example, the policy server is

also running on the Mitel 7000 but could in principle be located elsewhere.

extensions: The Mitel 7000 uses extension numbers internally to identify users. These are mapped by the config-

uration file to usernames known to the policy system. It is assumed that the domain name of the Mitel 7000
is the same as that of the users. For example if the Mitel 7000 has hostname pbx.cs.stir.ac.uk, then extension
2000 corresponds to user anne @cs.stirac.uk. The interface code also performs the inverse mapping, e.g.
user anne @cs.stir.ac.uk to extension 2000.

Database entries used by the Mitel 7000 in database mksip need to be set up manually as follows. The file

lib/mt7000_ setup.sql contains the following code. (B2BUA means Back-to-Back User Agent.) Check first whether
these entries are already present in the tables otherwise duplicates will be created.

INSERT INTO PubSubConfig SET

id=’B2BUA’,

comm_id="POLSERVICE',

host="localhost’,

port=16682,

is_server=0,
transport_strategy=’com.mitelknowledge.messaging.MessageComm’,
serialization_strategy=’java’,

description='Policy Server’

INSERT INTO PubSubConfig SET

id="POLSERVICE',

comm_id=’'B2BUA’,

host=’'localhost’,

port=16682,

is_server=1,
transport_strategy=’'com.mitelknowledge.messaging.MessageComm’,
serialization_strategy=’java’,

description='Policy Server’

INSERT INTO ServiceTriggers SET

id=’3pCC’,
orig_call_delivery=2,
orig_failed=2,
orig_disconnected=2,
term_call_delivery=2,
term_failed=2,
term_disconnected=2,

INSERT INTO TriggerSub SET

id=’"3pCC’,

28

topic='mkcnetworks.com/trigger’,
priority=1,

enabled=1,

description=’'Third Party Call Control’

’

This creates publish/subscribe entries in the PubSubConfig table for the policy interface. Then subscriptions for
particular triggers are created in the ServiceTriggers table. (In a trigger subscription, ‘0’ means no action, ‘1’
means notification only, and ‘2’ means that call processing is blocked while the trigger is analysed.) The service
identifier POLSERYV is matched by the policy interface code. After any changes in trigger settings, it is necessary
to restart the Mitel 7000 B2BUA with:

cd /usr/share/telephony/com/mitelknowledge/watchdog
WatchdogManager.sh restart:B2BUA

Certain Mitel 7000 services may conflict with the policy system interface if they block (value ‘2’) on triggers
used by the policy system. For example, bandwidth capping is known to interfere. In the current Mitel 7000
version, such a service must be disabled. For example, the relevant trigger subscription can be disabled with the
following (also given in lib/mt7000_ setup.sql):

UPDATE TriggerSub SET
enabled=0
WHERE id='BANDWIDTH’

6.7.4 The ContextHandler Class

The ContextHandler class is a pseudo protocol handler; it does not implement GenericProtocolHandler because
of the significantly different design. The PolicyStore class registers with the policy store for writes to presence
and availability variables. When one of these changes, it causes ContextHandler to be instantiated and run in a
separate thread. ContextHandler retrieves and applies matching policies for the given user, variable and value.

6.8 The uk.ac.stir.cs.accent.utility Package

This package contains two classes, Now and Utilities. The former provides a convenient way to obtain the current
date/time information. The latter provides a function that converts integers into 4-byte bit patterns, where the last
bit contains the LSB of the original integer. This is used when integers are exported as part of structured strings
when communicating with the underlying call control architecture. The Utilities class also contains a replaceAll
function to replace occurrences of patterns in a String with new values. Note that such a function exists in the Java
library but does not work correctly in version 1.4.1 (in particular $ is not escaped properly); the method provided
here fixes the problem.

29

Chapter 7

A Worked Example based on SIP

Consider again Figure 4.1 where we have shown a sample of the message flow between the call control layer and
the policy applicator. In this section we enhance on this by providing a concrete example, based on a SIP message.
Numbers in the following correspond to the numbers in Figure 4.1

1. Data passed from SIP Proxy Module to MessageHandler The message composed and sent by the SIP
Proxy Module (pscon for SER) is as follows:

SIP\n

SERVER_NAME: d254196.cs.stir.ac.uk\n

MSG\n

INVITE sip:cs.stir.ac.uk SIP/2.0\n

Via: SIP/2.0/UDP 139.153.254.196:5062\n

CSeq: 3732 REGISTER\n

To: "Ken" <sip:kjt@cs.stir.ac.uk>\n

Expires: 900\n

From: "Jianxiong" <sip:jxp@cs.stir.ac.uk>\n

Call-ID: 1815056773@139.153.254.196\n

Content-Length: 0\n

User—-Agent: KPhone/2.11\n

Event: registration\n

Allow-Events: presence\n
Contact:"root"<sip:root\@139.153.254.196:5062; transport=udp>;
methods="INVITE, MESSAGE, INFO, SUBSCRIBE, OPTIONS, BYE, CANCEL, NOTIFY, ACK"\n
\n

2. Data passed from MessageHandler to ProtocolMessageHandler The message handler processes this mes-
sage by:

o extracting SIP as the protocol identifier

e inserting (SERVER_NAME:d254196.cs.stir.ac.uk) into the hash table

e collating the rest of the input (i.e. the SIP message) into a message string.

The message handler then instantiates a ProfocolMessageHandler and initialises it with the fact that we have a
SIP message. It finally calls the handleMessage() method of the ProtocolMessageHandler and passes the message
string and the hash table as arguments.

3. Data passed from ProtocolMessageHandler to SIPMessageHandler The ProtocolMessageHandler simply
instantiates a SIPMessageHandler and calls the handleMessage() method of the SIP message handler with the
message string and the hash table as parameters.

30

4. Data passed from SIPMessageHandler to PolicyApplicator The SIPMessageHandler has the capability of
parsing and interpreting SIP messages. On receipt of the data it will parse the message string using the NIST SIP
parser, and then extract information from the parsed message structure and insert the respective values into the
hash table. In particular the following data is inserted (values in square brackets represent lists; the third column
is a guide to comments in this document and the data therein is not inserted into the hash table):

caller ["kjt@cs.stir.ac.uk” *3
callee ["kjt@cs.stir.ac.uk” *4
call_content [*6
call_type [*6
event [*6
forward _target | ["""'] *6
topic [*5
device [*6
media [*6
quality [*6
triggers [registration attempt”, " outgoing registration attempt”’| | *7
user "kjt@cs.stir.ac.uk” *2
from "Ken" <sip:kjt@cs.stir.ac.uk> *]
to "Ken" <sip:kjt@cs.stir.ac.uk> *]
call_id *]

Comments to above table:

*]: not required by Policy Applicator; these values are used to complete responses later on.

*2: CRUCIAL: is used for retrieval of policies; depending on the direction of the message flow this is either
caller (outgoing message) or callee (incoming message).

*3: extracted from TO field.

*4: extracted from FROM field.

*5: extracted from SUBJECT field if one exists.

*6: data for these fields is currently not extracted from the message.

*7. the trigger is extracted from the method (first line of the SIP message). Trigger will always contain the
method as well as a directional version of the method. The actual value that is inserted into the table is
extracted from the terminology mapping: for example here ‘REGISTER’ and ‘REGISTERout’ are queried
in the database and the terms ‘registration’ and ‘outgoing registration attempt’ are found to be the respective
policy terms. For INVITE this could be ‘outgoing call attempt’ and ‘call attempt’. The full list of terms
available for policies is documented in [12].

Finally the SIPMessageHandler instantiates a Policy Applicator, initialises the same with the hash-table, and
calls the applyPolicies() method.

5. Data passed from PolicyApplicator to SIPMessageHandler Assume that a policy exists which states that
‘kjt’ cannot register here, with the respective policy action ‘register not allowed’. This is in policy terms and again
the policy language description in [12] describes possible values. There are no further actions to be taken.

Hence the SIP message handler receives a one element list: [”register not allowed”] for processing.

6. Data passed from SIPMessageHandler to ProtocolMessageHandler The SIP message handler considers
all elements in the response list from the policy applicator (here only one) and determines what the actions mean
in SIP terms. The specified SIP action here, as extracted from the terminology mapping is: reply:408:you are not
allowed to register here;end of responses which is encapsulated in a list containing two PolicyResponse objects
which are passed to the protocol message handler:

31

PolicyResponse rl =
new PolicyResponse(l, 408, "you are not allowed to register here");

PolicyResponse r2 = new PolicyResponse (0);
LinkedList 1 = new LinkedList();
l.add(rl);

l.add(r2);

return 1;

7. Data passed from ProtocolMessageHandler to MessageHandler The protocol message handler simply
passes the response to the message handler; it does not perform any processing on the response.

8. Data passed from MessageHandler to SIP Proxy Module The message handler cycles through the list of
PolicyResponse that it has received from the ProtocolMessageHandler; in this case the list contains two elements.
It uses the roString() method of the PAH response object to serialise the data. The result will be a long string, that
is passed to the Proxy Server module. The string for the given example is as follows (hex dump, as integers are
encoded):

(type 1) (408) (36: length of text)

00 00 00 01 00 OO0 01 98 00 00 00 24

(y o u a r e n o t a 1 1 o w e d)
79 6F 75 32 61 72 65 32 6E 6F 74 32 61 6C 6C 6F 77 65 64
(t o r e g i s t e r h e r e)

74 6F 32 72 65 67 69 73 74 65 72 32 68 65 72 65

(type 0)

00 00 00 00

32

Chapter 8

Addition of Further Protocols

A protocol-specific handler is required for every protocol type that should be supported. This handler creates
the link between the protocol and the policy architecture. Essentially the task of the handler is to interpret the
message as received from the communications architecture and provide information extracted from the same in
terms of policy terminology. The handler then makes use of a PolicyApplicator to determine which requirements
are placed by policies. The response from the policy applicator is a list of policy actions. The final task of the
message-specific handler is to convert this list into a list of PolicyResponse, ready to be communicated to the
underlying call architecture.

As example, consider the SIP protocol. A SIP message is parsed and the gathered information such as to,
from, subject, call_id, method, etc. is stored in the hash table together with the corresponding values: e.g. to will
be stored as ‘callee’ with the content of the ‘to’ field. Method will be stored as ‘trigger’ with the corresponding
value. After the PolicyApplicator has finished, we receive a list of actions, such as add_medium(medium) or
forward_to(address). These are converted back into SIP-specific PolicyResponse, e.g. add_medium(medium) will
result in a ‘create new request’ that will be an invite requesting the extra media; forward_to(address) will result
in a ‘create response’ that will be a 4xx response with the new location. The actual mapping between policy
and protocol terminology is obtained from the Accent database (the values from the database are stored into
hash-tables at server startup and placed in the tuple space).

Figure 8.1 depicts an alternative message flow (compared to that in Figure 4.1). While the figure on a superfi-
cial glance might look virtually the same there are subtle differences. The main difference lies in the details of the
messages, and here actually in that the message in (1) already contains all detail (as it is parsed in the back-end
(GK module)) and that the H323MessageHandler is only passing the information to the policy applicator, rather
than parsing the message and completing the data (as is the case with SER).

8.1 Adding a new handler class

To add a new handler class all that is required is a new class following the template in section 8.1.2. This class
will interface between the core of the policy server and the policy applicator, as discussed in the overview. The
class is placed into the uk.ac.stir.cs.accent.protocol package. The class might make use of terminology mappings,
which need to be defined in the database. In general this class will also interface to a module in the call control
layer (e.g. the pscon.c handler for SER or the H323 GK handler in Figure 8.1) which clearly needs to be provided,
albeit outside the policy server and hence not discussed here (but Chapter 4 should give some insight).

Important Naming Convention: The new specific protocol handler class must be named according to the
following convention: ProtocolMessageHandler where Protocol is a unique protocol identifier. Note that this
same protocol identifier must be used when messages are sent to the message handler as discussed in 4.

8.1.1 Adding to The Policy Database

The database has a table called ‘terminology_mapping’. This table provides the mapping between policy termi-
nology and protocol terminology and has been discussed before (section 3.1).

A typical entry in this table specifies a protocol, the policy term, the protocol term and information whether
the term is an action or event/condition. Below are two examples for SIP:

33

[guo 110
‘zuo 1108
‘Tuo 110e]
'SBUTIIS JO 1S payu I

SanjeA uiniay uonoung

[1961e1] 19| ed
[e21nos] 29 | ed
[zen jea] Z lennua
[Ten jea] T leAAUd
an ea Aoy
e geIySed

Sialaweled uonouny

sasuodsayHvd

0 1S1| Se 9podUd 4

suonae |020304d Jo 1si| Ol
suonae Adljod Jo 11| UBAUOD

JoreoijddyAoljod

[(0)s@suodsaxHvd
** ‘g)sasuodsayHvd
‘2)sasuodsagHvd
‘2)sasuodsagHvd
‘(°° 'T)sesuodsayHvd]

‘sasuodsagHvd 0 1S [Ipaxu I

sanfe/ uinjey uopoun4

bu111s Aidus

Bu 1S

[1861e1] 29 | [ea
[e21nos] 19| [ed
[zen jea] Z leAnnua
[Ten jea] T JTeAAUd
an fea Aoy

o |qe Jyseq

Sislaweled uonoun

ybnouys 1srpaxui ssed «

5000 " "2000 **'Z000 * * "T000BUS |

0000 " **

di/dOL elA Buiis painponis

u\1abiel
u\a9.nos
u\zan fea
u\Tan fea

u\uy
CR9SA

199 | @2
119 | |ed
1Z JleAAud
T JRAAUD
u\gZeH

dI/dD1 eiA Buwis painonis

Buis Buo|

ojul 81euUaIedUod pue Buis
0} 3SUOASYHYd HOAUOD

- -

ls|pueHBsSNEZEH

J1a|pueHBsnolold

-

la|pueHabessa|\

-

A

JoyeoyiddyAolod
0) ejep ssed 1snl

slqelysey

pue abessaw ssed
18|pueHBSN ((T) ul eBessaw
4O BUI| 1S11f) £ZEY SFenUEBISUI

OJul UORWIOMUI AUD
Buis asAjeue pue peal .

alqeIysey

a|npow

|011U0D [eD

Message Flow for Specific Protocol Handlers

ive

Alternat

Figure 8.1

34

INSERT INTO terminology_mapping VALUES
(NULL, "SIP’,’disconnect’,’BYE’,3,’no’);
INSERT INTO terminology_mapping VALUES
(NULL, " SIP’,"reject_call’,’1_:_408_:_I am not available’,’vyes’);

8.1.2 Class Outline

package uk.ac.stir.cs.accent.protocol;

// PolicyApplicator provides the objects that apply policies
import uk.ac.stir.cs.accent.server.PolicyApplicator;

// we need to know the used policy store
import uk.ac.stir.cs.accent.store.x*;

// PolicyResponse is used to report back to the MessageHandler
import uk.ac.stir.cs.accent.server.PolicyResponse;

import Jjava.util.x;
// import any other packages: e.g. message parser

public class MyMessageHandler extends GenericProtocolHandler ({
private PolicyStore policyStore = null;
// any other variables

// implement initialise() abstract method

public void initialise(PolicyStore policyStore) {
ps = polstore;
// any other initialisation

// implement handleMessage () abstract method
public LinkedList handleMessage (String message, Hashtable environmentHash) {
// parse message

// £ill hash table with values from message (e.g. caller, callee, triggers)
// get a PolicyApplicator Object
PolicyApplicator policyApplicator =

new PolicyApplicator (policyStore, environmentHash);

// find out what actions the policy want to achieve
LinkedList responses = policyApplicator.applyPolicies();

// convert responses (LinkedList of actions) to protocol-specific messages
// encapsulate result in a LinkedList of PolicyResponse values

LinkedList result = convert (responses);
return result;

// any other functions, e.g. convert ()

8.2 Adapting PolicyResponse

If the provided PolicyResponse class 6.5.5 is unsuitable for the protocol to be added, it can be subclassed, and the
subclass can be used in the specific protocol handler.

35

However, there are a few things to watch out for: the message handler might create responses of the original
PolicyResponse class (only subtypes 0 and 3) which hence must be handled by the call control layer interface in
addition to the new response types in the user-defined subclass.

The subclass must define a method roString() which encodes PolicyResponse objects in a way understood by
the interface to the call control layer. The message handler uses this method to serialise PolicyResponse (and all
subclasses thereof).

However, these restrictions are minimal, as this extensibility allows developers to produce any (text) response
they wish without the core of the system having to be changed.

36

Chapter 9

Addition of Further Environment
Variables

We have discussed the currently defined environment variables in section 6.3. However, it is envisioned that new
policies might make use of further environment variables. If additional variables are required, the comparison
operations on these variables need to be defined. Evaluate classes serve the purpose to implement the comparison
operators in a meaningful way for a given environment variable.

We have discussed some of the implemented classes earlier in section 6.3. The next section provides an outline
for a typical Evaluate sub-class.

Important Naming Convention: The new environment evaluate class must be named according to the follow-
ing convention: EvaluateVar where var is a unique environment variable identifier as used in the policy language.
The identifier is used when values are retrieved during a policy evaluation process. In determining the class
name, the variable is split at ‘"’ and each part is given an initial capital. For example, caller_id corresponds to
EvaluateCallerld.

9.1 Class Outline

The following example assumes an environment variable called my_var.

package uk.ac.stir.cs.accent.environment;
import java.util.x;

public class EvaluateMyVar extends Evaluate {
// hash table for current environment

Hashtable environmentHash = null;

// specific variables
LinkedList myVar = null;

// iterator over values
ListIterator iterator = null;

// local variables as required

// initialisation method called dynamically in place of a constructor
public void initialise (Hashtable hashTable) {

environmentHash = hashTable;

myVar = (LinkedList) env.get ("my_var");
// get an iterator for this linked list
iterator = myVar.listIterator;

// implementation of all abstract methods of Evaluate

37

public boolean eq(String value) ({
// implementation of eq operation, assuming myvar is a list of strings
boolean result = false;
while (iterator.hasNext ()) {
String element = (String) iterator.next();
if (element.equals (value))
result = true;

}

return result;

public boolean ne(String v) {

public boolean 1t (String v) {

public boolean le(String v) {

public boolean gt (String v) {

public boolean ge(String v) {

public boolean in(String wv) {

public boolean out (String v) {

38

Chapter 10

Further Ideas

In the context of a widening acceptance of XML-based data exchange protocols, it would seem sensible to re-
place the current proprietary interface between the policy server and the call control layer with a more standard
interface. SOAP would be one protocol that might be useful in this context. Should such a change be required
there are essentially two classes that must be adapted: PolicyResponse and MessageHandler. In particular, the
toString() method in PolicyResponse must return XML messages and the MessageHandler.run() method must be
adapted to interpret SOAP messages that it receives (i.e. the receiving loop must be adapted). Also, the Message-
Handler.createRespString() method must combine the PolicyResponse XML into a correct SOAP message.

The same issue applies to the interface between the policy server and the user interface layer. Again SOAP
would be a suitable protocol. Here the changes required are restricted to the UploadHandler class, where again
the run() method needs to be adapted to handle incoming and produce outgoing SOAP messages.

The conflict detection and resolution techniques require further development. For details please refer to the
suggestions in section 6.4.

In section 6.3 we have discussed a number of environment variables and stated that implementations have been
provided for most of the classes. However, several implementations are simplistic and need to be refined. The
limitations and design decisions for the individual classes goes beyond the scope of this document, but has been
indicated in the respective classes.

39

References

[1] Lynne Blair and Kenneth J. Turner. Handling policy conflicts in call control. In Stephan Reiff-Marganiec
and Mark D. Ryan, editors, Proc. 8th. Feature Interactions in Telecommunications and Software Systems,
pages 39-57. IOS Press, Amsterdam, Netherlands, June 2005.

[2] D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and
Systems, pages 80—112, January 1985.

[3] D. Gelernter and N. Carriero. Coordination languages and their significance. Communications of the ACM,
pages 97-107, February 1992.

[4] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session initiation protocol. Request for
Comments 3261, June 2002.

[5] Tingxue Huang. Policies for H.323 internet telephony. Technical Report CSM-165, Department of Comput-
ing Science and Mathematics, University of Stirling, UK, May 2005.

[6] Tingxue Huang and Kenneth J. Turner. Policy support for H.323 call handling. Computer Standards and
Interfaces, 28(2):204-217, November 2005.

[7] JAIN. Java APTI’s for Integrated Networks homepage
http://java.sun.com/products/jain. Visited on 10-12-2001.

[8] J.Lennox and H. Schulzrinne. CPL: A language for user control of internet telephony services. IETF Internet
Draft 06, January 2002.

[9] Parlay. The Parlay API,
http://www.parlay.org. Visited on 10-12-2001.

[10] Stephan Reiff-Marganiec and Kenneth J. Turner. Use of logic to describe enhanced communications services.
In Doron A. Peled and Moshe Y. Vardi, editors, Proc. Formal Techniques for Networked and Distributed
Systems (FORTE XV), number 2529 in Lecture Notes in Computer Science, pages 130—145. Springer, Berlin,
Germany, November 2002.

[11] Stephan Reiff-Marganiec and Kenneth J. Turner. A policy architecture for enhancing and controlling fea-
tures. In Daniel Amyot and Luigi Logrippo, editors, Proc. 7th. Feature Interactions in Telecommunications
and Software Systems, pages 239-246. 10S Press, Amsterdam, Netherlands, June 2003.

[12] Stephan Reiff-Marganiec and Kenneth J. Turner. Feature interaction in policies. Computer Networks,
45(5):569-584, August 2004.

[13] Stephan Reiff-Marganiec, Kenneth J. Turner, and Lynne Blair. APPEL: The ACCENT project policy environ-
ment/language. Technical Report CSM-161, Department of Computing Science and Mathematics, University
of Stirling, UK, December 2005.

[14] Kenneth J. Turner. The ACCENT policy wizard. Technical Report CSM-166, Department of Computing
Science and Mathematics, University of Stirling, UK, December 2005.

[15] D. Wang, R. Hao, and D. Lee. Fault detection in rule-based software systems. In Concordia Prestigious
Workshop on Communication Software Engineering, September 2001.

40

	Abstract
	1 Overview
	2 Policies for Call Control
	2.1 The Communications Layer
	2.2 The Policy Server Layer
	2.3 The User Interface Layer
	2.4 Language Support and System Limitations

	3 Running The Policy System
	3.1 Running The Policy Database
	3.2 Running The Policy Store
	3.3 Running The Policy Server

	4 Interface to the Call Control Layer
	4.1 From Call Control Layer to Policy Server
	4.2 From Policy Server to Call Control Layer

	5 Interface to the User Layer
	5.1 Message Structure
	5.1.1 User Layer to Policy Server
	5.1.2 Policy Server to User Layer

	6 Policy Server
	6.1 Architecture
	6.2 Implementation
	6.3 The uk.ac.stir.cs.accent.environment Package
	6.3.1 General Principles
	6.3.2 Currently Defined Environment Variables

	6.4 The uk.ac.stir.cs.accent.interaction Package
	6.5 The uk.ac.stir.cs.accent.server Package
	6.5.1 The UploadHandler Class
	6.5.2 The MessageHandler Class
	6.5.3 The PolicyApplicator Class
	6.5.4 The PolicyEvaluator Class
	6.5.5 The PolicyResponse Class

	6.6 The uk.ac.stir.cs.accent.store Package
	6.7 The uk.ac.stir.cs.accent.protocol Package
	6.7.1 The SIPMessageHandler Class
	6.7.2 The H323MessageHandler Class
	6.7.3 The Mt7000MessageHandler Class
	6.7.4 The ContextHandler Class

	6.8 The uk.ac.stir.cs.accent.utility Package

	7 A Worked Example based on SIP
	8 Addition of Further Protocols
	8.1 Adding a new handler class
	8.1.1 Adding to The Policy Database
	8.1.2 Class Outline

	8.2 Adapting PolicyResponse

	9 Addition of Further Environment Variables
	9.1 Class Outline

	10 Further Ideas

