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A B S T R A C T

Gyrodactylus salaris Malmberg, 1957, is a notifiable freshwater ecto-parasite that infects both

wild and farmed populations of Atlantic salmon (Salmo salar, L.). It has caused catastrophic

damage to wild salmon stocks in Norway since its accidental introduction in 1975, reducing

salmon density in some rivers by 98% over a period of five years. It is estimated that G. salaris

has cost the Norwegian salmon industry more than e500 million. Currently the UK has G.

salaris free status under EU law, however, it is believed that if G. salaris emerged in the UK

the impact would be similar to that witnessed in Norway. The aim of this thesis is to develop

mathematical models that describe the salmon-G. salaris system in order to gain a greater

understanding of the possible long-term impact the parasite may have on wild populations

of Atlantic salmon in G. salaris-free territories such as the UK.

Mathematical models, including deterministic, Leslie matrix and individual based models,

were used to investigate the impact of G. salaris on Atlantic salmon at the individual and

population level. It is known that the Atlantic strain of Atlantic salmon, examples of which

occur naturally in Norway and the UK, does not have any resistance to G. salaris infections

and the parasite population is able to quickly grow to epidemic levels. In contrast, the Baltic

strain of Atlantic salmon, examples of which occur naturally in Sweden and Russia, exhibits

some form of resistance and the parasite is unable to persist. Thus, baseline models were

extended to include immunity to infection, a trade-off on salmon reproductive rate, and

finally, to consider interactions between populations of G. salaris and multiple strains of

salmon exhibiting varying levels of immunity from fully susceptible to resistant.

The models proposed predict that in the absence of host resistance or an immune response

infections by G. salaris will result in an epidemic followed by the extinction of the salmon

host population. Models also predict that if salmon are able to increase their resistance to G.

salaris infections through mutations, salmon population recovery after the epidemic is indeed

possible within 10-15 years post introduction with low level parasite coexistence. Finally,

models also highlight areas where additional information is needed in order to improve

predictions and enable the estimation of important parameter values. Model predictions will

ultimately be used to assist in future contingency planning against G. salaris outbreaks in the

UK and possibly as a basis for future models describing other fish/ecto-parasite systems.
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1
C H A P T E R 1

An introduction to the Gyrodactylus salaris problem

The dictionary defines a mathematical model as “a simplified description of a system, process,

etc., put forward as a basis for theoretical or empirical understanding” (New Shorter Oxford Eng-

lish Dictionary, 2007). Models are useful tools that are employed by mathematicians to solve

problems in a variety of fields from traffic flow to wound healing. An increasingly popular

field of study, mathematical biology, is bringing together mathematicians and biologists into

a new partnership looking to study the mysteries of all aspects of biology and epidemiology.

A large part of this field concerns the study of disease and host-parasite interactions. In these

areas models are used to make predictions about what can happen under a variety of condi-

tions and help gain a greater understanding of the course an epidemic might take. Models

also give an insight into knowledge gaps and highlight areas where more research and data

is required. Mathematical modelling can in some way help to explain and understand bio-

logical phenomena witnessed in nature, however, as noted above models give a simplified

description of a system and hence care must be taken when interpreting results.

Gyrodactylus salaris Malmberg, 1957, (Figure 1.1) is a viviparous (i.e., live-bearing) fresh-

water ecto-parasite that infects both wild and farmed populations of Atlantic salmon (Salmo

salar L.), and can result in the death of the host. It is an important pathogen and was first

described by Malmberg in 1957 from the fins and skin of its natural host, the Baltic strain

of Atlantic salmon (Malmberg, 1957), from a hatchery in Sweden located near the Indalsälv

river (Bakke et al., 2007). Gyrodactylus salaris is believed to be native to the waters of northern

Russia, western Sweden and northern Finland (Peeler & Thrush, 2004). Within the European

area (Figure 1.2) the parasite is known to have been introduced to Norway (Johnsen & Jensen,

1991) and Denmark (Buchmann & Bresciani, 1997; Nielsen & Buchmann, 2001). Between 2003

and 2009 studies confirmed the presence of G. salaris in Germany (Cunningham et al., 2003),

Macedonia (Ziętara et al., 2007), Poland (Rokicka et al., 2007), Romania (OIE, 2009) and on

rainbow trout (Oncorhynchus mykiss) from fish farms in Italy (Paladini et al., 2009). At present

there are unconfirmed reports of infections in France, Portugal and Spain (Bakke et al., 2007).

Moreover, it is believed that G. salaris is in fact present in more countries than those currently

known OIE (2003). A recent review of the parasites distribution across Europe by Paladini

et al. (subm.) confirmed the presence of G. salaris in Bosnia-Hercegovina, Estonia, Georgia,
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Latvia, Moldova and the Ukraine. Although G. salaris has been confirmed in Finland some

watersheds have been declared free from the parasite (Lautraite et al., 1999). Since its acci-

dental introduction to Norway, the parasite has caused catastrophic damage to both farmed

and wild populations of Atlantic salmon parr. Within 5 years of being introduced, the para-

site reduced salmon stock by approximately 98% (Johnsen & Jensen, 1991) causing severe

damage to the Norwegian economy and salmon industry. At present only the United King-

dom and Ireland are confirmed as free from G. salaris (see Shinn et al. (1995); OIE (2003,

2009)).

Figure 1.1: Images of Gyrodactylus salaris obtained through the use of a Scanning Electron Microscope
(SEM). A single G. salaris parasite is approx 0.5 - 1mm in length. Photographs kindly taken
and provided by Giuseppe Paladini.

1.1 a brief history of the gyrodactylus salaris epidemic in norway

Gyrodactylus salaris was first discovered in Norway after a dramatic increase in mortality

rates of salmon at the Institute of Aquaculture Research hatchery at Sunndalsøra, Møre og

Romsdal County, in July of 1975 (Tanum, 1983; Malmberg, 1988 as cited by Johnsen & Jensen,

1991 and Bakke & MacKenzie, 1993). It was originally thought that G. salaris was native to

Norway and the salmon mortality epidemic witnessed was caused by environmental pol-

lution (Johnsen, 1978), however, Johnsen & Jensen (1986) confirmed that the epidemic was

not caused by environmental factors. Approximately one month later, in August 1975, G.

salaris was found infecting wild Atlantic salmon parr in the river Lakselva, Misvær, Nord-

land County, in the northern region of Norway (Johnsen, 1978). Over the next three years a

study of Atlantic salmon and brown trout presmolt (freshwater juveniles, i.e., fingerlings and

parr) was conducted in the Lakselva region. The results of this study showed a catastrophic

decrease in Atlantic salmon densities but no change in brown trout densities (Johnsen, 1978;

Johnsen & Jensen, 1991), allowing the conclusion to be drawn that unlike the Atlantic salmon,

brown trout are not susceptible to G. salaris infections or disease. One year after the results of

Johnsen’s study (1978) in the autumn of 1979, G. salaris was found infecting Atlantic salmon
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Figure 1.2: A map of Europe identifying territories that have reported G. salaris infections (red), territor-
ies that have unconfirmed reports (yellow), territories with unknown G. salaris status (grey)
and finally territories that are free of the parasite (green). The United Kingdom and the
Republic of Ireland are the only such territories with confirmed G. salaris -free status. Some
watersheds in Finland have now been declared free from infection, however, the country is
still considered G. salaris positive.

parr in two additional rivers, the Ranaelva and the Vefsna. This new information, together

with the results obtained by Johnsen (1978) prompted the formation of a “Gyrodactylus com-

mittee” and surveillance program in 1980 (Johnsen & Jensen, 1991).

The committee and surveillance program were tasked with assessing the G. salaris prob-

lem and tracking its spread throughout Norway. The Gyrodactylus committee itself consisted

of a council of representatives from different bodies concerned with aquatic health and in-

cluded; the Fish Research Department at the Directorate for Nature Management, the Veterin-

arian Authorities, the fish farming industry and the Zoological Museum, University of Oslo

(Johnsen & Jensen, 1991). After its formation, the committee began its study of the G. salaris

epidemic. This research began in 1980, lasted two years and was completed in 1982. The

committee studied juvenile Atlantic salmon, both farmed and wild, from hatcheries and over
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200 rivers (Johnsen & Jensen, 1986). The results of the committee’s research was published in

three annual reports (Gyrodactylusprosjektet, 1981, 1982, 1983 as cited by Johnsen 1986) which

confirmed that 26 rivers were infected with G. salaris (nine additional rivers were found to

be infected with other Gyrodactylus species) and concluded that the parasite posed a major

threat to Atlantic salmon populations in Norway (Johnsen & Jensen, 1986, 1991). The report

warned that adult salmon production was severely threatened in infected rivers due to the

fact that few or no young salmon parr survived long enough to reach the smolt stage of their

life-cycle. The results of the study also confirmed that G. salaris was a new species to Norway

and that it was most likely spread via hatcheries, restocking and fish migration. This meant

the original theory that G. salaris was native to Norway was false (later investigations have

provided evidence that G. salaris was most probably introduced to Norway via Swedish sal-

mon hatcheries). Further evidence supporting this view was provided by Bakke et al. (1990)

in their study of the effects of G. salaris from Norway on Atlantic salmon from the Baltic

and east Atlantic Sea. In 1983, as a result of the Gyrodactylus committee’s findings, G. salaris

was declared a notifiable disease (Group B) in Norway and recognised as a “significant fish

disease” by the Office International des Epizooties (OIE) (Johnsen & Jensen, 1991; Bakke et al.,

2007; Mo et al., 2008).

Research into the G. salaris problem continued, to a lesser extent, in the period 1983-85.

Between 1980 and 1985 a total of 212 rivers were tested for G. salaris. By the end of 1985 the

infection was known to have spread to 26 rivers and 6 hatcheries (Johnsen & Jensen, 1986,

1991). Johnsen & Jensen (1986) were able to demonstrate that the distribution of G. salaris was

closely connected to the stocking of fish from infected hatcheries by grouping the 26 rivers

known to be infected into 14 regions, with neighbouring rivers being placed in the same

geographical location. By the end of 1989, approximately 14 years after the infection was

first discovered, 34 rivers and 35 hatcheries were recorded as being infected with the parasite

(Johnsen & Jensen, 1991). A major cause of the spread of the parasite between rivers has

been attributed to brackish water dispersal followed by the restocking of fish from hatcheries

known to be infected (Bakke et al., 2007).

The Norwegian authorities quickly began treating infected rivers with the biocide roten-

one which kills all life including the host, parasite and plant life (see Section 1.3.4). After the

success of rotenone treatment in the river Vikja, eight more rivers were treated between 1986

and 1989. However, treatment of infected rivers does not protect from future G. salaris infec-

tions and some rivers have become re-infected post treatment. Between 1975 and 2010 a total

of 48 out of 379 rivers, 13 Atlantic salmon hatcheries/farms and 26 rainbow trout hatcheries/-

farms have been recorded as infected with G. salaris (Bakke et al., 2007; Sviland et al., 2012).

Arctic charr (Salvelinus alpinus) from many lakes across Norway have also tested positive for
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a non-pathogenic strain of G. salaris (Sviland et al., 2012). Extermination of the parasite has

been successfully achieved in all hatcheries/farms and 20 rivers. A further 25 rivers are still

known or suspected to be infected with G. salaris and eradication in an additional 3 rivers

remains unconfirmed as at December 31 2011 (Sviland et al., 2012).

1.2 current status of gyrodactylus salaris in the uk

Like Norway the UK is recognised as being an important producer of salmon with the UK

fishing industry providing over 12,000 direct jobs and generating between £800 - £1,200 mil-

lion to the British economy (FAO, 2004-2013). Scotland alone is the second largest salmon

producer in the European economic area (Norway being the largest) and generates approx-

imately £300 million per annum. However, it is the UK’s wild stocks that are more important

due to the fact that they are already declining and threatened (WWF, 2001). As mentioned

earlier the UK is currently recognized as being free from G. salaris (OIE, 2003, 2009). This

was confirmed by Shinn et al. (1995) after a study of 227 British water bodies and samples

from nine species of salmonid. Hence, the UK has G. salaris free status under EU law (De-

fra, 2008a) and is officially a G.salaris-free zone under EC Decision 2004/453/EC* and its

subsequent amendments provided under EC Decision 2006/272/EC†. Further screenings of

freshwater salmon and trout farms and sampling of populations of wild salmon by fish health

authorities on a routine basis have shown no subsequent signs of G. salaris infections. It is

highly likely that UK salmon stocks are as susceptible to the parasite as the Norwegian stocks

(Bakke & MacKenzie, 1993), this was confirmed by Paladini et al. (in prep.). Hence, G. salaris

is regarded as a major exotic disease threat to the UK’s valuable wild and farmed salmon

populations (Defra, 2008a). It is also likely that G. salaris , if introduced, would spread within

and between UK rivers before it is detected (Peeler & Thrush, 2004). Due to this contingency

plans were drawn up to set out a set of actions to follow in the event of an outbreak (Defra,

2008a).

Peeler & Thrush (2004) and Peeler et al. (2004, 2006) used risk analysis techniques to estim-

ate the probability of introduction of G. salaris to UK water systems and highlight the most

significant routes of establishment. Peeler & Thrush (2004) identified three main categories

that all pathways of introduction fall into (see Table 1.1 for overall risk estimations):

1. Importation of live fish and gametes, such as the importation of live salmonids, eels,

non-salmonids and rainbow trout eggs;

2. Importation of eviscerated fish carcasses, such as the importation of fresh or chilled fish

carcasses from countries that are not free from G. salaris;

* http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2004D0453:20060407:EN:PDF
† http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:099:0031:0034:EN:PDF
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3. Mechanical transmission, such as the movement of inanimate materials that have come

into contact with infected water or hosts.

They used qualitative risk analysis and divided their results into four categories: release as-

sessment, exposure assessment, consequence assessment and risk estimation. Their research

showed the risk of G. salaris being released via the importation of live salmonids or live non-

salmonids is negligible. Live salmonids are currently not imported to the UK and there is no

evidence to suggest that illegal imports are taking place. Salmonid egg imports are common

and can even come from G. salaris infected farms as long as they are thoroughly disinfected.

The exposure risk of live salmonid importation is considered very high and the exposure

risk of salmonid eggs and eel importation is moderate. Overall, the risk from imported live

salmonid fish is considered negligible with non-salmonid imports considered extremely low

(Peeler & Thrush, 2004).

The risk of release via the importation of fresh or chilled Atlantic salmon is estimated

as negligible, this is because Atlantic salmon carcasses come from the sea (G. salaris cannot

survive full strength salinity). However, there is a high risk of release via the importation of

rainbow trout from European freshwater sites. The majority of fresh rainbow trout carcasses

come from freshwater sites in France and Denmark (G. salaris is known to be present in

Denmark and is unconfirmed in France). It is also worth noting that transport conditions

from Denmark to the UK are suitable for the survival of G. salaris and the transport time is

short. The exposure risk of fresh or chilled rainbow trout being imported to processing plants

on fish farms is considered moderate with the exposure risk of any other salmonid import

being negligible. The overall risk from imports of salmonid carcasses is considered negligible.

The most important risk from imported fresh salmonid carcasses is on farm processing of

fresh rainbow trout from infected farms (Peeler & Thrush, 2004).

The risk of introduction to the UK via mechanical transmission can be split into four

areas: Live fish transporters; canoes and angling equipment; leisure craft, well boats and

ballast water; aquatic plants and lumber imports. The highest risk of parasite introduction

via mechanical means come from live fish transporters that travel between Europe and the

UK. If a vehicle has visited an infected farm and has not been properly disinfected, or if it

contains infected water or hosts (living or dead), it could potentially introduce the parasite

on return to the UK. Fortunately, the number of journeys of this nature is low and the risk of

release is considered very low, however, the risk of exposure is estimated as moderate. The

risk of release from canoes, angling equipment, leisure craft and ballast water is estimated as

extremely low, with an exposure risk ranging from very low to negligible. This is due to short

survival time of G. salaris off the host. Similarly, the risk from well boats (from Norwegian

hatcheries) and aquatic plants and lumber imports (from infected countries) is considered
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negligible as all Norwegian hatcheries have substantiated freedom from G. salaris and the

probability of contact between infected fish and aquatic plants/lumber is extremely low. The

exposure risk is considered extremely low to negligible. Overall, the risk of introduction via

mechanical spread is negligible. The most important risk from this area is live fish trans-

ports (very low), followed by spread by canoes/angling equipment (extremely low) (Peeler

& Thrush, 2004).

Table 1.1: Overall risk estimation for routes of introduction of Gyrodactylus salaris to the UK as determ-
ined by Peeler & Thrush (2004).

Route of introduction Overall risk estimation
Live fish and gametes
Importation of live salmonids Negligible
Importation of eels Negligible
Importation of non-salmonid fishes Extremely low
Importation of rainbow trout eggs Negligible

Fish carcasses
Fresh/chilled Atlantic salmon from Negligible
Norway/Finland/Sweden
Fresh/chilled rainbow trout from European freshwater
production

Negligible

Fresh/chilled rainbow trout from European freshwater
production imported for on-farm processing in the UK

Negligible

Mechanical transmission
Lorries moving live salmon fish travelling from Very low
mainland Europe to a UK fish farm
Ships’ ballast water Negligible
Well-boats travelling from Norway Negligible
Freshwater tanks on leisure craft Negligible
Canoes and angling equipment Extremely low
Importation of lumber from Baltic countries Negligible
Importation of aquatic plants from Baltic countries Negligible

Due to the complexity of many British water systems it is most likely that authorities

will focus on containing the infection to stop its spread to neighbouring rivers. As a step to

ensure G. salaris does not establish in the UK, the importation of live salmonids from fresh-

water in territories that have not substantiated freedom from G. salaris has been restricted

by authorities (Defra, 2008a,b). Other measures currently being taken to ensure G. salaris is

not introduced include: disinfection of imported salmonid eggs; disinfection or disposal of

live fish, eggs, containers and residual water that may have come into contact with the para-

site; cleaning and disinfection of live fish transporters before entry to UK; disinfection of any

angling equipment that may have come into contact with infected water/hosts; discharge

of ballast water outside UK coastal waters of all boat traffic (Peeler & Thrush, 2004). The
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only tried and tested method of treatment is the removal of all life in a river by the use of

rotenone. However, rotenone treatment in the UK is highly unlikely due to environmental

and legislative constraints (Peeler et al., 2004; Peeler & Thrush, 2004).

As mentioned above, the UK is the second largest salmon producer in the European eco-

nomic area and is currently free from the parasite. This chapter seeks to review published

information regarding G. salaris , the Atlantic salmon and the mathematical modelling of in-

fectious disease with the intention of using the information as a basis for building theoretical

mathematical models. As it is unknown what effect a G. salaris outbreak would have on UK

rivers and water systems the models will be used to gain a greater understanding of the

long term consequences of infection. This will be achieved by studying the dynamics of both

parasite and host as well as the evolution of single and multiple strains of host in order to

answer the following questions - “under what circumstances and in what time-frame would...”

1. The parasite population become extinct?

2. The host population become extinct?

3. Low level host/parasite coexistence occur?

4. Host/parasite coexistence with host population recovery occur?

1.3 gyrodactylus salaris

Gyrodactylus salaris (Figure 1.1) is a monogenean (flatworm) of the genus Gyrodactylus and

a member of the family Gyrodactylidae, of which there are currently 409 described species

(Harris et al., 2004). An individual G. salaris parasite is approximately 0.5 - 1mm in length

(Johnsen, 2006), making it one of the smallest monogeneans (Bakke et al., 2007). Gyrodactylus

salaris is worm-like in appearance and attaches to its host via the opisthaptor (Figure 1.3), a

circular structure found at one end of the body armed with 16 marginal hooks and a pair

of ventrally orientated hamuli (the two “Fish-hook” like structures located top-centre within

the opisthaptor) (Bakke et al., 2007). The mouth of the parasite is found at the opposite end

to opisthaptor.

Gyrodactylus salaris is most commonly found on the fins and skin of juvenile Atlantic

salmon (Figure 1.4), i.e., those between fry and smolt stages (Figure 1.5) - see Section 1.4.1

for definitions, and less commonly on the gills (Johnsen & Jensen, 1992; Johnsen, 2006; OIE,

2009). The parasite is thought to feed on mucus and epidermal cells (Bakke et al., 2007), as

seen in Figure 1.6, causing gyrodactylosis (OIE, 2009), which is associated with high mortality

caused by disruption of the osmotic permeability of the epidermis (Cusack & Cone, 1986), or

via secondary infections by bacteria or viruses (FRS, 2004).
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Figure 1.3: Gyrodactylus salaris attaches to its host via the opisthaptor, a circular structure found at one
end of the body armed with 16 marginal hooks and a pair of ventrally orientated “fish-hook”
shaped hamuli. SEM image courtesy of Dr Andy Shinn.

Figure 1.4: Images of Gyrodactylus salaris infecting the fins and skin of an Atlantic salmon obtained
through the use of a Scanning Electron Microscope (SEM). Photographs kindly taken and
provided by Giuseppe Paladini.

Gyrodactylus salaris can potentially reduce salmon populations by 98% within 5 years,

as witnessed in Norway (Johnsen & Jensen, 1991). In Norwegian populations of Atlantic

salmon prevalence of up to 100% has been observed, whereas for other salmonid species

(e.g., rainbow trout) less than 10% prevalence has been observed (Peeler et al., 2006; Johnsen,

2006; OIE, 2009).

1.3.1 Life-cycle and reproduction

The life-cycle of G. salaris is short and direct with no offspring being born off the host. In ideal

conditions it is possible for the life-span of an individual parasite to reach approximately 58

days (Jansen & Bakke, 1991), however, this is not always the case in the field where conditions

such as water temperature, salinity and pH can vary. Gyrodactylus salaris is considered a
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Figure 1.5: Atlantic salmon parr. Atlantic strains of Atlantic salmon, examples of which occur natur-
ally in Norway and the UK, are highly susceptible to G. salaris infections and on juvenile
hosts (parr) the parasite population is able to increase in size rapidly and cause substan-
tial mortality (Bakke et al., (1990); Bakke & MacKenzie, (1993); Hansen et al., (2003)), hence,
killing salmon hosts before smoltification and run to sea. Image source: http://www.public-
domain-image.com

Figure 1.6: The current hypothesis of how gyrodactylids kill a host is through attachment, (a) - (b),
and grazing activity, (c), leading to gyrodactylosis (OIE, 2009) and disruption of the osmotic
permeability of the epidermis (Cusack & Cone, 1986). Secondary infections via bacteria or
viruses has also been cited as a cause (FRS, 2004). SEM images courtesy of Dr Andy Shinn,
(c) found in (Malmberg & Malmberg, 1993).

macroparasite but its life-cycle has similarities to that of a microparasite as it reproduces

directly on the host instead of producing free-living stages. One of the most interesting

aspects of gyrodactylid biology is their reproduction. Gyrodactylids are highly fecund and

can reproduce both sexually and asexually. Individual parasites give birth to a single fully

grown offspring (Figure 1.7) that is itself pregnant at birth with a pregnant offspring (Cable

et al., 2000). Gyrodactylid reproduction is commonly compared to that of a “Russian doll”

(see Figure 1.8). This means that in theory a single parasite can cause an epidemic. The first

birth occurs within a few days of infection (Jansen & Bakke, 1991; Cable et al., 2000) and is

11

[ 18th September 2013 at 19:56 ]



Figure 1.7: A G. salaris parasite giving birth to a fully grown offspring. The newly born offspring is
already pregnant at time of birth. This polyembryonous state has led to this parasite being
dubbed the ‘Russian doll’ when describing the parasite. Image by Dr T. A. Mo, National
Veterinary Institute, Oslo. Source: Bakke TA et. al. (2007) The biology of gyrodactylid mono-
geneans: The “Russian-doll killers" Advances In Parasitology, 64, 161–460.

asexual (Harris et al., 1994), subsequent births are either sexual or asexual (Bakke et al., 2007).

In general asexual reproduction will occur at low parasite densities with sexual reproduction

occurring when the parasite population is high (Johnsen, 2006). After the offspring is born the

mother is quiescent for a short period of time before moving to a different location (normally

to the anterior) on the host, away from her daughter (Bakke et al., 2007). In situations where

the mother becomes detached from the host while giving birth, both mother and daughter

will die. This is because the daughter cannot pull itself free from the mother (Bakke et al.,

2007).

1.3.1.1 Survival

The survival time of G. salaris is dependent on a variety of conditions. Salinity (measured

in parts per thousand, 0/00, which is approximately grams of salt per kilogram of solution)

and temperature of the water are very important in determining parasite survival with sur-

vival possible between 0.0 0/00 and 20.0 0/00 at 3◦C - 20◦C (Jansen & Bakke, 1991; Soleng et al.,

1998). Another important factor in G. salaris survival is whether parasites are on or off a

host. Species and strain of host also impact survival times. The survival of G. salaris in low

salinity waters is negatively correlated with water temperature and hence, it can survive

longer, both on and off the host, in such waters at lower temperatures (Soleng et al., 1998). As

mentioned above G. salaris can tolerate, and hence transmit, in brackish water up to 20 0/00,

however, parasites cannot survive in full strength salinity (Soleng et al., 1998). Parasites can

survive and reproduce indefinitely on Atlantic salmon and causes clinical disease which can

result in host death. Similarly, G. salaris can survive and reproduce indefinitely on rainbow

trout (Bakke et al., 1991b). However, in rainbow trout clinical disease does not always occur

with some fish being susceptible and others resistant. Gyrodactylus salaris can also survive on
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Figure 1.8: A simplified diagram showing the basis of the Gyrodactylus sp. asexual reproductive cycle.
As can be seen, a progenic parasite gives birth to a pregnant offspring. First birth (Stage 2)
is always asexual. After first birth is achieved there is a period of recovery when a parasite
is not pregnant (Stage 3). Subsequent pregnancy is via sexual or asexual means (Stage 4

onwards). Gyrodactylus sp. image courtesy of Dr Andy Shinn.

other salmonid and non-salmonid fish species without causing clinical disease for anything

between 7 and 150 days in ideal conditions (Bakke et al., 1991b,a, 1992b,a; Jansen & Bakke,

1995; Bakke et al., 1996, 1999; Soleng & Bakke, 2001). The parasite can survive for 50 days,

on grayling (Thymallus thymallus) and brown trout (Salmo trutta) with limited reproduction

(Jansen & Bakke, 1995; Soleng & Bakke, 2001). It is also capable of surviving (with reproduc-

tion) for 70 days on brook trout (Salvelinus fontinalis) (Bakke et al., 1992a) and approximately

8 days on eels (Anguilla anguilla) with no reproduction (Bakke et al., 1991a) (G. salaris is not

believed to reproduce on non-salmonids, Peeler et al., 2004). However, it survives longest, up

to 150 days (280 in laboratory conditions), on Arctic charr (Salvelinus alpinus) (Bakke et al.,

1996). Gyrodactylus salaris cannot survive freezing, desiccation or elevated temperatures, and

when detached from the host parasites can only survive for a maximum of 6-7 days in ideal

conditions (Mo, 1987, as cited by Peeler et al., 2006). Parasites can also be killed via the use

of certain treatments, these treatments and the impact they have on parasites, hosts and the

external environment are discussed in Section 1.3.4.
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1.3.2 Transmission

Gyrodactylus salaris is highly efficient at locating and transferring to a susceptible host (Soleng

et al., 1999a). In general gyrodactylids have no specific free-living transmission stage, hence,

G. salaris must rely on direct contact with a susceptible host in order to spread. However,

when a suitable host is found rapid colonization can occur and the consequences of infection

to an individual host, and hence entire host population, can be catastrophic.

1.3.2.1 Transmission in a river

There are four main routes of transmission that an individual G. salaris parasite may take

to infect a new uninfected host. Individual parasites can move from an infected fish to an

uninfected fish via direct fish to fish contact; from a substrate (detached) to an uninfected fish

via fish to parasite contact; from a dead infected fish to a live uninfected fish via fish to fish

contact and from the water column (detached) to uninfected fish via fish to parasite contact.

These four routes were identified by Bakke et al. (1992b). Parasites can also move from an

infected fish to another less/more infected fish. The most common of these routes is direct

contact between a susceptible and infected fish, for example when a susceptible fish contacts

an infected fish. Gyrodactylus salaris lacks the ability to swim but is able to jump from one

host to another that is in close proximity (Bakke et al., 1992b; Soleng et al., 1999a).

1.3.2.2 Transmission between rivers

In addition to the four main routes a parasite might take to infect a susceptible host, Peeler

et al. (2004) proposed that the movement of live infected fish and mechanical transmission of

free-living parasites on fomites (objects capable of spreading the parasite) are the two main

routes of transmission between rivers. They identified four categories that movement of live

fish can be split into:

• Movement of live rainbow trout or Atlantic salmon;

• Movement of other live fish species that G. salaris can survive on for short periods of

time but not reproduce;

• Migration of eels overland between river catchments;

• Movement of Atlantic salmon in low-salinity water between rivers entering an estuary

in close proximity.

Movement of live rainbow trout or Atlantic salmon has been identified as the most im-

portant transmission route of G. salaris to the UK (Peeler et al., 2004).
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1.3.2.3 Mechanical transmission

As mentioned above, an important route of transmission between rivers is via mechanical

means. Peeler et al. (2004) identified four potential routes of mechanical transmission by

fomites:

• Movement of any farming equipment, vehicles, staff, etc. that has been in contact with

infected water or hosts;

• Any angling equipment that has been in contact with infected fish (such as keep nets)

if reused within a few days on a different location;

• Movement of boats, canoes and leisure craft that contain infected water between river

catchments;

• Movement of eggs from an infected hatchery that have not been disinfected.

Any of the items mentioned above that have come into contact with infected water or

hosts can potentially spread the parasite to a new location if they have not been thoroughly

disinfected. Mechanical transmission has been identified as a potential route of entry for G.

salaris to the UK (Peeler et al., 2004; Peeler & Thrush, 2004).

There are other possible routes that could potentially spread the parasite. For example, pis-

civorous birds may eat an infected fish then regurgitate it by a river in a different location

(Peeler et al., 2004).

As mentioned above, G. salaris can survive and reproduce indefinitely on Atlantic salmon

but cannot survive full strength salinity, hence, the parasite mainly infects juvenile salmon,

i.e., fry and parr, resulting in fewer smolts migrating to the sea.

1.3.3 Host-parasite-environment interactions

The way in which hosts, parasites and even the external environment interact with one an-

other plays an important role in the spread of G. salaris infections. Within rivers, factors such

as water flow, pH, salinity, quality and temperature as well as the composition of the gravel,

climate and competition all have a direct effect on the salmon population (Mills, 1999). The

composition of the gravel on the bed of a river and the temperature of the water are partic-

ularly important in the early part of the salmon life-cycle, mainly the spawning and intra-

gravel stages, and determine hatching times (Crisp, 1981, 2000). It is worth noting that young

salmon parr spend the majority of their time in close proximity to the gravel (during resting

periods) and are continuously brushing over the substrate (Crisp, 1981), this may lead to

infection by detached parasites. The external environment also has an impact on the parasite.
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In situations where water velocity is high, detached parasites have the potential to drift fur-

ther down a river and infect new populations of hosts. Infection may also have an impact on

the way in which salmon interact with each other, for example, in populations of guppies,

Poecilia reticulata, (where individuals are infected with Gyrodactylus turnbulli) females have

been observed preferring, and selecting, males with low parasite burdens (Kennedy et al.,

1987), changes in feeding behaviour have also been witnessed (van Oosterhout et al., 2003). It

is also worth noting that juvenile Atlantic salmon are highly territorial (see Section 3.2) and

hence have a high chance of becoming infected due to fish to fish contact when defending a

territory against an infected individual.

1.3.4 Treatment

Gyrodactylus salaris parasites are eliminated by most disinfectants (Peeler et al., 2006), aqueous

aluminium at 202µg Al/l (after a period of four days) (Soleng et al., 1999b), acidic aluminium-

poor water at a pH of 5 (after 9 days) (Soleng et al., 1999b) and the poison rotenone (Johnsen

& Jensen, 1991). However, the majority of these treatments also result in host mortality. In

order to prevent the spread of G. salaris and remove it from all infected rivers and hatcheries

the Norwegian salmon authorities quickly adopted the use of the ATPase inhibitor, rotenone.

Rotenone is a biocide that exhibits insecticidal, piscicidal and acaricidal properties. It occurs

naturally and is obtained from the roots of several tropical plants (IPCS-INCHEM, 1992).

Rotenone is highly toxic to all living organisms, this is especially the case with fish as the

chemical is absorbed more quickly through the gills. Rotenone acts at a cellular level making

it impossible for fish to use oxygen, after which the synthesis of adenosine triphoshate (ATP)

ceases and death quickly follows. When added to an infected river rotenone destroys all life,

fish and plant alike, resulting in the eradication of the G. salaris infection due to lack of hosts

(Holm et al., 2003). The Vikja was the first river in Norway to be treated with rotenone and

took place on November 1981, then again in May 1982 with subsequent monitoring of sal-

mon and trout populations each year there after. As a result of the treatment G. salaris was

eradicated from the river Vikja (Johnsen & Jensen, 1991). The use of rotenone in this way in

other EU countries is unlikely as it would break the Water Framework Directive (WFD). As

mentioned above aqueous aluminium and many disinfectants can also be used to treat infec-

ted rivers (Soleng et al., 1999b; Peeler et al., 2006). At present the use of acidified aluminium

sulphate is under development by Norwegian authorities as a means of eradicating G. salaris

from infected rivers without killing host species (Sviland et al., 2012).
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Figure 1.9: The Atlantic salmon (Salmo salar L.). A species of anadromous fish that is indigenous to
both sides of the Atlantic Ocean as well as the rivers which flow into it. These fish spend the
majority of their juvenile life in freshwater and adult life at sea, only returning to its natal
river to spawn. Adult males are able to grow to 1.5 m in length and 36 kg in weight, whereas
adult females can grow to a maximum of 1.2 m and 20 kg. Image source: http://www.public-
domain-image.com

1.4 the atlantic salmon (salmo salar l .)

The Atlantic salmon (Figure 1.9) is the primary host for the parasite G. salaris, it is a

species of anadromous fish (fish that spawn in freshwater, migrate to the ocean to grow

before returning to freshwater to spawn again). It is indigenous to both sides of the Atlantic

Ocean as well as the rivers which flow into it. It is of the genus Salmo and is a member of

the Salmoninae, a subfamily of the Salmonidae family. The Atlantic salmon was first given

its binomial classification, Salmo salar, in 1758 by the Swedish botanist and zoologist Carolus

Linnaeus (Verspoor et al., 2007).

1.4.1 Life-cycle

The Atlantic salmon spends the majority of its juvenile life in freshwater and the rest of its life

at sea, where it matures into an adult, before returning to its natal river to spawn. It is worth

noting that some salmon get lost on return from the sea and spawn in a different river to

their natal one. Due to this anadromous process, and the fact that salmon go through many

biological and physiological changes from egg to adult, they have a multi-stage life-cycle

(Figure 1.10).

There are seven stages in the salmon life cycle:
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Figure 1.10: Diagram showing the Atlantic salmon life-cycle and its various stages. Salmon images
source: http://commons.wikimedia.org

Alevin→ Fry→ Parr→ Smolt→ Post-smolt→ Salmon→ Kelt

The first three stages occur exclusively in fresh water and the last four occur in both

fresh and salt water (Shearer, 1992). A salmon can spend up to 4 years in freshwater but on

average spend around 2 years in a river before running to sea (Hendry & Cragg-Hine, 2003).

An adult at the salmon stage is referred to as a a grilse, after spending one winter at sea, or

a multi-sea winter (MSW) salmon, after spending more than one winter at sea. Salmon can

spend a maximum of 10 years at sea but most commonly spend anything from 1 to 6 years

there (Hendry & Cragg-Hine, 2003). Salmon are referred to a kelt once they have spawned

(Hendry & Cragg-Hine, 2003).

1.4.1.1 Redd formation and spawning

The first stage in the salmon life-cycle takes place in a gravelly area of a freshwater river,

usually between mid October and late February (Shearer, 1992), spawning is seasonal and

hence a discrete process. The female salmon selects a site in which there is clean flowing

water and gravel that is of an appropriate size and composition. Once a suitable site has been

selected, the female begins to dig a pit in the river bed by repeatedly turning on her side

and making exaggerated swimming motions. This process dislodges the gravel which is then

carried slightly downstream by the flow of the river and results in the creation of a pit with

a tail of gravel directly downstream of it. The female salmon then lowers her anal fin into the

newly created pit to test the flow of water at the bottom (if for any reason the pit is deemed
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unsatisfactory it is abandoned, creating a false redd, and a new site is selected and the pit

creation process is repeated). If the pit location is satisfactory the female will deposit eggs

which are fertilized by a male salmon. A female salmon will lay approximately 1,100 eggs

per kilogram of her body weight (Hendry & Cragg-Hine, 2003). Hence, a small female grilse

weighing 2.3 kg will lay approximately 2,500 eggs whereas a large multi seas winter female

weighing 8 kg will lay in excess of 8,800 eggs (Hendry & Cragg-Hine, 2003). At this point a

new pit is excavated immediately upstream and any dislodged gravel is carried downstream,

concealing the eggs in the first pit. The entire process is repeated until one or more pits

contain fertilized eggs, at this point the complete structure is referred to as a redd. A redd

is usually guarded by a dominant male who will defend the redd site, as well as the female,

from other males until spawning is complete (Crisp, 2000).

1.4.1.2 Intra-gravel and juvenile stages

The early part of the salmon life-cycle takes place exclusively in the gravel (as opposed to the

silt, rock, etc.) of the river bed. These stages are known as the intra-gravel stages and their

duration in this state depends on the temperature of the water. The first stage occurs when

the eyes of the embryo can be seen through the egg shell, at this point the eggs are known

as “eyed eggs”. After a period of time (approximately 38 days at 12◦C; Crisp, 1981) the eggs

hatch into “alevin”, hatching times are directly dependent on water temperature. Crisp (1981)

proposed a model to estimate the hatching times of salmonids at different temperatures

developed using information on temperature (◦C) and time from fertilization to 50% hatch

(in days) for five species of salmonid fishes (brown trout, brook trout, rainbow trout, Chinook

salmon and Atlantic salmon). He proposed that by incorporating a temperature correction

factor (Equation 1.2) a better fit was obtained to that obtained by the basic model (Equation

1.1). The two models are as follows:

log D = b log T + log a (1.1)

log D = b log(T −α) + log a (1.2)

where T is temperature (◦C), D is time from fertilization to 50% hatch (days), α is a

temperature correction in ◦C and a and b are constants. Values of the constants α, a and b are

given in Table 2 found in Crisp (1981). Using these equations Crisp determined both models

were able to produce a good fit to the data, accounting for 94% or more of the variance of

D in its regression on T, for each of the five salmonid species. He also highlighted that the

second model, Equation (1.2), gave the best fit, accounting for over 97% of the variance of D.
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The alevin remain in the gravel for up to two months feeding on residual egg yolk which

it carries in a yolk sac located on the underside of the body. The mass of the yolk sack

decreases as the alevin grows due to the consumption of the yolk. When the yolk sack is

almost empty the alevin makes its way through the gravel into the river. At this point the

intra-gravel stages are over, the alevin now fills its swim bladder with air, for buoyancy, and

begins to forage. From this point the alevin are renamed “fry”. Newly emerged fry quickly

leave the redd and take on feeding stations. Salmon are highly territorial and the fry waste

no time in establishing territories and defending them. At this point a change in appearance

can be observed as the fry develop dark, vertical markings, known as “parr marks”, along its

sides. When this happens the fry are renamed “parr” (Crisp, 2000).

1.4.1.3 The smolting process

The juvenile salmon remain in the river as parr for one to four years (0+ parr, 1+ parr, 2+ parr

and 3+ parr, Table 1.2) (Shearer, 1992) before going through the “smolting” process. This is

the process in which salmon go through hormonal and physiological changes that allow them

to migrate and live in salt water. The salmon loose their parr marks and take on a silvery

appearance, the darkening of the edges of the pectoral and caudal fins also occurs. Smolting

is thought to occur when parr reach a certain size, usually 12.5 to 17.0 cm in length (Crisp,

2000). At this point in the life-cycle the parr are renamed “smolts”. After smoltification is

complete, new smolts begin their journey downstream to the sea. A small proportion of the

male parr population become sexually mature in fresh water and may stay there to attempt

to participate in the spawning of the mature salmon that return from the sea, these are called

“precocious male parr” (Crisp, 2000).

Table 1.2: Salmon parr classifications. Description of salmon in the various parr classes as described by
Shearer (1992).

Term Description
0+ parr Parr that are less than 1 year old (from previous years hatch)
1+ parr Parr that are 1 year or over but less than 2 years
2+ parr Parr that are 2 year or over but less than 3 years
3+ parr Parr that are 3 year or over but less than 4 years

Precocious male parr Male parr that become fully mature in fresh water
Partially silvered parr Parr that become partially silvered and begin to migrate down-

stream prior to the normal smolt run

1.4.1.4 Life at sea

When smolts enter the sea their growth rates rapidly increase and they embark on long

distance journeys, sometimes reaching the Norwegian Sea or areas of Greenland (Shearer,

1992). Smolts may remain at sea for one or more winters before returning to their natal river

to spawn. If they return to freshwater after one winter at sea they are referred to as grilse or
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“one-sea-winter-fish”. If they return to freshwater after more than one winter at sea they are

referred to as mature adult salmon or “multi-sea-winter-fish” (Crisp, 2000).

1.4.1.5 Return to natal river

After spending between 1 and 4 winters at sea, salmon tend to return to their natal tributary

in their natal river to spawn (Crisp, 2000). The homing ability of salmon is a well known and

much studied topic. It is thought that imprinting with the smell of the natal stream during

early life is an important factor in developing the homing mechanism (Crisp, 2000). Even

though many salmon accurately navigate their way home a proportion of them do not make

it back to their natal tributary, which results in them spawning in the wrong river. This can

be due many factors such as obstructions and obstacles or as a result of a malfunction of

their homing mechanism. Nevertheless, after spawning, the salmon are referred to as “kelt”.

The majority of kelts die, this is in part due to starvation as returning salmon only feed at

sea (Jones, 1959). Studies of salmon in the Scottish River Conon over a period of 6 years

showed survival and return to sea of post-spawning kelts was between 20 and 36% (Hendry

& Cragg-Hine, 2003). However, some do find their way back to sea and return to fresh water

to spawn on one or more subsequent occasions (Crisp, 2000).

1.4.2 Territories

An important aspect of Atlantic salmon behaviour is the establishment and defence of territ-

ories. Territorial behaviour is observed in juvenile salmon (fry and parr) but not in post-smolt

salmon which are less aggressive and live in “schools” (Keenlyside & Yamamoto, 1962; Crisp,

2000). After establishing its territory the young salmon rests near the substrate, only moving

to feed or chase away intruders, and in doing so ensures seclusion from others (Keenlyside

& Yamamoto, 1962). Hence, juvenile Atlantic salmon tend not to live in groups. Territory-

holding salmon spend the majority of their time in one position, called a station, within their

territory. From here they remain still, sometimes in contact with the substrate if the current

is particularly strong (Keenlyside & Yamamoto, 1962). From within a territory, its holder will

exhibit threatening motions to deter any intruders that approach. If an intruding fish contin-

ues to approach the defending fish will move off its station and dash towards the intruder,

chasing it back out the territory (Keenlyside & Yamamoto, 1962).

1.4.2.1 Agonistic behaviour

When defending its territory a young salmon will demonstrate six elements of agonistic

behaviour. Agonistic behaviour is any social behaviour related to fighting and is often wit-

nessed in animal species when resources are limited (Scott & Fredericson, 1951). Keenlyside

& Yamamoto (1962) classed these six elements as:
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1. Charging - territory holder quickly swims towards the intruder;

2. Nipping - attacking fish biting another fish after a charge or during an approach in

lateral display. Generally, the attacker will nip the the tail of the other fish;

3. Chasing - repeated charging, with nipping attempts on the retreating fish;

4. Frontal display - demonstrated by territory holder when approaching another fish

(head pointed towards opponent);

5. Lateral display - demonstrated by two aggressive fish when fighting during defence of

their territories (side shown to opponent);

6. Fleeing - demonstrated by non-aggressive fish being chased and attacked by territory

holders.

There are generally two reasons for a territory-holding fish to leave its station (1) to

defend the territory from an intruder and (2) to feed. In the second situation the territory-

holder quickly moves away from the station in search of food before quickly swimming back

to the exact position it came from (Keenlyside & Yamamoto, 1962). Territories are generally

situated close to a valuable source of food (Kalleberg, 1958; Keenlyside & Yamamoto, 1962;

Crisp, 2000). This suggests that the territories are primarily established as feeding territories

(Kalleberg, 1958; Keenlyside & Yamamoto, 1962).

1.4.2.2 Territoriality in an aquarium

In laboratory conditions Keenlyside & Yamamoto (1962) observed the following: one fish will

emerge as the dominant fish with the largest territory. This fish will expand its territory over

time and “win” fights with any other fish that have established a territory until it is the only

territory holder. When this happens the other fish become submissive and group together

in close proximity to a wall of the aquarium and rarely challenge the territory holder. The

dominant fish will generally ignore the submissive fish as long as they do not venture into

its territory. If a submissive fish does leave the group the dominant fish darts towards it

and attacks until the submissive fish retreats back to the group. When food is added the

submissive group dispatches and all fish, including the dominant territory holder, take part

in feeding activities for a short period of time, after which the dominant fish chases all fish

out of its territory and the status quo is restored.
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1.5 mathematical modelling

1.5.1 A brief history of infectious disease modelling

Mathematics, of some form, has been used to study disease for hundreds of years. In 1662

John Graunt used rudimentary numerical methods (in this case statistics) in his study of the

Bills of Mortality for London parishes in order to determine the causes of death of 229,250

people whom had died over a period of 20 years, and thus, enabling him to compare the

potential hazards of diseases present in the population at the time (Gani, 2009). The earliest

evidence of a mathematical model being used to study disease and is attributed to Daniel

Bernoulli (1700−1782) in his study of the effectiveness of variolation (vaccination) techniques

against smallpox in 1760 (Anderson & May, 1991; Dietz & Heesterbeek, 2002). However,

deterministic models did not appear until the early 20
th Century. Hamer’s study of measles

in 1906 resulted in the first statement of the so called “mass action principle”. Hamer (1906)

noted that the rate at which susceptible hosts come into contact with infectious hosts has

a direct effect on the course that an epidemic might take. Building on Hamer’s discrete

model Ross formulated a continuous-time model in his studies of malaria (Anderson & May,

1991). Then in 1927, Kermack & McKendrick theorised that in a population an epidemic

cannot occur if the population density is below a certain threshold value. The mass action

principle combined with threshold theory make up a basis for the mathematical modelling

of epidemics.

1.5.2 Modelling host-parasite interactions

The relationship between host and parasite populations can be thought of as an extension of

the general predator-prey interaction. However, in order to model disease one must distin-

guish between microparasites and macroparasites. This is particularly the case for G. salaris

in that it is a macroparasite that has micro-parasitic qualities, the reasons for which will be

described in the following sections.

1.5.2.1 Microparasites

Microparasites, for example bacteria, viruses, etc., are those parasites that have direct repro-

duction within the host. Microparasites generally have a very high reproduction rate, short

generations times and are very small in size. In order to study the effects of microparasites

the host population can be split into several discrete categories (see Table 1.3).

This type of model is called a compartmental model (Anderson & May, 1991) and is

commonly referred to as an SIR (susceptible-infected-recovered) model. A schematic repres-
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Figure 1.11: Schematic representation of a host-microparasite interaction

Table 1.3: Definition of host classes. Descriptions of host classes used in SIR type models.

Class Description
Susceptible Members of the population who are vulnerable to infection

Latent/Exposed Members of the population who are infected but not yet infec-
tious

Infected Members of the population who are infectious
Recovered/Immune Members of the population who are no longer infected

entation of such a model is given in Figure 1.11. In this situation susceptible hosts become

infected and pass into the infected class where there is an additional “parasite induced”

death rate. If the host survives then it may pass into the recovered class and become immune

for a short period of time (indefinitely in some cases) or pass back into the susceptible class

and become reinfected.

Anderson & May (1981) derived the basic fundamental microparasite model (SI model):

dX

dt
= a(X+ Y) − bX−βXY + γY (1.3)

dY

dt
= βXY − (α+ b+ γ)Y (1.4)

Where dX
dt is the rate of change of the susceptible host population X(t) and dY

dt is the

rate of change of the infected host population Y(t). Here birth rate, a, is independent of

infection, giving a net birth rate of a(X+ Y). Susceptibles become infected at a rate β, the

transmission coefficient, and die at a rate b. Infected individuals die at a rate b+α, where α

represents parasite induced host mortality. Finally, if an infected individual survives infection

they pass back into the susceptible class at a rate γ. Anderson & May (1981) then modified
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their basic model to deal with (a) parasite induced reduction of host reproduction; (b) vertical

transmission; (c) latent periods of infection; (d) disease and stress; (e) density dependent

constraints and (f) free-living infective stages.

1.5.2.2 Macroparasites

Host, H

Parasite, P

Free-living stages

Parasite
death rate,

µ

Host-induced
parasite death

Host birth rate, a

Host death rate, b

Parasite-induced
host death, α Birth of

free-living
transmission

stages,
λ

Parasite
infection

Figure 1.12: Schematic representation of a simple host-macroparasite interaction

Macroparasites, for example helminths, anthropods, etc., are those parasites that have no

direct reproduction within the host (Anderson & May, 1991). They are generally much larger

than microparasites and have longer generations times. In general reproduction and infection

is via transmission stages. Host-macroparasite interactions are represented by distributional

models in contrast to the compartmental models used to study microparasites (Anderson

& May, 1991). A schematic representation of such a model is given in Figure 1.12. These

distributional models are more complicated than the compartmental ones in that they must

take into account the distribution of the parasites among the hosts (Anderson & May, 1991).

Anderson & May (1978) and May & Anderson (1978) defined the fundamental macropa-

rasite model on which modern models are based. This model assumes reproduction occurs

off the host via transmission stages such as spores or eggs that pass out of the host:

dH

dt
= (a− b)H−αP (1.5)

dP

dt
=

λPH

H0 +H
− (b+ µ)P−αHEt(i

2) (1.6)
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Here dHdt is the rate of change of the total host population with dP
dt describing the rate of

change of the total parasite population within the hosts. H(t) and P(t) are the magnitudes

of the host and parasite populations at time t, hence, the average number of parasites per

host is P(t)
H(t) . In this model hosts are born at rate a and die due to natural causes at rate

b. Hosts also die due to infection at rate α. In this model parasites give birth to free living

transmission stages which pass out of the host, these stages are produced at rate λ. Since

free-living infective stages have a short life-span this model assumes that such short-lived

infective stages are adjusted to equilibrium almost immediately for any H and P. Transmis-

sion occurs at rate H/(H0 +H), where H0 is a constant which determines the efficiency of

transmission (Anderson & May, 1978). Hence, the net rate of parasite gain within the host

population is λPH/(H0 +H) with the assumption that transmission occurs almost instant-

aneously. Finally, parasites die due to natural causes at rate µ and also die when the host

dies. As mentioned above host mortality is split into two categories, natural mortalities and

parasite induced mortalities, hence, parasites die due to natural host mortalities at rate b

and parasite induced host mortalities at rate αEt(i2), where Et(i2) depends on the form of

the probability distribution of parasite numbers per host (Anderson & May, 1978). A sum-

mary of the parameters is given in Table 1.4. Anderson & May (1978) and May & Anderson

(1978) modified their basic model to include (a) non-random parasite distributions; (b) non-

linear parasite induced host deaths; (c) density dependence in parasite population growth;

(d) parasite induced reduction in host reproduction; (e) parasites that reproduce within their

hosts and (f) the influence of time delays. Dobson & Hudson (1992) extended the Anderson

& May (1978) and May & Anderson (1978) models to look at the dynamics of free-living and

arrested larval stages of the parasite.

Table 1.4: Description of parameters (Anderson & May, 1978). Descriptions of the population paramet-
ers used by Anderson and May in their models (Anderson & May, 1978).

Parameter Description
a Host birth rate
b Host death rate
α Host death due to parasite
λ Birth rate of parasite transmission stages
µ Parasite death rate due to natural or host induced causes
H0 Transmission efficiency constant

1.5.3 Modelling of Gyrodactylus infections

In 1984 Scott & Anderson published a study concerning Gyrodactylus turnbulli which explored

SIR models with parameter values based on experimental data carried out on laboratory

populations of guppies. Their aim was to determine which factors directly influence parasite
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transmission dynamics. Then in 1993, des Clers developed age structured population models

to study the effects of G. salaris on different stages of the salmon life-cycle.

Other techniques, such as Monte Carlo models, have also been employed to study G.

salaris on salmon (Paisley et al., 1999; Hogasen & Brun, 2003). Paisley et al. (1999) used this

modelling technique to assess the risk of introduction of G. salaris to the Tana river in Norway,

whereas Hogasen & Brun (2003) used the same technique to estimate the risk of inter-river

transmission of G. salaris by migrating Atlantic salmon smolts.

The work by Peeler et al. (2004), Peeler & Thrush (2004) and Peeler et al. (2006) concerned

the use of qualitative risk assessment and analysis techniques to highlight routes of transmis-

sion and risk of introduction of G. salaris into UK and the risk of the spread of G. salaris to

uninfected areas of Europe and was discussed in depth in Section 1.2 above.

Jansen et al. (2007) used a dispersal model to study the risk of secondary infections by

examining the hypothesis of inter-river dispersal of the parasites whereas van Oosterhout

et al. (2008) used an individual-based computer model to forecast gyrodactylid infections on

fish hosts.

Finally, more recent modelling work has been carried out by Ramírez et al. (2012). In their

study they propose an individual agent-based model of G. salaris infection on a single sal-

mon host in order to estimate the error in gyrodactylid population growth rates subject to

stochastic variation in survivorship and reproduction. The model was simulated assuming

two contrasting death functions; constant death of parasites throughout the simulation, and

secondly, a parasite death that is positively correlated with parasite age (probability of death

increases with parasite age) as in Cable et al. (2000). Their results highlighted the fact that

estimates of the error structures of population growth rates follow a normal distribution, es-

pecially in populations greater than 20 parasites in size, and that this rate can be a useful

parameter for comparing gyrodactylid populations that are in excess of 20 - 30 parasites.

However, in cases where less than 20 parasites are present in a population the error is dispro-

portionately large making comparison of gyrodactylid population growth on different hosts

via the population growth parameter less useful (Ramírez et al., 2012). The results obtained

by Ramírez et al. (2012) showed that declining parasite population growth rates cannot be

explained through stochastic error, and hence, must be rooted in biology. They conclude that

the majority of gyrodactylid-host studies, that are of a similar nature to that found in their

work, are not large enough to allow the successful detection of subtle differences in local

adaptation of gyrodactylid monogeneans between fish stocks.
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As can be seen, until now there has not been a great deal of modelling work concerning

the dynamics of G. salaris infections on populations of Atlantic salmon, with the majority

of work concerning G. salaris being centred on using statistical and computer models for

assessing and estimating the risk of the parasite’s spread to new rivers (Paisley et al., 1999;

Hogasen & Brun, 2003; Peeler et al., 2004; Peeler & Thrush, 2004; Peeler et al., 2006; Jansen

et al., 2007; van Oosterhout et al., 2008). Some work has been carried out on other gyrodactylid

species, for example, the host-parasite dynamics of G. turnbulli (known as G. bullatarudis at

the time, Harris 1986) on guppies has been studied extensively by Scott & Anderson (1984);

Scott (1985); Leberg & Vrijenhoek (1994); Richards & Chubb (1996). Hence, there is much

scope, and requirement, for models of host-parasite interactions with respect to the G. salaris

- salmon system. Also, in addition to understanding the short term dynamics there is a

pressing need to understand the long term consequences of infections by the parasite.

1.6 thesis aim and structure

The aim of this thesis is to develop a model of the G. salaris - Atlantic salmon disease system

to enable predictions to be drawn on the long-term consequences/impact of infections in

territories that are free from G. salaris , with particular emphasis on the United Kingdom.

Model results are also used to make recommendations, assist with contingency planning

and strategies and highlight areas where more study is required. The models that are found

in the chapters that follow use the differential equations of Anderson & May (1978) and

May & Anderson (1978) as a foundation and extend them for the G. salaris - Atlantic salmon

system. All models appear in the text and are collected in Appendix B. Where possible, algeb-

raic analysis of equilibria is carried out to determine conditions for stability. Such analysis

can be found collected in Appendix C for information. Appropriate mathematical computer

software is employed in cases where systems contain a large number of complicated ODEs

making algebraic analysis by hand difficult, if not impossible. Wolfram MathematicaTM ver-

sion 8 (2008) is used to program all models and enable the running of simulations, giving

predictions for both short-term and long-term dynamics of G. salaris and salmon populations.

Selected Mathematica code is provided in Appendix D.

Chapter 1 gives an introduction to the witnessed impact of G. salaris infections in Norway

and background information on the biology and behaviour of both G. salaris and its Atlantic

salmon host as well as models of gyrodactylid infections. It also provides an insight into the

current status of G. salaris in the U.K. and gives justification for this thesis.

Chapter 2 sets out the basic model and considers density dependence in the host popula-

tion.
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Chapter 3 considers the addition of a detached parasite population present in the external

environment, investigates the occurrence of parasite induced extinction of the host popula-

tion and determines the effect of parasite distribution. The final model put forward in this

chapter serves as the basis for those that follow it.

Chapter 4 takes a contrasting approach, making use of Leslie and individual based models

to investigate the behaviour of G. salaris on individual fish of different strains of Atlantic

salmon and the possible mechanisms required for resistance to infection. Model predictions

are used to determine which mechanism has the largest impact on the dynamics.

Chapter 5 explores the inclusion of host immunity to parasite infection. The effect of

immunity on the model dynamics is investigated via the addition of a trade-off on host birth.

Models presented include a baseline immunity model as well as trade-off model.

Chapter 6 considers a multiple strain model with n > 2 salmon strains (e.g., Atlantic,

Baltic) and one G. salaris strain that displays differing behaviour on each host (as in Chapter

4). Model predictions are used to determine which salmon strains, if any, will win over time

and how long host recovery from infection might take.

Chapter 7 provides a discussion of the model results and seeks to answer key policy

questions regarding the long-term consequences of G. salaris infections. Knowledge gaps and

possible future work is highlighted.

Appendix A collects the various data sources from the literature that have been used for

parameter estimation throughout this thesis.

Appendix B collects all the models presented herein.

Appendix C contains algebraic analysis of the models in the thesis.

Appendix D contains model and sensitivity analyses.

Appendix E provides selected Mathematica code for model simulations.
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2
C H A P T E R 2

The basic model and density dependent hosts

Images of G. salaris infected salmon at different magnifications obtained via a Scanning Electron Microscope (SEM)
courtesy of Dr Andy Shinn.

2.1 introduction

In general Gyrodactylus salaris is a very interesting parasite, this is especially true from a

mathematical modelling point of view. This is in part due to the fact that G. salaris is a

macroparasite with a life-cycle that exhibits microparasitic qualities. As mentioned in Section

1.3.1 individual progenic parasites give birth to fully grown pregnant offspring. This occurs

directly on the skin of the host removing the requirement for a free-living transmission

stage or transmission via a vector. When thinking of the G. salaris life-cycle one must first

decide whether to use compartmental models or distributional models. As mentioned in

Chapter 1, SIR style compartmental models are traditionally used to model microparasite

infections which would suit the birthing method and short generation times of G. salaris

parasites, however, the parasite itself is an ectoparasite which is traditionally modelled using

distributional models. Hence, due to this and our interest in how host and parasite densities

change over time, it was decided that the latter would be best to model the dynamics of G.

salaris infection.

2.2 constructing the basic model

In order to study the interaction between G. salaris and Atlantic salmon (Salmo salar, L.) we

require equations for the the salmon host population and the on-host G. salaris population.

We hence form these equations by assuming the following:
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For salmon hosts

• New hosts are born at rate a;

• Individual hosts die from natural causes at rate b;

• Hosts can also die due to infection, this happens at rate α and is assumed to be linearly

proportional to the number of parasites infecting a host.

For G. salaris parasites

• New parasites are born at rate µ;

• Individual parasites die due to natural causes at rate ε;

• Parasites also die as a result of natural host death b, and parasite-induced host death

αH(t)Et(i
2) where i is number of parasites and Et(i2) is the mean-squared number of

parasites per host.

Figure 2.1 gives a schematic representation of a simple host-macroparasite system based

on the macroparasite models by Anderson & May (1978) and May & Anderson (1978). In

this case, and throughout this thesis, the term host refers to populations of Atlantic salmon

and the term parasite refers to populations of G. salaris Malmberg, 1957. The host population

(Atlantic salmon) has magnitude H(t) at time t, likewise, the parasite population (G. salaris)

has magnitude P(t) at time t, hence, the average number of parasites per host is given by

P(t)/H(t) (Anderson & May, 1978).

2.2.1 The basic model

As discussed earlier the models proposed and developed by Anderson & May (1978) and

May & Anderson (1978) serve as the underlying models of our system and a more detailed

description of the construction of the basic model (Equations 2.1 and 2.2) is given in Ap-

pendix B. The model, represented schematically in Figure 2.1, is described by the following

set of differential equations:

dH

dt
= (a− b)H−αP (2.1)

dP

dt
= µP− (ε+ b)P−αHEt(i

2) (2.2)
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Host, H

Parasite, P
Parasite

death rate,
ε

Host-induced
parasite death

Host birth rate, a

Host death rate, b

Parasite-induced
host death, α

Parasite birth rate, µ

Figure 2.1: A schematic representation of a simplified Atlantic salmon-G. salaris system based on mod-
els proposed by Anderson & May (1978) and May & Anderson (1978).

dH
dt and dP

dt represents the rate of change of the host population and the rate of change of

the parasite population respectively. Table 2.1 gives a description of all parameters used by

the models in this work.

Table 2.1: Description of parameters. Descriptions of the population parameters used in the models
throughout this thesis.

Parameter Description
a Host birth rate
b Host death rate due to natural causes
s Density dependent constraint
µ Parasite birth rate
ε Parasite death rate (natural)
α Host death rate due to infection (depends on parasite)
λ Rate that parasites leave hosts
σ Detached parasite death rate (natural)
β Transmission rate of detached parasites to new hosts
m̃ Immunity growth rate
ζ Immunity decay rate

Fish to fish transmission of the parasite is not explicitly modelled due to the fact that

the model gives the total number of G. salaris parasites in the salmon population and not

the number of G. salaris parasites on individual fish. Hence, if a parasite transfers from one

salmon host to another the total size of the G. salaris population remains unchanged and the

effect on the distribution of parasites is negligible.
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As mentioned above the E(i2) term represents mean-square number of parasites per host.

This parameter depends on the probability distribution of parasites per host, and thus, on

P(t)/H(t) (Anderson & May, 1978). Assuming parasites are independently randomly distrib-

uted among hosts we use the Poisson distribution to determine Et(i2).

Aside (Anderson & May, 1978)
The probability generating function for the Poisson distribution is given as
Π(Z) = exp{m(Z− 1)}, where m is the average number of parasites per host.
This has expectation and variance E(i) = m and var(i) = m. Hence, the
expectation of i2 is E(i2) = m2 +m.

Adding the Poisson distribution into the system gives the following for the rate of change

of the G. salaris population:

dP

dt
= µP− (ε+ b)P−αH

(
P2

H2
+
P

H

)
(2.3)

= (µ− ε− b)P−α
P2

H
−αP (2.4)

= P

(
µ− ε− b−α−α

P

H

)
(2.5)

Hence, our expression for dPdt is now given by:

dP

dt
= P

(
µ− ε− b−α−α

P

H

)
(2.6)

Equation (2.1) together with equation (2.6) gives the basic model:

dH

dt
= (a− b)H−αP

dP

dt
= P

(
µ− ε− b−α−α

P

H

) (2.7)

In order to study the dynamics of infection we perform an equilibria and stability ana-

lysis. The methods used to investigate equilibria and stability are outlined below and used

throughout this thesis when such algebraic analyses are possible.

Equilibrium analysis

To determine the existence of equilibria for a system of equations the standard methods of

analysis are followed (Anderson & May, 1981; Murray, 2002, 2003) with equilibria found by

setting the equations in the model to zero and solving for H, P, etc.
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Stability of equilibria

The standard methods of analysis, as outlined by Anderson & May (1981), are employed

to determine stability of equilibria. If small perturbations from equilibrium return to said

equilibrium point (when certain conditions are met) then the system is locally stable. For

each equilibrium point the resulting Jacobian matrix is calculated via

J(H,P) =

∂HH ∂HP

∂PH ∂PP


From the Jacobian, the characteristic equation and eigenvalues are obtained. If the eigen-

values of the Jacobian have negative real parts then the equilibrium point is locally stable.

Aside: Routh-Hurwitz Theorem

The Routh-Hurwitz Theorem tells us that all eigenvalues of a matrix, with characteristic

polynomial of the form λn + a1λ
n−1 + ... + an−1λ+ an = 0 (where ai ∈ ∀R), are negative

or will have negative real parts if and only if the determinants of all Hurwitz matrices are

positive.

Hurwitz matrices are of the form:

Hn =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · an


, ai = 0 if i > n

For a polynomial of degree n = 2, 3, 4, conditions for det(Hi) > 0, i = 1, 2, ...,n, are given

in Table 2.2.

Table 2.2: Conditions for determinants of Hurwitz matrices to be positive for polynomials of degree
2 6 n 6 4.

n Conditions
2 a1 > 0 and a2 > 0
3 a1 > 0, a3 > 0 and a1a2 > a3
4 a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a23 + a

2
1a4
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2.2.2 Equilibria and stability

Equilibrium analysis

As mentioned above, equilibria of the system are found by setting dH
dt = dP

dt = 0 in the

equations in (2.7) and solving for H and P.

(2.1) ⇒ 0 = (a− b)H−αP (2.8)

⇒ P∗

H∗ =
a− b

α
(2.9)

(2.6) ⇒ 0 = P

(
µ− ε− b−α−α

P

H

)
(2.9) ⇒ 0 = µ− ε− b−α−α

(
a− b

α

)

Hence, equation (2.6)⇒ no (H∗,P∗) exist other than (0, 0).

In this case the only equilibrium is the trivial (zero) equilibrium, (H,P) = (0, 0), with

no salmon hosts or G. salaris parasites. Hence, when disease is present (P > 0), exponential

growth occurs.

Stability analysis

The general form of the Jacobian for this model is as follows:

J(H∗,P∗) =

a− b −α

α P
∗2

H∗2 µ− ε− b−α− 2α P
∗
H∗

 (2.10)

The eigenvalues of Jacobian at (0, 0) are given by:

J(0, 0) =

a− b −α

0 µ− ε− b−α

 (2.11)

λ2 + [α+ 2b+ ε− (a+ µ)]λ+ (a− b)(µ− ε− b−α) = 0 (2.12)

The Routh-Hurwitz Theorem tells us that both eigenvalues of (2.11) will have negative real

parts (which corresponds to a locally stable equilibrium point) if and only if both coefficients

of (2.12) are positive. Hence (by the Routh-Hurwitz theorem), (0, 0) is locally stable if and
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only if the conditions in (2.13) are satisfied. Biologically, this means we require birth rates to

be lower than death rates in both salmon and G. salaris populations.

a < b, µ < ε+ b+α (2.13)

Here a < b is the condition on the salmon population and µ < ε+ b+ α is the condition

on the G. salaris population. The second condition is required so that there is no growth in

the parasite population as the host population decays, there can be no parasites if there are

no hosts.

As can be seen in Figure 2.2, when the inequalities in (2.13) are satisfied both the host

and parasite populations quickly decay to zero. This is expected when host births are less

than host deaths (a < b) as G. salaris parasites require a host to survive. The inequalities

in (2.13) also give two situations: µ < ε + a + α < ε + b + α as seen in Figure 2.2a, and

ε+a+α < µ < ε+b+α as seen in Figure 2.2b. The rate of decay of the G. salaris population

is dependent on that of the salmon population and whether µ is greater or less than ε+a+α

such that if µ < ε+ a+α the parasite population decays to zero faster than if µ > ε+ a+α.

1 2 3 4 5
time HdaysL

20

40

60

80

100

Density
HaL

G. salaris

Salmon

1 2 3 4 5
time HdaysL

20

40

60

80

100

Density
HbL

Figure 2.2: The zero equilibrium. Trajectories of host and parasite populations in time as predicted by
the basic model. When host births are less than host deaths (a < b) the host population, and
hence the parasite population, decay to zero. (a) µ < ε+ a+ α < ε+ b+ α (b) ε+ a+ α <
µ < ε+ b+ α. In both cases H(0) = 100, P(0) = 50, a = 3.0, b = 5.0, ε = 0.5 and α = 0.5.
µ = 3.0 and µ = 4.5 in (a) and (b) respectively. Hosts (—), parasites (−−).
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If the inequalities in (2.13) are not satisfied then four possible situations arise. These can

be seen in Figure 2.3 and are as follows:

• µ < ε+ b+α < ε+ a+α, host growth with parasite death (Figure 2.3a);

• ε+ b+α < µ < ε+ a+α, host growth with small parasite growth (Figure 2.3b);

• ε+ a+ α < ε+ b+ α < µ, host death with initial parasite growth then decay (Figure

2.3c);

• ε+ b+ α < ε+ a+ α < µ, short epidemic ending in host and parasite death (Figure

2.3d).

As can be seen in Figure 2.3 (and as one would expect) when host births are greater than

host deaths (a > b) the host population is able to grow. This growth is exponential due to

the fact that there is no density dependent constraint on the host population. Figure 2.3a

(µ < ε+b+α < ε+a+α) shows that if µ < ε+b+α then the parasite population is unable

to grow and hence decays to zero. Increasing µ such that ε+ b+ α < µ < ε+ a+ α allows

the parasite population to grow albeit at very low levels (Figure 2.3b). Figure 2.3c depicts a

large parasite birth rate combined with a negative host growth rate resulting in extinction for

both populations.

Finally, we turn our attention to the situation observed in Figure 2.3d. Here we have

initial positive salmon growth combined with positive G. salaris growth. This results in the

G. salaris population rapidly growing to epidemic levels, forcing the salmon population to

extinction. Once the salmon hosts are extinct the G. salaris population quickly decays to

zero. Hence, the scenario observed in 2.3d actually highlights a second zero equilibrium

that was not discovered in the original equilibrium analysis. This second zero equilibrium

represents parasite/disease induced host extinction and is more commonly witnessed in

models dealing with micro-parasitic infections. Due to the simplistic nature of the basic

model this equilibrium is investigated and discussed in depth for the more complex models

in Chapter 3 (Sections 3.2 and 3.3) leading to more relevant results.
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Figure 2.3: Trajectories of host and parasite populations in time as predicted by the basic model. The
4 possible situations when (2.13) is not satisfied. (a) µ < ε+ b + α < ε+ a + α: a = 3.0,
b = 1.0, µ = 1.0, ε = 0.5, α = 0.5. (b) ε+ b+ α < µ < ε+ a+ α: a = 3.0, b = 1.0, µ = 3.0,
ε = 0.5, α = 0.5. (c) ε+ a+ α < ε+ b+ α < µ: a = 3.0, b = 5.0, µ = 6.5, ε = 0.5, α = 0.5.
(d) ε+ b+ α < ε+ a+ α < µ: a = 3.0, b = 1.0, µ = 5.0, ε = 0.5, α = 0.5. Plots in (a2) and
(b2) are close ups of (a) and (b) respectively. In all cases H(0) = 100, P(0) = 50. Hosts (—),
parasites (−−).

Biologically, and mathematically, this model is very simplistic and hence does not tell

us a great deal of information about the salmon-G. salaris system. Moreover, given the fact

that G. salaris infections are not currently present in the UK (Shinn et al., 1995; OIE, 2003;

Defra, 2008a) this model is not sufficient since it only predicts exponential growth of the

parasites. Hence, we now look at building on these results and begin making the model

more biologically relevant.
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2.3 model a : density dependent constraints on host population

Host, H

Parasite, P
Parasite

death rate,
ε

Host-induced
parasite death

Host birth rate, a

Host death rate, b̂(H)

Parasite-induced
host death, α

Parasite birth rate, µ

Figure 2.4: A schematic representation of a simplified Atlantic salmon-G. salaris interaction with density
dependence in the host population.

In order to make the salmon - G. salaris model more realistic we begin by including dens-

ity dependent constraints on the salmon population (Figure 2.4). These constraints, such as

predation, resource limitation, fishing, etc., make our model more biologically sound.

The density dependent constraint is added to the natural host mortality rate b and is

linearly proportional to host density such that

b̂(H) = b+ sH (2.14)

Thus, substituting b̂ for b in the basic model means equations (2.1) and (2.6) become

dH

dt
= (a− b− sH)H−αP (2.15)

dP

dt
= P

(
µ− (ε+ b+α+ sH) −α

P

H

)
(2.16)

Having this density dependence in the model puts an end to exponential growth of salmon

in the absence of parasitic infection (P = 0). Instead, the host population now grows to a

threshold, K, commonly referred to as the carrying capacity. The general form of the carrying

capacity is defined by equation (2.17) below.
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K =
a− b

s
(2.17)

2.3.1 Equilibria and stability

Equilibrium analysis

Equations (2.15) and (2.16) readily yield equilibria by setting dH/dt = dP/dt = 0 and solving

in the usual way for H and P. Hence, we find two equilibria exist:

1. (H∗,P∗) = (0, 0), the trivial equilibrium with no salmon or G. salaris ;

2. (H∗,P∗) = (K, 0), the disease-free equilibrium with salmon growth in the absence of G.

salaris.

Stability analysis

The standard methods of analysis are followed (available in Appendix C) to determine the

stability of the two equilibria.

The zero equilibrium, (0, 0)

The Jacobian obtained at (0, 0) is the same as that obtained from the basic model and hence,

yields the same result (condition 2.13). A stability analysis of the zero equilibrium here yields

the same results found in Section 2.2.2. Hence, (0, 0) is locally stable (by Routh-Hurwitz) if

and only if a < b and µ < ε+ b+α.

As before a < b is the condition on the hosts and µ < ε+ b+ α is the condition on the

parasites.

The inequalities in (2.13) give rise to two situations: µ < ε + a + α < ε + b + α and

ε + a + α < µ < ε + b + α. Assigning values to the parameters in the model to meet the

conditions in (2.13) and plotting the result gives the graphs found in Figure 2.5. As we would

expect, if host births are less than host deaths then the host population quickly dies out and

hence the parasite population also dies out as a parasite cannot survive for long without

a host. This can be seen in both Figures 2.5a and 2.5b. As witnessed in Figure 2.5a when

µ < ε+ a+α the parasite population decreases to zero faster than in Figure 2.5b, this is due

to parasite births, µ, being less than parasite deaths, host births and parasite induced host

deaths.
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Figure 2.5: The zero equilibrium. Trajectories of host and parasite populations in time as predicted
by the density dependent hosts model. With host birth rate less than host mortality rate
(a < b) the host population and hence the parasite population quickly decay to zero. (a)
µ < ε + a + α < ε + b + α: a = 3.0, b = 5.0, µ = 2.0, ε = 0.5, α = 0.5, s = 0.01; (b)
ε+ a+α < µ < ε+ b+α: a = 3.0, b = 5.0, µ = 5.0, ε = 0.5, α = 0.5, s = 0.01. In both cases
H(0) = 100 and P(0) = 10. Hosts (—), parasites (−−).

The disease-free equilibrium, (K, 0)

A stability analysis of the Jacobian at (K, 0) (see Appendix C) yields the following:

(K, 0) is locally stable (by the Routh-Hurwitz theorem) if and only if the inequalities in

(2.18) are satisfied.

a > b, µ < ε+ a+α (2.18)

In biological terms this corresponds to salmon births being greater than deaths and G.

salaris deaths outweighing births.

As with the conditions for the zero equilibrium to be stable, the inequalities in (2.18) for the

disease-free case give two situations: µ < ε+b+α < ε+a+α and ε+b+α < µ < ε+a+α.

Once again, assigning values to the parameters in the model to meet the conditions in (2.18)

and plotting the result gives the graphs found in Figure 2.6.

However, when condition 2.18 is not satisfied two situations occur;

a < b, µ > b+ ε+α (2.19)

a > b, µ > a+ ε+α (2.20)

Using appropriate software to simulate the different scenarios the model might take we

obtain the plots given in Figure 2.7.

The results seen in Figure 2.7 are similar to those described in Figure 2.3c and 2.3d from the

basic model. Once again, with a negative salmon host growth rate a < b and large G. salaris
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Figure 2.6: The disease-free equilibrium. Trajectories of host and parasite populations in time as pre-
dicted by the density dependent hosts model. With host birth rate greater than host mor-
tality rate (a > b) and parasite birth rate less than total parasite death (µ < ε+ a+ α) the
parasite population quickly decays to zero and the host population is able to grow to carry-
ing capacity K. Here (a) µ < ε+ b+ α < ε+ a+ α, (b) ε+ b+ α < µ < ε+ a+ α. In both
cases H(0) = 100, P(0) = 10, a = 5.0, b = 3.0, ε = 0.5, α = 0.5, s = 0.01. The plots differ in
the value of parasite birth: µ = 3.0 in (a) and µ = 5.0 in (b). Hosts (—), parasites (−−).
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Figure 2.7: Model A: Other possible situations. Trajectories of host and parasite populations in time as
predicted by the density dependent hosts model. (a) a = 3.0, b = 5.0, µ = 8.0, ε = 0.5,
α = 0.5, s = 0.01; (b) a = 5.0, b = 3.0, µ = 8.0, ε = 0.5, α = 0.5, s = 0.01. In both cases
H(0) = 100, P(0) = 10. Hosts (—), parasites (−−).

parasite birth rate µ > ε+ b+ α the G. salaris population is able to grow until the salmon

population is depleted, after which the parasites die out (Figure 2.7a). If however salmon

hosts have a positive growth rate (a > b) and G. salaris parasite births are still large (µ >

ε+ a+ α) then we observe a short epidemic before both salmon and G. salaris populations

become extinct (Figure 2.7b). As before we observe a second zero equilibrium (when P/H >

0) representing parasite induced host extinction that was not obtainable via our standard

equilibrium analysis.
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2.4 estimating parameter values

Using data and information readily available in the literature concerning both G. salaris and

Atlantic salmon life-cycles allowed estimates for population parameters to be obtained. These

estimates are collected in Table A.1, Appendix A.

2.4.1 Atlantic salmon

Birth rate, a

As discussed in Chapter 1, Section 1.4.1.1, salmon spawning is a seasonal process taking

place between mid October and late February (Shearer, 1992). Due to this and the fact that

seasonality is not explicitly modelled, and thus absent from models within this thesis, an

estimate for salmon birth rate, a, is difficult to obtain. Taking this and the birth rate of

parasites into consideration, a daily birth rate of 0.02 is chosen as a best etimate and added

to Table A.1 in Appendix A.

Mortality rate, b

The natural weekly mortality rate of salmon parr was estimated by Hedger et al. (2013) as

0.004. Thus, this gives a daily mortality rate of 0.0006.

Density-dependent constraint, s

The density-dependent constraint for Atlantic salmon varies by river, and thus, estimations

for s depend on the river being studied. Hedger et al. (2013) estimated parr carrying capacity

as 7.5g per m2, using this combined with the mean weight of parr (60g, N. McPherson,

personal communication) the salmon carrying capacity can be estimated as 0.125 fish per m2.

This estimate is used as a guide when choosing a value for s and is consistent with parr

densities previously estimated in the literature (12.5 fish per 100m2, ICES, 2001). Table 2.3

gives length and basin information for selected river systems across the UK.

Table 2.3: Examples of river systems from across the UK. The following rivers are known to contain
populations of Atlantic salmon. Length and basin measurements are given.

River, location Length (km) Basin (km2)
River Tay, Scotland 188 4,970

River Tweed, Scotland 156 3,900

River Tyne, England 100 2,145

River Ribble, England 121 2,128

River Dee, Wales 110 1,817

River Wye, Wales 215 4,136
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Mortality rate due to infection, α

Data for salmon mortality due to infection is not readily available due to ethics involved

with animal health such that experimental trials have to be ended as salmon hosts become

too heavily infected. However, experimental trials conducted by Scott & Anderson (1984)

concerning another gyrodactylus species (G. turnbulli infections on guppies Poecilia reticulata)

estimated the daily rate of parasite induced host mortalities as 0.0012 (Table A.7, Appendix

A). Thus, this value is used as an estimate for parasite induced host mortality in model

simulations throughout this thesis.

2.4.2 Gyrodactylus salaris

Mortality rate, ε

The natural daily mortality rate of G. salaris parasites was calculated using data from Jansen

& Bakke (1991). Using the average life-span of individual parasites given by Jansen & Bakke

(1991) as 12.5 days (Table A.4, Appendix A), the natural daily mortality rate of G. salaris

parasites was estimated as 0.008.

Birth rate, µ

The daily birth rate of G. salaris parasites was calculated using the data from Bakke et al. (1990)

(Table A.3, Appendix A) concerning G. salaris population growth on individual salmon hosts

over time and the parasite mortality rate obtained from the data in Jansen & Bakke (1991).

The data given by Bakke et al. (1990) allowed the calculation of parasite growth on the Atlantic

strain of Atlantic salmon (r=0.103) as well as the Baltic strain of Atlantic Salmon (r=0.085).

Further estimates of parasite growth were obtained using the data from Paladini et al. (in

prep.) (Tables A.5 and A.6, Appendix A) on Norwegian salmon (r=0.116) and UK salmon

(r=0.091). By fitting exponential best-fit curves to data (Bakke et al., 1990; Paladini et al., in

prep.), the mean daily birth rate of G. salaris parasites was estimated as µ=0.183 (Norway

Atlantic hosts, Bakke et al., 1990), µ=0.165 (Russia Baltic hosts, Bakke et al., 1990), µ=0.196

(Norway Atlantic hosts, Paladini et al., in prep.), µ=0.171 (UK Atlantic hosts, Paladini et al.,

in prep.).

2.5 simulating the model for a uk river system

In a recent study by Paladini et al. (in prep.) Atlantic salmon parr originating from the Welsh

River Dee (Afon Dyfrdwy) in the United Kingdom were used to study the effects and impact

of G. salaris infections on UK salmon hosts. For consistency, the model in its current form

(Equations 2.15 and 2.16) is used to simulate the long term dynamics of G. salaris infections
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in the Welsh River Dee with parasite growth rates calculated using the data collected by

Paladini et al. (in prep.). In order to remove the spatial component, the density dependent

parameter, s, is calculated for an area of the river 1000m2 in size with the assumption that

the rest of the river behaves in a similar fashion. The remaining parameters in the model are

given values according to the discussion in Section 2.4 above and Table A.1, Appendix A.

The model is simulated over a 10 year period (3650 days). Initially, Atlantic salmon are

at their carrying capacity (H(0) = K = 125) with no G. salaris infection (P(0) = 0). After 2

years (730 days), 1 G. salaris parasite is introduced into the system (P(730) = 1). The results

obtained are seen in Figure 2.8 below.
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Figure 2.8: Model A: River Dee example. Trajectories of host and parasite populations in time as pre-
dicted by the density dependent hosts model and parameterised according to Table A.1 as
follows a = 0.02, b = 0.0006, s = 0.00016, α = 0.0012, µ = 0.1708, ε = 0.08. Initially there is
no infection present, H(0) = K = 125, P(0) = 0. Infection is added (a single parasite) after
730 days, H(7300) = K = 125, P(730) = 1. Hosts (—), parasites (−−).

By substituting parameter values for 1000m2 of the River Dee into the conditions in (2.18),

(2.19) and (2.20) the conditions for the parasite induced extinction equilibrium (2.20) are

satisfied. Thus, in the case of the model in its current form, (2.15) and (2.16), we would

expect the introduction (or emergence) of G. salaris to force salmon populations to extinction.

This is confirmed when the model is simulated. As can be seen in Figure 2.8, in the absence

of infection the salmon population maintains its carrying capacity, however, when infection

is added to the system the G. salaris population exhibits rapid growth resulting in a short

epidemic as predicted, quickly rendering the salmon population extinct.

2.6 summary

In using the deterministic macroparasite models of Anderson & May (1978) and May &

Anderson (1978) as a foundation we have developed a simple two equation model to describe

Atlantic salmon-G. salaris interactions.

We have set out a system such that salmon populations decay to zero under a negative

growth rate and are able grow to carrying capacity under a positive growth rate in the
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absence of G. salaris infection in a river. We have also shown that when the conditions for

stability are not satisfied, with salmon and G. salaris populations exhibiting positive growth,

a short epidemic occurs resulting in the salmon population becoming extinct. This event is

quickly followed by the extinction of the G. salaris population.

The possibility of this scenario occurring in G. salaris-free territories was confirmed by

simulating the model developed above and parameterising it for the River Dee in the UK. As

mentioned earlier in the text, the model in its current form does not provide much detailed

information of what is witnessed in the field due to its simplicity. However, these results do

serve as a foundation and form a solid basis for the more complicated models that follow in

the succeeding chapters.
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3
C H A P T E R 3

Detached parasites in the external environment

Until now we have been studying the dynamics of on-host (attached) Gyrodactylus salaris

populations. However, when a G. salaris parasite becomes detached from a salmon host it

is able to survive for a period of time, either drifting in the water column or settling on a

substrate or dead host, before possibly infecting a new host. Parasite survival when off a

host, or on a dead host, is considerably lower than survival when on a host.

If a parasite becomes detached from a host (either by being knocked off, washed off or

due to a failed transfer attempt) then it is able to survive for a short period of time at low

temperatures (60h, 45h and 27h at 3◦C, 12◦C and 18◦C respectively, Olstad et al., 2006) by

settling on a substrate (Bakke et al., 1992b). If this happens, the parasite will simply wait until

a suitable host swims by and brushes over it. Gyrodactylids are capable of extending their

bodies two or three times their normal length at right angles to the substrate and rapidly

transfer to a new host (Bakke et al., 1992b; Soleng et al., 1999a; Bakke et al., 2007).

Similarly, if the parasite becomes detached from the host but does not settle on the sub-

strate it is able to survive by drifting in the water column, once again survival time is tem-

perature dependent. In cases like this, the parasite will drift until a suitable host bumps into

it (Bakke et al., 1992b; Soleng et al., 1999a). This route of transmission of the parasite was

observed under experimental conditions by Soleng et al. (1999a). They placed a total of 160

uninfected fish into 160 individual small wire mesh cages suspended above the substrate

(one fish per cage) in an infected river. After 24 hours the fish were tested and 10 out of 157

fish (6.4%) were found to be infected with G. salaris confirming that transmission via para-

sites drifting in the water column is possible but not as important as direct transmission via

contact with an infected live/dead fish or indirect transmission via the substrate.

Gyrodactylus salaris can also survive on a dead host for a short period of time at low temper-

atures (Olstad et al., (2006) found that after 3 days at 12◦C there was still parasite activity on

dead hosts). In this situation, the parasites may move short distances (on the dead host) dur-

ing the first few hours to the first day after host death (temperature dependent) and continue

to feed (Olstad et al., 2006). Under experimental conditions Olstad et al. (2006) observed two
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more distinctive modes: (i) stationary transmission mode (STM) - Parasites exhibiting this

behaviour were motionless and extended their bodies at right angles to the dead host; (ii)

search mode (SM) - Parasites exhibiting this behaviour extended their bodies to at least four

times their normal length and constantly made circular movements and contractions around

the motionless haptor. Olstad et al. (2006) also observed that parasites infecting dead hosts

survive longer than those off a host and showed that transmission between live susceptible

fish and dead infected fish is more important than was previously thought.

3.1 making the model more realistic

Host, H

Parasite, P

Detached parasites,

W

Parasite
death rate,

ε

Host-induced
parasite death

Host birth rate, a

Host death rate, b̂

Parasite-induced
host death, α

Parasite birth rate, µ

Rate at which
parasites

leave host,
λ

Parasite
infection,
β

Death of detached parasites, σ

Figure 3.1: Schematic representation of Atlantic salmon-Gyrodactylus salaris interaction showing de-
tached parasites. See Table A.1 (Appendix A) for a description of the parameters used.

Based on the information above we now consider a model that has detached G. salaris para-

sites. In this case “detached parasites” are defined as parasites that have become detached

from a salmon host, either by a failed transfer to a new host or by being knocked/washed

off, and are now present in the water column, on a substrate or on a dead host. From before

our model (Model A - density dependent host population) was given by equations (2.15) and

(2.16):
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dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ b+α+ sH) −α

P

H

)

Now we add detached parasites into the model. Assume parasites become detached at

rate λ, hence, leaving the on-fish (attached) parasite population. Detached parasites re-enter

the attached parasite population by infecting hosts at rate β. Adding this new information

for detached parasites means that equation (2.16) becomes:

dP

dt
= P

(
µ− (ε+ b+α+ sH+ λ) −α

P

H

)
+βWH (3.1)

We now add a third equation to our model to describe the way the detached parasite

population interacts with the host and attached parasite populations. In this new equation

parasites become detached at rate λ. These detached parasites then die at rate σ and infect

hosts, via contact, at rate β. Thus, the equation for detached parasites is:

dW

dt
= λP− σW −βWH (3.2)

dW
dt is the rate of change of the detached parasite population.

Hence, our model is now given by the equations in (3.3) below:

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ b+α+ sH+ λ) −α

P

H

)
+βWH

dW

dt
= λP− σW −βWH

(3.3)

3.1.1 Equilibria and stability

Equilibrium analysis

The equations in (3.3) readily yield equilibria by setting dH/dt = dP/dt = dW/dt = 0 and

solving for H∗,P∗ and W∗ (Appendix C). Hence, we find three equilibria exist at:

1. (H∗,P∗,W∗) = (0, 0, 0), the trivial equilibrium with no salmon host or G. salaris para-

sites (neither on or off hosts);
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2. (H∗,P∗,W∗) = (K, 0, 0), the disease-free equilibrium with salmon population growth in

the absence of G. salaris infection;

3. (H∗,P∗,W∗) = (H∗,P∗,W∗), the coexistence equilibrium with both salmon and G.

salaris (on and off hosts) populations present.

where,

K =
a− b

s

H∗ =
σ(Γ − µ)

β(µ− Γ + λ)
(3.4)

P∗ =
σ(Γ − µ)[rβ(µ− Γ + λ) − sσ(Γ − µ)]

αβ2(µ− Γ + λ)2
(3.5)

W∗ =
(Γ − µ)[rβ(µ− Γ + λ) − sσ(Γ − µ)]

αβ2(µ− Γ + λ)
(3.6)

with

Γ = ε+ a+α+ λ

Stability analysis

3.1.1.1 The zero equilibrium, (0, 0, 0)

A stability analysis of the zero equilibrium via the usual methods (Appendix C), yields the

following result: (0, 0, 0) is locally stable (by Routh-Hurwitz conditions) if and only if:

a < b, µ < ε+ a+α+ λ (3.7)

Assigning values to the parameters in the model so that they match condition (3.7) and

plotting the result (see Figure 3.2) shows that all populations quickly die out. This is what

we would expect as the inequalities in (3.7) correspond to host births being less than host

deaths and parasite births being less than parasite deaths + host births + parasite induced

host deaths + the rate at which parasites leave hosts. Also, if the host population decreases

to zero then the parasite populations cannot survive and will quickly die out.

3.1.1.2 The disease-free equilibrium (K, 0, 0)

As with the zero equilibrium, a stability analysis of the disease-free equilibrium using the

usual methods yields the following result: (K, 0, 0) is locally stable (by Routh-Hurwitz condi-

tions) if and only if:

a > b, µ < ε+ a+α (3.8)
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Figure 3.2: The zero equilibrium. Trajectories of host, attached parasite and detached parasite popula-
tions in time as predicted by Model B. As host birth rate is less than host mortality rate
(a < b) the host population and hence both parasite populations quickly decay to zero.
Here, a = 2.0, b = 4.0, s = 0.01, µ = 4.0, ε = 2.0, α = 0.5, λ = 0.5, σ = 5.0, β = 0.05.
Initial population numbers are H(0) = 100, P(0) = 50, W(0) = 10. Hosts (—), parasites (−−),
detached parasites (· · · ).

The inequalities in (3.8) tell us that (K, 0, 0) is stable if and only if host births are greater

than host deaths and parasite births are less than parasite deaths + host births + parasite

induced host deaths (Note also that µ < ε+ a+α⇒ µ < ε+ a+α+ λ).

Assigning values to the model parameters to match condition (3.8) and plotting the result

gives Figure (3.3). In this case, the parasite populations quickly die out due to parasite births

being less than parasite deaths. As host births are greater than host deaths and there is

no disease due to the parasite populations dying out, the host population grows following a

logistic trajectory until reaching carrying capacity (in this case K = (a−b)/s = (4− 2)/0.01 =

200).
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Figure 3.3: The disease-free equilibrium. Trajectories of host, attached parasite and detached parasite
populations in time as predicted by Model B. As host birth rate is greater than host mortality
rate (a > b) and parasite birth rate is less than total parasite mortalities (µ < ε+ a+ α) the
host population grows to carrying capacity K whilst both parasite populations decay to zero.
Here, a = 4.0, b = 2.0, s = 0.01, µ = 5.0, ε = 0.5, α = 0.5, λ = 2.0, σ = 5.0, β = 0.05. Initial
population numbers are H(0) = 100, P(0) = 50, W(0) = 10. Hosts (—), attached parasites
(−−), detached parasites (· · · )
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3.1.1.3 The coexistence equilibrium, (H*, P*, W*)

A stability analysis of the coexistence equilibrium, where H∗, P∗ and W∗ are defined as in

equations (3.4), (3.5) and (3.6) respectively yields the following:

(H∗,P∗,W∗) is locally stable (by the Routh-Hurwitz theorem) if and only if:

a > b, ε+ a+α+
σsλ

βr+ σs
< µ < ε+ a+α+ λ (3.9)

The inequalities in (3.9) result in the following four scenarios:

1. a < b and µ < ε+ a+α+ σsλ
βr+σs , salmon and G. salaris extinction;

2. a > b and µ < ε+ a+α+ σsλ
βr+σs , salmon growth, G. salaris extinction;

3. a > b and ε+ a+α+ σsλ
βr+σs < µ < ε+ a+α+ λ, salmon and G. salaris coexistence;

4. a > b and ε+ a+α+ λ < µ, G. salaris induced salmon extinction.

1. If salmon births occur at a rate that is greater than that of salmon mortalities then both

salmon and G. salaris populations decay to zero (Figure 3.4a).

2. When parasite birth rate is low G. salaris populations cannot sustain themselves. This

results in G. salaris populations decaying to zero, and hence, with salmon births greater than

mortalities the salmon parr population is able to grow to carrying capacity, K (Figure 3.4b).

3. When parasite birth rate is greater than total parasite mortalities but less than total para-

site losses we observe salmon-G. salaris coexistence (3.4c). In this case the parasite population

is able to regulate that of the hosts. As µ is increased ever closer to the value of ε+ a+α+ λ

we observe that the system begins to oscillate before settling to equilibrium (Figure 3.5). This

results in parasites being able to regulate the host population at lower levels.

4. The final scenario that can occur is when parasite birth are high, in excess of total

parasite losses (Figure 3.4d). In this case G. salaris exhibit rapid population growth resulting

in a short epidemic forcing salmon populations into extinction. As the salmon population

begins to decay G. salaris parasites are released into the external environment causing a short

increase in detached G. salaris density. Salmon extinction is quickly followed by the extinction

of G. salaris populations, and thus, we arrive at a second zero equilibrium, (0, 0, 0)2. This

equilibrium is similar to the situation witnessed in the basic and density dependent models

in Chapter 2. As before, this equilibrium did not present itself during the original equilibrium

analysis in Section 3.1.1 and represents disease-induced host extinction. We require a method

of analysis to understand this equilibrium fully.
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Figure 3.4: The possible scenarios that result from the conditions of the coexistence equilibrium. Traject-
ories of salmon host, attached G. salaris parasite and detached G. salaris parasite populations
in time as predicted by Model B. (a) A negative salmon population growth rate combined
with a negative G. salaris population growth rate results in all populations decaying to zero.
(b) Positive salmon population growth combined with negative G. salaris population growth
results in the salmon population growing to carrying capacity. (c) With host births greater
than host mortalities and parasite births greater than total parasite mortalities but less than
total parasite losses, the parasite population is able to regulate the host population result-
ing in host-parasite coexistence. (d) Once parasite the parasite birth rate exceeds the total
parasite loss rates (ε+ a+ α+ λ < µ) we arrive at a new zero equilibrium. In this case the
host population begins to grow and the attached parasite population quickly increases to
epidemic levels, killing the hosts and reducing the population to zero. When this happens
the parasite population quickly die out due to lack of resources (hosts). In all plots a = 4.0,
b = 2.0, s = 0.01, ε = 0.5, α = 0.5, λ = 2.0, σ = 5.0, β = 0.05, with initial conditions
H(0) = 100, P(0) = 50, W(0) = 10. The only parameter that varies is µ. µ = 4.0, 4.0, 6.0, 7.1
in (a), (b), (c) and (d) respectively. Salmon (—), attached G. salaris (−−), detached G. salaris
(· · · ).

3.2 re-evaluating the model

As was mentioned in Chapter 2, and above, we now turn our attention to the investigation of

the parasite induced host extinction equilibrium. In order to do this we begin by re-evaluating

the model in its current form, given by the equations in (3.3) above, in terms of the mean

number of parasites per host (P/H). This approach is adopted in order to gain a greater

understanding of the scenario that arises when µ is large such that

a > b, ε+ a+α+ λ < µ (3.10)
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Figure 3.5: The coexistence equilibrium. Trajectories of salmon host, attached G. salaris parasite and
detached G. salaris parasite populations in time as predicted by Model B. By varying parasite
birth rate µ such that it is increased closer to ε+ a+ α+ λ the G. salaris population is able
to regulate the salmon population at increasingly lower levels. In all plots a = 4.0, b = 2.0,
s = 0.01, ε = 0.5, α = 0.5, λ = 2.0, σ = 5.0, β = 0.05, with initial conditions H(0) = 100,
P(0) = 50, W(0) = 10. The only parameter that varies is µ such that (a) µ = 6.2, (b) µ = 6.5,
(c) µ = 6.7, and (d) µ = 6.9. Salmon (—), attached G. salaris (−−), detached G. salaris (· · · ).

In this case (Equation 3.10) all densities are 0 but P/H exhibits positive growth.

Now,

d PH
dt

=
HdPdt − PdHdt

H2

=
1

H

dP

dt
−
P

H2
dH

dt
(3.11)

(3.1) ⇒ 1

H

dP

dt
=
1

H

(
P(µ− (ε+ b+ sH+α+ λ) −

αP

H
) +βHW

)
=
P

H
(µ− (ε+ b+ sH+α+ λ)) −

αP2

H2
+βW (3.12)

(2.15) ⇒ P

H2
dH

dt
=
P

H2
((a− b− sH)H−αP)

=
P

H
(a− b− sH) −

αP2

H2
(3.13)

Hence
1

H

dP

dt
−
P

H2
dH

dt
=
P

H
(µ− Γ) +βW (3.14)
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with Γ = ε+ a+α+ λ

Hence, the model is now given by the equations in (3.15) below.

dH

dt
= (a− b− sH)H−αP

d PH
dt

=
P

H
(µ− Γ) +βW

dW

dt
= λP− σW −βWH

(3.15)

Now, if we substitute M = P/H into the equations in (3.15) our model becomes

dH

dt
= (a− b− sH)H−αMH (3.16)

dM

dt
=M(µ− Γ) +βW (3.17)

dW

dt
= λMH− σW −βWH (3.18)

where dH/dt, dM/dt and dW/dt are the rates of change of hosts, mean number of para-

sites per host and detached parasites respectively.

3.2.1 Equilibria and stability

Equilibrium analysis

As before, setting dH/dt = dM/dt = dW/dt = 0 we find the following equilibria exist:

1. (H∗,M∗,W∗) = (0, 0, 0), the trivial equilibrium with no salmon host or G. salaris para-

sites (neither on or off hosts);

2. (H∗,M∗,W∗) = (K, 0, 0), the disease-free equilibrium with salmon population growth

in the absence of G. salaris infection;

3. (H∗,M∗,W∗) = (H∗,M∗,W∗), the coexistence equilibrium with both salmon and G.

salaris (on and off hosts) populations present.

where,

H∗ = −
σ(µ− Γ)

β(µ+ λ− Γ)
(3.19)

M∗ =
rβ(µ+ λ− Γ) + sσ(µ− Γ)

αβ(µ+ λ− Γ)
(3.20)

W∗ = −
(µ− Γ)(rβ(µ+ λ− Γ) + sσ(µ− Γ))

αβ2(µ+ λ− Γ)
(3.21)
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Stability analysis

A stability analysis of these equilibria yield the same conditions for stability as found in

Section 3.1.1.1 as expected and hence validates the consistency of the re-evaluated model.

Keeping parameter values consistent with those assigned in Section 3.1.1.1 and simulating

the model for the zero, disease-free and coexistence equilibria respectively we arrive at the

same outcomes (and hence conclusions) as before. Since the results here agree with those

obtained in Section 3.1.1 we can conclude that the model and our stability analysis are sound.

We now turn our attention to the fourth equilibrium (0, 0, 0)2.

3.2.2 The second zero equilibrium - Parasite induced extinction

As discussed above the reason for re-evaluating Model B using the mean number of parasites

per host was to gain a greater understanding of the model dynamics when the G. salaris birth

rate is large (given by inequalities in 3.10). Using consistent parameter values and plotting

the result we arrive at Figure 3.6. As was seen earlier (Figure 3.4d), the parasites cause the

extinction of the host population, however, comparing Figure 3.6 with Figure 3.4d we see

that the mean number of parasites per host increase exponentially once the host population

(and hence, detached parasite population) has decayed to zero. In a biological sense the

behaviour that occurs after the salmon have died out due to G. salaris infection is improbable,

however, mathematically possible. When the inequalities in (3.10) are satisfied (i.e., a > b,

µ > ε + a + α + λ) equation (3.17) is always positive (since (µ − Γ) + βW > 0), thus, dMdt

exhibits exponential growth. Consequently, as M increases this has a negative impact on the

host equation which decays to zero due to the −αMH term in equation (3.16). Hence, this

leads to the conclusion that the second zero equilibrium, the parasite induced host extinction

equilibrium, is in fact stable.

3.3 investigating the occurrence of parasite induced host extinction

The parasite induced host extinction equilibrium discussed above is not often witnessed in

macroparasite models but is more commonly encountered when investigating the dynamics

of microparasitic infections. The appearance of such behaviour in the model was investig-

ated to determine whether this scenario occurs as a result of the probability function used

to model the distribution of parasites or is a result of the parasites ability to give birth dir-

ectly on the skin of its salmon host, and hence, removing the requirement of a free-living

stage. In the previous model, the distribution of the G. salaris parasites is given by a Poisson
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Figure 3.6: Parasite induced extinction. Trajectories for mean G. salaris per salmon host in time as
predicted by Model B re-evaluated. As with Model B evaluated using density dependent
transmission the parasites reduce the host population to zero, this occurs when a > b and
µ > ε+a+α+λ. However, the mean number of parasites per host now grows exponentially.
Hence, the parasite induced equilibrium is stable. Here a = 4.0, b = 2.0, s = 0.01, µ = 7.1,
ε = 0.5, α = 0.5, λ = 2.0, σ = 5.0, β = 0.05; H(0) = 100, M(0) = 0.5, W(0) = 10. Mean
number of attached parasites per host (−−). Plot (b) is a magnification of the behaviour in
plot (a) over the first 10 days.

distribution, meaning the parasites are independently randomly distributed throughout the

host population. Another distribution that is commonly used is the negative binomial distri-

bution. This distribution is used when the parasite population is overdispersed. In this case

at low densities parasites are aggregated and at high densities all hosts are highly infected.

We now consider a model with G. salaris parasites following a negative binomial distribution.

The system is now described by the following equations:

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ b+α+ sH+ λ) −α

P

H

(k+ 1)

k

)
+βWH (3.22)

dW

dt
= λP− σW −βWH
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Here the parameter k in (3.22) is the negative binomial parameter which measures the

degree of parasite aggregation. If k is low then aggregation is high and if k is high then there

is very little aggregation.

Following the usual methods of analysis we find equilibria exist at (0, 0, 0), (K, 0, 0),

(H∗
+,P∗+,W∗

+) and (H∗
−,P∗−,W∗

−), where (H∗
±,P∗±,W∗

±) corresponds to the sign of ±
√
Θ with:

H∗ =
−β(r+ k(Γ − µ− λ)) + σs±

√
Θ

−2βs
(3.23)

P∗ =
(r− sH)H

α
(3.24)

W∗ =
P(µ+ λ− Γ + r− sH− (r− sH)(k+1k ))

σ
(3.25)

and

Γ = ε+ a+α+ λ

Θ = (β(r+ k(Γ − µ− λ)) − σs)2 + 4βsσ(r+ k(Γ − µ))

K =
r

s
and r = a− b

K is the carrying capacity.

Now, assigning values to the parameters in (3.22) and plotting the result gives the plots

found in Figure 3.7.
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Figure 3.7: Trajectories for host, attached parasite and detached parasite populations in time as pre-
dicted by Model B re-evaluated using a negative binomial distribution. Starting at the
disease-free scenario (a) and increasing the parasite birth rate µ we arrive at coexistence,
(b)-(e). Increasing µ further we move into parasite induced extinction, (f). Here a = 4.0,
b = 2.0, s = 0.01, ε = 0.5, α = 0.5, λ = 2.0, σ = 5.0, β = 0.05; H(0) = 100, P(0) = 50,
W(0) = 10. µ = 5.0, 6.0, 7.0, 8.0, 9.0, 12.0 in (a), (b), (c), (d), (e) and (f) respectively. Hosts
(—), mean number of attached parasites per host (−−), detached parasites (· · · ).
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As can be seen in Figure 3.7, starting at the disease-free scenario, (a), and increasing the

parasite birth rate µ, we move into coexistence, (b)-(e). With µ still increasing the parasite is

able to regulate the host population at lower levels similar to what we seen in our previous

model. Finally, parasite births get so large that the host population becomes extinct and we

are once again at the parasite-induced extinction equilibrium, (f).

Changing the distribution of the parasite has allowed us to confirm that the cause of

the parasite-induced extinction equilibrium is due to parasites giving birth directly on the

hosts. This means the occurrence of parasite induced host extinction is not a consequence of

using the Poisson distribution in the model. Hence, we have shown that whether a Poisson

or negative binomial distribution is used the parasites can still reduce the host population to

zero if its birth rate is high enough.

3.4 model b : detached parasites in the external environment

According to the model above when a salmon host dies the parasites that it harboured also

die. In reality the death of a salmon host does not necessarily cause the mortality of the G.

salaris parasites it harboured. It is well documented that not only can G. salaris survive on a

substrate and in the water column for a period of time, it can also survive on a dead host

(Bakke et al., 1992a; Soleng et al., 1998; Olstad et al., 2006). With this in mind, we change our

model to incorporate this piece of information. We return to using the Poisson distribution

for the parasite population and note that since hosts die due to natural and parasite induced

causes, equation (3.2) becomes:

dW

dt
=

(
b+ sH+ λ+α+

αP

H

)
P− σW −βWH (3.26)

Hence our model is now given by equations (2.15), (3.1) and (3.26):

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ b+α+ sH+ λ) −α

P

H

)
+βWH (3.27)

dW

dt
=

(
b+ sH+ λ+α+

αP

H

)
P− σW −βWH

Once again, in the absence of disease (P = 0,W = 0), the host population follows logistic

growth to carrying capacity K, where K = a−b
s .
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Equilibria and stability

The equations in (3.27) readily yield equilibria by setting dH/dt = dP/dt = dW/dt = 0 and

solving in the usual way as a above. Hence, we find equilibria exist at (0, 0, 0), (K, 0, 0) and

(H∗,P∗,W∗), where:

H∗ =
σ(µ− (ε+ a+α+ λ))

β(ε− µ)
(3.28)

P∗ =
σ(µ− (ε+ a+α+ λ))[βr(ε− µ) − sσ(µ− (ε+ a+α+ λ))]

αβ2(ε− µ)2
(3.29)

W∗ = −
(µ− (ε+ a+α+ λ))[βr(ε− µ) − sσ(µ− (ε+ a+α+ λ))]

αβ2(ε− µ)
(3.30)

In this model, the conditions for stability of the zero equilibrium are the same as the

conditions for the original model in Section 3.1.1.1, that is the inequalities in (3.7). Assigning

values to parameters in the equations in (3.27) and plotting as before we obtain the plot in

Figure 3.8.
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Figure 3.8: Zero equilibrium. Trajectories for host, attached parasite and detached parasite populations
in time as predicted by Model B re-evaluated using equation (3.26). As before, at the zero
equilibrium all populations decay to zero, however, in this case as the host population dies
out the detached population now grows slightly before decaying to zero as expected. Here
a = 2.0, b = 4.0, s = 0.01, µ = 4.0, ε = 0.5, α = 0.5, λ = 2.0, σ = 5.0, β = 0.05; H(0) = 100,
P(0) = 50, W(0) = 10. Hosts (—), parasites (−−), detached parasites (· · · ).

As expected, at the zero equilibrium (where salmon and G. salaris birth rates are less than

their respective mortality rates) all populations quickly die out. This matches the results in

Section 3.1.1.1. Closer examination of Figure 3.8, however, also shows a small increase in the

numbers of detached parasites before the population decays to zero. This happens because

hosts are dying and releasing their parasites into the detached environment which was not

the case in results in Figure 3.2.

Moving forward, we now consider the disease-free equilibrium. The conditions for (K, 0, 0)

to be stable are similar to the inequalities in (3.8) found in Section 3.1.1.2. However, due to
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the addition of a dead host’s parasites becoming detached instead of dying the conditions

for stability in this case are:

a > b, µ < ε (3.31)

Now all we require for stability is (i) salmon births greater than salmon deaths and (ii) G.

salaris births less than G. salaris deaths. Assigning values to the parameters in the model so

that (3.31) holds true and plotting gives Figure 3.9.
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Figure 3.9: Disease-free equilibrium. Trajectories for host, attached parasite and detached parasite pop-
ulations in time as predicted by Model B re-evaluated using equation (3.26). As expected, at
the disease-free equilibrium the host population (a > b) grows to carrying capacity as the
parasite populations decay to zero. Here a = 4.0, b = 2.0, s = 0.01, µ = 0.1, ε = 0.5, α = 0.5,
λ = 2.0, σ = 5.0, β = 0.05; H(0) = 100, P(0) = 50, W(0) = 10. Hosts (—), parasites (−−),
detached parasites (· · · ).

As expected we get a similar result to that in Section 3.1.1.2. In the absence of disease

(with host births greater than host mortality) the host population exhibits logistic growth to

carrying capacity K whilst both parasite populations quickly decay to zero.

Next we consider the coexistence equilibrium. Using the expressions for H∗, P∗ and W∗

given by equations (3.28), (3.29) and (3.30) respectively and following the usual methods of

analysis we find that the coexistence equilibrium is stable (by Routh-Hurwitz) if and only if

the following conditions are satisfied:

a > b, ε+
sσ(a+α+ λ)

βr+ sσ
< µ < ε+ a+α+ λ (3.32)

Assigning values to the model’s parameters to match the inequalities in (3.32) we get the

results found in Figure 3.10 below.

As with the previous model, increasing the parasite birth rate µ allows the parasites to

regulate the host population at lower levels. With the condition ε + sσ(a+α+λ)
βr+sσ < µ < Γ

(where Γ = ε+a+α+ λ) it is now easier for the parasite to survive. In the previous model in

order for the parasite population to persist parasite births, µ, had to be greater than natural

parasite deaths, ε, + host births, a, + parasite induced host deaths, α, + a proportion of the

parasites that become detached, sσλ
βr+sσ , but now all that is required is µ > ε+ sσ(a+α+λ)

βr+sσ .
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Figure 3.10: Coexistence equilibria. Trajectories for host, attached parasite and detached parasite pop-
ulations in time as predicted by Model B re-evaluated using equation (3.26). With the
addition of equation (3.26) it is now easier for the parasite to grow and regulate the host
population. This is because the condition for coexistence is now ε +

sσ(a+α+λ)
βr+sσ < µ <

ε+ a+ α+ λ. In all plots a = 4.0, b = 2.0, s = 0.01, ε = 0.5, α = 0.5, λ = 2.0, σ = 5.0,
β = 0.05; H(0) = 100, P(0) = 50, W(0) = 10. The only parameter that varies is parasite birth
rate µ. µ = 2.7, 4.0, 5.0, 6.0 in (a), (b), (c) and (d) respectively. Hosts (—), parasites (−−),
detached parasites (· · · ).

If however, we have ε < µ < ε+ sσ(a+α+λ)
βr+sσ , the host population grows to carrying capacity

and the parasite populations quickly decay to zero and we are at the disease-free equilibrium.

Finally, if we take µ greater than Γ ;

a > b, µ > ε+ a+α+ λ (3.33)

we once again arrive at a second zero equilibrium, the parasite induced extinction equilib-

rium (see Figure 3.11).
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Figure 3.11: Parasite induced extinction. Trajectories for host, attached parasite and detached parasite
populations in time as predicted by Model B re-evaluated using equation (3.26). As can be
seen, the attached parasite population grows to an epidemic level and hence kills the host
population. With the addition of equation (3.26), the detached parasite population now
quickly increases. This is because attached parasites join the detached parasite population
when a host dies. Here a = 4.0, b = 2.0, s = 0.01, ε = 0.5, α = 0.5, λ = 2.0, σ = 5.0, β = 0.05;
H(0) = 100, P(0) = 50, W(0) = 10. Here the parasite birth rate µ = 2.7. Hosts (—), parasites
(−−), detached parasites (· · · ).

Looking at Figure 3.11 we see that the parasite population grows to an epidemic level and

behaves similar to the results in Figure 3.4d. As the host population decays more parasites

are released into the detached environment which continues to increase. Finally, when the

host population has reached zero both parasite populations cannot persist and quickly decay

to zero.

3.5 estimating parameter values

Three new parameters (λ, σ, β) have been added to the models in this chapter. As was done

in Chapter 2, estimates for population parameters were obtained using data and information

available in the literature. These estimates are collected in Table A.1, Appendix A.

Detachment rate, λ

The rate at which G. salaris parasite become detached from a salmon host was estimated

using unpublished experimental trials by Paladini and Denholm (see Tables A.8, A.9, A.10,

A.11, Appendix A). However, the value obtained (λ = 0.14) seemed rather high. It is possible

that the high leave-host rate obtained was due to the the fact that only one individual salmon

host was present in the container. Thus, a lower value of λ = 0.06was taken as a more realistic

estimate.
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Off-host mortality rate, σ

Mo (1987), as cited by Peeler et al. (2006), gave the maximum survival rate of G. salaris para-

sites off a salmon host as 6-7 days in ideal conditions. Thus, the daily mortality rate of G.

salaris parasites when off a salmon host is estimated as 0.17-0.14.

Attach rate, β

Data concerning the rate at which G. salaris parasites attach to a salmon host was not readily

available, however, unpublished experimental trials by Paladini and Denholm (see Table A.10,

Appendix A) allowed the estimation of this parameter. An infected Atlantic salmon parr

and an uninfected Atlantic salmon parr were placed in a bucket of clean water in order to

determine the rate at which G. salaris parasites leave a live salmon host and infect a new host.

The experiment was run for eight hours after which both fish were removed from the bucket

and the number of G. salaris parasites infecting each host counted. The G. salaris parasites

remaining in the bucket were also counted. At the end of the trial the initially uninfected

salmon had 57 parasites. Thus, the daily rate at which G. salaris parasites attach to a host is

estimated as 0.006.

3.6 simulating the model for a uk river system

Once again, for consistency, the model in its current form (the equations in 3.27) is paramet-

erised and simulated for the Welsh River Dee according to Table A.1, Appendix A.
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Figure 3.12: Model B: River Dee example. Trajectories of host, attached parasite and detached parasite
populations in time as predicted by the detached parasites in the external environment
model and parameterised according to Table A.1 as follows: a = 0.02, b = 0.0006, s =
0.00016, α = 0.0012, µ = 0.1708, ε = 0.08, λ = 0.06, β = 0.006, σ = 0.16. Initially there is no
infection present, H(0) = K = 125, P(0) = 0. W(0) = 0. Infection is added (a single attached
parasite) after 730 days, H(7300) = K = 125, P(730) = 1, W(730) = 0. Hosts (—), parasites
(−−).

As was the case in Chapter 2, Section 2.5, the conditions for the parasite induced extinction

equilibrium (3.33) are satisfied when the model (in its current form, i.e., the equations in 3.27)

is parameterised for the River Dee. Looking at Figure 3.12 a short epidemic is observed after

the introduction of G. salaris. This forces the salmon hosts to extinction, quickly followed
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by the extinction of the G. salaris populations, as predicted by earlier results in the sections

above. Once again the model simulations predict salmon extinction in the UK in the event of

the emergence of G. salaris infections.

3.7 summary

The results contained within this chapter have contributed to the construction of the baseline

model (Model B). The results obtained from Model B are consistent with observations made

both experimentally and in the wild as well as what one would expect mathematically, i.e.,

(i) if host births are less than host deaths both host and parasite populations die out; (ii)

in the absence of disease the host population grows exponentially to carrying capacity; (iii)

parasites regulate the host population until the parasite population is so large that the host

population is forced into decay, and ultimately, extinction. Through equilibrium and stabil-

ity analysis we have found if and where equilibria exist and under what conditions these

equilibria are stable.

The analysis also highlighted a second zero equilibrium that occurs when the G. salaris

population forces the salmon to extinction, an equilibrium not commonly witnessed in mac-

roparasite models, and shown that this parasite induced host extinction equilibrium is stable.

We have also determined that parasite induced host extinction will occur if and only if the

parasite birth rate is greater than the rate of total parasite losses (ε + a + α + λ) and, by

varying the probability distribution function used to describe parasite distribution, that this

equilibrium does not depend on the probability distribution function chosen but the ability

of the parasite to reproduce on directly on the skin of a host.

Finally, we have extended equations (2.15), (3.1) and (3.2) to include the fact that individual

G. salaris parasites do not generally die when the salmon host they are infecting dies. This

adds biological realism to the the baseline model, and in turn, to the more complicated

models that follow.

Biologically, the results obtained from the models above demonstrate that without any

form of resistance or immune response, and if the parasite birth rate is high, G. salaris popu-

lations will grow to epidemic levels causing salmon populations to become extinct followed

then by the parasite until both salmon and G. salaris populations are gone. However, if the

parasite birth rate is low enough then populations of salmon and G. salaris should (in theory)

be able to coexist, this however has not been witnessed in the field. Parameterising the model

above for a UK river system (River Dee, Wales) predicts salmon extinction in the event of G.

salaris emergence.
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4
C H A P T E R 4

Mechanisms for resistance in Salmo salar L.

4.1 introduction

As discussed in Chapter 1, Gyrodactylus salaris has caused catastrophic damage to wild At-

lantic salmon (Salmo salar, L.) stocks since its accidental introduction to Norway in 1975

(Johnsen, 1978; Johnsen & Jensen, 1986, 1991) resulting in a significant, continued, economic

impact. In the years post introduction, G. salaris has spread to 48 rivers, 13 Atlantic salmon

hatcheries and 26 rainbow trout hatcheries in Norway (Sviland et al., 2012). It is estimated

that G. salaris has cost the Norwegian salmon industry more than $655 M (Bakke et al., 2004)

with an annual loss of 250 - 500 metric tonnes of salmon due to the average density of sal-

mon parr in infected rivers being reduced by 86% (Bakke et al., 2004). Such annual loss costs

the Norwegian economy of over $50 M per annum through the costs of surveillance and

eradication (circa US $23 million per annum), and losses to fisheries associated industries

and tourism (circa US $34 million per annum) (Bakke et al., 2007). Hence, G. salaris poses a

serious threat if it establishes in the UK and other potentially G. salaris free areas of Europe

(Paladini et al., subm.).

As discussed earlier G. salaris is highly pathogenic to populations of juvenile Atlantic

salmon parr. However, different strains of the parasite have varying effects and hence these

strains must be taken into consideration. Hansen et al. (2003) outlined the three currently

known clades of G. salaris :

1. Clade I, this strain was only found on Atlantic salmon and is highly pathogenic;

2. Clade II, this strain was found on salmon from the river Göta älv in Sweden;

3. Clade III, this strain was found on salmon from the rivers Lærdalselva, Drammenselva

and Lierelva in Norway and on rainbow trout from a fish farm in Lake Bullaren,

Sweden.

Another strain of G. salaris has been found on rainbow trout in Denmark (Buchmann

& Bresciani, 1997; Nielsen & Buchmann, 2001). This variant of the G. salaris parasite shows
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low virulence towards Atlantic salmon and under experimental conditions, on isolated hosts,

this strain showed limited reproduction or no establishment at all (Lindenstrom et al., 2003).

However, Lindenstrom et al. (2003) observed high susceptibility to this strain in rainbow trout

and noted that this strain of the parasite greatly resembles G. salaris sensu stricto.

Gyrodactylus salaris sensu stricto (Clade I) is the strain of G. salaris that is highly patho-

genic to Atlantic salmon. The Atlantic salmon is highly susceptible to this strain of G. salaris

with infection resulting in death. Within five years of introduction, G. salaris can reduce a sal-

mon population by approximately 98% as has been observed throughout much of Norway

(Johnsen & Jensen, 1991). As mentioned above (and discussed in Chapter 1), G. salaris can

survive and reproduce on Atlantic salmon but cannot survive full strength salinity, hence,

the parasite mainly infects juvenile salmon (e.g., fry and parr) since they are more likely to

make contact with the substrate, resulting in fewer smolts migrating to the sea.

In terms of Atlantic salmon strains, Bakke et al. (2004) showed that some stocks of the

Baltic strain of Atlantic salmon are susceptible to G. salaris but not to the same degree as

the Atlantic strain. It is the current belief that relative immunity of the Baltic strain is due

to the presence of the parasite in the Baltic watershed since the last glacial period (Bakke

et al., 2002). This supports the hypothesis that G. salaris is a recent introduction to Norwegian

rivers and demonstrates why Norwegian Atlantic salmon are particularly susceptible to the

parasite. The different strains of G. salaris have been shown to have varying effects on salmon

as mentioned above, in particular the rainbow trout strain was shown to have no effect on

Scottish Conon salmon (Lindenstrom et al., 2003).

4.1.1 The biology of Gyrodactylus

As discussed earlier, the Atlantic strain of Atlantic salmon, examples of which occur naturally

in Norway and the UK, does not appear to have any resistance to G. salaris infections (Bakke

et al., 1990; Bakke & MacKenzie, 1993; Hansen et al., 2003), hence, on juvenile hosts the

parasite population is able to increase in size rapidly and cause substantial mortality. The

rapid growth of the G. salaris population on a salmon host is due to progenic parasites giving

birth to fully grown pregnant offspring (a process known as hyperviviparity) as well as

generally short generation times. This “Matryoshka” (Russian doll) method of reproduction

means the parasite population is able to grow exponentially to epidemic levels within the

host population, resulting is mass salmon mortality. In contrast, the Baltic strain of Atlantic

salmon, examples of which occur naturally in Sweden and Russia, does exhibit some form

of resistance (Bakke et al., 2002, 2004) to attacks and the parasite is unable to persist and

parasite numbers are kept at low levels (Bakke et al., 1990; Cable et al., 2000). Understanding
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the differences in these responses to the parasite is critical to understanding how salmon in

G. salaris free territories such as the UK would respond to infection.

This chapter concerns the use of two different mathematical methods to investigate the

possible differences in the G. salaris life-cycle which could cause the differences in parasite

population numbers on Baltic and Atlantic strains of Atlantic salmon. Until now it has been

assumed that the parasites are either less fecund or have a lower survival rate on the Baltic

strain. Here both Leslie matrices and individual based models are used to determine the

effect of another mechanism - timing of parasite first birth. In this chapter the relative im-

portance of timing of parasite first birth, total number of offspring and parasite survival are

compared.

4.2 data

The dynamics of a population of G. salaris infecting a single fish host were studied using data

from Cable et al. (2000) for one strain of G. salaris infecting three strains of Atlantic salmon.

Of the three Atlantic salmon strains two were susceptible Atlantic strains (originating from

the Rivers Alta and Lier, Norway) and the third was the resistant Baltic strain (originating

from the River Neva, Russia). From their study Cable et al. (2000) showed at 12.5oC (±0.2)

individual G. salaris parasites had a maximum longevity of 26, 24 and 17 days (median

survival of 7.9, 5.2 and 3.5 days) on Alta, Lier and Neva hosts respectively. Median survival

of parasites was low due to high parasite mortality on both Atlantic and Baltic hosts, however,

mortality was significantly higher in parasites infecting Baltic hosts (Cable et al., 2000).

Their study highlighted differences in fecundity exist between parasites on Atlantic and

Baltic hosts with 4 births occurring on Alta and Lier hosts (confirming the results of an

earlier study by Jansen & Bakke, 1991) compared to 2 birth occurring on Neva hosts. They

also observed the timing of parasite first birth was more variable on Neva hosts compared

to that on Alta and Lier hosts with parasite first birth occurring after 1.85, 1.88 and 2.34 days

on Alta, Lier and Neva hosts respectively.

4.3 modelling techniques

Two different modelling techniques were used to simulate the data. Due to our interest in

G. salaris population growth on a single fish host only, Leslie matrix population models

were used because they allow the use of daily fertility rates and fit well with the biology

of the parasite (e.g. parasite’s method of reproduction, in particular, an individual parasite

only gives birth to one female offspring at any one time). In order to verify that results

70

[ 18th September 2013 at 19:56 ]



1 2 3 · · · 26
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Figure 4.1: A schematic representation of the general form of the Leslie matrix and individual based
models for G. salaris infecting a single salmon host. The model is age structured (in days)
with parameters F and P indicating fertility and survival respectively. Models are paramet-
erised for Alta (susceptible), Lier (susceptible) and Neva (resistant) salmon stocks according
to Table 4.1 in the main text.

obtained were not a consequence of the modelling method used a stochastic approach was

also developed in the form of individual based models. All models were simulated using

Mathematica and selected code is available in Appendix D.

4.3.1 Leslie matrix models



n0

n1

n2

...

nω


t+1

=



F0 F1 . . . Fω−1 Fω

P0 0 . . . 0 0

0 P1 . . . 0 0

...
...

. . .
...

...

0 0 . . . Pω−1 0





n0

n1

n2

...

nω


t

(4.1)

Leslie matrix population models are discrete, age or stage-dependent models that are widely

used in the fields of mathematics and biology for predicting population growth (Leslie, 1945).

The Leslie matrix itself, Equation (4.1), is a square matrix that is closed to migration and only

considers the females of a population. Only females are considered due to the convention

that only the females of a population can reproduce. All elements in the Leslie matrix are

zero except those found in the first row, representing fertility rates Fi > 0, and sub-diagonal,

representing survival rates from one generation to the next 0 6 Pi 6 1. Finally, ni(t) is the

number of individuals in age class i at time t.
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4.3.2 Parameterising Leslie matrix models

Under experimental conditions the maximum longevity of parasites was extended to 26, 24

and 17 days for parasites on Alta, Lier and Neva fish respectively to allow births to occur

(Cable et al., 2000). Since maximum longevity of parasites observed on all three salmon stocks

was less than or equal to 26 days, a 26×26 Leslie matrix model was constructed to predict the

growth of a G. salaris population on a single fish host. Experiments were undertaken for a

period of 5 weeks, likewise, models were simulated for 35 days (time step = 1 day). Equation

(4.2) and Figure 4.1 give the general form of our model.

A =



F1 F2 F3 . . . F26

P1 0 0 . . . 0

0 P2 0 . . . 0

...
...

. . .
...

...

0 0 . . . P25 0


(4.2)

Models were parameterised for the two stocks of Atlantic salmon (Alta, Lier) and one

stock of Baltic salmon (Neva) and simulated such that each of the three salmon stocks were

initially infected with one single G. salaris parasite at time t = 0.

4.3.2.1 Parasite survival

Parasite daily survival rates were estimated using the 50% survival times determined and

given by Cable et al. (2000). The 50% survival time is the time taken for the population to

decrease to 50% (median survival) and was given as 7.9 days on Alta fish, 5.2 days on Lier

fish and 3.5 days on Neva fish. Survival rates (Pt) for the Leslie models were calculated as

follows:

Nt+1 = bNt (4.3)

Nt = b
tN0 (4.4)

1

2
N0 = btN0 (4.5)

1

2
= b 50% life span (4.6)

where N0 is the number of parasites at time t = 0 (here N0 = 1), t is time (in days) and Nt

is the proportion of parasites surviving to time t. Here, N0 = 1 due to all simulations initially

starting with 1 parasite. Since the 50% survival times found in the literature are used, 12N0

is used as above. Hence, survival rates for Alta, Lier and Neva are respectively:
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bAlta =

(
1

2
N0

) 1
50% Alta life span

=

(
1

2

) 1
7.9

= 0.92 (4.7)

bLier =

(
1

2
N0

) 1
50% Lier life span

=

(
1

2

) 1
5.2

= 0.88 (4.8)

bNeva =

(
1

2
N0

) 1
50% Neva life span

=

(
1

2

) 1
3.5

= 0.82 (4.9)

Survival rates were kept constant throughout the three Leslie models such that P1 = P2 =

. . . = P25.

4.3.2.2 Parasite fecundity and fertility

With maximum longevity extended, Cable et al. (2000) observed 4 births occurring on Atlantic

hosts (Alta and Lier) and only 2 births on Baltic hosts (Neva). Thus, models were developed

such that individual G. salaris parasite gave birth to either 4 or 2 offspring in its lifetime

depending on whether it was infecting an Atlantic or Baltic strain of salmon host respectively

(see Appendix A, Table A.2).

Parasite fertility rates Fi were calculated using the average time taken for parasite offspring

to be born on the different salmon hosts. Probabilistic distribution of births was included in

order to allow part day differences in birth timing to occur. Allowing part day differences in

fertility made it possible for an offspring to be born on fractions of days as is the case in the

literature. Thus, fertility rates were calculated via the following:

Let F1, ..., F26 = day 1, ..., 26 respectively.

Then F1 + F2 = 1 etc.

Therefore, for an offspring born between day 1 and day 2, e.g. on day 1.85 let F1 + 2F2 =

1.85.

Now F1 + F2 = 1⇒ F1 = 1− F2.

Therefore, 1− F2 + 2F2 = 1.85

F2 = 0.85

F1 = 0.15

Hence, 0.15 births on day 1 and 0.85 on day 2. Table 4.1 gives descriptions of the parameters

used throughout this chapter.
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Table 4.1: Parameter values used in Leslie matrix and individual based models calculated using data
from Cable et al. (2000) for one strain of G. salaris infecting two susceptible salmon stock
(from the Rivers Alta and Lier, Norway) and one resistant salmon stock (from the River Neva,
Russia).

i = 1, ..., 26 Lier Alta Neva

Pi 0.875 0.916 0.820

F1 0.12 0.15 0

F2 0.88 0.85 0.66

F3 0 0 0.34

F4 0 0 0

...
...

...
...

F8 0.65 0 0

F9 0.35 0.95 0

F10 0 0.05 1

F11 0 0 0

...
...

...
...

F16 1 0.6 0

F17 0 0.4 0

F18 0 0 0

...
...

...
...

F22 0 0.5 0

F23 1 0.5 0

F24 0 0 0

F25 0 0 0

F26 0 0 0

4.3.3 Individual based models

In addition to the Leslie matrix modelling approach, an individual based stochastic model

was also developed for the reason stated in Section 4.3 above. As with the Leslie matrix mod-

els, the individual based models consisted of 26 stages representing the maximum longevity

of individual parasites (26 days).

4.3.4 Parameterising individual based models

4.3.4.1 Parasite survival

At each time step each parasite could either die or progress to the next stage. To determine

whether a parasite progressed to the next stage or died, a random number (between 0 and 1)

was generated and compared to the probability of mortality per day of parasites, pb. If this

random number was less than the mortality probability the parasite died and was removed

from the simulation, otherwise it survived and moved to the next stage. The probability of

mortality per day of parasites (pb) in the individual based models was calculated as follows:
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pb = 1− b (4.10)

Hence,

pbAlta = 1− bAlta = 0.08 (4.11)

pbLier = 1− bLier = 0.12 (4.12)

pbNeva = 1− bNeva = 0.18 (4.13)

The probability of mortality per day of parasites was kept constant throughout each of the

26 stages in model simulations.

4.3.4.2 Parasite fecundity and fertility

Models were once again parameterised to allow 4 or 2 births to occur depending on the

host strain being infected. To determine if and when a parasite gives birth, a second random

number was generated (again between 0 and 1) and compared to the probability of a parasite

giving birth in that stage. The probability of a parasite giving birth in a stage was determined

using the day on which offspring were born according to Table 3 in Cable et al. (2000). For

example, in the case of Alta parasites, 1st birth occurs after 1.85 days, thus, there is a 0.15

probability the birth will occur on day 1 and a 0.85 probability the birth will occur on day 2.

Hence, at certain stages parasite would do one of four things:

1. Give birth to an offspring before moving to the next stage;

2. Give birth to an offspring before dying;

3. Move to the next stage without giving birth;

4. Die without giving birth.

New born parasites entered the model at stage 1. The model followed individual parasites

through time and kept track of the number of parasites in each stage throughout the simula-

tion. Individual based models were simulated for 35 days of infection and repeated 50 times.

The results shown are the average of the 50 simulations.
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4.4 mechanisms for resistance

4.4.1 Baseline simulations

Initially the Leslie matrix model was used to simulate the data directly in order to compare

model outputs with experimental data. Figure 4.2 shows the results obtained from the Leslie

matrix models.
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Figure 4.2: Leslie baseline simulation. Change in parasite numbers over time (days) from model simula-
tion of G. salaris on three strains of Salmo salar, two susceptible Atlantic strains (Alta —, Lier
−−) and one resistant Baltic strain (Neva· · · ). As can be seen, with no changes to parameters,
G. salaris populations on the Atlantic strains exhibit exponential-like growth whereas those
on the Baltic strain decay to zero.

As can be seen in Figure 4.2, G. salaris populations on both Atlantic strains exhibit positive

growth whereas those on the Baltic strain decay to zero. This is what one would expect from

the biology and matches the experimental results obtained by Bakke et al. (1990). The data

was then simulated using the individual based model. For comparison purposes outputs

from the individual based model were plotted along with results from the Leslie matrix

model and those obtained experimentally by Bakke et al. (1990) and are shown in (Figure

4.3).

Comparing the baseline simulation results from both modelling techniques to the experi-

mental data from literature (Bakke et al., 1990; Jansen & Bakke, 1991; Cable et al., 2000) one

can see that both models give a reasonable fit to data in susceptible Atlantic hosts initially but

under predict G. salaris numbers by the end of the 5 week period. Additionally, some of the

stochastic simulations were in fact able to capture the dynamics of parasites infecting resist-

ant Baltic hosts. However, the majority of individual based simulations and all Leslie matrix

simulations for G. salaris on Baltic hosts were unable to accurately provide such a fit. The

individual based models also enabled the calculation of extinction probabilities of parasites

where 0.00 indicates the population will never become extinct and 1.00 indicates the opposite.

Extinction probabilities were estimated as 0.22 for G. salaris populations on Atlantic hosts and

0.9 for G. salaris populations on Neva hosts. The extinction probabilities obtained from model
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Figure 4.3: Baseline simulation results showing change in parasite numbers over time (days) for G.
salaris on one susceptible (Alta) and one resistant (Neva) strain of S. salar obtained via the
Leslie model (thick, black trajectory) and individual based model (thin, grey trajectories).
The trajectory of parasite growth obtained from the literature via experimentation (Bakke
et al., 1990) is given in red (red plot markers). As can be seen in the case of the susceptible
Alta salmon both modelling techniques give a reasonable fit to the data, however, in the
resistant Neva case neither model is capable of providing an accurate fit to data.

simulations further confirmed the observations by Bakke et al. (1990) were populations of G.

salaris grow exponentially on Atlantic hosts but decay to zero on Baltic hosts.

From the literature it is clear that that Baltic hosts are able to mount some form of immune

response to G. salaris infections (Bakke et al., 1990; Cable et al., 2000). In order to try and

explain these different responses comparisons were made between the parameters for the

parasites on the different strains of salmon.

4.4.2 Delayed parasite first birth

One of the differences immediately noted between parasites infecting Atlantic hosts and

Baltic hosts is the fact that the first born offspring occurs after 1.9 days on Atlantic salmon

and 2.3 days on their Baltic counterparts. Approximately there was a 0.49 day difference

between the first born offspring on Alta and Neva stocks and a 0.46 day difference between

Lier and Neva stocks. The possible consequences of this slight delay in initial birthing times

was investigated. This was achieved by altering the birth rates in both the Leslie matrix and

individual based models. It was decided that a delay in first birth would be more informative

than a delay in all births since the timing of second births did not appear to vary much on

either Atlantic or Baltic hosts (Cable et al., 2000). Simulations were performed for G. salaris

on the two stocks of susceptible salmon and compared the resulting outcomes with the

baseline simulations in obtained on Section 4.4.1 to determine whether this difference alone

can explain the resistance to G. salaris witnessed in Baltic salmon.

Figure 4.4 shows the impact on the parasite population when first birth occurs after 2.34

days on both Alta and Lier stocks (with all other parameters as in Figure 4.2). As can be
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seen, delaying the first birth by only half a day has caused the parasite populations on both

Norwegian stocks to reduce by around 50%.
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Figure 4.4: Parasite first birth delayed by 0.5 days. Trajectories of G. salaris populations infecting two
Atlantic strains of S. salar (Alta —, Lier −−) over time (days) as predicted by the Leslie
matrix model with delayed first birth. Delaying parasite first birth by 0.5 days on Alta and
Lier salmon and comparing the results to the baseline simulation a 50% reduction in parasite
numbers is witnessed. Baseline Alta (—), Lier (−−) and Neva (· · · ) trajectories given for
comparison.

As with the baseline simulations in Section 4.4.1, simulations were performed using the

individual based model and the results plotted with those obtained using the Leslie matrix

model (see Figure 4.5). As can bee seen in Figure 4.5 for G. salaris on Alta and Lier fish the

individual based model results agree with those obtained using the Leslie matrix model.
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Figure 4.5: Parasite first birth delayed by 0.5 days. Trajectories of G. salaris populations infecting two
Atlantic strains of S. salar as predicted by the individual based model (thin, grey) with
delayed parasite first birth. Results from the Leslie matrix model (thick, black) are given for
comparison of model outputs.

Taking this approach further, parasite first birth was then delayed by one whole day with

offspring first birth occurring after 2.85 and 2.88 days on Alta and Lier stocks respectively us-

ing the Leslie matrix model (Figure 4.6) and individual based model (Figure 4.7). Importantly

it was found, via both modelling methods, that the G. salaris population on the two Atlantic

fish stocks is reduced by approximately 75%. However, the parasite populations on both Alta

and Lier hosts still exhibit positive growth. Hence, a delay in the timing of parasite first birth
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alone has an important impact on the dynamics but does not give hosts an adequate form of

defence against infection.
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Figure 4.6: Parasite first birth delayed by 1 day. Trajectories of G. salaris populations infecting two At-
lantic strains of S. salar (Alta —, Lier −−) over time (days) as predicted by the Leslie matrix
model with delayed parasite first birth. Delaying parasite first birth by 1 day on Alta and
Lier salmon and comparing the results to the baseline simulation a 75% reduction in para-
site numbers is witnessed. Baseline Alta (—), Lier (−−) and Neva (· · · ) trajectories given for
comparison.
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Figure 4.7: Parasite first birth delayed by 1 day. Trajectories of G. salaris populations infecting two At-
lantic strains of S. salar as predicted by the individual based model (thin, grey) with delayed
parasite first birth. Results from the Leslie matrix model (thick, black) are given for compar-
ison of model outputs.

4.4.3 Reduced number of parasite births

Another possible manifestation of resistance of Baltic salmon to rapid G. salaris population

growth is a reduction in the number of births that may occur in a parasite’s life-cycle. As

demonstrated by Cable et al. (2000), G. salaris parasites infecting Baltic hosts only achieve two

births in their lifetime compared to the four births that occur for those parasites infecting

Atlantic hosts. Looking at the parasite populations on both Atlantic and Baltic hosts over

a period of two weeks in the baseline simulation (Figure 4.2), population numbers at this

point are not significantly different. Moreover, after this period observations of parasites on
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Baltic hosts begin to decay (Bakke et al., 1990). In the first two weeks parasites on Atlantic

and Baltic hosts give birth to two offspring, after the two week period parasites on Atlantic

hosts can give birth to up to two more parasites giving a maximum of four offspring in

its life time. Therefore, the Leslie and individual based models were re-parameterised to

determine whether reducing the number of times that a single parasite, infecting Alta and

Lier fish, gives birth in its lifetime will cause the overall parasite population to decline. All

other parameter values remained consistent with the baseline simulations as in Figure 4.2.

Running simulations via the Leslie matrix model and comparing output with individual

based simulations gives the results in Figures 4.8 and 4.9 respectively. In both Alta and Lier

cases with individual parasite giving birth only twice (1.85 and 9.05 days on Alta and 1.88

and 8.35 days on Lier), the size of the parasite population is not significantly reduced and is

still able to grow (approximately a 20% reduction in G. salaris numbers on both Alta and Lier

hosts was observed). This behaviour is in contrast to that of G. salaris populations on Baltic

hosts which decay to zero. Our results highlight the fact that a reduced number of births

alone does not explain the Baltic salmon’s innate resistance to G. salaris infections. Output

from both modelling methods remained consistent (See Figure 4.9).
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Figure 4.8: Reduced parasite births. Trajectories of G. salaris populations infecting two Atlantic strains
of S. salar (Alta —, Lier −−) over time (days) as predicted by the Leslie matrix model with
reduced number of parasite offspring. Reducing the total number of births per parasite on
Alta and Lier hosts from four offspring to two offspring has very little effect on the parasite
population dynamics with only a 20% reduction over the 35 day period. Baseline Alta (—),
Lier (−−) and Neva (· · · ) trajectories given for comparison.

4.4.4 Reduced parasite survival

The third notable difference between parasites infecting Atlantic and Baltic salmon is their

survival rate. To study this, the rate at which G. salaris parasites survive from one age class

to the next was reduced in both the Leslie matrix and individual based models.
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Figure 4.9: Reduced parasite births. Trajectories of G. salaris populations infecting two Atlantic strains
of S. salar as predicted by the individual based model (thin, grey) with reduced number of
parasite offspring. Results from the Leslie matrix model (thick, black) are given for compar-
ison of model outputs.

As mentioned earlier, the literature gives the median lifespan of parasites (7.9, 5.2 and 3.5

days) (Cable et al., 2000) this information yields survival rates of 0.92, 0.88 and 0.82 on Alta,

Lier and Neva salmon respectively. Reducing the survival rates of those parasites infecting

Atlantic stocks to equal those on the Baltic (with all other parameters as in Figure 4.2) yields

the results in Figures 4.10 and 4.11.
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Figure 4.10: Reduced parasite survival. Trajectories of G. salaris populations infecting two Atlantic
strains of S. salar (Alta —, Lier −−) over time (days) as predicted by the Leslie matrix
model. Reducing parasite survival on Alta and Lier salmon to equal that of parasites in-
fecting the Neva salmon (a survival rate of ) has the largest impact on the dynamics. As
can be seen the G. salaris populations on both Atlantic strains is now very low, however,
they are still not decaying to zero as in the Baltic Neva case. Plot (b) is a close-up of (a) and
shows only G. salaris numbers on Alta (—) and Lier (−−) hosts.
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Figure 4.11: Reduced parasite survival. Trajectories of G. salaris populations infecting two Atlantic
strains of S. salar as predicted by the individual based model (thin, grey) with increased
parasite death. Results from the Leslie matrix model (thick, black) are given for comparison
of model outputs.

Here both Atlantic stocks still do not decay to zero and exhibit positive growth, albeit at

a slower rate than in previous simulations; this is an intuitively obvious result. If individual

parasites have an increased death rate then the parasite population grows more slowly. As

with the previous mechanisms studied, the results gained from the two modelling techniques

allow us to deduce that this mechanism alone, i.e. reduced parasite survival, does not explain

the Baltic’s ability to fight G. salaris infections. Model outputs were not as consistent between

the two modelling methods as in previous results, however, as seen in Figure 4.11 the indi-

vidual based model predicted similar G. salaris numbers in a handful of simulations.

4.4.5 Combination of mechanisms

Finally, the impact that a combination of the three mechanisms studied above has on the

parasite population was considered. The results in Sections 4.4.1 - 4.4.4 above were compared

with those obtained via the Leslie matrix model parameterised using a combination of:

1. Delayed first birth with reduced number of births;

2. Delayed first birth with reduced parasite survival; and,

3. Delayed first birth with reduced number of births and reduced parasite survival.

Figure 4.12 shows the results obtained for G. salaris parasites on Atlantic (Alta) salmon

hosts allowing comparisons to be made with the baseline Atlantic (Alta) and Baltic (Neva)

results. As can be seen, all three combinations reduce the parasite population to levels lower

than the results in the previous sections. Combination (1) has the least significant impact

on the dynamics with combination (2) significantly lowering parasite numbers close to the

baseline Neva trajectory. However, combination (2) still results in low-level parasite growth.

Only combination (3) actually results in parasites decaying to extinction. Combination (3)

is what is witnessed in parasites infecting the Baltic strain of Atlantic salmon. Hence, in
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addition to single mechanisms, a combination of two mechanisms is also not adequate in

explaining the immune response of Baltic salmon to infection. Moreover, in order to beat

infection and force parasites to extinction strains of Atlantic salmon must exhibit all three of

the mechanisms, and thus, evolve to be more like the Baltic strain.
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+ increased death

Delayed 1st birth + increased death
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BASELINE NEVA

BASELINE ATLA

Figure 4.12: Combination of mechanisms for resistance to G. salaris infections (Leslie model simula-
tions). Trajectories of G. salaris populations infecting one Atlantic strain of S. salar (Alta)
between the baseline trajectories of parasites on Alta and Neva salmon with a combina-
tion of the mechanisms studied in this work and simulated using Leslie matrix models.
Combinations are baseline Alta, reduced number of offspring, delayed parasite first birth,
delayed parasite first birth and reduced number of offspring, increased death, increased
death and delayed parasite first birth, baseline Neva.

4.5 summary

Each of the three possible mechanisms of resistance exhibited by Baltic salmon hosts when

infected by G. salaris were studied in depth using both Leslie matrix and individual based

models. The outputs obtained via both modelling techniques gave similar G. salaris popula-

tion sizes against time (in days) and the results from baseline simulations for Atlantic hosts

were reasonably consistent (both techniques under predicted the data slightly) with previous

experimental data presented in Bakke et al. (1990) and Jansen & Bakke (1991). Unfortunately,

neither the Leslie matrix or individual based model were able to accurately fit the behaviour

of parasites on Baltic hosts. It is known that G. salaris populations on Baltic salmon do not

increase at the same rate as those on Atlantic stocks and in most cases decay to zero or co-

exist at low levels of infection. This could be caused by three possible mechanisms, two of

which have been suggested in the literature (decreased number of offspring, increased death

rate) (Bakke et al., 1990; Jansen & Bakke, 1991; Cable et al., 2000) and a third which has not

(delayed first birth). From the data set used it is clear that all three of these occur.
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Our aim here was to use a simple mathematical model to determine which factor is most

important. Our most surprising finding was that, with all else equal, altering the timing

of the first born offspring of a G. salaris parasite by 0.5 days can cause a 50% reduction in

parasite numbers over a 35 day period and altering it by 1 day can cause a 75% reduction.

On the other hand, decreasing only the number of offspring per parasite from four to two

had very little effect on the size of parasite population. Less surprisingly, decreasing the

survival rate of parasites on Atlantic stocks to that of those parasites on the Baltic stock has

the largest impact on the dynamics, however, parasite populations on both Atlantic stocks

are still capable of surviving and exhibit positive growth, albeit at rates that are reduced

immensely.

Finally, the model results highlight that a combination of delayed first birth with either

reduced number of births or reduced survival is still not sufficient to force parasites into

decay. Hence, in order for Atlantic hosts to beat G. salaris infections they must evolve all

three of the mechanisms. In the chapters that follow these results are used to predict whether

Atlantic salmon might evolve to coexist with G. salaris in the long-term.
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5
C H A P T E R 5

Adding immunity and trade-offs to the system

The literature states that not all strains of Atlantic salmon are as susceptible to G. salaris as

the Atlantic strain (Cable et al., 2000; Bakke et al., 2002, 2004). As discussed in Chapter 4 the

Baltic strain of Atlantic salmon is able to coexist with low levels of parasite infection and

in some cases beat parasite infection altogether. This is achieved through the ability of the

Baltic strain to exhibit some form of resistance (Bakke et al., 1990; Cable et al., 2000; Bakke

et al., 2002, 2004). In Chapter 4 Leslie matrix and individual based stochastic models were

employed to investigate the ways in which the Baltic’s resistance manifests itself. In this

chapter we study this resistance, and the possibility of evolving such a mechanism, through

the use of a multiple strain deterministic model.

5.1 extending model b for two host strains

As a basis we begin by extending the equations in (3.27) (Model B: the detached parasites in

the external environment model, Chapter 3, Section 3.4) to study one strain of parasite and

two strains of salmon host. The 2-strain model is given by equations (5.1) to (5.5) below.

dH1
dt

= [a− b− s(H1 +H2)]H1 −αP1 (5.1)

dH2
dt

= [a− b− s(H1 +H2)]H2 −αP2 (5.2)

dP1
dt

= P1

[
µ1 − (ε1 + b+ s(H1 +H2) +α+ λ) −α

P1
H1

]
+βWH1 (5.3)

dP2
dt

= P2

[
µ2 − (ε2 + b+ s(H1 +H2) +α+ λ) −α

P2
H2

]
+βWH2 (5.4)

dW

dt
= Ω1P1 +Ω2P2 − σW −βWH1 −βWH2 (5.5)

Where

Ω1 =

[
b+ s(H1 +H2) + λ+α+

αP1
H1

]
Ω2 =

[
b+ s(H1 +H2) + λ+α+

αP2
H2

]
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Equations (5.1) to (5.5) describe a system where two strains of Atlantic salmon host (e.g.

Atlantic and Baltic) H1 and H2 interact with one another via the density dependent term and

one strain of G. salaris that behaves differently depending on the strain of salmon host it is

infecting (P1 and P2). This approach keeps the investigation consistent with the situation in

the literature (Bakke et al., 1990; Cable et al., 2000) and is discussed in Chapter 4. We assume

salmon hosts from both strains share the same birth, natural and parasite induced mortality

rates, a, b and α respectively. When infection is present we assume no difference in the

transmission rate of parasites, β, or the rate parasites leave hosts, λ. Additionally, parasites

exhibit differing birth and mortality rates (µi and εi respectively for i = 1, 2) on different

salmon strains in keeping with the mechanisms of resistance highlighted in Chapter 4. In the

absence of parasitic infection (Pi = 0, i = 1, 2) H1 and H2 are indistinguishable such that they

share the same per capita growth rate, carrying capacity H1 +H2 → K =
(a−b)
s , growing to

densities with proportions dependent on initial conditions.

The model proposed above acts as a basis for studying interactions between susceptible

and resistant hosts of salmon. However, it does not explicitly model immunity. We now go

about including immunity in the model and will return to the 2-strain model in Chapter 6.

5.2 model c : adding immunity to model b

In Chapter 4 mechanisms for salmon resistance to G. salaris infections were discussed in

depth with the impact of such mechanisms modelled using Leslie matrix and individual

based models. Until now our deterministic models have yet to include any mechanism of

resistance to G. salaris. We now go about adding an explicit mechanism to account for the

differences in parasite births, µi, for G. salaris on susceptible and resistant hosts. To do this we

return to the single host deterministic model (3.27, Chapter 3, Section 3.4). Thus, the immune

response to infection is added to the system as follows:

• When an infection is present an immune response is mounted by the host.

• As the parasite infection level increases, the level of immunity also increases.

• The rate of change of parasites is negatively correlated with the rate of change of im-

munity in that the immune response causes an additional death rate in parasites.

• The immune response decays at a continuous rate.

Putting all of this together, the rate of change of the parasite population and the immune

response, dPdt and dI
dt respectively, are given by equations (5.6) and (5.7) below.
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dP

dt
= P

(
µ− (ε+mI+ b+α+ sH+ λ) −α

P

H

)
+βWH (5.6)

dI

dt
= γ

P

H
− ζI (5.7)

Three new parameters have been introduced into the model, m, γ ζ. When an immune

response is mounted against infection this happens at a rate proportional to parasites per

host, γ, and in turn decays at rate ζ (approx 6 months - N. Taylor, personal communication).

This immune response by the host results in a negative effect on the rate of change of the

parasite population via m.

Hence, our single host model with immunity is now given by:

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
(µ− ε−mI) − (b+α+ sH+ λ) −α

P

H

)
+βWH

dW

dt
=

(
b+ sH+ λ+α+

αP

H

)
P− σW −βWH

dI

dt
= γ

P

H
− ζI

(5.8)

We simplify the model above by normalising and re-writing the the immunity and at-

tached parasite equations. This approach is taken since it is not possible to estimate values

for all the immunity parameters in (5.8).

Let

i = mI (5.9)

then (5.9)⇒

dP

dt
= P

(
(µ− ε− i) − (b+α+ sH+ λ) −α

P

H

)
+βWH (5.10)

Now,

dI

dt
= γ

P

H
− ζI (5.11)

⇒ 1

m

di

dt
= γ

P

H
− ζ

i

m
(5.12)

di

dt
= γm

P

H
− ζi (5.13)

(5.14)
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Thus, now we are only dealing with one term, m̃. Hence, re-writing Equations (5.10) and

(5.14) with i→ I yields the following:

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ I+ b+α+ sH+ λ) −α

P

H

)
+βWH

dW

dt
=

(
b+ sH+ λ+α+

αP

H

)
P− σW −βWH

dI

dt
= m̃

P

H
− ζI

(5.15)

where,

m̃ = γm (5.16)

Simulating (5.15) for a G. salaris population on a single salmon host (H=1 with a = b =

α = 0 and no detached parasite population, W=0) gives the results in Figure 5.1. In the

absence of immunity in the host (m̃ = 0, Figure 5.1 a) the G. salaris population exhibits rapid

exponential growth. In reality this behaviour would result in mortality of the infected host,

however, our interest lies in the impact of a host immune response on G. salaris density. Figure

5.1 b shows the impact of including immunity (m̃ > 0). As can be seen, initially the G. salaris

population once again increases quickly, however, when this happens the immune response

activates and the level of immunity increases and forces the G. salaris population into decay.

With parasite density decreasing the level of immunity also decreases. Hence, the parasite

population eventually decays to zero as does the level of immunity. This behaviour is similar

to that observed by Bakke et al. (1990) in G. salaris on Baltic salmon with parasites reaching

a peak density after approximately 10-15 days before decaying to zero after a further 10− 15

days (see Figure 5.2). Through this single host simulation we have been able to demonstrate

that the immune response in (5.15) is indeed capable of defending a host from infection.
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Figure 5.1: Impact of a host immune response to G. salaris infection. Trajectories of parasite density on
an individual salmon host (H(0) = 1 with a = 0, b = 0 and α = 0) with (a) immunity
absent (m̃ = 0) and (b) immunity present (m̃ > 0). In both plots initial parasite density is 1,
P(0) = 1, and no free living parasites are present, W(0) = 0.
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Figure 5.2: Data from Bakke et al. (1990). Trajectories of parasite development on individual Atlantic
salmon parr hosts (solid trajectories) from the River Lone, Norway, and Baltic salmon parr
hosts (dashed trajectories) from the River Neva, Russia. Salmon hosts kept individually in
small aquaria at 12

◦C.

At this point we have a model that includes immunity when G. salaris infection is present

in the environment (P,W > 0). As expected, if we set the immune response to zero (m̃ = 0,

I = 0) then we have the equations for Model B as it appears in Chapter 3, Section 3.4. We
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now go about finding estimations for m̃ and ζ before simulating (5.15) for a population of

salmon hosts.

5.2.1 Estimating parameter values

At this stage we require values for m̃ and ζ.

Decay rate of immune response, ζ

As highlighted above the decay rate of the immune response is approximately 6 months (N.

Taylor, personal communication), converting this into a daily rate we obtain an estimate for

ζ and hence set ζ = 0.005.

Rate of increase of immune response, m̃

As discussed in Chapter 2, Section 2.4, by fitting exponential best-fit curves to data from

Bakke et al. (1990) concerning G. salaris population growth on individual hosts of Atlantic

and Baltic salmon and taking the mean, daily parasite growth rate is estimated to be µA −

ε = 0.103 and µB − ε = 0.085 for Atlantic and Baltic strains respectively (the data used is

reproduced and collected in Table A.3, Appendix A). Recent experimental trials of G. salaris

growth on Atlantic salmon reared in the UK by Paladini et al. (in prep.) gave growth rates

consistent with those obtained using the Bakke et al. (1990) data (see Table 5.1). Parasite

death rate was calculated using the available data from Jansen & Bakke (1991). This allowed

the estimation of the birth rate, µ, for parasites on Atlantic and Baltic hosts as 0.183 and

0.165 respectively. Data for salmon immunity to G. salaris infections is not readily available,

hence, m̃ is currently unknown. However, m̃ can be estimated to an extent in order to give a

reasonable guess that can be used in the model.

Assume that in the absence of an immune response to infection, parasites infecting At-

lantic and Baltic host strains have the same growth rate, ρ = µ − ε. A comparison of the

estimates for parasite growth on Baltic and Atlantic hosts calculated from the literature can

then be made. Considering the equations in (5.8), we set ρ = µA − ε = µB − ε = 0.103. Thus,

when an immune response is present in the system ρ = µ− ε−mI. Now, since Atlantic hosts

have no immunity to G. salaris infections (I = 0) parasite growth on Atlantic hosts is given

as ρA −mI = 0.103−m ∗ 0 = 0.103. This implies that for G. salaris on Baltic hosts, where an

immune response is present (I = 1, the maximum level reached - see in Figure 5.1b), we have

ρB −mI = 0.103−m ∗ 1 = 0.085 giving m = 0.103− 0.085 = 0.0175. Hence, setting γ to unity

in (5.16) gives an estimate for m̃ as m̃ = 0.0175. Sensitivity analysis (see Appendix D) shows

that the model is not particularly sensitive to the value chosen for m̃.
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Table 5.1: Gyrodactylus salaris growth rates on Atlantic and Baltic strains of Atlantic salmon estimated by
fitting exponential best fit curves to data for G. salaris population growth on individual fish
hosts. Estimations were made using data readily available in the literature from experimental
trials by Bakke et al. (1990); Jansen & Bakke (1991); Paladini et al. (in prep.). Here parasite
growth rates on Atlantic and Baltic hosts is given by ρA and ρB respectively. Note, ρA =
µA − ε and ρB = µB − ε.

Parameter Description Salmon host, origin Estimate Source
ρA Parasite growth Atlantic, Norway 0.103 Bakke et al. (1990)
ρB Parasite growth Baltic, Russia 0.085 Bakke et al. (1990)
ρA Parasite growth Atlantic, Norway 0.116 Paladini et al. (in prep.)
ρA Parasite growth Atlantic, UK 0.091 Paladini et al. (in prep.)
ε Parasite death Atlantic, Norway 0.080 Jansen & Bakke (1991)

Running simulations in Mathematica with a range of values for m̃ gives the results in

Figure 5.3. As can be seen, with no immunity m̃ = 0, the parasite population quickly grows

to epidemic levels. This in turn puts the host population into extinction. As always, with no

hosts to sustain the G. salaris population, the parasites decay to zero. As m̃ is increased the

system begin to oscillate and settle into cycles. When m̃ finally reaches the estimated value

of 0.0175 salmon density is close to carrying capacity with low parasite coexistence. Finally,

when a high enough level is reached (m̃ > 0.02) salmon density reach just under carrying

capacity and coexist with the parasite population with very low level parasite infection. The

simulations have highlighted the ability of the salmon to coexist with low levels of G. salaris

infection. We highlight one final observation for scenarios where m̃ is unrealistically large.

In such cases the G. salaris population decays to zero becoming extinct, hence, enabling the

salmon host population to grow to carrying capacity.

91

[ 18th September 2013 at 19:56 ]



0 20 40 60 80 100
time

20

40

60

80

100

120

140

Density
m� =0.0

Immunity level

Host carrying capacity

Detached parasites

Attached parasites

Hosts

0 1000 2000 3000 4000 5000
time

20

40

60

80

100

120

140

Density
m� =0.00001

0 1000 2000 3000 4000 5000
time

20

40

60

80

100

120

140

Density
m� =0.0001

0 1000 2000 3000 4000 5000
time

20

40

60

80

100

120

140

Density
m� =0.001

0 1000 2000 3000 4000 5000
time

20

40

60

80

100

120

140

Density
m� =0.0035

0 1000 2000 3000 4000 5000
time

20

40

60

80

100

120

140

Density
m� =0.0175

0 1000 2000 3000 4000 5000
time

20

40

60

80

100

120

140

Density
m� >0.3

Figure 5.3: Plots showing trajectories of hosts, parasites and detached parasites with an immune re-
sponse from the host against time (in days). From left to right m̃ =0; 0.00001; 0.0001; 0.001;
0.0035; 0.0175; and finally > 0.3 respectively. In all plots a = 0.02;b = 0.005; s = 0.0001;µ =
0.19; ε = 0.08;α = 0.02; λ = 0.1;σ = 0.24;β = 0.05; ζ = 0.005.
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5.2.2 Investigating the impact of immunity on salmon density

The effect of varying the value of m̃ in regard to equilibrium salmon density was investigated.

Plotting salmon density against m̃ (Figure 5.4) we observe that m̃ is positively correlated

with host density such that an increase in immunity results in an increase in salmon density

as one would expect. Thus we observe rapid growth followed by a plateau. However, for

very small values of m̃ ,i.e., m̃ < 0.01, salmon density exhibits cyclic behaviour as seen

earlier in Figure 5.3. Importantly, Figure 5.4 highlights the fact that only a small amount

of immunity is required in order to cause a large impact on the equilibrium density of the

salmon population.
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Figure 5.4: Plot of salmon density against the immunity parameter m̃. Trajectory of salmon density fol-
lowing logistic growth to carrying capacity (a) highlighting a positive relationship between
host population size and m̃. Importantly, only a small amount of immunity is required in
order to cause a large impact on the dynamics of the salmon population. Plot (b) shows the
result from (a) on a magnified scale showing the positions of the fully susceptible Atlantic
strain of Atlantic salmon and the resistant Baltic strain of Atlantic salmon.

5.3 model d : adding a trade-off

. . .as Goethe expressed it, ’in order to spend on one side, nature is forced to economise on the other

side.’ I think this holds true to a certain extent with our domestic productions: if nourishment flows to

one part or organ in excess, it rarely flows, at least in excess, to another part. . . (Darwin, 1872).

By adding an immune response into the model, the cost to the host due to evolving such

a mechanism must also be taken into consideration. Moreover, without the addition of a cost,

salmon hosts would evolve to m̃→∞. Such consequences of evolving an immune response

to infection is achieved by adding a trade-off into the model via the host equation.

Trade-offs can be added to the system in a number of ways such as via death, growth,

birth, etc. Due to the lack of evidence of trade-offs in salmon another system is considered. A

study of furunculosis in brook trout by Cipriano et al. (2002) demonstrated that an increase

in immunity had a negative effect on the host’s birth rate. In this study they observed ap-
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proximately a 7 to 12% decrease in the birth rate of the trout that had exhibited an immune

response to infection. If we assume a similar situation is true in the case of Atlantic salmon

and G. salaris we can go about adding a trade-off to the host birth rate a. Starting at the

Atlantic strain of Atlantic salmon with a birth rate equal to 0.02 we find the results in Table

5.2 for the new birth rate â(m̃) following the equation of a line.

Table 5.2: Values for salmon birth rate with trade-off, â(m̃), assuming a similar situation to that ob-
served by Cipriano et al. (2002) in their study of furunculosis resistance in brook trout. Values
estimated using an initial salmon birth rate of 0.02 and via the equation of a line.

% decrease from Baltic birth rate â(m̃)

Atlantic birth rate

7 0.0186 -0.008 m̃ + 0.02

8 0.0184 -0.094 m̃ + 0.02

9 0.0182 -0.106 m̃ + 0.02

10 0.0180 -0.118 m̃ + 0.02

11 0.0178 -0.129 m̃ + 0.02

12 0.0176 -0.141 m̃ + 0.02

mean (9.5) 0.0181 -0.112 m̃ + 0.02

Figure 5.5 shows the theoretical values of birth rates for Atlantic and Baltic strains of

Atlantic salmon with respect to the rate of the immune response, m̃. These positions are

calculated using the information in Table 5.2 and values of m̃ for Atlantic and Baltic popula-

tions, assuming as above, that Atlantic hosts have no immunity to infection and the opposite

true of Baltic hosts.
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Figure 5.5: Plot of the theoretical positions of birth rates of Atlantic and Baltic strains of S. salar against
m̃ assuming Baltic strains have a birth rate that is 9.5% less than that of Atlantic strains.
This is due to the ability of Baltic hosts to fight infection via an evolved immune response
to infection.

Using the results in Table 5.2 for a 9.5% decrease in host birth rate and the equation of a

line we obtain Figure 5.6 for salmon birth rate, a, versus the rate of the immune response, m̃.

By adding a trade-off on host birth in the form of the equation of a line (Figure 5.6) such

that host birth rate is negatively correlated with immunity, i.e. as an individual’s immunity
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Figure 5.6: Plot of host birth rate against m̃ following a the trajectory of a straight line. The trade-off
trajectory was calculated assuming birth rates of 0.020 and 0.018 for Atlantic Atlantic and
Baltic Atlantic salmon strains respectively.

to infection increases its birth rate decreases, the model is now described by the equations in

(5.17):

dH

dt
= (â(m̃) − b− sH)H−αP

dP

dt
= P

(
µ− (ε+ I+ b+α+ sH+ λ) −α

P

H

)
+βWH

dW

dt
=

(
b+ sH+ λ+α+

αP

H

)
P− σW −βWH

dI

dt
= m̃

P

H
− ζI

(5.17)

where â(m̃) = −0.112m̃+ a.

As was done previously, we now investigate the effect that varying m̃ has on salmon

density, the results of which are found in Figure 5.7.

As can be seen, as immunity increases the size of the salmon host population also increases.

However, in contrast to when the model only included immunity (see Figure 5.4), now when

the immunity reaches too great a level the host population begins to decay due to the effect

of the trade-off. Hence, the cost of evolving an immune response to too high a level has a

negative impact on host density. Figure 5.7 also highlights the Baltic’s m̃ value, estimated

earlier as 0.017. Importantly, looking at where the Baltic strain of salmon sit on the curve in

Figure 5.7 we note that Baltic hosts appear to have evolved their m̃ to a value close to that

which maximizes their population size.

In the model above we added a trade-off such that the benefit and resulting cost increase

at the same rate, i.e. a linear trade-off (Hoyle et al., 2008). However, it is not always the case

that we have a linear trade-off. Costs may also increase at a rate that is faster than the benefit
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Figure 5.7: Trajectory of salmon density against m̃ with trade-off on salmon births. Plot (a) shows the
impact on host density of increasing m̃ from 0 to 0.2. Plot (b) gives a magnification of the
trajectory in (a) for between 0 and 0.02. The Baltic salmon’s m̃ value is represented by the
black plot marker and grey dashed lines.

(an acceleratingly costly trade-off) or increase at a rate slower than that of the benefit (a

deceleratingly costly trade-off) (Hoyle et al., 2008). The importance of shape in regards to

trade-offs has been the subject of much study (Levins, 1962, 1968; Boots & Haraguchi, 1999;

Boots & Bowers, 2004; DeaMazancourt & Dieckmann, 2004; Rueffler et al., 2004; Hoyle et al.,

2008). Thus, we now turn attention and take into consideration what effect the shape of the

trade-off has on the dynamics of the salmon population.

5.3.1 Investigating the effect of trade-off shape

In the results above (Figure 5.7) the equation of a straight line was used to implement a trade-

off on host birth rate. This method is extended to study the impact on the host dynamics

when the trade-off is estimated by following a concave or convex curve and whether or

not such an approach gives a better fit for â(m̃). Using Equation (5.18) the trade-off was

estimated.
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â(m̃) = aAs −

 (aAs − aBs)
(
1− m̃−m̃Bs

m̃As−m̃Bs

)
1+

θ(m̃−m̃Bs)
m̃As−m̃Bs

 (5.18)

Where aAs is Atlantic birth rate, aBs is Baltic birth rate, m̃As is Atlantic immune response

rate, m̃Bs is Baltic immune response rate and θ is the “shape” parameter, determining if the

trade-off takes the form of a straight, concave or convex trajectory.

When θ = 0 we are at the equation for a straight line, and hence, the results in Figures 5.6

and 5.7. We now observe what happens when −1 < θ < 0 and θ > 0, the general behaviour

of which is represented by Figure 5.8.

æ

æ
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Θ = 0

Θ > 0

0.005 0.010 0.015
m
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a

Figure 5.8: Plot showing the possible trajectories used to estimate the trade-off on host birth. If θ = 0

the trade-off follows the trajectory of a straight line. If −1 < θ < 0 the trade-off follows
a concave trajectory representing a deceleratingly costly trade-off. If θ > 0 the trade-off
follows a convex trajectory representing an acceleratingly costly trade-off.

Plotting birth rate, a, against m̃ using various values of θ, (a) θ = −0.5, 0, 0.5; (b) θ =

−0.6, 0, 1; (c) θ = −0.7, 0, 9; (d) θ = −0.9, 0, 20; (e) θ = −0.99, 0, 100, the results in Figure 5.9

are obtained.
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Figure 5.9: Results of plotting Equation (5.18) for a range of values of θ. From left to right the values of
θ are as follows: (a) θ = −0.5, 0, 0.5; (b) θ = −0.6, 0, 1; (c) θ = −0.7, 0, 9; (d) θ = −0.9, 0, 20; (e)
θ = −0.99, 0, 100;

As was done for the case when θ = 0 we now vary the value of m̃ and observe the impact

this has on the salmon population, the results of which are found in Figures 5.10, 5.11 and

5.12.
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Figure 5.10: Trajectory of salmon density against m̃ with trade-off on salmon births for varying values
of 1 < θ < 0. The Baltic salmon’s m̃ value is represented by the black plot marker and grey
dashed lines.

Figure 5.11 shows the results of plotting Equation (5.18) against m̃. As can be seen, plotting

â(m̃) for θ > 0 highlights where vertical asymptotes occur. Only the behaviour to the left of

the asymptote is of interest since this is the part that is biologically relevant. Using this new

information combined with ending plots before the asymptote is reached gives the results

contained within Figure 5.12.
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Figure 5.11: The occurrence of asymptotes when θ > 0. Plotting host birth rate (â(m̃), given by Equation
(5.18) in the main text) against immunity (m̃) when θ > 0 shows where vertical asymptotes
occur. The upper right area of each plot occurs after the asymptote and is not biologically
relevant, hence, only the behaviour in the bottom left of each plot is of interest.
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Figure 5.12: Trajectory of salmon density against m̃ with trade-off on salmon births for varying values
of θ > 0. Following the results from Figure 5.11, only the biologically relevant trajectory
is considered and plotted. The Baltic salmon’s m̃ value is represented by the black plot
marker and grey dashed lines.

Comparing the results in Figures 5.7, 5.10 and 5.12 we conclude that the best fit comes

from a trade-off following a convex trajectory, i.e., when −1 < θ < 0. In all cases, an initially

small increase in m̃ from zero causes a large positive impact on salmon density. However, in

cases with −1 < θ < 0, as m̃ increases further from zero, the salmon eventually reach their

carrying capacity. A θ value equal to -0.7, i.e., a deceleratingly costly trade-off, is selected

allowing salmon populations to reach their maximum density and a m̃ value as close as

possible to the estimated value for the Baltic’s immunity.
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5.4 summary

The models above illustrate the effect, and consequences, of adding a host immune response

to infection into the salmon - G. salaris system. The results in the previous chapters have

shown, for individual host strains, that in the absence of immunity salmon density quickly

decays to extinction when faced with infection by G. salaris. This is the case as witnessed in

Atlantic strains in the field (e.g. Norway). Previous models (see Chapter 4) also allowed us to

determine that the Baltic’s acquired resistance is not present from the first day of infection

but occurs some days after infection takes hold and is consistent with behaviour observed in

the literature (Bakke et al., 1990; Kania et al., 2007).

The results in this chapter have shown the effect of adding an immune response and

resulting trade-off into the host equation. They have also highlighted the fact that only a

small amount of immunity is required to cause a substantial impact on the dynamics with

salmon population density being significantly increased or, for extremely small levels of

immunity, settling into cycles. We also note that model simulations and resulting output

suggests the Baltic strain appear to have evolved an immune response so as to maximize

their population size. This would go in some way as to confirm what has been witnessed

experimentally (Bakke et al., 1990; Cable et al., 2000; Bakke et al., 2002, 2004). Through an

investigation concerning the equation used to estimate the value of the trade-off we have

also determined that the most accurate fit comes from a concave trajectory (deceleratingly

costly trade-off) with a θ value equal to -0.7, such a value gives a fit close to that of the Baltic

strain.

The model in its current form (Model D, i.e., equations in 5.17 with 5.18) now serves as the

basis for the final area of interest, answering the question of whether or not Atlantic strains

will follow their Baltic counterparts and evolve an immune response to G. salaris infections.

100

[ 18th September 2013 at 19:56 ]



6
C H A P T E R 6

Models with multiple host strains
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Figure 6.1: Schematic representation of Atlantic salmon-Gyrodactylus salaris interactions with 2 Atlantic
salmon strains and one strain of G. salaris that exhibits different behaviour on each host
strain. See Table A.1 (Appendix A) for a description of the parameters used.

6.1 return to the two-strain model

The models in Chapter 5 included the addition of both an immune response to parasite infec-

tion and a trade-off, that impacts host birth rate, resulting from evolving such a mechanism.

However, in order to study the effects of immunity and whether or not a susceptible strain of

salmon host is capable of evolving into a more immune strain we require a model that con-

sists of more than one strain of host. We now return and consider the two-strain model from

from Chapter 5 that deals with two different salmon strains (e.g. Atlantic Atlantic and Baltic

Atlantic salmon) and one G. salaris strain that behaves differently on the two host strains.
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Incorporating the immunity and trade-off into Equations (5.1) to (5.5) we obtain the model

described by Equations (6.1) to (6.7) below and schematically in Figure 6.1.

dH1
dt

= [â(m̃1) − b− s(H1 +H2)]H1 −αP1 (6.1)

dH2
dt

= [â(m̃2) − b− s(H1 +H2)]H2 −αP2 (6.2)

dP1
dt

= P1

[
µ1 − (ε1 + I1 + b+ s(H1 +H2) +α+ λ) −α

P1
H1

]
+βWH1 (6.3)

dP2
dt

= P2

[
µ2 − (ε2 + I2 + b+ s(H1 +H2) +α+ λ) −α

P2
H2

]
+βWH2 (6.4)

dW

dt
= Ω1P1 +Ω2P2 − σW −βWH1 −βWH2 (6.5)

dI1
dt

= m̃1
P1
H1

− ζI1 (6.6)

dI2
dt

= m̃2
P2
H2

− ζI2 (6.7)

Where

â(m̃1) =
0.006+ 0.711765m̃1
0.3+ 41.1765m̃1

â(m̃2) =
0.006+ 0.711765m̃2
0.3+ 41.1765m̃2

Ω1 =

[
b+ s(H1 +H2) + λ+α+

αP1
H1

]
Ω2 =

[
b+ s(H1 +H2) + λ+α+

αP2
H2

]

Note: fish to fish transmission of parasites is not explicitly modelled the reasons for which

are discussed in Chapter 2.

Simulation of the two-strain model was carried out using MathematicaTM. The system is

simulated with no immunity present in Atlantic salmon hosts (H1) and an immune response

present in Baltic salmon hosts (H2), hence we set m̃1 = 0 and m̃2 = 0.017 for Atlantic and

Baltic hosts respectively. Assuming that Atlantic and Baltic hosts have the same death rate in

the absence of infection, and the only difference in parameter values between the two strains

is the hosts ability to mount an immune response to G. salaris infection, gives the result found

in Figure 6.2.
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Figure 6.2: Plots showing trajectories of two salmon host strains and one G. salaris strain that exhibits
differing behaviour on each host. The first salmon strain, H1, has no immunity to infection
whereas the second salmon strain, H2, is able to mount an immune response. Plot (a) shows
the trajectories of salmon, attached G. salaris and detached G. salaris (H1, H2, P1, P2 and W
respectively) over a 100 day period. Plot (b) shows the trajectories of salmon, attached G.
salaris and detached G. salaris from (a) over an extended period of time (5000 days) allowing
the H2 population to settle to an equilibrium level.

As can be seen in Figure 6.2 (a) the Atlantic host population with zero immunity (H1)

quickly decays to zero due to the rapid growth of G. salaris to an epidemic level (P1). In

contrast the Baltic hosts begin to decay initially with a small increase in parasite numbers due

to parasites from the Atlantic population being released into the environment and picked up

by Baltic hosts. However, Baltic hosts soon mount an immune response to infection, causing

the G. salaris population (P2) to decay. Increasing the time period, Figure 6.2 (b), it can be

seen that the Baltic’s immunity allows positive growth with the Baltic population eventually

reaching a density that is 83% of the original carrying capacity (i.e. a density of 150 in the

absence of a trade-off). The trade-off on host birth means that the original host carrying

capacity can never be reached. In this case the Baltic’s new carrying capacity due to the

trade-off is reduced by approximately 13% to a density of 130. Thus, looking at the results in

Figure 6.2 (b) the Baltic population is able to beat G. salaris infection, growing to 95.18% of

their new carrying capacity, and coexist with low parasite numbers (a parasite density of 3.7

at the end of the simulation).
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6.2 extending the model for n-salmon strains
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Figure 6.3: Schematic representation of Atlantic salmon-Gyrodactylus salaris interactions with n Atlantic
salmon strains and one strain of G. salaris that exhibits different behaviour on each host
strain. See Table A.1 (Appendix A) for a description of the parameters used.

Simulating the two-strain model gives results that one would expect to receive when consid-

ering the Atlantic and Baltic strains and does not really add any new information. However,

the model does confirm the impact that an immune response has on both salmon and G.

salaris populations and is consistent with experimental data (Bakke et al., 1990; Jansen &

Bakke, 1991; Cable et al., 2000; Paladini et al., in prep.). The two-strain model and the res-

ults obtained provide a solid foundation for investigations into the possibility of susceptible

salmon strains evolving into a more resistant strain. Hence, the two-strain model is now

extended to consider a system with n salmon strains interacting with one G. salaris strain ex-

hibiting n different behaviours and n levels of immunity starting at a fully susceptible state

to resistance to infection.

The model has the general form for n strains given by Equations (6.8)-(6.11) and represen-

ted schematically in Figure 6.3.
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dHn

dt
=

â(m̃n) − b− s n∑
j=1

Hj

Hn −αPn (6.8)

dPn

dt
= Pn

µn −

εn + In + b+α+ s

n∑
j=1

(Hj) + λ

−α
Pn

Hn

+βWHn (6.9)

dW

dt
=

n∑
i=1

Pi
b+ s n∑

j=1

(Hj) + λ+α+
αPi
Hi

−βWHi

− σW (6.10)

dIn

dt
= m̃n

Pn

Hn
− ζI (6.11)

where,

â(m̃n) =
0.006+ 0.711765m̃n
0.3+ 41.1765m̃n

Due to the complexity of the system the model is simulated as before using MathematicaTM(an

example of the source code can be found in Appendix D).

6.2.1 Baseline simulations in the absence of infection

We begin by simulating the model for four salmon strains with no G. salaris infection present

and levels of immunity given as in Table 6.1.

Table 6.1: Values for m̃ in baseline simulations. Simulating the model (Equations 6.8-6.11) for four sal-
mon host strains with m̃ values equally spread from fully susceptible to resistant.

Host strain m̃

Salmon host strain 1 (e.g. Atlantic) 0.0
Salmon host strain 2 0.0058

Salmon host strain 3 0.0117

Salmon host strain 4 (e.g. Baltic) 0.0175

As Figure 6.4 shows, in the absence of infection, over a 100 year period, the salmon strain

that is highly susceptible to infection (no immunity) wins and grows to carrying capacity

whereas the other salmon strains present in the system decay to zero. This is due to the H1

population having the largest birth rate resulting from the absence of immunity, and hence,

trade-off.

6.2.2 Adding G. salaris infection

Extending the results above we now investigate the impact of adding G. salaris into the

system via the detached parasite class. As above the model is simulated to allow populations

of salmon reach equilibrium in the absence of infection, then after 100 years, 0.1 detached
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Figure 6.4: Simulating the multiple host strain model for 4 salmon host strains in the absence of infec-
tion. Trajectories for populations of host strains (H1,.., H4). When G. salaris is not present in
the environment the salmon strain with the highest birth rate, in this case the fully suscept-
ible H1 population, out competes the other host strains and grows to carrying capacity.

parasites are added and the model simulated for a further 900 years to study the effects of

infection over a long time period. As was seen in Figure 6.4 the salmon strains exhibiting

varying levels of resistance die out as the fully susceptible strain grows to carrying capacity,

hence, the model is kept seeded with resistant salmon at the point of G. salaris introduction.

The results obtained are found in Figure 6.5.
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Figure 6.5: Simulating the multiple host strain model for four salmon host strains with varying levels of
resistance and G. salaris infection added after 100 years. Trajectories for populations of host
strains (H1,.., H4), attached G. salaris (P1,.., P4) and detached G. salaris (W) are shown. In the
absence of G. salaris the salmon strain with the highest birth rate grows to carrying capacity.
After the introduction of G. salaris (highlighted in the plot) the fully susceptible hosts are
forced to extinction resulting in an increase in density of the three remaining resistant host
strains. Coexistence with low levels of G. salaris infection is observed.

As can be seen, at the point G. salaris infection is added (highlighted in Figure 6.5) the

highly susceptible host strain with no immunity to infection immediately begins to decay. On

closer inspection (see Figures 6.6 (a) and (b) below) it can be seen that as a result of adding

infection the host 1 (fully susceptible) population becomes extinct after approximately 100

days. After the fully susceptible host strain population reaches zero the three host strains
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remaining, each with increasing levels of resistance to the parasite, begin to increase in dens-

ity. Due to having the highest level of immunity host strain 4 exhibits quicker and stronger

growth than strains 2 and 3 forcing the parasite population into decay. However, after a short

period of time (approx 4 years), and with a low level of infection present, strain 4 begins to

be replaced by strains 2 and 3 due to hosts in these populations having a higher birth rate.

We observe that over time the strain that wins is in fact host strain 2, with only a small level

of G. salaris resistance and hence smallest impact on host birth rate. Host 2 is able to recover

and coexist with a low level of G. salaris infection as well as a low level of the strain 3 hosts.

It is interesting that in a system with multiple populations of host strains present, each

with a differing level of immunity, it is the strain with the highest level of resistance to infec-

tion that becomes extinct like the fully susceptible strain. This could be due to the resistant

strain bringing the G. salaris population down to a low enough level such that the more

susceptible strains can exhibit positive growth. Consequently, due to the less resistant strain

having a more efficient birth rate, hosts are able to grow to a higher density and hence beat

and replace the resistant strain that is less efficient at reproducing.

Figure 6.6: Simulating the multiple host strain model for four salmon host strains with infection added
after 100 years. Trajectories for populations of host strains (H1,.., H4), attached G. salaris
(P1,.., P4) and detached G. salaris (W) 6 to 36 years after introduction of G. salaris.
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6.3 model e : multiple host strains

6.3.1 Adding mutations

H1 H2 · · · Hn

(1−φ) (1− 2φ) (1− 2φ) (1−φ)

φ φ φ

φ φ φ

Figure 6.7: Adding mutations to the multiple host strain model. Mutations are added to the system via
the parameter φ host equations. φ determines the number of mutated hosts that are born
such that a host from strain j can do one of three things: 1) give birth to an offspring that
shares traits with its parent, this occurs at rate (1-φ) for j = 1, n and (1-2φ) for 2 < j < n− 1;
2) give birth to a mutated offspring that has evolved traits similar to hosts in strain j+1 at rate
φ; 3) give birth to a mutated offspring that has devolved traits similar to hosts in strain j-1
at rate φ. Fully susceptible hosts cannot give birth to mutant offspring that are less evolved,
likewise, hosts in the final strain that have the highest level of resistance cannot give birth
to mutant offspring that are more evolved.

The model and results above do not take into consideration the possibility of a hosts repro-

ducing and giving birth to mutated offspring. Hence, we now add such mutations to the

system such that it is possible for a host from strain j to give birth to a mutated offspring

further along the evolutionary line that shares traits with hosts in strain j+1, Equation (6.13).

Similarly, there is also the chance that a host might give birth to a mutated offspring that

is not as evolved as its parent and actually shares traits with hosts in strain j-1, Equation

(6.13). The ability of a host strain to give birth to mutant offspring into the previous and

next strain in the evolutionary line is implemented into the model via the parameter φ. This

new parameter φ determines the number of mutated hosts that are born, for example say

for every 1000 salmon offspring born 2 of these said offspring are mutants, and are added to

the rate of change of the hosts (Equation 6.8). It is assumed that hosts in the first strain, with

zero immunity, cannot give birth to mutant offspring that are less resistant, Equation (6.12),

and hosts in the final strain, with the highest level of immunity, cannot give birth to mutant

offspring that are more resistant, Equation (6.14). The model now has general form given by

Equations (6.12) to (6.17).
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dH1
dt

= (1−φ)â(m̃1)H1 +φâ(m̃2)H2 −

b+ s n∑
j=1

Hj

H1 −αPn (6.12)

dHi
dt

= φâ(m̃i−1)Hi−1 + (1− 2φ)â(m̃i)Hi +φâ(m̃i+1)Hi+1

−

b+ s n∑
j=1

Hj

Hi −αPn for 26i<n (6.13)

dHn

dt
= φâ(m̃n−1)Hn−1 + (1−φ)â(m̃n)Hn −

b+ s n∑
j=1

Hj

Hn −αPn (6.14)

dPl
dt

= Pl

µl −
εl + Il + b+α+ s

n∑
j=1

(Hj) + λ

−α
Pl
Hl

+βWHl (6.15)

dW

dt
=

n∑
q=1

Pq
b+ s n∑

j=1

(Hj) + λ+α+
αPq

Hq

−βWHq

− σW (6.16)

dIl
dt

= m̃l
Pl
Hl

− ζI (6.17)

â(m̃l) =
0.006+ 0.711765m̃l
0.3+ 41.1765m̃l

(6.18)

The approach that was taken in the previous sections is now repeated in order to compare

model outputs. Once again we begin by observing the dynamics in the absence of infection.

6.3.2 Baseline simulations in the absence of infection

As mentioned above we simulate the model (Equations 6.12 to 6.17) in MathematicaTM with

no G. salaris infection present. In order to compare the results with those obtained in the

absence of the ability for hosts to give birth to mutant offspring we once again simulate the

model for 4 salmon host strains (by setting n = 4), starting at a fully susceptible salmon

strain with zero immunity and ending at resistant salmon strain with the highest level of

immunity. We observe the dynamics over a 25 year period. The mutation rate φ is set to

0.0001, allowing a mutant to occur in every 2 out of 1000 offspring births. The immunity

parameter, m̃, is varied equally between the 4 salmon strains starting at m̃ = 0 and ending

with m̃ = 0.0175. Figure 6.8 shows the results obtained.

As can be seen, within 25 years in an environment with no G. salaris infection the fully

susceptible strain of salmon is able to out-compete the three other strains. This is consistent

with the results observed in Section 6.2.1. In the previous model the more resistant strains

died out, however, in this case these lesser strains are maintained at low levels with the fully

susceptible strain reaching a level just under carrying capacity.

109

[ 18th September 2013 at 19:56 ]



0 2000 4000 6000 8000
Time HdL

20

40

60

80

100

120

140

Density

H1

H2

H3

H4

P1

P2

P3

P4

W
I1
I2
I3
I4

Figure 6.8: Simulating the multiple host strain model for four salmon host strains in the absence of G.
salaris infection where host strains are capable of giving birth to mutant offspring that share
traits with other host strains in the system. Mutants are born such that every 1 in 1000 off-
spring produced is a mutant. Trajectories for populations of host strains (H1,.., H4), attached
G. salaris (P1,.., P4) and detached G. salaris (W). As in the case with no mutant births, when
G. salaris is not present the host strain with no immunity (H1), and hence strongest birth
rate, out competes the other less susceptible host strains and grows to carrying capacity.

6.3.3 Adding G. salaris infection

As was done in Section 6.2.2 the investigation is now focused on the impact of adding G.

salaris into the system via the detached parasite class. Initially, the model is simulated to

allow populations of salmon strains to reach equilibrium in the absence of infection and

using φ = 0.0001. After 25 years 0.1 detached parasites are added and the model simulated

for a further 975 years to study the dynamics over a 1000 year period. Values for m̃ are as in

Table 6.1. The results obtained are found in Figures 6.9 and 6.10.

The results in Figures 6.9 and 6.10 give results similar to those obtained in Section

6.2.2 with the final outcome being consistent. As in Section 6.2.2 strain 2 is capable of out-

competing the other strains resulting in low level parasite coexistence with a small population

of strain 3 hosts present. As before the fully susceptible hosts (strain 1) and the hosts with the

highest level of resistance (strain 4) both decay to zero. As can be seen in Figure 6.9 (a) and (b)

the population of strain 2 hosts is able to increase due to low levels of parasite infection and

quickly grows to high levels eventually reaching carrying capacity. However, as the strain 2

population increases so to does the number of G. salaris present in the strain 2 population,

lowering the number of strain 2 hosts and allowing the strain 3 host population, with its

slightly higher level of immunity, to grow and over the course of the simulation coexist with

host strain 2. As discussed, once again the host strain with the highest level of immunity

cannot compete with the host strains that exhibit a lower resistance but higher birth rate.
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Figure 6.9: Simulating the multiple host strain model for 4 salmon host strains (G. salaris infection
added after 25 years) such that host strains are capable of giving birth to mutant offspring
that share traits with other host strains in the system. Mutants are born such that every 1

in 1000 offspring produced is a mutant. Trajectories for populations of host strains (H1,..,
H4), attached G. salaris (P1,.., P4) and detached G. salaris (W) are observed. Under these
conditions the H1 strain decays to zero and it is the H2 strain that beats infection and
outcompetes the two remaining host strains. Plots (a) and (b) show the trajectories magnified
in order to show behaviour at the point G. salaris infection is introduced.

Figure 6.10 shows the trajectory of the total number of hosts from all strains. As can

be seen the total number of hosts present in the reaches and settles at 80% of the original

carrying capacity.

6.4 investigating time to salmon population recovery

We have seen the impact of introducing G. salaris to a system that has at most four strains.

Increasing the number of host strains present in the system gives results in Figures 6.11 and

6.12.

Looking at Figure 6.11 we see that the results are consistent with those obtained in the

previous sections such that as the number of host strains is increased so to is the length of

time taken for the fully susceptible strain to beat the more resistant strains and reach carrying

capacity in the absence of G. salaris infections. Once again after 100 years G. salaris infection

is added to the system via the detached parasite class and the impact simulated over 1000

years.
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Figure 6.10: Simulating the multiple host strain model for four salmon host strains (G. salaris infection
added after 25 years and φ = 0.0001) where host strains are capable of giving birth to
mutant offspring that share traits with other host strains in the system. The trajectory of
total host density (all salmon strains) is plotted.
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Figure 6.11: Simulating the n-strain model for a) n = 5, b) n = 10, c) n = 15 and d) n = 20 salmon
strains over 25 years in the absence of infection with mutations occurring in all simulations
at rate φ = 0.0001. As the number of host strains present in the system is increased, so too
is the length of time taken for an equilibrium state to be reached with the fully susceptible
strain out-competing the more resistant host strains.

The behaviour witnessed after infection is added follows that observed in the four-strain

case. As before, the fully susceptible host population (strain 1) immediately begins to decay

which quickly results in strain 1 becoming extinct. At this point the G. salaris population, that

was present in the strain 1 salmon population, begins to decrease as they become detached

and search for new hosts. Due to the low number of hosts in the system, and the fact that

all hosts present now exhibit some level of resistance to infection, the G. salaris population

continues to decay, and hence, hosts begin to recover. The results also show that an increased
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Figure 6.12: Simulating the n-strain model for n =5, 10, 15 and 20 salmon strains over 1000 years with
infection added after 25 years. From left to right n =5, 10, 15, 20 in (a), (b), (c) and (d)
respectively with mutations occurring in all simulations at rate φ = 0.0001. As the number
of host strains present in the system is increased, so too is the length of time taken for an
equilibrium state to be reached, as is the number of strains coexisting with each other and
the parasite at the end of the simulation.

number of host strains also means an increased number of strains that can beat infection

and coexist with each other as well as low levels of parasite infection. In such cases G. salaris

populations are present in each of the remaining salmon strain populations. The highest

density of parasites is present in the dominant salmon strain population. Table 6.2 gives

a summary of the way in which salmon strains coexist with each other for an increasing

number of strain populations.

Looking at the results in Table 6.2 it can be seen that the dominant strain in each of the

simulations (i.e., the strain with the highest density) is the strain that is approximately half

way between the fully susceptible strain and the strain with the highest level of resistance.

It is also worth highlighting that as the number of initial host strains present in the system

is increased, the percentage of host strains remaining actually decreases, for example when

n = 4, 60% of original strains survive whereas when n = 50 only 20% of the original salmon

strains survive. Thus, a lower number of salmon host strains initially present in a system

would be advantageous.
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Table 6.2: Host strain coexistence after recovery from infection. Simulating the n-strain model (φ =
0.0001) for an increasing number of salmon host strains (n > 5) over a 1000 year period with
G. salaris infection added after 25 years. Dominant host strain and host strains remaining at
end of simulation are given. Strains are considered extinct at the end of a simulation if they
have a density that is less than 0.5. As the number of host strains present in the system is
increased, so too is the number of host strains coexisting with each other and the parasite at
the end of the simulation.

Number of host strains
present at start of

simulation

Number of strains
present at end of

simulation

Dominant host strain
(highest density)

Other strains present
(highest - lowest density)

5 3 Host strain 3 Host strain 2 & 4

10 4 Host strain 5 Host strain 4, 6 & 3

15 4 Host strain 6 Host strain 7, 5 & 8

20 6 Host strain 8 Host strain 9, 7, 10, 6

& 11

25 6 Host strain 10 Host strain 11, 9, 12, 8

& 13

30 7 Host strain 12 Host strain 11, 13, 14,
10, 15 & 9

50 10 Host strain 19 Host strain 18, 20, 21,
17, 22, 16, 23, 24 & 15

6.4.1 Mutation rate

As discussed earlier the mutations that occur in the models above are determined by φ.

Until now we have been using a φ value that results in two mutant being born in every one

thousand births. We now investigate the effect that varying the mutation rate has on time to

salmon recovery. Here we consider the salmon population as sufficiently recovered when the

total of all salmon strains reaches a density that is at least 60% of the carrying capacity of the

most resistant salmon strain, in other words the strain with the lowest carrying capacity. We

study the implications of varying φ for 2, 3, 4, 5, 10 and 25 salmon strains respectively.

Looking at the results in Figure 6.13 we observe that increases in mutation rate, φ, results

in faster salmon recovery. In the absence of infection a higher mutation rate allows more host

strains to coexist, hence, lowering the total density that the fully susceptible salmon strain

can grow to. After G. salaris infection is introduced into the system salmon populations

recover initially with densities oscillating for some years, sometimes above and below the

60% threshold (Tables 6.3 and 6.4 give times in years to first occurrence of 60% recovery).

Finally population densities stabilise resulting in coexistence of host strains and low level G.

salaris infections. However, in the case where the number of salmon strains is 25, the time to

salmon recovery begins to oscillate after the mutation rate reaches values greater than 0.04

and the system settles into cycles thereafter.
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Figure 6.13: Simulating the n-strain model for 2, 3, 4, 5, 10 and 25 host strains for differing levels
of mutation, φ, against the time it takes for the total salmon population to recover. The
salmon population is considered as recovered when the total number of salmon from all
strains reaches a density that is at least 60% of carrying capacity.

Biologically, larger values of φ (e.g., φ =0.1) are not plausible as mutations are rare. With

this in mind our original mutation rate of 0.0001 would appear to be a reasonable estimate.

Taking into consideration the fact that G. salaris infections are not present in the system

until 25 years into the simulation, Tables 6.3 and 6.4 give a comparison of the time taken in

years for salmon to initially recover from infection for different φ values. Moreover, model

simulations demonstrated whether or not salmon recovery to a stable level occurred (see

Tables 6.5 and 6.6). The majority of simulations predicted salmon populations would recover

from G. salaris infections 10 to 15 years post introduction (for 0.0001 6 φ 6 0.1, n < 25).
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Table 6.3: Mutation rate verses time to initial salmon population recovery (60% of Kmin). Models simulated using differing levels of mutation rate, 0.0001 6 φ 6 0.1, for 2, 3, 4, 5, 10

and 25 salmon host strains. Results were used to determine the amount of time taken for the total salmon population to initially recover to a level that is at least 60% of the
carrying capacity of the most resistant salmon strain. Occurrences of salmon populations oscillating above and below the 60% threshold are represented by * with ∗+ and
∗− representing oscillations settling to a level above and below the threshold respectively. Models simulated for a 1000 year period with G. salaris infection added after 25

years.

Number of host strains
present at start of simu-
lation

Time to 60% (Kmin) salmon population recovery (in years)

φ = 0.0001 φ = 0.0112 φ = 0.0223 φ = 0.0334 φ = 0.0445 φ = 0.0556 φ = 0.0667 φ = 0.0778 φ = 0.0889 φ = 0.1

2 2.32 1.22 1.04 0.95 0.93 0.88 0.87* 0.87* 0.87* 0.87*
3 2.43 1.29 1.06 0.95 0.89* 0.85 0.83 0.81* 0.81* 0.80*
4 2.52 1.39 1.14 1.02 0.95* 0.90* 0.88 0.86* 0.85* 0.85*
5 2.60* 1.47* 1.23* 1.10 1.03* 0.99* 0.96* 0.95* 0.94* 0.93*

10 2.90* 1.80* 1.61* 1.52* 1.47* 1.45* 1.43* 1.43* 1.43* 1.42*

25 2.86* 2.37* 2.28* 2.26* 2.27∗− 2.28∗+ 2.30∗+ 2.31 2.33 2.35
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Table 6.4: Mutation rate verses time to initial salmon population recovery (60% of Kmax). Models simulated using differing levels of mutation rate, 0.0001 6 φ 6 0.1, for 2, 3, 4, 5, 10

and 25 salmon host strains. Results were used to determine the amount of time taken for the total salmon population to initially recover to a level that is at least 60% of the
carrying capacity of the fully susceptible salmon strain. Occurrences of salmon populations oscillating above and below the 60% threshold are represented by * with ∗+ and
∗− representing oscillations settling to a level above and below the threshold respectively. Models simulated for a 1000 year period with G. salaris infection added after 25

years.

Number of host strains
present at start of simu-
lation

Time to 60% (Kmax) salmon population recovery (in years)

φ = 0.0001 φ = 0.0112 φ = 0.0223 φ = 0.0334 φ = 0.0445 φ = 0.0556 φ = 0.0667 φ = 0.0778 φ = 0.0889 φ = 0.1

2 2.40 1.30 1.12 1.04 0.99* 0.97* 0.96* 0.96* 0.96* 0.98*
3 2.51 1.36 1.14* 1.03 0.97* 0.93* 0.91* 0.90* 0.89* 0.89*
4 2.59 1.46* 1.21* 1.09* 1.02* 0.98* 0.96* 0.95* 0.94* 0.93*
5 2.67* 1.54* 1.30* 1.18* 1.10* 1.06* 1.04* 1.02* 1.02* 1.01*

10 2.96* 1.87* 1.68* 1.59* 1.55* 1.52* 1.51* 1.50* 1.50* 1.50*

25 2.92* 2.43* 2.35* 2.33* 2.35∗− 2.36∗+ 2.39∗+ 5.28∗− Never Never

Table 6.5: Stable salmon population recovery. Models simulated using differing levels of mutation rate, 0.0001 6 φ 6 0.1, for 2, 3, 4, 5, 10 and 25 salmon host strains. Results were used
to determine whether or not salmon recover to a stable level within 10 to 15 years post introduction. Models simulated for a 1000 year period with G. salaris infection added
after 25 years.

Number of host strains
present at start of simu-
lation

Salmon recover to a stable level within 10-15 years post introduction

φ = 0.0001 φ = 0.0112 φ = 0.0223 φ = 0.0334 φ = 0.0445 φ = 0.0556 φ = 0.0667 φ = 0.0778 φ = 0.0889 φ = 0.1

2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

10 No Yes Yes Yes Yes Yes Yes Yes Yes Yes

25 No No No No Never Never Never Never Never Never
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Table 6.6: Level of salmon population recovery. Models simulated using differing levels of mutation rate, 0.0001 6 φ 6 0.1, for 2, 3, 4, 5, 10 and 25 salmon host strains. Results were
used to determine the level of salmon recovery (percentage of Kmax) after 1000 years. Models simulated for a 1000 year period with G. salaris infection added after 25 years.

Number of host strains
present at start of simu-
lation

% of maximum K salmon population recovered after 1000 years

φ = 0.0001 φ = 0.0112 φ = 0.0223 φ = 0.0334 φ = 0.0445 φ = 0.0556 φ = 0.0667 φ = 0.0778 φ = 0.0889 φ = 0.1

2 83.07 78.61 75.22 72.08 69.08 66.19 63.35 60.59 57.87 55.21

3 82.13 79.47 76.92 74.57 72.33 70.19 68.12 66.11 64.15 62.23

4 80.52 79.01 76.63 74.37 72.23 70.17 68.17 66.23 64.33 62.49

5 81.15 78.21 75.71 73.35 71.10 68.95 66.87 64.85 62.88 60.95

10 80.86 74.70 70.47 66.98 63.89 61.05 58.37 55.83 53.39 51.05

25 80.72 67.13 59.05 52.68 oscillates
40 - 50

oscillates
17 - 67

oscillates
12 - 63

oscillates
10 - 60

oscillates 6

- 57

oscillates 4

- 50
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The behaviour of salmon populations for 10 strains (Figure 6.14) and 25 strains (Figures

6.15 and 6.16) is found below.
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Figure 6.14: Total salmon density over time. Trajectories for total salmon density over a 1000 year period
obtained via simulations of the n-strain model for 10 salmon host strains and φ = 0.0001.
Plots (a) and (b) show the results in full and over a shorter range respectively. Maximum
carrying capacity and minimum carrying capacity are given by Kmax (Thick, dashed, grey
line) and Kmin (Thin, dashed, grey line) respectively.

As can be seen in Figure 6.14a for 10 salmon strains and φ = 0.0001 the total salmon

population takes approximately 7300 days, i.e., 20 years, to reach a level of recovery that is

stable. On closer inspection, Figure 6.14b, total salmon density oscillates above and below

the 80% and 60% recovery thresholds for approximately 8 years post parasite introduction.

The results in Figure 6.15 for 25 salmon host strains in the absence of G. salaris infection

is consistent with similar simulations for <25 strains given previously in this chapter. Once

again, with no G. salaris parasites present the salmon strain with the highest birth rate is the

dominant strain.

Figure 6.16 shows the impact of adding G. salaris infection to the system in Figure 6.15 for

an increasing φ.

As can be seen, as the value of φ is increased from 0.0001 to 0.1 the total salmon population

becomes less and less stable to the point that when φ is too high salmon density can no longer

reach the minimum recovery threshold (60% carrying capacity) and oscillates between 4% -

50% of carrying capacity.
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Figure 6.15: Simulating the n-strain model for 25 host strains in the absence of G. salaris infection.
Trajectories of 25 salmon host strains over a 25 year period obtained via simulations of
the n-strain model with φ = 0.0001.
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Figure 6.16: Total salmon density over time. Trajectories for total salmon density over a 1000 year period
obtained via simulations of the n-strain model for 25 salmon host strains. The parameter φ
was varied as follows: (a) φ = 0.0001; (b) φ = 0.0445; (c) φ = 0.0778; (d) φ = 0.1. Maximum
carrying capacity and minimum carrying capacity are given by Kmax (Thick, dashed, grey
line) and Kmin (Thin, dashed, grey line) respectively.
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6.5 simulating the model for a uk river system

For the final time a theoretical outbreak of G. salaris infection in the Welsh River Dee is stud-

ied. The model in its final form (Equations 6.12 to 6.17) is simulated to study the impact of

G. salaris in the UK using the parameter estimates obtained in Sections 2.4, 3.5, 5.2.1 and 5.3.1

(see Table A.1, Appendix A).

(a)

0 50000 100000 150000
Time HdL0

50

100

150

200

Density
River Dee HWales, UKL

H1

H2

H3

H4

P1

P2

P3

P4

W
I1
I2
I3
I4

Salmon Hall strainsL

Kmin

Kmax

Figure 6.17: Model E: River Dee example. Trajectories of host, attached parasite and detached parasite
populations in time as predicted by the n-host strain (with mutations) model and paramet-
erised according to Table A.1 as follows: a = 0.02, b = 0.0006, s = 0.00016, α = 0.0012,
µ = 0.1708, ε = 0.08, λ = 0.06, β = 0.006, σ = 0.155. Initially there is no infection present,
H(0) = K = 125, P(0) = 0. W(0) = 0. Infection is added (a single attached parasite) after
730 days, H(7300) = K = 125, P(730) = 1, W(730) = 0. Hosts (—), parasites (−−). Plot (a)
highlights the trajectories of individual host strains whereas plot (b) highlights the traject-
ory of the total number of hosts (all strains). Plots (c) and (d) are magnifications of (a) and
(b) respectively.

Figure 6.17 highlights the results obtained by simulating the model in its final format,

Equations (6.12) to (6.17), for 4 salmon strains parameterised for a UK river, in this case the

River Dee, Wales. Looking at Figure 6.17a and 6.17b it can be seen that the model predicts

salmon recovery with low level G. salaris coexistence. The results gained are consistent with

those found earlier in this chapter (Section 6.3.3 onwards) in that with initially 4 salmon

strains it is salmon strain 2 that is the dominant one with very low densities of salmon strain

3. In this example the total density of salmon (i.e., from all strains) recovers to a level that is

approximately 94% of the original carrying capacity. Figure 6.17c and 6.17d show that initial

60% recovery is reached 730 days post introduction with stable recovery following a short
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time after. These results highlight the fact that salmon in the UK may in fact recover from G.

salaris infections in the long run, however, time to recovery is likely to be much longer than

predicted due to limitations of the model as mentioned below and discussed in more detail

in Chapter 7.

6.6 summary

In this chapter we started by building on the immunity and trade-off work in Chapter 4

by adding an immune response and resulting trade off into a two host strain model. This

allowed us to confirm model output is consistent with the literature such that, in terms of

Atlantic and Baltic strains of Atlantic salmon, fully susceptible Atlantic salmon strains decay

to zero when G. salaris is present whereas resistant Baltic salmon strains can beat infection

and survive.

The two strain model was then extended to study a system with n host strains. This ap-

proach enabled the study of how salmon strains exhibiting differing levels of immunity from

0 (fully susceptible) to 0.017 (resistant) interact with each other and infections by G. salaris.

These models showed that initially the resistant salmon strain out competes the remaining

strains. However, with low parasite numbers the less resistant salmon with greater birthing

potential replace the resistant salmon and coexist with low levels of G. salaris infection.

The final model had the addition of hosts having the ability to give birth to an offspring

with a higher or lower level of resistance. This was determined by a mutation rate given

by the parameter φ. In the absence of infection the mutation rate determined the density

to which strains grow with higher values of φ resulting in more strains coexisting. The

output from model simulations, with G. salaris infection present, was consistent in the long

run with the results obtained from the n host strain model with no mutations such that

the fully susceptible and highest resistant salmon strains becoming extinct and strains with

less immunity but higher birth rate coexisting with each other and low levels of G. salaris

infection. At the end of the 1000 year simulation the total number of salmon hosts remaining

was not significantly different against the number of strains initially used.

Increasing the mutation rate from 0.0001 to 0.1 caused the time to population recovery to

decrease. Whereas increasing the number of salmon strains caused the time for population

recovery to increase. However, when the number of strains reached 25 the dynamics changed

and instead of settling to an equilibrium with parasite coexistence the system settles into

cycles.
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The results obtained via model simulations, depending on the number of salmon strains

present in an environment, allows us to conclude that if G. salaris is introduced into a river

then we can expect fully susceptible salmon strains, such as those that occur naturally in the

UK and Norway, to become extinct. However, in a system where multiple salmon strains are

present with varying levels of immunity then salmon - G. salaris coexistence is possible with

salmon reaching initial recovery (60%) occurring within one to three years. In the majority

of cases with more than 3 salmon strains, see Tables 6.3 and 6.4, the salmon population

oscillates above and below the 60% level reaching a constant stable level within 10 to 15

years after introduction (Table 6.5).

The results from the n-host strain model are in contrast with the hypothesis that salmon

in infected rivers, if left untreated, will eventually decline to extinction. However, through

experimental trials on salmon from the Drammen River in Norway, Salte et al. (2010) showed

that wild salmon stocks have the genetic capacity to adapt to G. salaris infection, and hence,

increase their chances of survival from infection (Salte et al., 2010). Our results agree with

the observations of Salte et al. (2010) in that if natural selection was left to occur then the

model predicts salmon would adapt and become more resistant to G. salaris infections. Salte

et al. (2010) conclude by theorizing that improving the genetic capacity to survive infection

will not be enough to completely eradicate the parasite from infected rivers but may go in

some way to control infections to the point that it is no longer a threat, this is another result

that is predicted by the multiple strain model in that the remaining host strains at the end of

simulations coexist with low G. salaris parasite numbers. Model simulations also suggest that

Atlantic strains of Atlantic salmon will not evolve to a resistant level equal to that of the Baltic

strain of Atlantic salmon but evolve to become more of an intermediate strain somewhere

between the highly susceptible (Atlantic strain) and the resistant (Baltic).

In the field, Atlantic salmon leave freshwater for a life in saltwater, spending anything

from 1 to 4+ years there maturing into adults before returning to their natal river to spawn

(Crisp, 2000), hence, this time delay will impact our results adding years to our predictions.

With this information in mind we can estimate salmon recovery could take anything from

approximately 15 to 25 years after the introduction of G. salaris.
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7
C H A P T E R 7

Discussion

The aim of this thesis was to explore interactions between populations of Atlantic salmon and

the monogenean parasite Gyrodactylus salaris in order to make predictions on the possible

consequences of introducing such an infection into an environment containing susceptible

salmon host populations such as the United Kingdom. As discussed in the introduction, the

majority of previous mathematical work concerning the salmon-G. salaris system is centred

on risk and statistical analysis highlighting areas such as routes of infection, hence, there

was much scope for a mathematical modelling approach to be developed in order to allow

predictions of infection dynamics to be made.

In addition to studying interactions via macroparasite distributional models, contrasting

modelling techniques such as Leslie matrix population models and individual based models

were also used throughout this research. Models were used to study the possible differences

between strains of Atlantic salmon to determine the mechanisms evolved by the Baltic strain

in order to be able to beat infection and in some cases coexist with low levels of G. salaris

infection. Models were also used to investigate the possibility of Atlantic strains of Atlantic

salmon evolving traits and resulting trade-offs to become more like their Baltic counterparts.

As discussed in Chapter 6 the models showed that if G. salaris is introduced into a river

system containing n-strains of salmon (n > 2), such that birth rate is negatively correlated

with resistance, salmon will evolve to a more resistant state and therefore be able to recover

from infection. Such recovery would result in host coexistence with low parasite densities as

well as other host strains of varying immunity.

Model simulations in Chapter 6 predicted rapid salmon decline after the introduction of

G. salaris with susceptible salmon populations declining to extinction within 2 years. It is

well established that G. salaris is able to reduce salmon populations in a river by 98%, this

decline has been observed and occurred within 5 years after the emergence of the parasite

(Johnsen & Jensen, 1991). One of the possible reasons as to why the model predicts salmon

will decline faster than the time witnessed by Johnsen & Jensen (1991) could be due to the

absence, in the model, of salmon returning from the sea each year to spawn (and similarly
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salmon running to sea). This behaviour would add a steady stream of uninfected hosts to the

system each year, and hence, increase the time taken for the salmon population in a river to

decline.

7.1 model development

Model basis and the baseline model

Due to the absence of an existing model of salmon-G. salaris dynamics the first stage of this

research was to develop a baseline model that would act as a foundation for the more com-

plicated work. Chapter 2 highlighted the characteristics G. salaris shares with both macro

and micro parasitic diseases and introduced the initial model. This model used the distribu-

tional models of Anderson and May (Anderson & May, 1978; May & Anderson, 1978) as a

basis. This work was extended to include a detached parasite class as individual parasites

can survive off a host for a limited time period (Mo, 1987; Bakke et al., 2007).

When investigating the stability of the coexistence equilibrium a second zero equilibrium

was discovered that resulted from parasites forcing the salmon population to extinction. Such

equilibria do not commonly occur in distributional models but are more akin to compart-

mental models used to study microparasite dynamics. An investigation showed that this

parasite induced extinction was not a result of the probability distribution of the parasites

but as a result of short generation times and ability of G. salaris to give birth to pregnant

offspring directly onto the skin of a salmon host (Bakke et al., 2007), and hence, removing the

requirement of a free-living infectious stage.

A new mechanism for resistance to G. salaris

In Chapter 4 a different approach was taken in order to estimate parasite growth rate on a

single salmon host from data found in the literature (Cable et al., 2000) and check that the

parameter estimates obtained gave parasite numbers consistent with those obtained exper-

imentally (Bakke et al., 1990; Jansen & Bakke, 1991). Here Leslie matrix population models

were used and an interesting observation was made. We noticed that a delay in the time

taken for a parasite to achieve first birth had a noticeable impact on parasite numbers, a dif-

ference that exists between Atlantic and Baltic salmon strains (Cable et al., 2000). Hence, an

investigation into the possible mechanisms for resistance to G. salaris in salmon was under-

taken. We were able to determine, through the use of both discrete and stochastic methods,

a new mechanism of resistance to G. salaris infection existed. Until this point it was believed

that the Baltic’s acquired immunity was due to parasites infecting Baltic hosts giving birth
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to fewer offspring and having a lower survival rate (Bakke et al., 1990; Jansen & Bakke, 1991;

Bakke & MacKenzie, 1993; Cable et al., 2000).

We highlighted the fact that parasites on Baltic hosts give birth to their first offspring

0.5 days later than those parasites on Atlantic. Our results showed that delaying parasite

first birth on Atlantic hosts caused parasite numbers to decrease by 50% and a 75% decrease

observed if a 1 day delay is implemented. The results also highlighted that reducing the

number of offspring birthed by an individual parasite from 4 (on Atlantic) to 2 (on Baltic)

had little effect on the dynamics.

Immunity, trade-offs and multiple salmon strains

The final aim of this thesis was to have a model that incorporated multiple strains of salmon

host. Following on from the work in Chapter 4 the baseline model was first extended for

2 salmon host strains, such as Atlantic and Baltic, and one strain of G. salaris parasite that

exhibits a different behaviour on each salmon host strain. In order to investigate whether or

not salmon would recover if G. salaris was to be introduced into a susceptible host population

the model had to first be extended to include an immune response and resulting trade-off.

The trade-off was determined assuming a similar situation in salmon to that observed by

Cipriano et al. (2002) in their study of furunculosis in trout, in which trout exhibiting a

tolerance to infection had lower birth rates than the fully susceptible individuals. Hence, the

trade-off was implemented into the model via host birth rate.

Our results demonstrated that only a small amount of immunity is required to allow

substantial host growth. Finally, the 2 strain model was extended for n salmon host strains

with levels of immunity ranging from 0, fully susceptible - e.g., Atlantic salmon, to 0.017,

resistant - e.g., Baltic salmon, with salmon hosts having the ability to give birth to mutant

offspring with an increased or decreased immune response. The results highlighted the fact

that, in a system with hosts of varying resistance, salmon with a small amount of immunity,

and hence a higher birth rate, can out compete the salmon strain with the highest immunity

and coexist with low G. salaris infection as well as with other salmon strains exhibiting similar

immune/birth rates. The models predict that salmon recovery to at least 60% of carrying

capacity is possible within one to three years after infection is introduced if susceptible hosts

evolve to be more resistant.
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7.2 model limitations

Parasite behaviour

One of first limitations of the models proposed in the preceding chapters is they do not give

number of parasites per host but the rate of change of total salmon and G. salaris populations,

and hence, they do not explicitly model those G. salaris parasites that transfer between hosts,

either from infected fish to uninfected fish or infected fish to infected fish. As discussed in

Chapter 2, this was not explicitly modelled since we were working at the population level

and not the individual level.

It is well established that parasites become more active after they have given birth to their

first offspring and tend to move around the host or attempt to transfer to a new host (Bakke

et al., 2007). Our models are also limited with respect to parasite behaviour in that there is no

spatial aspect present. This is also true with salmon hosts in that their territorial behaviour

(Keenlyside & Yamamoto, 1962; Crisp, 2000), as discussed in Chapter 1, is not modelled.

Salmon births and run to sea

Another limitation of the models proposed in this thesis is the assumption that new sal-

mon hosts are born at a constant rate. This approach was taken in order to simplify models

somewhat. However, in reality salmon spawning is a discrete process taking place once a

year between mid October and late February (Shearer, 1992). Hence, the models developed

throughout this work lack such seasonal variation.

Similarly, our models do not consider the fact that salmon run to sea and do not spend

their entire life in a river, though it is possible for some salmon parr to mature sexually in a

river without the need to run to sea, and hence, stay to participate in spawning (Crisp, 2000).

Once smolts reach the sea they spend anything between one and four winters at sea before

returning to their natal river to spawn (Crisp, 2000). This behaviour will have an important

impact on the length of time it would take for a population of salmon to recover from G.

salaris infections due to the possibility of immune salmon escaping an infected river leaving

more susceptible salmon hosts to take the brunt of infection. This means there will also be

a one to four year (or more) delay in possible immune salmon giving birth to offspring

with a heightened resistance to disease by which time G. salaris infections may have forced

the susceptible population to extinction. Another problem is the fact that not all salmon are

successful in returning from the sea to their natal river. In these cases salmon from a G. salaris
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infected river may not make it back, hence, any acquired resistance to infection will not be

passed on to subsequent generations.

Evolution

The final model, dealing with multiple salmon strains with the possibility of giving birth to

offspring with more/less resistance to G. salaris infections, assumes mutations continuously

occur, e.g., if φ is set to 0.0001 then we will always get 1 mutant in every 1000 offspring.

Biologically this is not the case, in reality mutations are more stochastic in nature with the

possibility that a mutant is born or not born.

All these limitation will have an impact on the results obtained in this this thesis and

hence increase the length of time required for salmon population recover from infection by

G. salaris.

7.3 future work

The population dynamics of G. salaris are still not fully understood, however, the work con-

tained within the chapters of this thesis forms a solid basis for future salmon-G. salaris mod-

elling. Our results thus far have highlighted the fact that after the introduction of G. salaris

into a susceptible host population, salmon population recovery in an infected river is in fact

possible, resulting in low level host-parasite coexistence.

If more time were available there is much scope for the accuracy of estimates of time

to salmon population recovery to be improved. The inclusion of seasonality in host births

as mentioned above as well as the inclusion of an extra host class, where salmon run to

sea and spend one to four winters there before returning to their river, to the multiple host

strain model would greatly improve predictions of salmon recovery and salmon - G. salaris

coexistence. Seasonality would also be of benefit in regards to the G. salaris life cycle since

parasites demonstrate seasonal dynamics with respect to water temperature, becoming more

active when rivers are colder (Mo, 1987, as cited by Peeler et al., 2006, Soleng et al., 1998,

Winger et al., 2008).

The models we have proposed consider the total densities of a G. salaris population within

a salmon host population, It would also be worthwhile taking an approach looking into the

density of G. salaris populations on individual hosts within a host population with particular

focus on the impact that fish to fish transmission has on the dynamics of infection.
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Even though the literature concerning Gyrodactylus salaris infections in salmon is vast,

models would greatly benefit from more accurate and up to date parameter estimates. Ex-

perimental studies undertaken exclusively for this reason would be worthwhile in order to

obtain estimates for currently unknown parameters. Through our research we have determ-

ined that more data is required in order to accurately parameterise the rate at which parasites

leave, attach to and kill hosts.

The results obtained from the individual based stochastic model in Chapter 4 gave a

reasonably good fit to the current data available and could be extended from an individual

host up to the population level. Adding stochasticity to the multiple strain model would

also be a useful way forward in order to gain further insights into the dynamics of G. salaris

infections. Recent work by van Oosterhout et al. (2008) and Ramírez et al. (2012), highlighted

in Chapter 1, Section 1.5.3, also emphasize and provide confirmation of the usefulness of

adding stochasticity to models in regards to G. salaris infections.

Moreover the way in which evolution is handled in the multiple strain model could be

improved by adding stochasticity or through the use of techniques such as that of adaptive

dynamics. Through the use of adaptive dynamics the continuous mutations that are present

in the current model (Equations 6.12 to 6.17) would be replaced by the assumption that

mutations are rare and discrete events. The (rare) mutant and (established) resident strains

would then compete, in a manner similar to that in Equations (6.12) to (6.17), to determine

whether the mutant strain will grow in number, replacing the resident, or die out; or in the

rarer case, co-exist. By modelling a series of these mutation and replacement events it is

possible to determine the evolutionary stable level of immunity and, given appropriate data

on mutation rate/size, the time until it occurs.

It would also be practical to re-evaluate the multi-strain model for multiple G. salaris

strains as well as multiple host strains in order to investigate the co-evolutionary response

from parasites (also possible through the use of adaptive dynamics). It is well documented

in the literature that differing strains of G. salaris have varying effects on a range of salmonid

hosts (Bakke et al., 1990; Johnsen & Jensen, 1991; Bakke & MacKenzie, 1993; Hansen et al.,

2003; Lindenstrom et al., 2003; Bakke et al., 2002, 2004) and that importation of rainbow trout

has been identified as posing the greatest threat of introducing G. salaris infection into UK

water systems (Peeler et al., 2004; Peeler & Thrush, 2004).
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7.4 conclusions

Atlantic salmon populations the world over are currently threatened with numbers in some

regions in decline (WWF, 2001). The catastrophic impact that infections by G. salaris can have

on susceptible salmon populations, and the consequential financial implications, has already

been witnessed in Norway (Johnsen, 1978; Johnsen & Jensen, 1986, 1991). In the years post

the parasites accidental introduction to Norway it has since spread to many river systems

throughout Europe (Buchmann & Bresciani, 1997; Nielsen & Buchmann, 2001; OIE, 2003;

Cunningham et al., 2003; Ziętara et al., 2007; Rokicka et al., 2007; OIE, 2009; Paladini et al.,

2009).

In terms of both mathematics and biology Gyrodactylus salaris is a very interesting area

of study. Through the use of different mathematical techniques we have proposed and de-

veloped models capable of capturing the dynamics of salmon-G. salaris interactions, and

where possible, we have compared model outputs with experimental and observed data

from the literature. Hence, we have been able to make predictions regarding the possible

consequences of G. salaris infection in the long-term. Of the results obtained via our research

and recorded in this thesis, the most illuminating were those concerning the impact that

timing of parasite first birth has on parasite population growth and the results obtained in

Chapters 5 and 6 concerning salmon recovery from G. salaris infections.

Firstly, we were able to show that by delaying parasite first birth by as little as 0.5 days

the total parasite density becomes significantly decreased (by approximately 50%). Thus if

first birth is delayed further, for example by a whole day, parasite numbers decrease further.

Through experimental studies we know that G. salaris survival is temperature dependent

(Soleng et al., 1998) with first birth occurring later at colder water temperatures (Jansen &

Bakke, 1991). In regards to water temperature we must also consider the impact of climate

change. Based on the study by Jansen & Bakke (1991) we can assume that rising temperat-

ures in rivers will cause parasites to give birth to their first offspring earlier resulting in faster

population growth. Hence, it may be possible to manage G. salaris infections through lower-

ing water temperature, delaying the first birth of individual parasites and therefore reducing

parasite numbers.

Secondly, through simulation of the multiple host strain model (for a varied number of

strains) we were able to predict salmon populations will recover from G. salaris infection and

reach a stable level within 15 to 25 years after introduction. However, such recovery is only

possible if hosts evolve to a more resistant state. Importantly, we showed small increases in

resistance resulted in large positive changes in salmon density and in a system with many
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salmon strains present a low level of resistance and a consequently high birth rate is more

beneficial than a high resistance to infection and hence a low birth rate. In all model simu-

lations which result in salmon recovery, G. salaris populations never actually decay to zero

and disappear from the system but in fact exhibit low-level coexistence with the remaining

salmon host strains present in the environment.

The results we have obtained are important as they highlight populations of Atlantic sal-

mon should recover from G. salaris infections in the long-term even if unaided by human

intervention. This means that the current practice of treating rivers and restocking with sal-

mon from the original genetic pool of that river, as is the method adopted in Norway, may

in fact be lengthening the time required for salmon to evolve a mechanism of resistance to

infection and thus recover naturally.

As discussed in the main text, to date the United Kingdom and Ireland are the only known

countries to officially establish freedom from G. salaris infections (Shinn et al., 1995; OIE, 2003;

Defra, 2008a). This is confirmed and supported by the European Commission, EC decision

2004/453/EC (Peeler et al., 2004). The current consensus is that Atlantic salmon populations

in the UK are believed to be just as susceptible as those found in Norway (Bakke & MacK-

enzie, 1993; Paladini et al., subm.), hence, if G. salaris is introduced a similar environmental

and economic impact to that of Norway can be expected. Due to this, G. salaris and its im-

pact on susceptible hosts must continue to be the subject of further study in order to aid in

contingency planning and defence against introduction and emergence.
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A
A P P E N D I X A

Data

Contained within this appendix is a collection of data sources taken from the literature. These

data have been used for estimation of model parameters and comparison of model output

throughout the work in the main chapters of this thesis.

Table A.1 gives the parameter estimations used in model simulations throughout the

entirety of this thesis.

Table A.1: Parameter estimations. Estimations for the population parameters used in the models using
data available in the literature. Unpublished experimental trials were also used to estimate
some unknown parameters. The data from these trials is collected in Appendix A.

Parameter Description Estimate/day Source
a Salmon birth rate 0.02 See Chapter 1, Section 2.4
b Salmon death rate due to nat-

ural causes
0.0006 Hedger et al. (2013)

s Density dependent constraint 1.55×10−4 Estimated using salmon
carrying capacity for
1000m2

K Salmon carrying capacity 0.125 fish per m2 Hedger et al. (2013)

µ G. salaris birth rate (Noway) 0.1825 Bakke et al. (1990)
G. salaris birth rate (UK) 0.1708 Paladini et al. (in prep.)

ε G. salaris death rate (natural) 0.08 Jansen & Bakke (1991)
α Salmon death rate due to infec-

tion (depends on parasite)
0.0012 Scott & Anderson (1984)

λ Rate that G. salaris parasites
leave hosts

0.06 See Chapter 3, Section 3.5

σ Detached G. salaris death rate
(natural)

0.14 - 0.17 Peeler et al. (2006)

β Transmission rate of detached G.
salaris parasites to new hosts

0.006 Paladini and Denholm
(unpublished)

m̃ immune response rate of in-
crease

0.0175 Estimated using Atlantic
and Baltic growth rates

ζ Decay rate of immune response 0.005 N. Taylor (per. comm.)

θ Trade-off shape parameter -0.7 See Chapter 5

φ Mutation rate 0.0001 See Chapter 6
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Cable et al. (2000)

The data in Table A.2 is is a reproduction of the results found in Cable et al. (2000) for one

strain of G. salaris infecting two susceptible salmon stocks (from the Rivers Alta and Lier,

Norway) and one resistant salmon stock (from the River Neva, Russia). These results were

used in Chapter 4 in order to parameterise the Leslie matrix and individual based models.

Table A.2: Results from Cable et al. (2000) for one strain of G. salaris infecting two susceptible salmon
stocks (from the Rivers Alta and Lier, Norway) and one resistant salmon stock (from the
River Neva, Russia). Experiment was run at a water temperature of 12.5◦C with an individual
parasite infecting each of the three salmon strains. Parasite offspring were killed and number
of births that occurred were recorded, as was the life-span of the original parasite.

Salmon stock 1st birth 2nd birth 3rd birth 4th birth

Lier 1.88 (±0.52) 8.35 (±1.06) 16.0 (± 1.00) 23.0
Alta 1.85 (±0.49) 9.05 (±0.99) 16.4 (± 0.99) 22.5 (± 0.5)
Neva 2.34 (±0.89) 10.0 (±1.90) - -

Bakke et al. (1990)

The data from Figure 5 by Bakke et al. (1990) showing G. salaris growth on individual Atlantic

and Baltic salmon parr is reproduced here in Table A.3. These results by Bakke et al. (1990)

were used to estimate G. salaris growth rates on Atlantic (Norwegian) and Baltic strains of

Atlantic salmon (see Chapter 2, Section 2.4) for use in the deterministic models. This data

was also used to compare parasite densities from model outputs.

Table A.3: Data from the results given by Bakke et al. (1990) Figure 5. Development of the intensity of
G. salaris infection on individual Atlantic salmon parr of both the Norwegian Lone and the
Baltic Neva stocks. Salmon hosts kept individually in small aquaria at 12.0◦C starting with 1

parasite on day 0.

Atlantic

Host 0h 7d 14d 21d 28d 35d

1 1 4 10 21 34 43

2 1 4 12 23 32 -

3 1 4 16 35 69 -

4 1 6 13 25 51 -

5 1 4 12 24 48 -

6 1 5 13 24 43 -

7 1 4 10 27 33 -

8 1 4 15 25 51 -

9 1 5 9 23 32 -

Baltic

Host 0h 7d 14d 21d 28d 35d

1 1 1 2 6 2 1

2 1 3 11 13 7 3

3 1 1 2 1 0 0

4 1 3 11 5 4 0

5 1 1 2 0 0 0

6 1 2 1 0 0 0

7 1 2 0 0 0 0

8 1 1 1 0 0 0
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Jansen & Bakke (1991)

The data found in Table A.4 is reproduced from Jansen & Bakke (1991) for isolated G. salaris

infecting isolated Atlantic salmon hosts at different water temperatures. The results for a

water temperature of 13.0◦C were used to estimate natural parasite death rate (discussed in

Chapter 2, Section 2.4) for use in the deterministic models.

Table A.4: Results from Jansen & Bakke (1991) (Experiment 1, Table 1). Isolated G. salaris infecting isol-
ated Atlantic salmon hosts at different water temperatures. Parasite offspring were killed
and number of births that occurred were recorded, as was the life-span of the original para-
site. R0, net reproductive rate (/parasite); G, generation time in days; rm, innate capacity for
increase (/parasite/day); s.e., standard error; s.d., standard deviation.

Temperature (◦C)
19.1 16.5 13.0 6.6 2.6

Average lifespan 4.5 5.8 12.5 31.4 33.7
± s.e. 0.7 0.6 0.8 4.6 3.6
Mean number of offspring 1.5 1.67 2.38 2.4 1.4
± s.e. 0.16 0.14 0.12 0.29 0.21

age at 1st birth 1.1 1.3 2.0 5.1 9.3
± s.d. 0.3 0.4 0.5 0.5 0.9
age at 2nd birth 4 5.4 7.5 19.4 36.6
± s.d. 0 0.5 0.8 0.9 2.6
age at 3rd birth - - 13.6 35.2 -
± s.d. - - 1.4 1.2 -
age at 4th birth - - 21.5 49 -
± s.d. - - 0.5 - -
R0 1.50 1.67 2.38 2.40 1.40

G 2.1 2.9 6.5 18.0 19.0
rm 0.22 0.21 0.17 0.06 0.02

Paladini et al. (in prep.)

The data collected by Paladini et al. (in prep.) is reproduced in Tables A.5 and A.6 for G.

salaris infections on Norwegian and UK Atlantic salmon parr hosts respectively. These data

were used to estimate G. salaris growth rate on UK Atlantic salmon for use in the River Dee

simulations in Chapters 2, 3 and 6. The data in Paladini et al. (in prep.) was also used to

compare model outputs and check the consistency of growth rates calculated using the data

in Bakke et al. (1990).
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Table A.5: Results from Paladini et al. (in prep.) for G. salaris population growth on Norwegian Atlantic
salmon. Trials were run for a period of 40 days on 10 salmon parr originating in Norway.
Gyrodactylus salaris parasites were added at time t=0. Trials were conducted using freshwater
with a temperature of 13.0◦C.

Fish no. 0h 24h 5d 12d 19d 26d 33d 40d

A-1 0 76 158 316 679 1206 1114 2055

A-2 0 102 291 544 657 960 2165 2300

A-3 0 104 199 430 477 781 1180 1850

A-4 0 80 172 344 563 860 1275 1950

A-5 0 82 190 338 661 1217 1414 2152

A-6 0 46 114

A-7 0 59 165

A-8 0 81 168 288 501 1284 1575 2045

A-9 0 58 126 184 385 714 1495 1570

A-10 0 108 251

average 0 79.6 183.4 349.1 560.4 1003.1 1459.7 1988.9
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Table A.6: Results from Paladini et al. (in prep.) for G. salaris population growth on UK Atlantic salmon.
Trials were run for a period of 40 days on 30 salmon parr originating in the UK. The salmon
were separated into three buckets each containing groups of 10 parr. Gyrodactylus salaris
parasites were added at time t=0. Trials were conducted using freshwater with a temperature
of 13.0◦C.

Fish no. 0h 24h 5d 12d 19d 26d 33d 40d

A-1 0 115 207 310 719 1007 1484 3670

A-2 0 77 131 405 498 945 1223 4020

A-3 0 36 81 175 200 700 1368 3500

A-4 0 47 76 151 405 511 1770 5110

A-5 0 113 168 364 699 1278 2510 4840

A-6 0 47 104 239 608 664 1198 3555

A-7 0 131 175 308 469 1017 1112 4680

A-8 0 51 110 231 680 1287 2102 4960

A-9 0 78 102 193 528 1134 2890 5805

A-10 0 56 83 238 350 799 1770 3790

B-1 0 28 88 208 321 544 810 2210

B-2 0 85 207 338 629 752 1395 3420

B-3 0 120 193 412 566 901 1855 4880

B-4 0 61 150 317 573 1650 2600 4850

B-5 0 109 200 374 677 965 1680 4480

B-6 0 66 151 464 588 905 1590 2460

B-7 0 63 97 265 542 1031 1810 3420

B-8 0 91 162 387 628 880 1570 4210

B-9 0 47 122 463 923 1812 2520 5300

B-10 0 78 133 329 604 889 1240 3145

C-1 0 32 88 200 388 857 965 3326

C-2 0 146 246 584 705 1212 2370 3500

C-3 0 128 230 468 662 1108 1805 3240

C-4 0 81 176 317 586 1119 1566 3090

C-5 0 147 221 615 877 1051 1390 4080

C-6 0 35 115 300 539 1029 1435 2780

C-7 0 51 132 336 785 1326 2092 2650

C-8 0 160 274 485 618 1387 2030 3960

C-9 0 215 314 388 434 1413 2190 3200

C-10 0 116 185 444 648 1132 1906 3390

average 0.0 87.0 157.4 343.6 581.6 1043.5 1741.5 3850.7
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Scott & Anderson (1984)

Scott & Anderson’s 1984 study of G. turnbulli infecting Poecilia reticulata was used to fill in

gaps in such cases that parameter estimates could not be obtained. The table of parameter

estimations used in the models proposed by Scott & Anderson (1984) is reproduced in Table

A.7.

Table A.7: Estimates of host and parasite population parameters for populations of Gyrodactylus turn-
bulli infecting laboratory populations of Poecilia reticulata from Scott & Anderson (1984).

Parameter Symbol Value/day units

Host Immigration rate I 0.14 (low) /population/time unit

0.64 (medium)

1.43 (high)

Natural mortality rate b 0.0045 /host/time unit

Infection-induced mortality α̂ 0.0701 /host/time unit

rate (prevalence framework)

Parasite-induced mortality α 0.0012 /parasite/host/time unit

rate (density framework)

Recovery rate from infection γ 0.0873 /host/time unit

(prevalence framework)

Infection rate (prevalence framework) Λ 0.0272 /host/5 l water/time unit

Parasite Birth rate (density framework) λ 0.43-0.49 /parasite/time unit

Death rate on live fish µ 0.24 /parasite/time unit

(density framework)

Proportion of parasites q 0.24 -

successful in transfer

between live hosts

Negative binomial parameter k 0.42 /parasite/time unit

Transmission rate from live β2 0.0052 /parasite/host/5 1 water

fish to live fish /time unit

(density framework)

Death rate on dead fish w 2.07 /parasite/time unit

(density framework)

Transmission rate from dead β1 0.052 /parasite/host/5 1 water

fish to live fish /time unit

(density framework)

Logarithmic parameter a 0.06-0.95 -

Field work - Paladini and Denholm (unpublished)

In order to obtain parameter estimations for some of the unknown parasite parameters, in

particular β and λ, four experimental trials were conducted using G. salaris , originating

from Norway, and UK Atlantic salmon parr originating from the River Dee, Wales. Four

experimental trials were run: two trials using dead salmon hosts, Tables A.8 and A.9, and

149

[ 18th September 2013 at 19:56 ]



two using live salmon hosts, Tables A.10 and A.11. All experimental trials were conducted

using freshwater with a temperature of 13.0◦C.

Table A.8: Behaviour of G. salaris on a dead salmon host. An infected salmon parr was killed and placed
in a bucket of clean water in order to determine the rate at which G. salaris parasites leave a
dead salmon host. At one hour intervals the dead host was removed from the bucket and the
number of G. salaris parasites remaining in the bucket were counted. The salmon host was
immediately placed into clean water in a new bucket. This was repeated and the experiment
was run for eight hours.

Dead Hap A1

Time Number of G. salaris off fish host (in Bucket)

10.45 -

11.45 121

12.45 238

13.45 312

14.45 350

15.45 328

16.45 248

Total G. salaris on fish host at end of trial >4720

Dorsal fin 540

Adipose fin 60

Caudal fin 200

Anal fin 320

Pelvic fins 280

Pectoral fins 320

Body >3000

Table A.9: Behaviour of G. salaris on a dead salmon host. An infected salmon parr was killed and placed
in a bucket of clean water in order to determine the rate at which G. salaris parasites leave a
dead salmon host. At one hour intervals the dead host was removed from the bucket and the
number of G. salaris parasites remaining in the bucket were counted. The salmon host was
immediately placed into clean water in a new bucket. This was repeated and the experiment
was run for eight hours.

Dead Hap A1

Time Number of G. salaris off fish host (in Bucket)

10.45 -

11.45 101

12.45 218

13.45 303

14.45 286

15.45 253

16.45 250

Total G. salaris on fish host at end of trial >3700

Dorsal fin 540

Adipose fin 60

Caudal fin 200

Anal fin 320

Pelvic fins 280

Pectoral fins 320

Body >2000
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Table A.10: Behaviour of G. salaris on a live salmon host. An infected Atlantic salmon parr was placed
in a bucket of clean water in order to determine the rate at which G. salaris parasites leave a
live salmon host. The experiment was run for eight hours after which the fish was removed
from the bucket and the number of G. salaris parasites infecting the it were counted. The G.
salaris parasites remaining in the bucket were also counted.

Alive 1 (after 8 hours)

Number of G. salaris on fish host 2360

Number of G. salaris off fish host (in bucket) 112

Breakdown of total G. salaris on fish host at end of trial

Dorsal fin 400

Adipose fin 40

Caudal fin 760

Anal fin 200

Pelvic fins 240

Pectoral fins 620

Body >100

Table A.11: Behaviour of G. salaris on live salmon hosts. An infected Atlantic salmon parr and an un-
infected salmon parr were placed in a bucket of clean water in order to determine the rate
at which G. salaris parasites leave a live salmon host and infect a new host. The experiment
was run for eight hours after which both fish were removed from the bucket and the num-
ber of G. salaris parasites infecting each host counted. The G. salaris parasites remaining in
the bucket were also counted.

Alive 2 (after 8 hours)

Number of G. salaris on initially infected fish host 4040

Number of G. salaris on initially uninfected fish host 57

Number of G. salaris off fish hosts (in bucket) 191

Breakdown of total G. salaris at end of trial on: initially infected fish initially uninfected fish

Dorsal fin 700 3

Adipose fin 120 2

Caudal fin 1140 18

Anal fin 260 6

Pelvic fins 620 8

Pectoral fins 1000 18

Body >200 2
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B
A P P E N D I X B

The models

Where possible, models were analysed using the standard algebraic methods (Anderson &

May, 1978; May & Anderson, 1978; Anderson & May, 1981; Murray, 2002, 2003). These ana-

lyses can be found in Appendix C. In cases where solutions could not be found analytic-

ally, numerical solutions were obtained using appropriate mathematical computer software.

Wolfram Mathematica version 8 (2008) was the package used for simulating the various

models contained in this work. Solutions in Mathematica were obtained via the ’NDSolve‘

function. The ’NDSolve‘ function is used to find numerical solutions to ordinary differential

equations.

chapter 2 : the initial models

The basic model

Following the framework set out in Anderson & May (1978) and May & Anderson (1978) the

basic model is constructed using the following assumptions:

Salmon growth

The growth of the salmon populations is determined by the reproductive rate, a, minus the

natural mortality rate, b. Both rates are assumed to be constants and density dependence is

omitted at this stage.

Gyrodactylus salaris induced salmon mortalities

If the rate of G. salaris induced salmon deaths is assumed to be linearly proportional to the

number of G. salaris parasites a salmon host harbours, with α a constant representing the

pathogenicity of parasites to hosts, then the number of salmon mortalities in a small interval

of time, δt, among salmon hosts with i parasites can be is given as αiδt. Thus, for a population

of salmon of size H(t), the total rate of loss of salmon hosts due to infection is:
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αH(t)

∞∑
i=0

ip(i)

where p(i)= the probability that a given host has i parasites. Now,

∞∑
i=0

ip(i) ≡ Et(i) =
P(t)

H(t)
= mean parasite load

⇒ αH(t)

∞∑
i=0

ip(i) = αH(t)
P(t)

H(t)

= αP(t)

Gyrodactylus salaris births

The reproductive rate of parasites is defined as µ. This gives the net rate for the total G. salaris

population as:

µH(t)

∞∑
i=0

ip(i) = µH(t)
P(t)

H(t)

= µP(t)

Gyrodactylus salaris mortality

As mentioned in the text (Chapter 2) parasites can die due to natural host deaths, parasite

induced host deaths and natural parasite deaths.

Via natural host deaths: Net rate of G. salaris mortality due to natural salmon mortality is

defined as:

bH(t)

∞∑
i=0

ip(i) = bH(t)
P(t)

H(t)

= bP(t)

Via parasite induced host deaths: Net rate of G. salaris mortality due to G. salaris induced

salmon mortality is defined as:

αH(t)

∞∑
i=0

i2p(i) = αH(t)Et(i
2)

= α
(P(t))2

H(t)
+αP(t)
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(Note: this is determined using the Poisson distribution and is discussed in Chapter 2)

Via natural parasite deaths: Net rate of G. salaris mortality due to natural causes is defined

as:

εP(t)

Hence, using the information above the basic model is defined as:

dH

dt
= (a− b)H−αP

dP

dt
= P

(
µ− ε− b−α−α

P

H

)

The density dependent hosts model

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ b+α+ sH) −α

P

H

)

chapter 3 : the detached parasites models

The detached parasites baseline model

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ b+α+ sH+ λ) −α

P

H

)
+βWH

dW

dt
= λP− σW −βWH

The detached parasites baseline model with mean parasites per host

dH

dt
= (a− b− sH)H−αMH

dM

dt
=M(µ− Γ) +βW

dW

dt
= λMH− σW −βWH

154

[ 18th September 2013 at 19:56 ]



The detached parasites baseline model with a negative binomial parasite distribution

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ b+α+ sH+ λ) −α

P

H

(k+ 1)

k

)
+βWH

dW

dt
= λP− σW −βWH

The detached parasites model

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ b+α+ sH+ λ) −α

P

H

)
+βWH

dW

dt
=

(
b+ sH+ λ+α+

αP

H

)
P− σW −βWH

chapter 4 : the leslie and ibm models

The Leslie model

Te general form of the Leslie model is given by

A =



F1 F2 F3 . . . F26

P1 0 0 . . . 0

0 P2 0 . . . 0

...
...

. . .
...

...

0 0 . . . P25 0


The Model is parameterised for the three stocks of salmon using the values given in Chapter

4, Table 4.1.
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chapter 5 : the immunity and trade-off models

The immunity model

dH

dt
= (a− b− sH)H−αP

dP

dt
= P

(
µ− (ε+ I+ b+α+ sH+ λ) −α

P

H

)
+βWH

dW

dt
=

(
b+ sH+ λ+α+

αP

H

)
P− σW −βWH

dI

dt
= m̃

P

H
− ζI

The immunity model with trade-off on host birth

dH

dt
= (â(m̃) − b− sH)H−αP

dP

dt
= P

(
µ− (ε+ I+ b+α+ sH+ λ) −α

P

H

)
+βWH

dW

dt
=

(
b+ sH+ λ+α+

αP

H

)
P− σW −βWH

dI

dt
= m̃

P

H
− ζI

where

â(m̃) = a1 −

(
(a1−a2)

(
1−

m̃−m̃2
m̃1−m̃2

)
1+

θ(m̃−m̃2)

m̃1−m̃2

)

chapter 6 : the multiple-strain models

Multiple salmon strain model

dHn

dt
=

â(m̃n) − b− s n∑
j=1

Hj

Hn −αPn

dPn

dt
= Pn

µn −

εn + In + b+α+ s

n∑
j=1

(Hj) + λ

−α
Pn

Hn

+βWHn

dW

dt
=

n∑
i=1

Pi
b+ s n∑

j=1

(Hj) + λ+α+
αPi
Hi

−βWHi

− σW

dIn

dt
= m̃n

Pn

Hn
− ζI
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Multiple salmon strain model with salmon mutations

dH1
dt

= (1−φ)â(m̃1)H1 +φâ(m̃2)H2 −

b+ s n∑
j=1

Hj

H1 −αPn
dHi
dt

= φâ(m̃i−1)Hi−1 + (1− 2φ)â(m̃i)Hi +φâ(m̃i+1)Hi+1 −

b+ s n∑
j=1

Hj

Hi −αPn
for 26i<n

dHn

dt
= φâ(m̃n−1)Hn−1 + (1−φ)â(m̃n)Hn −

b+ s n∑
j=1

Hj

Hn −αPn

dPl
dt

= Pl

µl −
εl + Il + b+α+ s

n∑
j=1

(Hj) + λ

−α
Pl
Hl

+βWHl

dW

dt
=

n∑
q=1

Pq
b+ s n∑

j=1

(Hj) + λ+α+
αPq

Hq

−βWHq

− σW

dIl
dt

= m̃l
Pl
Hl

− ζI

where

â(m̃l) = a1 −

(
(a1−a2)

(
1−

m̃l−m̃2
m̃1−m̃2

)
1+

θ(m̃l−m̃2)

m̃1−m̃2

)
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C
A P P E N D I X B

Algebraic analysis

This Appendix contains the algebraic stability analysis for the models in Chapter 3. As men-

tioned in the text, models were analysed using the standard algebraic methods (Anderson &

May, 1978; May & Anderson, 1978; Anderson & May, 1981; Murray, 2002, 2003) and in cases

where solutions could not be found analytically, numerical solutions were obtained using

Wolfram Mathematica version 8 (2008).

Equilibrium analysis

To determine whether equilibria exist for a system of equations the standard methods of ana-

lysis are followed (Anderson & May, 1978; May & Anderson, 1978; Anderson & May, 1981;

Murray, 2002, 2003) with equilibria found by setting the equations in the model to zero and

solving for H, P, W, I, etc.

Stability of equilibria

The standard methods of analysis, as outlined by Anderson & May (1978); May & Anderson

(1978); Anderson & May (1981), are employed to determine stability of equilibria. If small

perturbations from equilibrium return to said equilibrium point (when certain conditions

are met) then the system is locally stable . For each equilibrium value the resulting Jacobian

matrix is calculated. From the Jacobian, the characteristic equation and eigenvalues are ob-

tained. If the eigenvalues of the Jacobian have negative real parts then local stability of the

equilibrium value is confirmed.

chapter 2

Model A: Density dependent hosts

Equilibrium analysis

1. (H∗,P∗) = (0, 0), the trivial equilibrium with no salmon or G. salaris .
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2. (H∗,P∗) = (K, 0), the disease-free equilibrium with salmon growth in the absence of G.

salaris .

Stability analysis

General form of the Jacobian is as follows:

a− b− 2sH∗ −α

α P
∗2

H∗2 − sP
∗ µ− (ε+ b+α+ sH∗) − 2α P

∗
H∗


1. Eigenvalues of Jacobian at (0, 0) are given by,

∣∣∣∣∣∣∣
a− b−Λ −α

0 µ− ε− b−α−Λ

∣∣∣∣∣∣∣ = 0

Λ2 + [α+ 2b+ ε− (a+ µ)]Λ+ (a− b)(µ− ε− b−α) = 0 (C.1)

Hence (by the Routh-Hurwitz theorem), (0, 0) is locally stable if and only if the conditions in

(C.2) are satisfied.

a < b, µ < ε+ b+α (C.2)

2. Eigenvalues of Jacobian at (K, 0) are given by,

∣∣∣∣∣∣∣
a− b− sK−Λ −α

0 µ− ε− b− sK−α−Λ

∣∣∣∣∣∣∣ = 0

Λ2 + (2a+ ε+α− µ− b)Λ+ (b− a)(µ− a− ε−α) = 0 (C.3)

Therefore by the Routh-Hurwitz theorem (K, 0) is locally stable if and only if the inequalities

in (C.4) are satisfied.

a > b, µ < ε+ a+α (C.4)
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chapter 3

Detached parasites baseline model

Equilibrium analysis

(2.15) ⇒ 0 = (a− b− sH∗)H∗ −αP∗

P∗

H∗ =
a− b− sH∗

α
(C.5)

(3.1) ⇒ 0 = P∗
(
µ− (ε+ b+ sH∗ +α+ λ) −α

P∗

H∗

)
+βH∗W∗

(C.5) ⇒ 0 = P∗
(
µ− (ε+ b+ sH∗ +α+ λ) −α

a− b− sH∗

α

)
+βH∗W∗

0 = P∗(µ− (ε+ a+α+ λ)) +βH∗W∗

βH∗W∗ = (Γ − µ)P∗ (C.6)

where Γ = ε+ a+α+ λ

(3.2) ⇒ 0 = λP∗ − σW∗ −βH∗W∗

(C.6) ⇒ 0 = λP∗ − σW∗ − (Γ − µ)P∗

0 = (λ+ µ− Γ)P∗ − σW∗

(λ+ µ− Γ)P∗ = σW∗ (C.7)

Using (C.5), (C.6) and (C.7) we find three equilibria exist:

1. (H∗,P∗,W∗) = (0, 0, 0), the trivial equilibrium with no salmon host or G. salaris para-

sites (neither on or off hosts).

2. (H∗,P∗,W∗) = (K, 0, 0), the disease-free equilibrium with salmon population growth in

the absence of G. salaris infection.

3. (H∗,P∗,W∗) = (H∗,P∗,W∗), the coexistence equilibrium with both salmon and G.

salaris (on and off hosts) populations present.
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where,

K =
a− b

s

H∗ =
σ(Γ − µ)

β(µ− Γ + λ)
(C.8)

P∗ =
σ(Γ − µ)[rβ(µ− Γ + λ) − sσ(Γ − µ)]

αβ2(µ− Γ + λ)2
(C.9)

W∗ =
(Γ − µ)[rβ(µ− Γ + λ) − sσ(Γ − µ)]

αβ2(µ− Γ + λ)
(C.10)

and

Γ = ε+ a+α+ λ

Stability analysis

The general form of the Jacobian for equations (2.15), (3.1) and (3.2) is given as follows:


a− b− 2sH −α 0

P
(
αP
H2

− s
)
+βW µ− (ε+ b+ sH+α+ λ) − 2αP

H βH

−βW λ −σ−βH


1. Eigenvalues of Jacobian at (0, 0, 0) are given by,

∣∣∣∣∣∣∣∣∣∣∣
a− b−Λ −α 0

0 µ− (ε+ b+α+ λ) −Λ 0

0 λ −σ−Λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

which yields the characteristic equation Λ3 +AΛ2 +BΛ+C = 0, where

A = Γ − µ+ σ− 2(a− b) (C.11)

B = (a− b)(a− b− Γ + µ− 2σ) + σ(Γ − µ) (C.12)

C = σ(a− b)(a− b− Γ + µ) (C.13)

Hence, (0, 0, 0) is locally stable (by Routh-Hurwitz conditions) if and only if:

a < b, µ < ε+ a+α+ λ (C.14)

2. Eigenvalues of Jacobian at (K, 0, 0) are given by,
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∣∣∣∣∣∣∣∣∣∣∣
−a+ b−Λ −α 0

0 µ− (ε+ a+α+ λ) −Λ βK

0 λ −σ−βK−Λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

With characteristic equation Λ3 +AΛ2 +BΛ+C = 0 where

A = Γ − µ+ σ+ (a− b) +βK (C.15)

B = σ(Γ − µ) +βK(Γ − µ− λ) + (a− b)(Γ − µ+ σ+βK) (C.16)

C = σ(a− b)(σ(Γ − µ) +βK(Γ − µ− λ)) (C.17)

Hence, (K, 0, 0) is locally stable (by Routh-Hurwitz conditions) if and only if:

a > b, µ < ε+ a+α (C.18)

3. Eigenvalues of Jacobian at (H∗,P∗,W∗) are given by,

∣∣∣∣∣∣∣∣∣∣∣
a− b− 2sH∗ −Λ −α 0

P∗
(
αP∗

H∗2 − s
)
+βW∗ µ− (ε+ b+ sH∗ +α+ λ) − 2αP∗

H∗ −Λ βH∗

−βW∗ λ −σ−βH∗ −Λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

with characteristic equation Λ3 +AΛ2 +BΛ+C = 0 where

A =
sσ(Γ − µ) +βσλ+β(Γ − µ)(µ+ λ− Γ)

β(µ+ λ− Γ)
(C.19)

B =
sσ(Γ − µ)(σλ+ (Γ − µ)(µ+ λ− Γ))

β(µ+ λ− Γ)2
(C.20)

C =
σ(Γ − µ)(rβ(µ+ λ− Γ) − sσ(Γ − µ))

β(µ+ λ− Γ)
(C.21)

r = a− b

Γ = ε+ a+α+ λ

Hence, (H∗,P∗,W∗) is locally stable (by Routh-Hurwitz conditions) if and only if:

a > b, ε+ a+α+
σsλ

βr+ σs
< µ < ε+ a+α+ λ (C.22)
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Detached parasites model with mean parasites per host

Equilibrium analysis

Setting dH/dt = dM/dt = dW/dt = 0 we find the following equilibria exist:

1. (H∗,M∗,W∗) = (0, 0, 0), the trivial equilibrium with no salmon host or G. salaris para-

sites (neither on or off hosts).

2. (H∗,M∗,W∗) = (K, 0, 0), the disease-free equilibrium with salmon population growth

in the absence of G. salaris infection.

3. (H∗,M∗,W∗) = (H∗,M∗,W∗), the coexistence equilibrium with both salmon and G.

salaris (on and off hosts) populations present.

where,

H∗ = −
σ(µ− Γ)

β(µ+ λ− Γ)
(C.23)

M∗ =
rβ(µ+ λ− Γ) + sσ(µ− Γ)

αβ(µ+ λ− Γ)
(C.24)

W∗ = −
(µ− Γ)(rβ(µ+ λ− Γ) + sσ(µ− Γ))

αβ2(µ+ λ− Γ)
(C.25)

Stability analysis

The general form of Jacobian for the re-evaluated model, equations (2.15), (3.14) and (3.2), is

given by: 
a− b− 2sH−αM −αH 0

0 µ− (ε+ a+α+ λ) β

λM−βW λH −σ−βH


1. Eigenvalues of Jacobian at (0, 0, 0) are given by,

∣∣∣∣∣∣∣∣∣∣∣
a− b−Λ 0 0

0 µ− (ε+ a+α+ λ) −Λ β

0 0 −σ−Λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

with characteristic equation Λ3 +AΛ2 +BΛ+C = 0 where,
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A = Γ − µ+ σ− r (C.26)

B = σ(Γ − µ) − r(Γ + σ− µ) (C.27)

C = rσ(µ− Γ) (C.28)

2. Eigenvalues of Jacobian at (K, 0, 0) are given by,

∣∣∣∣∣∣∣∣∣∣∣
a− b− 2sK−Λ −αK 0

0 µ− (ε+ a+α+ λ) −Λ β

0 λK −σ−βK−Λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

with characteristic equation Λ3 +AΛ2 +BΛ+C = 0 where,

A = s(Γ − µ+ σ+ r) + rβ (C.29)

B = sr(Γ − µ+ σ) + r2β+ rβ(Γ − µ− λ) + sσ(Γ − µ) (C.30)

C = r(sσ(Γ − µ) + rβ(Γ − µ− λ)) (C.31)

3. Eigenvalues of Jacobian at (H∗,M∗,W∗) are given by,

∣∣∣∣∣∣∣∣∣∣∣
a− b− 2sH∗ −αM∗ −Λ −αH∗ 0

0 µ− (ε+ a+α+ λ) −Λ β

λM∗ −βW∗ λH∗ −σ−βH∗ −Λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

with characteristic equation Λ3 +AΛ2 +BΛ+C = 0 where,

A =
β[σλ+ (Γ − µ)(µ− Γ + λ)] − sσ(µ− Γ)

β(µ− Γ + λ)
(C.32)

B =
−sσ(µ− Γ)[σλ+ (Γ − µ)(µ− Γ + λ)]

β(µ− Γ + λ)2
(C.33)

C =
−σ(µ− Γ)[rβ(µ− Γ + λ) + sσ(µ− Γ)]

β(µ− Γ + λ)
(C.34)

Model B: Detached parasites

Equilibrium analysis

Equilibria exist at:
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1. (H∗,P∗,W∗) = (0, 0, 0), the trivial equilibrium with no salmon host or G. salaris para-

sites (neither on or off hosts).

2. (H∗,P∗,W∗) = (K, 0, 0), the disease-free equilibrium with salmon population growth in

the absence of G. salaris infection.

3. (H∗,P∗,W∗) = (H∗,P∗,W∗), the coexistence equilibrium with both salmon and G.

salaris (on and off hosts) populations present.

where:

H∗ =
σ(µ− (ε+ a+α+ λ))

β(ε− µ)
(C.35)

P∗ =
σ(µ− (ε+ a+α+ λ))[βr(ε− µ) − sσ(µ− (ε+ a+α+ λ))]

αβ2(ε− µ)2
(C.36)

W∗ = −
(µ− (ε+ a+α+ λ))[βr(ε− µ) − sσ(µ− (ε+ a+α+ λ))]

αβ2(ε− µ)
(C.37)

Stability analysis

1. The conditions for stability of the zero equilibrium are the same as the conditions for

the original model in Section 3.1.1.1, that is the inequalities in (3.7).

2. The conditions for (K, 0, 0) to be stable are similar to the inequalities in (3.8) found

in Section 3.1.1.2. However, due to the addition of a dead host’s parasites becoming

detached instead of dying the conditions for stability in this case are a > b and µ < ε.

3. Following the usual methods of analysis we find that the coexistence equilibrium is

stable (by Routh-Hurwitz) if and only if the following conditions are satisfied: a > b

and ε+ sσ(a+α+λ)
βr+sσ < µ < ε+ a+α+ λ
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D
A P P E N D I X D

Sensitivity analysis

In order to determine the impact of the parameter estimations obtained for use in model

simulations throughout the main chapters of this thesis (see Appendix A, Table A.1) the

sensitivity of models to the parameter values chosen was investigated.

Due to the earlier, simplistic models serving as a basis for the final model in Chapter 6,

the sensitivity to the parameter values is determined for the Leslie matrix model/individual

based models and the Model E: Multiple hosts strains with mutations.

Chapter 4 - Leslie Matrix/individual based models

For the Leslie matrix and individual based models the impact of timing of parasite 1st birth,

number of parasite births and level of parasite survival is investigated and compared with

the baseline simulations. For all simulations the dominant eigenvalue (from Leslie simula-

tions), extinction probability (from IBM simulations) and parasite density at t=35 (end of the

simulation) is recorded.

Chapter 6 - Model E: Multiple hosts strains with mutations

For the n-host strain model (Model E) the method used to determine sensitivity follows that

by Watts et al. (2009) such as to assess the magnitude of effect that individual parameter

values have on model behaviour. In order to do this each parameter value in the model is

varied, in turn, by ±10% and the resulting change in model output (given as a percentage)

recorded.

166

[ 18th September 2013 at 19:56 ]



chapter 4 - leslie matrix and individual based models

Table D.1: Sensitivity analysis of parameters used in Leslie and individual based models.

Dominant
Eigenvalue

Extinction
Probability

N at t=35

Baseline Alta 1.12 0.29 63.09

Baseline Lier 1.09 0.36 23.81

Baseline Neva 0.98 0.80 0.84

Delayed 1st birth (0.5 days)
Alta 1.10 0.40 32.65

Lier 1.08 0.48 11.36

Delayed 1st birth (1 day)
Alta 1.09 0.42 19.71

Lier 1.05 0.56 6.39

Final birth Removed
Alta 1.12 0.32 59.69

Lier 1.08 0.36 21.33

Final 2 births Removed
Alta 1.10 0.38 44.37

Lier 1.07 0.48 17.85

Final 3 births Removed
Alta 0.96 0.45 2.03

Lier 0.94 0.82 0.79

Survival rate reduced by 10%
Alta 1.03 0.62 4.21

Lier 1.01 0.76 1.67

Survival rate reduced to = Neva
Alta (10.44%) 1.03 0.64 3.72

Lier (6.30%) 1.04 0.64 4.60
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chapter 6 - model e - multiple host strains (with mutations)

Table D.2: Sensitivity of θ in time to initial 60% salmon recovery. φ = 0.0001.

% change from baseline value. Time to initial 60% recovery.

Number of Salmon strains θ = -0.63 (baseline value + 10%) θ = -0.77 (baseline value - 10%)

2 0.00 0.00

3 -0.82 1.23

4 -1.19 1.58

5 -1.54 1.92

10 -2.76 2.41

25 -5.94 7.69

Table D.3: Sensitivity of θ in time to initial 60% salmon recovery. φ = 0.0001.

Time to initial 60% recovery (years). % change from baseline values

Number of Salmon strains θ = -0.6 θ = -0.8

2 0.00 0.00

3 -1.23 1.65

4 -1.59 2.58

5 -1.92 2.38

10 -4.14 4.14

25 -8.04 11.53
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Table D.4: Sensitivity analysis of the parameters used in Model E - Multiple host strains (with mutations). The percentage change in model predictions of Atlantic salmon (total all
strains) and G. salaris (total attached and detached) densities after altering individual parameter estimations by ±10% are given. The percentage change in model predictions
of time to 60% recovery is also given.

Parameter Change in salmon density Change in attached G. salaris density Change in time to recovery
a+ 4.027 5.105 1.877

b+ -0.021 -0.021 0.171

µ+ -0.096 17.954 -2.048

ε+ 0.043 -7.5331 1.195

α+ -0.051 -0.440 0.341

β+ -0.001 0.068 0.512

λ+ -0.001 0.444 0.000

σ+ 0.001 -0.188 -0.683

m̃+ -0.308 -8.973 0.171

ζ+ -0.051 9.512 0.000

s+ -9.090 -9.159 2.218

a− -3.469 -67.787 -70.137

b− 0.021 0.021 -0.341

µ− -0.035 37.949 3.242

ε− -0.045 8.340 -1.195

α− 0.051 0.526 -0.512

β− 0.001 -0.083 -0.683

λ− -0.000 -0.108 -0.171

σ− -0.001 0.189 0.512

m̃− 0.331 10.988 -0.341

ζ− 0.051 -9.523 -0.171

s− 11.110 11.194 -2.048
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E
A P P E N D I X E

Selected Mathematica code

This Appendix contains selected Mathematica source code written and used throughout the

research in the main text. A working example of the code used in each chapter is provided.

Notes and comments made within the Mathematica source code are highlighted by (* *).

chapter 2

The source code for models in Chapter 2 has been omitted as it follows the techniques used

in the more complicated models in Chapter 3. Please refer to Chapter 3 source code for

examples of zero and disease-free equilibria analysis and simulation.

chapter 3

Model B: Detached parasites in the external environment

(* CODE USED FOR CHECKING ANALYSIS DONE BY HAND *)

(* Equations for hosts *)

I1[H,P,W]=(a−b−s∗H)∗H−α∗P;

(* Equations for parasites *)

I2[H,P,W]= β*W*H+P*(µ−(ε+b+s∗H+α+ λ)−(α∗P/H));

(* Equations for detached parasites *)

I3[H,P,W]=(b+s∗H+α+((α∗P)/H)+λ)∗P−σ∗W−β∗W∗H;

(* Find equilibria *)

eqmI=Solve[{I1[H,P,W]==0,I2[H,P,W]==0,I3[H,P,W]==0},{H,P,W}];

simpI=Simplify[eqmI]

(* Jacobian *)

jacI={ {∂HI1[H,P,W],∂PI1[H,P,W],∂WI1[H,P,W]},

{∂HI2[H,P,W],∂PI2[H,P,W],∂WI2[H,P,W]},
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{∂HI3[H,P,W],∂PI3[H,P,W],∂WI3[H,P,W]}}

(* Characteristic Equation *)

CPI=CharacteristicPolynomial[{jacI},Λ];

(* Solve C.E for equilibria *)

Print["(0,0,0)"]

subscpI0=Collect[{CPI}/.{H→ 0,P→ 0,W→ 0},Λ]

Print["(K,0,0)"]

subscpIKK=Collect[{CPI}/.{simpI[[1]]},Λ]

Print["(H,P,W)"]

subscpIC1=Collect[{CPI}/.{simpI[[2]]},Λ]

(* CODE USED FOR RUNNING SIMULATIONS *)

(* Parameter values *)

(* Alter depending on conditions for stability at (0,0,0), (K,0,0), (H,P,W) *)

a1=2.0; b1=4.0; ε1=0.5; µ1=4; α1=0.5; s1=0.01; λ1=2; β1=0.05; σ1=5; ans=.;

(* Simulate the model using NDSolve *)

ans=NDSolve[{

H1’[t1]==(a1−b1−s1∗H1[t1])∗H1[t1]−α1∗P1[t1],

P1’[t1]==β1∗W1[t1]∗H1[t1]+P1[t1]∗(µ1−(α1+b1+ε1+s1∗H1[t1]+λ1)−α1∗P1[t1]/H1[t1]),

W1’[t1]==(b1+s1∗H1[t1]+α1+((α1∗P1[t1])/H1[t1])+λ1)∗P1[t1]−σ1∗W1[t1]−β1∗W1[t1]∗H1[t1],

H1[0]==100,P1[0]==50,W1[0]==10},{H1,P1,W1},{t1,0,1000},Method→ StiffnessSwitching];

(* Plot results *)

(* Plot H results only *)

Plot[H1[t1]/.ans,{t1,0,5},PlotRange→ Full,AxesLabel→ {time,H},AxesOrigin→ {0,0}];

(* Plot P results only *)

Plot[P1[t1]/.ans,{t1,0,5},PlotRange→ Full,AxesLabel→ {time,P},AxesOrigin→ {0,0}];

(* Plot W results only *)

Plot[W1[t1]/.ans,{t1,0,5},PlotRange→ Full,AxesLabel→ {time,W},AxesOrigin→ {0,0}];

(* Plot H, P, W results together *)

Plot[{H1[t1]/.ans,P1[t1]/.ans,W1[t1]/.ans},{t1,0,10},PlotRange→ Full,AxesOrigin→

{0,0},AxesLabel→ {Time,Number of Hosts, Parasites},
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PlotStyle->{Black,{Dashed,Red},{Dotted,Blue}}]

(* Find number of hosts/parasites at a given time point (in days) *)

Print[H1[50]/.ans]

Print[P1[50]/.ans]

Print[W1[50]/.ans]

The code that follows allows the user to simulate the model then alter each parameter value

independently via the use of sliding bars (see screenshot).

Manipulate[

With[{ans=

NDSolve[{

H’[t]==(a−b−s∗H[t])∗H[t]−α∗P[t],

P’[t]== β∗W[t]∗H[t]+P[t]∗(µ−(α+b+ε+s∗H[t]+λ)−α∗P[t]/H[t]),

W’[t]==(b+s∗H[t]+α+((α∗P[t])/H[t])+λ)∗P[t]−σ∗W[t]−β∗W[t]∗H[t],

H[0]==Evaluate@h,P[0]==Evaluate@p,W[0]==Evaluate@w},{H,P,W},{t,0,1000},

Method→ StiffnessSwitching]},

Plot[{H[t]/.ans,P[t]/.ans,W[t]/.ans},{t,0,Evaluate@d},PlotRange→ {{0,Evaluate@d},Full},

PlotStyle→{Thick,{Dashed,Thick,Red},{Dotted,Thick,Darker[Green,0.6]}},

AxesOrigin→ {0,0},AxesLabel→ {time,Hosts & Parasites}]],

(* Parameter values of the form {{parameter, initial value} min value, max value} *)

{{a,4},0,10},{{b,2},0,10},{{ε ,0.5},0,10},{{µ,7},0,10},{{α,0.5},0,10},

{{σ,5},0,10},{{s,0.01},0,10},{{λ,2},0,10},{{β,0.05},0,10},

{{h,100},0,500},{{p,1},0,500},{{w,0},0,500},{{d,10},0.1,1000}]

Figure E.1: Screenshot of plot generated with user alterable parameter values
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chapter 4

This section includes Mathematica code for the Leslie and individual based model simula-

tions for parasites infecting Alta stocks of Atlantic salmon. Both these methods where com-

piled in one notebook to allow comparison of results from the two methods.

(* Survival Rates*)

p2=(0.5)∧(1/7.9); (* for Leslie sims *)

pb=1−p2; (* for IBM sims *)

(* INITIAL CONDITIONS *)

initialparasites=1;

(* for Leslie models *)

poptimep1=.;p0=1;

poptimep10={{initialparasites},{0},{0},{0},{0},{0},{0},{0},

{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},

{0},{0},{0},{0}};

(* for individual based models *)

stage1[0]=initialparasites;stage1b[0]=0;stage2[0]=0;stage2b[0]=0;stage3[0]=0;

stage4[0]=0;stage5[0]=0;stage6[0]=0;stage7[0]=0;stage8[0]=0;stage9[0]=0;

stage9b[0]=0;stage10[0]=0;stage10b[0]=0;stage11[0]=0;stage12[0]=0;stage13[0]=0;

stage14[0]=0;stage15[0]=0;stage16[0]=0;stage16b[0]=0;stage17[0]=0;stage17b[0]=0;

stage18[0]=0;stage19[0]=0;stage20[0]=0;stage21[0]=0;stage22[0]=0;

stage22b[0]=0;stage23[0]=0;stage23b[0]=0;stage24[0]=0;stage25[0]=0;

TOTALpop[0]=stage1[0]+stage2[0]+stage3[0]+stage4[0]+stage5[0]+stage6[0]+stage7[0]+

stage8[0]+stage9[0]+stage10[0]+stage11[0]+stage12[0]+stage13[0]+stage14[0]+

stage15[0]+stage16[0]+stage17[0]+stage18[0]+stage19[0]+stage20[0]+stage21[0]+

stage22[0]+stage23[0]+stage24[0]+stage25[0];

(* PARASITE BIRTHS *)

pa1=0;pa2=1;pa3=0;pa4=0;pa5=0;pa6=0;pa7=0;pa8=0;pa9=0;pa10=0;

pa11=0;pa12=0;pa13=0;pa14=0;pa15=0;pa16=0;pa17=0;pa18=0;pa19=0;pa20=0;

pa21=0;pa22=0;pa23=0;pa24=0;pa25=0;

(* PARASITE DEATHS *)
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(* rb=(-log[1-P])/t1, pb=1-Exp[rb*t2],

where P is 50% (0.5) since after 7.9 days only 50% of the population is still alive,

t1 is the 50% survival time (7.9 days for Alta)

and t2 is 1 (to convert to a daily probability 1 day) *)

(* rb=(-Log[1-0.5])/7.9;Print["mortality rate per day rb= ",rb//N]

pb=(1-Exp[-rb*1])//N;Print["prob of mortality per day pb= ",pb//N] *)

Print["prob of mortality per day pb= " ,pb//N]

(* LENGTH & NUMBER OF SIMULATIONS *)

end=30; (* how long a single simulation lasts (in days) *)

LeslieEnd=end−1;

ender=50; (* Number of simulations for IBMs *)

(* BOUNDS - for IBM simulations *)

e0=1;e1=stage1[t-1];e2=e1+stage2[t-1];e3=e2+stage3[t-1];e4=e3+stage4[t-1];

e5=e4+stage5[t-1];e6=e5+stage6[t-1];e7=e6+stage7[t-1];e8=e7+stage8[t-1];

e9=e8+stage9[t-1];e10=e9+stage10[t-1];e11=e10+stage11[t-1];e12=e11+stage12[t-1];

e13=e12+stage13[t-1];e14=e13+stage14[t-1];e15=e14+stage15[t-1];e16=e15+stage16[t-1];

e17=e16+stage17[t-1];e18=e17+stage18[t-1];e19=e18+stage19[t-1];e20=e19+stage20[t-1];

e21=e20+stage21[t-1];e22=e21+stage22[t-1];e23=e22+stage23[t-1];e24=e23+stage24[t-1];

e25=e24+stage25[t-1];

(* IBM SIMULATIONS START HERE *)

Print[*START*];Print["-------------"];

Do[

pa1=0;pa2=0;pa9=0;pa10=0;pa16=0;pa17=0;pa22=0;pa23=0;

Print["SIMULATION [",m,"] X"]

(* Print["stage1[0]=",stage1[0]];Print["***stage1b[0]=",stage1b[0]];

Print["stage2[0]=",stage2[0]];Print["stage3[0]=",stage3[0]];

Print["stage4[0]=",stage4[0]];Print["stage5[0]=",stage5[0]];

Print["stage6[0]=",stage6[0]];Print["stage7[0]=",stage7[0]];

Print["stage8[0]=",stage8[0]];Print["stage9[0]=",stage9[0]];

Print["stage10[0]=",stage10[0]];Print["stage11[0]=",stage11[0]];

Print["stage12[0]=",stage12[0]];Print["stage13[0]=",stage13[0]];

Print["stage14[0]=",stage14[0]];Print["stage15[0]=",stage15[0]];
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Print["stage16[0]=",stage16[0]];Print["stage17[0]=",stage17[0]];

Print["stage18[0]=",stage18[0]];Print["stage19[0]=",stage19[0]];

Print["stage20[0]=",stage20[0]];Print["stage21[0]=",stage21[0]];

Print["stage22[0]=",stage22[0]];Print["stage23[0]=",stage23[0]];

Print["stage24[0]=",stage24[0]];Print["stage25[0]=",stage25[0]];

Print["TOTALpop[0]=",TOTALpop[0]];

Print["-------------"]; *)

Do[(* Print["e0=",e0,", e1=",e1,", e2=",e2," e3=",e3,", e4=",e4,",

e5=",e5,", e6=",e6,", e7=",e7,", e8=",e8,", e9=",e9,", e10=",e10]; *)

Do[rndnod2[u]=RandomReal[];

(*Print["rndnod2[",u,"]=",rndnod2[u]]*),{u,stage1[t-1]}];

(*Print["-------------"];*)

Do[rndnod3[u]=RandomReal[];

(*Print["rndnod3[",u,"]=",rndnod3[u]]*),{u,stage9[t-1]}];

(*Print["-------------"];*)

Do[rndnod4[u]=RandomReal[];

(*Print["rndnod4[",u,"]=",rndnod4[u]]*),{u,stage16[t-1]}];

(*Print["-------------"];*)

Do[rndnod5[u]=RandomReal[];

(*Print["rndnod5[",u,"]=",rndnod5[u]]*),{u,stage22[t-1]}];

(*Print["-------------"];*)

Do[If[rndnod2[l]<0.15,pa1=1],{l,stage1[t-1]}];

Do[If[rndnod2[l]>0.15,stage1b[t-1]=stage1b[t-1]-1],{l,stage1b[t-1]}];

If[stage1[t]6 0,stage1[t]=0];

If[stage1b[t]6 0,stage1b[t]=0];

Do[If[rndnod2[l]>0.15,pa2=1],{l,stage1[t-1]}];

Do[If[rndnod2[l]<0.15,stage2b[t-1]=stage2b[t-1]-1],{l,e1+1,e2}];

If[stage2b[t]6 0,stage2b[t]=0];

stage1[t]=pa1*stage1b[t-1]+pa2*stage2b[t-1]+pa3*stage3[t-1]+pa4*stage4[t-1]+

pa5*stage5[t-1]+pa6*stage6[t-1]+pa7*stage7[t-1]+pa8*stage8[t-1]+

pa9*stage9b[t-1]+pa10*stage10b[t-1]+pa11*stage11[t-1]+pa12*stage12[t-1]+

pa13*stage13[t-1]+pa14*stage14[t-1]+pa15*stage15[t-1]+pa16*stage16b[t-1]+
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pa17*stage17b[t-1]+pa18*stage18[t-1]+pa19*stage19[t-1]+pa20*stage20[t-1]+

pa21*stage21[t-1]+pa22*stage22b[t-1]+pa23*stage23b[t-1]+pa24*stage24[t-1]+

pa25*stage25[t-1];

stage1b[t]=pa1*stage1b[t-1]+pa2*stage2[t-1]+pa3*stage3[t-1]+pa4*stage4[t-1]+

pa5*stage5[t-1]+pa6*stage6[t-1]+pa7*stage7[t-1]+pa8*stage8[t-1]+

pa9*stage9[t-1]+pa10*stage10[t-1]+pa11*stage11[t-1]+pa12*stage12[t-1]+

pa13*stage13[t-1]+pa14*stage14[t-1]+pa15*stage15[t-1]+pa16*stage16[t-1]+

pa17*stage17[t-1]+pa18*stage18[t-1]+pa19*stage19[t-1]+pa20*stage20[t-1]+

pa21*stage21[t-1]+pa22*stage22[t-1]+pa23*stage23[t-1]+pa24*stage24[t-1]+

pa25*stage25[t-1];

stage2[t]=stage1[t-1];stage2b[t]=stage1[t-1];stage3[t]=stage2[t-1];

stage4[t]=stage3[t-1];stage5[t]=stage4[t-1];stage6[t]=stage5[t-1];

stage7[t]=stage6[t-1];stage8[t]=stage7[t-1];stage9[t]=stage8[t-1];

stage9b[t]=stage8[t-1];stage10[t]=stage9[t-1];stage10b[t]=stage9[t-1];

stage11[t]=stage10[t-1];stage12[t]=stage11[t-1];stage13[t]=stage12[t-1];

stage14[t]=stage13[t-1];stage15[t]=stage14[t-1];stage16[t]=stage15[t-1];

stage16b[t]=stage15[t-1];stage17[t]=stage16[t-1];stage17b[t]=stage16[t-1];

stage18[t]=stage17[t-1];stage19[t]=stage18[t-1];stage20[t]=stage19[t-1];

stage21[t]=stage20[t-1];stage22[t]=stage21[t-1];stage22b[t]=stage21[t-1];

stage23[t]=stage22[t-1];stage23b[t]=stage22[t-1];stage24[t]=stage23[t-1];

stage25[t]=stage24[t-1];stage26[t]=stage25[t-1];

Do[rndnod[i]=RandomReal[];

(*Print["rndnod[",i,"]=",rndnod[i]]*),i,1,TOTALpop[t-1]];

(*Print["-------------"];*)

Do[If[rndnod[j]<pb,stage2[t]=stage2[t]-1],{j,e0,e1}];

If[stage2[t]6 0,stage2[t]=0];

Do[If[rndnod[j]<pb,stage2b[t]=stage2b[t]-1],{j,e0,e1}];

Do[If[rndnod[j]<pb,stage3[t]=stage3[t]-1],{j,e1+1,e2}];

If[stage3[t]6 0,stage3[t]=0];

Do[If[rndnod[j]<pb,stage4[t]=stage4[t]-1],{j,e2+1,e3}];

If[stage4[t]6 0,stage4[t]=0];
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Do[If[rndnod[j]<pb,stage5[t]=stage5[t]-1],{j,e3+1,e4}];

If[stage5[t]6 0,stage5[t]=0];

Do[If[rndnod[j]<pb,stage6[t]=stage6[t]-1],{j,e4+1,e5}];

If[stage6[t]6 0,stage6[t]=0];

Do[If[rndnod[j]<pb,stage7[t]=stage7[t]-1],{j,e5+1,e6}];

If[stage7[t]6 0,stage7[t]=0];

Do[If[rndnod[j]<pb,stage8[t]=stage8[t]-1],{j,e6+1,e7}];

If[stage8[t]6 0,stage8[t]=0];

Do[If[rndnod[j]<pb,stage9[t]=stage9[t]-1],{j,e7+1,e8}];

If[stage9[t]6 0,stage9[t]=0];

Do[If[rndnod3[l]<0.95,pa9=1],{l,stage9[t-1]}];

Do[If[rndnod3[l]>0.95,stage9b[t]=stage9b[t]-1],{l,e7+1,e8}];

Do[If[rndnod[j]<pb,stage9b[t]=stage9b[t]-1],{j,e7+1,e8}];

If[stage9b[t]6 0,stage9b[t]=0];

Do[If[rndnod[j]<pb,stage10[t]=stage10[t]-1],{j,e8+1,e9}];

If[stage10[t]6 0,stage10[t]=0];

Do[If[rndnod3[l]>0.95,pa10=1],{l,stage9[t-1]}];

Do[If[rndnod3[l]<0.95,stage10b[t]=stage10b[t]-1],{l,e8+1,e9}];

Do[If[rndnod[j]<pb,stage10b[t]=stage10b[t]-1],{j,e8+1,e9}];

If[stage10b[t]6 0,stage10b[t]=0];

Do[If[rndnod[j]<pb,stage11[t]=stage11[t]-1],{j,e9+1,e10}];

If[stage11[t]6 0,stage11[t]=0];

Do[If[rndnod[j]<pb,stage12[t]=stage12[t]-1],{j,e10+1,e11}];

If[stage12[t]6 0,stage12[t]=0];

Do[If[rndnod[j]<pb,stage13[t]=stage13[t]-1],{j,e11+1,e12}];

If[stage13[t]6 0,stage13[t]=0];

177

[18th September 2013 at 19:56]



Do[If[rndnod[j]<pb,stage14[t]=stage14[t]-1],{j,e12+1,e13}];

If[stage14[t]6 0,stage14[t]=0];

Do[If[rndnod[j]<pb,stage15[t]=stage15[t]-1],{j,e13+1,e14}];

If[stage15[t]6 0,stage15[t]=0];

Do[If[rndnod[j]<pb,stage16[t]=stage16[t]-1],{j,e14+1,e15}];

If[stage16[t]6 0,stage16[t]=0];

Do[If[rndnod4[l]>0.6,pa16=1],{l,stage16[t-1]}];

Do[If[rndnod4[l]<0.6,stage16b[t]=stage16b[t]-1],{l,e14+1,e15}];

Do[If[rndnod[j]<pb,stage16b[t]=stage16b[t]-1],{j,e14+1,e15}];

If[stage16b[t]6 0,stage16b[t]=0];

Do[If[rndnod[j]<pb,stage17[t]=stage17[t]-1],{j,e15+1,e16}];

If[stage17[t]6 0,stage17[t]=0];

Do[If[rndnod4[l]<0.6,pa17=1],{l,stage16[t-1]}];

Do[If[rndnod4[l]>0.6,stage17b[t]=stage17b[t]-1],{l,e15+1,e16}];

Do[If[rndnod[j]<pb,stage17b[t]=stage17b[t]-1],{j,e15+1,e16}];

If[stage17b[t]6 0,stage17b[t]=0];

Do[If[rndnod[j]<pb,stage18[t]=stage18[t]-1],{j,e16+1,e17}];

If[stage18[t]6 0,stage18[t]=0];

Do[If[rndnod[j]<pb,stage19[t]=stage19[t]-1],{j,e17+1,e18}];

If[stage19[t]6 0,stage19[t]=0,stage19[t]=stage19[t]];

Do[If[rndnod[j]<pb,stage20[t]=stage20[t]-1],{j,e18+1,e19}];

If[stage20[t]6 0,stage20[t]=0,stage20[t]=stage20[t]];

Do[If[rndnod[j]<pb,stage21[t]=stage21[t]-1],{j,e19+1,e20}];

If[stage21[t]6 0,stage21[t]=0];

Do[If[rndnod[j]<pb,stage22[t]=stage22[t]-1],{j,e20+1,e21}];

If[stage22[t]6 0,stage22[t]=0];
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Do[If[rndnod5[l]>0.5,pa22=1],{l,stage22[t-1]}];

Do[If[rndnod5[l]<0.5,stage22b[t]=stage22b[t]-1],{l,e20+1,e21}];

Do[If[rndnod[j]<pb,stage22b[t]=stage22b[t]-1],{j,e20+1,e21}];

If[stage22b[t]6 0,stage22b[t]=0];

Do[If[rndnod[j]<pb,stage23[t]=stage23[t]-1],{j,e21+1,e22}];

If[stage23[t]6 0,stage23[t]=0];

Do[If[rndnod5[l]<0.5,pa23=1],{l,stage22[t-1]}];

Do[If[rndnod5[l]>0.5,stage23b[t]=stage23b[t]-1],{l,e21+1,e22}];

Do[If[rndnod[j]<pb,stage23b[t]=stage23b[t]-1],{j,e21+1,e22}];

If[stage23b[t]6 0,stage23b[t]=0];

Do[If[rndnod[j]<pb,stage24[t]=stage24[t]-1],{j,e22+1,e23}];

If[stage24[t]6 0,stage24[t]=0];

Do[If[rndnod[j]<pb,stage25[t]=stage25[t]-1],{j,e23+1,e24}];

If[stage25[t]6 0,stage25[t]=0,stage25[t]=0];

TOTALpop[t]=stage1[t]+stage2[t]+stage3[t]+stage4[t]+stage5[t]+stage6[t]+

stage7[t]+stage8[t]+stage9[t]+stage10[t]+stage11[t]+stage12[t]+stage13[t]+

stage14[t]+stage15[t]+stage16[t]+stage17[t]+stage18[t]+stage19[t]+stage20[t]+

stage21[t]+stage22[t]+stage23[t]+stage24[t]+stage25[t]

(* Print["stage1[",t,"]=",stage1[t]];Print["***stage1b[",t,"]=",stage1b[t]];

Print["stage2[",t,"]=",stage2[t]];Print["stage3[",t,"]=",stage3[t]];

Print["stage4[",t,"]=",stage4[t]];Print["stage5[",t,"]=",stage5[t]];

Print["stage6[",t,"]=",stage6[t]];Print["stage7[",t,"]=",stage7[t]];

Print["stage8[",t,"]=",stage8[t]];Print["stage9[",t,"]=",stage9[t]];

Print["stage10[",t,"]=",stage10[t]];Print["stage11[",t,"]=",stage11[t]];

Print["stage12[",t,"]=",stage12[t]];Print["stage13[",t,"]=",stage13[t]];

Print["stage14[",t,"]=",stage14[t]];Print["stage15[",t,"]=",stage15[t]];

Print["stage16[",t,"]=",stage16[t]];Print["stage17[",t,"]=",stage17[t]];

Print["stage18[",t,"]=",stage18[t]];Print["stage19[",t,"]=",stage19[t]];

Print["stage20[",t,"]=",stage20[t]];Print["stage21[",t,"]=",stage21[t]];

Print["stage22[",t,"]=",stage22[t]];Print["stage23[",t,"]=",stage23[t]];

Print["stage24[",t,"]=",stage24[t]];Print["stage25[",t,"]=",stage25[t]];
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Print["TOTALpop[",t,"]=",TOTALpop[t]];

Print["-------------"]; *)

,{t,1,end}];

gs[m]=Table[TOTALpop[t],{t,0,end-1}]

(*;Print["Gyro[",m,"]=",gs[m]]*),

{m,1,ender}];

Print["-------------"];

Print["*END*"];(* END OF IBM SIMULATIONS *)

(* COMPILE SIMULATION RESULTS INTO A TABLE *)

GsTable=Table[gs[h],{h,1,ender}];

(* GIVE SIMULATION RESULTS IN MATRIX FORM *)

GsMatrix=MatrixForm[%]; Print["GsMatrix=",GsMatrix];

Print["prob of mortality per day pb= ",pb//N]

(* PLOT IBM RESULTS *)

IBMSIM=ListPlot[GsTable,PlotRange→ {{0,Full},{0,(*60*)Full}},AxesOrigin→ {0,0},

Joined->True,PlotStyle→ Gray,AxesLabel→ {"time (days)","No. G. salaris"}]

avtot=Total[GsTable];

GsMean=avtot/ender;

Print[N[GsMean]];

(* PLOT MEAN IBM RESULT *)

ListPlot[GsMean,AxesOrigin→ {0,0},Joined→True,

AxesLabel→ {"time (days)","No. G. salaris"}]

(* LESLIE SIMULATIONS START HERE *)

Print["p2=",p2];

P=p2;

A=0.15;a=0.85;B=0.95;b=0.05;C=0.6;c=0.4;D=0.5;d=0.5;

lesALTA = {

180

[18th September 2013 at 19:56]



{A, a, 0, 0, 0, 0, 0, 0, B, b, 0, 0, 0, 0, 0, C, c, 0, 0, 0, 0, D, d, 0, 0, 0},

{P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, P, 0}

};

total2={};stage1={};stage2={};stage3={};stage4={};stage5={};stage6={};

stage7={};stage8={};stage9={};stage10={};stage11={};stage12={};stage13={};

stage14={};stage15={};stage16={};stage17={};stage18={};stage19={};stage20={};

stage21={};stage22={};stage23={};stage24={};

stage25={};stage26={};

Do[poptimep1=.;poptimep1=MatrixPower[lesALTA,time].poptimep10;

totalpop=poptimep1[[1]]+poptimep1[[2]]+poptimep1[[3]]+poptimep1[[4]]+

poptimep1[[5]]+poptimep1[[6]]+poptimep1[[7]]+poptimep1[[8]]+poptimep1[[9]]+

poptimep1[[10]]+poptimep1[[11]]+poptimep1[[12]]+poptimep1[[13]]+poptimep1[[14]]+

poptimep1[[15]]+poptimep1[[16]]+poptimep1[[17]]+poptimep1[[18]]+poptimep1[[19]]+

poptimep1[[20]]+poptimep1[[21]]+poptimep1[[22]]+poptimep1[[23]]+poptimep1[[24]]+
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poptimep1[[25]]+poptimep1[[26]];total2=Append[total2,totalpop[[1]]];

stage1=Append[stage1,poptimep1[[1]]];stage2=Append[stage2,poptimep1[[2]]];

stage3=Append[stage3,poptimep1[[3]]];stage4=Append[stage4,poptimep1[[4]]];

stage5=Append[stage5,poptimep1[[5]]];stage6=Append[stage6,poptimep1[[6]]];

stage7=Append[stage7,poptimep1[[7]]];stage8=Append[stage8,poptimep1[[8]]];

stage9=Append[stage9,poptimep1[[9]]];stage10=Append[stage10,poptimep1[[10]]];

stage11=Append[stage11,poptimep1[[11]]];stage14=Append[stage14,poptimep1[[14]]];

stage15=Append[stage15,poptimep1[[15]]];stage12=Append[stage12,poptimep1[[12]]];

stage13=Append[stage13,poptimep1[[13]]];stage16=Append[stage16,poptimep1[[16]]];

stage17=Append[stage17,poptimep1[[17]]];stage18=Append[stage18,poptimep1[[18]]];

stage19=Append[stage19,poptimep1[[19]]];stage20=Append[stage20,poptimep1[[20]]];

stage21=Append[stage21,poptimep1[[21]]];stage22=Append[stage22,poptimep1[[22]]];

stage23=Append[stage23,poptimep1[[23]]];stage24=Append[stage24,poptimep1[[24]]];

stage25=Append[stage25,poptimep1[[25]]];stage26=Append[stage26,poptimep1[[26]]]

,{time,0,LeslieEnd}];

(* PRINT OUT TOTAL PARASITES ALIVE IN EACH STAGE OF LESLIE SIMULATION *)

Print["Total2 = ",total2];

(* Print["stage1 ",stage1];Print["stage2 ",stage2];Print["stage3 ",stage3];

Print["stage4 ",stage4];Print["stage5 ",stage5];Print["stage6 ",stage6];

Print["stage7 ",stage7];Print["stage8 ",stage8];Print["stage9 ",stage9];

Print["stage10 ",stage10];Print["stage11 ",stage11];Print["stage12 ",stage12];

Print["stage13 ",stage13];Print["stage14 ",stage14];Print["stage15 ",stage15];

Print["stage16 ",stage16];Print["stage17 ",stage17];Print["stage18 ",stage18];

Print["stage19 ",stage19];Print["stage20 ",stage20];Print["stage21 ",stage21];

Print["stage22 ",stage22];Print["stage23 ",stage23];Print["stage24 ",stage24]; *)

(* END OF LESLIE SIMULATIONS *)

(* PLOT LESLIE RESULTS *)

LesSIM=ListPlot[total2,Joined→ True,PlotRange→ {{0,Full},{0,Full}},AxesOrigin→

{0,0},PlotStyle→ {Thick,Black},PlotRange→ Full(*,PlotLabel→ Mean IBM*),AxesLabel→

{"time (days)","No. G. salaris"}]

(* EIGENVALUES OF LESLIE MATRIX *)

Print["Eigenvalues=",Eigenvalues[lesALTA]]
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(* PLOT LESLIE AND MEAN IBM TRAJECTORIES *)

Show[ListPlot[GsMean,AxesOrigin→ {0,0},Joined->True,PlotStyle→ {Thick,Gray,Dashed},

AxesLabel→ {"time (days)","No. G. salaris"}],LesSIM]

(*PLOT LESLIE AND IBM RESULTS*)

Show[IBMSIM,LesSIM,PlotLabel→ "Atlantic salmon (Alta) strain"]

(* CALCULATE EXTINCTION PROBABILITY *)

Print["Number of parasites alive at end of simulation: ",

extinctionprob=Table[GsTable[[l,end]],{l,1,ender}]]

expb=0;

Do[If[extinctionprob[[h]]>0,expb=expb,expb=expb+1],{h,1,ender}];

Print["Number of zeros = ",expb]

Print["Extinction Probability = ",expb/ender//N]

chapter 5

(* Model B with immunity and trade-off *)

ans3=.;

Manipulate[

With[{ans3=NDSolve[{

H’[t]==(â-b-s*H1[t])*H[t]-α*P[t],

P’[t]==β*W[t]*H[t]+P[t]*(µ-(α+b+ε+I[t]+s*H[t]+λ)-α*P[t]/H[t]),

W’[t]==(b+s*H[t]+α+((α*P[t])/H[t])+λ)*P[t]-σ*W[t]-β*W[t]*H[t],

I’[t]==m̃*(P[t]/H[t])-ζ*I[t],

H[0]==Evaluate@h,P[0]==Evaluate@p,W[0]==Evaluate@w,I[0]==Evaluate@i,

{H,P,W,I,{t,0,1000}]},

Show[

Plot[{H[t]/.ans3,P[t]/.ans3,W[t]/.ans3,I[t]/.ans3,{t,0,Evaluate@1000},

PlotRange→{{0,Evaluate@x},{0,Evaluate@y}},

PlotStyle→{{Thick,Blue},{Dashed,Thick,Blue},{Dotted,Thick,Darker[Green,0.6]},

{Thick,Dashed,Gray}},AxesOrigin→ {0,0},AxesLabel→ {time,Hosts & Parasites}],

ListPlot[{{0,150},{1000,150}}, Joined→ True,PlotStyle→ {Black,Dotted}]]],
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{{â,0.02-0.112*m̃},0,2},{{b,0.005},0,2},{{s,0.0001},0,2},{{β,0.05},0,2},

{{ε,0.08},0,2},{{µ,0.19},0,2},{{α,0.02},0,2},{{σ,0.24},0,2},{{λ ,0.1},0,2},

{{m̃,0},0,10},{{ζ,0.005494505},0,1},

{{h,100},0,500},{{p,50},0,500},{{i,0},0,100},{{x,500},0,1000},{{y,200},0,5000}]

chapter 6

ans=.;

ans2=.;

Hplot=.;

Pplot=.;

Wplot=.;

Iplot=.;

Hplot2=.;

Pplot2=.;

Wplot2=.;

Iplot2=.;

max=25;(* NUMBER OF HOST STRAINS *)

years=1000; (* NUMBER OF SIMULATION YEARS *)

Gsyears=25; (* YEARS AFTER WHICH Gs IS ADDED TO SIMULATION*)

StepsMax=years*365;

Gsadded=Gsyears*365;

Ktab=Table[Kn=(an-b)/s,{n,1,max }]; (*CARRYING CAPACITIES FOR EACH HOST STRAIN*)

(* HOST EQUATIONS *)

Htab=Table[Hn’[t]==Piecewise[{{(1-φ)*an*Hn[t]+φ*an+1*Hn+1[t],n-1<1},

{φ*an−1*Hn−1[t]+(1-φ)*an*Hn[t],n+1>max}},φ*an−1*Hn−1[t]+(1-2*φ)*an*Hn[t]

+φ*an+1*Hn+1[t]]-(b+s*(Sum[Hj[t],{j,max}]))*Hn[t]-α*Pn[t],{n,1,max}]

(* ATTACHED PARASITE EQUATIONS *)

Ptab=Table[Pn’[t]==β *W[t]*Hn[t]+Pn[t]*(µn-(α +b+εn+I1n[t]+s*(Sum[Hj[t],{j,max}])+λ)

-α*Pn[t]/Hn[t]),{n,1,max }]

(* DETACHED PARASITE EQUATIONS *)

Wtab=Table[W’[t]==Sum[Pi[t]*(b+s*(Sum[Hj[t],{j,max }])

+α +λ+((α*Pi[t])/Hi[t])),{i,max}]

-σ*W[t]-β*W[t]*(Sum[Hj[t],{j,max}]),{n,1}]

(* IMMUNITY EQUATIONS *)
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Itab=Table[I1n’[t]==m̃n*(Pn[t]/Hn[t])-ζ*I1n[t],{n,1,max}]

(* INITIAL CONDITIONS *)

H0=150;

H01=10;

H02=50;

P0=0;

W0=0;

I0=0;

(* CONDITIONS WHEN Gs ADDED*)

P02=0;

W02=0.1;

I02=0;

(* PARAMETERS *)

θ=-0.7;x1=0;y1=0.02;x2=0.017;y2=0.0181;

immpar1a=Sort[Flatten[{0,Table[(n-1)(0.0174776/(max-1)),{n,2,max -1}],0.0174776}]];

immpar=Table[m̃n=immpar1a[[n]],{n,1,max}];

Print[m̃n=,immpar, for n=1,...,,max]

φ=0.0001;

atab=Table[an=y1-((y1-y2)*(1-((m̃n-x2)/(x1-x2))))/(1+θ*((m̃n-x2)/(x1-x2))),{n,1,max}];

b=0.005;s=0.0001;

α=0.02;β=0.05;λ=0.1;σ=0.24;ζ=0.005;

gsbirth=Table[µn=0.19,{n,1,max}];

gsdeath=Table[εn=0.08,{n,1,max}];

(* COMPONENTS FOR USE WITH NDSOLVE *)

Htabsol=Table[Hn,{n,1,max}];

Ptabsol=Table[Pn,{n,1,max}];

Itabsol=Table[I1n,{n,1,max}];

tabsol=Flatten[{Htabsol,Ptabsol,W,Itabsol}];

Htab01=Table[H1[0]==H0,{n,1,1}];

Htab02=Table[H2[0]==H01,{n,1,1}];

Htab03=Table[Hn[0]==H02,{n,3,max}];

Htab0=Flatten[{Htab01,Htab02,Htab03}]
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Ptab0=Table[Pn[0]==P0,{n,1,max}]

Wtab0=Table[W[0]==W0,{n,1}]

Itab0=Table[I1n[0]==I0,{n,1,max}]

(* COMPONENTS FOR PLOTS *)

Hplot=Table[Hn[t]/.ans,{n,1,max}];

Pplot=Table[Pn[t]/.ans,{n,1,max}];

Wplot=W[t]/.ans;

Iplot=Table[I1n[t]/.ans,{n,1,max}];

HPWIPlot=Flatten[{Hplot,Pplot,Wplot,Iplot}];

Hstyle=Table[{Thick,CLn},{n,1,max}];

(*Hstyle2=Table[{Thick,Black},{n,max,max}];*)

Pstyle=Table[{{Thick,Dashed,CLn}},{n,1,max}];

Wstyle={{Thick, Dotted,Black}};

Istyle=Table[{{Thin}},{n,1,max}];

(*Hstyle=Table[Thick,{n,1,max}];

Pstyle=Table[{{Thick,Dashed}},{n,1,max}];

Wstyle={{Thick,Dotted,Black}};

Istyle=Table[{{Thin}},{n,1,max}];*)

HPWIStyle=Flatten[{Hstyle(*,Hstyle2*),Pstyle,Wstyle,Istyle},1];

Hlabels=Table[Row[{Subscript["H",b]}],{b,1,max}];

Plabels=Table[Row[{Subscript["P",b]}],{b,1,max}];

Ilabels=Table[Row[{Subscript["I",b]}],{b,1,max}];

labels=Flatten[{Hlabels,Plabels,"W",Ilabels}];

CL1=Blue;CL2=Purple;CL3=Brown;CL4=Red;CL5=Green;CL6=Darker[Yellow,.2];

CL7=Darker[Blue,.5];CL8=Darker[Purple,.5];CL9=Darker[Brown,.5];CL10=Darker[Red,.5];

(* CL11...CLn=etc *)

(* NDSOLVE FOR SIMULATION WITH NO INFECTION*)

ans=NDSolve[{

Htab,Ptab,Wtab,Itab,Htab0,Ptab0,Wtab0,Itab0},tabsol,{t,0,StepsMax},

Method→{StiffnessSwitching,Method→{ExplicitRungeKutta,Automatic}},MaxSteps→∞];

(* CONDITIONS FOR ADDING Gs*)

HGsadded=Table[Hn[Gsadded]/.ans,{n,1,max}];
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Htab02=Table[Hn[Gsadded]==HGsadded[[n,1]],{n,1,max}]

Ptab02=Table[Pn[Gsadded]==P02,{n,1,max}]

Wtab02=Table[W[Gsadded]==W02,{n,1}]

Itab02=Table[I1n[Gsadded]==I02,{n,1,max}]

(* COMPONENTS FOR PLOTS *)

Hplot2=Table[Hn[t]/.ans2,{n,1,max}];

Pplot2=Table[Pn[t]/.ans2,{n,1,max}];

Wplot2=W[t]/.ans2;

Iplot2=Table[I1n[t]/.ans2,{n,1,max}];

HPWIPlot2=Flatten[{Hplot2,Pplot2,Wplot2,Iplot2}];

(* NDSOLVE FOR SIMULATION WITH INFECTION ADDED *)

ans2=NDSolve[{

Htab,Ptab,Wtab,Itab,Htab02,Ptab02,Wtab02,Itab02},tabsol,{t,Gsadded,StepsMax},

Method→{StiffnessSwitching,Method→{ExplicitRungeKutta,Automatic}},MaxSteps→∞];

(* PLOTTING RESULTS *)

(* NO INFECTION *)

plot1=Show[Plot[HPWIPlot,{t,0,Gsadded},AxesOrigin→ {0,0},

PlotRange→ {{0,Gsadded},{0,All}},

PlotStyle→HPWIStyle,AxesLabel→{"Time (days)","Density"}]]

(* INFECTION ADDED *)

plot2=Show[Plot[HPWIPlot2,{t,Gsadded,StepsMax},AxesOrigin→ {0,0},

PlotRange→ {{0,StepsMax},{0,All}},

PlotStyle→ HPWIStyle,AxesLabel→ {"Time (days)",Density}]]

(* TOTAL NUMBER OF HOSTS *)

Hplottotal=Sum[Hn[t]/.ans,{n,1,max}];

Hplottotal2=Sum[Hn[t]/.ans2,{n,1,max}];

plot3=Show[

Plot[Hplottotal,{t,0,Gsadded},AxesOrigin→ {0,0},

PlotStyle→ {Thick,Darker[Red,.5]},PlotRange→ {{0,StepsMax},

{0,All}},AxesLabel→ {"Time (days)","Density"}],

Plot[Hplottotal2,{t,Gsadded,StepsMax},AxesOrigin→ {0,0},

PlotStyle→ {Thick,Darker[Red,.5]},PlotRange→ {{0,StepsMax},

{0,All}},AxesLabel→ {"Time (days)","Density"}]]

187

[18th September 2013 at 19:56]



(* COMPLETE PLOT OF SIMULATION *)

Show[plot1,plot2,PlotRange→ {{0,All},{0,200}}]

(* PRINT OUT NUMBER OF SIMULATION YEARS, TOTAL HOSTS REMAINING

AND TOTAL PARASITES REMAINING *)

totalss=Sum[Hn[StepsMax]/.ans2,{n,1,max}];

totalohgs=Sum[Pn[StepsMax]/.ans2,{n,1,max}];

totalgs=totalohgs[[1]]+W[StepsMax]/.ans2[[1]];

Print["Simulating G. salaris - S. salar interactions over ",StepsMax/365//N," years"]

Print["Total number of salmon (all strains) at end of simulation = ",totalss[[1]]]

Print["Total number of G. salaris (on & off hosts) at end of simulation = ",totalgs]
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