
THE IMPACT OF n-3 PUFA SUPPLEMENTATION ON HUMAN SKELETAL MUSCLE 

METABOLISM. 

 

 

 

By 

 

CHRIS MCGLORY. 

 

A thesis submitted to the University of Stirling in partial fulfilment for the degree of  

Doctor of Philosophy. 

 

 

 

 

 

 

 

 

 

 

 

Health and Exercise Sciences Research Group. 

 

April 2014.



DEDICATION 
 

I dedicate it all to the loving memory of my best friend… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chris McGlory: Ph.D. Thesis   i 

ABSTRACT 
 

The time course of this increase in muscle n-3 PUFA composition and anabolic protein 

expression is currently unknown. In Chapter 2 of this thesis ten healthy male participants 

consumed 5g.d-1 of n-3 PUFA-enriched fish oil for 4 weeks. Muscle biopsies samples were 

collected in the fasted, rested state 2 weeks prior, immediately before (Week 0), at Week 1, 

Week 2 and Week 4 after initiation of fish oil supplementation for assessment of changes in 

lipid composition and expression of anabolic signalling proteins over time. Muscle lipid 

profile, (% total n-3 PUFA/total fatty acids) increased from W0 to W2 (3.8 ± 0.2 to 5.1 ± 0.3 

%) and continued to rise at W4 (6.7 ± 0.4 %). Total protein content of FAK increased from 

W0 to W4 (3.9 ± 1.5 fold) whereas total mTOR was increased from W0 at W1 (2.4 ± 0.6 

fold) with no further significant increases at W2 and W4. For the first time this study 

demonstrates that oral fish oil consumption results in an increase of n-3 PUFA levels in 

human skeletal muscle that is associated with increases in the expression of anabolic 

signalling proteins.  

 
 
Our understanding of the anabolic signalling process that underpins muscle protein synthesis 

has been advanced by the application of the WB technique. However, the semi-quantitative 

nature and poor dynamic range associated with the WB technique may lead to incongruence 

regarding the molecular response of skeletal muscle to anabolic stimulation. Chapter 3 of this 

thesis developed and applied a quantitative in vitro [γ-32P] ATP kinase assay (KA) alongside a 

traditional WB methodology to assess p70S6K1 signalling responses in human skeletal 

muscle to RE and protein feeding. Following validation in tissue culture with rapamycin and 

optimization of the assay in human skeletal muscle, this methodology was tested in a 

physiologically relevant context. In this regard, six males performed unilateral resistance 

exercise (RE) followed by the consumption of 20 g of protein. Skeletal muscle biopsies were 
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obtained at pre-RE, at 1 h and 3 h post-RE. In response to RE and protein consumption, 

p70S6K1 activity was significantly increased from pre-RE at 1 h and 3 h post-RE (8.84 ± 0.78 

to 17.18 ± 2.62 and 15.62 ± 3.12 µU/mg). However, phosphorylated p70S6K1thr389 was not 

significantly elevated. To assess if a combined stimulus of RE and feeding can influence 

AMPK activity we directly measured AMPK activity. AMPK activity was suppressed from 

pre-RE at 3 h post-RE (24.15 ± 1.6 to 15.64 ± 1.07 mU/mg), whereas phosphorylated 

ACCser79 was unchanged. These data therefore highlight the utility of the KA to study skeletal 

muscle plasticity.  

 
Previous studies have shown that ingestion of n-3 PUFA potentiates the phosphorylation of 

mTORC1 and associated kinases in response to nutrition. However, no study has identified 

whether n-3 PUFA supplementation potentiates anabolic kinase activity when RE is 

performed prior to nutrient provision. In Chapter 4 of this thesis, twenty healthy males 

consumed 5g.d-1 of either fish oil (FO) or coconut oil (CO) capsules for 8 weeks. Muscle 

biopsy samples were collected in the fasted, rested state before and after 8 weeks of 

supplementation for assessment of changes in lipid composition. Following 8 weeks of 

supplementation muscle samples also were obtained at rest (Rest), post RE in both the 

exercise leg (Post-RE) and the rested leg (Pre-FED) and also at 3 h post RE and protein 

feeding from both the exercise leg (3 h post-REF) and rested leg (3 h post-FED). There was a 

2-fold increase in muscle (5.53 ± 0.3 to 11.16 ± 0.45 % of total fatty acids) n-3 PUFA 

composition after supplementation in the FO group but no change in the CO group. Following 

supplementation there was an increase in p70S6K1 activity at 3 h post-REF from Rest in the 

CO group (5.6 ± 1.4 to 12.2 ± 2.1 µU/mg) but no change in the FO group. In the CO group, 

AMPKα2  was  significantly  increased  at  Post-RE from Rest (3.7 ± 0.7 to 9.9 ± 2.0 mU/mg). 

These data show that 8 weeks of n-3 PUFA enriched fish oil supplementation suppresses the 

activity of p70S6K1 in response to RE and protein feeding.  
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CHAPTER 1 GENERAL INTRODUCTION 
 

 

1.0 Introduction 

 
Skeletal muscle plays a critical role in locomotion [1], metabolic health [2], and longevity [3]. 

Strategies to enhance skeletal muscle mass and strength therefore have obvious implications 

in both the athletic and clinical settings. One strategy proven to enhance skeletal muscle mass 

is resistance exercise (RE [for abbreviated nomenclature see page viii]). The mechanistic 

basis of RE-induced skeletal muscle hypertrophy is underpinned by the coordinated 

interaction between MPS and MPB. In healthy humans, RE results in a mild stimulation of 

MPB but a greater increase in MPS, such that muscle NPB is increased [4]. However, when 

RE is conducted in close temporal proximity to amino acid feeding, MPS is synergistically 

stimulated potentiating NPB [4-6]. Hence, repeated, episodic bouts of RE and protein feeding 

result in skeletal muscle hypertrophy over time that can occur at a typical rate of ~0.2% per 

day [7-9]. 

 

Although temporal changes in both MPS and MPB underpin skeletal muscle mass 

homeostasis, in many studies only assessments of changes in MPS in response to stimulation 

are made.  The primary reason for choosing to assess rates of MPS in response to perturbation 

is that it is changes in MPS, and not MPB, that ultimately drive increases in skeletal muscle 

mass. Support for this contention emanates from data that demonstrate in response to 

stimulation, there is a significant (~80%) increase in MPS with minimal associated changes in 

MPB [5,10,11]. Moreover, the acute response of MPS to RE and feeding is known to be 

predictive of long-term increases in skeletal muscle mass [12]. However, it has been shown 

that some forms of dietary intake are known to affect MPB but these data are scarce [13]. 



General Introduction   2 

 

Another reason that data pertaining to changes in MPB with nutrition and exercise are few is 

that assessing MPB, particularly during exercise, is technically challenging [14]. The 

requirement for a steady state rate of blood flow is oftentimes a prerequisite for the 

assessment of MPB [15] and therefore difficult during exercise. As such, it is important not to 

completely discount the role of MPB when evaluating the efficacy of an exercise intervention 

in studies that have assessed MPS alone. 

 

In addition to amino acids, other nutritional interventions also may enhance the adaptive 

response to RE. Indeed, data from cell [16], rodent [17,18] and human models [19-22] all 

reveal a potential anabolic influence of n-3 PUFA on skeletal muscle. Studies conducted in 

rodents have shown that diets rich in n-3 PUFA can attenuate muscle atrophy during 

immobilisation [17] as well as enhancing anabolic signalling events [23]. Furthermore, two 

recent studies in humans from the same laboratory show that supplementing humans with n-3 

PUFA-enriched fish oil for 8 weeks potentiates MPS in response to a hyperaminoacidemic-

hyperinsulinemic clamp [21,22]. Those authors speculated that the anabolic influence of n-3 

PUFA supplementation was related to changes in the n-3 PUFA composition of skeletal 

muscle that were induced by n-3 PUFA supplementation. However, the exact time course of 

the change in skeletal muscle lipid composition associated with n-3 PUFA supplementation 

remains unknown. In addition, no study has adequately assessed the impact of altered n-3 

PUFA muscle lipid profiles on human skeletal muscle anabolism in response to a combined 

stimulus of RE and protein feeding.  

 

Although a wealth of research now exists characterising the impact of RE and various 

nutritional interventions on muscle anabolism [4,7,22,24-27], the molecular mechanisms that 

underpin these adaptive responses are yet to be fully elucidated. What is known is that, in the 

context of MPS, a series of phosphorylation cascades involving the mTORC1/p70S6K1 
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signalling pathway play a crucial role [28-30]. These, along with other associated signalling 

events, facilitate the binding of ribosomes to mRNA [31,32], elongation of polypeptides and 

incorporation of the complete protein into skeletal muscle [4,33]. Under basal conditions 

ribosomes are positioned approximately 100 nucleotides apart on the mRNA [32] but in 

response to stimulation they can stack 27-30  nucleotides apart [34]. It is for this reason that 

translation initiation is widely considered the primary rate-limiting step in translational 

control [33]. As a result, many studies examining the impact of interventions on MPS have 

focused on translation initiation. Many measures of skeletal muscle anabolism revolve around 

these processes and it is therefore crucial to the rationale of this thesis that an overview of 

translational control is provided. 

 

In this chapter the reader is initially presented with a brief overview of translation initiation as 

well as an outline of the molecular signals that mediate the creation of new muscle proteins in 

response to RE and amino acids. Subsequently, a critical review of existing studies that 

characterise the impact of n-3 PUFA on muscle anabolic responses will be made. In this 

regard, the aim of this chapter is to provide the reader with an introduction and rationale as to 

the nature of the studies contained within this thesis. This chapter will review human studies 

but where appropriate, data from other experimental models will be cited to substantiate the 

discussion points.  

 

1.1 Translational control 

 
Translational control can be defined as the molecular events that act in unison to regulate the 

rate of translation of an mRNA [35].  Eukaryotic translation is a complex process 

encompassing a series of intricate molecular events that are broadly divided into three stages: 
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initiation, elongation and termination. As translation initiation is believed to be the major rate-

limiting step of translation [32], translation initiation will be a primary focus of this Chapter. 

 

Translation initiation is regulated by proteins known as eIFs (Figure 1.0), [32]. Initiation 

begins with the binding of eIF3 and eIF1A to the 40S ribosomal subunit (Step 1), [36]. 

Subsequently, eIF2, and GTP-Met-tRNA bind together with the 40S ribosomal subunit (Step 

2).  In  order  to  assemble  on  the  5’  end  of the mRNA the 43S preinitiation complex requires the 

hydrolysis of ATP as well as the binding of a series of proteins contained within the eIF4 

family, (Step 3). Following the formation of the 43S preinitiation complex, eIF4A unwinds 

the secondary structure  in  the  5’UTR  enabling  the  43S  ribosomal  subunit  to  scan  the  UTR  of  

the mRNA until it reaches a start codon [37]. Upon reaching this start codon the 43S subunit 

forms a 48S initiation complex and associated initiation factors are released, a process that is 

mediated by GAP and eIF5, which facilitate hydrolysis of GTP by eIF2 (Steps 4 and 5). Full 

disassociation of initiation factors promotes the joining of the 60S ribosomal subunit and the 

commencement of translation elongation (Step 6). Both eIF2 and eIF4F are then recycled to 

facilitate the next round of translation initiation (Steps 7 and 8) [38]. 
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Figure 1.0 Schematic illustration of the eukaryotic translation initiation pathway redrawn from Merrick [39].  
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1.2 The roles of 4EBP1, p70S6K1 and mTORC1 in translational control 

 
Of critical importance to cap dependant translation is the regulation of eIF4E by 4EBPs [32]. 

Both 4EBPs and eIF4Gs compete for a mutual binding site on eIF4E [40]. It is known that 

unphosphorylated 4EBP1, a member of the 4EBP family, has a high affinity for eIF4E and 

blocks its association with eIF4G thereby inhibiting the formation of the 43S preinitiation 

complex [41]. Liberation of eIF4E occurs when 4EBP1 is phosphorylated on Thr37 and 

Thr46 by an upstream kinase. Free eIF4E then interacts with eIF4G to form the active 

complex eIF4F [42]. Disassociation of 4EBP1 and eIF4E also may stimulate eIF4E 

translocation to the nucleus [43]. Entry of eIF4E into the nucleus is stimulatory to cell growth 

and is strongly associated with cellular transformation [44]. As such, phosphorylation of 

4EBP1 is widely recognised as an important regulatory event in the control of eukaryotic 

protein synthesis.     

 

Another key regulator of protein synthesis is p70S6K1 [30,45]. Indeed, knockout of p70S6K1 

in mice reduces cell size by ~15% [46].  Furthermore, myotubes harvested from p70S6K1 

knockout mice display a reduction in size of ~20% and demonstrate an inability to increase 

myotube diameter in response to stimulation compared to controls [47]. In a classic study by 

Baar and Esser [29], p70S6K1 phosphorylation was shown to be significantly elevated 

following high-resistance contractions in rodents. Moreover, this increase in p70S6K1 

phosphorylation correlated strongly (r=0.998) with the percent change in muscle mass after 6 

weeks of RE training. Data from human studies also corroborate these findings. One study 

demonstrates that RE-induced hypertrophy can be predicted by the acute phosphorylation 

changes in p70S6K1 30 min following the cessation of exercise [48] whereas another shows 

that post-RE p70S6K1 phosphorylation increases with training volume [49], a key 

determinant in the MPS response to RE [50]. The regulation of translation initiation by 

p70S6K1 is through direct phosphorylation of eIF4B [51]. eIF4B facilitates the unwinding of 
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the  5’  UTR  of  mRNA  enabling  binding  of  the  ribosome  to  mRNA  [32]. Moreover, p70S6K1 

is known to enhance peptide elongation by phosphorylating eEF2K relieving the inhibition of 

eEF2K on eEF2 [52]. This indirect activation of eEF2 by p70S6K1 is a key process 

facilitating the translocation step in translation elongation [32].  

 

Another way in which p70S6K1 may influence translational control is through the up 

regulation of ribosomal transcripts. Indeed, distinct to many ribosomal RNAs is a unique 

terminal oligopyrmidine tract sequence (5’TOP).  It  is known that rapamycin supresses the up 

regulation of these transcripts an effect that is blocked by the expression of a rapamycin-

resistant form of p70S6K1 [53]. Interestingly, overexpression of this rapamycin-resistant form 

of p70S6K1 also blocks the phosphorylation of 4EBP1 but not the p70S6K1 substrate S6 

[54]. As such, it appears  that  5’TOP  mRNA  translation  is  primarily  driven  by  p70S6K1  and  

not 4EBP1. However, there are data to show that in transgenic mice, disrupting p70S6K1 has 

little  impact  on  5’TOP  transcription  [55] whilst knock-in of a non-phosphorylatable form of 

S6  in  mice  has  little  impact  on  the  translation  of  5’TOP  mRNAs  [56]. Although, expression of 

dominant  negative  p70S6K1  has  been  shown  to  repress  the  translation  of  5’TOP  transcripts,  

an effect rescued by rapamycin resistant p70S6K1 [57]. Reconciling the contrasting findings 

between studies is difficult due to differences in experimental models and methodologies. As 

such, the role of p70S6K1 in regulating   translation  of  5’TOP  mRNAs   remains   a   subject   of  

conjecture and it appears that more work is required before the mechanisms that underpin 

p70S6K1-mediated   translation   of   mRNAs   that   contain   the   5’TOP   sequence   become   fully  

elucidated.  

 

Both 4EBP1 and P70S6K1 are regulated by a protein complex called mTORC1 (Figure 1.1). 

mTORC1 is an evolutionarily conserved threonine/serine protein kinase that regulates cell 

growth [58], cell proliferation [59], protein synthesis [60] and ribosomal biogenesis [61,62]. 
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mTORC1 is composed of the catalytic subunit mTOR and it's regulatory adapter proteins 

Raptor, mLST8, PRAS40 and an inhibitory protein Deptor [62,63]. mTORC1 can be 

activated by a multitude of cellular cues indicative of nutrient availability and mechanical 

strain [64-66]. Activation of mTORC1 can occur via phosphorylation of PKB by PDK1 [67]. 

In response to insulin, PDK1 and PKB translocate to the membrane where PDK1 

phosphorylates PKB [68]. Phosphorylation of PKB has been shown to directly activate 

mTORC1 on Ser2448 [67] or indirectly activate mTORC1 via TSC1/2 [69]. Although PKB 

has been shown to regulate mTORC1 activation, the role of PKB in mediating skeletal MPS 

in humans is currently a topic of intense debate [70]. 

 

Another kinase that has been implicated in the regulation of mTORC1 is AMPK [71]. AMPK 

is a key sensor of cellular energy status [72]. AMPK is a heterotrimeric complex that consists 

of  a  catalytic  α  subunit  and  two  distinct  regulatory  β  and  γ subunits [73]. In humans, two to 

three   isoforms   of   each   subunit   exist   (α1,   α2,   β1,   β2,  γ1, γ2 and γ3) each with differential 

regulatory functions [74,75]. The kinase activity of AMPK is dependent upon the 

phosphorylation of   the   Thr172   site   located   in   the   α   subunits   [74]. AMPK activation is 

activated in response to contraction due to perturbations in the ATP:AMP [76] that may exert 

a repressive effect on mTORC1 activity [77]. Indeed, AMPK phosphorylates TSC2 on 

Ser1345 thus inhibiting the association of Rheb with mTORC1 that subsequently results in a 

reduction in mTORC1 activity [77]. Furthermore, phosphorylation of the mTORC1 adaptor 

protein Raptor at Ser792 by AMPK also inhibits its association with mTORC1 [78]. Data in 

humans have demonstrated that endurance exercise increases AMPK phosphorylation that is 

associated with a suppression of RE-induced increases in mTOR phosphorylation [79]. It 

could be contended that exercise bouts that induce the greatest degree of AMPK 

phosphorylation may therefore exert a diminishing impact on muscle anabolism in response to 

anabolic stimulation. However, it is important to reiterate that changes in AMPK 
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phosphorylation are dependent upon the cellular energy status of the muscle [80]. Thus, 

strategies such as feeding may alter the magnitude and amplitude of AMPK activation and 

therefore the adaptive response to exercise.  

 

A significant amount of our knowledge regarding the multiple biological roles of mTORC1 

has come from pharmacological/knockout studies in mice and cell-based systems [60,81]. 

From this body of work it has been established that the mTORC1 associated protein Raptor, 

binds to p70S6K1 on its TOS signalling motif to bring it in close proximity to mTOR to then 

become phosphorylated on Thr389 [82]. The phosphorylation of p70S6K1 on Thr389 results 

in the creation of a docking site for PDK1 allowing PDK1 to phosphorylate p70S6K1 on 

Thr229 [56,83], thus fully activating p70S6K1. Similar to p70S6K1, mTORC1 also targets 

4EBP1 at Thr37/46 [32,42]. As previously discussed, phosphorylation at these sites causes 

4EBP1 to disassociate from eIF4E thereby facilitating the creation of the active eIF4F 

complex [32]. These studies taken together with other contemporary articles [62,63] highlight 

the critical role of mTORC1 signalling in the regulation of cell size and skeletal muscle 

growth.  

 
Figure 1.1 Schematic illustration of mTORC1-mediated regulation of translation initiation 
redrawn from Gkogkas et al. [35].  
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1.3 The impact of resistance exercise on anabolic signalling 

 
The impact of RE on the signalling pathways described above is now a common theme of the 

exercise sciences [84-86]. The majority of studies show the phosphorylation, and presumably 

activation [87], of the mTORC1 signalling pathway is increased following an acute bout of 

RE [88,89]. The activation of mTORC1, p70S6K1 and 4EBP1 occurs within minutes [49,90] 

and is sustained for hours [88] following the cessation of exercise that is associated with 

elevations in MPS [88]. The assessment of the activation of mTORC1 and its associated 

proteins in response to RE is therefore used to gain a mechanistic insight into the molecular 

regulation of RE-induced skeletal muscle hypertrophy [25,91,92].  

 

Despite the wealth of data indicating a role for mTORC1 signalling in MPS in humans, to 

date, the literature has been largely descriptive. However, in a unique experiment, one group 

provides strong evidence to show that mTORC1 signalling is essential to the functional 

regulation of RE-induced increases in MPS [30]. In this study, the authors treated human 

participants with rapamycin (a highly specific mTORC1 inhibitor) prior to a bout of high-

intensity-RE. As hypothesised, treatment with rapamycin resulted in no increase in MPS 

during the 2 h post-RE recovery period. Rapamycin also inhibited mTOR phosphorylation 

and completely blocked the phosphorylation of p70S6K1 at Thr421/Ser424 as well as eEF2 at 

Thr56 1 h post-RE. However, in the control group, there was a significant increase in MPS of 

~40% that was accompanied by a ~5-fold increase in p70S6K1 phosphorylation at Thr389 

and a ~25% reduction in eEF2 phosphorylation at Thr56 1 h post-RE. To this author’s 

knowledge, this single study is the only one to employ rapamycin in a human exercise trial.  

 

The use of rapamycin in humans provides strong evidence that mTORC1 signalling is an 

active regulator of RE-induced increases in MPS. Although, how anabolic stimuli such as RE, 

regulate mTORC1 activity is not fully understood. Some data have emerged to suggest that 
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localisation of mTOR and its associated signalling proteins to the lysosome membrane may 

play a role [93,94]. In a recent study, Jacobs et al. [65] show that eccentric RE in mice results 

in the phosphorylation of TCS2 on RxRxxS/T consensus motifs. It is known that TSC2 

possesses a GTPase activating protein that converts the mTORC1 activator Ras-homologue 

enriched in brain (Rheb) from a GTP to a GDP bound state that inhibits mTORC1 activation 

[95]. However, growth factor-mediated phosphorylation of TCS2 releases its inhibition on 

Rheb enabling it to activate mTOR [96]. The key finding of Jacobs et al. [65] was that the 

phosphorylation of TSC2 also resulted in the movement of TSC2 away from the lysosome 

towards the cytoplasm, therefore disassociating itself from Rheb. Furthermore, these authors 

show that at 1 h post-RE mTOR moves towards the lysosome where it interacts with Rheb to 

form the active mTORC1 complex. As such, this study provides novel insights as to the 

spatial and temporal arrangement of cellular signalling processes following a bout of RE.  

 

The studies of Drummond et al. [30] and Jacobs et al. [65] represent significant advancements 

in our understanding of the molecular events that mediate skeletal muscle hypertrophy. Yet, 

despite these advancements, the key mechanical signal that transmits RE-induced tension to 

the translational machinery remains elusive. One potential candidate is FAK. FAK is a 

tyrosine kinase protein [97] and is situated in the sarcolemma linking the extracellular matrix 

to the cytoplasmic cytoskeleton [97]. FAK phosphorylation is known to be sensitive to 

loading of the muscle. Indeed, the total protein content and activity of FAK has been shown to 

increase in response to overload in chicken anterior latissimus dorsi [98]. In humans, 

following 10 days of disuse atrophy, FAK phosphorylation in the postabsorptive state is 

decreased by ~30% that is associated with a concomitant reduction in myofbrillar MPS [99]. 

Furthermore, 14 days of immobilisation also results in a ~23% decrease in FAK 

phosphorylation along with a decline in muscle cross sectional area and peak isometric torque 

of ~5% and 25% respectively [100]. The exact role of FAK in mediating these changes in 
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skeletal muscle is currently unknown. Mechanistically, there are data to suggest that FAK 

phosphorylation may act to target p70S6K1 [101], perhaps via TSC2-mTORC1 signalling 

[102]. Thus, FAK could potentially act as the mechanical signal that results in TSC2 

localisation away from the lysosome [103] but  it is highly plausible that there are a multitude 

of other signals which lie upstream of mTORC1, in addition to FAK, that could modulate RE-

induced perturbations in anabolic signalling processes [85]. 

 

1.4 The impact of amino acid feeding on anabolic signalling 

 
Amino acid provision, particularly of the essential amino acids, results in a robust increase in 

MPS [45]. An increase in MPS in response to amino acid provision is accompanied by 

elevations in the activation of proteins contained within the mTORC1-p70S6K1 signalling 

axis [27,104]. However, such studies rely on data that are largely associative and fail to 

provide an adequate cause and effect relationship. In an adapted version of their original 

rapamycin experiment, Dickinson and colleagues [45] employed rapamycin to identify if 

putative increases in MPS to amino acid provision also are mTORC1 dependent. The primary 

finding of this investigation was that prior treatment with rapamycin completely blocked 

increases in MPS during a 2 hour postabsorptive state.  The authors also identified that 

rapamycin blocked increases in mTOR phosphorylation at Ser2448 at 2 hour post-ingestion as 

well as attenuating the increase in p70S6K1 and 4EBP1 phosphorylation at 1 hour post-

ingestion. However, it is important to recognise that rapamycin treatment does not completely 

inhibit basal rates of MPS [105]. This finding would therefore suggest there are other, 

unrelated, processes that influence MPS, independent of mTORC1-signalling in response to 

amino acid feeding. [106] 

 

The consumption of amino acids, especially in large doses [27], is known to induce an 

increase in blood insulin concentration [107]. This increase in insulin concentration with 
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amino acids indirectly activates PKB that is associated with increases in MPS [27]. Data from 

Biolo and colleagues [108] provide evidence to assert that in the basal state, insulin has a 

stimulatory impact on MPS. In addition, there are data to show that insulin attenuates MPB 

thus enhancing NPB in the basal state [109].  However, the role of insulin in the regulation of 

post-RE MPS has been questioned [109,110]. Indeed, one study has shown that although 

insulin exerts a stimulatory impact on MPS at rest, this effect is absent during a post-RE 

recovery period [108]. Furthermore, the addition of carbohydrate, which stimulates increases 

in plasma insulin concentration, to a protein-containing drink has no added effect on exercise-

induced increases in MPS [111]. There are studies in cell culture models demonstrating that a 

total absence of insulin inhibits mTORC1 signalling to amino acid provision [112,113] and it 

is known that amino acid-induced changes in mTORC1 signalling are enhanced in the 

presence of insulin [106]. However, in humans the consumption of amino acids results in a 

~3-fold increase in plasma insulin concentration above basal conditions [27,107] and 

increasing plasma insulin concentration 30 times above basal has no enhancing effect on MPS 

even in the presence of hyperaminoacidemia [109]. Furthermore, the stimulatory impact of 

carbohydrate on rates of MPS at rest is far below that as induced by amino acid consumption 

[13] and when considered together, these data would suggest that the mechanisms by which 

amino acids stimulate MPS are independent to insulin action. 

 

There are data to show that amino acids may directly target mTORC1 signalling. Indeed, 

amino acids can influence mTORC1 activity via the class 3 phosphoinositol kinase Vps34 

[112], MAPK43 [114] or direct to eIF2B [60,115]. Alternatively, others have shown in 

C2C12 cells that the amino acid leucine promotes mTOR translocation to the lysosome via 

the Rag-Ragulator complex pathway [93,94,116]. Once at the lysosome mTOR may then 

interact with Rheb to form the active mTORC1. This finding would suggest that amino acids 

influence cellular trafficking of signalling molecules, in addition to direct phosphorylation 
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events. However, the localisation of mTOR to the lysosome is yet to be observed in humans 

and future work is clearly required in order to experimentally address this particular 

observation.  

 

It is well established that performing RE potentiates MPS to protein feeding [5,6,26,91]. One 

study has shown that consuming 25 g of whey protein following a bout of unilateral RE 

results in a ~160% increase in MPS in the rested fed limb but in the fed exercising limb, MPS 

is much greater, ~ 220% above rest [6]. It appears that the potentiation of MPS following RE 

to amino acid provision also is underpinned by concomitant increases in both p70S6K1 and 

mTOR phosphorylation [26,86,88]. Interestingly, it is known that the enhanced anabolic 

response of muscle to amino acids following RE is in fact dose-dependant. In the first study 

of its kind Moore and colleagues [25] show that following a bout of high-intensity RE, MPS 

over a 4 h period increases in a stepwise fashion with graded protein ingestion up until 20 g of 

protein. In extending these findings Areta et al. [26] recently demonstrated that consuming 20 

g of protein every 3 h post-RE is a more superior strategy for optimising MPS over a 12 h 

period compared with either 10 g every 1.5 h or 40 g every 6 h. Collectively, these data 

demonstrate that consuming 20 g of protein immediately post-RE is sufficient to maximally 

stimulate   MPS   for   ≤   4   h   with   excessive   protein   consumption   resulting   in   a   significant  

stimulation of whole-body leucine oxidation [25]. 

 

1.5 The impact of n-3 PUFA on skeletal muscle anabolism 

 
The impact of amino acid ingestion on MPS is well established. However, there is 

comparably less information regarding the impact of other nutritional interventions on human 

muscle. With respect to cardiovascular health the consumption of foods rich in n-3 PUFA 

ingestion is a topic of intense investigation [117-119]. Data from many studies now suggest 

that consumption of foods rich in n-3 PUFA, such as some types of fish, lowers the risk of 
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cardiovascular disease [117], improves cognitive function [120] and enhances insulin 

sensitivity [121]. It appears that the beneficial impacts of n-3 PUFA on human health may be 

related to the anti-inflammatory properties of the n-3 PUFA class of fatty acids, EPA and 

DHA [122]. As a result, diets rich in n-3 PUFA are now recommended by the U.K 

government as means to enhance the general health and well being of the population [123].  

 

Despite the efficacy for n-3 PUFA ingestion to improve cardiovascular health [117], only 

recently has significant research been conducted to examine the potential of n-3 PUFA 

ingestion to influence skeletal muscle metabolism (Table 1.0). An early report from a study in 

growing steers [124] demonstrated that n-3 PUFA supplementation potentiates insulin action 

and induces phosphorylation of the mTOR-p70S6K1 signalling pathway in response to a 

hyperinsulinaemic clamp. More recently, data in rodents have shown that dietary fish oil 

rescues the deleterious loss of skeletal muscle mass during a period of enforced 

immobilisation [17]. In that study the attenuation of muscle mass loss with n-3 PUFA 

supplementation was associated with the phosphorylation of p70S6K1 and similar findings 

have now been replicated in other rodent [18] and cell-based systems [16]. Although these 

data are of interest, the mechanism by which the consumption of n-3 PUFA regulates the 

molecular events that orchestrate skeletal MPS remains largely unknown.  

 

Ingestion of n-3 PUFA raises the n-3 PUFA composition of whole blood [125], adipose tissue 

[123] and that of the skeletal muscle membrane [21,22]. The incorporation of n-3 PUFA into 

the cellular membrane is thought to be at the expense of n-6 PUFA [122,126]. Both n-3 

PUFA and n-6 PUFA serve as substrates for the production of eicosanoid and eicosanoid-like 

mediators [126] that regulate inflammation [127], and other biological processes [126]. One 

such  eicosanoid  is  PGF2α.  PGF2α  is  synthesised  from  an  n-6 PUFA called arachidonic acid 

(AA) and the incorporation of n-3 PUFA into cellular membranes has been proposed to 
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reduce   the  expression  of  PGF2α   [126]. In this regard, extant data show that dietary fish oil 

reduces   the   expression   of   PGF2α   in   rodents   that   is   associated   with   the   inhibition   of   the  

recovery of atrophied skeletal muscle [128].  Additionally,   this   reduction   in   PGF2α   content  

was concomitant to reduced p70S6K1 phosphorylation. Thus, it could be suggested that 

dietary  fish  oil  reduces  PGF2α  content  that  subsequently  serves  to  inhibit  anabolic  signalling  

processes.  

 

However, it is important to recognise that measurement of changes in the lipid profile of 

skeletal muscle were not made in the aforementioned study [128]. This point is particularly 

relevant as increases in human skeletal muscle [21,22] and blood [125] n-3 PUFA 

composition with fish oil supplementation occur in the absence of changes in n-6 PUFA 

composition. These data therefore suggest that there are other, as yet unknown, mechanisms 

by which n-3 PUFA supplementation alters anabolic signalling in human skeletal muscle. In 

addition, it also is interesting to note that one study has shown dietary fish oil inhibits muscle 

hypertrophy during remobilisation [128] whereas others suggest dietary fish oil enhances 

muscle anabolism following nutrition [21,22,32]. It is therefore reasonable to conclude that 

the impact of fish oil supplementation on skeletal muscle may therefore be dependant upon 

the nature of stimulation, i.e. nutrition vs. loading. Clearly, more work is now needed in 

humans in order to experimentally address these confounding reports.  
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Table 1.0 Summary of studies characterising the impact of various n-3 PUFA protocols on skeletal muscle metabolism.  
Study Model Supplementation protocol Key findings 
 
Smith et al. (2011a)21 

 
Human 

 
8 wk, 1.86 g EPA and 1.50 g DHA 
daily. 

 
n-3 PUFA supplementation potentiated MPS and mTOR-
p70S6K1 to a hyperaminoacidemic-hyperinsulinemic 
clamp in young volunteers. 
 

 
Smith et al. (2011b)22 

 
Human 

 
8 wk, 1.86 g EPA and 1.50 g DHA 
daily. 

 
n-3 PUFA supplementation potentiated MPS and mTOR-
p70S6K1 to a hyperaminoacidemic-hyperinsulinemic 
clamp in elderly volunteers. 
 

 
Rodacki et al. (2012)19 

 
Human 

 
60 d before and during 90 d of strength 
training, 0.4 g of EPA and 0.3 g DHA 
daily. 

 
Peak torque and rate of torque development for knee flexor 
and extensor, plantar and dorsiflexor) was enhanced by n-3 
PUFA supplementation from pre to post training.  

 
You et al. (2010)17 

 
Rodent 

 
14 d of a diet that contained 5% cod 
liver oil followed by 14 d 
immobilisation. 
 

 
Dietary n-3 PUFA alleviated myosin heavy chain losses 
during 14 d of immobilisation compared to control (-22.7% 
vs. 34.5%). 

 
Kamolrat et al. (2013)18 
 

 
Rodent 

 
8 wk, chocolate- derived sweets 
containing 49.6% EPA and 50.4% 
DHA. 

 
In response to an aminoacidemic-insulinemic infusion, n-3 
PUFA supplementation enhanced the phosphorylation of 
PI3K and p70S6K1. 

 
Gingras et al. (2007)124 
 

 
Steers 

 
5 wk of abomasal infusion with 4 % 
menhaden oil (high n-3 PUFA).  
 

 
n-3 PUFA potentiated insulin action, whole body amino 
acid disposal and mTOR-p70S6K1 signalling were 
enhanced in response to a hyperinsulinaemic–euglycaemic–
euaminoacidaemic clamp. 
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Some studies show that provision of n-3 PUFA has a direct influence on muscle mass 

homeostasis in the clinical setting. Indeed, supplementing the diet with > 2 g of EPA has been 

known to increase survival [129], attenuate muscle cachexia [130] and stabilise weight loss in 

advanced cancer patients [131]. One study in particular has demonstrated that supplementing 

the diet of lung cancer patients with fish oil (2.2 g EPA per day) maintained or increased 

muscle mass (0.5 ± 1.0 kg) as assessed by computed tomography [132]. This finding is more 

remarkable considering that in the control group mean average muscle mass loss was ~2.3 kg. 

It is important to acknowledge that cancer cachexia is characterised by excessive 

inflammation that may accelerate rates of MPB [133]. The salvaging effect of n-3 PUFA 

supplementation in this setting could therefore be related to the attenuation of MPB associated 

with the anti-inflammatory actions of n-3 PUFAs rather than, or in addition to, the 

potentiation of MPS. Although, the authors did not assess MPS and any potential impact of n-

3 PUFA on MPS cannot be excluded. Furthermore, no measurement of changes in the lipid 

composition of the muscle was made. Nevertheless, taken together with previous work [19] 

these data provide strong evidence that in humans, n-3 PUFA has the capacity to exert a 

positive influence on muscle mass. More work is now required outwith the clinical 

environment to establish the efficacy of n-3 PUFA to enhance muscle anabolism in the 

general population. 

 

In healthy humans it is the response of MPS, not MPB, to stimulation by nutrition and 

exercise that is the primary determinant of NPB [134]. However, to date, only one study has 

directly assessed the impact of n-3 PUFA supplementation on rates of MPS in humans [21]. 

In this study the authors supplemented nine 25-40 year old adults with 1.9 g and 1.5 g of EPA 

and DHA, respectively, for 8 wk. Before and after supplementation basal rates of MPS and 

rates of MPS in response to a hyperaminoacidemic-hyperinsulinemic infusion were assessed 

as well as the phosphorylation status of proteins contained within the mTOR-p70S6K1 
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signalling axis. The main findings from this investigation were that neither basal MPS nor the 

basal phosphorylation status of anabolic signalling agents was altered by n-3 PUFA 

supplementation. However, in response to the hyperaminoacidemic-hyperinsulinemic 

infusion, rates of MPS were potentiated, as was the phosphorylation status of both mTOR and 

p70S6K1. Furthermore, protein to DNA ratio and muscle protein concentration also was 

increased. Interestingly, the authors have replicated similar findings in elderly humans [22] 

and speculate that the potentiation of MPS and mTOR-P70S6K1 signalling in response to the 

simulated feeding could be related to increases in the n-3 PUFA composition of skeletal 

muscle. Indeed in both studies supplementation with n-3 PUFA resulted in ~ 2 fold increase 

in the n-3 PUFA composition of the cell membrane. It therefore appears that altering the n-3 

PUFA composition of skeletal muscle could be exploited to enhance the adaptive response of 

skeletal muscle to exercise.  

 

1.6 Limitations of existing research 

 
Collectively, the studies outlined in this Chapter point to a beneficial influence of 

supplementing humans with n-3 PUFA on muscle anabolism. However, there are a number of 

caveats in the field that need to be experimentally addressed in order to advance our current 

understanding of how n-3 PUFA supplementation influences skeletal muscle metabolism. 

Firstly, although time course changes in n-3 PUFA composition have been established in 

blood [125,135] adipose [123] and numerous other biological tissues [136,137], to date, no 

study has provided a time course change in n-3 PUFA muscle composition with n-3 PUFA 

supplementation [121,138]. Given recent reports of enhanced muscle anabolism [21,22], as 

well as many other relevant health claims with n-3 PUFA supplementation, such a time 

course may provide critical information for future researchers who wish to alter the n-3 PUFA 

lipid profile of skeletal muscle for experimental purposes. Secondly, the influence of n-3 
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PUFA supplementation on muscle anabolism appears to be underpinned by alterations in the 

mTOR-p70S6K1 signalling cascade [16-18,22,124].  However,  to  the  author’s  knowledge,  no  

study has characterised a time course change in the expression of these proteins in human 

skeletal muscle during a period of n-3 PUFA supplementation. The results of such a study 

may provide a greater mechanistic insight as to how n-3 PUFAs confer anabolic influence at 

the molecular level in humans.  

 

It has now been reported that n-3 PUFA supplementation enhances muscle strength in 

response to RE [19] as well as MPS and mTOR-p70S6K1 signalling following amino acid 

infusion [21,22]. However, in order to maximise both MPS and mTOR-p70S6K1 signalling, 

amino acid feeding and RE must be combined [6]. To date, no study has examined the impact 

of a combined RE and amino acid feeding stimulus on mTOR-p70S6K1 signalling following 

a period of n-3 PUFA supplementation in humans. In addition, although the impact of amino 

acid provision on mTORC1-p70S6K1 signalling following n-3 PUFA supplementation has 

already been examined, in that study, amino acids were provided via a hyperaminoacidemic-

hyperinsulinemic clamp for 3 h. The administration of amino acids in this manner is not 

reflective of habitual dietary practices and results in more sustained plasma amino acid 

concentrations compared with the those induced by consumption of an amino acid bolus 

[107]. A differential plasma amino acid profile in response to nutrients may alter the anabolic 

response of muscle to feeding [139]. Thus, characterising the impact of n-3 PUFA 

supplementation on mTOR-P70S6K1 signalling in response to RE and a bolus of amino acids 

would provide information pertinent to a physiologically relevant context. 
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1.7 Aims and objectives 

 
The overall aim of this thesis is to address current knowledge gaps in the literature regarding 

how n-3 PUFA supplementation impacts skeletal muscle metabolism. Specifically, the aims 

of this programme of work are to identify how n-3 PUFA supplementation influences muscle 

lipid profiles, anabolic protein expression, as well as the response of those proteins to RE and 

amino acid consumption. These aims will be achieved by the successful completion of the 

following objectives in chronological order: 

 

1. To determine a time course change in muscle and blood lipid profiles in response 

to n-3 PUFA supplementation. 

 

2.  To determine a time course change in anabolic signalling protein 

phosphorylation and expression in response to n-3 PUFA supplementation. 

 

3. a) To characterise the influence of n-3 PUFA supplementation on the molecular 

response of human skeletal muscle to the ingestion of a protein bolus and b) to 

the ingestion of a protein bolus following a bout of RE. 
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CHAPTER 2 Temporal changes in lipid composition and anabolic proteins in human 
skeletal muscle with fish oil supplementation 
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2.0 Abstract 

 
Ingestion of n-3 PUFA has been shown to increase n-3 PUFA muscle composition that 

subsequently appears to render skeletal muscle more anabolically sensitive. The time course 

of this increase in muscle n-3 PUFA composition is currently unknown. Changes in the lipid 

profile of red blood cells and muscle tissue along with muscle expression of anabolic 

signalling proteins in human skeletal muscle were examined in response to 4 wk of fish oil 

supplementation. Ten healthy male participants consumed 5g.d-1 of n-3 PUFA-enriched fish 

oil for 4 wk. Muscle biopsies and venous blood samples were collected in the fasted, rested 

state 2 wk prior (W-2), immediately before (W0), at week 1: (W1), 2 (W2) and 4 (W4) after 

initiation of fish oil supplementation for assessment of changes in lipid composition and 

expression of anabolic signalling proteins over time. Muscle lipid profile, (% total n-3 

PUFA/total fatty acids) increased from W0 to W2 (3.8 ± 0.2 to 5.1 ± 0.3 %) and continued to 

rise at W4 (6.7 ± 0.4 %). Blood lipid profile (% total n-3 PUFA/total fatty acids) was 

increased from W0 to W1 (5.8 ± 0.3 to 9.5 ± 0.4 %) and remained elevated for the remaining 

time points with no further increase. Total protein content of FAK increased from W0 to W4 

(3.9 ± 1.5 fold) whereas total mTOR was increased from W0 at W1 (2.4 ± 0.6 fold) with no 

further significant increases at W2 and W4. However, there was no increase in total p70S6K1 

or 4EBP1. There were no significant changes in the phosphorylation of FAKtyr576/577, 

mTORser2448, p70S6K1thr389 or 4EBP1thr37/46. This study shows that oral fish oil consumption 

results in an increase of n-3 PUFA levels in human skeletal muscle and blood that is 

associated with increases in the expression of anabolic signalling proteins.  
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2.1 Introduction  

 
The consumption of food rich in n-3 PUFA is thought to be beneficial for cognitive function 

[120], the attenuation of skeletal muscle atrophy during cancer cachexia [20] and 

cardiovascular health [140]. The impact of n-3 PUFA intake for cardiovascular health is now 

well established [119,141] and changes in the n-3 PUFA composition of blood correlate 

inversely with cardiovascular disease risk [142]. Consequently, the n-3 PUFA composition of 

blood is now considered as a surrogate marker for cardiovascular health [117,119,142].  

 

Whereas much is known about other cardiovascular health, far less is known about the impact 

of n-3 PUFA supplementation on skeletal muscle. Specifically, work in rodents has shown 

that dietary fish oil alleviates soleus muscle atrophy during a period of enforced 

immobilisation [17]. In humans, supplementation with n-3 PUFA-rich fish oil for 8 weeks is 

known to enhance MPS in response to a hyperaminoacidemic-hyperinsulinemic infusion in 

both the young and elderly [21,22]. Mechanistically, these anabolic influences are proposed to 

be mediated by mTOR-p70S6K1 signalling following n-3 PUFA supplementation [21,22]. 

These changes in mTOR-p70S6K1 signalling with fish oil supplementation also were 

accompanied by increases in the n-3 PUFA composition of skeletal muscle. Thus, it appears 

that n-3 PUFA supplementation increases the n-3 PUFA composition of skeletal muscle, 

conferring its anabolic influence, in part, via mTOR-p70S6K1 signalling.  

 

Although data exist characterizing changes in the n-3 PUFA composition of muscle following 

8 wk of n-3 PUFA supplementation [21,22], these studies are limited to pre- and post-

supplementation measurements with little temporal resolution. Data are available on the time 

course of n-3 PUFA changes in blood [125] with n-3 PUFA supplementation. However, to 

our knowledge, no study has established the time course of n-3 PUFA changes in human 
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skeletal muscle. Given the potential beneficial impact of altering the n-3 PUFA composition 

of skeletal muscle, the aim of this chapter was to identify the time course of n-3 PUFA change 

in skeletal muscle over 4 weeks of n-3 PUFA-enriched fish oil supplementation. Additionally, 

as previous reports demonstrate changes in mTOR-p70S6K1 signalling with n-3 PUFA 

supplementation, a secondary aim was to determine whether 4 weeks of fish oil 

supplementation modified the expression and or phosphorylation of key intramuscular 

anabolic signalling proteins.  

 

2.2 Experimental methods 

2.2.1 Participants 

 
Ten healthy, moderately active males (aged 21 ± 3 years; body mass 76 ± 4 kg, mean ± SEM) 

from the University of Stirling and the surrounding area volunteered to participate in the 

present investigation. Following health screening, participants were excluded if they were 

engaged in any form of dietary supplementation or were taking any prescribed medication. 

This study was conducted according to the guidelines laid down in the Declaration of Helsinki 

(2008) and the Local Ethics Committee, University of Stirling, approved all procedures. 

Written, informed consent was obtained prior to the commencement of the experiment. 

  

2.2.2 Experimental Design 

 
In a one-way, repeated measures design, participants reported to the laboratory on five 

separate occasions. Initial baseline assessment of muscle and blood lipid profiles was 

conducted at -2 (W-2) and 0 (W0) weeks, to determine changes in muscle and blood lipid 

profiles over a period of habitual diet and physical activity thus, the participants served as 

their own internal control (Table 1). Following this baseline control period, participants 

consumed 5 g.d-1 of n-3 PUFA-rich fish oil capsules (providing 3500 mg EPA [20:5n-3], 900 
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mg DHA [22:6n-3], 100 mg DPA [22:5n-3] vitamin E 0.1 mg, Ideal Omega-3, Glasgow 

Health Solutions Ltd, UK) for 4 weeks. The supplemental fish-oil dose and participant 

number were chosen based on previous work showing that a similar dose in ten males can 

induce significant changes in the lipid profile of human blood over a 4 weeks period [125]. 

Participants were required to complete a 7 day food and physical activity diary prior to 

baseline testing (W-2). This diary was presented back to the participants who were then asked 

to replicate a similar pattern of food consumption and physical activity for the remainder of 

the experiment. During each visit to the laboratory, participants were verbally requested to 

confirm the pattern of oily fish consumption in an attempt to ensure that changes in free-

living oily fish consumption did not influence muscle and blood lipid profiles during the 

study. Each   participant’s   height,   nude   body   mass,   resting   skeletal   muscle   samples   and  

duplicate 5 mL venous blood samples were obtained at 0700 following a 10 hours overnight 

fast at W-2, W0, 1 week (W1), 2 week (W2) and 4 week (W4) of supplementation. 

Supplementation compliance was assessed via a blind capsule count. Resting, fasting venous 

blood samples were analysed for glucose concentration to assess compliance with the 

overnight fast.  

 

2.2.3 Venous blood and muscle biopsy procedures 

 
Blood samples were obtained from an antecubital forearm vein. All samples were drawn into 

evacuated 5 mL vacutainers containing ethylenediaminetetraacetic acid (EDTA), (Vacutainer 

Systems, Becton, Dickinson and Company. U.K). An aliquot of blood was removed and 

centrifuged at 3000 rpm.min-1 for 15 min and the plasma stored at -80°C until further analysis. 

Plasma glucose was determined using an ILAB automated analyser (Instrumentation 

laboratory, Cheshire, UK). 
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Muscle biopsies were obtained from the lateral portion of the vastus lateralis. Initially the site 

was cleaned before an incision into the skin and fascia was made under local anaesthetic (2 % 

lidocaine). A 5 mm Bergstrom biopsy needle was inserted to extract ~60-100 mg of skeletal 

muscle tissue.  Muscle samples were rinsed with ice-cold saline, blotted dry and any visible 

fat or connective tissue was removed. Muscle samples were separated into two Eppendorf 

tubes, before being snap-frozen in liquid nitrogen and stored at -80°C pending further 

analysis. All subsequent muscle biopsies i.e. 0, 1, 2 and 4 weeks, were obtained from the 

contralateral limb to the previous sample.  

 

2.2.4 Lipid extraction of muscle biopsy samples 

 
Total lipid was extracted from the muscle by a modification of a method previously described 

[143]. The frozen muscle biopsy samples (20-60 mg) were placed in a pre-weighed reacti-vial 

and an accurate tissue mass recorded. The reacti-vials were capped and placed on ice and then 

1 mL of chloroform/methanol (C:M, 2:1 v/v) was added to each vial. Each muscle sample 

was homogenised using a hand-held IKA-Werke Ultra-turrax T8 homogeniser (Fisher, 

Loughborough, UK). The probe was rinsed with 3 mL of C:M, 2:1 and added to the reacti-

vial before being placed on ice for 1 h. Then 1 mL 0.88 % KCl was added, shaken and 

allowed to stand for 10 min to remove non-lipid impurities. The vials were then centrifuged at 

400 g for 5 min before removal of the aqueous layer. The lower solvent layer was removed 

using a Pasteur pipette and filtered through a 5.5 mm Whatman No. 1 filter, pre-washed with 

C:M, 2:1 into a 7 mL bottle, and dried under N2. The lipid was then re-dissolved in 1 mL of 

C:M, 2:1 and transferred to a pre-weighed 1.7 mL bottle. The 1.7 mL bottle then was rinsed 

with 0.5 mL C:M, 2:1 and this was added to the 1.7 mL bottle. The lipid was dried under N2 

and desiccated overnight in a vacuum desiccator after which the lipid was reweighed and 
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dissolved in C:M, 2:1 + 0.01 % butylated hydroxyl toluene (BHT), (v/v) at a concentration of 

2 mg.mL-1. 

 

2.2.5 Lipid extraction of whole blood samples 

 
Samples of whole blood were placed onto two circular collection spots on Whatman 903 

blood collection cards (GE Healthcare Ltd, Forest Farm Industrial Estate, Cardiff, CF 14 

7YT, UK). The cards were left open and allowed to dry for 3 h after which the dried whole 

blood sample was detached from the collection device using forceps and placed into a screw-

cap vial containing 1 mL of methylating solution (1.25M methanol/HCl). The vials were 

placed in a hot block at 70°C for 1 h. The vials were allowed to cool to room temperature 

before 2 mL of distilled water and 2 mL of saturated KCl solution were added. Fatty acid 

methyl esters (FAME) were then extracted using 1 × 2 mL of isohexane + BHT followed by a 

second extraction using 2 mL of isohexane alone. This extraction method has been previously 

validated as a reliable measure of whole blood fatty acid composition in our own laboratories 

[144]. 

 

2.2.6 Analysis of fatty acid methyl esters (FAME)  

 
FAME were separated and quantified by gas-liquid chromatography (ThermoFisher Trace, 

Hemel Hempstead, England) using a 60 m x 0.32 mm x 0.25 µm film thickness capillary 

column (ZB Wax, Phenomenex, Macclesfield, UK). Hydrogen was used as carrier gas at a 

flow rate of 4.0 mL.min-1 and the temperature program was from 50 to 150°C at 40°C·min-1 

then to 195°C at 2°C·min-1 and finally to 215°C at 0.5°C·min-1. Individual FAME were 

identified compared to well-characterised in house standards as well as commercial FAME 

mixtures  (Supelco™  37  FAME  mix,  Sigma-Aldrich Ltd., Gillingham, England).  
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2.2.7 Western blot 

 
Muscle tissue (20-40 mg) was homogenised in ice-cold homogenization buffer containing 50 

mM Tris-HCl (pH 7.4), 1 mM EDTA, 1 mM EGTA, 10 mM ß-glycerophosphate, 50 mM 

NaF, 0.5mM activated sodium orthovanadate (all Sigma Aldrich, St Louis, MO, USA) and a 

complete protease inhibitor cocktail tablet (Roche, Indianapolis, IN, USA). Homogenates 

were centrifuged at 2200 g for 10 min at 4°C before recovery of supernatants representing the 

sarcoplasmic protein pool for analysis by WB. Protein concentration was determined using 

the BCA protein assay (Thermo Fisher Scientific, Ontario, Canada). Equal aliquots of protein 

(20  μg)  were boiled in Laemmli sample buffer (250 mM Tris-HCl, pH 6.8; 2 % SDS; 10 % 

glycerol; 0.01 % bromophenol blue; 5 % E-mercaptoethanol) and separated on SDS 

polyacrylamide gels (range 10-15 %) for 1.5 h at 140 V. Following electrophoresis, proteins 

were transferred to a PVDF membrane at 100 V for 1 h. Following 1 h of blocking in 5 % 

milk powder in TBST (Tris Buffered Saline and 0.1 % Tween-20; both Sigma-Aldrich, Poole, 

UK), membranes were incubated overnight at 4qC with the appropriate primary antibody 

diluted in TBST. Primary antibodies were; mTORser2448 (Cell Signalling, #2971, 1:1000), total 

mTOR (Cell Signalling, #2972, 1:1000), p70S6K1thr389 (Cell Signalling, #9234, 1:1000), total 

p70S6K1 (Cell Signalling, #9202, 1:1000), 4EBP1thr37/46 (Cell Signalling, #2855, 1:1000), 

total 4EBP1 (Cell Signalling, #9452, 1:2000), FAKtyr576/577 (Santa Cruz Biotechnology, 

#21831,   1:5000),   total   FAK   (Santa   Cruz,   #558,   1:5000)   and   α-tubulin (Sigma-Aldrich, 

#T6074, 1:2000). The following morning the membrane was rinsed three times for 5 min in 

TBST. The membrane was then incubated for 1 h at room temperature in horseradish 

peroxidase (HRP)-conjugated anti-rabbit secondary antibody diluted in TBST (New England 

Biolabs, UK, 1:10000). The membrane was then cleared three times for 5 min in TBST. 

Antibody binding was detected using enhanced chemiluminescence (Millipore, Billerica, 

MA). Band visualization was carried out using a Chemidoc XRS system (Bio-Rad, Hemel 



Chapter 2      30 

 
 

Hempstead, UK) and quantification using densitometry (ImageJ v1.34s 281 software, 

rsbweb.nih.gov/ij/). Molecular signalling proteins were determined with n = 10. Phospho-

proteins were expressed relative to total protein by stripping the membrane using Restore 

Western Blot Stripping Buffer (Thermo Scientific, FL, USA, #21059) and re-probing for total 

protein. Phosphorylated antibodies were removed from all membranes using Restore 

Stripping Buffer (Thermo Fisher Scientific, Ontario, Canada) prior to probing for total 

protein.  Total  protein  was  expressed  relative  to  α-tubulin as a protein loading control. 

 

2.2.8 Data presentation and statistical analysis 

 
All statistical analyses were performed using Minitab 17 statistical software (Minitab Ltd., 

Coventry, UK). Paired t-tests were used to detect differences in lipid profiles of blood and 

muscle between W-2 and W0. As no differences were detected between baseline 

measurements (W-2, W0) for lipid profiles of the blood or muscle, all further statistical 

analyses were performed using only W0 as the baseline measurement. A single-factor (week 

of supplementation), repeated measures ANOVA was employed to evaluate changes in lipid 

composition of both the blood and muscle as well as changes in protein signalling from W0 to 

W4. In order to comply with the assumptions of the ANOVA, when required, protein 

signalling data were initially log transformed. If a main effect of  time  was  observed  a  Tukey’s  

post-hoc analysis was applied to detect differences between weeks. Regression analysis was 

performed to identify correlation coefficients between blood and muscle n-3 PUFA 

composition over time. Statistical significance was set at P<0.05. Protein signalling data are 

presented as mean (cross), median with interquartile-range and range. All lipid profiling data 

are expressed as mean relative percentage of total fatty acids ± SEM unless otherwise stated.  
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2.3 Results 

2.3.1 Dietary analysis 

 
Daily energy intake was 2244 ± 132 kcal (55  ± 5 % carbohydrate, 15  ± 2 % protein, 30  ± 4 

%  fat).  Participants’   fasted,  plasma  glucose  samples  across   all   trials   ranged   from  4.1   to  5.5  

mM and mean fasted plasma glucose across all trials was 4.81 ± 0.12 mM. 

 

2.3.2 Lipid profile changes in muscle 

 
There was no significant change in the total lipid content of muscle (1.38 ± 0.04 [W-2] to 1.25 

± 0.05 [W0] to 1.22 ± 0.02 [W1] to 1.36 ± 0.08 [W2] to 1.20 ± 0.05 [W4], mg/100 mg of 

muscle) at any time point. Thus, in order to enable meaningful comparisons between changes 

in blood and muscle n-3 PUFA composition as well with previously published studies 

[21,22,123,125] all lipid data are presented as % of total lipid composition unless otherwise 

stated. A full breakdown of muscle fatty acid profiles is presented in Table 2.0. Lipid 

composition of blood and muscle did not differ between W-2 and W0, (Table 2.1). The 

difference in mean % EPA + DHA/total fatty acids was not statistically higher at W2 

compared to W0 but was significantly higher at W4 compared to W0 (P<0.05; Figure 2.0 A). 

There was an increase in % total n-3 PUFA/total fatty acids from W0 to W2 (P<0.05) that 

continued to rise at W4 (P<0.05; Figure 2.0 B). Percentage total n-6 PUFA/total fatty acids 

did not significantly alter over time (Figure 2.0 C). The AA (20:4n-6) /EPA (AA/EPA) ratio 

was lower at W1 (P<0.05) and declined further at W4 (P<0.05; Figure 2.0 D). Percentage n-3 

highly unsaturated fatty acids (n-3 HUFA)/total HUFA increased from W0 to W2 (P<0.05; 

Figure 2.0 E) with no further detectable increase at W4.  
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Table 2.0 Muscle lipid composition at -2 week (W-2), 0 week (W0), 1 week (W1). 2 week (W2) and 4 week (W4) of fish oil 
supplementation. Values are percentage of total lipid composition presented as means ± SEM. Polyunsaturated fatty acids (PUFA), 
dimethyl aldehyde (DMA).  Means that do not share a letter are significantly different.  
Fatty acid -2 week 0 week 1 week 2 Week 4 Week 
14:0 0.95 ± 0.04 0.93 ± 0.05 0.95 ± 0.05 0.99 ± 0.08 0.85 ± 0.03 
15:0 0.23 ± 0.01 0.21 ± 0.01 0.26 ± 0.01 0.20 ± 0.01 0.21 ± 0.01 

16:0 17.49 ± 0.27 17.59 ± 0.31 18.03 ± 0.26 17.55 ± 0.37 17.71 ± 0.36 
18:0 11.41 ± 0.27 11.19 ± 0.26 11.16 ± 0.17 10.98 ± 0.35 11.66 ± 0.16 
20:0 0.13 ± 0.01 0.13 ± 0.01 0.13 ± 0.01 0.13 ± 0.01 0.13 ± 0.01 
22:0 0.21 ± 0.02 0.17 ± 0.01 0.17 ± 0.02 0.16 ± 0.02 0.19 ± 0.02 
24:0 0.18 ± 0.01 0.20 ± 0.02 0.15 ± 0.01 0.15 ± 0.02 0.17 ± 0.02 
Total saturated 30.59 ± 0.26 30.42 ± 0.31 30.86 ± 0.21 30.15 ± 0.21 30.92 ± 0.34 
16:1n-9 0.40 ± 0.02 0.39 ± 0.02 0.34 ± 0.01 0.42 ± 0.02 0.35 ± 0.01 
16:1n-7 1.22 ± 0.14 1.40 ± 0.13 1.24 ± 0.11 1.49 ± 0.17 1.03 ± 0.10 
18:1n-9 15.93 ± 1.06 16.58 ± 0.99 17.25 ± 0.90 17.69 ± 1.39 14.38 ± 0.76 
18:1n-7 1.86 ± 0.03 1.91 ± 0.02 1.88 ± 0.03 1.89 ± 0.05 1.80 ± 0.03 
20:1n-9 0.24 ± 0.02 0.24 ± 0.02 0.25 ± 0.02 0.25 ± 0.03 0.21 ± 0.02 
24:1n-9 0.22 ± 0.01 0.25 ± 0.02 0.21 ± 0.02 0.23 ± 0.06 0.19 ± 0.01 
Total monounsaturated 19.87 ± 1.15 20.76 ± 1.08 21.16 ± 0.96 21.97 ± 1.53 17.96 ± 0.81 
18:2n-6 24.27 ± 0.47 23.75 ± 0.26 23.55 ± 0.56 22.91 ± 0.59 23.18 ± 0.40 
18:3n-6 0.08 ± 0.00 0.08 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 

20:2n-6 0.27 ± 0.01 0.27 ± 0.01 0.26 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 
20:3n-6 1.14 ± 0.06 1.14 ± 0.07 1.07 ± 0.05 1.04 ± 0.07 1.04 ± 0.06 
20:4n-6 10.47 ± 0.50 10.46 ± 0.68 9.75 ± 0.54 9.69 ± 0.69 9.98 ± 0.63 
22:4n-6 0.54 ± 0.04 0.53 ± 0.04 0.52 ± 0.05 0.50 ± 0.03 0.46 ± 0.04 
22:5n-6 0.23 ± 0.02 0.22 ± 0.02 0.24 ± 0.01 0.20 ± 0.02 0.18 ± 0.02 
Total n-6 PUFA 36.99 ± 0.83 36.45 ± 0.82 35.46 ± 0.71 34.64 ± 1.13 35.12 ± 0.56 
18:3n-3 0.49 ± 0.03 0.51 ± 0.05 0.54 ± 0.02 0.58 ± 0.04 0.47 ± 0.03 
20:5n-3 0.61 ± 0.05 0.59 ± 0.05 0.94 ± 0.08 1.36 ± 0.11 2.35 ± 0.22 

22:5n-3 1.28 ± 0.04 1.24 ± 0.05 1.29 ± 0.04 1.46 ± 0.08 1.77 ± 0.09 

22:6n-3 1.49 ± 0.17 1.47 ± 0.16 1.49 ± 0.16 1.69 ± 0.14 2.13 ± 0.21 
Total n-3 PUFA 3.86 ± 0.23a 3.80 ± 0.22a 4.28 ± 0.24a,b 5.14 ± 0.28b 6.79 ± 0.46c 

16:0DMA 5.37 ± 0.22 5.29 ± 0.21 5.10 ± 0.22 5.18 ± 0.29 5.68 ± 0.20 
18:0DMA 1.77 ± 0.08 1.78 ± 0.07 1.68 ± 0.07 1.72 ± 0.08 1.90 ± 0.07 
18:1DMA 1.55 ± 0.07 1.50 ± 0.06 1.46 ± 0.05 1.32 ± 0.13 1.63 ± 0.07 
Total DMA 8.69 ± 0.34 8.57 ± 0.29 8.24 ± 0.31 8.22 ± 0.42 9.21 ± 0.29 
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2.3.3 Lipid profile changes in blood 

 
Percentage EPA + DHA/total fatty acids significantly increased from W0 to W1 (P<0.05; 

Figure 2.1 A) with no further detectable increases at W2 or W4. Blood % total n-3 

PUFA/total fatty acids was increased at W1 compared to W0 (P<0.05 Figure 2.1 B) and 

remained elevated for the remaining time-points. Percentage total n-6 PUFA/total fatty acids 

declined significantly from W0 to W2 (P<0.05 Figure 2.1 C). A decline from W0 in AA/EPA 

ratio was observed by W1 (P<0.05; Figure 2.1 D) with no further reduction at W4. Percentage 

n-3 HUFA/total HUFA increased from W0 to W1 (P<0.05), and was further elevated at W4 

(P<0.05; Figure 2.1 E) A full breakdown of muscle fatty acid profiles is presented in Table 

2.2.  

  

2.3.4 Correlation analysis of muscle and blood 

 
Correlation analysis revealed a significant association between blood and muscle n-3 PUFA 

composition at W0 (P<0.05, r2 0.88; Figure 2.2 A) but not at W1 (P>0.05, r2 0.23; Figure 2.2 

B). However, the association was improved at W2 (P>0.05, r2 0.42; Figure 2.2 C) and 

returned to a strong association at W4 (P<0.05, r2 0.95; Figure 2.2 D), likely reflecting 

different time course changes in the blood and muscle n-3 PUFA composition.  

 

2.3.5 Anabolic protein expression 

 
Total FAK protein content increased from W0 to W4 (P<0.05; Figure 2.3 A). Total mTOR 

protein content significantly increased from W0 to W2 (P<0.05) with no further detectable 

increases at W4 (P>0.05; Figure 2.3 B). The largest fold change for total FAK and total 

mTOR protein content was 3.9 ± 1.5 (W0 to W4) and 3.2 ± 0.8 (W0 to W2), respectively. 

There was no effect of time on fold change in total p70S6K1 (Figure 2.3 C) or total 4EBP1 
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protein content (Figure 2.3 D). There was also no effect of time for fold change in the 

phosphorylation of FAKtyr576/577, mTORser2448, p70S6K1thr389 or 4EBP1thr37/46 (data not shown). 

 

Table 2.1 Lipid composition of muscle and blood at -2 and 0 wk. 

Fatty acid     -2 Week                                0 Week P value 
    Muscle     
% EPA + DHA/ total fatty 
acids 2.09 ± 0.23 2.05 ± 0.21  0.61 

% n-3 PUFA/ total fatty acids 3.86 ± 0.24 3.80 ± 0.23 0.50 

% n-6 PUFA/ total fatty acids 36.99 ± 0.87 36.45 ± 0.86 0.61 

AA/EPA 18.68 ± 1.77 18.93 ± 1.75 0.35 

% n-3 HUFA/ total HUFA 21.68 ± 1.70 21.43 ± 1.74 0.36 

 
  Blood     

% EPA + DHA/ total fatty 
acids 3.43 ± 0.36 3.60 ± 0.32 0.36 

% n-3 PUFA/ total fatty acids 5.42 ± 0.43 5.84 ± 0.33 0.19 

% n-6 PUFA/ total fatty acids 33.17 ± 0.61 33.47 ± 0.62 0.58 

AA/EPA 13.41 ± 1.26 13.07 ± 1.18 0.63 

% n-3 HUFA/ total HUFA 25.89 ± 1.50 26.23 ± 1.40 0.53 

Sum of eicosapentaenoic acid  (EPA) + docosahexaenoic acid (DHA), n-3 polyunsaturated 
fatty acid (PUFA), n-6 PUFA, ratio of arachidonic acid (AA) to  EPA (AA/EPA) and  % n-3 
highly unsaturated fatty acids to total highly unsaturated fatty acids (n-3 HUFA/total HUFA). 
EPA + DHA, n-3 PUFA and n-6 PUFA are presented as percentage of total lipid composition. 
AA/EPA as a ratio. Values are means ± SEM. 
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Table 2.2 Blood lipid composition at -2 week (W-2), 0 week (W0), 1 week (W1). 2 week (W2) and 4 week (W4) of fish oil 
supplementation.  Values are percentage of total lipid composition presented as means ± SEM. Polyunsaturated fatty acids (PUFA), 
dimethyl aldehyde (DMA).  Means that do not share a letter are significantly different.  
 
Fatty acid -2 week 0 week 1 week 2 Week 4 Week 
14:0 0.54 ± 0.05 0.51 ± 0.05 0.55 ± 0.05 0.46 ± 0.06 0.51 ± 0.04 
15:0 0.22 ± 0.03 0.18 ± 0.01 0.19 ± 0.01 0.18 ± 0.01 0.19 ± 0.01 
16:0 20.78 ± 0.41 20.17 ± 0.28 19.90 ± 0.23 19.66 ± 0.37 20.40 ± 0.30 
18:0 11.61 ± 0.25 11.53 ± 0.15 11.60 ± 0.11 11.83 ± 0.13 11.89 ± 0.22 
20:0 0.23 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 0.24 ± 0.01 0.22 ± 0.01 
22:0 0.60 ± 0.03 0.56 ± 0.02 0.57 ± 0.02 0.59 ± 0.02 0.57 ± 0.02 
24:0 1.19 ± 0.04 1.10 ± 0.04 1.12 ± 0.05 1.13 ± 0.06 1.10 ± 0.03 
Total saturated 35.17 ± 0.56 34.27 ± 0.24 34.14 ± 0.23 34.07 ± 0.31 34.88 ± 0.32 
16:1n-9 0.33 ± 0.02 0.35 ± 0.02 0.27 ± 0.02 0.27 ± 0.02 0.26 ± 0.01 

16:1n-7 1.27 ± 0.11 1.47 ± 0.15 1.00 ± 0.08 0.93 ± 0.09 1.21 ± 0.20 
18:1n-9 17.63 ± 0.34a 18.00 ± 0.41a 15.82 ± 0.28b 15.75 ± 0.46b 16.40 ± 0.43a,b 

18:1n-7 1.66 ± 0.07 1.58 ± 0.07 1.46 ± 0.06 1.56 ± 0.07 1.56 ± 0.08 
20:1n-9 0.28 ± 0.02 0.28 ± 0.01 0.25 ± 0.02 0.25 ± 0.02 0.25 ± 0.01 
24:1n-9 1.70 ± 0.07 1.50 ± 0.08 1.49 ± 0.07 1.58 ± 0.09 1.43 ± 0.06 
Total monounsaturated 22.87 ± 0.40a,b 23.19 ± 0.55a 20.30 ± 0.26c 20.34 ± 0.46c 21.11 ± 0.61b,c 

18:2n-6 18.61 ± 0.37 18.28 ± 0.69 17.80 ± 0.52 17.19 ± 0.42 16.43 ± 0.33 
18:3n-6 0.30 ± 0.04 0.32 ± 0.03 0.21 ± 0.02 0.15 ± 0.01 0.15 ± 0.03 

20:2n-6 0.32 ± 0.01 0.37 ± 0.02 0.30 ± 0.01 0.27 ± 0.01 0.24 ± 0.01 

20:3n-6 1.77 ± 0.06 1.88 ± 0.08 1.51 ± 0.07 1.32 ± 0.07 1.15 ± 0.07 

20:4n-6 10.52 ± 0.44 10.88 ± 0.22 11.24 ± 0.26 10.88 ± 0.36 9.99 ± 0.24 
22:4n-6 1.37 ± 0.09 1.44 ± 0.07 1.42 ± 0.07 1.33 ± 0.07 1.21 ± 0.07 
22:5n-6 0.28 ± 0.03 0.30 ± 0.02 0.29 ± 0.02 0.28 ± 0.02 0.22 ± 0.02 
Total n-6 PUFA 33.17 ± 0.58a 33.47 ± 0.60a 32.76 ± 0.44a 31.42 ± 0.71a,b 29.38 ± 0.42b 

18:3n-3 0.47 ± 0.06 0.57 ± 0.06 0.63 ± 0.04 0.59 ± 0.06 0.52 ± 0.03 
20:5n-3 0.86 ± 0.09 0.89 ± 0.07 3.62 ± 0.32b 4.54 ± 0.39b,c 4.81 ± 0.31c 

22:5n-3 1.47 ± 0.07 1.58 ± 0.04 1.95 ± 0.07 2.09 ± 0.08 2.21 ± 0.09 

22:6n-3 2.58 ± 0.26 2.72 ± 0.25 3.26 ± 0.19 3.52 ± 0.21 3.60 ± 0.21 

Total n-3 PUFA 5.43 ± 0.41a 5.85 ± 0.31a 9.54 ± 0.43b 10.83 ± 0.60b 11.23 ± 0.53b 

16:0DMA 1.18 ± 0.05 1.11 ± 0.03 1.16 ± 0.04 1.16 ± 0.05 1.22 ± 0.03 
18:0DMA 1.64 ± 0.05 1.61 ± 0.04 1.61 ± 0.05 1.61 ± 0.07 1.65 ± 0.05 
18:1DMA 0.55 ± 0.04 0.51 ± 0.04 0.50 ± 0.04 0.56 ± 0.03 0.54 ± 0.04 
Total DMA 3.36 ± 0.13 3.22 ± 0.09 3.26 ± 0.12 3.33 ± 0.14 3.41 ± 0.10 
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Figure 2.0 Skeletal muscle lipid composition changes of the sum of eicosapentaenoic acid  
(EPA) + docosahexaenoic acid (DHA), n-3 polyunsaturated fatty acid (PUFA), n-6 PUFA, 
ratio of arachidonic acid (AA) to  EPA (AA/EPA) and  % n-3 highly unsaturated fatty acids to 
total highly unsaturated fatty acids (n-3 HUFA/total HUFA). EPA + DHA, n-3 PUFA and n-6 
PUFA are presented as percentage of total lipid composition. AA/EPA as a ratio. Values are 
means ± SEM. Means that do not share a letter are significantly different.  
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Figure 2.1 Blood lipid composition changes of the sum of eicosapentaenoic acid  (EPA) + 
docosahexaenoic acid (DHA), n-3 polyunsaturated fatty acid (PUFA), n-6 PUFA, ratio of 
arachidonic acid (AA) to  EPA (AA/EPA) and  % n-3 highly unsaturated fatty acids to total 
highly unsaturated fatty acids (n-3 HUFA/total HUFA). EPA + DHA, n-3 PUFA and n-6 
PUFA are presented as percentage of total lipid composition. AA/EPA as a ratio. Values are 
means ± SEM. Means that do not share a letter are significantly different.  
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Figure 2.2 Correlation between muscle n-3 PUFA compared with blood n-3 PUFA at W0 
(A), W1 (B), W2 (C) and W4 (D) of fish oil supplementation.  
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Figure 2.3. Signalling protein content of focal adhesion kinase (FAK) (A), mechanistic target 
of rapamycin (mTOR) (B), ribosomal protein S6 kinase (p70S6K1) (C) and eukaryotic 
initiation factor 4E-binding protein 1 (4EBP1) (D). Values expressed as arbitrary units 
relative  to  α  tubulin  and  presented  as  mean  (cross),  median  with  interquartile-range and range. 
* denotes significantly higher than W0 (P<0.05).  
 

 

2.4 Discussion 

 
This study was designed to examine the changes in muscle and blood lipid composition as 

well as alterations in anabolic signalling expression during 4 weeks of n-3 PUFA-enriched 

fish oil supplementation. We report that 4 weeks of fish oil supplementation increased both 
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blood and skeletal muscle n-3 PUFA composition that was accompanied by an increase in 

intramuscular anabolic signalling protein content. In addition, we show that the increase in n-

3 PUFA in blood occurred within 1 week, however in muscle significant increases in n-3 

PUFA composition were not detected until 2 weeks of supplementation.  Given the 

significance of increasing the n-3 PUFA composition of skeletal muscle on improved markers 

of metabolic health [145], these novel data therefore provide critical information for future 

studies in this field. 

 

The time course of n-3 PUFA changes in blood and adipose tissue following n-3 PUFA 

supplementation has been examined previously [123,125,136]. These studies show that n-3 

PUFA supplementation can induce detectable increases in the n-3 PUFA composition of 

blood within 1 week [125], whilst increases in adipose tissue n-3 PUFA composition may 

require >12 months of supplementation [123]. Herein, we add to the existing literature by 

demonstrating, for the first time, that a minimum of 2 weeks of fish oil supplementation at the 

dose used in our study is required in order to induce a detectable increase in n-3 PUFA 

composition in skeletal muscle. The delay in the response of the n-3 PUFA muscle 

composition compared with that of blood could be due to differing turnover rates between 

tissues. Indeed, although there was a strong correlation between blood and muscle n-3 PUFA 

composition at baseline, after 1 week and 2 weeks of supplementation this correlation was not 

significant. However, following 4 weeks of supplementation the correlation between blood 

and muscle n-3 PUFA composition was strengthened and returned to statistical significance. 

These data therefore highlight that during the initial stages of n-3 PUFA supplementation, 

changes in blood lipid composition do not accurately reflect those of skeletal muscle likely 

due to the differing turnover rates between tissues.  Furthermore, unlike blood, there was no 

apparent saturation of muscle n-3 PUFA composition within the 4 week time course. 

Although, we did not assess muscle lipid composition after 4 weeks of supplementation and 
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therefore cannot fully discount the possibility of muscle n-3 PUFA saturation at this time 

point. As a result, a more prolonged period (>4 weeks) of fish oil supplementation may be 

required in order to reach a saturation in human skeletal muscle n-3 PUFA composition 

during fish oil supplementation. 

 

Previous studies employing pre/post assessments of n-3 PUFA changes in muscle 

phospholipids following 8 weeks fish oil supplementation demonstrate a ~2-fold increase in 

the n-3 PUFA composition from baseline [21,22]. We observed similar ~2-fold increases in 

whole muscle n-3 PUFA composition, achieved within only 4 weeks of fish oil 

supplementation. Some of the differences between the present study and previous data may be 

due to differences in n-3 PUFA content between cellular compartments (i.e. whole muscle vs. 

membrane) or in the dose and/or composition of the supplements. Indeed, the rapid increase 

in n-3 PUFA composition in whole muscle observed in our investigation may relate to the 

high EPA content of the fish oil supplement. Indeed, our participants ingested nearly double 

the daily dose of EPA (3500 mg vs. 1860 mg daily) as used in previous studies, in which the 

supplementation protocol was twice as long as the current investigation [21,22]. These results 

suggest that the n-3 PUFA composition of skeletal muscle could be a function of the dose of 

n-3 PUFA consumed as well as the time course of supplementation. Unfortunately, to the 

author’s   knowledge,   there   are no data pertaining to changes in whole muscle vs. muscle 

membrane n-3 PUFA composition with fish oil supplementation. Thus, future studies 

employing differing n-3 PUFA supplementation protocols may elucidate a dose and time-

dependant response of n-3 PUFA changes in skeletal muscle similar to those as established in 

other biological tissues [123,125,136]. Furthermore, identification of changes in n-3 PUFA 

composition of specific fractions of skeletal muscle to fish oil supplementation also would 

advance existing knowledge.  
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The impact of n-3 PUFA supplementation on skeletal muscle anabolism is becoming a topic 

of intense investigation. In humans, it is now known that n-3 PUFA supplementation 

potentiates MPS to a hyperaminoacidemic-hyperinsulinemic infusion [21,22]. Additionally, in 

rodents, n-3 PUFA supplementation has been shown to alleviate soleus atrophy during 

immobilization [17]. The findings of the present investigation add to these data as we show 

that 4 weeks of fish oil supplementation increases the total protein content of mTOR and FAK 

in free-living humans. Given that both FAK and mTOR play a key role in the molecular 

regulation of MPS [30,99,100], our data could be interpreted to suggest that the increases in 

total protein content provide an enhanced capacity of skeletal muscle to respond to anabolic 

stimulation. However, as a note of caution, this increase in mTOR was transient and a recent 

study in rodents has shown that during remobilisation from an immobilised state, dietary fish 

oil is associated with inhibition of myosin heavy chain content recovery [128]. This finding 

highlights a limitation of our investigation as our study design precludes us from 

demonstrating whether the increases in mTOR and FAK protein content translate to enhanced 

activation in response to stimulation. Given the sustained increase in FAK total protein 

content observed in our investigation, taken together with previous reports demonstrating the 

key role of FAK in mediating mechanically-induced changes in MPS [100], future work that 

identifies if n-3 PUFA supplementation enhances resistance exercise-induced rates of MPS in 

humans merits further investigation. 

 

The physiological mechanisms by which fish oil supplementation influences anabolic 

signalling remain largely unclear. Increasing the n-3 PUFA composition of the muscle 

membrane may alter gene expression [122] and/or the regulation of lipid signals such as 

phosphatidic acid that subsequently impact anabolic protein signalling [146]. It is known that 

dietary fish oil inhibits the recovery of atrophied muscle in rodents that is associated with a 

reduction  in  prostaglandin  F2α  (PGF2α)  [128].  A  reduction  of  PGF2α  in  that  study  also  was  
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associated with blunting of Akt-p70S6K1 signalling. These authors proposed that dietary fish 

oil  could  have  reduced  the  bioavailability  of  arachidonic  acid,  a  fatty  acid  from  which  PGF2α  

is derived. However, our data provide some evidence to counter the latter proposition in 

humans. We show that 4 weeks of fish oil supplementation increases the content of 

intramuscular anabolic signalling molecules, without influencing the n-6 PUFA or AA 

composition of the muscle. Thus, our data could suggest that there may be other, as yet 

unknown, mechanisms that account for the changes in skeletal muscle plasticity with fish oil 

supplementation. As a cautionary note, it is important to recognise that our data are indicative 

of whole muscle and not the phospholipid fraction. Therefore, research that characterises the 

impact of n-3 PUFA supplementation on lipid composition in specific cell fractions and lipid 

signalling using sophisticated techniques such as lipidomics and transcriptomics, are now 

required to expand our current understanding. 

 

In summary, this study has characterised a time course of n-3 PUFA changes and anabolic 

signalling expression in human skeletal muscle during 4 weeks of fish oil supplementation. 

The primary conclusion of this investigation is that fish oil supplementation results in changes 

in muscle n-3 PUFA composition of skeletal muscle in weeks, rather than months as has been 

reported for adipose tissue [123]. To our knowledge, this study also is the first to show that 

fish   oil   supplementation   increases   the   content   of  FAK   that  may   suggest   a   ‘priming’   of   the  

muscle to respond to mechanical stimulation. Future studies that identify how fish oil 

supplementation influences anabolic signalling in response to mechanical stimulation in a 

physiological setting are now warranted.  
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3.0 Abstract 

 
mTORC1/p70S6K1 signalling plays a crucial role in MPS. Understanding of this pathway has 

been advanced by the application of the WB technique. However, in some instances the semi-

quantitative nature and poor dynamic range associated with the WB technique may lead to 

incongruence regarding the molecular response of skeletal muscle to anabolic stimulation. 

The aim of this study was to develop and apply a quantitative in vitro [γ-32P] ATP kinase 

assay (KA) alongside a traditional WB methodology to assess p70S6K1 signalling responses 

in human skeletal muscle to RE and protein feeding. Following validation in tissue culture 

with rapamycin and optimization of the assay in human skeletal muscle, this methodology 

was tested in a physiologically relevant context. In this regard, six males performed unilateral 

RE followed by the consumption of 20 g of protein. Skeletal muscle biopsies were obtained at 

pre-RE, at 1 h and 3 h post-RE. In response to RE and protein consumption, p70S6K1 activity 

was significantly increased from pre-RE at 1 h and 3 h post-RE (8.84 ± 0.78 to 17.18 ± 2.62 

and 15.62 ± 3.12 µU/mg). However, phosphorylated p70S6K1thr389 was not significantly 

elevated. Several reports have indicated that protein feeding alone or RE alone can down 

regulate AMPK phosphorylation. To assess if a combined stimulus of RE and feeding can 

influence AMPK activity we directly measured AMPK activity. AMPK activity was 

suppressed from pre-RE at 3 h post-RE (24.15 ± 1.6 to 15.64 ± 1.07 mU/mg), whereas 

phosphorylated ACCser79 was unchanged. Total PKB activity also was unchanged after RE 

from pre-RE. Of the other markers we assessed by WB, 4EBP1thr37/46 phosphorylation was the 

only significant responder being elevated at 3 h post-RE from pre-RE. These data highlight 

the utility of the KA to study skeletal muscle plasticity.  
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3.1 Introduction 

 
In Chapter 2 of this thesis it was identified that 4 weeks of n-3 PUFA-enriched fish oil 

supplementation increased the n-3 PUFA composition of skeletal muscle. This increase in n-3 

PUFA composition of skeletal muscle was associated with the enhanced expression of the 

mechanically sensitive protein FAK. Given FAK has been shown to regulate contraction-

induced changes in MPS via mTOR-p70S6K1 signalling [100], we therefore hypothesised 

that the increase in FAK expression associated with fish oil supplementation may serve to 

enhance anabolic signalling activity in response to a bout of RE. The traditional method to 

assess anabolic signalling activity in the exercise sciences is the WB technique. This 

technique assesses the phosphorylation of a kinase or a kinase target on serine, threonine and 

tyrosine residues, and infers the activity of the kinase based on the magnitude of 

phosphorylation as determined by densitometry. The WB technique is highly advantageous as 

it offers the capacity to measure phosphorylation changes in many targets in a financially 

appealing way. However, in some cases the WB technique possesses a limited dynamic range 

that can lead to type II statistical errors [147]. Furthermore, differences in methodological 

approaches to the WB are known to result in differential statistical outcomes for the same data 

sets [148]. Another consideration in the context of anabolic responses is that p70S6K1 has a 

constitutively low baseline phosphorylation. When changes in p70S6K1 phosphorylation to 

stimulation are represented as a fold or percentage change this low baseline phosphorylation 

results in an inflated response that is unlikely to be representative of a physiological change in 

activity [149,150]. Hence, our ability to detect changes in mTOR/p70S6K1 activity to RE and 

feeding following a period of n-3 PUFA supplementation is, in part, confined to both the 

limitations and assumptions of the WB technique.   
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In a recent commentary Murphy and Lamb [151] describe a fully quantitative approach to 

Western blotting that would appear to obviate these methodological considerations. These 

authors show that by using calibration curves for each gel, a quantitative assessment of 

changes in protein expression can be made. However, conducting calibration curves for the 

analysis of post translational modifications (PTM), such as phosphorylation, would be 

contingent upon 100% of the recombinant protein modified specifically at the specific PTM 

residue. Furthermore, the use of such calibration curves on every gel would prove costly when 

analysing numerous samples thus undermining the financial viability of the WB technique. As 

such, the use of the WB to assess changes in the phosphorylation of a kinase in the context of 

its activity for the assessment of anabolic signalling activity in response to RE remains 

limited. 

 

The in vitro [γ-32P] ATP kinase assay (KA) is the gold standard for assessing kinase function 

[152] and may represent a more practical alternative to quantitatively measure kinase activity 

in response to exercise. The original methodology involves immunoprecipitating the kinase of 

interest from homogenised tissue. The activity of the kinase is then assessed in vitro against a 

kinase-specific or kinase family-specific  substrate.  Gamma  (γ)-32P ATP is subsequently used 

to measure the incorporation of phosphate into the substrate via liquid scintillation counting 

thus enabling a quantitative assessment of kinase activity. This dual layer of specificity and 

quantitative approach may obviate some of the methodological shortcomings associated with 

the WB methodology [148]. Although, a semi-quantitative p70S6K1 KA has been described 

for use in rodent tissue [149] and a quantitative p70S6K1 KA has previously been used in cell 

culture studies [153]. However, no study has described a fully quantitative KA methodology 

for the assessment of p70S6K1 activity in human skeletal muscle. Additionally, a major 

drawback of the existing p70S6K1 KAs described in cell [154] and rodent [149] models is 
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that a large amount of muscle tissue is required. This demand would render these techniques 

redundant in many human experiments during in which muscle tissue availability is limited.  

 

The aim of this methodological study was therefore three fold. Firstly, to develop and validate 

a quantitative p70S6K1 KA methodology to assess p70S6K1 activity in human skeletal 

muscle. Secondly, to validate a serial immunoprecipitation protocol for the assessment of 

multiple kinases from a single muscle sample thus economising on muscle tissue sample. 

Finally, to apply this methodology alongside a traditional WB methodology to detect changes 

in p70S6K1 activity and associated readouts of mTORC1 activity in response to RE and 

protein feeding in humans [25].  

 

2.2 Methods  

2.2.1 Materials 

 
All materials, unless otherwise stated, were from Fisher Scientific (Loughborough, UK). All 

antibodies unless otherwise stated were used at a concentration of 1:1000 and were from New 

England Biolabs (Herts, UK). Selected primary antibodies were mTORser2448 (#2974), total 

mTOR (#2983), ACCser79 (#3661), total ACC (#3676), total glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) (#2118), Raptorser792 (#2083), (#3702), p70S6K1thr389 (Santa Cruz; 

#9234), total p70S6K1 (#2708), AMPKthr172 (#2531), total AMPK (#2532), PKBthr308 (#2965), 

total PKB (#4691), PRAS40thr246 (#2997) and total PRAS40 (#2691), 4EBP1thr37/46 (#2855) 

total 4EBP1 (#9644). Secondary HRP-conjugated antibody was purchased from ABCAM 

(#6721). Pre-poured gels for Western blotting were 4-20% Tris-Glycine Criterion gradient 

gels from BioRad (Herts, UK). AMPK α1  and  α2 specific antibodies were produced by GL 

Biochem  (Shanghai,  China)  against  the  following  antigens;;  α1,  CTSPPDSFLDDHHLTR  and  

α2,  CMDDSAMHIPPGLKPH  [155].  
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2.2.2 Tissue Culture Experiments 

 
C2C12 myoblasts were grown to confluence on T75 plates in Growth Media [(GM) 20% FBS 

(Dundee Cell Products, Dundee, UK), 1% Penicillin/Streptomycin (Invitrogen, Paisley, UK) 

in high glucose DMEM (Invitrogen)]. Confluent myoblasts were then transferred to 

differentiation media [(DM) 2% Donor Horse Serum (Dundee Cell Products), 1% 

Penicillin/Streptomycin (Invitrogen) in high glucose DMEM (Invitrogen)]. Prior to the 

addition of inhibitors cells were serum and amino acid starved in PBS with 5 mM Glucose 

(Invitrogen) for 3 h. Starved cells were then pre-treated with an inhibitor [100 nM rapamycin 

(Sigma  Aldrich),  10  μM  LY294002  (Cell  Signalling) or vehicle control (0.1% DMSO)] for 1 

h prior to serum and amino acid stimulation by the addition of GM supplemented with or 

without inhibitors. After 30 min of stimulation cells were lysed on ice in 1 mL of radio 

immunoprecipitation assay (RIPA) buffer (50 mmol/L Tris/HCl, pH 7.5; 50 mmol/L NaF; 

500 mmol/L NaCl; 1 mmol/L Na vanadate; 1 mmol/L EDTA; 1% [vol/vol] triton X-100; 5 

mmol/L Na pyrophosphate; 0.27 mmol/L sucrose; and 0.1% [vol/vol] 2-mercaptoethanol) and 

then stored at -80 °C. HEK293 cell  lysates  over  expressing  either  the  α1  or  the  α2  subunit  of  

AMPK were a gift from Professor Grahame Hardie (Division of Cell Signalling and 

Immunology, University of Dundee). 

 

2.2.3 Mouse ex vivo and in vivo insulin stimulations 

 
All animal experiments were approved by and conducted in accordance with the Animal Care 

Program at the University of California, San Diego for the ex vivo insulin stimulations and the 

Animal Care Program at the University of California, Davis for the in vivo insulin 

stimulations. Ex vivo insulin stimulations were carried out as follows: 6 male C57/Bl6 mice 

were fasted for 4 h and anaesthetised (150 mg/kg Nembutal) via intraperitoneal injection. 

Paired extensor digitorum longus (EDL) muscles were incubated at 35°C for 30 min in 
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oxygenated (95% O2, 5% CO2) flasks of Krebs-Henseleit buffer (KHB) containing 0.1% 

BSA, 2 mM Na-pyruvate and 6 mM mannitol. One muscle per pair was incubated in KHB 

without insulin, and the contralateral muscle was incubated in KHB with  insulin  (60  μU/mL  

[0.36 nM]; Humulin R, Eli Lilly and Company). After 50 min, muscles were blotted on ice-

cold filter paper, trimmed, freeze clamped and then stored at -80°C (n=6). In vivo insulin 

stimulations were carried out as follows: 2 female C57/Bl6 mice were fasted for 4 h and 

anaesthetised with 2% isoflurane vaporised in 100% O2. One mouse was intrapertioneally 

injected with 100 mU/kg of insulin (Humulin R, Eli Lilly and Company). Following 30 min 

the muscles from the lower limb were dissected and snap frozen in liquid N2. The control 

mouse went through the same procedure except that it was injected with 0.9 % saline.    

 

3.3 Human experimental study 

3.3.1 Participants 

 
Six healthy, moderately trained males (mean ± SD: age, 23 ± 2 yr; body mass, 76 ± 5 kg; 

height, 179 ± 5 cm; unilateral 1 repetition maximum [1 RM] leg press, 128 ± 8 kg; 1 RM leg 

extension, 54 ± 3 kg) were recruited to participate in this study. All participants engaged in 

resistance training ~2 times per week and played team sports recreationally. Prior to the 

commencement of the experiment each participant provided written informed consent after all 

procedures and risks were fully explained in lay terms. Participants also were required to 

satisfy a routine physical activity readiness questionnaire (PARQ). The study procedures were 

approved by Research Institute for Sport and Exercise Sciences Ethics Committee, Liverpool 

John Moores University and conformed to the standards as outlined in the 2008 version of the 

Declaration of Helsinki. 
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3.3.2 Study design 

 
Seven days after confirmation of unilateral 1 RM for leg press and leg extension, six healthy, 

moderately trained males reported to the laboratory at ~0700 h in a 10 h post-absorptive state. 

Each participant's height and body mass were recorded after which they were rested (~30 

min) in a semi-supine position on a bed and a resting biopsy was obtained. Immediately after 

the biopsy participants were transported by wheelchair to the resistance-training laboratory 

where they performed a bout of unilateral RE. Immediately following the bout of unilateral 

RE, participants were required to consume 20 g of pure egg white powder in a 500 mL 

solution. Participants were then transported back to the resting laboratory and rested again in 

a semi-supine position during which additional muscle biopsies were obtained at 1 h and 3 h 

post-RE. 

 

3.3.3 Resistance exercise protocol 

 
1 RM testing was conducted as previously described [156]. On the day of the experimental 

trial participants performed a bout of unilateral RE consisting of 4 sets of 10 repetitions at 

70% 1 RM of leg press followed by leg extension performed at the same intensity with their 

dominant limb. Recovery time between exercises and sets was 3 min and 2 min, respectively. 

Participants were provided with verbal cues in order to ensure correct exercise technique. 

Each repetition consisted of a 1 s concentric action, 0 s pause then a 1 s eccentric action as 

previously reported  [64].  

 

3.3.4 Study controls 

 
Participants were required to record dietary intake for 3 d prior to the initial one 1 RM testing 

session and to repeat this pattern of consumption for the 3 d preceding the day of the 



Chapter 3                        52 

 
 

experimental trial. For 3 d prior to both 1 RM testing and the experimental trial participants 

also were asked to refrain from any form of vigorous exercise. These controls were 

implemented in an attempt to prevent any nutritional or exercise-induced changes in protein 

activity adversely impacting the results of the study. 

 

3.3.5 Skeletal muscle biopsies 

 
Skeletal muscle biopsies were obtained on the exercising limb at pre-RE, 1 h post and 3 h 

post-RE using a Bard Monopty Disposable Core Biopsy Instrument 12 gauge × 10 cm length 

(Bard Biopsy Systems, Tempe, AZ). For each biopsy the lateral portion of the vastus lateralis 

was cleaned before an incision into the skin and fascia was made under local anaesthetic 

(0.5% Marcaine, without adrenaline: cat. no. MD92672). A sample of muscle (~30 mg) was 

extracted, rinsed with ice cold saline, blotted dry and any visible fat or connective tissue was 

removed.  Muscle samples were then snap-frozen in liquid nitrogen and stored at – 80°C for 

further analysis.  

 

3.3.6 Muscle Tissue Processing  

 
Approximately 30 mg of human skeletal muscle tissue (~5 mg of mouse skeletal muscle 

tissue) was homogenised by scissor mincing on ice in RIPA buffer (50 mmol/l Tris/HCl, pH 

7.5; 50 mmol/L NaF; 500 mmol/L NaCl; 1 mmol/L Na vanadate; 1 mmol/L EDTA; 1% 

[vol/vol] Triton X-100; 5 mmol/L Na pyrophosphate; 0.27 mmol/L sucrose; and 0.1% 

[vol/vol] 2-mercaptoethanol) followed by shaking at 1000 rpm on a shaking platform for 60 

min at 4ºC. Debris was removed by centrifugation at 4°C for 15 min at 13,000 g. The 

supernatant was then removed and protein concentration determined using the BCA protein 

assay  according  to  the  manufacturers’  instructions  (Sigma  Aldrich,  UK).   
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3.3.7 Western blotting 

 
For Western blots 300 µL of supernatant was made up in Lamelli Sample Buffer and 5-15 µg 

of total protein was loaded per well with the same amount of protein loaded in all wells for 

each gel and run at 150 V for 1 h 15 min. Proteins were then transferred onto Whatman 

Immobilon Nitrocellulose membranes (Fisher Scientific, Loughborough, UK) at 30 V 

overnight on ice. Membranes were blocked in 3% BSA- Tris-buffered saline (containing 

vol/vol 0.1% Tween 20) for 1 h at room temperature followed by incubation in primary 

antibodies at 4ºC overnight. Membranes underwent 3 × 5 min washes in TBST followed by 

incubation in the appropriate secondary antibodies for 1 h at room temperature. Membranes 

were again washed for 3 × 5 min followed by incubation in enhanced chemiluninescence 

(ECL) reagent (BioRad, Herts, UK). A BioRad ChemiDoc (Herts, UK) was used to visualise 

and quantify protein expression. All phospho-proteins were normalised to the corresponding 

total proteins after stripping the phospho antibody for 30 min at 50ºC in stripping buffer (65 

mM Tris HCl, 2% SDS vol/vol, 0.8% Mercaptoethanol vol/vol) and re-probing with the 

primary antibody for the corresponding total protein. All phospho-proteins were normalised to 

the expression of the corresponding total with the exception of phosphorylated Raptorser792 

that was normalised to the expression of GAPDH. 

 

3.3.8 [γ-32P] ATP kinase assays 

 
All KAs were carried out by immunoprecipitation (IP) either for 2 h at 4°C or overnight at 

4°C in homogenisation buffer [AMPK (50 mM TrisHCl pH 7.25, 150 mM NaCl, 50 mM 

NaF, 5 mM NaPPi, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 0.1 mM benzamidine, 0.1 mM 

PMSF,  5  μg/mL  soya bean trypsin inhibitor, 1% (v/v) TritonX-100) and p70S6K1/panPKB 

(50 mM TrisHCl pH 7.5, 0.1 mM EGTA, 1 mM EDTA, 1% (v/v) TritonX-100, 50 mM NaF, 

5   mM  NaPPi,   0.27  M   sucrose,   0.1%   β-mecertoehtanol, 1 mM Na3(OV)4 and 1 Complete 
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(Roche) protease inhibitor tablet per 10 mL)]. Protein G sepharose (70%, 2.5 µL per IP) was 

used to precipitate the immune-complexes. Immune-complexes were washed 2 x in assay 

specific high salt washes (homogenisation buffers as above with 0.5 M NaCl added) followed 

by 1 x wash in assay specific assay buffer (see below). Prior to carrying out the activity assay 

the immune-bead-complex was suspended in a total of 10 µl of assay buffer for p70S6K1 and 

panPKB assays and 20 µl of assay buffer for AMPK assays. All assays were carried out in a 

50 µl reaction. Assays were started every 20 s by the addition of a hot assay mix that 

consisted  of  assay  buffer  [PKB/p70S6K1  (50  mM  TrisHCl  at  pH  7.4,  0.03%  Brij35,  0.1%  β-

mercaptoehtanol), AMPK (50 mM HEPES at pH 7.4, 1 mM DTT, 0.02% Brij35)], ATP-

MgCl2 (100   μM  ATP  +   10  mM  MgCl2 for   p70S6K1/panPKB   and   200   μM  ATP  +   50  μM  

MgCl2 for AMPK), 32γ-ATP [specific activities as follows; panAMPK (0.25 x 106 cpm/nmol), 

panPKB (0.5 x 106 cpm/nmol), p70S6K1 (1 x 106 cpm/nmol)] and finally synthetic peptide 

substrates [“Crosstide”   for   panPKB   (GRPRTSSFAEG   at   30   μM),   “S6tide”   for   p70S6K1  

(KRRRLASLR   at   30   μM)   and   “AMARA”   for   AMPK   (AMARRAASAAALARRR   at   200 

μM)].  Assays  were  stopped  at  20  s  intervals  by  spotting  onto  squares  of  p81  chromatography  

paper (Whatman, GE Healthcare, UK) and immersing in 75 mM phosphoric acid. p81 papers 

were washed 3 x 5 min in 75 mM phosphoric acid and 1 x in acetone. They were then dried 

and immersed in Gold Star LT Quanta scintillation fluid (Meridian Biotechnologies Ltd, 

Chesterfield, UK) and counted in a United Technologies Packard 2200CA TriCarb 

scintillation counter. Assay results were quantified in nmol/min/mg (U/mg). Blanks for 

background subtractions were carried out with immunoprecipitated kinases with no peptide 

included in the assay reaction.      For   the   AMPK   antibody   validation   assays   the   AMPK   α1  

antibody  (5  μg)  was  used  to  immunoprecipitate  AMPK  α1  complexes  from  100  μg  of  lysate  

in   duplicate   whilst   AMPK   α2   antibody   (5   μg)   was   used   to   immunoprecipitate   AMPK   α2  

complexes  from  100  μg  of  lysate. These lysates were from HEK cells overexpressing either 

AMPK  α1  or  AMPK  α2  and  were  a  kind  gift  from  Professor  Grahame  Hardie  (University  of  
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Dundee). Assays were carried out for 15 min. panPKB and p70S6K1 activity assays were 

carried out on cell lysates  by  IP  from  200  μg  of  cell  lysate.  The  IP  step  was  performed  with  2  

µg  each  of  PKBα/β/γ  antibodies   (DSTT,  Dundee  University)  or  2  µg  of  p70S6K1  antibody  

[#H-9 (Santa Cruz Biotechnology Inc, Heidelberg, Germany)] respectively. Antibodies were 

used with 2.5 µL of protein G sepharose per IP to immunoprecipitate for 2 h at 4°C. p70S6K1 

and panPKB were assayed for 45 min and 20 min respectively. 

 

3.3.9 Time dependant saturation assays 

 
Three human skeletal muscle skeletal muscle biopsy samples were pooled and homogenised. 

Homogenate was aliquoted to 2.4 mg for panPKB assays, 6 mg for p70S6K1 assays and 0.6 

mg   for  AMPK  assays.  72  μg  each  of  PKBα/β/γ   antibodies  were  used   to   immunoprecipitate  

panPKB,   48   μg   of   p70S6K1   antibody  was   used   to   immunoprecipitate   p70S6K1   and   60  μg  

each  of  AMPK  α1  and  α2  were  used  to  immunoprecipitate  panAMPK.  Following  IP  each  of  

these immune-complexes were aliquoted into 12 aliquots for activity assays, nine of the 

aliquots were used for activity assays for the time course of 7.5 min, 15 min and 30 min for 

AMPK, 15 min, 30 min and 60 min for panPKB and p70S6K1. The 3 remaining aliquots were 

used for no-peptide controls to generate assay specific blanks. Each assay represented an IP 

from  50  μg  of   lysate  for  panAMPK,  200  μg  of   lysate   for  panPKB  and  500  μg  of   lysate   for  

p70S6K1. 

 

For the serial IP validation, lower limb muscles from a 4 h fasted (Con) and an insulin 

stimulated mouse [Ins (4 h fasted + 100 mU insulin/kg for 30 min)] were homogenised and 

aliquoted into  6  x  200  μg  aliquots  each.  IP’s  were  set  up  to  IP  panPKB  (3.2  μg  of  each  PKB  

antibody) from 3 Con and 3 Ins aliquots whilst the other aliquots had p70S6K1 
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immunoprecipitated  (4  μg  of  p70S6K1  antibody)  prior  to  immunoprecipitating  with  panPKB  

as before. panPKB activity assays were carried as described above following IP. 

 

For p70S6K1/panPKB KA in human tissue, 500 µg of lysate was aliquoted and p70S6K1 was 

immunoprecipitated with 4 µg of p70S6K1 and 2.5 µl of protein G sepharose (GE Healthcare) 

for 2 h at 4 °C. The p70S6K1 KA was carried out for 45 min. 200 µg of the post IP 

supernatant was then used for panPKB  IP.  2  µg  each  of  PKBα/β/γ  antibodies  (DSTT,  Dundee  

University) were used with 2.5 µl of protein G sepharose to immunoprecipitate PKB at 4 °C 

for 2 h. panPKB KA were carried out as previously described for a 30 min assay. Following 

homogenisation, 50 µg of lysate was aliquoted for AMPK activity assays. AMPK activity 

assays were carried out by IP with complexes in AMPK IP buffer (homogenisation buffer as 

above). Immunoprecipitates were then washed and AMPK activity was determined against 

AMARA peptide as previously described in a 20 min assay.   

 

3.3.10 Statistical analysis  

 
Data were analysed using GraphPad Prism Software version 6.0 (GraphPad, San Diego, CA, 

USA) unless otherwise stated. Differences in kinase signalling activity and phosphorylation 

(i.e., p70SK61thr389, PKBthr308, AMPK activity) were analysed using a one-way ANOVA and 

when   appropriate   a   Tukey’s   post-hoc was employed for post-hoc analysis. Regression 

analysis was performed to identify correlation coefficients for time against kinase activity. 

Post-hoc sample size calculations were conducted using GPower 3.0.8 software based on an 

estimated effect size of 0.53, a 1-ß error probability of 0.8 and a significance level < 0.05.  All 

data unless otherwise stated are presented as means ± SEM and P values < 0.05 indicate 

statistical significance.  
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3.4 Results 

3.4.1 Antibody/Assay validation 

panAMPK 
 
Total (or pan) AMPK activity was measured by immunoprecipitating both catalytic subunits 

of  AMPK  (AMPK  α1  and  AMPK  α2).  We  commissioned  our  own  AMPK  α1  and  AMPK  α2  

antibodies  (GL  Biochem,  China)  against  the  following  antigens;;  α1,  CTSPPDSFLDDHHLTR  

and  α2,  CMDDSAMHIPPGLKPH [155]. To confirm that the AMPK antibodies were AMPK 

α1  and  AMPK  α2  specific  and  therefore  capable  of  immunoprecipitating  total  AMPK  when  

the antibodies are combined, we carried out a validation experiment (Figure 3.0 A). Cell 

lysates  over  expressing  either  AMPK  α1  or  AMPK  α2  underwent  an  IP  with  either  the  AMPK  

α1   or   AMPK   α2   antibody.   AMPK   α1   immunoprecipitated   substantial   activity   from   the  

AMPK  α1  overexpressing   cell   lysates,  ~10   fold  more   activity   than   the  AMPK  α2   antibody 

immunoprecipitated.  The  reverse  experiment  demonstrated  a  similar  result  in  that  AMPK  α2  

immunoprecipitated  ~10   fold  more   activity   from   the  AMPK  α2  overexpressing   cell   lysates  

than  did  the  AMPK  α1  antibody.  These  data  demonstrate  the  specificity  of  our  AMPK  α1  and  

α2   antibodies.   To   further   highlight   that   these   antibodies   are   immunoprecipitating   active  

endogenous AMPK complexes, a positive control experiment was conducted by treating 

C2C12 myotubes  with  100  μM  2,4-Dinitrophenol (DNP [a known AMPK activator [157]) for 

30 min and followed this treatment with panAMPK activity assays. This treatment resulted in 

a ~4 fold increase in panAMPK activity (Figure 3.0 B) concurrent with a substantial increase 

in phosphorylation of AMPK at Thr172 (inset Figure 3.0 B). 

 

 

panPKB 
 
Total (or pan) PKB activity can be assessed by utilizing recombinant glycogen synthase 

kinase-3 (GSK3) as a substrate and then running a standard WB with a phosphorylated GSK3 
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antibody to determine phosphate incorporation [27]. However, this approach again relies upon 

densitometry analysis thus comparisons across large sample sets are problematic. Therefore, 

in this study a filter binding assay was employed that also allowed for quantitative 

scintillation counting. We used antibodies and a peptide substrate [158] that have been 

characterised previously [158,159]. However, to confirm that panPKB activity was being 

detected with the immune-complex a positive control experiment was carried out (Figure 3.0 

C). We serum stimulated C2C12 myotubes that had been treated with or without the PI3K 

inhibitor LY294002 [160]. Serum stimulation led to a ~5 fold increase in panPKB activity 

whilst the inhibition of PI3K with LY294002 significantly inhibited panPKB activity. The 

changes in activity were reflected by changes in phosphorylation (inset Figure 3.0 C).  

 

p70S6K1 
 
Traditionally p70S6K1 activity assays are carried out with recombinant S6 as a substrate 

[149] wherein the radioactively labelled substrate is run on a gel before being exposed to 

radiography film. This assay is more difficult to accurately quantify with large sample 

numbers due to the necessity to expose all samples to SDS-PAGE. Furthermore, this method 

still requires the use of densitometry analysis that can be subjective leading to variable 

outputs depending upon the method of quantification [148]. However, several laboratories 

have utilised a scintillation assay to quantitatively assess p70S6K1 activity [153,161]. In order 

to utilise a quantitative p70S6K1 activity assay that can be applied more easily to large 

sample numbers we employed a similar assay protocol with a peptide substrate analogue of 

S6 corresponding to amino acids 230-238 on human 40S ribosomal protein S6 

(KRRRLASLR) [162]. This approach allowed for the use of filter paper capture of the 

labelled peptide that can then be analysed quantitatively via scintillation counting. In order to 

confirm that this method did not alter the results of the assay we carried out a validation 

experiment in C2C12 myoblasts (Figure 3.0 D). We used serum and amino acid stimulation as 
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a positive control with rapamycin (specifically inhibits mTORC1 activity) as a control to 

confirm that serum and amino acid-induced activation of kinase activity was in fact, p70S6K1 

specific. We show that serum and amino acid stimulation induces a ~10 fold increase in 

activity whilst rapamycin completely blocks this activation (Figure 3.0 D) and the 

phosphorylation of p70S6K1thr389 (inset Figure 3.0 D). These data demonstrate the mTORC1 

dependence of the kinase activity we measured.    

 

3.4.2 Time dependant saturation curves 

 
In order to select the most appropriate duration for each assay in human biopsy samples we 

carried out a time dependant saturation curve for each assay from a pool of human muscle 

biopsies (Figure 3.2). We carried out the AMPK assays for 7.5, 15 and 30 min whilst PKB 

and p70S6K1 assays were carried out for 15, 30 and 60 min. These assays revealed linearity 

across the time course for each assay indicating that assays carried out for anywhere between 

7.5 and 30 min for panAMPK and 15-60 min for panPKB and p70S6K1 would be within the 

linear range for time. 
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Figure 3.0 All data expressed as means ± SD Antibody and assay validation. (A) AMPK  α1  
and   AMPK   α2   activity   assays   derived   from   immune-complexes from cells overexpressing 
either  AMPK  α1  or  AMPK  α2.  (B) panAMPK activation in response to energy stress in C2C12 
myotubes.  C2C12 myotubes were serum starved for 2 h prior to stimulation with DNP (100 
μM)   for   30   min   (n=2   in   duplicate).   (C) Pan-PKB activation by serum stimulation and 
inhibition   by   LY294002   (10   μM).   C2C12 myotubes were serum starved for 3 h and pre-
incubated with either vehicle (NTC – no   treatment  control)  or  LY294002  [10  μM  (S+LY  – 
stimulated + LY] for 1 h (n=3 in duplicate). Then they were stimulated for 30 min in 2 % FBS 
(S - stimulated). * indicates significantly different from NTC and S+LY. (D) p70S6K1 
activation by serum + amino acid stimulation and inhibition by rapamycin (100 nM). C2C12 
myotubes were serum and amino acid starved for 3 h in PBS+5 mM glucose and pre-
incubated with either vehicle (NTC) or rapamycin [100 nM (S+R – stimulated + rapamycin) 
for 1 h (n=2 in triplicate). Then they were stimulated for 30 min in 20% FBS+DMEM (S – 
stimulated). Insets on each graph are representative Western blots.  
 
 

~63 kDa 
 
 

~70 kDa 
 
 

~60 kDa 
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Figure 3.1 All data are expressed as means ± SD. Saturation time course of activity assays 
carried out from human skeletal muscle. r2 values are as follows; AMPK = 0.969, panPKB = 
0.982 and  p70S6K1 = 0.856.  
 

 

3.4.3 Validation of the serial IP  

 
To economize on human muscle samples, panPKB and p70S6K1 activity assays were carried 

out via serial IP with p70S6K1 immunoprecipitated first. To confirm that this serial IP 

process did not impact PKB activity we performed a validation of this procedure in response 

to maximal insulin stimulation (Figure 3.2). Serially immunoprecipitating panPKB after 

p70S6K1 had no significant impact upon panPKB activity when compared to a standard IP 

(Figure 3).      
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Figure 3.2 All data are expressed as means ± SEM. Serial IP validation. IPs were set up to 
immunoprecipitate panPKB alone or p70S6K1 immunoprecipitated prior to 
immunoprecipitating with panPKB. * indicates significantly different from both control (Con) 
conditions. 
 

3.4.4 Application  of  the  [γ-32P] ATP kinase assay in a physiological context in human skeletal 

muscle 

 
We next determined if we could measure the activity of panAMPK, panPKB and p70S6K1 

from the same human skeletal muscle sample following RE and protein feeding in humans 

[25]. In our study we identified a significant increase in p70S6K1 activity from pre-RE at 1 h 

and 3 h post-RE (P < 0.05, Figure  3.3 C). However, there was no significant change in 

panPKB activity at any time point (Figure 3.3 B). Finally, panAMPK activity was 

significantly repressed (P < 0.05, Figure 3.3 A) at 3 h post-RE compared to pre-RE. To 

confirm that we are able to detect physiologically relevant changes in panPKB activity we 

assessed the activation of panPKB in response to a physiologically relevant (0.36 nM) insulin 
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stimulus in ex vivo mouse skeletal muscle (inset Figure 3.3 B). Indeed, we detected a 

significant increase in panPKB activity in response to 50 min of insulin stimulation thus 

confirming that this assay is capable of detecting changes in panPKB activity in a 

physiological context.   

 

3.4.5 Western blotting 

 
Following the assessment of kinase activity as markers of anabolic responses in humans we 

next measured the phosphorylation of proteins that are typically used as surrogate readouts of 

anabolic signalling activity. The responses of kinases, as determined by WB, are shown in 

Figure 3.4 (AMPK readouts), Figure 3.5 (PKB readouts) and Figure 3.6 (mTORC1 readouts). 

In response to RE and nutrition, there were no significant changes in phosphorylated 

mTORser2448 (Figure 3.6 A), ACCser79 (Figure 3.4 A), Raptorser792 (Figure 3.4 B), 

p70S6K1thr389 (Figure 3.6 B), PKBthr308 (Figure 3.5 A) and PRAS40thr246 (Figure 3.5 B). 

However, phosphorylated 4EBP1thr37/46 was significantly elevated at 3 h post-RE compared to 

pre-RE (P < 0.05; Figure 3.6 C). Representative WB images are inset above each graph. 
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Figure 3.3 All data are expressed as 
means ± SEM. Application of 3 kinase 
assays in human skeletal muscle in 
response to a physiological anabolic 
stimulus of resistance exercise combined 
with feeding 20g of protein (n=6). (A) 
panAMPK activity. panAMPK activity 
was  determined  from  50  μg  of   lysate   in  a  
20min reaction against the synthetic 
substrate AMARA. (B) panPKB activity. 
panPKB activity serially 
immunoprecipitated after p70S6K1 IP. 
Inset demonstrates the panPKB activity 
response to a physiological insulin 
stimulation of 0.36 nM for 50 min in ex 
vivo mouse skeletal muscle (n=6). 
panPKB activity was determined from 200 
μg   of   lysate   in   a   30  min   reaction   against  
the synthetic peptide substrate Crosstide. 
(C) p70S6K1 activity. p70S6K1 activity 
was  determined  from  500  μg  of  lysate  in  a  
45 min reaction against the synthetic 
peptide substrate S6K1tide. Pre-RE 
indicates biopsy taken prior to resistance 
exercise and feeding, 1 h post-RE 
indicates the biopsy taken 1 h following 
combined resistance exercise and feeding 
whilst 3 h post-RE indicates biopsy taken 
3 h following combined resistance 
exercise and feeding. * indicates 
significantly different from Con or Pre-RE 
(P <0.05).  
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Figure 3.4 All data are expressed as means ± SEM. Markers of AMPK activity in response to 
a physiological anabolic stimulus of resistance exercise combined with feeding 20 g of 
protein. Protein phosphorylation of (A) ACCser79, and (B) Raptorser792 obtained at pre, 1 h post 
and 3 h post-RE. . 
 
 

 

 
Figure 3.5 All data are expressed as means ± SEM. Markers of panPKB activity in response 
to a physiological anabolic stimulus of resistance exercise combined with feeding 20 g of 
protein. Protein phosphorylation of (A) PKBthr308 and (B) PRAS40thr246.  
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Figure 3.6. All data are expressed 
as means ± SEM. Markers of 
mTORC1 activation in response to 
a physiological anabolic stimulus 
of resistance exercise (RE) 
combined with feeding 20 g of 
protein. (A) mTORser2448, (B)  
p70S6K1thr389, and (C) 
4EBP1thr37/46. * indicates 
significantly different from Pre-RE 
(p<0.05). 
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3.5 Discussion 

 
There were three main aims of the present investigation. Firstly, to develop and validate a 

quantitative p70S6K1 KA for use in human skeletal muscle biopsy samples.   Secondly, to 

validate a serial IP protocol for the assessment of the activity of multiple kinases from a single 

muscle sample. Lastly, to apply these novel methodologies alongside a traditional WB 

method to assess changes in human skeletal muscle kinase activity and phosphorylation in 

response to a physiologically relevant stimulus [25]. For the first time we demonstrate that 

combined RE and protein feeding significantly increases p70S6K1 activity by ~2 fold, as 

determined by the KA with a similar ~2 fold but non-significant change in p70S6K1thr389 

phosphorylation. In addition, we demonstrate the capacity to achieve a dual measure of 

panPKB and p70S6K1 activity from the same muscle sample via a serial IP protocol. This 

study therefore highlights the potential application of the novel p70S6K1 KA described in this 

investigation to study the molecular signalling responses of skeletal muscle to RE and 

nutrition in humans. 

 

Although we observed a significant increase in p70S6K1 activity to RE and protein feeding 

we detected no significant changes in the phosphorylation of p70S6K1thr389. This finding was 

unexpected given previous reports of a significant ~2 fold [139] and ~12 fold [26] increase in 

phosphorylated p70S6K1thr389 to an acute bout of RE and protein feeding. However, the lack 

of detectable change in phosphorylated p70S6K1thr389 in our investigation appears to be 

related to low statistical power. Indeed, a post-hoc sample size calculation from the present 

study determined that a participant sample of 12 would have been necessary to detect a 

statistically significant difference in phosphorylated p70S6K1thr389 between pre-RE and 1 h 

post-RE and protein ingestion. However, by utilizing the KA we were able to detect a modest 

increase in p70S6K1 activity from pre-RE at 1 h and 3 h post-RE and feeding. Thus, these 
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data highlight not only the sensitivity but also the utility of the p70S6K1 KA as described in 

this investigation to assess p70S6K1 activity in response to anabolic stimulation.   

 

Due to issues associated with ethical practice and participant compliance in human research, 

muscle tissue availability is often a limiting factor. In this investigation, we provide a 

validated serial IP protocol for the dual assessment of p70S6K1 and panPKB activity from a 

single muscle biopsy sample (30 mg). We show that this serial IP protocol has no impact on 

panPKB activity hence economising on muscle tissue requirements. When applying this 

protocol to study panPKB responses of human skeletal muscle to RE and feeding we show no 

change in panPKB activity at any time point, a finding that corroborates previous reports in 

human, rodent and cell culture models [70,146,163].  However, it is important to note that the 

panPKB KA described in this methodological investigation fails to provide information 

regarding PKB isoform-specific effects that could be useful in understanding the cell growth 

and metabolism [164]. The development of such a methodology is therefore a topic for future 

work.   

 

In order to provide further evidence to highlight the quantitative nature of our KAs we 

conducted time-saturation curves for p70S6K1, panPKB and panAMPK KAs. We show that 

KAs carried out for anywhere between 15-60 min for panPKB and p70S6K1 and 7.5 and 30 

min for panAMPK exhibit linearity for time in relation to activity. With regards to panAMPK 

activity we demonstrate a reduction in panAMPK activity 3 h post-RE and feeding, similar to 

the findings of others who demonstrate that RE [165] or feeding [104] also repress 

AMPKthr172 phosphorylation. Interestingly, the significant reduction of AMPK activity in our 

study was not mirrored by a reduction in ACCser79 phosphorylation, P = 0.70. We chose to 

assess the phosphorylation of ACCser79 as a readout of AMPK activity as phosphorylated 

AMPKthr172 possesses a low dynamic range that renders phosphorylated AMPKthr172 on this 
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residue a poor surrogate of true AMPK activity in some instances [147]. Therefore, the 

decrease in AMPK activity paralleled with a non-significant change in ACCser79 

phosphorylation further emphasises the potential application of the KA described in this 

investigation, and others [166], to assess RE and nutrition-induced changes in cellular 

signalling.  

 

As statistical power with regards to the p70S6K1thr389 is clearly a mitigating feature of this 

study, we decided to assess other readouts of mTORC1 activity using the traditional WB 

methodology. In response to RE and protein ingestion we detected no significant change in 

the phosphorylation status of mTORser2448 at any time point during the recovery period. 

However, there was a significant increase in the phosphorylation status of the mTOR 

substrate 4EBP1thr37/46 at 3 h post-RE and protein feeding. The lack of change of mTORser2448 

phosphorylation despite an increase in p70S6K1 activity and 4EBP1thr37/46 was surprising as 

both p70S6K1 and 4EBP1 are known targets of mTORC1 [63]. Although, data do exist to 

suggest that the assessment of mTORser2448 phosphorylation may not be truly representative of 

mTORC1 activity. Indeed, one study shows no change in  mTORser2448 phosphorylation in 

response to a 48 g whey bolus at both 1 h and 3 h post-feeding despite a profound increase in 

MPS as well as elevations in the phosphorylation of p70S6K1thr389 and 4EBP1thr37/46 [27]. 

Moreover, it is known that mutation of the ser2448 residue on mTOR fails to significantly 

impact p70S6K1 activity in cell based systems [81]. Taken together with the findings of our 

investigation, these data suggest that mTORser2448 phosphorylation may not offer the most 

accurate readout of mTORC1 activity at the time points we measured. Hence, studies that 

employ the traditional WB technique as a means to assess mTORC1 activity may be better 

served by assessing changes in the phosphorylation of the mTOR substrates 4EBP1 and 

p70S6K1 in addition to  mTORser2448 itself.   
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In summary, this study provides a novel, fully-quantitative methodology to assess p70S6K1 

activity in human skeletal muscle. In addition, we provide a validated serial IP protocol that 

enables the dual assessment of PKB and p70S6K1 activity from a single skeletal muscle 

biopsy sample. Although, it is important to acknowledge that the KAs described in this 

investigation provide no information pertaining to the PTM of a protein such as 

phosphorylation. Indeed, phosphorylation is a critical regulatory step in protein function 

[167]. Nevertheless, this methodological study describes a bone fide methodology that can 

now be used to identify changes in p70S6K1 signalling activity in response to RE and feeding 

in humans. Therefore, this methodology may now be used in the final chapter of this thesis to 

identify if fish oil supplementation enhances anabolic signalling activity in response to a bout 

of RE and protein feeding. 
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4.0 Abstract 

 
Previous studies have shown that ingestion of n-3 PUFA potentiates the phosphorylation of 

mTORC1 and associated kinases in response to nutrition. However, no study has identified 

whether n-3 PUFA supplementation potentiates anabolic kinase activity when RE is 

performed prior to nutrient provision. The aim of this investigation was to identify if 8 weeks 

of n-3 PUFA-enriched fish oil supplementation potentiates p70S6K1, panPKB, AMPK α1  and  

AMPK α2  activity  to  oral protein ingestion and the combined stimulus of unilateral RE and 

oral protein ingestion. Twenty healthy males consumed 5g.d-1 of either fish oil (FO) or 

coconut oil (CO) capsules for 8 weeks. Venous blood and muscle biopsy samples were 

collected in the fasted, rested state before and after 8 weeks of supplementation for 

assessment of changes in lipid composition and kinase activity over time. Following 8 weeks 

of supplementation muscle samples also were obtained at rest (Rest), post RE in both the 

exercise leg (Post-RE) and the rested leg (Pre-FED) and also at 3 h post RE and protein 

feeding from both the exercise leg (3 h post-REF) and rested leg (3 h post-FED). There was a 

2-fold increase in muscle (5.53 ± 0.3 to 11.16 ± 0.45 % of total fatty acids) and blood (6.74 ± 

0.50 to 12.64 ± 0.73 % of total fatty acids) n-3 PUFA composition after supplementation in 

the FO group but no change in the CO group. Basal, fasted panPKB activity was significantly 

higher before compared to after supplementation in the FO group only (12.5 ± 2.6 to 8.2 ± 1.6 

mU/mg). Following supplementation there was an increase in p70S6K1 activity at 3 h post-

REF from Rest in the CO group (5.6 ± 1.4 to 12.2 ± 2.1 µU/mg) but no change in the FO 

group.  In  the  CO  group,  AMPKα2  was  significantly  increased  at  Post-RE from Rest (3.7 ± 0.7 

to 9.9 ± 2.0 mU/mg). These data show that 8 weeks of n-3 PUFA enriched fish oil 

supplementation suppresses the activity of p70S6K1 in response to RE and protein feeding.  
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4.1 Introduction 

 
Chapter 2 of this thesis added to existing literature by demonstrating that 4 weeks of n-3 

PUFA-enriched fish oil supplementation significantly increases the n-3 PUFA composition of 

skeletal muscle within 2 weeks. This time course increase in n-3 PUFA composition also was 

associated with increases in the content of anabolic signalling molecules, notably mTOR and 

FAK that could be interpreted to suggest n-3 PUFA  ingestion  may  serve  to  ‘prime’  skeletal  

muscle to anabolic stimulation. Support for this contention is provided by two studies that 

show 8 weeks of n-3 PUFA-enriched fish oil supplementation enhances the phosphorylation 

of p70S6K1thr389, a known readout of mTOR activity, in response to nutrition in the form of a 

hyperaminoacidemic-hyperinsulinemic clamp [21,22]. However, to date, no study has 

identified if 8 wk of n-3 PUFA supplementation potentiates p70S6K1 activity when RE is 

performed prior to nutrient provision. Given the potent synergistic impact of adding RE to 

protein feeding [91], such data would have relevance toward both the clinical and athletic 

settings.  

 

However, it is important to recognise that in the clinical and athletic setting many people 

consume protein in a bolus form and previous reports of enhanced anabolic signalling in 

response to nutrition following n-3 PUFA ingestion are indicative of an intravenous amino 

acid and insulin infusion [21,22]. This method of nutrient administration may not reflect the 

temporal increase in blood amino acid concentrations [107], critical to stimulating muscle 

anabolism [139], as that of a practical protein bolus feeding strategy. Therefore, the primary 

aim of the present investigation was to use the KA methodology as outlined in Chapter 3 to 

identify if 8 weeks of n-3 PUFA supplementation potentiates the activity of kinases known to 

regulate  muscle   anabolism   (p70S6K1,   panPKB,  AMPKα1   and  AMPKα2)   to   the   combined  

stimulus of RE and oral protein ingestion.  By employing a unilateral model of RE we also 
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aim to ascertain if 8 weeks of n-3 PUFA supplementation enhances the activity of these 

kinases in response to oral protein ingestion alone. This aim will be achieved by examining 

changes in kinase activity in the contralateral-rested limb.  

 

4.2 Methods 

4.2.1 Participants 

 
Twenty moderately trained males were recruited from the University of Stirling and 

surrounding area to participate in the present investigation. Prior to the commencement of the 

experiment each participant provided written informed consent after all procedures and risks 

of the study were fully explained in lay terms. Participant characteristics can be seen in Table 

4.0. Following health screening, participants were excluded if they were engaged in any form 

of dietary supplementation or were taking any prescribed medication. The East of Scotland 

Research Ethics Service (EoSRES, Rec No: FB/12/ES/0005) approved the study procedures. 

 

Table 4.0 Characteristics of participants in each group.  
 
Parameter Fish oil (n=10) Coconut oil (n=10) 
   
Age (yrs) 24 ± 0.1* 21 ± 0.2 
 
Body mass (kg) 

 
87 ± 2.6* 

 
80 ± 8.2 

 
Lean body mass (%) 

 
77 ± 1.3 

 
76 ± 1.3 

 
Body fat (%) 

 
20 ± 1.5 

 
20 ± 1.4 

 
LP 1RM (kg) 

 
143 ± 8.0* 

 
134 ± 7.1 

 
LP.kg-1.BM-1 

 
2.13 ± 0.1 

 
2.25 ± 0.1 

 
LE 1RM (kg) 

 
68 ± 2.5* 

 
60 ± 2.5 

 
LE.kg-1.BM-1 

 
1.01 ± 0.1 

 
1.01 ± 0.0 

 
LP: leg press, LE: leg extension, 1RM: one repetition maximum, yrs: years, kg: 
kilogram: BM: body mass. Values expressed as mean ± SEM.* denotes significantly 
higher than coconut oil group (P< 0.05). 
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4.2.2 Study design 

 
In a randomised, between-groups, repeated-measures design participants were assigned to 

either a fish oil (FO; n=10) or coconut oil (CO; n=10) condition. Coconut oil was chosen as a 

control as coconut oil does not contain any n-3 or n-6 PUFAs. As per Chapter 2, during each 

visit to the laboratory, participants were verbally requested to confirm the pattern of oily fish 

consumption in an attempt to ensure that changes in free-living oily fish consumption did not 

influence muscle and blood lipid profiles during the study. Following baseline testing for 1 

RM on leg press and leg extension [156] participants reported to the Resting Laboratory of 

the Health and Exercise Sciences Research Group, Univ. of Stirling in the fasted state on two 

separate occasions. During the initial visit a resting muscle biopsy and venous blood sample 

were obtained for the assessment of muscle membrane and blood lipid profiles and also for 

baseline activity of muscle-specific anabolic signalling kinases (p70S6K1, panPKB, 

AMPKα1  and  AMPKα2).  Following  baseline  measurements  participants  consumed  5  g.d-1 of 

n-3 PUFA-rich fish oil capsules (providing 3500 mg EPA [20:5n-3], 900 mg DHA [22:6n-3], 

100 mg DPA [22:5n-3] vitamin E 0.1 mg; Ideal Omega-3, Glasgow Health Solutions Ltd, 

UK) for 8 weeks. Participants were provided with a known quantity of capsules and a capsule 

count was conducted at the end of the 8 week period of supplementation in order to assess 

compliance to the supplementation protocol. The rationale to supplement for 8 weeks rather 

than the 4 week protocol of Chapter 2, was to enable a comparison with other published 

studies that also investigated the impact of 8 weeks of n-3 PUFA-enriched fish oil 

supplementation on kinase phosphorylation [21,22].  

 

Participants were requested to complete a 3 d food diary questionnaire for the 3 d prior to 

baseline testing and to repeat this pattern of consumption for the 3 d leading up to the 

experimental trial. Participants also were verbally requested to confirm their pattern of oily 
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fish consumption over the 8 week supplementation period in an attempt to minimise the 

impact of changes in free-living oily fish consumption upon muscle and blood lipid profiles 

during the study. Following the 8 week period of supplementation, participants returned to the 

laboratory in the fasted state.  During the second visit a venous blood sample and resting 

skeletal muscle biopsy (Rest) was obtained from the non-exercising leg. Following the resting 

muscle biopsy a bout of unilateral RE was performed and further muscle biopsies were 

conducted on the non-exercised (Pre-FED) and exercised (Post-RE) legs. A 30 g oral whey 

protein bolus was then consumed in 500 mL of water. Three hours later muscle biopsies were 

again obtained from the exercised leg (3 h post-REF) and non-exercised leg (3 h post-FED). 

The Rest muscle biopsy sample also was used to assess the impact of 8 wk of n-3 PUFA 

supplementation on muscle membrane lipid composition.  

 

4.2.3 Resistance exercise trial 

 
Following 8 weeks of supplementation participants reported to the laboratory at ~0700 in the 

fasted state. Participants rested in a semi-supine position on a bed for 2 h during which a 

venous blood sample was obtained from the anticubital vein of the forearm. Meanwhile, the 

lateral portion of the vastus lateralis from the non-exercising leg was cleaned before an 

incision into the skin and fascia was made under local anaesthetic (2 % Lidocaine). A 5 mm 

Bergstrom biopsy needle was inserted to extract ~60-100 mg of skeletal muscle tissue and the 

leg was subsequently bandaged. Following this 2 h resting period participants performed a 

bout of unilateral leg press and leg extension. This unilateral approach enabled us to identify 

if 8 weeks of fish oil supplementation enhanced kinase activity in response to protein feeding 

alone as well as the potentiating impact of RE. The bout of RE consisted of 4 sets of 10 

repetitions for each exercise at 70% 1 RM. Between-set and between-exercise recovery was 2 

min and 3 min respectively. Immediately post-RE muscle biopsies were obtained from both 
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the exercising and non-exercising legs after which participants consumed 30 g of whey 

protein in 500 mL of water. The  participants’   legs   then  were bandaged and the participants 

rested in the bed until further biopsies were obtained at 3 h post-RE on both the non-exercised 

and exercised legs. Muscle biopsy samples were rinsed in ice-cold saline, blotted to minimise 

blood saturation of the muscle sample and freed from any visible fat and/or connective tissue. 

Muscle samples then were frozen in liquid nitrogen and stored at -80°C until further analysis. 

 

4.2.4 Skeletal muscle phospholipid extraction and analysis 

 
The phospholipid fraction was prepared from 0·5 mg of total lipid (see section 2.2.4) applied 

to a 20 × 20 cm silica gel 60 TLC plate (VWR, Lutterworth, Leicestershire, UK) and 

developed in isohexane–diethyl ether–acetic acid (80:20:1, by vol.) before drying for a few 

minutes at room temperature. The plate was sprayed lightly with 2,7-dichlorofluorescein (0·1 

%, w/v) in 97 % methanol (v/v) the phospholipid bands then were scraped from the plate and 

placed in a 15 mL test-tube. FAME were prepared by acid-catalysed transesterification in 2 

mL of 1 % H2SO4 in methanol at 50°C overnight. The samples were neutralized with 2·5 mL 

of 2 % KHCO3 and extracted with 5 mL isohexane–diethyl ether (1:1, v/v) þ BHT. The 

samples then were re-extracted with 5 mL isohexane–diethyl ether (1:1) and the combined 

extracts were dried and dissolved in 0·3 mL of isohexane prior to FAME analysis as 

previously described in section 2.2.6.  

 

4.2.5 Statistical analyses 

 
Data were analysed using GraphPad Prism Software version 6.0 (GraphPad, San Diego, CA, 

USA). An initial unpaired t-test was performed to detect differences between groups for 

anthropometric variables and composition of diet before the intervention.  Changes in lipid 

composition and anabolic signalling activity over time, i.e., before-after supplementation as 
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well as during the experimental trial for protein kinase activity, were analysed using a 

between-participant repeated measures (group × time) ANOVA. When there was a significant 

main effect of time or interaction between-groups, data were subsequently analysed using a 

Tukey’s  post-hoc test to detect the time points at which differences between groups existed. 

Statistical significance was set at P<0.05. All lipid data are expressed as mean relative 

percentage of total fatty acids ± SEM unless otherwise stated. Protein activity data are 

expressed   as   µU/mg   for   p70S6K1   and  mU/mg   for   panPKB,   AMPKα1   and   AMPKα2.   All  

other data are presented as mean ± SEM unless otherwise stated.  

 

4.3 Results 

4.3.1 Dietary intake 

 
Analysis of dietary intake demonstrates no difference in macronutrient composition and daily 

energy intake between the FO and CO groups (Table 4.1).  

 

Table 4.1. Participants’  daily  energy  intake  and  macronutrient  composition.   
 

 Fish oil (n=10) Coconut oil (n=10) 
 
Daily energy intake (kcal) 

 
2427 ± 242* 

 
2002 ± 96 

 
Carbohydrate (%) 

 
42 ± 4 

 
44 ± 2 

 
Fat (%) 

 
32 ± 3 

 
33 ± 2 

 
Protein (%) 

 
26 ± 3 

 
23 ± 4 

 
* denotes significantly higher than Coconut oil group 

 

4.3.2 Phospholipid profile changes in muscle 

 
All phospholipid profile changes in muscle are shown in Table 4.2 Percentage n-3 PUFA of 

total fatty acids was significantly higher before supplementation in the FO group compared to 
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the CO group (P<0.05). However, after supplementation there was a ~2-fold increase in the % 

n-3 PUFA of total fatty acids (P<0.05), whereas in the CO group % n-3 PUFA of total fatty 

acids remained unchanged (P>0.05). In contrast, % n-6 PUFA of total fatty acids was 

significantly lower before supplementation in the FO group compared to the CO group 

(P<0.05). Although, in the FO group % n-6 PUFA of total fatty acids was significantly lower 

after supplementation (P<0.05) but in the CO group % n-6 PUFA of total fatty acids remained 

unchanged (P>0.05). Percentage monounsaturated fatty acids of total fatty acids was 

significantly higher before supplementation in the CO group compared to the FO group 

(P<0.05). However, % monounsaturated fatty acids were reduced after supplementation in the 

CO group (P<0.05) only. There was no significant difference in % saturated fatty acids of 

total fatty acids between groups before the intervention although, % saturated fatty acids of 

total fatty acids was significantly decreased after supplementation for both groups (P<0.05). 

 

4.3.3 Lipid profile changes in whole blood 

 
All lipid changes in whole blood are shown in Table 4.3. There was no significant baseline 

difference between groups in any lipid species or group of lipid species. Percentage n-3 

PUFA of total fatty acids was significantly increased after supplementation compared to 

before supplementation in the FO group (P<0.05) with no impact of supplementation on % n-

3 PUFA of total fatty acids in the CO group. Similarly, % n-6 PUFA of total fatty acids was 

significantly reduced after supplementation compared to before supplementation in the FO 

group (P<0.05) but there was no impact of supplementation on % n-6 PUFA of total fatty 

acids in the CO group. There was no impact of supplementation on % monounsaturated fatty 

acids of total fatty acids or % saturated fatty acids of total fatty acids in either group. 
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Table 4.2 Phospholipid profile changes in muscle (% total fatty acids, mean ± SEM). Means 
that do not share a letter are significantly different.  
 

 Fish oil Coconut oil 

 Before After Before After 

Saturated fatty acids 
14:0 0.37 ± 0.01 0.33 ± 0.02 0.32 ± 0.02 0.30 ± 0.02 
15:0 0.18 ± 0.01 0.14 ± 0.00 0.15 ± 0.01 0.13 ± 0.01 
16:0 18.96 ± 0.33 16.25 ± 0.10 18.87 ± 0.34 16.87 ± 0.38 
18:0 14.16 ± 0.25 12.72 ± 0.13 14.10 ± 0.12 12.92 ± 0.17 
20:0 0.08 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.09 ± 0.02 
22:0 0.16 ± 0.01 0.16 ± 0.01 0.14 ± 0.01 0.15 ± 0.20 
24:0 0.18 ± 0.02 0.17 ± 0.02 0.17 ± 0.02 0.18 ± 0.03 

Total 34.09 ± 0.45a 29.83 ± 0.14b 33.83 ± 0.36a 30.61 ± 0.40b 

Monounsaturated fatty acids 
16:1n-9 0.17  ± 0.01 0.19  ± 0.01 0.15 ± 0.00 0.16 ± 0.01 
16:1n-7 0.37 ± 0.02 0.33 ± 0.02 0.42 ± 0.01 0.39 ± 0.02 
18:1n-9 6.05 ± 0.16 4.74 ± 0.20 6.25 ± 0.21 5.92 ± 0.29 
18:1n-7 2.01 ± 0.06 1.86 ± 0.06 1.94 ± 0.06 1.89 ± 0.07 
20:1n-9 0.09 ± 0.01 0.07 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 
24:1n-9 0.20 ± 0.01 0.20 ± 0.01 0.22 ± 0.02 0.24 ± 0.03 
Total 8.89 ± 0.14 7.35 ± 0.24 9.07 ± 0.22a 8.69 ± 0.36 

n-6 polyunsaturated fatty acids 
18:2n-6 26.87 ± 0.59 24.17 ± 0.65 29.19 ± 0.52 28.72 ± 0.60 
18:3n-6 0.08 ± 0.01 0.07 ± 0.01 0.07 ± 0.00 0.09 ± 0.01 
20:2n-6 0.12 ± 0.01 0.11 ± 0.01 0.12 ± 0.01 0.12 ± 0.01 
20:3n-6 1.29 ± 0.04 1.14 ± 0.03 1.30 ± 0.09 1.48 ± 0.09 
20:4n-6 13.55 ± 0.56 13.11 ± 0.38 12.67 ± 0.34 13.79 ± 0.47 
22:4n-6 0.44 ± 0.03 0.30 ± 0.02 0.65 ± 0.03 0.75 ± 0.04 
22:5n-6 0.35 ± 0.02 0.20 ± 0.01 0.39 ± 0.01 0.34 ± 0.02 
Total 42.69 ± 0.26a 39.08 ± 0.43b 44.39 ± 0.37c 45.30 ± 0.45c 

n-3 polyunsaturated fatty acids 
18:3n-3 0.25 ± 0.02 0.21 ± 0.01 0.26 ± 0.01 0.24 ± 0.01 
20:5n-3 1.16 ± 0.12 4.46 ± 0.22 0.65 ± 0.05 0.69 ± 0.06 
22:5n-3 1.48 ± 0.06 2.27 ± 0.08 1.29 ± 0.06 1.47 ± 0.06 
22:6n-3 2.64 ± 0.18 4.22 ± 0.23 1.55 ± 0.16 1.79 ± 0.21 
Total 5.53 ± 0.30a 11.16 ± 0.45b 3.74 ± 0.23c 4.16 ± 0.31c 
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Table 4.3 Lipid profile changes in blood (% total fatty acids, mean ± SEM). Means that do 
not share a letter are significantly different.  
 
  Fish oil Coconut oil 
  Before After Before After 

Saturated fatty acids  
14:0 0.75 ± 0.08 0.65 ± 0.05 0.55 ± 0.03 0.63 ± 0.04 
15:0 0.21 ± 0.01 0.12 ± 0.01 0.18 ± 0.01 0.17 ± 0.01 
16:0 21.56 ± 0.44 21.26 ± 0.26 21.39 ± 0.34 21.58 ± 0.21 
18:0 11.92 ± 0.14 11.74 ± 0.14 11.76 ± 0.25 11.67 ± 0.16 
20:0 0.25 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.24 ± 0.01 

22:0 0.71 ± 0.03 0.74 ± 0.02 0.70 ± 0.04 0.77 ± 0.04 
24:0 1.19 ± 0.03 1.17 ± 0.04 1.18 ± 0.06 1.07 ± 0.03 

Total 36.60 ± 0.56 36.33 ± 0.25 36.00 ± 0.30 36.13 ± 0.23 
Monounsaturated fatty acids 

16:1n-9 0.30 ± 0.02 0.26 ± 0.02 0.27 ± 0.02 0.28 ± 0.01 
16:1n-7 0.94 ± 0.10 0.91 ± 0.10 1.14 ± 0.14 1.10 ± 0.10 
18:1n-9 16.05 ± 0.47 15.21 ± 0.39 16.87 ± 0.76 16.82 ± 0.37 
18:1n-7 1.45 ± 0.02 1.34 ± 0.07 1.62 ± 0.06 1.45 ± 0.03 
20:1n-9 0.26 ± 0.02 0.22 ± 0.02 0.27 ± 0.01 0.24 ± 0.01 
24:1n-9 1.47 ± 0.05 1.33 ± 0.07 1.59 ± 0.13 1.36 ± 0.05 
Total  20.46 ± 0.52 19.26 ± 0.48 21.76 ± 0.90 21.25 ± 0.47 

n-6 polyunsaturated fatty acids 

18:2n-6 18.60 ± 0.61 16.45 ± 0.50 18.09 ± 0.49 18.97 ± 0.42 
18:3n-6 0.24 ± 0.03 0.16 ± 0.03 0.20 ± 0.02 0.25 ± 0.03 
20:2n-6 0.27 ± 0.02 0.21 ± 0.02 0.25 ± 0.01 0.25 ± 0.01 
20:3n-6 1.63 ± 0.06 1.20 ± 0.06 1.66 ± 0.11 1.75 ± 0.09 
20:4n-6 10.24 ± 0.57 9.04 ± 0.29 10.83 ± 0.45 10.44 ± 0.22 
22:4n-6 1.19 ± 0.08 0.91 ± 0.04 1.59 ± 0.10 1.54 ±  0.07 
22:5n-6 0.26 ± 0.02 0.17 ± 0.01 0.33 ± 0.01 0.32 ± 0.02 

Total 32.37 ± 0.71 28.15 ± 0.46a 32.95 ± 0.73 33.51 ± 0.39 
n-3 polyunsaturated fatty acids 

18:3n-3 0.55 ± 0.04 0.46 ± 0.03 0.46 ± 0.02 0.52 ± 0.03 
20:5n-3 1.09 ± 0.13 5.08 ± 0.49 0.69 ± 0.08 0.72 ± 0.07 
22:5n-3 1.52 ± 0.07 2.48 ± 0.09 1.48 ± 0.06 1.48 ± 0.04 
22:6n-3 3.50 ± 0.32 4.52 ± 0.21 2.68 ± 0.18 2.61 ± 0.17 
Total 6.74 ± 0.50 12.64 ± 0.73a 5.37 ± 0.26 5.42 ± 0.25 
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4.3.4 Kinase activity in response to 8 weeks of n-3 PUFA supplementation 

 
There were no differences between groups before supplementation in the activity of panPKB, 

AMPKα1,   AMPKα2   or   p70S6K1.   panPKB   activity   was   significantly   supressed   at   rest  

compared to before supplementation in the FO group only, indicating that 8 weeks of fish oil 

supplementation supressed basal panPKB activity (Figure 4.0). However, there was no impact 

of  supplementation  in  either  group  on  the  basal  activity  of  AMPKα1,  AMPKα2  or  p70S6K1. 
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Figure 4.0 panPKB activity in response to 8 wk of either fish oil or coconut oil 
supplementation.* denotes significantly lower than before supplementation (P<0.05). 
  
 
 
4.3.5 Kinase activity in response to protein feeding after 8 wk of n-3 PUFA supplementation 

 
There  was  no  impact  of  protein  feeding  on  the  activity  of  p70S6K1,  AMPKα1,  AMPKα2  or  

panPKB at 3 h post-FED in either group (Figure 4.2 A-D).  
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4.3.6 Protein kinase activity in response to RE and protein feeding after 8 wk of n-3 PUFA 

supplementation 

 
There  were  no  significant  differences  between  groups  in  the  activity  of  AMPKα1,  AMPKα2  

or p70S6K1 at rest (Figure 4.1 E, G and H). However, panPKB activity was significantly 

elevated in the CO group at rest compared to the FO group (Figure 4.1 F). In response to RE 

and protein feeding p70S6K1 activity was significantly elevated at 3 h post-REF from Pre-RE 

in the CO group. However, there was no impact of RE and protein feeding on p70S6K1 

activity at Post-RE or 3 h post-REF in the FO group (Figure 4.1 E). There also was no impact 

of  supplementation  on  the  AMPKα1  response  to  RE  at  Post-RE or RE and protein feeding at 

3 h post-REF (Figure 4.1 G). However, in the CO group, in response  to  RE,  AMPKα2  was  

significantly increased at Post-RE from Rest.  There  was  no  impact  of  RE  on  AMPKα2  Post-

RE or RE and protein feeding 3 h post-REF in the FO group (Figure 4.1 H).  
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Figure 4.1 Activity   of   p70S6K1,   panPKB,   AMPKα1   and   AMPKα2   in   response   to  
resistance exercise and protein feeding (E-H) and protein feeding alone (A-D) following 
8 wk of supplementation with either fish oil (FO) or coconut oil   (CO).  †:  significantly  
different from all other time points (P<0.05). #: significantly different compared with 
FO at REST (P< 0.05). *: significantly different from CO Rest and FO 3 h post-REF (P< 
0.05). Protein activity data are expressed as mU/mg for panPKB,  AMPKα1,  AMPKα2 
and µU/mg for p70S6K1. Values are means ± SEM. Rest= rest; Pre-Fed= immediately 
before protein feeding; 3 h post-FED= 3 h post protein feeding; post-RE= immediately 
post resistance exercise; 3 h post-REF=3 h post resistance exercise and protein feeding. 
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4.4 Discussion 

 
The primary aim of this study was to examine the impact of 8 weeks of n-3 PUFA-enriched 

fish oil supplementation on p70S6K1, panPKB, AMPKα1  and AMPKα2  activity  in  response  

to RE and bolus protein feeding. This study provides novel data as we show that 8 weeks of 

n-3 PUFA supplementation increases the n-3 PUFA composition of skeletal muscle 

phospholipids by ~2 fold, which is associated with the suppression of basal panPKB activity 

and the blunted response of p70S6K1 activity to RE and protein feeding. By employing a 

unilateral RE model we also were able to ascertain the impact of 8 weeks of n-3 PUFA 

supplementation on kinase activity in response to the ingestion of a protein bolus alone. In 

this   regard,   we   show   no   change   in   p70S6K1,   panPKB,   AMPKα1   or   AMPKα2   activity in 

response to protein feeding at 3 h post feeding. Taken together, these data suggest that 8 

weeks of n-3 PUFA supplementation exerts a suppressive effect on the activity of putative 

kinases that regulate human skeletal muscle anabolism in response to RE and protein feeding.  

 

Our finding that 8 weeks of n-3 PUFA supplementation blunted p70S6K1 activity in response 

to anabolic stimulation is in contrast to previous reports. Indeed, two studies in humans 

showed that 8 weeks of n-3 PUFA supplementation enhanced p70S6K1thr389 phosphorylation 

to simulated feeding [21,22]. Moreover, in rodents, dietary fish oil has been shown to 

attenuate significant losses in skeletal muscle mass during a period of immobilisation, again 

via enhanced PKB-p70S6K1 signalling [17]. Reconciling the conflicting findings of our study 

and others may be considered challenging largely due to alternative experimental models 

(human vs. rodent) and mode of stimulation (RE + feeding vs. intravenous clamp vs. 

immobilisation). However, with respect to immobilisation it could be contended that 

contractile specificity, i.e. unloading vs. loading, may provide one explanation. Indeed, extant 

data show that dietary fish oil actually inhibits the recovery of skeletal muscle mass during 

reloading following immobilisation [128]. Somewhat in agreement with our data, this 
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inhibition of muscle mass recovery during increased loading also was associated with blunted 

PKBthr308 and p70S6K1thr389 phosphorylation.  

 

Mechanistically, we have no hypothesis as to how fish oil supplementation influences 

anabolic signalling activity. Although, in the aforementioned study, the reduction in PKBthr308 

and p70S6K1thr389 phosphorylation in response to loading was associated with lower 

expression   of   PGF2α.   Increases   in   PGF2α   expression   have   been   shown   to   correlate   with 

enhanced p70S6K1thr389 phosphorylation in C2C12 cells [168] and  a  reduction  in  PGF2α  with  

fish oil supplementation may provide one explanation for our observations. However, changes 

in  PGF2α  are  thought  only  to  occur  when  the  content  of  its  substrate,  AA,  in  the  membrane  is  

altered. It has been proposed that the ingestion of n-3 PUFA results in an uptake of n-3 PUFA 

at the expense of n-6 PUFAs, such as AA, but that affect was not apparent in the present 

investigation.   Although,   no   measurement   of   PGF2α   was   made   in   this   investigation   so   we  

cannot   substantiate   or   completely   rule   out   a   role   of   PGF2α   in   the   regulation   anabolic  

signalling with fish oil supplementation. Nevertheless, our data, taken together with that of 

others [128], could be interpreted to suggest that although n-3 PUFA supplementation 

promotes the retention of skeletal muscle mass during unloading [20,128], during times of 

muscle loading this effect may be abrogated. 

 

A unique feature of exercise, particularly intense exercise, is the rapid hydrolysis of ATP 

[72,80]. The rapid hydrolysis of ATP increases the AMP:ATP ratio thus stimulating AMPK 

activity [73,76,80,169]. Our study provides novel data as we show that 8 weeks of n-3 PUFA 

supplementation suppresses  the  activity  of  the  AMPKα2  domain  on  AMPK  immediately  Post-

RE.  Additionally,  we   show  no   change   in  AMPKα1   activity   in   either   condition   at   any   time  

point  we  assessed,  a  finding  that  supports  the  contention  that  it  is  AMPKα2  and  not  AMPKα1  

that is sensitive to contractile perturbation in humans [166,170,171]. Although, it is important 
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to recognise that we do not have any information pertaining to phosphorylation of the Thr172 

residue on AMPK or phosphorylation of the AMPK target ACC that would provide a more 

holistic insight into the impact of n-3 PUFA supplementation on AMPK function.  

 

By employing a unilateral RE model we also were able to test the hypothesis that 8 weeks of 

n-3 PUFA supplementation augments kinase activity in response to protein feeding alone. We 

show no change in the activity of any kinase we measured to protein feeding. However, in the 

present study the timing of the muscle biopsies could be a mitigating feature. Indeed, muscle 

extraction was obtained immediately Post-RE and the protein bolus was consumed after this 

muscle biopsy. Thus, our only opportunity to detect an impact of protein feeding on kinase 

activity was at 3 h post-FED. It could be contended that this snapshot attempt to capture 

increases in anabolic signalling activity was too late and had the biopsy been obtained earlier, 

maybe at 1 h post feeding, then perhaps changes in kinase activity would have been detected. 

Indeed, a study from Moore and colleagues [88] provide evidence to support this supposition. 

In that study, the consumption of 25 g of whey protein stimulated an increase in both 

p70S6K1thr389 and PKBser473 phosphorylation at 1 h but not at 3 h post feeding. In extending 

these findings, Atherton and colleagues [27] characterised a time course change in mTORC1 

signalling with 48 g of whey protein feeding. They show that although the ingestion of a 

protein bolus stimulated panPKB activity, this increase was only significantly elevated at 45 

min and 90 min post feeding and returned to baseline within 3 h. However, it is important to 

note that p70S6K1thr389 phosphorylation was still elevated at 3 h post-feeding but the protein 

bolus in that study was 48 g whereas in the present investigation only 30 g of whey protein 

was consumed. Thus, perhaps with a greater dose of whey protein we may have detected 

changes in p70S6K1 activity at 3 h post-FED similar to that of Atherton and colleagues [27].  
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In addition to the timing of skeletal muscle biopsies there are other limitations of the present 

investigation that are worthy of consideration. Firstly, no measurement of muscle function or 

MPS was made. We are therefore unable to examine if increases in the n-3 PUFA 

composition of skeletal muscle membrane influences the accrual of skeletal muscle mass that 

may impact the force producing capacity of skeletal muscle. Secondly, there was no 

assessment of kinase activity in response to RE and protein feeding before n-3 PUFA 

supplementation. As a result, we are unable to examine within-subject changes in the 

sensitivity of skeletal muscle to anabolic stimulation associated with n-3 PUFA 

supplementation. This limitation becomes more apparent as upon closer inspection of baseline 

n-3 PUFA muscle phospholipid composition between groups, the FO group possesses a small 

but significantly elevated n-3 PUFA composition compared to the CO group (5.53 ± 0.30 vs. 

3.74 ± 0.23 % of total fatty acids). This difference between groups is apparent despite no 

obvious differences in dietary intake. However, when changes in the n-3 PUFA composition 

of muscle phospholipids are expressed as fold-change the FO group demonstrates a ~2-fold 

increase (Figure 4.2). As we detected no differences in baseline kinase activity between 

groups we believe that this small difference in baseline n-3 PUFA composition has little 

influence on our primary endpoint measures.  
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Figure 4.2 Change in n-3 PUFA muscle phospholipids following 8 wk supplementation with either 
fish oil (FO) or coconut oil (CO):* significantly higher from compared to before supplementation in 
both groups and after supplementation in the CO group (P<0.05).  
 



Chapter 4                        89 

 

To conclude, the present investigation shows that 8 weeks of n-3 PUFA-enriched fish oil 

supplementation suppresses the basal activity of panPKB as well as p70S6K1 activity in 

response to RE and protein feeding. Future work that directly assesses MPS and muscle 

function in response to RE and protein feeding before and following a period of n-3 PUFA 

supplementation may have valuable application in the clinical and athletic settings.  
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CHAPTER 5 Synthesis of Findings 
 

 

 
Recently, data have emerged to demonstrate that the consumption of n-3 PUFAs increases the n-3 

PUFA composition of skeletal muscle that subsequently potentiates MPS to nutrition in both 

humans [21,22] and steers [124]. Mechanistically, these effects were shown to be associated with 

concomitant changes in mTOR-p70S6K1 phosphorylation [21,22]. However, assessment of 

changes in both muscle n-3 PUFA composition and mTOR-p70S6K1 phosphorylation with n-3 

PUFA supplementation in those studies were limited to pre-post measurements with little 

temporal resolution. As a result, a time course change in the n-3 PUFA composition and 

expression of mTOR-p70S6K1 in skeletal muscle with n-3 PUFA supplementation had not been 

established. Moreover, whether n-3 PUFA supplementation enhanced mTOR-p70S6K1 activity 

to a bout of RE when combined with protein feeding remained unknown. Given the emerging 

role of n-3 PUFAs and the importance of mTOR-p70S6K1 signalling in the regulation of skeletal 

muscle mass, the overall aim of this thesis was to attempt to experimentally address these 

intriguing questions. This aim was to be achieved by the successful completion of the following 

objectives; 

 

1. To determine a time course change in muscle and blood lipid profiles in response to 

n-3 PUFA supplementation. 

 

2. To determine a time course change in anabolic signalling protein phosphorylation 

and expression in response to n-3 PUFA supplementation. 
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3. a) To characterise the influence of n-3 PUFA supplementation on the molecular 

response of human skeletal muscle in response to the ingestion of a protein bolus and 

b) to the ingestion of a protein bolus following a bout of RE. 

 

The traditional method to assess protein/kinase activity in the exercise sciences is the WB 

technique. This technique enables the semi-quantitative assessment of protein/kinase 

phosphorylation that is often used as a proxy for a protein/kinase activity in response to exercise 

and nutrition [24-26,88,91]. Originally, it was intended that this technique would be employed to 

answer the third objective of this thesis (Chapter 4). In this regard, for the purposes of 

conducting analysis for Chapter 2 and training for the future analysis of Chapter 4, this author 

was afforded the opportunity to work in various domestic and international laboratories to learn 

the WB technique. However, several contrasting approaches to the WB technique between 

laboratories and researchers, specifically with regards to antibody sourcing, statistical analysis 

and general protocols were noted. These differences have been shown to result in contrasting 

statistical outcomes in both the published literature [148] and personal experience. Moreover, 

there is evidence that in some cases the WB technique possesses a limited dynamic range that can 

lead to type II statistical errors [147]. For example, undetectable changes in AMPKThr172 

phosphorylation, despite increases in AMPK activity, can induce substantial changes in the 

phosphorylation in downs stream effector signalling (ACC). Another important consideration is 

that these pathways often operate in an amplification system where small changes in the activity 

of an upstream kinase results in large and significant alterations in functional endpoint measures 

that could be missed using semi-quantitative WB methods. As a result, following the successful 

completion of objectives 1 & 2 (Chapter 2), this author elected to develop a more precise 
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method of assessing protein/kinase activity in order to address the final aim of this thesis 

(Chapter 4). This method served as another objective to this thesis and was as follows; 

 

4. To develop a quantitative method to assess p70S6K1 activity in human skeletal 

muscle in response to resistance exercise and protein feeding. 

 

The following discussion will be subdivided into three parts. Part A will review the findings of 

Chapters 2 and 4 both of which examined the impact of n-3 PUFA supplementation on skeletal 

muscle metabolism. Part B will focus upon how the development of the in vitro [γ-32P] ATP KA 

in Chapter 3 raises important questions for the field of molecular exercise physiology and in 

what way its application in future research may advance the study of human muscle metabolism. 

Part C will provide a brief summary of the limitations associated with this thesis as well as 

considerations for future philosophy. 

 

5.1 Part A- Skeletal muscle metabolism and n-3 PUFA supplementation 

 
The impact of n-3 PUFA supplementation on metabolic health is a now topic of great debate 

[122,123,172]. What is known is that n-3 PUFA supplementation increases the n-3 PUFA 

composition of skeletal muscle [21,22,123,125,173]. This increase in n-3 PUFA composition of 

skeletal muscle is thought to precipitate numerous beneficial health outcomes such as improved 

insulin sensitivity [121,124] as well as enhanced muscle sensitivity to anabolic stimulation 

[21,22]. Interestingly, although time course changes in the n-3 PUFA composition of blood 

[125], adipose tissue [123] and cholesterol esters [136] with n-3 PUFA supplementation have 

previously been established, no study had characterised such a time course in skeletal muscle. As 
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such, Chapter 2 adds to existing literature as for the first time we show that 4 weeks of 5g.d-1 n-3 

PUFA-rich fish oil supplementation significantly increases skeletal muscle n-3 PUFA 

composition within 2 weeks. Moreover, this increase in muscle n-3 PUFA composition of 

skeletal muscle was delayed compared to that of blood, which was shown to occur within 1 week.  

 

Although Chapter 2 was the first study to identify a time course increase in skeletal muscle n-3 

PUFA composition with fish oil supplementation, we were unable to confirm a saturation of n-3 

PUFA muscle composition within the 4 week supplementation period. In Chapter 4 of this 

thesis, using the same dose but this time for an 8 week period of supplementation, we also 

observed a similar ~2 fold increase in muscle n-3 PUFA composition. Taken together, these data 

would suggest that ingesting 5g.d-1 of n-3 PUFA-enriched fish oil, a saturation of skeletal muscle 

n-3 PUFA composition might occur between 4 and 8 weeks of n-3 PUFA supplementation. 

Moreover, others also have observed a ~2 fold increase in muscle n-3 PUFA composition within 

8 weeks of n-3 PUFA supplementation [21,22]. Importantly, in those studies, these changes were 

achieved using only half the dose of n-3 PUFA compared to that as used in Chapters 2 and 4 of 

this thesis. Thus, it could be contended that the dose of n-3 PUFA provided to our participants 

exceeded the capacity of skeletal muscle to incorporate all of the available circulating n-3 PUFAs 

into muscle tissue. However, this thesis provides no data relating to markers of lipid peroxidation 

or evidence of a saturation of muscle n-3 PUFA composition with n-3 PUFA supplementation. 

As such, the impact of increasing doses of orally ingested n-3 PUFAs on muscle lipid 

composition and markers of lipid peroxidation are an area of future research. 

 

Previously, it has been shown that 8 weeks of n-3 PUFA supplementation potentiates MPS to a 

hyperaminoacidemic-hyperinsulinemic infusion [21,22]. This potentiation of MPS was associated 
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with enhanced mTOR-p70S6K1 signalling [21,22]. In this regard, another aim of Chapter 2 was 

to investigate whether 4 weeks of n-3 PUFA-rich fish oil impacted upon the expression of 

proteins associated with the mTOR-p70S6K1 signalling axis. For the first time we show that 4 

weeks of 5g.d-1 n-3 PUFA-enriched fish oil supplementation significantly increases the content of 

FAK and induces a transient increase in the content of mTOR. Thus, these data may provide a 

molecular mechanism by which n-3 PUFA supplementation confers anabolic influence on 

skeletal muscle [21,22]. Additionally, given its role in mediating contraction-induced changes in 

MPS [100] we hypothesised that the increase in FAK content with n-3 PUFA supplementation 

may  serve  to  ‘prime’  skeletal  muscle  to  respond  favourably  to  anabolic  stimulation  in  the  form  of  

RE. However, contrary to our hypothesis, in Chapter 4 we demonstrated a suppression of 

p70S6K1 activity in response to RE and protein feeding following 8 weeks of 5g.d-1 of n-3 

PUFA-enriched fish oil supplementation.  

 

Our finding of supressed p70S6K1 activity in response to RE and protein feeding following n-3 

PUFA supplementation is in contrast to previous reports of enhanced mTOR-p70S6K1 signalling 

to n-3 PUFA treatment in humans [21,22] steers [124], rodent [17,18] and cell culture models 

[18]. A unique feature of Chapter 4 was that it was the first study to examine the impact of n-3 

PUFA supplementation on p70S6K1 activity in response to protein feeding combined with RE. It 

is the inclusion of this contraction protocol that may explain the incongruent findings between 

Chapter 4 and the aforementioned studies. Indeed, in rodents, dietary fish oil is associated with 

inhibition of p70S6K1 signalling and muscle mass recovery following hind limb immobilisation, 

i.e. reloading [128]. However, the same authors demonstrate that during immobilisation, i.e. 

unloading, dietary fish oil alleviates muscle atrophy, again via p70S6K1 signalling [17]. Taken 

together with the findings of Chapter 4, it could therefore be suggested that the physiological 
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relevance of manipulating the n-3 PUFA composition of skeletal muscle may be contingent upon 

contraction specificity, i.e., unloading vs. loading or the mode of stimulation, i.e., contraction vs. 

nutrition. 

 

Although an attractive hypothesis, this thesis provides no data to support the assertion that n-3 

PUFA supplementation induces a differential response of mTOR-p70S6K1 signalling that is 

dependent upon mode of stimulation, i.e., nutrition vs. contraction or contraction specificity. It 

could be contended that increasing the n-3 PUFA composition of skeletal muscle improves 

membrane fluidity, thus potentiating nutrient transport into the intracellular space that 

subsequently enhances anabolic signalling [21,22,121]. However, this supposition does not 

explain the apparent suppression of p70S6K1 signalling in response to RE. One argument could 

be that changes in the n-3 PUFA composition of skeletal muscle somehow alters the capacity of 

skeletal muscle to transduce mechanical tension to a biochemical signal via an unknown 

mechanism. Another hypothesis is that changes in the n-3 PUFA composition of muscle may 

impact upon lipid raft formation [174] that also somehow negatively regulates contraction-

mediated increases in mTOR-p70S6K1 signalling. However, little data exist in skeletal muscle 

with regards to lipid raft formation, although there is strong evidence that they do exist (REF). A 

key question is, if lipid rafts, which are comprised mainly of cholesterol are altered by n-3 PUFA 

supplementation, do the n-3 PUFAs actually influence the lipid composition of those structures? 

Moreover, what is the physiological relevance of manipulating lipid raft composition? Perhaps 

alterations in the muscle membrane lipid composition influence the architecture of the lipid raft 

that somehow impacts signal transduction mechanisms. All of these hypothesis are worthy of 

experimental testing. 
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5.2 Part B- Resistance exercise, protein feeding and p70S6K1 signalling 

 
The mTOR-p70S6K1 signalling axis is known to be a key molecular pathway that regulates 

changes in MPS in response to RE [30] and nutrition [45]. The thesis adds to existing literature as 

in Chapter 3 we provided a novel in vitro [γ-32P] ATP KA technique to assess p70S6K1 activity 

in response to RE and protein feeding in human skeletal muscle. Moreover, we also validated a 

serial IP protocol that enabled the dual assessment of p70S6K1 and PKB activity from a single 

muscle homogenate. Using this technique we demonstrated that the combined stimulus of RE and 

protein feeding induced a significant ~2 fold increase in p70S6K1 activity at 3 h post-RE and 

feeding. However, despite a ~2 fold increase in p70S6K1 activity, concomitant increases in 

p70S6K1thr389 phosphorylation did not reach statistical significance. Thus, the findings of 

Chapter 3 highlight not only the utility but also the precision of the in vitro [γ-32P] ATP KA to 

study the regulation of p70S6K1 activity in response to exercise and nutrition in human skeletal 

muscle.  

 

Although the in vitro [γ-32P] ATP KA as described in Chapter 3 offers a useful tool for future 

researchers to study skeletal muscle biology, it is important to reiterate that this technique was 

designed to be used analogous to the WB technique. Indeed, phosphorylation of specific kinase 

residues is known to encode for specific environmental cues that could have contrasting affects 

on the activity of that kinase [167]. For example, phosphorylation of  AMPKα2  at  Ser485  by  IGF-

1 results in a decrease in AMPK Thr172 phosphorylation [175] whereas increases in the 

AMP:ATP ratio induced by exercise actually increase AMPK activity via Thr172 

phosphorylation [72,80,176]. Another example is that mTORC1 is known to phosphorylate 

p70S6K1 at Thr389 [82,177], but for full activation of p70S6K1 to occur, phosphorylation of 

p70S6K1 at Thr229 is required [53]. Thus, simply by assessing the phosphorylation of a kinase 
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alone it is difficult to appreciate how signalling cascades identify and then translate specific 

cellular perturbations to diverse functional outcomes. In this regard, application of the KA 

developed in Chapter 3 alongside traditional methods of assessing PTMs, such as the WB, as 

well as direct measures of MPS in future studies would provide a more holistic approach to study 

the regulation of skeletal muscle plasticity. However, it is important to acknowledge that the KA 

developed in this Thesis does have other limitations in addition to its inability to asses PTMs. 

One is that it requires the use of radioactive ATP and therefore may not be practical for 

researchers who do not have radioactive clearance at their given institution. Moreover, the 

activity of the kinase is highly dependant upon freeze thaw cycles that often occurs during 

analytical analysis, especially when more than one assay (WB, enzyme-linked immunosorbent 

assay) is being performed. It is therefore always important to weigh up the benefit to cost ratio of 

using the KA as opposed to the WB in the context of a when considering sample analysis.  

 

There is now a growing body of evidence to suggest discordance between increases in MPS and 

p70S6K1 phosphorylation in response to RE and/ or nutrition [26,27,139,178]. However, it is 

important to recognise that p70S6K1 may control ribosomal biogenesis but this supposition has 

yet to be experimentally corroborated in human skeletal muscle tissue [179]. Indeed, p70S6K1 

has been shown to influence ribosomalSo, although the phosphorylation of p70S6K1 post 

stimulation does not coincide with the greatest MPS response, it may in fact be leading to greater 

levels of ribosomal transcription. Interestingly, phosphorylation of p70S6K1 following RE occurs 

in the nucleus where ribosomal biogenesis commences [180]. A caveat of the field is that no 

study has employed cellular fractionation techniques to reveal whether different RE and 

nutritional strategies alter the ratio of nuclear to cytoplasmic p70S6K1 activity in human skeletal 

muscle. Application of the p70S6K1 KA developed in Chapter 3 of this thesis in studies that 
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answer these questions would assist in addressing this knowledge gap. Such findings also may 

help explain the apparent discordance between p70S6K1 phosphorylation and MPS in response 

to RE and nutrition [26,27,139,178], see Figure 5.0.  

 

 
Figure 5.0 Theoretical construct of normalised MPS, ribosomal biogenesis and p70S6K1 activity 
in response to anabolic stimulation in human skeletal muscle. Adapted from Atherton and 
Colleagues [27].  
 
 
5.3 Part C- Limitations of this thesis 

 
This thesis contributes novel data to the literature, however, it is important to acknowledge that 

there are a number of limitations that should be considered. Firstly, no measurements of MPS or 

muscle function were made in the experimental studies. As a result, we are unable to identify if 

the increases in skeletal muscle n-3 PUFA composition and FAK content in Chapter 2 with fish 

oil supplementation enhances the force producing capacity of the muscle. Moreover, we are 

unable to show whether increases in p70S6K1 activity in response to RE and protein feeding in 

Chapters 3 and 4 are associated with changes in MPS. Thus, by employing direct measures of 
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muscle function and MPS to examine the impact of n-3 PUFA supplementation on skeletal 

muscle in response to stimulation, future researches may add to the findings of this thesis. 

Another important consideration is that in Chapter 2 there was no control group. With regards to 

changes in the n-3 PUFA composition of skeletal muscle and blood this shortcoming has little 

impact as assessment of muscle and blood lipid profiles were made at -2 and 0 weeks of 

supplementation, thus each participant acted as their own internal control. However, the lack of 

repeated baseline sampling for anabolic signalling protein content taken together with the large 

variability associated with gene expression between people [181], suggests that in this instance, a 

lack of control group could be a confounding factor. Although, it is important to reiterate that the 

primary focus of this study was the time course change in muscle lipid profiles with n-3 PUFA 

supplementation and analysis of changes in anabolic signalling expression was a secondary 

objective. Nevertheless, given the importance placed on changes in anabolic signalling with n-3 

PUFA supplementation in this thesis, the absence of a control group in Chapter 2 remains a 

major limitation of this programme of work. 

 

Another limiting feature of this thesis is that all the human participants were active, young males. 

Given the apparent sex difference in the composition of blood lipid profiles [125], it could be 

contended that the time course change in muscle lipid profiles with n-3 PUFA supplementation as 

described in Chapter 2 may differ between men and women. Moreover, elderly individuals are 

known to display differential molecular responses to anabolic simulation compared to their 

younger counterparts [182,183]. As such, the findings of this thesis may have less relevance to 

those populations. Future work that investigates the impact of n-3 PUFA-enriched fish oil 

supplementation on lipid composition changes and kinase activity in response to RE and protein 

feeding would further advance existing knowledge. Finally, the present thesis provides little 
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information as to how altering the lipid composition of the skeletal muscle membrane influences 

the molecular regulation of skeletal muscle anabolism. There is speculation that the incorporation 

of n-3 PUFA into skeletal muscle may alter lipid raft formation that somehow alters gene 

expression [122,184]. Similarly, alterations in the lipid composition of skeletal muscle also have 

been purported to impact upon the expression of eicosanoids that subsequently influence muscle 

anabolic processes [128]. The impact of n-3 PUFA supplementation of both the formation of lipid 

rafts and eicosanoids is therefore an interesting area of future research.  

 

5.4 Future philosophy 

 
As a result of this programme of work, a time course change in skeletal muscle lipid composition 

with fish oil supplementation and a novel protocol to assess p70S6K1 activity in skeletal muscle 

has been established. Moreover, for the first time, this thesis shows that 8 wk of fish oil 

supplementation suppresses p70S6K1 activity in response to RE and protein feeding in humans. 

However there are still a number of questions that remain unanswered. These questions are listed 

below and it is hoped that they will be addressed in the near future. 

 

1. Is there a dose-response relationship between n-3 PUFA ingestion and changes in the n-3 

PUFA composition of skeletal muscle? 

 

2. What is the washout period of n-3 PUFA composition of skeletal muscle associated with 

the cessation of n-3 PUFA supplementation? 

 

3. Is there a correlation between the degree of p70S6K1 activity/phosphorylation and the 

rate of ribosomal biogenesis following exercise and protein feeding?  
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4. Can n-3 PUFA supplementation potentiate MPS to a bout of RE and protein feeding? 

 

5. What mediates increases in the n-3 PUFA composition of skeletal muscle with changes in 

anabolic signalling expression and activity in response to stimulation? 
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a b s t r a c t

The aim of this study was to examine changes in the lipid profile of red blood cells and muscle tissue
along with the expression of anabolic signalling proteins in human skeletal muscle. Following a 2-week
control period, 10 healthy male participants consumed 5 g d!1 of fish oil (FO) for 4 weeks. Muscle
biopsies and venous blood samples were collected in the fasted state 2 weeks prior (W-2) and
immediately before (W0) the initiation of FO supplementation for internal control. Muscle biopsies
and venous blood samples were again obtained at week 1 (W1), 2 (W2) and 4 (W4) during FO
supplementation for assessment of changes in lipid composition and expression of anabolic signalling
proteins. There was no change in the composition of any lipid class between W-2 and W0 confirming
control. Following FO supplementation n-3 polyunsaturated fatty acid (n-3 PUFA) muscle lipid
composition was increased from W0 to W2 and continued to rise at W4. n-3 PUFA blood lipid
composition was increased from W0 to W1 and remained elevated for the remaining time points. Total
protein content of focal adhesion kinase (FAK) increased from W0 to W4 whereas total mechanistic
target of rapamycin (mTOR) was increased from W0 at W1 with no further significant increases at W2
and W4. These data show that FO supplementation results in discordant changes in the n-3 PUFA
composition of skeletal muscle compared to blood that is associated with increases in total FAK content.

& 2014 Published by Elsevier Ltd.

1. Introduction

The consumption of food rich in Omega n-3 polyunsaturated fatty
acids (n-3 PUFA) is thought to be beneficial for many cardiovascular
disease risk factors, including blood pressure and [1] immune
function [2]. There are also other clinically relevant health claims
associated with the consumption of n-3 PUFA [3–5] that are
concomitant with increases in the n-3 PUFA composition of the
associated biological tissues [3,6–10]. However, whilst time course
increases in the n-3 PUFA composition of erythrocytes [11], platelets,
buccal cells, mononuclear cells and adipose tissue with n-3 PUFA
supplementation have recently been established [10], to date, no
study has characterised such a time course in human skeletal muscle.

Whilst much is known about other tissues, far less is known
about the impact of n-3 PUFA supplementation on human skeletal
muscle. Some data exist to show that n-3 PUFA supplementation

may alter respiration kinetics and render skeletal muscle more
sensitive to the effects of insulin [7,12]. Moreover, work in rodents
has demonstrated that dietary fish oil alleviates soleus muscle
atrophy during a period of enforced immobilization [13]. In humans,
supplementation with n-3 PUFA-rich fish oil for 8 weeks is reported
to enhance muscle protein synthesis rates (MPS) in response to a
hyperaminoacidemic–hyperinsulinemic infusion in both the young
and elderly [8,9]. Moreover, there is evidence that n-3 PUFA
supplementation augments strength gains in response to resistance
training in elderly humans [14]. Mechanistically, the anabolic influ-
ence of n-3 PUFA supplementation is purported to be mediated by
enhanced mechanistic target of rapamycin (mTOR)-p70 ribosomal
protein S6 kinase (p70S6K) signalling [8,9]. Indeed, changes in
mTOR-p70S6K signalling with fish oil supplementation in those
studies were also shown to be accompanied by significant increases
in the n-3 PUFA composition of skeletal muscle [8,9]. Thus, it appears
that n-3 PUFA supplementation increases the n-3 PUFA composition
of skeletal muscle, which may confer an anabolic influence in part,
via mTOR-p70S6K signalling. However, whether fish oil supplemen-
tation alters the expression of these proteins and or other mechani-
cally sensitive proteins remains uncertain.
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Although there are now a growing number of studies that
characterise changes in the n-3 PUFA composition of skeletal
muscle with n-3 PUFA supplementation [8,9,12,15,16], many of
these studies are limited to pre- and post-supplementation mea-
surements with little temporal resolution. Data are available on the
time course of n-3 PUFA changes in blood [11] and adipose tissue
with [10] n-3 PUFA supplementation; however, to our knowledge,
no study has established the time course of n-3 PUFA changes in
human skeletal muscle. Given the potential beneficial impact of
increasing the skeletal muscle n-3 PUFA composition on metabolic
health [3,7], data that demonstrate a time course increase in
skeletal muscle n-3 PUFA composition with fish oil supplementa-
tion could therefore provide critical data for clinical and athletic
practice. Thus, the primary aim of the present investigation was to
identify the time course of n-3 PUFA change in skeletal muscle over
4 weeks of n-3 PUFA-enriched fish oil supplementation. In addition,
as previous reports demonstrate improved strength gains during
resistance training [14] and changes in mTOR-p70S6K signalling
with n-3 PUFA supplementation [8,9,13,17], a secondary aim was to
determine whether 4 weeks of fish oil supplementation modified
the expression and or phosphorylation of key anabolic intramus-
cular signalling proteins (FAK, mTOR, p70S6K, and 4E-BP1).

2. Materials and methods

2.1. Participants

Ten healthy, moderately active males who participated in team
sports recreationally (aged 2173 yrs; body mass 7674 kg,

mean7SEM) from the University of Stirling and the surrounding
area volunteered to participate in the present investigation.
Following health screening, participants were excluded if they
were engaged in any form of dietary supplementation or were
taking any prescribed medication. This study was conducted
according to the guidelines laid down in the Declaration of
Helsinki (2008) and the Local Ethics Committee, University of
Stirling, approved all procedures. Written, informed consent was
obtained prior to the commencement of the experiment.

2.2. Experimental design

In a one-way, repeated measures design, participants reported
to the laboratory on five separate occasions. Initial baseline
assessment of muscle and blood lipid profiles was conducted at
!2 (W-2) and 0 (W0) week, to determine muscle and blood lipid
profiles over a period of habitual diet and physical activity; thus,
participants served as their own internal control (Tables 1 and 2).
By employing a one-way, repeated measures design, we were able
to circumvent issues such as genetic variability between partici-
pants and statistical power associated with a between-groups
approach. Following this baseline control period, participants
consumed 5 g d!1 of fish oil capsules (providing 3500 mg EPA
[20:5n-3]; 900 mg DHA [22:6n-3] and vitamin E 0.1 mg, Ideal
Omega-3, Glasgow Health Solutions Ltd, UK; see Supplementary
Table 1 for full fatty acid profile) for 4 weeks. The supplemental
fish oil dose and participant number were chosen based on
previous work showing that a similar dose in 10 males can induce
significant changes in the lipid profile of human blood over a

Table 1
Full muscle lipid profiles.

Fatty acid !2 week 0 week 1 week 2 week 4 week

14:0 0.9570.04 0.9370.05 0.9570.05 0.9970.08 0.8570.03
15:0 0.2370.01 0.2170.01 0.2670.01 0.2070.01 0.2170.01
16:0 17.4970.27 17.5970.31 18.0370.26 17.5570.37 17.7170.36
18:0 11.4170.27 11.1970.26 11.1670.17 10.9870.35 11.6670.16
20:0 0.1370.01 0.1370.01 0.1370.01 0.1370.01 0.1370.01
22:0 0.2170.02 0.1770.01 0.1770.02 0.1670.02 0.1970.02
24:0 0.1870.01 0.2070.02 0.1570.01 0.1570.02 0.1770.02

Total saturated 30.5970.26 30.4270.31 30.8670.21 30.1570.21 30.9270.34
16:1n-9 0.4070.02 0.3970.02 0.3470.01 0.4270.02 0.3570.01
16:1n-7 1.2270.14 1.4070.13 1.2470.11 1.4970.17 1.0370.10
18:1n-9 15.9371.06 16.5870.99 17.2570.90 17.6971.39 14.3870.76
18:1n-7 1.8670.03 1.9170.02 1.8870.03 1.8970.05 1.8070.03
20:1n-9 0.2470.02 0.2470.02 0.2570.02 0.2570.03 0.2170.02
24:1n-9 0.2270.01 0.2570.02 0.2170.02 0.2370.06 0.1970.01

Total monounsaturated 19.8771.15 20.7671.08 21.1670.96 21.9771.53 17.9670.81
18:2n-6 24.2770.47 23.7570.26 23.5570.56 22.9170.59 23.1870.40
18:3n-6 0.0870.00 0.0870.00 0.0770.00 0.0770.00 0.0770.00
20:2n-6 0.2770.01 0.2770.01 0.2670.01 0.2470.01 0.2470.01
20:3n-6 1.1470.06 1.1470.07 1.0770.05 1.0470.07 1.0470.06
20:4n-6 10.4770.50 10.4670.68 9.7570.54 9.6970.69 9.9870.63
22:4n-6 0.5470.04 0.5370.04 0.5270.05 0.5070.03 0.4670.04
22:5n-6 0.2370.02 0.2270.02 0.2470.01 0.2070.02 0.1870.02

Total n-6 PUFA 36.9970.83 36.4570.82 35.4670.71 34.6471.13 35.1270.56
18:3n-3 0.4970.03 0.5170.05 0.5470.02 0.5870.04 0.4770.03
20:5n-3 0.6170.05 0.5970.05 0.9470.08 1.3670.11 2.3570.22
22:5n-3 1.2870.04 1.2470.05 1.2970.04 1.4670.08 1.7770.09
22:6n-3 1.4970.17 1.4770.16 1.4970.16 1.6970.14 2.1370.21

Total n-3 PUFA 3.8670.23a 3.8070.22a 4.2870.24a,b 5.1470.28b 6.7970.46c

16:0DMA 5.3770.22 5.2970.21 5.1070.22 5.1870.29 5.6870.20
18:0DMA 1.7770.08 1.7870.07 1.6870.07 1.7270.08 1.9070.07
18:1DMA 1.5570.07 1.5070.06 1.4670.05 1.3270.13 1.6370.07

Total DMA 8.6970.34 8.5770.29 8.2470.31 8.2270.42 9.2170.29

Total saturated fatty acids, total monounsaturated fatty acids, total n-6 polyunsaturated fatty acids (PUFA), total n-3 PUFA and total dimethyl
aldehyde (DMA). Values are % total fatty acids mean7SEM. Means that do not share a letter are significantly different from one another (po0.05).
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4-week period [11]. Moreover, by prescribing a high dose of fish oil
along with multiple skeletal muscle biopsies within a 4-week time
course we are able to provide a degree of resolution to the
anticipated changes in the n-3 PUFA composition of skeletal
muscle during the 4-week experiment. Participants were required
to complete a 7 d food and physical activity diary prior to baseline
testing (W-2). This diary was presented back to the participants
who were then asked to replicate a similar pattern of food
consumption and physical activity for the remainder of the
experiment. Dietary analysis was conducted using the software
program Microdiet (Downlee Systems, Ltd., UK). During each visit
to the laboratory, participants were verbally requested to confirm
the pattern of oily fish consumption in an attempt to ensure that
changes in free-living oily fish consumption did not influence
muscle and blood lipid profiles during the study. Each participant's
height, nude body mass, resting skeletal muscle samples and
duplicate 5 mL venous blood samples were obtained at 0700
following a 10 h overnight fast at W-2, W0, 1 week (W1), 2 weeks
(W2) and 4 weeks (W4) of supplementation. Supplementation
compliance was assessed via a blind capsule count. Resting, fasting
venous blood samples were analysed for glucose concentration to
ensure compliance with the overnight fast.

2.3. Experimental procedures

2.3.1. Venous blood and muscle biopsy procedures
Blood samples were obtained from an antecubital forearm vein.

All samples were drawn into evacuated 5 mL vacutainers contain-
ing ethylenediametetraacetic acid (EDTA) (Vacutainer Systems,

Becton, Dickinson and Company, UK). An aliquot of blood was
removed and centrifuged at 3000 rpm min!1 for 15 min and the
plasma was stored at !80 1C until further analysis. Plasma glucose
was determined using an ILAB automated analyser (Instrumenta-
tion laboratory, Cheshire, UK).

Muscle biopsies were obtained from the lateral portion of the
Vastus lateralis. Initially the site was cleaned before an incision into
the skin and fascia was made under local anaesthetic (2% Lido-
caine). A 5 mm Bergstrom biopsy needle was inserted to extract
"60–100 mg of skeletal muscle tissue. Muscle samples were
rinsed with ice-cold saline, blotted dry and any visible fat or
connective tissue was removed. Muscle samples were separated
into two eppendorf tubes, before being snap-frozen in liquid
nitrogen and stored at !80 1C pending further analysis. All
subsequent muscle biopsies, i.e. 0, 1, 2 and 4 weeks, were obtained
from the contralateral limb to the previous sample.

2.3.2. Lipid extraction of muscle biopsy samples
Total lipid was extracted from the muscle by a modification of a

method previously described [18]. The frozen muscle biopsy
samples (20–60 mg) were placed in a pre-weighed reacti-vial
and an accurate tissue mass recorded. The reacti-vials were
capped and placed on ice and then 1 mL of chloroform/methanol
(C:M, 2:1 v/v) was added to each vial. Each muscle sample was
homogenised using a hand-held IKA-Werke Ultra-turrax T8 homo-
geniser (Fisher, Loughborough, UK). The probe was rinsed with
3 mL of C:M, 2:1, and added to the reacti-vial before being placed
on ice for 1 h. Then 1 mL 0.88% KCl was added, shaken and allowed

Table 2
Full blood lipid profiles.

Fatty acid !2 week 0 week 1 week 2 week 4 week

14:0 0.5470.05 0.5170.05 0.5570.05 0.4670.06 0.5170.04
15:0 0.2270.03 0.1870.01 0.1970.01 0.1870.01 0.1970.01
16:0 20.7870.41 20.1770.28 19.9070.23 19.6670.37 20.4070.30
18:0 11.6170.25 11.5370.15 11.6070.11 11.8370.13 11.8970.22
20:0 0.2370.01 0.2270.01 0.2270.01 0.2470.01 0.2270.01
22:0 0.6070.03 0.5670.02 0.5770.02 0.5970.02 0.5770.02
24:0 1.1970.04 1.1070.04 1.1270.05 1.1370.06 1.1070.03

Total saturated 35.1770.56a 34.2770.24a,b 34.1470.23b 34.0770.31b 34.8870.32a

16:1n-9 0.3370.02 0.3570.02 0.2770.02 0.2770.02 0.2670.01
16:1n-7 1.2770.11 1.4770.15 1.0070.08 0.9370.09 1.2170.20
18:1n-9 17.6370.34 18.0070.41 15.8270.28 15.7570.46 16.4070.43
18:1n-7 1.6670.07 1.5870.07 1.4670.06 1.5670.07 1.5670.08
20:1n-9 0.2870.02 0.2870.01 0.2570.02 0.2570.02 0.2570.01
24:1n-9 1.7070.07 1.5070.08 1.4970.07 1.5870.09 1.4370.06

Total monounsaturated 22.8770.40a 23.1970.55a 20.3070.26b 20.3470.46b 21.1170.61b

18:2n-6 18.6170.37 18.2870.69 17.8070.52 17.1970.42 16.4370.33
18:3n-6 0.3070.04 0.3270.03 0.2170.02 0.1570.01 0.1570.03
20:2n-6 0.3270.01 0.3770.02 0.3070.01 0.2770.01 0.2470.01
20:3n-6 1.7770.06 1.8870.08 1.5170.07 1.3270.07 1.1570.07
20:4n-6 10.5270.44 10.8870.22 11.2470.26 10.8870.36 9.9970.24
22:4n-6 1.3770.09 1.4470.07 1.4270.07 1.3370.07 1.2170.07
22:5n-6 0.2870.03 0.3070.02 0.2970.02 0.2870.02 0.2270.02

Total n-6 PUFA 33.1770.58a 33.4770.60a 32.7670.44a,b 31.4270.71b 29.3870.42c

18:3n-3 0.4770.06 0.5770.06 0.6370.04 0.5970.06 0.5270.03
20:5n-3 0.8670.09 0.8970.07 3.6270.32 4.5470.39 4.8170.31
22:5n-3 1.4770.07 1.5870.04 1.9570.07 2.0970.08 2.2170.09
22:6n-3 2.5870.26 2.7270.25 3.2670.19 3.5270.21 3.6070.21

Total n-3 PUFA 5.4370.41a 5.8570.31a 9.5470.43b 10.8370.60b 11.2370.53b

16:0DMA 1.1870.05 1.1170.03 1.1670.04 1.1670.05 1.2270.03
18:0DMA 1.6470.05 1.6170.04 1.6170.05 1.6170.07 1.6570.05
18:1DMA 0.5570.04 0.5170.04 0.5070.04 0.5670.03 0.5470.04

Total DMA 3.3670.13 3.2270.09 3.2670.12 3.3370.14 3.4170.10

Total saturated fatty acids, total monounsaturated fatty acids, total n-6 polyunsaturated fatty acids (PUFA), and total n-3 PUFA and total dimethyl
aldehyde (DMA). Values are % total fatty acids mean7SEM. Means that do not share a letter are significantly different from one another (po0.05).
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to stand for 10 min to remove non-lipid impurities. The vials were
then centrifuged at 400g for 5 min before removal of the aqueous
layer. The lower solvent layer was removed using a Pasteur pipette
and filtered through a 5.5 mm Whatman No. 1 filter, pre-washed
with C:M, 2:1, into a 7 mL bottle, and dried under N2. The lipid was
then re-dissolved in 1 mL of C:M, 2:1, and transferred to a pre-
weighed 1.7 mL bottle. The 1.7 mL bottle was then rinsed with
0.5 mL C:M, 2:1, and this was added to the 1.7 mL bottle. The lipid
was dried under N2 and desiccated overnight in a vacuum
desiccator after which the lipid was reweighed and dissolved in
C:M, 2:1þ0.01% butylated hydroxyl toluene (BHT) (v/v), at a
concentration of 2 mg mL"1.

2.3.3. Lipid extraction of whole blood samples
Samples of whole blood were placed onto two circular collection

spots on Whatman 903 blood collection cards (GE Healthcare Ltd.,
Forest Farm Industrial Estate, Cardiff, CF 14 7YT, UK). The cards were
left open and allowed to dry for 3 h after which the dried whole
blood sample was detached from the collection device using forceps
and placed into a screw-cap vial containing 1 mL of methylating
solution (1.25 Mmethanol/HCl). The vials were placed in a hot block
at 70 1C for 1 h. The vials were allowed to cool to room temperature
before 2 mL of distilled water and 2 mL of saturated KCl solution
were added. Fatty acid methyl esters (FAME) were then extracted
using 1#2 mL of iso-hexaneþBHT followed by a second extraction
using 2 mL of isohexane alone. This extraction method has been
previously validated as a reliable measure of whole blood fatty acid
composition in our own laboratories [19].

2.3.4. Analysis of fatty acid methyl esters (FAME)
FAME were separated and quantified by gas–liquid chromato-

graphy (ThermoFisher Trace, Hemel Hempstead, England) using a
60 m#0.32 mm#0.25 mm film thickness capillary column (ZB
Wax, Phenomenex, Macclesfield, UK). Hydrogen was used as
carrier gas at a flow rate of 4.0 mL min"1 and the temperature
program was from 50 to 150 1C at 40 1C min"1, then to 195 1C at
2 1C $min"1 and finally to 215 1C at 0.5 1C min"1. Individual FAME
were identified and compared to well-characterised in house
standards as well as commercial FAME mixtures (Supelco™ 37
FAME mix, Sigma-Aldrich Ltd., Gillingham, England).

2.3.5. Western Blot
Muscle tissue (20–40 mg) was homogenised in ice-cold homo-

genization buffer containing 50 mM Tris–HCl (pH 7.4), 1 mM EDTA,
1 mM EGTA, 10 mM ß-glycerophosphate, 50 mM NaF, 0.5 mM acti-
vated sodium orthovanadate (all SigmaAldrich, St Louis, MO, USA)
and a complete protease inhibitor cocktail tablet (Roche, Indianapo-
lis, IN, USA). Homogenates were centrifuged at 2200g for 10 min at
4 1C before recovery of supernatants representing the sarcoplasmic
protein pool for analysis by Western Blot. Protein concentration was
determined using a BCA protein assay (Thermo Fisher Scientific,
Ontario, Canada). Equal aliquots of protein (20 μg) were boiled in
Laemmli sample buffer (250 mM Tris–HCl, pH 6.8, 2% SDS, 10%
glycerol, 0.01% bromophenol blue, and 5% β-mercaptoethanol) and
separated on SDS polyacrylamide gels (range 10–15%) for 1.5 h at
140 V. Following electrophoresis, proteins were transferred to a PVDF
membrane at 100 V for 1 h. Following 1 h of blocking in 5% milk
powder in TBST (Tris Buffered Saline and 0.1% Tween-20; both
Sigma-Aldrich, Poole, UK), membranes were incubated overnight at
4 1C with the appropriate primary antibody diluted in TBST. Primary
antibodies were mTORSer2448 (Cell Signalling, ♯2971, 1:1000), total
mTOR (Cell Signalling, ♯2972, 1:1000), p70S6KThr389 (Cell Signalling,
♯9234, 1:1000), total p70S6K (Cell Signalling, ♯9202, 1:1000), initia-
tion factor 4E binding protein (4E-BP1)Thr37/46 (Cell Signalling, ♯2855,
1:1000), total 4E-BP1 (Cell Signalling, ♯9452, 1:2000), focal adhesion

kinase (FAK)Tyr576/577 (Santa Cruz Biotechnology, ♯21831, 1:5000),
total FAK (Santa Cruz, ♯558, 1:5000) and α-tubulin (Sigma-Aldrich,
♯T6074, 1:2000). The following morning the membrane was rinsed
three times for 5 min in TBST. The membrane was then incubated for
1 h at room temperature in HRP-conjugated anti-rabbit secondary
antibody diluted in TBST (New England Biolabs, UK, 1:10000). The
membrane was then cleared three times for 5 min in TBST. Antibody
binding was detected using enhanced chemiluminescence (Millipore,
Billerica, MA). Band visualization was carried out using a Chemidoc
XRS system (Bio-Rad, Hemel Hempstead, UK) and quantification
using densitometry (ImageJ v1.34s 281 software, rsbweb.nih.gov/ij/).
Molecular signalling proteins were determined with n¼10. Phospho-
proteins were expressed relative to total protein by stripping the
membrane using Restore Western Blot Stripping Buffer (Thermo
Scientific, FL, USA, ♯21059) and re-probing for total protein. Phos-
phorylated antibodies were removed from all membranes before
using Restore Stripping Buffer (Thermo Fisher Scientific, Ontario,
Canada) prior to probing for total protein. Total protein was
expressed relative to α-tubulin as a protein loading control.

2.3.6. Data presentation and statistical analysis
All statistical analyses were performed using Minitab 17 statis-

tical software (Minitab Ltd., Coventry, UK). Paired t-tests were used
to detect differences in lipid profiles of blood and muscle between
W-2 and W0. As no differences were detected between baseline
measurements (W-2 and W0) for lipid profiles of the blood or
muscle, all further statistical analyses were performed using only
W0 as the baseline measurement. In a single-factor (week of
supplementation), repeated measures ANOVA was employed to
evaluate changes in lipid composition of both the blood and muscle
as well as changes in protein signalling from W0 to W4. In order to
comply with the assumptions of the ANOVA, when required, protein
signalling data were initially log transformed. If a main effect of time
was observed a Tukey's post-hoc analysis was applied to detect
differences between weeks. Regression analysis was performed to
identify correlation coefficients between blood and muscle lipids.
Statistical significance was set at po0.05. Protein signalling data are
presented as mean (cross), median with interquartile-range and
range. All lipid profiling data are expressed as mean relative
percentage of total fatty acids7SEM unless otherwise stated.

3. Results

3.1. Dietary analysis

Daily energy intake was 22447132 kcal (55%75% carbohy-
drate, 15%72% protein, 30%74% fat, and n-3 PUFA 0.7%70.2%).
Participants’ mean fasted, plasma glucose samples across all trials
were 4.8170.12 mM (range 4.1–5.5 mM).

3.2. Lipid profile changes in muscle

There was no significant change (p¼0.099) in the total lipid
content of muscle (1.3870.04 [W-2] to 1.2570.05 [W0] to
1.2270.02 [W1] to 1.3670.08 [W2] to 1.2070.05 [W4], mg/
100 mg of muscle) at any time point. Thus, in order to enable
meaningful comparisons between changes in blood and muscle n-3
PUFA composition as well with previously published studies [8–11]
changes in muscle and blood lipids are presented as changes in %
composition of total fatty acids. Full muscle lipid profiles can be
seen in Table 1. Lipid composition of muscle for any lipid species or
group of lipid species did not differ between W-2 and W0. The
difference in mean % EPAþDHA/total fatty acids was statistically
higher at W2 compared to W0 (p¼0.001) and continued to increase
at W4 (po0.001). There was an increase in % total n-3 PUFA/total
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fatty acids from W0 to W2 (po0.001) that continued to rise at W4
(po0.001). There was no change in percentage total n-6 polyunsa-
turated fatty acids (n-6 PUFA)/total fatty acids, (p¼0.218), % total
saturated fatty acids/total fatty acids (p¼0.076), % monounsatu-
rated fatty acids/total fatty acids (p¼0.432) or % dimethyl aldehyde
(DMA)/total fatty acids (p¼0.418) over time.

3.3. Lipid profile changes in blood

Full blood lipid profiles can be seen in Table 2. Lipid composition
of blood for any lipid species or group of lipid species did not differ
between W-2 and W0. Percentage EPAþDHA/total fatty acids

significantly increased from W0 to W1 (po0.001; Fig. 1B) and from
W1 to W2 (p¼0.041; Fig. 1B) with no further detectable increases at
W4 (p¼0.831; Fig. 1B). Blood % total n-3 PUFA/total fatty acids was
increased at W1 compared to W0 (po0.001) and was further
increased at W2 (p¼0.047) with no further detectable increases at
W4 (p¼0.824). Percentage total n-6 PUFA/total fatty acids declined
significantly fromW0 toW2 (p¼0.009) and was further decreased at
W4 (p¼0.010). Percentage monounsaturated fatty acids/total fatty
acids were significantly higher at W0 (po0.001) compared to W1,
W2 and W4. There was a significant increase in percentage total
saturated fatty acids/total fatty acids (p¼0.076) at W4 compared to
W1 and W2. There was no change in percentage dimethyl aldehyde
(DMA)/total fatty acids (p¼0.249) over time.

Fig. 1. Skeletal muscle (A) and blood (B) lipid composition changes of the sum of EPAþDHA values mean7SEM. Means that do not share a letter are significantly different
from one another (po0.05).

Fig. 2. Correlation between muscle n-3 PUFA composition compared with blood n-3 PUFA composition at W0 (A) (po0.001, r2 0.93), W1 (B) (p¼0.163, r2 0.48), W2 (C)
(p¼0.045, r2 0.64) and W4 (D) (po0.001, r2 0.98) of fish oil supplementation.
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3.4. Correlation analysis of muscle and blood

Correlation analysis revealed a significant association between
blood and muscle n-3 PUFA composition at W0 (po0.001, r2 0.93;
Fig. 2A) but not at W1 (p¼0.163, r2 0.48; Fig. 2B). However, the
association was increased at W2 (p¼0.045, r2 0.64; Fig. 2C) and
returned to a strong association at W4 (po0.001, r2 0.98; Fig. 2D).

3.5. Anabolic protein expression

Total FAK protein content increased from W0 to W4 (p¼0.013;
Fig. 3A). Total mTOR protein content significantly increased from
W0 to W2 (p¼0.008) with no further detectable increases at W4
(p¼0.166; Fig. 3B). The largest fold change for total FAK and total
mTOR protein content was 3.971.5 (W0 to W4) and 3.270.8 (W0
to W2), respectively. There was no effect of time on fold change in
total p70S6K (p¼0.295; Fig. 3C) or total 4E-BP1 protein content
(p¼0.444; Fig. 3D). There was also no effect of time for fold change
in the phosphorylation of FAKTyr576/577, mTORSer2448, p70S6KThr389

or 4E-BP1Thr37/46 (data not shown).

4. Discussion and conclusions

This study was designed to examine the changes in muscle and
blood lipid composition as well as alterations in anabolic signalling
expression during 4 weeks of n-3 fish oil supplementation. We
report that 4 weeks of fish oil supplementation increased both
blood and skeletal muscle n-3 PUFA composition that was accom-
panied by an increase in intramuscular anabolic signalling protein
content. In addition, we show that the increase in n-3 PUFA in
blood occurred within 1 week; however in muscle, significant
increases in n-3 PUFA composition were not detected until 2
weeks of supplementation. Given the potential significance of
increasing the n-3 PUFA composition of skeletal muscle on meta-
bolic health [20], these novel data therefore provide relevant
information pertaining to fish oil prescription for future studies
in this field.

The time course of n-3 PUFA changes in blood and adipose
tissue following n-3 PUFA supplementation has been examined
previously [10,11,21]. These studies show that n-3 PUFA supple-
mentation can induce detectable increases in the n-3 PUFA compo-
sition of blood within 1 week [11], whilst increases in adipose tissue
PUFA may require 412 months of supplementation [10]. Herein,

Fig. 3. Signalling protein content of focal adhesion kinase (FAK) (A), mechanistic target of rapamycin (mTOR) (B), ribosomal protein S6 kinase (p70S6K) (C) and eukaryotic
initiation factor 4E-binding protein 1 (4E-BP1) (D). Values expressed as arbitrary units relative to α tubulin and presented as mean (cross), median with interquartile-range
and range; n denotes significantly higher than W0 (po0.05).
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our novel data add to the existing literature by demonstrating that a
minimum of 2 weeks of fish oil supplementation at the dose used in
our study is required in order to induce a detectable increase in n-3
PUFA composition in skeletal muscle. The delay in the response of
the n-3 PUFA muscle composition compared with that of blood
could be due to differing turnover rates between tissues. By
employing a within-subject, repeated measures design, for the first
time we are able to directly compare changes in blood and muscle
n-3 PUFA composition with fish oil supplementation. There was a
strong correlation between blood and muscle n-3 PUFA composition
at baseline but after 1 week of supplementation this correlation was
not significant. However, after 2 and 4 weeks of supplementation
the correlation between blood and muscle n-3 PUFA composition
was strengthened and returned to statistical significance. These data
therefore highlight that during the initial stages of n-3 PUFA
supplementation, changes in blood lipid composition do not accu-
rately reflect that of skeletal muscle. Furthermore, unlike blood,
there was no apparent saturation of muscle n-3 PUFA composition
within the 4-week time course. As a result, a more prolonged period
(44 weeks) of fish oil supplementation may be required in order to
reach a saturation of n-3 PUFA composition in human skeletal
muscle during fish oil supplementation.

Previous studies employing pre/post-assessments of n-3 PUFA
changes in muscle phospholipids following 8 weeks of fish oil
supplementation demonstrate a !2-fold increase in the n-3 PUFA
composition from baseline [8,9]. We observed similar !2-fold
increases in whole muscle n-3 PUFA composition, achieved within
only 4 weeks of fish oil supplementation. Some of the differences
between the present study and previous data may be due to
differences in n-3 PUFA content between cellular compartments
(i.e. whole muscle vs. membrane) or in the dose and/or composi-
tion of the supplements. The rapid increase in n-3 PUFA in whole
muscle observed in our investigation may relate to the high EPA
content of the fish oil supplement. Indeed, our participants
ingested nearly double the daily dose of EPA (3500 mg vs.
1860 mg daily) as used in previous studies, in which the supple-
mentation protocol was twice as long as that of the current
investigation [8,9]. Taken together with our data, it appears that
the n-3 PUFA composition of skeletal muscle could be a function of
the dose of n-3 PUFA consumed as well as the time course
of supplementation. However, it is important to note that the
dose of DHA as used in our investigation was approximately
900 mg lower than in previous reports [9,11]. In this regard,
perhaps had we increased the daily dose of DHA prescribed to
the participants it is possible that we may have observed a
different rate of change in the n-3 PUFA composition of skeletal
muscle over time. Thus, future studies employing differing n-3
PUFA supplementation protocols may elucidate a dose and time-
dependant response of n-3 PUFA changes in skeletal muscle
similar to those established in other biological tissues [10,11,21].

The impact of n-3 PUFA supplementation on skeletal muscle
metabolism is now becoming a topic of intense investigation. In
humans, n-3 PUFA supplementation has recently been shown to
alter respiration kinetics [12] as well as potentiate MPS to a
hyperaminoacidemic–hyperinsulinemic infusion [8,9]. In addition,
in rodents, n-3 PUFA supplementation has been demonstrated to
alleviate soleus atrophy during a period of immobilization [13]
whilst in pigs 21 d of fish oil supplementation increases muscle
protein mass [22]. The findings of the present investigation add to
these data as we show that 4 weeks of fish oil supplementation
significantly increases the total protein content of mTOR and the
mechanically sensitive kinase, FAK, in free-living humans. Given
that both FAK and mTOR play a key role in the molecular
regulation of MPS [23–25], our data could be interpreted to
suggest that the increases in total protein content may provide
an enhanced capacity of skeletal muscle to respond to anabolic

stimulation. However, as a note of caution, unlike the pre supple-
mentation, repeated measures assessment of changes in blood and
muscle n-3 PUFA composition, we have no control group to
statistically compare against for the increases in the expression
of mTOR and FAK. Furthermore, the increase in mTOR content was
transient and a recent study in rodents has shown that during
remobilisation from an immobilised state, dietary fish oil was
associated with inhibition of myosin heavy chain content recovery
[17]. In the context of anabolic signalling molecules, this finding
highlights a limitation of our descriptive investigation as our study
design precludes us from demonstrating whether the increases in
mTOR and FAK protein content translate to enhance kinase
activation in response to stimulation. Nevertheless, given previous
reports demonstrating an associative role of FAK in mediating
mechanically-induced changes in MPS [23], future work that
identifies if n-3 PUFA supplementation enhances resistance
exercise-induced rates of MPS in humans could substantiate our
findings.

In summary, we have characterised a time course of n-3 PUFA
changes and anabolic signalling expression in human skeletal
muscle during 4 weeks of fish oil supplementation. The primary
conclusion of this investigation is that fish oil supplementation
results in changes in muscle n-3 PUFA composition of skeletal
muscle within 2 weeks, compared to months as has been reported
for adipose tissue. In addition, we demonstrate that during the
initial stages of fish oil supplementation, changes in muscle n-3
PUFA composition are slower than that of blood. This finding
provides novel information for future researches who wish to
employ fish oil supplementation as a means to manipulate the n-3
PUFA composition of skeletal muscle for experimental purposes.
To our knowledge, this study is also the first to suggest that fish oil
supplementation increases the content of FAK that may indicate a
‘priming’ of muscle to respond to mechanical stimulation in
humans. As such, future studies that identify how fish oil supple-
mentation influences MPS in response to mechanical stimulation
in a physiological setting are now warranted.
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McGlory C, White A, Treins C, Drust B, Close GL, MacLaren DP,
Campbell IT, Philp A, Schenk S, Morton JP, Hamilton DL. Application
of the [!-32P] ATP kinase assay to study anabolic signaling in human skeletal
muscle. J Appl Physiol 116: 504–513, 2014. First published January 16,
2014; doi:10.1152/japplphysiol.01072.2013.—AMPK (AMP-dependant
protein kinase)-mTORC1 (mechanistic target of rapamycin in com-
plex 1)-p70S6K1 (ribosomal protein S6 kinase 1 of 70 kDa) signaling
plays a crucial role in muscle protein synthesis (MPS). Understanding
this pathway has been advanced by the application of the Western
blot (WB) technique. However, because many components of the
mTORC1 pathway undergo numerous, multisite posttranslational modifica-
tions, solely studying the phosphorylation changes of mTORC1 and its
substrates may not adequately represent the true metabolic signaling
processes. The aim of this study was to develop and apply a quanti-
tative in vitro [!-32P] ATP kinase assay (KA) for p70S6K1 to assess
kinase activity in human skeletal muscle to resistance exercise (RE)
and protein feeding. In an initial series of experiments the assay was
validated in tissue culture and in p70S6K1-knockout tissues. Follow-
ing these experiments, the methodology was applied to assess
p70S6K1 signaling responses to a physiologically relevant stimulus.
Six men performed unilateral RE followed by the consumption of 20
g of protein. Muscle biopsies were obtained at pre-RE, and 1 and 3 h
post-RE. In response to RE and protein consumption, p70S6K1
activity as assessed by the KA was significantly increased from
pre-RE at 1 and 3 h post-RE. However, phosphorylated p70S6K1thr389

was not significantly elevated. AMPK activity was suppressed from
pre-RE at 3 h post-RE, whereas phosphorylated ACCser79 was un-
changed. Total protein kinase B activity also was unchanged after RE
from pre-RE levels. Of the other markers we assessed by WB,
4EBP1thr37/46 phosphorylation was the only significant responder,
being elevated at 3 h post-RE from pre-RE. These data highlight the
utility of the KA to study skeletal muscle plasticity.

mTORC1; p70S6K1; AMPK; resistance exercise

THE AMPK (AMP-DEPENDANT PROTEIN KINASE)-mTORC1 (mecha-
nistic target of rapamycin in complex 1)-p70S6K1 (ribosomal
protein S6 kinase 1 of 70 kDa) cascade is a key regulatory
signaling axis controlling a plethora of human metabolic events
such as skeletal muscle protein synthesis (MPS) (11), glucose
disposal (18, 29), and fatty acid metabolism (26). Our under-
standing of how the AMPK-mTORC1-p70S6K1 pathway re-
sponds to physiological perturbation such as exercise (11) and

nutrition (9) has been advanced by the application of the
phosphorylation-specific Western blot (WB) technique. This
technique assesses the phosphorylation of a kinase or a kinase
target on serine, threonine, and tyrosine residues, and infers the
activity of a kinase on the basis of the magnitude of phosphor-
ylation as determined by densitometry. The WB technique is
highly advantageous because it offers the capacity to measure
phosphorylation changes in many targets in a cost-effective
way. However, in some cases, the WB technique possesses a
limited dynamic range that can lead to type II statistical errors
(18). Furthermore, differences in methodological approaches to
the WB are known to lead to different statistical outcomes for
the same data sets (14). Another consideration is that p70S6K1
has a constitutively low baseline phosphorylation. As such,
when changes in p70S6K1 phosphorylation to anabolic stim-
ulation are represented as a fold or percentage change, this low
baseline phosphorylation results in an inflated response that is
not representative of a physiological change in activity (21,
27). Hence, our understanding of how various stimuli such as
exercise and nutrition affect p70S6K1 signaling is in part
confined to both the limitations and assumptions of the WB
technique.

In a recent commentary, Murphy and Lamb (24) describe a
fully quantitative approach to WB. These authors show that by
using calibration curves for each gel, a quantitative assessment
of changes in protein expression can be made. However,
conducting calibration curves for the analysis of posttransla-
tional modifications (PTM) such as phosphorylation would be
contingent upon 100% of the recombinant protein modified
specifically at the specific PTM residue. Furthermore, the use
of such calibration curves on every gel would prove costly
when analyzing numerous samples, thus undermining the fi-
nancial viability of the WB technique. As such, the use of the
WB to assess changes in the phosphorylation of a kinase as a
proxy of kinase activity remains a challenge.

The in vitro [!-32P] ATP kinase assay (KA) is the gold
standard for assessing kinase activity (16). This methodology
involves immunoprecipitating the kinase of interest from ho-
mogenized tissue. The activity of the kinase is then assessed in
vitro against a kinase-specific or kinase family-specific sub-
strate. Gamma (!)-32P ATP is subsequently used to measure
the incorporation of phosphate into the substrate via liquid
scintillation counting, thus enabling a quantitative assessment
of activity. The dual layer of specificity and quantitative nature
of the KA may obviate some of the methodological shortcom-
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ings associated with using the WB (14) and its use to assess
AMPK activity in response to exercise is now a feature in the
human exercise sciences (10, 37, 40). A semiquantitative
p70S6K1 KA does exist for use in rodent tissue (21), and a
quantitative p70S6K1 KA has previously been used in cell
culture studies (33). However, no study has described a fully
quantitative KA methodology for the assessment of p70S6K1
activity in human skeletal muscle.

Therefore, the primary aim of this methodological study was
to develop and validate a fully quantitative p70S6K1 KA
methodology to assess p70S6K1 activity in human skeletal
muscle in response to resistance exercise (RE) and protein
feeding. Because muscle tissue availability is often a major
limitation to routine analytical procedures, a secondary aim
was to simultaneously assess AMPK activity and another
regulator of mTOR (mechanistic target of rapamycin), protein
kinase B (PKB), from the same muscle biopsy sample as
p70S6K1. In this regard, we also aimed to validate a serial
immunoprecipitation (IP) protocol to enable the dual assess-
ment of p70S6K1 and PKB, from the same muscle homoge-
nate. It is hoped that these methodological developments will
enhance our capacity to accurately delineate the molecular
mechanisms that regulate human skeletal muscle plasticity.

METHODS

Materials

Unless otherwise stated, all materials were from Fisher Scientific
(Loughborough, UK). All antibodies, unless otherwise stated, were
used at a concentration of 1:1,000, and were from New England
Biolabs (Herts, UK). Selected primary antibodies were mTORser2448

(#2974), total mTOR (#2983), acetyl-CoA carboxylase (ACC)ser79

(#3661), total ACC (#3676), total glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) (#2118), regulatory-associated protein of mTOR
(Raptor)ser792 (#2083), total GRB10 (#3702), p70S6K1thr389 (#11759;
Santa Cruz Biotechnology), total p70S6K1 (#2708), PKBthr308

(#2965), total PKB (#4691), proline-rich Akt/PKB substrate 40 kDa
(PRAS40)thr246 (#2997) and total PRAS40 (#2691), 4EBP1thr37/46

(#2855), and total 4EBP1 (#9644). Secondary horseradish peroxidase-
conjugated antibody was purchased from ABCAM (#6721). Pre-
poured gels for WB were 4–20% Tris-Glyc Criterion gradient gels
from BioRad (Herts, UK). AMPK !1- and !2-specific antibodies
were produced by GL Biochem (Shanghai, China) against the follow-
ing antigens: !1, CTSPPDSFLDDHHLTR; and !2, CMDDSAMHIP-
PGLKPH (38).

Tissue Culture Experiments

C2C12 myoblasts were grown to confluence on T75 plates in
growth media [(GM) 20% fetal bovine serum (FBS) (Dundee Cell
Products, Dundee, UK), 1% penicillin/streptomycin (Invitrogen, Pais-
ley, UK) in high-glucose DMEM (Invitrogen)]. Confluent myoblasts
were then transferred to differentiation media [(DM) 2% donor horse
serum (Dundee Cell Products), 1% penicillin/streptomycin (Invitro-
gen) in high-glucose DMEM (Invitrogen)]. Prior to the addition of
inhibitors cells were serum- and amino acid-starved in PBS with 5
mM glucose (Invitrogen) for 3 h. Starved cells were then pretreated
with an inhibitor [100 nM rapamycin (Sigma Aldrich), 10 "M
LY294002 (Cell Signaling) or vehicle control (0.1% DMSO)] for 1 h
prior to serum and amino acid stimulation by the addition of GM
supplemented with or without inhibitors. After 30 min of stimulation
cells were lysed on ice in 1 ml of radio immunoprecipitation assay
(RIPA) buffer [50 mmol/l Tris·HCl pH 7.5, 50 mmol/l NaF, 500
mmol/l NaCl, 1 mmol/l sodium vanadate, 1 mmol/l EDTA, 1%
(vol/vol) Triton X-100, 5 mmol/l sodium pyrophosphate, 0.27 mmol/l

sucrose, and 0.1% (vol/vol) 2-mercaptoethanol and Complete protease
inhibitor cocktail (Roche)] and then stored at #80°C. HEK293 cell
lysates overexpressing either the !1 or the !2 subunit of AMPK were
a gift from Professor Grahame Hardie (Division of Cell Signaling and
Immunology, University of Dundee).

p70S6K1#/# tissues. All animal experiments on p70S6K1#/# and
littermate controls (wild type; WT) were approved by and conducted
in accordance with the Direction Départementale des Services Vété-
rinaires, Préfecture de Police, Paris, France (authorization 75–1313).
Mice (p70S6K1#/#) were generated as previously described (26a).
The mice were housed in plastic cages and maintained at 22°C with a
12-h dark/12-h light cycle and had free access to food. Starved mice
were WT; p70S6K1#/# mice had food withdrawn overnight and were
then refed standard chow for 4 h. Animals were killed by cervical
dislocation, and tibialis anterior muscles were rapidly dissected,
blotted dry, and snap-frozen in liquid N2.

Mouse ex vivo and in vivo insulin stimulations. All animal exper-
iments were approved by and conducted in accordance with the
Animal Care Program at the University of California, San Diego, for
the ex vivo insulin stimulations; and the Animal Care Program at the
University of California, Davis, for the in vivo insulin stimulations.
Ex vivo insulin stimulations were carried out as follows: 6 male
C57/Bl6 mice were fasted for 4 h and anesthetized (150 mg/kg
nembutal) via ip injection. Paired extensor digitorum longus muscles
were excised and incubated at 35°C for 30 min in oxygenated (95%
O2, 5% CO2) flasks of Krebs-Henseleit buffer (KHB) containing 0.1%
BSA, 2 mM sodium pyruvate, and 6 mM mannitol. One muscle per
pair was incubated in KHB without insulin, and the contralateral
muscle was incubated in KHB with insulin [60 "U/ml (0.36 nM);
Humulin R, Eli Lilly]. After 50 min, muscles were blotted on ice-cold
filter paper, trimmed, freeze-clamped, and then stored at #80°C (n $
6). In vivo insulin stimulations were carried out as follows: 2 female
C57/Bl6 mice were fasted for 4 h and anesthetized with 2% iso-
flourane vaporized in 100% O2. One mouse was ip injected with 100
mU/kg of insulin (Humulin R, Eli Lilly). After 30 min the muscles
from the lower limb were dissected and snap-frozen in liquid N2. The
control mouse went through the same procedure except that it was
injected with 0.9% saline.

Human Experimental Study

Participants. Six healthy, moderately trained men [mean % SD:
age, 23 % 2 yr; body mass, 76 % 5 kg; height, 179 % 5 cm; unilateral
1 repetition maximum (1 RM) leg press, 128 % 8 kg; 1 RM leg
extension, 54 % 3 kg] were recruited to participate in this study. All
participants engaged in resistance training approximately two times
per week and played team sports recreationally. Prior to the com-
mencement of the experiment each participant provided written in-
formed consent after all procedures and risks were fully explained in
lay terms. Participants also were required to satisfy a routine physical
activity readiness questionnaire. The study procedures were approved
by the Research Institute for Sport and Exercise Sciences Ethics
Committee, Liverpool John Moores University, and conformed to the
standards as outlined in the most recent version of the Declaration of
Helsinki.

Study design. Seven days after confirmation of unilateral 1 RM for
leg press and leg extension, six healthy, moderately trained men
reported to the laboratory at &7:00 a.m. in a 10-h postabsorptive state.
Each participant’s height and body mass were recorded, after which
they rested (&30 min) in a semisupine position on a bed, and a resting
biopsy was obtained. Immediately after the biopsy participants were
transported by wheelchair to the resistance-training laboratory where
they performed a bout of unilateral RE. Immediately following the
bout of unilateral RE, participants were required to consume 20 g of
pure egg white powder in a 500-ml solution. Participants were then
transported back to the resting laboratory and rested again in a
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semisupine position during which additional muscle biopsies were
obtained at 1 and 3 h post-RE.

Resistance exercise protocol. Testing (1 RM) was conducted as
previously described (34). On the day of the experimental trial
participants performed a bout of unilateral RE consisting of four sets
of 10 repetitions at 70% 1 RM of leg press, followed by leg extension
performed at the same intensity with their dominant limb. Recovery
time between exercises and sets was 3 min and 2 min, respectively.
Participants were provided with verbal cues to ensure correct exercise
technique. Each repetition consisted of a 1-s concentric action, 0-s
pause, then a 1-s eccentric action as previously reported (4).

Study controls. Participants were required to record dietary intake
for 3 days prior to the initial single 1 RM testing session, and to repeat
this pattern of consumption for the 3 days preceding the day of the
experimental trial. For 3 days prior to both 1 RM testing and the
experimental trial, participants also were asked to refrain from any
form of vigorous exercise. These controls were implemented in an
attempt to prevent any nutritional or exercise-induced changes in
protein activity that might adversely affect the results of the study.

Skeletal muscle biopsies. Skeletal muscle biopsies were obtained
on the exercising limb at pre-RE, 1 h post-RE, and 3 h post-RE using
a Bard Monopty Disposable Core Biopsy Instrument (12 gauge ! 10
cm length; Bard Biopsy Systems, Tempe, AZ). For each biopsy, the
lateral portion of the vastus lateralis was cleaned before an incision
into the skin and fascia was made under local anesthetic (MD92672;
0.5% marcaine without adrenaline). A sample of muscle ("30 mg)
was extracted, rinsed with ice-cold saline, blotted dry, and any visible
fat or connective tissue was removed. Muscle samples were then
snap-frozen in liquid nitrogen and stored at #80°C for further anal-
ysis.

Muscle tissue processing. Approximately 30 mg of human skeletal
muscle tissue ("5 mg of mouse skeletal muscle tissue) was homog-
enized by scissor mincing on ice in RIPA buffer [50 mmol/l Tris·HCl
pH 7.5, 50 mmol/l NaF, 500 mmol/l NaCl, 1 mmol/l sodium vanadate,
1 mmol/l EDTA, 1% (vol/vol) Triton X-100, 5 mmol/l sodium
pyrophosphate, 0.27 mmol/l sucrose, and 0.1% (vol/vol) 2-mercapto-
ethanol and Complete protease inhibitor cocktail (Roche)] followed
by shaking at 1,000 rpm on a shaking platform for 60 min at 4°C.
Debris was removed by centrifugation at 4°C for 15 min at 13,000 g.
The supernatant was then removed, and protein concentration was
determined using the bicinchoninic acid protein assay according to the
manufacturer’s instructions (Sigma Aldrich, UK).

Western blotting. For WB, 300 $g of supernatant was made up in
Lamelli sample buffer, and 5–15 $g of total protein was loaded per
well with the same amount of protein loaded in all wells for each gel,
and run at 150 V for 1 h 15 min. Proteins were then transferred onto
Whatman Immunobilon Nitrocellulose membranes (Fisher Scientific,
Loughborough, UK) at 30 V overnight on ice. Membranes were
blocked in 3% BSA-Tris-buffered saline (containing vol/vol 0.1%
Tween 20) for 1 h at room temperature, followed by incubation in
primary antibodies at 4°C overnight. Membranes underwent three
5-min washes in TBST followed by incubation in the appropriate
secondary antibodies for 1 h at room temperature. Membranes were
again washed three times for 5 min followed by incubation in
enhanced chemiluninescence reagent (BioRad, Herts, UK). A BioRad
ChemiDoc (Herts, UK) was used to visualize and quantify protein
expression. All phospho proteins were normalized to the correspond-
ing total proteins after stripping the phospho antibody for 30 min at
50°C in stripping buffer (65 mM Tris·HCl, 2% SDS vol/vol, 0.8%
mercaptoethanol vol/vol) and reprobing with the primary antibody for
the corresponding total protein. All phospho proteins were normalized
to the expression of the corresponding total with the exception of
phosphorylated Raptorser792, which was normalized to the expression
of GAPDH.

[!-32P] ATP kinase assays. All KA were carried out by IP either
for 2 h at 4°C or overnight at 4°C in homogenization buffer {AMPK
[50 mM Tris·HCl pH 7.25, 150 mM NaCl, 50 mM NaF, 5 mM NaPPi,

1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol, 0.1 mM benzami-
dine, 0.1 mM phenylmethylsulfonyl fluoride, 5 $g/ml soybean trypsin
inhibitor, 1% (vol/vol) Triton X-100] and p70S6K1/panPKB [50 mM
Tris·HCl pH 7.5, 0.1 mM EGTA, 1 mM EDTA, 1% (vol/vol) Triton
X-100, 50 mM NaF, 5 mM NaPPi, 0.27 M sucrose, 0.1% %-mercap-
toethanol, 1 mM Na3(OV)4, and 1 Complete (Roche) protease inhib-
itor tablet per 10 ml]}. Protein G sepharose (2.5 $l per IP) was used
to precipitate the immune complexes. Immune complexes were
washed twice in assay-specific high-salt washes (homogenization
buffers as above with 0.5 M NaCl added) followed by one wash in
assay-specific assay buffer (see below). Prior to carrying out the
activity assay the immune-bead-complex was suspended in a total of
10 $l of assay buffer for p70S6K1 and panPKB assays, and 20 $l of
assay buffer for AMPK assays. All assays were carried out in a 50-$l
reaction. Assays were started every 20 s by the addition of a hot assay
mix, which consisted of assay buffer [PKB/p70S6K1 (50 mM
Tris·HCl pH 7.4, 0.03% Brij35, and 0.1% %-mercaptoethanol), AMPK
(50 mM HEPES pH 7.4, 1 mM DTT, and 0.02% Brij35)], ATP-MgCl2
(100 $M ATP & 10 mM MgCl2 for p70S6K1/panPKB, and 200 $M
ATP & 50 $M MgCl2 for AMPK), 32'-ATP [specific activities as
follows; panAMPK (0.25 ! 106 cpm/nmol), panPKB (0.5 ! 106

cpm/nmol), p70S6K1 (1 ! 106 cpm/nmol)], and finally synthetic
peptide substrates [Crosstide for panPKB (GRPRTSSFAEG at 30
$M), S6tide for p70S6K1 (KRRRLASLR at 30 $M), and AMARA
for AMPK (AMARRAASAAALARRR at 200 $M)]. Assays were
stopped at 20-s intervals by spotting onto squares of p81 chromatog-
raphy paper (Whatman; GE Healthcare, UK) and immersing in 75
mM phosphoric acid. Papers (p81) were washed three times for 5 min
in 75 mM phosphoric acid and once in acetone. They were then dried
and immersed in Gold Star LT Quanta scintillation fluid (Meridian
Biotechnologies, Chesterfield, UK) and counted in a Packard 2200CA
TriCarb scintillation counter (United Technologies). Assay results
were quantified in nmol·min#1·mg#1 (U/mg). Blanks for background
subtractions were carried out with immunoprecipitated kinases with
no peptide included in the assay reaction. For the AMPK antibody
validation assays the AMPK (1 antibody (5 $g) was used to immu-
noprecipitate AMPK (1 complexes from 100 $g of lysate in dupli-
cate, whereas AMPK (2 antibody (5 $g) was used to immunopre-
cipitate AMPK (2 complexes from 100 $g of lysate. These lysates
were from HEK cells overexpressing either AMPK (1 or AMPK (2,
and were a kind gift from Prof. Grahame Hardie (University of
Dundee). Assays were carried out for 15 min. For p70S6K1 antibody
validation, 2 $g of p70S6K1 antibody was used to immunoprecipitate
p70S6K1 from 250 $g of muscle lysate from WT starved/refed and
p70S6K1#/# refed mice. Activities assays for panPKB and p70S6K1
were carried out on cell lysates by IP from 200 $g of cell lysate. The
IP step was performed with 2 $g each of PKB(/%/' antibodies
(DSTT, Dundee University) or 2 $g of p70S6K1 antibody (H-9; Santa
Cruz Biotechnology, Heidelberg, Germany), respectively. Antibodies
were used with 2.5 $l of protein G sepharose per IP to immunopre-
cipitate for 2 h at 4°C. p70S6K1 and panPKB were assayed for 45 min
and 20 min, respectively.

Time-dependent saturation assays. Three human skeletal muscle
biopsy samples were pooled and homogenized. Homogenate was
aliquoted to 2.4 mg for panPKB assays, 6 mg for p70S6K1 assays, and
0.6 mg for AMPK assays. Antibodies of PKB(/%/' (72 $g each) were
used to immunoprecipitate panPKB, 48 $g of p70S6K1 antibody was
used to immunoprecipitate p70S6K1, and 60 $g each of AMPK (1
and (2 were used to immunoprecipitate panAMPK. Following IP,
each of these immune complexes were aliquoted into 12 aliquots for
activity assays; 9 of the aliquots were used for activity assays for the
time course of 7.5, 15, and 30 min for AMPK; 15, 30, and 60 min for
panPKB and p70S6K1. The three remaining aliquots were used for
no-peptide controls to generate assay-specific blanks. Each assay
represented an IP from 50 $g of lysate for panAMPK, 200 $g of
lysate for panPKB, and 500 $g of lysate for p70S6K1.
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For the serial IP validation, lower limb muscles from a 4-h fasted
(Con) and an insulin-stimulated mouse [Ins (4-hr fasted ! 100 mU
insulin/kg for 30 min)] were homogenized and aliquoted into 6 "
200-#g aliquots each. IPs were set up to immunoprecipitate panPKB
(3.2 #g of each PKB antibody) from three Con and three Ins aliquots,
whereas the other aliquots had p70S6K1 immunoprecipitated (4 #g of
p70S6K1 antibody) prior to immunoprecipitating with panPKB as
before. Activity assays for panPKB were carried out as before fol-
lowing IP.

For p70S6K1/panPKB KA in human tissue, 500 #g of lysate was
aliquoted, and p70S6K1 was immunoprecipitated with 4 #g of
p70S6K1 and 2.5 #l of protein G sepharose (GE Healthcare) for 2 h
at 4°C. The p70S6K1 KA was carried out for 45 min. Two hundred
micrograms of the post-IP supernatant was then used for PKB IP. Two
micrograms each of PKB$/%/& antibodies (DSTT, Dundee Univer-
sity) were used with 2.5 #l of protein G sepharose to immunopre-
cipitate PKB at 4°C for 2 h. KA for panPKB were carried out as
previously described for a 30-min assay. Following homogenization,
50 #g of lysate was aliquoted for AMPK activity assays. AMPK
activity assays were carried out by IP with complexes in AMPK IP
buffer (homogenization buffer as above). Immunoprecipitates were
then washed, and AMPK activity was determined against AMARA
peptide as previously described in a 20-min assay.

Statistical Analysis

Data were analyzed using GraphPad Prism Software version 6.0
(GraphPad, San Diego, CA). Differences in kinase signaling activity
and phosphorylation (i.e., p70SK61thr389, PKBthr308, AMPK activity)
were analyzed using a one-way ANOVA and, when appropriate, a
Tukey’s post hoc analysis. Post hoc sample size calculations were
conducted using GPower 3.0.8 software on the basis of an estimated
effect size of 0.53, a 1-% error probability of 0.8, and a significance
level ' 0.05. All data unless otherwise stated are presented as means ( SE,
and P ' 0.05 indicates statistical significance.

RESULTS

Antibody/Assay Validation

panAMPK. Total (or pan) AMPK activity is measured by
immunoprecipitating both catalytic subunits of AMPK (AMPK
$1 and AMPK $2). We commissioned our own AMPK $1 and
AMPK $2 antibodies (GL Biochem, China) against the fol-
lowing antigens: $1, CTSPPDSFLDDHHLTR; and $2, CM-
DDSAMHIPPGLKPH (38). To confirm that our AMPK anti-
bodies were specific for AMPK $1 and AMPK $2 and there-
fore capable of immunoprecipitating total AMPK when the
antibodies are combined, we carried out a validation experi-
ment (Fig. 1A). Cell lysates overexpressing either AMPK $1 or
AMPK $2 underwent an IP with either the AMPK $1 or
AMPK $2 antibody. AMPK $1 immunoprecipitated substan-
tial activity from the AMPK $1 overexpressing cell lysates—
approximately 10-fold more activity than the AMPK $2 anti-
body immunoprecipitated. The reverse experiment demon-
strated a similar result, in that AMPK $2 immunoprecipitated
approximately 10-fold more activity from the AMPK $2 over-
expressing cell lysates than did the AMPK $1 antibody. These
data demonstrate the specificity of our AMPK $1 and $2
antibodies. To further prove that these antibodies are immuno-
precipitating active endogenous AMPK complexes, we carried
out a positive control experiment by treating C2C12 myotubes
with 100 #M 2,4-dinitrophenol [a known AMPK activator
(39)] for 30 min, and followed this with panAMPK activity
assays. This treatment resulted in a an approximately fourfold

increase in panAMPK activity (Fig. 1B), concurrent with a
substantial increase in phosphorylation of AMPK at Thr172
(Fig. 1B, inset).

panPKB. Total (or pan) PKB activity can be assessed by
utilizing recombinant glycogen synthase kinase-3 (GSK3) as a
substrate and then running a standard WB with a phosphory-
lated GSK3 antibody to determine phosphate incorporation (3).
However, this approach again relies upon densitometry analy-
sis and makes comparisons across large sample sets difficult.
Therefore, we utilized a filter binding assay that also allowed
for quantitative scintillation counting. We used antibodies and
a peptide substrate (6) that have been previously well charac-
terized (6, 22). However, to confirm that we were detecting
panPKB activity with the immune complex we carried out a
positive control experiment (Fig. 1C). We serum-stimulated
C2C12 myotubes that had been treated with or without the PI3K
inhibitor LY294002 (35). Serum stimulation led to an approx-
imate fivefold increase in panPKB activity, whereas the inhi-
bition of PI3K with LY294002 significantly inhibited panPKB
activity. The changes in activity were reflected by changes in
phosphorylation (Fig. 1C, inset).

p70S6K1. Traditionally, p70S6K1 activity assays are carried
out with recombinant S6 as a substrate (21) wherein the
radioactively labeled substrate is run on a gel before being
exposed to radiography film. This assay is more difficult to
accurately quantitate with large sample numbers due to the
necessity to expose all samples to SDS-PAGE. Furthermore,
this method still requires the use of densitometry analysis that
can be subjective, leading to variable outputs depending upon
the method of quantification (14). However, several laborato-
ries have utilized a scintillation assay to quantitatively assess
p70S6K1 activity (7, 33). To utilize a quantitative p70S6K1
activity assay that can be applied more easily to large sample
numbers we employed a similar assay protocol with a peptide
substrate analog of S6 corresponding to amino acids 230–238
on human 40S ribosomal protein S6 (KRRRLASLR) (12). This
approach allowed for the use of filter paper capture of the
labeled peptide that can then be quantitatively analyzed via
scintillation counting. To confirm that this method did not alter
the output of the assay we carried out a validation experiment
in C2C12 myoblasts (Fig. 1D). We used serum and amino acid
stimulation as a positive control with rapamycin (specifically
inhibits mTORC1 activity) as a control to confirm that serum
and amino acid-induced activation of kinase activity was in
fact p70S6K1-specific. We showed that serum and amino acid
stimulation induces an approximately 10-fold increase in ac-
tivity, whereas rapamycin completely blocks this activation
(Fig. 1D) and the phosphorylation of p70S6K1thr389 (Fig. 1D,
inset). These data demonstrate the mTORC1 dependence of the
kinase activity we measured. To further validate that no other
contaminating kinases could be contributing activity in our
assay we also ran the assay from starved/refed WT mice and
refed p70S6K1)/) mice. We found approximately 19-fold
more activity in refed mouse muscle vs. starved mouse muscle,
and we could not detect any activity in the p70S6K1)/) mice.
These data highlight the specificity of our assay to p70S6K1.
Prior to moving the assay into human tissue we first needed to
define the amount of antibody required to saturate p70S6K1 in
human skeletal muscle. This would ensure that all the
p70S6K1 in the lysate was immunoprecipitated, thus improving
consistency across sample sets. We used increasing amounts of
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antibody to immunoprecipitate p70S6K1 from 500 !g of
protein lysate extracted from pooled human muscle biopsy
material from at least three volunteers. We found that despite
increasing amounts of IgG-heavy chain (from the p70S6K1
antibody), the amount of p70S6K1 that was immunoprecipi-
tated from 500 !g of protein lysate was saturated by 2 !g of
antibody. We therefore used 4 !g of p70S6K1 antibody for
every 500 !g of protein lysate to ensure that our antibody was
always in excess.

Time-Dependent Saturation Curves

To select the most appropriate duration for each assay in
human biopsy samples we carried out a time-dependant satu-
ration curve for each assay from a pool of human muscle

biopsies (Fig. 2). We carried out the AMPK assays for 7.5, 15,
and 30 min, whereas PKB and p70S6K1 assays were carried
out for 15, 30, and 60 min. These assays revealed linearity
across the time course for each assay, indicating that assays
carried out for anywhere between 7.5 and 30 min for panA-
MPK, and 15–60 min for panPKB and p70S6K1, would be
within the linear range for time.

Validation of the Serial IP

To economize on tissue with human muscle samples, pan-
PKB and p70S6K1 activity assays were carried out via serial IP
with p70S6K1 immunoprecipitated first. To confirm that this
serial IP process did not affect PKB activity we performed a
validation of this procedure in response to maximal insulin

Fig. 1. Antibody and assay validation.
A: AMPK "1 and AMPK "2 activity assays
derived from immune complexes from cells
overexpressing either AMPK "1 or AMPK
"2. B: panAMPK activation in response to
energy stress in C2C12 myotubes. C2C12 myo-
tubes were serum-starved for 2 h prior to
stimulation with 2,4-dinitrophenol (DNP)
(100 !M) for 30 min (n # 2 in duplicate).
C: panPKB activation by serum stimulation
and inhibition by LY294002 (10 !M). C2C12

myotubes were serum-starved for 3 h and
preincubated with either vehicle (no treatment
control; NTC) or LY294002 [10 !M (stimu-
lated $ LY; S$LY)] for 1 h (n # 3 in
duplicate), then they were stimulated for 30
min in 20% fetal bovine serume (FBS) (S,
stimulated). *Significantly different from
NTC and S$LY. D: p70S6K1 activation by
serum $ amino acid stimulation and inhibi-
tion by rapamycin (100 nM). C2C12 myotubes
were serum and amino acid-starved for 3 h in
PBS $ 5 mM glucose and preincubated with
either vehicle (NTC) or rapamycin [100 nM
(stimulated $ rapamycin; S$R) for 1 h (n #
2 in triplicate)], then they were stimulated for
30 min in 20% FBS $ DMEM (stimulated;
S). E: p70S6K1 activity in response to over-
night starvation (WT-S) and 4 h of refeeding
(WT-R), and 4 h of refeeding in p70S6K1%/%

mice. F: antibody saturation curve for
p70S6K1 antibody in 500 !g of pooled hu-
man lysate. Insets are representative Western
blots. All data expressed as means & SD. ND,
nondetectable.
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stimulation (Fig. 3). Serially immunoprecipitating panPKB
after p70S6K1 had no significant effect upon panPKB activity
compared with a standard IP (Fig. 3).

Application of the [!-32P] ATP KA in a Physiological
Context in Human Skeletal Muscle

We next determined whether we could measure the activity
of panAMPK, panPKB, and p70S6K1 from the same human
skeletal muscle sample following a well-defined anabolic stim-
ulus in humans (23). In our study we identified a significant
increase in p70S6K1 activity from pre-RE at 1 and 3 h post-RE
(P ! 0.05; Fig. 4C). However, there was no significant change
in panPKB activity at any time point (Fig. 4B). Finally,
panAMPK activity was significantly repressed (P ! 0.05; Fig.
4A) at 3 h post-RE compared with pre-RE. To confirm that we
were able to detect physiologically relevant changes in pan-
PKB activity, we assessed the activation of panPKB in re-
sponse to a physiologically relevant (0.36 nM) insulin stimulus
in ex vivo mouse skeletal muscle (Fig. 4B, inset). Indeed, we
detected a significant increase in panPKB activity in response
to 50 min of insulin stimulation, thus confirming that this assay
is capable of detecting changes in panPKB activity in a
physiological context.

Western Blotting

Following the assessment of kinase activity as markers of
anabolic responses in humans we next measured the phosphor-

ylation of proteins that are typically used as surrogate readouts
of anabolic signaling activity. The responses of kinases as
determined by WB are shown in Fig. 5 (AMPK readouts), Fig. 6
(PKB readouts), and Fig. 7 (mTORC1 readouts). In response to
RE and nutrition, there were no significant changes in phos-
phorylated mTORser2448 (Fig. 7A), ACCser79 (Fig. 5A), Rap-
torser792 (Fig. 5B), p70S6K1thr389 (Fig. 7B), PKBthr308 (Fig.
6A), and PRAS40thr246 (Fig. 6B). However, phosphorylated
4EBP1thr37/46 was significantly elevated at 3 h post-RE com-

Fig. 2. Saturation time course of activity assays carried out from pooled
human skeletal muscle protein lysate. R2 values are as follows: AMPK "
0.969; panPKB " 0.982; and p70S6K1 " 0.856. All data are expressed as
means # SD.

Fig. 3. Serial immunoprecipitation (IP) validation. IPs were set up to immu-
noprecipitate panPKB alone or p70S6K1 immunoprecipitated prior to immu-
noprecipitating with panPKB. *Significantly different from both control (Con)
conditions. All data are expressed as means # SE.

Fig. 4. Application of three kinase assays in human skeletal muscle in response
to a physiological anabolic stimulus of resistance exercise combined with
feeding 20 g of protein (n " 6). A: panAMPK activity was determined from 50
$g of lysate in a 20-min reaction against the synthetic substrate AMARA.
B: panPKB activity serially immunoprecipitated after p70S6K1 IP. Inset:
panPKB activity response to a physiological insulin stimulation of 0.36 nM for
50 min in ex vivo mouse skeletal muscle (n " 6). panPKB activity was
determined from 200 $g of lysate in a 30-min reaction against the synthetic
peptide substrate Crosstide. C: p70S6K1 activity was determined from 500 $g
of lysate in a 45-min reaction against the synthetic peptide substrate S6K1tide.
Pre-RE indicates biopsy taken prior to resistance exercise and feeding, 1 h
post-RE indicates the biopsy taken 1 h following combined resistance exercise
and feeding, 3 h post-RE indicates biopsy taken 3 h following combined
resistance exercise and feeding. *Significantly different from Con or Pre-RE
(P ! 0.05). All data are expressed as means # SE.
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pared with pre-RE (P ! 0.05; Fig. 7C). Representative WB
images appear as insets above each graph.

DISCUSSION

The main aim of the present methodological study was to
develop and validate a quantitative p70S6K1 KA for use in
human skeletal muscle biopsy samples. Second, we aimed to
examine the physiological context of alterations in p70S6K1
activity by examining parallel alterations in PKB and AMPK
activity in response to acute RE and protein feeding (23). For
the first time we demonstrated that combined RE and protein
feeding significantly increases p70S6K1 activity by approxi-
mately twofold, as determined by the KA with a similar,
approximate twofold but nonsignificant change in p70S6K1thr389

phosphorylation. In addition, we observed a suppression of
AMPK activity that was not apparent when assessing ACCser79

phosphorylation, a known readout of AMPK activity (36).
Furthermore, we demonstrate the capacity to achieve a dual
measure of panPKB and p70S6K1 activity from the same
sample via a serial IP protocol. This study therefore highlights
the potential application of the KA described in this investiga-
tion to study the molecular signaling responses of skeletal
muscle to RE and nutrition.

Although we observed a significant increase in p70S6K1
activity to RE and protein feeding, we detected no significant

changes in the phosphorylation of p70S6K1thr389. This finding
is unexpected, given previous reports of significant, approxi-
mate twofold (5) and 12-fold (2) increases in phosphorylated
p706K61thr389 to an acute bout of RE and protein feeding.
Although the lack of detectable change in phosphorylated
p70S6K1thr389 in our investigation appears to be related to low
statistical power. Indeed, a post hoc sample size calculation
from the present study determined that a participant sample of
12 would have been necessary to detect a statistically signifi-
cant difference in phosphorylated p70S6K1thr389 between
pre-RE and 1 h post-RE and protein ingestion. However, by
utilizing the KA, we were able to detect a modest increase in
p70S6K1 activity from pre-RE at 1 and 3 h post-RE and
feeding. Thus these data highlight not only the precision but
also the utility of this p70S6K1 KA to assess p70S6K1 activity
to anabolic stimulation.

Due to issues associated with ethical practice and participant
compliance in human research, muscle tissue availability is
often a limiting factor. In this investigation we provided a
validated, serial IP protocol for the dual assessment of
p70S6K1 and panPKB activity from a single muscle homog-
enate. We showed that this serial IP protocol has no effect on
panPKB activity, hence economizing on muscle tissue require-
ments. When applying this protocol to study panPKB re-
sponses of human skeletal muscle to RE and feeding, we

Fig. 5. Markers of AMPK activity in re-
sponse to a physiological anabolic stimulus
of resistance exercise combined with feeding
20 g of protein. Protein phosphorylation of
ACCser79 (A) and Raptorser792 (B) obtained at
pre-RE, and 1 and 3 h post-RE. All data are
expressed as means " SE.

Fig. 6. Markers of panPKB activity in re-
sponse to a physiological anabolic stimulus
of resistance exercise combined with feeding
20 g of protein. Protein phosphorylation of
PKBthr308 (A) and PRAS40thr246 (B). All data
are expressed as means " SE.
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showed no change in panPKB activity at any time point, a
finding that corroborates previous reports (25, 28, 32). How-
ever, it is important to note that the panPKB KA described in
this methodological investigation failed to provide information
regarding PKB isoform-specific effects that could be useful in
understanding cell growth and metabolism (30). The develop-
ment of such a methodology is therefore a topic for future
work.

The increase in p70S6K1 activity in our investigation was
associated with a decrease in AMPK activity. These data are
similar to findings showing that RE (1) or feeding (13) also
repress AMPKthr172 phosphorylation, but these findings are
incongruent with previous work that demonstrated RE in-
creases AMPK !2 activity 1 h post-RE (10). However, in that
study, RE was not followed by feeding, and one possibility is
that the protein feeding in our study may have overridden
RE-induced increases in AMPK activity, perhaps via restora-
tion of the AMP:ATP ratio (15). Alternatively, it is known that
p70S6K1 can inhibit AMPK via phosphorylation at Ser491 in
mouse hypothalamic cells (8), although this latter hypothesis
has yet to be observed in human skeletal muscle. A reduction
in AMPK activity also is known to relieve inhibition on
mTOR-p70S6K1 signaling (17), which could partially explain
the sustained increase in p70S6K1 activation at 3 h post-RE
and feeding in our investigation. Interestingly, the significant
reduction in AMPK activity in our study was not mirrored by
a reduction in ACCser79 phosphorylation (P " 0.70). We chose
to assess the phosphorylation of ACCser79 as a readout of
AMPK activity because phosphorylated AMPKthr172 possesses
a low dynamic range that renders phosphorylated AMPKthr172

on this residue a poor surrogate of true AMPK activity (18).
Therefore, the decrease in AMPK activity paralleled with a
nonsignificant change in ACCser79 phosphorylation further em-
phasizes the potential application of the KA to assess RE and
nutrition-induced changes in signaling.

Both RE and protein ingestion are known to increase MPS
via mTOR-p70S6K1 signaling (9, 11, 20). However, in
response to RE and protein ingestion, we detected no sig-
nificant change in the phosphorylation status of Raptorser792,
PRAS40thr246, or mTORser2448. This finding was surprising
because there was a significant increase in the phosphory-
lation of the mTOR substrate 4EBP1thr37/46 at 3 h post-RE
and protein feeding. Others have also shown no change in
mTORser2448 phosphorylation to a 48-g whey bolus at both
1 and 3 h postfeeding despite increases in phosphorylated
p70S6K1thr389 and 4EBP1thr37/46 (3). Furthermore, it is also
known that mutation of the ser2448 residue on mTOR fails
to significantly affect p70S6K1 activity in cell-based sys-
tems (31). It therefore appears that mTORser2448 phosphor-
ylation does not offer the most accurate readout of mTORC1
activity. Hence, studies that aim to infer changes in
mTORC1 activity to anabolic stimulation using the WB
technique may be better served by assessing changes in the
phosphorylation of the mTOR substrates 4EBP1 and
p70S6K1 rather than mTORser2448 phosphorylation itself.

In summary, this study provides a novel, fully quantitative
methodology to assess p70S6K1-specific activity in human
skeletal muscle. In addition, we provide a validated serial IP
protocol that enables the dual assessment of PKB and p70S6K1
activity from a single skeletal muscle biopsy sample. Given
that the number and yield of human muscle biopsies present

Fig. 7. Markers of mTORC1 activation in response to a physiological anabolic
stimulus of resistance exercise combined with feeding 20 g of protein.
mTORser2448 (A), p70S6K1thr389 (B), and 4EBP1thr37/46 (C). *Significantly
different from pre-RE (P # 0.05). All data are expressed as means $ SE.
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major limitations to routine analytical procedures, being able to
assess the activity of three key kinases from the same muscle
sample represents an attractive measurement strategy. How-
ever, it is important to acknowledge that this KA provides no
information pertaining to the posttranslational modification of
a protein such as phosphorylation. Indeed, it is important to
recognize that phosphorylation is a critical regulatory step in
protein function (19). Finally, it is important to acknowledge
that the suitability of the KA is to provide a quantitative
measurement of endogenous kinase activity, which would
complement WB approaches to study protein PTM. In this
manner, the KA would then allow a researcher to assess the
physiological relevance of multisite PTM. Given the critical
role of protein kinases in the regulation of MPS, the next
logical step is therefore to combine the KA, WB, and direct
measures of MPS to provide a more in-depth insight into
changes in skeletal muscle signaling in response to perturba-
tions such as age, exercise, and disease.
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The maintenance of skeletal muscle
mass is dependent upon the temporal
and coordinated interaction between
muscle/myofibrillar protein synthesis
(MPS) and muscle protein breakdown
(MPB). Resistance exercise (RE) alone
elevates MPS and, to a lesser extent, MPB
such that net muscle protein balance (NPB)
remains negative. However, when RE is
coupled with protein ingestion there is an
accumulative effect on MPS resulting in a
positive NPB (Phillips et al. 2005). Thus,
repeated bouts of RE coupled with protein
feeding is a viable strategy to maximise
skeletal muscle hypertrophy and strength.

The impact of protein feeding on RE-
induced increases in MPS has received much
attention. One study has demonstrated
that in young healthy males ∼20 g
of high-quality protein is sufficient to
maximise RE-induced rates of MPS over
4 h post-exercise (Moore et al. 2009).
However, the interplay between the timing
and quantity of protein consumed and
subsequent anabolic responses throughout
the course of a whole day is still poorly
understood. In particular, there is a lack of
data examining how the pattern of post-RE
protein ingestion influences MPS later in
the recovery phase (i.e. 4–12 h). A recent
article published in The Journal of Physio-
logy attempts to address this knowledge gap
and in doing so provides valuable insights
into how post-RE protein feeding strategies
might be manipulated to optimise muscle
anabolism. In an elegantly designed study,
Areta et al. (2013) examined three groups
of eight healthy, trained males. Participants
performed a bout of bilateral leg extension
RE followed by the consumption of 80 g
of whey protein over 12 h of recovery
ingested as either 8 × 10 g every 1.5 h,
4 × 20 g every 3 h or 2 × 40 g every 6 h.
A stable isotope infusion was coupled with

frequent skeletal muscle biopsy sampling to
determine rates of MPS for 12 h post-RE.
The data demonstrate that although all
feeding strategies elevated MPS during the
12 h recovery period, consuming 20 g of
whey protein every 3 h was the super-
ior strategy for stimulating MPS rates.
The authors concluded that these findings
have the potential to maximise outcomes
of resistance training designed to elicit a
maximal hypertrophic response.

The data of Areta et al. show that
manipulating the pattern of protein
ingestion following RE can have a significant
impact on the subsequent muscle anabolic
response. The divergent feeding strategies
of Areta et al. were used to mimic possible
patterns of protein intake commonly
observed in resistance-trained athletes.
That is, 8 × 10 g every 1.5 h represents a
‘grazing’ approach, whereas 2 × 40 g every
6 h relates to the ‘three square meals per
day’ approach. Yet, both of these strategies
were inferior for stimulating MPS over
12 h of post-RE recovery compared with
4 × 20 g ingested every 3 h. However, it is
important to note that this response was
characterised when protein was ingested
alone, and as the authors acknowledge,
this finding cannot be evaluated in the
context of a mixed meal. Indeed, it is
commonplace to consume protein in the
form of a mixed-macronutrient meal.
Therefore, it is reasonable to postulate
that macronutrient co-ingestion could alter
intestinal transit, thus influencing amino
acid absorption kinetics (Deutz et al. 1995)
and perhaps MPS. Moreover, this study used
high-quality whey protein and it remains
to be seen if a similar pattern of MPS
post-RE would be observed using the same
feeding strategies with a slow-release protein
such as casein. Such information may be
valuable to individuals who choose not
to (or are unable to) ingest high-quality
protein in supplemental form following
exercise, but instead consume whole-food
protein sources.

Areta et al. should be highly commended
for underlining the importance of not only
the quantity, but particularly the pattern
of post-RE protein ingestion to maximise
the rate of MPS over 12 h. However, as a
note of caution, their findings are limited
to a healthy young male population. In
this regard, recent evidence demonstrates

that the elderly require more protein
(40 to > 20 g) to elicit optimal increases in
RE-induced rates of MPS than the young
(Yang et al. 2012). It is therefore reasonable
to consider whether the temporal influence
of post-RE protein feeding on elderly muscle
could be different compared to that of
young. In this regard, the next logical step
is to apply the model of Areta et al. in
elderly and other populations, in whom
maintenance of muscle mass is a critical
determinant of longevity and quality of life.
Yet, it should be acknowledged that Areta
et al. afford data pertaining to only 12 h
of recovery from RE. Hence, whether the
acute responses of MPS to RE and protein
feeding translate into a long-term functional
response remains unknown.

The findings of Areta et al. will no doubt
also grasp the attention of coaches and
athletes alike. As such, some may cite the
use of a bilateral exercise stimulus and
absence of participants with large amounts
of lean mass (>75 kg) as issues that preclude
full applicability in a ‘real-world’ setting.
To date, it is unclear whether exercising a
greater volume of muscle mass is limiting
for MPS in response to a given protein dose.
Therefore, individuals with greater muscle
mass or those engaged in whole-body RE
training sessions may require ingestion of
a greater protein dose to stimulate MPS
maximally. With regard to the notion of
applicability to the ‘real-world’ setting, it
also may be significant that the participants
entered the experimental trial in the fasted
state. As a result the authors are unable
to identify whether a pre-exercise meal
would influence the MPS response to RE
and various feeding strategies. This point
becomes more relevant when considering
the impact of insulin on MPB with
regard to the true growth response and
therefore the long-term applicability of the
findings. Future studies assessing MPS and
MPB in both the clinical and the athletic
setting following RE and feeding are now
required.

The study by Areta et al. also reveals novel
nutrient–exercise interactions in cellular
signalling. Phosphorylated mTORSer2448 was
∼2- to ∼6-fold above resting values
throughout the 12 h recovery period
independent of protein feeding strategy.
Phosphorylation of p70S6KThr389 was also
increased above baseline, again in all feeding
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strategies. However, there was discordance
between the degree of p70S6KThr389

phosphorylation and the MPS response.
In fact, the magnitude of phosphorylated
p70S6KThr389 displayed a 2 × 40 g to
> 4 × 20 g to > 8 × 10 g pattern at 1 and
7 h post-RE. This finding is surprising
given that phosphorylated p70S6KThr389 is
a key player in protein synthesis yet it
was the 4 × 20 g strategy that induced
the most favourable influence on MPS
but median impact on phosphorylated
p70S6KThr389. However, it is important to
recognise that the timing of the biopsies
at 1 and 7 h coincided with a greater
volume of protein consumed prior to
those biopsies for the 2 × 40 g condition,
which may explain the discordance between
p70S6KThr389 signalling and MPS.

The common method employed to assay
protein phosphorylation, a proxy of activity,
in an exercise science setting, and in the
present investigation, is Western blotting
(WB). In contrast to the quantitative and
reproducible techniques used to measure
MPS, WB is a semi-quantitative method.
Additionally, phosphorylated p70S6KThr389

is recognised as a key controller of
ribosomal biogenesis. So although the
phosphorylation of p70S6KThr389 post-RE
does not correspond to the greatest acute
MPS response it may in fact be leading to
greater levels of ribosomal transcription.
Interestingly, phosphorylation of p70S6K
following RE often occurs in the nucleus,
where ribosomal biogenesis commences. A
caveat of the field is that no study has

employed cellular fractionation techniques
to reveal whether different RE and feed-
ings strategies alter the ratio of nuclear
to cytoplasmic phosphorylated p70S6K
in human skeletal muscle. Hence, the
lack of concordance between the MPS
and signalling response in this and
numerous other works emphasises the need
for the development of new measures
regarding readouts of ribosomal biogenesis
in addition to fully quantitative methods
to ascertain signalling activity following RE
and nutrition.

To conclude, the study by Areta et al.
contributes novel data to the body of
literature highlighting the importance
of the timing and quantity of protein
consumed post-RE for muscle anabolism.
By mimicking the habitual feeding
strategies of many athletes engaged in
resistance training, the authors move
closer to bridging the gap between science
and the applied setting. Future work
that identifies the impact of different
macronutrients consumed in combination,
i.e. fat, carbohydrate, protein and fibre,
on MPS in both elderly and young is
warranted. Furthermore, there is growing
interest in whether having greater amounts
of muscle mass, or indeed exercising
muscle mass involved in trainin impact
RE-induced rates of MPS. Thus, future
studies that examine the MPS response
in individuals with large muscle mass,
performing real-world RE, may provide
informative data for clinical and athletic
practice.
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