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1 Introduction

In a 1968 article, ‘Probability Measures of Fuzzy Events’, Lotfi Zadeh pro-
posed accounts of absolute and conditional probability for fuzzy sets (Zadeh,
1968). Where P is an ordinary (“classical”) probability measure defined on
a σ-field of Borel subsets of a space X, and µA is a fuzzy membership func-
tion defined on X, i.e. a function taking values in the interval [0, 1], the
probability of the fuzzy set A is given by

P (A) =

∫

X

µA(x) dP .

The thing to notice about this expression is that, in a way, there’s nothing
“fuzzy” about it. To be well defined, we must assume that the “level sets”

{x ∈ X : µA(x) ≤ α}, α ∈ [0, 1],

are P -measurable. These are ordinary, “crisp”, subsets of X. And then
P (A) is just the expectation of the random variable µA. — This is entirely
classical. Of course, you may interpret µA as a fuzzy membership function
but really we have, if you’ll pardon the pun, in large measure lost sight of
the fuzziness.
So you might ask:

• is this the only way to define fuzzy probabilities?

The answer, I shall argue, is yes.
Defining conditional probability Zadeh offered

P (A|B) =
P (AB)

P (B)
, when P (B) > 0,
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where
∀x ∈ X µAB(x) = µA(x)× µB(x).

One might wonder:

• is this the only way to define conditional probabilities?

The answer, I shall suggest, is no, it is not the only way but it is the only
sensible way.
Zadeh assigns probabilities to sets. What I offer here, using Dutch Book

Arguments, is a vindication of Zadeh’s specifications when probability is
assigned to propositions rather than sets. (But translation between proposi-
tion talk and set and event talk is straightforward. It’s just that proposition
talk fits better with betting talk.)

2 Bets and many-valued logics

I apply “the Dutch Book method”, as Jeff Paris calls it (Paris, 2001), to
fuzzy and many-valued logics that meet a simple linearity condition. I shall
call such logics additive.

Additivity

For any valuation v and for any sentences A and B

v(A ∧B) + v(A ∨B) = v(A) + v(B)

where ‘∧’ and ‘∨’ the conjunction and disjunction of the logic in question.
Additivity is common: the Gödel, Łukasiewicz, and product fuzzy logics

are all additive, as are Gödel and Łukasiewicz n-valued logics.
In order to employ Dutch Book arguments, we need a betting scheme

suitably sensitive to truth-values intermediate between the extreme values
0 and 1. Setting out the classical case the right way makes one generalization
obvious.
Rather than betting odds, which are algebraically less tractable, we use,

as is standard, a “normalized” betting scheme with fair betting quotients.
Classically, with a bet on A at betting quotient p and stake S:

• the bettor gains (1− p)S if A;

• the bettor loses pS if not-A.

Taking 1 for truth, 0 for falsity, and v(A) to be the truth-value of A, we can
summarise this scheme like this:

the pay-off to the bettor is (v(A) − p)S.
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And now we see how to extend bets to the many valued case: we adopt the
same scheme but allow v(A) to have more than two values. The slogan is:
the pay-off is the larger the more true A is.1

Using this betting scheme, we obtain Dutch Book arguments for cer-
tain seemingly familiar principles of probability, seemingly familiar in that
formally they recapitulate classical principles.

• 0 ≤ Pr(A) ≤ 1;

• Pr(A) = 1 when |= A;

• Pr(A) = 0 when A |= ;

• Pr(A ∧B) + Pr(A ∨B) = Pr(A) + Pr(B).

Here ∧ and ∨ are the conjunction and disjunction, respectively, of an addi-
tive fuzzy or many-valued logic.
Other principles that may or may not be independent, depending on the

logic:

• Pr(A) + Pr(¬A) = 1 when v(¬A) = 1− v(A);

• Pr(A) ≥ x when, under all valuations, v(A) ≥ x;

• Pr(A) ≤ x when, under all valuations, v(A) ≤ x;

• Pr(A) ≤ Pr(B) when A |= B.

I’ll show how two of the arguments go as there’s an interesting connection
with the standard Dutch Book arguments used in the classical, two-valued
case.
We let x range over the possible truth-values (which all lie in the interval

[0, 1]). Clearly, for given p, we can choose a value for the stake S that makes

Gx = (x− p)S

negative, for all values of x in the interval [0, 1], if, and only if, p is less than
0 or greater than 1. Hence

0 ≤ Pr(A) ≤ 1.

1The suggested pay-off scheme is, of course, only the most straightforward way to im-
plement the slogan. One could distort truth values: take a strictly increasing function
f : [0, 1]2 → [0, 1] with f(0) = 0, f(1) = 1, and take pay-offs to be given by (f(v(A))−p)S.
Analogously, Zadeh could have taken

∫

X
f(µA(x)) dP to define distorted probabilities. —

And the point is that such “probabilities” are distorted for when f is not the identity
function it may be that P (A) < c even though µA(x) > c, for all x ∈ X.
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So far so good, but here’s the cute bit:

Gx = xG1 + (1− x)G0,

so Gx is negative for all values of x ∈ [0, 1] if, and only if, G1 andG0 are both
negative. From the classical case, we know that the necessary and sufficient
condition for the latter is that p lie outside the interval [0, 1]. It suffices to
look at the classical extremes to fix what holds good for all truth-values in
the interval [0, 1].
Next we consider four bets:

1. a bet on A, at betting quotient p with stake S1;

2. a bet on B, at betting quotient q with stake S2;

3. a bet on A ∧B, at betting quotient r with stake S3;

4. a bet on A ∨B, at betting quotient s with stake S4.

We assume that for all allowed values of v(A) and v(B),

v(A ∧B) + v(A ∨B) = v(A) + v(B) and v(A ∧B) ≤ min{v(A), v(B)}.

Then, where x, y, and z are the truth-values of A, B and A ∧B respec-
tively, the pay-off is

Gx,y = (x− p)S1 + (y − q)S2 + (z − r)S3 + ((x+ y − z)− s)S4.

This can be rewritten as

Gx,y = zG1,1 + (x− z)G1,0 + (y − z)G0,1 + (1− x− y + z)G0,0.

The co-efficients are all non-negative and cannot all be zero. Thus Gx,y is
negative, for all allowable x, y, and z, just in case G1,1, G1,0, G0,1, and
G0,0 are all negative. From the standard Dutch Book argument for the two-
valued, classical case, we know this to be possible if, and only if, p+q 6= r+s.
Hence

Pr(A ∧B) + Pr(A ∨B) = Pr(A) + Pr(B).

3 The classical expectation thesis for finitely-many-valued
Łukasiewicz logics

As an initial vindication of Zadeh’s account, we find that in the context
of a finitely-many-valued Łukasiewicz logic, all probabilities are classical
expectations. That is, the probability of a many-valued proposition is the
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expectation of its truth-value and that a proposition has a particular truth-
value is expressible using a two-valued proposition. So in this setting, in
analogy with Zadeh’s assignment of absolute probabilities to fuzzy sets, all
probabilities are expectations defined over a classical domain.
In all Łukasiewicz logics, conjunction and disjuction are evaluated by the

functions max{0, x+ y − 1} and min{1, x+ y}, respectively.
Employing Łukasiewicz negation and one or more of Łukasiewicz con-

junction, disjunction, and implication, one can define a sequence of n + 1
formulas of a single variable, Jn,0(p), Jn,1(p), . . . , Jn,n(p), which have this
property (Rosser & Turquette, 1945): in the semantic framework of (n+1)-
valued Łukasiewicz logic it is the case that for every formula A, for all k,
0 ≤ k ≤ n, and for every valuation v,

v(Jn,k(A)) = 1, if v(A) =
k

n
;

v(Jn,k(A)) = 0, if v(A) 6= k

n
.

In the semantic framework of (n + 1)-valued Łukasiewicz logic, for all sen-
tences A,

|= Jn,0(A) ∨Ł Jn,1(A) ∨Ł · · · ∨Ł Jn,n(A) and

Jn,i(A) ∧Ł Jn,j(A) |=, 0 ≤ i < j ≤ n. (*)

From the probability axioms, we have, for all sentences A, that

∑

0≤i≤n

Pr(Jn,i(A)) = 1.

The propositions of the form Jn,i(A) are two-valued, so, (n + 1)-valued
Łukasiewicz logic reducing to classical logic on the values 0 and 1, the logic
of these propositions is classical. Thus, when restricted to these proposi-
tions and their logical compounds, the probability axioms give us a classical,
finitely additive, probability distribution. What we show next is that this
classical probability distribution determines the probabilities of all proposi-
tions in the language.

Theorem 2 (Classical Expectation Thesis). In the framework of (n + 1)-
valued Łukasiewicz logic,

Pr(A) =
1

n

∑

0≤i≤n

iPr(Jn,i(A)).

Proof. From (*) and the two-valuedness of the Jn,i(A)’s we have

A =‖= (A ∧Ł Jn,0(A)) ∨Ł (A ∧Ł Jn,1(A)) ∨Ł · · · ∨Ł (A ∧Ł Jn,n(A)).
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From our probability axioms it follows that logically equivalent propositions
must receive the same probability, so

Pr(A) =
∑

0≤i≤n

Pr(A ∧Ł Jn,i(A)). (†)

We consider two bets, one on A ∧Ł Jn,k(A) at betting quotient p and
stake S1, the other on Jn,k(A) at betting quotient q with stake S2. The
pay-offs are:

G= k
n

=

(
k

n
− p

)

S1 + ((1− q)S2) when A has truth-value
k

n
,

G6= k
n

= −pS1 − qS2 when A has truth-value other than
k

n
.

Setting S2 = − k
n
S1 gives a pay-off, independent of the truth-value of

A, of
(

qk
n
− p

)

S1, which can be made negative by choice of S1 provided

p 6= qk
n
. On the other hand, for arbitrary S1 and S2, when p = qk

n
the two

pay-offs are

G= k
n

= (1− q)
[
k

n
S1 + S2

]

when A has truth-value
k

n
, and

G6= k
n

= −q
[
k

n
S1 + S2

]

when A has truth-value other than
k

n
.

These cannot both be negative. Hence

Pr(A ∧Ł Jn,k(A)) =
k

n
Pr(Jn,k(A)).

Substituting in (†), we obtain:

Pr(A) =
1

n

∑

0≤i≤n

iPr(Jn,i(A)).

Two comments

Firstly, having been obtained by an independent Dutch Book argument, the
Classical Expectation Thesis may seem to be an additional principle. In fact
it is not; it is derivable from our axioms for probability. To show this we have
to introduce a propositional constant, introduced into Łukasiewicz logic by
Słupecki in order to obtain expressive completeness (Słupecki, 1936).
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In the semantics of (n + 1)-valued Łukasiewicz logic, in which all for-
mulas are assigned values in the set

{
0, 1

n
, 2

n
, . . . , n−1

n
, 1

}
, the propositional

constant t has this interpretation:

under all valuations v, v(t) =
n− 1

n
.

Let t1 be the (n − 2)-fold ∧Ł-conjunction of t with itself. For 1 < k ≤ n,
let tk be the (k − 1)-fold ∨Ł-disjunction of t1 with itself. v(t1) = 1

n
and

v(tk) = k
n
. Since we have

tk ∧Ł t1 |=, 1 ≤ k < n, and

|= tn,

from our probability axioms we obtain:

Pr(tk) = kPr(t1), 1 ≤ k ≤ n, and

Pr(tn) = 1,

hence

Pr(tk) =
k

n
, 1 ≤ k ≤ n.

Using the ti’s we can derive the Classical Expectation Thesis. (I’ll skip the
details here.)
Secondly, the Dutch Book argument for the Classical Expectation Thesis

goes through with any notion of conjunction for which v(A&B) = v(A)
when v(B) = 1 and v(A&B) = 0 when v(B) = 0. Also, the Jn,i(A)’s
being truth-functional, the Classical Expectation Thesis holds good of every
proposition in the semantic framework, not just those expressible using the
Łukasiewicz connectives.

4 The extension to infinitely many truth-values (a sketch)

For any rational number x in the interval [0, 1], there is a formula φ(p) of a
single propositional-variable p, constructed using Łukasiewicz negation and
any one or more of Łukasiewicz conjunction, disjunction, or implication,
such that, under any valuation taking values in [0, 1], v (φ (A/p)) = 0 if
v(A) ≤ x and v (φ (A/p)) > 0 otherwise (McNaughton, 1951).
Employing the Gödel negation,2 then, we have,

2The Gödel negation is, to be sure, not usually taken to be part of the vocabulary
of the Łukasiewicz logics. Semantically, however, it can be defined in the Łukasiewicz
fuzzy/many-valued frameworks as the external negation that maps 0 to 1 and all other
values to 0.
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• for each interval [0, x] with x rational, a formula J[0,x](A) that takes
the value 1 under any valuation v for which v(A) ≤ x and otherwise
takes the value 0;

• for each half-open interval (x, y] with rational endpoints x and y, x <
y, a formula J(x,y](A) that takes the value 1 under a valuation v when
v(A) ∈ (x, y] and otherwise takes the value 0.

Given a strictly increasing, finite sequence x0, x1, . . . , xn−1 of rational
numbers in the open interval (0, 1), consider the family of n+ 1 bets:

• a bet on A at betting quotient q with stake S;

• a bet on J[0,x1](A) at betting quotient p1 with stake S1;

• a bet on J(xi−1,xi](A) at betting quotient pi with stake Si, 1 < i < n;

• a bet on J(xi,1](A) at betting quotient pn with stake Sn.

∑

2≤i≤n

xi−1 Pr(J(xi−1,xi](A)) ≤ Pr(A) ≤

≤ x1 Pr(J[0,x1](A)) +
∑

2≤i≤n

xi Pr(J(xi−1,xi](A)),

where xn = 1. So by taking finer and finer partitions we can more closely
approximate the probability of A from above and below. This may not quite
do to fix Pr(A) exactly. For that we may also need the probabilities of at
most a countable infinity of (two-valued) statements of the form

v(A) ≤ x

where x is an irrational number.3

With these in hand, we then find that

Pr(A) =

∫ 1

0
xdFA(x),

where FA is the ordinary, “classical” distribution function determined by
the probabilities of the J[0,x](A)’s, J(x,y](A)’s and however many v(A) ≤ x’s
with x irrational we have used.
By introducing a countably infinite family of logical constants, we can

derive this classical representation from the previously given principles of
probability together with the principle

3Recall Zadeh’s assumption regarding the P -measureability of “level sets”.
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• for any proposition A logically constrained to take only the values 0
and 1 and for rational values of x in the interval [0, 1], Pr(tx ∧ A) =
xPr(A),

where tx takes the value x under all valuations v.
The really neat feature of infinitely many-valued Łukasiewicz logics is

that this principle is derivable from the basic principles

• 0 ≤ Pr(A) ≤ 1;

• Pr(A) = 1 when |= A;

• Pr(A) = 0 when A |= ;

• Pr(A ∧Ł B) + Pr(A ∨Ł B) = Pr(A) + Pr(B).

5 Conditional probabilities

In the classical setting, a bet on A conditional on B is a bet that goes ahead
if, and only if, B is true and is then won or lost according as to whether
A is true or not. The pay-offs for such a conditional bet with stake S at
betting quotient p are:

• the bettor gains (1− p)S if A and B;

• the bettor loses pS if not-A and B;

• the bettor neither gains nor loses if not-B.

We can summarise this betting scheme like this:

v(B)(v(A) − p)S.

And so, as with ordinary bets, we now know one way to extend the
scheme for conditional bets on classical, two-valued propositions to many-
valued propositions.
A straightforward Dutch Book argument, which again piggy-backs on

the proof in the two-valued case, then tells us that

Pr(A ∧× B) = Pr(A|B)× Pr(B)

where
v(A ∧× B) = v(A) × v(B).

— Allowing for the change of setting, just what Zadeh said.
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You can, if you are so minded, generalize the classical scheme using any
many-valued or fuzzy conjunction that is “classical at the extremes”:

(v(A ∧B)− v(B)p)S.

A Dutch Book argument — in all essentials, the same Dutch Book argument
— will then deliver:

Pr(A ∧B) = Pr(A|B)× Pr(B).

However, Pr(·|B) satisfies the axioms for an absolute probability measure
only when the product conjunction, ∧× is used.4
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