
73 Department of Biology 

University of Stirling 

THE ENERGETICS-OF COLPIDIUM CAMPYLUN STOKES, 

WITH A NOTE ON THE VERTICAL DISTRIBUTION OF 

CILIOPHORA IN THE MUD OF LOCH LEVEN, KINROSS 

A Thesis 

Submitted to the University of Stirling 

by 

Johanna E. M. Laybourn, B. Sc., M. Sc. 

in Candidature for the Degree of 

Doctor of Philosophy 

November 1973 



Abstract 

The energetics of, th. e h. olotrich. ciliate ColpIdiüfi 

campylum fed on the bacterium Moraxella sp. at 100C, 150 C and 

20°C were investigated. 

The parameter used for ascertaining growth. was the volume 

of protoplasm produced measured by means of a Coulter. Counter 

with. "a mean cell volume converter attachment. Growth and 

consumption were measured in relation to food availability 

as indicated by the ratio of bacteria: protozoan. Mean cell 

volume variation and reproduction were also measured in 

relation to food availability and energy consumed. 

Protozoan and bacterial material were harvested by 

centrifugation and freeze-dried for dried weight determinations 

and calorimetry studies. The energy content of Colpidium and 

its food source was determined with a Ph. illipson microbomb 

calorimeter. 

Respiration was measured in a Warburg respirometer. 

Oxygen uptake in relation to population density and cell size 

was considered as well as the production of information 

concerning the heat lost during respiration for incorporation 

into energy budgets. 

Energy budgets of. two types were constructed: a 24-hour 

energy budget for an individual and the life-span or generation 

energy budget for an individual. Gross growth efficiencies, 

net growth efficiencies and assimilation efficiencies were 

considered in detail.. 



In addition to laboratory work the vertical distribution 

of Ciliophora in the mud of Loch. Leven, Kinross, Scotland, 

was also considered; three sites, two shallow and one deep, 

being'sampled with a core sampler over a 12 month period. 
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GENERAL INTRODUCTION 

General Protozoological Physiology 

Th. e science of Protozoology started with. the observations 

of Antony van Leeuvenh. ook (1632-1723) using simple lenses which. 

he ground himself. Since that time the study of these micro- 

scopic fauna has progressed to the sophisticated physiological 

and bioch. emical studies of today. 

Free-living Protozoa lend themselves well to laboratory 

study by virtue of the ease with. which, most species can be 

cultured. The techniques of culturing have been refined with 

time and many investigations have been devoted to this aim 

(Hargitt and Fray 1917, Peters 1921) Parpart 1928, Glaser and 

Coria 1930, Phelps 1936, Hjelm 1970 and others). The controlled 

methods of today essentially involve two basic techniques; 

i) the axenic culture, where the Protozoa are grown under 

highly sterile conditions in a nutrient medium, and 

ii) the monoxenic culture where the Protozoa. are grown with a 

single species of food organism. 

The need for sterility in both methods is of the utmost 

importance, and present day methods of sterilisation allow a 

high degree of experimental control. 

Early workers such as Woodruff and Baitsell (1911a) 1911b) 

were unaware of the importance of controlling the species and 

concentration of the good organism on which their cultures of 

Paramecium fed. While endeavouring to isolate the factors 
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responsible in bringing about rhythms in the reproductive 

activity of Paramecium in a medium of beef extract they failed 

to monitor or control the bacterial flora. They stated that 

temperature showed a certain amount of correlation with 

fluctuations in the fission rate, but in all probability the 

fluctuations they describe were the result of increased 

temperature producing an increase in the bacterial population 

in the nutrient medium they used, which naturally caused an 

increase in the reproductive activity of Paramecium. 

Cutler and Crump (1924) were the first to become aware 

'--öf-th. e importance of food concentration in relation to 

reproduction in a ciliated protozoan. They found that where 

the ratio of bacteria per protozoan was less than 500: 1 little 

or no reproduction occurred in 24 hours, but at a ratio of 

1,024,000: 1 the number of divisions became as great as 5.3.. 

Following this discovery many investigations were devoted to 

the effect of concentration of food or suitability of different 

species of-food organism on the reproduction of Protozoa 

(Cleveland 1928, Luck) Sheets and Thomas 1931, Heatherington 

1934, Johnson 1936, Burnbanck 1942, Rudinska 1951). 

Harding (1937) as well as considering the effect of food 

concentration on division in Glaucoma pyriformis also 

considered the effect of food concentration on cell size. At 

low-food to protozoan ratios he found that both the fission 

rate and cell size were dependent on food availability, but 

high food concentrations, although increasing cell size, had 
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no effect on the fission rate which maintained a maximum 

level. The investigation of Harding (1937) was probably the 

first in which. the size of the ciliate was altered at will, 

between wide limits, with the rate of multiplication kept 

constant. Later studies on variation in cell size (Hamilton 

and Preslan 1969, Curds and Cockburn 1971) also relate cell 

size to food concentration, although. Hamilton and Preslan 

(1970) consider the density of the ciliate community to be the 

major determining factor. 

Energetics 

In recent years th. e study of ecological energetics has 

gained momentum, involving both the field approach as well as 

the laboratory investigation. One of the first studies of 

this type was that of Lindeman (1942) on energy transfer in 

a natural community. Following this pioneering work energetics 

did not, as Engelman (1961) points out, spread to all types of 

natural communities but remained focussed on marine and fresh- 

water habitats. Further, investigations tended to be mainly 

restricted. to the phyla Arth. ropoda and Mollusca, and many 

valuable contributions have emerged (Gere 1956, Golley 1960, 

Mukerji and LeRoux 1969a) 1969b, Lawton 1970,1971, Hughes 

1970, McNeill 1971, Smith 1972,. Grahame 1973a, 1973b, and 

others). 

As Slobodkin (1962) points out "The relation between 
/ 

energetics and the numerical properties of a population must 
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be in terms of energy budget analysis in which the population 

is considered as steady-state system through which potential 

energy passes". Energetics is based essentially on the physical 

laws relating to energy. Odum (1953) elucidates this point 

by discussing the first and second laws of th. ermodynamics in 

relation to energy flow in ecological systems. The first law 

of thermodynamics states that energy may be transferred from 

one type into another, but is never created or destroyed, and 

the second law states that no process involving an energy 

transformation will spontaneously occur unless there is a degrad- 

ation of the energy from a concentrated form into a dispersed 

form; it is tautological that energy transformations cannot 

be 100% efficient. 

The equation which expresses energy transformation in an 

organism was first used by Ivlev (1939,1945) following 

Terroine: - 

Q= Q" +QR+QT+QV+QW 

where: - Q= energy consumed as food 

Q'= energy converted to growth. 

QR= energy egested or not utilized 

QT= energy of primary heat 

QV= energy of external work 

QW energy of internal work 

Ricker (1946) showed that QT, QV and QW could be combined 

and expressed as the heat lost during respiration; thus the 

equation is simplified to :- 
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Input = Growth. + Respiration + Egestion 

Assimilation = Growth + Respiration 

Because we are considering energy, it follows that each 

component of the energy budget must be expressed as units of 

energy. Previously the calorie has been the unit of energy 

employed by workers in this field; h. owever, in accordance with. 

Standard International practice (see Kaye and Laby 1956) 

present day studies use the joule as a unit of energy. The 

calorie is defined as the energy required to raise 1 gram of. 

water through 1°C to 15°C; the joule on the other hand is the 

work done by a force of 1 newton acting through. a distance of 

1 metre. 

From a consideration of the various components of an 

energy. budget it is possible to ascertain the efficiency of _, 

growth. and assimilation in an organism. The efficiency of an 

organism as a converter of energy is described by the net pro- 

duction or growth efficiency K2, the gross production or 

growth. efficiency K1 and assimilation efficiency U-l, calculated 

thus (Prus 1972 based on Ivlev): - 

K1% _x100 

K2% =Äx 100 

U-i=A 
C 

where: - P= production or growth 

A= assimilation 

C= consumption or food ingested 
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The Energetics of Protozoa 

Although many of the tools available to modern science 

allow the control and accurate measurement of parameters in 

physiological studies on microorganisms, the recent popularity 

of energetics studies has largely by-passed the Protozoa. As 

was pointed out earlier there is a vast quantity of information 

available on the energetics of arthropod and molluscan inver- 

ebrates, and yet there is little work of this kind on the 

Protozoa except for the work of Heal (1967a). Protozoa lend 

themselves well to laboratory studies. Most species are easily 

maintained in culture, as are their food organisms - bacteria, 

algae and other protozoan species, so that the comparative lack 

of interest shown in them by investigators of animal energetics 

is perhaps strange, particularly when one considers that 

Protozoa are often very abundant in aquatic environments and 

have been reported to constitute 93% of all the species of 

benth. ic animals in one brackish water study (Muus 1967). 

The energy budget equation for a protozoan has been 

expressed by Heal (1967b) as 
Amount of food__ Amount of Protozoa Amount lost in 

+ 
Amount 

ingested produced 
+ 

respiration excreted 

Amount assimilated 

In a protozoan energetics study, ingestion or consumption, 

growth. and respiration are measured directly, but because of 

the impracticability of attempting to collect egested matter, 

the amount of energy egested and excreted is calculated from 
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the oth. er parameters of the energy budget. Heal (1967b) makes 

the point that an energy budget of this type is readily obtained 

from laboratory populations, but there are dangers in extra- 

polating to the field. 

Most studies on the energetics of Protozoa constitute only 

partial energy budgets. Such investigations are mainly concerned 

with studying the feeding rate and the associated growth rate, 

thus producing a measure of yield, or to use the terms applied 

in energetics, gross growth efficiency (Coleman 1964, Proper 

and Garver 1966, Curds and Cockburn 1968,1971, Prus 1972). 

These workers have reported high gross growth. efficiencies in 

ciliated protozoan species ranging from 40-78%, thus suggesting 

that the Protozoa are very efficient converters of energy, far 

more efficient than other invertebrates that derive their energy 

from the primary producers (Gere 1956, Richman 1958, Prus 1968a) 

where gross growth efficiencies reported are lower. 

General Ecology of Protozoa 

There have been many investigations into the abundance and 

distribution of protozoan. species in fresh. -water (Wang 1928, 

Moore 1939, Cole 1955) Webb 1961, Cairns 1965,1966, Goulder 

1971, and others) and in marine habitats (Fenchel and Jansson 

1966, Fenchel 1967) Saifullah 1971 and others). An important 

fact which emerges from these studies, which were carried out 

on the continents of Europe and America, is that the Protozoan 
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species are cosmopolitan in their distribution. Species which 

occur in America are also found in Europe and display similar 

patterns of distribution. 

Not only has the ecology of Protozoa been-investigated in 

the wild, but th. ose species which. commonly occur in sewage 

treatment plants have also received scrutiny, for the obvious 

" purpose of elucidating th. e role they may- have in the purification 

of sewage. Several workers have shown that some ciliate and 

flagellate species possess the ability to flocculate bacteria 

(Harding 1943, Curds 1963). Curds, Cockburn and Bandyke (1968) 

have shown that the addition of ciliates to activated-sludge 

greatly improved the quality of the effluent. Later work by 

Curds and Fey (1969) indicated that ciliated Protozoa play a 

major role in the removal of Escherichia coli from sewage. A 

survey of the protozoan fauna of British percolating filters 

and activated-slude plants revealed that all the 52 percolating 

filters examined contained ciliates, and all but 3 of the 56 

activated-sludge plants were found to have populations of 

ciliated Protozoa (Curds and Cockburn 1970). Further, activated- 

sludge plants which delivered high quality effluents harboured 

a wide variety of ciliated Protozoa in large numbers, while 

those plants which produced 'turbid low quality effluents, 

either lacked Protozoa, or contained only small numbers of a 

few species.. Clearly, not only are Protozoa widely distributed 

in natural habitats, but also possess an important applied 

role in sewage treatment plants. 
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The Aims of the Present Study 

The aim of th. e present investigation into the energetics 

of Colpidium campylum was to produce a series 'of detailed 

energy budgets over a range of temperature, relating energy 

uptake and utilization. to energy availability. Care was taken 

to use a series of temperatures which. Colpidium would encounter 

in its natural habitat. Loch Leven, Kinross was taken as an 

example of the natural environment of Colpidium. The water 

temperature rarely exceeds 20°C in this lake, so that in the 

present investigation 20°C was the highest experimental 

temperature used. 

A subsidiary part of my research project was concerned 

with a study of ciliated Protozoa in their natural environment. 

The location was Loch Leven, Kinross and this part of the 

project formed part of the International Biological Programme 

on the loch.. 

r 
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CHAPTER 1 CULTURING 

Prior to experimental work it was necessary to establish, 

in the laboratory, flourishing populations of a typical 

bacterial feeding holotrich ciliate and a suitable food 

organism. As a first step quantities of mud were collected 

from Loch Leven, Kinross, using a Jenkins core sampler (Jenkins 

and Mortimer 1938). 

1.1 Protozoa 

1.1.1 Materials and methods 

The medium used in preliminary attempts to culture various 

ciliate species was that described by Sonneborn (. 1950) which. 

consisted of 2.5g of powdered baked lettuce boiled in 1 litre 

of distilled water. After boiling the pH of the medium was. 

adjusted to between 6.0-7.0 using calcium carbonate; it was 

then filtered, and autoclaved at 15lbs/sq. in. for 15 minutes. 

Aerobacter aerogenes, a bacterial food source, was then in- 

noculated'into the medium 24-28 hours before use. This bacterium 

had previously been maintained in this department by another 

research worker. 

Freshly collected Loch Leven mud was examined in petri- 

dishes under a binocular microscope, individual ciliates were 

removed with a micro-pipette, and introduced into depressions 

in Butt slides. Each depression contained 0.5m1 of the medium 

prepared as described above, innoculated with Aerobacter aero 

fines. The slides were then placed in covered petri-dishes and 
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incubated at room temperature (approximately 20°C). 

Each. depression was examined daily, and where division of 

the ciliates had occurred, the individuals were each re-isolated 

into fresh. medium. Once a species had become established, that 

is dividing and feeding actively, stock hay-infusions cultures 

(Sonneborn 1950) were set up. These cultures consist of 

approximately lOg of chopped hay boiled for 10-15 minutes in 

lt of distilled water. A bacterial food source (Aerobacter 

aerogenes) was innoculated into the infusion 24 hours before 

the introduction of the Protozoa. Stock cultures of this type 

maintain themselves without attention for 4 months or longer. 

Such cultures were incubated at 240C and 15 °C. 

1.1.2 Results 

Of the twelve species which. were isolated from the mud, 

four were successfully established in baked lettuce medium,. 

these species were: Paramecium caudatum (Ehrenberg), Paramecium 

äurelia (Ehrenberg), Tetrahymena pyriformis (Ehrenberg) and 

Colpidium campylum (Stokes). These species are all typical 

bacterial-feeding Holotrich ciliates belonging to the order 

Hymenostomatida. All of these species were then maintained in 

stock hay infusions. 

A decision had to be made as to, which of these species 

would be used as the experimental organism in the construction 

of a ciliate. energy bodget. The choice depended partly on the 

results of the culturing and investigation of a bacterial food 

source, but there was a bias towards Colpidium since it appears 
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to be the least worked on of the four species. 

1.2 Bacteria 

Mud from Loch. Levefl was brought to the laboratory in a 

previously sterilised jar. Smears of the mud were made 

aseptically on to 5% yeast agar plates. The plates were in- 

cubated at 24°C and 15°C for 48 hours. One of the resultant 

colonies was subcultured and tests to compare the suitability of 

this isolate with. A. aerogenes were carried out. Colpidium was 

used for th. ese tests because as has already been stated there 

was a preference towards using this species in the energetics 

studies. Such. tests were necessary since some workers have 

shown that some bacteria are unacceptable. or prove to be poor 

food sources to certain ciliates (Burbanck 1942, Curds and 

Vandyke 1966). 

Four 250m1 conical flasks each. containing 50m1 of baked 

lettuce medium were autoclaved. Two of the flasks were innoc- 

ulated with A. aerogenes and two with the Loch Leven isolate. 

The flasks were incubated for 24 hours at 24°C. Protozoa were 

sterilized to remove bacteria from the cell surface according 

to the method of Parpart (1928). Briefly, th. e individual ciliates 

were transferred with sterile micropipettes through. 5 washes 

of autoclaved lettuce medium in Butt slides, a-15 minute period 

was allowed between each transfer and the ciliates were left 

for 2 hours in the last change of medium. 
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The cultures were incubated at 20°C. Counts were 

commenced after 72 hours by pipetting 0.5m1, or less if 

necessary, from a well agitated culture into a depression slide 

and counting directly. The number of individuals produced from 

each individual was calculated as follows: - 

k= Log2N per unit time 

Log10 N 
Log N 

2 
Log 10 0.3010 

where: 
k= fission constant in the equation N= 2kt 

N= number of animals after time t produced from a 

single animal. -- 
1.2.1. Results 

Figure 1 shows the number of generations produced by 

Colpidium feeding on A. aerogenes and the Loch Level isolate. 

The mean of the two cultures for each of the two food sources 

was plotted. The Loch Level isolate appeared slightly better 

than A. aerogenes, although the growth curves for both food 

sources show a close resemblance. 

Plates of the isolate were sent to the Torry Laboratories 

at Aberdeen for a reliable identification. The isolate was 

found to be a species of the genus Moraxella, which is a non- 

motile, oxidase positive, gram negative rod. 

1.2.2 Conclusions 

Since Colpidium appeared to feed satisfactorily on 

Moraxella this ciliate species was selected as the experimental 



Figure 1 

Comparison of the Loch Leven isolate with 

Aerobacter aerogenes as a food source for Col. pidium 

as indicated by the number of generations produced 



r 

ti 
r 

1 

r 

wt 
r 

r 

N 
1 

p. 

O's 

co 
N 

MI 

U, 

N 

O 

pa3npOJd suOlIU auao jo iagwnN 



-14- 

organism for this energetics study. Both. Colpidium and its 

food source have been routinely maintained in this laboratory 

during a research period of 24 months. 

e 

1 
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CHAPTER 2 CONSUMPTION AND GROWTH 

2.1 Preliminary Growth. Studies 

Before detailed studies on food consumption and growth. 

in Colpidium could be undertaken an important consideration 

had to be met, namely, which parameter would be used to 

measure growth.. 

Reproduction as a measure of growth has been used by many 

workers in the past including Cutler and. Crump (1924), Luck, 

Sheets and Thomas (1930)*, Heath. erington (1934) and Johnson 

(1936). More recently, reproduction as a parameter of growth. 

h. as been utilized by Heal (1967a) and Curds and Cockburn (1968) 

in energetics studies. The accuracy of this method of estimat- 

ing the quantity of protoplasm produced, i. e. growth, relies 

upon the size reached before each. , 
division remaining constant. 

This however, is not the case in Tetrahymena pyriformis (Curds 

and Cockburn 1971) and Uronema sp. (Hamilton and Preslan 1969), 

where considerable variation in the mean cell volume of the 

population was demonstrated and was apparently dependent on 

the number of bacteria, or other food organism, available to 

each protozoan. 

Consequently, the volume of protoplasm produced may be a 

more accurate measure of growth in a species where size variation 

had been demonstrated. This idea gains weight from the findings 

of Kimball, Casperson, Svensson and Carlson (1959) from their 

work on Paramecium aurelia. Th. ey suggest that the growth rate 

and the division rate are capable of independent variation, and 
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further that size is an adaptive character. They also suggest, 

that the response of growth and division rates to various 

conditions has been subject to selection to bring about 

adaptive changes in size in those situations commonly met in 

the organism's natural habitat. 

In view of this vital consideration, preliminary experiments 

on the growth of Colpidium were carried out to ascertain if 

size variation occurred in this species, and if so to what 

extent. 

2.1.1 Materials and methods 

Eight 500m1 conical flasks, each. containing 400m1 of 

baked lettuce medium were prepared as described in section 1.1.1. 

Moraxella grown on yeast agar plates for 72 hours at 24°C were 

washed off the plates using sterile distilled water to form 

a bacterial suspension; lml of this suspension was added to- 

each of the cultures which were then incubated at 24°C. After 

incubation for 24 hours the concentration of bacteria in the 

lettuce medium cultures was between 10-16 x 107/ml. 

A colony of 20 individuals of Colpidium was added to 

each flask. Four of the cultures were incubated at 10°C and 

four at 200C. 

Counts and size determinations were commenced after 48 

hours. Counting was carried out directly as described in 

section 1.2 during the experimental period of 28 days. Size 

measurements were made using a microscope and eye-piece 

graticule, ten individuals being measured from each culture. 
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The length. and width. were ascertained, and assuming the shape 

of Colpidium to be an ellipsoid the following equation was 

used to calculate the volume: - 

_V 
d2c 

6 

wh. ere: - V= volume 

d= diameter 

L= length. 

The mean of the ten determinations was taken to give a 

measure of the mean cell volume of the protozoan population 

in each. culture flask. 

Bacteria were counted using a standard bacterial counting 

chamber with Thoma markings (Hawksley, England). The bacteria 

in 100 squares were counted, the number per square was 

calculated and multiplied by a factor of 2x 107 to give the 

number of bacteria per ml (Mackie and Macartney 1960). This 

procedure was repeated three times for each sample and the 

mean of the three determinations taken. 

2.1.2 Results - ~' 

Considerable variation in size occurred as shown in 

Figures 2-5. At 20°C the cultures had a shorter life than 

those ' incubated at 10°C, but the same basic pattern-emerged at 

both temperatures. In all cases, cell volume was large at the 

beginning of the experiment when food was plentiful. At that 

time also the density of the ciliate population was low. As 

the food supply became depleted and the density of the Colpidium 

° 
population increased, the mean cell volume fell. At 20C the 



Figure 2a and b- Cultures 1 and 2 

Mean cell volume variation in Colpidium in relation 

to food supply and population size at 100C 

Key: - mean cell volume 0 

population density   

" bacterial population ,& 
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Figure 3a and b- Cultures 3 and 4 

Mean cell volume variation in Colpidium in relation to 

food supply and population size at 100C 

Key: - mean cell volume 

population density   
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Figure 4a and b- Cultures 5 and 6 

Mean cell volume variation in Colpidium in relation 

to food supply and population size at 20°C 

Key: - mean cell volume 0 

population density   
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Figure 5a and b- Cultures 7 and 8 

Mean cell volume variation in Colpidium in relation 

to food supply and population size at 20°C 

Key: - mean cell volume ". 

population density   

-- bacterial population A 
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cell size had fallen from a maximum size of 100-130 x 103µm3 

to-less than 20 x 103µm3 by the 14th day after innoculation. 

At 10°C the mean cell volume fell from between 100-140 x 103µm3 

to a mean size of less than 30 x 103µm3 by the 14th day after 

innoculation in cultures 2,3 and 4 (Figures 2b and 3a and 3b) 

and the 17th. day in culture 1 (Figure 2a). 

At both.. 10°C and 20°C the maximum density of the Colpidium 

population coincided with the fall of the mean cell volume to 

the low values quoted above. At that time also the bacterial 

food supply had fallen to a very low level as the Figures show. 

2.1.3 Discussion 

Size variation is apparently dependent on the concentration 

of the food supply, as indicated by the downward trend of both 

the bacterial concentration and the mean cell volume. A 

similar pattern was obtained for Tetrah. ymena pyriformis by 

Curds and Cockburn (1971) who with. Hamilton and Preslan (1969) 

concluded that food availability was a major factor in govern- 

ing the size of ciliate cells. 

The conclusion that the rate of growth and the rate of 

reproduction may be capable of independent variation has been 

drawn by Kimball et al. (1959). The results of the present 

study with Colpidium would indicate that growth and reproduction 

should be considered as two separate rates in an energetics 

study on ciliated protozoan, since clearly, the production of 

a dense population is not necessarily indicative of a large 

increase in protoplasm production or growth. The results show 
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that the ciliates merely divide at a smaller size when food 

supply becomes limited. There may be no real increase in the 

actual protoplasmic volume of the population but the total 

volume of protoplasm may simply be divided into a larger 

number of units. 

Obviously, the effect of variables such as temperature 

and food concentration upon the rates of reproduction and 

growth need to be carefully controlled. 

2.2 Growth. and Food Consumption 

When considering the method of measuring growth and 

reproduction in a protozoan species and relating these rates 

to the amount of food consumed, one important complicating 

' factor arises and this is that the food source itself is capable 

of rapid division given favourable conditions. Dead bacteria 

appear to be unacceptable to Colpidium, and in any case do not 

really represent a direct reflection of the natural environment 

where this species probably feeds on living microorganisms. 

In consequence, experimental design must in some way allow for 

the division of the food organism. 

Two methods are available, firstly the meth. od suggested 

by Heal (1967b) and used by him in 1967 in his quantitative 

feeding studies on a soil amoeba species (Heal 1967a). His 

method has an appealing simplicity. It involves placing a 

known number of bacteria, or any suitable food organism, and 

a known number of protozoa in a non-nutrient medium and measuring 

.1 



-20- 

the number of bacteria and protozoa at the end of a specified 

time. Because of the variables which may cause complications 

in such studies - e. g. the accumulation of metabolic waste 

products from both the food organism and the protozoa - the 

length. of the experiment sh. ould be as short as possible. 

The second method is that tried by Curds and Cockburn 

(1968) where bacteria were-grown in known concentrations of 

sucrose, the concentration of which determines the yield of 

bacteria. When the bacteria reached the stationary phase of 

their growth. curve, a known number of protozoa were added. 

This method assumes no bacterial division in the stationary 

" phase, and since the experiment is carried out in a nutrient 

medium one must be certain that the protozoa are incapable of 

utilizing any part of the substrate which might still be avail- 

able after the attainment of the bacterial stationary phase. 

The method described by Heal (1967b) relying on a non- 

nutrient medium was selected for the current study, with counts 

or protozoa and bacteria plus the additional measurement of the 

volume of the protozoan populations. 

2.2.1 Materials and methods 

General 

The experiments were set up as a series of bacteria: proto- 

zoan ratios ranging from 0.0-4,0 x 106 bacterial: protozoan. 

The ratio represents an index of food availability. Ten 

replicates were carried out at each. food concentration within 

each series of experiments at, 10 °C, 15°C and 20°C. The 
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experiments were carried out over a six-month. period. 

Autoclaved medical flats were used as experimental vessels. 

The non-nutrient medium used was autoclaved distilled water in 

which the bacteria appeared to survive in an active condition 

for the 24 hours over which the experiments were run. This was 

tested by plating bacteria after use in an experiment, and 

successful growth. was obtained. 

Controls of bacteria and protozoa alone were set up. 

Protozoa 

The Colpidia were grown in distilled water with bacteria 

as a food source for 48 hours at the temperature at wh. ich the 

experiment was to be carried out, in order that the animals 

should be fully acclimatized to the experimental temperature. 

Protozoa were harvested by centrifugation at I, 000r. p. m. 

for 15 minutes in conical centrifuge tubes. A speed of 1,000 

r. p. m. was chosen because at speeds above 1,500-2,000r. p. m. 

the contractile vacuoles'became very enlarged and many of the 

animals burst. It was therefore deemed prudent to use a speed 

well below this critical level. After centrifugation the super- 

natant fluid was discarded. and the centrifugate was re-suspended 

in sterile distilled water and recentrifuged at 1,000 r. p. m. 

for a further 15 minutes. The centrifugate was again resuspended 

in a small quantity of sterile distilled water. The density 

of Colpidium was then estimated by means of a Coulter Counter, 

the operation and use of which. will be discussed later. The 

appropriate volume of the concentrate for addition to the 
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Bacteria 

Moraxella was grown for 72 hours on 5% yeast agar plates 

at 240 C. The bacteria were washed off the plates with sterile 

distilled water. Counts of the number of bacteria/ml in the 

harvested concentrate were made using a bacterial counting 

chamber as outlined in section 2.1.1., and the quantity of the 

- concentrate to be added to the experimental flasks was con- 

sequently calculated. 

Having determined the number of bacteria and protozoa 

harvested, appropriate quantities of each. were added to sterile 

distilled water (the experimental medium) to constitute the 

" desired ratio of bacteria to each. Colpidium. As far as possible 

the protozoan number per ml was always approximately 500, and 

the bacterial number was varied to render the different ratios 

in each series of experiments. The volume of the medium 

containing the protozoa and bacteria in each. medical flat was 

always 50ml in each replicate. 

Immediately after the flats had been set up, counts of 

protozoa and bacteria were made and protozoan mean cell volume 

determined. The experimental vessels were then incubated at 

either 10°C, 15°C or 20°C for 24 hours; at the end of this 

period the counts were repeated. 

Bacteria were counted using the counting chamber method 

already outlined. Protozoa were sized and counted, as has 

been previously stated, by electronic means using a Coulter 

Counter. 



Plate 1. 

The Coulter Counter 

A= box containing electronic control and 

counting circuits 

B= glassware - calibrated mercury manometer 

C= mean cell volume converter attachment 





Plate 2 

Glass orifice tube 





-23- 

Coulter Counter 

A model'ZB Coulter Counter, with. a mean cell volume 

converter attachment, was used for counting and sizing the 

Colpidium. The instrument is illustrated in Plate 1. 

The principle of operation involves drawing in a known 

volume of sample through. an orifice of known diameter in the 

" wall of a glass tube, by means of a calibrated mercury mano- 

meter. For this work a glass tube with. an orifice diameter of 

140µm was used, as shown in Plate 2. The lower end of the 

orifice tube sits in a beaker of electrolyte in which. the sample 

Is suspended. There are two electrodes between which. a current 

flows, one on the outside of th. e orifice tube, which. like the 

orifice itself is submerged in the sample, and the other on 

the inside of the orifice tube. As an exactly measured 0.5ml 

sample is drawn through. the orifice, each particle partially 

obscures the orifice and raises the resistance between the 

electrodes. The change in resistance is observed by the 

instrument as a voltage pulse. The pulse train is displayed 

on an oscilloscope and the pulses are counted electronically; 

the pulses are summated, and the total number of particles in 

the sample counted is displayed. The amplitude of th. e pulses 

is proportional to the particle volume, thus by integrating 

the amplitude of the pulses the mean cell volume converter 

provides the mean cell volume of the sample counted. 

Calibration of the volume measurements. is necessary. 

Standard sized particles (comprising various pollens, spores 



Figure 6 

The mean cell volume calibration curve for use with 

the mean cell volume converter attachment of the 

Coulter Counter 
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and latex spheres) obtained from Coulter Electronics were 

used initially, and a calibration curve drawn from the results. 

A linear relationship existed between the volume of the 

standard particles and the value obtained from the machine. 

However, when the values obtained from the mean cell volume 

converter for Colpidium were read off the curve, the resultant 

volumes were' inconsistent with. th. e volumes determined for the 

same protozoan sample by microscopic measurements (see section 

2.1.1). The conductivity of the measured particle affects the 

resistance change and hence the mean cell volume value (M. C. V. ). 

The conductivity of the standard particles obtained from 

Coulter Electronics differed from the conductivity of the 

Protozoa, necessitating calibration with the Protozoa themselves. 

This fact became apparent before the experiments in section 2.1 

were carried out and therefore provided an opportunity for 

calibrating the instrument as well as an investigation of size 

variation. Thus the samples from these experiments were run 

through. the machine and the results of the procedure correlated 

with the results obtained by the microscopic measurements out- 

lined in section 2.1.1. The results are presented in Figure 6, 

again a linear relationship was obvious, and a linear regression 

was performed to determine the line of best fit (the smallest 

mean square error). The line of regression of y on x may be- 

written (Weatherburn 1961): - 

y= bx +a 

where the slope b= 
X11 
2 

.6x 
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the covariance µll 

where 1 
µ11 __ 

62= 
x 

N (Xi - 5E) (Y, - y) 

L11-x. y 

1N- 
N cxiyi = xy 

i=1 
N Ný (xl=x) 2 

i=1 

=NN < (X. ) 2_ 
X2 

i=1 

7'2 -2 
-x-x 

where y= microscopically measured size 

x= mean cell volume reading. 

The electrolyte used in these studies was Fledon-Heig 

invertebrate saline, details of which. are presented in the 

appendix. This solution had a resistance of 20k2 when diluted 

4: 1 with. the sample to be counted, Initially Peters physio- 

logical medium for ciliates (Peters 1921) was tried but proved 

to have too high a resistance and consequently too low a 

conductivity for use in this model Coulter Counter. In order 

to cut down the risk of volume changes due to the salt solution 

the samples were only mixed with. the saline immediately before 

each. count. Observations and measurements under a microscope 

show that for the first 3-4 minutes the volume of the animals 

showed no detectable change. After this period however, they 

became progressively smaller until death occurred. 

Five replicate counts were made for each. experimental 

reading; the mean of the counts and the- mean of th. e` mean cell 

volume values were taken. 
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Calculations. Modified after Heal (1967a) 

Vt = (Nf x M. C. V. ) - (No x M. C. V. ) 

Vt 
No 

V. 

Bc B Bo 

Bc 
B. = No 

G= Log Nf - Log No 

Log 2. 

where :- Bc = Bacteria consumed in 24 hours 

B. = Number of bacteria consumed by each individual 
present at T 

0 
Bf = Bacteria remaining after 24 hours 

" Bo = Bacteria present at To 

G= Number of generations 

Nf = Number of animals after 24 hours 

N= Number of animals at T 
00 

To = Starting time of experiment 

Vi = Volume of protoplasm produced by each 

Vt 

2.2.2 Results 

individual at -l 
0 

= Total volume of protoplasm produced in 24 hours. 

Growth. is expressed at µm3 of protoplasm produced in 24 

hours by each. individual present at the beginning of the 

experiment (T0), and consumption is expressed in terms of the 

number of bacteria eaten in 24 hours by each. - individual present 

at To. In the following chapters this data will be translated 

into terms of dried weight and energy, which. will in turn allow 

it to be incorporated into an energy budget for Colpidium. 



Figure 7 

Growth as the volume of protoplasm produced by 

Colpidium at different bacteria: protozoan ratios 

at 10 °C, 15°C and 20°C 

(Each point represents the mean of 10 experiments) 
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Figure 8 

Consumption of bacteria by Colpidium at different 

bacteria: protozoan ratios at 10 °C, 15°C and 20°C 

(Each. point represents the mean of 10 experiments) 



(. ) 
0 0 

04 

aÖ 
U 

0 
U, 

C) 

C 
G 
V- 

cz 

z 0 

2 

z 
0 U 

Uöö 

o0 
ý. r 04 

aa .4 

s noq vt/'nipui/o i x pOWnsuoo uiaajoe8 

D 

:h 

0 
N 

n 
I-. 

0 

C 
RS 
C) 
N 
0 

0 

cL 

co 0 

co 

m 

0 



-27- 

The effect of food concentration on growth. 

Figure 7 shows the pattern of growth. obtained over the 

range of food concentration 0.0-4.0 x 106: 1 at 10°C, 15°C and 

200C. At each. of the three temperatures investigated growth. 

increased exponentially and then levelled out to a plateau. 

In all cases th. e maximum level of growth. was attained near a 

food ratio of 1.0 x 106: 1 bacteria per protozoan. 

The effect of temperature on growth. 

As Figure 7 clearly shows temperature exerts a marked 

effect on the level of growth achieved over the range of food 

concentration considered.. At 10°C the maximum level of growth. 

was between 10-15µm3 x 104 of protoplasm/individual/24 hours, 

at 15°C the maximum lay between 20-25µm3 x 104/individual/24 

hours and at 20°C between 40-45µm3 x 104/individual/24 h. ours. 

An increase of 5°C within the temperature range studied" 

appeared sufficient to raise the amount of protoplasm produced 

by 40-50%. 

The effect of food concentration on consumption 

The results are presented in Figure 8. Like growth., 

consumption increased exponentially with increased food conc- 

entration, but the levelling off effect was not apparent until 

a food concentration in the region of 2,5 x 106: 1 bacteria per 

protozoan. Thus the number of bacteria consumed by each 

individual reached its maximum at a higher concentration than 

that at which, growth attained a maximum. In other words 

consumption continued to increase despite the fact that growth 
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had attained its maximum level. Maximum consumption was in the 

region of 125 x 104 bacteria consumed/individual/24 hours. 

The effect of temperature on consumption 

Unlike growth., consumption was not greatly affected by 

temperature as Figure 8 shows. There was a slightly higher 

consumption at 20°C over that at 15°C and also for the 

consumption at 15°C over that at 10°C, but in general the curves 

obtained over the food concentration range considered followed 

each other very closely at all three temperatures. 

The effect of consumption on growth. 

At 100C and 15°C (see Figures 9 and 10) there was an initial 

rise in growth. with increasing consumption, up to an intake of 

50-80 x 104 bacteria/individual/24 h. ours, thereafter increased 

consumption did not produce an increase in growth, which. 

maintained a plateau. Where consumption fell below 30 x 10 

bacteria/individual/24 hours at 100C there was in some cases a 

decrease in the weight of the Protozoa, suggesting that some 

endogenous cellular material was utilized to compensate for 

insufficient consumption. 

At 20°C as shown in Figure 11, the pattern of growth which 

emerged in relation to the quantity of food consumed, differed 

from that obtained at 100C and 15 °C. Growth at 200C increased 

with increased consumption. The indications are that growth 

began to level out where 120-130 x 104 bacteria were ingested/ 

individual/24 hours. 

Th. e effect of temperature on the growth. rate has already 



Figure 9 

Growth, in terms of protoplasm produced, as a product 

of consumption of bacteria at 10°C 
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Figure 10 

Growth, in terms of protoplasm produced, as a product 

of consumption of bacteria at 15°C 
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Figure 11 

Growth, in terms of protoplasm produced, as a 

product of consumption at 20°C 
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been described with. reference to food concentration, which. 

essentially dictates the quantity of food consumed. 

Controls 

Controls of Protozoa without food were usually found to 

be dead at the end of 24 hours, on a few occasions some mori- 

bund specimens were encountered. The controls of bacteria only 

varied by an average of 5.5% over the experimental period, 

suggesting that little or no bacteria division occurred, in 

fact the majority of the variation was probably due to counting 

error. Analysis of counts shows that the values lie between 

±2 S. E. of the mean. 

The pH of experimental. cultures varied between pH 6-7 

during the course of th. e_experiments. Protozoa are known to be 

tolerant of a wide pH range so that a variation of this order 

probably has-no significant effect. 

All the results from which the graphs were constructed' 

are presented in the appendix. 

2.2.3 Discussion 

Very little work on the energetics of the Protozoa , 
bas 

been undertaken and consequently the literature does not offer 

a great deal for comparative purposes. In recent years the 

. work of Curds and Cockburn (1968,1971) and Heal (1967a) has 

provided some quantitative data on the feeding and growth of, 

Tetrahymena pyriformis and Acanthameoba sp. respectively. 

Heal (1967a) noted that increased consumption. did not 

increase reproduction, which was his parameter of growth. In 

the current study on Colpidium a similar pattern, namely that 
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increased consumption did not increase growth., emerged 

particularly at 100C and 15°C. Curds and Cockburn (1968) were 

able to show that th. e relationship between the initial conc- 

entration of food and the yield of Protozoa was linear at low 

concentrations, but was inhibited at higher concentrations. 

This agrees with the results of the present investigation, 

where growth was linear at low food ratios, but levelled out as 

food availability increased at higher ratios. Colpoda steinii 

displayed a very similar pattern of growth., where the rate 6f 

growth was limited at higher food concentrations (Proper and 

Garver 1966). These authors suggested that the inhibition of 

growth at high food concentrations is caused either by. the rate 

at which the individual cells can ingest bacteria, or by the 

rate at which the bacteria are metabolised. The latter 

suggestion is probably the case, as the current study showed 

that growth is not limited by the rate at which. bacteria are 

ingested at higher food ratios, since consumption continued to 

rise even after maximum growth had been attained at 10°C and 

15°C. Thus, the indications are that at temperatures between 

10°C and 15°C, growth is limited by the rate at which the pro- 

tozoan cell can metabolise'the bacteria it ingests at higher 

food availabilities. The situation at 20°C is less clear; 

possibly at higher temperatures growth is limited by the rate 

at which bacteria can be ingested. At low levels of food 

availability, where growth and consumption are linear, the rate 

of growth is almost certainly limited by the rate at which the 

bacteria are ingested at all the temperatures considered. 
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It is interesting that at 10°C and 15°C consumption 

increased even after growth. had reached its maximum level, 

since obviously more bacteria were ingested than were necessary 

to sustain maximum growth.. There seems to be no mechanism to 

prevent this obvious inefficiency. Increased feeding with. 

increased food concentration has also been demonstrated by 

Harding (1937) in Glaucoma pyriformis (syn. Tetrahymena pyri- 

formis) at 25°C. Harding (1937) showed that the feeding rate 

never became independent of food concentration as it did in 

Colpidium since for every increase in concentration there was 

an increase in food vacuole formation. In Acanthamoeba sp. 

consumption was found to be linearly related to food availability 

at low food ratios, at higher ratios, however, the results 

became very variable and no obvious relationship between 

consumption and availability was apparent (Heal 1967a). 

At 200C the results of the study on Colpidium show a 

variation over the pattern which emerged at 10°C and 15°C. 

At these lower temperatures consumption continued to increase 

even after maximum growth rates had been reached; at 20°C 

however, the maxima for growth and consumption occur near the 

same food ratio. This would suggest that at higher temperature 

the maxima of growth and'consumption become more closely related. 
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CHAPTER 3 

3.1 Introduction 

MEAN CELL VOLUME 

The significance of variation in the mean cell volume of 

a ciliate population in relation to growth. is apparent from the 

preceding chapter. In the light of th. e feeding and growth. 

studies which. have been discussed previously, it is of value to 

consider the effect of temperature and controlled food conc- 

entration on the cell size of Colpidium. 

3.2 Materials and Methods 

The results for the effect of food concentration and 

temperature on the mean cell volume of Colpidium were obtained 

from the detailed series of experiments described in Chapter 2, 

section 2.2 - Consumption and Growth.. 

Mean cell volumes were obtained by using the Coulter 

Counter mean cell volume attachment as described in section 2.2.1. 

Bacterial dried weights were obtained by converting 

consumption values in terms of number of bacteria eaten from 

the preceding chapter into dried weight using a value of 0.79pg/ 

individual bacterial cell, S. D. 0.30pg obtained as described in 

Chapter 4, section 4.2. 

3.3 Results 

At consumption levels below 400ng/24 hours/individual th. e 

mean cell volume decreased. Above this level of consumption 

the mean cell volume attains a maximum, as shown in Figures 12- 



Figure 12 

Mean cell volume changes in Colpidium as a product 

of the quantity of food consumed (dried weight of 

bacteria) at 10°C 
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Figure 13 

Mean cell volume changes in Colpidium as a product 

of the quantity of food consumed (dried weight of 

bacteria) at 15°C 
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Figure 14 

Mean cell volume changes in Colpidium as a product 

of the quantity of food consumed (dried weight of 

bacteria) at 20°C 
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14. The maximum mean cell volume appears slightly lower at 10°C2 

but in general the maximum limit does not differ greatly over 

the temperature range considered, and lies between 160-180µm3x103. 

The minimum sizes recorded in these experiments range 

between 40-100µm3 x 103. In Chapter 2, section 2.1 under conv- 

entional culture conditions values of less than 10µm3 x 103 were 

recorded after the stationary phase. At this point the ratio 

of food organisms per protozoan had assumed a very low level and 

the animals were in a state of starvation. 

3.4 Discussion 

Decreased volume associated with. decreased food concentrat- 

ion and presumably therefore decreased consumption have been 

demonstrated in Tetrahymena pyriformis by Harding (1937) and by 

Curds and Cockburn (1971). Decreased cell volume in an ageing 

culture associated with. decreasing food concentration has also beefl 

shown to occur in Uromena species by Hamilton and Preslan (1968), 

maximum cell volumes were reached in the late exponential and 

stationary phases. Kimball, Caspersson, Carlson and Svensson 

(1959) demonstrated that a lower food concentrations division 

occurred at lower weights, that is smaller volume, in Paramecium 

aurelia. 

The findings of. th. e present research where various avail- 

abilities of food were presented to Colpidium would confirm, 

to some extent, the findings of the abQve authors, that decreased 

bacterial concentration and hence lower food consumption exert 
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an effect on cell size. Where the initial food concentration 

was high enough. to allow a consumption above 400ng bacteria/ 

individual/24 hours (equivalent to 50 x 104 bacterial cells) 

mean cell volume remained fairly constant. Below this level 

of food intake mean cell volume decreased. This is contrary to 

the situation reported by Harding. (1937), where growth rate in 

Tetrahymena was dependent on food supply below a concentration 

of 0.6 x 106 bacteria/cc, but above this range the cell size 

continued to increase while growth did not; a somewhat contra- 

dictory situation, since increased cell size should result in 

increased growth. 

It has been suggested, at least for Protozoa grown under 

steady-state conditions (i. e. in a chemostat), that cell size 

is dependent on the density of protozoan cells (Hamilton and 

Preslan, 1970). An increase in population density caused an 

increase in. mean cell volume in that population. A situation 

which is_th. e opposite from that demonstrated for Colpidium in 

Chapter 2, section 2.1 under typical culturing conditions and 

from the findings of the present consideration of cell size 

variation. In Chapter 2, section 2.1 where the cultures were 

set up and allowed to age, increased density associated with. 

depletion of food supply brought about a diminution in mean cell 

volume. In the present instance where the ciliates were 

studied for a 24 hours period in a range of food concentrations, 

mean cell, volume reached a maximum associated with a particular 

level of,. food intake, below which is decreased. The initial 

density of the protozoan population was the same in each 
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experiment. 

Thus within the limits of the present study it would 

appear that the mean cell volume of Colpidium is dependent 

very largely on the quantity of food consumed. 

Twenty-four hours, the length of the experimental period, 

seemed sufficient to cause a reflection of the prevalent 

experimental conditions in the mean cell volume. At low bacter- 

ial to protozoan ratios, cells which. had possessed a maximum 

volume prior to the experiment, had decreased in size to the 

levels shown in Figures 12-14 at food intakes below 400ng /indiv- 

idual/24 hours. A rapid response to changing conditions is 

indicated, which. supports the findings of Kimball et al. (1959), 

who showed that starved cells of Paramecium regained a normal 

weight by the second division after the starvation period. 

Hamilton and Preslan (1969) showed that cells from an aged 

culture of Uronema when transferred to a fresh. culture displayed 

some increase in cell volume even after the short period of 

two hours. It would seem) th. erefore, that ciliates are capable 

of responding rapidly to changes in their environmental conditions. - 

The mean cell volume of Colpidium displayed no significant 

variation over the temperature range (10°C-20°C) considered. 

Summers (1963) working with Tetrahymena pyriformis also showed 

no variation in cell size over the 10°C-20°C range; however, at 

25°C, the optimum growth temperature for Tetrahymena, a marked 

decline in mean cell volume occurred, while at 300C the volume 

increased to the highest level found over the entire temperature 

range. 
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CHAPTER 4 DRIED WEIGHT, CALORIMETRY AND GROSS GROWTH EFFICIENCY 

4.1 Introduction 

In order to ascertain the level of growth efficiency or 

conversion efficiency (that is the proportion of food ingested 

which. is converted into growth. ), in Colpidium over th. e range 

of food availabilities and temperatures considered in Chapter 2, 

section 2.2, and assimilation which will be considered in a 

later chapter, the calorific or energy content of both. the 

ciliate and its bacterial food source had to be determined. 

The present study appears to be one of the first in which. 

the actual energy content of both bacteria and Protozoa have 

been used. Heal (1967a) used dried weights when estimating the 

conversion efficiency of Acanthameoba sp. fed on yeast cells 

of Saccharyomyces cerevisiae, as did Curds and Cockburn (1968) 

in Tetrahymena pyriformis fed on bacteria, also using carbon 

content in an axenic culture in a medium of proteose - peptone and 

yeast extract. Further studies by these workers (Curds and 

Cockburn 1971) involved using dried weights, but at this time 

they were aware of mean cell volume variations and their methods 

took account of this factor. Growth efficiencies in Colpoda 

steinii fed on bacteria have been investigated using dried 

weights by Proper and Garver (1966). Estimates of the yield 

of the Protozoa have been arrived at by means of labelled 

bacteria, Coleman (1964) used 
14C labelled bacteria in feeding 

experiments with, the rumen ciliate Entodinium caudatum 

In energy budgets th. e various components of the equation 
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are expressed in units of energy. If protozoan energy budgets 

are to have any comparative value with. energy budgets on meta- 

zoan animals it is essential that similar units are adopted. 

In this work the unit of energy used will be the joule, in 

accordance with. standard international practice. 

4.2 Materials and Methods 

4.2.1 Dried weights 

Cultures of Colpidium were grown for 48 hours at food 

concentrations above those which had been shown to be necessary 

for maximum growth. (see Chapter 2, section 2.2), at 10°C, 15°C 

and 20°C. At the end of this period each, culture was poured 

through a bolting silk sieve with a mesh size of approximately 
2 2,500-10,00µm to remove any flocculated bacteria. Samples of 

the sieved culture were then removed for counts of bacteria 

and Protozoa and the determination of protozoan mean cell volume. 

Cultures were centrifuged for 30 minutes at 1,000r. p. m.. The 

supernatant fluid was poured off and retained for counts of 

bacteria and Protozoa still suspended. The sediment was care- 

fully collected and freeze-dried until a constant weight. 

The methods used in counting of bacteria and the counting 

and sizing of Protozoa have already been fully outlined in 

Chapter 2, section 2.2.1. Bacteria were counted in order to 

apply a correction for the number of bacteria h, 'rvested with. 

the Protozoa. 

Bacteria were grown on 5% yeast agar plates for 72 hours. 



Figure 15 

The Benzoic Acid calibration curve 
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The plates were washed with sterile distilled water and after 

the removal of samples for- counting the bacterial "milk" was 

centrifuged for 15 minutes at 3,000r. p. m. The supernatant fluid 

was poured off and retained for the determination of the numbers 

still suspended. The sediment was collected and freeze-dried 

until a constant weight was achieved. 11 

4.2.2 Calorimetry 

A Phillipson (1964) microbomb calorimeter as manufactured 

by Gentry-Weigert of Aiken, Carolina was used for calorific 

determination. A Telsec chart recorder set on the 0.5mV range 

was attached to the output of the calorimeter. The apparatus 

was calibrated according to Ph. illipson (1964) and Prus (1968ä). 

A th. ermo-chemical standard, benzoic acid (C6H5.000H) yielding 

26,455.0 joules/gm as determined by the National Physical 

Laboratories, was used for calibration. Twenty pellets ranging 

from 1-5mg were combustd and a line of regression was calculated 

(Figure 15) from the results using the equation in section 

2.2.1. The relationship between the weight of benzoic acid 

(and hence the energy content) and the calorimeter output 

voltage was found to be linear over the range examined. The 

value between 0 and the intercept of th. e curve on the vertical 

axis represents the heat output from the platinum wire of the 

bomb, a value of 0.0031mV. The energy, E, stored in the bomb 

firing circuit can be calculated from the charging voltage, V, 

and the capacitance, C, expressed in farads, since 

E= 2CV2 . 
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The capacitance is 3,900µF, and the charging voltage is 35V, 

hence E is 2.4joules, equivalent to 0.0038mV by using the benzoic 

acid calibration. The difference between the value and the 

measured wire correction may be attributed to external resistance 

wire losses. 

It must be noted that in the past the units of energy used 

were calories, in this study, as has already been stated, the 

joule'will be used (1 calorie = 4.184 joules). 

4.3 Results 

4.3.1 Dried weights 

The dried weights for Colpidium grown at 10 °C, 15°C and 

20°C corrected for the bacteria harvested with the Protozoa are 

tabulated in Table 1. The variation between the weight of 

Protozoa grown at different temperatures was not great and a 

mean'value was taken and used in all calculations. 

Bacterial dried weights are tabulated in Table 2. Again 

a mean value was taken and used in all calculations. 

4.3.2 Calorimetry 

The yield of energy from the combustion of Colpidium 

samples is tabulated in Table 3. The mean value obtained was 

derived from 18 determinations, some of the dried samples were 

combined in order to provide pellets of sufficient size for 

combustion in the bomb calorimeter. A correlation coefficient 

(for equation see Chapter 5, section 5.2) of 0.9952 (P=<0.00l. ) 

was obtained for the relationship of pellet weight and energy 

yield in joules. ' 
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TABLE 1 

Dried Weights of Colpidium 

Sample No. Temperature Dried weight 
in picograms 

1 20°C 0.171 

2 0.182 

3 0.102 

4 0.137 

5 0.115 

6 0.296 

7 0.207 

8 - 15°C 0.131 

9 0.290 

10 0.132 

11 0.211 

12 0.132 

13 0.211 

14 10°C 0.108 

15 0.111 

16 0.259 

17 0.054 

18 0.092 

19 0.236 

20 0.241 

MEAN 0.170 S. D. 0.070 
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TABLE 2 

Dried Weights of Moraxella (Bacterial food source) 

Weight/indiv 
Sample No. 

picograms 

1 0.9 

2 0.4 

3 0.4 

4 0.5 

5 1.1 

6 1.2 

7 0.9 

8 0.8 

9 0.9 

MEAN 0.79 

S. D. 0.30 
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TABLE 3 

Calorific Determinations on Colpidium 

Sample No. Joules/mg % Ash. 

1 22.419 2.04 

2 19.643 1.79 

3 19.084 1.52 

4 19.009 0.83 

5 19.906 3.32 

6 18.584 0.89 

-7 21.116 1.60 

8i 20.822 4.70 

9 20.946 3.38 

10 20.000 4.12 

11 17.911 

12 19.719 1.41 

13 19.872 2.25 

14 22.973 1.36 

15 17.392 1.45 

16 20.176 0.88 

17 20.909 0.91 

18 22.223 1.12 

MEAN 20.1519 1.975 

S. D. 1.5002 1.193 
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The energy contained in the bacterial food source 

Moraxella as determined from the combustion of 30 pellets is 

tabulated in'Table 4. A correlation coefficient of 0.9905 

(P=<0.001) was obtained for the dependence of energy content 

in joules on the weight of the pellet. 

The ash content of both Colpidium and the bacteria, based 

on the residue remaining on , the platinum pan after combustion, 

and therefore only an approximation, was 1.9% for Colpidium 

and 12.9% for the bacteria. 

4.3.3 Growth efficiencies 

The results for growth and consumption in Chapter 2, 

section 2.2 were first converted to dried weight and then to 

joules using the results previously outlined. The percentage 

of the food consumed which. was converted to growth. was then 

calculated. The final results for all experiments on growth. 

and consumption may be found in the appendix. 

-21 Since growth displays a levelling off at higher consumption 

levels, as shown in Figures 16-18, it follows that the highest 

conversion will'occur where growth reaches its maximum, but 

will fall thereafter because consumption continues to rise in 

spite of maximum growth. having been attained. In other words, 

at higher levels of consumption a smaller proportion of the 

food ingested is converted to protoplasm. Consequently there 

would appear to be an optimum growth efficiency based on the 

quantity of food eaten and this in turn is determined by the 

concentration of the available food. This relationship is 

clearly illustrated in Figures 16-18. 
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. -, 

TABLE 4 

Calorific Determinations on Moraxella 

Sample No. Joules/mg % Ash. 

1 20.639 18.4 
2 20.063 16.8 
3 20.641 12.1 
4 19.954 17.2 
5 20.000 17.6 
6 20.000 16.1 

"7 20.827 16.4 
8 20.283 14.2 
9 20.824 12.3 

10 20.544 10.6 
11 20.565 11.1 
12 20.103 10.3 
13 20.492 16.4 
14 20.000 12.4 
15 20.779 11.7 
16 19.507 13.6 
17 21.341 9.2 
18 20.227 11.4 
19 20.366 12.6 
20 20.833 11.5 
21 20.976 14.6 
22 20.761 13.1 
23 20.989 8.8 
24 20.597 7.9 
25 20.671 9.7 
26 19.858 13.0 
27 19.529 10.6 
28 20.582 11.9 
29 19.517 16.1 
30 19.912 12.2 

MEAN 20.3627 12.99 

S. D. 0.4653 2.82 

-1 



Figure 16 

Growth, consumption and gross growth efficiency 

at 20°C 
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Figure 17 

Growth, consumption and gross growth efficiency 

at 15°C 
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Figure 18 

Growth, consumption and gross growth efficiency at 

10°C 
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The efficiency of conversion varied with. temperature as 

one would expect, with increased growth efficiency dependent on 

increased temperature. The maximum at 20°C was in Ehe region 

°° of 11%, at 15C a maximum of 9% was achieved and at 10C 

maximum growth. efficiency was approximately 3%. 

4.4 Discussion 

The energy content of Colpidium lies close to the values 

obtained from the combustion of other invertebrates by other 

workers. Prus (1968b) found adult female Tribolium castaneum 

to contain 6.5329 calories/mg, equivalent to 27.33J/mg, Lawton 

(1971) showed the damselfly Pyrrhosoma nymphula to possess a 

calorific content of 5.124-5.292 calories/mg during its life- 

cycle, which. represents 21.44-22.14)/mg. Higher values were 

shown in Podisus maculiventris, an hemipteran, (Mukerji and 

LeRoux 1969a),, when adult males contained 8.613-5.747 calories/ 

mg and females 8.688-5.485 calories/mg, these values convert 

to 36.03-24.09J/mg'and 36.35-22.95J/mg respectively. All these 

values are from energetics studies an arthropods, a group that 

has received much. attention in this field. 

The dried weights obtained in this study are somewhat 

higher than one would expect for a protozoan representing 

around 17% of the wet weight assuming a specific gravity of 1. 

Percentage dried weights for arthropods which. have an exo- 

skeleton range from 15-30% (Gere 1956, Klekowski, Prus and" 

Zyromska-Rudska'1967) Prus 1968a, 1972, Lawton 1971). 

Comparable information from the literature on Protozoa is not 
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easily available, largely because authors do not express dried 

weight as a'percentage of wet weight, or because cell 

dimensions are not always given with the dried weight for a 

single animal. Using the figure for the dried weight of an 

individual Tetrahymena cell stated by Curds and Cockburn (1968), 

and using the cell volumes recorded by them in a later paper 

(Curds and Cockburn 1971) approximate dried weights of around 

5% of the wet weight are obtained. From the data given by 

Proper and Garver (1966) for the ciliate Colpoda steinii of an 

average cell volume 10,000µm3 and an average dried weight of 

1.2 x, 10-6 mg per cell one can obtain a figure which represents 

12% of the wet weight, again assuming a specific gravity of 1. 

This figure is not a great deal different from that obtained 

for Colpidium. 

Variation in the percentage dried weights of Protozoa is 

probably a result of the methods employed. Th. e procedure used 
f 

by Proper and Garver (1966) involved comparing the dried cell 

suspension of a known concentration with the supernatant dried 

weight, a method in some ways similar-to that used with 

Colpidium. Curds and Cockburn (1968) obtained their dried 

weight value by filtering thoroughly washed suspensions of the 

organism through pre-washed oxoid membrane filters. The filters 

were dried and weighed. Washing the organisms was a precaution 

against the collection of bacteria with the Protozoa. Proper 

and Garver (1966) make no mention of precautions against the 

inclusion of bacteria in their protozoan dried weight value. 
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The growth efficiencies of up to 11% found for Colpidium 

are low when compared with those reported for, Protozoa by other 

workers.. Efficiencies ranging from 37%-78% have been found in 

various ciliate species and one sarcodine species (Coleman 1964, 
} 

Proper and Garver 1966, Heal 1967a, Curds and Cockburn 1968,1971). 

Even allowing for the higher experimental temperatures used by 

these workers the growth efficiencies found in Colpidium are 

still low by comparison. 

The low values may be due to the method used for measuring 

growth in this study. - Coleman (1964) who fed 14C labelled 

bacteria to the rumen ciliate Entodinium caudatum, found, that 

50% of the labelled bacterial carbon was retained by the Proto- 

zoa. Proper and Garver (1966) used mass cultures of Colpoda 

steinii and after drying the recovered Protozoa obtained an 

extremely high yield of 78%; 0.78g of Protozoa were produced 

from Ig of bacteria. Heal (1967a) multiplied the results of 

his feeding and growth experiments by the dried weights of the 

food organism and Acanthanoeba sp. to give a growth efficiency 

of 37%. Curds and Cockburn (1968) used mean dried weights for 

Tetrahymena pyriformis and its bacterial food source and_ by. 

application to their feeding and growth studies obtained a 

yield of 50%. Thus a number of techniques have been applied 

over a range of temperature by various authors and the range 

of growth efficiency which has been demonstrated within the 

Protozoa is apparently considerable. 

The growth efficiencies which have been found in protozoan 

species by some of the authors quoted above are high. when 
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compared with other invertebrates, Prus (1968b) quotes growth. 

efficiencies of 13-23% for Tribolium, and 5% for Asellus aquat- 

icus (Prus 1972). Klekowski et al. (1967) give a figure of 30% 

production efficiency for Tribolium. The damselfly Pyrrh. osoma 

nymphula displays growth efficiencies' ranging from 15%-60% 

during its life-cycle (Lawton 1971),. ' Gere (1956) found conv- 

ersion efficiencies as low as 0%-7% for litter feeding Diplopoda 

and Isopoda. McNeill (1971) showed that the heteropteran 

Leptopterna dolabrata had growth. efficiencies ranging from 

15.6%-16.8%. Thus, the growth efficiencies obtained in 

Colpidium although. lower than those which have been demonstrated 

in other protozoan species, are within the range reported for 

many other invertebrate animals. Colpidium's growth. efficiency 

also compares favourably with that of some bacterial species 

of 13%-34% as demonstrated by Rahn (1940). 

k 

I 
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CHAPTER 5 REPRODUCTION 

5.1 Introduction 

Reproduction by binary fission does not strictly speaking 

constitute part of the energy budget equation for a ciliate. 

There are no special reproductive products and consequently 

no energy is, expended in the synthesis of such. products, how- 

ever, energy is expended in bringing about the actual fissionary 

process which. will be measured as part of the heat lost during 

respiration. The normal process of binary fission in Colpidium 

results in the formation of two daughter cells, each. individual 

produced is merely half of the assimilated energy of th. e parent 

cell. Thus sexual reproduction is a direct product of growth. 

It is, however, of interest to, consider the effect of 

temperature and food availability on the rate of reproduction 

in Colpidium, especially for comparison with. the many workers 

who have used reproduction (i. e. the number of animals produced) 

as opposed to direct measurements on the volume of protoplasm 

produced, as a parameter in growth studies (Cutler and Crump 

1924, Heatherington 1934) Curds and Vandyke 1966, Heal 1967a, 

Curds and Cockburn 1968, Winet and Jahn 1971). 

5.2 Materials and Methods 

The results for reproduction were obtained during the 

experiments on consumption and growth, the procedure of which. 

is fully outlined in Chapter 2, section 2.2.1. The equation 

used in the calculation of the number of generations produced 
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is given in Chapter 1, section 1,1.2. 

In-order to draw a comparison between the efficacy of the' 

two parameters which. have been used for measuring growth, that 

is th. e exact volume of protoplasm produced as opposed to the 

number of individuals produced, the correlation coefficients. of 

protoplasm production as a result of consumption and reproduction 

as a result of consumption, at 20°C, 15°C and 10°C, were calc- 

ulated using the following equation : - 

r 
(x-x (Y-Y) 

{(x) (Y-Y) 2] 

where 
r= correlation coefficient 

x= protoplasm produced and the number of generations 
produced in 24 hours by each. individual present 
at the 

. 
beginning of the experiment 

y= consumption by each individual present at the 
beginning of the experiment 

5,3 Results 

The number of generations produced in 24 hours as a function 

of the quantity of bacteria consumed, in joules, is shown in 

Figures 19-21. The results at 10°C and 15°C (Figures 19 and 20) 

show considerable scatter, but there is a general trend towards 

the production of higher numbers of generations, and consequently 
6 

a shorter generation time up to 2,000-10,000 J x10 /individual/ 

24 hours respectively. At 20°C, a shown on Figure 21, an 

upward trend related to energy intake is well marked, and the 

levelling off effect seen at 10°C and 15°C is less'obvious. 



Figure 19 

Reproduction as a product of the energy consumed 

at 10°C 
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Figure 20 

Reproduction as a product of the energy consumed 

at 15°C 
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Figure 21 

Reproduction as a product of the energy consumed 

at 20°C 
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At 10°C the indications are that no reproduction occurred 

below a consumption of 2,000-6,000 Jx 106/individual/24 hours. 

At 15°C and 20°C the exact level of consumption at which. repro- 

duction ceased is not clear, but would appear to lie below 

4,000 J x. 10-6/individual/24 hours. 

Temperature was also found to exert an influence, in 

addition to the quantity of food eaten. The generation time 

decreased with. increased temperature. Table 5 shows the number 

of generations produced at various food: Protozoa ratios at the 

three temperatures studied. 

(- TABLE 5 

Ratio 20°C ; 15°C 10°C 
Bacteria: Proto zoa No. Gens. S. D. No.. Gens. -. S. D. No. Gens. S. D. 

0.0-0.5 x 106 :1 0.08 0.10 0.87 0.14 0.36 0.22 
0.90 0.24 

0.5-1.0 x 106 :1 1.32 0.14 1.01 0.10 

1.0-2.0 x 106 :1 . 1.81 0; 10 1.08 0.14 0.73 0.10- 
1.62 1.17 0.39 0.28 

2.0-3.0 x 106 :1 1.78 0.17 1.07 0.10 0.70 0.14 
1.00 0.14 0.54 0.10 

3.0-4.0 x 106 :1 1.71 0.14 0.88 0.10 0.67 0.14 

The value of r (correlation coefficient) for reproduction 

and consumption , and the volume of protoplasm-produced and 

consumption are shown in Table 6. 
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TABLE 6 

x and y Temp. r No-pairs 

No. Generations 20°C 0.92 60 
and 15°C 0.35 70 

Consumption 10°C 0'. 54 70 

Volume of 20°C 0.89 60 
Protoplasm and 15°C 0.80 70 
Consumption 10 °C 0.80 70 

All values of r were significant to a value of <0.001. 

5.4 Discussion 

The relationship between bacterial concentration and 

" reproduction was demonstrated as early as 1924 by Cutler and 

Crump working with. Colpidium colpoda. They found that the 

number of divisions increased with increased food: protozoan 

ratios. The relationship was also demonstrated in a somewhat 

cruder manner by Johnson (1936) who, with experiments at two 

bacterial levels, one five times greater than the other, found 

higher reproductive rates at the higher bacterial density. A 

similar phenomenon has been found in the carnivorous protozoan 

Woodrufia metabolica by Salt (1967), where the density of-the 

carnivore decreased with. the number of paramecia eaten. 

The results of the present study on Colpidium confirm the 

findings of the authors cited above. At higher levels of 

consumption, however, there is a levelling off in the number of 

generations produced. Cutler and Crum p (1924) did not find a 

levelling off effect, but the highest ratio of bacteria: 
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protozoan they used wase1,024,000: 1; in the present work the 

ratios extended over the range 0.0-4.0 x 106: 1. Harding (1937) 

working on Glaucoma pyriformis found that fission rate was* 

dependent on bacterial concentration at low food: protozoan ratios 

but remained constant at higher bacterial concentrations. Phelps 

(1936) working with. the same species in axenic cultures demo- 

nstrated a levelling off in the rate of reproduction at higher 

nutrient concentrations as was shown for Colpidium in the 

present study and Glaucoma by Harding (1937) in monexnic 

--cultures of different bacterial concentrations. In the Suctoria 

where reproduction involves th. e production of motile dispersal 

forms by means of budding, a different situation prevails. The 

Suctoria appear to have an optimum feeding level below and above 

which. embryo production decreases, as demonstrated in Tokoph. rya 

infusorium (Rudzinska 1959). 

The influence of temperature upon the reproduction of 

Protozoa has been documented by several workers (Woodruff and 

Baitsell 1911a, 1911b, Johnson 1936). * As one would expect, 

increased temperature is reflected in a decrease in the length. 

of the generation time. Woodruff and Baitsell (1911a), while 

trying to isolate the factors responsible for fluctuations in 

populations of Paramecium spp., noted that higher temperatures 

raid the level of reproduction, although. the fluctuations 

persisted. In all probability the fluctuations they described 

were brought about by variation in the density of the bacterial 

=flora, a variable they did not control or monitor. 
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Although the mechanism controlling reproduction is considered 
in response 

to change more slowly to changing conditions than the growth 

controlling mechanism (Kimball at al. 1959, Hamilton and Preslan 

1969), I found that reproduction had responded to various feed 

availabilities within 24 hours. At low ratios and hence low 

consumptions, the number of generations produced in 24 hours 

decreased. The rapidity of response to change of temperature 

was not investigated, since all the animals in experiments 

described in Chapter 2, section 2.2 had been previously 

acclimatized to the experimental temperatures. 

As was pointed out in the introduction (5.1) it was 

considered necessary to evaluate the effectiveness of measuring 

the volume of protoplasm produced directly instead of counting 

the number of animals produced and duly multiplying this figure 

by a dried weight value obtained from drying cultures of unknown 

mean cell volume (Heal 1967a, Curds and Cockburn 1968). The 

correlation coefficients of growth by volume as a result of 

consumption versus the number of generations produced as a 

result of consumption, as shown in Table 6, are all significant 

to a value of 0.001. It is however obvious that volume as a 

product of consumption shows a closer and consistent correlation 

(ra0.8-0.89) over the temperature range 10°C-20°C than the 

number of generations produced as a result of consumption, 

which although showing a close correlation at 20°C (r=0.92), are 

less closely correlated at 10°C and 15°C (r=0.35-0.51). Never- 

theless, since all the values of r were significant to a 
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probability level of <0.001, indicating that they were very 

highly significant, it would appear, at. least from this test, 

that both methods are satisfactory. 
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CHAPTER 6 RESPIRATION 

6'. 1 Introduction 

There have been many investigations into the respiratory 

exchange of th. e Protozoa. Th. e first of these studies was that 

of Vernon (1895) on a radiolarian. Thereafter work of this 

kind was carried out on species from various protozoan groups. 

Within the Ciliata, a few species have received much. 

attention, . notably species of the genus Paramecium (Lund 1918a, 

b and c, Necheles 1924, Leichsenring 1925, Kalmus 1928, Howland 

and Bernstein 1931, Pace and Kimura 1944, Pringle and Stewart 

1961, Stewart 1966). The methods employed by these workers for 

measuring oxygen consumption included the Warburg apparatus, 

the Kalmus respirometer, and Winkler technique and the 

cartesian diver. 

The effect of various external factors upon the respiration 

of ciliate species has been widely considered. Such factors 

include the effect of temperature (Wachendorff 1912, Leich. sen- 

ring 1925, Pace and Lyman 1947, Sarojini and Nagabhush. anam 1966), 

population density (Spech. t 1935, Pace and Kimura 1944) Pace and 

Kimura 1947), the hydrogen ion concentration (Hall 1941) and 

the effect of cyanide upon the oxygen uptake (Lund 1918, Pitts 

1932, Lwoff 1934, Hall 1941). 

The respiratory metabolism of Colpidium campylum has 

received some attention (Hall 1938,1941). Hall's (1941) work 

on the effect of cyanide on the oxygen uptake of Colpidium 

dispelled the previously-held idea that the oxidation process 
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in ciliates was insensitive to cyanide. Their insensitivity to 

cyanide implied that oxidation in. ciliates differed essentially 

from that of other aerobic cells. Earlier workers (Pitts 1932) 

Lwoff 1934) reported an, initial inhibition followed by a 

recovery. -However, they had failed to recognise the reversibility 

of the cyanide effect, and the tendency for HCN to distil over 

into the KOH inset of the respirometer flask. 

The present work was carried out primarily to obtain an 

estimate of the heat liberated during respiration in order that 

an energy budget for Colpidium could be constructed. Ideally, 

in a study of this . kind the heat lost during respiration should 

be measured directly in a microcalorimeter, since the indirect 

method involving respirometry assumes a totally aerobic 

respiration. Unfortunately such. devices, although in existence, 

are as yet not quite developed enough. to cope with the problems 

afforded by the Protozoa. Consequently at present one must be 

content with. measuring the energy liberated during respiration 

by an indirect means. 

In addition to the aim previously outlined the study was 

also intended to provide information on the effect of temperature, 

population density and cell size on the oxygen consumption of 

Colpidium campylum. Respiratory quotients were also considered. 

-� 
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6.2 Materials and Methods 

6.2.1 Measurement of oxygen consumed 

Oxygen consumption was measured using Warburg constant 

volume respirometers (Warburg 1926). The respirometer consisted 

of a flask which. is attached by ground glass stopper-to a mano- 

meter. Each flask has a central well for the reception of the 

alkali used to absorb the carbon dioxide liberated during 

respiration. The manometer is filled with. Krebs solution 

(Krebs 1951), giving a reading equivalent to 10,000mm at N. T. P. 

Each. respirometer was calibrated according to Dixon (1952) and 

Umbreit, Burris and Stauffer (1949). The quantity of oxygen 

consumed is obtained by multiplying the flask constant (k) for 

a given respirometer by the change in the reading of the mano- 

metric fluid of that respirometer, thus: - 

x=h. k 

where x, = the amount of gas absorbed 

h= the corresponding manometric reading 

The Thermobarometer - As one end of the manometer tube is 

. open to,, the atmosphere the Warburg apparatus is sensitive to 

slight changes in barometric pressure. In order to correct for 

the effect of pressure changes a respirometer containing only 

a. small quantity of distilled water is placed in th. e water bath. 

with the experimental respirorneters. The th. ermobarometer is 

read when the other respirometers are read and its, reading is 

.,; subtracted from the experimental readings. 
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6.2.2 Measurement of respiratory quotients (R. Q. ) 

Respiratory quotients were obtained by using the direct 

method of Warburg (Dixon, 1952, Umbreit et al. 1949). This method 

involves the use of two respirometers each containing the same 

number of animals. In the first flask the CO2 evolved is 

absorbed by alkali in the normal way, and the reading of this 

apparatus gives the amount of oxygen consumed. In the second 

respirometer the alkali is omitted, and the reading obtained is 

the result of both. 02 consumed and CO2 evolved. In order to 

calculate the quantity of CO2 evolved the following equation is 

used: -.. 
x 02 

xCO2 = 

(h. 

k0 kCO2 
2 

x02 is obtained from the first respirometer, k02 and kCO2 are 

the constants of the second respirometer and are derived as 

described by Dixon (1952) and Umbreit et al. (1949), h. is the 

manometric reading. 

The respiratory quotient is obtained thus: - 
C02 produced 

R. Q. 
02-consumed 

6.2.3 Procedure 

Protozoa were grown in sterile distilled water with. varying 

concentrations. of bacteria for 48 hours prior to respirometry 

experiments at a temperature which corresponds to the experimental 

temperature. 

The Colpidium were-centrifuged for 10 minutes at 1,000r. p. m., 

the supernatant fluid was discarded and the sediment re-suspended 
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in sterile distilled water and recentrifuged at the same speed 

for a further 10 minutes. -Th. e supernatant fluid was again 

discarded and the sediment re-suspended in sterile distilled 

water. This procedure was carried out in order to remove as 

many of the bacteria as possible from the Protozoa. 

The central well of each flask was filled with. a roll of 

filter paper (Whatmans starch. free No-40) which extended at 

least 5mm above the lip- of the well (Dixon 1952). 0.4ml of 

2N NaOH was pipetted into the centre well of each flask and 

4m1 of Colpidium suspension was pipetted into the main part of 

each flask. The number of Colpidia per ml and th. eir mean cell 

volume were determined using a Coulter Counter as described in 

section . 2.2.1. 

The number of animals in each flask was varied throughout 

the series of experiments since it has been demonstrated by 

Pace and Kimura (1944) and Pace and Lyman (1947) that oxygen 

uptake per individual increases with decreasing density. 

Oxygen uptake by animals of different sizes was also considered. 

The respirometers were placed in a constant temperature 

water-bath and allowed to equilibrate for 30 minutes with the 

flasks open to the atmosphere. The apparatus carrying the 

respirometers was shaken at 125 cycles per minute with a 

horizontal movement of 5cm. 

The shaking speed is critical, as the. rate of shaking 

must be sufficient to allow the rate of oxygen uptake to be 

'independent of the rate of oxygen diffusion into the medium 



Figure 22 

Typical pattern of oxygen uptake in Colpidium 



i 

-F+ 
w E 
0 

N 
C, 

CL -E Z 

t) 

X 
0 

F- 

1 

16- 

14- 

10 

8 

6 
4 

2 

0-0-0; 7 

0 . �00 

Z 

-ý_Q 1/ -0 O. f 

0 60 

Time in minutes 

%ý 

-__ ®/ 

...... 0--'ýO/ 

/® 

1 



-61- 

containing the animals. At low shaking speeds oxygen uptake 

is dependent on the rate of oxygen diffusion into the medium 

(Dixon and Elliot 1930). A speed of 120 cycles/minute has been 

sh. own by Hall (1938) to render oxygen consumption independent 

of th. e diffusion equilibrium between the gas space and the 

fluid bathing the cells. 

After the 30 minute equilibration period the taps were 

closed and the readings were commenced. Readings were taken 

at 15 minute intervals over a3 hour period. 

The pH of the cell suspension was between 5.5-6.5. The 

optimum pH for respiration in Colpidium campylum lies around 

pH 5.5 (Hall 1941). 

6.3 Results 

6.3.1 Oxygen consumption 

The typical pattern of the rate of oxygen uptake in 

Colpidium is shown in Figure 22. Because some variability in 

the rate was encountered, the mean oxygen uptake/h. our for each 

experiment was calculated and used in all further analysis. 

A clear relationship between the density of Colpidia and 

their individual oxygen consumption emerged. This is shown in 

Figure 23-25'. Each point represents the mean of the results 

obtained from 7 replicate experiments. Linear regressions 

were performed and the correlation coefficients (r) calculated; 

all were. significant to a level of 0.001. Increased density 

causes a significant decrease in the oxygen uptake of the 

individual cells. 



Figure 23 

Oxygen uptake per individual Colpidium as influenced 

by the population density at 10°C 

r=0.700 (P = <0.001) 
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Figure 24 

Oxygen uptake per individual Colpidium as influenced 

by the population density at 15°C 

r=0.797 (P. = <0.001) 
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Figure 25 

Oxygen uptake per individual Colpidiurn as influenced 

by the population density at 20°C 

r 0.759 (P = <0.001) 
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A relationship between the size of Colpidium and their 

oxygen uptake was also apparent as Figures 26-28 indicate. 

Again linear regressions and correlation coefficients were 

calculated. At 10°C and 15°C (Figures 25 and 26) the values 

for 
.r 

were highly significant (P=<0.01). At 20°C (Figure 27), 

however, the scatter was considerable and the correlation 

coefficient was not significant. Increased cell mass results 

in the increased uptake of oxygen. In order to obtain animals 

of different mean cell volumes, it was necessary to grow 

Colpidium in different concentrations of food. Some of the 

levels used were of necessity much. lower than those necessary 

" to achieve maximum growth.. Thus the ciliates were of varied 

nutritional status. 

If the rate of oxygen uptake per µm3 of cell substance is 

plotted against cell volume, as in Figures 29-31, the rate of 

oxygen uptake per unit volume of cell substance can be seen to 

decrease with increasing cell volume. The relationship is a 

product of th. e surface to volume ratio of the cells. Thus a 

large Colpidium consuming more oxygen than a smaller cell, 

consumes less oxygen per unit volume of protoplasm. 

The data from which. the figures were compiled is tabulated 

in the appendix. 

The effect of temperature upon the respiration rate of 

Colpidium sh. owed, th. at a decrease in temperature produced a 

decrease in the volume of oxygen consumed, see Table 7. 



Figure 26 

Oxygen uptake per individual Colpidium as influenced 

by cell size at 100C 

r=0.509 (P_ = 0.01) 
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Figure 27 

Oxygen uptake per individual Colpidium as influenced 

by cell size at 15 °C 

r=0.804 (P= <0.001) 
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Figure 28 

Oxygen uptake per individual Colpidium as influenced 

by cell size at 20°C 

r=0.325 (P = <0.1) 
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Figure 29 

Oxygen uptake per µm3 of protoplasm per hour in 

relation to mean cell volume at 10°C 
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Figure 30 

Oxygen uptake per µm3 of protoplasm per hour in 

relation to mean cell volume at 15°C 
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Figure 31 

Oxygen uptake per µm3 of protoplasm per hour in 

relation to mean cell volume at 20°C 
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TABLE 7 

Temp. mean 02/indiv/hr S. D. 02/µm3/hr S. D. 

20°C 2.4 x 10-4 1.41 4.01-x 10-9 3.01 

15°C 1.93 0.77 3.94- " 1.89 
° 10 C 1.79 " 0.69 2.21 1.49 

6.3.2 Respiratory quotients 

Twenty determinations of R. Q. were carried out at 100C, 

15°C and 20°C. All the animals used were grown at food 

concentrations above those which have been shown to be necessary 

for maximum growth. (see Chapter 2, section 2.2.2). The length. 

of the experiment in each case was 4 hours plus 30 minutes 

prior equilibration time. In all cases the number-of animals 

per ml was around 5,000. The results are tabulated in Table 8. 

The R. Qs lie between 0.7 and 0.8 with a slight increase' 

in R. Q. with decreasing temperature. The R. Q. for the oxid- 

ation of fat is 0.71 and for protein 0.80,, while that for 

carbohydrate is 1.0 (Petrusewicz and'Macfadyen 1970). Thus 

the R. Qs obtained for Colpidium are intermediate between those 

characteristic of the oxidätion, of fats and proteins. 

'6.4 Discussion 

Considerable variation is encountered in the oxygen uptake 

of a number of protozoan species as demonstrated by various 

authors (see Table 9). For the purposes of comparison with. the 

present study and between the results" of these authors, the 

values given in Table 9 have been converted to µt x 10-4 02 
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TABLE 8 

RESPIRATORY QUOTIENTS IN COLPIDIUM CAMPYLUM-AT 10°C, 15°C and 20°C 

Temp. 10°C 15°C 20°C 

. 0.908 0.962 0.762 

0.907 0.871- 0.941 

1.030 0.343 0.840 

0.745 0.983 0.753 

0.750 0.921 0.617 

0.688 0.690 0.497 

0.989 0.413 0.612 

0.709 0.892 0.724 

0.860 0.931 0.502 

0.876 0.700 0.820 

0.949 0.913 0.959 

1.037 0.921 0.849 

0.755 0.481 0-908- 

0.688 0.499 0.704 

0.704* 0.631 0.696 

0.377 0.654 0.453 

0.834- 0.400 0.840 

0.562 0.868 0.298 

0.606 0.752 0.814 

0.880 0.841 0.840 

0.7961 0.7333 0.7287 
S. E. 0.0037 0.0148 0.0037 
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consumed/106 cells/hour, or µ2 02 consumed/103 cells/h. our. 

Even within one species there is a wide variability in the 

reported respiration rates, as Table 9 clearly shows. 

Obviously there are a great many variables in studies of 

this kind, and these may in part account for the wide differences 

in respiration rate reported within one species. The type of 

respirometer used and the temperature control of the water-bath. 

are important. The critical rate at which the respirometers 

are shaken has already been discussed (see section 6.2.3). 

; Bacteria are known to have high metabolic rates, and in many. 

cases, particularly where bacteria have been used as a protozoan 

food source, the precaution of removing the bateria from the 

Protozoa was not undertaken. The importance of this measure 

is emphasised if one considers the work of Cook and Haldane 

(1931) wh. o demonstrated an oxygen up-take of 17 5µl 02/hour/mg 

bacterial nitrogen in B. coli communis in the absence of any 

oxidisable substrate. Hall (1938) using the. figures of Cook 

and Haldane (1931) estimated an oxygen uptake of 40µL/hour/mg 

dried weight of bacterial suspension in the presence of an 

oxidisäble. substrate. By way of comparison he quotes a cons- 
I 

umption of 35µe 02/hour/mg dried weight for the ciliate Glaucoma 

pyriformis (syn. Tetrah. ymena pyriformis). The density and cell 

. size of the protozoan population being respired are also factors 

ýwhich. may contribute to the degree of oxygen consumption by 

single cells. 
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TABLE 9 

RESPIRATION RATES IN OTHER SPECIES AS DEMONSTRATED BY OTHER WORKERS 

Authors 

Y 

aybourn (this 
work) 

Hall (1938) 

Emerson (1929) 

Pringle and 
Stewart (1961) 

Stewart (1966) 

Pace and 
Kimura (1944) 

Kalmus (1928) 

Howland and 
Berstein(1931) 

Sarojini and 
Nagabush. anam 
(1966) 

Specht (1935) 

Pace and Lyman 
-(1947) 

Sarojini and 
Nagabushanam 
(1967) 

11 

!, 

it 

Ir 

U 

Species 

Colpidium 
cämpylum 

Blenharisima 

Paramecium 

aurelia 

P. caudatum 

I, 

SDirostomum 
ambiguum 

Tetrah. ymena 
geleii 

Chilophrya 
labiata 

Strobilidium 
grans 

Blepharisima 
perisicum 
Loxodes vorax 

Dileptus 
granulosus 

Coleps hirtus 

P. aurelia 
P. calkinsii 

P. multinuc- 
1eatum 

P. caudatum 

Stentor sp. 

Euplotes 
aediculata 

02/indiv/hr Respirometer 

.: x104µt used 

1.. 79-2.43 Warburg 

1.12 

30-70 

12.27-55.06 

7.85 

, 21,. -1-97.0 

5.2 

3.3-4.9 

2.91 

Cartesian 
diver 

Barcroft- 
Warburg 

Kalmus 

Warburg 

25.0 

1.9-3.7 

0.12-0.34 

0.96-1.04 

0.28-0.32 

0.12-0.18 

0.76-0.98 

1.15-1.52 

1.35-1.52 

1.58-1.96 

1.29-1.69 

1.93-2.82 

0.41-0.43 

0.96-1.08 

Barcroft- 
Warburg 

Warburg 

11 

II 

�I 

�I 

I, 

ft 

Temp. 
oc 

10-20 

19.8 

20 

26 

26 

15-35 
15-35 

21 

20 

25 

25 

25 

24-25 

24-25 

24-25 

24-25 

24-25 

24-25 

24-25 

24-25 

24-25 

24-25 

24-25 

24-25 
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The rate of oxygen uptake by each protozoan in the present 

study at 20°C is twice that quoted by Hall (1938) for Colpidium 

campylum. However, when drawing the comparison one must bear 

in mind that his work involved animals grown axenically, while 

the Colpidium campylum used in this study were from a monoxenic 

culture. 

The effect of the density of animals per unit volume of 

medium and the rate of oxygen uptake by each individual has 

been noted by a number of workers (Specht 1935, Pace and Kimura 

1944, Pace and Lyman 1947). Pace and Kimura (1944) while studying 

the effect of temperature on the respiration of Paramecium 

aurelia and Paramecium caudatum, noted that the rate of oxygen 

uptake per individual is greater when fewer animals are used. 

- The density of the population was considered in more detail by 

Pace and Lyman (1947) who showed that oxygen consumption per 

animals was inversely proportional to population density in 

Tetrahymena geleii. Specht (1935), however, showed that at 

above 1,000 Spirostomum ambiguum cells/ml the rate of oxygen 

uptake was constant, wherease below a density of 1,000 animals 

/ml the rate of uptake increased until a maximum was reached. 

It must be noted that Specht (1935) used the Warburg apparatus 

shaken at a speed of only 60 cycles per minute, a speed below 

that necessary to render oxygen consumption independent of the 

diffusion equilibrium between the gas phase and the medium. 

The results obtained in this study would indicate a close 

relationship between the population density and oxygen uptake 
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per protozoan. The causative factors may include the build up 

of metabolic waste products, and decreased locomotory activity 

due to crowding. 

The relationship between body size and respiration rate in 

Metazoa sp. is well documented (e. g. Ito 1964, Lawton 1971, 

Smith. 1972). The larger the animal of a particular species the 

greater its oxygen uptake. Since such a pattern exists in the 

higher animals it is worthwhile considering if such a relation- 

ship is encountered in the Protozoa. 

A decrease in oxygen consumption associated with decreased 

weight, and hence decreased size, has been demonstrated in the 

, amoeba Chaos chaos during starvation experiments (Holter and 

Zeuthen 1948). The amoeba, which. is a carnivorous species, 

usually died after one month of starvation. The problem is 

whether the decrease in oxygen uptake is entirely the result of 

decreased volume, or whether it is the result of a changed 

metabolism due to starvation. This consideration is relevant 

to the present study on Colpidium, where animals of varied 

nutritional status had to be used in order to obtain results for 

a wide range of cell size. Leich. senring (1925) reports decreased 

oxygen uptake related to starvation in Paramecium caudatum, but 

she attributed the effect entirely to deprivation of food and 

makes no mention of decreased cell size. 

Several attempts to relate oxygen uptake to volume and 

surface area have been tried on an interspecific basis. 

Sarojini and Nagabhushanam (1967), while investigating the 
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respiration of 13 species of ciliates, showed no trends or 

correlations in the relationships of respiratory rates to volume, 

surface area or surface: volume ratios. They concluded that 

oxygen uptake is a product of locomotory habits and food getting 

habits rather than the size of th. e species. A comparison of 

oxygen uptake in Paramecium aurelia and Paramecium caudatum 

by Pace and Kimura (1944) lead them to conclude that the rate 

of oxygen uptake is not related to surface area but to volume. 

One would expect the respiration rate of a protozoan to 

vary with. th. e temperature of its environment. A decrease in 

oxygen uptake with. decreased temperature has been demonstrated 

by a number of authors (Wach. endorff. 1912, Leichsenring 1925, 

Pace and Kimura 1944, Pace and Lyman 1947, Sarojini and Naga- 

bhushanam 1966). An optimum temperature for respiration has 

been shown for Tetrahymena geleii (Pace and Lyman 1947). Oxygen 

uptake decreased below and above 25°C. A similar effect was 

j observed in Spirostomum ambiguum, with. oxygen uptake following 

the same pattern as in Tetrahymena geleii (Sarojini and Naga- 

bhushanam 1966). 

The magnitude of the change in respiration rate with 

reference to temperature has been quoted as four times greater 

at 17°C than at 7°C. in Colpidium colpoda, a decrease of 75% 

with a drop of 10°C (Wachendorff 1912). Leichsenring (1925) 

demonstrated 'a decrease of 34% between 200 and 10°C, and a 

decrease of 30% between 20°C and 15°C in Paramecium caudatum. 

The results of Pace and Kimura (1944) for the same species 
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corresponded to a decrease of approximately 16% between 20°C 

and 15°C. In Tetrah. ymena geleii a decrease of 74% in oxygen 

uptake occurs between 200C and 100C (Pace and Lymen 1947). A 

decrease in the mean respiration rate/individual of 27% 

occurred between 20°C and 10°C in the present investigation on 

Colpidium campylum. 

If one accepts that an optimum temperature exists for 

respiration in a given protozoan species, th. en obviously the 

decrease in the rate of oxygen consumption between any given 

temperatures will depend very largely on the optimum temperature 

for that species. Another point which is all too often ignored, 

is any possible effect produced by not-using animals previously 

acclimatized to the experimental temperature. In most of the 

examples cited with. reference to temperature and oxygen uptake, 
J 

the protozoa were grown at one temperature only, yet th. eir 

respiration rates were investigated at a series of temperatures. 

In many cases mention of the temperature used for growth was 

omitted. 

The respiratory quotients of a number of ciliate species 

have been studied. In Paramecium aurelia R. Q. ranged from 

0.65-0.99 and increased with temperature; a similar trend 

occurred in Paramecium caudatum, where R. Qs between 0.73-0.90 

occurred (Pace and Kimura 1944). These authors suggested that 

Paramecium utilized more carbohydrate at higher temperatures.. 

The situation in Colpidium differs, in. that R. Q. showed a slight 

-downward trend with increased temperature, although the mean 
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R. Q. values for Colpidium lie within the range reported for 

Paramecium. Other figures quoted in the literature are an R. Q. 

of near 1.0 for Blepharisma spp. at 20°C (Emerson 1929) and 

0.820 for Spirostomum ambiguum at 25°C (Sarojini and 

Nagabhushanam 1966). 
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CHAPTER 7 ENERGY BUDGETS 

7.1 Introduction 

Despite an increäse in energetics studies, both in the 

field and the laboratory, the Protozoa are a group which have 

been largely ignored. Studies which: constitute partial energy 

budgets for protozoan species exist (Coleman 1964, Proper and 

Garver 1966, Curds and Cockburn 1968,1971). All these studies 

dealt with feeding and growth. and the results were not expressed 

in terms of energy. Heal (1967a) calculated a complete energy 

budget for Acanthamoeba sp. in terms of the percentage of 

consumption used for growth. and respiration (assimilation) and 

the percentage of the ingested food which. was egested. 

In an energetics study on a micro-organism the energy 

budgets constructed are related to variables such as food 

concentration and temperature, since the former factor alters 

the. quantity of food that a protozoan consumes (see section 

2.2.3 Chapter 2) and both. factors influence the way in which. 

the ingested energy is utilized by the cell.. Th. e equation used 

in the construction of the energy budgets is as follows: - 

C= P+ R+ E+ U 

A=P+R 

E' +U = C-A 

where :-A= assimilation 

C= energy consumed as food 

E= egested energy 

P= growth 
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R= heat lost during respiration 

U= nitrogenous excretion 

As was pointed out in the general introduction, egested and 

excreted energy are calculated and not measured directly. 

Protozoan energy budgets will obviously differ from the 

energy budgets. which. have been constructed for higher invert- 

ebrates, with. reference to time. Other energy budgets relate 

to a season, or the life-cycle of a species. The life of an 

individual protozoan may be only a matter of hours before the 

total cell mass divides to become two individuals, under normal 

asexual reproductive conditions. In addition, whereas in other 

invertebrates the adults produce offspring and then die so that 

the biomass of the dead animals has been lost from th. e population, 

in the Protozoa reproduction does not involve the production 

of a corpse, since the cell mass of the parent is passed on 

complete to the following generation. 

Daily energy budgets are sometimes calculated for invertebrate 

species (Prus 1972, Klekowski 1970); Again the Protozoa 

provide a problem, in that when one is calculating such a 

budget one must bear in mind the fact that what is one individual 

at the beginning of 24 hours may be several individuals at the 

end of 24 hours. 

With these considerations in mind two types of energy 

budget were constructed for Colpidium. Firstly a 24-hour energy 

budget, and secondly a life-cycle energy budget, were calculated 

from the experimental investigations which have preceded this 
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chapter. Th. e value and implications of these two types of 

energy budget will be discussed. 

7.2 Methods 

7.2.1 General 

Two types of energy budget were constructed for Colpidium 

using the energy budget equation previously outlined. The 

24-hour energy budget corresponds to the instantaneous energy 

budget described by Prus (1968b) and the energy budget for the 

life-span of the ciliate corresponds to the cumulative energy 

-budget described by Prus (1968b). 

7.2.2 Calculation of 24-hour energy budget for an individual 

This budget is based on the energy intake and expenditure of 

an individual present in the initial population in a 24-hour 

period. Consumption C and growth P were obtained from the 

experiments detailed in Chapter 2 section 2.2 and converted 

into joules by the use of the data obtained from the studies 

outlined in Chapter 4. 

The heat lost during respiration R was calculated by taking 

the average oxygen uptake per µm3 of protoplasm per hour at 

each temperature (see Chapter 6) Table 7) and multiplying 

this figure by the mean cell volume value of the animals in 

"the consumption and growth experiments described in Chapter 2 

section 2.2, thus :- 

02 consumed/indiv. /h. r = 
[02/µm3/hr 

xM. C. V] 
,x 

24 

I 
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The value of the oxygen consumed/individual/24 hours thus 

obtained was converted to units of energy by using the oxy- 

caloric-coefficient of 4.85 calories/ml O2, where the substrate 

of respiration is a mixture of organic substances-(Winberg 

et al. 197,1). This mean oxycaloric coefficient was used 

because although the mean R. Qs obtained in Chapter 6, Table 8 

were between 0.7-0.8, the R. Qs. from which the mean values were 

derived showed considerable variation as Table 8 shows. In 

accordance with standard international practice calories were 

converted to joules (1 calorie = 4.184 joules). Throughout 

the energy budgets in this study the µJ or J x, 10-6 was used. 

Excretion and egestion E+U were calculated, as has already 

been stated, and represents that part of the ingested energy 

which is not assimilated. 

7.2.3 Calculation of an energy budget for a generation of 

Colpidium 

This type of energy budget shows. energy uptake and 

utilization during the life-span of an individual Colpidium. 

The length of time over which a generation extended was 

calculated from the results for reproduction stated in Chapter 

5, section 5.3. By calculation consumption C and growth. P 

were derived from the 24-hour energy budget as was respiration 

R. Egestion and excretion E+U"were calculated as before. 
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7.3 Results 

7.3.1 24-hour energy budget 

The 24-h. our energy budget is calculated on th. e energy 

intake and utilization of one of the individuals present in 

the initial population at the beginning of a 24 hour period. 

It does not take, reproduction into consideration; thus the 

individual may divide into two individuals within the 24 hours, 

but the two daughter cells are still regarded as one individual 

in this energy budget. It is essentially an energy budget 

indicating the potential of one protozoan in a 24-h. our period. 

(i) Consumption C 

This component of the energy budget has already been 

discussed at length. in Chapter 2, section 2.2. The quantity 

of food ingested in terms of energy at different food 

, _, concentrations is shown in Tables 10,11 and 12. Briefly 

reiterating the points already discussed in Chapter 2, 

,.. _ consumption showed only a slight variation with increased 

temperature, -but increased in relation to increased food 

concentration until a maximum was attained at a food: 

protozoan ratio of 2.5 x 106: 1. 

The amount of energy needed to be consumed to maintain the 

cell without growth appears to lie between 4,000-5,000 

x10-6J/individual/24 hours, at 100C, and below 2,000-3,000 

x10-6)/individual/24 hours at 15°C and 20°C (see Chapter 

4, Figures 16-18). 



Figure 32 

Assimilation as a percentage of consumption at 

different levels of energy consumption at 10 0C, 

15°C and 20°C 
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(ii) Assimilation A=P+R 

The heat lost during respiration R and growth. P are shown 

as individual components and jointly as assimilation in 

Tables 10,11 and 12. 

Respiration sh. owed an initial increase with. increased 

consumption (consumption being essentially a product of 

the initial food concentration), levelling off as ingestion 

increased. This is due to variation in the cell mass over 

the range of consumption studied, see Chapter 3, section 

3.2. At low levels of food intake mean cell volume is 

small, increasing to a maximum with. increased consumption. 

Consequently the heat lost during respiration followed the 

same trend, since in Chapter 6, section 6.2.1 it was shown 

that oxygen consumption increased with increased cell mass. 

Growth and growth efficiency have been discussed at 

length in Chapters 2 and 4 respectively. Growth in 

Colpidium has been shown to increase with. increased 

consumption until a maximum was reached, and in addition, 

the level of growth achieved was shown to be related to 

temperature, increasing with higher temperature within the 

range studied. 

Assimilation as a percentage of consumption or assimilation 

efficiency (U-1 as described in the general introduction) 

is illustrated in Figure 32 and tabulated in Tables 10,11 

and 12. As the Figure shows, assimilation is overall higher 

at higher temperatures, although one of the values obtained 
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Figure 33 

Net growth efficiency and the heat lost during 

respiration at different levels of energy consumption 

at 10 °C, 15°C and 20°C 
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at 15°C, that of 15.9% at a low consumption level, was 

h. igh. er than any of the values found at 20°C. As both. th. e 

Tables and Figure 32 show assimilation efficiency varied 

with food consumption as did growth, efficiency (see Chapter 

4, section 4.3). In the case of both assimilation efficiency 

and growth. efficiency the pattern over the range of food 

intake obtained in this study was similar. At 20°C and 

15°C assimilation efficiency showed a marked maximum at 

lower food intake decreasing as food intake increased. At 

100C the maximum was less well marked. 

If one considers the manner in which the assimilated 

energy is used at each. temperature, a clear pattern emerges 

as sh. own in Figure 33. Th. e proportion of the assimilated 

energy used for growth (K2 net growth efficiency - see 

general introduction) increases with. increased temperature, 

yet the proportion of the energy lost as heat during 

respiration decreases. In other words as temperature 

decreases, more of the assimilated energy is respired and 

less is incorporated as growth. 

(iii) Egestion and Excretion E+U = C-(P+R) 

Egestion and excretion are two components of a protozoan 

energy budget which are calculated from consumption and 

assimilation as outlined in section 7.1. Obviously, since 

assimilation increased with temperature and consumption 

remained fairly constant over the temperature range 

considered, it follows that egestion and excretion decreased 
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Figure 34 

Egestion and excretion as a percentage of consumption 

at different levels of energy consumption at 10°C, 

15°C and 20°C 
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with higher temperature. This point is illustrated in 

Figure 34 and tabulated in Tables 10,11 and 12. 

(iv) Complete energy budget 

Thus the various components of the energy *budget for 

Colpidium show variation in relation to th. e quantity of 

food consumed. A mean energy budget for each temperature 

can be compiled from data obtained for a food ratio of 

above 2.5 x 106: 1 beyond which. consumption became independent 

of food concentration. In such. energy budgets each 

component is at its maximum level, see Table 13. It must 

be noted that although consumption, growth, respiration and 

egestion are at their maxima in this mean energy budget, the 

animals is not operating at its most efficient, because as 

L has already been pointed out in Chapter 4, section 4.3, and 

under the heading of assimilation inth. e present section, the 

highest growth. and assimilation efficiencies occur at food 

concentrations below the level necessary for maximum 

consumption but at the point where growth reached its 

maximum. 

. -, Z.., 3.2 The generation energy budget 

The generation energy budget expresses the consumption 

and utilization of energy during the life-span of an individual 

Colpidium, from the point where it becomes an independent cell, 

by binary fission from a parent cell, to the point where it 

undergoes binary fission to produce two daughter cells. 

The energy budgets for a generation span of Colpidium as 



-84- 

UI 
0 

0 
N 

U, 
z 0 
H 

LY+ 
H 
z 
U 
z 0 U 

0 
0 
PA 

H 
z w x w w w 

H 

WA 
aH 

P4 
E-+ 0 

U 

wl of 
z 
H 
H 
d 
a 
W 
z 
w 0 
w z 0 
M 
0 
x. 1 

E-+ 

0 

0 

z w 

ý 
" Q0 M Lfl r -A r- tQo H 
U) r-4 0 0 Ln ON r -I N- 
a) >C M M r-I C N 0 

Q r-I r-4 ý- I r-I 

4AD 
4i N1 00 Lr) ON C'') - 
v) pO r-+ r-4 O 0 ON O 
4) C) -4 O -N co l0 V--4 (V ' 
bD >C 5C 00 00 r-1, r-4 0 
WW ý7 r4 r-4 r+ 

" ýp 

P ,. -N O' M 0 N QO 00 
rn P4 r-q CO CO O r--1 rn CO a) '. / >C r-4 CV r-4 N r-I rl 

Gý ý7 

Ji I N r4 L/1 00 C' ) 
3.0 . r-+ N co - 00 Ow r-+ r-4 0 ON r- 0 00 

X 
LJ ti 

ä 

E .. I , -+ 0 0 O 0 0 cn 00 N N LC) 0 
GvH M u1 0 . It m 
O ýC -It ON O N (V r-I U r-1 r-1 '--I r-1 

M 
"O 
" 5G ýO 1- N %. O N- r-I 

"UM CO N`- CO r- N- CO 

r-+ . -4 , -a r r-4 

C)) cn 0 '. o 00 00 

" E3 N- O1 N M M 
"rl 0 cV J r-I r-I . -1 . -1 r-1 

QH .C 

r4 r 0 .. .. .. .. .. .. 

aº 0 0 O. O 0 0 
" r-4 CO r-4 r-4 r-I r-1 r-I r-I 

0 r1 
" DC 5C 5C >G >C >C 

P 'd 
a"1-4 p N O Ln 0 0 0 P0 QHW O r-I r1 N M 

U 
G 
N 

", -I 
C) 
a x 
C) 
N 

0 
U 

"rl 

a 
C) 

0 

w 
0 

G 
cu 

N 

G 
0 

b 
N 
U) 
cd 

U, 
., l 

41 

U) 
a) 

U 
cd 
4) 



-85- 

Ln 

W 
a 

H 

UI 
0 

In 

cn 
z 0 I-I 
E- 
<c 

H 

z w U 
z 0 U 

0 
0 
w 

H 
z w 
P4 W w 

H 

P4 a O U 

w 
O 

z 
O H 
H 
d 

W 
z 
w c7 
w z 0 
M 0 
w 

pq 

0 

z w 

1 r 
"d 0 rl M O1 l Ln M 
to u rl ýO r -i 0 O N N 
fn >< rl r-1 r-1 r-ý r- I 

"G 
1.1 Q) I M C C% 0 M Il 
v) }ý O 0 1- on in U') 00 
OVe v1 -t O M r-4 u1 
box xC M M 0 N Lfl r--1 M 

w r4 In , -1 r-1 rl N N 

I 
C1+ ýo-. 0 O GIN Ln CO M r- r- 

0 OD tZ CD N %10 0 
N' X N N C) (Y) M -2 

h 

. IJ 1 
3 .. o M r4 r O O 
ow rn ýlo CO M 
ý-I u SC N (f I- oO CO 
C7 ý7 

(1+ N 00 C' O CO N 
nl r-1 2 M U1 e-I O N 

v] UO O1 P-4 N N CO C' 
G' r--1 M r -i M N 
O >C u--I r--I u-I N N 

Cr) 
"O 

P--4 N CO to 00 CO lO 

"X 00 N t. O N. l0 00 00 
" UM r-I r--1 rI r-I rl r--I 

N 
cn r" N 't O O '' ON 

r4 0 O N 
" M N N N N N 

dH .C 

ri r-i r-I u-1 . -1 r-I r-I 

"r-I '. O '. O "O "0 %D " tD 
O O 0 0 O O O 
-r-4 P. 4 

ýa 0 
" < X X X X 5C 5C 

p0b Ln Q. "H 0 N -t O v, In O Un 
13.1 G0 " <H f34 O O . -I r-1 CV M Cr) 

U) 

Q) 

N 
a 
w 
N 

C) 

0) 

0 

O 

E3 
a) 
4J 

O 

b 
41 
U) 

0) 
., i 
4J 

1. + 

C) 
CU 



W 

Q 
E-. 

U 
0 

0 

z 0 H 

H 
z 
z 
0 

O 
0 
44 

H 
z 

w P4 H 

a 0 V 

w 
0 

O 

0 

0 
H 

A 

C4 

-86- 

1 
" ý Lri m 00 oh 
Cl) < ". o e m -t 

N. 
r- oh 

u) %. x 11 ýn r-4 Co o h M r-I 

"G 
1-1 N1 N. 00 r-"I O" M U1 'O 

N O U1 . -a r-1 Co v) 
00 Ln 00 C, 4 r-4 CY) bD 5C 5C O N O O Co N. rn WW 1'7 r-I Co rl M N N cV 

G1 
a,. o M O 0 N. 0 M ü mo 00 00 N N 
d) ýC N C% N N N N 

O 
O 

P N L-) M "O Ln - N. 

%D N r--4 ON Co M O" Ul 
(n If) CO l0 00 If) ul 

ýn O N 0 - -t 0 o' Cl) 
GV P-4 "0 r r-i o' N. O O ý/ ?C r-4 CO r-I (1) N (V C) 

VD 

M 

" ýC 
"Vr? 03 

O 
r-4 

0" 
- 

M 
N. 

e 
'. O 

CY) 
ir1 

. -I 
n 

r4 ' r r-4 r-1 . -4 d 

N a) 12 -p N r-f Cl) If) 00 

0 Cl) %. 0 M M M 

r-I r-I r-4 ý--I r-I r4 r-1 

"rl lD '. O l0 %D ýO 
43 O O 0 0 O 0 O 
plý 

Q. "r4 0 v, rn u, o LO O o 
dH O 0 r-4 C%i N M, - 

I 

U) 

m 

m 
41 
c'j 
U 

r-I 

0 r4 
w 
0 

A 
0 

"d 
a 
El) 
0 

In 
ri) 

., l 

U) 

v 
ci 
N 



-87- 

related to the initial food concentration are shown in Tables 

14,15 and 16. The food concentration (and consequently 

consumption) has been shown to exert a marked effect on the 

length. of the generation time (see Chapter 5, section 5.3). 

Below an ingestion of approximately 10,000 x 10-6J/individual/ 

24 hours the generation time increased. Above this level of 

consumption the generation time remained fairly constant. 

With reference to the Tables 14,15 and 16, it will be seen 

that in all cases, with. the exception of one unusual result at 

100C at a food concentration of 0.9 x 10 
6: 

1, assimilation 

increased with. a decrease in th. e length. of th. e generation time. 

Associated with. th. e increase in assimilation there was also an 

0 increase in the mean cell volume. Mean cell volume in Colpidium 

has been sh. own to be influenced by consumption (see Chapter 3, 

section 3.3); below an intake of 400 nanograms dried weight of 

bacteria/individual/24 hours (equivalent to 81451 x 10-6) mean 

cell volume decreased; above this level of consumption mean cell 

volume maintained a plateau. 

Thus increasing assimilation associated with. increased 

consumption, which is largely determined by the concentration 

of the available food, was related to a decrease in the generation 

time and an increase in the mean cell volume. This point is 

illustrated graphically in Figures 35-37. At 200C and 15 °C 

the relationship of assimilation, mean cell volume and length 

of the generation time as correlated with. consumption is clearly 

0 , 
apparent from Figures 35 and-36; at 10C, see Figure 37, 



Figure 35 

The relationship of assimilation, generation time 

and mean cell volume over a range of energy consumption 

at 20°C 
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Figure 36 

The relationship of assimilation, generation time and 

mean cell volume over a range of energy consumption 

at 15°C 
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Figure 37 

The relationship of assimilation, generation time 

and mean cell volume over a range of energy consumption 

at 10? C 
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h. owever, the pattern is less well illustrated. In -fact, the 

generation energy budget at 100C (see Table 16) does show 

considerable variability, especially at the lower levels of 

consumption. At low levels of assimilation, where the length. 

of the generation time increased, the animals apparently divided 

at a smaller size at the three temperatures considered, as 
i 

indicated by the reduction in the mean cell volume. 

From Tables 14,15 and 16 and Figures 35-37 a comparison of 

the consumption during a'generation by an individual shows that 

less food is ingested at higher temperatures. This is largely 

because the length. of the generation is decreased by increased 

temperature. In terms of energy flow, this means that less 

energy is expended by one generation in the production of the 

following generation as temperature increases, at least within 

the temperature. range considered in this study. 

Obviously the influence of temperature on the way in which 

the assimilated energy is utilized by Colpidium, as outlined 

previously under the section dealing with the 24 hour energy 

budget, also applied-to the generation energy budget. 

7.4 Discussion 

Within a study of this type designed to provide energy 

budgets for an asexual continuously dividing microorganism, 

there are obviously a great many variables which will influence 

each component of the budget. In particular, the adaptability 
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of protozoan species with. reference to size change in response 

to' changing cultural conditions has been demonstrated by 

Hamilton and Preslan (1969) and Curds and Cockburn (1971) as 

well as in the present study. The effect of food concentration 

on growth. and consumption is clearly important, as the present 

investigation has shown, and this important variable imposes a 

considerable influence on the ingestion and utilization of 

energy in Colpidium. 

In studies of bacteria a linear relationship between the 

glucose concentration in th. e growth. medium and the dried weight 

of Aerobäcter aerogenes produced has been found to exist 

(Ligeri et al. 1964). At higher concentrations of glucose a 

lower yield was found and similar results were found in-other 

c, 
substrates. Bacteria and Protozoa have in common th. eir ability 

+to'undergo rai 

`influenced 
by. 

Colpidium the 

concentration 

pid division, and Colpidium like Aerobacter is 

the concentration of its energy source. In 

linear relationship between growth and food 

exists only up to a concentration 1.0 x 106: 1 

bacteria per protozöan, thereafter a plateau was attained. 

From the results of Ligeri et al. (1964) it would seem that a 

linear relationship exists between the energy source and the 

yield of bacteria up to an optimum concentration, thereafter 

declining. 

Consumption of energy has been shown to be limited by food 

concentration in metazoan invertebrates. Mukerji and LeRoux 
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(1969b) working with. th. e h. emipteran Podisus maculiventris 

fed on live larvae of Galleria mellonella, found that nymphs 

showed increased consumption as food supply was increased. They 

were able to demonstrate a linear relationship between daily 

food consumption and increased weight. Hydra pseudoligaetis 

showed increased consumption with. increased food supply 

(Schroeder 1969); growth efficiency increased in relation to 

food intake to a maximum level. A differing situation appears 

to exist for Daphnia pulex'fed on Ch. lamydomonas cells as 

demonstrated by Richman (1958). Consumption was shown to be 

independent of the food concentration but was dependent on the 

size of the Daphnia. Growth in Daphnia decreased with decreased 

. food concentration. In Colpidium the amount of the ingested 

energy transformed into growth. was not linearly related to 

consumed energy over the entire food availability range as has 

been pointed out. Consumption in Colpidium was dependent on 
6 

food concentration up to a food ratio of 2.5 x 10: 1 bacteria 

per protozoan. At higher ratios consumption was independent of 

food supply. 

A variable which may influence the energy budget for a 

given species is the type of food source. The amphipod 

Hyalella azteca showed variable assimilation efficiencies 

associated with different food types (Hargrave 1970). With. 

bacteria an' assimilation efficiency of 60-82% was obtained, 

75% for diatoms and values as low as 5-15% for blue-green algae, 
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Additionally, the ingestion rate of sediment was related to the 

assimilation of microflora added to the sediment. Thus, 

sediment mixed with. blue-green algae was not ingested as rapidly 

as sediment which. contained diatoms. Lawton (1970) also 

demonstrated variation in assimilation efficiency with. different 

food sources in the larval damselfly Pyrrhosoma nymphula, as 

did Carefoot (1967) in the growth. rates of Aplysia punctata fed 

on eight species of algae. Alth. ough. in the present study on 

Colpidium the energy budgets constructed are based on one food 

source only (a food which. was apparently highly acceptable to 

Colpidium, see Chapter 1, section 1.2.2) a number of workers 

have demonstrated variable reproduction with. different bacterial 

flora in the same ciliate species (Luck, Sheets and Th. omas 1931) 

Burbanck 1942, Curds and Vandyke 1966). It seems probable that 

different bacterial food sources would produce variation in the 

, energy budget for a ciliate. 

The assimilation efficiencies obtained for Colpidium are 

low in comparison to that of 58% calculated for Acanth. amoeba sp. 

by Heal (1967a) at 25°C. However, the assimilation efficiencies 

demonstrated in Colpidium lie close to some of those reported 

for other primary feeders. The results of Gere (1956) indicate 

that litter feeding Diplopoda and Isopoda have assimilation 

efficiencies in the range of 4-21%. Richman (1958) sh. owed 

Daphnia pulex preadults to assimilate 6.6-23.88% of their 

ingested energy, and adults to assimilate 14.22-31.72% of 
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consumed energy. The level of assimilation depended on the 

number of Ch. lamydononas cells ingested. Other authors report 

higher assimilation efficiencies in primary feeders. The litter 

feeder Tracheoniscus rathbei utilizes an average of 33% of its 

ingested energy (White 1968), defoliating insects in a hazel 

coppice 35.5-39.6% (Smith 1972) and Littorina littorea 

approximately 87% (Grahame 1973),. 

The assimilation efficiencies reported in the literature 

for carnivorous feeding species are all higher than th. ose which 

have been shown to occur in most primary feeders. The damselfly 

Pyrrhosöma nymphula has an assimilation efficiency between 

81.2-90.6% (Lawton 1970), th. e'opisthobranch. Navanax inermis an 

assimilation efficiency of 62% (Paine 1965) and the phalangid 

Mitopus moris 44-74% (Ph. illipson 1960). Detrital feeders range 

in assimilation efficiency from 30.3% for Asellus aquaticus- 

(Purs 1972) to 45-61% for Scrobicularia plana (Hughes 1970). 

In general carnivorous feeders appear to assimilate more of the 

energy`, they consume than do detrital and herbivorous feeders. 

Welch. (1968), by areview of the literature, has shown that 

carnivorous animals which have high assimilation efficiencies 

have low net growth efficiencies, while herbivorous and detrital 

feeding animals, although assimilating a smaller proportion of 

their ingested food, have higher net growth efficiencies. Thus 

carnivores lose more of their assimilated energy during 

respiration than to herbivores and detrivores. Colpidium fits 

into the pattern described by Welch (1968), in that, except at 
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low food concentrations, where respiration accounted for the 

largest proportion of assimilated energy, net growth. 

efficiencies ranged from GG. 4-73.9% at 10°C, 67.9-72.0% at 

15°C and at 20°C 78.7%-83.7%. As the level of energy consumed 

fell towards the maintenance level, that in the energy needed 

to maintain the existing volume of cell material without growth, 

the percentage of assimilation that the energy of respiration 

constituted increased while the net growth efficiency decreased. 

Temperature exerted a marked effect on the energetics of 

Colpidium as the results have indicated. Not only was the level 

of assimilation increased by temperature, but the net growth. 
n 

efficiency also showed a, variation with temperature. In general 

as temperature increased from 100C to 200 C, the amount of energy 

which Colpidium incorporated as growth increased; conversely 

as temperature decreased from 20°C to 10°C more energy was used 

in respiration. In this respect Colpidium appears to differ 

from some higher invertebrates; Lawton (1970) for example, found 

that assimilation efficiency showed little difference at 4°C 

and 10°C in Pyrrhosoma nymphula. White (1968) found that 

Tracheoniscus rathbei showed increased consumption and excretion 

at higher temperatures. Again this situation differs from that 

which prevails in Colpidium, where consumption was not greatly 

affected by temperature, and as a result the increased assim- 

ilation associated with higher temperature resulted in a 

decrease in excretion and egestion with increased temperature. 
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An energy budget based on the length. of the life of an 

individual Colpidium, or a single generation, provides a 

clearer insight into the energy intake and utilization of a 

protozoan. Here th. e effect of temperature and food availability 

on th. e energetics of Colpidium takes on another dimension. 

These two factors determine the length. of the generation time, 

so that three interrelated variables - temperature, food 

availability and time, determine the amount of energy consumed, 

assimilated and egested in. the life-span of an individual. 

Since a ciliate is basically in continuous reproduction, i. e. 

there are no non-reproductive larval stages as there are in 

higher invertebrates, the energy which is assimilated is 

essentially directed towards th. e immediate aim of producing two 

daughter cells. 

From the budgets outlined in Tables 14-16 it is apparent 

that reproductive efficiency, in terms of the energy which. is 

ingested and consequently removed from the environment, increases 

with increased temperature, so that with a given concentration 

of food a larger population of individuals can be produced 

from that food as temperature rises. This has obvious ecolog- 

ical implications, in that the more efficient the production 

from the primary producers by the ciliates, the greater will be 

the biomass of ciliates available for predation by th. e 

carnivores, which include other species of Protozoa as well, as 

Metazoa. 

Another point which emerges from the generation energy 
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budgets and which. has been touched on in previous chapters 

(Chapter 2, section 2.1, Chapter 3, Chapter 5) is the adaptive 

character of Colpidium at low food availabilities. Instead of 

ceasing reproduction when the source of the available energy is 

very low and assimilation is decreased, some mechanism causes 

division to occur at a smaller size. This phenomenon has a 

great ecological advantage since the chances of an individual 

of the species finding anoth. er suitable food source, and thus 

perpetuating the species, is enhanced by an increase in numbers. 
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$. 1 Introduction 

FIELD SAMPLING 

Protozoa possess a cosmopolitan distribution, a useful 

characteristic, since it allows the standard works on identific- 

ation to have a worldwide applicability. In freshwater benthic 

environments Protozoa often occur in large numbers and are 

represented by an enormous number of species, and yet their 

place in the ecological system is not clearly understood. They 

presumably form a food source for many small metazoans. Within 

the protozoan community there is a complex structure, with. 

bacterial and detrital feeders preyed upon by a successive heir- 

achy of carnivorous forms (Picken 1937), forming the pyrimidal 

system described by Elton (1927). This concept has been 

supported by Faure-Fremiet (1950) and by Webb (1956) from her 

extensive study of the protozoan communities of a brackish. 

environment. 

The present field sampling programme on the communities of 

. 
Ciliophoroa in the soft sediments of Loch Leven, Kinross, was 

initiated in order to provide some information on the numbers, 

vertical distribution and species composition of ciliates in 

this important fresh-water body. Loch Leven is a nature reserve, 

and a study of it has formed part of th. e International Biological 

Programme, (PF-section). The present work on the Ciliophora is 

a small part of a large project on the loch.. 

Initially the aim of correlating the extensive laboratory 

studies on the energetics of a bacterial. feeding ciliate - 



Figure 38 

A map of Loch Leven, Kinross, to show the position 

of the sampling sites 
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Colpidium campylum, to the natural communities of bacterial 

feeders in the loch. was entertained. As the work progressed, 

however, it became very clear, that without an intimate knowledge 

of the fluctuations in the bacterial flora of Loch Level, and 

the various other factors implicated in controlling the dist- 

ribution and abundance of Protozoa, such. an aim, apart from 

estimating ciliate biomass, could not be achieved. 

Protozoa have been shown to 'occur to varying depth in muddy 

sediments (Moore 1939, Cole 1955, Goulder 1971), it was therefore 

necessary to use a core sampler instead of merely sampling the 

mud surface as some workers have done (Webb 1961, Cairns 1965, 

1966, Patrick, Cairns and Roback 1967). 

`\ 

8.2 Materials and Methods 

8.2.1 General 

Loch Leven is a large but relatively shallow (surface area 

13.3 sq. km., average depth. 3.9m) eutrophic lake, situated in 

Kinross, Scotland. The loch. is exposed to wind action and the 

waters -'are well mixed throughout the year.. As a result the 

loch does not undergo thermal stratification, except under rate 

anticyclonic conditions, and then only for a matter of a few 

days (Smith. 1974). 

8.2.2 Sampling sites 

The benthic mud was sampled at three sites, see Figure 38. 

Sites A and B were situated in the southwest of the loch, at a 

- depth of 3 and 4 metres' respectively, and were sampled monthly 

from April 1972 until March. 1973. Site C was situated at a 
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depth of 23 metres in the North Deeps and was visited monthly 

from October 1972 until March 1973. 

8.2.3 Sampling device 

A simple core sampler modified from the design of Moore and 

Neill (1930) was used. The sampling device is shown in Plate 

3. The sampler consists of a graduated perspex tube with a 

detachable water pressure operated valve situated at its top 

end, and a brass nozzle at the opposite end. 

After a core of mud had been obtained and hauled to the 

surface, the bottom of the corer was closed by the insertion of 

a rubber bung. The valve was unscrewed and removed and the top 
C' 

end of the tube sealed by another rubber bung. The cores were 

" stored upright in a specially constructed carrying box until 

the return to the shore laboratory where the cores were divided 

up. Samples obtained with. this type of core sampler were 

apparently undisturbed. with the overlying flocculent layer intact. 

The cores were divided by means of the plunger illustrated 

in Plate 3. Firstly, the water overlying the mud was siph. oned 

off with a rubber hose. Then the plunger was pushed down the 

tube until it made contact with. the mud surface, excess water 

escaping up the hollow tube of the plunger. The upper end of 

the plunger was then closed with a clip, the bung in the bottom 

of the corer tube removed and the mud core pushed out, allowing 

appropriate lengths to be chopped off into containers. 

The core was split into 2cm deep samples. The extreme 

flocculence of the upper part of the core would not permit 

accurate division into thinner layers. 



Plate 3 

The core sampling device 

A= graduated (cm) perspex tube 

B= water pressure operated valve 

= plunger 



A 

.ý 

-5 

to Iftft 

-ftft 

-15 

-, 20 



-99- 

8.2.4 Examination of samples 

lml samples of mud were removed from a thoroughly mixed 

layer sample, and diluted with. 2m1 of distilled water. The 

suspension was spotted out onto microscope slides and examined 

at a magnification of x100, higher magnifications were used for 

identification when necessary. All the individuals in a lml 

mud sample were counted and identified where possible. Two lml 

samples from each layer sample were examined and the mean of the 

numbers found taken. 

8.3 Results 

The vertical distribution and relative abundance of the 

Ciliophora in the Loch. Level mud are shown in Fibure 39. Most 

of the ciliates were encountered in th. e top 2cm, occasionally 

small numbers were found in the 2-4cm layer and on four 

occasions single specimens were found in the 4-6cm layer. 

Ciliates were never found below 6cm. 

The numbers found were low; the maximum number found on any 

one occasion was'''64/cm2 and the minimum number 2/cm2. Consist- 

ently higher numbers were recorded at the deeper site C than 

at sites A and B. 

Temperature seemed to have no effect on either the size or 

the vertical distribution of th. e ciliate communities which both 

fluctuated through. the period of sampling as the histograms 

show. 

The species composition of the communities varied widely 

throughout the twelve month period at sites A and B and no 



Figure 39 

The vertical distribution of Ciliophora in the mud 

of Loch Leven, Kinross 
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consistent pattern emerged, see Table 18. At site C, however, 

a few species dominated the community during the six months 

that this site was visited. Frontonia leucas and species of 

th. e genus Spirostomum were found in relatively large numbers 

at this site, the proportion of the total community, at site C, 

that these species constituted is sh. own in Table 17. 

TABLE 17 

Spirostomum sp p. and Frontonia leucas as ap ercentage of the 

community at site C 

Month. Spirostomum spp. F. leucas Oth. ers 

October 34.0% 4.7% 61.3% 

November 34.0% 34.6% 31.4% 

December 45.7% 31.4% 22.9% 

January 20.3% 16.9% 62.8% 

February 0.0% 11.8% 88.2% 

March. 37.0% 25.0% 38.0% 

C 

A total of 59 species of Ciloph. ora have been recorded from 

Loch. Leven, see Table 18, including those species recorded by 

Guthrie (personal communication) from her work on the Protozoa 

of Loch Leven during 1967. 
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TABLE 18 

. CILIOPHORA - LOCH LEVEN SPECIES AND MONTHLY OCCURENCE 

(Nomenclature according to Kahl 1930-35) 

Recorded by'J. E. M. Laybourn except: - 

recorded by Dr. M. G. Guthrie 

''"'' recorded by Dr. M. G. Guthrie and J. E. M. Laybourn 

Months when recorded 

Class Ciliata AMJJAS0NDJFM 

Subclass Holotricha 

Ch. ilodonella cucullus Muller 

Chilophyrya labiata Edmondson 

Coleps Elongatus Ehrenberg" 

Coleps h. irtus Muller 

Coleps odospicus Noland 

Chlamydodon sp. 

Colpidium campylum Stokes 

Colpidium colpeda Ehrenberg 

Coh. nilembus fusiformis Cohn 

Dichilum cuneiforme Schewiakoff 

Dileptus censer Muller 

Pidinium sp. 

Frontonia leucas Ehrenberg 

Hemiophyrs procena Ponard' 

Holophrya simplex Sch. ewiakoff 

Homalozoon vermiculae Stokes' 

Lacrymaria olor Muller 

Lacrymaria pupula Muller 

Lembadion bulliuam Perty' 

Litonotus sp. 
Loxodes magnus Stokes 

Loxodes vorax Stokes 

_1. 

. 

a. "1. j. a. .. tý . I. 

------------ 
1ý . 1. "1. _t. ý1.1. 

. 1. V. . 1. . 1. J- . 1. 

I\ I\ ý I\ I\ I\ ý I\ ý If ýý 

- -- - - - - - - -- - 

1. 

Loxoph. yllum helus Stokes" 
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. I. 
Loxophyllum setigerum Quennerstedtý 

I 
------------ 

Mesodinium sp. ------------ 
Moiiochilum frontatun Schewiakoff 

Nassula aurea Ehrenberg 

Paramecium aurelia Ehrenberg - %ý ------- %ý - 

Paramecium bursaria Ehrenberg --- %ý ------- 
Paramecium caudatum Ehrenberg ------ %ý - %ý .-- 

Paramecium trichium Stokes ------ %1 -- %ý -- 
Tetrah. y mena sp. 

Urocentrum turbo Muller ---- %- ------ 
Uronema sp. ----- %ý --- %ý -- 
Urotrich. a farcta Stokes %ý ---- %ý ------ 
Subclass Spirotricha 

Aspidisca lynceus Ehrenberg ----- %ý ------ 
Bleph, arisima sp. 

Colpoda cucullus Muller 

Euplotes patella Muller 

Euplotes sp. ----- ''" -"J. '" 

Gonostomum strenuum Engelmann ----- %ý -- %ý -- 
Halteria grandinella Muller "" -" -" %" -" "" - %" - %' %" - 
Oxytricha steigera Stokes ------------ 

Spirostomum filium Ehrenberg - %ý-=%F--'ý---- 

Spirostomum loxodes Stokes -*-%-------- 
Spirostomum minus Roux - -%" -" "" "-" %" "" %" - %" 

Spirostomum teres Claparede and 
Lachmann 

Stentor coeruleus Ehrenberg ------------ 
%ý%; ---. ----- Stentorpolymorph. ousMuller 

Stichotricha sp ---------- 
Strombidium sp. - -. - --------- 
Strombilidium sp. ------------ 
Stylonchyia putrina Stokes 

Urostyla trichogaster Stokes ----- . 0. -- %ý --- 
Tachysoma sp. ,------------ 
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Subclass Petritricha 

Vörticella sp. 

Vorticella convallaria Linnaeus 

Class Suctoria 

Podophyrya sp. 

AMJJAS0NDJFM 

1 . 1_ I- ýrrr rrrý ýw r /ý ý 

I\ I\ I\ If - If .. rý- I\ 

Tokoph. yrasp -'''-''"- -'''- ---- 
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8.4 Discussion 

The depth to wh. ich. ciliates were found in this study agrees 

closely with the vertical distribution in freshwater sediments 

reported by Moore (1939) and Cole (1955), both of whom found no 

ciliates below 5cm. Goulder (1971) was unable to find any 

ciliates below 4cm. In all cases the majority of the Cilioph. ora 

were in the surface mud layer wjth a decrease in density 

downwards. 

It is not possible, without detailed experimental evidence, 

to isolate the factors which. determine the abundance and 
V 

distribution of Protozoa. Undoubtedly, food supply is an 

important factor as Noland (1924) suggests, but physical and 

chemical factors, such. as sediment texture and oxygen availability 

also exert an influence (Goulder 1971) Bryant and Laybourn 1974). 

A fine sediment, such as mud, where the interstices are 

small, will not only hamper locomotion, but will not permit 

the diffusion of oxygen to depth in the mud. A coarse sediment, 

with large interstices will have the opposite effect, and 

Protozoa have been found to a depth of 20cm in a sandy marine 

sediment by Fenchel and Jansson (1966). Most protozoan food 

sources (Bacteria, algae and other Protozoa) are probably most 

abundant in the surface layer of the sediment, and this of 

course would also contribute to the larger number of ciliates 

in this stratum., 

With only three sampling sites it is not possible to make 
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any detailed generalizations about the communities of Cilio- 

ph. ora in Loch Leven. Certainly, ciliates were more abundant 

at site C, a deep water site, when compared with sites A and B 

which. were both, shallow. Alth. öugh. no quantitative work was 

carried out on protozoan food, algae, which. may constitute a 

.. food source to many ciliate species including Frontonia leucas 

and Spirostomum spp. (Saudon 1932), appeared to be more abundant 

at site C than at sites A and B. This fact might contribute 

to the high incidence of these ciliate species in th. e North. 

Deeps. The North Deeps, which. is a kettle hole in the loch. bed, 

n 
possibly provides a more stable environment than the shallow 

sites, which are probably subject to considerable mixing and 

are hence less stable. The density of the ciliate communities 

found in this study is low when compared with. those reported by 

other workers from freshwater sediments in two North American 

and one British lakes (Moore 1939) Cole 1955, Goulder 1971). 

The reasons are not clear. 

No apparent' seasonal pattern in either numbers or species 

composition occurred in Loch Leven. Seasonal fluctuations 

related to temperature have been found in planktonic protozoan 

communities by Saifullab (1971) in a marine situation and Wang 

(1928) in a freshwater pond. Many of the species reported by 

Wang (1928) were also identified in the mud of Loch. Leven. 

Fenchel (1967) found maximum benthic ciliate numbers in the 

summer months in a marine environment, although. he reported 

large active populations throughout the year. 
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Variation in the species composition brought about by 

thermal stratification in Esth. waite Water have been noted by 

Webb (1961), and by Moore (1939) in Douglas Lake, Michigan. 

Webb (1961) showed that as the water of the h. ypolmnion became 

depleted of oxygen the protozoan community contained species 

capable of withstanding low oxygen concentrations, (e. g. Coleps 

spp., Spiros"tomum spp., Stentor spp., and Urocentrum turbo). 

When the water below the th. ermocline became completely depleted 

of oxygen, only species capable of withstanding anoxic 

conditions remained (e. g. Plagiopyla nasuta, Metopus spp. ). 

The absence of a marked thermal stratification in Loch Leven 
V 

may account for a lack of any detectable seasonal variation 

in the species composition. 

Peaks in ciliate numbers in bottom sediments associated with. 

peaks in Daphnia production in the plankton have been reported 

by Grabacka (1971). In Polish. fingerling ponds this author 

showed that ciliate density increased after the maximum 

production of-Daphnia spp., and suggested that the development 

of bacterial growth. on the dead bodies of these crustaceans 

might be responsible. The ciliate communities in my study 

showed no such relationship with peaks which occurred in the zoo- 

plankton crustaceans of Loch. Leven as demonstrated by Johnson 

and Walker (1974). 

From the dried weight and calorific values obtained during 

laboratory studies (Chapter 4, section 4.3) it was possible, 

using the approximate dimensions quoted by Kahl (1930-35) and 



-107- 

0 

Kudo (1971), and calculating volumes, to estimate th. e mean 

monthly biomass of Cilioph. ora in the mud of Loch. Leven. The 

figure obtained represents an average monthly biomass of 

1.009kJ/m. Thus, Protozoa do not appear to contribute a great 
2 

deal towards the total animal biomass; a fact also noted by 

Muus (1967) in a study of a brackish environment in Danish waters, 

where although the Cilioph. ora constituted 93% of the total 

number of benth. ic animals, they formed only 0.4% of the total 

animal biomass. In Loch. Leven the mean monthly biomass of 
2) 

ciliates (representing an annual production of 12.108kJ/m 

is extremely low when compared to the annual ch. ironmid larval 

production which represents 587.5kJ/m2 (Charles, East, Gray and 

Murray 1974). 

n 
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GENERAL DISCUSSION 

Cutler and Crump (1924) were probably the first workers to 

recognise the importance of food concentration in controlling 

reproduction, and most later studies attempted to control and 

monitor this -extremely important variable in physiological 

investigations of growth; - reproduction and feeding on Protozoa. 

It has also been shown that ciliates may be selective in their 

choice of food, and that not all bacteria provide a suitable 

energy source. Some species are toxic to ciliates, others 

slightly toxic, while others will only support poor growth; 

favourable bacterial food sources have been shown to support 

good growth in comparison (Curds and Vandyke 1966). Thus the 

species 'of, food organism and its concentration represent two 

variables`in feeding, growth. and reproduction studies on 

ciliated Protozoa. Both of these variables were given consider- 

ation in'this study. 

Feeding and growth. in Colpidium (see Chapter 2, section 2,2.3) 

are clearly influenced by food concentration and temperature. 

6 
Below an initial food concentration of 1.0 x 10 bacteria per 

protozoan, -growth was dependent on food concentration, but above 

this level the growth rate was independent of the 'available food. 

Temperature determined the maximum level of growth. attained, 

growth increasing with increased temperature. Consumption was 

also dependent on food concentration, but in this case up to 

a ratio of 2.5 x 106: 1 (higher than for growth. ), above which it 

became independent of food availability. Temperature did not 
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greatly influence the maximum level of ingestion. Both. Heal 

(1967a) and Curds and Cöckburn (1968) found growth. to be linearly 

related to food concentration at low food-to-protozoan ratios. 

Curds and Cockburn (1968) and Proper and Garver (1966) also 

found that growth was limited at higher food concentrations; the 

present findings on Colpidium are very similar to the pattern 

demonstrated by these workers. 

The consumption in Colpidium differed from the findings of 

Harding (1937) who showed that feeding never became independent 

of food concentration in Glaucoma pyriformis . However, Heal 

(1967a) found consumption to have a linear relationship with. 

food concentration at low food: protozoan ratios. When food was 

abundant his results were very variable and no obvious 

relationship between consumption and availability was apparent. 

Since the parameter selected for measuring growth was the 

volume of cellular material produced multiplied by a dried 

weight factor, as done in similar studies (Heal 1967a, Curds 

and Cockburn 1968), detailed information on the variations in 
n 

the mean cell--volume of populations grown in a range of food 

concentrations at 10°C, 15°C and 20°C also emerged (see Chapter 

3). Consumption) which as previously stated was dependent on 

food concentration up to a ratio of 2.5 x 106: 1, had a distinct 

effect on the mean cell volume of the population. Where less 

than 400 nanograms dried weight of bacteria were consumed by 

each Colpidium in the initial population during 24 hours, mean 

cell volume maintained "a maximum level. Temperature had little 
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effect on mean cell volume. From the results of the present 

study the quantity of food. consumed appeared to be the major 

factor influencing the cell size maintained by Colpidium. This 

conclusion is in agreement with Curds and Cockburn (1971) and 

Hamilton and Preslan (1969), but contrary to the suggestion of 

Hamilton and Preslan (1970) from a study of steady-state 

populations of Uronema sp. where the density of the protozoan 

population was said to be the governing factor. 

Detailed information on reproduction in relation to food 

supply and temperature was'also obtained from the long series 

of experiments on growth. and feeding (see Chapter 2, section 

2.2). The reproductive rate, as indicated by th. e number of 

generations produced in, 
-24 

hours, displayed a variation with 

temperature and energy consumed (see Chapter 5). Temperature 

had the overall effect of reducing the reproductive rate as 

temperature fell; the influence of temperature on the rate of 

reproduction has been documented by other workers (Woodruff and 

Baitsell 1911a,, 1911b, Heal 1967a). Where less than 2,000- 

10,000) x 10-6 were consumed per individual in 24 hours at 

10°C and 15°C, the generation time increased; that is the 

number of generations produced in 24 hours decreased. Above 

this level of energy intake, however, reproduction was independent 

of consumption. Much the same pattern has been shown to prevail 

in Glaucoma pyriformis 'Harding 1937), where at low food 

concentrations reproduction was found to have a linear relation- 

ship with food availability, but at higher bacterial 
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concentrations the rate of reproduction became independent of 

food concentration. At 20°C the rate of reproduction in 

Colpidium increased with. consumption, with some indication of 
6 

a levelling-off where between 20,000 - 30,000 Jx 10- were 

consumed by each. individual in the initial population in 24 hours. 

Returning to the question of mean cell volume, where a 

decrease occurred below an intake of 400 nanograms dried weight 

of bacteria/individual/24 h. ours-(equivalent to 8145 x 10-6J), 

it is evident that Colpidium not only increases th. e time span. of 

a generation at low food concentrations, but also divides at 

a , smaller size. 

Reppiration studies in the Protozoa are many and varied. 

The results obtained for individual species by different workers 

often display great variability, the possible reasons for which. 

are discussed in Chapter 6, section 6.4. 

of Colpidium was found to exert a marked 

a phenomenon also noted by other workers 

and Kimura 1944, Pace and Lyman 1947). 

uptake-with. population density obviously 

The population density 

effect on oxygen uptake, 

(Spech. t 1935, Pace 

Variation in oxygen 

represents yet another 

variable in an'energetics study on a protozoan species, along 

with good concentration and food species. 

A clear relationship between body weight or size and 

oxygen uptake has been demonstrated in many metazoan species 

(e. g. Lawton 1971, Smith 1972). A similar relationship was 

found to exist in Colpidium at 10°C and 15°C but at 20°C there 

was considerable scatter and no clear relationship could be 
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proved. Since the mean cell volume of Colpidium has been 

shown to decrease below certain consumption levels, it follows 

that the heat lost during respiration as indicated by the 

oxygen uptake will also decrease, and this. in turn will affect 

the degree of assimilation. Above the food intake level where 

mean cell volume remains constant irrespective of consumption 

the heat lost during respiration does not vary to any great 

extent. 

The various components of the energy budget equation having 

been determined directly by experiment, except for egestion and 

excretion which were calculated, two types of energy budgets 

were constructed (see Chapter 7). The twenty-four-h. our energy 

budget was intended to indicate the potential of an individual 

in 24 hours, in terms of consumption and assimilation, and takes 

no account of the fact that the energy assimilated may have been 

divided between several individuals by binary fission within 

the 24 hours. The second type of energy budget which, was 

constructed, was based on; th. e time span of a generation, or 

the life of one individual under a set of specified conditions. 

Obviously, the length of the generation varies with. consumption 

(see Chapter 5, section 5.3) and the amount of food consumed 

is determined by the food concentration. 

In the case of both types of energy budget the energy 

consumed and utulized was related to food concentration at each 

temperature. As has already been pointed out food concentration 

has been shown to bean important variable in growth and feeding, 
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both. in this study and in investigations by oth. er workers 

(Cutler and Crump 1924) Luck, Sheets and Thomas 1931, Harding 

1937), therefore a consideration of-energy intake and use by a 

protozoan must correlate directly with. th. e concentration of th. e 

available energy to have any meaningful value. 

The gross growth efficiencies wiich. emerged from the study 

on Colpidium ( up to 11%) were low in comparison to the growth 

efficiencies reported in other protozoan species of 37-78% 

(Coleman 1964, Proper and Garver 1966, Heal 1967a, Curds and 

Cockburn 1968,1971), but were comparable with. those found in 

other primary feeding invertebrates where gross growth. 

efficiencies of less than 10% were recorded (Gere 1956) Prus 

1972). Assimilation efficiencies in Colpidium were also lower 

than those reported in Acanthamoeba by Heal (1967a). Th. e 
.. 

efficiency of assimilation in Colpidium are again comparable with. 

those reported in other invertebrates at the same trophic level. 

Richman (1958) reported assimilation efficiencies of 6.6-23.88% 

for pre-adult Daphnia pulex and 14.22-31.72% for adults and 

Gere (1956) found litter feeding Diplopoda and Isopoda to have 

assimilation efficiencies ranging from 4-21%. An important 

factor which emerged from the present study was that both growth 

efficiency and assimilation efficiency were found to vary with 

the concentration of the energy source offered to Colpidium. 

This phenomenon was, as has already been pointed out (Chapter 

2, section 2.2.3; Chapter 7, section 7.4) a result of the fact 

that, growth and consumption became independent of food 

concentration at different bacteria: protozoan ratios. Growth. 
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reach. ed its maximum at a lower concentration than consumption, 

so that both, maximum growth. and assimilation efficiency lie near 

the point where the growth rate became independent of food 

concentration. Above this point more energy was ingested than 

was necessary to sustain maximum growth. and th. erefore the 

proportion of th. e ingested energy which. was converted to growth. 

and this incorporated in assimilated energy decreased. 

The part of the assimilated' energy lost as heat during 

respiration became independent of food consumption at the same 

point as mean cell volume, since as was pointed out earlier, 

oxygen uptake was found to be related to-size. Mean cell volume 

remained more or less constant above an intake of 400 nanograms 

'dried weight of bacteria/individual/24 hours (equivalent to 

8145J x 10-6), so consequently did respiration. It follows 

that most of the variation in assimilation efficiency over the 

food concentration range considered in this study was due to 

variation in growth. efficiency rather than to variations in the 

respiration rate. `1 

Colpidium as an animal feeding on a primary producer fits 

into the general scheme of assimilation and growth efficiencies 

in aquatic consumers as outlined by Welch (1968). Welch showed 

that in general herbivores and detrital feeders, although. 

assimilating a smaller proportion of their ingested energy, 

have higher net growth efficiencies than carnivorous species. 

Colpidium has high net growth efficiencies, except where the 

quantity of energy consumed fell to a low level, when the heat 
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lost during respiration accounted for the greater part of the 

assimilated energy. 

Field studies on the species composition, seasonal dist- 

ribution and vertical distribution of_Protozoa in aquatic 

habitats are many (Wang 1928, Moore 1939, Cole 1955) Webb 1956, 

1961, Fenchel and Jansson 1966, Fenchel 1967, Saifullah. 1971, 

Goulder 1971. ). A point which. emerges from these studies is 

the diversity and adaptability of protozoan species. The field 

sampling programme on the Ciliophora of the soft sediments of 

Loch Leven in the present project was initially intended to 

relate-. to the laboratory investigations on the energetics of a 

bacterial feeding ciliate. It became very apparent, however, 

that such an aim was not feasible without a. clear picture of the 

abundance and fluctuations of the bacterial food organisms in 

the. sediments of Loch Leven. Further the variables affecting 

the energetics of Colpidium to which attention has been repeatedly 

drawn in this section, added further complications. 

Nevertheless, the work did provide some information on the 

general ecology of Ciliophora in the soft sediments of Loch 

Leven, in particular details of vertical distribution and species 

composition The Cilioph. ora of Loch. Leven displayed no detect- 

able seasonal variation in numbers of species composition. The 

lack of variation in the species composition of the ciliate 

community of Loch. Leven is probably attributable to the absence 

of any prolonged thermal stratification in this water body, 

since Webb (1961) and Moore (1939) found a seasonal pattern in 



-116- 

species composition related to thermal stratification. The 

pattern of vertical distribution found--in- the present study was 

typical of ciliates in soft fresh-water sediments (Moore 1939, 

Cole 1955, Goulder 1971). 

The mean monthly biomass calculated for Cilioph. ora in Loch 

Leven represents 1.009kJ/m2 (equivalent to an annual production 

of 12.108kJ/m2), a figure which. is very low when compared with 

the annual ch. ironomid larval production in Loch. Leven which 

represents 578.5kJ/m2 (Charles, East, Gray and Murray 1974). 

Indeed, the fact that Protozoa constitute a small proportion of 

the total animal biomass has been noted by Muus (1967), even when 

they represent a large percentage of the total animal population 
v 

in terms of numbers. 

Accepting Picken's (1937) theory of the structure of 

protozoan communities, as supported by Faure-Fremiet (1950) and 

Webb (-1956), where detrital and herbivorous feeders are preyed 

upon by a successive heirachy of carnivorous forms, the energetics 

of protozoan communities has a wide scope for investigation. 

The flow of energy through the pyramid of the communities of 

these unicellular animals would be of exological interest, not- 

withstanding the value it might have in relation to higher invert- 

ebrates. Not only do other bacterial feeders require invest- 

igation, but algal aiid omnivorous species need detailed exam- 

ination. It would be interesting to know whether carnivorous 

Protozoa resemble bacterial feeding species in their energetics, 

or if they are more analagous to other invertebrate carnivores. 
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A. 1 

CONSUMPTION AND GROWTH AT 20°C 

Consumption/indiv/24 h. rs Growth/indiv/24 hrs 
Exp. No.: -. Ratio No-bacteria Joule Protoplasm Joules 

x104 x10-° µm3 x 104 x 10-6 

v 

1 1: 977,142 80.0 12867 41.2 1410 
2_ it 71.2 11444 37.4 1282 
3 81-. 9 13155 49.0 1678 
4 " 68.0 10942 37.0 1267 
5 " 73.8 11867 36.0 1235 
6 56.2 9041 26.9 921 
7 " 68.0 10942 32.6 1115 
8 " 73.6 11838 30.7 1052 
9 65.7 10560 35.3 1207 

10 84.1 13528 36.8 1259 
11 1: 204,296 19.3 3097 4.2 144 
12 22.0 3540 2.2 76 
13 18.7 3014 3.3 112 
14 " 22.1 3556 . 

1.9 63 

15 " 17.7 2851 5.1 175 
16 " 18.8 3020 3.6 124 
17 17.1 2742 0.7 225 

, 18 18.6 2981 2.9 102 
19 18.4 2961 2.1 72 
20 16.4 2642 3.3 113 
21 1: 2,812,00 114.3 18384 97.5 1964 
22 it 126.4 20330 77.6 1562 
23 it 177.9 28614 100.8 2030 
24 147.9 23788 72.4 1458 
25 138". 1 22212 101.9 2054 

26 114.2 18367 76.6 1542 
27 114.7 18448 80.5 1621 
28 " 158-9 25558 111.0 2239 
29 135.6 21810 91.4 1841 
30 " 154.4 24834 95.3 1920 
31 1: 3,933,78 128.4 20652 50.8 1740 
32 it 99.6 16023 40.7 1393 
33 " 132.0 21281 95.8 1931 
34 127.7 20539 67.9 1357 
35 97.3 15656 -70.9 1430 
36 " 124.1 19960 89.0 1794 
37 118.8 19108 83.7 1686 
38 " 136.9 22019 71.5 1440 
39 " 162.8. 26185 77.1 1553 

40 " 138.5 22276 73.8 1487 

41 1: 1,492,26 107.5 17290 48.2 1651 

42 11 117.5 18899 51.3 1757 

43 It 139.1 22373 67.2 2302 

44 is 123.6 19880 57.5 1969 

45 to 117.1 18834 53.8 1841 



A. 2 

46 It 112.5 18094 53.8 1841 
47 it 130.6. 21006 60.3 2063 
48 102.4 16470 45.8 1569 
49 113.4 18239 53.2 1821 
50 107.6 17306 49.6 1699 

141 1: 1,990,836 140.4 22585 39.4 1348 
142 if 137.5 22116 47.0 1609 
143 162.7 26166 57.0 1609 

. 144 120.4 19372 35.7 1222 
145 121.9 19618 40.7 1394 
10 126.9 20411 35.7 1222 
147 108.0 17372 34.8 1190 
148 122.1 19643 38.2 1308 
149 " 128.5 20660 36.6 1253 
150 " 131.2 21101 48.4 1657 



A. 3 

CONSUMPTION AND GROWTH AT 15°C 

Consumption/indiv/24hrs( Growth/indiv/24h. r 

U 

Exp. No. 

171 
172 
173 
174 
175 
176 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 

Ratio 

1: 256,011 

I, 

of 
1: 323,092 

it 

11 

It 
if 
it 
it 

1: 1,604,811 
U 
U 

I, 

U 

1: 2,471,136 
It 
of 
it 

of 
t 

It 

t 

1: 889,094 
' ff 

1 

1 

1 

No. bacteria 
x 10 
22.5 
17.0 
19.3 
20.4 
19.1 
25.2 
17.9 
19.2 
18.3 
25.2 
23.4 
18.3 
20.4 
20.7 
22.3 
22.9 
23.7 
19.2 
23.1 
91.2 
88.4 

102.4 
1'Q0.0 

96.5 
84.5 
82.8 
98.1 
85.4 
83.5 

129.. 7 
107.0 
151.9 

90.4 
107.7 
109.8 
116.1 
100.0 
100.4 

86.4 
64.4 
75.0 
52.7 
70.1 
70.5 
58.8 
60.0 

Joules 
x 10-6 
2392 
2742 
3099 
3274 
3077 
4054 
2891 
3093 
2938 
4053 
3763 
2943 
3281 
33329 
3586 
3683 
3812 
3088 
3715 
14675 
14212 
16475 
16084 
15513 
13592 
13316 
15783 
13750 
13428 
20866 
17219 
24445 
14532 
17320 
17662 
18675 
16084 
16145 
13892 
10358 
12263 

8476 
11275 
11339 

9457 
9650 

Protoplasm 
µm3 x 10 

1.0 
3.4 
6.8 
4.9 
5.3 
7.9 
4.5 
4.7 
5.4 

1,7.3 
9-. 5 

16.5 
15.6 
18.0 
15.3 
17.9 
17.5 
12.4 
18.5 
28.1 
38.1 
44.1 
39.6 
67.8 
40.7 
42.3 
49.1 
42.1 
36.8 
34.5 
37.0 
48.3 
29.9 
35.3 
38.5 
39.7 
38.3 
41.2 
45.7 
20.6 
19.1 
23.3 
20.9 
19.3 
20.0 
20.8 

Joule, 
x 10-E 

34 
116 
232 
167 
181 
270 
154 
161 
184 
348 
191 
332 
315 
363 
308 
356 
352 
250 
373 
567 
767 
887 
796 

1366 
820 
852 
989 
848 
741 
694 
745 
972 
603 
711 
775 
800 
771 
829 
920 
705 
653 
797 
714 
662 
685 
713 



A. 4 

218 if 42.3- 
219 If 67. -7 
220 it 72.5 
231 1: 2,912,088 137.5 
232 to 126.9 

'233 112.3 
234 131.6 
235 163.2 
236 160.7 
237 124.8 
238 133.8 
239 165.1 
240 " 139.1 
241 1: 3)530,000 135.5 
242 If 120.8 
243 of 154.2 
244 of 130.5 
245 is 136.9 
246 it 109.6 
247 it 144.0 
248, 159.9 
249 of 130.8 
250 160.5 C 

6803 18.6 637 
10889 20.1 686 
11661 24.2 829 
22116 22.3 763 
20411 26.3 899 
18059 21.6 740 
21162 24.9 854 
26229 29.2 1000 
25847 27.2 931 
20073 23.9 817 
21520 23.7 811 
26552 35.0 1199 
22378 21.3 728 
21787 30.2 607 
19422 43 2 870 
24800 38.2 769 
20990 32.9 662 
21992 39.8 801 
17635 35.0 105 
23167 35.8 720 
25720 46.6 940 
21031 21.9 749 
25817 17.1 586 



CONSUMPTION AND GROWTH AT 10°C AS 

Ratio onsum tion/indiv/24h. rs Growth/indiv/24hr 
xp. No. 

o. bacteria Joules Protoplasm Joule 

x104 x10'6 µm3x104 x10-6 

81 

%82 83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 C 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 

1: 554,084 

1: 885,714 "I 

19.1 3072 
29.4 47 28 
22.4 3602 
23.2 3731 
28.3 4551 
28.4 4567 
19.1 3072 
27.6 4439 
31.7 5098 
20.8 3345 
35.1 5645 
32.0 5147 
30.9 4970 
34.2 5500 
41.6 6691 
27.4 4407 
30.5 4905 
26.4 4246 
32.2 5179 
38.6 5919 

143.1 23023 
128.0 20594 
118.6 19071 
153.3 24694 
130.7 21027 
154.9 24922 
119.0 19143 
108.9 17527 
115.2 18535 
131.0 21075 

45.2 7266 
63.9 10284 
54.7 8794 
54.9 8839 
60.4 9711 
48.8 7855 
43.6 7006 
47.1 7572 
53.2 8458 
50.9 8196 

116.9 8794 
103.1 16575 
103.8 16689 
115.5 18580 
112.1 18037 

-3.6 -74 
-11.9 -239 

-5.1 -102 
10.5 212 

5.1 102 
6.7 229 
4.9 167 
6.4 219 
4.8 164 

-1.6 -54 
4.6 92 
0.2 3 
1.7 23 
6.6 133 
1.7 34 

-0.4 -7 
4.8 96 

10.7 215 
9.4 188 
7.7 154 

10.2 350 
14.1 484 
13.9 478 
15.7 537 

99 339 
16.2 554 
15.9 544 
10.7 355 
15.9 547 
12.8 438 
10.4 210 
26.6 535 
24.2 487 
10.3 206 

9.5 191 
16.8 339 

5.4 109 
7.9 161 
6.4 219 
4.8 164 

12.1 415 
7.9 270 

11.2 382 
8.3 282 
9.7 332 

tI 

1: 2,418,88 
I, 

1: 1,385,659 
U 

ý, 

1: 2,827,48E 

to 



A. 6 

126 
1.27 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 

rl 

119.9 
it 114.7 

99.2 
" 100.0 
it 127.4 

1: 32876j740 150.2 
145.7 

of 136.7 
115.4 

"" 107.8 
114.0 
103.4 

" 165.2 
121.8 
139.2 

1: 1,302,777 88.5 
of 62.8 
if 69.9 
it 57.0 
if 64.3 
It 84.4 
it 62.5 
of 86.0 
it 62.5 
it 63.1 

19288 12.5 427 
18452 11.3 388 
15955 12.5 428 
16084 6.8 234 
20491 7.7 263 
24158 17.3 593 
23434 12.1 414 
21987 13.3 455 
18561 12.9 442 
17338 12.6 431 
18334 16.4 561 
16631 9.8 334 
21074 15.7 538 
19590 16.3 558 
22389 16.0 548 
21347 14.1 483 
10101 6.8 232 
11243 - 8.8 301 

9168 6.3 215 
10336 10.7 366 
13575 12.5 428 
10062 4.2 143 
13671 2.7 92 
10052 3.8 130 
10149 4.0 137 



A. 7 

RESPIRATION-DATA AT 100 C 

No/ml M. C. V. 
µm x10 

02/indiv/h. 4 02/µm3/h. r_9 
µt x 10 µl x 10 

1540 105.0 2.56 2.43 

1966 122.0 2.01 1.64 
2608 135.0 2.43 1.80 
1962 154.0 2.40 1.54 

4598 137.0 2.08 1.50 

4515 71.0 1.00 1.39 

8306 92.0 1.54 1.66 

3412 35.5 1.41 3.97 
6838 68.0 1.27 1.86 
1938 120.0 2.91 2.40 
5276 110.0 2.09 1.89 
7336 59.0 1.37 2.45 

4566 35.5 0.93 -2.58 
7534 43.0 0.91 2.11 

2306 78.0 2.23 2.85 

6500 121.0 1.19 0.96 

4023 149.0 2.62 1.75 

5765 38.0 0.81 2.11 
3102 79.0 1.37 1.72 
2053 36.0 2.75 7.62 

each figure represents the mean of 7 experiments 



A. 8 

RESPIRATION DATA AT 15°C 

p. 

C 

No/ml 
M. G. V. 3 
pm x10 

02/indiv/ .r 
µtx10 

02/µm3 
gtx10 

3970 37.0 2.13 5.75 

3644 59.0 1.66 2.80 

4268 61.5 1.48 2.40 

7846 39.0 0.91 2.33 

6450 39.5 1.27 3.21 

4798 40.5 1.54 - 3.80 

4480 70.0 1.94 2.76 

3918 20.5 1.41 6.86 

4192 22.2 1.57 7.06 

1312 119.0 2.89 3.41 

2206 22.0 1.91 8.67 

5416 69.0 2.10 3.06 

2640 104.5 2.72 3.59 

1584 119.0 3.89 3.32 

3202 144.5 3.00 3.09 

8030 37.0 1.23 3.32 

2690 66.0 2.61 3.93 

8918 37.0 0.77 2.08 

3716 32.0 1.84 5.47 

6316 34.0 1.72 4.97 

each figure represents the mean of 7 experiments 



A. 9 

RESPIRATION DATA AT 20°C 

No/ml 
M. C. V. 
µm3 x103 

02/indi_4hr 
µex10 

02/µm3 
µex10 

3096 34.0 2.54 7.48 

3572 30.5 2.35 7.68 

4870 101.5 2.58 2.54 

4194 66.0 1.95 1.38 

4330 101.0 1.14 1.12 

3166 130.0 2.68 2.04 

2844 140.0 2.03 1.43 

4768 91.0 1.47 1.60 

8514 7.5 0.43 5.83 

4654 37.5 1.63 4.36 

3870 37.0 0.87 2.36 

1896- 35.0 3.05 8.72 

3076 140.5 3.34 2.35 

2734 145.5 4.70 3.21 

1248 50.0 6.27 12.53 

1694 52.0 3.63 6.51 

5742 69.0 1.34 2.49 

7182 83.0 1.18 1.40 

7074 29.0 0.86 3.40 

6292 79.0 1.91 2.35 

each figure represents the mean of 7 experiments 



A .. 1O 

FLEDON-HEIG INVERTEBRATE SALINE 
in 1 litre distilled water 

NaCl 7"Og 

KC1 0.3g 

CaCl2 0. lg 

NaHCO3 1.5g 

MgSO4 0.3g 


