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ABSTRACT 

In recent years, the Mekong delta has been strongly developed both for agriculture and 

aquaculture. However, there is scope for a negative impact of agriculture on aquaculture 

in term of production and quality of seafood products. Specifically, the large amount of 

pesticides imported and used in the Mekong delta not only help agriculture purposes but 

can also easily enter aquatic systems and affect aquaculture. Pesticides can be 

transported in the environment by chemo-dynamic procedures and hydrological 

processes. As a result, pesticides used in agriculture become dispersed and their residues 

in sediment, water and biota have been detected in the Mekong delta. This study 

investigated the overall pesticide process including pesticide use, modelling pesticide 

accumulation and evaluating the potential impact on aquaculture sites for some target 

aquatic species. 

The risk of pesticides use in the Mekong delta was addressed in three stages: (1) 

investigating current pesticide use status in the Mekong delta; (2) modelling pesticide loss 

and accumulation; (3) classifying pesticide risk areas for aquaculture of target cultured 

species. 

A survey of 334 farms covering a total area of ~20,000km2 in the Mekong delta took place 

between 2008 and 2009. Information on pesticide types and quantities was recorded using 

questionnaires, and it was found that 96 pesticides in 23 groups were popularly used for 

agricultural purposes. Dicarboximide, Carbamate and Conazole had the highest use at 

~3000, ~2000 and ~2000 g/ha/year respectively. The survey revealed an increase in 

pesticide use per hectare since previous surveys in the Mekong delta in 1994, 2000, and 

2004. However, the highly persistent compounds (WHO classification classes II, III and IV) 

appeared to have reduced in use. Insecticides previously represented >50% of the total 

pesticides used, however, the resent survey has shown their use has decreased to 

~38%.There was a parallel increase in use of fungicides from previous levels of <30% of 

total pesticides to more recently ~41%. The combination of pesticide information and geo-

location data enabled display and analysis of this data spatially using a Geographic 

Information System (GIS). 

A pesticide loss and accumulation model was established through combination of several 

sub-models including sediment loss and accumulation, direct loss, and water runoff, all of 
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which were  implemented and integrated within the GIS environment. MUSLE (Modified 

Universal Soil Loss Equation) was used to estimate sediment loss and accumulation in the 

Mekong delta and the Curve Number method (CN Method) was applied to predict water 

runoff and discharges and flow accumulation. Modelling commenced from the first 

pesticide application in April, based on 4 day time-steps. All mathematical calculations run 

within each time step automatically reiterated in the following time step with the new input 

datasets. The results from fuzzy classification of the pesticide model outcomes were 

considered in terms of the 96hr lethal concentration (LC50) in order to classify the risk and 

non-risk areas for catfish and tiger shrimp culture.  

The sediment loss and accumulation model shows that the highest loss of sediment was 

in the rainy season, especially in May to October. Vegetables and short term crop areas 

were found be most strongly eroded. The MUSLE model showed that the highest 

sediment accumulation was in the hilly areas (~1066.42 tonne/ha/year); lower in riverside 

areas (~230.39 tonne/ha/year) and lowest in flooded paddy areas (~150.15tonne/ha/year).   

Abamectin was used as an example throughout this study to estimate pesticide loss and 

its effects on aquaculture. The results showed that pesticide loss by runoff and sediment 

loss is less than the loss by half-life degradation (for Abamectin specifically). Accumulation 

of Abamectin occurred at highest rate in May and October and decreased with time. The 

spatial models showed that pesticide residues concentrated in the river and riverside 

areas. 

In order to evaluate the acute toxicity impacts, three levels of water depth in ponds were 

modelled as culture depths for catfish and tiger shrimp. The results show that the highest 

risk areas for catfish occurred in May and October with ~333,000 and ~420,000 ha at a 

pond depth of 0.5 m; ~136,000 and ~183,000 ha at a pond depth of 1.0 m; and ~10,840 

and ~19,000 ha at a pond depth of 1.5 m. Risk areas for catfish mainly concentrated at the 

riverside and in part of the coastal areas. For tiger shrimp, the risk periods during the year 

were similar to those found for catfish. The highest risk areas for shrimp were ~648,000 

and ~771,000 ha at 0.5 m pond depth; ~346,000 and ~446,700 ha at 1.0 m pond depth; 

and ~185,000 and ~250,000 ha at 1.5 m pond depth. Overall, deeper ponds reduced the 

risk.  
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This study has developed a method to evaluate the negative impact of input pesticides to 

the environment from agricultural use related to fluctuation of aquaculture risk areas. The 

research indicates the potential relationship between pesticide input and the risk areas for 

aquaculture. The model has several significant uses: 1) it can provide information to policy 

makers for a more harmonized development of both aquaculture and agriculture in the 

Mekong delta in the future, 2) it provides data for aquaculture investment analysis to 

decrease the hazards caused by pesticide impacts, and 3) it provides a model capable of 

application to wide field scenarios and suitable for any pesticide type. 
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 Chapter 1 

General introduction 

 

1.1 World fisheries and aquaculture 

In recent years, there have been criticisms about the development of aquaculture which in 

some cases has caused negative impacts on the wild fish production. Naylor and 

colleagues specifically illustrated a case of lost wild fish production which had been 

effectively  converted to the yield from aquaculture (Naylor, Goldburg, Primavera, Kautsky, 

Beveridge, Clay, Folke, Lubchenco, Mooney, and Troell, 2000). However, regardless of 

these negative views, aquaculture still needs to develop strongly in order to fill the growing 

fish supply gap, which is estimated to be of the order 82 million tonne (FAO, 2010). 

Moreover, aquaculture is considered as a feasible way to secure and maintain protein 

resources (Bondad-Reantaso, Subasinghe, Josupeit, Cai, and Zhou, 2012; Ahmed and 

Lorica, 2002). Indeed, aquaculture has gradually replaced capture fisheries and occupies 

a high position in the world seafood supply. Developing countries are potential target 

areas to develop aquaculture, produce rich protein resources and luxury aquatic products.  

Although global surveys have not yet been done, it is widely accepted that extensive 

aquaculture areas are always found in developing countries more than elsewhere (Pillay, 

1973). 

Many studies have illustrated how marine fish production has declined due to overfishing 

(Jiang, 2010; De Silva, 2003; Hannesson, 2003). An example of hundred year data on the 

biomass of fish in the North Atlantic Ocean combined with geographical data was mapped 

by David (2012) who showed that the biomass of fish in these areas decreased by two-

third over 50 years (Christensen, Guenette, Heyman, Walters, Watson, and Zellar, 2003) 

(figure. 1.1). This dramatic reduction in yield underpins the timeliness of promoting 

aquaculture to compensate for over exploitation, aquatic production losses by 

environmental pollution and the effects of global climate change. 
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Figure 1. 1 An example fish biomass distribution of North Atlantic Ocean 

1.2 Fisheries and aquaculture production in Vietnam  

Vietnam has a large water surface for potential fisheries and aquaculture production, 

estimated at approximately 1.7 million ha (Ministry of Fisheries and World Bank, 2005). 

This comprises ~120,000 ha of ponds, lake, canals and garden fishponds; ~580,000 ha of 

paddies and mixed aquaculture and ~660,000 ha of tidal areas (excluding the areas of 

river, lagoons and bays). 

In recent years Vietnam has had one of fastest fisheries and aquaculture production 

growth rates. Total fisheries and aquaculture production in Vietnam was less than 1 million 

tonne in 1990 but from 1993 production started to increase approaching ~1.78 million 

tonne in 1998 (figure 1.2). After that time, seafood production in Vietnam has increased 

sharply and hit over 5 million tonne in 2010.  



3 
 

 

Figure 1. 2.  Aquaculture and fisheries production in Vietnam 

Source: GSO (2012a) 

In 1990, production from capture fisheries was almost four times higher than the yield from 

aquaculture. Production of both has increased annually but, from a low base in 1990, 

aquaculture production has exceeded that from capture fisheries, at ~2 million tonne in 

2007. Aquaculture now makes the most significant contribution to the national seafood 

production and reached ~2.7 million tonne in 2010 (figure 1.2). 

Vietnam exported over 1.2 million tonne of seafood in 2008 to the international markets 

with a value of over US $4.5 billion in 2008. The key products for exporting were 

pangasius (32.2%), shrimp (36.1%), sea-fish (9.2%), Tuna (4.2%), cephalopods group 

(7.1%), and some others (VASEP, 2010). This recent growth has made Vietnam one of 

the largest seafood exporters in the world (FAO, 2004) with a large part of this now 

originating from aquaculture. Record from VASEP (2010) reveal the value and production 

of seafood from Aquaculture started to growth from the year 2000. Before this time, 

aquaculture contributed less than US $1 billion. Over the last ten years (from 2000 to 

2010), aquaculture production and values in Vietnam increased over 5 times (figure. 1.3). 
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Figure 1. 3. Growth of Vietnamese aquaculture. 

Source:(FAO, 2012a; VASEP, 2010) 

 

Culture species 

The key aquaculture species in Vietnam are shown in table 1.1. In fresh water, pangasius 

and catfish (Tra, Basa) dominate, alongside other species including carps, rohu, mrigal, 

and mono-sex tilapia. Vietnam also produces some high valuable marine species such as 

lobster, grouper, oyster and Babylonia species. Tiger shrimp are produced in southern 

Vietnam and production has increased sharply in recent years especially in some coastal 

areas in the north, the middle of Vietnam and in the Mekong delta (FAO, 2011).  
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Table 1. 1. Main aquaculture species in Vietnam and production. 

 

Source: FAO (2009) 
... : Data not available 
Q: quantity (tonne) 
V: Value (,000 USD) 
F: FAO estimate from available sources of information or calculation based on specific assumptions 
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1.3 Fisheries and aquaculture in the Mekong delta 

The Mekong delta receives fresh water from the Mekong River, as well as strong tidal 

input from the South China Sea. Consequently, this area is highly suitable for 

development of fresh and brackish water aquaculture. Aquaculture systems are 

diverse and range from open to semi-enclosed rearing systems, and this sector is now 

considered as the main contribution to the regional income, after rice.    

Total fisheries and aquaculture production in the Mekong delta approached nearly 3 

million tonne in 2010, having almost tripled in the last 10 years. In 2010, seafood from 

Mekong delta contributed ~US $1.8 billion to the national economy), an increase of 

more than US $1.2 billion compared with 2000 (~ US $0.6 billion) (figure 1.4). The total 

area committed to  aquaculture was ~ 660,600 ha in 2003 (Ministry of Fisheries, 2005) 

rising to ~753,300 ha by 2010 (GSO, 2012a).  

 

Source: General Statistics Office  (GSO, 2012a) 

Figure 1. 4. Total aquatic production in Mekong delta 

 

1.4 Environmental impacts from aquaculture  

Although aquaculture produces almost half the world’s supply of seafood for human 

consumption, there has been considerable debate about the negative impacts to the 

environment from effects including  polluted water resources, destruction of original 

habitats,  introductions of exotic diseases and loss of bio-diversity (De silva and Davy, 

2009; World Bank, 2006; FAO, 2006; Naylor, William, and Strong, 2001; Naylor, 
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Goldburg, Mooney, Beveridge, Clay, Folke, Kautsky, Lubchenco, Primavera, and 

William, 1998) . Theoretically, waste products from aquaculture which mainly contain 

nitrogen (N) and phosphorus (P) components are the main factors contributing to 

environmental pollution (Subasinghe, Soto, and Jia, 2009). A report from FAO (2006) 

is rather optimistic and cites studies showing that discharges of N and P from 

aquaculture are usually negligible. By contrast, (De Silva, Ingram, Nguyen, Bui, 

Gooley, and Turchini, 2010) considered that discharged N and P from aquaculture may 

be harmful to the aquatic environment. 

In the Mekong delta, the catfish industry has become an important source of aquatic 

wastes resulting in some contamination by nitrate and phosphorus in soil and water 

which has exceeded the limits of Vietnamese water and soil quality standards (Guong 

and Hoa, 2012). In fresh water aquaculture, catfish culture is estimated to have 

released 31,620 tonne nitrate and 9,893 tonne phosphorus in 2007, and 50,364 tonne 

nitrate and 15,766 tonne phosphorus in 2008 (De Silva et al, 2010) which mainly came 

from excretion and  metabolic products (Nhan, Verdegem, Binh, Duong, Milstein, and 

Verreth, 2008; De silva and Anderson, 1996). In integrated aquaculture (high input fish 

with rice cultivation), the surplus waste discharge has been described as one of the 

most potential sources of environmental pollution (Phong, Stoorvogel, van Mensvoort, 

and Udo, 2011).  

Brackish shrimp culture in the Mekong delta has recently caused impacts to the 

surrounding environment and ecosystems (Guong et al, 2012; Hoa, Thuy, and Tran, 

2010). Intensive shrimp culture in coastal provinces results in high levels of organic 

waste discharge, sustained over time, with direct impacts on the environment and 

sustainability of ecosystems (Martin, 2011; Landesman, 1994). In this context, the 

most detrimental development in coastal areas has been the shifting from rice to 

shrimp culture, resulting not only in changed ecology but also having social effects 

such as labour migration and livelihood configuration (Lan, 2011).  

1.5 Potential impacts of agrochemicals on aquaculture 

 

There are always potential conflicts between the development of aquaculture and 

agriculture, especially in the Mekong delta where the government policies aim to 

promote the increase of both aquatic and agricultural production in the same area. 

Agrochemicals are widely applied for agriculture with multiple purposes such as 

controlling pests, insects, diseases or enhancing the product quality. These chemicals 

have their own capacity to absorb and desorbs between soil and water when 
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introduced to the environment. Their transport through natural hydrology processes 

such as runoff, flow, dispersion allow them migrate widely and merged into the water 

environment. Generally, agrochemicals can persist in the water environment, which 

creates a both direct and indirect risks for aquatic fauna and flora. Accumulated 

residues of agrochemicals, particularly pesticides, in the soil and water environments 

may have negative effects on production and quality of seafood. 

Pesticides existing in a water body will impact on water quality directly and have toxic 

effects on plants and animals. Herbicides, for example, activate in water and can target 

algae and other micro-organisms to cause oxygen fluctuation (Overmyer, Noblet, and 

Armbrust, 2005; DeLorenzo, Scott, and Ross, 2001; Jayaraman, 1986), which can 

cause lethal or sub-lethal effects on aquatic organisms. Acute toxicity for pesticides 

often causes death and low productivity for aquaculture organisms over both short 

term and long term exposures, and is considered one of the most serious problems in 

rural aquaculture..  

Although pesticides are considered as a dangerous factor for aquaculture activities, 

aqua-farmers have no information about their potential concentration and spatial 

distribution in the environment. The pesticide dispersion normally expands from point 

source inputs to large scale distribution, which causes difficulty in measuring the 

presence and quantity of pesticide. Environmental modeling of distribution and quantity 

of pesticides can be used to reduce the risk caused by pesticide impacts to aid aqua-

farmers in selection of aquaculture sites to minimize investment losses and increased 

profitability. 

1.6 GIS and its application for fishery resources and environmental management  

1.6.1 Definition and principle of GIS 

Geographical Information Systems (GIS) are geographical computational systems 

which enable data acquisition, storage,  integration, analysis and display of model 

results (maps or tabular outputs) (Khongpuang, 2011; Carocci, Bianchi, Eastwood, and 

Meaden, 2009; Wadsworth and treweek, 1999; Burrough, 1986). GIS has been used in 

many fields related to urban, rural, environmental planning, natural resource 

management, health and emergency planning, infrastructure organization, marketing, 

estate, agriculture and forestry and coastal management (Liao and Tim, 1994). A GIS 

is usually organized in 5 components including data, hardware, software, procedures 

and users (figure 1. 5).  
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Figure 1. 5.  GIS components 

 

The hardware provides the core processing power and input, storage, manipulation 

and display of results. The GIS software  complements this and enables control of all 

activities in GIS such as capture, storage, database management, manipulation, 

analysis, modeling and display (Eastman, 1999; Scholten and Lepper, 1994). Data is 

perhaps the most important component and can be divided into 2 types; spatial and 

attribute data. The spatial data is represented by raster and vector data structures 

(Nath, Bolte, Ross, and guilar-Manjarrez, 2000) which describe the shape and geo-

position of an object on the earth, whereas attribute data illustrates the qualities of 

those objects (Khongpuang, 2011; Eastman, 2006; Luc Anselin, 1992). The 

effectiveness of how GIS is applied depends upon  the knowledge and understanding 

of the users who define the procedures and methodologies to be applied to any spatial 

problem (Wadsworth et al, 1999; Liao and Tim, 1994; Burrough, 1986).  

The working principle of GIS is outlined in (figure 1.6). Input data is the main material 

which usually comprises a variety of data types originating from maps, tables, 

databases, data logger files, field instruments, satellite images or the Internet. The 

system employs these data and process under the control of users. The processing 

steps in GIS is usually know as capturing, encoding, editing, storing, retrieving, 

manipulating, analyzing and displaying. After processing step, the system provides the 

outputs which can be displayed in similar form of input data such as reports, maps, 

images, tubular, GIS models, data and database.  
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Figure 1. 6. A conceptual diagram of a GIS. 

Following the description of Nath et al (2000c) 

 

1.6.2 The use of GIS for decision support in aquaculture development  

GIS can be used as a powerful facility for assisting decision-makers in many fields. 

GIS can provide geo-referenced model outcomes and supporting information to 

entrepreneurs, developers, policy makers and regulators at a variety of spatial scales.  

When spatial models are developed by skilled end-users, they are of particular value in 

identifying optimized sites for aquaculture development and zoning. There are many 

examples of  studies applying GIS to aquaculture site selection (Nath et al, 2000; 

Kapetsky et al, 1990; Kapetsky, 1989), or to contribute to the sustainability of 

aquaculture (Longdill, Healy, and Black, 2008), and for managing the development of 

fisheries and aquaculture (De Freitas and Tagliani, 2009; Meaden and Kapetsky, 

1991).  

GIS models have also been used to identify suitable sites for aquaculture and coastal 

planning (Latinopoulos, Konstantinou, and Krestenitis, 2012; Luis Alvarez and Perez 

Roa, 2012), for shrimp site selection in coastal areas (Rajitha, Mukherjee, and Vinu 

Chandran, 2007; Giap, Yi, and Yakupitiyage, 2005; Salam, Ross, and Beveridge, 
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2003), and for cage aquaculture (Halide, Stigebrandt, Rehbein, and McKinnon, 2009; 

Ross, Mendoza, and Beveridge, 1993). GIS has also been used for planning and 

management of inland aquaculture (Kapetsky, 1997) modeling for carps and native 

species (Peredo-Alvarez, 2011; Salam, Khatun, and Ali, 2005), giant prawn (Hossain 

and Das, 2010) and catfish culture (Kapetsky, Hill, and Worthy, 1988). GIS has also 

been applied to define suitable sites for valuable shellfish culture in several regions 

including oyster (Cho, Lee, Hong, Kim, and Kim, 2012; Buitrago, Rada, Hernandez, 

and Buitrago, 2005), scallops (Radiarta and Saitoh, 2009; Radiarta, Saitoh, and 

Miyazono, 2008) or to evaluate the impacts from environmental issues to aquaculture 

species (Silva, Ferreira, Bricker, DelValls, Martin-Diaz, and Yanez, 2011) and 

predicting production for cockle and mussels (Khongpuang, 2011).  

1.6.3 Mathematical models for environmental modeling integrated with the GIS 

framework 

GIS can greatly enhance the management and visualization of environmental models 

as it provides a framework and tools for spatial mathematics, enabling encoding, 

spatial analysis, manipulation, and presentation of model outputs.  

Most applicable utility of GIS in aquaculture and natural resources management is as a 

Decision Support System (DSS), which is a computerized system based on calculating 

various alternatives scenarios and their calibrated values which aim to support decision 

makers, planners, managers and stakeholders in resolving problems. A DSS has the 

benefit of adaptability, flexibility, economical efficiency, and support for modeling by 

decision maker.  DSS within GIS can be built for carrying a number of functions 

 

1.6.4 Implementation of hydrological models within the GIS environment 

GIS has been identified as a suitable framework to integrate with environmental 

modeling for simulation of hydrological process in a watershed (Sui and Maggio, 1999; 

Meiner, 1996; Poiani and Bedford, 1995; Tim et al, 1994; Liao et al, 1994; Gilliland and 

Baxter, 1987). Recent studies have concentrated on implementation of specific models 

within a GIS framework for hydrological processes, water balance, catchment and 

small watershed modeling, predicting chemical concentrations and assessing non-

point source pollution (Maidment, 1996).  
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The problem of modeling hydrological processes at a watershed scale is to simulate all 

activities in a catchment.. Watershed-based models deal with a variety of functions of 

hydrological activities such as rainfall, run-off, overland flow and water transport to 

stream networks (Pullar and Springer, 2000). Mathematical modeling of almost all of 

these functions has been integrated in GIS using published equations to simulate the 

dynamic processes (Batelan and De Smedt, 2007; Liu, Gebremeskel, De Smedt, 

Hoffmann, and Pfister, 2003; Olivera and Maidment, 1999; Sui and Maggio, 1999). 

Modeling the transport and flow of water within GIS was also considered to be 

essential to optimize the non-point source pollutants or nutrient discharges in a 

watershed  (Kohne, Kohne, and Simunek, 2009; Ng, Wai, Li, Li, and Jiang, 2009; 

Morari, Lugato, and Borin, 2004). 

Runoff is perhaps the most complicated hydrological process in a watershed. Runoff 

modeling is based on mathematical systems which merge multiple components 

including rainfall, evaporation and transpiration, interception, land-use treatment, 

terrain and stream network (Moreda, 1999). Enhanced dynamic runoff modeling has 

been linked to GIS to manage the complex mathematical equations and large datasets 

by many authors (Coroza, Evans, and Bishop, 1997; Goodchild, Park, and Steyaert, 

1993; Heit and Shorteid, 1991). A range of mathematical models running in a GIS 

framework can be used not only to stimulate the hydrological phenomenon in a 

watershed, but also to generate results which act as the input to modelling of nonpoint 

source pollutants or nutrient discharges. In these studies, the SWAT model (Soil and 

Water Assessment Tool) (Arnold, Srinivasan, Muttiah, and William, 1998) which uses 

the theory of HRUs (hydrological response units) was applied in GIS to predict runoff 

(Pai, Saraswat, and Srinivasan, 2012; Easton, Fuka, Walter, Cowan, Schneiderman, 

and Steenhuis, 2008a; Kang, Park, Lee, and Yoo, 2006; Zhan and Huang, 2004; 

Bingner, 1996), nonpoint source pollutant (Yang, Dong, Zheng, Xiao, Gao, and Lang, 

2011), erosion (Oeurng, Sauvage, and Sa´nchez Pe´rez, 2011; Kim, Chung, Won, and 

Arnold, 2008; Chaplot, 2005), water quality management (Ullrich and Volk, 2009). The 

Agricultural Non-Point Source Pollution Model (AGNPS) (Young, Onstad, Bosch, and 

Anderson, 1989; Young, Onstad, Bosch, and Anderson, 1987) uses hydrodynamic 

modelling to evaluate the runoff and fate of agriculture substances at a watershed 

scale (LIU, Zhang, ZHANG, HONG, and DENG, 2008; Mohammed, Yohannes, and 

Zeleke, 2004; Lenzi and Di Luzio, 1997) was and is considered as an perfect match 

with GIS (Pullar et al, 2000). The ANSWER model (Agricultural Nonpoint Source 

Pollution) (Beasley, Huggins, and Monke, 1980) simulates sediment movement in 

watersheds which have  agricultural pollutant as their primary model and has been  
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successfully integrated with GIS, using FORTRAN code, to evaluate non-point 

pollution scenarios in the environment (Joao and Walsh, 1992),  and applied for 

modelling soil erosion in watershed (Bhuyan, Kalita, Janssen, and Barnes, 2002; 

Montas and Madramootoo, 1991; De Roo, Hazelhoff, and Burroh, 1989; Beasley et al, 

1980). Other mathematical models have successfully been linked to the  GIS 

environment and are widely applied for hydrodynamic simulation in watersheds, such 

as DRAINMOD for surface flow modeling of drainage areas (Dayyani, Prasher, 

Madani, and Madramootoo, 2010), WEPP (Water Erosion Prediction Project) was 

created for modeling for erosion but specially concentrated on water runoff (Singh, 

Panda, Satapathy, and Ngachan, 2011; Raclot and Albergel, 2006; de Jong van Lier, 

Sparovek, Flanagan, Bloem, and Schnug, 2005; Bhuyan et al, 2002; Tiwari, Risse, and 

Nearing, 2000; Flanagan, Gilley, and Franti, 1995; Flanagan and Livingston, 1995).   

1.7.  Objective of the study 

In the Mekong delta, aquaculture has developed very rapidly in recent years, a 

phenomenon known locally as “rocket development”. This has contributed massively to 

the huge production of seafood for internal consumption and international export. 

However, agricultural production also dominates as the main cultivation activity in the 

Mekong delta, where development and improvement of rice paddies has been the 

main target for national economy policies and food security. There is a potential conflict 

between these production sectors, and this happens specifically when intensive rice 

fields apply agrochemicals including pesticides which have potential detrimental effects 

upon the development of sustainable aquaculture in the same delta. This potential 

conflict is of concern in the Mekong delta. 

This study aims to investigate the current pesticide use in agriculture and their fate in 

the environment within the Mekong delta. Using these results, this study will develop 

spatial models to identify affected and non-affected aquaculture sites in terms of 

pesticide risk to some important cultured aquatic species (e.g. tiger shrimp and 

pangasius).  

This study uses Geographic Information Systems (GIS) integrated with mathematical 

hydrodynamic models to approach the following key objectives and expected 

outcomes: 

(1)   Overall assessment of pesticide use in the Mekong delta 
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(2)   Development of the hydrological models for water runoff, erosion and 

sediment yields 

(3)   Determination of spatial pesticide accumulation in sediment and water 

(4)   Classification of risk to aquaculture sites caused by pesticides for some 

target species 

It is expected that these outcomes can provide good decision-making tools for policy 

makers who are looking for harmonized development between agriculture and 

aquaculture in Mekong delta. The application of these results will help reduce the risk 

of losing the long term benefit from aquaculture investments caused by pesticide 

accumulation. Moreover, these models could help to increase the security of seafood 

safety by providing information on areas and mechanisms of high accumulation of 

pesticides in seafood within the Mekong delta. 
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Chapter 2 

Study area: The Mekong Delta, Vietnam 

2.1 Geography and topography 

2.1.1 Geographical location 

The Mekong delta is located in Southeast Asia between 8060’ to 10000' N Longitude 

and 104050’ to 106080’E Latitude (Huan, Mai, Escalada, and Heong, 1999). While the 

major part of the delta of the Mekong river is situated in Vietnam, it is linked to 

Cambodia in the north and in the South and East it has a long coastline directly 

connecting to the South China Sea. In the west it faces the Gulf of Thailand and Ho 

Chi Minh City in the North-West. The Vietnamese delta covers  13 provinces which 

occupies 12.93% of the total area of Vietnam (Lap Nguyen, Ta, and Tateishi, 2000).  

 

Figure 2. 1 .Geographic location of Mekong delta, Vietnam 

The total area of the delta is approximately 40,000 km2 (275 km from North to South, 

260 km from West to East) comprised 13 provinces namely Long An, Tien Giang, Ben 
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Tre, Vinh Long, Can Thö, Tra Vinh, Dong Thap, An Giang, Kien Giang, Soc Trang, Bac 

Lieu and Ca Mau and Hau Giang. The delta has a complex of rivers and canal 

systems, both natural and man-made. Annually,  50 billion m3 of water are discharged 

from Mekong river along with ~1 billion m3 of sediment (Nguyen et al, 2008; Nguyen, 

Wolanski, Tran, and Haruyama, 2007).  

There are nearly 20 million inhabitants in the delta (Dapice and Xuan, 2012) with an 

average population density of  435 people per square kilometre (Nguyen, 2007). 

Approximately 80% of the population work in agriculture and have a low rate of 

education and are unskilled (Dapice and Xuan, 2012; Nguyen, Phuoc, Mai, Bui, and 

Pham, 2000), especially in rice cultivation and aquaculture activities. Located in the 

tropical monsoon belt, the Mekong delta supports agricultural production throughout 

the year, with about 71.6% of the land devoted to agricultural land (in 2007), and 

contributing  ~53% of rice for export (in 2009). In addition,  the region has over 700 

kilometres of coastline combined with the complex canal network, and so the Mekong 

delta not only has potential for aquaculture but also able to supplies ~60% of total 

national fisheries products annually (Nguyen, 2007).  

 

2.1.2 Topography 

The Mekong Delta is characterised by low flat terrain with an average elevation from 

0.7 to 1.2 m relative to the mean sea level (Akira, 2005). The only exception is some 

hilly areas located in the Northern delta in An Giang province (VNMDMP, 2011). 

Towards the North and Northwest to the Cambodia border, the mean elevation 

increases to 2.0 to 4.0 m above sea level, the central plains range from 1.0 to 1.5 and 

in the tidal and coastal areas elevation is only 0.3 to 0.7 m (figure 2.2).  
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Figure 2. 2. Topography of the Mekong delta 

(VNMDMP, 2011) 
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2.2 Natural Resources 

2.2.1 Water resources 

 Fresh water resources from Mekong River 

The Mekong delta receives a huge amount of fresh water annually with discharge  

estimated from 2100 m3/s in the dry season to a maximum of 40,000 m3/s in the rainy 

season (Wolanski et al, 1996) or up to ~45,000 m3/s (Kite, 2001). Total annual water 

flow into the delta is approximately 400 to 500 billion m3 and is ranked at the 6th 

largest water discharge delta in the world (Johnston and Kummu, 2012; Nguyen et al,  

2008; Kite, 2001). This water resource supplies the entire Mekong delta for almost all 

agricultural irrigation, aquaculture and living demands of the inhabitants. 

River System 

The river and canal system of the Mekong delta is considered as one of the most 

complex in the world and it involves a dense network of both natural and manmade 

channels (Tamura, Saito, Sieng, Ben, Kong, Sim, Choup, and Akiba, 2009). This 

network is well established with the purpose of delivering fresh water to anywhere 

within the delta. The natural river system is formed by 2 main Mekong river branches, 

the namely Song Tien and Song Hau, which release water to the South China Sea 

through 9 outlets.  

Although receiving an equivalent amount of water from upstream, the water volume 

flowed by these two river branches is different. Tien river annually transfers 55% of 

fresh water, whereas only ~45% passes through the Hau river (Nguyen et al.,2008). 

Compared to the upstream sections of the Mekong, both the Tien and Hau rivers are 

wide and deep. The mean width is from 1000-1500 m with average depth from 10-20 

m. Besides these two main rivers, the delta also has  more than 1,000 man-made 

canals which have been constructed for agriculture irrigation, transportation, protection 

against salinity intrusion, land reclamation and storm protection (Le et al.,2007). The 

total length of primary and secondary manmade channels in Mekong delta is about 

40,000 kilometres (figure 2.3) 
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Figure 2. 3. The channel network in the Mekong delta, showing man-made channels 
and natural rivers and canals 

Source: (VNMDMP, 2011) 
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Rainfall 

The Mekong delta is affected by the tropical monsoon, having a warm humidity climate 

and high rainfall (figure 2.4). The delta has an average annual rainfall of approximately 

1800 mm, but the distribution varies with geographical and seasonal factors (Akira, 

2005). The highest rainfall is in the West with annual average from 2000-2400 mm, 

while the East has an average of 1600-1800 mm. The central plains stretching from 

Long Xuyen, Chau Doc-Can Tho to Tra Vinh - Cao Lanh - Go Cong have the lowest 

rainfall with averages of 1200-1600 mm. Approximately 80% of rainfall occurs during 

the Southwest monsoon season, the remaining 20% being in the transitional months 

and the Northeast monsoon period. Rain during the tropical monsoon usually happens 

with low intensity but large raindrops which occasionally may continue for 3-5 days 

causing  temporary flooding in the delta. 

 

Figure 2. 4. Monthly rainfall measured at Camau Station in Mekong delta in 2010 

Source:(GSO, 2012c) 

The high annual rainfall contributes mainly to rice culture, vegetable and orchards.  

2.2.2 Climate  

Dominated by the Southeast Asian monsoon, there are two seasonal divisions; the wet 

season and dry season. The dry season is hot and occurs between November and 

April, while the wet  season occurs from May to October and is warm and humid.   

Air temperature 

The average temperature in Mekong delta ranges from 27 to 28 °C. The highest 

temperature occurs between  March to April with max temperature well above 300C, 

while the  lowest air temperature is in December to January with minima of ~250C 
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(figure 2.5). With the relatively flat terrain in whole area, air temperature is usually not 

significantly different between regions. 

 

Figure 2. 5. Average air temperature measured at Camau Station in Mekong delta in 
2010 

Source:(GSO,2012c) 

 

Air humidity 

Air ranges from 78% to 90% (figure 2.6) and is relatively high during April to October, 

decreasing with the decrease in rainfall in October. Generally, humidity is high at 

around 84% (GSO,2012c). 

 

 
Figure 2. 6. Average air humidity measured at Camau Station in Mekong delta in 2010 

Source:(GSO,2012c) 
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2.2.3  Flooding 

Fresh water flooding 

Many reports have  investigated flooding conditions in the delta (Mekong River 

Commission, 2009), or different flooding scenarios (Le et al.,2007). Annual flooding  by 

fresh water from upstream covers from 1.2 to 1.5 million hectare which can extend to 

1.9millon ha (~50%  area) when rainfall is high  (White, 2002). Landform studies by 

Chiem ( 1993) and an SRTM Digital Elevation map have revealed the annual flood 

patterns.  The low elevation in the central and the landform of this area acts like a pan, 

storing water up to 4 m height (Akira, 2005). The floods occur from July to August and 

are rich in  sediment and nutrients brought from upstream. A second flood period 

occurs later over 2 or 3 months with the full increase of fresh water. The highest annual 

flood areas in October can extend as far as the coastal provinces (figure 2.7) and run 

until the  end of November with water receding at the end of December.   

 

Figure 2. 7. A Landsat ETM+  image taken in Mekong delta in October 2003 showing 
the flood water (pink colour) spreading out in Mekong delta. In this period, only the 
coastal areas (in green colour) are not inundated 

Source: (NASA Landsat program, 2003) 

Flooding in the delta causes most economic and social impacts such as crop damage, 

infrastructure destruction, livestock loss, epidemic and shortage of clean water 
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resources. On the other hand, during the 5 months flooding, approximately 460 billion 

m3 of water flow to Mekong delta directly which bring almost of 200 million tonnes of 

alluvial soil for recovering the fertility for agricultural cultivation. These huge nutrient 

resources and minerals are also important for aquaculture development.  

Salt intrusion and flooding by tides 

Approximately 1 million ha of land in the Mekong delta are affected directly by tidal 

flooding with up to 1.7 million ha (45% in total area) under salt intrusion. (Reiner, Hien, 

Hoanh, and Tuong, 2004). This saline intrusion and tidal flooding follows the channel 

and river network and affects all coastal provinces in both the west and east side. The 

East Sea semidiurnal tide regime dominates the provinces on the east with a range of 

3-3.5m (White, 2002) whereas the tidal range on the West side is only 0.8 to 1.2 m.  

Saltwater intrusion occurs over a large part of the  Mekong delta mostly in April when 

fresh water discharge from Mekong river becomes weak (MRC, 2005), this being 

dependent upon the volume of freshwater supplied from upstream. The saline 

intrusions measured in dry season in main rivers are found up to 50 km inland and a 

minimum of 20 km in the wet season. Strong mixing of salt and fresh water was found 

around 28 km inland during the wet season and 33 km in the dry season (Tateishi, 

Nguyen, Ta, Tokuoka, Fukita, Nishimura and Matsuda, 2007; Tateishi, Nguyen, 

Tokuoka, Fukita, Nishimura, Matsuda and Suzaki, 2006).   

2.2.4 Soil types  

The soils of the Mekong delta were formed by Holocene deposits with alluvial soil 

being located in the flooded and other lowland areas (Nguyen, 2012). Acid sulphate 

soils also are widely distributed in the Plain of Reeds (Dong Thap province) and are 

used for rice cultivation (Husson, Verburg, Phung and Van Mensvoort, 2000).  

During the flooding period, huge amounts of alluvial soil and suspended sediments are 

deposited in low lying areas. Permanent saline soil and saline acid sulphate soils which 

are not suitable for agriculture are found in coastal areas. Lightly saline and acid 

sulphate soils are found in all coastal provinces while acid sulphate soils without saline 

effects represent almost 45% of the southwest side of Kien Giang, Ca Mau, Can Tho 

and Hau Giang provinces (Sebesvari, Le, Toan, Arnold and Renaud, 2012; Vo, 1995). 
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2.3 Population and labour resources  

Population data for the Mekong delta varies but census data from General statistic 

office- GSO (2012b) indicates that there were 17.272 million people in Mekong delta in 

2010. By provinces, population distribution and density are shown in figure 2.8  

 

Figure 2. 8. Population distribution (a) and density (b) by provinces in the Mekong delta 
in 2010 

An Giang, Kien Giang and Kien Giang have the highest populations with approximately 

1.6 million people, An Giang alone having almost 12.5% of the total population in the 

region. The population is concentrated in the upper parts of the delta where there are 

rich fresh water resources and where this population serves the agricultural sectors 

such as rice cultivation. 

2.4 Fishery resources and aquaculture  

2.4.1 Inland fisheries  

Vietnam has abundant inland fishery resources most of which are native to the 

Mekong. Catfish and fresh water fish are considered the most popular species in 

Mekong delta. There are 16 species of pangasiid catfish alone present in Mekong 

delta, as well as a large number of carps, tilapias, clarias, and snakeheads also found 

in this area. Despite this variety of fish species, recently recorded data shows a 

decrease of around 13 to 14% per year from inland capture fishery production. 

Specifically, An Giang province has seen an annual loss of approximately 40,000 

tonnes of natural captured fish. There is no stated reason for this, although  clearly it 
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may be related to overfishing and reduction of native species, water pollution, and the 

impacts of shifting cultivation (Brakel, Hambrey, and Buntin, 2012).  

Although a decline has been recorded, no account has been taken of the huge fresh 

water fish resources which move into the Mekong delta during flooding periods. In fact, 

the natural captured fish due to the seasonal movement of species has been  reported 

to be up to 430kg per hectare in Can Tho and Kien Giang provinces and this illustrates 

why captured inland-fish production is always underestimated. This resource plays an 

important role in supplying protein resources for local people even during the flood 

period.   

2.4.2 Coastal fishery resources  

The coastal area of the Mekong delta is an important ecological zone for many aquatic 

species, having abundant natural feeding created by nutrient discharges through the 

delta from upstream. This resource of nutrient supplies foods for both plankton and fish 

fauna. The Mekong delta is also known for the density of mangrove along the almost 

700 km coast line which creates locations for aquatic animals to live and reproduce. 

The Mekong delta produces about 67% of the total coastal fishery production of 

Vietnam (White, 2002). The principal species captured include wild shrimps (Penaeus 

sp.), crabs (Scylla serrata), brackish water fish, eels, and large yields of shellfish on the 

muddy coastline such as blood cockle (Anadara granosa) and muddy clam (Meretrix 

lyrata). 

In common with other coastal areas, coastal fisheries of the Mekong delta are facing 

multiple problems including overfishing, natural habitat losses and degradation, conflict 

on land-use, tourism activities and climate change impacts. Valuable species fish 

production has decreased and many species are being captured at  smaller sizes, 

leading to decline in their reproduction ability, strongly impacting  populations of 

valuable fish. The most dangerous influences are  the changes in ecology (mangrove 

ecosystems) potentially affecting millions of people whose living depends on coastal 

fishery resources (Ministry of Fisheries et al, 2005).  

2.4.3 Aquaculture in Mekong delta 

Vietnamese aquaculture in has grown significantly in recent years and it is ranked in 

the top ten fishery exporters of the world (FAO, 2012a). Seafood exports have 

increased by more than 21% annually since 1996, mainly based on aquaculture. Many 



26 
 

types of aquaculture system are used in Vietnam. Extensive and intensive farming is 

usually found in estuarine provinces like Ca Mau, Tra Vinh for shrimp culture whereas 

intensive farming is more popular in river bank areas such as An Giang, Dong Thap, 

Can Tho for high density catfish ponds. 

The Mekong delta is the largest aquaculture production area in the Mekong river basin. 

Entering the global market from 1990, tiger shrimp (Penaeus monodon) and pangasius 

(Pangasianodon hypophthalmus) play an important role in seafood export. Freshwater 

aquaculture production in the Vietnamese Mekong delta was 256,708 t in 2001 from a 

culture area of 116,017 ha (VNMC, 2003) cited by (Brakel et al, 2012). In 2006, 

Vietnam supplied 2.6% of the global shrimp market with a value of US $1.46 billion, 

along with US $ 736 million value of pangasius; by 2010 this had reached US $1.62 

billion value of shrimp and US $1.45 billion for pangasius (VASEP, 2010). Total 

aquaculture production in 2010 is approximately 1.92 million tons with the principal 

production areas concentrated on riverside provinces (figure 2.9a). 

 In 2008 the aquaculture area in the Mekong delta was 445,000 ha, increasing annually 

to  approach 754,000 ha in 2010 (figure 2.9b) (GSO, 2012a). Coastal provinces 

generally have larger areas under aquaculture compared with riverside provinces, 

mainly focused on shrimps and brackish aquaculture where large areas of land are 

used with low production and high values.  By contrast, freshwater culture occupies 

much less land but is based on high density rearing systems which produce huge 

quantities of species such as pangasius. 

 

Figure 2. 9. Total Aquaculture production (a) and areas (b) in 2010 
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Brakel et al (2012), showed that the area of aquaculture changed from 2000 to 2005 

with the  biggest aquaculture expansion occurring in the coastal provinces of Ca Mau, 

Kien Giang, Bac Lieu for shrimp culture (tiger shrimp). Other, riverside, provinces have 

remained relatively stable in terms of aquaculture development (figure 2.10). 

 

 

Figure 2. 10. Change in aquaculture areas in Mekong delta 

Source:(Brakel et al, 2012) 

 

There is a variety of aquaculture systems used in the Mekong delta. Intensive farming 

(figure 2.11) of both pangasius and tilapias has tended to replace cage culture in the 

rivers (figure 2.12) which was strongly successful in the previous decade (Phan, Bui, 

Nguyen, Gooley, Ingram, Nguyen, Nguyen and De Silva, 2009). Rice-fish or rice-

shrimp integrated culture (figure 2.13) is a typical form of sustainable aquaculture in 

rice fields for a variety of fresh water fish or with tiger shrimp (Phong, van Dam, Udo, 

Van Mensvoort, Tri, Steenstra and van der Zijpp, 2010; Berg, 2002; Rothuis, Vromant, 

Xuan, Richter and Ollevier, 1999; Duong, Nhan, Rothius, Quang, Giau, Chi, Thuy, Hoa 

and Sinh, 1998; Arjo, 1998). During flooding periods, fisherman in these areas relies 

on incoming fresh water and transported nutrients to develop the fish farm (figure 

2.14). This farming system is totally open extensive culture of Mekong native species 

with low density per surface area.   
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In the coastal areas, both intensive and extensive shrimp farms have been developed 

in wet lands along the coastline and in the estuary zone where there is good exchange 

of fresh and salt water. Extensive and semi-intensive shrimp farms (mainly Penaeus 

monodon and Penaeus vanamei) are well constructed and externally resourced (figure 

2.15), whereas extensive shrimp farms rely much on the natural ecology and traditional 

farming technology (Minh, Yakupitiyage and Macintosh, 2001; Johnston, Trong, Tuan 

and Xuan, 2000). The rice-shrimp and mangrove-shrimp are two typical open 

extensive farming systems in coastal areas especially in Ca Mau (Nigel and Helena, 

2003; Ha and van Dijk, 2000) and Tra Vinh (Thu and Populus, 2007).  

 

 

Figure 2. 11. Pangasius culture systems and product processing in Mekong delta 
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Figure 2. 12. Pangasius cage culture in Mekong delta 

 

 

 

Figure 2. 13. Rice-fish culture in Mekong delta. 
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Figure 2. 14. Aquaculture in flooded areas. 

A net-pen is used to surround areas to retain the fish during flooding periods. Reared 

species are usually native to the Mekong. 

 

 

Figure 2. 15. Open intensive shrimp (tiger shrimp) culture 

 

2.5 Water environmental issues in Mekong delta 

2.5.1 Catfish industry and water discharges 

The pangasius catfish industry in the Mekong delta creates a problem of environmental 

pollution and waste loading emerging from pangasius farms can exceed environmental 

standards (TCVN 5942-1995: Vietnamese standard for surface water quality) (Guong 
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et al.,2012). Measurements of total discharges from pangasius culture in the Mekong 

delta in 2008 show that nitrogen, phosphorus approach 50,364 tonnes and 15,766 tons 

respectively (De Silva et al.,2010a).  To stabilise pangasius culture, large quantities of 

drugs (antibiotics), chemicals (pesticides), hormones and additives (vitamins) are 

inserted into the aquatic environment (Sebesvari et al.,2012). A survey by Kestemont ( 

2012) from 2005 to 2006 revealed up to 155 types of drug, 31 types of antibiotics and 

49 type of pesticides and 21 other compounds were used for pangasius culture in 

commercial catfish ponds and in hatcheries.   

Catfish farms usually discharge waste water directly into rivers (63%), to canals (19%) 

and to rice fields or gardens (11%). It has been estimated that only 7.8% of the 

discharged water was screened prior releasing, and 11.2% of waste water was 

generally processed using lime or chlorine (Phan et al.,2009). Bosma et al (2011), 

calculated that the total N discharge is equal to almost 2% of total N present in the 

river. Clean water consumption by catfish culture is relatively high and the total 

requirement for pangasius culture in the delta reaches up to 2% of the total water in the 

Mekong rivers. This means that for 1 tonne of Pangasius product, between 700 and 

5,970 m3 of water needs to be exchanged or flow through the fish ponds. Specifically, 

in 2007, Mekong delta produced ~683,000 tons of pond catfish which consumed 

~437.1 million m3 fresh water and released 275.4 million m3 waste water in to the 

rivers. Compared to other species, up to ~1,100 - 4,300 m3 water exchange is required 

for one tonne of shrimp and max 25,200 m3 water for salmon rearing in tank 

(Beveridge, Phillips and Clarke, 1991).  

Feeds and feeding have been identified as the main source of pollutant material. The 

water discharges from pangasius culture usually causes eutrophication and freshwater 

ecotoxicity. The pangasius industry in Mekong delta at max waste discharge period 

was estimated to contribute 2.4% N and 3.7% P to the total in the Mekong rivers 

(Bosma, Hanh and José, 2012).  

2.5.2 Suspended matter 

Water resources in the Mekong delta have a naturally high suspended matter load. 

Recorded data from 2007 at several stations showed the total suspended solid (TSS) 

in Mekong river to be around 75 mg/L (MRC, 2008). More recently, measurements of 

TSS in the flood plain areas in Dong Thap province revealed TSS concentrations up to 

~100 mg/L (Hung, Güntner, Merz and pel, 2011) which is much higher than the 

national water quality standards. Despite the high concentration of TSS, there is no 
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report on the effect of high TSS to aquatic species (Sebesvari et al.,2012). This is 

probably due to the full adaption of Mekong native fish which prefers environments with 

high levels of suspended solids.  

2.5.3 Nutrient discharge from agriculture 

Farmers in the Mekong delta tend to use high amounts of fertilizer to enhance crop 

profits. Rich nutrients from agricultural activities will move into ponds, canals and rivers 

by leaching, runoff, infiltration and aquifer transport and these may become a hazard 

for aquatic ecosystems (Guong et al.,2012). Fertilizers containing nitrogen, phosphorus 

and potassium (NPK products) are preferred. Hoa et al (2010) showed that up to 

93.6% of soil samples analysed contained  high concentrations of phosphorus (as cited 

(Guong et al.,2012).  

In rice cultivation, nitrogen fertilizers (URE) dominate the market with average use of 

nitrogen in 2007 of around 80-100kg N/ha in the dry season and 60-80kg N/ha in the 

wet season (Huan, Thiet, Chien, and Heong, 2005). Total input of fertilizer for rice 

cultivation in the Mekong delta is estimated at 400,000 tons of nitrogen, 180,000 tons 

of phosphorus and 120,000 tons of potassium per year. Due to hydrological activities, 

these nutrients move into water bodies and accumulate over time (Hach and Tan, 

2007).      

2.5.4 Pesticides 

In the Mekong delta there is still a big conflict between use of pesticides in agriculture 

and their influences upon the aquatic environment when they enter the water bodies 

due to hydrological dynamic processes. Organophosphate and Organchlorine are 

considered the 2 most popular insecticide classes which are able to bio-accumulate 

and threaten the aquatic ecosystem in the delta (Minh, Minh, Iwata, Takahashi, Viet, 

Tuyen and Tanabe, 2007b). In practice, farmers not only apply persistent chemicals, 

but also tend to apply pesticide in excess of the recommended dosage.  

Some studies have measured pesticide concentrations in water samples and have 

shown high concentrations of some very persistent pesticides in water, biota and 

sediment samples. Specifically, DDT (dichlorodiphenyltrichloroethane) was found in 

sediments from 0.01 to 110 ng/g of dry weight of samples (Minh, Minh, Kajiwara, 

Kunisue, Iwata, Viet, Cam Tu, Tuyen and Tanabe, 2007a), and 5.46 to 123.03 ng/g of 

dry weight of soft tissues of bivalve molluscs (Carvalho, Villeneuve, Cattini, Tolosa, 

Thuan and Nhan, 2008). When analyzing pesticides concentration in water samples, 
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Pham Van Toan (2010) recorded  median concentrations of quantified compounds 

from 0.01-2.72 µg/L sampled in Long An province and 0.01-0.38 µg/L sampled in Can 

Tho province. Endosulfan is a typical insecticide which has also been detected in most 

water samples with the levels of from 1.3% to 9.2% in total samples (Fabrice and 

Claudia, 2012) are recognized as having exceeded water quality regulations for 

aquatic safety standards (level B1) (US EPA, 2012) 
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Chapter 3 

Materials and Methods 

 

This study can be broadly divided into two categories: (a) laboratory based data 

aggregation, processing and model development, and (b) field based data collection.   

 

3.1 Laboratory-based work 

3.1.1 Hardware 

Computer system 

All laboratory-based work was carried out within the facilities of the Geographical 

Information Systems and Applied Physiology lab of the Sustainable Aquaculture 

Research Group, Institute of Aquaculture, University of Stirling. The computer system 

used was a Dell workstation, model T5400, containing a Intel Xeon 3.16Ghz CPU with 

8 Gb RAM running 64-bit Windows 7 operating system.  Laboratory PCs are connected 

the Local Area Network (LAN) of the University of Stirling and to other devices such as 

printers, digitizer, storage systems, etc.. 

Storage facilities 

High resolution spatial data (30 m x 30 m) was used for the whole area of the Mekong 

delta (40,000 square kilometres). This required large local storage (2Tb + 2 Tb HDD) 

and access to the research group’s network attached storage (NAS) systems (QNAP 

16 Tb active and LaCie 4Tb archive).  

Output facilities 

To enable high quality work, every workstation PC is equipped with twin high resolution 

21” monitors supported by a high capacity integrated graphic card with up to 4 Gb 

display capacity. Printing was done via a networked Epson Aculaser C1900 device. 

3.1.2 Software  

The main spatial modelling software (Geographic Information System – GIS) used in 

the study was IDRISI Taiga version (Clark Labs, Clark University, USA, 2011). The 
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software is specifically is designed for both GIS and remote sensing operations and is 

particularly suitable for environmental modelling, natural resources management, multi 

criteria and multi objective decision support, risk analysis, spatial or surface 

interpolation, and statistical characterization. The software comprises almost 300 

program modules to allow users to input, display and analyse the spatial information 

(Eastman, 2011) 

Besides the main software, use was made of Google Earth (Google Corp, USA, 2012) 

which is one of the most popular programs for visualising topographic and land-use 

data and to support land cover classification. Subject to checking image date and 

quality, this data portal is widely used to verify ground-truth user data against current 

satellite information. 

3.2. Acquisition and processing of satellite data 

Satellite images used in this study were the gap-filled Landsat 7 ETM+ products. The 

products were downloaded free of charge from the USGS website (United States 

Geological Survey: http://earthexplorer.usgs.gov/) through the Land Global Survey 

section. The downloaded products were chosen from the period of 2000 to 2005 and 

covering the entire Mekong delta area. For work with the latest products, images from 

2004 to 2005 were downloaded as a priority. Unfortunately, the Landsat 7 scan line 

corrector (SLC) had a mechanical failure in 2003 (Pat, Esad, and Gyanesh, 2012) 

which has resulted in all subsequent images having missing data, shown as gaps, 

away from the central track of the image.  While the products released since 2003 are 

more up to date  they need to be processed to fill the gaps. This was achieved by 

using the local linear histogram matching techniques and set of algorithms provided by 

USGS technical paper (James, Pasquale, and Gail, 2012). The downloaded post-2003 

Landsat images from USGS- GLS (USGS-Land Global Survey) were already 

completed using above method. 

Landsat 7 ETM+ SLC-off products comprise 7 discrete spectral bands (electromagnetic 

spectrum of an image) 1 panchromatic band. The maximum resolution of the 7-band 

product is 30x30 meters per pixel, and the panchromatic band (band 8) has a 

resolution of 15 m x 15 m per pixel (table 3.1). For the purposes of this study, four  

LANDSAT satellite images were required to cover the selected area.  Therefore, four 

Landsat 7 images were chosen for download with product codes 

LE71250542005324EDC00, LE71250532005020EDC00, LE71260532004329EDC00, 

and P126R054_7X20010116 (table 3.2).  
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Table 3. 1. Lansat 7 ETM+ product information 

Band 

Number 

Wavelength 

(µm) 

Resolution 

(meters) 

Data lines 

Per Scan 

Spectral 

response 

Bits per 

Sample 

1 .450–.515 30 16 Blue-green 8 

2 .525–.605 30 16 Green 8 

3 .630–.690 30 16 Red 8 

4 .775–.900 30 16 Near-IR 8 

5 1.550–1.750 30 16 Mid-IR 8 

6L 10.40–12.50 30 16 Thermal-IR 8 

6H 10.40–12.50 30 8 Thermal-IR 8 

7 2.090–2.35 30 16 Mid-IR 8 

8 .520–.900 15 32 Panchromatic 8 

Source: (USGS, 2007) and (Lillesand and Kiefer, 1994) 

Table 3. 2. Landsat 7 images were downloaded and used in this study 

Image 

Number 
Satellite type Path Row Position 

Date of 

Acquisition 
Spectral Band 

0207 Landsat7 ETM+ 126 053 N-W Mar-2004 1,2,3,4,5,6,7,Pan 

0120 Landsat7 ETM+ 125 053 N-E Jan-2005 1,2,3,4,5,6,7,Pan 

0116 Landsat7 ETM+ 126 054 S-W Jul-2001 1,2,3,4,5,6,7,Pan 

0324 Landsat7 ETM+ 125 054 S-E May-2005 1,2,3,4,5,6,7,Pan 

N-W: North - West; N-E: North-East; S-W: South-West; S-E: South-East; Pan: 

Panchromatic 

3.3 Study area creation 

Firstly, for each iteration or date, the four satellite images were concatenated together 

by the module CONCAT in IDRISI. The order for the overlap process will be priority 

from left to right and from the top to bottom. In the CONCAT module, the order for 4 

images will be 0207, 0120, 0116 and 0324. The concatenation is then completed for 

every image band (figure 3.1).  
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Secondly, the study area needs to be more narrowed to cover only the targeted area 

and to reduce the number of rows and columns. The concatenated images were cut 

using the WINDOW module with min X, max X, min Y and max Y UTM-48N 

coordinates of 452625, 714255, 945915 and 1225575 respectively.  

To improve the resolution of the imagery the PANSHARPEN method was used to 

enhance the resolution from 30 meters to 15 meters per pixel. This approach uses 

satellite images band 3, 4, 5 as image components and the panchromatic band 8 is 

used for the enhancement.  

 
 

 Figure 3. 1. Result from module CONCAT. 

 

The most important section of the Mekong delta for aquaculture production is the area 

around and including the two principal river channels. This section was identified for  

detailed analysis in this study by digitizing function. Figure 3.2 shows the BOOLEAN 

boundary where "0" is background and "1" is study area. 
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Figure 3. 2. Study area 

 

3.4 Other data 

Rainfall data source 

Rainfall in this study is the core input data because it related to all hydrology models 

such as runoff, soil erosion which will be applied to calculate sediment yields and 

pesticide losses. Rainfall data was provided by the National Meteorology and 

Hydrology Centre of Vietnam. Annual rainfall data for 2008 were collected daily from 

39 stations over the study area under electronic format (.xls format). A rainfall raster 

layer was constructed following the flowchart in figure 3.3. Firstly, a vector point file 

was created to show the geo-location of every rainfall station ID (figure 3.4). In 

DATABASE WORKSHOP function in IDRISI, the rainfall data in for rain event has 

been linked to the ID in vector point file. Secondly, it needs to export these data to X, Y 

reference system in sector UTM-48N. The vector point files for rainfall data show value 

of rainfall in millimetres at a specific station (figure 3.5). Finally, the module INTERPOL 

was called to interpolate rainfall vector point layer to expand surface value on a raster 

file system based on surface interpolation with using 6 points search radius. The 

function will automatically calculate the new rainfall value nearby stations by the 

distance weighted the interaction among values of stations surround (Eastman,2006). 

Rainfall data layer after defining the boundary was shown in figure 3.6. 
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Figure 3. 3. Rainfall data layer construction chart 

 

 

Figure 3. 4. Geo-location (UTM-48N) of 39 rainfall stations 
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Figure 3. 5. Vector to show linked rainfall values to ID station 

 

 

Figure 3. 6. Rainfall data raster layer for 21st of June, 2008 
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Soil types data 

Soil type in the Mekong delta is mostly formed by the deposition of Alluvium soil which 

comprises sand, mud, gravel, and shell debris. In the upper part of soil column, soil 

type was found as a mixture of Jarosite and Geothite which is very fertile. The lower 

part of the soli column is mainly sulphuric Jarosite which contains acid sulphate soil 

and a lot of organic matter (Husson et al.,2000).  As described by Chiem (1993), 

horizontal distribution of soil type throughout the delta was divided into 6 groups. The 

alluvium soil is the result of yearly deposition by the two main branches of the river and 

occupies an area of around 28% of the total Mekong delta area. Saline soil is located 

along the coastal area and occupies 21% of the delta area.  

Soil type database was supported from GeoNetwork on FAO (Food and Agricultural 

Organization of the UN: www.fao.org/geonetwork/srv/en/metadata.show?id=14116). 

The product is vector polygon file data which is formatted in shape file with Lat/Long 

coordinate. This vector data was imported to IDRISI. Using PROJECT module 

combined with study area image (Figure 3.2) to registed the imported product to UTM 

coordinate system. Almost imagery processing in IDRISI only accepts the inputs as 

raster file, a small step need to carry out to convert vector files to raster. The module 

WINDOW was used to cut the image by defining the exact coordinate values at 4 

corners to fit into the study area. To make sure the soil type map having similar 

coordinate with study area after window, the further module PROJECT was called to 

register the final product to the UTM-48N (Figure 3.7). 

 

Figure 3. 7. Soil type in Mekong delta 
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Topology feature data 

SRTM data with 90 meters resolution and Lat-long coordinate (SRTM_57_10; 

SRTM_57_11; SRTM_58_10; SRTM_58_11) were downloaded from the USGS 

website, and imported to IDRISI. Using the PROJECT module, it was converted into a 

30 m resolution raster image and project them into a UTM-48N registered Geo-

referenced system. The study area was covered by 4 SRTM images which were 

concatenated into a single images using the CONCAT module in IDRISI, and geo-

referenced. This image was extracted again to narrow the frame to the actual study 

area (figure 3.8). The original background value is minus 32,768 as the value assigned 

for elevation of mean sea level. This value was created unintentionally by 

mathematical processing of the creation process. The final step is to re-class all minus 

values to zero. This also means the elevation data of water body was considered as 

zero (figure 3.8). 
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Figure 3. 8. Digital Elevation Model (DEM) data for the study area. The scale is in m above mean sea level.



44 
 

3.5 Field data collection 

The field data collection was carried out only to generate data of pesticide use. The 

data collection concentrated on pesticide types and usage in the field, farm location 

with X, Y coordinates, crop types, soil types, date and frequency of application and 

stocking of pesticides. 

3.5.1 Sampling sites 

Sampling station locations were selected by using the SAMPLE module within IDRISI  

using the stratified random option within the study area. The stratified random function 

establishes the locations of points in the whole frame, including background and study 

area zones. The number of 2010 was chosen to run the module resulting in 435 

sampling locations with full geographical information inside the study area (figure 3.9). 

However, this number was further narrowed by eliminating some points which fell in 

the Mekong River and the final number of sample points to be approached for interview 

was finally at 343. 

 

 

Figure 3. 9. Sampling sites including points located in the Mekong river. 
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In practice, there were many points located in channels, on bare lands or in residential 

areas. To ensure that data was collected for such points, the shifting sampling concept 

was used in which samples were taken from those farm locations nearest to the 

original point. These new points were called shifting points. In cases where the 

distance from the shifting point to original point was more than 1km, this point was 

ignored. However, during the survey, no shifting point was further than 1km from the 

original one. 

3.5.2. The questionnaire 

A questionnaire was designed to obtain relevant data including farm information (ID, 

name of farm, size, coordinate X and Y, crop types, integrated farm with fish or 

monoculture, soil type, soil texture) and pesticide data (including name and type of 

pesticide, dosage, number of application, total pesticide expenses per hectare); See 

text box 1. Each questionnaire contained geographical data which was imported to a 

handheld GPS device used to find the location for each sample. The field survey was 

carried out over 4 months (from 10th  March to 10th July 2009). 
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3.5.3 GPS support 

To locate a sample point in the field, a hand held GPS (Global Positioning System) 

device was used. The Garmin Etrex HCX 60 used was able to receive signals from up 

to 12 satellites to calculate the position and planning the route to approach a target. 

The road map system in the Mekong delta was not updated within the GPS and 

therefore approaching a target mainly relied upon compass and distance calculation 

functions generated from GPS. 

Due to the complexity of the river and canal systems in the Mekong delta, it was not 

easy to approach more than a few sample points each day. Although 2 points may 

appear to be close together they can in reality be separated by a small canal, for 

example. Consequently, a paper map of the Mekong delta (scale 1:500,000) with 

channel system information was used to plan a set of target points (usually 5 to 8 

points) which were not separated by river or canals.  

Text Box 1: QUESTIONNAIRE FOR PESTICIDE AND LAND-USE IN 

SOUTHERN VIETNAM 

Name of owner :………………………………………………………………………………………………………………. 
 
Name of farm:…………………………………………………………………………………………………………………. 
 
Reference no: ………………………………………    GPS coordinate …………………………………… 
 
Location/address : ……………………………………………………………………………………………….  
 
Size of farm  ………………………  ha    IPM farmer  Y       N     
(ring) 
 
Crops: ……………………………………………… ………………………………………………….. 
 
Where did you learn to use pesticides:    …………………………………………………………………… 
 

Chemical name Rainy season Dry season Reason for use 

 No. 
app 

g/ha/mth H/L No. 
app 

g/ha/mth H/L  

        

        

        

        

        

 

No. app = number of applications per month (?) 
 
g/ha/mth = amount  
 
H/L =  higher or lower than recommended dose 
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3.6 Pre-processing of data 

3.6.1 Spatial data sets 

Not all spatial data downloaded from different resources was in a similar projection 

system and so the geo-referencing of data sets needed to be unified prior to use in the 

spatial database and models. The PROJECT module was used to transform all raster 

and vector layers from their current referencing system to the UTM-48N system 

(Universal Transverse Mercator- Zone 48). The process uses a re-sampling procedure 

with the options of bilinear analysis. The computation process adopts a value based on 

the distance-weighted average of the values of the four nearest cells in the input 

image. This option was chosen because the input image was quantitative (Eastman, 

2011). In some cases, low resolution images after re-projection will be distorted and do 

not match the reference image template (usually the study area image). To correct 

them, the RESAMPLE module was called to correct the geo-coordinates by matching 

the ground control points (GCPs) between the template image and the distorted one 

(Salam et al.,2003; Maria, 2002). 

3.6.2 Pesticide data unit conversion 

Pesticides used in Mekong delta exist in solid and liquid forms. Farmers apply 

pesticides in the field based on the manufacturer’s instructions regarding the amount of 

gross product per unit area. Some chemicals are mixed with additives to make them 

easier to handle during application. Consequently, it was necessary to allow for these 

additives when calculating the quantity of active ingredient used. Each substance was 

re-calculated based on the percentage concentration of the active ingredient, based on 

data from the Vietnamese Ministry of agriculture and Rural Development and additional 

databases from the Agriculture Department of the Philippines (MARD, 2009; FPA, 

2008). With this data, it is simple to convert the gross product volume into pure weight 

of pesticide. There are two cases for converting pesticide as used in Vietnam:  

 With the pesticide in solid form, the label on pesticide products will show the 

concentration in g/L or g/kg. The pure chemical in g was determined by the 

percentage of the original chemical in the total weight of gross products 

(container is not included).  

 With the pesticide in liquid form, the label on the trading product will show the 

information on ml/L (meaning volume per volume).  The conversion relies upon 

specific weight data supplied to the users via the product label or in the 
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pesticide registration list (FPA, 2012). If the concentration shown on the label is 

concentration (%) per volume, the pure pesticide in g can be estimated by 

multiplying the percentage concentration and specific weight (equation 3.1).  

                                                        Equation 3. 1 

Where Mgr is pesticide in g, and specific weight is measured in g/L chemical 

 

3.7 Modelling orientation 

3.7.1 The runoff model 

A runoff model simulates the water runoff from a watershed or grid cell or a 

hydrological response unit. The grid-cell used in this study was the same size as the 

original pixels in the Landsat images. This study applies the curve number method for 

predicting runoff which followed the methodology of  USDA (United States Department 

of Agriculture) developed in 1980s by USDA (1986). The key point in this method 

presents a methodology to identify the CN number (Mishra, Tyagi, Singh and Singh, 

2006; Chow, Maidmen and Mays, 1988) based on several factors which are closely 

related to land-use and land treatment, soil type, rainfall, and topography condition. 

The model detail description and database requirements will be mentioned in further 

chapters. 

Runoff volume results from a rainfall event and locates a specific amount of water in a 

watershed. After a particular time, the amount of rainfall will be affected by a variety of 

factors such as infiltration, absorption, vegetation cover, plant intake, which reduces 

the rainfall volume. The remaining amount of water will then be affected by 

topographical conditions which determine how it moves to other places. This is called 

the runoff route. 

The runoff accumulation is determined by estimating the peak discharges. This was 

estimated by using the graphical peak discharge method (USDA-SCS, 1986) which is  

based on the estimation of unit peak discharge, the size of the drainage area and the 

undulating conditions in that area.  
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3.7.2 The Soil erosion and sediment accumulation model 

The soil erosion model basically relies upon implementation of the mathematical model 

USLE developed by Wischmeier and Smith (1978). The model is an equation which 

multiplies 5 calibrated factors related to rainfall, soil types, slope and steepness, land-

use and land treatment, and farming practice. This equation was improved and 

developed to adapt many conditions and with variety purposes of users. In the present  

study the MUSLE (Modified Universal Soil Loss Equation) by Renard and Stone (1982) 

was applied to calculate soil erosion and sediment yield based on runoff volume. The 

advantage of this version is that the model can be applied for a single rainfall event 

whereas the USLE must be applied over a long time period and simulating the total 

average soil loss for whole a year. Further detail will be discussed in chapter 5. 

 

3.7.3 Pesticide runoff and accumulation model 

Pesticide runoff and accumulation can be calculated based on the type of sediment 

and water runoff model. The pesticide losses were calculated over 2 periods. In the 

first period, pesticide losses are computed taking account of the preventive action of 

foliage cover, direct plant uptake and direct merging into the water body using the 

equation of Huber et al (1998). The second period of pesticide loss takes rainfall into 

account. Pesticide volume was calculated based on the concentration of pesticide in 

water and the concentration in sediments when runoff takes place. The gross 

accumulated pesticides were estimated by the runoff route and the amount of water 

and sediment load after a particular time. This gross accumulation is based on a 

simple concept: the total pesticide accumulation at a plot of land after a time will equal 

the already existing amount plus the amount received from other plots when runoff, 

and deducting the amount runoff to other plots. The equation to describe this concept 

will be presented in Chapter 6. 

 

3.7.4 Pesticide risk assessment on aquaculture 

 

The pesticide runoff and accumulation models generate results on current pesticide 

spatial distribution in a particular place at a specific time. These results can be used to 

reclassify the affected and unaffected areas relevant to any aquaculture development 
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or existing farming system. Some of toxicity parameters such as LC50 (Half- population 

loss lethal concentration), LD50 (Half- population loss lethal dose) or EC50 (Half- 

population effect concentration) (PPDB, 2012; EPA, 2012; EPA, 2000) was used as a 

criteria for classification. The reclassified criteria were then imported to the system as a 

fuzzy dataset (Bosma, van den Berg, Kaymak, Udo and Verreth, 2012; José, Sánchez-

Fernández, Carrasco-Ochoa and Martínez-Trinidad, 2012).  
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Chapter 4 

Pesticide use in the Mekong delta: 

Current use status and GIS pesticide mapping 

 

4.1. Global pesticide use 

Pesticide use worldwide has become matter of concern. Farmers use many pesticides 

to protect their investments in which comprise land, seed, labour, fertilizer and other 

expenses. Use of pesticides is considered as a final step which aims to protect crops 

and realise profits from agricultural operations. However, as well as being beneficial 

they may also be the source of ecological, economic, social and health problems. 

United states Environmental Protection Agency reports (EPA, 1997) have shown that 

in 1995, the values of pesticides purchased was over US $37.5 billion. Herbicides and 

insecticides were the most popular products with a value of US $16 and US $12 billion 

respectively. Fungicides and other agricultural chemicals were used less (figure 4.1). 

From 1997, total world expenditure decreased slightly, but re-established at US $39 

million in 2007, with the proportional distribution among pesticides remaining more or 

less constant.  

 

Figure 4. 1. Global pesticide type expenditure by years 
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Source: (Arthur, David, Timothy, and La, 2011; Timothy, David, and Arthur, 2004; 

David, Timothy, and Arthur, 2002; Arnold and Arthur, 1999; Arnold, 1997) 

 

Insecticide use decreased slightly, possibly due to the perception that they are harmful 

but remained at 28% of total purchases in 2007 (figure 4.2). Herbicides, are used 

widely in developed countries and represented 38% of the pesticide market in 2007. By 

contrast, purchase of fungicides and other chemicals in the other hand increased 

slightly, representing 23% and ~10% respectively of the total in 2007. 

 

 

Figure 4. 2. Global percentage pesticide expenditures by years 

Source:  Pesticides Industry Sales and Usage, EPA reports,1995 to 2007  

 

The total active ingredient in pesticides was greater than 28 million tonne per year from 

beginning of the 1990s (table 4.1). Total active ingredient in 1995 was 28.55 million 

tonne, decreasing to 25.23 million tonne in 2001. Herbicides are the most commonly 

used and the total active herbicide ingredient was 11.27 million tonne in 1997. 

Compared with other pesticide types, the active ingredient volume of herbicides was 

1/3 higher than insecticides and over 3 times than that of fungicides. Insecticide usage 

was 7.5 million tonne in 1995; 26% of the total active ingredient volume. Other 

agriculture chemicals occupied 25% of usage. Although the weather and 

environmental conditions differ from year to year, the use of fungicide to control 

agricultural diseases has not changed greatly, ranging between a maximum of 2.78 

million tonne in 1999 and a minimum of 2.36 million tonne in 2001.  
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Table 4. 1. Volume of Active Ingredient (Millions of tonne) 

Pesticide types 1995 1997 1998 1999 2000 2001 2006 2007 

Herbicide 

(%) 

11.05  

(39%) 

11.27  

(40%) 

10.74 

(38%) 

10.2 

(36%) 

9.72 

(36%) 

9.35 

(37%) 

10.09 

(39%) 

10.48 

(40%) 

Insecticides 

(%) 

7.5 

(26%) 

7.35 

(26%) 

7.13 

(25%) 

7.08 

(25%) 

6.77 

(25%) 

6.16 

(24%) 

4.775 

(18%) 

4.46 

(17%) 

Fungicides 

(%) 

2.75 

(10%) 

2.69 

(9%) 

2.76 

(10%) 

2.78 

(10%) 

2.58 

(10%) 

2.37 

(9%) 

2.595 

(10%) 

2.59 

(10%) 

Others 

(%) 

7.25 

(25%) 

7.105 

(25%) 

7.61 

(27%) 

8.33 

(29%) 

7.68 

(29%) 

7.345 

(29%) 

8.525 

(33%) 

8.525 

(33%) 

Total pesticides 

(%) 

28.55 

(100%) 

28.42 

(100%) 

28.25 

(100%) 

28.39 

(100%) 

26.75 

(100%) 

25.23 

(100%) 

25.98 

(100%) 

26.06 

(100%) 

Source:  Pesticides Industry Sales and Usage, EPA reports,1995 to 2007 

 

Table 4.1 shows that of all pesticides only insecticides have decreased in use since 

1995, and particularly between 2001 and 2007. Insecticide use in future is likely to 

decrease further due to persistence and harm to the environment and agricultural 

product (Forget, Goodman, and de Villiers, 1993).  

Approximately 85 % of total pesticides use are for agricultural activities (WRI-World 

Resources Institute, 2012) and about three quarters of this occurs in developed 

countries where herbicides were employed mostly. By contrast, the remaining pesticide 

use is in developing countries, where insecticides dominate. Although pesticides use in 

developing countries  was less than developed countries (figure 4.3), it has been 

predicted that the usage of developing countries will grow more quickly than elsewhere 

in the future (WRI-World Resources Institute, 2012).  
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Figure 4. 3. Pesticide percentage market sale in the world in 1994 

Source: As cited from (WRI-World Resources Institute, 2012) 

 

4.2.  Pesticide used in Asia 

Agricultural production in Asia was significantly increased by the “Green Revolution” 

which occurred from the late 1960s. As reported by the International Rice Research 

Institute (1985), the principal factors contributing to the increase of agricultural 

products were a 32% expansion of cultivated areas, 25% improvement of irrigation 

systems, 22% increase in use of fertilizer, and 21% increase in use of modern disease 

resistant seed. In addition, an increased use of pesticides has been one of the most 

important factors to secure the crops against the failures caused by pests.  

In most developing countries agricultural activities dominate the national economy, so 

there is a great need to use pesticides to support this and to produce off-season fruit 

and vegetables for export to other countries, or to increase the number of crops for 

profit in the year (Forget et al, 1993). 

Prior to the 1960s, pesticides were not commonly used in Asia and had been applied 

mainly to control grass (herbicides). After the “Green Revolution” in Asia, pesticide 

production quickly became a major business in developed countries. During the 1970s, 

USA, Britain, Germany, France, Switzerland, Italy and Japan controlled over 75% of 

world chemicals and supported over 85% of the pesticide demand for Asian 

agricultural activities (Pingali and Gerpacio, 1997). In 1997, the FAO (1997) revealed 
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that the increased use of pesticide throughout the world was 2 million tonne, compared 

with the previous decade tonne of which approximately 25% was applied in Asia. The 

International Food Policy Research Institute (IFPRI, 1996) reported that use of 

pesticide use was 23% of global use for rice and maize production and approximately 

26% in fruit and vegetable production. Global value of pesticides used in rice 

production alone was US $3.2 billion, with up to US $2.6 billion of this used in Asia. 

Although pesticides were produced intensively in developed countries, control of 

pesticide use and environmental risk assessment in those countries of use was not a 

priority. Ironically, around 25% of pesticides produced by USA in the 1970’s were 

banned chemicals, either restricted or not registered for use in the USA (Weir and 

Shapiro, 1981). Moreover, the pesticides used in Asia were criticized as almost all 

belonged to high risk categories I and II (following the classification of WHO) 

(Warburton, Palis, and Pingali, 1995; Weir et al, 1981).  

Data from IRRI (1995), revealed that Japan was the highest consumer of pesticide, 

using 61% of the total pesticide in Asia, of which approximately 71% was herbicides, 

72% fungicides and 45% insecticides. In Vietnam,  80% of agricultural products 

produced were dependent upon insecticide application (Tennenbaum, 1996).  

In 2004, the annual active ingredient usage of Asia was roughly 500 thousand tonne 

with a value of US $8.3 billion (figure 4.4), although these reported levels could be 

much less than the actually used. Pesticides use has tended to increase in Asia while 

in other continents it has remained static since the 1990s. tonne. Fig 4.4 illustrates 

recent usage of pesticides in Asia (FAO, 2005) in terms of tonnage used and cost. 
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Figure 4. 4. Active ingredient volumes and market values in Asian countries in 2004 

 

 More recent information on pesticide use given in figure 4.5 (FAO, 2012b) indicates of 

the countries investigated the Republic of Korea and Thailand use pesticides most 

intensively for agriculture production. 

.  

 

Figure 4. 5. Pesticide applied per hectare 

(FAO, 2012b) 
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(FAO, 2012b). In Thailand and Malaysia, total percentage herbicide and fungicides 

dominated the pesticide use (at ~80 %) 

 

 

Figure 4. 6. Proportional distribution of pesticide use in  Asian countries. 

(FAO, 2012b) 

 

4.3 The  current status of pesticide use in Vietnam and the Mekong delta 

Vietnam is a developing country with an economy dominated by agriculture.  The Red 

River delta in the north of Vietnam and the Mekong delta in the south are both very 

famous for rice cultivation which employs intensive pesticide use.  Especially in the 

south, pesticides are also used in fruit cultivation which is the second most important 

product, after rice. 

4.3.1 Pesticide use in Vietnam, a review.  

In Vietnam, pesticides are considered as a powerful tool to control and secure crops. 

Before 1992 in Vietnam, 77 active ingredients were registered, with 96 formulated 

product names and 25 overseas companies were permitted. In the following ten years, 

there was a rapid increase  to having up to 400 active ingredients, over 1000 

formulated named products and more than 100 companies working in Vietnam (Quyen, 

Dan, and Nguyen, 1995). Latest records in 207-2008 show that ~75 thousand tonne of 
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pesticides (equivalent ~$480 million) were legally imported to Vietnam  (Vinachem, 

2009) 

Vietnam began to encourage pesticide use in agriculture activities to enhance rice 

production during the 1950s in the north of Vietnam (Dasgupta, Meisner, Wheeler, 

Xuyen and Thi Lam, 2007). At that time  pesticides were applied freely without 

comprehension or regulation by government (Huan and Thiet, 2000; Pincus, 1995).  

From 1986, the pesticide market was formed by the private sector with some 

formulated factories granted licenses to formulate chemicals from imported active 

ingredients for agricultural uses. In the next decade, pesticides became extremely 

marketable products (Dasgupta et al.,2007).  

The Asia regional workshop on the implementation, monitoring and observance of the 

international code of conduct on the distribution and use of pesticides noted that 99% 

of the important pesticides in Vietnam were bought from developed countries (Hoe, 

2004). In 2004, imported pesticides reached ~48,000 tonne of formulated product 

(containing ~24,000 tonne of active ingredient tonne) with the equivalent values of US 

$~160 million. From only around 20,000 tonne imported in 1991, pesticide imports into 

Vietnam have increased significantly (figure 4.7) reaching 50,000 tonne by 2004.  

 

 
Figure 4. 7. Imported annual pesticide (tones) in Vietnam between 1991 and 2004. 
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Of the total pesticides used in Vietnam, fungicides and herbicides tended to increase 

from 1991 to 2004 whereas insecticides decreased significantly (figure 4.8), especially 

between 1991 and 1999. Use of other types of agro-chemicals was very consistent at a 

maximum of 3% in 2003. 

.  

Figure 4. 8. Proportion use of pesticide types in Vietnam from 1991 to 2004 

 

4.3.2 Pesticide use in the Mekong delta 

The Vietnamese Mekong delta covers approximately 2 million hectares of fertile land 

and employs about 24 million labourers to produce ~20 million tonne of rice yearly 

representing  64% of national rice production (GSO, 2012c). Rice production has 

rapidly increased from 10.3 million tonne in 1975 to 22 million tonne in 2010 (GSO, 

2012c), greatly assisted by use of higher seeding rates and use of fertilizers. This, in 

turn, resulted in  unexpected pest and disease infections and the use of more (Huan et 

al.,2005) 

A pesticide survey in 1999 in two intensive rice cultivation provinces showed a mean 
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molluscicide (Berg,2002; Berg, 2001). 64 pesticides were found in the survey the most 
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A further survey between 2001 and 2002 showed that insecticide and fungicide 

applications in winter-spring period and summer-autumn season had decreased (Huan 

et al.,2005) with the most popular insecticides at that time being Endosulfan, Lindane, 

Chlorpyrifos, Diazinon, Fenobucarb, and Fenvalerate. Long persistence pesticides like 

organochlorines were cheaply available and were still be the preferred insecticides for 

control of pests and malarial  vectors (Carvalho, 2011) 

Analysis of pesticide residues in the aquatic environment have detected some polar 

herbicides, fungicides and insecticides such as Diazinon, Fenotrothion and cyclic 

Endosulfan sulphate. The most commonly detected was Diazinon at levels up to 42.8 

ng/L, and Organochlorines at 0.01 ng/g sediments. DDT-the most persistent 

Organochlorine compound - was found throughout the delta (Carvalho et al.,2008; 

Dang, Nguyen, Nguyen, Luu, Carvalho and Cattini, 1998) 

(Nguyen Huu Dung and Tran Thi Thanh Dung, 1999) showed that pesticide usage in 

1996 and 1997 was just over 1 kg/ha/yr, with. insecticide being the most common at 

~400 g/ha/yr (39%) and fungicides and herbicides at around 300 g/ha/yr (~30%) (table 

4.2). According to Berg (2002), pesticide usage in 1999 was considerably higher at 

around 1.8 kg/ha/yr although this was averaged over a range of different farming 

practices (table 4.3).  

 

Table 4. 2. Mean usage (g a.i./ha/yr) (Survey 1996-1997) 

 Insecticide Herbicide Fungicide Total Pesticide 

1996-1997 394.2 323.1 300.0 1017.3 

Percentage 

(%) 
39 32 29 100 

Source: (Nguyen Huu Dung et al, 1999) 
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Table 4. 3. Mean usage (kg a.i/ha.yr) in different rice farm types (survey 1999) 

  Rice 

application 

Rice-Fish 

Application 

Rice-Fish IPM 

application 

Rice IPM 

Application 

  (Kg) (%) (Kg) (%) (Kg) (%) (Kg) (%) 

Insecticide  0.93 52 0.52 51 0.13 23 0.2 33 

Herbicide  0.31 17 0.2 20 0.17 30 0.14 23 

Fungicide  0.55 31 0.29 29 0.27 47 0.26 43 

Total pesticide  1.8 100 1.01 100 0.57 100 0.6 100 

Source: (Berg, 2002) 
 
 

The most comprehensive survey on pesticide use was conducted by the World Bank 

(2004), based on 900 samples from over 3,000 hectares, recording a mean annual use 

rate of 2.16 kg/ha/yr (figure 4.9). Insecticides and fungicides had the highest usage at 

43% and 29% of total pesticides used respectively, but herbicides have been used less 

recently in rice cultivation. The amount of fungicides used increased significantly from 

~300 g/ha/yr in 1996 up to ~923 g/ha/yr in 2004.  

  
 

 

 
 

Figure 4. 9. Mean annual use of pesticide per hectare in 1996- 2004. 

Source: World Bank (2012). 
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4.4 Pesticide residues reported in fish 

In 1980s, pesticides were shown to have marked effects in several cultured aquatic 

species (Valmonte-Gerpacio, 1995). The data revealed high herbicide and fungicide 

residues, which decreased fish survival and affected physiology (Abdullah, Bajet, 

Matin, Nham and Sulaiman, 1997; Cagauan, 1990); (Bottrell and Weil, 1995). Tilapia 

was the most commonly fish tested to determine the acute toxicity and the residues 

and physiological condition for a range of toxic substances  (Jayaraman, Celino, Lee, 

Mohamad, Sun, Tayaputch and Zhang, 1989; Isensee and Tayaputch, 1986; 

Jayaraman,1986; Mohamad, Juru and Ismail, 1986; Argente, Seiber and Magallona, 

1977). Cagauan (1990) and Dela (1981) tested the acute toxicity with the toxic 

parameter of LC50 (in different time of 24,48,72,96 hours) on tilapia with Cypermethrin 

(insecticide) and Organostannous (molluscicide) to find the relationship of toxicity and 

the of physiology of hematological and histopathological changes. Lyndane (Reyes 

and dela, 1983; Medina-Lucero, 1980; Kok and Pathak, 1966)  

Current studies have focused on the  measurement of persistent Organochlorine by 

Gas Chromatography method, and found the Organochlorine presented in all samples 

of fish tissues or fish oil of Nile tilapias (Botaro, Torres, Malm, Rebelo, Henkelmann 

and Schramm, 2011; Sarkar, Bhattacharya, Bhattacharya, Chatterjee, Alam, Satpathy 

and Jonathan, 2008; Jacobs, Santillo, Johnston, Wyatt and French, 1998), and the 

discovery the ranking of residue amount of DDT>Heptachlor>Lindane>Aldrin in catfish 

tissues sampled in the south of Bangladesh (Das, Khan, Das and Shaheen, 2002). The 

residues of Andrin, Heptachlor and HCH (Hexachlorocyclohexane) easily found in 

tissues of in samples collected from worldwide sampling from 15 countries on the 

species Sparus aurata (Kalyoncu, Agca, and Aktumsek, 2009).  

Although pesticide residues have been detected in fish, water samples, sediments, the 

data from gas chromatography has shown that the residue concentration still meets the 

food safety requirements (Carvalho et al, 2008). The analyses from studies show that  

the amount residue of pesticides on aquaculture was not enough to affect to the quality 

of aquaculture products (Carvalho et al.,2008; Klemick and Lichtenberg, 2008; 

Nguyen, Nguyen and Bayley, 2008) 

4.5.   Field survey of current pesticide use in the Mekong delta, 2008-2009 

A field survey of current pesticide use in the delta was carried out as part of this PhD 

research in March-2009 with the objective of identifying pesticides used, the quantities 

applied and their geographical distribution. Data was generated through questionnaires 
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at 343 rice farms within the area of ~19,000 km2. The methodology for sampling has 

been presented in chapter 3 (see 3.5) 

Pesticide usage was expressed as the quantity of formulated product and as quantity 

of active ingredient. The formulated product is a combination between the active 

ingredient and other additive substances or water. Active ingredient was calculated 

using product data from the registered pesticide list of the  Philippines Agriculture 

Department (FPA, 2012). 

The survey revealed that 96 pesticides belonging to 23 pesticide groups are currently 

used in the delta (table 4.4). Many pesticides (34) belonged to Group II, defined as  

moderately hazardous (WHO, 2006), while highly hazardous (Group I) pesticides were 

rarely used. The remainder were in the less toxic Groups III and IV.  
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Table 4. 4. Pesticides used in the Mekong delta from the 2009 field survey. 

Pesticide Group Chemical names 
Sample 

rates 
Gram/ha 

Toxicity class 
(WHO, 2006) 

Dicarboximide Isoprothiolane, Iprodione 251 3000 II,III 

Carbamate Fenobucarb, Carbosulfan, Mancozeb, Carbaryl, Propineb 313 2030 II, II, IV,II, IV 

Conazole 
Hexaconazole, Tricyclazole, Difenoconazole, Propiconazole, 
Prochloraz, Flusilazole 

334 2030 III, II, II, II, II, II 

Chitin synthesis 
inhibitor 

Buprofezin 272 1065 III 

Organophosphate 
Methidathion,Diazinon, Profenofos, Lyphosate, Quinalphos, Phenthoate, 
Dimethoate, Acephate, Chlorpyrifos ethyl, Trichlorfon 

232 1041 
Ib, II, II, III, II, II, II, II, 

III, II 

Others 
Pymetrozine, Thiosultap, Metalaxyl, Nitrobenzen, Paraquat, 
Penoxsulam, Bispyribac sodium, Carbendazim, Flusilazole, Fenclorim 

99 1014 
III, II, II, II, IV, III, III, II, 

IV 

Molluscicide Niclosamide, Metaldehyde 220 949 II, II 

Phenoxy compound Fenoxaprop ethyl, Dichlorophenoxy, Cyhalofop-butyl 182 924 III, II, II 

Anilide Pretilachlor, S-metolachlor, Butachlor, Propanil, Thifluzamide 277 490 No data 

Sulfonylurea Pyrazosulfuron, Ethoxysulfuron 84 386 No data 

Antibiotic fungicide 
Thiophanate-methyl, Validamycin A, Carbendazim, Albendazole, 
Diafenthiuron, Kasugamycin 

204 344 
IV, No data,  IV, IV, III, 

IV 

Aromatic acid Bispyribac-sodium, Quinclorac 94 337 III, III 

Abamectin Avermectin b1b, Avermectin b1a, Amamectin benzoate 204 323 Ib 

Neonicotinoid Acetamiprid, Thiamethoxam, Imidacloprid, Dinotefuran 294 321 Ib, II, No data, II 

Triazine Pymetrozin 203 229 III 

Strobilurin Azoxystrobin, Trifloxystrobin 94 213 U, U 

Pyrethroid Deltamethrin, Cypermethrin, Lambda-cyhalothrin, Gamma-cyhalothrin 187 148 II, II, II, III 

Pyrazole fungicide Fipronil, Pyrazosulforon ethyl 179 135 II, U 

Safener Fenclorim 217 79 U 

Benzimidazole Paraquat, Nitro benzen, Metalaxyl 23 78 II, II, II 

Organochlorin Chlorfluazuron, Endosulfan 83 68 U, II 

Oxadiazine Indoxacarb, 71 64 II 
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The highest usage was found in three types of pesticide Dicarboximide, Carbamate 

and Conazole.  which were applied at rates of 3 kg/ha/y, 2 kg/ha/y and 2 kg/ha/y, 

respectively (figure 4.10). Organophosphates and Chitin synthesis inhibitors which are 

considered as some of the longest persistent types of pesticides to the environment 

(Minh et al, 2007) were applied at over 1kg/ha/y. Perhaps the most dangerous type of 

chemical in use was Organochlorine (Capkin, Altinok, and Karahan, 2006) which is not 

only highly toxic but has long persistence in environment, sediment and biota, and was 

applied at ~68g/ha. Even though Organochlorine (Chlorfluazuron and Endosulfan) are 

applied in small quantities, they were found in use in 83 of the 343 stations sampled.  

Although these pesticides are banned for use worldwide, including in Vietnam, by 

illegally produced and imported, they may still be found in any retailer in Mekong delta 

where they are preferred because of their strong effects and long persistence after 

application.  Moreover, these pesticides are much cheaper compared to the others and 

can be stocked for a long time without degradation of their effects. 

 

Figure 4. 10. Mean annual application of formulated pesticides (g/ha) in the Mekong 
delta.  Based on 2009 survey data (this study). 
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The total formulated pesticide applied in the Mekong delta calculated from this survey 

was at ~14.12 kg/ha/y. This is much greater than the 1999 data from FAO  which was 

less than 10 kg/ha/y (see figure 4.6) (FAO, 2012b). Overall, fungicides dominated in 

the farms with usage up to 5.82 kg/ha/y formulated products, at 41% of the total 

pesticides (figure 4.11).  As in other Asian countries, insecticides were still widely used 

at ~5.3 kg/ha/y (~38% of total pesticides). While herbicides and other chemicals 

represented  only ~20% of the total pesticides used.  

 

Figure 4. 11. Mean annual application of pesticide product types (g/ha/y) in the 
Mekong delta. Based on 2009 survey data (this study). 

 

Substances from the Conazole group were found in 334 of the 343 stations sampled 

(figure 4.12). These chemicals are indispensable in the fight against fungal diseases of 

rice crops. The next highest rate was Carbamate found at 313 stations, followed by 

Neonicotinoid, Anilide, Chitin synthesis inhibitor, Dicarboximide, Organophosphate, 

Molluscicide and Safener found at 294, 272, 251, 232, 220 and 217 stations, 

respectively. Although molluscicide was applied only once per crop, the application 

rate was very high at more than 1 kg/ha. 
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Figure 4. 12. Detection frequency of pesticide group in the Mekong delta. 

Based on 2009 survey data (this study). 

 

Pesticide (a.i) use differed between seasons with 975 g a.i/ha over the dry season 

increasing to 1,537 g a.i /ha over the wet season (table 4.5). There was a notable 

change in application rate of fungicides from 874 g a.i /ha over the wet season to 359 g 

a.i /ha over the dry season and a reduction in herbicide dosages from ~197g a.i /ha 

over the wet season to ~140 g a.i /ha over the dry season. 

 

Table 4. 5. Active ingredient pesticides usage in g a.i./ha over the wet and dry seasons 

 Insecticide Herbicide Fungicide Total pesticides 

Wet season 466 197.5 874 1537.5 

Dry season 478 139.5 359 976.5 

Total 944 337.5 1233 2514. 
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The total quantity of active ingredients applied was calculated to be ~2,514 g a.i./ha 

which is considerably higher than in previous years (figure 4.13) representing ~45% of 

the total pesticides used. 

  

 

Figure 4. 13. Total use of active ingredients of pesticides in the Mekong delta. 

Based on 2009 survey data this study. 

 

Comparing pesticide use from previous surveys it is clear that use in the delta has 

increased  sharply from ~1 kg/ha/y to ~2.5 kg/ha/y (figure 4.14) a rate of  over 115 

g/ha/y. Fungicide use in rice paddies has increase markedly in recent years to a 

current rate of 1,200g/ha/y from ~300g/ha/y.  By contrast, insecticide use has remained 

relatively stable in accordance with worldwide trends after a step increase from 

~394g/ha/y in 1996. 
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Figure 4. 14. Mean use of active ingredient of pesticides (g/ha/y)  from 1996 to 2009. 

(World Bank, 2012a; Berg, 2001b; Nguyen Huu Dung et al, 1999) 

 

4.6 GIS-based analysis of the spatial distribution and use of pesticides in the 

Mekong delta. 

4.6.1 Databases and data layers construction 

During field data collection the x and y coordinates were recorded for every station 

visited using a handheld GPS. Every instance of pesticide use could then be mapped 

to show the active ingredient usage in all 343 points on the ground. To enable this, a 

GIS database was linked to the attribute data (in DIRISI) and geo-locations so that 

spatial models could be developed to show the show the distribution of every type of 

pesticide in the Mekong delta.  

The data collected in the questionnaire survey comprised ID, X and Y coordinates, 

current land-use, pesticide trade name, active ingredient, chemical family, dosage, 

percentage active ingredient, percentage of concentration, actual active ingredient use 

per hectare, recommend dosage, days of application and number of crops per year.  

 

a. Land-use data 

Land-use was the main factor affecting the use of pesticides and their distribution. A 

land-use data layer was constructed from 2 resources; satellite images and field survey 

data. 

The concept of land-use classification is well known and has been widely used for the 

purposes of supporting policy makers for development. Land-use data was traditionally 

collected by field surveys and direct observation but  remote sensing techniques allow 

up to date land-use and land cover classification (Campell, 2007; NASA Landsat 

program,2003; NASA, 2000; Lillesand et al.,1994). 

Land-use data was derived by unsupervised classification of Landsat 7 ETM+ images, 

with a resolution of 30meters, in which the spectral values of every image pixel are 

ranked and placed into clusters (Thomas, Ralph, and Jonathan, 2008). Bands 1, 2 and 

3 (Blue, Green, Red), 4 (Near Infrared), 5 (Middle Infrared) and 7 (Short Wave 

Infrared) were used in this analysis, the thermal infrared band (band 6) being ignored 

due to its lower spatial resolution and incompatibility with other bands. The isocluster 

technique was used within  the IDRISI system to create an unsupervised set of clusters 
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based on the 3 sub-modules CLUSTER, MAXLIKE and MAKESIG (Eastman, 1999). 

CLUSTER uses a histogram peak technique in which peaks are detected in a one-

dimensional histogram. Once the peaks have been identified, all values which are not 

peaks will be assigned to the nearest peak, new assigned values are grouped into a 

class, and the division of classes is decided as the midpoint between the peaks. In the 

broad classification, a class must contain a frequency higher than all of its non-

diagonal neighbours. In the fine classification, this is relaxed, permitting one non-

diagonal neighbour to have a higher frequency. This accommodates true peaks which 

are otherwise missed because a nearby peak of greater magnitude obscures the usual 

dip between the peaks.  

The overall process, in which 20 clusters were used in the initial classification, is 

shown in figure 4.15.  

 

 

 

 

 

 

 

 

Figure 4. 15. Schematic representation of the land-use classification process. 

 

Unsupervised classification may not be fully accurate, for example mis-identifying as 

terrestrial features water bodies which have high turbidity or chlorophyll levels. To 

correct this problem, a further step was carried out to re-classify the 20 clusters into 8 

land-use categories. This was based upon the visual results from the unsupervised 

classification combined with regional knowledge of the author and land-use data 

recorded during the survey. Each crop type was matched into a specific category 

derived from the unsupervised classification of the Landsat images. Five important 

land-use categories were found in the survey including paddies, cash crops, garden 

and orchards, forest and industrial crops. This data was compiled into an attribute file 

with the pesticide database. The final result (figure. 4.16) shows more accurate land-

use data and removes duplicated clusters (table 4.6).   
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Table 4. 6 . Expert reclassification of initial unsupervised land-use classes. 

New 

clusters 

Landuse Categories Clusters reclassified 

0 Background 1 

1 Rivers and canals 14, 17 

2 Intensive paddy (2 crops) 3, 6, 11, 19 

3 Dry paddy (3 crops) 2, 12, 18 

4 Paddy fields  mix orchards 4, 9 

5 Cash crops areas, vegetable zone 5, 15 

6 Coconuts, sugar cane zones 7 

7 

Brackish aquaculture, mangrove, 

shrimp farms 16, 20, 13 

8 

Mangrove forest, Clouds and cloud 

shadow 10 

 

b. Pesticides database construction  

The Excel spreadsheet of field data was imported into the IDRISI system using the 

DATABASE WORKSHOP procedure to generate a database file (.mdb) in IDRISI. 

Database construction, vector and raster layer creation will be described in the 

following sections. These subsequent works is an example study which uses 

Abamectin as an example. This methodology can be used for any other pesticides 

found. 

 

4.6.2 Pesticide spatial distribution 

a. Pesticide vector layer construction 

The 343 point location data for pesticide use had and was extracted from the database 

as a vector point file with UTM-48N geo-coordinates.  Parameters of pesticide use in 

the wet and dry seasons were respectively linked to the ID points so that any value 

could be displayed (figure 4.17). 
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Figure 4. 16. Unsupervised classification of land use in the Mekong delta into  8 land use types. 
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Figure 4. 17. Vector point file showing application rate of Abamectin (gross formulated 
product) 

b. Pesticide raster layer construction 

Raster data layers were developed based on interpolation of the vector point files with 

a distance weight exponent of 2.0 and a six point search radius. The interpolation 

process produced raster images at 30 x 30m resolution. For each chemical, there were 

found some locations with a very low rate of use and these values were rounded down 

during data processing and may be show the value zero. This was in contrast to 

stations where there was either no use of this chemical or no information available at 

the time of the survey. When processing the database, these points left blank. The 

interpolation process deals with points without data, by assigning a new interpolated 

value estimated by the distance weight exponent function among adjacent data points. 

Where data points are almost zero or zero, these values will be included in the 

process, along with adjacent points.  

The interpolated product was limited to the study area by multiplication with a Boolean 

mask image so that values outside the study are multiplied by "0" to become zero 

value, and the rest with "1" to retain the  original values (Thomas et al, 2008). Due to 
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the interaction between 2 data source points, a curve may appear distant from the 2 

points. To avoid this effect, a 7*7 pixel filter window was applied to convert all values to 

the mean values. Figure 4.18 showed an example of raster layer construction for 

Abamectin mean use in dry season. 

 

 

Figure 4. 18. An example of the initial interpolation product: Raster image of Abamectin 
application (g/ha) in April (2008) 

 

The interpolation process calculated new values for all pixels including some in the 

rivers and canals. To avoid this,  all pixels in rivers were eliminated using a Boolean 

mask where the river and canal systems have the value “0” and the reminder has the 

value “1” (figure 4.19). An example of the corrected image is shown in figure 4.20. 
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Figure 4. 19. River layer Boolean mask with "zero" values for pixels allocated to the 
river. 

 

 

Figure 4. 20. Spatial distribution of Abamectin use in the Mekong delta. 
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c.  Pesticide spatial distribution adjusted for land-use 

While the interpolation process calculates values of pesticide use for all pixels in the 

study area the actual application rate is dependent upon land-use category and so the 

initial results require correction for this factor. For example, figure 4.20 shows the 

interpolated use of Abamectin in all areas except pixels in rivers. However, the model 

predicts use of Abamectin in coastal areas where aquaculture and mangrove and this 

requires correction by using the land-use image to enhance the accuracy of pesticide 

spatial distribution.  

 

To achieve this, the interpolation processes needs to be carried out for every pesticide 

in every land use category (figure 4.21). The spatial database contains information 

about each pesticide and the land-use categories where these types of pesticides were 

applied. For example, Abamectin database actually comprised land-use categories 2, 4 

and 5 which represent rice paddies, cash crops and industrial crops respectively. 

Raster point layers were firstly created for each land-use category by using the 

interpolation function. Water body and mangroves were not taken into account as there 

was no pesticide application at these areas. For the Abamectin database, 3 vector 

point files were generated based on Abamectin data points in three land-use 

categories 2, 3 and 5 (figure 4.22).   
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Figure 4. 21. Schematic diagram of the overall process for adjusting the spatial 
distribution of pesticides based on land use. 
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Figure 4. 22. Abamectin vector point files for land-use categories 2, 4, 5 in the Mekong 
delta. 

 

After interpolating these vector point layers, they were modified by multiplying the 

raster images with the corresponding Boolean land use image (for Abamectin, they 

were multiplied with Boolean images of land use 2, 4 and 5, respectively). The raster 

file outputs from this processing reveal the distribution of each in the context of a 

specific land-use type (Figure 4.23). After correction, the total number of layers 

representing use of any chemical was summed either by OVERLAY module or use of 

the IDRISI IMAGE CALCULATOR to overlay all individual images under the option of 

first image covers the second one. The process will be continued to overlay until the 

last image. So, for example, if a specific chemical was applied in 6 land use categories, 

there would be 6 raster layers generated and then overlaid together. The final step was 

to apply the Boolean mask to eliminate pixels occurring in rivers and canals. The final 

output after all adjustments is shown in figure 4.24 
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Figure 4. 23. Raster layers showing Abamectin use in the Mekong delta in April (2008), 
corrected for each relevant land use category. 

 

 

 

Figure 4. 24. Summary image showing spatial distribution of Abamectin use adjusted 
for all land use categories. 

 

This process and resulting images show a more acceptable pattern of distribution with 

less artificial curves than the initial product without adjustment. A specific area contain 

multiple landuse will show various volume of pesticide distribution, that shows different 
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levels of pesticide volume at garden, road, rice fields, water body and others. A 

zoomed section of an image in figure 4.25 and figure 4.26 illustrates this significant 

improvement. The high values (red colour) show Abamectin usage in paddies which 

are mixed with residential areas, gardens, orchards and other cash crops. This 

separation is only clearly revealed in the land use-adjusted image. 

 

Figure 4. 25. A zoomed section from the Abamectin distribution image adjusted for 
land use category. 
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Figure 4. 26. A zoomed section from the Abamectin distribution image without 
adjustment for land use category. 

 

d.  Estimating the date of application based on crop types 

Information on the date of pesticide application was rarely available during the data 

collection and almost no farmer could identify the dates of spraying and also kept no 

records. As this data is an important parameter for calculating the pesticide loss and 

accumulation, for modelling purposes the time of application for a chemical was 

estimated from knowledge of the crop seasons. Although farmers did not know the 

exact date for application, all interviewees remembered the period for each type of 

pesticide applied. This information was combined with local knowledge of the author 

who is resident in this area.  

 

In the Mekong delta, rice cultivation occupies 80% of the available space and occurs in 

both the wet and dry seasons. Pesticides are used at every stage of the rice cropping 

system. At the beginning, molluscicides are used to clear out the golden egg snail 

which has strongly expanded in recent years (figure 4.27). This is followed by use of 

herbicides to kill all unexpected grasses and this may continue throughout the first 

month, stopping when the rice foliages is sufficiently strong to dominate the paddies. 

After the first month, rice stems are soft and are attractive items for insect consumption 

which develops strongly during this period up to the end of second month. 

Consequently, insecticides are intensively applied from the beginning of the second 

month crop, application rates being strong initially but gradually decreasing in both 

dosage and the number of applications.  
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Figure 4. 27. Diagram of temporal pesticide use in a rice crop 

 

 

In some cases, insecticides may be applied beyond the second month into the third 

month crop. Most commonly, farmers use high dose rates of herbicides and 

insecticides at the beginning of the month, then gradually reduced use in preparation 

for a change to other types of pesticide in the sequence. Conversely, fungicides are 

applied at very low initial rates which are then increased so that the highest amount of 

fungicides is used in the last few weeks before harvest.  

 

In general, there are two main rice crops in Mekong delta. The wet season crop which 

is known as the HE THU starts from the beginning of April to the end of August. This is 

followed by the dry season crop, or  DONG XUAN in which  land preparation begins in 

September, seeding occurs at the  beginning of October and the cycle ends in the 

following February (Sakamoto, Van Nguyen, Ohno, Ishitsuka and Yokozawa, 2006). In 

some other areas 3 crops can be produced per year but these areas are very few 

(Chen, Son, Chang and Chen, 2011).  

The pesticide application data was grouped into 3 pesticide types, insecticides, 

herbicides and fungicides respectively and the spatial distribution for each pesticide 

was modelled depending upon its group and season, the latter being assigned by the 

author (table 4.7).In general, insecticides and herbicides were assigned to dates  at the 

beginning of the month, whereas fungicide applications were  allocated to the end of 

the third month. 

 

 

 

  

First month crop Third month crop 

 

Second month crop 

 
Molluscicide 

Herbicides 
Insecticides 

Fungicides 

RICE CULTIVATION 
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Table 4. 7. Estimation date of application of pesticides in the Mekong delta. 

RICE CULTIVATION 

HERBICIDES  INSECTICIDES  FUNGICIDES 

HE THU  DONG XUAN HE THU  DONG XUAN HE THU  DONG XUAN 

01-April  01-October  01-May  01-November  30-Jun  30-December 

 

4.7. Summary 

In conclusion, this chapter presents an overview of pesticide use worldwide and in the  

Mekong delta. The recent data collection, combined with a GIS-based methodology for 

spatial modelling of use, reveals the current use and the trends within the study area 

for each type of pesticide used.  

At the global scale, pesticide use is still increasing and world pesticide expenditure hit 

~40 billion USD in 2007. Although insecticides and herbicides were most popularly 

used, the recent trend has been for a gradual reduction.  The percentage applied per 

unit area has clearly dropped off from ~45% to under ~40% for insecticides, and from 

~33% to ~27% for herbicides, respectively. Fungicide use on the other hand has 

sharply increased from   ~17% of total pesticide used in 1990s, to ~23% in total 

pesticide use in 2000, with further increase in recent years.  

At a more regional scale, there is still strong demand for use of chemicals in 

agricultural activities in Asia. Annually, rice industries in Asia consumed large amounts 

of pesticide with an approximate a value of US $2.6 billion per year. Insecticides 

dominate the pesticide market in Asian countries occupying about 55% of the 

applications per unit area. Some very dangerous insecticides which have been banned 

elsewhere due to their high toxic and long persistence are still widely found in Asian 

pesticide markets.  

Although Vietnam is not remarkable in comparison with other Asian pesticide usages, it 

still consumes huge amounts of pesticides for rice cultivation, almost all of which are 

imported. 50,000 tonne were imported in 2000, up from 20,000 in 1991. In the last 20 

years, insecticide use has dramatically decreased while fungicide usage has markedly 

increased. 

This study represents the most recent survey to investigate pesticide usage in the 

Mekong delta. The 2009 survey identified 96 types of popular pesticides in 23 groups 

most of which are in the WHO groups II and III. Under this classification system, 
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pesticides in Mekong delta could be considered as moderately hazardous although 

small quantities in the highly toxic and persistent (Ib group) also were found such as 

Methidathion or Acetamiprid. The survey revealed current total application rates of 

formulated product of around 14.12kg/ha/y, equivalent to ~2,514g/ha/yr active 

ingredient. Fungicides and insecticides represent ~49% and ~38% of the total, while 

herbicide use is relatively low at only ~13% of the total. Organochlorine was found in 

use at almost 90 stations, but at a low application rate.  

The distribution models developed within the GIS were adjusted by using the land use 

categories to improve their agreement with actual pesticide application conditions. 

Each type of pesticide was recalibrated based on land and the resulting corrected 

spatial distributions show the current use and distribution of all of the agrochemical 

identified in the survey.  

The method in this chapter could be applied to mapping the distribution of all pesticide 

pesticides not only in the Mekong delta but also in other places in the world.  The 

raster layers in this chapter will provide the pesticide input data for pesticide 

component in the main model. All database constructed in this chapter are able to link 

to other module as an input of running as a sub-model. The method to connect the 

results in this chapter to the main target model will be present in chapter 6. 

 

 

 

 

 

 

 

 
 



86 
 

Chapter 5 

GIS modeling sediment loss and net sediment accumulation in the 

Mekong Delta 

 

5.1.  Introduction 

 

Soil erosion is a natural activity which varies with rainfall and soil type. A light and 

stable rainfall creates a steady vegetation layer which protects the top soil layer and 

avoids erosion. Conversely, a strong and unstable rainfall will postpone the 

development of the vegetation layer, allowing large rain drops to break down the soil 

particles and cause the top soil layer to erode (Morgan, 2005). In recent years, soil 

erosion has been recognized as being a significant problem throughout the world. 

Globally, over 24 billion tonnes of soil is eroded every year (Lal, 2003), leading to a 

loss of approximately 2000 million hectares annually (United Nation Environmental 

Program, 1991). Due to the complexity of the physical hydrological processes involved 

the economic and environmental impacts of erosion by water are difficult to evaluate. 

However, it has been estimated that ~55% (~1094 million hectares of soil) are eroded 

by water annually (Lal, 2003) leading  directly to a decrease in cropland area. The  

products of erosion create massive sediment loading in the aquatic environment and 

become incorporated into ponds, channel systems, rivers and reservoirs which can 

lead to considerable economic losses (Kort, Collins, and Ditsch, 1998).  

Soil erosion can be estimated using an equation early developed by (Zingg, 1940). The 

equation simply calculates the soil loss based on the slope of a specific location such 

as a farm field. In later developments, crop factor, slope and land management were 

included in the soil erosion calculation by researchers in Soil Conservation Service 

(SCS) (Wischmeier and Smith, 1978) 

Before 1990, several  projects had tried to investigate  global soil loss  though erosion 

and how it affected agriculture and long-term national economic trends (Lester and 

Edward, 1984). After 1990, sediment load and soil erosion were studied in more detail 

to evaluate the impact of erosion on the environment. Various empirical, conceptual 

and physics-based models have been used. Some models have become the most 

popular due to the long term application and verification of  results certified by many 
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scientists. The USLE (Universal Soil Loss Equation) was innovatively developed and 

widely applied in America (Wischmeier et al.,1978). Although the USLE was one of the 

root models and had been tested on over 10,000 plots of land in America with over 20 

years rainfall data, the model still received some criticisms about over prediction and 

low applicability to certain areas (Risse, Nearing, Nicks and Laflen, 1993). The Revised 

Universal Soil Loss Equation (RUSLE) has been applied worldwide due to its flexible 

applicability (Renard and Freimund, 1994; Renard, Foster, Weeise and Porter, 1991). 

Although widely applied, it was still found to be  inappropriate in some cases (DE ROO, 

Offerman and Crement, 1996). With the support of high capacity computing and 

information technology, conceptual models have  become strongly developed. The 

SWAT model (Soil and Water Assessment Tool) brought an effective mathematical 

model to evaluate sediment fate in specific hydrological conditions (Arnold et al, 1998; 

Arnold, William, Nick, and Sammon, 1990); WEPP (Water Erosion Prediction Project 

Model) and EUROSEM  (the European Soil Erosion Model) were very successfully 

applied in Europe (Morgan, Quinton, Smith, Govers, Poesen, Auerswald, Chisci, Torri, 

and Styczen, 1997; Flanagan et al, 1995), and MUSLE (the Modified Universal Soil 

Loss Equation) was specially designed basing on the root equation USLE but replaced 

rainfall factor by a runoff in specific terrain conditions to give results for every storm 

event (Williams and Berndt, 1977). These models support users modeling soil erosion, 

estimating the sediment loading, sediment yield, sediment accumulation not only in 

small watersheds but also at a global scale. 

In the Mekong river basin, sediment yields and sediment discharge have been 

measured and evaluated at stations along the river from 1962 until today (Wang, Lu, 

and Kummu, 2009). In the last 3 decades, a regular increase in sediment yields has 

been recognized. Sediment discharge from the Mekong delta was estimated to be 

around 144±36 million tonne.yr−1 (Ta Thi Kim Oanh, Nguyen, Tateishi, Kobayashi, 

Tanabe and Saito, 2002). From 1980, computer tracking and spatial mapping of 

sediment load in Mekong delta basins was used to define issues (Lap Nguyen et 

al.,2000) in order to gain a better understanding about the condition of sediment and its 

short-term and long-term effects on human life either directly or indirectly. 

This chapter presents a methodology to calculate the volume of runoff, sediment 

losses and sediment accumulation within the Mekong Delta. The design and 

development of a mathematical model for estimation of sediment yield and sediment 

accumulation is outlined. The  importance of understanding the contribution of soil 
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accumulation and sediments in water runoff after rainfall events in the redistribution of 

pesticides is outlined.  

Integrating the soil loss erosion models into GIS 

In the last decade, the value of integrating  the soil erosion and sediment load models 

into GIS has been outlined (Stone and Hilborn, 2000; Renard et al.,1991). Such 

integration would provide users with an effective tool to manage the data and carry out 

the spatial analysis as well as being able to  describe soil loss conditions in the past, 

present and future, and also to  evaluate results in the real world (Fu, Chen, and 

McCool, 2006).  

5.2.  Data Preparation 

5.2.1.  Land-use data 

Land use and land cover data are necessary for calculating soil loss and sediment 

yields. They contribute to soil losses and sediment calculations as a restriction factor 

contributing to the soil erosion process (van der Knijff, Jones, and Montanarella, 2000). 

Land-use used in the model was discussed  in Chapter 4. 

5.2.2.  Rainfall data  

Rainfall data preparation was  presented in Chapter 3 (3.4). Rainfall in Mekong delta is 

affected by tropical monsoon typical of South East Asia, rainfall intensity and is clearly 

separated into two seasons, as exemplified figure 5.1. In the soil loss model, rainfall 

data was aggregated into  4 day episodes.  
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Figure 5. 1. Daily rainfall (mm) distribution by time at a station (An minh station) in 
2008 

 

5.2.3.  Topographic, slope data, and aspect 

The topographic data layer construction was outlined in Chapter 3 (3.4) and the slope 

data was computed from a DEM image using the  SURFACE module in IDRISI (Figure 

5.2).   

 

Figure 5. 2. Mekong delta slope as percentage slope (a); and aspect in degrees (b) 

 

5.3.  Methodology and model construction 

5.3.1.  Overall methodology 

The sediment yield model was approached in 3 main steps (Figure 5.3). Every step 

was built in the GIS environment using mathematical modules. The required data input 

sources differ and some re-calibration was required to prepare the data for use in the 

models. More specifically, soil type data comprises 5 typical soil types, but the model 

only accept these after being  converted into other form data (K factor) which is the 

coefficient to represent the erodibility of each soil type. Similarly, Land-use data was 

reclassified to a constraint indicating the retention of the soil erosion process. 

Topography data was converted into data on length of slope which will control the 

length for sediment load travel and accumulation. Rainfall data was converted into the 

runoff factor which will reveal the volume of erosion, sediment yield and sediment 

accumulation. The methodology for re-calibration of the factors will be clarified in detail 

in further contents GIS pre-processing was carried out once  all factors affecting 
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erosion were available using macro modeller  functions in IDRISI.  The final step is GIS 

spatial analysis of the results of soil erosion for a rainfall event. To archive 
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Figure 5. 3. Flowchart of GIS based modelling of sediment yield and accumulation in the Mekong delta. 
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sediment yield loss, sub-components including soil properties, sediment delivery ratio, 

and hydrological networks were prepared for the next iteration of the model and this 

process continued until the full series of time steps had been completed.  During the 

year, there are many periods with no rainfall or where rainfall is lower than the initial 

abstraction of soil. In this case, rainfall was set to a zero value.  

This model accept the assumptions that the time step is 4 days and that the  maximum 

rainfall duration was1day. 

 

5.3.2.  Concept on soil detachment 

 

Soil detachment is a concept which represents the cohesion ability between soil 

particles, and is related to the features of how raindrops come into contact with 

particles (Springer, 1976). Rainfall as drops have a kinetic energy, which transforms 

into kinetic energy when they fall to the ground (soil surface) (figure 5.4). The amount 

of kinetic energy is related to the falling velocity of the drop. If higher than the 

attachment strength between the soil particles, the kinetic energy attacks and breaks 

down the cohesion forces of soil particles. It also provides the energy to move these 

particles to gradually combine with other wet particles to a loading condition. This 

contributes to the process of soil erosion and transport, and forms part of the overall 

model. 

 

Figure 5. 4. Representation of raindrop impact power. 



93 
 

(Kinnell, 1981) 

 

In conclusion, there are 2 periods of kinetic energy which are created by the same 

source (raindrops). The first is formed by the momentum of raindrops’ impact on soil 

particles. The second occurs through water movement after the raindrops break down 

the particles, and contributes to the runoff process when the this energy accumulation 

is greater than the gravitation between the detached particles. 

 

5.3.3.  Erosion equations 

 

The RUSLE soil loss equation was originally formed by a multiplication of six major 

factors, as follows:  

A = R.K.L.S.C.P      (Williams et al, 1977)      Equation 5. 1  

Where,       A is soil loss in a particular time in (tonne) per unit area 

R is rainfall and runoff factor in a specific area. This is the mean of total 

erosion index unit (EI) 

K is soil erodibility factor, is defined as the soil loss rate per erosion index 

unit (EI) for a particular soil type 

L is length slope factor 

S is slope steepness, the ration between the soil losses per a given 

steepness and soil loss in 9% slope steepness under same condition. 

C is cropping management factor, determined by ration soil loss in a 

particular crop area per soil loss in tilled continue fallow 

P is erosion control practice factor, expressed by ration soil loss with 

farming practice (stripping, contouring) per soil loss with farming up and 

down slope 

Renard et al (1994), described use of the RUSLE equation in studies for the estimation 

of sheet and rill erosion of upland areas for a specific rainfall. Stream banks, snowmelt 

and wind erosion were not taken into account and the  equation did not include 
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calculation of the accumulated soil at the base of slopes. RUSLE is an empirical model 

requiring accurate data to enhance its reliability. 

There were some difficulties in calculating the factor R which requires  longitudinal data 

recorded for the whole year (Wischmeier, 1959). Factor R has been estimated for 

annual values (Lee and Heo, 2011; Nazzareno, 2004; Wischmeier et al, 1978) and so  

the results of soil erosion and soil loss are an annual prediction. Some improvements 

have enabled  calculation of R for a shorter period, monthly (Renard and Freimund, 

1994) or even shorter (Barfield, Warner, and Haan, 1983). 

Given the current rainfall data available for this study, application of RUSLE for  soil 

loss prediction in  the Mekong delta would not be reliable, Williams and Berndt (1977) 

suggested a method for applying the RUSLE equation on single storm events by 

calculating soil loss and sediment yield by using runoff and potential rainfall runoff 

volume to replace factor R, as follows:  

             
                 (Williams et al, 1977)   (Equation 5. 2) 

 

Where: 

Ys= Sediment yield (tonne.ha-1/year) 

V= Volume of storm runoff  

qp= Peak flow discharge 

K, C, P, LS = as defined in USLE  

Equation 5.2 has since been used widely as a tool to predict total sediment yields 

discharged from a single storm event (Willian, Karl, and Bruce, 2011; Zhang.Z, 

Degroote, Wolter, and Sugumaran, 2009; Kinnell, 2005; Lim, Sagong, Engel, Tang, 

Choi, and Kim, 2005; Sadeghi, 2004) 

 

5.4.  Runoff volume and peak discharge 

Normally, in a storm event, the volume runoff value is proportional to the amount of 

rainfall and is modified by local topography. Runoff only takes place when rainfall 

volume exceeds the total water losses by initial processes which are considered here 

as merging to the soil gaps, infiltration, soil porosity fulfilment and the minor effects of 
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evapo-transpiration or transformation into water vapour (Shi, Chen, Fang, Qin, and 

Cai, 2009; Singh, Bhunya, Mishra, and Chaube, 2008). The process can be expressed 

by the water balance in equation 5.3  

              (Singh, Bhunya, Mishra, and Chaube, 2008) ( Equation 5. 

3) 

Where:  

P= precipitation  

Q= runoff volume  

G= Infiltration rate to the groundwater  

S= soil moisture storage (or filled porosity water)  

Ea= actual evapo-transpiration  

Evapo-transpiration was not included in this model. The evapo-process is a complex 

process for modelling, requiring a huge climate dataset which was not possible to 

collect in a short time. Soil moisture storage and infiltration rate was be represented by 

the initial abstraction (Ia) 

5.4.1.  Relationship between runoff volume and a rainfall event 

Further to equation 5.3, the relationship between runoff volume Q and rainfall P is 

expressed by: 

  
       

      
                 (USDA-SCS, 1986)           (Equation 5. 4) 

Where: 

Q= runoff (mm) 

P= rainfall (mm) 

S= potential maximum retention 

Ia= Initial abstraction 

The most widely used method to predict the runoff volume is runoff curve number 

method which was developed by USDA-SCS (1986). The method was evaluated and 

validated at that time by experimental tests in various conditions of different soil types 
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and land cover (Chow et al.,1988; USDA-SCS,1986) and  was applied for predicting 

relationship between rainfall and runoff volume in small watersheds. In the present 

study this equation is used to estimate runoff volume in each grid cell (equal to a plot of 

900 m2). 

The potential maximum retention S corresponds to the initial absorption into the first 

soil layer. This process extracts rain water to fill to the porous spaces between soil 

particles. A high density of vegetation cover on tilled soils will protect against erosion 

by rain water by extracting water before it reaches the top soil layer but in  soils bare of 

vegetation rain water is lost directly through absorption (Lee, 2004).  When water–

storage occurs in the first soil layer, gravity forces water gradually to deeper layers. 

The speed of the process is dependent on soil properties and type of land cover. 

Runoff Curve Number (CN) value can be used as an indication of soil characteristics 

and land cover which can be used to calibrate the value of absorption and infiltration of 

water (USDA-SCS, 1986). The relationship between Ia and S is found in equation 5.5 

                                        (USDA-SCS, 1986)     (Equation 5. 5) 

 

and; 

      
      

  
               (USDA-SCS, 1986)      (Equation 5. 6) 

where Ia is initial abstraction;  

S is potential maximum retention  

CN is curve number values. 

CN values for different soil types and land use conditions are accessed in the SCS 

Agriculture Handbook TR-55 with a value from 0 to 100 (USDA-SCS, 1972) which 

supports users estimated CN values based on  hydrological soil groups (HSG) and 

land cover types or land use, hydrological condition and antecedent moisture. The 

higher CN values, the lower runoff retention, and higher runoff capacity. 

5.4.1.1.  CN value determination 

CN value is calibrated by using two common datasets: land-use and soil type. The 

method to determine CN value is described by (USDA-SCS, 1986). 
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Hydrologic soil groups (HSG) represent the soil’s ability to resist water runoff. Surface 

permeability depends significantly on both soil type and soil properties. USDA-SCS 

(USDA-SCS, 1972) divided HSG into 4 groups A,B,C,D based on soil profile and 

texture (USDA-SCS,1978) as shown in Tables 5.1 and 5.2 

Table 5. 1. Hydrology soil groups classified by soil textures (USDA-SCS. 1986) 

HSG Infiltration rate (cm/hr) Runoff Soil texture 

A >0.76 Low Sand, loamy sand, sandy loam 

B 0.38 – 0.76 Moderate Silt loam, loam 

C 0.13 – 0.38 High Sandy clay loam 

D 0.00 – 0.13 Very high Clay loam, silty clay loam 

 

Table 5. 2. Definition of hydrologic soil group (USDA-SCS. 1986) 

Hydrologic Soil 

Group 

Soil Group Characteristics 

A 

Soils having high infiltration rates, even when thoroughly 

wetted and consisting chiefly of deep, well to excessively-

drained sands or gravels. These soils have a high rate of water 

transmission. 

B 

Soils having moderate infiltration rates when thoroughly wetted 

and consisting chiefly of moderately deep to deep, moderately 

fine to moderately coarse textures. These soils have a 

moderate rate of water transmission. 

C 

Soils having slow infiltration rates when thoroughly wetted and 

consisting chiefly of soils with a layer that impedes downward 

movement of water, or soils with moderately fine to fine texture. 

These soils have a slow rate of water transmission. 

D 

Soils having very slow infiltration rates when thoroughly wetted 

and consisting chiefly of clay soils with a high swelling 

potential, soils with a permanent high water table, soils with a 

clay pan or clay layer at or near the surface, and shallow soils 

over nearly impervious material. These soils have a very slow 

rate of water transmission 

 

The HSG groups of the Mekong delta soil types are in , categories A,B, and D (Table 

5.3). 

Table 5. 3. Hydrologic soil groups definition in the Mekong delta. 
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Soil type Soil textures Runoff Area 

(Hectares) 

HSG 

Ferric Acrisol Loamy sand Low 16,638 A 

Gleyic Acrisol Clay loam Very high 13,933 D 

Eutric Gleysol Sandy loam Low 835,884 A 

Thionic Fluvisol Loam Moderate 845,192 B 

Eutric Fluvisol Sandy loam Low 385,239 A 

 

In this study land-use represents land cover and treatment to determine CN values. 

Land-use categories are one of the most important factors lowering the runoff water 

and also soil erosion. High densities of forest generate a canopy which will 

absorb/remove rain water before falling to the ground and reduce the kinetic energy 

caused by impact of raindrops onto soil particle cohesion. Table 5.4 shows the land-

use categories and their cover types for the Mekong delta, and includes hydrological 

condition and cultivation types. 

Table 5. 4 . Runoff Curve Number (CN) value for different land use and soil types. 

Land use 

Hydrologic soil 

groups Cover types 

A B D 

Rivers and canals 100 100 100 Water body 

Intensive paddy (2 crops) 72 81 91 Row crops 

Dry paddy (3 crops) 72 81 91 Row crops 

Paddy fields  mix orchards 71 80 90 Wood grass combination 

Cash crops areas, vegetable zone 35 56 77 Brush-grass 

Coconuts, sugar cane zones 32 58 79 Wood grass combination 

Brackish aquaculture, mangrove, 

shrimp farms 

86 91 94 Fallow 

Mangrove forest, Clouds and 

cloud shadow 

45 66 83 Woods 

(Chow et al.,1988; USDA-SCS,1986) 

The combined attribute data shown in Table 5.4, gives a specific value for each soil 

type and land-use category and from this, the ASSIGN and OVERLAY functions in 
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IDRISI were used to create the CN raster layer. The value of CN is a constraint which 

will be used to calculate runoff volume for every rainfall event.  

Curve number in study area is shown in (figure 5.5) and ranges from 35 to 100. Curve 

number in water bodies is calculated as the  maximum value as there is no retention 

factor. Large areas of paddy fields scored from 71 to 91 indicating the high potential for 

runoff in these areas. 
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Figure 5. 5. CN value in the Mekong delta
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5.4.1.2.  Runoff volume 

 

Runoff volume was calculated using in (equation 5.4) using total rainfall every 4 days 

and the maximum retention factor (equation 5.6). The runoff depth was estimated as 

potential millimetres lost in each grid-cell per event (figure 5.6).  

 

Figure 5. 6. Runoff volume Q (mm) for the rainfall event on the 04 of April (2008) 

 

The extraction of runoff value for different land-use for the rainfall event on 04_April 

was ~10mm. The potential runoff occurs most strongly in cash crops, vegetable areas 

and industrial crops and mangroves with ~0.7mm, ~0.8mm and ~0.4mm respectively 

(Figure 5.7). Paddies, on the other hand,  are a different situation with very high 

resistance to runoff with ~ 0.15mm. Other types of land-use  are also highly resistant to 

runoff 



102 
 

 

Figure 5. 7. Potential runoff from different land-use in the Mekong delta. 

 

In the 5 different soil types in the study area, Eutric Gleysol and Eutric Fluvisol 

(distributing in riverside and coastal provinces) are strongly affected by runoff with 

~0.35mm and 0.4mm (figure 5.8). The other types are highly resistant to runoff.  

 

Figure 5. 8. Potential runoff from different soil types in the Mekong delta. 

 

5.4.2.  Peak discharge (qp) 

 

The peak discharge was calculated using the commonly used tabular hydrograph 

method (USDA-SCS, 1986). The hydrograph data requires basic information on (1) 24 

hour rainfall (mm), (2) appropriate rainfall distribution, (3) curve number, (4) runoff 

volume (mm), (5) time of concentration Tc (in hours) which will be explained in the next 

category , (6) travel time Tt (hours), and (7) drainage area topographical condition. The 

peak discharge used in this study is graphical peak discharge method who’s evaluation 
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was much simpler than the tabular hydrograph method. The equation to calculate peak 

discharge is shown in equation 5.7 

                                 (Equation 5. 7) 

 

where: qp is peak discharge (ft3/s); Q is runoff volume(inch); Am is drainage area of sub 

areas (mi2). All units in this equation has been kept in original definition. During data 

manipulation, the unit conversion coefficient was used to convert current data units into 

suitable for equation.  

In this model, drainage area was equal to the area of a single satellite image pixel 

(30m x 30m) ; qt is peak unit discharge (cfs/mi2/inch). Determination of qt is the key 

point in peak discharge calculation and it was  estimated using the function f( Tc, Ia/P, 

and rainfall distribution type) which was already calculated by the graphical unit peak 

method (USDA, 1983). Therefore, to extract value qt, the user must input information 

for 3 sub-components in the tabular (Tc, Ia/P, and rainfall distribution type).  

Fp is the adjustment factor for pond and swamp areas and was only applied for water 

body category (in land-use map). Values for Fp  is estimated by the percentage of pond 

and swamp areas in the total area of watershed (USDA-SCS, 1986). The calculation in 

this model is based on every grid-cell with homogeneous characteristics, therefore, at 

water bodies, the cell will totally present 100% water (not differentiate between pond 

and swamp). The extraction value Fp for water body and river will be 0.87 (USDA-SCS, 

1986). The other land cover types will be ignored, and Fp was assigned to be 1. 

 

5.4.2.1. Travel time and time of concentration (Tt and Tc) 

As components of unit peak discharge calculation, the calculation of travel time (Tt) 

and time of concentration (Tc) is always included. Travel time (Tt) is the time for water 

runoff travelling from a particular point to another specific location in a watershed. Time 

of concentration (Tc) is the time for water moving from multiple-directions from all over 

the watershed until it accumulates in a specific area. Tc is estimated by the sum of 

travel time Tt. Travel time is affected by several of factors: surface roughness (n), 

channel shape and flow patterns, slope (s) and intensity of runoff (P) (USDA-SCS, 

1986), as follows: 
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                      (Equation 5. 8) 

 

where: Tt is travel time (hr); n is Manning’s  roughness coefficient; L is flow length (ft) 

which was defined as the longest distance of a pixel ( equal to the length of the 

diagonal at ~139.5ft) , P is daily rainfall (inch); s is slope of a pixel. As the purpose of 

this study is to calculate soil erosion loss in overland flow. Travel time (Tt) in this study 

was established for every pixel and the database also held information on runoff, 

rainfall, slope, and aspect and roughness coefficient. In this case, time of concentration 

(Tc) is considered as equal to travel time (Tt) of water cross a single pixel (30 m). 

In this study, manning  "n” value was determined by land-use and land cover combined 

with user  knowledge, based on the description of  USDA (1986). The smallest "n" 

value was established at 0.011 where runoff take place without any obstacle (bare land 

or water body areas), and gradually increases depending on the higher density of 

surface barriers (e.g forest, mangroves).  

 

5.4.2.2.  Unit Peak discharge calculation 

 

Unit peak discharge is determined by using the logarithmic function in equation 5.9 

(USDA-SCS, 1986).  

                                  
               (Equation 5. 9) 

Where qt is unit peak discharge; C0, C1 and C2 are coefficient extracted from value of 

Ia/P; Tc is time of concentration. 

In order to establish the coefficients C0, C1 and C2, the ratio between initial abstraction 

(Ia) and precipitation P was calculated. According to the location and climate conditions 

given in the description by USDA (1986), the rainfall type I was chosen for the 

calculation. Values C0, C1 and C2 were determined for the Mekong delta is shown in 

table 5.5. 
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Table 5. 5. Extracted coefficient C0, C1 and C2 in the Mekong delta 

Rainfall  Type Ia/P C0 C1 C2 

I 0.1 2.30550 -0.51429 -0.11750 

I 0.2 2.23537 -0.50387 -0.08929 

I 0.25 2.18219 -0.48488 -0.06589 

I 0.30 2.10624 -0.45695 -0.02835 

I 0.35 2.00303 -0.40769 0.01983 

I 0.40 1.87733 -0.32274 0.05754 

I 0.45 1.76312 -0.15644 0.00453 

I 0.50 1.67889 -0.06930 0.0 

 

Knowing the rainfall type, Ia/P, and coefficient C0, C1 and C2 and type of rainfall, the 

function of qt can be readily solved. Applying equation 5.7, the peak discharge was 

calculated and figure 5.9 shows the peak discharge for every pixel in m3/s. 
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Figure 5. 9. Peak discharge (m3/s) following the first rainfall event in January in the Mekong delta.
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5.5.  Soil erodibility Factor (K factor) 

The soil erodibility factor is the resistance  of soil structure to water and is  defined as 

the rate of soil loss per erosion index unit [(metric ton)(hectare)(hour)]/[(hectare)(mega 

joule)(millimeter)] (Wischmeier, 1959). Empirically, K factor is determined by obtaining 

the soil resistance in testing plots of land with constant slope (9%) and a 22.12 m 

length slope. Determination is closely related to soil types and soil textures and low 

values of the K factor characterizes low erosion resistance while high values show high 

erosion resistance. The soil erodibility value depends on soil surface conditions. In this 

study, K was calculated based on soil properties such as particle size, percentage of 

organic matter, soil structure categories and textures, a profile permeability classes 

(Wischmeier et al, 1978) 

Soils in the Mekong delta are primarily Acrisol, Gleysol and Fluvisols. Chiem, (1993c), 

revealed the high concentration of very fine sand and silt (total ~70%), allowing 

calculation of the K factor using a nomograph (Wischmeier et al, 1978) from equation 

5.10. 

 

                                                          (Equation 
5. 10) 

 

where K is soil erodibility factor (t.ha.h/ha.MJ.mm); SS is percentage of clay; Sc is 

percentage of silt; a is organic matter percentage (OM).  SS, Sc, and "a" were available 

to use from the FAO soil database (FAO, 2003). A lower organic matter percentage 

indicate a higher resistance to runoff (Wischmeier et al, 1978). 

Parameter "b" is the soil structure status code which represents the effect of organic 

matter on the soil structure in the  first layer of soil available for sediment loss 

(Schwab, Fangeier, Elliot, and Freverk, 1993);  

Parameter "c" is the soil permeability class. Both "b" and "c" are defined for the 

Mekong delta soil types following  methods provided by (Zhou and WU, 2008; Renard, 

Foster, Weesies, McCool, and Yoder, 1997). The result from equation 5.10 is shown in 

figure 5.10. 
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Figure 5. 10. Soil erodibility factor (K ) of different soil types in the Mekong delta. 

 

5.6. Topographic factor (LS factor) 

 

The topographic factor, LS, represents a combination between length of slope and its 

steepness, which is important for defining hydrology, volume of run-off and sediment 

yield, where the greater the steepness, the larger volume of runoff occurs (Kinnell, 

1981). 

Zing (1940) showed that there was an exponential relationship between  soil erosion 

(y) and steepness (x). Thus, y=axb where “a” is 0.065 and “b” is 1.49, was conformed 

experimentally for conditions in Kansas and Alabama, USA. When rainfall happens, 

the detached soil moves from the higher to the lower slope. Considered at pixel level, , 

there are several kinds of slope shapes which influence overland flow (Figure 5.11). As 

the model was constructed to run in a single pixel with homogeneous data, the 

steepness could be estimated as the mean steepness using equation 5.11 (Mc Cool, 

Foster, Renard, and Yoder, 1995; Cowen, 1993).  
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S(Steepness) = 65.41 Sin2 θ + 4.5 Sin θ + 0.065.  (Equation 5. 11) 

 

Where θ is the slope angle in degrees.  

 

Figure 5. 11. Different shapes of flow path may have in a pixel 

 

L is the slope length (in metres)  over which water or sediment mixing with water runoff 

travels from the highest point to lowest point where deposition begins. Wischmeier 

(1978) suggested an equation to calculate L which is given by equation 5.12.   

 

   
  

     
 
 

                   (Equation 5. 12) 

where: 

FL is the field cumulative slope-length (metres) and 22.13 is the constraint extracted 

from the experiments (Wischmeier et al.,1978)  

m is the index of categories of steepness classes which were calibrated by (Renard et 

al.,1997; Wischmeier et al.,1978), where: 

m = 0.5               if slope S > 5% 

m = 0.4               if slope 3% < S < 5% 

m = 0.3               if slope 1% < S < 3% 

m = 0.2               if slope S < 1% 

 

However, the calibration for m, above, was criticised for areas with slope over 9%. To 

specify the exact value of m, Kinnell ( 2001;  1987) and McCool (1987) recommended 
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a method as shown in equation 5.13. In the Mekong delta, slope lower 9% occupies 

the majority of areas. The minority of mountain areas in Angiang Province appears to 

have a slope over 9% which occupies only ~0.43% in total 20,000km2 of study area. 

Specifically, m is calculated by 

  
   

     
                                           (Equation 5. 13) 

and ; 

   
                           

                   
        

           (Equation 5. 14) 

 

Where   is the slope aspect in degrees (calculated by the ASPECT module in IDRISI 

from DEM input, the result of aspect is the angle 00 - 3600 clockwise to the north); δ 

value is the coefficient to show the relation of soil condition and current land-use. 

Practically, overland flow erosion is not only affected by steepness, but also by multiple 

factors. Land-use (or land cover) and soil detachment ability were one of several 

important factors having a strong effect on erosion capacity, explaining  why some 

authors include the effect of land-use when calculating LS by using the δ value 

(Renard et al, 1997). δ for the Mekong delta soils is classified in table 5.6 

Table 5. 6. Classify δ value in Mekong delta 

Soil condition 

 

Agricultural  

Soil 

Erosion prone soil Unsusceptible soil 

Current Land-use 

Intensive paddy 

Dry paddy 

Paddy mix orchard 

Cash crops 

Coastal 

Aquaculture 

Residential areas 

Rocky areas 

River 

Mangrove 

Coconut and 

garden  

 

δ Value 1.0 2.0 0.5 

By method of Kinnell ( 2001) 
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Field cumulative slope-length (FL) was computed simply using a trigonometric method 

which is described as the ratio of flow direction length (X) per value of Cosine of the 

slope angle θ (figure 5.12) and by the equation 5.15. 

 

Figure 5. 12. FL calculation basing on a simple trigonometric model 

 

   
 

      
                                  (Equation 5. 15) 

 

X is the flow direction length. Calculation flow direction length (X) is primarily based on 

the aspect which was derived from the FLOW direction image. Based on the work of  

Perez (2002), angles from 337.50 to 22.50, 67.50 to 112.50, 157.5 0 to 202.50, 247.50 to 

292.50 were assigned a new value equal to one side of a pixel resolution (30 m) 

whereas angles from 22.50 to 67.50, 112.50 to 157.50, 202.50 to 247.50, and 292.50 to 

337.50 were assigned the value of 42 m, equal to the diagonal of a pixel. 

The slope length and steepness factor is shown in figure 5.14. The  LS factor is not 

easy to differentiate from place to place due to the flat  terrain in the Mekong delta and 

the fact that the  calculation was at the individual grid cell level of 900m2.  

 

5.7.  Cover and management factor 

Soil loss erosion is effected by canopy cover and mulches and is represented by factor 

C. This factor was defined as the ratio of soil loss in land cropped in a specific 

condition to soil loss in almost bare land or bare land (NASA Landsat program,2003; 

Wischmeier et al.,1978; Wischmeier,1959) and ranges from 0 to 1.  

Modern Landsat imagery allows more accurate estimation of the C factor using the 

NDVI (Normalized Different Vegetation Index) (De Jong and Riezebos, 1997) and 
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based on a linear regression model to analyse the correlation between factor C values 

which were supported in USLE guide tables or measured on the field, and the NDVI 

values derived from Landsat imagery. NDVI is a numerical indicator which allows users 

to delineate the distribution of vegetation cover on the ground and is based on spectral 

reflectance of NIR (Near Infrared Radiation) and red band colour (equation 5.16). 

      
       

       
                          (Equation 5. 16) 

or, when applying to Landsat images, the equation will be written: 

      
           

           
 

C factor was calculated using a linear correlation between factor C and NDVI as 

indicated in figure 5.13. 

 

 

 

 

 

 

 

 

 

Figure 5. 13. Flowchart summarizing the process of calculation of the C factor by using 
NDVI. 

ETM+ Images   

mages 
C Value Forest 

Regression analyses 

C value bare land Samples NDVI bare land 

Samples NDVI forest 

NDVI 

C factor image 
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Figure 5. 14. Length slope and steepness factor (LS) 
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By cursory revising some points in Landsat images combined with personal user 

knowledge on land cover in study area, two NDVI datasets were formed by extracting 

20 points of high density canopy cover and another 20 of bare soil (Figure 5.13). In the 

correlative dataset, a value of factor C was assigned for each point of the extracted 

NDVI value. The factor C ranged from 0 to 1, where values of "0" was assigned for 

forest which has less affect by soil erosion and a value of "1" for bare soil land and 

prone to greatest soil erosion. The regression was carried out within IDRISI resulting in 

the following relationship: 

C-factor = 0.3363 - 0.4842 NDVI  

The correlation coefficient, R2, was 92%.  

 

Figure 5. 15. Position of sample points of forest areas and bare land area 

 

The linear regression equation was applied to calculate all pixels in the NDVI image 

following some corrective reclassification of aberrant pixels in the thermal band of the 

Landsat images The final C factor values are shown in figure 5.16. 

As shown in figure 5.16 the majority of the Mekong delta consists of paddy fields with 

high density of vegetation cover (C factor = 0.01 to 0.2) whereas forest and orchard 
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areas (C factor = 0.2 to 0.3) occupy a smaller overall area than those of bare land and 

water bodies (C factor 0.3 to 1).  
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Figure 5. 16. C factor value representing  land-use and land cover contribution to soil loss as a restriction feature.
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5.8. Support practice factor (P) 

 

Support management factor in RUSLE is the ratio of soil loss in a particular support 

practice to the corresponding soil loss with farming in up and down slope. This factor 

shows the actual vegetation distribution and slope conditions which affect the 

erodibility of the soils. The support practice factor implies the different farming systems 

occupying particular types of slope, including strip cropping, terrace, contouring and 

tillage cover. Wischmeier (1987) stated that factor P was the only factor that  humans 

can use to control and reduce the soil loss erosion through appropriate farming 

methods. High values of P show there is only weak support practice culture, so will 

represent bare land areas or construction zones (value P=1), whereas low values 

correspond to high resistance soil losses through use of high density planting or 

specific cropping/culture systems. In this study, value of P was calculated by using 

method proposed by Agriculture Research Service and Conservation Service (USDA-

SCS, 1972). The estimation for P values in the study area is shown in Table 5.7 which 

represents the existing forms of farming system relative to land slope (cross slope, 

contour farming, strip cropping and cross slope, strip cropping and contour). Factor P 

was classified by the actual condition of contouring or cropping of farm combined with 

the knowledge of user. As the majority of slope in the Mekong delta is flat, the value 

(P=1) for up and down practical culture was not found in the images. However, this 

value will be assigned for water bodies and was considered non-resistant to runoff or 

sediment loss (Figure 5.17). Paddy field (~65% of land-use) was considered as a 

homogeneous slope, characterised by low, flat topography (maximum 10 meter 

elevation).  

 

Table 5. 7. P factor estimated for the Mekong delta 

Support practice Land-use P-factor 

Up and down slope 1 1 

Cross slope 5,7 0.75 

Contour farming 6 0.50 

Strip cropping, cross slope 3,4 0.37 

Strip cropping, contour 2,8 0.25 
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Figure 5. 17. P factor  in the Mekong delta, indicating the capacity of different cropping styles for resistance to soil erosion. 
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5.9. Sediment net accumulation calculation 

This study aims to quantify the fate of pesticide existing in soil and water environments. 

Therefore sediment net accumulation is considered as a potential storage of 

accumulated pesticides. Sediment net accumulation is computed based on the soil loss 

for single rainfall event and elevation.  

Net accumulation of sediment loss comprises 2 concepts. 1) Temporal accumulation is 

the accumulation at a pixel where a rainfall event brings an amount of sediment from 

other places to that point. The next event will continue to bring further sediment to that 

location and as rain events continue, eventually there is a large accumulation of 

sediment at this place. Using this concept, some  points always have a net 

accumulation of sediment from other locations and other points a net loss. In the other 

words, this is a progressive accumulation of sediment  which continues after every 

rainfall event. 2) Spatial movement of sediment which through topographic effects on 

cumulative sediment loss was already described in (5.6). and  equation 5.12.  

 In this study, the total sediment yield for the period of the 1st to 4th of January (2008) 

was chosen as the first step of accumulated sediment estimation. The final output of 

sediment accumulation from this (at the 4th of Jan) becomes the self generated 

sediment accumulation (Mo) for the second rainfall event (period from 5th- Jan to the 8th 

- Jan). This process is summarised in  Equation 5.17, continues for the full year.  

               
 
            (Equation 5. 17) 

Where: 

M is the total sediment yield at t time 

Mnt is the sediment yield received from higher places at t time 

Mlt is the total sediment yield lost to other lower places by runoff at t time 

 

5.10.  Results  

5.10.1 Sediment losses in the Mekong delta  

Figure 5.18 shows the mean monthly sediment loss over the whole year, although the 

model generated outcomes for every  four day step. For runoff and sediment loss to 

occur,  the ratio of initial abstraction and precipitation (Ia/P) has to be smaller than 1, in 

other words rainfall volume must be higher than the initial abstraction (Ia), which 
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depends considerably on soil type. The model operates only when rainfall is greater 

than Ia and this explains why there is no sediment loss data created for February and 

December as there was no rain in these two months. A further  condition in this model 

requires total rainfall 4 days to be higher than 10mm as lower values  may cause a soil 

detachment but will normally not generate a runoff (Huber, Bach and Frede, 1998). 

Spatially, sediment loss strongly occurred  in rivers and riverside areas and in coastal 

zones, whereas a large inland areas of paddy fields have very light sediment losses. 
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Figure 5. 18. These images show average monthly sediment losses (ton/ha/y) in 2008 

 

 Sediment losses in different land-use  

The total values of sediment loss in the Mekong delta shows that areas of cash crops 

and vegetables was the most vulnerable to soil erosion with maxima at ~53 tonne/ha in 

Jun and July, ~50 tonne/ha in October, ~45tonne/ha in August and September, and 

~34 tonne/ha in November (2008). The second most vulnerable land-use for sediment 

loss is industrial crops (oil fruit or sugar canes fields) with >35tonne/ha in June and 

July. Paddies, although occupying the largest land-use areas,  seem to be more stable 

and the mean monthly sediment loss is not significant (smallest sediment losses in the 

fields) with only 1.46 tonne/ha in June. Dry paddies and orchards on the other hand, 

were affected by soil erosion with a maximum at ~ 4.8 tonne/ha in June and July. The 

remaining land use categories have medium impact from soil losses with around 

~10tonne/ha in during rainy season (figure 5.19). 
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Figure 5. 19. Total monthly sediment losses in different land-use categories in 2008. 

 

Sediment loss in the wet season is much higher than in the dry season. In cash crop 

areas, total wet season sediment yield losses reach ~280tonne/ha whereas only 

~100tonne/ha are lost in the in dry season. The second highest is industrial crop areas 

with ~180 tonne/ha wet season whereas only ~60 tonne/ha in dry. Paddies seem to 

have a high resistance to sediment loss and erosion with all values smaller than 20 

tonne/ha in both seasons (figure 5.20) 

 

Figure 5. 20. Total sediment losses in different land use categories in dry and wet 
season in 2008 
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 Mean sediment losses in different soil types 

Eutric Fluvisol seems to have the lowest capacity to resist erosion and sediment losses. 

In months with high rainfall intensity, total sediment loss in this soil type reaches 

>30tonne/ha (in June, July and October), over 25 tonne/ha in May, August and 

September. Fluvisol soils in Mekong delta are concentrated in coastal areas and in river 

side areas where sediment losses monthly are able to approach ~3.2 to max ~6 

tonne/ha in June and October. The second mist eroded soil type is Eutric Gleysol with 

over 15 tonne/ha in during May to October (figure 5.21). 

 

Figure 5. 21.  Total monthly sediment loss in different soil types in 2008 

In the rainy season, sediment losses are almost three times those in the dry season,  

especially for Eutric Gleysol and Eutric Fluvisol with >90 tonne/ha  and ~180 ton/ha 

respectively in the wet season. Ferric Acrisol and Thionic Fluvisol are considered as the 

most stable soil to the  erosion process with a total sediment yield of <30 tonne/ha in 

both seasons (Figure 5.22). 
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Figure 5. 22. Total sediment loss in different soil types in wet and dry season in 2008 

 

5.10.2.  Sediment net accumulation  

 

Accumulation in January and February was unchanged as there was no rainfall in this 

period. A similar effect was seen in November and December. The sediment 

accumulation significantly increase from  April (increased remarkably in June to 

November) because it closely relate to high rainfall volume in these periods (figure 

5.23). The principal effect was seen in the river and riverside areas. The coastal zones 

also the most vulnerable areas for sediment accumulation. Hilly areas in the west side 

of the Mekong delta was also the noticeable areas with high concentration of 

cumulative sediment increased significantly during rainy season (May to November), 

but only occupies a minor areas. Whereas the largest areas located in low land seem to 

have lowest impact to cumulative sediment.  
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Figure 5. 23. Monthly sediment yield accumulation (tonne/ha) 

Figure 5.25 show the net accumulation of sediment three  randomly chosen stations in 

the riverside and hilly areas of Angiang province and in a paddy field area in Haugiang 

province (figure 5.24).  

 

Figure 5. 24. Three randomly chosen stations in hilly area (1); riverside area (2); and 
inland paddy areas (3) where all them were used to extract the sediment accumulation 

data 

The hilly areas with high slope actually have a high capacity for soil erosion and 

sediment loss. The results show the accumulation around the hilly areas was also very 

high. Comparing this with the same area of riverside and wet paddy field, the amount of 

sediments accumulated in the hilly region was 4 times higher than those of other areas 

(figure 5.25). Moreover, the trend of accumulation increased significantly from the end 

of March to the end of November, whereas the other 2 sections only increased 

moderately with maximum accumulation not exceeding 250 tonne/ha.  



127 
 

 

Figure 5. 25. Sediment accumulation in 3 particular areas: Hilly area, riverside and wet 
paddy area 

 

Sediment accumulation in the 3 areas depends upon several factors, including soil 

types, rainfall volume and the percentage slope land-use and topography. An  area that 

has higher percentage slope will not necessarily mean this area has higher runoff, or 

higher accumulation percentage as a multitude of factors have an effect such as 

geographical and current status of the actual conditions at this location. Table 5.8 

below shows the total sediment at a place received from other areas. In general, one 

hectare in a hilly area received total ~1066 tonne sediment yields in every year, 

~203tonne at riverside area and ~150tonne in paddies. 

 

Table 5. 8. Total volume accumulation with other factors of 3 extracted points 

Position 
Slope 

(%) 

Total 

rainfall 

(mm) 

Soil types 

Total volume 

accumulation 

(Tonne/ha) 

Hilly area 2.16 2253 Thionic Fluvisol 1066.42 

Riverside area 0.54 1688 Eutric fluvisol 230.39 

Wet paddy area 3.92 1914 Thionic Fluvisol 150.15 
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5.11 Discussions and conclusion 

 

Although the soil erosion and sediment loss model from RUSLE and MUSLE were not 

specifically designed for delta areas, this study used the MUSLE in the specific 

conditions in the Mekong delta where the terrain primarily characterised by low and flat 

land. Spatial distribution of sediment loss and accumulation was modelled over  a large 

area of ~20,000km2. In general, there are high erosion risks in mountain areas, the 

riverside catchments and some other places in coastal provinces, while the large areas 

of central low land seem to have low risk for sediment loss and accumulation 

processes.  

The integration and development of the model within a GIS system provides an efficient 

tool for modelling, management, quantification and analysis of sediment losses and 

accumulation (Kim, 2006; Lim et al.,2005). Based on the  spatial resolution of  Landsat 

raster images, this model runs  at the level of the grid cell in which the original RUSLE 

and MUSLE was implemented. This contrast with previous studies where these tools 

have been employed at the watershed scale (de Vente and Poesen, 2005).  

The MUSLE  model is derived by the multiplication of all factors together and each 

factor has significant contribution to the final results. In almost all soil erosion studies, 

rainfall is considered as one of the most important factors which  affects the volume of 

erosion and sediment loading in the environment (Lpez-Vicente, Poesen, Navas and 

Gaspar, 2011; Deng, de Lima and Jung, 2008). However, besides rainfall, the other 

factors have their own contribution to soil loss depending on the different geographical 

and hydrology condition. For example, when calculating on soil loss and sediment yield 

in an area with highly fluctuating topography, the result from MUSLE equation will be 

strongly affected by  the LS factor over others. 

A simple linear correlation model was used to examine the relationships between the 

sediment yield losses as dependent variable and the factors LS,K,C,P, and runoff as 

independent variables to evaluate the contribution level of each factors to the model 

results (Xu, Xu, and Meng, 2013). The results shows that the outcome of sediment 

yields varies among different sites. Disregarding runoff factor, the length slope and 

steepness factor contributed the least, around 0.0072,  to the results (table 5.9). 

Reflecting the actual elevation data (DEM) in the Mekong delta, this shows a small  

contribution of this factor where there is the low fluctuation in the  DEM data. This 

disregards the criticism of  inaccuracy in the soil loss result when applying the equation 
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to slopes higher than 9% (Liu, Nearing, and Risse, 1994; Kinnel, 1991). However, in the 

Mekong delta study area only ~0.43% of the surface had a slope higher than 9% and 

so this error caused by high slope was indeed not significant in the sediment loss 

results.  

Although land-use and land treatment are important in the Mekong delta, the 

contribution of these coefficients are lower than 1 (table 5.9) indicating that  soil erosion 

risk was reduced by the protective effects of  tillage and coverage of vegetation. The  

cropping practice factor P had a coefficient  of ~0.38. Although tilled cropping was 

widely applied in large paddy areas, it is not easily encouraged for sediment loss 

protection in the Mekong delta because the rice cropping cycle is so rapid.  

Table 5. 9 . Multiple linear regression analysis for all MUSLE factors. Based on 
sediment yield losses in the first rainfall event in April_2008. 

Factors Coefficients T-test(23298754) R2 

Intercept -0.560738 -1361.25 42.77% 

C FACTOR 0.401881 426.17  

P factor 0.381723 688.11  

LS 0.007157 3168.37  

K factor 1.181516 502.76  

Runoff 7.575691 1528.95  

 

For flat land runoff remains the most important factor affecting soil erosion and 

sediment yields. Although the Mekong delta has high annual rainfall, the runoff factor 

was not significant. It is widely known that land-use and land cover can minimize the 

impacts from runoff and erosion (Williams et al.,1977). High vegetation cover appears 

to have provided good protection from runoff activities especially for small rainfall 

events. For example, although a maximum rainfall of 10mm was found in 04 of April 

(2008), this only resulted in ~1mm runoff. More importantly, large areas of paddies 

contributed to runoff prevention, having the  lowest runoff rate compared to other land-

use. The runoff factor contributed tremendously to sediment yield loss with a 

contributing coefficient of ~7.57 (Table 5.9). This also indicated that the model results 

are very dependent on rainfall data.  The rainfall data in this study was created using 

filed data from only 39 station and so the interpolated surfaces may have differed from 
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actual rainfall. This is, however, likely to represent only a minor potential error. 

Previously,  sediment yield has been modelled as a  yearly result, especially when 

using RUSLE and USLE (Renard et al.,1991). By establishing  runoff conditions in the 

model,  this study was able to generate  sediment yield loss as a time series data, so 

allowing  users to track  result at anytime  of the year. On the other hand, data from a 

single event may reduce the accuracy of the result (Renard et al.,1994) and a  monthly 

or yearly rainfall have been recommended when modeling soil loss because the 

cumulative  rainfall in 1 month or in a year will give better coverage of the  study area. 

Nevertheless, the  MUSLE in this study employed rainfall data in a single storm event in 

which some areas may have rainfall generating runoff and erosion while other areas do 

not. 

The most significant loss occurred in areas of cash crop and vegetables. In general, the 

results show that sediment loss in these areas  in the wet season are four times higher 

than mangrove and coastal areas, and almost 10 times greater than other land-use 

categories.  

Soil accumulation differed with location. Although smallest amounts concentrated in 

paddies, these sediment yields were not able to discharge into channels. The principal 

risk area is in riverbanks where sediment accumulation is much higher than in the 

fields. Sediment yields concentrated in riverside areas are probably the main sediment 

resource contributing to the sediment discharges of Mekong rivers. 

Although the model was designed for use in the Mekong delta with certain assumptions 

made during model running, it represents a quantitative methodology for estimation of 

sediment loss and accumulation at a much finer spatial resolution than has been 

achieved to date.  Although the model was not validated by actual observation of soil 

loss and sediment yield accumulation data in the field,  the conceptual model provides 

a method which can be applied to  sediment loss in other geographical areas with daily 

rainfall data at large or small scales. However, slope and steepness data is always an 

important factor which needs to be taken into account because the method to calculate 

this factor would be modified to make the model suitable to actual terrain conditions of 

the area. 

In this project, the model sediment loss and accumulation was designed as an 

individual, free-standing model but it could be linked to other models as an individual or 

a sub-model in a wider project framework. The iterative sequence used the results of 

sediment accumulation as the input component to the following model run in time order. 
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(see Chapter 6). This model will contribute to pesticide loss calculation as the 

component used to estimate pesticide concentration in soil, and the hydrological 

component with runoff and flow accumulation.  

In conclusion, this chapter focussed on the following issues: 

 The CN-method was applied in the Mekong delta to determine runoff. The runoff 

in the Mekong delta is much lower compared with rainfall volume due to the 

effective tillage and coverage of vegetation.  

 By land-use category, cash crops and industrial crops were found to have the 

lowest resistance to runoff. Eutric Gleysol and Eutric Fluvisol are two soil types 

with very low infiltration rates, and high risk for runoff 

 There was a high rate of sediment losses in cash crops, vegetable and 

industrial crop areas. 

 A high rate of sediment loss were found Eutric Fluvisol and Eutric Gleysol soil 

type areas. 

 There was a high resistance to sediment loss in paddy areas, especially 

paddies located in Thionic Fluvisol and Ferric Acrisol distributions. 

 The highest sediment accumulation is in hilly areas, but they only occupy <1% 

of the total study area. 

 The model provides a methodology for application of MUSLE and daily rainfall 

data to modelling the quantitative sediment yield loss in a time series. 
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Chapter 6 
 

GIS modelling for pesticide accumulation and its impact on 

aquaculture sites in the Mekong delta 

6.1 Introduction 

Pesticides are used widely in Vietnam, especially in the Mekong Delta which is 

characterised by a complex distribution of channel networks playing an important role in 

nutrients, wastes and chemical distribution over catchment areas. Pesticide residues 

are found not only in agricultural land but also in water, sediment and biota samples 

along the Mekong main river and its branches (Minh et al.,2007a). Despite warnings 

from organizations on negative impacts, the usage of pesticides has not decreased as 

farmers in the Delta prefer to use these chemicals in their production systems. 

Pesticides are applied  mainly to agricultural land and the amount of pesticides left in 

environment depends on how much is lost through different pathways, such as plant 

uptake, volatilisation and dispersion, self degradation, and runoff (Toan, Thao, Walder, 

Schmutz and Ha, 2007). In reality, some fraction  of an applied pesticide will always 

reach water bodies because after application, almost all pesticides exist in a layer 

associated with soils, depending upon their physico-chemical characteristics (Renaud, 

Bellamy and Brown, 2008; Manz, Wenzel, Dietze and Schérmann, 2001).  

6.1.1 Chemo-dynamics and environmental impacts of pesticides 

When pesticides enter the environment, they undergo changes which affect the 

physical volume of material and toxicity level. Pesticides from agriculture enter the soil 

surface and water body through several pathways. Pesticides are firstly lost by direct 

attachment to the target plants (Holvoet, van Griensven, Gevaert, Seuntjens and 

Vanrolleghem, 2008). The actual amount of loss depends on the level of the canopy 

coefficient which the plant population creates during their growth period, and the ratio of 

the amount of pesticides deposited on leaves relative the deposition of the  ground. 

This is determined by land use. By measuring pesticide concentrations at river outlets, 

Holvoet et al (2007) also showed a relationship between the peak concentration of 

pesticides and intensive application by farmers up stream.  
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Pesticides exist in the hydrological environment by association with suspended 

sediment and their concentration depends on factors such as organic matter content, 

and absorption coefficient (solubility or hydrophobicity). The higher the organic matter 

content, the more potential there is for absorption of pesticides (Zhou, Zhu, Yang and 

Chen, 2006; Henrry and Kishimba, 2003).  

Pesticide transportation is based on hydrological processes such as rainfall, runoff, 

leaching, overland flow and erosion. The movement of pesticides in the environment is 

mainly related to movement of individual soil particles which are created by the soil 

erosion process. When entering a water body and in the runoff fluxes, some pesticides 

in suspended sediments will be transferred to other vectors, such as adsorption by 

sediment particles, intake by organisms, or settlement to bottom sediments (Nowell, 

Capel and Dileanis, 1999) (Figure 6.1).  

 

Figure 6. 1. Pesticide movement under the hydrology cycle 

(Nowell et al.,1999). 
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6.1.2 Models for persistent pesticide runoff, loading and accumulation. 

Understanding the  fate and predicting the impact of pesticides on the environment is a 

challenge which, in recent  decades, has resulted in the development of a number of  

experimental (simulation) and statistical models (Li, Li, Huang, Struger, Fishcher, 

Wang, Chen, Li and Nie, 2003). Statistical models have been developed based upon 

specific long term data sets which may be analysed numerically using tools such as 

SPSS, Minitab, Matlab or spatially using GIS software IDRISI, or ArcGIS. Often these 

use simple empirical regression modules developed from field measurements. 

By contrast, simulation models have been developed from initial conceptual models to 

describe natural environmental processes. The basis of such models is built-up from a 

set of equations usually derived from experimental works. For modelling of pesticide 

fate or transport and for non-point source pollutants, combined parameter and 

distributive parameter models are mostly applied for modelling at the watershed scale. 

In combined parameter models, all component parameters (e.g. water, air, soil) are 

considered as homogenous within a watershed meaning that the spatial characteristics 

of these parameters are ignored. PTR (Pesticide Transportation and Runoff model) 

(Crawford and Donigian, 1973) and ARM (Agriculture Runoff Management) (Donigian 

and Davis, 1978) are typical examples of combined parameter models. As shown by 

Dillaha (1990), these types of model give effective results within a watershed area of 

around 200 to 500 hectares, and been applied to predict pesticide or chemical runoff at 

paddy scale (Comoretto, Arfib, Talva, Chauvelon, Pichaud, Chiron and Hohener, 2008).  

However, combined parameter models generate errors if applied to a large watershed 

where the component parameters and hydrological conditions are varied. Distributive 

parameter models have been developed to include spatial data into the modelling 

process so watersheds of can be divided into extremely small plots or hydrological 

response units (Easton et al.,2008) with uniform component characteristics. Due to the 

micro analysis in every hydrologic response unit (HRUs), the models need very large 

data sets and powerful tools to carry out the analyses. ANSWERS ( Areal Non-point 

Source Watershed Response Simulation) (Beasley et al.,1980) and AGNPS 

(Agricultural Non-Point Source pollutant model) (Young et al.,1987) are typical 

examples of such distributive models.  
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A number of mathematical models have also been developed to model pesticides and 

non-point source substances in the environment. The widely used numerical one 

dimensional models for simulating pesticide transport in the unsaturated zone include 

PRZM (Pesticide Root Zone Model) (Carsel, Smith, Mulkey, Dean and Jowise, 1984), 

and RUSTIC (Risk of Unsaturated/Saturated Transport and Transformation of Chemical 

Concentrations) (Dean, Huyakorn, Doginian, Voss, Schanz, Meek and Carsel, 1989). 

One dimensional models concentrate on the vertical transport of pesticides by including 

GLEAMS model (Groundwater Loading Effects of Agricultural Management Systems) 

(Leonard, Knisel and Still, 1987); and LEACHM (Leaching Estimation and Chemistry 

Model) (Wagenet and Hutson, 1989). The PRZM has also been incorporated in the 

FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use) model 

used by the EU  and the additional model, namely MACRO (A model of water flow and 

solute transport in macroporous soil) (Larsbo and Jarvis, 2005), and PELMO (Pesticide 

Leaching Model) (Klein, 1995). All these models were developed by a complex 

formulation of processes, requiring lengthy verification periods and have been used 

widely.   

Several numerical models have also been developed for surface runoff and overland 

flow of pesticides through the environment (Branger, Tournebize, Carluer, Kao, Braud 

and Vauclin, 2009; Renaud, Bellamy and Brown, 2008a; Chu and Marinõ, 2007). 

Among these, the CREAMS (Chemicals, Runoff, and Erosion from Agricultural 

Management Systems) model is the most widely used and is the root of the model 

developed by (Kinsel, 1980) to simulate pesticide fate in the environment. The widely 

used SWAT (Soil and Water Assessment Tool) model is a further version developed 

from the CREAMS equations by Arnold et al (1998).  

 

6.2  Model selection 

The present study was not based upon use of any single published model, because of 

the study objectives and data availability. As described by Thornton et al (1999), the 

selection of suitable models was based on four basic concepts: (1) the objectives of the 

modelling process, (2) the spatial scale of the study, (3) the temporal scale of the study, 

and (4) the availability of data. The models used were derived using the relevant 

components of a number of mathematical models, implemented within the GIS 

framework and appropriate to the specific situations.   
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The overall objectives of the work presented in this chapter were to quantify pesticide 

concentrations in environment and to estimate pesticide losses by a variety of routes, 

as well as the predicting the accumulation after a particular time at a large watershed 

scale. The review of possible models identified the CREAMS  PRZM, ANSWERS, and 

SWAT  models (developed from the root of CREAMS and CN method) as theoretically  

being most appropriate for use.  Models derived by Li ( 2003) such as PeRM (PEsticide 

Runoff Model) or PeLM (Pesticide Leaching Model) (Chen, Li, Huang, Huang and Li, 

2004) were also used. 

6.3 Model design and development 

6.3.1 Grid cell system 

At a wide spatial scale, description of the study area requires up to date information on 

crops, elevation, soil type, land use, pesticide use, and hydrological components. 

Pesticide runoff and losses, cannot be accurately estimated based on a large 

watershed scale because of the different characteristics of the component sub-

catchments (Arnold and Fohrer, 2005). In this study, this was overcome by 

representing the thematic data layers using a raster system of rows and columns in 

which each grid-cell is equivalents to the  pixel size of Landsat ETM+ images (30m x 

30m).  

6.3.2 Pesticide losses and transport in environment 

The overall movements of pesticides in the environment are summarised in Figure 6.2 

After spraying, a proportion of the applied pesticide will be lost by plant uptake and this 

direct loss is inversely related to the land use and the nature of the leaf canopy cover. 

Cumulative pesticide losses will be higher near the end of the crop cycle and less at the 

beginning. Direct pesticide loss is expressed as the application efficiency which is the 

ratio between canopy cover rate and total area of application.  

After allowing for direct losses, the remaining material will settle to the ground or be 

incorporated within root zones of the plants. The latter can be partitioned in two ways 

(1) absorption into the soil layer during the time of application and after for a maximum 

4 days. The estimation of pesticide absorption is based on the adsorption coefficient of 

each chemical (KOC, Kd) and soil features such as soil types, clay content, and soil 

textures and organic matter compounds; and, (2) during rainfall, some of the pesticides 

existing in the soil will be desorbed into runoff water. This quantity of pesticide can be 

calculated based on the concentration of pesticides in sediment and runoff water fluxes. 
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The surface runoff and overland flow can be simulated based on soil erosion and 

sediment loss. 

  

 

Figure 6. 2.  Conceptual framework of pesticide loss and accumulation modelling. (Pest 

= Pesticide) 

 

The model calculates the accumulative pesticides, sediment, and water runoff for every 

time step through a runoff function which is based on land use data, land treatment, 

hydrology and geology. The runoff model generates the volume of water and overland 

flow through each grid cell.  The most important factors affecting this are rainfall volume 

and elevation.  

 In this study, the temporal scale of the model was structured to run at every time step 

which was determined 4 continuous days. The model then reiterates for the following 
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time step and is repeated until the last time step in a year (the 365th day).  At each step, 

the functions are identical but the input parameters are updated.  

The pesticide component in water and sediment during runoff was estimated in two 

periods. The first period is the pesticide input volume at the starting point of modelling 

(first event). However, the total input is then changed for the second rainfall event to the 

event number "n". The final output of the model gives the expected net accumulation of 

pesticide. The net accumulation at any location will be calculated by the total pesticides 

remaining from the application and cumulative pesticide from first event to event "n" 

minus the loss of pesticide transport to other places from first event to event "n" and the 

degradation of pesticide after every time step. The total pesticide input to the model is 

outlined in Figure 6.3. 

 

Figure 6. 3. Conceptual framework for calculating pesticide input to the model for the 
first rainfall event (I), and for next event until the end of the year (II). 

 

In practice, the amount of pesticide imported and applied in Vietnam is not known 

exactly due to government policies and minimal management of local pesticide 

manufacturers. This study used the data of pesticide use collected during the 2009 

survey in the Mekong delta, where data accuracy is dependent upon the experience 

and memory of the farmers when answering survey questions. 

The modelling to simulate all pesticide processes is valid subject to the following 

qualifications and  assumptions: (1) The model did not include the pesticide 

volatilization loss. This calculation needs meteorological and hydrological data which 

was not available for the Mekong delta. (2) Leaching was not calculated and was 

assumed to be zero during the pesticide loss calculation. (3) The temporal scale of the 

model established each time step as 4 continuous days. During each time step, rainfall 

was summed to find the total rainfall. (4) Pesticide existence in runoff water fluxes could 

be very complicated due to adsorbed and desorbed processes between water, 

sediment and organic matter in solution. The total pesticide concentration focused on 
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concentration in water and in sediment which mainly depended on the adsorption 

coefficient of pesticide. (5) Pesticide transformation was not included in this study. 

6.3.3 Reclassification of pesticide risk to aquaculture  

The initial output of pesticide accumulation as a concentration in soil was reclassified in 

terms of the risk to aquaculture using a fuzzy classification function based on a 

sigmoidal  membership utility (Eastman, 2006). The fuzzy classification aims to simplify 

the complex data into an easily understood format (Burrough, 1989). The classification 

aims to identify the suitable areas where there was high, average and low risk from 

pesticide concentrations. The sigmoidal fuzzy classification is controlled by 4 control 

points (a,b,c and d, in Figure 6.4) in which the "a" value indicates where the sigmoidal 

function rises above zero, the "b" value shows where the function reaches 1, the "c" 

value implies  the starting point where function begins to decline from 1, and the "d" 

value shows where the function become zero again. Applying to pesticide toxicity 

affects on aquatic organisms, the value at "a" is the lowest toxicity impact, whereas 

"b,c, and d" is the lethal death point where the aquatic organisms start to get death 

effects. 

The production systems considered in this study were the most two popular 

aquaculture organisms in the Mekong delta: catfish (Pangasius hypothalmus) and tiger 

shrimp (Penaeus monodon).  

 

Figure 6. 4. Sigmoidal membership functions and control points 

(Eastman, 2006) 
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The risk and non-risk pesticide areas for a specific cultured species. The simple 

methodology will be illustrated as following the flowchart in figure 6.5. Pesticide 

database will be input two sub-models (MUSLE and water runoff) to calculate the 

pesticide loss under the concentration in cumulated sediment yield and in water runoff 

fluxes. Both these two sub-models has been done in chapter 5. The total cumulative 

pesticide will be the summation from 2 resources. Them a constant value representing 

the toxicity of a chemical on a target species will be used (this project used half-loss 

lethal concentration  LC50 96 hrs test value). By the input of pesticide accumulation, the 

fuzzy sigmoidal membership function was apply to classify the risk and non-risk areas 

for this culture species. 

 

Figure 6. 5. Flowchart for the classification of pesticide risk area for aquaculture based 
on pesticide accumulation database 

Abamectin is a compound of Avermectin B1a and Avermectin B1b. They are one of the  

most popularly used biological insecticide in rice fields in Vietnam. In the conversation 

to do pesticide survey in the Mekong delta in 2008, almost farmers revealed the 

expectation of looking for an effective insecticide to treat on their land with less harmful 

to human body, especially bearing instant shock after application. Abamectin was most 

mentioned as a potential target insecticide used in the future.  By this reason, this study 

considers  Abamectin as an example of pesticide input for modeling pesticide loss, 

accumulation, and applying the results of pesticide accumulation to define the risk and 

non-risk areas for catfish and tiger prawn. Similarly, model can be applied for any other 

type of pesticides found in the survey. 

6.3.4 Acute toxicology endpoint: The lethal concentration (LC) 

Abamectin, formulation structure closely related to Ivermectin is an insecticidal or 

anthelmintic compound derived from the soil bacterium Streptomyces avermitilis. It has 
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been used widely in the Mekong delta on paddies because of its reduced impact on  

the environment. In soil, half-life degradation take ~30days which is considered as 

moderately  persistent and the organic-carbon sorption is ~5638ml/g (PPDB, 2012). 

Although Abamectin has low toxicity with mammals, however it has a high bio-

toxicology in fish and other aquatic organisms (Jencic, Manica, Erzen, Kobal, and 

Cerkvenik-Flajs, 2006b). 

Acute toxicology endpoints indicate the concentration and dosages derived from toxicity 

tests of a substance on the death rates of target species. This lethal concentration of 

pesticide can be expressed as LC25, LC50, LC100, causing 25%, 50% and 100% 

population loss, respectively, usually in a time of 96hrs which normally express the 

level concentration of pesticide where it might harm to the rearing objects. In the other 

hand,  PNEC (Predict No Effect Concentration) is used as the level of concentration 

where a specific rearing object will not be effected by that chemical. 

This study would to express the impact of pesticide to aquaculture. Therefore LC data 

was preferred to use to clarify the risk areas for a specific species. LC was not 

differentiated among the percentage of death population in the lethal test. Therefore, 

the concentration value zero is assigned as the safe point, and to the value of LC50 will 

be considered as the highest risk point. 

The LC50 of Abamectin has been investigated for a variety of aquatic species. 

Crustaceans are particularly sensitive having toxic effects as low as  0.001ng.g-1
 

(Halley, Jacob, and Lu, 1989). Examples of toxicity determinations on species relevant 

to aquaculture are shown in Table 6.1  

Table 6. 1. LC50 of Abamectin in some aquaculture species. 

Test 

organism 

Species LC values 

(LC50) 

Duration 

(Hours) 

Ref. 

Fish 

Salmo gairdneri 

(rainbow trout) 
3.0 μg/l 96 (Fisher and Mrozik, 1992) 

Oncorhynchus mykiss 

(rainbow trout) 

3.2 μg/l 

1.5 μg/l 

96 

96 

(Lucija and Nevenka, 2006; 

Wislocki, Grosso, and 

Dybas, 1989; Halley et al, 

1989); (Jencic, Manica, 

Erzen, Kobal, and 

Cerkvenik-Flajs, 2006a) 
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Salmo gairdneri 3.2 μg/l 48 (Halley et al, 1989) 

Lepomis macrochines 

(bluegill sunfish) 
4.8 μg/l 96 (Halley et al, 1989) 

Lepomis macrochine 9.6 μg/l 48 (Halley et al, 1989) 

Cyprinodon variegatus 

(sheep head minnow) 
15 μg/l 96 

(Lucija et al, 2006; Wislocki 

et al, 1989) 

Ictalurus punctatus 

(channel catfish) 
24 μg/l 96 (Wislocki et al, 1989) 

Cyprinus carpio (carp) 24 μg/l 96 (Wislocki et al, 1989) 

Cyprinus sp. (carp) 42 μg/l 96 
(Kövecses and Marcogliese, 

2005) 

Anguilla anguilla (eel) 0.2 ppm 24 
(Geet, Liewes, and Ollevier, 

1992) 

Salmo salar 500 ppm 96 
(Kilmartin, Cazabon, and 

Smith, 1996) 

Shrimp 

Crangon septemspinosa 17.9 μg/l 24 (Burridge and Haya, 1993a) 

Crangon septemspinosa 11.5 μg/l 48  

Crangon septemspinosa 11.5 μg/l 96  

 Panaeus duorarum 

(pink shrimp) 
0.016 μg/l 96  

 Penaeus sp. (Mysid 

shrimp) 
0.022 μg/l 24  

 

6.3.5 LC50 for Pangasius (catfish) and Tiger shrimp  

No data was found on Abamectin toxicity for Vietnamese catfish (Pangasius 

hypothalmus). There are several reasons for this, but one of these is that Vietnamese 

aquaculture agencies have  strategies to limit the information on toxicity tests related to 

two main target aquaculture species in Vietnam (Pangasius and tiger shrimp). 

Consequently, the LC50 96Hrs for Vietnamese catfish was assumed to be similar to the 

values measured by Wislocki (1989) and Halley (1989) for channel catfish (Ictalurus 

punctatus); a  proxy value of 24 μg/l. Similarly, for tiger prawn, the proxy data of 

Burridge (1993) on Crangon septemspinosa was used for LC50 96hrs; 11.5 μg/g. 
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The standard parameter used to classify risk level of chemicals for aquaculture is the 

acute toxicity test based on the LC5c (Lethal Concentration for 50% of catfish and tiger 

shrimp populations). LC50 data was sourced from the acut e toxicity tests by several 

authors (Kövecses et al, 2005; Burridge and Haya, 1993c; Wislocki et al, 1989), but 

where specific data was not found for the target species, so appropriate proxy data was 

used. Lethal concentration (LC50) parameter is constant while the cumulative pesticide 

quantities are variable.   

6.4 Pesticide direct loss sub-model  

This sub-model was designed for calculating the direct loss at the time of application. 

Using the assumptions developed earlier on timing of application of pesticides, the 

direct loss model is applied following the number of applications. For example, for 

insecticides, the direct loss will be calculated twice in a year, at the beginning of May 

and beginning of November. 

6.4.1 Model formulation 

Direct loss of pesticides was calculated using equation 6.1 which accounts for 

application rate and application efficiency as well as the total area sprayed. There was 

no further allowance for chemo-dynamic activities of pesticides such as degradation, 

runoff loss, transport, washoff or other losses. The computation established direct loss 

in each cell or hydrological response unit (Holvoet et al.,2008; Neitsch, Arnorld, Kiniry, 

Srinivasan and Williams, 2002).   

                                             
        Equation 6. 1 

 

where Direct losspoint is direct loss during application (mg); aprate is the application rate 

(kg/ha); AP_EF is pesticide application efficiency coefficient; areahru is the area of a cell 

(equal to the area of 1 pixel); 1e8  is the unit conversion factor. 

The application efficiency coefficient AP_EF is determined by Equation 6.2.  

      
     

     
             Equation 6. 2 

where Pest2 is the effective pesticide application or the amount of pesticide left on the 

leaves of plants and  Pest1 is the total pesticide application. 
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To determine the effective pesticide, the crop types in study area were divided into 3 

periods: (1) seedling period from the first to the second month, (2) developing stage 

from the second to the third month, and (3) mature period from the third month until 

crop harvest. Each period has a different percentage canopy cover which will affect 

pesticide application efficiency. This parameter can be calculated through the leaf area 

index (LAI) which can be determined by using the spectral reflectance from Landsat 

images with (Vaesen, Gilliams, Nackaerts, and Coppin, 2001). However, this method 

could not be applied in this study because the acquisition Landsat data was never 

sufficiently contiguous during a full crop cycle.  

Fortunately, approximately 70% of land-use areas in the Mekong delta was rice fields 

which represented the majority of canopy cover in study area ( Chen et al., 2011), 

therefore canopy cover was estimated using area of paddies as proxy values. The 

percentage canopy cover assumed for the 3 growth periods was 30% during seeding, 

60% during developing stage and up to 90% in the  mature stage (Table 6.2). 

Table 6. 2. Assumed percentages of canopy cover based on different land-use in the 
Mekong delta. 

Crops types Percentage leaf covers area (%) 

 Landuse 0-1 month 1-2 month 2-3 month 

River and water body  1 0 0 0 

Intensive paddies  2 30 60 90 

Dry paddies  3 30 60 90 

Orchard, mixed rice fields and orchards  4 30 60 90 

Cash crop and vegetable, bushes  5 30 30 30 

Coconuts, sugar canes and cajuputs  6 0 0 0 

Coastal aquaculture, mangroves 7 0 0 0 

Mangroves  8 0 0 0 

 

Based on the schedule in table 4.19 (see Chapter 4), there were two rice crop starting 

points, in early April and October. During this period herbicides are normally applied 

during the first month, whereas insecticides are used in the second month, and 
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fungicides are used in the final month. In this study, the insecticide Abamectin was 

used as a case study to develop the pesticide models. Consequently, it was assumed 

to be applied in the second month crop with the average canopy cover for different 

crops given in table 6.2. and remaining areas such as water bodies, mangroves or 

aquaculture set to zero. The overall canopy cover is shown in Figure 6.6 and the 

application efficiency is shown in Figure 6.7. 

 

Figure 6. 6. Overall canopy cover percentage in the Mekong delta. 
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Figure 6. 7. Pesticide application efficiency coefficient AP_EF. Value 1 represents a 

higher efficiency of pesticide application, while lower values indicate less efficient 

pesticide use. 

6.5 Pesticide runoff sub-model 

Mathematical modelling of pesticide runoff has been considered by several researchers 

(Chen et al, 2004; Li et al, 2003a; Li, Li, Struger, Chen, and Huang, 2003b). The runoff 

modelling in this study considers overland flow rather than stream runoff networks, rills 

or inter-rill flow (a flow path or flow channel created by erosion at the top soil layer). 

Each grid cell in the spatial database contains indicators of the flow direction, quantity 

losses, and received amount from other cells. The runoff of pesticides was modelled for 

every rainfall event and was designed to simulate pesticide losses and accumulation at 

each time step (4 continuous days). The model combines two components, sediment 

and water runoff, with the final cumulative pesticide losses being the summation of 

these. It must be noted that any errors in the outcome, principally due to the lack of 

reliable pesticide input data, could be improved by a well organised pesticide 

application collection system. 
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6.5.1 Pesticide runoff in sediment loss 

6.5.1.1 Pesticide available in sediment when runoff.  

After application direct loss by foliage uptake will occur in the soil layers. Normally, the 

volume of pesticides available for surface runoff is calculated after deduction of this 

direct loss. In this model, pesticide input quantities were set lower than the actual 

application rate to allow for the fact that many factors decrease the amount of pesticide 

on plant canopies, such as degradation by sunlight, strong volatilization, and movement 

in wind-blown aerosols.  

a. Pesticide residue in soil 

Pesticide residues in soil always decrease because they auto-degrade and affected by 

many exchange processes, such as emission from soil, biological and physical 

degradation, dissolution from granules into water, adsorption, and desorption. The 

proportion of pesticide concentration in water and sediment may also vary depending 

on physical features and formulation, (Evans and Duscja, 1973). The pesticide residues 

available for runoff were defined by (Li et al, 2003b) in equation 6.3 

           
                 Equation 6. 3 

 

where Rt is the pesticide residue at time t (days) after application; U is total applied 

pesticides; Fi is the daily emission factor of pesticide; t1/2 is half-life of pesticide in the 

soil.  

Abamectin is considered as moderately persistent in the environment (PPDB, 2012). Its 

half-life was obtained from the literature (Al Housari, Höhener and Chiron, 2011; 

Neitsch et al.,2002; Nowell et al.,1999; Reyes et al.,1983). In this study a typical half-

life of Abamectin (insecticide) of 30 days was used (PPDB,2012). Pesticide half-life was 

recalculated every 4 days using the following equation 6.4. 

 

  
   

    
                                    Equation 6. 4 
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The emission factor, Fi,  is the ratio between quantity of pesticide emitted to the air and 

the total amount applied (Li, Venkatesh, and Li, 2004). Processes affecting emissions 

through volatilization of agricultural pesticides applied to soils or plants have been 

studied in numerous laboratory and field investigations. The 3 major parameters that 

influence the rate of volatilization are the nature of the active ingredient, the 

meteorological conditions, and soil adsorption. However, the method to determine 

amount emission pesticide in different soil type is complex and emission to the air from 

soil is usually micro quantities especially with high percentage clay soils (Li et al.,2004; 

Scholtz, Voldner, McMillan and Van Heyst, 2002). Consequently, the daily emission in 

the equation 6.3 was set to zero. 

Modelled Abamectin residues in soils are shown in Figure 6.8. The residue amount in 

two applications per year is the main pesticide source to use as the input of pesticide 

any further modelling. 

 

Figure 6. 8.  Abamectin residues in the soil layer following application in April and in 
October (2008) 

 

b. Potential pesticide concentration (Ct) in soil layer 

Rainfall occurring during time (t), also detaches soil particles to contribute to the runoff 

process. The concentration of pesticides in the soil layer was estimated by equation 

6.5. The initial concentration at (t) time was the initial concentration of pesticide after 

application, less the amount lost by half-life degradation. The equation also was also 

appropriate in cases where there is no or not enough rainfall volume causing soil loss 

and runoff (Huber et al.,1998; Kenimer, Mostaghimi, Dillaha and Vo Shanholtz, 1989; 

Walker and Brown, 1987; Mills and Leonard, 1984).  
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            Equation 6. 5 

 

where C(t) is pesticide concentration at the time runoff is started (mg/kg); C(o) is 

pesticide concentration after application (this amount was excluded the direct loss). C(o) 

is calculated by the pesticide residue in soil (Rt) and weight of soil (Wsoil). The sediment 

loss every 4 days, calculated previously, was applied as the weight of soil in equation 

6.6.  

 

     
  

     
                            Equation 6. 6 

 

Based on the assumption on pesticide application time in chapter 4 (see 4.6.2.(d)), 

Abamectin has been applied twice a year. That means there will be two pesticide input 

datasets in the model: first dataset is in April and second is in October. Concentration 

after application (C0) were calculated at these 2 applications. The equation 6.6 was 

applied and the results shown in Figure 6.9. Corresponding to C0, the concentration at t 

time were calculated by equation 6.5, the result of Ct is shown in Figure 6.10. Value of 

Ct of course smaller than C0 because there is a small pesticide loss by half-life 

degradation from after pesticide application until the first rainfall event coming. 

 
Figure 6. 9 .Concentration of Abamectin immediately after application (Co) 
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Figure 6. 10 .Concentration of Abamectin 4 days after application. This was also the 

concentration available after the first runoff (Ct) 

 

c. Pesticide adsorption capacity 

The adsorption of pesticide to soil is a reversible phenomenon which controls the 

pesticide concentration in sediments. It describes the capacity of pesticide to attach to 

soil particle and partly detach into water fluxes when all sediment and pesticides are in 

the soluble phase. Well-penetrated pesticides will result in a smaller pesticide dose for 

targeted pests in soil. The soil structure, organic matter content (%OM) and 

environmental conditions such as temperature, pH, ionic strength and salinity all effect 

the pesticide adsorption capacity (Nowell et al.,1999). 

Adsorption was determined using the Freundlich equation (Equation 6.7) based on the 

instant equilibrium of active ingredient between soil mass and overland flow in the 

interacted zone (Kenimer et al.,1989; Donigian et al.,1978).  

        
  

   
                                             Equation 6. 7 

where Kd is soil-water partitioning coefficient; OC is organic carbon percentage; KOC is 

the organic carbon sorption constant. Kd is determined by the correlation function 

between the constant of chemicals in octanol and water (KOW). The methodology to 

calculate KOC is well described by Rwetabula (2007) and follows the experimental 

models of Karickhoff (1984). The KOC  for Abamectin of 107 was taken from the 

pesticide properties database PPDB (2012), where KOC was 107. Organic carbon 

percentage was obtained from the FAO soil property data (FAO,(2003) 
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d. Potential pesticide concentration in sediment runoff (CS) 

The concentration of pesticides as mg/kg in sediments (CS) when runoff take place can 

be computed from equation 6.8 (Li et al.,2003b; Leonard et al.,1987).  

   
        

      
                        Equation 6. 8 

 

where B is the extraction coefficient. Leonard et al (1987) classified  the relationship 

between the soil-water partitioning coefficient Kd and B as follows: 

B=0.5                            For                 Kd < 1 

B=0.7 – 0.2                   For            Kd <1 and < 3 

B= 0.1                           For                 Kd > 3 

Applying equation 6.8, figure 6.11 illustrates the potential concentration in soil in for 2 

applications (in April and in October)  

 

Figure 6. 11.  Potential concentration of Abamectin in sediment when runoff takes 
place, during the wet and dry seasons 

The pesticide desorption to water for runoff was extracted from the CREAMS/GLEAMS 

and AGNPS models (Chen et al.,2004; Li et al.,2003b; Leonard et al.,1987). The 

pesticide concentration in water (µg/L) was considered when the adsorption of pesticide 

in sediment in soluble phase approached the equilibrium condition. Given this 

assumption, pesticide concentration in water (Cw) can be estimated using equation 6.9. 

Potential pesticide concentration in runoff fluxes for 2 applications is shown in Figure 

6.12 

   
    

      
                      Equation 6. 9 
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Once concentration in sediment yield and in water runoff were determined, the 

concentration in the fluxes could be calculated using equation 6.10. 

                              Equation 6. 10 

Where Cro (µg/L) is the concentration of pesticide in the fluxes runoff which includes 

sediment losses from erosion process and runoff water from rainfall. Cs is based on the 

total sediment yield losses from erosion process, therefore the sediment concentration 

SC (g/L) in equation 6.10 will be assumed to be equal to the total amount of sediment 

in every runoff event. 

The quantity of pesticide loss Aro (µg/ha) at a grid cell at the end of every event will then 

be (equation 6.11): 

                                   Equation 6. 11 

where Qt is runoff volume at t time (see section 5.4).  

Pesticide concentrations based on pesticide application were determined only twice in 

the model processing, over the first 4 days after application (for example in 1st four 

days in April and in October for Abamectin). The model calculates the loss of pesticide 

concentration based on the sediment loss and runoff models and the computation step 

gives the results of accumulated pesticide concentration for each event, the previous 

cumulative result feeding into the next modelling event and the process repeats until it 

reaches the end point which was set up for every pesticide. For example, for Abamectin 

modelling, two end points of the model were set at the end of March and the last day of 

September. The model continues running in October using new concentration data 

which is equal to the concentration from the October application plus the cumulative 

quantities from the previous event in September (figure 6.13). 
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Figure 6. 12. Potential concentration of Abamectin in water runoff (µg/L) in the soluble 

phase during the wet and dry seasons 

During the calculations, the degradation based on half-life was one of the major loss 

components in sediment. Theoretically, the losses by degradation could be divided 

between both sediment and water runoff. However, the rain (or runoff) time was much 

smaller than the time the pesticide was inside the soil layer. Moreover, the duration of 

rainfall events was not recorded and not available in this study and so only the half-life 

loss in the soil can be taken into account. The final pesticide concentration was 

estimated by summing all of the subcomponents; the sequence is shown in Figure 

6.13.  

 

Figure 6. 13.  A time scale flowchart of the overall modelling process 

In cases where there was no rainfall or insufficient rainfall for soil detachment and 

runoff to occur, the model bases pesticide loss on half-life degradation using the data 

on the last accumulated pesticide. The cut off point was set to rainfall higher than 5 

mm, although  up to 10 mm has been used by other workers (Huber et al.,1998). This 

assumption was location dependent.  



154 
 

6.5.1.2  The hydrological component 

The hydrological component was the basis for calculation of pesticide loss and 

accumulation. It considered the quantity of pesticide able to move to other locations in 

the environment under the influence of hydrological phenomena such as rainfall, runoff, 

soil erosion and sediment loss, transport of water and sediment and accumulation. 

Based on this factor, pesticides in the environment will changed in quantity and location 

compared to the initial condition. 

Rainfall is the most important factor determining runoff in both quantity and time. 

Rainfall data was derived from information recorded at government stations in the 

Mekong delta. The method for incorporation of this data into the spatial database was 

presented in section 5.2.1.  

Runoff volume (Q) was determined by the Curve Number method (CN method) 

presented in Chapter 5. Runoff accumulation was computed by equation 5.11 as in 

section 5.3.4.5. 

6.5.1.3 Routing of pesticide accumulation 

Routing of pesticide can be calculated using the continuity equation 6.12.  

                                        Equation 6. 12 

 Where C(out) indicates the output concentration of pesticides in a grid cell, also the 

available pesticide concentration for next runoff, C(in) is the summation of all pesticide 

flow into this cell from surrounding cells at a higher elevation, C(generated) is total pesticide 

concentration generated within the cell. 

Each grid cell is considered as an individual storage point for results from the model 

and the routing accumulation of pesticide is calculated for every time step. In 

consequence, the routing component is the last calculation to be evaluated in 

determining the quantity of pesticide at specific geographical locations. 

The mass balance equation (equation 6.12) is used in this study. The input of pesticide 

to a cell will include the fraction of pesticides not removed by runoff from the previous 

time step, and the pesticides received from other cells after runoff in both 

accumulations in sediment and in water. In the grid cell structure, output from cells at 

higher elevation is routed to lower elevation cells or to the stream network and finally to 

the outlets. The model aims to calculate the concentration of pesticide, and therefore 
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the continuity equation is also based on concentration whereas in other applications 

this equation has been used to calculate pesticide volume (Li et al, 2003; Li et al, 2003; 

Chen, Huang, Li, Li, and Liu, 2002). The calculated result will be the concentration of 

pesticide in every time step (4 day intervals), and the final accumulation at the end-

point of the model. All mathematical functions and equations were implemented in the 

macro-modeller of the IDRISI GIS environment.  

 

6.6 Results. 

6.6.1 Pesticide direct loss 

In this study, the insecticide Abamectin was used as a working example as the 

application time was definable. However, this would not be possible at present for many 

pesticides as there is often no recorded data available for time of application for a 

specific substance. The direct loss of Abamectin was calculated twice per year and is 

shown in Figure 6.14. 

 

 

Figure 6. 14 Abamectin (insecticide) direct loss in crop on April (wet season) and 

October (dry season). These results will contribute to the pesticide input data for runoff 

modelling as a deduct factor to cut down a specific amount of pesticide lost by direct 

attach to foliages of the crop plants. 

The total direct loss of Abamectin extracted from these outcomes was 0.89 g/ha from a 

mean total application volume of 27.54 g/ha in the dry season and 0.76 g/ha from 19.1 

g/ha mean applied in the wet season. In general, direct loss in the dry season is 3.25% 

of total pesticide use and 3.99% in wet season  
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Abamectin was applied in 2009 mainly to intensive paddies, mixed paddies and cash 

crops. The other land-use types were not analysed because there was no real 

application to water bodies and to aquaculture areas or even to some agricultural 

targets such as industrial crops or mangroves, which have never had insecticide 

treatments. Pixels having these types of land-use will  generate zero values (Figure 

6.15). 

 

Figure 6. 15.  Mean direct loss of Abamectin (g/ha) in different land-use categories in 2 
main applications in 2008. 

 

6.6.2 Pesticide loss in runoff and sediment yield 

The concentration of pesticides in runoff water comes from the desorption process of 

chemical adsorbed to soil particles. The pesticide remaining in soil particles determines 

the concentration of pesticide in sediment loss during runoff fluxes. The resulting 

pesticide loss in sediment yield is shown as the concentration of pesticide (Cro) in every 

grid cell for one time step, with 90 time steps available for display. Figure 6.16 shows 

only the monthly pesticide concentration in runoff fluxes.   

As there was no rainfall at the beginning of the month until the 18th of April, the initial 

concentration of pesticide commenced from this day instead of the beginning of April. 

However, the loss function due to self-degradation (half-life) was still was computed 

from the 1st of April. The potential pesticide amount input to the concentration 

computation was equal to the initial pesticide existing in soil layer after application 

minus the degradation due to half-life.  
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Figure 6. 16. Monthly Abamectin concentration in runoff fluxes (µg/L). This is the gross 

concentration of pesticide in both water and sediment when runoff takes place.  

 

6.6.3 Total pesticide accumulation 

Accumulation represented by concentration (the rate of mg of pesticide per kg of 

sediments) is highest immediately after application (in April and October), and then 

decreases with time due to self-degradation (Figure 6.17). Some areas have high 

concentrations where pesticide application rates were highest; although it appears that 

the runoff and accumulation do not disperse far from the original application sites. The 

results also confirm that the relatively flat terrain in the Mekong delta strongly affects 

the runoff and accumulation process.  

Total pesticide accumulation was modelled for every time step during the year and, 

depending upon requirements, specific time step data was extracted. Figure 6.17 

shows that accumulation commenced at the second rainfall event and after the first 

sediment loss.  The model, was not run when no rainfall or no runoff occurred during 
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which time the actual accumulation of pesticides was affected only by the half-life 

degradation function. 
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Figure 6. 17. Monthly Amamectin accumulation (g/ha) after runoff. The values include 
the accumulation in water runoff and in sediment yields. 

 

6.6.3.1 Rainfall impact on pesticide accumulation  

Rainfall was the most important factor promoting hydrological activities in a watershed 

and the main factor causing variance in the MUSLE sub-model. The rainfall volume 

controlled the amount of runoff, sediment loss, the pesticide concentration in runoff 

fluxes, and also in accumulated material.  
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In contrast to assumptions made by Huber et al (1998), who allowed their model to run 

when rainfall events were higher than 10mm, this study started to run the model at 1 

mm increments. This was based on the report of Chiem (1993) who discussed the high 

detachment capacity of soil types found in the Mekong delta. 

An Minh station data (Figure 6.18) for rainfall and pesticide accumulation was extracted 

in order to compare these parameters (see Figure 6.19). In general, accumulated 

pesticides and rainfall volume fluctuated similarly and, as expected, there were two 

peaks of pesticide accumulation each year at the end of May and beginning of October.  

At the other times pesticide accumulation values seemed to be less dependent on 

rainfall and runoff.   

 

Figure 6. 18. The An Minh sample station used to extract comparative data. 
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Figure 6. 19. The trend of Abamectin accumulation (mg/kg) compared with monthly 
rainfall (mm) at An Minh station 

 

6.6.3.2 Half-life degradation losses and pesticide accumulation concentration 

In contrast with rainfall, half-life degradation seems to have a strong effect on pesticide 

accumulation in each cell (Figure 6.20). This has a bigger effect on monthly pesticide 

accumulation than runoff  

 

Figure 6. 20. The trend of Abamectin accumulation (mg/kg) compared with losses by 
half-life degradation (g/ha) at An Minh station 
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6.7 Potential impacts of pesticide on aquaculture sites  

By using the toxicological parameters LC50 (96 h), LD50 (96 h), and EC50 (96 h), it is 

possible to reclassify potential impacts in the whole study area for the two most 

significant aquaculture species in the Mekong delta,  Pangasius (Pangasius 

hypothalmus) and tiger shrimp (Penaeus monodon). The expected outcome is a fuzzy 

reclassification of risk areas for both species in the monthly datasets. 

6.7.1 Aquaculture site classification by pesticide accumulation risk. 

The pesticide risk classification uses two datasets: (1) the concentration of a specific 

pesticide present in water volume and (2) the values for half-loss lethal concentration 

(LC50) of an aquaculture object.  

The results from the pesticide loss and accumulation model show the cumulative 

quantity of pesticides in a grid-cell (mg/kg) calculated using Equations 6.11 and 6.7, 

The volume of water (m3) presents in a cell is based base on the typical pond water 

depths of 0.5; 1.0; 1.5 and 2.0 meters and the effects of this are illustrated in the 

following examples.  

 

6.7.3.1 Case 1: 0.5 m initial water depth.  

In this situation, it was assumed that pond water depth was 0.5m and as each cell size 

was 900m2 (30m x 30m) therefore the volume of water per cell was ~450m3 water. The 

classification was carried out over the whole study area with no geographical limitation 

by current catfish or tiger shrimp culture areas. It also was assumed that there were no 

differences in desorption of pesticides in different salinities. The results show the areas 

of highest risk occurring during May and October (Figures 6.21, 6.22). Having a higher 

membership function values, the riverside areas and water bodies seem to be the 

highest risk zones for catfish over these months. Safe areas for catfish also increased 

much faster than for shrimp with an LC50 of ~11.5 μg/l. Overall, risk areas for catfish 

were less than for tiger shrimp. 
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Figure 6. 21. The  risk areas for catfish due to Abamectin beginning of every month  
with a pond depth of 0.5m. 
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Figure 6. 22. The risk areas for shrimp due to Abamectin beginning of every month with 
a pond depth of 0.5m. 

The membership function value (range from 0-1) is defined by the truth value under 

fuzzy sigmoidal function. In the reality, the lethal concentration (96hrs) causes the 
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death of population in different percentage. It is actually known that the death rate at 

100% cause by a specific value of lethal concentration will be the highest risk point 

(could be write LC100). However, this classification considers the max risk point is at 

LC50 (at the value of lethal concentration cause 50% population loss), and the non-risk 

point is at zero (death rate is at zero). Therefore, the assigned values from (>0) and 

(<1) will also belong to the risk point, even though that lethal concentration just cause 

few percent of death rate in population.  

 

6.7.3.2 Case 2: 1.0 m initial water depth. 

In this case, 1.0 meter of water was assumed to be taken into the pond for aquaculture 

activities and the total water stored in each cell was ~900 m3. LC50 values for tiger 

prawn and catfish were as in case 1. Other assumptions were the same as case 1. The 

results are shown in Figures 6.23. and 6.24. The high risk areas clearly decreased 

comparing to 0.5m water depth case. For catfish sites, the high risk areas in May and 

October were much narrower than 0.5 m depth in riverside areas. The safe areas were 

definitely increased (cover almost study area) from January to the end of April, whereas 

these situations with 0.5m water depth were from March to the end of April.  
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Figure 6. 23. The risk areas for catfish due to Abamectin beginning of every month with 
a pond depth of 1.0 m. 

At the shrimp sites (figure 6.24), risk areas for tiger prawn appeared to decrease 

compared to 0.5 m water depth case, especially in periods from August to September, 

and from November to January.  From the beginning of March to the end of April, safe 

areas for tiger shrimp were increased for the most suitable culture period. 
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Figure 6. 24. The risk areas for shrimp due to Abamectin beginning of every month with 
a pond depth of 1.0 m. 

6.7.3.3 Case 3: 1.5 m initial water depth. 

This case assumes an initial pond water depth of 1.5 m and each cell will contain 

~1350m3. All assumptions are as in case 1. The results are shown in Figures 6.25 and 

6.26. In this case, catfish was considered to be safe all year round except for two 

months (May and October) in very narrow areas at the riverside with a low pesticide 

risk. 
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Figure 6. 25. The risk areas for shrimp due to Abamectin beginning of every month with 
a pond depth of 1.5 m. 

 

Risk areas for shrimp were still present with 1.5 m water depth at the riverside and 

coastal provinces (Figure 6.26). However, shrimp culture was safe over the period from 

June to September (with only small areas at even low risk from Abamectin), and from 

January to the end of April. In only coastal areas consideration, 1.5m water depth 

indicates the largest safety culture areas for tiger prawn.  
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Figure 6. 26. The risk areas for shrimp due to Abamectin beginning of every month  
with a pond depth of 1.5 m. 

 

6.7.2 Impact of pesticides on potential aquaculture areas 
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The total areas for the assessment of risk were extracted from these case studies to 

show the overall area of risk and no-risk for catfish and tiger shrimp for each month. 

Even though Abamectin was widely used throughout the study area, those areas at risk 

occupy a relatively low percentage of the total areas. Figures 6.27 to 6.32 show the 

fluctuation in risk and non-risk areas in the Mekong delta for the three scenarios.  

For catfish, areas of risk peaked in May and October at ~333000 and ~420,000 ha for 

0.5m water depth (Figure 6.27); at ~136,000 and ~183,000 ha in the case of 1.0 m 

water depth (Figure 6.29); and only ~10,840 and ~19,000 ha in the case 1.5 m water 

depth (Figure 6.31). The two peaks times for areas of risk for tiger shrimp were also in 

May and October but were considerably higher in size at ~648,000 and ~771,000 ha 

with 0.5 m water depth (Figure 6.28); ~346,000 and ~446,700 ha with 1.0 m water 

depth (Figure 6.30); and ~185,000 and 250,000 ha with 1.5 m water depth (Figure 

6.32). At water depths of 0.5 and 1.0 m, the sizes of the risk areas were relatively high, 

especially for shrimp culture. However, at 1.5 m water depth there was less areas of 

risk for catfish culture during the year, but still some small risk areas for shrimp during 

May and October. 

 

 

Figure 6. 27.  Pesticide risk and no-risk areas of Abamectin for catfish then they were 
reared in 0.5 m water depth. 
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Figure 6. 28  Pesticide risk and no-risk areas of Abamectin for shrimp when they were 
reared in 0.5 m water depth. 

 

Figure 6. 29.  Pesticide risk and no-risk areas of Abamectin for catfish when they were 
reared in 1.0 m water depth 

 

Figure 6. 30. Pesticide risk and no-risk areas of Abamectin for shrimp when they were 
reared in 1.0 m water depth 
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Figure 6. 31  Pesticide risk and no-risk areas of Abamectin for catfish when they were 
reared in 1.5 m water depth 

 

Figure 6. 32.  Pesticide risk and no-risk areas of Abamectin for shrimp when they were 
reared in 1.5 m water depth 

 

6.8 Discussion 

 

The pesticide loss and accumulation model shows the feasibility of estimating and 

observing pesticide fate in the environment. The results from the model present the 

quantity of pesticides at any time under the impacts of various factors in nature during 

the year such as runoff, adsorption, desorption, leaching, water flow, accumulating and 

others. The spatial accumulation of pesticides provides significant information for policy 

makers and farmers and investors who seeking safe places with minimum risk factor 

including chemical toxicity. Integration of the model within GIS allows query of spatial 

information on pesticides and contributes a decision making tool when combined with 

the results of other datasets. Going further, this model could be easily applied to any 

other pesticides in any geographical area.  

Pesticide loss models have been developed and applied widely to calculate pesticide 

losses from agricultural land at both big and small scale such as PeRM of (Li et 
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al.,2003; Li et al.,2003) and AGNPS (Young et al.,1989). The most important factor in 

these models was the runoff process in which elevation was highly influential.  In this 

study the models have been applied in the Mekong delta which differs from previous 

studies by being very low and flat. The highest risk areas for catfish and shrimp were 

found in this study at almost the same places where the pesticides had been highest 

applied and occurred along the riverside and coastal zones. This is also the reason why 

monitoring stations have been set up at these areas to collect the data on pesticide 

concentration in soil and water samples (Carvalho et al.,2008; Minh et al.,2007). In 

general, risk areas of Abamectin for both catfish and tiger prawn were not large enough 

to effect the development of culture of these two species under current application 

regimes.  

Some models have been developed to estimate pesticide loss through overland flow 

(Holvoet et al.,2008; Chen et al.,2004; Li et al.,2003; Huber et al.,1998) mainly focusing 

on calculating the amount of pesticide loss in runoff water. The present study clearly 

shows the benefit of calculating pesticide losses in both water runoff and sediment 

based on the adsorption and desorption of chemicals between the two different 

environments: soil and water. This summation of pesticide concentration in water and in 

sediment results in a much higher predicted accumulation of pesticide in each cell than 

previous studies.  

The pesticide loss and accumulation model was designed for the Mekong delta where 

agricultural pesticides are applied throughout the year. The background of the model 

was based on the time scale of these agricultural chemical uses and could be set to 

update every 4 days or even every day depending on user modifications. Some models 

calculating pesticide losses based on the RUSLE equation developed by Renard et al 

(1987) and  USLE equation by Wischmeier (1978), create results that predict totals 

over a whole year. By contrast, the sediment loss and pesticide loss models in this 

study were approached as daily events. The scale of the outcomes from this model is 

presented in terms of the grid cells used, rather than the watershed which has been the 

norm. For example, the pesticide loss models by Li (2003), Barrar (2000), and Zhang 

(2011) mostly concentrate on watershed scale and simulate pesticide losses at some 

outlets of the channel network. In general, the advantage of the present model’s 

approach has been a greatly improved time scale and the calculation of the results at a 

much more detailed spatial scale than previous studies.  

Based on the pesticide fate in the environment, the pesticide loss process is very 

complicated in term of defining the quantities and distribution of each pesticide. During 
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runoff losses, the duration of rainfall has not been analysed. While this factor in reality 

controls the magnitude of soil loss and sediment yield after every rainfall event, the 

present model runs over a maximum duration of 4 days which may result in over-

estimation for a single event. Furthermore, leaching and evaporation were not included 

in the calculations. However, the structure of model has been designed to allow easy 

insertion of these components at a later date.  
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Chapter 7 

Overall discussion and conclusion 

 

 

7.1 General discussion 

The Mekong delta is one of the largest deltas in the world. Agriculture and aquaculture 

are key areas for development in the past, in the present and also the future. 

Agriculture is the core economic activity in this region. Rice cultivation is considered as 

the main agricultural target which takes the advantages of rich freshwater resources 

derived from The Mekong River. Similarly, aquaculture in previous years started to 

develop in the Mekong delta despite potentially negative interactions with agriculture. 

According to the few projects carried out on the Mekong delta to detect the residue of 

persistent pesticides (Minh et al, 2007); Carvalho et al, (2008), there is clearly an issue 

concerning residue pesticides in the soil layer, sediment, water and biota in over the 

Mekong delta. This project investigated the impacts of these agro-chemicals in terms of 

chemical interactions, quantities and their fate in the aquatic environment.  

In this project, the problem has been investigated in 4 main parts: (1) Survey the 

current use and distribution of pesticide in agriculture and aquaculture in the Mekong 

delta; (2) Modeling the soil loss erosion, sediment lost yields caused by rainfall to 

evaluate the quantities of pesticide existing in cumulative sediments; (3) Modeling the 

runoff to evaluate pesticide volume concentrate in cumulative water; (4) A fuzzy 

classification was used to define the risk areas for specific aquaculture targets.  

7.1.1 Pesticide use in the Mekong delta 

The advantage of the survey on this project is the geographical location approaches for 

every interview. Every sample has its own geo-coordinate. Therefore, each sample 

brings two types of data, the spatial data and pesticide information. Several surveys 

have been done in the Mekong delta between 1996-2007 (Nguyen Huu Dung et 

al.,1999), from 1999-2000 (Berg, 2001) and latest in 2004 by World Bank (2012a) 

which normally used the sampling methods without recording specific geographical 

locations of the farms surveyed. This project carried out sampling methodology which 

geo-sampling approach, information on pesticide quality and quantities, land-use, soil 

types, number of crops have been conducted. With coordinate recorded, users would 
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be able to achieve more accurate information in whole area instead of normally using a 

traditional sampling method selecting a small concentrated areas (a village or a hamlet) 

as a typical location for the survey.  

Although 334 farms were surveyed the total area approached ~20,000km2. On 

average, 1 sample represented up to ~59,000 hectares of crop land.  However, the 

compensation for this is the homogenous culture system in the Mekong delta. Total 

large areas in the central were used for rice cultivation which nearly homogenous about 

technique, time of cultivation and pesticide application, time of harvest, and type of 

chemicals use. It will be similar for the other types of land-use. 

The average amount of pesticides applied in a hectare was found to be higher than 

those in the past few years. Results shown in figure 4.13 and 4.14 reveal the mean 

pesticide uses in 2008 at the rate of ~2.5kg/ha a.i while only ~1.01; ~1.8 and 

~2.16kg/ha a.i were found in 1996, 1999 and 2004 respectively. The higher 

concentration of pesticides found, the higher potential risk to aquatic organisms. 

However, in total 96 pesticide types was found, there was not any of them belonging to 

the Group II (WHO, 2006), while previous pesticide data in the survey during 1996 and 

1999 revealed a large number of pesticide (especially insecticides) belonged to Group 

Ia and Ib which are considered the top mortality affects to aquatic animals. In term of 

the toxicity level and residue impacts, it revealed a good sign for environmental issues 

and aquaculture development. It also indicated that farmers understood the long 

persistent risk of pesticides. However, the increase of pesticide quantities applied per 

hectare also indicated there is little certainty about the stable development of seafood 

production in term of quantity and quality in the Mekong delta. 

Using the mean values of pesticide application per hectare, there is unlikely to be 

lethality in reared fish, but there may be a residue in flesh. 

Pesticide survey in this study provided information on pesticide use in the Mekong delta 

for target users. The improvement of this survey compared to several in 1999, 2000, 

2004 and 2006 (mentioned in chapter 4) is the geo-information which helps to illustrate 

the spatial distribution of a specific pesticide in whole area. Information and database 

created for each pesticide’s contribution to pesticide profiles in the Mekong delta. This 

supports environmentalists, policy makers and aquaculture investors in the decision 

making process. 
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7.1.2 Soil loss and sediment yields in the Mekong delta 

Soil and sediment type were the basis for pesticide attachment and transport by the 

moving of soil particles in the environment.  Soil erosion and sediment loss model was 

built on the method of MUSLE developed by William and Berndt (1977), which is 

different from soil erosion equations of some other previous authors, as it replaces 

rainfall factor for yearly runoff data with storm event data. From this, results are 

presented in daily data which is more detail and it could be linked to other models by 

time series or longitudinal dataset. Except the runoff factor, other component factors 

such as K,C,P,LS were based on the root modification from Wischmeier and Smith 

(1978) which many authors apply to their specific condition. Although the concept of the 

equation was an equal contribution to sediment loss, applying to the Mekong delta also 

found the differences among their contribution in different places where model was 

applied (discussed in chapter 6).  

An aim of this project was to set up a time series model to stimulate soil erosion and 

sediment yield loss for every surface grid cell. Therefore, MUSLE was considered as 

the most appropriate solution for the Mekong delta to predict sediment yield in any 

places where they have available rainfall distribution. Although there is no better model 

than MUSLE used for this study, the accuracy of this model is still relatively précised 

(Lim et al.,2005), especially when integrating the model into GIS, the results expose the 

detail in quantities of sediment volume loss and accumulation. In each factor, there 

were many sub-components which required calibration by the user. Therefore for the 

model to be accurate, enhancement was required and the user must be explicit about 

the natural properties, land-use and land treatment, and hydrology condition in the 

areas applied to the model (Ha, 2009).  

Soil type characteristics, land-use control runoff, and discharge processes where 

important model parameters. Soil type on the majority of hydrology processes related to 

leaching, infiltration, and absorption of water when runoff. Soil texture data and 

permeability in the study area revealed hardly any runoff capacity, which may lead to 

reduced soil erosion, especially for the soil with high clay content (up to ~75% in some 

places) and widely distributes in low land areas (used for paddy fields). In addition, 

land-use in the Mekong delta can be resistant to runoff depending on the soil depth and 

area of cover of vegetation canopy. Clearly knowing these two main factors will create 

potential approaches to manage runoff and erosion in every specific place at a regional 

scale. 
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Although MUSLE could be applied in any place with enough data requirement, but 

sediment loss and accumulation in the Mekong delta is not clearly displayed. Slope 

factor is mentioned as an important affect on the quantity of soil loss and accumulation 

(Van Remortel, Maichle and Hickey, 2004; Di Stefano, Ferro and Porto, 2000; Liu, 

Nearing, Shi and Jia, 1999). For different events, the distribution of soil or sediment 

loss will be easy to recognize especially when combining the parameters to display in a 

GIS system (Zhang.Z et al.,2009).  

Accumulated sediment ranged from ~1066.42 tonne/ha/year at hilly areas to ~150.15 

tonne/ha/year in wet paddies. Areas in the riverside and near the channels got 

relatively high at ~230 tonne/ha/year. In these areas, total accumulation could affect to 

the water quality for aquaculture especially some species sensitive to suspended 

sediment in water. In the negative impacts, the contribution of ~230 tonne of sediment 

per hectare existing in the pond may result in the increase of investment for 

aquaculture as fisherman have to pay a fee to deal with the sedimentation brought from 

sediment loss and accumulation processes. 

7.1.3  Pesticide accumulation over the Mekong delta 

Aquatic environment and aquaculture are always considered less important than 

agriculture development which still be promoted by the government development 

policies. It has been stated that the pesticide loss and accumulation was calculated and 

mathematical modelled. This model can be applied for any type of pesticides with 

difference places.  

In the 8 land-use types in the Mekong delta, pesticide use was more effective for short 

growing time cash crop and vegetable areas than for areas of paddies. Compared with 

total usage in both seasons, apparent direct pesticide loss was not as great as 

previously measured at up to 40% or a maximum of 80%, (cited by (Holvoet, 

SeuntjensmK, Mannaerts, De Schepper, and Vanrolleghem, 2007)).  

The accumulation was basically calculated by the consideration on the period runoff of 

the fluxes containing water, sediment and other substances. Although SWAT (Soil and 

Water Assessment Tool) is considered as a powerful tool to modeling the hydrology 

especially runoff process on grid cell system. However, the principle and equations 

constructed in SWAT were also derived from curve number method (CN method) 

(USDA-SCS, 1986) which can be integrated to other hydrological model as a 

component. Therefore this study applied the CN method to integrated directly on Macro 
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modeller function together with other component models such as MUSLE  The highest 

pesticide accumulation in 2008 in the Mekong delta was in May,  June, July, August, 

October and November. The result of accumulation depended on two main 

components; the actual applications over a year and degree hydrology activities such 

as rainfall, runoff, soil loss and soil accumulation. Two main applications in May and 

October coincidentally happen in rainy season (one at the beginning and another at the 

end). That explains why pesticide accumulation peaks at the same time as the 

pesticide inputs. Although the Mekong delta had a rich rainfall leading strong runoff and 

sediment loss, the fluctuation of pesticide accumulation quantities were still affected 

more by the loss from half-life degradation than from the impact of hydrology 

processes. 

7.1.4  Pesticide impacts to aquaculture 

The purpose of modeling for this project was to find the state of temporal and spatial 

distribution of risk areas caused by pesticides. 

Risk sites caused by Abamectin toxicity for catfish at 0.5 water depth culture appear at 

riverside areas. However, actual high risk areas for catfish only appear in May, Jun, Jul 

and Oct, Nov, Dec. That means at 0.5 m water depth, the best time for catfish culture 

ranged from Aug to end of Sep, and from Dec to the end of Apr next year. Although 

suitable sites were illustrated by many other parameters (larvae quality and 

environmental parameters), the pesticide toxicity in long term still potentially impact on  

health and survival rate of catfish.  

The model was constructed based on the calculation of concentration of pesticide in 

water body (of the ponds), the model did not include volume of pesticide existing in 

bottom soil layers. Those amounts are capable to release into water body by desorption 

processes during the production cycle. 

Spatially, the risk areas concentrate in the river and river sides of the Mekong rivers in 

the middle distance of river length (e.g, see in Figure 6.21) within the delta. That means 

at 0.5m water depth, catfish cultures still have potential risk caused by accumulated 

pesticide, especially in riverside areas. In the actual condition, some catfish rearing 

sites currently overlap with  risk area location created by this study (Figure 7.1). 

The pesticide risk sites results for shrimp at 0.5m water depth show large areas of 

acute toxicity for tiger shrimp. These high risk areas concentrate on the months: from 
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May to Oct, and Dec. Safe culture for tiger shrimp in the Mekong delta just can be seen 

in Jan to end of Apr 

 

Figure 7. 1.  Aquaculture distribution in the Mekong delta (2009). 

 (Source: Southern Sub-Institute of Aquaculture, 2009) 

However, the results reveal on 0.5 m water depth there were little real problems for 

shrimp culture by pesticide toxicity. Normally, shrimp culture in the Mekong delta 

located following the salt intrusion areas, especially when strongly developed in coastal 

areas. Whereas the risk maps for tiger shrimp reveal the high risk areas in riverside at 

the middle of the main rivers within the delta. Except in May and Oct, there was a minor 

area in coa stal zones in Soc Trang province got value 1 (the death point) (see figure 

6.22). So, if it is based on the salinity distribution map (Figure 7.2), the risk areas 

caused by Abamectin for shrimp cultures will be in period of May to July, and from Oct 

to Dec. Other months in year could be considered as suitable time for shrimp farming 
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due to the risk areas in these periods allocated in inland areas or fresh water areas 

where fishermen could not culture Penaeus species.  

. 

 

Figure 7. 2 . Salinity map. The red areas gain salinity intrusion from 5 to 30ppt which is 
considered as the salinity fluctuation for tiger shrimp cultures. 

Source (RIA2, 2005) 

For a culture pond depth of 1.0m, catfish culture could be affected (but did not reach 

the LC50 death point) in May and Oct. While tiger shrimp cultures, at 1.0 to 1.5m water 

depth, showed some minor areas of impact to the survival rates (at death point of LC50 

values) in coastal areas only in May and Oct. At other times it was considered safe in 

these areas for tiger prawn. 

The results indicate that with a specific amount of input pesticide used in agriculture, 

the fisherman could avoid the risk caused by toxicity impact on aquaculture rearing 

objects by applying this model. In specific case on this project, shrimp cultures could be 

avoid  to the risk of Abamectin toxicity by increase the water depth in culture ponds 

over 1 m. Although this conclusion still depends on various factors related to 

environmental parameters and health conditions of the species reared. 
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Due to the limitation of studying time, the model results could not be validated. 

However, the validation could be carried out by field measurements in different points. 

A number of random points will be selected across the study area with geo-coordinate 

to aid users approach those in real location to ensure the results from the model are 

representative. Data on rainfall, soil erosion and accumulation, pesticide use and 

pesticide accumulation (under the concentration in soil and water) will be collected to 

confront with the values derived from modeling. It is noticed that the model can run the 

update with new dataset of rainfall and pesticide application. Therefore in temporal 

aspect, the system to take samples for validation data will be set up prior the model 

running. 

Even though the model has not been validated, it provides a methodology to stimulate 

the relation between pesticide input to the environment and the lethal risk to 

aquaculture through mathematical modeling integrated with GIS. The results are 

presented under a raster database. The model is an open code which could be linked 

to other models. In further modeling, the most useful model for aquaculture is the site 

selection for a specific species, and then this model will be one of the parameter risk 

indication. 

7.2 Conclusion and recommendation  

In conclusion, the project is summarized in some issues as below: 

 The pesticide survey investigated pesticide information on both quality and 

quantity in 2008-2009. Combining several survey carried out in 2000 (Nguyen 

Huu Dung et al, 1999), 2004 (World Bank, 2012b), these cover the trend of 

pesticide using in the Mekong delta in 2000s. The survery supplied most basic 

information for regional management and development. The advantages of this 

survey is integrate pesticide data on a geo-coordinate system which could 

present the pesticide distribution in GIS. 

 The trend of pesticide use in the Mekong delta was  strongly changed, 

especially when Vietnam it owns producing agro-chemical for internal use. 

Therefore, this survey data will be soon outdated. So, it need to replaced by 

further survey. 

 The modeling soil loss and sediment accumulation is a typical model for low and 

flat land, the model is suitable for calculate soil loss in the delta areas. Factors 

in soil loss equation was calibrated based on the description of MUSLE 

(Modified Universal Soil Loss Equation), and be better if users deeply know 
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about the study area. Data and model construction was built on the base of GIS 

by IDRISI software 

 Application of sediment loss and accumulation model will support to users a 

quick and useful tool to predict sediment quantities in any area scale with a daily 

recorded rainfall data. The display from this model will be presented by the 

display system of GIS which provides an easy understand results under vectors, 

rasters, or tablars. The resolution raster results bring up to the viewer with a 

high resolution up to 30m x30m. Grid cell based calculating not only comes over  

the issue in watershed modeling (difficult to calibrated the parameters due to 

un-homogenous data in a large watershed), but also display a smooth raster 

image to show the sediment loss and accumulation. 

 The most vulnerable areas for soil loss are concentrated in riverside, hilly and 

coastal areas. While two ideal factors affected to runoff and sediment loss, but 

the feasible factor used to controle sediment loss is landuse and farming 

practices or shorten land tilling. In this roject, the sediment loss model was 

designed to adapt with the longitudinal data, therefore the model can be applied 

to modeling for continuity years in the future.  

 The pesticide loss and accumulation model  has been develope by four 

submodel including pesticide distribution, soil loss and accumulation, runoff and 

direct loss in  grid cell concept. The model built as a mathematical model 

integrated GIS to enhance the results 

 The results of pesticide accumulation model were used  for fuzzy classification 

to find the potential risk areas for tiger shrimp and catfish. Fuzzy model reveals 

the concentration of risk areas is main ly in riverside and coastal areas where 

current catfish and tiger shrimp are culturing. Majority of non-risk areas were 

classified when tiger shrim and catfish was culture at 0.5, 1.0 and 1.5m of water 

depth.  The model provide a potential methodology to find the trilateral relation 

between pesticide use in agriculture, the hydrology process and risk area for 

specific aquaculture species. 
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