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Abstract 

 

Phytoplankton growth is iron limited in at least 20% of the world’s oceans. Iron is an 

important nutrient required to synthesise enzymes necessary for photosynthesis, 

respiration, and nitrogen assimilation. Due to its low solubility in seawater, iron 

limitation of phytoplankton production has been the focus of much recent research.  

These organisms secrete ligands in order to solubilise the available iron, but not all of 

the iron dissolved in seawater is biologically available.  In this study a molecular 

based approach was employed to investigate the acclimation of the marine haptophyte 

Coccolithus pelagicus to iron limitation.   

 

Using two dimensional electrophoresis, subtractive cDNA hybridisation, and RT real 

time PCR, changes in the proteome and in gene expression were examined.  Iron 

limited cells were characterised by slower specific growth rates, lower chlorophyll a 

concentrations per unit biomass and less extensive calcification relative to iron replete 

cells.  Addition of iron to iron limited cultures resulted in increased specific growth 

rates and increased chlorophyll a concentration per unit biomass.     

 

A subtracted cDNA library revealed seventeen identifiable sequences of which 

photosystem I protein E (PsaE), a fucoxanthin binding protein transcript, two 

chlorophyll binding proteins and a predicted membrane protein were shown to be up-

regulated in iron-limited cells to varying extents.  Two dimensional SDS PAGE 

revealed 11 differentially expressed proteins in iron limited cells and 1 highly 
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expressed protein exclusive to iron replete cells. The potential utility of each of these 

as biomarkers of iron-limitation/iron sufficiency for natural populations of 

coccolithophorids like Coccolithus pelagicus is discussed. 
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CHAPTER 1:  Introduction 

 

1.1 – Phytoplankton  

 
Phytoplankton are free floating photo-autotrophic and mixotrophic micro-organisms 

that are responsible for the bulk of primary production in the oceans.  Phytoplankton 

photosynthesis accounts for approximately 50% of annual global carbon fixation 

(Falkowski and Raven 1997).  Their taxonomical classification is based on the type of 

energy storage molecules they produce, their pigment composition, the structure and 

composition of their cell walls, and their locomotory apparatus and cellular 

morphology.  There are seven major taxonomic groups of phytoplankton.  These 

include two divisions of the kingdom Protozoa: Euglenophyta and Dinophyta 

(Dinoflagellates), the chlorophyceae and prasinophyceae within the kingdom Plantae, 

and three divisions of the kingdom Chromista: Cryptophyta, Haptophyta, and the 

Heterokonts which include the Bacillariophyceae (Diatoms).  In addition there are 

several members of the cyanobacteria, which include the smallest of the 

phytoplankton (Synechococcus, Prochlorococcus) and the only members of the 

phytoplankton capable of fixing atmospheric nitrogen (e.g. Trichodesmium spp.).  

While each of these groups is unique, they all exercise a combined influence over the 

marine environment and the global climate.  Phytoplankton are ubiquitous throughout 

the oceans, form the base of marine food webs and are responsible for much of the 

biological drawdown of atmospheric CO2 and oxygen production on Earth, thereby 

playing a critical role in the regulation of climate.  

 

 1



As well as exercising a strong influence over climate and being critical to marine 

nutrient cycling, phytoplankton activities can also have other important ecological and 

economic implications.  Certain species of phytoplankton can form harmful algal 

blooms (HABs) when conditions favour their growth.  These blooms can be hugely 

problematic to marine organisms and elevated levels of toxins can accumulate higher 

up the food web.  Furthermore, even those species which do not produce toxic 

compounds can still be problematic, such is the case when large amounts of foam is 

produced by the mucilage surrounding cells of the coccolithophorid Phaeocystis 

globosa when it blooms (Seuront et al., 2006; Spilmont et al., 2009).  The ecological 

and economic implications of such blooms are clear, in particular within the context 

of the tourist, fishing, and aquaculture industries.  Like many aspects of 

phytoplankton biology and ecology, the exact conditions and regulatory mechanisms 

controlling harmful algal blooms are not well understood.   

 

The phytoplankton are an extremely diverse group of organisms and do not represent 

a monophyletic group, different lineages appear to have evolved independently on 

several different occasions, each time independently acquiring chloroplasts by 

endosymbiosis events (Falkowski, 2004; Tomitani, 2006; Simon et al., 2008).  This is 

reflected in the variety of phytoplankton species known.  One of the most dominant 

phytoplankton groups the diatoms, are fundamentally important to the cycling of 

silica in the marine environment, while the coccolithophorids exercise huge influence 

over the cycling of carbonate in the ocean.    
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1.1.1 – The coccolithophorids 

 
The coccolithophorids are members of the division Haptophyta, which are 

distinguished primarily by the possession of a unique organelle: the haptonema which 

is situated between the two flagella.  On a superficial level the haptonema appears to 

be a flagella-like organelle, however it is structurally different.  The haptonema is 

composed of a different arrangement of microtubules (Manton, 1964; Gregson, 1993) 

than the typical nine plus two arrangement commonly found in the flagella of 

eukaryotes.  The haptonema can range in length from 160 µm in Chrysochromulina 

camella for example, with the ability to coil and uncoil (Leadbeater & Manton, 1969) 

or it can also be short and inflexible, minimised to a few microtubules inside the cell 

or absent in some rare cases.  There is not yet a consensus on the function of the 

haptonema, however it has been suggested that it may serve a role in food gathering 

and attachment to surfaces (Inouye & Kawachi, 1994).  Among the haptophytes the 

coccolithophorids are arguably the most important members in terms of influence 

over climate, carbon fixation and certainly calcium carbonate formation.  The 

coccolithophorids produce calcified scales (coccoliths) which surround the cell and 

form the coccosphere as can be seen in figure 1.1.  The calcite scales are released 

upon cell death and transported to the sea floor where they eventually form the major 

constituent of chalk formations.  
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Figure 1.1:  A = Artificially coloured SEM of calcified Emiliania huxleyi cell, 
www.uga.edu/protozoa/portal/coccolithophores.html (05.08.2009).  B = SEM 
of calcified Coccolithus pelagicus cell, 
www.botany.unimelb.edu.au/RW/media/5.html (05.08.2009).   

 

Although calcification is such a defining feature of the coccolithophorids there is no 

obvious reason why they do it.  There have been several suggestions: protection from 

grazing zooplankton, protection from viral infection, and dissipating excess light 

energy by reflection thereby reducing the risk of photo-damage are a few, however 

there has been no consensus reached (Harris, 1994; Bratbak et al., 1996; Paasche, 

2002).  While the purpose of calcification in these organisms is not understood, 

increasingly, understanding of the control of the rate of calcification and the ratio of 

calcification to photosynthesis is being improved.  Calcification appears to increase 

under prolonged high light intensities and when phosphorus rather than nitrogen 

limits growth (Paasche & Brubak, 1994; Riegmann et al., 2000; Zondervan, 2007).  

Further study also showed that in the model coccolithophorid Emiliania huxleyi 

calcification is closely correlated with the G1 phase of the cell cycle (Marius et al., 

2008) 

     

 4

http://www.uga.edu/protozoa/portal/coccolithophores.html%20(20.08.2009
http://www.botany.unimelb.edu.au/RW/media/5.html


Coccolithophorids are a comparatively recent group of phytoplankton, first appearing 

in the late Triassic period around 200 Mya, the greatest abundance of these calcareous 

deposits and the greatest variety of species of coccolithophorids occurred in the Late 

Cretaceous period (65-95 Ma) (Bown et al., 1992; Young et al., 1994).  Data obtained 

from sediments indicates that coccolith abundance is often correlated with glacial-

interglacial transitions over geological timescales, suggesting a predominance of 

coccolithophorids during interglacial periods (McIntyre et al., 1972).  One of the most 

defining features of the coccolithophorids is the ability to produce calcified plates 

which cover the cell.  Although the coccolithophorids are important primary 

producers, their drawdown of carbon dioxide due to organic carbon production is 

partly negated by the release of carbon dioxide during the calcification process.  

Coccolithophorid primary production therefore represents a smaller sink for carbon 

dioxide when compared to some non-calcifying primary producers such as diatoms 

(Robertson et al., 1994).   Existing coccolithophorids have the ability to form massive 

blooms when conditions allow, to the extent that the reflectance of these blooms due 

to the calcite plates of the coccolithophorid cells can be observed by satellites 

(Holligan et al., 1983; Balch et al., 1991).  These huge blooms have important 

implications for the global carbon cycle and blooms of Emiliania and Phaeocystis are 

involved in the production of dimethyl sulphide (DMS) – a substance involved in 

cloud formation (Malin et al., 1992). 

 

 The formation of coccoliths by the coccolithophorids is hindered by decreasing 

seawater pH, and ongoing seawater acidification due to elevated atmospheric carbon 

dioxide levels may change the abundance of calcifiers in the oceans (Riebesell, 2004; 

Delille, 2005) with as of yet unknown consequences for marine ecosystems.    

 5



 

When the life cycles of some coccolithophorid species were examined it was found 

that in Emiliania huxleyi and Phaeocystis spp. there are motile and non-motile phases 

which possess a haploid and diploid genome respectively (Course et al., 1994; Vaulot 

et al., 1994;  Green et al., 1996).  In a study by Rayns (1962) it was found that in 

Coccolithus pelagicus the heterococcolith-bearing phase was diploid while the 

holococcolith bearing phase was haploid.   

 

1.1.2 – The importance of iron in biological systems 

 
Due to its ability to function in a diverse array of biochemical roles in the cell, iron is 

required by many biological systems.  By virtue of its ability to undergo oxidation-

reduction transitions at physiological pH, it is primarily involved in enzymatic redox 

reactions.  Iron can also modify the reactivity of active site residues within an enzyme 

or serve in a structural role.  The photosynthetic and nitrogen assimilatory pathways 

are critically dependent on iron availability as are many of the enzymes / electron 

carriers involved in respiration.  Paradoxically, however, given its importance in the 

biochemistry of the cell, the solubility of iron at seawater pH (~8.2) is low.  The 

ferrous (Fe2+) form becomes oxidised to Fe3+ and iron is precipitated because the 

ferric ion (Fe3+) is highly insoluble in aqueous solution under oxic conditions. 

Consequently, one of the most abundant metals on Earth is relatively unavailable to 

the organisms occupying the environment that covers most of the planet’s surface. 
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1.1.3 – Marine iron limitation 

 
Understanding the factors that control the size and composition of phytoplankton 

communities in the marine environment is critical if the contribution that the ocean 

biota makes to the Earth’s climate is to be properly understood.  Until the 

development of sensitive trace metal sampling techniques in the 1980s, the regulation 

of phytoplankton biomass, species composition and primary production by iron was 

largely overlooked.  As knowledge of the nutrient inventories of the world ocean 

developed, however, the late John Martin put forward the “iron hypothesis”.  He 

suggested that large areas of the ocean where there was high nutrient availability but 

low chlorophyll concentrations were the result of iron limited surface waters (Martin, 

1990), and not a lack of another nutrient such as phosphate or nitrate.   Large 

expanses of the world ocean such as the equatorial Pacific, the high Arctic Pacific, 

areas of the South Pacific gyre and Southern Ocean have been found to contain 

concentrations of iron that are low enough to severely limit primary productivity 

(Behrenfield & Kolber, 1999).  In the central and eastern equatorial Pacific Ocean 

there are sufficient macronutrients in the surface waters to support several doublings 

of the phytoplankton standing stock (Barber, 1992).  It was suggested that a 

significant influx of iron to these iron limited areas could result in a dramatic increase 

in phytoplankton biomass.  Martin conjectured that the resulting increase in CO2 

fixation could perhaps exert enough influence on the climate to contribute to the onset 

of an ice age with the previously iron limited areas acting as large carbon sinks 

(Martin, 1990).  Iron fertilisation experiments in high nutrient – low chlorophyll 

(HNLC) regions, namely in the equatorial Pacific (IRONEX I) (Martin et al., 1994) 

and IRONEX II (Coale et al., 1996)) and the Southern Ocean (SOIREE and 

EISENEX 1) (Boyd et al., 2000; Boyd & Law., 2001), have confirmed that increasing 
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the concentration of iron in surface waters causes a dramatic increase in 

phytoplankton biomass.  In IRONEX I a single enrichment of an experimental patch 

of the equatorial Pacific Ocean with 4 nM dissolved iron was carried out.  A large 

increase in phytoplankton biomass was observed and yet nitrate drawdown was less 

than 0.2 µM and the biogeochemical response over the patch was of a lesser 

magnitude than expected (Martin et al., 1994).  IRONEX II was carried out in 1996 to 

test hypotheses developed from IRONEX I to explain the lack of a biogeochemical 

response.  Secondary limitation due to the depletion of a second nutrient, and iron 

being quickly lost from the fertilised area were among the hypotheses.  In IRONEX II 

successive iron enrichments were carried out over a longer period of time in order to 

maintain elevated iron concentrations, while other potentially limiting nutrients and 

zooplankton grazing were carefully monitored.  As with IRONEX I, a large increase 

in phytoplankton biomass was observed.  In the second experiment, however, large 

quantities of nitrate and CO2 were drawn down during the development of the bloom 

(Coale et al., 1996) thus confirming that the phytoplankton were iron limited.   

 

1.1.4 – Iron supply to the ocean  

 
Since there is no marine source of iron, open ocean phytoplankton are dependent upon 

iron supplied from aeolian dust originating from continental landmasses and deposited 

in the marine surface layer through wind-driven transport.  Estimates of the amounts 

of iron that are deposited in the oceans as a result of aeolian deposition are varied.  In 

1991 it was estimated that the total iron flux to the ocean was 3.2 x 1013g of iron per 

year, assuming a total iron content in the dust of 3.5% by weight (Duce & Tindale, 

1991).  In 1994 it was proposed that the estimate of Duce and Tindale (1991) was too 

high by a factor of five (Rea, 1994).  The data gathered by Rea (1994) were based on 
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analyses of marine sediment cores while the data generated by Duce and Tindale 

(1991) were the result of a series of field measurements that assumed a dust iron 

content of 3.5% in the air.  Despite uncertainties surrounding the exact amount of iron 

deposited in the ocean, many studies agree that the largest deposition rates are located 

adjacent to areas of desert (Duce & Tindale, 1991; Tegen & Fung, 1994, 1995; 

Mahowald et al., 1999).  However, there is uncertainty surrounding the percentage of 

aeolian iron that is soluble upon entering the ocean water (Moore et al., 2002).    

 

1.2 – Iron uptake by phytoplankton 

 
Iron acquisition strategies vary among phytoplankton.  Prokaryotes transport iron via 

a mechanism which requires the formation of coordination complexes such as 

siderophores that can be found localised on the cell membrane or freely in the 

surrounding environment after being secreted (Ratledge et al., 1982; Neilands, 1984).  

While the secretion of Fe3+ - chelating substances into the environment is not unique 

to prokaryotic phytoplankton, eukaryotic members studied to date appear to favour a 

ferric-reductase based mechanism such as that found in Chlamydomonas reinhardtii 

(Lynnes et al., 1998) and Thalassiosira oceanica (Maldonado & Price, 2001).  It has 

been reported by Anderson and Morel (1980) that iron limited cells of Thalassiosira 

weisflogii, a marine diatom, reduce Fe3+ - EDTA complexes to Fe2+.  Lynnes et al. 

(1998) found that Fe3+ reductase activity increased rapidly upon switching cultures of 

the green alga Chlamydomonas reinhardtii grown in Fe sufficient media to media that 

was free of Fe.  Maldonado and Price (2001) reported that in the marine diatom 

Thalassiosira oceanica an Fe limitation-induced cell surface reductase carries out an 

extracellular reduction step on Fe3+ chelated by desferrioxamine B.  This occurs prior 

to uptake of the inorganic iron into the cell and it was suggested that Fe(II) may be re-
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oxidised to the ferric form before it is taken into the cell following the reduction step 

(Maldonado & Price, 2001).  

 

 The exact mechanisms by which eukaryotic algae utilise chelator bound iron is 

unclear but appears to be varied.  While Anderson and Morel (1980) reported that iron 

limited cells of the marine diatom Thalassiosira weisfloggi reduce Fe3+- EDTA to 

Fe2+, Soria-Degg and Hortsman (1995) found that the marine diatom Phaeodactylum 

tricornutum could access both ferrioxamine B and ferrioxamine E-chelated iron as 

sources of iron.  Intriguingly, evidence from this study indicated that the iron bound 

by each chelator was accessed through different uptake mechanisms.  Utilisation of 

ferrioxamine B bound iron resembles higher-plant strategy I, while utilisation of 

ferrioxamine E resembles strategy II (Soria-Degg & Hortsman, 1995).  All plants with 

the exception of grasses utilise iron acquisition strategy I which is a reduction based 

approach which involves acidifying the soil by secreting H+ from their roots, this has 

the effect of solubilising iron (Marschner & Romheld, 1994; Schmidt, 2003; Kim & 

Guerinot, 2007).  Strategy II is a chelation based approach in which iron deficiency 

results in the release of small molecular weight Fe3+ binding phytosiderophores from 

the plant roots, the Fe3+ - phytosiderophore complexes are then actively taken up by 

means of specific transport mechanisms (Marschner & Romheld, 1994; Schmidt, 

2003; Kim & Guerinot, 2007).  Grasses tend to survive under more drastically iron 

deficient conditions as the chelation strategy is more effective than the reduction 

strategy, particularly in well buffered calcareous soils (Mori, 1999).  It has been 

observed that in the green alga Chlamydomonas reinhardtii the activity of the ferric-

chelate reductase enzyme increases with severity of Fe-limited growth rates (Lynnes 

et al., 1998; Weger, 1999).  The study by Weger (1999) also showed that rates of 
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cupric reductase enzyme activity increased in parallel with those of ferric-chelate 

reductase activity as the iron-limited growth became more severe.  It was found that 

addition of 250 µM Cu(II)-citrate to a culture of Chlamydomonas reinhardtii that was 

reducing Fe(III)-EDTA, stimulated cupric reduction while Fe(III)-EDTA reduction 

was subsequently inhibited (Weger, 1999).  Following addition of 250 µM each of 

Cu(II)-citrate and Fe(III)-EDTA to iron limited cultures of Chlamydomonas 

reinhardtii, only cupric reduction was observed, suggesting that the same enzyme was 

responsible for the reduction of both Fe(III) and Cu(II) or perhaps that two separate 

enzymes compete for the same source of reducing power within the cell (Weger, 

1999).  

 

Studies on several eukaryotic species have indicated that it is dissolved inorganic iron 

that is transported by the cell's Fe transporters (Anderson & Morel, 1982; Hudson & 

Morel, 1990, 1993).  As the vast majority of Fe in seawater is complexed by organic 

chelators (Rue & Bruland, 1995; Wu & Luther, 1995; Witter & Luther, 1998), it is 

essential that phytoplankton are able to access at least some of these chelated sources 

of iron.  The ferric reductase mechanism to dissociate Fe(III) from organic chelators 

confers this ability to some eukaryotic phytoplankton that secrete iron chelating 

substances.  A laboratory study by Boye & van den Berg (2000) found that the 

coccolithophore Emiliania huxleyi secreted iron complexing ligands in excess of the 

concentrations of iron in the culture medium.  The same study showed that these 

ligands are released in response to iron addition rather than when iron levels had 

declined to limiting concentrations.  This response is distinct from siderophore 

production in prokaryotes.  In prokaryotes siderophores are produced during periods 
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when available iron concentrations are low as opposed to when a fresh input of iron is 

experienced.   

 

As well as the release of iron chelators by phytoplankton in response to freshly added 

or low levels of iron, there is a further mechanism by which a variety of iron chelators 

can enter seawater.  Viral lysis (Gobler et al., 1997) and zooplankton grazing 

(Hutchins & Bruland, 1994) result in the release of intracellular iron chelating 

compounds such as porphyrins, cytochromes and haem proteins into the external 

environment.  The decomposition of metazoan and protozoan faecal pellets also 

releases iron ligands into the water column (Strom, 1993; Head & Harris, 1994) 

adding to the pool of organic iron chelators that keep the nutrient potentially 

accessible in the euphotic zone of oxic marine environments.  Unlike siderophores, 

however, such iron chelating substances are not secreted deliberately to solubilise 

iron.  Potentially, any micro-organism in the marine environment is able to access this 

chelated iron.  However, it was demonstrated that while Thalassiosira weissflogii and 

Skeletonema  costatum, two diatom species, could easily utilise porphyrin bound iron 

(Hutchins et al., 1999), two species of the cyanobacterium Synechococcus were 

relatively less efficient at accessing iron bound to three different porphyrins.  By 

contrast, cyanobacteria can utilise iron bound to siderophores much more efficiently 

than eukaryotic phytoplankton.  The ferric-reductase system (Jones et al., 1987; 

Weger, 1999; Lynnes et al., 1998; Maldonado & Price, 2001) found in eukaryotes 

preferentially accesses iron bound by tetra-dentate porphyrin chelators as opposed to 

the typically hexadentate siderophores secreted by prokaryotes (Hutchins et al., 

1999).  Hence, the ability of prokaryotes and eukaryotes to access iron bound by 
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different chelators in iron-limited regions may allow for a degree of ecological niche 

separation and their co-existence in competition for the same resource.  

 

It has been recently demonstrated that the bloom forming pennate diatoms Pseudo-

nitzschia and Fragilariopsis are able to produce the iron concentrating protein - 

ferritin (Marchetti et al., 2009).  Ferritin has not been reported previously in any other 

algal species and phylogenetic analysis from the study suggested that this small subset 

of diatoms obtained the gene by means of lateral transfer.  The ability to concentrate 

iron during times of iron input in chronically iron limited areas of ocean would allow 

for cell division to continue for a time even after the supply of extra-cellular iron was 

depleted.  It is probable that the ability to utilise ferritin to safely concentrate iron 

within the cell contributes to the success of certain pennate diatoms in areas of ocean 

characterised by low iron concentrations and infrequent, intermittent inputs (Marchetti 

et al., 2009).                     

 

1.2.1 – The effect of Iron limitation on Nitrogen assimilation  

 
Two biochemical processes which are highly dependent on iron availability are 

nitrogen assimilation and photosynthesis.  Iron is a vital component in several 

proteins in the photosynthetic electron transport chain and is a co-factor for both 

nitrate reductase and nitrite reductase.  The nitrate assimilatory pathway is very 

demanding of the cell's iron supply.  Nitrate reductase which reduces nitrate (NO3
-) to 

nitrite (NO2
-) requires two iron atoms (Campbell, 1999), while nitrite reductase 

requires five iron atoms.  By contrast, the use of ammonium (NH4
+) as a nitrogen 

source is far less demanding of a cell's Fe supply.  NH4
+ can be incorporated into 

amino acids directly after uptake by the cell. 
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It has been hypothesised (Raven et al., 1992) and experimental studies have shown 

that nitrate assimilation is severely impaired in marine phytoplankton under iron 

limited conditions (Maldonado & Price, 1996).  Raven et al. (1992) estimated that 

phytoplankton growing on nitrate would require 60% more iron than those growing 

on ammonium.  The later study by Maldonado & Price (1996) found that cultures of 

marine diatoms grown with NO3
- as a sole nitrogen source required 1.8 times more Fe 

than those cultures provided with NH4
+.  However, the study showed that 

Thalassiosira oceanica and Thalassiosira  weissflogii were able to maintain faster 

growth rates in NO3
- supplemented media compared to NH4

+ under moderate iron 

limiting conditions that would be expected to impair the growth rate of cells utilising 

oxidised forms of nitrogen.  Despite the fact that Fe was limiting in both the NH4
+ and 

NO3
- cultures, the cells grown on NO3

- were able to acquire the extra Fe that nitrate 

reductase and nitrite reductase demand by enhanced Fe uptake which suggests a close 

relationship between NO3
- utilisation and Fe acquisition.  Under severe Fe limitation, 

however T. oceanica cultures grew faster with NH4
+ as sole nitrogen source 

(Maldonado & Price, 1996).  

 

A later study examined the ability of the marine diatom T. weissflogii to assimilate 

NO3
- under iron replete and iron limited conditions (Milligan & Harrison, 2000).  

Under iron replete conditions it was found that the rate limiting step in NO3
- 

assimilation was the reduction of NO3
-  by nitrate reductase, since the activity of 

nitrite reductase was fifty times higher than that of nitrate reductase (Milligan & 

Harrison, 2000).  By contrast, during iron limited growth, the activity of nitrite 

reductase fell dramatically and became rate limiting to NO3
- assimilation.  Despite 
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this, the activities of both enzymes were maintained at a rate that exceeded nitrogen 

incorporation rates during the period of iron limited growth.  As a consequence of the 

decreased nitrite reductase activity, nitrite was excreted by cells at a rate of 100 fmol 

NO2
- cell-1 day-1 which accounted for approximately 10% of the total incorporated 

nitrogen (Milligan & Harrison, 2000).  

 

Despite NO2
- reduction being the rate limiting step in NO3

- assimilation during severe 

iron limited growth, the C:N ratios of iron limited cells were found to be similar to 

iron replete cultures (Milligan & Harrison, 2000).  This led Milligan & Harrison 

(2000) to suggest that the impairment of NO3
- assimilation during Fe limited growth 

is not a consequence of an inadequate supply of iron cofactor to the enzymes of the 

NO3
- assimilatory pathway, but is brought about by the shortage of photosynthetically 

derived reductant that is essential if oxidised forms of nitrogen are to be utilised.  The  

same unaltered C:N ratios under Fe limited conditions were observed in the diatom 

Chaetoceros muelleri (Davey & Geider, 2001) and Scenedesmus quadricauda 

(Chlorophyceae) (Rueter & Ades,1987), leading both groups of investigators to 

conclude that iron limited phytoplankton are essentially energy limited.  It appears 

that in several species of phytoplankton an inability to process photons due to a 

shortage of iron results in the shift to NO2
- reduction as the rate limiting step in NO3

- 

assimilation. 

 

1.2.2 – Effects of iron limitation on photosynthesis and pigment composition  

 
An inability to process photons and generate photosynthetically derived reductant 

indicates that the photosynthetic pathway is impaired by iron limitation.  Iron is 

required by enzymes employed in the production of chlorophyll such as 
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protochlorophyllide reductase.  Thus a shortage of cellular Fe may limit the overall 

rate of chlorophyll biosynthesis.  A reduction in chlorophyll content per cell is not 

unique to Fe limited cells.  It is also observed under conditions of N, S and P 

limitation and thus may be a general stress response to nutrient depletion.  The 

reduction in chlorophyll a content per cell may be compensated for to an extent by an 

accompanying reduction in cell size as has been found in the Antarctic 

prymnesiophyte, Phaeocystis sp. (van Leeuwe & Stefels, 1998).  Van Leeuwe & 

stefels (1998) found that in Phaeocystis sp. the concentration of accessory light 

harvesting pigments per cell was similar in both Fe replete and Fe limited cells: 

however, the ratio of chl a : accessory light harvesting pigments was greater in Fe 

replete cells under both high and low irradiance.   

 

The photosynthetic pathway appears to be the primary target of iron limitation with 

photosystem I being the most affected component due to the fact that it is highly iron 

enriched.  Photosystem I utilises the iron enriched ferredoxin protein as its terminal 

electron acceptor under iron replete conditions and several studies have examined the 

docking and subsequent electron transfer which takes place between photosystem I 

and ferredoxin (Fischer et al., 1998; Setif et al., 2002; Fromme et al., 2003).  It has 

been demonstrated that the PsaD and PsaE subunits of photosystem I facilitate the 

docking of ferredoxin and its functional homolog flavodoxin with photosystem I 

(Rousseau et al., 1993; Fischer et al., 1998; Setif et al., 2002).  Photosystem I 

particles isolated from a psaE deleted mutant of Synechocystis sp. were shown to be 

capable of reducing ferredoxin, however they did so at a rate at least 25 times less 

than the wild type (Rousseau et al., 1993).  It is believed that docking of the 

negatively charged ferredoxin with photosystem I is mediated by electrostatic 
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interactions with positively charged residues on the PsaE, PsaD and PsaC subunits 

(Fischer et al., 1998).  In iron limited cultures of the diatom Chaetoceros muelleri it 

was found that under light saturated conditions there was a greater decline in 

photosynthetic oxygen evolution than in mitochondrial oxygen consumption rates in 

the dark. This suggests that Fe limitation impairs the activity of the photosynthetic 

electron transport chain to a greater extent than mitochondrial electron transport 

(Davey & Geider, 2001).  The study concluded that the primary target of iron 

limitation in Chaetoceros muelleri was the photosynthetic electron transport chain, 

resulting in a shortage of reducing power in the cell that leads to limited carbon 

fixation, reduced nitrogen assimilation and less pigment accumulation.  This agrees 

with the findings of Milligan and Harrison (2000) who proposed that the nearly 

constant C:N ratios found over a range of iron deprived conditions in T. weissflogii 

was symptomatic of energy limited nitrite reductase activity. 

 

One way in which Fe limitation affects the photosynthetic apparatus is by causing an 

alteration in the pigment composition of the cell.  In the diatom Phaeodactylum 

tricornutum it was observed by Greene et al. (1991, 1992) that there was an increase 

in the ratio of light harvesting pigments to chlorophyll a as was found in Phaeocystis 

(van Leeuwe & Stefels, 1998).  The study by van Leeuwe & Stefels (1998) found that 

in Phaeocystis, synthesis of the light harvesting pigments                                         

19’-butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin was induced under iron 

limitation at the expense of fucoxanthin synthesis which is the main carotenoid 

present under Fe replete conditions.  A later study reported that addition of iron to 

iron limited Phaeocystis antarctica cultures caused a decrease in the ratio of 19’-

hexanoyloxyfucoxanthin to chlorophyll a and an increase in the ratio of fucoxanthin 
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to chlorophyll a (DiTullio et al., 2007).   As Fe limited cells effectively suffer from an 

excess of absorbed light energy the change in composition of the light harvesting 

pigments may be a photo-protective response.  A switch in the light harvesting 

pigments from fucoxanthin under iron replete conditions to acyloxyfucoxanthins 

under iron limited conditions may reduce the efficiency of energy transfer to the 

photosystems.  This would ensure that the redox balance of the photosynthetic 

electron transport chain is maintained thereby reducing the likelihood of free radical 

formation (van Leeuwe & Stefels, 1998; DiTullio et al., 2007).   

 

Fucoxanthin is not the only photosynthesis related molecule that changes in 

abundance under iron limited conditions.  A study by Greene et al. (1992) reported 

that the chloroplast proteins cyt f, subunit IV – the PQ docking protein in the cyt b6/f 

complex and the photosystem II reaction centre protein D1of the chlorophyte 

Dunaliella tertiolecta and the marine diatom Phaeodactylum tricornutum all 

increased in abundance over various timescales when iron was added to iron limited 

cells.  Smaller but notable increases in the large subunit of Rubisco and light 

harvesting proteins (2-fold and 1.5-fold respectively) were also detected.  It has been 

observed that supplementing iron limited cells with iron does not result in an 

immediate increase in chlorophyll concentrations.  Cells recover from chlorosis only 

after the redox protein flavodoxin has been replaced by its Fe-S containing functional 

homolog ferredoxin (McKay et al., 1999).  This delay in chlorophyll biosynthesis 

following relief of iron limitation suggests that the cells place a higher priority on 

repairing components of the photosynthetic electron transport chain to enhance 

photon processing potential per reaction centre than on returning light harvesting 

pigments to iron replete levels (McKay et al., 1999).  The delay in the accumulation 
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of light harvesting pigments following addition of iron to iron limited phytoplankton 

has also been observed in other studies of various phytoplankton species (Greene et 

al., 1992; Geider & La Roche, 1994; Coale et al., 1996).  Such studies agree with the 

observation that chlorophyll biosynthesis and the repair of components of the electron 

transport chain are processes that are independent of one another (Guikema, 1987). 

 

1.3 – Flavodoxin and Ferredoxin as Potential Biomarkers of Iron Limitation 

 
If the role of iron in the production ecology of the oceans is to be understood, it is 

desirable to develop a means of determining the extent of iron limitation in 

phytoplankton in the field that is ideally quick, relatively simple and reliable.  An 

approach likely to fit these criteria is the use of biomarkers; molecules within 

phytoplankton cells that would signal that the cell is suffering from a shortage of iron 

and has become physiologically impaired.  An appropriate protein or its mRNA 

transcript is likely to be the most convenient candidate for a biomarker of iron 

limitation and much work has been done to investigate the potential of the ferredoxin 

and flavodoxin proteins as biomarkers of iron limitation (LaRoche et al., 1995; Erdner 

et al., 1999; McKay et al., 1999).  In some species of phytoplankton, iron limited 

conditions induce the replacement of the iron containing protein, ferredoxin, with a 

functional homolog flavodoxin that does not require iron.  Ferredoxin is an important 

electron transport protein which is involved in redox reactions in photosynthesis, 

respiration, nitrogen assimilation and a variety of other cellular activities.  

 

 The various means of confirming iron limitation in the field such as mesoscale 

enrichment experiments and bottle assays are associated with various disadvantages 

ranging from the risk of contamination with iron to cost and logistical issues.  The use 
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of an iron regulated cellular response as an indicator of iron nutritional status could 

potentially eliminate these problems.  Flavodoxin (LaRoche et al., 1995) and the ratio 

of ferredoxin:flavodoxin (Doucette et al., 1996) have been proposed as bio-markers of 

iron nutritional status in marine phytoplankton.  A study by Erdner et al. (1999) found 

that flavodoxin induction was a response specific to iron limitation across a range of 

phytoplankton classes and was insensitive to light stress, phosphate, nitrate, silicate 

and zinc deficiency.  The study suggests that measuring the ratio of ferredoxin to 

flavodoxin may be a sensitive method of determining the severity of iron stress.   

 

Replacement of ferredoxin with flavodoxin under iron limited conditions is not a 

universal response.  Despite suffering from iron limitation, phytoplankton species 

across a range of taxonomic groups (dinoflagellates, diatoms and prymnesiophytes) 

did not produce flavodoxin (Erdner et al., 1999).  While most of the non-flavodoxin 

inducing phytoplankton in the study were of coastal rather than oceanic origin, the 

majority of the coastal species in the study did produce flavodoxin under iron 

limitation.     

 

Ferredoxin and flavodoxin can be purified and readily detected by HPLC / Mass 

spectroscopy although other means of detecting and quantifying these proteins have 

been examined.  An immunological approach was utilised by McKay et al. (1999) in 

an attempt to detect ferredoxin in marine phytoplankton and cyanobacteria.  The 

antibody employed was raised against ferredoxin purified from the marine diatom 

Thalassiosira weisflogii.  While the approach was effective at detecting a band with a 

molecular mass similar to T. weisflogii ferredoxin in a variety of other iron replete 

diatoms and some more phylogenetically distant algae, cross reacting proteins were 
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not found in Aureococcus anophagefferens or the coccolithophore Emiliania huxleyii.  

Suspected ferredoxin bands were observed in extracts of the green algae Dunaliella 

tertiolecta and Chlamydomnas reinhardtii but the reactions were weak.  The apparent 

limited range of the reactivity of anti-ferredoxin across a spectrum of phytoplankton 

classes is likely to result in difficulty in assessing ferredoxin presence and absence in 

mixed natural samples.  This compounded with the observation that a variety of  

eukaryotic phytoplankton species do not appear to produce flavodoxin in response to 

iron limitation (Erdner et al., 1999) may have the potential to limit the usefulness of 

ferredoxin:flavodoxin ratios as biomarkers of iron nutritional status in the field.  In the 

study by Erdner et al. (1999) species in which flavodoxin could not be detected 

originated mainly from coastal areas where they are highly unlikely to encounter the 

low levels of iron observed in the high nutrient low chlorophyll (HNLC) areas of the  

open marine environment.  

 

It has been suggested that phytoplankton that are unable to induce flavodoxin in a low 

iron environment would be uncompetitive in iron limited water and would form a 

very small fraction of the overall biomass.  Ferredoxin:flavodoxin ratios, therefore, 

might be a useful indicator of iron limitation for the majority of species in an iron 

limited phytoplankton community.  While this may be the case in most instances, it 

has been reported that a Synechocystis PCC 6803 mutant with a disrupted isiB gene 

(encoding flavodoxin) can still grow in conditions that result in flavodoxin expression 

in the wild type (Kutzki et al., 1998).  To compound the potential problems associated 

with using a ferredoxin : flavodoxin index to assess the extent of iron limitation, it 

was found that the marine diatoms Thalassiosira weissflogii and Phaeodactylum 

tricornutum expressed flavodoxin as an early response to low iron concentrations in 
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the environment which did not necessarily correspond to the onset of physiological 

impairment and slower growth rate (McKay et al., 1997).  

Given the uncertainties and potential pitfalls of relying on a single biomarker it would 

be useful to develop alternative biomarkers for iron limitation.  Perhaps the most 

useful of these might be other proteins associated with photosynthetic electron 

transport, the main target for iron limitation, that are common to flavodoxin and non-

flavodoxin producing phytoplankton species.  

 

1.4 – Aims of this study 

 
This investigation aims to study the acclimation of Coccolithus pelagicus to iron 

limitation by utilising molecular techniques such as subtractive cDNA hybridisation, 

reverse transcription (RT) real time PCR and two dimensional SDS PAGE to probe 

gene expression changes and changes in the proteome occurring between iron replete 

and iron limited cells.  A secondary objective of this study is to use the 

aforementioned techniques to attempt to identify potential biomarkers of iron 

limitation in C. pelagicus.   
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CHAPTER 2:  Materials and Methods  
 
 

2.1 – Coccolithus pelagicus – maintenance of stock cultures and experimental 

cultures 

 
Stock and experimental cultures were maintained in an illuminated orbital incubator 

at 18°C at an incident irradiance of 25 μmol photons m-2 s-1 under a 16:8 h light:dark 

cycle. Cultures were grown in a defined artificial seawater medium supplemented 

with 1 x Guillards f/2 enrichment solution (Guillard and Ryther 1962) minus silicate. 

 

Artificial seawater (ASW): 

NaCl     25 gL-1  

MgSO4    3.5 gL-1 

MgCl2     2.0 gL-1 

CaCl2     0.5 gL-1 

KCl     0.5 gL-1 

Tris HCl    0.5 gL-1 

Tris Base    0.5 gL-1 

 

50 x Guillards f/2 enrichment solution (Sigma) 

NaNO3     44.15 mM  

NaH2PO4      1.81 mM  

FeCl3.6H2O        0.5 mM 

Na2EDTA.2H2O       0.5 mM 

CuSO4.5H2O           2 µM 

Na2MoO4.2H2O       1.5 µM 
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ZnSO4.7H2O           4 µM  

CoCl2.6H2O      2.25 µM 

MnCl2.4H2O         45 µM 

Vitamin B12            5 nM 

Biotin         100 nM 

Thiamine.HCl          15 µM 

 

Experimental Coccolithus pelagicus cultures were grown in 250 ml glass conical 

flasks containing 100 mL of artificial seawater (ASW) (pH 8.0) supplemented with 2 

mL of 50 x F/2 Gulliard’s marine enrichment solution and varying concentrations of 

EDTA or deferoxamine.  All glassware was pre-washed in 0.1 M HCl for 1 hour and 

then rinsed thoroughly with MillQ grade de-ionised H2O prior to use.  ASW was 

sterilised by autoclaving at 1210C for 20 minutes and left for 24 hours at room 

temperature to allow gas equilibration.  50 x F/2 Guilliard’s marine enrichment 

solution, EDTA and deferoxamine were added to ASW after autoclaving and gas 

equilibration.  The medium was then left overnight to allow for Fe chelation.  No 

EDTA or deferoxamine was added to the iron replete control cultures.  During intial 

growth experiments a range of concentrations of EDTA (400 nM – 2 mM) and 

deferoxamine (400 nM – 200 µM) were used to determine the concentration of each 

chelator that would reduce the growth of cultures by 40-50% relative to that of the 

control cultures containing no chelator.  Increase in biomass was determined by 

measuring optical density measurements at 750 nm every 24 hours.   
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2.1.2 – Determination of chlorophyll a concentrations 

Chlorophyll a concentrations were determined by centrifuging 1 mL of culture at 

13,000 rpm for 5 minutes and then re-suspending the cell pellet in 1 ml of 90% 

methanol.  The methanol – cell pellet re-suspension was left in the dark for 1 hour.  

The sample was then centrifuged at 13,000 rpm for 5 minutes and 0.8 ml of the 

supernatant was recovered.  The absorbance of the supernatant at 665 nm was 

determined and chlorophyll a concentrations were estimated using the extinction 

coefficient:  chlorophyll a (g/ml) = 13.9 x A665nm.   

 

2.1.3. – Growth experiments to confirm iron limitation 

Experimental cultures containing EDTA or deferoxamine that were in the exponential 

growth phase at growth rates that were approximately 40-50% lower than that of the 

corresponding control cultures were used to inoculate fresh 100 ml cultures.  ASW 

was prepared exactly as described in section 2.1 and supplemented with F/2 

Gulliard’s marine enrichment solution to serve as iron replete cultures.  The same 

culture was also used to inoculate 100 ml of ASW supplemented with F/2 Gulliard’s 

marine enrichment solution and containing an additional 200 nM FeCl3 and either 

1.25 mM EDTA or 150 µM deferoxamine.  Growth rates were determined by 

measuring optical density at 750 nm every 24 hours.  Cultures were grown at 180C on 

a continuous cycle of 16 hours light, 8 hours dark.  All glassware used in the growth 

experiments was washed in 0.1 M HCl for 1 hour and then rinsed thoroughly with 

Milli-Q grade H2O prior to use. 

 

 25



2.1.4 – Microscopic examination of Coccolithus pelagicus cells 

10 µl of culture was placed on a glass slide and examined under a light microscope 

equipped with a CCD camera.  The cells were examined at 630 x magnification.  

Counts of flagellated / non-flagellated cells were performed at 630 x magnification.  

Fresh culture was placed on the microscope slide every 2.5 minutes to avoid any 

artefacts due to heating by the light source and counts were resumed.   

 

2.2 – RNA extractions  

All glassware and equipment used in the extraction and handling of RNA was sterile 

and where possible was washed with diethylpyrocarbonate (DEPC) treated MilliQ 

grade distilled water.  Where possible all reagents (i.e. those not containing Tris.HCl 

or known to be RNase-free) involved in RNA extraction protocols were treated with 

DEPC. 

DEPC treatment was performed by adding DEPC to solutions at a concentration of 

1µl ml-1.  The solution was then shaken vigorously and left in a fume cupboard 

overnight with the lid left loose.  The solution was then autoclaved in order to sterilise 

it and to evaporate any residual ethanol formed from the breakdown of DEPC.  

 

2.2.1- Buffers and solutions used for RNA extractions and electrophoresis 

 DEPC (1 µL ml-1) treated distilled water. 

 10 x TAE buffer (400 mM Tris-Acetate, 10 mM EDTA) 
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 Agarose gels were made by dissolving 1% (w:v) agarose in 1 x TAE buffer 

and ethidium bromide was added to a concentration of 0.002%.  All apparatus 

used in the preparation of gels was soaked in 0.1 M NaOH for 1 hour and then 

rinsed extensively with DEPC treated distilled water prior to use. 

 TE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA) 

 

2.2.2 – Extraction of RNA 

RNA was extracted from cultures in exponential growth phase.  Cells from 30 ml of 

each culture were harvested by centrifugation and either processed immediately or 

stored in RNAlater™ (Ambion) at -20oC until RNA was extracted.  Cells were 

centrifuged at 8,000 x g at 18oC in a bench top centrifuge for 3 minutes and then re-

suspended in 5 ml of RNAlater™ (Ambion).  The optical density of the harvested 

cultures at 750 nm were as follows: Fe replete (1, 2 & 3) = 0.327, Fe replete (4) = 

0.396, 150 µM DF (1) = 0.185, 150 µM DF (2) = 0.206, 150 µM DF (3) = 0.203, 150 

µM DF (4) = 0.175.   

RNA extractions were performed using the RNAqueous™ kit from Ambion©.  Cells 

stored in RNAlater™ (Ambion) were centrifuged at 15,000 x g for 5 minutes in order 

to pellet the cells.  The supernatant was discarded and the cell pellet was quickly re-

suspended in 300–700 µl of RNAqueous™ lysis/binding buffer.  The solution was 

gently pipetted up and down several times in order to facilitate lysis of the cells.  

Once lysis had occurred (as indicated by the increased viscosity of the solution and 

the absence of any solid material), an equal volume of 64% ethanol was added and the 

tube was gently inverted several times in order to mix the contents.  A filter cartridge / 
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collection tube (provided with the kit) was assembled and the lysate / ethanol mixture 

was applied to the filter cartridge.  The filter cartridge / collection tube assembly was 

centrifuged at RCF 15,000 x g in a bench top centrifuge at room temperature for 1 

minute to draw the lysate / ethanol solution through the filter.  The flow-through was 

discarded and the collection tube was re-used in the following washing steps.  700 µl 

aliquots of any remaining lysate / ethanol mixture were loaded onto the filter and the 

process of drawing the mixture through the filter was repeated in exactly the same 

manner as previously described.  Once the entire sample had been drawn through the 

filter, 700 µl of Wash Solution #1 (supplied with the kit) was applied to the filter 

cartridge and drawn through the filter by centrifugation at RCF 15,000 x g in a bench 

top centrifuge at room temperature for 1 minute.  The flow-through was discarded and 

the filter was washed twice with 500 µl Wash Solution #2/3 (supplied with the kit) 

using the same procedure as the previous wash step.  After the second 500 µl wash, 

the wash solution was discarded and the filter cartridge assembly was centrifuged 

briefly (10-30 seconds) to draw through any remaining Wash Solution #2/3.  The 

filter cartridge was then placed inside a fresh collection tube and 40-50 µl of 

preheated Elution Solution (75oC) (supplied with the kit) was added to the filter.  The 

filter cartridge assembly was centrifuged at RCF 15,000 x g for 30 seconds at room 

temperature.  A second aliquot (10-20 µl) of 75oC Elution Solution was added to the 

filter and centrifuged again using the same conditions.  Eluted RNA that was not used 

immediately was kept at -20oC for short term storage and at -70oC for long term 

storage.  
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2.2.3– Spectrophotometric determination of RNA concentration 

A dilution of RNA (1:500 – 1:200) was made in DEPC treated MQ and the 

absorbance was read at 260 nm and 280 nm.  RNA concentrations were calculated 

based on an absorbance of 1.0 being equal to 40 µg ml-1 RNA.  The DEPC treated 

MQ used to dilute the RNA samples was used to blank the spectrophotometer at each 

wavelength.  The quartz cuvettes used were soaked in concentrated HCl / methanol 

(50:50) and then rinsed with DEPC treated MQ before use. 

 

2.2.4 – Electrophoresis of RNA 

All glassware and apparatus used in the preparation and running of RNA agarose gels 

were soaked in 0.1 M NaOH for 1 hour and then rinsed extensively with DEPC 

treated MQ.  RNA was run on 1% agarose gels amended to 0.002% ethidium bromide 

(room temperature) at 150 V for 10 – 15 minutes and then at 100 V for a further 15 

minutes.  Samples were run alongside 10µl of Hind III λ phage digest markers. 

 

2.2.5 – Purification of mRNA  

mRNA was purified from total cellular RNA samples using the Dynabeads® mRNA 

purification kit from Dynal Biotech®. 

Assuming that mRNA accounts for between 1 – 5% of total cellular RNA, 100 µg of 

RNA should contain between 1.0 – 5.0 µg of mRNA.  Total cellular RNA samples 

were diluted with DEPC treated MQ to 100 µg in a total volume of 100 µl.  RNA 

samples were heated at 65oC for 2 minutes and then placed on ice.  200 µl (1 mg) of 
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Dynabeads Oligo (dT)25 were washed once in 100 µl of binding buffer (20 mM Tris-

HCl (pH 7.5), 1.0 M LiCl, 2mM EDTA) (supplied with the kit).  The Dynabeads 

Oligo (dT)25 were placed on a magnet to separate them from the solution and after 30 

seconds the supernatant was removed.  The Dynabeads Oligo (dT)25 were then re-

suspended in 100 µl of binding buffer.  The Dynabeads Oligo (dT)25 were added to 

RNA samples and mixed thoroughly by pipetting before being allowed to anneal to 

polyadenylated mRNAs for 5 minutes at room temperature (RT).  A magnet was used 

to remove the Dynabeads Oligo (dT)25 - mRNA from solution and the supernatant was 

removed and discarded before the Dynabeads Oligo (dT)25 were washed twice with 

200 µl of Washing Buffer B (provided with kit) (10 mM Tris-HCl (pH 7.5), 0.15 M 

LiCl, 1 mM EDTA).  The Dynabeads Oligo (dT)25 were re-suspended in 10 µl 10 mM 

Tris-HCl pH 7.5 and then heated to 75oC for 2 minutes.  The 1.5 ml eppendorf tube 

containing the Dynabeads Oligo (dT)25 and mRNA in 10 mM Tris-HCl was then 

placed against a magnet and the supernatant (mRNA) was transferred to a fresh, 

RNase free tube.  The mRNA was used immediately to produce a subtracted cDNA 

library. 

 

 

 

 

 

 

 30



2.3 – cDNA subtraction      

In the proceeding section an overview of the cDNA subtraction process is presented 

before the protocol for the technique is detailed. 

 

Figure 2.1: Diagram illustrating the principles underlying the Clontech PCR-
Select™ cDNA Subtraction Kit (Adapted from the Clontech PCR-Select™ 
cDNA Subtraction Kit user manual, published 15 September, 1999). 
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In the first stage of the cDNA subtraction process both populations of mRNA to be 

subtracted are converted into double stranded cDNA. The cDNA that contains 

specific differentially expressed transcripts is referred to as “tester” cDNA and the 

reference cDNA is referred to as “driver” cDNA.  

Both the tester and driver cDNAs are disgested by Rsa I and after digestion the tester 

cDNA is subdivided into two portions, and each is ligated with a different cDNA 

adaptor. The adaptors are de-phosphorylated so that additional adaptors cannot be 

ligated to the 5' end of the initial adaptor that is attached to the cDNA. The two 

adaptors contain stretches of identical sequence to allow annealing of the PCR primer 

once the recessed ends have been filled in.  No adaptors are ligated to the driver 

cDNAs.  

After the adaptor ligations two hybridisations are performed in which each sample of 

tester cDNA is mixed with an excess of driver cDNA. The samples are denatured by 

heating and allowed to anneal. This generates the type a, b, c, and d molecules in each 

sample (see figure 2.1). The single stranded type a molecules are significantly 

enriched for differentially expressed sequences, as the cDNAs that are not 

differentially expressed form type c molecules with the driver (see figure 2.1).  

In the second hybridisation step, the two primary hybridisation samples are mixed 

together but are not denatured. Now, only the remaining equalised and subtracted 

single stranded tester cDNA molecules are capable of re-associating and forming new 

type e hybrids (see figure 2.1). These type e hybrids are double stranded cDNA 

molecules with ends which correspond to the sequences of adaptors 1 and 2R (see 

section 2.3.8). Thus the type e molecules are the only combination which can undergo 

exponential amplification during PCR as the PCR primers target the sequences on the 
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two adaptors. In order to further enrich fraction e for differentially expressed 

transcripts freshly denatured driver cDNA is added again (without denaturing the 

subtraction mix) and the molecules are allowed to hybridise. After DNA polymerase 

has filled in the ends of the type e molecules they will have different annealing sites 

for the nested primers on their 5' and 3' ends. These type e molecules represent 

differentially expressed sequences.  

PCR is carried out on the entire mix to overwhelmingly enrich the sample for 

differentially expressed sequences. During PCR, the type a and d molecules are 

missing primer annealing sites, and thus cannot be amplified. Due to the suppression 

PCR effect, most type b molecules form a pan-like structure (see figure 2.1) that 

prevents their exponential amplification. The type c molecules have only one primer 

annealing site and thus amplification is only linear. Only the type e molecules, which 

have two different adaptors and therefore forward and reverse priming sites, are 

capable of undergoing exponential amplification. These amplified sequences are the 

equalised, differentially expressed transcripts.  

In order to further reduce any background PCR products and to further enrich for 

differentially expressed sequences a secondary, nested PCR amplification is 

performed. Upon completion of this nested PCR the amplified sequences can be 

cloned into a vector and sequenced or can be utilised in a variety of other downstream 

applications such as hybridisation probing DNA libraries.  

cDNA subtraction was carried out using the PCR-select™ cDNA subtraction kit from 

Clontech Laboratories.  Both the forward and reverse subtractions were carried out in 

accordance with the protocol provided in the PCR-select™ cDNA subtraction kit user 

manual.  The protocol is detailed here. 
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2.3.1 – Buffers and solutions used for cDNA subtraction  

The following solutions were used in the cDNA subtractive hybridisation procedure 

but were not provided with the Clontech PCR-Select™ cDNA Subtraction kit.  All 

other solutions, buffers or enzymes used in the cDNA subtractive hybridisation 

procedure were provided with the Clontech PCR-Select™ cDNA Subtraction kit. 

 Aqua phenol (pH 8.0) (QBioGene) 

 80% Ethanol 

95% Ethanol 

Phenol (pH 8.0) : chloroform : isoamyl alcohol (25 : 24 : 1 v/v) 

Chloroform : Isoamyl alcohol (24 : 1 v/v) 

2.3.2 – First-strand cDNA synthesis 

The following components were added to a sterile PCR tube: 

Reaction component    Per reaction 

mRNA      2 - 4 µl   

cDNA synthesis primer (10µM)                      1 µl 

 

2 µl (containing 2µg of mRNA) of the control mRNA (human skeletal muscle mRNA 

provided with the kit) and approximately 1µg of experimental mRNA (mRNA 

extracted from Fe replete and Fe limited cultures) were used in the reverse 

transcription reactions.  dH2O was added to each reaction so that the final volume in 

each tube was 5 µl.  In total there were 3 reactions set up – a control reaction with 

skeletal muscle mRNA, and two reactions to produce the cDNA for the forward and 

reverse subtractions.  The contents of the PCR tubes were mixed gently by flicking 

the tubes and then centrifuged for 10 seconds in a microcentrifuge  prior to incubation 
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at 70oC for 2 minutes in a thermal cycler.  Following incubation the reactions were 

cooled on ice for 2 minutes and then centrifuged briefly.   

To each reaction the following components were added: 

              Per reaction 

5X First-strand buffer      2 µl  

dNTP mix (10 mM each)     1 µl 

Sterile H2O       1 µl 

AMV Reverse transcriptase (20 units / µl)   1 µl 

 

The reactions were mixed gently by vortexing and then centrifuged briefly.  The 

reactions were then incubated at 42oC for 1.5 hours in a thermal cycler with the cycler 

lid temperature set to 105oC to prevent any evaporation of the reaction mix.  After the 

incubation the reactions were placed on ice immediately in order to terminate first 

strand cDNA synthesis.   

 

2.3.3 – Second-strand cDNA synthesis 

To each of the first-strand cDNA synthesis reactions from section 2.3.2 (containing 10 

µl) the following components were added: 

                per reaction 

Sterile H2O       48.4 µl                        

5X Second–strand buffer     16.0 µl 

 dNTP mix (10 mM each)     1.6 µl 

20X Second-strand enzyme cocktail    4.0 µl 
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The contents of each reaction were mixed gently by flicking the tube and spinning 

briefly in a microcentrifuge.  The reactions were incubated at 16oC for 2 hours in a 

thermal cycler.  After the incubation 2 µl (6 U) of T4 DNA polymerase was added to 

each reaction and the contents were mixed gently.  The reactions were then incubated 

at 16oC for a further 30 minutes in a thermal cycler.  To terminate the reactions 4 µl of 

20X EDTA / Glycogen mix was added to each tube. 

 

100 µl of phenol (pH 8.0) : chloroform : isoamyl alcohol (25 : 24 : 1 v/v) was added 

to each reaction.  The reactions were then vortexed and centrifuged at 14,000 rpm at 

room temperature.  The top aqueous layer from each tube was collected and placed in 

sterile 0.5 ml microcentrifuge tubes.  100 µl of chloroform : isoamyl alcohol (24 :1 

v/v) was added to each of the 0.5 ml tubes and the previous vortexing and 

centrifugation steps were repeated in order to separate the phases.  Following 

centrifugation, the top aqueous phases were collected and placed in sterile 0.5 ml 

microcentrifuge tubes.  40 µl of 4M NH4OAc and 300 µl of 95% ethanol was added 

to each 0.5 ml tube before vortexing and then centrifugation at 14,000 rpm for 20 

minutes at room temperature.  The supernatant was carefully removed from each 0.5 

ml tube and the cDNA pellet was overlayed with 500 µl of 80% ethanol.  Each tube 

was centrifuged at 14,000 rpm for 10 minutes at room temperature.  The supernatant 

was removed taking care not to disturb the pellet and the tubes were left with the caps 

open at room temperature for 30 minutes to allow for evaporation of any residual 

ethanol.  Each pellet was dissolved in 50 µl of sterile H2O and 6 µl from each reaction 

was transferred to a fresh PCR tube and stored at -20oC until it was needed to be run 

alongside Rsa I digested cDNA.   

 36



2.3.4 – Rsa I digestion  

The remaining cDNA samples produced as described in sections 2.3.2 and 2.3.3 were 

digested with the restriction endonuclease Rsa I.  The restriction digest was carried 

out by combining the following components in PCR tubes for each cDNA sample (3 

in total – Skeletal muscle control, iron replete cDNA and iron limited cDNA): 

                per reaction 

ds cDNA         43.5 µl 

10X Rsa I restriction buffer      5.0 µl 

Rsa I (10 U / µl)       1.5 µl 

 

The reactions were mixed by vortexing and were then centrifuged briefly.  The 

reactions were then incubated at 37oC for 1.5 hours in a thermal cycler.  After the 

incubation 5 µl of each restriction digest was set aside on ice to be run on a 1% 

agarose gel alongside the un-digested cDNA set aside in section 2.3.3 in order to 

observe whether the restriction digest had been successful.  2.5 µl of 20X EDTA / 

glycogen mix was added to each restriction digest to terminate the reaction.  Digested 

cDNA was purified by means of phenol (pH 8.0) : chloroform : isoamyl alcohol (25 : 

24 : 1 v/v) purification followed by a further chloroform : isoamyl alcohol (24 : 1 v/v)  

step before the cDNA was precipitated by adding 25 µl of 4M NH4OAc and 187.5 µl 

of 95% ethanol to each tube.  Each tube was centrifuged at 14,000 rpm for 10 minutes 

at room temperature in order to pellet the cDNA.  The supernatant was carefully 

removed and each pellet was overlayed with 200 µl of 80% ethanol.  The tubes were 

centrifuged at 14,000 rpm for 5 minutes and the supernatants were removed.  The 
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cDNA pellets were allowed to dry at room temperature for 30 minutes before they 

were each dissolved in 5.5 µl of sterile H2O and stored overnight at -20oC. 

The Rsa I digested and un-digested cDNA samples were run out on 1% agarose gels 

alongside Hind III digested λ phage markers.  The cDNA was visualised on a UV 

trans illuminator and the success of the Rsa I restriction digest was confirmed by a 

shift in the mean molecular weight of the digested cDNA smear compared to the un-

digested cDNA.   

2.3.5 – Adaptor ligation 

Blunt ended adaptors were ligated to diluted samples of the cDNAs produced as part 

of the subtractive hybridisation procedure.  Each tester cDNA sample (3 samples) was 

split into two tubes and a different adaptor was ligated to each.  After adaptor ligation 

there were 3 tubes for each of the original Rsa I digested cDNA samples.  The skeletal 

muscle tester control was labelled “1” and thus sample 1 with adaptor 1 ligated cDNA 

was labelled 1-1 while adaptor 2R ligated cDNA was labelled 1-2 and a tube 

containing a mixture of both adaptor ligated cDNA populations was labelled 1C.  The 

tubes containing the equivalent iron replete and iron limited adaptor ligated cDNAs 

were labelled 2-1, 2-2, 2C, 3-1, 3-2 and 3C respectively. 

1µl of each Rsa I digested cDNA sample was diluted with 5 µl of sterile H2O and the 

remaining cDNA was stored at -20oC to be used later as driver cDNA.  Control 

skeletal muscle tester cDNA was prepared by diluting Hae III digested ΦX174 DNA 

(Sigma-Aldrich) to a final concentration of 150 ng / ml with sterile H2O and then 

mixing 5 µl of this with 1 µl of the Rsa I digested control skeletal muscle cDNA.  

This control skeletal muscle tester cDNA contained approximately 0.2% Hae III 

digested ΦX174 DNA (Sigma-Aldrich), each fragment of which corresponded to 
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approximately 0.02% of the total cDNA.  It is these fragments which should be 

subtracted by the end of the skeletal muscle control subtraction. 

Adaptor ligated tester cDNA was prepared as follows: 

A ligation master mix was prepared by mixing the following components together in a 

PCR tube.  Enough master mix was prepared for all ligations plus one additional 

reaction. 

               Per reaction 

Sterile H2O        3 µl 

5X Ligation buffer       2 µl 

T4 DNA Ligase 400 U / µl)      1 µl 

For each experimental tester cDNA (iron replete and limited samples) and for the 

control skeletal muscle tester cDNA, the following reagents were combined in the 

order shown:          

       Tube number         

                        1    2 

         Tester 1-1*      Tester 1-2* 

 

Diluted tester cDNA          2 µl          2 µl 

Adaptor 1 (10 µM)         2 µl          ------ 

Adaptor 2R (10 µM)        -------          2 µl 

Ligation master mix         6 µl          6 µl 

Final volume         10 µl         10 µl 

 The same setup was used for testers 2-1, 2-2, 3-1 and 3-2. 
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In a fresh PCR tube 2 µl of tester 1-1 was mixed with 2 µl of tester 1-2 and after the 

completion of the ligation reaction this served as an un-subtracted tester control, it 

was labelled 1C.  The same was done for the other two cDNA samples 2 and 3 (iron 

replete and iron limited cDNAs) and they were labelled 2C and 3C respectively.  All 9 

of the ligation reactions were centrifuged briefly and then incubated at 16oC overnight 

in a thermal cycler.  After the overnight incubation 1µl of EDTA / glycogen mix was 

added to each tube to terminate the ligation reactions.  The reactions were then heated 

to 72oC for 5 minutes in a thermal cycler in order to inactivate the ligase.  The tubes 

were then centrifuged briefly and 1 µl from each un-subtracted tester control reaction 

(1C, 2C and 3C) was diluted in 1 ml of sterile H2O.  These three diluted samples were 

stored at -20oC until required later for PCR.  All other ligations were used 

immediately in the next stage of the subtractive hybridisation procedure or stored at -

20oC.   

 

2.3.6 – Subtractive hybridisation 

In the first hybridisation step an excess of driver (without adaptors) cDNA was mixed 

with tester cDNA (adaptor ligated) and the samples were heat denatured together and 

then allowed to anneal.  Non-target cDNAs  common to the driver and tester cDNA 

form hybrids under these conditions and the remaining single stranded cDNAs are 

enriched for differentially expressed sequences.  The first hybridisation was carried 

out as follows: 
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The following components were set up in PCR tubes for each of the subtractions. 

           Hybridisation sample  
       

                        1    2 

         Tester 1-1*      Tester 1-2* 

 

Rsa I digested driver cDNA          1.5 µl           1.5 µl 

Adaptor 1 ligated tester (1-1)*                   1.5 µl            ------ 

Adaptor 2R ligated tester (1-2)*                -------                                        1.5 µl 

4X Hybridisation buffer                     1.0 µl            1.0 µl 

 

Final volume            4.0 µl             4.0 µl 

* The same setup was used for samples 2-1, 2-2, 3-1 and 3-2. 

The samples were incubated at 98oC for 1.5 minutes and were then left to hybridise 

for 12 hours at 68oC in a thermal cycler. 

A second hybridisation was performed.  For each subtraction the two samples from 

the first hybridisation were mixed together but not denatured.  Fresh denatured driver 

cDNA was then added to further enrich for differentially expressed sequences.  By the 

end of the second hybridisation the subtracted cDNA population should contain 

hybrid molecules with two different adaptors on each end. Therefore, these 

differentially expressed sequences are the only ones which should amplify 

exponentially during PCR where the two different adaptors are used as priming sites. 
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For each subtraction the following reagents were added into a sterile tube: 

        Per reaction 

Driver cDNA        1 µl 

4X Hybridisation buffer     1 µl 

Sterile H2O       2 µl 

 

For each subtraction 1µl of this mixture was placed in a PCR tube and heated at 98oC 

for 1.5 minutes.  For each subtraction the appropriate tube of freshly denatured driver 

was removed from the thermal cycler and was mixed simultaneously with its two 

corresponding hybridisation samples by setting a micropipettor to 15µl and then 

taking up one of the hybridisation samples and freshly denatured driver into the same 

pipette tip with an gap of air separating them and then adding both into the other 

hybridisation sample still in a PCR tube.  By doing this the two hybridisation samples 

1-1 and 1-2 (or 2-1 & 2-2 or 3-1& 3-2) were mixed only in the presence of freshly 

denatured driver cDNA.  Each of the 3 hybridisations were mixed gently by pipetting 

and then centrifuged briefly before being incubated at 68oC overnight in a thermal 

cycler.  After the overnight incubation the hybridisations were transferred to 0.5 ml 

tubes and 200 µl of dilution buffer was added to each.  Each sample was mixed by 

gently flicking the tubes and then heated at 68oC for 7 minutes in a heat block.  The 

hybridisations were then stored at -20oC.   
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2.3.7 – PCR amplification of subtracted cDNA samples 

Seven PCR reactions were carried out.  (1) The forward subtracted experimental 

cDNA, (2) the un-subtracted tester control (tube 2C – see section 2.3.5),  (3) the 

reverse subtracted experimental cDNA, (4) the un-subtracted tester control for the 

control subtraction (tube 3C – see section 2.3.5), (5) the subtracted control skeletal 

muscle cDNA, (6) the un-subtracted tester control for the control subtraction (tube 1C 

– see section 2.4.5) and (7) the PCR control subtracted cDNA (provided with the 

Clontech PCR-Select™ cDNA Subtraction Kit).   

During PCR, differentially expressed cDNAs were selectively amplified over primary 

and nested PCRs.  A brief incubation at 75oC was necessary prior to commencing 

PCR in order to fill in the sections of missing ends complementary to the adaptors in 

order to produce the binding sites for the primers.  Only cDNAs with a different 

adaptor on each strand should be amplified exponentially thus enriching the PCR for 

subtracted cDNA sequences.  A second amplification using nested PCR was carried 

out in order to reduce the background cDNAs and further enrich the sample for 

subtracted sequences. 

PCR templates were prepared on ice by aliquoting 1 µl of each diluted subtracted 

cDNA sample (from section 2.3.6) and the corresponding diluted un-subtracted tester 

control (from section 2.3.5) into an appropriately labelled PCR tube.  1 µl of the 

control subtracted cDNA (provided with the Clontech PCR-Select™ cDNA 

Subtraction Kit) was aliquoted into an appropriately labelled tube.  A master mix was 

prepared as follows:                                                                             
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                                                                                 Per reaction 

Sterile H2O      19.5 µl 

10X PCR reaction buffer*    2.5 µl 

dNTP mix (10 mM)*      0.5 µl 

PCR primer 1 (10 µM)    1.0 µl 

50X Advantage cDNA polymerase mix*  0.5 µl 

Total volume:      24 µl 

* These reagents were provided in a separate kit – Clontech Advantage™ cDNA 

Polymerase Mix. 

The master mix was mixed by vortexing and was then centrifuged briefly in a 

microcentrifuge.  24 µl master mix was added to each of the PCR templates prepared 

previously and kept on ice.  Each reaction was then incubated at 75oC for 5 minutes in 

a thermal cycler and then the following PCR cycling parameters were begun: 

27 cycles: 

94oC   30 seconds 

66oC   30 seconds 

72oC   1.5 minutes 

 

After completion of thermal cycling 8 µl of each reaction was run on a 2% agarose 

gel amended to 0.002% ethidium bromide and visualised with a UV trans illuminator. 

3 µl of each primary PCR product mixture was diluted in 27 µl of sterile H2O and the 

remaining primary PCR products were stored at -20oC.  1µl of each diluted primary 

PCR product mixture was aliquoted into an appropriately labelled PCR tube.  Master 

mix was prepared for the secondary PCR reactions as follows: 
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       Per reaction 

Sterile H2O      18.5 µl 

10X PCR reaction buffer*    2.5 µl 

Nested PCR primer 1 (10 µM)   1.0 µl 

Nested PCR primer 2R (10 µM)   1.0 µl 

dNTP mix (10 mM)*     0.5 µl 

50X Advantage cDNA Polymerase Mix*  0.5 µl 

Final volume:      24.0 µl 

* These reagents are provided in a separate kit – Clontech Advantage™ cDNA 
Polymerase Mix. 

 

The secondary PCR master mix was mixed by vortexing and was then briefly 

centrifuged.  24 µl of secondary PCR master mix was added to each of the secondary 

PCR templates prepared previously and the following thermal cycling parameters 

were commenced immediately: 

12 cycles: 

94oC   30 seconds 

68oC    30 seconds 

72oC   1.5 minutes 

 

8 µl of the secondary PCR products were then run a 2% agarose gel amended to 

0.002% ethidium bromide and visualised with a UV trans illuminator and the 

remaining PCR products were stored at -20oC.   
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2.3.8 – Sequences of Clontech primers and adaptors used in cDNA subtraction 

cDNA synthesis primer: 

TTTTGTACAAGCTT30N1N 

Adaptor 1: 

CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT  

Adaptor 2R: 

CTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT  

PCR primer 1: 

CTAATACGACTCACTATAGGGC  

Nested primer 1: 

TCGAGCGGCCGCCCGGGCAGGT  

Nested primer 2R: 

AGCGTGGTCGCGGCCGAGGT 

 

2.4. – Cloning and sequencing of subtracted cDNA sequences 

The TOPO TA cloning kit from Invitrogen™ was used to ligate cDNA fragments 

from both the forward and reverse subtracted libraries into pCR®II-TOPO®.  The 

ligated plasmids were then used to transform chemically competent and electro-

competent TOP10 One Shot® E.coli cells.  Transformants were selected at 37oC for 

16 hours on LB agar spread plates containing 100 µg ml-1 ampicillin and 40 µl of a 40 

mg ml-1 X-GAL stock spread evenly across the plate.  The LB plates contained the 

following – tryptone 10 g L-1, NaCl 10 g L-1, Yeast extract 5 g L-1, Bacto agar 15 g L-

1. The LB agar was autoclaved and, once cool enough to handle, approximately 25 ml 

was used to pour each agar plate.   After 16 hours of growth the plates containing the 

E .coli transformants were stored at 4oC overnight.  
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As many successfully transformed recombinant colonies as possible were picked 

using sterile pipette tips and each was grown in 250 µl of terrific broth (Yeast extract 

24 g L-1, Bacto Tryptone 12 g L-1, K2HPO4 12.5 g L-1, KH2PO4 g L-1) in 96 well 

sequencing plates provided with the Edge BioSystems™ SeqPrep™ 96 Plasmid Prep 

Kit.  The terrific broth contained 100 µg ml-1 ampicillin.  The 96 well plates 

containing the picked colonies were incubated at 37oC and shaken at 200 rpm for 16 

hours prior to plasmid purification.   

After the 16 hour incubation the 96 well plates were centrifuged at 2,500 rpm for 3 

minutes.  The supernatant was decanted by inverting the plate and blotting it on a 

paper towel.  Cells were resuspended in the remaining terrific broth (approximately 5-

15 µl) by covering the plate with an adhesive sealer and vortexing while ensuring not 

to cause any splashing from the wells.  100 µl of lysis solution / enzyme mix 

(provided with the kit) was added to each well and plates were shaken gently at room 

temperature for 2 minutes.  The plates were then allowed to incubate on the bench top 

at room temperature for 3 minutes.  The lysate in the wells was removed by inverting 

the plates and decanting the liquid.  100 µl of wash solution (provided with the kit) 

was added to each well and the plates were shaken gently on the bench top.  The wash 

solution was removed by inverting the plates and decanting the liquid.  The contents 

of the wells were washed twice with 100 µl of 70% isopropanol.  During each 70% 

isopropanol wash step the plates were shaken gently on the bench top for 1 minute.  

On each occasion the 70% isopropanol was removed by inverting the plates.  The 

plates were then inverted onto a paper towel and centrifuged at 2000 rpm for 1 minute  

in order to remove any residual isopropanol.  The plates were left at room temperature 

for at least 2 hours to ensure that all isopropanol had evaporated before 40 µl of dH2O 

was added to each well.  The plates were shaken gently for 2 minutes on the bench top 
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and then allowed to sit for 10 minutes at room temperature before they were covered 

with an adhesive sealer and stored at -20oC. 

The plasmids were sequenced at the NERC Molecular Genetic Facility at Edinburgh 

University by means of automated sequencing (ABI 3730 capillary sequencer).  

 

2.5 – Blast analysis, multiple sequence alignments of subtracted cDNA sequences and 

primer design. 

The Fe replete and Fe limited sequences obtained from the forward and reverse 

subtracted libraries were subjected to BLAST analysis using the BLAST tool facilities 

available at the NCBI website (www.ncbi.nlm.nih.gov). 

Sequences from the Fe limited subtracted library which returned a strong hit when 

subjected to BLAST analysis (Blastn or BlastX) were selected and primers were 

designed to amplify those cDNA sequences of interest.  The primers were designed 

using the Primer3 software available at the Primer3 website (http://frodo.wi.mit.edu/).  

In total 17 sets of primers were designed in order to target each sequence of interest.  

The primers were as follows: 

 
20s Proteasome subunit (20S Prot)  
 
Forward: TGTCTATGAACAGCCGATGC 
  
Reverse: GGGCTGCGTCTCATACAGAT 
 
 
Cytochrome b5 like heme / steroid binding domain containing Protein (Cyt b5):                  
 
Forward: ATAAAACCCGTGCCACTCAG 
   
Reverse: ACCGACGAACTCAAGCTGTT 
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Cytochrome bc1 complex, subunit 7 (Cyt bc1):  
 
Forward: GGCAGCGTCCTTTACTTGAG 
 
Reverse: TACGAGGACTCCTTGGTGGA 
 
DnaJ protein (DnaJ):  
 
Forward: CGGTCTTGTAGCCCTTCTTG 
 
Reverse: GTGTCGTGAAGGACGGAAAC 
 
 
Chloroplast light harvesting protein isoform 8 (CM4E12):  
 
Forward: GCCAGCTGATGTTTTCCATT 
 
Reverse: CCTGGAAGAAGAAGCCAGTG 
 
 
Predicted membrane protein (PMP): 
 
Forward: GCGAGAGAAATGGAGGTCAG 
  
Reverse: GAAAAGGTCCCCAAAGATCC 
 
 
PsaE:   
 
Forward: AGGTACCCTGTTGTGGTTCG 
 
Reverse: GCCTGAATATTTTGCAGGTCA 
 
 
Thioredoxin (Thio):   
 
Forward: CTGTCCAGGTGCCATCAGTA 
 
Reverse: ATTTCAATTTTGGCGAAACG 
 
 
Ubiquitin conjugating enzyme (UCE): 
 
Forward: GTGCCGTCTGGGTAGATGTT 
 
Reverse: GCTTCGCCTTATGAGTGACC 
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Chloroplast light harvesting protein isoform 2 (Chl LHP): 
 
Forward: ACTCGAGGCCAGCTGTCAA 
 
Reverse: ACAAGAACCTGGCAACGAAG 
 
 

Seven different fucoxanthin binding protein sequences were detected including five of 

which that were exclusive to the iron limited subtracted library.  Two forward primers 

and seven reverse primers were designed to target each of the fucoxanthin binding 

protein sequences. 

 

Fucoxanthin binding protein (FucoBP) forward primers 

1.  ACATCATCAACGACCTGCTG 

2.  ACAT(C/T)ATCAACGACCTGCTC 

 

Fucoxanthin binding protein (FucoBP) reverse primers: 

1. CGTGCACCTTCTAACAGACG 

2. CGTCCAACACATGCACAGTA 

3. GCCAGTTTAGGGCGTAATCA 

4. GGCAGTTAGCGAGACCAAAG 

5. CTAACGGCGTGCGTAGAAT 

6. TGTTTTTAGAAAAGGCATGGAAA 

7. GCCCCGCAATAGTAAAAGAA 
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2.5.1 – Design of degenerate primers to target ferredoxin, flavodoxin and 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)  

Degenerate primers were designed based on conserved sequence motifs identified 

from multiple sequence alignments to target flavodoxin.  Two alternative forward 

primers and one reverse primer were designed for flavodoxin.  Ferredoxin primers 

were designed based on conserved regions of nucleotide sequence between part of a 

ferredoxin transcript identified in the iron replete subtracted library from Coccolithus 

pelagicus and the ferredoxin sequence of Pavlova lutheri.  Degenerate primers were 

also designed for the housekeeping gene, glyceraldehyde 3-phosphate dehydrognease 

(GAPDH) to be used as a reference to normalise real time PCR results between iron 

replete and iron limited cDNA templates.  Primers were designed from multiple 

sequence alignments of sequences from a range of phytoplankton taxa.  The multiple 

sequence alignments were produced using the CLUSTALX multiple sequence 

alignment software.  

Sequences returning the same hits when subjected to BLAST analysis were aligned 

using the CLUSTALX multiple sequence alignment software to ensure that the 

sequences were identical and that the primers designed would recognize all of the 

cDNA fragments which return the same BLAST results.  The primer sequences for 

Ferredoxin, Flavodoxin and GAPDH were as follows: 

Ferredoxin: 

Forward:  TACGCGGTCACCCTCGTCAC 

Reverse:  ACGGCAGGTCCAGGCCCTC 
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Flavodoxin: 

Forward 1: 

GGNAAYACNGARACNGTNGC 

Forward 2: 

CCNACNTGGMAYACNGGNGC 

Reverse: 

CCRAANAYNGCNACYTTYTTNCC 

GAPDH: 

Forward: 

TAYGTNTGYGARWSNACNGGN 

Reverse: 

NGTNGGNACNCKRAANGCCAT 

 

2.6 – Primer optimisation for real-time PCR 

Primers were optimised using a gradient thermal cycler (Biometra T-Gradient – 

Thistle Scientific).  The templates used for optimisation were 1:10 dilutions of the 

original plasmids containing the target cDNA fragment as an insert.  All PCR 

reactions contained 2.5 mM MgCl2 and 2X ReddyMix™ available from Thermo 

Scientific was used as master mix.  All thermal gradient PCR reactions were run 

alongside negative controls.  PCR products were run out on 1.0% agarose gels 

containing 0.002% ethidium bromide and viewed with a UV trans illuminator.  The 

PCR reactions and cycling conditions for the thermal gradient PCR primer 

optimisations were as follows: 
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PCR Reaction: 

Sterile H2O    10 µl (11 µl in negative control reactions) 

MgCl2 (25mM)   1 µl 

Forward primer   0.25 µl     (100 pmol µl-1 stock) 

Reverse primer   0.25 µl     (100 pmol µl-1 stock) 

Template    1 µl 

ReddyMix (1.5mM MgCl2)  12.5 µl 

 

Cycling Parameters: 

 

95oC    2 minutes 

26 CYCLES: 

94oC    30 seconds  

Thermal gradient  30 seconds  

72oC    1 minute  

72oC    10minutes  

 

The optimum annealing temperature determined for each target transcript was as 

follows: 

38oC = GAPDH 

62oC = Fucoxanthin BP (6), Predicted membrane protein, Fucoxanthin BP (3). 

65oC = Thioredoxin, Fucoxanthin BP (7), DnaJ, Fucoxanthin BP (2), Fucoxanthin BP 

(4), Ubiquitin conjugating enzyme, Fucoxanthin BP (5), Ferredoxin. 

67oC = psaE, Chl LHP, 20S proteasome subunit, Cyt b5, CM4E12, Cyt bc1, 

Fucoxanthin BP (1) + (3). 
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2.6.1 – cDNA production for real-time PCR 

 RNA extractions were carried out on Fe replete and Fe limited cultures of 

Coccolithus pelagicus.  The RNA extractions were carried out using the RNAqueous® 

kit employing exactly the same method as described in section 2.2.2 and nucleic acid 

concentrations were estimated using the spectrophotometric method described in 

section 2.2.3.  

The extracted RNA was treated with the TURBO DNA-free™ kit from Applied 

Biosystems in order to remove any genomic DNA that was carried over from the 

RNA extraction process.  Each treatment was carried out in 50 µl volumes with 1 µl 

of Turbo DNase enzyme (2U of enzyme) at 37oC for 30 minutes.  Samples of the 

untreated RNA and the treated RNA were run out on a 1% agarose gel in order to 

confirm that any genomic DNA was no longer visible on a gel and that the RNA had 

not been degraded during the DNase treatment.  The concentration of RNA after 

DNase treatment was determined spectrophotometrically.   

Approximately 1 µg of RNA was used in each reverse transcription reaction.  The 

QuantiTect® Reverse Transcription kit available from Qiagen was used to produce 

cDNA for use as template in real time PCR reactions.  A genomic DNA elimination 

reaction was carried out, the reaction contained the following components: 

gDNA wipeout buffer, 7x:  4 µl 

Template RNA:   approximately 2 µg (variable volume) 

RNase-free water:   variable 

TOTAL VOLUME: 28 µl   
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The genomic DNA elimination reaction was incubated in a heat block at 42oC for 2 

minutes and was then placed immediately on ice.  A reverse transcription master mix 

was prepared on ice.  The reverse transcription master mix was comprised as follows: 

Quantiscript Reverse Transcriptase  2 µl 

Quantiscript RT Buffer, 5x   8 µl 

RT Primer Mix    2 µl   

 

12 µl of reverse transcription master mix was added to the 28 µl genomic DNA 

elimination reaction containing the template RNA.  This reaction was incubated for 

30 minutes at 42oC in a thermal cycler.  Parallel reactions for each template were 

carried out omitting Quantiscript reverse transcriptase as a control for any residual 

DNA contamination. After the 30 minute incubation the reaction was heated to 95oC 

for 3 minutes in a thermal cycler to inactivate the Quantiscript reverse transcriptase.  

The reactions were then either used immediately as template in real time PCR 

reactions or stored at -20oC.  If it was necessary reactions were scaled up linearly to a 

maximum reaction volume of 100 µl.  

 

2.6.2 – Testing primers using cDNA as a template     

In order to assess the effectiveness of the primers detailed in sections 2.5 and 2.5.1  

PCRs were carried out using cDNA as template to check for non-specific products 

since the optimum primer annealing temperatures were determined using plasmids 

with the target insert as templates. The only possibile non-specific products using 

plasmid DNA would have been from complementary sequences within the vector 

whereas the complexity of the cDNA was far greater.  PCR reactions were run using 
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exactly the same reaction conditions as described in section 2.6 with the exception 

that two reactions were run for each primer set, one using iron replete cDNA as 

tempate and another using iron limited cDNA as template.  The optimum annealing 

temperatures determined as described in section 2.6 were used and all reactions were 

run alongside negative controls containing no template.  The products from the 

reactions were run out on 1% agarose gels and PCR products were visualised under 

UV radiation.      

2.7 – Real time PCR 

The cDNA produced as described in section 2.6.1 was used as a template in real time 

PCR reactions utilising the primers detailed in sections 2.5 and 2.5.1 in order to 

quantitate the relative abundances of the transcripts detected in the iron limited 

subtracted library.  The cycler used for real time PCR was the Stratagene Mx3000P 

real time thermal cycler.  PCR tube strips with optical caps were used in all real time 

PCR reactions.  The PCR reaction composition and thermal cycling parameters were 

as follows: 

PCR components: 

Sterile H2O    10 µl (11 µl in negative control reactions) 

Forward primer   0.25 µl     (100 pmol µl-1 stock) 

Reverse primer   0.25 µl     (100 pmol µl-1 stock) 

Template    1 µl 

Master mix*    12.5 µl 

*The master mix used for RT real time PCR was Brilliant® SYBR Green QPCR 

Master Mix (Stratagene) containing a final concentration of 2.5 mM MgCl2. 
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95oC       10 minutes 

40 cycles: 

94oC       30 seconds 

Appropriate annealing temperature (see below) 30 seconds 

72oC       1 minute 

The instrument was set to detect fluorescence at the end of the extension step at 72oC.  

Dissociation curves were plotted using fluorescence measurements at 1oC intervals 

over a temperature range from 55 oC to 95oC. 

Annealing temperatures used for each target transcript were as follows: 

38oC = GAPDH 

62oC = Fucoxanthin BP (6), Predicted membrane protein, Fucoxanthin BP (3). 

65oC = Thioredoxin, Fucoxanthin BP (7), DnaJ, Fucoxanthin BP (2), Fucoxanthin BP 

(4), Ubiquitin conjugating enzyme, Fucoxanthin BP (5), Ferredoxin. 

67oC = PsaE, 20s proteasome subunit, Cyt b5, CM4E12, Cyt bc1, Fucoxanthin BP (1) 

+ (3). 

 

2.7.1 – Data handling: normalising RT real time PCR results to GAPDH transcript 

abundance and determining up-regulation of genes in response to iron limitation. 

The relative abundance of mRNAs represented in the iron replete and iron limited 

cDNA samples was normalised to the transcript abundance of the housekeeping gene 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in each reaction and the extent 
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to which the target transcript was up-regulated in the iron limited cDNA samples was 

calculated.  The equation used was: 

2(Ct Fe Limited cDNA  –  Ct GAPDH) /  2(Ct Fe Replete cDNA  –  Ct GAPDH) 

(Wyman & Bird, 2007) 

In the equation Ct Fe Limited cDNA and Ct Fe Replete cDNA are the threshold 

cycles for the target transcript in the iron limited and iron replete samples respectively 

and Ct GAPDH is the threshold cycle of the corresponding GAPDH transcripts in the 

iron limited and iron replete cDNA samples.  For experiments run in triplicate the 

threshold cycle values for each sample were averaged and the mean value obtained 

was used in the equation.  All GAPDH real time PCR experiments were run in 

triplicate.  

 

2.8 – 1-Dimensional and 2-Dimensional SDS-PAGE 

 
Cells were pelleted by centrifugation at 8,000 x g for 3 minutes in a bench-top 

centrifuge.  The pellets were washed with a sucrose solution (250 mM sucrose, 10 

mM Tris pH 8.0) by re-suspending the cells in the sucrose solution and repeating the 

centrifugation step.  Cells were re-suspended in 100 µl of lysis buffer (0.1 M Tris-

HCl,  pH 7.4, 1 mM EDTA, 8 M Urea, 0.05 M dithiothreitol (DTT), 10% glycerol, 

5% NP-40, 2% IPG buffer of appropriate pH) and incubated at room temperature for 

1 hour.  Non-soluble cellular debris was removed from the lysate by centrifugation at 

15,000 x g for 5 minutes.  Protein was purified from the lysate using the 2D-Clean up 

kit (Amersham) according to the manufacturer’s instructions.  Purified protein was re-

suspended in an appropriate volume of rehydration buffer (8 M urea, 2% NP-40, 60 
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mM dithiothreitol (DTT), 0.5% IPG buffer of appropriate pH) and protein 

concentrations were determined using the 2D Quant Kit (Amersham) according to the 

manufacturer’s instructions.   Samples were adjusted to the same protein 

concentrations and bromophenol blue was added to a concentration of 0.002%.  The 

protein sample was applied to the immobilised pH gradient (IPG) strip by means of 

re-hydration loading.  The IPG strip was laid in a channel in a re-swelling tray 

containing the protein sample in re-hydration buffer.  The strip and protein sample 

were sealed off from the air with dry strip cover fluid (Amersham) and left overnight 

at room temperature.  Immobilised protein gradient (IPG) strips are strips of 

acrylamide containing either a linear or non-linear pH gradient mounted on a plastic 

backing.  They provide a less laborious and more reproducible means of running 2D 

SDS-PAGE. 

 
The volume of re-hydration buffer used to re-suspend the protein sample varied 

depending on the length of IPG strip that was to be used for isoelectric focussing.  

Two different IPG strips were used in this investigation and the lengths of the strips 

and the sample volumes were: 

 

IPG strip length   Volume of re-hydration buffer applied 
 
7 cm strip (pH 3-10)   125 µl 
13 cm strip (pH 4-7)   250 µl 
 
 

All isoelectric focussing was carried out at 20oC with a maximum current of 50 µA 

per IPG strip.  The voltage parameters used varied depending on the length of the IPG 

strip being used.  The voltage parameters for each IPG strip length were as follows: 
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7 cm pH 3-10 IPG strips 
 
Voltage mode  Voltage (V)  Time   KVh 
Step and hold  300   30 minutes  0.2 
Gradient  1000   30 minutes  0.3 
Gradient  5000   1 hr 20 mins  4.0 
Step and hold  5000   25 minutes   2.0 
 
Total      2 hr 45 mins  6.5 
 
 
13 cm pH 4-7 IPG strips  
 
Voltage mode  Voltage (V)  Time   KVh 
Step and hold  500   1 hr   0.5 
Gradient  1000   1 hr   0.8 
Gradient  8000   2 hr 30 mins  11.3 
Step and hold  8000   55 minutes  7.4 
 
Total      5 hr 25 mins  20.0 
 

After isoelectric focussing IPG strips were equilibrated for second dimension SDS-

PAGE by incubation at room temperature for 15 minutes in 10 ml SDS equilibration 

buffer (75 mM Tris-HCl, pH 8.8, 6 M Urea, 30% glycerol, 2% SDS, bromophenol 

blue 0.002%, 10 mg ml-1 DTT).  A second equilibration was then performed using 10 

ml of an equilibration buffer containing iodoacetamide instead of DTT - (75 mM Tris-

HCl, pH 8.8, 6 M Urea, 30% glycerol, 2% SDS, bromophenol blue 0.002%, 25 mg 

ml-1 iodoacetamide).  The second equilibration was also for 15 minutes at room 

temperature.  For both equilibrations the IPG strips were placed in sterile tubes 

containing the appropriate equilibration buffer and then placed on a rocking platform 

for the duration of the incubation.  

 
Equilibrated IPG strips were run out on 12% Tris-Glycine polyacrylamide gels 

alongside Mark 12™ unstained protein standards.  The IPG strips were placed directly 

on top of the resolving gel and sealed in place using a 2% agarose stacking gel.   

For 1-D SDS-PAGE a 4% acrylamide stacking gel was used made as follows: 
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Sterile H2O    3.05 ml 
0.5Tris HCl, pH 6.8           1.25 ml 
10% SDS    50 µl 
30 % acrylamide    650 µl 
10% Ammonium persulphate  25 µl 
TEMED    5 µl 
 

The 12% Tris-Glycine polyacrylamide running gels used for 1-D SDS-PAGE and 

second dimension electrophoresis of 2-D gels contained the following: 

Sterile H2O    3.35 ml 
1.5 M Tris HCl, pH 8.0  2.5 ml 
10% SDS    100 µl 
30 % acrylamide    4.0 ml 
10% Ammonium persulphate  50 µl 
TEMED    5 µl 
 
SDS-PAGE electrophoresis was carried out at a constant voltage of 100 V at 4oC in a 

cold room.  The gels were then stained using the Colloidal Blue Staining Kit 

(Invitrogen™) according to the manufacturer’s instructions.  Glass containers used to 

stain gels were cleaned with de-con in sterile H2O and then with ethanol before 

staining.  The gel staining containers were covered with cling film and then placed on 

bench top rocking platforms in order to facilitate the staining.  After 6 hours staining 

gels were de-stained overnight in sterile H2O.  

 

2.8.1 – Automated protein spot detection and analysis of 2-D gels. 

 
The gels were scanned and analysis of 2-D gels was carried out using the 

ImageMaster 2D Platinum Software (version 5.0).  Protein spots were detected 

automatically on 2-D gels by the ImageMaster software using the following settings: 

Saliency   1.0 
Minimum area   5.0 
Smooth   2.0 
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The spot detection was scrutinised by eye and the molecular weight marker proteins 

were deleted from the detected spots as well as any detected regions that were clearly 

not protein spots such as dark areas of the dye front or specks of dust that had not 

been eliminated by the minimum area filter.   

 
Reference spots were selected by eye to align the iron replete and iron limited gels in 

order to guide the software to highlight differentially expressed proteins.  Spot pairs 

identified by the software were confirmed by eye and differentially expressed proteins 

on both the iron replete and iron limited gel were annotated using the ImageMaster 

software.  

 

2.8.2 – Mass spectroscopic analysis of iron replete 2D-SDS PAGE spot FeR1  

 
The prominent spot FeR1 in the iron replete 2D-SDS gel (figure 3.15) was excised 

using a micropipette with a sterile 200 µl tip.  The excised protein was then stored in a 

sterile 1.5 ml tube at -20oC until it was sent for mass spectroscopic and bioinformatic 

analysis at the Fingerprints proteomics facility, Post-genomics and Molecular 

Interactions Centre, University of Dundee. 

 

2.8.3 – Western blotting 

 
Cells were harvested from Coccolithus pelagicus cultures in exponential growth phase 

and lysed by immersion in 500 µl of SDS loading buffer (250 mM Tris-HCl pH 6.8, 

2% SDS, 10% glycerol, 20 mM dithiothreitol, 0.01% bromophenol blue).  The 

samples were incubated at 90oC for 1 minute in a water bath.  Protein concentrations 

were determined using the 2D Quant Kit (Amersham) according to the manufacturer’s 
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instructions.  The SDS gel was run at room temperature, 150 V constant voltage for 

90 minutes.  Seeblue® (Invitrogen) standard markers were loaded on the gel.   

 
The separated proteins were electroblotted for 2 hours onto a PVDF membrane using 

PVDF transfer buffer (25 mM Tris base pH 7.4, 192 mM glycine, 10% methanol) at 

room temperature, 65 V (constant voltage).  The SDS gel was stained with Coomassie 

blue to ensure that the proteins had been transferred to the PVDF membrane and were 

no longer present in the gel.   

 
The blot was blocked with blocking buffer (5% goat serum albumin (Sigma), 0.1% 

Tween 20, 10 mM Tris base pH 7.4, 0.9% NaCl) at room temperature for 1.5 hours 

with constant agitation.  The blot was then incubated with a 1:400 dilution of rabbit 

anti-actin antibody (Sigma) in blocking buffer.  The primary antibody incubation was 

conducted for 16 hours at 4oC with constant agitation.  After the primary incubation 

three 5 minute washes were performed at room temperature using wash buffer (10 

mM Tris base pH 7.4, 0.9% NaCl, 0.1% Tween 20) with constant agitation.   

 
The blot was incubated with the secondary antibody (HRP-conjugated goat anti-

rabbit) diluted to 1:10,000 in blocking buffer.  The incubations were performed at 

room temperature for 30 minutes with constant agitation.  After the secondary 

antibody incubation the blot was washed four times with wash buffer each time for 5 

minutes with constant agitation.  A final 5 minute wash in distilled water was 

performed in order to remove any residual Tween 20 prior to chemiluminescent 

detection.   
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The SuperSignal® West Pico Chemiluminescent Substrate (Pierce) was used to detect 

antibody binding according to the manufacturer’s instructions.  Optimum exposure 

times were determined empirically and found to be 30 seconds.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 64



Chapter 3 – Growth experiments and proteomic analysis  

 
 
3.1 – Coccolithus pelagicus growth experiments 

 
The iron chelating compounds EDTA and deferoxamine were assessed for their  

ability to induce iron limitation in cultures of Coccolithus pelagicus.  The extent to 

which each chelator produced iron limited conditions in cultures was dependent on 

the concentration of the chelator.  It was found that much greater concentrations of the 

divalent cation chelator EDTA were required to produce an iron limited response 

compared to deferoxamine which binds ferric iron exclusively.  The effects of various 

concentrations of each chelator on growth rates and chlorophyll a concentration per 

unit biomass, and the response of iron limited cultures to the addition of iron are 

presented.  Apparent morphological changes associated with both iron replete cells 

and iron limited cells are also presented alongside the growth data.  The effectiveness 

of the chelators at artificially inducing iron limitation in Coccolithus pelagicus 

cultures and the possible disadvantages of using such a system are discussed.  SDS-

PAGE data and two-dimensional SDS-PAGE gels are presented as evidence that the 

proteome of iron limited cells is different from that of their iron replete counterparts 

indicating that there are changes occurring at the molecular level which coincide with 

iron limitation-induced slower growth rates.  Data resulting from attempts to identify 

a differentially expressed protein by means of mass spectroscopy and western blotting 

are also presented.     

 
The growth of Coccolithus pelagicus in triplicate cultures in artificial sea water 

(ASW) containing various concentrations of iron chelators was monitored using 

optical density measurements at 750 nm. In conjunction with these growth 
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measurements chlorophyll a concentrations were used as a proxy indicator for iron 

limitation under the conditions employed.  Growth as determined by measuring the 

culture optical density at 750 nm and following a series of preliminary experiments 

using chelators at a wide range of concentrations growth was deemed to be 

moderately iron limited if the growth was 80% of the rate of the control and more 

severely iron limited if the growth was 60% or less than that of the control cultures. 

This was achieved at additional EDTA concentrations in the range 1.5 – 2 mM and 

deferoxamine concentrations in the range 150 – 200 μM (Figure 3.1, Table 3A). 
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Figure 3.1: Growth curves showing mean ± SE (n=3) increase in biomass of 
Coccolithus pelagicus cultures grown in the presence of various 
concentrations of the iron chelators deferoxamine and EDTA as determined 
by optical density measurements at 750 nm.      
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Culture Mean(n=3) Specific 

Growth Rate (µ) (per day) 

Generation 

Time (G) 

(Days) 

µ expressed as a 

% of the iron 

replete µ 

Fe Replete 0.165 (SE ± = 0.001) 4.2  100% 

150 Micromolar 

DF 

0.107 (SE ± =0.0021) 6.48 64.5% 

200 Micromolar 

DF 

0.110 (SE ± = 0.0014) 6.3 66.7% 

1.5 mM EDTA 0.118 (SE ± = 0.00054) 5.87 71.5% 

2 mM EDTA 0.097 (SE ± = 0.0012) 7.14 58.8% 

Table 3A:  Mean ± SE (n=3) specific growth rates, generation times and iron 
limited specific growth rates as a percentage of iron replete rates of 
Coccolithus pelagicus cultures treated with the iron chelators deferoxamine 
(DF) and EDTA at various concentrations.  The data to calculate specific 
growth rates was taken from the growth curves shown in figure 3.1.  
 

While both EDTA and deferoxamine were able to reduce the growth rate of cultures 

compared to the iron replete control cultures, EDTA was required at far higher 

concentrations than deferoxamine to achieve a similar degree of growth inhibition.  

Even at millimolar concentrations of EDTA (i.e. ten times that of deferoxamine) the 

EDTA grown cultures still displayed specific growth rates similar to those cultures 

grown in the presence of much lower concentrations of deferoxamine.  

 

In iron limited cultures the increase in chlorophyll concentrations over time was less 

than the rates observed in the iron replete cultures.   As with the optical density at 750 

nm, chlorophyll concentrations were inversely related to the concentration of iron 

chelator (deferoxamine or EDTA) in the growth medium.   
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Figure 3.2:  Mean ± SE (n=3) change in chlorophyll concentration over time in 
cultures of Coccolithus pelagicus grown in media containing various 
concentrations of the iron chelators EDTA and deferoxamine.  
 

Chlorophyll concentrations per unit biomass were lower in iron limited cultures than 

in iron replete cultures indicating that the amount of the pigment in iron limited cells 

is reduced relative to iron replete cells (Figure 3.3).   
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Figure 3.3:  Temporal change in mean ± SE (n=3) chlorophyll a concentration 
per unit biomass in cultures of Coccolithus pelagicus grown under iron replete 
conditions and in the presence of various concentrations of EDTA or 
deferoxamine.  
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3.1.1 – Iron addition experiments 

 
In order to confirm that Coccolithus pelagicus cultures grown in the presence of 

deferoxamine were iron limited, growth experiments in which 100 nM FeCl3 was 

added to iron limited cultures were carried out to observe the response to a fresh input 

of iron.  Iron was added after optical density and chlorophyll a measurements had 

been taken on the seventh day of growth. The growth data obtained in the iron 

addition experiments are shown below in figure 3.4. 
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Figure 3.4:  Growth curves showing mean ± SE (n=3) increase in biomass of 
Coccolithus pelagicus cultures grown under iron replete conditions and in the 
presence of 150 µM deferoxamine before and after the addition of iron. 
 

The mean ± SE (n=3) specific growth rates (µ) and generation times (G) of the 

cultures used in the iron addition experiment were calculated before and after iron 

addition and are shown in table 3B. 
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Culture Mean(n=3) Specific 

Growth Rate (µ) (per 

day) 

Generation 

Time (G) 

(Days) 

µ expressed as 

a % of the iron 

replete µ 

Fe Replete cultures 0.202  (SE ± = 0.00082) 

 

3.43  100% 

Fe limited 

cultures(before iron 

addition) 

0.136  (SE ± = 0.0024) 5.09 67% 

Fe limited cultures 

(after iron addition) 

0.196  (SE ± = 0.0037) 3.54 97% 

Table 3B:  Mean SE ± (n3) specific growth rates, generation times and iron 
limited growth rates as a percentage of iron replete growth rates of 
Coccolithus pelagicus cultures used in the iron addition experiment. 
 

The specific growth rate of the iron limited cultures increased upon addition of iron.  

The specific growth rate increased within one day and reached that of the iron replete 

cultures. This is apparent in the data presented in figure 3.4 which shows that the rate 

of biomass accumulation increased markedly after the addition of iron and in table 3B 

which clearly displays the change in growth rate when iron is made available. 

 

Chlorophyll a concentrations were monitored in the iron replete and in the iron 

limited cultures before and after iron addition.  The results of the chlorophyll 

concentration measurements are shown in figure 3.5.   
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Figure 3.5:  Mean ± SE (n=3) change in chlorophyll concentration over time in 
cultures of Coccolithus pelagicus grown under iron replete conditions and in 
the presence 150 µM deferoxamine before and after addition of additional 
iron.   
 

As was the case with growth rate after iron addition to iron limited cultures (figure 

3.4), the rate of increase in chlorophyll a concentration also increased upon alleviation 

of iron limitation (figure 3.5). 

 

In order to determine if the chlorophyll concentrations observed represented a real 

difference in the amount of chlorophyll a per cell, the chlorophyll concentration 

normalized to biomass over time was calculated and expressed as chlorophyll a 

concentration per 1.0 optical density unit at 750 nm (figure 3.6).   
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Figure 3.6:  Curves showing change in chlorophyll a concentration per unit 
biomass  in cultures of Coccolithus pelagicus grown under iron replete 
conditions and in the presence of 150 µM deferoxamine before and after the 
addition of iron. 
 

The amount of chlorophyll a per unit biomass decreased over time in both the iron 

replete and iron limited cultures, although the decline was much less rapid in the iron 

replete cultures.  The chlorophyll a concentration per unit biomass increased 

markedly upon iron addition to iron limited cultures of Coccolithus pelagicus before 

levelling out and beginning to decrease in line with the iron replete cultures once 

more.  The chlorophyll a concentrations per unit biomass in the iron limited cultures 

did not reach the same levels as the iron replete cultures even after alleviation of iron 

limitation which was consistent with the increase in specific growth rates of the iron 

limited cultures which did not quite match that of the iron replete cultures.  An initial 

rapid increase in the concentration of chlorophyll a per unit biomass over the first day 

following inoculation with an iron limited culture was observed in both the iron 
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limited and iron replete control cultures, with the iron replete cultures reaching the 

highest concentrations.    

 

3.1.2 – Growth data for cultures used in RNA extractions 

 
Coccolithus pelagicus replicate cultures from which cDNA was prepared for use in 

RT real time PCR experiments were monitored for increase in biomass over time.  

The specific growth rates (µ) and generation times (G) of each replicate were 

calculated and the data are shown below in figure 3.7 and table 3C.   
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Figure 3.7:  Growth curves for Coccolithus pelagicus replicate cultures from 
which RNA was extracted.  The growth curves show increase in biomass over 
time when grown under iron replete conditions and in media containing 150 
µM deferoxamine.  The Fe Replete (4) and Fe Limited (4) replicates were 
inoculated with a different stock from the other replicates shown.  
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Culture / 

replicate 

Specific growth rate 

(µ) (per day) 

Generation time 

(G) (Days) 

µ expressed as a 

% of the iron 

replete µ 

Fe Replete 

(1,2,3) 

0.224 3.09 100% 

Fe Replete (4) 0.214 3.23 100% 

Fe Limited (1) 0.115 6.027 51% 

Fe Limited (2) 0.117 5.92 52% 

Fe Limited (3) 0.116 5.97 51.8% 

Fe Limited (4) 0.097 7.14 45% 

Table 3C:  Specific growth rates, generation times and iron limited growth 
rates expressed as a percentage of their respective iron replete control growth 
rates of replicate cultures of Coccolithus pelagicus used to produce cDNA for 
RT real time PCR experiments. 
 

The growth curves in figure 3.7 show the increase in biomass over time of the 

Coccolithus pelagicus cultures that were used to extract RNA for use in primer 

optimisation experiments and RT real time PCR.  There is some variability between 

the growth rates of the four iron limited cultures despite each culture being treated 

with the same concentration of deferoxamine.  Such variability was commonly 

observed throughout the duration of many growth experiments.  The cultures appear 

to suffer a lag phase which lasts one to two days perhaps due to the fact that a 10% of 

total volume inoculant was used for all of the cultures shown in figure 3.7.  The iron 

limited culture (4) displayed a notably slower growth rate compared to the other three 

cultures while the growth rate of iron limited culture (2) was the fastest, despite still 

being considerably slower than the iron replete cultures. 
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When deferoxamine chelates iron it produces a pale yellow colour at the 

concentrations of deferoxamine used in these growth experiments which resulted in 

the culture medium having a slightly pale yellow colour prior to inoculation.  To 

ensure that this would not interfere with the spectrophotometric growth 

measurements, the absorbance of sterile ASW culture medium containing 200 µM 

deferoxamine (the highest concentration used in any of the growth experiments) was 

measured using ASW medium without deferoxamine as a blank for the 

spectrophotometer.  The ASW containing 200 µM deferoxamine did not display any 

absorbance at 750 nm and therefore did not interfere in the determination of biomass.  

 

 

3.2 – Microscopic examination of iron replete and iron limited Coccolithus pelagicus 

cultures 

 
When iron replete and iron limited cells of Coccolithus pelagicus were examined 

under a light microscope at 630 x magnification it was found that there were some 

notable differences in the appearance of the cells.  
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Figure 3.8:  Micrograph of iron replete cells of Coccolithus pelagicus at 630 x 
magnification under a light microscope.   

   20 µm 

 

Figure 3.9:  Micrograph of iron limited cells of Coccolithus pelagicus at 630 x 
magnification under a light microscope. 

   20 µm 
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The iron replete cells shown in figure 3.8 appeared more refractile than the iron 

limited cells displayed in figure 3.9 which suggests that the iron replete cells were 

more heavily calcified.  At least one of the iron replete cells in figure 3.8 was motile, 

a flagellum can be seen protruding from the cell and pointing towards the bottom of 

the image in the cell toward the top left of the micrograph.  By contrast, fewer 

flagellated cells were observed in the Fe limited cultures.  The iron-limited cells also 

appeared to be of a more uneven shape perhaps indicative of incomplete or mal-

formed coccoliths. 

 

 
20 µm 

Flagellum 

Flagellum 

Haptonema 

Figure 3.10:  Micrograph of an iron replete cell of Coccolithus pelagicus at 630 
x magnification under a light microscope.  The two flagella and the haptonema 
are highlighted. 
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20 µm 

Figure 3.11:  Micrograph of an iron limited cell of Coccolithus pelagicus at 630 
x  magnification under a light microscope. 
 
 
A close up view of iron replete (figure 3.10) and iron limited (figure 3.11) 

Coccolithus pelagicus cells confirmed the structural differences between cells in each 

culture when examined under a light microscope.  Paired flagella and a haptonema 

were immediately apparent in iron replete cells while these structures appeared to 

occur less frequently in cells from the iron limited culture.  In the close up view of an 

iron replete cell shown in figure 3.10 the paired flagella and central shorter haptonema 

are clearly visible, as was the case for many of the iron replete cells.  In figure 3.11 

showing a close up view of a typical iron limited cell there are no flagella or 

haptonema present.   Counts of flagellated / non-flagellated cells in the iron replete 

and iron limited cultures showed that cells with actively moving flagella occurred 

twice as frequently in the iron replete cultures as in the iron limited cultures.  18% of 

iron replete cells counted had moving flagella while in the iron limited cultures this 

was the case for only 9% of the cells counted. 
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3.3 - 1 Dimensional SDS PAGE analysis of Coccolithus pelagicus proteins 

 
The change in the proteome between iron replete and iron limited cells of Coccolithus 

pelagicus was examined by means of 1-dimensional SDS-PAGE and 2-dimensional 

SDS-PAGE.  Both 1D SDS PAGE and 2D SDS PAGE revealed that the proteome of 

iron limited cells had changed in comparison to the proteome of iron replete cells. 
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Figure 3.12:  Coomassie blue stained 1D SDS-PAGE gel showing two 
proteins detected only in cells of four iron limited Coccolithus pelagicus 
cultures and one protein detected only in iron replete cultures.  Lanes 1-7 
contain the following:  1 = Mark 12™ protein standards, 2-3 = Iron replete 
cultures, 4-7 = Iron limited cultures.  Arrows to the right of the image show two 
protein bands in iron limited samples that were present at lower 
concentrations or absent in iron replete samples.  The single arrow on the left 
shows a protein band in the iron replete samples that was present in lower 
concentrations or absent from iron limited samples. 

 79



Several strongly stained bands of the same molecular weight were apparent in both 

iron replete and iron limited samples run on the 1D SDS gel.  There were two obvious 

bands that were present only in samples from one of the culturing conditions.  Two 

stained bands were observed at molecular weights of approximately 36-40 KDa in 

lanes that contained proteins from iron limited cultures.  These bands could not be 

seen in the two iron replete cultures examined by means of 1D SDS-PAGE.   

 

3.3.1 - Two-Dimensional SDS PAGE analysis of Coccolithus pelagicus proteins 

 
Differences in the proteins present in iron replete and iron limited Coccolithus 

pelagicus cultures was further examined using 2D – SDS PAGE and 2D gels were 

analysed using the ImageMaster software.  2D gels showing the differences in the 

proteins present between the two culture conditions are shown on the proceeding 

pages:  
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Figure 3.13:  2D-SDS PAGE gel showing proteins in the cells of an iron 
replete culture of Coccolithus pelagicus detected by the ImageMaster 
software. 

 
Figure 3.14:  2D-SDS PAGE gel showing proteins in the cells of an iron 
limited culture of Coccolithus pelagicus detected by the ImageMaster 
software.   
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The overall pattern of the protein spots detected on both the iron replete 2-D gel and 

the iron limited 2-D gel was similar, although there were a number of differences 

between the gels.  These differences are highlighted in figures 3.15 and 3.16.  

36.5 kDa 

31 kDa 

21.5 kDa 

pH 7.0 pH 4.0

Figure 3.15:  2D-SDS PAGE gel showing proteins present in the cells of an 
iron replete culture of Coccolithus pelagicus with reference proteins annotated 
(A-J) and differentially expressed proteins annotated (FeR1-FeR4). 
 
 

The iron replete 2D gel contained four differentially expressed proteins, and in 

particular the protein spot labelled FeR1 was prominent on the gel and was picked 

from the gel for sequencing at a later date. 
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Figure 3.16:  2D-SDS PAGE gel showing proteins present in the cells of an 
iron limited culture of Coccolithus pelagicus with reference proteins annotated 
(A-J) and differentially expressed proteins annotated (1-11). 

pH 4.0 pH 6.0pH 4.0 pH 7.0

     21.5 kDa 

      31 kDa 

    36.5 kDa 

 

In total eleven differentially expressed proteins were detected on the iron limited 2D 

gel. 

 

Protein spots annotated A-J were detected on 2-D gels showing total protein extracted 

from iron replete and iron limited Coccolithus pelagicus cultures (figures 3.15 and 

3.16) and they represent proteins present under both conditions.  They were used as 

reference proteins to guide the ImageMaster software to overlay the gel images and 

match other protein spot pairs that were present in both gels.  The protein spots 

annotated FeR1 – FeR4 in the iron replete gel (figure 3.15) and the protein spots 

annotated 1 – 11 in the iron limited gel (figure 3.16)  are differentially expressed 

proteins detected by the ImageMaster software and confirmed by visual inspection. 
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The protein spot annotated FeR1 in the iron replete gel (figure 3.15) is intensely 

stained and is clearly not present in the iron limited gel (figure 3.16).  The protein 

FeR1 is a clear indication that the proteome of iron replete Coccolithus pelagicus 

cultures differs from that of the iron limited cultures while the presence of the 

differentially expressed proteins A-J shows clear evidence of changes in the 

expression in at least 11 distinct proteins in iron-limited cultures.   

 

3.3.2 - Mass spectroscopic analysis of iron replete protein spot FeR1 and western 

blotting 

 
The most prominent protein (FeR1) present in the 2D-SDS PAGE gels (figure 3.15) 

was extracted from the gel and subjected to mass spectroscopic analysis (1D nLC-

MS-MS) in an attempt to identify the differentially expressed iron replete protein.  

The mass spectroscopy results (data not shown) were ambiguous and several possible 

identities were obtained for the extracted protein spot.  Upon further analysis of the 

results it was determined that only one of the possible identities; actin, fell within the 

criteria that could be discerned for the 2D-SDS PAGE analysis.  All of the other 

possible identities suggested by the mass spectroscopic analysis were eliminated on 

the basis of their molecular weight, isoelectric points or if they were most likely to be 

a contaminant resulting from the extraction of the gel spot or the subsequent trypsin 

digest and analysis. 

 

In order to confirm that the extracted protein spot was actin western blots were 

performed using a commercially available anti-actin antibody (figure 3.17).  Even 

under stringent experimental conditions it was not possible to eliminate all 

background from the western blots.  The available antibody bound several protein 
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bands in both the iron replete and iron limited sample lanes and also bound to some of 

the standard markers.  Increasing the stringency of the experimental conditions 

resulted in no detectable antibody binding.  The poor quality of the available 

antibody, in particular its lack of specificity, led to ambiguous western blot results and 

thus it was not possible to confirm the identity of the extracted protein spot as actin.  

A primary antibody dilution of 1:400 provided the best, yet highly ambiguous and 

inconclusive results.   

 

Iron Replete Iron Limited  
     M        20 µg   10 µg    5 µg       20 µg      10 µg     5 µg 

 

 

 

 

 

 

 

   62 kDa 

   28 kDa 

   38 kDa 

   49 kDa 

Figure 3.17: Western blot showing crude cell extracts from iron replete and 
iron limited Coccolithus pelagicus cells probed with rabbit anti-actin antibody 
(1:400), (secondary antibody – goat anti-rabbit HRP, 1:10,000).  3 lanes were 
loaded with 20 µg, 10µg and 5 µg of iron replete protein, and another 3 lanes 
were loaded with 20 µg, 10µg and 5 µg of iron limited protein.  M = SeeBlue® 
pre-stained standard protein markers (Invitrogen™). 
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3.4 – Discussion  

 
The results from the growth experiments demonstrate that the use of deferoxamine to 

chelate iron in growth media is an effective method of producing iron limited cultures 

of Coccolithus pelagicus.  Deferoxamine overwhelmingly chelates iron and earlier 

studies suggest that it has no impact on the uptake of other biologically important 

metals (Wells, 1999).  To date it has not been reported as being detrimental to the 

growth of phytoplankton in laboratory or field studies, other than growth inhibition 

resulting from its ability to chelate iron (Hutchins et al., 1999(A) Wells, 1999; 

Eldridge et al., 2004; Naito et al., 2008).  During ship-board laboratory studies in 

which deferoxamine was added to size fractionated samples of natural  phytoplankton 

communities it was found that while iron uptake rates slowed, short term uptake of 

carbon was not affected even at the somewhat higher concentrations of deferoxamine 

used in the study (500 nM). This suggested that the inhibitory effect of deferoxamine 

on phytoplankton productivity was not due to general toxicity (Wells & Trick, 2004) 

but was a sole consequence of its effective chelation of iron.  The same study found 

that across all phytoplankton size classes the addition of 3 nM deferoxamine to 

natural populations reduced iron uptake rates by at least 90% relative to that of 

controls with no chelator added.  Interestingly, the iron uptake rates in the larger size 

class (>5µm) were more severely reduced by deferoxamine, while the smaller size 

class (>0.2 – 5µm) appeared to be able to access deferoxamine bound iron to varying 

extents.  This suggests that deferoxamine may be a particularly suitable chelator for 

studies of iron limitation in the larger eukaryotic phytoplankton as was found to be the 

case with Coccolithus pelagicus in this investigation.  Furthermore, it has been 

reported that addition of deferoxamine to samples of natural iron replete 
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phytoplankton communities results in changes in biological parameters including 

biomass and nutrient concentrations which are similar to those observed in iron 

limited populations in high nutrient low chlorophyll areas (Hutchins et al., 1999(A); 

Wells, 1999; Eldridge et al., 2004).  At least with the larger size classes of 

phytoplankton, deferoxamine appears to be an effective means of mimicking low iron 

levels in the marine environment within a laboratory setting.        

 

The considerably reduced specific growth rates observed in Coccolithus pelagicus 

grown in the presence of deferoxamine suggest effective iron limitation was achieved 

in this study.  Deferoxamine-treated cultures also display proportionately lower 

chlorophyll concentrations per unit biomass than their iron replete counterparts and it 

was found that lower specific growth rates were overcome upon alleviation of iron-

limitation through iron supplementation.  The change from reduced to higher specific 

growth rates and from low to higher chlorophyll concentrations per unit biomass in 

iron limited cultures after iron addition strongly indicates that it was the relative un-

availability of iron in the medium rather than any other factor such as deferoxamine 

toxicity that produced the differences between the iron limited and iron replete 

cultures. 

 

The observation that iron replete cells have a different microscopic appearance 

compared to iron limited cells both in the apparent extent of calcification and in the 

irregularity of the shape of  iron limited cells, further suggests that there are 

significant differences between the cells under the two conditions.  The larger number 

of iron replete cells possessing moving flagella may be indicative of a larger 

proportion of cells being in the motile phase of the Coccolithus pelagicus life cycle.  
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The smaller proportion of flagellated cells in the iron limited culture may also reflect 

a need to conserve energy when a reduced concentration of iron is available.  The 

operation of a flagellum is a metabolic process that demands a great deal of the cell’s 

energy and elimination of this organelle may represent a considerable energy saving 

to iron limited cells.  As iron limited cells are essentially energy limited owing to the 

critical role of iron in both photosynthesis and respiration, the additional energy 

demands of maintaining an active flagellum may render it un-sustainable in cells 

unable to operate at their metabolic optimum.   

 

Coccolithus pelagicus is known to have a non-motile haploid phase in its life cycle 

which is less calcified than the motile diploid phase (Rayns, 1962).  Therefore, one 

reason for the difference in microscopic appearance observed in deferoxamine-treated 

cultures is that a higher proportion of the cells are in the non-motile haploid phase in 

comparison to iron-replete cultures.  Maintaining cells in a haploid phase of the life 

cycle offers a potential means of conserving energy in iron limited cells, owing to the 

reduced biosynthetic costs associated with maintaining a haploid genome. 

 

The eleven differentially expressed proteins detected in the iron limited 2D gel and 

the four differentially expressed proteins in the iron replete 2D gel in conjunction with 

the differences observed on the 1D SDS gel confirm that the proteome of the cells is 

different between the two growth conditions.  This proteomic evidence in conjunction 

with optical density, chlorophyll a concentration measurements, iron addition 

experiments and microscopic observation confirms that Coccolithus pelagicus 

cultures grown in f/2 enriched ASW media in the presence of 150 µM deferoxamine 

 88



results in a level of iron limitation sufficient to cause changes at the molecular level 

and provides suitably iron limited cells for further study.  

 

Due to its greater specificity deferoxamine was selected as the preferred iron chelator 

to be used to produce iron limited cells for this study.  EDTA was also effective at 

producing slower specific growth rates and lower chlorophyll concentrations relative 

to iron replete controls, but it was required at far higher concentrations.  This was 

probably due to the fact that EDTA not only chelates iron but also chelates other 

divalent cations while deferoxamine has an overwhelming affinity for iron.  Some of 

the additional EDTA will chelate copper, manganese, magnesium and zinc for 

example, which may account for the far higher concentrations of EDTA needed to 

produce the same extent of iron limitation that is observed when deferoxamine is 

used.  EDTA is a less suitable chelator for studies of iron limitation in Coccolithus 

pelagicus as the promiscuous nature of this chelator and the millimolar concentrations 

required in order to cause significant iron limitation mean that changes in gene 

expression due to chelation of other trace metals cannot be ruled out.  Nevertheless, a 

number of previous studies of iron-limitation with both natural populations and 

laboratory cultures have used EDTA as a chelator (reviewed by Gerringa et al., 2000) 

Although using deferoxamine in growth media to chelate iron was consistently 

effective at producing iron limited cultures of Coccolithus pelagicus there was 

variability between cultures in terms of the severity of iron limitation observed.  The 

severity of iron limitation was judged based on the specific growth rates of cultures, 

slower specific growth rates indicating more severe iron limitation.  Specific growth 

rates varied over a range of 17% between the iron limited cultures used to produce 

cDNA for real time PCR experiments and this variation was evident in the gene 
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expression data obtained using RT real time PCR (see chapter 5).  When dealing with 

low concentrations of trace metals such as iron it is often difficult to maintain equal 

concentrations in all cultures.  When cultures are sampled for growth measurements, 

for example, dust from the air can contribute additional iron to the media.  Despite 

minimising contamination through the use of aseptic technique and acid washing 

glassware that was used in the preparation of growth media, it was difficult to 

completely eradicate all contaminating trace metals from the growth media.  When 

these factors were considered, a variation of 17% in specific growth rate over the 

range of iron limited cultures used for experimentation was deemed to be acceptable. 

Even the most rapidly growing of these cultures were still growing far more slowly 

than the iron replete controls.  

 

Although the 2D gels showed that eleven novel proteins were present in the iron 

limited cells, none were present at high concentration making them difficult targets as 

a biomarker.  By contrast FeR1 would be a good candidate protein as a marker of iron 

replete cells although at the time of analysis this was not the main objective of this 

study.  The sensitivity of the Colloidal Coomassie stain is within the range of 38 ng 

per band or 250 ng per mm2.  This stain was selected for use as opposed to the more 

sensitive silver stain, as silver stain makes mass spectral analysis impossible.  The 

sensitivity of the Colloidal Coomassie blue was deemed sufficient to detect proteins 

which would be present in concentrations high enough to make them suitable 

potential biomarkers for iron limitation, worthy of further investigation.  Any protein 

present at concentrations below the threshold of Colloidal Coomassie blue sensitivity 

are unlikely to prove good biomarkers for iron limitation owing to the fact that an 
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ideal biomarker should show a large difference in abundance between the two iron 

conditions.   

 

Chlorophyll a concentrations per unit biomass did not appear to remain constant 

throughout the duration of iron limited growth.  This may indicate that iron limited 

cells of Coccolithus pelagicus prioritise cell division over chlorophyll a biosynthesis 

under these conditions.  If there is a reduction in cell size and an increase in the ratio 

of accessory pigments : chlorophyll a  this may allow the cultures to continue growing 

with reduced chlorophyll a concentrations and account for the trend observed.  A 

reduction in chlorophyll / cell of up to 54% has been reported for Thallassiosira 

weissflogi grown in EDTA buffered seawater with iron additions across a range of 10 

– 1000 nm (McKay et al., 1997).  This is consistent with the findings for Coccolithus 

pelagicus in this study.  After an initial increase in chlorophyll per unit biomass upon 

inoculation into fresh growth media, there was a relatively rapid decline in the 

cultures grown at low iron concentrations as cells divide but were unable to rapidly 

synthesise chlorophyll.   Reduction in cell size in response to iron limitation has been 

reported in other species (Stefels & van Leeuwe, 2002, Leynaert et al., 2004).  A 

moderate reduction in the chlorophyll a concentration per unit biomass over time was 

also observed in the iron-replete cultures but this is unlikely to be the result of an 

inability to produce chlorophyll over the period of growth.  It may be the case that 

shed coccoliths affect the optical density measurements and exaggerate the cell 

number to an extent sufficient to slightly skew the chlorophyll a per unit biomass 

measurements.  It may also be the case that at later stages of growth another nutrient 

in the iron replete cultures becomes limiting due to rapid growth of the cultures, 
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resulting in lower chlorophyll biosynthesis but not affecting cell division as appears to 

be the case for iron limited cells at a much earlier point. 

 

Highly ambiguous western blot results made it impossible to confirm the identity of 

the iron replete protein spot FeR1 (figure 3.17).  Actin was pursued as a possible 

identity for the differentially expressed protein because it most closely fitted the 

criteria that could be observed from the 2D SDS gel from which it was obtained.  

Human actin is approximately 43 kDa and isoelectric points of the various isoforms 

range from 5.4 to 6.0, this is similar in other species ranging from mammals to slime 

moulds (Zechel & Weber, 1978).  Unfortunately the commercially available anti-actin 

antibody appears to have poor specificity and may be binding to several different 

actin isoforms in the western blots.  The antibody also bound many of the marker 

proteins in the blots even under stringent conditions which further illustrates its lack 

of specificity.  The amino acid sequence for actin is unusually well conserved 

throughout different organisms, ranging from humans and other animals to plants and 

unicellular organisms (reviewed by Sheterline & Sparrow, 1994).  It is likely this high 

degree of sequence conservation that reduces the ability of any anti-actin antibodies to 

distinguish between different actin isoforms.  Until such time as a better quality anti-

actin antibody is available it may prove difficult to achieve conclusive western blot 

results for protein spot FeR1, if it is in fact actin.       
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Chapter 4 – Analysis of differentially expressed 

sequences in the iron replete and iron limited subtracted 

libraries. 

4.1 – Chapter introduction 

In the proceeding chapter the results obtained from sequencing the iron replete and 

iron limited subtracted libraries are presented and analysed.  Sequences unique to 

either the iron replete or iron limited subtracted libraries were subjected to BLAST 

analysis in an attempt to identify or assign a putative identity to each.  Only a fraction 

of the sequences from the iron limited subtracted library could be identified with a 

degree of confidence and an overview of the iron limited subtracted library is given 

here.  The relative proportion of each identified sequence as a fraction of the entire 

subtracted library is presented.  The subtracted iron limited cDNA sequences are 

presented alongside their BLAST analysis results and the implications of the assigned 

identities are discussed.  Multiple sequence alignments that were used to design 

degenerate primers to target the GAPDH and flavodoxin transcripts (Chapter 5) are 

also shown.      

 

4.1.1 – Composition of the subtracted cDNA library 

 
Nucleotide sequences obtained from the iron replete and iron limited subtracted 

libraries returned a variety of hits with acceptable e-values from the NCBI database 

upon being subjected to BLAST analysis.  Both the Blastn and BlastX analysis tools 

were used to identify the sequences.  While there were several BLAST hits which 

provided strong matches to sequences in the NCBI database, most of the sequences in 
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both the iron replete and iron limited subtracted libraries returned no significant 

matches, hits on hypothetical proteins or whole genomes from algae and higher 

plants.  In total, 272 clones from the iron limited subtracted library and 48 from the 

iron replete subtracted library were sequenced successfully.  BLAST analysis of the 

iron limited subtracted library returned results with the following composition:   

 

Significant matches to known proteins or sequences in which 
conserved domains were detected. 

36.4% 

Matches to hypothetical proteins, genomes, or sequences 
which returned no hit.  

63.6% 

Table 4A: Table showing the overall sequence composition of the iron limited 
subtracted library.  
 

A significant Blast hit was considered to be a hit on a sequence of known function 

with an e-value of 0.1 or less or the detection of conserved domains.  Hits on 

hypothetical proteins or genomes with any e-value were not considered any further.  

The sequences analysed further using RT real time PCR (chapter 5) accounted for 

19% of total number of sequences from the iron limited subtracted cDNA library.  

Several hits appeared frequently within the iron limited subtracted library (Figures 4.1 

and 4.2).  The following sequences were the most abundant among the sequences 

which returned significant hits upon Blast analysis, Table 4B shows the full name of 

each sequence alongside the abbreviation used to refer to it: 
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Gene identified in subtracted cDNA 

library 

Abbreviation used throughout text 

20S Proteasome subunit 20S Prot 

Chlorophyll light harvesting protein 

isoform 2 

Chl LHP 

Protein containing a cytochrome b5 like 

heme / transition metal binding domain 

Cyt b5 

Ubiquinol-cytochrome c reductase 

binding protein 

Cyt bc1 

DnaJ heat shock response like protein DnaJ 

Chloroplast light harvesting protein 

isoform 8 

CM4E12 

Predicted membrane protein PMP 

Chloroplast photosystem I protein E PsaE 

Thioredoxin h Thio 

Ubiquitin-conjugating enzyme E2 UCE 

Fucoxanthin chlorophyll a/c binding 

protein 

FucoBP 

Table 4B:  List of the full names of identified sequences in the iron limited 
subtracted library and the abbreviated names used to refer to them 
throughout the text and in figures 4.1 and 4.2. 
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 (20S Prot)

(Chl LHP)

(Cyt b5)

(Cyt bc1)

(CM4E12)

FucoBP [all transcript
variants]
(PMP)

(PsaE)

(Thio)

(UCE)

Rest of library

 
Figure 4.1:  Relative proportion of each RT real time PCR analysed iron 
limited sequence in the iron limited subtracted cDNA library. The 
abbreviations used to identify each sequence are listed alongside the full 
sequence name with the nucleotide sequences listed in section 4.1.1.   
 

 (20S Prot)

(Chl LHP)

(Cyt b5)

(Cyt bc1)

(CM4E12)

FucoBP [all transcript
variants]

(PMP)

(PsaE)

(Thio)

(UCE)

 

Figure 4.2:  Relative proportion of each RT real time PCR analysed iron 
limited sequence within the 19% of the sequences in the library that were 
examined. The abbreviations used to identify each sequence are listed 
alongside the full sequence name with the nucleotide sequences listed in 
section 4.1.1. 
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Ferredoxin cDNA was detected once in the iron replete subtracted library but not in 

the iron-limited library.  

 

4.1.2 – Blast analysis of the subtracted cDNA library 

 
Details of sequences obtained from the iron limited subtracted library and their 

corresponding Blast analysis results are shown below.  The top Blast hit is shown.  If 

this was a hypothetical protein the next Blast hit showing an identified protein and 

having a significant e-value is also shown with the source organism: 

Fucoxanthin-chlorophyll a/c binding protein (FucoBP): Blastn 

GAATTCGCCCTTAGCGTGGTCNCGNTCCGAGGTACATTATCAACGACCTGCTCGGCG
CCCCTGTGCCATTCAATGTTGGCTTGTAAGCAACCGGTTGTCCCTCAGCTTGGGGTC
GGTGGATATCGAAAGCCTTCAGCCTAAAGCTTCTGCTGGCTGACACCAAGCGTTGTG
AGAGTGTCCATGAACTTATTCTATCCATGTTACCTTTTGCACCTTGATTACGCCCTA
AACTGGCATTGCCGTTAAAACGACATGACCTTCCGAAAAAAAAAAATAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAGCTTGANCTGCCCGGGCGGCCGCTCGAAAGGGCGAATT
C 
 
AB240951.1  mRNA for fucoxanthin chlorophyll a/c binding protein [Pleurochrysis 
carterae] 
 
5e-10 

 

20S Proteasome subunit (20S Prot): BlastX 

GAATTCGCCCTTAGCGTGGTCCCGNCCGAGGTACATGCGCACGGAGTGCATCAACCA
CAGATATGTCTATGAACAGCCGATGCAAGTTGGCCGCCTTGTGACGCAAGTGGCTGA
CAAGTCGCAGCTAGGCACACAGCGTATCGGCAGCCGCCCATACGGTGTCGGTCTGCT
TGTCGCTGGCGTGGATCAAACCGGACCTCATCTGTATGAGACGCAGCCCTCTGGGCA
GTACCTGCCCGGGCGGCCGCTCGAAAGGGCGAATTC 
 
 
ref|XP_001770750.1|  predicted protein [Physcomitrella patens subsp. Patens]  

1e-20 

ref|XP_001691250.1|  20S proteasome alpha subunit F [Chlamydomonas reinhardtii]                                

3e-19 
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=159466106&dopt=GenPept&RID=N03XPWCG014&log$=prottop&blast_rank=3


Chloroplast light harvesting protein isoform 2 (Chl LHP): BlastX 

GAATTCGCCCTTAGCGTGGTCGCGGCCGAGGTACATCCTACCATGAAATTGATGGAG
TGCTATGCTGAAACAGATGAAAATCGACGATGCCATGTTTGTGTTCCGTGAGATTCA
GTGCATGATGCGGGTTGGTGCACTCGAGGCCAGCTGTCAACCAAGTCGATTAAGACA
ATCGAAGTAGATTTAGAGTAGCTTGCCGCCGGTCGCGAGCTCCTGCCCAACCATGCC
GGCGATGGCGAACATAGCCAGGCGGCCGTTATTCAGCTCCTTCGTTGCCAGGTTCTT
GTACCTGCCCGGGCGGCCGCTCGAAAGGGCGAATTC 
 
 
gb|ABA55555.1| chloroplast light harvesting protein isoform 2 [Karlodinium micrum] 

3e-05 

 

Protein containing a cytochrome b5 like heme / steroid / transition metal ion binding 

domain (Cyt b5): BlastX 

GAATTCGCCCTTTCGAGCGGCCCCTTCNGGCAGGTACGTCTCGTGCTTCTGATAAAA
CCCGTGCCACTCAGCGATCCCGCCAAGCTGCTCGTCGGTGAGACCGTCAATCGCATC
AGTAAGGCCCTCTGGTGACGATTCTCCCGTTGAAAAAGCGCGTGTGGCATCACGGCC
AACAAAATGCGCATATGAGCGACCGGCCTTATAAAATTTTGCACCTGTGTTCACGTC
GAAGATGTCTCCGATGATTGCAATGTAAATGGGCTGTCCGTTGAGGCCATTGAACAG
CTTGAGTTCGTCGGTAGTGAAAATGCGAGTTCCGTCAATGCCTATACGAGCTTTGGG
ACGCATGGCGCGAGCAAGCATCGGAGAAGCAACAAGCACAGCAACGGCAAGAACCAC
TGCTGATGTGGCCGCGACCACGCTAAGGGCGAATTC 
 
                                                                   

gb|EEC06067.1| cytochrome b5 domain-containing protein, putative [Ixodes 

scapularis]  

3e-17 

ref|NP_567451.1| ATMAPR4 (ARABIDOPSIS THALIANA MEMBRANE-

ASSOCIATED PROGESTERONE BINDING PROTEIN 4); heme binding / 

transition metal ion binding [Arabidopsis thaliana]  

3e-16 
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Ubiquinol-cytochrome c reductase binding protein (Cyt bc1): BlastX 
 
GAATTCGCCCTTTCGAGCGGCCGCCCGGGCAGGTACTTGCTCATCTCGTGCTGACGT
GAGGAATTTATTCATCTCGTGCTGACGTAAGGGAATATCCGGGCAGCGTCCTTTACT
TGAGGTAGTACTCTTTCTTCTCCTGCTTCACCTCGTCCAGGTACGGCGCCAAGTACG
AATCATAGGGATCGTACGCACTCGCGATCTCAAGCGGGAGCTCCTTGTGGGCGGCGG
AGAGCATCATCGCGCGCTTGAGCCGCTGCTCGCGCGCGACGAGGAGCGGCTCGGGCA
GCCGCTTCAGCGCAAGCTTCACCTCCTCCGTCTCCACCAAGGAGTCCTCGTACATGA
GGCCGTAGCGGGAGAGTTCCCGGCCGACCTCGGCCGCGACCACGCTAAGGGCGAATT
C 
 
                                                       
ref|XP_001505521.1|  PREDICTED: hypothetical protein [Ornithorhynchus anatinus] 

(platypus) 

2e-10 

ref|NP_001125376.1| ubiquinol-cytochrome c reductase binding protein [Pongo 

abelii] (Sumatran orangutan) 

4e-10 

 

DnaJ heat shock response like protein (DnaJ): BlastX 
 
GAATTCGCCCTTTCGAGCGGCCNCCCGGGCAGGTACGCGGCCTTGAGGGCAAGGAAA
GCCTCATCCCCCTCGTCTTCTAAACCCGCGGCGGCGAGCTTATCGGGGTGCACGCGC
AGAGACGCGGTCTTGTAGCCCTTCTTGATCTCTTGCAAGGAAGCACTCGGAAGCACA
TCCATCATGTCATAGTAGCTCTGATCCTTGTTCATCAGCTCCCAGCCAATTTTCACT
GATGCAACTATAGCGAGCAGGCCGCCGGAAAGAGCCACGGCCTTGCGGCGGTTTCCG
TCCTTCACGACACGCGGTGAGGTCATCAAAAACTCCAAAGGTACCTCGGCCGCGACC
ACGCTAAGGGCGAATTC 
 
  
gb|EEC51869.1| predicted protein [Phaeodactylum tricornutum CCAP 1055/1] 

3e-05 

ref|NP_001020582.1| DnaJ (Hsp40) homolog, subfamily A, member 4 [Rattus 

norvegicus] (Norway Rat) 

1e-04 
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CM4E12 - Chloroplast light harvesting protein (CM4E12):  BlastX 
 
GAATTCGCCCTTAGCGTGGTCGCGGCCGAGGTACCAGCTGCCTGGCACCGTTCTCGG
CCAGCTGATGTTTTCCATTGCCGTCGCTGAGGGCATCCGCGGCAGCATTATTTACAA
GAAGGACTCCGTCCCAGGCGAGCACGGCTTTGACCCTGCCGGCTTCATCCCCAAGTT
CTGCAACACACCTGAGAAGATGGCCGAGATGAAGCTCAAGGAGCTCAAGCACTGCCG
CATTGCCATGATTGCTATCACTGGCTTCTTCTTCCAGGAGACCATCACCGGCCATGT
TGTGCCGTTCCTTTAAACTATTGAAGCTGCTAATTTCCACTAATTTCCGTATTAGGG
TTTGAGCCCGAGACGTGGAACTGCCAGCGGTTCCCCTTGAATGCTGTGACTGGCTCT
TCAAGTCTCTCCAGAGCCGGCGGCAGACCGGCATGGAAAGTCTCGACCTGTGATTTT
TGTACCTGCCCGGGCGGCCGCTCGAAAGGGCGAATTC 
 
                                                      
gb|ABA55524.1| chloroplast light harvesting protein isoform 8 [Isochrysis galbana] 

e = 0.037 

 
 
Predicted membrane protein (PMP): BlastX 
 
AGCGTGGTCGCGGCCGAGGTGCGACAGCNTNNCGGACTCGACGCCACAAGCGGAGTA
GCGGCAGCAGCGGCTGTAGCATTTGAAGGGACTGCTCCTGCACACGCTGGGATGGGC
ATTCATCAGATGTCGACCGCGCTCAGGCTCCTCATTCTGCCCTGTGCGCTGGCACTG
CAAGCTGCGCATCTACCAGCTACACACCTCATGCACGCGCAAGGCATGGGTGTGCCA
AAGTTGGCCACTGCCCGACGCGTTTCGTCTGTGAGCCTTCGAGTCAAATCAGATTCT
GAAAAGGTCACCAAAGATCCCGCGGAGGTCACTGAGAAGTTCGGGCTGGAGGCAGGC
TTGTTTTCTGCTGCAAAGGGCAAGGACATGTCAAAAGCGGGTGATCTGCTCAAGCAG
TATGGCGGGGCATATCTCCTGACCTCCATTTCTCTCGCGCTCATCTCTTTTTCTCTG
TGCTACTTCGCGATTGATCGAGGTGTCGATGTGGCTGCGTTGCTGCAGCGAGTCGGA
ATCGAGGTCAGTACCACCTCAGAGACCGTGGGGACCGTGGGCATCGCGTATGCTATC
CACAAGGCTGCGTCGCCGATCAGGTTCCCGCCAACCGTCGCGCTCACTCCCATCGTA
NCCCGTAAATTTTTTGGCCAGAAGGATGCTGACAAAACTGATTAGGAGAGCCGGTCT
CAATGAAACTCAAGTTGGACGGCTTTGTGACGGCTGCAAGCGGCTTCGTGTCTCTTT
GCCAAGTCGACTGCATGCTTTTGTGAGTGAAATGTTTTGGCTTGTCTTCGTTGAATN
ANACTGNCGTACTTGAACCCGCCTAAAATAAAATCTGGGGTTGGAAAATAGGGGTCT
ATTGTTTCTGTAAACGGGAAATTGNAGCGAANTCGAANTTTCCGAAAAAAAAAAAAA
AAAAAAAAAAAAANTTNTACCTGCCCGGNGGNCGNCA 
 
          
emb|CAO48682.1| unnamed protein product [Vitis vinifera] 

1e-25 

 
emb|CAL57011.1| Predicted membrane protein (ISS) [Ostreococcus tauri] 

6e-20                                            
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PsaE (PsaE):  BlastX 
 
GAATTCGCCCTTTCGAGCGGCCGCCCGGGCAGGTCGCAGACGCAGCCAGCACCGCCG
CAGCCATGCTTCGCTCCATGATCATTGCCGCGCTCTGCGCCGTCTGCGCTGCCTTCA
CGCCCAACTCGGCCATGCACGCGACACGCAGCACTGTCTCTGCGCAGTCTATCCAGA
TGGTCTCGCGTGGCTCCGTGGTGCGTGTGATGCGGCCGGAGTCGTACTGGTTCCAGG
AGACCGGCACTGTTGCGACGATTGCCAAGGGTGGCGACAGGTACCCTGTTGTGGTTC
GCTTTGACAAGGTGAACTACGCTGGCGTCGCGACGAACAACTTCGCTGTTGATGAGC
TGGTGGAGGTGTCTGCGCCGGCTCCGAAGCCAGCTGCCAAGTCTGAGTAAATATGTG
ACCTGCAAAATATTCAGGCTCCATGGAATTGCGTTGACTATATTACATTCTTCACTT
GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAANGNTTGTACCTCGGCCNCNANCACNNTAAGGGN
NAATTN 
      
 
gb|AAW79344.1| chloroplast photosystem I protein E [Isochrysis galbana] 

3e-22 

 
 
Thioredoxin (Thio):  BlastX 
 
GAATTCGCCCTTAGCGTGGTCGCGGCCGAGGTACATACTCGTGCTGTCCAGGTGCCA
TCAGTAGTGTAAGTCTGATCCGCAAGCGACCATTCCGAGCAAGGCACCCTGGTATGC
CCGCTAGTTGTTGCGCAGACATCAAGCTAAATCAGCCACAGCAGACCGGAGCTTTGC
CTCGTCAGCACCTTTTACGACGTTCAGCATCTCTCCGTTTCGCCAAAATTGAAATGT
TGGCATCGAGCTCACACCGAGGTCGGCAGCCAGTTCGCCCAGCTCATCCACGTCGAT
CTTGACGAAGACTACGTCTGGGTACCTGCCCGGGCGGCCGCTCGAAAGGGCGAATTC 
 

 
gb|EEC48068.1| Thioredoxin h [Phaeodactylum tricornutum CCAP 1055/1] 
 
6e-10 
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Ubiquitin conjugating enzyme (UCE):  BlastX 
 
GAATTCGCCCTTAGCGTGGTCNCGGCCGAGGTACAATCGCATGCGCGGAGGGACGCT
CTGCTCTGCTGTGCGCAAGCTTTGAGCACTTGCCATGGCGACTTTGTCCCATTCGCA
AGATGCTCTTGCGTGTGCGAAAGTCGGCGACGGGCGGCCTCGGGGTTTGCAGGGCTG
GCGCAGTTGGGGTCTGTCAGAAGCGAGCGAATAGCGATCAGGATTGAACACACCGAA
TAGATAGGCGACCAGTTGTCCTGGATCAAGTCCATGCAAAGAGTGCCGTCTGGGTAG
ATGTTCGGATGGAACATTTCGGAAGTGAATCGCACGCGCGGAGGCTTGTCAGGGTAT
TGATCAGTAAATGTCAGCCGCATGGAAAAGACGCCTCCCTCCCAGGCTGTGTCGTCC
GGGCCGAAGATGGTGCCGCCCCATACAAAAATGTTTTCATCGGCAAGGGGACTGGCG
CTGACACCCTCGGGTGGGTTCTGCTTCATTGTTTTTAGGTCACTCATAAGGCGAAGC
GTAGACGGCTTTATCGACGACATCACACCCTGCTGCAAGGGGGCTTGCTCTTCTCCT
GAACCCGCGGGACCTGCCCGGGCGGCCGCTCGAAAGGGCGAATTC 
 
ref|XP_001703225.1| hypothetical protein CHLREDRAFT_133208 [Chlamydomonas 

reinhardtii]  8e-49 

 
ref|XP_001739461.1| ubiquitin-conjugating enzyme E2-17 kDa [Entamoeba dispar 

SAW760] 

3e-41 

Figure 4.3: Results from BlastX analysis performed on unique sequences 
found in the iron limited subtracted library.  Each sequence from the library is 
shown and the EcoR1 restriction sites from the cloning vector and adaptors 
from the subtraction cloning are highlighted in yellow. The presence of 
different adaptors on each end of the nucleotide sequence confirms that they 
are differentially expressed or highly up-regulated sequences. 
 

 

4.2 – Multiple sequence alignments of fucoxanthin binding protein (FucoBP) 

sequences detected in the subtracted library 

 
Multiple sequence alignments of the sequences presented in figure 4.4 from the iron 

limited subtracted library indicated that 7 different fucoxanthin binding protein 

(FucoBP) sequences were detected.  The fucoxanthin binding protein (FucoBP) 

sequences contain stop codons in identical positions but the specific stop codon used 
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varies between the sequences.  Immediately downstream of the stop codons in the 3’ 

untranslated region the sequences display almost no overall homology.   

 
* Indicates a position where the nucleotide is identical in all sequences. 
 
CM4F08          -ACATCATCAACGACCTGCTCGGTGCCCCTG-TGTCTTTCAACGTTGGCTTGTAAGCCAT 
CM3E07          -ACATCATCAACGACCTGCTGGGCGCCCCTGT-GGCCTTCAACGTTGGCTTGTGATTAGT 
CM4G06          -ACATCATCAACGACCTGCTGGGCGCCCCTGT-GGCCTTCAACGTTGGCTTGTGATTAGT 
CM2A10          -ACATCATCAACGACCTGCTGGGCGCCCCTGT-GGCCTTCAACGTCGGCTTGTGATTAGT 
CM3E03          -ACATTATCAACGACCTGCTCGGCGCCCCTGT-GCCATTCAATGTTGGCTTGTAAGCAAC 
CM3E02          -ACATTATCAACGACCTGCTCGGCGCCCCTGT-GCCATTCAATGTTGGCTTGTAAGCAAC 
CM4A12          -ACATCATCAACGACCTGCTCGGCGCCCCTGT-GCCCTTCAACGTTGGCTTGTAAGTAGT 
CM2D01          -ACATTATCAACGACCTGCTCGGTGCTCCGGT-GCCGTTCAACGTCGGCTTGTAAGCTGT 
                 **** ************** ** ** ** *  * * ***** ** ** ** * *      
 
CM4F08          CAATTGTTCTTGGGTTCAGTGCTTGCGAATGGGGCGG-AAGATCTTTTGTGTGTTTCGCC 
CM3E07          TAAATGTCCAT------AGGGTTGGTGTGTTGTG----ATATCTTGAAGCTGGGAACTCT 
CM4G06          TAAATGTCCAT------AGGGTTGGTGTGTTGTG----ATATCTTGAAGCTGGGAACTCT 
CM2A10          TAAATGTCCAT------AGGGTTGGTGTGTTGTG----ATATCTTGAAGCTGGGAACTCT 
CM3E03          CGGTTGTCCCTCAGCTTGGGGTCGGTGGATATCG----AAAGCCTTCAGCCTAAAGCTTC 
CM3E02          CGGTTGTCCCTCAGCTTGGGGTCGGTGGATAGCG----AAAGCCTTCAGCCTAAAGCTTC 
CM4A12          CAATTGTCCCGTGTGCGTGGGTTGAGTGCTGA-G----ATAGCCTGAAGCTAGGAGCTTC 
CM2D01          CAAGTGTACACTAGGCTAACTTTTTTGCTTTCTTCCACGCATCCATCCTTTTCCATGACC 
                    **                       *                               
 
CM4F08          TCTTCCCCTGTGAG----TGACCTTCTGTGAATGTCTTCCATGGAGTTACTGTGCATGTG 
CM3E07          TGTGCGCTGAC-GC----TGAGCGT-TGTGGATATCT-ACTTAGTCATTCTTTTACTGTT 
CM4G06          TGTGCGCTGAC-GC----TGAGCGT-TGTGGATATCT-ACTTAGTCATTCTTTTACTGTT 
CM2A10          TGTGCGCTGAC-GC----TGAGCGT-TGTGGATATCT-ACTTAGTCATTCTTTTACTGTT 
CM3E03          TGCTGGCTGAC-AC----CAAGCGT-TGTGAGAGTGT-CCATGAACTTATTCTATCCATG 
CM3E02          TGCTGGCTGAC-AC----CAAGCGT-TGTGAGAGTGT-CCATGAACTTATTCTATCCATG 
CM4A12          TGTTCGCTGAC-AC----CAACCAT-TGTGAAAGTTT-CCATGCCTTTTCTAAAAACAAA 
CM2D01          TGTCCGAAAGGAACATCACAACTTCATTTGAAGAAGC-TCTCGTTTCCAGAGTATTTGCG 
                *                   *     * **         *                     
 
CM4F08          TTGGACGAGCAGCCTGCGGCTACGATCCATCAAGGCG--GTGCCGACATCAACAAGCCTT 
CM3E07          GCGGGGCGATTGTTAA----TATAACCCTTCCAGCTGTTGTTCTACGCTCCAACAGCCTA 
CM4G06          GCGGGGCGATTGTTAA----TATAACCCTTCCAGCTGTTGTTCTACGCTCCAACAGCCTA 
CM2A10          GCGGGGCGATTGTTAA----TATAACCCTTCCAGCTGTTGTTCTACGCTCCAACAGCCTA 
CM3E03          TTACCTTTTGCACCTT----GATTACGCCCTAAACTG--GCATTGCCGTTAAAACGACAT 
CM3E02          TTACCTTTTGCACCTT----GATTACGCCCTAAACTG--GCATTGCCGTTAAAACGACAT 
CM4A12          AAAAAAAAAAAAAAAA----AAAAAAAAAAAAAGCTT--G-------------------- 
CM2D01          ATGCGGCACGTCTTGCCCTAGCGGCCACTTTGGTCTCGCTAACTGCCGTGTGATGGAAGA 
                                                                             
 
CM4F08          ACTTCAGCTGAACAAAATTCTACGCACGCCGTTAGGTGCTGGT----------------- 
CM3E07          CGTCTGTTAGAAGGTGCACGCTCCTAGCTGTGAGGAAGGCCATTGCTCAGCGTGAGTATA 
CM4G06          CGTCTGTTAGAAGGTGCACGCTCCTAGCTGTGAGGAAGGCCATTGCTCAGCGTGAGTATA 
CM2A10          CGTCTGTTAGAAGGTGCACGCTCCTAGCTGTGAGGAAGGCCATTGCTCAGCGTGAGTATA 
CM3E03          GACCTTCCGAAAAAAAAAAATAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-----GCTTG 
CM3E02          GACCTTCCGAAAAAAAAAAATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCTTG 
CM4A12          ------------------------------------------------------------ 
CM2D01          TGGGTACTTAGCAATTCCTGGTATTGTGGTGCAAAAAAAAAAAAAAAAAAAAAAAAAAGC 
                                                                             
 
CM4F08          ------------------------------------------------------- 
CM3E07          TTTAAATTGTTTTTCTTTCGAAAAAAAAAAAAAAAAAAAAAAAAAA----GCTGT 
CM4G06          TTTAAATTGTTTTTCTTTCGAAAAAAAAAAAAAAAAAAAAAAAAA-----GCTGT 
CM2A10          TTTAAATTGTTTTTCTTTCGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCTGT 
CM3E03          ------------------------------------------------------- 
CM3E02          ------------------------------------------------------- 
CM4A12          ------------------------------------------------------- 
CM2D01          TTGT--------------------------------------------------- 

Figure 4.4:  Multiple sequence alignment of fucoxanthin binding protein 
(FucoBP) sequences detected in the iron limited subtracted library showing 5 
different nucleotide sequences each highlighted with a different colour.  Also 
shown is the position of the stop codons in each sequence (highlighted in 
yellow).  Sequences highlighted in the same colour are homologous. 
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In addition to cDNAs encoding proteins involved in light-harvesting (fucoxanthin 

binding proteins and chloroplast light-harvesting protein) one further differentially 

expressed photosynthesis-related cDNA was recovered several times from iron-

limited cultures. This cDNA showed strong homology to the psaE gene, the product 

of which is involved in stabilising the docking of ferredoxin (and flavodoxin) to 

photosystem I.  A number of cDNAs related to sequences encoding proteins known to 

be up-regulated in response to stress (including oxidative stress) were also recovered. 

These included DnaJ, thioredoxin, and a number of proteins involved in protein 

turnover such as a ubiquitin-conjugating enzyme and 20S proteosome subunit. None 

of these cDNAs were recovered in the limited number of cDNAs analysed from iron-

replete cells.  

 

Despite reports of substantial up-regulation of flavodoxin by iron limitation in other 

phytoplankton, no cDNAs were recovered that were related to this protein from either 

iron-replete or limited cells. To assess whether C. pelagicus contains a flavodoxin 

gene, degenerate primers were designed based on multiple sequence comparisons of 

the protein from other chromophyte algae. 
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4.2.1 - Multiple sequence alignments for Flavodoxin and GAPDH 
 
 
In order to design primers for detection of flavodoxin and GAPDH transcripts 

multiple sequence alignments were performed and used to identify conserved regions 

suitable for primer binding. 

 

* Indicates a position where the peptide is identical in all sequences. 

 :  Indicates highly conservative substitutions at that position. 

 . Indicates conservative substitutions at that position.   

 
Karenia         MRAIVISLTCLACGGYGRRVHPQRDSLEKGASRLEAFVMDGSKLAQKGMQERLERQAANG 
Phaeodac        MNTQFVSALLLAS----------------------AAITNG------------------- 
Ehux            ------------------------------------------------------------ 
osteo           ------------------------------------------------------------ 
Thallassio      ------------------------------------------------------------ 
                                                                             
 
Karenia         KEAKLCQVLAATNPAAAFQAAGTGISTPLRARRVGMSPGMSVGLYYSTSTGNTETVAEYI 
Phaeodac        --------FAFVN-THRYTAS----TTALEAG---------VKIYYSSSTGNTEQVAEYI 
Ehux            ---------------------------------------MGVGLLYSTTTGNTETVAGYL 
osteo           ------------------------------------------------------------ 
Thallassio      ----------------------------------------QVGVFFGTSTGSTEEAAELI 
                                                                             
 
Karenia         AGAA-----GIEDWKDIGDADDAEITGHDAIIVGAPTWHTGADSERSGTSWDEWLYNTLP 
Phaeodac        SKAG-----GDLPMDDIGDATNEEVEGLDCLIVGAPTWHTGADEQRSGTSWDDWLYTTLP 
Ehux            S--------AEIGVDAVDIADAEDLASFDGLIIGAPTWHTGADSERSGTAWDDYLYGDLT 
osteo           -------------MDIADVA-VSDLSSYDSLIVGAPTWHTGADEGRSGTAWDE-AYGDIR 
Thallassio      VSEFGDVAAGPIDIDGVAGSVAKEFAKYDALVVGTPTWNTGADTERSGTGWDEIYYSEMQ 
                              .    :   :.   * :::*:***:****  ****.**:  *  :  
 
Karenia         NLDFSGKKVAIFGVGDSG--------------------------SYSDNYCDAAGELYDL 
Phaeodac        NLKVEGKKVAVFGVGDQQ--------------------------SYGDNFCDAAGELYDL 
Ehux            SADLKGKKVAIFGLGDQARPTPLAHASTHAQPPHSRRRPPPVQAGYGDNFCDAMDELKSC 
osteo           SLDLSGKKVAVFGVGDSS--------------------------AYGEYFCDAIEELHSA 
Thallassio      DLDIAGKKVAVFGLGDSV--------------------------SYCENYADATGELHDV 
                . .. *****:**:**.                           .* : :.**  ** .  
 
Karenia         FTGKGAKVFGMTPSDEGYDYTESKSVVDDKFVGRMFDEDSYSDESEERAKSWVEQLKSEG 
Phaeodac        FSAKGCKVFGMT-STEGYDHTESKAEVDGKFVGLMFDEDNQYELSEERAKAWIGQLKSEG 
Ehux            FEKQGAEVIG-AWSADGYDHTESKSEAGGTFVGLACDEDNQPDQSEERVKAWVAQLKSEG 
osteo           FRDTGAEMCGGNVSKDDYDFADSKALVDGVFIGLPLDEDNESHKSEERAKNWCKQLSNAG 
Thallassio      FEALGCKMMGYT-SVDGYLHEESKAQRGEKFCGLPLDAVNQEELTEERVQKWVAALIAE- 
                *   *.:: *   * :.* . :**:  .  * *   *  .  . :***.: *   *     
 
Karenia         FM- 
Phaeodac        FF- 
Ehux            MPL 
osteo           F-- 
Thallassio      --- 

Figure 4.5: Multiple peptide sequence alignment for flavodoxin.  The binding 
sites for two alternative degenerate forward primers are highlighted in green 
and yellow while the binding site for the reverse primer is highlighted in blue.  
The sequences used in the alignment are from Emiliania huxleyi, Karenia 
brevis, Phaeodactylum tricornutum, Ostreococcus tauri and Thalassiosira 
pseudonana.   
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Despite the selection of two highly conserved sites for forward primers to bind and a 

highly conserved site for reverse primer binding, flavodoxin was not detected in 

cDNA from iron limited cultures of Coccolithus pelagicus (data not shown).  Thermal 

gradient PCR experiments were performed with temperatures ranging from 30oC to 

67oC with up to 35 cycles in an attempt to detect a flavodoxin transcript in iron 

limited cDNA.  The primer binding sites that were selected reflected the need to target 

highly conserved regions, minimise primer degeneracy and amplify a PCR product 

100 – 150 bp which is a suitable size for RT real time PCR studies.     

 

* Indicates a position where the peptide is identical in all sequences. 

 :  Indicates highly conservative substitutions at that position. 

 . Indicates conservative substitutions at that position.   

Phaeodactylum      --------------------------------------MKFSAATFAALVGSAAAYSS-- 
Thalassiosira      ---------------------------------------KFIAA--LSLVAGASAYAP-- 
Ascophylum         ------------------------------------MAPVINAVAAMAFAGSASAFVAP- 
Gonyaulux          FLAPLCLAAVVLGAWQLLPTSFVAPSPRLRGVTSESAQVSTAAPLERSNASQSSAWLATG 
Ehux               --------------------------------------------MALSLATSS------- 
Isochrysis         ------------------------------------------------------------ 
pavlova            ------------------------------------------------------------ 
                                                                                
 
Phaeodactylum      ----SSFTGSALKS-SASNDAS--MSMATGMGVNGFGRIGRLVTRIMMEDDECDLVGINA 
Thalassiosira      ----SAFSGSSLR--ATSNGSS--MSMATGMGVNGFGRIGRLVTRIMMEDDDIKLSAINA 
Ascophylum         ----SAFNGAAVSTNSATSSTK--LSMATDCGINGFGRIGRLVARSMVKNPETNLKLINT 
Gonyaulux          AACALILSGAAARALSMGRQSSSVAMRATGIAINGFGRIGRQVARIAMKDPEVELKLINA 
Ehux               ------LSLAGPVRMSANPDAP------IKLGVNGFGRIGRQVVRIAMDRESFVLKHINS 
Isochrysis         ----------------------------SKVGINGFGRIGRQVVRIAMDRDAFVLKHINS 
pavlova            ----------------------------SKVGINGFGRIGRLVFRIAMARDNMVVKHINS 
                                                  .:******** * *  :      :  **: 
 
Phaeodactylum      GSATPDYMAYQYKYDTIHGKAKQTVEIDGDF-LVLDGKKIITSRCRDPKEVGWGALGADY 
Thalassiosira      GSATPDYMAYQYKYDTIHGIAKGTVDIDGDF-LVLNGEKIQTSRCRDPKEVGWGALGADY 
Ascophylum         G-AAPEYMAYQFKYDTVHGKFGGTVEVDGMD-LILDGQRVPTSHTRNPEEIPFVATGAEY 
Gonyaulux          S-YDADYLAYMMKYDTIHGKYDGTVEVDGDA-LVIDGLKVALSHTRDPAEIPFTEHGAEY 
Ehux               P-MSPEYMKYLLEHDTVHGRFPGTCEIIEGG-LSINGLPVTLSATRDPTEIPWKDTGVEY 
Isochrysis         P-MTPEYMKYLLEHDTVHGRFPGTCEVNKDG-LVINGLPVSLSSTRDPTEIPWGKVGVEY 
pavlova            P-MAPEYMKYLLSYDSAHGRYKGTVEVDAKGSLIVDGLEVTLTATRDPTEIPWGKRDVAY 
                       .:*: *  .:*: **    * ::     * ::*  :  :  *:* *: :   .. * 
 
 
Phaeodactylum      VCESTGVFLTKESAQSIIDGG--AKKVIYSAPAKD-DSLTIVMGVNQEAYD-GSEDFISC 
Thalassiosira      VCESTGVFLTKEKAQAIIDGG--AKKVIYSAPAKD-DSQTIVMGVNQGEYD-GSEDFISC 
Ascophylum         VCESTGAFLTEEKVQPHLKAG--AKKIVFSAPAKD-DSHTIVMGVNAETYE-SSMNLVSC 
Gonyaulux          VCESTGVFLTTEKVEPHLKAG--AKKIVFSAPAKD-DSHTIVMGVNQDTYD-PSMTCVSC 
Ehux               VCESTGAFTTTPDCMKHIEGG--AKKVIISAPAKDAETPTLVVGVNQDDYDSKYF----- 
Isochrysis         VCESTGAFLSTPDCLKHIAGG--AKKVIISAPAKDAETPTIVVGVNTDTYDPETMNVVSC 
pavlova            VCESTGAFTSTESCMLHVTSANPAKKVVISAPAKDAETPTLVVGVNAAEDYKTSMNVVSC 
                   ******.* :  .    : ..  ***:: ****** :: *:*:***               
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Phaeodactylum      ASCTTNGLAPMVKAIHDEFVIEEALMTTVHAMTATQAVVDSSSR-KDWRGGRAASGNIIP 
Thalassiosira      ASCTTNGLAPMVKAIHDEFDIQEALMTTVHAMTATQAVVDSSSR-KDWRGGRAASGNIIP 
Ascophylum         ASCTTNGLAPTVKVINDNFVIKDALMTTVHAMTATQMVVDGTSK-KDWRGGRCASSNIIP 
Gonyaulux          ASCTTNGLAPAVKAVNDAFGIKRGLMTTIHAMTASQPTVDSASK-KDWRGGRAASGNIIP 
Ehux               --------------IRDKR------------ATASQLTVDGSMKGADWRAGRAASANIIP 
Isochrysis         ASCTTNGLAPLVKTINDKFGIKQGLMTTVHAATASQVVVDSSMKGADWRAGRAASANIIP 
pavlova            ASCTTNGLAPLVKHIDQTYGIAEGLMTTVHATTASQLTVDGSMKGSDWRAGRAAAANIIP 
                                 : :               **:* .**.: :  ***.**.*:.**** 
 
Phaeodactylum      SSTGAAKAVTKVIPSLVGKITGMAFRVPTIDVSVVDLTAKLEKSTTYEEICAVIKAKSE- 
Thalassiosira      SSTGAAKAVTKVIPSLQGKLTGMAFRVPTIDVSVVDLTCKLGKATTYEEICAVIKAKSE- 
Ascophylum         SSTGAAKAVTKVIPQLKGKLTGMAFRVPTPNVSVVDLTCTLEKSTSYEEICAAVKSASES 
Gonyaulux          SSTGAAKAVAKVVPEVKGKLTGMAFRVPTIDVSVVDLTCELEKATTYEEICAEIKRRSE- 
Ehux               SSTGAAKAVAKAYPVMKGKLTGMAFRVPTVDVSVVDLTCELETPTTYDEIKAEVKLASE- 
Isochrysis         SSTGAAKAVAKCYPVMKGKLTGMAFRVPTVDVSVVDLTCELETPCTYDEIKAEVKLASE- 
pavlova            SSTGAAKAVAKCYPASKGKLTGMAFRVPTIDVSVVDLTCRLVKSTTYDELKASVKAASE- 
                   *********:*  *   **:********* :*******. * .. :*:*: * :*  **  
 
Phaeodactylum      GEMKGFLGYSDEPLVSTDFEGDLRSSIFDADAGIMLNPNFVKLIAWYDNEYGYSGRVVDL 
Thalassiosira      GEMKGILGYCDEPLVSTDFESDSRSSIFDAGAGIMLNPTFVKLVAWYDNEWGYSGRVVDL 
Ascophylum         GPMAGIIGYTEEPLVSTDFISDSRSSIFDAGAGIMLNPNFVKVVAWYDNEWGYSQRVMDL 
Gonyaulux          GDMKGFLGYTDEPLVSTDFETNTISCTFDAKAGIMLDPTFVKLVMWYDNEWGYSCRVVRP 
Ehux               TYAKGIVGYTEDQVVSSDFVGETCSTVFDAGAGIMLTPTFVKLVSWYDNEWGYSTRLVDL 
Isochrysis         TYAKGIVGYTEDQVVSSDFVGETCSTVFDAGAGIQLTPTFVKLVSWYDNEWGYS------ 
pavlova            GSMKGILGYTEDQVVSQDFVGSEMSTTFDAGAGIMLNPNFVKLISWYDNEWGYS------ 
                       *::** :: :** **  .  *  *** *** * *.***:: *****:***       
 

Figure 4.6: Multiple peptide sequence alignment for GAPDH.  The forward 
and reverse primer binding sites are highlighted in yellow.  The organisms 
from which the sequences were derived are Phaeodactylum tricornutum, 
Thalassiosira  pseudonanna, Ascophylum nodosum, Gonyaulux poledra, 
Emiliania huxleyi, Isochrysis galbana and Pavlova lutheri.  
 

To ensure that the cDNAs recovered from the subtracted library were differentially 

expressed under iron limitation degenerate primers were designed for conserved 

regions within the house-keeping gene encoding GAPDH.  Multiple sequence 

comparison of the GAPDH peptide sequences from related chromophytes including 

the haptophytes, I. galbana, E. huxleyi, and P. lutheri showed a number of regions of 

overall homology including those selected for primer development (Figure 4.6). 

 

4.3 – Discussion  

 
A small proportion of the iron limited subtracted library was selected for further 

study.  Although a larger number of sequences were present in the library, the few 

that were selected for further study were selected under the following criteria: each 

returned a low e-value, appeared more than once in the subtracted library and the 
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putative identities of the proteins were reasonable within the context of iron 

limitation.   

 

Multiple fucoxanthin / chlorophyll binding proteins were detected in the iron limited 

subtracted library.  Five different fucoxanthin binding protein sequences were 

detected which shared a certain degree of homology in the coding region but differed 

dramatically in their 3′ untranslated regions and in their stop codons.  These 

differences suggest the differential expression of individual members of a multigene 

family in response to iron limitation. 

 

Up-regulation / differential expression of accessory pigments may result in a higher 

ratio of accessory pigments : chlorophyll a than would be observed under iron replete 

conditions.  This has been reported in iron limited cultures of the diatom 

Phaeodactylum tricornutum (Greene et al., 1991, 1992) and the haptophyte 

Phaeocystis (van Leeuwe & Stefels, 1998).  In the case of Phaeocystis, synthesis of 

19’-butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin was increased at the 

expense of fucoxanthin which is the main carotenoid under iron replete conditions.  

This response may help to dissipate excess energy absorbed by the cells by reducing 

the efficiency of energy transfer to the photosystems when low iron availability has 

impaired the effectiveness of the electron transport chains.  This would help to 

maintain the redox balance of the photosynthetic electron transport chain and reduce 

the likelihood of formation of reactive oxygen species (van Leeuwe & Stefels, 1998).  

As the Coccolithus pelagicus cultures in this investigation are highly unlikely to have 

suffered any light limitation, requiring additional pigments to gather light under the 

growth conditions in the incubator, it is conceivable that up-regulation / differential 
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expression of fucoxanthin binding protein transcripts in iron limited cells could be a 

photo-protective response.                     

 

Unfortunately the fucoxanthin binding protein sequences obtained in the subtracted 

cDNA library were only a small segment of the 3′ end of the transcript with only 51 

nucleotides of the coding region present.  Based on a multiple sequence alignment it 

was found that there were 5 different fucoxanthin binding protein transcripts that were 

exclusive to the iron limited subtracted cDNA library. Most of the variance in the 

sequences was in the 3′ untranslated regions.  Sequence homology in the coding 

region but not in the 3′ untranslated region may indicate that the 5 fucoxanthin 

binding protein sequences are the result of differential expression of a multigene 

family in response to iron limitation.   

 

psaE detected in the iron limited subtracted library is a photosystem I protein which 

facilitates the docking of soluble electron acceptors (particularly 

ferredoxin/flavodoxin) to the photosystem in order to allow efficient electron transfer 

(Rousseau et al., 1993).  It has also been reported to be involved in protecting the cell 

from photo-oxidative damage by preventing the formation of reduced oxygen species 

in the cyanobacterium Synechocystis sp. PCC 6803 (Jeanjean et al., 2008).  This study 

found that in PsaE-null mutants of Synechocystis sp. PCC 6803 expression of genes 

encoding iron superoxide dismutase (sodB) and catalase (katG) were up-regulated 

relative to the wild type.  The resultant increased activity of these enzymes which are 

involved in combating reactive oxygen species was thought to be a compensatory 

response to the increased generation of reactive oxygen species in the psaE-null 

mutant.  The study concluded that the presence of the PsaE protein at the reducing 
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side of photosystem I serves to prevent the formation of toxic oxygen species 

resulting from electron leakage to oxygen in the light.  Since iron limited 

phytoplankton cells essentially suffer from an excess of absorbed light energy due to 

the reduced efficiency of the photosynthetic electron transport chains it is likely that 

in Coccolithus pelagicus up-regulation of the psaE transcript is a photo-protective 

response.  Increased amounts of the PsaE protein may increase the efficiency of 

electron transfer to soluble electron acceptors docked with photosystem I and reduce 

the risk of electrons being leaked from the system and reacting with oxygen species at 

this point in the electron transport chain.     

 

The predicted membrane protein transcript (PMP) was selected for further study due 

to the fact that it returned a very low e value although the exact function of this 

protein has not been determined.  One possibility is that it may represent an enzyme in 

the cell membrane involved in iron acquisition.  However, this is based only on the 

fact that it appeared in the iron limited subtracted library presented in this 

investigation and is predicted to be associated with a membrane.  The function of the 

predicted membrane protein was not investigated further and within the scope of this 

investigation its up-regulation under iron limited conditions was the extent to which it 

was examined. 

Thioredoxin is a ubiquitous redox signalling enzyme involved in a multitude of 

signalling activities throughout the cell.  It is known that thioredoxins play a major 

role in responses to oxidative stress either through redox signalling or more directly 

by acting as electron donors to the members of the peroxiredoxins (Dietz, 2003).  The 

role of thioredoxins in regulating cellular activities is so varied that it is unlikely to 

make a good biomarker for iron limitation due to the fact that iron limitation / 
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oxidative stress is unlikely to be the only conditions under which up-regulation of 

thioredoxins will occur.  Interestingly thioredoxin has been shown to be involved in 

catalase regulation in Chlamydomonas reinhardtii, a situation which has not been 

reported for higher plants on which most studies of thioredoxins have been focussed 

(Lemaire et al., 2004).  As catalase is an enzyme involved in combating oxidative 

stress – a problem which iron limited phytoplankton cells inevitably must deal with, it 

is conceivable that the detection of thioredoxin in the iron limited subtracted library 

may indicate that it is involved in the regulation of the response of Coccolithus 

pelagicus cells to iron limitation induced oxidative stress.  Interestingly the 

thioredoxin detected in the iron limited subtracted library is thioredoxin h which is a 

cytosolic isoform whose reduction proceeds via an NADPH-dependent thioredoxin 

reductase enzyme, as opposed to a ferredoxin-dependent thioredoxin reductase (Besse 

et al., 1996; Cho et al., 1999).  This may indicate a preference for thioredoxins that do 

not demand a share of the cell’s reduced ferredoxin supply under iron limited 

conditions.   

 

Ubiquitin conjugating enzyme (UCE) was the most abundant of the sequences 

detected in the iron limited subtracted library representing 4.78% of the total clones 

sequenced.  The 20s proteasome subunit accounted for 2.2% of the clones sequenced 

and was the third most abundant identifiable transcript in the library.  Such a large 

proportion of the iron limited subtracted library being represented by enzymes 

involved in protein degradation may be an indication of the use of the protein 

degradation machinery to continuously recycle proteins in the cell.  This may be in 

order to recycle iron containing proteins and keep the cellular iron pool in a flexible 

state or it may also be a more general response resulting from the need to recycle 
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amino acids due to a lack of iron cofactor for enzymes involved in amino acid 

biosynthesis.  A need to recycle the cellular pool of amino acids may also be related 

to a reduced supply of ammonium for incorporation into amino acids.  The 

impairment of nitrogen assimilation in phytoplankton cells imposed by iron limitation 

has been reported in several species (Raven et al., 1992; Maldonado & Price, 1996; 

Milligan & Harrison, 2000).  If the ability of the cell to supply reduced forms of 

nitrogen is impaired then this is likely to result in less ammonium being available to 

the cell for incorporation into amino acids.  It may also be the case that there is a need 

to rapidly break down and reassemble the photosynthetic and respiratory electron 

transport chains during periods of light and dark in order to maintain a flexible iron 

pool in the cell.   
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Chapter 5 – RNA extractions, DNase digests, primer 

optimisation and real time PCR results 

5.1 – Chapter introduction 
 
Agarose gels from RNA extraction and primer optimisation experiments are presented 

to demonstrate the quality of experimental and sample preparation for reverse 

transcription real time PCR (RT Q-PCR) experiments.  High quality RNA extraction, 

thorough DNase treatment and primer optimisation are essential for accurate RT Q-

PCR experiments and the data shown in this chapter demonstrates that such criteria 

was met.  The data showing the optimum annealing temperatures for each set of 

primers used in RT Q-PCR are shown and the evidence that each primer set amplifies 

only a single product from a mixed cDNA template is also shown.  RT Q-PCR gene 

expression data is presented as a series of histograms which detail the extent to which 

transcripts were up or down regulated in iron limited Coccolithus pelagicus cells.  

Where there was any ambiguity in the RT Q-PCR fluorescence profiles, suggesting 

the possibility of multiple products resulting from DNA contamination, the reactions 

were run out on agarose gels to demonstrate the presence of a single product only.  

That data is presented here.        

 

5.1.1 – Examination of extracted DNase treated RNA on agarose gels 
 
 
All RNA extracted for use in subtraction cloning and reverse transcription PCR to 

generate template for real time PCR was run on 1.5% agarose gels to assess the 

integrity of the ribosomal RNA bands and the level of DNA contamination.  In total 4 

RNA extractions were conducted on separate iron replete and iron limited cultures of 

Coccolithus pelagicus: 
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A B

  564 bp 

C

564 bp 

D

 564 bp 

564 bp 

Figure 5.1: 1.5% agarose gels showing RNA extractions before and after 
treatment with the Turbo DNA-free kit.  In all four gels the lanes were loaded 
as follows: 1 – Hind III λ phage markers, 2 – iron replete RNA before DNase 
treatment, 3 – iron replete RNA after DNase treatment, 4 – iron limited RNA 
before DNase treatment, 5 – iron limited RNA after DNase treatment.  In each 
gel showing Fe replete and Fe limited RNA samples prior to and after DNase 
treatment (A,B,C and D) the contaminating DNA (highest molecular weight 
band) is greatly reduced or absent in the samples after DNase treatment 
compared to those samples without DNase treatment.    
 

Figure 5.1 shows that the DNase treatment performed on each of the RNA extractions 

was effective at greatly reducing the amount of contaminating DNA in the original 
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RNA sample.  The integrity of the RNA was observed to be maintained throughout 

the DNase treatment as indicated by the sharpness of the 28S and 18S rRNA bands on 

the gels.   

 

The concentrations of RNA in all four RNA preparations were determined 

spectrophotometrically.  The absorbances, dilution factors and calculated 

concentrations are detailed in Table 5A: 

 

RNA SAMPLE DILUTION 

FACTOR 

ABSORBANCE 

AT 260 nm 

Concentration (µg 

ml-1) 

1 – Replete 1:250 0.056 560 

1 – Fe limited 1:250 0.022 220 

2 – Replete 1:250 0.025 250 

2 – Fe limited 1:250 0.014 140 

3 – Replete 1:250 0.012 120 

3 – Fe limited 1:250 0.024 240 

4 – Replete 1:250 0.02 200 

4 – Fe limited 1:250 0.016 160 

Table 5A:  Table showing the dilution factor, absorbance at 260 nm and 
calculated concentrations (µg ml-1) of RNA after treatment with the  Turbo 
DNA-free kit. 
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5.2 – Thermal gradient PCR primer optimisation. 

 

The optimum annealing temperatures for each set of primers designed to target 

sequences detected in the iron limited subtracted cDNA library were determined using 

thermal gradient PCR.  Cloned plasmids containing the sequence of interest were used 

as template in the reactions and the products were analysed by running them out on 

agarose gels.  The annealing temperature determined to be the optimum was the 

temperature step just before any reduction in product yield was observed at a higher 

annealing temperature.  The results of the thermal gradient PCR reactions are shown 

below: 

 

57oC – 67oC thermal gradient - Predicted membrane protein (PMP) and Fucoxanthin 

binding protein (3) (FucoBP (3) ) : 

                                     1        2       3       4      5       6       7      8  

    564 bp 

        564 bp 

B

A

 

Figure 5.2:  1% agarose gels showing products from 57oC – 67oC thermal 
gradient PCR.  Gel A = PMP, Gel B = FucoBP (3).  On both gels: 1 = Hind III λ 
phage markers, 2 = negative controls.  The temperature gradient was:  3 = 
57oC, 4 = 59 oC, 5 = 62.6 oC, 6 = 64.9 oC, 7 = 66 oC, 8 = 67 oC. 
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60oC – 70oC thermal gradient - Fucoxanthin binding protein (7) (FucoBP (7), 

Thioredoxin (Thio), Fucoxanthin binding protein (6) (FucoBP (6) : 

         1         2        3       4        5         6        7         8        9        10 

          11    1 2       13       14     15       16      17       18        19      20 

564 bp 

564 bp 

 

Figure 5.3:  1% agarose gels showing products from 60oC – 70oC thermal 
gradient PCR.  Lanes 1 – 6 = FucoBP (7), Lanes 7 – 9 and 12 – 14 = Thio, 
Lanes 15 – 20 = FucoBP (6).  Lanes 10 and 11 = Hind III λ phage markers.  
All 3 reactions were run on gradients with the following increments: 60 oC, 62 

oC, 64.4 oC, 65.6 oC, 68 oC,      70 oC. 
 

 

60 oC - 70 oC thermal gradient – Ubiquinol-cytochrome c reductase binding protein 

(Cyt bc1), Fucoxanthin binding protein (2) (FucoBP (2)), Fuco (4), Ubiquitin-

conjugating enzyme E2 (UCE), Fucoxanthin binding protein (1) (FucoBP (1)), 

Fucoxanthin binding protein (5) (FucoBP (5)): 
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564 bp 

      564 bp 

564 bp 

564 bp 

  564 bp 

  564 bp 

    564 bp 

Figure 5.4:  1% agarose gels showing products from 60oC – 70oC thermal 
gradient PCR.  A = Cyt bc1, B = FucoBP (2), C = FucoBP (4), D = UCE, E = 
FucoBP (1), F = FucoBP (3) G = FucoBP (5).  On both gels: 1 = Hind III λ 
phage markers,                  2 = negative controls.  The temperature gradient 
was: 3 = 60 oC, 4 = 62 oC, 5 = 64.4 oC, 6 = 65.6 oC, 7 = 68 oC, 8 = 70 oC. 
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62oC – 72oC thermal gradient – Photosystem I protein E (psaE), 20S Proteasome 

subunit (20S Prot), Chloroplast light harvesting protein isoforms 8 (CM4E12), 

Cytochrome b5 domain-containing protein (Cyt b5), Chloroplast light harvesting 

protein isoform 2 (Chl LHP): 

 

        1       2      3       4      5      6       7      8            1     2       3     4      5      6      7      8 

 

 

 

 

 

 

 

 

 

 

 

 

      564 bp 

     564 bp 

    564 bp 

564 bp 

564 bp 

Figure 5.5:  1% agarose gels showing products from 62oC – 72oC thermal 
gradient PCR.  A = PsaE, B = 20s Prot, C = CM4E12, D = Cyt b5, E = Chl 
LHP.  On all of the gels: 1 = Hind III λ phage markers, 2 = negative controls.  
The temperature gradient was: 3 = 62.9 oC, 4 = 65.2 oC, 5 = 66.4 oC, 6 = 67.6 

oC, 7 = 69.9 oC, 8 = 72 oC 
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                   1             2             3              4              5              6              7 

 

 

 

 

 

 

 

     564 bp 

Figure 5.6:  1% agarose gels showing products from 38oC – 48oC thermal 
gradient PCR with GAPDH primers.  1 =  Hind III λ phage markers, 2 = 
negative control, 3 = 38C, 4 = 40 oC, 5 = 42.4 oC, 6 = 44.8 oC, 7 = 48 oC. 
 
 

It was determined that several different annealing temperatures ranging from 38 oC to 

68 oC were required for optimal PCR results with the primers and so RT real time 

PCR experiments had to be carried out on several different runs of the real time 

thermal cycler in order to examine all of the sequences selected for further study.  

 

 

5.2.1 – Testing primers for use in RT real time PCR with cDNA templates. 

 
When the primers designed to amplify sequences detected in the iron limited 

subtracted library were tested in PCRs using cDNA templates from iron replete and 

iron limited cells single products of the appropriate size were detected on agarose 

gels.  One single exception was the iron replete cDNA in the PCR containing the 

ubiquitin conjugating enzyme (UCE) primers (see Figure 5.7).  In this reaction there 

was a very faint second product visible on the gel which was not detected in RT real 

time PCR reactions or RT minus controls using subsequent cDNA preparations. 
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Figure 5.7: 1% agarose gels showing products from PCR reactions with cDNA 
templates used to optimise primers for real time PCR.  The gels were loaded 
as follows: In all gels M = Hind III λ phage markers.  For each target transcript 
3 PCRs were run.  These 3 reactions were a negative control, the PCR 
product from iron replete cDNA and the PCR product from iron limited cDNA.  
In all of the gels every set of 3 lanes were loaded in that sequence from left to 
right.  The gels show the PCR products from the following reactions:  A = 
PsaE, 20s Prot, Cyt b5.  B = Chloroplast LHP, CM4E12.  C = Thioredoxin, 
Fucoxanthin BP (2), Fucoxanthin BP (4).  D = Fucoxanthin BP (5), Cyt bc1, 
Fucoxanthin BP (1).  E = Fucoxanthin BP (6).  F = Fucoxanthin BP (7), PMP.  
G = DnaJ, UCE.  H = Fucoxanthin BP (3).  I = Ferredoxin.  J = GAPDH. 
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Primer dimers were not eliminated from four of the seventeen PCR reactions 

conducted to test primers.  This potential problem was addressed in real time PCR by 

using a negative control containing no template to observe the extent to which any 

primer dimers affect background fluorescence.  Given that the real time PCR signal 

was recorded post-extension rather than following primer annealing it was anticipated 

that little or no interference would be observed.    

 

5.3 – RT Real time PCR results 

 
After primer optimisation real time PCR experiments were carried out in order to 

determine the extent to which transcripts detected in the iron limited subtracted library 

were up-regulated in iron limited cells of Coccolithus pelagicus.  An initial round of 

real time PCR experiments without replication, were conducted using cDNA from 

four iron replete and four iron limited cultures.  The data obtained from the reactions 

was normalised to the transcript abundance of the housekeeping gene GAPDH and 

used to select sequences to run in triplicate during subsequent real time PCR 

experiments.     

 

Based on preliminary results from an initial round of real time PCR experiments it 

was decided to conduct further experiments with replication on six of the transcripts 

detected in the iron limited subtracted cDNA library.  These reactions were carried 

out in triplicate, the threshold cycle (Ct) values obtained were averaged and 

normalised to the mean (n=3) abundance of transcript detected for the housekeeping 

gene GAPDH.  Specific growth rates were calculated for each culture from which 

cDNA was produced for use in real time PCR.  It was found that the specific growth 
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rates of the four iron limited cultures used to produce cDNA varied by 17%.  These 

results are presented in Table 3C in Chapter 3.   

 

RT real time PCR experiments were conducted using cDNA derived from four iron 

replete and four iron limited cultures.  The iron limited culture most representative of 

the original iron limited culture that was used to produce the subtracted library is iron 

limited replicate (4).  The iron limited culture used to produce the subtracted cDNA 

library had a specific growth rate of 0.101 and the specific growth rate of iron limited 

replicate (4) (µ = 0.097) was closer than any of the other iron limited replicates used 

in RT real time PCR studies.    

 
Figure 5.8:  Histograms showing mean SE± (n=3) abundance of transcripts in 
iron limited Coccolithus pelagicus cultures relative to iron replete controls.  A 
value of 1.0 indicates that a transcript is neither up nor down-regulated.  A 
value greater than 1.0 indicates that a transcript is up-regulated in the iron 
limited cultures.   

CM4E12 - chloroplast light harvesting protein isoform 8 
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Only one single threshold cycle (Ct) value was detected among all of the iron replete 
reactions with the CM4E12 primers and so the maximum PCR cycle number (40) has 
been used as the Ct value where none was detected.  The results for CM4E12 
represent the minimum difference between the iron replete and iron limited samples 
as the real Ct value for the iron replete reactions could be much greater than the 
assigned value of 40.     
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The chloroplast LHP transcript was the only cDNA that was up-regulated in all four 

of the iron limited cultures.  It also showed the greatest levels of up regulation out of 

all of the transcripts examined.  In particular the chloroplast LHP transcript was found 

to be one of the most up-regulated transcripts in terms of overall transcript abundance.  

In cDNA sample 4 the transcript was shown to be 230 times more abundant relative to 

the iron replete control. 

 

Across all four cDNA samples every transcript was up-regulated the most in cDNA 

sample (4) which was produced from the culture (culture 4) that was found to have 

the slowest specific growth rate.  cDNA sample 3 consistently showed no significant 

up-regulation of any of the examined transcripts with the exception of the chl a 

binding protein transcript which was found to be 2.2 times more abundant in the iron 

limited culture than in the iron replete culture.   

 

The ferredoxin transcript was not significantly up-regulated or down-regulated in any 

of the iron limited cDNA samples.  The real time PCR data suggests that ferredoxin 

transcript levels do not differ significantly between iron limited and iron replete 

cultures of Coccolithus pelagicus. 

 

 

5.3.1 – Analysis of RT real time PCR products on agarose gels 

 

The real time PCR dissociation curves for the –RT controls of the predicted 

membrane protein (PMP) and ferredoxin reactions showed small peaks in some of the 

reactions which were at a different melting temperature than those of the main 
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product (see the dissociation curves in the appendix).  Those reactions which showed 

these unexpected peaks in the dissociation curves were run out on 1% agarose gels to 

confirm that only one product was present and that it was of the expected size.  This 

was the case in all of the aforementioned reactions as can be seen from figures 5.9 – 

5.12 below.   

                             1           2             3           4             5            6            7  

                         

564 bp 

Figure 5.9:  1% agarose gel showing PCR product from RT real time PCR 
experiment using predicted membrane protein (PMP) primers.  1 - Hind III λ 
phage markers, 2-7 – Single PCR products of expected size (152 bp). 
 

                                                  1                                    2  

                       

564 bp 

Figure 5.10:  1% agarose gel showing PCR product from RT real time PCR 
experiment using Ferredoxin primers.  1 - Hind III λ phage markers, 2 – Single 
PCR product of expected size (103 bp). 
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The RT real time PCR dissociation curves (see appendix) of the GAPDH and 

Chlorophyll a binding protein products displayed more than one peak for the main 

reactions.  In the case of the GAPDH products the peaks were within 2oC of one 

another.  In order to confirm that only a single PCR product of expected size existed 

in the reactions, one of the iron replete cDNA products and one of the iron limited 

cDNA products were run out on 1% agarose gels.  It was found that all of the 

aforementioned reactions contained single products of expected size.                        

                                             1                          2                       3 

                            

564 bp 

Figure 5.11:  1% agarose gel showing primer dimers and PCR product from 
RT real time PCR experiment using GAPDH degenerate primers.  1 - Hind III 
λ phage markers, 2 + 3 – Single PCR products of expected size.                             

                                   1                          2                      3  

                            

564 bp 

Figure 5.12:  1% agarose gel showing PCR product from RT real time PCR 
experiment using Chl LHP primers.  1 - Hind III λ phage markers, 2 + 3 – 
Single PCR products of expected size (198 bp). 
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5.4 – Discussion  

 

Variability in specific growth rates and therefore severity of iron limitation was 

apparent in the gene expression data obtained from RT real time PCR experiments 

(figure 5.8).  Iron limited cultures 2 and 3 which had the fastest specific growth rates 

of the iron limited cultures consistently showed the least up-regulation of transcripts 

detected in the subtracted library.  In contrast the iron limited culture with the slowest 

specific growth rate displayed the highest levels of up-regulation across all of the 

transcripts examined reflecting its more severe state of iron limitation.  Culture 3 

showed no significant up-regulation in many of the transcripts examined.  The 

transcript which was up-regulated most in the slowest growing cultures was the 

chloroplast light harvesting protein, a result consistent with the other cultures.   The 

data suggests that the level of up-regulation of the transcripts detected in the iron 

limited subtracted library was tightly correlated to the severity of iron limitation over 

what is likely to be a narrow range of iron concentrations.  It appears that very small 

amounts of iron contamination in laboratory glassware or from the air can greatly 

affect gene regulation in Coccolithus pelagicus.   

 

Although using deferoxamine in growth media to chelate iron was consistently 

effective at producing iron limited cultures of Coccolithus pelagicus there was 

variability between cultures in terms of the severity of iron limitation observed.  The 

severity of iron limitation was judged based on the specific growth rates of cultures, 

slower specific growth rates indicating more severe iron limitation.  Between the iron 

limited cultures used to produce cDNA for real time PCR experiments the specific 

growth rates varied over a range of 17% and this variation was evident in the gene 
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expression data obtained.  When dealing with nanomolar concentrations of trace 

metals such as iron it is often difficult to maintain equal concentrations in all cultures.  

When cultures are sampled for growth measurements dust from the air can contribute 

iron to the media.  Despite minimising contamination through the use of sterile 

technique and acid washing glassware that is used in the preparation of growth media, 

it is difficult to completely eradicate all contaminating trace metals from the growth 

media.  When these factors were considered, a variation of 17% in specific growth 

rate over the range of iron limited cultures was deemed to be acceptable. These 

cultures were still growing far slower than the iron replete controls.  

 

It was found that the abundance of the ferredoxin transcript did not vary significantly 

between the iron replete and iron limited cultures.  Furthermore no flavodoxin 

transcript was detected in the iron limited subtracted library and the flavodoxin gene 

could not be detected in iron limited cDNA with degenerate primers.  This 

observation is suggestive of several possibilities.  It may be the case that Coccolithus 

pelagicus does not possess the flavodoxin gene and therefore has no alternative but to 

continue expressing ferredoxin even when iron limited.  If flavodoxin was being 

expressed in the iron limited cultures it would be highly unlikely that it would not 

appear in the iron limited subtracted library.  Many species of eukaryotic 

phytoplankton do not produce flavodoxin when suffering iron limitation (Erdner et 

al,. 1999). While not conclusive, the results of this investigation suggest that 

Coccolithus pelagicus may not have the capacity to produce flavodoxin under 

conditions of moderate iron limitation. 
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Another possibility is that the Coccolithus pelagicus cultures in this study were not 

iron limited enough to induce expression of flavodoxin, being only iron limited as 

opposed to iron starved.  However, a laboratory study in which two diatoms were 

examined found that induction of flavodoxin expression is a response to declining 

iron concentrations in the environment and was detected before any apparent 

physiological impairment or growth rate inhibition had occurred (McKay et al., 

1997).  As the iron limited Coccolithus pelagicus cultures in this study were suffering 

from chlorosis and impaired growth rates it would be expected, based on the 

observations from other studies, that these conditions would be sufficient to induce 

expression of the flavodoxin gene if it were present.   

 

Iron limitation in Coccolithus pelagicus does not appear to have a repressive effect on 

the transcription of the ferredoxin gene.  Ferredoxin protein levels may not be the 

same between iron limited and iron replete cells, however. Iron availability may 

regulate the translation of the ferredoxin mRNA resulting in levels of ferredoxin 

under the two conditions that would not be in equal proportions, as the transcript 

levels would seem to imply.  A laboratory study (Laudenbach et al., 1988) found that 

in the cyanobacterium Anacystis nidulans R2 the ferredoxin transcript was detected in 

cells grown in iron concentrations which also induced flavodoxin expression.  

Although the ferredoxin transcript was present regardless of the iron concentration of 

the growth medium, it was only translated under conditions that were not iron 

limiting. Under iron limitation the flavodoxin transcript was transcribed and 

translated.  Addition of iron to the A. nidulans cultures resulted in the degradation of 

flavodoxin transcripts within one hour and the reappearance of ferredoxin protein in 

the cells.  This implies that iron has a repressing effect on flavodoxin transcription 
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and that it may also regulate the translation of the continually present ferredoxin 

transcript.    

 

There is a contradiction between the proportions of the sequences in the subtracted 

library possessing both Clontech adaptors and their up-regulation as determined by 

RT real time PCR.  In particular the UCE was not found to be up-regulated to any 

great extent despite being the most abundant identifiable transcript in the subtracted 

library.  As the RNA used to create the subtracted library was not the same RNA used 

in the RT real time PCR experiments – owing to the problem of obtaining sufficient 

quantities from biomass that does not take excessive time periods to produce in 

cultures.  While the specific growth rates of the cultures used in RT real time PCR 

studies did not differ dramatically from the one used in the production of the 

subtracted cDNA library, it would be advisable in any future experiments to conduct 

real time PCR experiments on the same RNA sample from which a subtracted library 

was created.  This likely explains the differences observed between implied 

abundance and differential expression of transcripts in the subtracted library and the 

RT real time PCR results.     

 

Some of the RT real time PCR reaction products which yielded dissociation curves 

which were not as ideal as the other reactions were run on agarose gels to confirm that 

only one single product was present.  Some small peaks may be present in –RT 

controls due to minute levels of DNA contamination. However, it is extremely 

unlikely that this contamination exists in the reactions being measured as the samples 

in these reactions had undergone an additional DNase digest as part of the reverse 

transcription protocol (gDNA wipeout).  The Chl LHP dissociation curves appeared to 
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show two peaks with close melting temperatures.  This would normally indicate two 

different products. However, when observed on an agarose gel there was clearly only 

a single product.  Such an observation may be indicative of multiple copies of this 

gene with slightly differing sequences being represented in the cDNA template, 

perhaps as a result of alternative splicing.      
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CHAPTER 6 – CONCLUSIONS AND FUTURE WORK 

 

The aim of this study was to investigate the acclimation of Coccolithus pelagicus to 

iron limitation from a molecular viewpoint.  It has been demonstrated that the fungal 

siderophore deferoxamine is a suitable ferric iron chelator for use in studies of iron 

limitation (Chapter 3).  Growth of Coccolithus pelagicus in the presence of 

deferoxamine results in changes in gene expression (figure 5.8) and in the proteome 

of the cells (figures 3.12, 3.15, 3.16).  It induces classic signs of iron limitation – 

slower growth rates (figure 3.1 & table 3A) and reduced chlorophyll a concentrations 

per unit biomass (figure 3.3).  A secondary aim of this investigation was to identify 

potential biomarkers of iron limitation in Coccolithus pelagicus.  Several up-regulated 

transcripts (fucoxanthin binding protein (6), PMP, CM4E12, psaE) and one highly up-

regulated transcript (Chl LHP) were identified (figure 5.8) and these may prove 

worthy of further examination for their potential as biomarkers to complement the 

already existing approaches used to confirm iron limitation in the field (LaRoche et 

al., 1995; van Leeuwe & Stefels, 1998; Erdner et al., 1999; McKay et al., 1999; Inda 

& Peleato, 2003; DiTullio et al., 2007; Hernandez et al., 2008). 

 

In order to prove suitable as biomarkers these transcripts should be significantly up-

regulated under conditions of iron limitation in a multitude of phytoplankton species 

and should display an up-regulated response specific to iron limitation as opposed to 

being up-regulated as a general stress response.  

 

PsaE is a potentially useful target for use as a biomarker of iron limitation.  It is 

present in the photosystem I complexes of phytoplankton (Rhiel & Bryant, 1993; Yu 
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et al., 1993; Zhao et al., 1993; Fromme et al., 2003), and it is highly conserved 

(Golbeck & Bryant, 1991), indicating that it serves an important role.  Its highly 

conserved sequence and presence throughout a range of phytoplankton taxa may 

make it useful for confirming iron limitation in mixed phytoplankton communities, if 

it can be established that up-regulation in response to iron limitation is common 

among phytoplankton.  Its high degree of sequence conservation may also potentially 

make it easier to develop PCR or immunological based methods for detecting it in the 

majority of species of a mixed community were it to be used as a biomarker.    

 

 The high level of up-regulation detected for the chlorophyll binding protein (Chl 

LHP) in this study indicates that it may hold potential as a biomarker.  If the up-

regulation of Chl LHP shows the same magnitude in response to iron limitation in 

other phytoplankton then the clear contrast in expression levels between iron limited 

and iron replete conditions makes it an attractive candidate as a biomarker.  

Chlorophyll binding protein expression is not unique to iron limitation however, they 

are up-regulated in other circumstances such as light limitation and it would have to 

be confirmed that Chl LHP up-regulation was a response exclusive to iron limitation 

before it could be employed as an indicator of iron limitation.   

 

The data presented in this study suggest that iron limitation results in up-regulated 

expression of mRNAs which encode proteins involved in photosynthesis and protein 

degradation (figures 4.3 & 5.8).  The reduced chlorophyll a concentrations per unit 

biomass (figure 3.3) and the significant up-regulation of transcripts encoding proteins 

of the photosynthetic apparatus indicate that photosynthesis is the primary target of 

iron limitation in Coccolithus pelagicus.  This is consistent with other studies of iron 
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limited phytoplankton species which reported photosynthesis as the main target of 

iron limitation (Milligan & Harrison, 2000; Davey & Geider, 2001). 

 

The significant up-regulation of one of several alternative fucoxanthin binding protein 

transcripts in response to iron limitation, reported in this investigation, compliments 

the findings that elevated levels of alternative types of fucoxanthin such as 19’-

hexanoyloxyfucoxanthin are present in iron limited cells of Phaeocystis antarctica 

(van Leeuwe & Stefels, 1998; DiTullio et al., 2007).  It was reported that high ratios 

of 19’-hexanoyloxyfucoxanthin to other pigments such as chlorophyll c, chlorophyll a 

and fucoxanthin were observed in iron limited Phaeocystis antarctica.  The ratios of 

these pigments may be potential indicators of iron limitation.  Considering 

chlorophyll a per unit biomass is reduced relative to iron replete levels in iron limited 

Coccolithus pelagicus, the up-regulated iron limited fucoxanthin : chlorophyll a ratio 

may be higher than the iron replete control and this may be consistent with the 

findings in Phaeocystis antarctica.  If production of alternative types of the main 

fucoxanthin carotenoid and its corresponding binding proteins is a response to iron 

limitation among phytoplankton as evidence from this investigation and other studies 

suggests (van Leeuwe & Stefels, 1998; DiTullio et al., 2007), then this may prove to 

be a worthwhile candidate as a biomarker of iron limitation.   

 

Expression of chlorophyll binding proteins in response to iron limitation has been 

reported in other studies.  In Dunaliella salina iron limitation results in enlarged 

photosystem I complexes and the expression of a chlorophyll binding protein 

homolog (Varsano et al., 2006).  The chlorophyll binding protein IsiA is expressed in 

cyanobacteria in response to iron limitation (Geiβ et al., 2001; Sarcina & Mullineaux, 
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2004; Yeremenko et al., 2004; Liu et al., 2006; Singh & Sherman, 2007).  The protein 

has been shown to form aggregates associated with photosystem I which aid in the 

dissipation of excess light energy (Boekema et al., 2001; Yeremenko et al., 2004; 

Ihalainen et al., 2005).   Evidence from the subtracted library produced in this study 

(figure 4.3), and aforementioned studies of iron limitation in other phytoplankton 

species suggest that induction of chlorophyll binding proteins may be a common 

response to iron limitation.  The findings of this investigation are in agreement with 

the wider literature that significant changes are made to photosystem I in response to 

iron limitation.   

 

Iron limited Coccolithus pelagicus cells maybe attempting to enhance protein 

turnover rates as evidenced by the detection of ubiquitin-conjugating enzyme E2 

(UCE) and the 20S proteasome subunit (20S Prot) in the iron limited subtracted 

library (figure 4.3).  While to date the up-regulation in response to iron limitation of 

either of these transcripts has not been reported in the literature, other studies have 

provided evidence that protein degradation is enhanced in iron limited cells in order to 

recycle cellular materials as rates of photosynthesis, nitrogen assimilation and 

mitochondrial electron transport are impaired (Allen et al., 2008).  Lower protein 

contents in iron limited cells of the diatom Cyclotella meneghiniana relative to iron 

replete cells were also reported (Lewandowska & Kosakowska, 2004), this may imply 

an elevated rate of protein degradation which would be consistent with the function of 

some of the transcripts detected in the C. pelagicus subtracted library, namely the 

ubiquitin conjugating enzyme and the 20S proteasome subunit which both serve 

functions in protein degradation.     
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Curiously, no identifiable transcription factors or transcripts relating to calcification, 

iron acquisition or nitrogen assimilation were detected in the subtracted library.  It is 

unlikely that Coccolithus pelagicus does not express any genes involved in enhanced 

iron uptake under conditions of iron limitation, it is more likely that these genes are 

present in the bulk of the subtracted library that could not be identified due to the 

limited nature of the data available not just for Coccolithus pelagicus but for iron 

limited phytoplankton in general.  Further examination of the iron replete subtracted 

library may identify transcripts encoding proteins involved in calcification which are 

down regulated or absent in iron limited cells; this would concur with the observation 

that iron limited cells appear to be less extensively calcified (figure 3.9) and may be 

worth investigating in future.  However, examination of genes differentially expressed 

under iron replete conditions was not the aim of this investigation.   

 

Based on the sequence data and other observations from this investigation, some 

conclusions can be drawn regarding some of the ways in which Coccolithus pelagicus 

becomes acclimated to iron limitation.  There is a reduction in the concentration of 

chlorophyll a per cell (figure 3.3) which is a general response among phytoplankton 

not only to iron limitation but to limitation by other nutrients also (Graziano et al., 

1996) and in the case of C. pelagicus iron limitation appears to result in malformed 

coccoliths or a lesser degree of calcification.  This may be due to impairment of 

chlorophyll biosynthesis or it may be a coordinated cellular response to reduce the 

level of chlorophyll when the photosynthetic electron transport chain cannot process 

the light energy that is already entering the system.  This would be consistent with the 

up-regulation of proteins which may serve in a photoprotective capacity such as 

fucoxanthin binding proteins (FucoBP), Chloroplast light harvesting protein isoform 2 
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(Chl LHP), Chloroplast light harvesting protein isoform 8 (CM4E12), Photosystem I 

protein E (PsaE).  In addition to this it appears that there may be an attempt by the 

cells to recycle iron cofactor and amino acids through the enhancement of the protein 

degradation machinery as indicated by the detection of ubiquitin conjugating enzyme 

E2 (UCE) and 20S proteasome subunit (20S Prot) in the subtracted library.  

Unfortunately, due to the limited number of sequences that could be identified a more 

detailed and conclusive description of Coccolithus pelagicus acclimation to iron 

limitation is difficult to provide.   

 

Differences in specific growth rate (and hence the degree of iron limitation) can alter 

gene expression patterns dramatically under iron limited conditions.  Although there 

was negligible difference in growth rate between cultures 1, 2 and 3 – culture 1 

showed considerably greater up-regulation of transcripts detected in the subtracted 

library (table 3C and figures 3.7 & 5.8).  This may be due to iron contamination 

sufficient to alter gene expression but not to significantly alter growth or chlorophyll 

a concentrations in cultures 2 and 3.    This implies that only small differences in iron 

concentration are required to affect gene expression and may indicate a staggered 

response in gene expression alteration from low level iron deficiency to out-right iron 

limitation over a narrow iron concentration range.  This is opposed to an all out 

response in which a multitude of genes are up-regulated upon iron availability 

dropping below a certain point.    

 
 
Further study is required to examine the relationship between gene expression and 

specific growth rates in iron limited Coccolithus pelagicus cultures.  The use of iron 

limited chemostats to provide a constant supply of culture maintained in a state of iron 
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limitation would be a suitable approach to examine this further.  Examining the 

differences in gene expression and differences in the proteome of iron limited and 

out-right iron starved cells may also help to further elucidate the extent of the 

molecular changes that occur when cells are deprived of iron.  

 

Almost two thirds of the iron limited subtracted library could not be identified by 

Blast analysis (table 4A & figure 4.1).  Among this part of the library there may be 

sequences worthy of further investigation to assess their potential as biomarkers of 

iron limitation.  Use of RT real time PCR and northern blots to establish the extent to 

which the unidentified sequences in the library are up-regulated are required, followed 

by studies to determine the function of these unknown proteins. 

 

While identifying potential iron replete biomarkers was not within the scope of this 

investigation, the FeR1 protein (figure 3.15) excised from an iron replete 2D gel is 

absent from the iron limited 2D gel and present at quite high abundance in the iron 

replete gel.  Despite the fact the western blotting approach described in this thesis was 

unsuccessful; it would be worthwhile pursuing further efforts to identify this protein 

in the hope of examining its expression and furthering the current understanding of 

the molecular changes that occur in Coccolithus pelagicus between states of iron 

sufficiency and iron limitation.  In addition to this, it may be useful to produce 2D 

SDS gels with purified iron limited and iron replete chloroplast proteins, as some of 

the most up-regulated transcripts presented in this study encode proteins involved in 

photosynthesis.  Proteomic analysis of chloroplast proteins may reveal molecular 

changes in response to iron limitation controlled at the translational level which could 

be largely un-altered at the transcriptional level.  Since there is the potential for 
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differentially expressed chloroplast proteins regulated at the translational level to be 

masked by other non-chloroplast proteins in 2D SDS gels which attempt to examine 

the entire cell proteome, procedures to isolate intact chloroplasts from C. pelagicus 

should be optimized.   
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APPENDIX 
 
RT real time PCR dissociation curves: 
 
 
PMP iron replete cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PMP iron limited cDNA 
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PMP -RT controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PMP Negative controls 
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Fucoxanthin binding protein (6)  iron replete cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fucoxanthin binding protein (6) iron limited cDNA 
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Fucoxanthin binding protein (6)  -RT controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fucoxanthin binding protein (6)  negative controls 
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PsaE iron replete cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PsaE iron limited cDNA 
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PsaE  - RT controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PsaE negative control 
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UCE iron replete cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UCE iron limited cDNA 
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UCE  -RT controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UCE  negative controls 
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CM4E12  iron replete cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CM4E12  iron limited cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 171



CM4E12  -RT controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CM4E12  negative controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 172



Ferredoxin iron replete cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ferredoxin iron limited cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ferredoxin iron replete  -RT controls 
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Ferredoxin iron limited  -RT controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ferredoxin iron limited –RT controls 
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Ferredoxin negative control 
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GAPDH iron replete cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GAPDH iron limited cDNA 
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GAPDH  -RT controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 GAPDH negative control 
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Chl LHP iron replete cDNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chl LHP iron limited cDNA 
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Chl LHP  -RT controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chl LHP negative control 
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