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Abstract

Over the last 30 or more years evidence has accumulated in favour of the view

that memory is not a unitary faculty; rather, it can be subdivided into a num-

ber of functionally independent subsystems. Whilst dividing memory phenomena

into these distinct subsystems has undoubtedly advanced our understanding of

memory as a whole, the approach of studying subsystems in isolation fails to

address potential interactions between them. Over the last few decades there

has been a gradual increase in the number of studies attempting to move be-

yond dissociation by characterising functional interactions between subsystems

of memory. The main aim of this thesis was to contribute to this endeavour, by

examining interactions between two specific subsystems that are positioned on

opposite sides of the declarative and non-declarative divide in long-term mem-

ory: priming and episodic recognition. Event-Related Potentials (ERPs) were

employed to monitor neural markers of repetition priming and episodic memory

during recognition tests with masked priming of test cues. In the standard pro-

cedure, half of the studied and unstudied test trials began with a brief (48ms)

masked repetition of the to-be-recognized word prior to the onset of test items;

the remaining unprimed trials were preceded by the word “blank”. The pattern

of priming effects across experiments was reasonably consistent, with differences

between experiments directly related to the intended manipulations. In contrast

to priming effects, the pattern of memory effects was variable across experiments,

demonstrating that the engagement of explicit recognition signals is influenced

by the outcome of implicit processing, and suggesting that interactions between

priming and explicit retrieval processes do occur. Taken together, results from

experiments reported in this thesis indicate (1) that under certain circumstances,

priming is sufficient to support accurate recognition and does not necessitate

changes in memory performance, (2) that mid-frontal old/new effects indexing

familiarity are not merely driven by repeated access to semantic information,

and (3) that priming influences neural correlates of recollection by speeding their

onset. Overall, the data clearly demonstrate that there are multiple potentially

interacting routes to recognition.



Chapter 1

Memory

1.1 Introduction

Long-term memory refers to the powerful yet fragile set of cognitive abilities used

by humans to retain information, reconstruct past experiences, and plan for the

future (James, 1890). Memory is known to be critical to everyday functioning,

and the loss of memory function is central to the devastating problems that occur

during normal ageing and that result from many forms of disease ranging from

dementia to alcoholism. Long-term memory is not a single entity however, and

many years of research has lead to clear divisions being drawn between different

types of memory (e.g., Cohen & Squire, 1980; Tulving, 1985a). The majority

of memory research over the past 30 or more years has focused on identifying

and dissociating these different types of memory. Within long-term memory a

basic division is drawn between declarative (i.e., conscious or explicit) and non-

declarative (i.e., unconscious or implicit) forms of memory (e.g., Eichenbaum &

Cohen, 2001; Tulving, 1989). Declarative memory is subdivided into memory
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for facts (semantic knowledge about the world) and events (episodic memory of

one’s past). Non-declarative memory (also called procedural memory) is divided

into conditioning, skill learning, non-associative learning, and priming (see Figure

1.1). Extensive evidence from a wide variety of research methods including be-

havioural investigations, neuropsychological studies of patients, and more recently

neuroimaging studies, have lead to the conclusion that these different forms of

memory each have their own functional characteristics and, in addition, each form

of memory is believed to be supported by its own distinct neural system.

Declarative (Explicit) Non-declarative (Implicit) 

Semantic 
(facts) 

Episodic    
(events) 

Skills and 
habits 

Classical 
conditioning 

Long-Term Memory (LTM) 

Priming Non-
associative 

Figure 1.1: Long-term memory. Schematic illustration of sub-systems that comprise
long-term memory. Declarative memory systems are explicit and allow previously en-
countered information to influence current behaviour via consciousness. In contrast non-
declarative memory systems are implicit and allow past experience to influence current
behaviour in the absence of conscious awareness (adapted from Squire, 2004).

One critical aspect of the distinction between declarative and non-declarative

memory described above is that they differ in whether access to these forms

of memory relies on explicit (conscious) or implicit (unconscious) forms of re-

membering (e.g., Graf & Schacter, 1985). The terms implicit and explicit are
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essentially descriptive; the two types of memory can be differentiated by the psy-

chological experience that accompanies the memory at the time of retrieval. For

example, episodic memory is an explicit form of memory that supports the re-

membering of events; the retrieval of this information comes consciously to mind

such that the rememberer is said to re-experience the original episode. By con-

trast, priming is a form of implicit memory that reflects a change in sensitivity

(e.g., a faster reaction to a stimulus) that results from prior experience; this oc-

curs without any need to re-experience the prior episode consciously, or any need

for the rememberer to be aware that they are remembering.

Psychologists have argued for the existence of distinct explicit and implicit forms

of memory on a number of grounds, using a variety of different methods, but

largely by examining the different forms of memory in isolation from one an-

other. The interaction between explicit and implicit forms of memory is an area

of research that has received relatively little examination to date, at least in part

because of the difficulties of assessing conscious versus unconscious remembering

using traditional behavioural research methods. In essence, behavioural methods

are not ‘process pure’ (e.g., Dunn & Kirsner, 1988; Richardson-Klavehn & Bjork,

1988; Salthouse, Toth, Hancock & Woodard, 1997), which means that they do not

allow the experimenter to tap just one form of memory in isolation. By fraction-

ating memory into functionally distinct cognitive capacities, psychologists have

provided a way to move forward with empirical investigation. Episodic memory

and priming have been well characterised as functionally independent subsystems,

with behavioural, neuropsychological and neuroimaging evidence supporting the

view that these forms of memory are dissociable.

Before providing a description of evidence demonstrating the functional indepen-

dence of priming and episodic memory systems, it is necessary to understand the
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logic underlying the method of dissociation, and how it has contributed to the

identification of functionally separable subsystems of memory. Dissociations fall

into two main categories, single and double. A single dissociation is discovered

when an experimental variable influences performance on task A, but has no in-

fluence on performance in task B. A double dissociation is identified when the

opposite pattern can also be observed, such that a different experimental variable

influences performance on task B, but not on task A. One key assumption under-

lying the use of dissociations to separate mental functions is that task conditions

can be effectively applied to isolate the operation of a single cognitive function,

meeting the criterion for ‘process purity’ (Dunn & Kirsner, 1988), but in reality

this assumption is rarely justified.

It is generally accepted that a single dissociation reflects only weak evidence of

the existence of separate mental functions, as it remains plausible that the two

tasks engage the same mental resource but to a different degree; producing de-

tectable differences on only one task despite its contribution to both (Shallice,

1988). Double dissociations are generally thought to constitute stronger evidence

of separate mental functions, but have also been subject to criticism on similar

grounds. For example, Dunn and Kirsner (2003) proposed that double dissocia-

tions can only be reliably identified in pure neuropsychological cases, where only a

single function is damaged. Despite the aforementioned limitations, the method

of dissociation remains a useful tool for delineating complex cognitive systems

(Baddeley, 2003), providing that interpretations and resultant theories of cogni-

tive function are constrained by the potential limitations of this approach.

Traditionally, investigations of implicit priming and explicit recognition memory

have employed distinct experimental manipulations in an attempt to isolate pro-

cessing related to each form of memory. For example, priming is measured on
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tasks such as word stem completion, where the operation of memory is indexed

by an enhanced tendency to complete word stems with previously encountered

words in the absence of a conscious retrieval attempt. By contrast, episodic

memory is measured using recall or recognition tasks employing explicit retrieval

conditions, where participants are required to consciously identify items from a

previous study episode. However, this approach of employing distinct tasks to

query these different aspects of memory cannot rule out the possibility of implicit

or explicit contamination, or the presence of interactions between memory sys-

tems; in essence the tasks cannot be considered ‘process pure’. For example, in

word stem completion it is likely that responses on some trials are contaminated

by explicit reference to the study episode (Squire, Shimamura & Graf, 1987).

Equally, on explicit tests it is impossible to rule out the potential contribution

of implicit memory, as items have been previously studied and are therefore by

definition also primed. As a result, it is often claimed that the strongest evidence

supporting the functional separation of priming and episodic memory systems is

provided by neuropsychological studies.

Distinguishing cleanly between implicit and explicit memory has typically been

considered easier in patient populations who have lost the ability to consciously

remember. In patient populations a single dissociation is discovered when a pa-

tient or a group of patients performs well on one type of memory task but shows

impaired performance on an alternative memory task. A double dissociation is

discovered when there are two patients or groups of patients showing completely

opposing patterns of impairment. For example, amnesic patients have been found

to show severe deficits in their ability to explicitly remember recently presented

information, but show intact implicit memory for aspects of the same stimuli

(Monti et al., 1996). Older participants have been shown to perform more poorly
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in explicit memory tasks compared to younger participants, but the two groups

show comparable levels of priming on implicit tasks like picture naming (Mitchell,

1989). In addition, patients with damage to the Medial Temporal Lobe (MTL)

exhibit intact priming but show impairments in episodic memory (Warrington

& Weiskrantz, 1974). The opposite pattern has also been claimed; for example,

damage to the occipital lobe is associated with intact episodic memory but im-

paired visual priming (Gabrieli, Fleischman, Keane, Reminger & Morrell, 1995).

On this basis, the findings from neuropsychological studies suggest that priming

and episodic memory systems are functionally and anatomically distinct.

Focusing on memory deficits clearly has significant benefits, but it also means

that potential interactions between implicit and explicit memory have often been

ignored because one form of memory is being examined in the absence of the

other. Early behavioural work investigating priming and episodic memory in

normal populations demonstrated that manipulation of specific variables had dif-

ferential effects on priming and recognition, providing support for the separate

systems view. For example, depth of processing at encoding has been shown to

impact performance on explicit recognition tasks, with deep semantic encoding

improving performance, but has no effect on implicit tasks. In contrast, changes

in modality between study and test have been shown to impact performance on

implicit tests, but not on explicit tests (Jacoby & Dallas, 1981). Retention in-

terval has also been shown to differentiate between implicit priming and explicit

recognition, such that recognition performance is diminished over time in explicit

tests, but priming effects on word-stem completion remain unchanged (Tulving,

Schacter & Stark, 1982). In addition, divided attention at encoding reduces sub-

sequent explicit recognition, but does not impact priming effects assessed via

word-stem completion (Parkin, Reid & Russo, 1990). One criticism of the pre-
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ceding evidence concerns the use of different tasks to assess the contribution of

implicit and explicit memory phenomena, meaning that observed effects could be

contaminated by differences in task demands or retrieval strategies.

As a result of potential differences in task demands or retrieval strategies, it

has been proposed that comparisons of implicit and explicit memory should be

designed to meet the retrieval intentionality criterion, which requires that all

factors of an experimental task are identical; only differing in the retrieval in-

structions provided at test (Schacter, Bowers & Booker, 1989). For example,

contrasting priming and recognition should be achieved by presenting matched

study lists and test cues (e.g., word stems), and participants should be instructed

to complete words stems with the first word that comes to mind (implicit task),

or to complete stems with words from that are remembered from the study list

(explicit task). Findings from studies adopting this approach are in general agree-

ment with those reported above, for example, demonstrating differential effects

on implicit and explicit memory as a function of divided attention and levels of

processing (e.g., Mulligan & Hartman, 1996; Toth, Reingold & Jacoby, 1994).

While meeting the constraints imposed by the retrieval intentionality criterion

appears to reduce the possibility of explicit contamination of implicit memory, it

still does not completely rule out the possibility. The problem of obtaining pure

measures of implicit and explicit memory in normal populations remains a chal-

lenge, and while significant progress has been made in methods applied to isolate

pure implicit memory (Roediger & McDermott, 1993), it has become increasingly

obvious that controlling implicit contributions to explicit memory is a far more

difficult proposition.

The current section has provided an introduction to implicit and explicit memory,

and a brief overview of evidence supporting the view that priming and episodic
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recognition represent functionally and anatomically distinct subsystems of mem-

ory. In addition, some of the difficulties inherent in isolating and measuring the

contribution of implicit and explicit memory to performance have been outlined.

In normal populations, it is a standard assumption that explicit memory can con-

tribute to performance on implicit memory tests, and moreover, there is growing

evidence indicating that implicit memory can drive recognition responses dur-

ing explicit memory tests (e.g., Keane, Orlando & Verfaellie, 2006; Rajaram &

Geraci, 2000; Voss, Baym & Paller, 2008; Wolk, Schacter, Berman, Holcomb,

Daffner & Budson, 2005). The main aim of the current thesis was to explore the

nature of interactions between implicit priming and episodic recognition using

Event-Related Potentials (ERPs), which allow different forms of memory to be

examined directly, employing ‘neuro-signatures’ of memory related processing as

a way to measure the contribution of each form of memory to performance. Before

detailing evidence supporting the presence of interactions between implicit prim-

ing and explicit recognition, the following sections will provide an introduction

to theories of episodic memory and priming independently.

1.2 Episodic memory

The importance of episodic memory as a defining characteristic of humans can-

not be overstated, as it retains our sense of personal identity over a lifetime.

This continuity of the self is claimed to set us apart from other animals, and

is also thought to be an absolute requirement to make sense of any concept of

moral responsibility (Sutton, 1998). Tulving (1972) first introduced the term

episodic memory to describe memory phenomena that maintain temporal and

spatial relations between autobiographical events or episodes. Episodic memory
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is characterised by access via autonoetic consciousness; the retrieval of informa-

tion comes consciously to mind such that the rememberer is said to re-experience

the original episode embedded within its particular context. Processing related to

episodic memory can be further sub-divided into three distinct stages, encoding,

storage and retrieval. For simplicity of explanation, these stages are analogous

to the stages involved in information processing carried out by computers. The

computer receives the input and translates the higher level representation into

machine code, assigns this code to a storage address in main memory, then at

retrieval the address is specified and the code is produced as output.

The ability to remember past events has been shown to depend upon the pro-

cessing that they receive at the time of encoding. Encoding relies upon two

components, first, an initial component must transform input into a representa-

tion of an event, and then, a second component must bind multiple aspects of

this representation into an enduring memory trace (Paller & Wagner, 2002). An

important point concerns the wide variety of information that must be integrated

at encoding to form an enduring memory trace representing a specific episode or

event, including sensory, semantic, temporal and spatial information. This de-

scription views memory as a storage system; each episodic memory has its own

dedicated trace or representation through which it can be accessed. In the case

of a computer the trace would be an address held in an array of addresses that

refers to a specific location in the memory store. The exact mechanisms of stor-

age in the human brain are not yet well understood, and cannot be manipulated

directly in experiments. As a result, the bulk of research into episodic memory

to date concentrates on investigation of encoding and retrieval processes. Details

of encoding will not be discussed further as the focus of the current thesis is on
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processes related to the retrieval; the following sections will introduce current

theories of episodic retrieval.

1.2.1 Episodic retrieval

Episodic retrieval can be assessed using a variety of experimental tasks that can

be split into two main categories: recall and recognition tasks. In both tasks par-

ticipants are presented with items to be studied, before memory for these items

is probed during a subsequent testing phase. Recall tasks can be further sub-

divided into free recall and cued recall tasks; during free recall tests participants

are merely instructed to recall as many items as they can from the study phase,

whilst during cued recall participants are presented with cues at test to aid re-

trieval (e.g., a partial repetition of study items). By contrast, during recognition

tests studied items are re-presented in their entirety, randomly intermixed with

unstudied items, and participants are required to discriminate between studied

(old) and unstudied (new) items. The distinction between recall and recognition

tasks is largely driven by the amount of cue information available at retrieval,

with recall tasks relying to some extent on generation of previously encountered

items and recognition tasks relying on identification of previous occurrence. The

research reported in this thesis employs a recognition task, and so the remainder

of this section will focus on theories of recognition memory. In the literature

there are two opposing accounts of the operation of recognition memory, which

are broadly classified into single-process and dual-process theories.

10
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1.2.1.1 Single-process theories

Single-process theories propose that recognition is supported by a single retrieval

process that operates via assessment of memory strength at the time of retrieval.

A number of single-process models of recognition memory have been proposed

(e.g. MINERVA 2, Hintzman, 1988; TODAM 2, Murdock, 1997; BCDMEM,

Dennis & Humphreys, 2001), and the majority of these models are based on signal

detection theory (Snodgrass & Corwin, 1988). Signal detection theory asserts

that the memory strength of studied and unstudied items can be represented

by partially overlapping Gaussian distributions, situated along a continuum of

memory strength, with studied items situated further along the continuum than

unstudied items (see Figure 1.2). During recognition tests participants set a

response criterion that supports discrimination of studied from unstudied items,

such that items falling above the criterion will be judged as studied, and those

failing to reach the criterion will be judged as unstudied.

Fr
eq

ue
nc

y 

Criterion  

Memory strength 

Studied 
 (Old) 

Unstudied 
 (New) 

Correct rejections 
 (CRs) 

Hits 

FAs Miss 

Discrimination (d’)  

Figure 1.2: Signal detection theory. Schematic illustration of signal detection theory.
Studied and unstudied items are represented by partially overlapping Gaussian distributions,
situated along a continuum of memory strength, with studied items situated further along
the continuum than unstudied items due to prior exposure. The distance between the means
of the two distributions provides a measure of discrimination.
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As can be seen in Figure 1.2, the overlapping distributions for studied and unstud-

ied items characterise the four response types observed during recognition testing,

which are classified as correct or incorrect on the basis of the response criterion.

For correct responses, the hit rate describes the proportion of the distribution

for studied items exceeding the response criterion, and the correct rejection rate

describes the proportion of the unstudied distribution falling below the criterion.

Misses describe the proportion of the distribution for studied items that fail to

reach the criterion and are incorrectly classified as unstudied, and false alarms

describe the proportion of the distribution for unstudied items that exceed the

criterion and are incorrectly classified as studied. Signal detection models also

support additional measures of memory performance by providing an index of

discrimination and response bias.

Discrimination measures how easy it is to distinguish studied from unstudied

items and is based on the distance between the studied and unstudied distribu-

tions, with a low degree of overlap indicating high discriminability (i.e., better

discrimination). Response bias provides a measure of the likelihood that partic-

ipants will classify items as studied under conditions of uncertainty, and can be

liberal or conservative. Bias is directly related to the placement of the response

criterion along the continuum of memory strength, with a liberal bias indicating

placement at the low end and a conservative bias indicating placement toward the

high end. As such, with a conservative bias items are only classified as studied

when they are associated with a very high level of memory strength, and with a

liberal bias even items with a low level of memory strength will be classified as

studied.

Whilst attractive for their simplicity, single-process theories based on signal de-

tection theory have been widely criticised for failure to account for a range of ex-
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perimental findings without modification (Yonelinas, 2002). For example, word

frequency mirror effects (i.e., the finding that low frequency words produce a

higher hit rate and a lower false alarm rate than high frequency words) have

been considered to represent a significant challenge to single-process accounts

of recognition (e.g., Arndt & Reder, 2002; Glanzer & Adams, 1985). While de-

bate still continues over whether purely signal detection based or dual-process

models represent the best fit to account for the wealth of recognition data (e.g.,

Parks & Yonelinas, 2007; Wixted, 2007), in recent years dual-process theories of

recognition memory have dominated the literature.

1.2.1.2 Dual-process theories

Dual-process models propose that recognition memory is supported by two sepa-

rate search processes, familiarity and recollection. Recollection is typically char-

acterized as an effortful process that can be identified as having occurred when

participants are able to remember specific context details associated with an

event. In contrast, familiarity has been claimed to index the degree of similarity

between a current event and some event in our past experience and has been con-

sidered to be an automatic process. The qualitative difference between these two

processes is often demonstrated by the common experience of recognising that

someone is familiar but being unable to recollect any specific contextual details

about them (Mandler, 1980). Dual-process models assert that familiarity repre-

sents a graded index of memory strength that is well described by signal detection

theory, while recollection is thresholded and supports the all-or-nothing retrieval

of specific contextual information related to an episode (see Yonelinas, 2002, for

an extensive review).
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There are a number of dual-process models of recognition (e.g., Atkinson & Juola,

1974; Jacoby, 1991; Mandler, 1980; Yonelinas, 1994), that represent slight vari-

ations on a single theme, whilst sharing key assumptions. For example, most

dual process models assume that familiarity operates faster than recollection, but

models differ in specifications of the exact relationship between recollection and

familiarity at retrieval. Knowlton (1998) describes three potential relationships

that could exist between familiarity and recollection at retrieval: exclusivity, re-

dundancy or independence. Firstly, an exclusive relationship between familiarity

and recollection posits that either process can result in retrieval, but that famil-

iarity and recollection do not co-occur. Secondly, a redundancy view posits that

recollection can only be active when familiarity is also active, and finally, the last

view of the relationship between familiarity and recollection assumes that both

processes contribute to retrieval independently.

A number of distinct variants of dual-process theory exist within the episodic

memory literature. For example, a slightly alternative view of the relationship

between familiarity and recollection is suggested by the conditional search model

proposed by Atkinson and Juola (1974). The conditional search model differ-

entiates familiarity and recollection based on the type of information that each

process is thought to handle; familiarity is described as a fast acting process that

assesses the degree of perceptual match between the current item and stored rep-

resentations, while recollection is described as an effortful process that matches

semantic information. Importantly, the model proposes that familiarity reflects

the default process for recognition and that the occurrence of recollection is con-

tingent upon the failure of familiarity, which does not fit neatly within the exclu-

sivity, redundancy or independence view of the relationship between familiarity

and recollection. While the conditional search model proposes that familiarity
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and recollection operate in a serial fashion, with familiarity being completed prior

to initiation of recollection, the remaining models largely assume that familiarity

and recollection operate independently and are initiated in parallel at retrieval

(Jacoby, 1991; Mandler, 1980; Yonelinas, 1994).

While most dual-process models are generally in agreement on a number of key

issues (for example, that familiarity is faster than recollection and that both

processes are initiated in parallel at retrieval) there are also key differences that

continue to be controversial. Importantly for the aims of the current thesis,

some dual-process theories suggest that common processes may underlie both

familiarity in recognition memory and priming on implicit memory tests (see

Jacoby & Dallas, 1981; Mandler, 1980). This suggestion will be discussed in more

detail in Section 1.3.2, where evidence supporting interactions between priming

and familiarity will be presented. The following sections will introduce the details

of methods applied to measure the contribution of familiarity and recollection,

before reviewing the behavioural and neural evidence supporting the existence

of dissociable retrieval processes in recognition memory, on which dual-process

models of recognition have been based.

Measuring familiarity and recollection

Standard old/new recognition tests (see Section 1.2.1) do not allow direct identi-

fication of the contribution of familiarity or recollection. As a result a number of

methods have been developed to either isolate the contribution of one process, or

to estimate the contribution of each process to retrieval. Task dissociation meth-

ods are applied to isolate a single retrieval process. For example, comparisons of

item and source recognition have been used in the literature to isolate recollec-

tion, based on the dual-process assumption that only recollection supports the
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retrieval of contextual information. However, recent evidence demonstrating that

under certain circumstances familiarity can support associative recognition (e.g.,

Diana, Yonelinas & Ranganath, 2008), suggests that isolating the contribution of

recollection in this way is not straightforward. In fact, examination of all meth-

ods applied to estimate the contributions of familiarity and recollection reveals

limitations in each approach. The remainder of this section will introduce and

critique three prominent methods that have been applied to measure the contri-

bution familiarity and recollection; the ‘Remember/Know’ (RK) procedure, the

‘Process Dissociation Procedure’ (PDP), and ‘Receiver Operating Characteris-

tics’ (ROC).

The RK procedure differentiates familiarity and recollection based on subjec-

tive reports of qualitative differences in memory experience at retrieval (Tulv-

ing, 1985b). In addition to making an old response, participants are required

to introspect about their recognition response, and make a ‘remember’ response

when retrieval is accompanied by contextual details. In contrast, a ‘know’ re-

sponse is made when an item feels familiar but is not accompanied by the re-

trieval of contextual information about the study episode (e.g., Gardiner, Java

& Richardson-Klavehn, 1996; Rajaram, 1993). One problem with the RK pro-

cedure is that responses are exclusive; items are only classified as familiar when

not subsequently recollected, leading to an underestimation of the contribution

of familiarity if both processs are assumed to be independent as suggested by

most dual-process models. Yonelinas and Jacoby (1995) introduced the Indepen-

dence Remember/Know (IRK) procedure to address this issue, which estimates

familiarity by dividing the proportion of actual ‘know’ responses by proportion

of possible ‘know’ responses (see Chapter 4, Section 4.5).
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Another criticism of the RK procedure is that RK responses could merely cap-

ture differing degrees of memory strength rather than identifying qualitatively

different memory processes, in line with single-process interpretations of recogni-

tion (e.g., Donaldson, 1996; Eldridge, Sarfatti & Knowlton, 2002). In addition,

the RK procedure is highly dependent upon the accuracy of introspection, and

although results from the RK procedure are largely in agreement with those ob-

tained using other methods of estimation, it should be noted that the procedure

is highly dependent on the nature of the task instructions used and can vary

across participants or studies. The basic RK procedure has also been modified to

include a third response option to filter out trials where participants have guessed

that an item was studied, which is thought to largely contaminate estimates of

familiarity (Gardiner, Ramponi & Richardson-Klavehn, 1998). An alternative

modification to the RK procedure involves measuring familiarity and recollection

in two separate conditions where instructions are varied to isolate each process

(Montaldi, Spence, Roberts & Mayes, 2006). In the familiarity condition partic-

ipants are not instructed to attempt to recollect, but to concentrate on feelings

of familiarity and merely report recollection when it occurs. However, distinct

disadvantages with this approach are that it fails to capture interactions between

familiarity and recollection, and that memory experience cannot be assessed on

a trial-by-trial basis, which is considered to be one of the key advantages of the

RK procedure.

Another method commonly used to estimate familiarity and recollection is the

PDP method developed by Jacoby (1991), which also relies on the premise that

if an event is recollected, specific details of the event should be available (for

example, when and where it was studied) and that familiarity should not show

this pattern. The PDP method uses comparisons of performance across inclusion
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and exclusion tasks to separate the contribution of familiarity and recollection.

For example, in Jacoby’s original experiment participants first studied a list of

visually presented items and were then asked to listen to a second list of items.

In the following inclusion task participants were instructed to give a ‘yes’ (old)

response to items that had appeared in either study list, and in the exclusion task

participants were asked to make a ‘yes’ (old) response only to items from the heard

list. The basic idea is that in the inclusion condition correct judgements can be

based on either familiarity or recollection, whereas in the exclusion task correct

responses will be supported by recollection, as participants must also identify the

context in which an item was studied. One criticism of PDP concerns the use

of differential instructions at test causing differential engagement of familiarity

and recollection across conditions. The procedure assumes that recollection will

be operative in both the inclusion and exclusion conditions, but task instructions

may reduce the prevalence of recollection in the inclusion task leading to a skew

in parameter estimates (see Yonelinas, 2002, for a discussion).

Measuring ROCs, overcomes issues related to variability in task instructions by

employing a single test procedure. Participants are required to make recognition

judgements and are then asked to rate their confidence levels, to assess the impact

of the response criterion. It is assumed that recollection should support high con-

fidence responses, whereas the contribution of familiarity should be revealed by

low confidence responses. ROCs relate the hit rate of correct recognition to the

false alarm rate of incorrect recognition; the graph is plotted as a function of re-

sponse confidence. The ROCs associated with familiarity and recollection exhibit

different profiles; judgements based solely on familiarity produce a ROC that is

curvilinear and symmetrical, but the added contribution of recollection causes

the ROC to become asymmetrical. By examining the shape of the ROC curve,
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researchers can identify the processes contributing to recognition performance.

However, supporters of single process theory have argued that two processes are

not required to explain the pattern of ROC curves obtained during recognition

tests, and that the data can be accounted for in terms of an unequal-variance

signal detection model, where the variance of the old distribution is considered to

be greater than the variance for the new distribution (e.g., Glanzer, Kim, Hilford

& Adams, 1999).

All of the methods described above provide different approaches to separating out

the contribution of familiarity and recollection in recognition memory tests. Re-

searchers have generally found that results obtained through one method are con-

firmed by the corresponding results found using the alternative methods. While a

wealth of evidence indicates that familiarity and recollection are independent, it

has been claimed that all of the methods used to test their independence actually

start out by assuming the result, and this assumption is inherent in all of the

methods of process estimation methods reported above. As a result, it has been

suggested that behavioural data alone cannot be used to test the independance

of the familiarity and recollection; familiarity must be measured to establish

its independence from recollection, but it is necessary to assume independence

to measure familiarity (Norman & O’Reilly, 2003). It seems therefore that be-

havioural studies could just be measuring different stages in a single recognition

process and to avoid this conclusion it is necessary to provide evidence from other

areas of research to truly demonstrate the independence of familiarity and recol-

lection. As such, the following sections will provide a brief review of behavioural

and neural evidence supporting dual-process theories of recognition.
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Behavioural dissociations

Behavioural methods have been applied to dissociate familiarity and recollection

by manipulating a wide range of variables, and measuring the impact of these

different variables on familiarity and recollection. Manipulations that have been

found to differentially affect familiarity and recollection include divided attention,

response deadlines, processing fluency, forgetting rates and levels of processing.

These manipulations can be divided into two broad categories: those that manip-

ulate processing at encoding, and those that manipulate retrieval processing. A

wealth of evidence has demonstrated that encoding manipulations influence recol-

lection to a much greater degree than familiarity. For example, dividing attention

at encoding has been shown to selectively disrupt recollection (Craik, Govoni,

Naveh-Benjamin & Anderson, 1996; Yonelinas, 2001). In addition, manipula-

tions of levels of processing at encoding have demonstrated that deep (semantic)

encoding enhances recollection to a greater degree than familiarity (Gardiner

et al., 1996; Rajaram, 1993; Toth, 1996; Yonelinas, 2001). Finally, administer-

ing benzodiazepines at encoding, which produce temporary amnesia-like memory

impairments, also has a greater impact on recollection than familiarity (Curran,

Gardiner, Java & Allen, 1993).

A wealth of evidence has also demonstrated that manipulations of retrieval pro-

cessing can be applied to dissociate familiarity and recollection. For example,

studies employing response deadlines at retrieval, where subjects are forced to

respond within a specific time limit, have indicated that familiarity is available

earlier than recollection, supporting a key assumption of dual-process theories

(Yonelinas, 2002). Familiarity has also been shown to contribute to performance

earlier than recollection under non-speeded test conditions (Yonelinas & Jacoby,
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1994), and the contribution of recollection has been found to increase, while the

contribution of familiarity remains constant, over speeded and non-speeded tests

(Benjamin & Craik, 2001). The manipulations discussed so far all impact upon

recollection, while leaving familiarity relatively unaffected, but manipulations of

other variables have been shown to produce the opposite pattern. For example,

manipulation of the retention interval between study and test has shown that lev-

els of familiarity decrease rapidly over short retention intervals (i.e., between 8-32

intervening items), while levels of recollection remain consistent over the same pe-

riod (Yonelinas & Levy, 2002). Importantly, given the aims of the current thesis,

manipulations designed to increase the processing fluency of test items also se-

lectively impact familiarity. For example, briefly flashing a word just before the

start of a recognition test leads to an increase in familiarity based responses for

studied and unstudied items, but does not influence recollection (e.g., Rajaram,

1993; Rajaram & Geraci, 2000).

Overall, there is a wealth of behavioural evidence suggesting that familiarity and

recollection are functionally independent, but as noted above, behavioural find-

ings based on process estimation methods generally assume this independence in

advance. However, findings from neuropsychological and neuroimaging studies

provide additional support for a dual-process independence account of recogni-

tion, demonstrating anatomical differences between familiarity and recollection.

The following section will provide a brief review of neural evidence indicating

that familiarity and recollection are supported by different brain structures, and

as such, reflect functionally independent retrieval processes.

21



Chapter 1. Memory

Neural dissociations

Neuropsychological studies of patients with impaired memory function have re-

vealed dissociations between familiarity and recollection. For example, organic

amnesiac patients can detect that a previously studied item is familiar, but have

difficulty recollecting the context in which it was studied (Huppert & Piercy, 1976,

1978). More broadly, selective damage to the hippocampus has been specifically

linked to deficits in recollection, while more extensive temporal lobe damage

has been found to disrupt both processes, although recollection is always more

severely impaired than familiarity (Stark & Squire, 2000). In addition, damage

limited to the perirhinal cortex has been shown to selectively disrupt familiarity,

while leaving recollection unaffected (Bowles, Crupi, Mirsattari, Pigot & Par-

rent, 2007). In normal populations, studies have revealed age-related deficits in

recollection that are proportionate to the age of the participant, while familiar-

ity remains relatively unchanged across the lifespan (e.g., Lakhan & Foundation,

2006). Interestingly, however, this finding has been attributed to deterioration

of the frontal lobes, suggesting that they are vital for recollection but not crit-

ical for familiarity judgements (despite patient data linking recollection to the

hippocampus). Differences in findings between patient and normal populations

highlight a key limitation of patient data: that findings may not always generalise

to healthy populations.

There are three main reasons driving this potential lack of generalizability of find-

ings from patient to normal populations. Firstly, neuropsychological studies are

often carried out on single participants, meaning that individual differences can

have a large impact upon the generalizability of results. Secondly, the brain is

highly adaptive and may compensate for long-term damage by developing quali-
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tatively different neural circuitry to support some of the function that has been

lost. Finally, it is often difficult to identify the precise location or extent of the

damage in individual patients, which is highly dependent upon the resolution and

reliability of functional imaging techniques (e.g., Rempel-Clower, Zola, Squire &

Amaral, 1996). Functional neuroimaging, and in particular findings from func-

tional Magnetic Resonance Imaging (fMRI), have demonstrated a difference in

the spatial location of neural generators associated with familiarity and recollec-

tion in normal populations, supporting the view that familiarity and recollection

are dissociable at a neural level (for electrophysiological dissociations see Chapter

3, Section 3.1). Before describing the findings obtained via this technique, a brief

overview of the fMRI technique will be provided.

The main advantage of fMRI is that it has high spatial resolution, making it

possible to identify specific areas of the brain that are associated with specific

cognitive functions, by measuring the haemodynamic responses related to neural

activity in the brain. Briefly, neurons require energy when they are active, but

they do not have their own reserves, thus the firing of neurons creates a need

for more energy. Movement of blood supplies this energy, releasing oxygen to

firing neurons at a higher rate than to inactive neurons, and fMRI measures

the difference in magnetic susceptibility between oxygenated and deoxygenated

blood to locate the firing neurons associated with specific cognitive processes

(Ogawa, Kay & Tan, 1990). Studies employing fMRI to examine familiarity and

recollection in normal populations are broadly consistent with the findings from

patient studies.

For example, Eldridge, Knowlton, Furmanski, Bookheimer and Engel (2000) used

fMRI to examine retrieval processes using the RK procedure and found that

the hippocampus is essential for the retrieval of detailed episodes indexed by R
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judgements, but is not necessary for recognition-based on familiarity. In another

study, Henson, Rugg, Shallice and Dolan, (1999) used the same procedure and

found a dissociation between the parietal and prefrontal cortices at the time of

test: an increase in left parietal activity was found to index recollection, while

an increase in prefrontal activity was found to index familiarity in the absence

of recollection. It lies beyond the scope of this thesis to cover in detail the

vast amount of fMRI data suggesting that familiarity and recollection can be

dissociated, but the examples given above support the view that different patterns

of brain activation are associated with familiarity and recollection.

The evidence reviewed so far broadly suggests that the hippocampus is essential

for recollection but not for familiarity-based recognition. An alternative view

of the involvement of the hippocampus in recognition memory comes from com-

putational modelling (albeit based on the findings from patient populations).

Norman and O’Reilly (2003) contrasted the role of the hippocampus and the

MTL in recognition memory with the complementary learning systems model. In

this model the hippocampal component operates via pattern separation: the in-

coming stimuli are assigned a distinctive pattern to allow differentiation between

specific episodes. By contrast, the model proposes that the MTL component

assigns similar representations to similar stimuli. When the models were tested

independently, the results demonstrated that performance agreed with the data

from patients studies. However, when the models were combined and tested, the

assumption that familiarity and recollection are independent at retrieval was not

supported by the results: the authors found that lesions to the hippocampus

caused a comparable deficit in familiarity and recollection. These findings have

been taken to suggest that the hippocampus is the storehouse of episodic memory

traces, and that both retrieval processes are reliant on access to a single trace.
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More recently, Greve, Donaldson and Van Rossum (2010) demonstrated that a

computational model of a single memory store accessed by the two independent

retrieval processes was consistent with a single-trace, dual-process account of

recognition.

1.2.2 Summary

The preceding sections have provided an overview of episodic memory, with a

particular focus on theories of recognition memory. Two main theoretical ac-

counts compete to explain the mechanisms involved in recognition memory, but

while single-process theories are attractive for their simplicity, they have largely

been made redundant by the wealth of evidence supporting a dual-process ac-

count of recognition. A number of estimation procedures have been developed to

investigate recognition, including the RK procedure, ROC curves and PDP esti-

mates. Consistent results obtained across these methods have demonstrated that

recognition is supported by two independent retrieval processes: familiarity and

recollection. While process estimation methods have been criticised for assuming

independence in order to obtain estimates of familiarity and recollection, conver-

gent results from neuropsychological and functional imaging have supported the

view that recognition is supported by two independent retrieval processes, with

differing functional and anatomical characteristics.

1.3 Implicit priming

Priming is characterized by the absence of conscious awareness of retrieval from

memory, and is indexed by changes in speed, bias or accuracy of stimulus pro-

25



Chapter 1. Memory

cessing as a result of prior exposure to the same or a related stimulus (Graf &

Schacter, 1985). Research has identified the existence of multiple forms of prim-

ing, but these forms can generally be divided into two main categories: perceptual

and conceptual (Roediger & McDermott, 1993). Perceptual priming is driven by

a match in the surface features of a repeated stimulus (e.g., letter case or modal-

ity), whereas conceptual priming is driven by shared aspects of stimulus meaning

(e.g., category membership or frequent co-occurance). Perceptual and conceptual

forms of priming have both been shown to be preserved in amnesiac patients on

implicit memory tasks (Vaidya, Gabrieli, Keane & Monti, 1995). In healthy pop-

ulations, specific factors have been shown to differentiate between perceptual and

conceptual forms of priming. For example, dividing attention at encoding influ-

ences conceptual priming but has no impact on perceptual priming (Mulligan &

Hartman, 1996). It is important to note that perceptual and conceptual forms of

priming are differentiated in the behavioural literature largely on the basis of task

requirements (i.e., reliance on stimulus form vs stimulus meaning), but this does

not rule out the possibility that both forms can contribute concurrently to per-

formance during recognition testing. Traditionally, tasks most commonly used to

investigate perceptual priming include lexical decision, perceptual identification

and word stem completion, whereas conceptual priming has been assessed using

word association and category generation tasks amongst others (see Roediger &

McDermott, 1993, for further examples).

During perceptual identification tasks participants are often briefly exposed to a

stimulus (e.g., for around 35ms) and have to try to identify the presented item

(e.g., Jacoby & Dallas, 1981). On this task priming is indexed by a reduction

in the amount of time taken to identify the item, or an increase in the accu-

racy of identification for presented relative to new items. On word completion
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tasks participants are normally presented with a list of study words, followed by

a list of word stems (e.g., squ for squirrel) or word fragments (e.g., e ph

for elephant), and have to complete the stems or fragments with the first word

that comes to mind (e.g., Roediger, Weldon, Stadler & Riegler, 1992). Priming

on these tasks is indexed by an increase in the probability that stems will be

completed with words from the initial study list. On word association tasks par-

ticipants again study a list of words and then during the test phase are presented

with a cue word related to a study item (e.g., cat–? after studying dog), and are

required to provide the first related word that comes to mind (e.g., Shimamura &

Squire, 1984). The current thesis aims to obtain concurrent measures of priming

and recognition within the confines of a standard recognition task, and so fur-

ther discussion of these priming specific tasks will be limited to a review of the

evidence demonstrating the nature of priming related phenomena (see Schacter,

1987; Wagner & Koutstaal, 2002, for reviews).

Of particular interest within the current context are “repetition priming” experi-

ments where prime-target pairings are presented separated in time, and the prime

item serves to establish processing context for the upcoming target. The nature

of the relationship between prime-target pairings can be manipulated, such that

pairings may be semantically related (e.g., whale-dolphin), associatively related

(e.g., fruit-fly), or full repetitions (e.g., garden-garden), which can then be com-

pared to a baseline condition where prime and target items are unrelated (e.g.,

tree-radio) to establish the influence of different varieties of priming. The current

thesis employs repetition priming to explore interactions between priming and

explicit recognition, as this sort of priming would normally occur under stan-

dard recognition test conditions, where items are repeated across study and test

phases. It is important to note for the purposes of this investigation that repe-
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tition from study to test and between prime-target pairings means that priming

could be perceptual or conceptual in nature. Initially, repetition primes were

thought to provide a measure of the degree of perceptual priming (e.g., Tulving

& Schacter, 1990), but more recently it has been appreciated that repetition can

also produce conceptual priming, particularly when the stimuli involved are words

(Voss, Schendan & Paller, 2010b), as is the case in the experiments reported in

this thesis. The following section will provide an introduction to repetition prim-

ing, including an overview of the evidence and a brief description of theoretical

accounts.

1.3.1 Repetition priming

Evidence related to repetition priming comes from two broadly independent ar-

eas of research: investigations concerned with the nature of lexical organization

in word identification, and investigations of episodic memory (Schacter, 1987).

Early evidence from word identification research suggested that repetition prim-

ing was largely supported by a perceptual representation system that operates

on information about the physical features of a stimulus, but does not support

access to meanings or associations between items (e.g., Schacter, 1990; Tulving

& Schacter, 1990). This assertion was driven by a wealth of evidence demon-

strating that priming is reduced by changes in modality (e.g., visual to auditory)

or surface features (e.g., font) between study and test on data driven tasks such

as word stem completion and perceptual identification (e.g., Jacoby & Dallas,

1981; Kirsner, Dunn & Standen, 1989; Roediger & Blaxton, 1987). A number

of competing accounts have been proposed to account for the structure of repre-
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sentations supporting word identification, which can be broadly divided into two

categories: abstract lexical representations and episodic representations.

Strict abstractionist theories assert that distinct representations are formed for

episodes and lexical entries, such that each word is assigned a separate abstract

representation in the lexicon, which does not contain a reference to prior ex-

perience (e.g., Morton, 1969). By contrast, episodic theories assert that word

identification relies on reference to specific episodes where they have been encoun-

tered previously (e.g., Jacoby & Witherspoon, 1982; Kolers & Roediger, 1984).

On both views, the same representation is used to access unprimed and primed

words, with recent activation of a lexical entry or a specific episodic representa-

tion producing facilitation effects for repeated items, but debate continues over

which view best accounts for the wealth of data (see Bowers, 2000; Tenpenny,

1995, for discussions). In broad terms, these alternative accounts of representa-

tion have been developed to account for qualitatively different types of repetition

priming observed across a range of tasks. For example, evidence draws a distinc-

tion between short-term priming effects lasting only a few seconds, and long-term

priming effects that can persist for minutes, hours or even days (e.g., Rajaram &

Neely, 1992).

Abstractionist views are consistent with activation accounts of repetition priming,

which assert that exposure to a word produces a temporary short-term increase in

the activation of a pre-existing abstract representation, lowering the threshold for

subsequent access to the same entry producing facilitation (Morton, 1969), but

that this temporary increase in activation decays gradually over time (McClelland

& Rumelhart, 1981). Pure activation accounts of priming waned in popularity

because they were unable to account for the reduction in priming induced by

changes in modality or surface features from study to test, and cannot account
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for long-term priming effects that persist over longer delays (Wagner & Koutstaal,

2002). While the specificity of priming effects can be readily explained by appeal

to facilation based on access to specific episodic representations, this view has

been criticized for failure to account for short-term priming effects, particularly

when the presentation of the prime is rapid or subliminal.

Over the last few decades there has been an increase in the use of masked prim-

ing paradigms to assess the contribution of repetition priming. Masked priming

studies involve a very brief presentation of the prime item, which is obscured by

the presentation of a pattern mask occupying the same visual space before and/or

after the presentation of the prime; in the strongest cases prime items are usually

surrounded by forward and backward masking for optimal concealment. These

pattern masks usually take the form of a series of letters or symbols matched to

the length of the prime item. The key benefit of this approach is that partici-

pants are usually unable to report the presence of the prime, making it possible

to measure its contribution to performance on a variety of tasks in the absence of

explicit engagement. Traditionally, masked and unmasked priming were thought

to engage differential forms of repetition priming: masked priming was largely

associated with short-lived facilitation effects as a result of repeated access to

lexical entries, while unmasked priming was associated with long-term priming

effects and linked to recognition memory (Forster & Davis, 1984).

More recently, it has been suggested that repetition priming may be considered

a form of episodic learning, where presentation of a prime item induces changes

in connection weights, or adds a distinct event to episodic memory (Bodner &

Masson, 2001). But the problem remains of how to account for masked repetition

priming, where prime episodes are not accessible via conscious awareness. Bodner

and Masson (1997) asserted that masked primes can result in the creation of rep-
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resentations of specific episodes based on orthographic information, without the

need for conscious accessibility. Moreover, Masson and Bodner (2003) have pro-

posed a retrospective (retrieval based) account of masked and long-term repetition

priming, based on the assumption that prime events create a memory resource,

which aims to provide a framework for integration of findings from word iden-

tification and memory research, by collapsing dissociations between short-term

and long-term priming. In addition, functional imaging work has supported the

view that dissociations between supraliminal long-term and subliminal short-term

masked priming are unwarranted, demonstrating that both forms of priming re-

sult from the same underlying processes, activating the same brain structures but

to a lesser degree for masked compared to unmasked words (Dehaene et al., 2001).

In reality, it is likely that lexical access and episodic theories of repetition priming

are not mutually exclusive, and whether facilitation is driven largely by enhanced

lexical or episodic access may be partially determined by task demands.

Evidence demonstrating that changes in surface features produce reductions in

priming on data-driven tasks such as fragment completion or perceptual identifi-

cation is often cited in support of a perceptual representation system account of

priming, but can be challenged on the basis of task demands. For example, Graf

and Ryan (1990) manipulated the font of words between study and test, finding

reduced priming on word stem completion when the study task focused on percep-

tual features, but also finding that this reduction was eliminated when the study

task focused on word meaning. This finding is in line with transfer-appropriate

processing accounts of repetition priming, which assert that the magnitude of

priming effects on a specific task are dependent upon the degree of match be-

tween cognitive processes engaged during an initial encounter with an item, and

processes engaged during a subsequent encounter (Wagner & Koutstaal, 2002).

31



Chapter 1. Memory

Interestingly, this account of repetition priming mirrors the encoding specificity

principle in episodic memory, which states that memory for events is optimal when

contextual information present during encoding is also available at retrieval (Tul-

ving & Thomson, 1973), providing further support for an episodic representation

view of repetition priming.

The transfer-appropriate processing account differentiates data-driven and con-

ceptually driven contributions to repetition priming on the basis of task demands,

but if the underlying representation is primarily episodic in nature, changes

in contextual aspects between an initial encounter and a subsequent encounter

should also lead to a reduction in repetition priming. Masson and Freedman

(1990) demonstrated in a lexical decision task that repetition effects were reduced

when the meaning of context words accompanying a repeated item was changed

from study to test (see also Masson & Macleod, 1992). These findings demon-

strate that repetition priming is also sensitive to conceptual aspects of a prior

exposure, even when the task is primarily data-driven and perceptual in nature.

In addition, differences in the time course of perceptual and conceptual contri-

butions to data-driven tasks have been observed. For example, Weldon (1993)

demonstrated that the impact of changes in surface features on priming in word

fragment completion were diminished by increasing the allotted response time,

and asserted that perceptual and conceptual processes may in fact contribute to

word stem completion in a serial fashion.

It lies beyond the specific aims of the current thesis to differentiate between

different views of how priming is supported by underlying representations, or to

separate out the contribution of perceptual and conceptual aspects of repetition

priming. For the current purpose, it is merely important to note that repetition

priming within the confines of a standard recognition task may result from a

32



Chapter 1. Memory

combination of any, or all, of these factors. However, the preceding discussion

of repetition priming does provides some reasons to think that episodic memory

and priming phenomena may be very closely related. The following section will

introduce behavioural and neuropsychological evidence supporting the view that

common processes may underlie both priming and recognition, before going on

to describe the nature of potential relationships between priming, familiarity and

recollection.

1.3.2 Recognition and priming

Some dual-process theories suggest that common processes may underlie recog-

nition memory and priming on implicit memory tests (Jacoby & Dallas, 1981;

Mandler, 1980). One line of evidence that supports the view that priming can

influence recognition performance comes from studies investigating the impact of

processing fluency. The notion of processing fluency refers to the subjective expe-

rience of the ease with which information is processed, and it has been shown to

exert an influence on reasoning and judgement across a broad range of dimensions

(for a review see Alter & Oppenheimer, 2009). For example, words presented in

a font that makes them easy to read are subsequently rated as more familiar

than those presented in a difficult font (Reber & Zupanek, 2002). In essence, any

factor that makes items easier to process, results in a subjective experience of

fluency, which in turn influences judgement independently of the actual content

of cognition (Schwarz et al., 1991).

Before introducing evidence supporting the view that fluency induced by prim-

ing contributes to recognition, it is necessary to provide a brief overview of one

method that is employed to capture the contribution of priming within the con-
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fines of a standard recognition task. Repetition of items from study to test during

recognition testing means that all studied items are potentially primed, making it

impossible to separate out the respective contributions of priming and recognition

memory. Employing masked priming during the test phase of a standard recog-

nition task facilitates assessment of the contribution of priming in the absence of

explicit engagement. Masked priming involves very brief presentation of prime

items, which are obscured by the presentation of a pattern mask occupying the

same visual space before and/or after the presentation of the prime. Comparison

of old and new items preceded by either a matching or unrelated prime at test

facilitates separation and comparison of the respective contributions of priming

and recognition memory.

In the context of explicit memory experiments, fluency induced by masked prim-

ing increases the probability that a primed item will be classified as studied at

test, irrespective of whether the item was actually studied, producing an increase

in hit and false alarm rates. Response bias accounts of priming, based on signal

detection theory, have been proposed to explain the impact of fluency in recog-

nition tests, and assert that fluency induces a more liberal bias (e.g., Ratcliff &

McKoon, 1996; Thapar & Rouder, 2001). As noted above, priming can operate

on many levels of representation, facilitating performance based on an increase in

fluency at orthographic, phonological, lexical or semantic levels (for a review see

Alter & Oppenheimer, 2009). A growing body of evidence supports the view that

fluency signals induced by different forms of priming can contribute to explicit

recognition (e.g., Cleary, 2004; Jacoby & Whitehouse, 1989; Parkin et al., 2001;

Westerman, Lloyd & Miller, 2002; Westerman, Miller & Lloyd, 2003; Whittle-

sea, Jacoby & Girard, 1990), and the remainder of this section will provide an

overview of the evidence to date.
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In an early behavioural study that has set the tone for research in this area, Jacoby

& Whitehouse (1989) employed masked priming during an explicit recognition

test, where the prime was either a repetition of the upcoming target (primed)

or a different word (unprimed), and contrasted conditions where participants

were aware or unaware of the presence of the prime. The authors found that the

probability of an old judgement to the target word when it matched the preceding

prime was increased when participants were unaware of its presence, but when

participants were made aware of the presence of the prime this pattern of bias was

reversed. These findings were interpreted as a misattribution of fluency created

by masked repetition to the study phase when participants are unaware of the

source of fluency. Moreover, the findings were taken as further support for the

view that attribution of processing fluency to a prior encounter leads to the feeling

of familiarity (see also Jacoby & Dallas, 1981; Jacoby & Kelley, 1987).

In line with this early study, the bulk of the evidence to date supports the view

that fluency manipulations selectively impact familiarity (e.g., Rajaram, 2000;

Miller, Lloyd & Westerman, 2008; Woollams, Taylor, Karayanidis & Henson,

2008). For example, Rajaram and Geraci (2000) demonstrated using the RK pro-

cedure that presenting test items in a semantically appropriate context increased

familiarity but had no effect on recollection. More recently, it has been claimed

that procedures used to estimate the contribution of familiarity and recollection

may prevent detection of the impact of fluency manipulations on recollection

(Higham & Vokey, 2004), particularly in studies employing a standard RK pro-

cedure (see Chapter 6 Section 6.1, for discussion of these issues). Some recent

evidence supports this view, demonstrating that fluency manipulations can also

increase the proportion of illusory recollection (e.g., see Kurilla & Westerman,

2008; Brown & Bodner, 2011).
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One undesirable aspect of the findings reported above is that it is difficult to see

how priming can be classified as an implicit memory phenomena per se, given that

fluency manipulations of this sort demonstrate an increase in the proportion of

illusory recognition as well as an increase in the hit rate, reducing discrimination.

This difficulty can be alleviated by claiming that priming manipulations of this

sort encourage reliance on fluency driven by facilitated access to abstract lexical

representations of test items, rather than episodic representations. Despite this

objection to the preceding evidence, there is tentative evidence to support the

view that recognition on some occasions can proceed in the absence of awareness,

leaving open the possibility of accurate implicit recognition that may be driven

by repetition induced fluency. For example, Voss, Baym and Paller (2008) em-

ployed kaleidoscope images that were difficult to verbalize, and an attentional

manipulation at encoding in a two-alternative forced choice recognition test with

similar foils. The findings demonstrated that recognition was enhanced under di-

vided attention and that highly accurate recognition (80%) at test occurred in the

absence of introspective awareness of explicit retrieval. Overall, therefore these

findings can be taken as support for the view that implicit recognition, based on

repetition-induced perceptual fluency, can contribute to performance under cer-

tain circumstances, Importantly however the existing evidence does not provide

unequivocal evidence of interactions between priming and explicit memory.

1.3.3 Summary

The preceding sections have provided a brief introduction to different forms of

priming, including a description of the tasks employed to measure different vari-

eties of priming. As the current thesis employed repetition priming, a selective
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overview of the evidence and a brief description of theoretical accounts of repeti-

tion priming was then provided, before focusing on evidence demonstrating that

priming can influence performance on tests of explicit recognition. Further discus-

sion of potential relationships between priming and recognition will be postponed

until after a comprehensive introduction to one specific method that has greatly

contributed to their discovery - Event-Related Potentials (ERPs).
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Event-Related Potentials

ERPs provide a direct measure of neural activity related to a specific event and

are derived from EEG (electroencephalogram), which measures the electrical ac-

tivity generated by the brain from electrodes placed on the scalp (Coles & Rugg,

1995). ERPs are constructed by averaging together sections of the EEG, which

are time-locked to an event, usually the presentation of a stimulus. Averaging

the EEG reduces background noise and reveals the signal of interest, the ERP,

which provides an index of processing related to that specific type of event. An

individual ERP is a waveform showing voltage changes over a specified period of

time (an epoch); in practice average waveforms are produced for multiple events

of interest and then compared and analysed. By allowing comparisons between

different experimental conditions, ERPs allow researchers to isolate and study the

cognitive processes associated with performance on a specific task. In comparison

to fMRI and PET, the spatial resolution of ERPs is poor because it is difficult to

identify precisely which regions of the brain are active during processing (Luck,

2005). In contrast ERPs are particularly useful for assessing the timing of cogni-

tive processes, providing millisecond temporal resolution. This chapter provides
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a general introduction to the ERP technique from the generation of electrical

fields in the brain, to recording, processing and analysing the the signal, followed

by detailed discussion of the inferences that can be drawn from the resulting

ERPs.

2.1 Neural origins

To gain a full understanding of the benefits and limitations of the ERP technique

it is important to understand the neural origin of the signal recorded at the

scalp. The electrical activity that comprises the electroencephalogram is mostly

generated by underlying neural activity; however the structure of the brain and

the orientation of neurons play a critical role in determining the activity that can

be detected at the scalp. The following sections outline some of the key factors

determining the nature of activity that can be detected by electrodes placed on

the surface of the scalp.

2.1.1 Electrogenesis

Electrogenesis is the production of electrical fields from the activity of single

neurons or populations of neurons in the brain. This section will describe the

way in which individual neurons generate these electrical fields, before moving

on to discuss limitations imposed by measuring these signals from the surface of

the scalp. Figure 2.1 shows the basic structure of a typical neuron containing a

cell body (soma), dendrites and an axon. Neurons are electrically excitable cells

that communicate via electrical and chemical signals exchanged across a synapse,

where these signals are passed from the axon terminals of the presynaptic cell
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Presynaptic neuron 

Dendrites 

Nucleus 

Soma (cell body) 

Synapse 

Axon Myelin sheath 

Signal 
direction 

Postsynaptic neuron 

Synaptic terminal  

Figure 2.1: Neuron structure. Neurons comprise of a cell body, nucleus, dendrites and
axon. Incoming activation is passed to the cell body via dendrites, the cell body generates
an action potential that is transmitted along the axon to the synaptic terminals (adapted
from Morris & Maisto, 2002).
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to the dendrites of the postsynaptic cell. Action potentials play a central role in

this cell-to-cell communication and are generated by voltage-gated ion channels

embedded in the cell membrane. The cell membrane serves as a barrier between

intracellular and extracellular fluids, controlling the flow of ions in and out of the

cell, and this flow of ions determines the difference in voltage between the inside

and the outside of the cell.

Action Potential B 

Ion exchange 

Resting Potential A 

Semipermeable membrane  

Action Potential B 

Ion exchange 

Resting Potential A 

Semipermeable membrane  

Negatively charged ion 

Positively charged ion 

Key: 

Figure 2.2: Communication within a neuron. A: Neuron in resting state with negatively
charged ions in intracellular fluid. B: Excitation above threshold at the axon hillock opens
ion channels creating depolarization (adapted from Morris & Maisto, 2002).

Figure 2.2 shows the resting and action potentials in an individual neuron. In

resting state, separation of positive and negative charges by the cell membrane

maintains an electrical potential of around -70 mV, driven by ion pumps which

ensure that the concentration of positively charged sodium ions is maintained at

a low level. An action potential is a rapid fluctuation of up to 100 mV in elec-

trical potential across a cell membrane, that lasts in the order of 1ms, before the

membrane returns to resting state. When the threshold of excitation (around -55

mV) is exceeded at the axon hillock an action potential is produced, sodium chan-

nels open and allow sodium ions to enter into the negatively charged intercellular

fluid. The action potential triggers a chain reaction, voltage changes in one area

of the neuron will elicit changes in nearby areas, allowing the electrical current
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to propagate along the axon to the synaptic terminals. When an action potential

reaches the synapse, opening ion channels allow an influx of calcium ions, driving

the release of neurotransmitters. These neurotransmitters bind to receptors on

the postsynaptic cell and the opening of ion channels trigger postsynaptic poten-

tials. Action potentials are intracellular, producing transfer of information within

a single neuron, whereas postsynaptic potentials are extracellular and represent

transfer of information between neurons.

While it is possible to measure action potentials directly using single-unit record-

ings, where micro-electrodes are inserted into the brain, these changes in potential

are not generally measurable at the scalp. Basically, the parallel orientation and

lack of exact synchrony of firing across neurons entails that action potentials are

likely to cancel each other out, producing a signal that is too weak to be reli-

ably detected by scalp electrodes (Luck, 2005). In contrast to action potentials,

postsynaptic potentials are present in the dendrites and cell body and occur

instantaneously, lasting up to hundreds of milliseconds. Specific spatial align-

ments of neurons allows summation of postsynaptic potentials, which can then

be recorded at the scalp and this will be discussed in the following section.

2.1.2 Neural activity at the scalp

When an action potential reaches the dendrites of a postsynaptic cell, positive

current flows into the dendrites, generating negativity in the extracellular fluid.

This negativity causes current to flow out of the cell body, creating positivity at

the cell body. Negativity at the dendrites and positivity in the cell body form a

small dipole, which represents the sum of inputs to an individual neuron, rather

than its output. The dipole produced by a single neuron is not measurable at the
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scalp, but when synaptic input to thousands of neurons is similar and they share

a specific orientation, the dipoles of these populations sum together, producing

strong voltage signals at the scalp. The main determinants of the strength of

measurable dipoles are the distance from the scalp and the relative configuration

of the active neurons (Allison, Wood & McCarthy, 1986). It is important to note

for the purposes of interpretation that there is neural activity that cannot be

picked up at distance from the scalp.

Figure 2.3: Orientation of neural populations. In an open field (A) cells are aligned in
parallel allowing summation. In a closed field (B) cells are randomly oriented and have a
tendency to reduce or cancel out the signal. Open-closed fields (C) fall somewhere between
these orientations and can be activity dependent (adapted from Allison et al., 1986).

Figure 2.3 shows the possible orientations of populations of neurons. When neu-

rons are aligned in parallel such that the positive and negative sides of the dipoles

are oriented in the same direction, this is known as an open field and the effects

will sum together to produce a relatively strong dipole. By contrast, where neu-

rons are randomly oriented this is known as closed field. When cells are oriented

more than 90 degrees with respect to each other the signal will be reduced, can-

celling out completely at an orientation of 180 degrees (Luck, 2005). In reality

the orientation of the cells will be somewhere between these two states, known as

open-closed fields. Importantly, even a fixed set of neurons will produce different

voltage patterns at the scalp depending on the activity of the individual neurons

involved.
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Some brain structures, such as the cerebral cortex, contain neurons that support

summation of their electrical activity, sharing the same orientation and running

perpendicular to the surface of the cortex. However, other structures, such as

the cerebellar cortex, contain orientations of cells that make it difficult or near

impossible to detect activity at the scalp (Luck, 2005). Reliance on summation

to measure potentials from distant scalp electrodes determines that only a certain

proportion of neural activity is detectable by EEG and it should also be clear that

the absence of a difference in activity across experimental conditions does not

necessitate that differences do not exist, it merely implies that they may not be

measurable at the scalp (Coles & Rugg, 1995). In addition to these considerations

of synchrony and orientation, the conductive properties of the brain and skull also

impact the ability to accurately identify the spatial location of neural activation

with scalp electrodes.

Electrical activity from dipole sources reaches the scalp because the brain, skull

and scalp act as volume conductors. The skull is a less efficient conductor than

brain tissue, however, leading to attenuation and spreading of potentials over the

scalp (Koles, 1998). As a result it is difficult to identify the precise source of

neural activation present at the scalp, which could be the result of a number of

different underlying intracerebral sources. This uncertainty about the origin of

the neural signal is known as the “inverse problem”, making ERPs less than ideal

for establishing the anatomical structures involved in cognition. Despite this lim-

itation, the distribution of ERP effects can still provide useful information, based

on the assumption that two or more functional states cannot be associated with

the same underlying physical state, which entails that the same functional state is

not described by qualitatively different patterns of neural activity (Rugg & Coles,

1995). When experimental manipulations produce differences in topographic dis-
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tribution, this can either reflect the engagement of different sets of neural genera-

tors, or that the same neural generators are engaged but to a different degree. It

is also important to note that the absence of topographic differences does not ex-

clude the possibility that the generators differ across conditions, it merely implies

that the difference was not detectable at the scalp.

2.2 Recording ERPs

The preceding sections have described how neural activity produces changes in

electrical fields in the brain and how this electrical signal propagates to the scalp.

In the following section, procedures for recording these potentials will be de-

scribed. The term voltage refers to the difference in electrical potential between

two different points in an electrical field and ERP waveforms are a measure-

ment of this difference between an active and a reference electrode plotted as a

function of time. The recording of variation in voltage over time is called the

electroencephalogram (EEG) and its amplitude varies between ± 100 µV, with

a frequency range up to 40 Hz or more (Coles & Rugg, 1995). In addition to

an active electrode and a reference electrode, a ground electrode is also used, to

separate background noise from the brain activity of interest. In the simplest

recording, an active electrode would be positioned at the location of interest, a

reference electrode would be positioned at a different location and a ground elec-

trode could be positioned anywhere on the participant’s head or body. Activity

picked up at the ground electrode is eliminated by subtraction, leaving only the

voltage between the active site and the reference point. Memory experiments

generally employ somewhere between 16 and 128 active electrodes, all referenced
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to a single electrode location. Before discussing placement of the reference, a

brief description of active electrodes and their positioning will be provided.

2.2.1 Active electrodes

Scalp electrodes are small conductive metal discs attached to a wire and are

normally made out of silver and have a thin silver-chloride coating (Ag/AgCl).

The choice of material is driven by the need to have a metal that does not

lose conductance quickly (via corrosion) and that minimises attenuation of low

frequency signals (Luck, 2005). Electrodes are connected to the scalp indirectly

via a conductive gel, which maintains the integrity of the signal recorded at each

electrode over time. As a general rule, current flows along the path of least

resistance. As a result it is critical that impedance (impediment to current flow)

between the scalp and each electrode site is stable and kept to a minimum to

reduce the risk of contamination from environmental noise. To achieve this the

surface of the scalp is gently abraded to remove the outer layer of dead skin cells

at each electrode. In the experiments reported in this thesis, impedance was

reduced to below 2 kΩ prior to the start of each recording phase.

To investigate the topography of ERP effects across the scalp it is necessary to

record from a montage of active electrodes. The most common system for the

placement and nomenclature of electrodes is the 10/20 system (Jasper, 1958).

The 10/20 system assumes that the skull is symmetrical and uses cranial fea-

tures to locate electrodes on the scalp (see Figure 2.4). Basically, the measured

distances from nasion to inion, and between the preaurical points in front of the

ears, define latitudinal and longitudinal lines across the scalp. To ensure maxi-

mal coverage, electrodes are positioned at 10% and 20% points with respect to
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Figure 2.4: International 10/20 system. Electrode placement shown from the left (A)
and above the head (B). Electrodes are positioned at 10% and 20% points with respect to
latitudinal and longitudinal contours (adapted from Sharbrough et al., 1991).

these latitudinal and longitudinal contours. Advances in EEG hardware have led

to an extension of this system to accommodate a larger number of electrodes,

positioned at 10% points in the spaces between contours in the standard con-

figuration. This extended version of the 10/20 system was used to record all of

the data reported in this thesis. As well as defining electrode placement, the

10/20 system also provides standard naming conventions for electrodes. Each

electrode is labelled with a letter that refers to location and a number to denote

hemisphere. For example, in Figure 2.4 the letters F, T, C, P and O represent

Frontal, Temporal, Central, Parietal and Occipital locations, even numbers de-

note the right hemisphere and odd numbers denote the left hemisphere, while the

letter ‘z’ is used to label midline electrode sites.
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2.2.2 Reference electrodes

As mentioned above, ERP waveforms are a measurement of the difference be-

tween active sites and a reference electrode. When recording from a montage of

active electrodes, it is crucial to use a common reference point so that it con-

tributes equally to active electrodes, ensuring that the differences between active

sites will be informative (Dien, 1998). Ideally, the chosen reference site should

be as neutral as possible to avoid introducing bias to the recording, although it

is important to note that no reference point can really be considered electrically

neutral, regardless of its distance from the head. As a result it is best to choose a

site that is convenient and comfortable for the subject and that is not biased to-

ward one hemisphere (Luck, 2005). It is common practice in memory research to

place reference electrodes on the mastoid protrusion behind both ears (avoiding

a hemispheric bias). This is known as a ‘linked mastoid’ reference. In practice,

physically linking the left and right mastoids with a wire can distort the distribu-

tion of voltages and can reduce true hemispheric differences. As a result data are

often recorded referenced to the left mastoid and then re-referenced offline using

the average of the left and right mastoid sites. All of the data reported in this

thesis have been referenced in this way to avoid the aforementioned issues and to

allow comparison with previous memory research.

2.2.3 Amplifying, digitising and filtering

Modern research requires collection of huge amounts of data that must be digitised

to allow the data to be processed and stored by computers. The raw analogue

signal is amplified and transformed into a multi-level digital signal, where small

changes in amplitude are measured at specific points in time. An Analog-to-
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Digital Converter (ADC) samples these voltage fluctuations in the EEG, and it

is crucial that the ADC device provides sufficient resolution to avoid distortion of

the signal. The resolution (e.g., 12 bits) specifies the number of different voltage

values (e.g., 4096) that can be produced over a range of voltages (e.g., ± 5V). A

key problem with digitisation is aliasing, which can occur if the signal contains

high frequencies and the sampling rate is set too low, introducing low frequency

artifacts. To capture all of the analogue signal, Nyquist theorem dictates that

the sampling frequency should be at least twice the highest frequency obtained

in the signal (Luck, 2005). To further reduce the possibility of aliasing, ampli-

fiers typically include a low pass filter to attenuate arbitrarily high frequencies.

High-pass filters are also applied to the data to attenuate low frequencies, which

commonly result from gradual voltage shifts caused by skin potentials.

2.3 From EEG to ERPs

Neuronal activity related to the cognitive processing of events produces very

small changes in voltage (5-10µV) and as a result are difficult to distinguish from

background noise in the EEG (Kustas & Dale, 1997). Further processing is re-

quired to extract the signal of interest from this background noise. Noise in the

EEG produced by muscle activity, ocular artifacts, voltage drift, environmental

factors and amplifier saturation must all be dealt with to enable reliable iden-

tification of ERP effects. It is important to note that post-hoc procedures to

correct for sources of noise in the EEG should never be considered a substitute

for recording clean data from the outset. Most sources of background noise can

be significantly reduced at recording. For example, participants can be instructed

to control movements during the epoch of interest, eliminating muscle artifacts at
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source. To minimise data loss due to artifacts and to reduce the amount of data

correction required, critical trials in the experiments reported in this thesis were

self-paced. This allowed participants some freedom to move and blink between

trials as required, making them more comfortable over the duration of the experi-

ments, and ensuring that the majority of artifacts would fall outside the epoch of

interest. The following section describes the methods used to correct for artifacts

remaining in the signal, despite the adoption of good data collection practices,

before discussion of the averaging procedure and the signal-to-noise ratio.

2.3.1 Artifact correction

Eye movements and blinks are a major source of artifacts in EEG and distort the

signal mainly at frontal electrode sites. While it is possible to ask participants to

avoid moving their eyes and blinking during the epoch of interest, participants

vary in their ability to control these movements and the task of monitoring them

can interfere with brain activity related to the critical task. During recording

Electro-Oculogram (EOG) data are collected, measuring the difference in po-

tential between electrodes placed above and below the eye (VEOG) to capture

blinks, and between electrodes placed on the outer canthi of both eyes (HEOG)

to capture saccades. One way to correct the data would be to inspect these chan-

nels and remove trials containing blinks prior to averaging, but this approach

would lead to a high rate of trial loss. As a result, most researchers employ EOG

correction procedures based on regression techniques to remove the contribution

of eye movements.

Correction procedures assume a linear relationship between EOG and EEG and

compute regression coefficients for each active electrode, which are then used to
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remove a proportion of EOG from each active electrode site. One limitation

of this form of correction is that EOG picks up some neural activity alongside

ocular activity, which will also be removed from the data (Luck, 2005). If the

ERP effects of interest are observed at fronto-polar electrodes, closest to the eyes,

it is also possible that this correction procedure may produce artificial data. A

regression procedure was employed to correct the data reported in this thesis

for ocular artifacts, but this limitation was not considered to be a significant

problem due to the locations of the effects of interest. As well as the reduction

of ocular artifacts, EEG data are also processed to reduce the effects of other

common sources of noise in the signal. Muscle activity, tension and electrical

noise from equipment can all introduce high frequency noise to the data, and

while the low-pass filter attenuates some of these sources of noise, muscle activity

and tension can continue to be a problem. It is common practice to inspect the

raw EEG prior to epoching and to reject trials that contain excessive muscle or

tension artifacts. In addition to this, epochs can also be systematically checked

for artifacts by setting a limit to the amount that active electrodes may deviate

from zero. For the experiments reported in this thesis, epochs were rejected when

the deflection in the signal was greater than ±100µV.

Voltage drift is another common EEG artifact and refers to a gradual increase

in voltage over time, introducing low frequency noise to the signal. A slow drift

in voltage can be caused by changes in skin impedance during recording as a

result of participants sweating, or when excessive movement results in a change

in electrode positions. High pass filtering reduces the extent of drift picked up

in the recording, but if still present in the data, drift can obscure the effects

of interest. As with muscle activity and tension, epochs can be systematically

checked for drift by setting an upper limit which defines when an epoch contains
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excessive drift and should be rejected. In contrast to the approach applied to

detect muscle artifacts, where epochs are rejected when they differ from zero by a

specified amount, drift detection tracks changes in the signal within each epoch,

based on the difference in amplitude between the first and last data points. For

the experiments reported here, epochs were rejected when drift exceeded 75µV

over each 2000ms epoch. After epochs containing artifacts have been removed,

the data are ready for averaging to form ERPs and the details of the averaging

procedure will be described in the next section.

2.3.2 Averaging

EEG that has been corrected for artifacts, as described above, still contains a

proportion of background noise and the most commonly used technique for ex-

tracting the signal of interest from the remaining noise is averaging. To form

ERPs, EEG is recorded over multiple trials time-locked to an event of interest,

which is usually the presentation of a stimulus, and then the data are averaged at

each time point within the epoch to produce an ERP related to a specific event.

Averaging events over a large number of trials improves the signal-to-noise ratio

(SNR), resulting in waveforms that provide a clearer view of the signal of interest.

In essence, the SNR increases as a function of the square root of the total number

of trials contributing to the average, thus adding more trials improves data qual-

ity but the benefit of adding trials reduces as the overall number increases. The

experiments reported in this thesis used a minimum criterion of 16 artifact trials

per participant in each condition to ensure a good signal-to-noise ratio.

Two important assumptions support the signal averaging technique. Firstly, it

is assumed that noise present in the signal is random and uncorrelated with the
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signal of interest. Secondly, it is assumed that the signal of interest is identical

across individual trials (Luck, 2005). In reality, both of these assumptions are

rarely supported. For example, it is likely that the signal of interest could be

absent on some trials if participants failed to attend to the stimulus presenta-

tion. In practice, variability in amplitude across trials does not present a real

problem because the pattern of voltage over time is plotted relative to activity

over a pre-stimulus baseline (usually 100-200ms), and as a result, differences be-

tween conditions can still be considered informative. A more difficult problem

to address is a difference in the latency of the signal of interest between trials

(known as jitter), which can reduce the amplitude of peaks and distort average

waveforms. It is important to note that the onset time of a difference in an aver-

age represents the earliest onset time from all contributing waveforms, and may

not be representative. The impact of latency jitter can be minimised by using

the mean amplitude over a specified time window to perform analyses, provided

that the chosen time window captures the entire duration of the effect of interest

(Luck, 2005), and this approach was adopted for all ERP analyses reported in

this thesis.

2.4 Inferences from ERPs

Once the data have been corrected for artifacts, it must be interpreted in light

of the limitations imposed by the recording procedure and the post-hoc correc-

tions applied. A fully processed ERP waveform consists of a series of peaks and

troughs, which reflect the summation of underlying components that contribute

to processing the event of interest. Detecting components in ERP waveforms

relies on the assumption that there is some form of one-to-one mapping between
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patterns of neural activity and cognitive functions (Rugg & Coles, 1995). Compo-

nents have traditionally been characterized by their polarity, amplitude, latency

and distribution over the scalp, but peak components related to specific cognitive

functions can be difficult to isolate due to the fact that multiple cognitive oper-

ations often proceed in parallel. An alternative approach is to carefully design

experiments to isolate the process of interest by subtraction, where the com-

ponent is defined as the difference in activation patterns between two or more

experimental conditions. This approach has clear advantages in situations where

component overlap is likely, but is supported by assumptions that must be fully

understood to facilitate interpretation.

The subtraction method requires that the latency of equivalent components in

separate conditions of interest are identical. Differences in the latency of the same

components would produce separate peaks in the waveform, incorrectly suggesting

that the underlying functions differ qualitatively (Coles & Rugg, 1995). It is also

critical when adopting this approach to ensure that experiments are designed

in a way that allows the principle of ‘pure insertion’ to be met. In essence,

this principle dictates that cognitive processes are additive and do not interact

(Sternberg, 1969). In reality, this principle is often violated in brain imaging

research (Friston et al., 1996); however it is important to note that comparisons of

behavioural measures also depend on this principle. The experiments reported in

this thesis were carefully designed to isolate the processes of interest (see chapter

4), and findings were interpreted in light of potential limitations. The following

sections discuss the types of inference that can be drawn from ERPs. Inferences

can be drawn about the degree of engagement, timing and functional equivalence

of cognitive processing, based on between condition differences in amplitude, time

course and the distribution of effects over the scalp (Otten & Rugg, 2005).
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2.4.1 Amplitude, latency and topographic differences

When ERP waveforms differ only in amplitude or magnitude across experimental

conditions, it can be inferred that the experimental manipulation has engaged the

same cognitive process across conditions but to a different strength or degree. It is

important, when observing a change in the degree of engagement, to ensure that

this difference is not being driven by an unequal proportion of trials, or differences

in timing, across conditions. As noted above latency jitter, if present in one condi-

tion to a greater degree, could lead to a spurious difference in peak amplitude, but

area measures are less likely to be affected, provided that the time window chosen

captures the full extent of the effect. The assessment of differences in onset latency

takes advantage of the high temporal resolution of ERPs, and can provide an

upper-bound estimate of the time it takes the brain to differentiate between two

or more experimental conditions. However, it is important to note that earlier dif-

ferences may be present but not be measurable at the scalp (Otten & Rugg, 2005).

Qualitative differences in the topographic distribution of effects between condi-

tions reflect the operation of distinct cognitive processes, based on the aforemen-

tioned assumption that specific cognitive processes are associated with invariant

underlying patterns of neural activity. However, the absence of a difference in to-

pography does not imply the engagement of identical cognitive processes because

voltages at the scalp can be compatible with an infinite number of possible under-

lying neural generators. In addition, it remains possible that differences in the un-

derlying neural generators are present, but cannot be detected at the scalp.
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2.5 Analysis of ERPs

This section provides an overview of statistical analyses used to assess the reliabil-

ity of the ERP data reported in this thesis. After visually identifying differences

in the waveforms, the data were quantified by calculating the mean amplitude

of the difference over the time windows of interest, relative to the pre-stimulus

baseline (100ms). Although the best statistical test to use is entirely dependent

upon the design of the experiment, the most common test applied is the repeated

measure analysis of variance (ANOVA), which was used in the current thesis and

will be described in the following section.

2.5.1 Analysis of Variance ANOVA

Repeated measures ANOVA is a parametric test used to compare means from

the same participants (within-subject) across experimental conditions. Repeated

measures testing assumes quantitative data that are normally distributed and

that the data does not violate the assumption of sphericity. The assumption of

sphericity requires that the variances in different independent variables are equal

and that correlations between variables are also equal. In practice, ERP data

often violate this assumption of sphericity, because data from adjacent electrodes

are inherently more correlated than data from more distant electrodes. Violation

of the assumption produces spuriously low p-values, inflating the probability of

type I error and leading to false rejection of the null hypothesis. However, viola-

tions of the sphericity assumption can be dealt with for ERP data by applying a

Greenhouse-Geisser correction, which reduces the chance of Type I error by de-

creasing the degrees of freedom and as a result increasing the p-value (Greenhouse

& Geisser, 1959).
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2.5.2 Amplitude and topographic analyses

The ANOVA model calculates p-values for each factor included in the analysis,

and as a result, increasing the number of factors inflates the probability that a fac-

tor will reach significance by chance. One approach to counter the large number

of electrode factors in ERP research is to compute an average collapsed across

a number of individual sites. However, for amplitude or magnitude analyses,

electrode sites are normally sub-divided into factors representing different brain

regions. For example, electrodes could be grouped into factors of location (frontal,

central, parietal), hemisphere (left, right) and site (superior, mid, inferior) to fa-

cilitate characterization of effects and to guide follow-up analyses. Where initial

analyses suggest the presence of differences in amplitude or magnitude it is crit-

ical to establish whether this change is driven by equivalent or distinct cognitive

processes, by testing for differences in topographic distribution.

Topographic analyses of ERP data using repeated measures ANOVA are not

straightforward. In essence, the ANOVA model is additive (assumes a constant

change in factors) whereas ERP data are multiplicative (factors change unevenly).

As a result, an interaction between condition and electrode can be produced by a

change in the magnitude of a single generator, rather than activation of different

underlying generators. Therefore, before submitting ERP data for topographic

testing by ANOVA, the data must be rescaled to correct for amplitude differences

across conditions, whilst preserving the relative pattern of activity between con-

ditions to avoid this issue. The most common method used to rescale ERP data

is the max/min method, which operates by identifying the maximum and min-

imum value for each condition across subjects, then subtracting the minimum
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from each data point and dividing it by the difference between minimum and

maximum values (McCarthy & Wood, 1985).

Some authors argue that the max/min procedure fails to address variance be-

tween conditions and can lead to an increase in type II errors (Urbach & Kutas,

2002). In essence, the objection is that the max/min rescaling method may be

too conservative. It has been argued that rescaled data can be used to check

for the existence of differences in scalp distribution, but that these effects should

be characterized by referring to the original data (Wilding, 2006). The data in

this thesis were rescaled using the max/min method, accepting that the approach

may be conservative, and characterization of effects was limited to the original

data.

2.6 Summary

ERPs reflect neural activity associated with the processing of a stimulus and

are extracted from continuous EEG recorded from electrodes placed on the scalp.

Prior to averaging, the data must be amplified, digitised, filtered and corrected for

the contribution of unwanted artifacts. ERP waveforms can then be characterized

in terms of their amplitude, latency and distribution over the scalp, providing

information about the neural processing related to specific cognitive events. The

preceding sections have introduced the ERP technique, from the neural origins

of the signal, to the inferences that can be drawn from the data, paying special

attention to the limitations inherent in measuring scalp potentials. The following

sections will provide a review of findings from the ERP technique pertaining

to explicit recognition and implicit priming, before setting out the aims of the

current thesis in detail.
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Recognition and ERPs

ERPs allow different forms of memory to be examined directly, employing ‘neuro-

signatures’ of memory-related processing as a way to measure the contribution

of each form of memory to performance. Early electrophysiological investiga-

tions largely proceeded in the same way as behavioural and neuropsychological

research, focusing on identifying neural correlates of explicit recognition and prim-

ing by examining these forms of memory in isolation. More recently, however,

there has been a growing appreciation in the field of the need to move beyond this

approach, and to characterize how multiple memory signals contribute to recog-

nition performance (e.g., Voss & Paller, 2008). Importantly, it has been claimed

that the operation of implicit memory during explicit memory tests presents a

significant confound for ERP investigations of recognition, limiting theoretical

progress by contaminating neural correlates of explicit retrieval (Voss & Paller,

2007). The following sections will provide an overview of findings from studies

investigating recognition in isolation, before providing a review of the evidence

from studies that have attempted to move beyond this approach, by obtaining

concurrent measures of implicit priming and explicit recognition.
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3.1 Explicit retrieval

To isolate the contribution of retrieval processes, ERP studies of recognition often

draw upon comparisons between the activity elicited by items correctly classified

as ‘old’ (i.e. studied) and items correctly classified as ‘new’ (i.e., unstudied).

Activity elicited by correctly rejected new items acts as a baseline; new items

that have not been studied cannot elicit retrieval as they have not been encoded.

The difference in activity between the baseline new items and the retrieval of

old items provides an index of the neural activity associated with successful re-

trieval, including the processes of recollection and familiarity. The ERP old/new

effect is characterised by the waveforms for correctly recognised old items showing

greater positivity than the waveforms for correctly rejected new items. By mak-

ing comparisons between different experimental conditions, and using different

manipulations of memory, ERPs can be used to examine the pattern of cognitive

processes associated with performance during normal functioning. ERP studies

using this method to assess recognition memory have largely demonstrated that

the neural correlates associated with familiarity and recollection are distinct in

function, spatial location and time course.

A large number of studies report an early onsetting frontal old/new effect that

has been related to familiarity, followed by a parietal old/new effect that has

been related to recollection (for reviews see Friedman & Johnson, 2000; Rugg &

Curran, 2007). The mid-frontal old/new effect (also known as the FN400 effect)

is represented by more positive-going waveforms for hits compared to correct

rejections, an effect that is maximal bi-laterally at frontal sites, with an onset

time of around 300ms, and has been found to vary with recognition judgements

based upon familiarity. In contrast to familiarity, recollection is associated with a
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positive going waveform, that onsets later, from around 500ms post stimulus pre-

sentation, and that is maximal over left parietal sites, known as the left-parietal

old/new effect. As such, the key features that allow dissociation of the neural

signatures of familiarity and recollection are that they differ in distribution across

the scalp and in their respective timing. Importantly, ERP evidence suggests that

the putative correlates of familiarity and recollection respond differently to the

same experimental manipulations that have been used to dissociate familiarity

and recollection in behavioural work.

A: Familiarity B: Recollection 

Figure 3.1: Neural correlates of familiarity and recollection. A: ERP waveforms and
topographic distribution for the early mid-frontal old/new effect (300-500ms), which has
been associated with familiarity. B: ERP waveforms and topographic distribution for the
later left-parietal old/new effect (500-800ms), which has been previously associated with
recollection (adapted from Rugg & Yonelinas, 2003).

Manipulations that have been found to differentially engage neural correlates of

familiarity and recollection include divided attention, response deadlines, pro-
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cessing fluency, forgetting rates and levels of processing. For example, Curran

and Friedman (2004) manipulated the retention interval between study and test;

they found that the left-parietal old/new effect was retained over longer intervals

than the FN400, which decreases in activity as a function of time. Rugg et al.

(1998) manipulated levels of processing at encoding and compared ERPs elicited

at retrieval for stimuli that had been encoded via shallow and deep processing.

The authors found that the FN400 effect was elicited in both conditions, while

the left parietal old/new effect was only present in the deep processing condition

(for a similar pattern see Figure 3.1). In another study employing a single word

recognition test, Woodruff, Hayama and Rugg (2006) found that the words par-

ticipants reported to be familiar in absence of recollection were associated with

mid-frontal activity but no parietal activity. In contrast, words reported to be

recollected were associated with the left-parietal old/new effect. The preceding

section has introduced the neural correlates of familiarity and recollection; the

following sections will provide a brief overview of additional ERP findings relating

to each process independently, and an introduction to late onsetting right-frontal

old/new effects that have also been reported in the recognition literature.

3.1.1 Recollection

As noted earlier, recollection is characterized as an effortful thresholded process

that supports retrieval of contextual information associated with a prior event.

In line with behavioural evidence, ERP studies employing the RK procedure have

demonstrated that ‘remember’ responses are associated with larger left-parietal

old/new effects than ‘know’ responses (e.g., Duarte, Ranganath, Winward, Hay-

ward & Knight, 2004). Stronger evidence supporting a link between recollection
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and the left-parietal effect comes from studies investigating the quality and degree

of contextual retrieval associated with correct recognition. For example, Vilberg,

Moosavi and Rugg, (2006) demonstrated that the size of the left-parietal effect

was modulated by the amount of recollected information, with larger amplitudes

associated with retrieval of a greater amount of contextual details. A similar

pattern of results has emerged from source memory tasks, which allow separation

of retrieval processing based on whether retrieval of contextual information is

successful or unsuccessful.

For example, Wilding (2000) investigated whether the magnitude of the left-

parietal effect was modulated by the number of accurate source judgements, and

found that correct recognition accompanied by two correct source judgements

exhibited larger left-parietal effects than those only receiving one correct source

judgement. One of a number of potential problems with source memory tasks

is that the absence of a correct source decision does not necessitate that recol-

lection has not occurred (e.g., Montaldi & Mayes, 2011). Participants may fail

to identify the intended source but may still recollect other contextual details

associated with the study episode, this is known as “non-criterial recollection”

(Yonelinas & Jacoby, 1996). Notwithstanding issues with source memory tasks, a

wealth of evidence supports the view that links between recollection and the left-

parietal effect are reasonably well founded (although see Yovel & Paller, 2004),

but links between the FN400 old/new effect and familiarity are currently more

controversial.
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3.1.2 Familiarity

In contrast to recollection, familiarity has been claimed to index the degree of

similarity between a current event and some event in our past experience, and is

generally considered to be an automatic graded process. The difficulty in under-

standing the nature of familiarity and the FN400 is in part driven by the range

of differential descriptions of the phenomena posited by dual-process models. For

example, familiarity has been described as an implicit memory phenomenon that

assesses the degree of processing fluency (Jacoby & Dallas, 1981), an assessment

of the strength of activation in lexical nodes (Atkinson & Juola, 1974), and a

quantitative assessment of memory strength based on signal detection theory

(Yonelinas, 2002). While there are subtle differences in dual-process descriptions

of familiarity, strength based accounts all suggest that neural signals of famil-

iarity should not only be present for previously encountered items, but also for

similar lures. Studies contrasting ERPs for studied items and similar lures have

identified the presence of comparable mid-frontal old/new effects, and this is of-

ten cited as the strongest evidence supporting a familiarity interpretation of the

FN400.

For example, Curran (2000) compared ERPs elicited by studied words and plural-

ity changed lures (i.e., truck vs trucks), based on the assumption that recollection

would be required to accurately discriminate between studied words and similar

lures, but that studied words and lures would both be more familiar than new

words. In line with this assumption, Curran found that mid-frontal old/new dif-

ferences for correctly classified studied words and incorrectly classified lures were

equivalent in magnitude and distribution (also see Curran & Cleary, 2003, for

similar findings with pictures). However, these findings are not entirely inconsis-
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tent with a very different theoretical interpretation, namely, a perceptual priming

account of the FN400. In essence, the high degree of perceptual overlap between

studied words and plurality reversed lures would be expected to be conducive

to perceptual priming, based on evidence demonstrating that perceptual priming

is strongest when physical features match between presentations (e.g., Schacter,

1990; Tulving & Schacter, 1990).

In response to this potential confound, Curran and Dien (2003) attempted to

differentiate between perceptual priming and amodal global-matching accounts

of familiarity in a follow up study by manipulating the modality of words be-

tween study and test (auditory, visual). They identified distinct old/new effects

for perceptual aspects of recognition and familiarity. The authors found an early

onsetting fronto-polar old/new effect (176-260ms) that was only present follow-

ing visual study, suggesting that this early effect was dependent upon the degree

of perceptual similarity. By contrast, mid-frontal old/new effects were equiva-

lent across study modalities, supporting an amodal global-matching view of the

FN400. While these findings tentatively suggest that the FN400 does not merely

reflect perceptual priming, they do not rule out a conceptual priming account,

as conceptual priming is thought to be largely insensitive to changes in modality

between study and test, operating at a higher level of abstraction (Wagner &

Koutstaal, 2002).

Studies employing conceptually related lures have also demonstrated that mid-

frontal old/new effects were comparable in magnitude for correctly classified stud-

ied words and incorrectly classified lures. For example, Nessler, Mecklinger and

Penney (2001) demonstrated that mid-frontal effects were equivalent in size for

accurate and false recognition. In addition, the authors demonstrated that the

presence of mid-frontal old/new effects for false recognition was contingent upon
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the nature of the encoding task, with encoding focused on item specific rather

than conceptual features eliminating mid-frontal effects for related lures. These

findings suggest that familiarity signals are largely influenced by conceptual rather

than perceptual fluency. In a later study, Nessler, Mecklinger and Penny (2005)

attempted to differentiate neural signals related to perceptual fluency, seman-

tic familiarity and recognition-related familiarity using famous and non-famous

faces. The authors demonstrated that mid-frontal old/new effects were present

between 300-450ms for semantic and recognition related familiarity, while per-

ceptual fluency was associated with a centro-parietal old/new difference during

the same time window, suggesting that mid-frontal old/new effects are sensitive

to conceptual and not perceptual processing.

3.1.3 Right-frontal old/new effect

In addition to mid-frontal and left-parietal old/new effects associated with fa-

miliarity and recollection, a number of studies have reported the presence of

a late onsetting right-frontal old/new effect during recognition memory experi-

ments (e.g., Hayama et al., 2008; Schloerscheidt & Rugg, 2004; Wilding & Rugg,

1996; Woodruff et al., 2006). The right-frontal effect onsets around 800ms post-

stimulus and often continues until the end of the recording epoch (see Figure 3.2).

Right-frontal effects were first reported in source memory experiments, where late

onsetting right-frontal effects were found to be larger for correct than for incor-

rect source judgements (e.g. Wilding & Rugg, 1996), suggesting that the effect

was involved in the retrieval of contextual information. However, more recent

evidence has suggested that right-frontal effects are not directly related to the

retrieval of source information or retrieval accuracy. A number of studies have
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failed to find right-frontal effects for correct source judgements (e.g. Cycowicz

& Friedman, 2003; Wilding & Rugg, 1997), and right-frontal effects have been

found in studies with no requirement for the retrieval of source information (e.g.

Düzel et al., 1997; Trott et al., 1999).

RF 

Figure 3.2: Right-frontal old/new effect. ERP waveforms and topographic distribution
for the late right-frontal old/new effect (around 800ms onwards), which has been associated
with monitoring the products of retrieval. (adapted from Hayama et al., 2008).

An alternative account of the functional significance of the right-frontal old/new

effect suggests that it reflects evaluation or monitoring of the products of retrieval.

For example Curran et al. (2001) contrasted good and poor performers during

a false memory study and found that right-frontal effects were only evident for

good performers, who also exhibited longer reaction times, indicating more careful

and deliberate decision making. More recently, Hayama et al. (2008) contrasted

right-frontal effects for recognition and semantic judgement tasks, demonstrating

that right-frontal effects were not necessarily linked to monitoring the products

of retrieval from memory. The presence of right-frontal effects for the semantic

judgement task led the authors to suggest that the right-frontal effect reflects

generic monitoring or decision making processes. While the exact functional

significance of the right-frontal effect remains a matter of debate, there is general

agreement that the right-frontal effect should be considered an index of post-

retrieval evaluation and monitoring processes.
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3.1.4 Summary

The preceding sections have provided an overview of findings from ERP stud-

ies investigating familiarity and recollection in recognition memory. Whilst the

relationship between recollection and the left-parietal old/new effect appears rea-

sonably well founded on the basis of the evidence reported above, the relation-

ship between FN400 old/new effect and familiarity remains contested. Impor-

tantly, differential descriptions of processing thought to support familiarity by

dual-process models suggests that feelings of familiarity can perhaps be multiply

determined by the outcome of implicit processing, and in particular by perceptual

and conceptual fluency resulting from prior exposure. Recently, it has even been

suggested that both perceptual and conceptual information can in fact combine

to support familiarity based recognition (Groh-Bordin, Zimmer & Ecker, 2006).

It is clear, given current uncertainty, that adequately characterizing the contri-

bution of implicit processing to recognition is vital for theoretical progress. The

remainder of this chapter will focus on evidence from ERP studies obtaining con-

current measures of implicit priming and explicit recognition, before setting out

the aims of the current thesis in detail.

3.2 Recognition and priming

Over the last fifteen years, the number of studies employing ERPs to isolate the

contributions of implicit priming and explicit recognition has grown exponentially.

This growth was initially inspired by a study published in Nature, demonstrating

that it was possible to isolate neural correlates of implicit and explicit memory

within the confines of a single experimental paradigm. Rugg et al. (1998) ma-
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nipulated the levels of processing at encoding and operationalized recollection by

comparing deep hits (correctly recognized old items from the deep task) and shal-

low hits (correctly recognized old items from the shallow task). Familiarity was

operationalized by comparing shallow hits and shallow misses (old items from the

shallow task that were not recognized). Finally, implicit memory was operational-

ized by comparing the activity elicited by shallow misses and correct rejections

(new items correctly identified as new), based upon the assumption that studied

items that are not recognized at test do not engage explicit memory.

The authors found that compared to new words, recently studied words elicited

activity in three functionally distinct neural populations. Conscious retrieval of

the stimuli was associated with ERP signals that are very similar to the neural

correlates of familiarity and recollection, identified in previous research. Around

300-500ms after the onset of the stimulus, ERPs were more positive at mid-frontal

sites for recognized words compared to new words and old words misclassified

as new, indexing familiarity. Between 500-800ms, ERPs were more positive at

left-parietal sites for deeply studied words compared to both new and shallowly

studied words, indexing recollection. By contrast, a distinct and earlier onset-

ting (300-500ms post-stimulus) parietal ERP effect was associated with implicit

memory. Critically, this effect was equivalent in size for deeply and shallowly

encoded stimuli, and was present regardless of whether or not the test item was

consciously recognized. Overall therefore, this early study demonstrated that em-

ploying ERPs to examine implicit and explicit memory provides the potential to

control contamination and identify effects that overlap in time course and spatial

location during normal function.

Despite demonstrating the potential of ERPs to assess implicit and explicit con-

tributions to recognition concurrently, this early study is not beyond critique.
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While there is a wealth of evidence to suggest that one presentation of a word is

enough to change the way it is subsequently processed (Graf & Schacter, 1985),

it cannot be assumed that implicit memory was operative for all repeated stimuli

(Voss & Paller, 2008). Rugg et al. (1998) failed to employ a behavioural mea-

sure of priming, and as a result, there is no way to directly relate the parietal

correlate reported to index priming specifically; it could reflect some other form

of pre-retrieval processing rather than implicit memory per se. As noted earlier,

implicit memory was operationalized by comparing the activity elicited by shal-

low misses and correct rejections, which again relies upon the assumption that

priming will be operative for all repeated stimuli. This assumption is particularly

problematic for recognition misses as some evidence has suggested that uncon-

scious priming is dependent upon temporal attention (Naccache et al., 2002). It

could be argued that recognition misses comprised of trials where attention was

not appropriately oriented, and as such that priming would also be absent on

this subset of trials, weakening any potential link between parietal activation and

implicit memory. However, while Rugg et al. (1998) may not have avoided some

of the pitfalls of measuring implicit and explicit memory concurrently, by demon-

strating the possibility, this study has undoubtedly inspired a new and exciting

direction in memory research.

In recent years, the majority of work in this area has focused on isolating and

examining potential pre-cursors to recognition memory. In particular, research

has focused on separating out the contribution of conceptual priming, based on

the proposal that differences between old and new items in recognition tests

can potentially be driven by repeated access to semantic information, calling into

question links between mid-frontal old/new effects and familiarity (Paller, Voss &

Boehm, 2007). For example, Yovel and Paller (2004) reported the absence of mid-
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frontal old/new effects for familiarity during a face recognition task. This finding

led the authors to propose that the use of verbal semantically meaningful stimuli

in recognition tests elicit conceptual priming, and as such, that studies employing

verbal stimuli do not provide a pure measure of familiarity. Following on from this

proposition, a number of studies have demonstrated that the mid-frontal old/new

effect is absent in conditions that do not support access to conceptual information

(see Figure 3.3 for a schematic illustration). For example, Voss, Schendan and

Paller (2010b) contrasted ERPs for geometric squiggles that were given high or

low meaningfulness ratings, and found that mid-frontal old/new effects were only

apparent for shapes given a high meaningfulness rating.

Figure 3.3: Schematic illustration of the effect of stimulus meaning. The strength of
the relationship between familiarity, conceptual fluency and the FN400 is shown in the bars
at the top of the diagram (green indicates strong and red indicates weak), and the bottom
of the diagram illustrates the degree of meaning associated with specific stimuli in relation
to these effects (adapted from Voss et al., 2012).

Voss, Paller and colleagues have also demonstrated a similar pattern of results

when contrasting recognition for famous faces accompanied or unaccompanied by

matching biographical information (Voss & Paller, 2006), and for uncommon En-
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glish words that varied in meaningfulness (Voss, Lucas & Paller, 2010a). However,

these findings are difficult to reconcile with studies showing mid-frontal old/new

effects for meaningless stimuli, including pseudo-words (Curran, 1999), nonsense

figures (Groh-Bordin et al., 2006), novel faces (Curran & Hancock, 2007), and

two-dimensional polygons (Curran, Tanaka & Weiskopf, 2002), which do not

have pre-existing conceptual representations. In addition, Sternberg, Hellman,

Johansson and Rosén (2009) examined neural correlates of recognition using fa-

mous and non-famous names that also varied in frequency; the authors found that

only frequency modulated the mid-frontal old/new effect, while fame modulated

parietal old/new effects. Based on the assumption that famous faces should elicit

a higher degree of conceptual priming due to pre-existing representations, these

findings support the view that familiarity is not related to conceptual priming.

More importantly, in a follow-up behavioural experiment the effect of conceptual

priming on reaction times was only observed for famous names, again suggesting

that the mid-frontal old/new effect reflects familiarity and not conceptual prim-

ing (although see Lucas et al., 2010, for a critique; and Stenberg et al., 2010, for

a response).

In essence, debate still continues over whether the mid-frontal old/new effect is a

generic marker of familiarity, or whether it is more closely related to conceptual

implicit memory (for a recent discussion of these issues see Voss, Lucas & Paller,

2012). More generally, a number of authors have commented on the possibility

that the qualitative experience of familiarity may be supported by more than

one source of evidence, and that both perceptual and conceptual priming may

serve as pre-cursors to explicit recognition (e.g., Groh-Bordin et al., 2006; Rugg

& Curran, 2007). It is important to note that nearly all of the studies reported

above have focused upon manipulation of stimulus properties to attempt to de-
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lineate implicit and explicit contributions to recognition, and have not set out

to directly manipulate (or even in some cases, to measure) the degree of prim-

ing. As noted earlier, behavioural evidence supporting the view that priming can

influence recognition performance largely comes from studies investigating the

impact of processing fluency induced by repetition. Surprisingly, this is an area

that has received little attention in the ERP literature to date; the remainder of

this section will outline in detail the findings from studies that have adopted this

approach, as they are highly relevant to the focus of the current thesis.

Woollams et al. (2008) employed a masked priming paradigm, enhancing the flu-

ency of test cues (50% primed, 50% unprimed), to identify and dissociate the neu-

ral correlates of repetition priming and recognition within a single experimental

task. Consistent with previous research, the behavioural findings indicated that

masked priming selectively increased familiarity and decreased response times for

hits. The data evidenced the presence of four distinct ERP effects: mid-frontal

old/new effects were present between 300-500ms (R hits, K hits>CRs), and a

centro-parietal positivity present between 500-800ms was associated with recol-

lection (R hits>K hits, CRs). In addition, the authors identified a long-term

repetition effect from the study exposure in the same time window as the FN400

(misses>CRs), but with a posterior distribution similar to the repetition effect

reported by Rugg et al. (1998). Masked priming of test cues was associated with

a positivity for primed words between 150-250ms that was maximal over central

sites for all response types (R hits, K hits, CRs), and continued into the 300-

500ms time window. In addition, a difference in the latency of parietal old/new

effects was found, with effects for R hits onsetting 50ms earlier in the primed

condition. Surprisingly, despite finding a behavioural increase in reported famil-

iarity, the ERP data suggest that fluency induced by masked primes influenced
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neural correlates of recollection, speeding their onset. However, this change in

latency roughly matches the duration of the prime, and as no backwards mask-

ing procedure or measure of prime awareness was employed, this finding is less

than convincing, as it could be argued that retrieval was consciously initiated in

response to the prime rather than the target.

Figure 3.4: N400 masked priming effect. A: ERP waveforms for primed (MP-Same)
and unprimed (MP-Different) words at test, collapsed across response types, at electrodes
Fz and Pz. B: Distribution of the difference between primed and unprimed words (adapted
from Lucas et al., 2012).

In a more recent study, Lucas, Taylor, Henson and Paller (2012) also employed

masked repetition of test cues in two experiments that were designed to contrast

neural correlates of repetition induced fluency and familiarity. In the first experi-

ment, the behavioural data evidenced a very slight but largely non-significant in-

crease in the percentage of R and K false alarms for primed compared to unprimed

words (response time data were not reported). The ERP data demonstrated the

presence of mid-frontal old new effects between 300-500ms (K hits>misses), and

parietal old/new effects between 500-800ms (R hits>K hits). Priming was asso-

ciated with modulation of the N400 component between 300-400ms over poste-

rior sites, which was topographically dissociable from mid-frontal old/new effects

present during the same time period (see Figure 3.4). Moreover, masked prim-
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ing effects were present for all response types (R hits, K hits, CRs), but were

not significant when tested in isolation, making it difficult to assert that priming

selectively influenced familiarity. The second experiment was designed to ad-

dress this issue, focusing on false recognition by doubling the ratio of new to old

words to encourage a more liberal response bias, to provide a clearer view of the

relationship between masked priming and familiarity.

Figure 3.5: False alarm contrast. A: ERP waveforms for false alarms and correct rejec-
tions for the primed condition (MP-Same) at electrodes Fz and Pz, and the distribution
of the difference between false alarms and correct rejections. B: ERP waveforms for false
alarms and correct rejections for the unprimed condition (MP-Different) at electrodes Fz
and Pz, and the distribution of the difference between false alarms and correct rejections
(adapted from Lucas et al., 2012).

The behavioural results of Lucas et al’s follow up study revealed a significant in-

crease in the percentage of false alarms for primed compared to unprimed words,

evidencing the impact of fluency on false recognition. When collapsed across

response types the ERP data exhibited a similar pattern as in the previous ex-

periment, with primed words being more positive going than unprimed words
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between 350-450ms over posterior sites. Comparison of unstudied primed words

revealed more positive going activity for false alarms than for correct rejections

between 350-450ms, and this effect was absent in the waveforms for unprimed

words (see Figure 3.5). The authors interpreted this posterior N400 effect as

an index of both fluency and familiarity. As noted earlier with respect to be-

havioural masked priming studies, this general approach makes it difficult to see

how priming can be classified as an implicit memory phenomenon, when the focus

is entirely on illusory recognition (which is presumably giving rise to a conscious

experience of oldness, hence the participants respond old). Notwithstanding crit-

icisms, the findings of Woollams et al. (2008) and Lucas et al. (2012) suggest that

masked priming of test cues is a useful method for measuring repetition prim-

ing, familiarity and recollection within a single experimental task - particularly

if behavioural and neural measures are combined.

In summary, the majority of work in this area has focused on separating out

the contribution of conceptual priming during recognition tests, based on the

proposal that differences between old and new items in recognition tests can

potentially be driven by repeated access to semantic information. A number of

the studies outlined above have identified a neural correlate of priming maximal

over posterior locations that is consistent with the timing and distribution of

N400 potentials (see Kutas & Federmeier, 2011, for a review). However, despite

this finding debate still continues over whether the mid-frontal old/new effect is

a generic marker of familiarity, or whether it is more closely related to conceptual

implicit memory. The evidence reviewed above supports the view that there are

multiple processes that could potentially support recognition, but by continuing

to focus on dissociation, progress in understanding how these different forms of

memory contribute to recognition has been limited.
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3.3 Thesis aims

Despite a wealth of research employing ERPs to dissociate multiple potential con-

tributions to recognition, less attention has been paid to potential interactions

between priming and recognition, and as such the relationship between these

implicit and explicit forms of memory remains unclear. Combining masked prim-

ing with a standard recognition test makes it possible to carry out ‘interaction

studies’ that are designed to manipulate implicit memory, using the ERP neuro-

signatures to examine the consequence of implicit priming for explicit memory.

The main aim of this thesis was to adopt this approach to explore the nature of

interactions between priming and episodic memory, in the hope of gaining a better

understanding of the respective contributions of implicit and explicit processing

to recognition.

Research questions:

1. Do implicit priming and explicit recognition interact?

2. What is the relationship between priming, familiarity and recollection?

The research questions outlined above represent the broad questions that the ex-

perimental work reported in this thesis set out to address, and were identified

based on gaps in knowledge within the existing literature. A series of four ex-

periments will be reported in this thesis, each one designed to address a specific

question (outlined in the relevant chapters). The first two experiments reported

sought to provide answers to these broad questions, while the later experiments

were specifically designed to address additional questions that arose over the

course of the experimental work.
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General methods

The previous chapters have provided an overview of the theoretical and experi-

mental background against which the experimental work reported in this thesis

has been conducted. The focus now shifts to reporting the specifics of the four

ERP experiments that will constitute the remainder of the thesis. The current

chapter details the basic methods that apply to all of the EEG experiments

described in this thesis, including an overview of the participants, stimulus ma-

terials, experimental procedures and behavioural analyses, along with details of

the EEG recording procedure, data processing and analysis strategies. Where

methodological factors deviate from this basic method for individual experiments,

specific details are provided in the relevant chapters.

4.1 Participants

Participants were recruited from the University of Stirling and were right-handed

native English speakers, between the ages of 18 and 35, with no known neu-
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rological problems and normal or corrected-to-normal vision. Informed consent

was obtained in line with University of Stirling ethics procedures and participants

were provided with information about the EEG procedure prior to giving consent.

Participants were compensated at a rate of £5 (Experiments 1 and 2) or £7.50

(Experiments 3 and 4) per hour for taking part, and Psychology students had the

option of receiving payment for the first hour of participation in course credits.

All participants were fully debriefed at the end of the experimental sessions.

4.2 Materials

The words used in all experiments were selected from the MRC Psycholinguistic

database (Coltheart, 1981), and were medium frequency concrete nouns between

4-9 letters in length. Words had a mean written frequency of 23 (±11) occurrences

per million (Kučera & Francis, 1967), and the mean concreteness rating was 555

(±48). Concreteness ratings in the MRC Database are based on an expansion of

the norms from Paivio, Yuille and Madigan (1968) and are expressed as integer

values between 100 and 700 (min 158; max 670; mean 438). Based on the mean

rating for the database, only words with a rating higher than 438 were sampled,

producing a list of 524 words. These words were then split into two groups

to allow for an equal proportion of ‘yes’ and ‘no’ responses during the shallow

encoding task (see below for details), before 480 words were randomly selected

to form critical lists (240 from each list). From the remaining pool of words, 12

were used for the practice block and 32 were selected to act as fillers to be shown

at the start of study and test phases.

The 480 critical words were divided into 4 blocks matched on word length, con-

creteness and frequency, and the factors of study response (yes, no), test status
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(old, new) and condition (unprimed, primed) were fully counterbalanced across

participants. All stimuli were displayed in white on a black background using

Courier New 18 point font. Study and target words were displayed in uppercase,

and prime words were presented in lowercase. Prime and target words are com-

monly presented in different cases during masked priming paradigms to ensure

that resulting effects cannot merely be attributed to visual rather than lexical

processing. Despite early research suggesting that repetition priming is highly

sensitive to changes in case, more recent research on visual word recognition

has clearly demonstrated case-independent priming under subliminal presenta-

tion conditions (Dehaene et al., 2001, 2004). Words presented at study and test

subtended a vertical visual angle of 0.5◦ and a maximum horizontal visual angle

of 5.2◦.

4.3 Experimental procedure

During the performance of all memory tasks, participants were seated in a testing

cubicle approximately one meter away from a 17-inch LCD monitor. The exper-

iments were implemented using the E-Prime software package (www.pstnet.com:

version 1.2), running on a desktop computer in an adjacent room, and partic-

ipants were monitored via a video link between rooms for the duration of the

experiments. The screen refresh rate for all experiments was 16ms, and the

accuracy of critical display durations was verified using the Black Box Toolkit

(www.blackboxtoolkit.com). In particular, it was ensured that the display dura-

tion of prime words and the distance between the onset of prime and the onset of

target words at test remained consistent across trials and experiments. Responses

were recorded using a five button PST Serial Response Box (www.pstnet.com)

80



Chapter 4. General methods

resting on the desk in front of participants. Left and right index fingers were used

to make all responses and the mapping of buttons for multiple response options

was fully counterbalanced across participants.

An initial practice block was used to acquaint participants with the procedure,

and to allow the experimenter to assess their understanding of the written and

verbal instructions. Participants were never told about the presence of the prime

words, and the practice block also provided the experimenter with the opportunity

to exclude participants if they reported being aware of prime words at this stage.

Over the course of the four experiments, this only occurred three times, and these

participants were excluded on this basis. The practice block consisted of 6 study

words and 12 test words (6 old, 6 new), and included a prompt screen instructing

participants to respond faster if they failed to respond within the allotted time

limit. In cases where participants performed poorly (i.e., failed to make a response

on more than 50% of trials indicating that they had not adjusted to the response

speed required over the duration of the practice block), clarification was provided

and the practice block was repeated until response timing was satisfactory, before

commencing the experimental blocks.

>########< HORSE 

500 300 2700 

>########< CROWD 

500 300 2700 

ms 

Next trial 

Figure 4.1: Study procedure. Every study trial started with a fixation cue, shown in the
centre of the screen for 500ms, matching the mask to be used for priming during the test
phase, followed by a word displayed for 300ms, before a blank screen was shown for 2700ms
to allow time for participants to respond.
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Experimental blocks commenced with a study list of 60 words, preceded by 4

fillers to allow participants to settle into the task and to control for primacy

effects. Each study trial started with a warning signal (>#########<),

shown in the centre of the screen for 500ms, followed by a single word displayed

for 300ms; then a blank screen was shown for 2700ms to allow time for a response

to be made (see Figure 4.1). The masking symbols used at test to occlude the

prime were also employed at study to reduce the salience of the masking pro-

cedure, and were always described as a “warning signal” denoting that a word

was about to appear. Experiments 1, 3 and 4 employed a shallow encoding task,

where participants were required to report if the first and last letters of the pre-

sented words were in alphabetical order (responding yes or no by button press).

Experiment 2 employed two deep encoding tasks in a between-participant design;

participants were either asked to read each word out loud, or to fit each one into

a short sentence. For the deep encoding tasks, participants were monitored via

a microphone placed in the testing cubicle to ensure that the tasks were being

performed satisfactorily.

To control for recency effects, at the end of the study phase participants were

required to count backwards from 50, in increments of 3, for a duration of 2 min-

utes. This was implemented by a timed screen detailing the instructions for the

task, and the test phase commenced automatically once this time had elapsed.

Test lists comprised of 60 studied (old) words and 60 unstudied (new) words. Half

of the studied and unstudied test trials began with a brief masked repetition of

the to-be-recognized word prior to the onset of the target word. On the remain-

ing unprimed trials target onset was preceded by the word “blank”. The word

“blank” was chosen as a neutral prime, as previous research has demonstrated

that it is a suitable baseline for ERP investigations of priming (Dien, Franklin
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& May, 2006). It is common practice in priming research to use unrelated words

as an unprimed baseline, but unrelated words still carry meaning and therefore

cannot be considered truly neutral. While the word “blank” does have meaning,

repetition over a large number of trials leads to habituation, and as a result it is

considered more neutral than using unrelated words.

Next word? 

>########< 

>########< 

apple >########< 

>########< blank 

APPLE 

HORSE 
R    K 

2    4 

250 48 250 100 300 2700 

200 Until response 

Until response 

Primed 

Unprimed 

Old 

New 

ms 

Trigger code 

1000 

Next word? 

Figure 4.2: Test procedure. During the test phase participants were shown 120 words, 60
old words and 60 new words, fifty percent of old and new words were primed. A: On primed
trials target presentation was preceded by a repetition of the target. B: On unprimed trials
the presentation of the target word was preceded by the word blank.

Each test trial started with a screen instructing participants to press a button

when they were ready to start the next trial, allowing participants some control

over the speed of the test presentation, and ensuring that attention was oriented

appropriately prior to display of the critical masking sequence. After a 200ms

delay following the participant’s key press, a forward mask (>#########<)

was presented for 250ms, followed by a matching or non-matching prime word

shown for 48ms, and then a backward mask (>#########<) shown for

250ms. Presentation of the masked prime sequence was followed by a blank screen

for 100ms, and then the target word was shown for 300ms, before a blank response

screen was presented for a duration of 2700ms. During the blank response screen

participants were required to indicate as quickly and as accurately as possible, by

button press, whether the preceding target word was old or new. When a word
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was classified as old, the screen then displayed details of the response options for

the remember/know decision; once a response was made the screen went blank

for 1000ms, and then the next trial began.

Participants were given detailed written and verbal instructions for the remem-

ber/know judgement (e.g., Gardiner et al., 1996; Rajaram, 1993). Briefly, partic-

ipants were instructed to make a ‘remember’ response when recognition brought

to mind some aspect of the experience of seeing the word in the study list, and

to make a ‘know’ response when they were reasonably sure that the word had

appeared in the study list, but did not recollect anything specific. During pi-

loting an additional ‘guess’ response option was provided, but participants did

not utilize this option during the pilot studies, so it was discontinued in the final

version to reduce complexity and to allow full counterbalancing of the response

options.

At the end of the experimental procedure participants were questioned to estab-

lish their awareness of the priming manipulation, before being fully debriefed.

Participants were asked to report if they had noticed anything about the experi-

ment that they had not been told about in the instructions, and were given time to

think about it while the EEG cap was being removed. Responses to this question-

ing were classified into three broad levels of awareness (response categories that

were identified based on responses collected during piloting). Participants were

classified as ‘not aware’ when they were unable to report the presence of the prime

during the initial questioning and also reported that they did not detect it after

the manipulation was revealed. Participants were classified as ‘aware of blank’

when they were able to report its presence on some trials, but on further ques-

tioning, failed to report the presence of repetition primes. Finally, participants

were classified ‘aware of flickering’ when they failed to report the manipulation,
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but reported that they had noticed a flicker on the screen once the manipulation

had been revealed.

The test procedure is similar to the one used by Woollams et al. (2008), but

differs in three very important respects. Firstly, the current procedure employed

a backwards mask between the display of prime and target words, reducing the

accessibility of the prime, and increasing the SOA between prime and target

pairings. Increasing the SOA provided additional time for processing of prime

words, and it was assumed that it would allow better separation of processing

related to prime and target words. Secondly, participants’ awareness of the prime

was recorded, to ensure that conscious access to prime words did not represent

a significant confound in the current design. Unintended awareness is often a

problem in masked priming paradigms and can make it difficult to interpret the

results. For example, Woollams et al. (2008) reported the presence of an early

onsetting recollection effect, but it is possible that this was merely driven by con-

scious access to the prime, rather than reflecting a real change in latency. Finally,

the current procedure employed neutral rather than unrelated primes for com-

parison across the primed and unprimed conditions. Habituation of the neutral

prime over a large number of repetitions should ensure that processing becomes

non-semantic in nature, whilst avoiding differences in the physical appearance of

masked words between conditions.

4.4 ERP recording and data processing

ERPs were employed to allow monitoring of the neural markers associated with

familiarity and recollection and to look for differential effects on each process as a

result of the priming manipulations. Voltage changes at the scalp were recorded
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using 62 silver/silver chloride electrodes mounted in an elasticised Quick-Cap

(Neuromedical Supplies: www.neuroscan.com) in accordance with an extended

version of Jaspers (1958) international 10/20 system (FP1, FPz, FP2, AF3, AF4,

F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6,

FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2,

CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz,

PO4, PO6, PO8, CB1, O1, Oz, O2, CB2). A further six electrodes were used,

two positioned on the mastoids (M1, M2) to serve as a reference, two positioned

on the outer canthi to the left and right of the eyes to monitor horizontal eye

movements (HEOG), and two positioned above and below the left eye to monitor

eye blinks (VEOG). All electrodes were referenced to an additional electrode

(REF) positioned midway between the Cz and CPz electrodes. Before beginning

the experiment impedances at each electrode were brought to below 2kΩ. To

reduce the occurrence of EEG artifacts participants were given a break between

each study-test block, and were instructed to relax and try to control body,

head and eye movements. During the experiment EEG signals were amplified

with a band pass filter of 0.1-40Hz and digitised at a rate of 250Hz (4ms/point).

Neuroscan software was used to record the EEG data (Acquire, version 4.4/4.5),

and to analyse the data offline (Edit, version 4.5).

For each participant the raw EEG data were inspected and segments were re-

moved if they contained excessive muscle movement, or if a channel had become

saturated (exceeding ± 495 µV). The effect of eye blinks was reduced by em-

ploying the Neuroscan ocular artefact reduction procedure, using 32 blinks for

each participant to remove the contribution of the average blink from all chan-

nels. The continuous EEG data were then separated into 2000ms epochs, starting

100ms before stimulus onset (from -100ms to 1900ms). Data were re-referenced
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offline to linked mastoids and the individual epochs were baseline corrected and

smoothed over a 5 point kernel. Note that smoothing of the ERP waveforms was

performed purely for illustrative purposes in the figures. Epochs were rejected

when they contained artifacts larger than ± 100 µV, or when drift from baseline

exceeded ± 75 µV in any of the channels. To ensure a good signal to noise ratio,

a minimum limit of 16 artifact free trials was required from each participant, in

each condition. Initially, ERPs were processed time-locked to the onset of the tar-

get stimulus, but inspection of the data from the first experiment evidenced the

presence of pre-target differences between conditions. As a result, the data were

re-processed and segmented into 2000ms epochs, starting 100ms prior to prime

onset to capture this early effect (-500-1500), and this epoch was then employed

across experiments for consistency.

4.5 Behavioural analyses

Behavioural measures included accuracy (discrimination and bias), response time

data, and estimates of the proportion of trials supported by familiarity and rec-

ollection at test. Discrimination accuracy (Pr) was calculated separately for the

primed and unprimed conditions to correct for guessing. In this case a hit was

defined as the probability of making an ‘old’ response to a studied word, and

a false alarm was the probability of making an ‘old’ response to a new unstud-

ied word (Pr=pHit-pFA). Response bias (Br) was also computed separately for

the primed and unprimed conditions (Br=pFA/[1-Pr]) to look for a shift in bias

as a result of the priming manipulation (Snodgrass & Corwin, 1988). Bias val-

ues greater than 0.5 demonstrate the presence of a liberal bias, and values less

than 0.5 demonstrate the presence of a conservative bias. All response time data
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presented in this thesis were corrected by removing trials that were outside ±

2 standard deviations of the mean for each participant within conditions, and

t-test values reported for response time comparisons are all one-tailed. Estimates

of recollection and familiarity were calculated using the independence RK proce-

dure (Duarte, Raganath & Knight, 2005; Yonelinas & Jacoby, 1995), to control

for underestimation of the contribution of familiarity.

p(Recollection) = p(R old) − p(R new)

p(Familiarity) = p(K old)/(1 − p(R old)) − p(K new)/(1 − p(R new))

Behavioural analyses were carried out using repeated measures ANOVA when

more than two factors were compared, and an alpha level of 0.05 was used to

assess statistical significance; full details of factors and levels will be provided in

each data chapter. When it was necessary to compare data from two measures,

paired samples t-tests were employed and a significance level of 0.05 was applied.

All post hoc comparisons were carried out using paired samples t-tests and a

Bonferroni-correction was applied as appropriate, depending on the number of

comparisons to be performed on the data.

4.6 ERP analyses

The aim of the ERP experiments reported in this thesis was to investigate prim-

ing and memory related activity during the test phase. For priming and memory

effects, grand average ERPs were formed for correct responses to old (hits) and

new (correct rejections) words in the primed and unprimed conditions. ERPs
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were quantified by measuring the mean amplitude over specific time windows of

interest (with respect to the mean pre-stimulus baseline). For priming contrasts a

latency period from 250-500ms was chosen a priori to be consistent with previous

identifications of N400 priming effects in the literature (see Kutas & Federmeier,

2011, for a review). For memory contrasts, ERPs were initially quantified over

two consecutive time windows from 300-500ms and 500-800ms, to be consistent

with previous identifications of the neural correlates of familiarity and recollec-

tion (see Rugg & Curran, 2007, for a review). Where visual inspection of the

data demonstrated the presence of differences outside of these latency periods

for priming and memory contrasts, additional time windows were analysed as

required to characterise effects for each contrast and experiment.

Selection of latency periods and sets of electrodes for analysis on the basis of visual

inspection of the data is common practice in the literature, but it is important to

note that this approach can be problematic. Reducing complex multi-dimensional

EEG data to a single value per condition by averaging over a specific time window

and set of electrodes avoids the requirement to correct for multiple comparisons.

However, adopting this approach increases the chance of false positives when the

choice of time window and electrode set is based only on where the effect of in-

terest is maximal (Kilner, 2013). There are alternative methods for statistical

exploration of EEG data including Principal Components Analysis (PCA) and

Independent Components Analysis (ICA). In simple terms, both of these ap-

proaches use the correlational structure of a dataset to decompose the observed

ERP waveform into a set of basic constituent components, extracting the features

of interest based on functional relationships between components (Luck, 2005).

A detailed introduction to PCA and ICA data analysis techniques lies beyond the

scope of the current thesis, as these approaches were not employed to analyse the
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data reported here. For the series of experiments reported in the current thesis,

reliance on visual inspection for selection of time windows and electrode sets was

limited to cases where the data evidenced the presence of previously unreported

effects.

Electrode sets and time windows for analysis of memory effects were largely cho-

sen based on previous identifications of familiarity, recollection and right-frontal

old/new effects in the literature (see below), to control issues associated with

analysis based purely upon visual inspection. Where the analysis strategy de-

viates from this basic approach, details are provided in the relevant chapters.

Selection of time windows for analysis of priming effects was less straightforward.

In addition to N400 effects that were expected to appear between 250-500ms,

the data evidenced the presence of early and late onsetting priming effects across

experiments that have not been reported previously. Additional time windows

chosen for exploration of the early and late priming effects were chosen based on

visual inspection of the data and details are provided in the relevant chapters.

Across experiments priming and memory effects were analysed separately, em-

ploying different contrasts. Priming effects were initially analysed separately for

hits and correct rejections to gain a measure of priming in the absence of old/new

differences, before directly contrasting the magnitude and distribution of priming

effects for hits and correct rejections. Memory effects were also initially analysed

separately for the primed and unprimed conditions to capture old/new effects in

the absence of priming related differences, before contrasting the magnitude and

distribution of old/new effects for the primed and unprimed conditions. The fol-

lowing sections will provide an overview of the basic analysis strategy for priming

and memory contrasts.
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Priming analyses

For priming effects, the first level of analysis was employed to identify variations

in the pattern of priming effects for hits and correct rejections across the time

windows chosen for analysis, and employed ANOVA with the factors of condition

(unprimed, primed), location (Fz, FCz, Cz, CPz, Pz, POz) and time window

(window1, window2, window3). The sites used in this first stage of analysis are

shown in Figure 4.3, and were chosen based on visual inspection of the data,

which demonstrated that priming effects were consistently present over midline

electrode sites across experiments. This initial stage of analysis was followed

by subsidiary analysis performed separately for hits and correct rejections on

the data from each time window, using ANOVA with the factors of condition

(unprimed, primed) and location (Fz, FCz, Cz, CPz, Pz, POz). These initial

analyses were designed to test the appropriateness of the time windows chosen

for analysis of the data.

Stage 1 Stage 2 

Figure 4.3: Priming analysis sites. Schematic illustration of electrode positions showing
electrodes sites selected for initial stages of analysis highlighted in red. Maps appear as
if looking at the head from above, dashed lines delineate the midline and the triangle
represents the nose.
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The second stage of analysis for each time window employed ANOVA with the

factors of condition (primed, unprimed), location (frontal, fronto-central, central,

centro-parietal, parietal, parieto-occipital), hemisphere (left, right) and electrode

(inferior, mid, superior). The sites used in this analysis are shown in Figure

4.3, and were chosen based on visual inspection of the data, which demonstrated

the presence of widespread priming effects. Locations and electrodes used for

analysis were: left frontal (LF: F1, F3, F5), right frontal (RF: F2, F4, F6),

left fronto-central (LFC: FC1, FC3, FC5), right fronto-central (RFC: FC2, FC4,

FC6), left central (LC: C1, C3, C5), right central (RC: C2, C4, C6), left centro-

parietal (LCP: CP1, CP3, CP5), right centro-parietal (RCP: CP2, CP4, CP6),

left parietal (LP: P1, P3, P5), right parietal (RP: P2, P4, P6), left parieto-

occipital (LPO: PO3, PO5, PO7), and right parieto-occipital (RPO: PO4, PO6,

PO8). Only effects including the factor of condition were of interest for priming

contrasts, as a result, main effects or interactions including the factor of condition

were followed up with subsidiary ANOVAs and paired samples t-tests as required

to further elucidate effects.

Memory analyses

For memory effects, the first level of analysis was employed to identify variations

in the pattern of old/new effects for the primed and unprimed conditions across

the time windows chosen for analysis. The location factors for this initial analysis

varied across experiments to capture the locus of old/new effects across time

windows. For experiments 1 and 2, this initial ANOVA included the factors of

test status (old, new), location (Exp.1: Fz, FCz, Cz, CPz, Pz; Exp.2: F3, FC3,

C3, CP3, P3) and time window (window1, window2, window3), to capture mid-

frontal effects (Exp.1) and left-parietal effects (Exp.2) apparent in the data. For
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experiments 3 and 4, an additional factor of laterality (left, midline, right) was

used to capture mid-frontal, left-parietal and right-frontal old/new differences

present in the data.

Stage 1 Stage 2 

Figure 4.4: Memory analysis sites. Schematic illustration of electrode positions showing
electrodes sites selected for initial stages of analysis highlighted in red. Dashed red circles
indicate that the specific electrodes chosen from this selection varied across experiments.
Maps appear as if looking at the head from above, dashed lines delineate the midline and
the triangle represents the nose.

The selection of sites used in this first stage of analysis are shown in Figure

4.3. This initial stage of analysis was followed by subsidiary analysis performed

separately for the primed and unprimed condition on the data from each time

window, using ANOVA with the factors of test status (old, new) and location

(see above). These analyses were designed to test the appropriateness of the

time windows chosen for analysis of the data. The second stage of analysis for

each time window employed ANOVA with the factors of test status (old, new),

location (frontal, parietal), hemisphere (left, right) and electrode (inferior, mid,

superior). The sites used in this analysis are shown in Figure 4.4 and were chosen

based on the location of mid-frontal, left-parietal and right-frontal old/new effects

reported in the literature. Locations and electrodes used for analysis were: left

frontal (LF: F1, F3, F5), right frontal (RF: F2, F4, F6), left parietal (LP: P1,
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P3, P5) and right parietal (RP: P2, P4, P6). Only effects including the factor

of test status were of interest for memory contrasts, as a result main effects or

interactions including the factors of test status were followed up with subsidiary

ANOVAs and paired samples t-tests as required to further elucidate effects.

Magnitude analyses

For priming contrasts magnitude analysis was employed to compare the size

of reliable priming effects identified in the initial analysis across hits and cor-

rect rejections. Analysis was performed on difference waveforms (primed minus

unprimed), using ANOVA with the factors of test status (old, new), location

(frontal, fronto-central, central, centro-parietal, parietal, parieto-occipital), hemi-

sphere (left, right) and electrode (inferior, mid, superior). For memory contrasts

magnitude analysis was performed on subtraction data (hits minus correct re-

jections) to compare the size of old/new effects for the primed and unprimed

conditions, using ANOVA with the factors of condition (unprimed, primed), lo-

cation (frontal, parietal), hemisphere (left, right) and electrode (inferior, mid,

superior). In addition, priming and memory data were examined to identify the

maxima of effects, and then paired samples t-test were used to establish whether

observed differences were statistically reliable at the identified location.

Topographic analyses

For priming and memory contrasts, topographic analysis was employed to inves-

tigate whether differences in the magnitude of effects across the scalp reflected

genuine changes in topography. For these analyses subtraction waveforms were

employed, based on the difference between primed and unprimed, or old and
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new waveforms. The subtraction waveforms were rescaled using the max/min

method prior to analysis (McCarthy & Wood, 1985). For priming contrasts,

analysis comparing the distribution of the priming effects for hits and correct

rejections, employed ANOVA with the factors of test status (old, new), location

(frontal, fronto-central, central, centro-parietal, parietal, parieto-occipital), hemi-

sphere (left, right) and electrode (superior, mid, inferior). For memory contrasts,

analysis comparing the distribution of retrieval effects for the primed and un-

primed conditions, employed ANOVA with the factors of condition (unprimed,

primed), location (frontal, parietal), hemisphere (left, right) and electrode (supe-

rior, mid, inferior).

Statistical significance

As noted in chapter 2, ERP data commonly violate the assumption of sphericity

required by the ANOVA model because the co-variance in the data from nearby

electrodes is greater than co-variance in the data from more distant electrodes.

Violating the assumption of sphericity increases the likelihood of type 1 error

and the chance of incorrectly rejecting the null hypothesis. A significance level of

0.05 was used for all statistical tests; however where necessary the Greenhouse-

Geisser correction for non-sphericity (Greenhouse & Geisser, 1959) was applied

to the analysis of the ERP data and corrected degrees of freedom and F values

are reported.
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ERP 1

5.1 Introduction

The relationship between priming and episodic familiarity remains unclear, de-

spite increasing interest in this issue over the last two decades. One important

reason for this lack of clarity in early work is that most of the studies carried

out fall foul of a number of methodological flaws. Most notably, the operation

of priming is often assumed in the absence of behavioural evidence demonstrat-

ing its contribution (e.g., Rugg et al., 1998). Secondly, it is often difficult to

interpret findings due to debate over the nature of the priming and whether it

should really be considered implicit (e.g., Woollams et al., 2008). Further compli-

cation is added by the overlapping nature of the neural correlates of priming and

familiarity in episodic memory, making it difficult to adequately measure pos-

sible interactions between these processes. In more recent work, attempts have

been made to overcome some of these issues and measure the contributions of

priming and familiarity to recognition. However, in trying to ensure that perfor-
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mance on explicit tests is not contaminated by implicit memory and vice versa,

investigators have often sacrificed ecological validity, and prevented detection of

interactions between implicit and explicit memory that presumably occur under

normal circumstances.

The current study was designed to address these methodological issues and to

explore interactions between priming and familiarity. As noted earlier, combining

masked priming with a standard recognition test makes it is possible to carry out

‘interaction studies’ that are designed to manipulate implicit memory, using the

ERP neuro-signatures to examine the consequence of this for explicit memory.

In recent years talk of implicit ‘contamination’ has become prominent (e.g., Voss

& Paller, 2008), whereas attempts to identify how and when priming impacts

standard recognition testing have been limited by the adoption of increasingly

specialized tests to contrast priming and recognition. Importantly, in contrast to

most of the previous research in this area, which has focused upon manipulation of

stimulus properties to attempt to delineate implicit and explicit contributions to

recognition, the current study aimed to directly manipulate the degree of priming

via subliminal repetition of words. Manipulation of the degree of priming via

repetition of words was adopted based on the logic that words represent the most

common medium used in tests of recognition, and that repetition of words from

study to test drives implicit ‘contamination’ posited to occur during recognition

testing.

Extensive piloting was carried out to identify the optimal duration for masked

prime words, to ensure that participants would be unaware the repetition, making

the current experiment resemble a standard recognition task in all respects. This

is crucial because previous research reporting fluency induced differences in mem-

ory performance using this method may have been biased by conscious access to
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the prime (e.g., Lucas et al., 2012). As reported earlier, Jacoby and Whitehouse

(1989) found that the pattern of behavioural results was different when contrast-

ing subliminal and supraliminal priming during recognition testing; lengthening

the duration of the prime and informing participants of its existence reduced the

probability that fluency induced by repetition would be misattributed to prior

exposure. While the intention in this study was not to contrast the effects of

subliminal and supraliminal priming on recognition, recent research employing

subliminal masked priming paradigms to investigate neural correlates of priming

and recognition have potentially introduced significant confounds by failing to

adequately control or measure awareness of the prime (e.g., Lucas et al., 2012;

Woollams et al., 2008). As a result, interpretation of the findings is difficult,

as it is plausible that participants were aware of the manipulation on a subset

of primed trials, meaning that responses could be based on differing strategies

across trials.

In addition to problems with prime awareness, another problem in previous re-

search concerns the operalization of priming within the context of episodic mem-

ory tests, and how correlates of explicit memory are identified. In a number of

previous studies priming has often been indexed by comparing studied items that

were not recognized (misses) with unstudied but correctly identified words (e.g.,

Rugg et al., 1998; Woollams et al., 2008). By contrast, recognition is normally

operationalized by comparison of correctly classified old and new words collapsed

across primed and unprimed conditions. Employing these different contrasts to

capture neural correlates of priming and recognition again seriously limits the

possibility of assessing interactions between these subsystems of memory. It is

also common practice to split ERP data on the basis of subsequent RK judge-

ments, to isolate the contribution of familiarity and recollection, but this rules out
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the possibility that priming alone could be sufficient to support recognition from

the outset. In essence, studies employing a two-stage RK procedure, where the

initial old/new judgement is separated in time from the rating of subjective ex-

perience (e.g., Lucas et al., 2012; Woollams et al., 2008), risk that the subsequent

RK classification may not be directly related to the basis of the initial old/new

decision that is being measured in the ERPs, introducing another potentially

significant confound.

To directly address these issues, in the current experiment priming was oper-

ationalized by comparing hits and correct rejections for both the priming and

memory ERP contrasts. In addition, memory effects were analysed separately

for the unprimed and primed conditions, to allow priming-related differences in

the neural correlate of familiarity to emerge. While RK measures were employed

to allow comparison with previous behavioural research employing fluency ma-

nipulations, the ERP data were not split on this criteria to allow the neural basis

of the initial old/new judgement to be assessed in the absence of potential con-

founds imposed by subsequent ratings of subjective experience. The main aim

of the current experiment was to explore interactions between repetition prim-

ing and neural correlates of familiarity during a standard recognition test, in the

absence of potential confounds outlined above, which renders previous ERP re-

search in this area very difficult to interpret. The bulk of ERP research to date

has focused on identifying dissociations between multiple potential contributions

to recognition, and as a result no detailed predictions were made about the nature

of interactions between repetition priming and familiarity in advance.
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5.2 Methods

Stimulus materials and experimental procedures were all identical to those spec-

ified in Chapter 4. Participants completed a practice block followed by four

study/test blocks; during the study phase participants viewed a series of words

and were required to decide whether or not the first and last letters were in alpha-

betical order. This shallow encoding task was employed to reduce the occurrence

of recollection, and to encourage reliance on more automatic and familiarity-based

recognition. During the test phase participants were presented with words from

the study phase randomly intermixed with an equal number of unstudied words

and were required to make an old/new decision followed by a remember/know

judgement. At test half of the studied and unstudied trials were preceded by a

brief masked repetition of the word to-be-recognized (primed) and the remaining

trials were preceded by masked presentation of the word “blank” to act as a base-

line (unprimed). Thirty-four undergraduate psychology students from the Uni-

versity of Stirling participated in the experiment; two participants were excluded

due to excessive EEG artefacts, resulting in insufficient ERP trials for critical

contrasts (i.e.<16 trials). The remaining thirty-two participants comprised of 19

females and 13 males with a mean age of 20 (range=18-31; SD=2.42).

5.3 Behavioural results

Confirming that prime awareness was not a confound in the current experiment,

72% of participants reported being unaware of the existence of the masked prime,

19% reported that they detected flickering on the screen, and the remaining 9%

reported that they were aware of seeing the word blank appear before the onset
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of the target word on a few of the trials. Initial examination of the behavioural

data as a function of reported awareness confirmed no differences in the pattern

of results for participants who reported being aware of flickering on the screen or

aware of the word blank compared to unaware participants, and as a result the

data were analysed collapsed across awareness categories. At study, participants

correctly classified words in the alphabetical task on 81% of trials, suggesting that

attention was being focused on the first and last letters of the words, ensuring

shallow encoding as intended. More importantly, initial analysis of the test data

confirmed that participants were able to discriminate between old and new words

in the unprimed and primed conditions (paired t-tests comparing hits and false

alarms for both conditions were significant [p<0.001] in all comparisons).

Table 5.1: Memory performance. Percentage of correct responses, discrimination and
bias measures for the unprimed and primed conditions (standard error of the mean). The
data clearly demonstrate no difference in performance or bias across conditions.

% Correct Discrim. & Bias

Old New Pr Br

Unprimed 60.11 (2.87) 78.83 (2.46) 0.39 (0.02) 0.35 (0.04)

Primed 60.70 (2.51) 76.76 (2.25) 0.37 (0.02) 0.37 (0.03)

Table 5.1 shows a summary of recognition performance for the current experi-

ment, demonstrating that recognition and bias measures were unaffected by the

priming manipulation. Mean accuracy data were analysed using ANOVA with

the factors of condition (unprimed, primed) and test status (old, new). This re-

vealed a significant main effect of test status [F (1,31)=14.58, p=0.001], reflecting

higher accuracy for new words than for old words, but no main effect of condition

or interaction between condition and test status. Subsidiary analysis collapsed

across conditions confirmed that mean accuracy was higher for new words than
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for old words at test (t(31)=3.82, p=0.001). Discrimination rates were also unaf-

fected by the priming manipulation, and measures of response bias were equally

conservative across conditions (p>0.05 in all comparisons). This pattern of re-

sults demonstrates that repetition priming did not impact measures of recognition

performance.

Table 5.2: Response by RK. Mean proportion of responses (RK) split by test status and
condition (standard error of the mean). The data demonstrate a slight but non-significant
increase in the proportion of R and K false alarms in the primed condition.

Remember Know New

Old Unprimed 33.91 (2.59) 26.20 (1.40) 39.90 (2.96)
Primed 33.88 (2.53) 26.84 (1.52) 39.30 (2.59)

New Unprimed 5.75 (1.15) 15.44 (1.90) 78.83 (2.54)
Primed 6.52 (1.32) 16.72 (1.68) 76.76 (2.32)

Table 5.2 shows the breakdown of responses by RK judgement for each category

for old and new words in the unprimed and primed conditions. The data sug-

gest no difference in the raw proportion of R and K responses for old words, but

does suggest a slight increase in the proportion of R and K false alarms to new

words in the primed compared to the unprimed condition. ANOVA including

the factors of condition (unprimed, primed), test status (old, new) and response

(remember, know) revealed no significant main effect or interactions including

the factor of condition, indicating no difference in the raw proportion of R and K

responses. Corrected estimates of familiarity and recollection were calculated as

reported in Chapter 4, again analysis confirmed no differences between conditions

on corrected estimates of familiarity (unprimed=0.25, primed=0.24) or recollec-

tion (unprimed=0.28, primed=0.27). As for overall recognition performance, the

pattern of results clearly demonstrates that repetition priming did not influence

reported levels of familiarity or recollection.
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Table 5.3: Response times (ms). Mean response time data for correct responses split
by test status, and the magnitude of the difference between unprimed and primed response
times (standard error of the mean). The data demonstrate speeded response times for hits
and correct rejections in the primed condition, with no difference in magnitude.

Old (Hits) New (CRs)

Unprimed 1005.02 (35.02) 984.23 (42.60)
Primed 938.86 (36.37) 915.40 (45.90)

Magnitude 66.16 (10.20) 68.83 (11.10)

Table 5.3 shows a summary of response times for hits and correct rejections in

the primed and unprimed conditions, along with the magnitude of the difference

between conditions. The data clearly demonstrate that the priming manipu-

lation resulted in equivalent speeded response times for hits and correct rejec-

tions. ANOVA including the factors of condition (unprimed, primed) and test

status (old, new) revealed a significant main effect of condition [F (1,31)=75.29,

p<0.001], but no interaction between condition and test status, confirming that

priming speeded response times to the same degree for hits and correct rejections.

Importantly, the lack of difference in the magnitude of effects for hits and correct

rejections suggests that priming from exposure at study did not carry over to the

test phase, suggesting that the differences observed in response times were largely

driven by exposure to the masked prime at test.

5.3.1 Summary

Response time data demonstrated the presence of robust priming effects that were

equivalent in magnitude for hits and correct rejections, suggesting that the ob-

served facilitation was driven by presentation of the masked prime at test. Despite

this strong evidence of the operation of priming at test, measures of recognition

performance and process estimates were unaffected by the manipulation.
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5.4 ERP results

To examine priming and memory effects grand average ERPs were formed for hits

and correct rejections in the primed and unprimed conditions. Visual inspection

of the waveforms confirmed the presence of an early priming effect onsetting prior

to onset of the target words. While the intention was only to examine ERPs time

locked to the onset of the target word, this early negativity appeared to be driven

by exposure to the masked prime and as a result the epoch was altered to include

prime onset (-500-1500ms) to capture this early effect. The mean number of trials

contributing to the waveforms for hits was 57 for the primed condition and 58 for

the unprimed condition. The mean number of trials contributing to waveforms

for correct rejections was 78 for the primed condition and 82 for the unprimed

condition.

5.4.1 Priming effects

Figure 5.1 shows grand average ERPs time locked to the onset of the prime for

hits and correct rejections from both the unprimed and primed conditions. Vi-

sual inspection of the waveforms indicated the presence of three priming related

modulations, an early (-50-150ms) posterior negativity, followed by a widespread

central positivity (250-500ms) and a later (500-1100ms) posterior negativity for

primed compared to unprimed words. Based on visual inspection, three time

windows were submitted for analyses of priming effects, -50-150ms, 250-500ms

and 500-1100ms. To separate priming effects from memory effects the data for

hits and correct rejections were analysed independently. The first level of analysis

was designed to identify variations in priming effects across conditions and time

windows, employing ANOVA with the factors of condition (unprimed, primed),
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Figure 5.1: Priming effects. Grand average ERPs for hits and correct rejections in the
unprimed and primed conditions. Waveforms display the presence of three priming related
modulations, an early posterior negativity, followed by a widespread central positivity, and
a later posterior negativity for primed compared to unprimed words.
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location (Fz, FCz, Cz, CPz, Pz, POz) and time window (-50-150ms, 250-500ms,

500-1100ms). Results for hits revealed a significant interaction between con-

dition, location and time window [F (3.2,98.3)=23.34, p<0.001]. Analysis for

correct rejections produced a significant main effect of condition [F (1,31)=4.96,

p=0.033], and a significant interaction between condition, location and time win-

dow [F (2.8,86)=20.99, p<0.001]. The presence of these interactions provides

strong evidence of variation in the pattern of priming effects across locations and

time windows for both hits and correct rejections.

Table 5.4: Priming ANOVAs by time window. Results of ANOVAs contrasting midline
sites with the factors of condition and location over the three time windows chosen for
analysis of priming effects.

-50-150ms 250-500ms 500-1100ms

Hits Cond F (1,31)=17.95, p<0.001 F (1,31)=28.31, p<0.001 F (1,31)=19.21, p<0.001

Cond*Loc - F (1.7,51.6)=20.42, p<0.001 -

CRs Cond F (1,31)=44.24, p<0.001 F (1,31)=92.88, p<0.001 F (1,31)=5.97, p=0.020

Cond*Loc F (1.6,50.8)=6.23, p=0.006 F (1.8,56)=12.76, p<0.001 F (1.7,53.7)=13.54, p<0.001

A second level of analysis was performed separately for hits and correct rejections

on the data from each time window, using ANOVA with the factors of condition

(unprimed, primed) and location (Fz, FCz, Cz, CPz, Pz, POz). The results of

this analysis are summarised in Table 5.4 and confirm that priming effects were

present in each time window for hits and correct rejections. For hits the results

demonstrated a main effect of condition in all three time windows and an interac-

tion between condition and location for the 250-500ms time window. Results for

correct rejections revealed main effects and interactions between condition and

location for all three time windows. These results provide evidence of priming ef-

fects for hits and correct rejections across time windows and suggest variations in

the pattern of priming effects for hits and correct rejections. Subsidiary analysis
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took the form of contrasts between the unprimed and primed conditions, per-

formed separately for hits and correct rejections, using ANOVA with the factors

of condition (unprimed, primed), location (F, FC, C, CP, P, PO), hemisphere

(left, right) and electrode (inferior, mid, superior). The results for each time

window are reported separately in the following sections.

5.4.1.1 Time window -50 to 150ms

From 50ms prior to the onset of target words waveforms for primed hits and

correct rejections were more negative going than for unprimed hits and correct

rejections across central and posterior locations (see Figure 5.2 for the data from

CPz). Initial analysis for hits revealed a significant main effect of condition

[F (1,31)=15.80, p<0.001] and an interaction between condition and electrode

[F (1.1,34.2)=14.18, p<0.001]. As can be seen in the topographic map in Figure

5.2 these results reflect a negativity for primed hits compared to unprimed hits

across locations at superior electrode sites. This result was supported by sub-

sidiary analysis on the data collapsed across locations and hemispheres, which

confirmed that effects were larger over superior sites than at medial (t(31)=3.43,

p=0.002) or inferior sites (t(31)=3.77, p=0.001). Consistent with the posterior

maxima evident in Figure 5.2, further examination of the data confirmed that

the effect was maximal for hits at electrode CPz (t(31)=4.34, p<0.001).

Initial analysis for correct rejections revealed a significant main effect of condition

[F (1,31)=43.67, p<0.001], along with interactions between condition and location

[F (1.4,42.3)=4.16, p=0.036], and condition and electrode [F (1.1,34.9)=16.70,

p<0.001]. As can be seen in Figure 5.2 these results reflect the presence of a

negativity for primed correct rejections compared to unprimed correct rejections
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Figure 5.2: Priming @ CPz (-50-150ms). Grand average ERPs for hits and correct rejec-
tions in the unprimed and primed conditions at electrode CPz, where effects were maximal.
Topographic maps show the difference between the unprimed and primed conditions for hits
and correct rejections. Primed hits and correct rejections were more negative going than
for unprimed hits and correct rejections across central and posterior locations.

at superior electrode sites over posterior locations. Subsidiary analysis focused

on midline sites, contrasting the data at anterior (F, FC, C) and posterior (CP,

P, PO) locations, confirmed that effects were significantly larger over posterior

locations (t(31)=2.23, p=0.034). Further analysis on the data collapsed across

posterior locations (CP, P, PO) and hemispheres, confirmed that effects were

larger over superior sites than at medial (t(31)=3.07, p=0.004) or inferior sites

(t(31)=4.27, p<0.001). Consistent with these results and the posterior maxima

evident in Figure 5.2, further examination of the data confirmed that the effect

for correct rejections was maximal at CPz (t(31)=8.03, p<0.001).

The next level of analysis was employed to compare the magnitude of priming

effects for hits and correct rejections and was performed on difference waveforms,

using ANOVA with the factors of test status (old, new), location (F, FC, C, CP,

P, PO), hemisphere (left, right) and electrode (inferior, mid, superior). Analysis

revealed a significant interaction between test status, location and hemisphere

[F (2.1,63.6)=3.28, p=0.043], indicating that the effect for hits is larger than the

effect for correct rejections over the left hemisphere at frontal locations. Sub-
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sidiary analysis revealed a significant interaction between test status, hemisphere

and electrode at frontal sites [F (1,31)=5.16, p=0.013], an interaction between

test status and hemisphere at fronto-central sites [F (1,31)=4.82, p=0.036], and

an interaction between test status, hemisphere and electrode at parieto-occipital

sites [F (1.5,45.4)=3.87, p=0.04]. These results confirm the presence of a widely

distributed effect maximal at centro-parietal locations for hits and correct re-

jections, which appears slightly larger for hits towards left frontal sites and for

correct rejections over parieto-occipital sites in the right hemisphere.

The foregoing results suggest slight distributional differences between hits and

correct rejections on the outer edges of the priming effects. To investigate whether

these differences reflected genuine changes in topography, follow up analysis was

performed on difference waveforms (primed-unprimed) for hits and correct rejec-

tions, on rescaled data. ANOVA was performed with the factors of test status

(old, new), location (F, FC, C, CP, P, PO), hemisphere (left, right) and elec-

trode (superior, mid, inferior). Analysis failed to identify a significant main effect

of test status or any interactions including the factors of test status (p>0.05),

confirming that the distribution of effects for hits and correct rejections did not

differ, and suggesting that priming effects in both cases were driven by the same

underlying neural generators.

In summary, during the -50-150ms time window primed hits and correct rejections

were more negative going than unprimed hits and correct rejections, and these

effects were maximal towards midline sites at centro-parietal locations. Crucially,

magnitude analysis demonstrated only minor differences in amplitude on the outer

edges of effects for hits and correct rejections, and topographic analysis confirmed

the absence of differences in distribution, suggesting that this early effect was

driven largely by exposure to the masked prime at test.
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5.4.1.2 Time window 250 to 500ms

From 250ms after target onset waveforms for primed hits and correct rejections

were more positive going than for unprimed hits and correct rejections across

central and posterior locations (see Figure 5.3 for data from CPz). Initial analysis

for hits revealed a significant main effect of condition [F (1,31)=33.40, p<0.001],

along with significant interactions between condition, location and hemisphere

[F (1.5,46.6)=3.89, p=0.038], condition, location and electrode [F (3.2,99)=6.08,

p=0.001], and condition, hemisphere and electrode [F (1.1,34.5)=6.56, p=0.013].

Analysis for correct rejections produced a main effect of condition [F (1,31)=82.59,

p<0.001], and a significant interaction between condition location and electrode

[F (3.9,120.2)=5.26, p=0.001].
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Figure 5.3: Priming @ CPz (250-500ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode CPz, where effects were
maximal. Topographic maps show the difference between the unprimed and primed condi-
tions for hits and correct rejections. Primed hits and correct rejections were more positive
going than unprimed hits and correct rejections across central and posterior locations

Table 5.5 shows the results of subsidiary analysis for hits and correct rejections

at each location. Results for correct rejections revealed significant main effects

and interactions between condition and electrode across locations, reflecting the

presence of a widespread positivity for primed correct rejections toward superior
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Table 5.5: Priming by location (250-500ms). Results of subsidiary analysis at separate locations for his and correct rejections.

Hits (250-500ms) F FC C CP P PO

Cond F (1,31)=12.55, p=0.001 F (1,31)=33.20, p<0.001 F (1,31)=48.43, p<0.001 F (1,31)=57.32, p<0.001 F (1,31)=57.74, p<0.001

Cond*Hem F (1,31)=5.37, p=0.027 F (1,31)=4.98, p=0.033

Cond*Elec F (1.1,35.9)=7.87, p=0.006 F (1.1,33.9)=13.55, p=0.001 F (1.1,33.2)=21.33, p<0.001 F (1.1,34.6)=16.56, p<0.001 F (1.1,33.5)=11.84, p=0.001

Cond*Hem*Elec F (1.4,42.7)=5.27, p=0.017 F (1.3,39.2)=9.71, p=0.002 F (1.6,48.8)=4.59, p=0.022

CRs (250-500ms) F FC C CP P PO

Cond F (1,31)=26.62, p<0.001 F (1,31)=52.35, p<0.001 F (1,31)=84.90, p<0.001 F (1,31)=95.53, p<0.001 F (1,31)=92.57, p<0.001 F (1,31)=72.06, p<0.001

Cond*Hem

Cond*Elec F (1.3,40.4)=9.65, p=0.002 F (1.2,38.5)=20.80, p<0.001 F (1.3,39.9)=47.53, p<0.001 F (1.1,34.5)=58.48, p<0.001 F (1.1,35)=69.20, p<0.001 F (1.2,38.1)=45.87, p<0.001

Cond*Hem*Elec
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electrode sites. Further examination of the data for correct rejections collapsed

across locations and hemispheres confirmed that effects were larger at superior

sites than at medial (t(31)=7.43, p<0.001) or inferior sites (t(31)=7.54, p<0.001).

For hits analysis revealed main effects and interactions between condition and

electrode extending from fronto-central to parietal-occipital locations, along with

interactions including the factor of hemisphere at frontal, fronto-central, central

and parieto-occipital locations. As can be seen in Figure 5.3, these interactions

including the factor of hemisphere reflect that the effect for hits was slightly

skewed over the right hemisphere at the locations identified. To allow comparison

with effects for correct rejections, subsidiary analysis was performed on the data

for hits collapsed across locations and hemispheres, to characterise interactions

including the factor of electrode. Results confirmed that effects for hits were

also larger at superior sites than at medial (t(31)=2.82, p=0.008) or inferior sites

(t(31)=3.78, p=0.001). Further examination of the data demonstrated that the

effects were maximal at electrode CPz for both hits (t(31)=6.71, p<0.001) and

correct rejections (t(31)=9.95, p<0.001).

Magnitude analysis contrasting effects for hits and correct rejections revealed

an interaction between test status, location and hemisphere [F (1.8,55.8)=5.49,

p=0.008]. Subsidiary analysis at separate locations revealed a significant main

effect of test status [F (1,31)=6.94, p=0.013], along with significant interactions

between test status and hemisphere [F (1,31)=15.95, p<0.001], and test status

and electrode [F (1.5,46.9)=13.62, p<0.001] at frontal locations. As can be seen

in Figure 5.3 these results reflect greater differences for correct rejections than

for hits over medial (t(31)=2.53, p=0.017) and inferior (t(31)=2.58, p=0.015)

sites in the left hemisphere at frontal locations. These results suggest the pres-

ence of differences in the distribution of effects for hits and correct rejections,
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with additional activation present at left-frontal locations for correct rejections.

To investigate whether these differences reflected genuine changes in topography,

follow up analysis was performed on difference waveforms (primed-unprimed) for

hits and correct rejections, on rescaled data. Analysis revealed significant inter-

actions between between test status and electrode [F (1.1,34.7)=13.82, p<0.001],

and test status, location and hemisphere [F (1.8,55)=4.42, p=0.020], confirming

the operation of additional sets of neural generators at left-frontal locations for

correct rejections.

In summary, during the 250-500ms time window primed hits and correct rejections

were more positive going than unprimed hits and correct rejections, and these

effects were both maximal towards midline sites at centro-parietal locations, but

differed in magnitude and distribution, with additional activity at left-frontal

locations for correct rejections. Taken together the findings demonstrate similar

posterior effects for hits and correct rejections, but for correct rejections this

posterior effect was also accompanied by left-frontal activation, suggesting that

matching information from the subliminal prime produces additional processing

at left-frontal locations when words have not been studied previously.

5.4.1.3 Time window 500 to 1100ms

From 500ms after target onset waveforms for primed hits and correct rejections

were more negative going than for unprimed hits and correct rejections at poste-

rior locations, with the largest difference between conditions for hits (see Figure

5.4 for the data from CP1). Initial analysis for hits revealed a main effect of

condition [F (1,31)=19.65, p<0.001], and a significant interaction between con-

dition, hemisphere and electrode [F (1.1,33.8)=4.62, p=0.036]. As can be seen
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Figure 5.4: Priming @ CP1 (500-1100ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode CP1, where effects for hits
were maximal. Topographic maps show the difference between the unprimed and primed
conditions for hits and correct rejections. Primed hits and correct rejections were more
negative going than unprimed hits and correct rejections at posterior locations in the left
hemisphere, with the largest difference between conditions for hits.

in Figure 5.4 these results reflect the presence of a negativity for primed com-

pared to unprimed hits across locations, a difference that is stronger in the left

hemisphere and over superior electrode sites. Subsidiary analysis collapsed across

locations and electrodes demonstrated greater negativity over the left hemisphere

(t(31)=2.07, p=0.047) and focused comparison of electrode sites in the left hemi-

sphere revealed that effects for hits were larger at medial sites than at inferior

sites (t(31)=2.62, p=0.014), with no significant difference apparent between me-

dial and superior sites. Further examination of the data demonstrated that the

effect for hits was maximal at electrode CP1 (t(31)=4.77, p<0.001).

Analysis for correct rejections produced a significant main effect of condition

[F (1,31)=5.92, p=0.021], and a significant interaction between condition, loca-

tion, hemisphere and electrode [F (4.9,150.7)=2.37, p=0.044]. Table 5.6 shows

results of subsidiary analysis at separate locations for correct rejections. Results

revealed significant main effects and interactions between condition and electrode

extending from central to parieto-occipital locations, with interactions including
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Table 5.6: Priming for CRs by location (500-1100ms). Results of subsidiary analysis at separate locations for correct
rejections.

CRs (500-1100ms) F FC C CP P PO

Cond F (1,31)=5.76, p=0.023 F (1,31)=10.49, p=0.003 F (1,31)=17.19, p<0.001 F (1,31)=16.63, p<0.001

Cond*Hem F (1,31)=4.55, p=0.041

Cond*Elec F (1.3,39.7)=3.81, p=0.048 F (1.2,36.6)=7.55, p=0.007 F (1.1,35.5)=10.82, p=0.002 F (1.2,38)=11.84, p=0.001

Cond*Hem*Elec F (1.3,40.2)=4.91, p=0.024
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the factor of hemisphere at centro-parietal and parieto-occipital locations. Follow

up analysis failed to demonstrate significant differences between hemispheres at

centro-parietal or parieto-occipital locations (p>0.05 in all comparisons). Fur-

ther analysis on the data collapsed from central to parieto-occipital locations and

across hemispheres revealed that effects were stronger at superior sites than at

medial (t(31)=2.92, p=0.006) or inferior sites (t(31)=3.35, p=0.002). As can be

seen in Figure 5.4 these findings reflect the presence of a slight negativity for

primed correct rejections extending from central to parieto-occipital locations,

with the largest difference between conditions over superior electrode sites. Fur-

ther examination of the data demonstrated that the priming effect for correct

rejections was maximal at electrode P1 (t(31)=4.34, p<0.001).

Magnitude analysis contrasting effects for hits and correct rejections revealed

a significant main effect of test status [F (1,31)=6.12, p=0.019], and a signifi-

cant interaction between test status, location and hemisphere [F (2.2,67.2)=5.81,

p=0.004]. Subsidiary analysis at separate locations revealed main effects of con-

dition extending from frontal to parietal locations (p<0.001 in all comparisons),

along with a significant interaction between test status, hemisphere and electrode

[F (1.8,57.2)=7.82, p=0.001] at frontal sites, and an interaction between test sta-

tus and hemisphere [F (1,31)=4.48, p=0.043] at fronto-central sites. As can be

seen in Figure 5.4 these results confirm greater priming for hits than for correct

rejections across locations and suggest a slightly more anterior distribution for

hits than for correct rejections over the left hemisphere. Topographic analysis

contrasting hits and correct rejections revealed a significant interaction between

test status location and hemisphere [F (2.1,66.4)=5.73, p=0.004], confirming a

difference in distribution, with a slightly more anterior focus for hits.
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In summary, during the 500-1100ms time window primed hits and correct re-

jections were more negative going than for unprimed hits and correct rejections

at central and posterior locations, with the largest difference between conditions

for hits. The magnitude and topography of these effects differed, with a larger

magnitude and a more anterior focus for hits than for correct rejections. Taken

together these results demonstrate that this late post-retrieval priming effect was

modulated by study exposure, being larger and more widespread for studied than

for unstudied words.

5.4.2 Summary
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Figure 5.5: Priming topographic summary. Topographic maps summarise differences
between the unprimed and primed conditions for hits and correct rejections over time.

Analysis of the data confirmed the presence of three priming related modula-

tions, an early (-50-150ms) posterior negativity, followed by a widespread central

positivity (250-500ms), and a later (500-1100ms) posterior negativity for primed

compared to unprimed words. The early negativity, evident between -50-150ms,

was maximal towards superior sites at centro-parietal locations for hits and cor-

rect rejections and did not differ substantially in magnitude or distribution. Be-
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tween 250-500ms, primed hits and correct rejections were more positive going

than unprimed hits and correct rejections, and these effects were maximal to-

wards midline sites at centro-parietal locations, but effects for hits and correct

rejections did differ in magnitude and distribution, with additional activity at

left-frontal locations for unstudied compared to studied words. The late post-

retrieval negativity, evident between 500-1100ms, was maximal at superior sites

over central and posterior locations and appeared to be reliably modulated by

exposure to words at study, being larger in overall magnitude and recruiting

additional left-frontal regions for processing of studied compared to unstudied

words.

5.4.3 Memory effects

Figure 5.6 shows grand average ERPs time locked to the onset of the prime for

hits and correct rejections in the unprimed condition, and Figure 5.7 shows grand

average ERPs for the primed condition. Visual inspection of the grand average

waveforms shows that ERPs elicited in the unprimed condition were more posi-

tive going for hits than for correct rejections between 300-500ms and 500-800ms,

with the greatest differences at mid-frontal and left centro-parietal locations. By

contrast old/new differences were not evident in the primed waveforms during the

300-500ms time window and there was only a slight positivity over left-parietal

locations for primed hits compared to primed correct rejections between 500-

800ms. From around 800ms after target onset the waveforms for hits were more

negative going than waveforms for correct rejections in both conditions at midline

sites.
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Figure 5.6: Memory ERPs for unprimed words. Grand average ERPs for hits and correct
rejections in the unprimed condition. Waveforms were more positive going for hits than for
correct rejections at mid-frontal and left centro-parietal locations between 300-500ms and
500-800ms. From 800ms onwards waveforms for hits were more negative going than for
correct rejections at midline sites.
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Figure 5.7: Memory ERPs for primed words. Grand average ERPs for hits and correct
rejections in the primed condition. In contrast to the unprimed condition, no mid-frontal
memory effects are evident between 300-500ms for the primed condition. From 500-800ms
waveforms show a very small positivity for hits at left parietal locations and from 800ms
onwards waveforms for hits were more negative going than for correct rejections at midline
sites.
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For memory contrasts the data were analysed over 300-500ms, 500-800ms and

800-1100ms time windows, chosen to capture the neural correlates of familiarity,

recollection and late right-frontal old/new effects reported in the literature. The

first level of analysis was designed to identify variations in old/new effects across

conditions and time windows, employing ANOVA with the factors of condition

(unprimed, primed), test status (old, new), location (Fz, FCz, Cz, CPz, Pz) and

time window (300-500ms, 500-800ms, 800-1100ms). Results produced significant

interactions between test status and time window [F (1.6,48.4)=15.31, p<0.001],

and test status, condition and location [F (1.6,48.7)=6.69, p=0.005]. The presence

of these significant interactions provides evidence of variation in the pattern of

old/new effects between conditions and across time windows.

Table 5.7: Memory ANOVAs by time window. Results of ANOVAs contrasting midline
sites with the factors of condition, test status and location over the three time windows
chosen for analysis of old/new effects.

300-500ms 500-800ms 800-1100ms

Test status F (1,31)=14.70, p=0.001 F (1,31)=6.80, p=0.014 F (1,31)=4.22, p=0.048

Test status*Cond - F (1,31)=10.02, p=0.003 -

Test status*Cond*Loc F (1.8,55.9)=8.24, p=0.001 F (1.5,47.2)=3.47, p=0.051 -

To further elucidate the pattern of memory related activity, a second level of anal-

ysis was performed separately on the data from each time window, using ANOVA

with the factors of condition (unprimed, primed), test status (old, new) and lo-

cation (Fz, FCz, Cz, CPz, Pz, POz). The results of this analysis are summarised

in Table 5.7 and demonstrate that old/new effects varied across time windows

and interacted with the factors of condition and location in the first two time

windows. Subsidiary analyses employed to investigate old/new effects were per-

formed separately for each condition on the average activity over three electrodes

sites for four regions of interest: left-frontal (LF: F1, F3, F5), right-frontal (RF:
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F2, F4, F6), left-parietal (LP: P1, P3, P5) and right-parietal (RP: P2, P4, P6),

using ANOVA with the factors of test status (old, new), location (frontal, pari-

etal), hemisphere (left, right) and electrode (inferior, mid, superior); the results

for each time window are reported separately in the following sections.

5.4.3.1 Time window 300 to 500ms

Between 300 and 500ms unprimed hits were more positive going than unprimed

correct rejections at mid-frontal locations, but no differences between hits and

correct rejections were evident for the primed condition (see Figure 5.8 for the

data from FCz). Importantly, analysis of the primed condition confirmed the

absence of old/new effects, demonstrating no main effect or interactions includ-

ing the factor of test status (p>0.05 in all comparisons). By contrast, initial

analysis for the unprimed condition revealed a significant main effect of test sta-

tus [F (1,31)=20.53, p<0.001], and a significant interaction between test status,

location and electrode [F (1.2,37.3)=4.00, p=0.046]. Subsidiary analysis at pari-

etal locations produced a significant main effect of test status [F (1,31)=10.23,

p=0.003], but no significant interactions including the factor of test status, reflect-

ing a very slight positivity across sites at parietal locations. Analysis at frontal

locations revealed a significant main effect of test status [F (1,31)=18.08, p<0.001]

and a significant interaction between test status and electrode [F (1.2,38)=9.87,

p=0.002].

These findings suggest the presence of a positivity for unprimed hits that is max-

imal towards superior sites at frontal locations, further analysis on the data from

frontal sites collapsed across hemispheres demonstrated that the old/new differ-

ence was larger at superior (t(31)=3.31, p=0.002) and medial sites (t(31)=3.21,
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Figure 5.8: Memory @ FCz (300-500ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode FCz. Topographic maps
show the difference between the hits and correct rejections for both conditions. Mid-frontal
old/new effects were only evident in the unprimed condition during the 300-500ms time
window.

p=0.003) than at inferior sites, confirming the presence of mid-frontal old/new

effects for the unprimed condition. Further examination of the data demon-

strated that the old/new effect for unprimed words was maximal at electrode

FCz (t(31)=5.10, p<0.001). As can be seen in the topographic map in Figure

5.8, the distribution of the old/new effect reported for the unprimed condition

closely resembles FN400 effects previously reported in the literature. Magnitude

and topographic analysis contrasting the primed and unprimed conditions were

not performed for the current time window due to the absence of significant

old/new effects in the primed condition.
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In summary, analysis for the unprimed condition demonstrated the presence of

a mid-frontal old/new effect, consistent with the distribution of FN400 effects

previously reported in the literature. By contrast, analysis for the primed con-

dition demonstrated the absence of mid-frontal old new effects; a finding that

is particularly surprising given recent links between the FN400 and conceptual

priming in the literature.

5.4.3.2 Time window 500 to 800ms

Between 500 and 800ms unprimed hits and correct rejections differed over frontal

and central locations, with a focus over the left hemisphere at centro-parietal

locations (see Figure 5.9 for data from CP3). For the primed condition hits were

slightly more positive going than for correct rejections at parietal locations in

both hemispheres. Initial analysis for the primed condition revealed a marginally

significant main effect of test status [F (1,31)=3.97, p=0.056] and a significant

interaction between test status and electrode [F (1.3,40.4)=4.87, p=0.025]. Sub-

sidiary analysis focused on parietal sites, where differences between hits and cor-

rect rejections appeared to be maximal, revealed a significant main effect of test

status [F (1,31)=7.23, p=0.011] and a significant interaction between test status

and electrode [F (1.3,39.2)=4.40, p=0.032]. As can be seen in Figure 5.9 these re-

sults reflect the presence of a slight positivity for primed hits over medial sites in

both hemispheres. Further analysis on the data from parietal locations collapsed

across hemispheres confirmed this result, demonstrating larger effects at medial

sites than at superior sites (t(31)=4.31, p<0.001).

Initial analysis for the unprimed condition revealed a significant main effect of

test status [F (1,31)=18.94, p<0.001], but no significant interactions including the
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Figure 5.9: Memory @ CP3 (500-800ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode CP3. Topographic maps
show the difference between the hits and correct rejections in both conditions. Unprimed
hits and correct rejections differed across locations, with an apparent focus over the left
hemisphere at centro-parietal locations. Primed hits were slightly more positive going than
correct rejections over parietal sites.

factor of test status, reflecting more positive going activity for hits across frontal

and parietal locations. Further examination of the data demonstrated that the

old/new difference for the unprimed condition was maximal at electrode CP3

(t(31)=4.07, p<0.01). As can be seen in Figure 5.9, the distribution of effects for

the unprimed condition suggests a continuation of mid-frontal activity from the

300-500ms time window, combined with a shift towards centro-parietal locations

in the left hemisphere. Analysis focused on centro-parietal locations revealed a

main effect of test status [F (31)=16.16, p<0.001], but failed to demonstrate an

interaction between test status and hemisphere, suggesting that this effect does
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not exhibit a significant shift towards left-parietal locations and merely reflects

continuation of mid-frontal differences from the previous time window.

To investigate whether old/new effects evident for the unprimed condition be-

tween 300-500ms and 500-800ms differed in topography, analysis was performed

on rescaled data, using ANOVA with the factors of time window (300-500ms,

500-800ms), location (frontal, parietal), hemisphere (left, right), electrode (infe-

rior, mid, superior). Results revealed no significant main effects or interactions

including the factor of time window (p>0.05), demonstrating that the later ef-

fect was not topographically dissociable from the FN400 effect present during the

300-500ms time window.

In summary, analysis for the primed condition demonstrated a very slight posi-

tivity for hits over medial sites at parietal locations in both hemispheres. Despite

the appearance of a slight shift towards a more left-sided distribution for the un-

primed condition, analysis of the data confirmed continuation of FN400 old/new

effects from the previous time window, clearly demonstrating that this later effect

was not topographically dissociable from the earlier FN400.

5.4.3.3 Time window 800 to 1100ms

During the post-retrieval period, waveforms in both conditions were more neg-

ative going for hits than for correct rejections at midline sites, where effects

appeared larger and more distributed for primed words (see Figure 5.10 for data

from Pz). Initial analysis for the unprimed condition revealed a significant inter-

action between test status, location and electrode [F (1.2,37.4)=5.25, p=0.022].

Subsidiary analysis at frontal locations revealed no main effects or interactions,

but analysis at parietal locations did reveal an interaction between test status
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and electrode [F (1.1,35.6)=17.65, p<0.001]. As can be seen in Figure 5.10 these

results reflect the presence of a negativity for unprimed hits at posterior locations

over superior sites. Subsidiary analysis on the data from parietal locations col-

lapsed across hemispheres confirmed this result, demonstrating larger effects over

superior sites than at medial (t(31)=4.56, p<0.001) or inferior sites (t(31)=4.30,

p<0.001).
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Figure 5.10: Memory @ Pz (800-1100ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode Pz. Topographic maps show
the difference between the hits and correct rejections in both conditions. Waveforms in
both conditions were more negative going for hits than for correct rejections at midline
sites, where the effect appeared larger and more distributed for primed words.

Initial analysis for the primed condition revealed significant interactions between

test status, location and hemisphere [F (1,31)=4.73, p=0.037], test status, lo-

cation and electrode [F (1.4,44.7)=4.36, p=0.029], and test status, hemisphere
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and electrode [F (1.5,46.4)=4.28, p=0.029]. Subsidiary analysis at frontal loca-

tions demonstrated a significant interaction between test status, hemisphere and

electrode [F (1.3,40.7)=4.49, p=0.031] and analysis at parietal locations revealed

a significant interaction between test status and electrode [F (1.2,36.5)=32.70,

p<0.001]. As can be seen in Figure 5.10 these result confirm the presence of a neg-

ativity for hits extending from frontal to parietal locations at superior electrode

sites, with a slight skew over the left hemisphere at frontal sites. Further analysis

on the data from parietal locations collapsed across hemispheres confirmed the

presence of larger effects over superior sites than at medial (t(31)=6.94, p<0.001)

or inferior sites (t(31)=5.87, p<0.001). Further analysis on the data from frontal

sites confirmed the presence of larger effects over the left hemisphere across elec-

trode sites (inferior: t(31)=2.90, p=0.007, medial: t(31)=3.96, p<0.001, superior:

t(31)=2.68, p=0.012), with the largest difference between hemispheres evident for

medial sites.

The foregoing pattern of results suggests slight differences between conditions in

the magnitude and distribution of these late old/new effects, with greater negativ-

ity overall, and more widespread activity over left-frontal sites for primed words.

Magnitude analysis contrasting effects for the unprimed and primed conditions

revealed a marginally significant main effect of condition [F (31)=4.18, p=0.049],

reflecting slightly greater negativity across locations for the primed condition.

In summary, analysis for the unprimed and primed conditions demonstrated the

presence of a negativity for hits over superior electrode sites, that was slightly

greater in magnitude for the primed condition, suggesting that this late memory

effect was modulated by priming.
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5.4.4 Summary

Between 300-500ms data for the unprimed condition demonstrated the presence

of mid-frontal old/new effects, that were consistent with the distribution of FN400

old/new effects previously reported in the literature. Surprisingly, given recent

links between priming induced fluency and familiarity, mid-frontal old new effects

were not evident in the data for the primed condition. During the 500-800ms

time window the data demonstrated the continuation of mid-frontal old/new dif-

ferences for the unprimed condition, while data for the primed condition demon-

strated very small old/new differences over medial sites at parietal locations in

both hemispheres. Between 800-1100ms the data demonstrated the presence of a

negativity for hits over superior electrode sites in both conditions that was mod-

ulated by the priming manipulation, being slightly larger in overall magnitude

for primed words.
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Figure 5.11: Memory topographic summary. Topographic maps summarise differences
between hits and correct rejections for the unprimed and primed conditions over time.
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5.5 Discussion

The aim of the current experiment was to explore interactions between repetition

priming and neural correlates of familiarity, based on previous behavioural re-

search demonstrating that fluency induced by priming should selectively impact

familiarity. To encourage reliance on familiarity based recognition, a shallow en-

coding task was employed and responses at test were speeded, reasoning that

this would enhance reliance on rapid and automatic processing. Response time

data demonstrated the presence of robust priming effects that were equivalent in

magnitude for hits and correct rejections. Despite this strong evidence of the op-

eration of priming at test, measures of accuracy, discrimination, bias, and process

estimates of familiarity and recollection were unaffected by the priming manipu-

lation. These findings are in direct contrast to previous research, demonstrating

that priming selectively impacts familiarity and is normally associated with an

increase in the hit rate accompanied by an increase in the proportion of false

alarms (e.g., see Rajaram, 1993, Exp.3). Based on the work of Jacoby and white-

house (1989), the current findings may appear to suggest that participants were

indeed aware of the prime words, but ratings of prime awareness in the current

study do not support this conclusion.

Recent work has suggested that prime duration can also exert an influence on

recognition performance, demonstrating that durations of less than 100ms pro-

duce positive priming effects, while longer durations produce negative priming ef-

fects (Huber, Clark, Curran & Winkielman, 2008). On the basis of this evidence,

it is possible that the 48ms prime duration employed in the current experiment

is responsible for failure to detect increases in false alarm rates. However, the

prime duration used here closely matches those used in previous studies that do
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report such changes in performance (e.g., Rajaram, 1993; Woollams et al., 2008),

making this explanation unlikely. One potentially critical difference between the

current study and previous research is the nature of the unprimed baseline. Un-

primed targets are commonly preceded by an unrelated word to act as a baseline,

while the current study employed repetition of the word “blank” to act as a

more neutral baseline. Recent research has demonstrated that lexical priming for

unassociated and dissimilar words can occur rapidly and uncontrollably (Estes &

Jones, 2009), suggesting that the use of unrelated words may represent a signifi-

cant confound. As such, it is plausible that the use of unrelated words in previous

research may have actually influenced performance on unprimed trials, making it

appear as if there was a change in performance on primed trials. Alternatively,

forced reliance on more automatic responding may have inhibited conscious flu-

ency attributions in the current study, which in turn eliminated differences in

performance across conditions. While it is difficult to discriminate between these

alternative explanations of the current findings at this stage, this issue will be

re-addressed after discussion of the ERP results.

Contrasting ERPs for primed and unprimed words revealed the the presence of

three priming related modulations; an early (-50-150ms) centro-parietal negativ-

ity, followed by a centro-parietal positivity (250-500ms), and a later (500-1100ms)

negativity at centro-parietal locations. Previous research on the time course of vi-

sual word recognition has identified a number of early onsetting components that

are modulated by immediate masked priming, including a posterior P150 compo-

nent, an anterior N250 component, and a posterior P325 component (Holcomb

& Grainger, 2006). However, the early effect found here 50ms prior to target

onset (350ms post-prime) does not map directly onto any of these early visual

components, which have all been found to be more positive going for primed than
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for unprimed words. The early negativity reported here did not differ substan-

tially in magnitude or distribution for hits and correct rejections, suggesting that

exposure to words at study did not influence this effect. Waveforms diverge just

prior to target onset suggesting that this early effect may reflect some form of

anticipation of the upcoming target, being more negative going when the prime

was predictive of the target, but its exact functional significance remains unclear

at this stage. The centro-parietal positivity present between 250-500ms, repli-

cates the findings of Woollams et al. (2008) and Lucas et al. (2012), reflecting a

modulation of the N400 component.

Attenuation of the N400 is commonly found in priming experiments and is gen-

erally thought to reflect facilated processing of stimulus meaning (see Kutas &

Federmeier, 2011, for a recent review). While some studies have suggested that

semantically related primes require conscious processing to produce N400 effects

and do not appear under masked conditions (Brown & Hagoort, 1993), others

have found that N400 semantic priming occurs under masked and unmasked con-

ditions (e.g., Deacon, Hewitt, Yang & Nagata, 2000). However, repetition priming

has been found to reliably attenuate N400 effects in masked and unmasked prim-

ing paradigms (e.g., Holcomb, Reder, Misra & Grainger, 2005; Misra & Holcomb,

2003; Schnyer, Allen & Foster, 1997). In addition to N400 effects, a late negativ-

ity for primed versus unprimed items was also observed between 500-1100ms over

posterior locations, and appeared to be reliably modulated by exposure to words

at study, being larger in overall magnitude and recruiting additional left-frontal

regions for processing of studied compared to unstudied words. It is not common

in priming experiments to investigate effects occurring later than the N400, but

one paper has reported post-retrieval effects for conceptual fluency.
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Wolk et al. (2004) identified a frontally focused positivity for unstudied compared

to studied words between 800-1600ms for items preceded by predictive sentence

frames. The authors interpreted this result as reflecting the assessment and at-

tribution of enhanced fluency. However, late effects in the current study onset

earlier, had a posterior distribution and were more negative going for primed

words. Despite differences between these studies, it is plausible that the late ef-

fect observed here may also reflect processing related to whether fluency should

be attributed to prior exposure. The larger magnitude of this late effect for hits

than for correct rejections provides tentative support for this view, as a higher

degree of fluency would be expected for studied than for unstudied words.

Memory research has identified a late posterior negativity (LPN) onsetting from

around 600ms that exhibits a similar distribution to the one reported in the cur-

rent study, and this late component has often been found in item recognition tasks

where response conflict creates a need for enhanced action monitoring (Johans-

son & Mecklinger, 2003). This exact functional significance of this effect remains

unclear, for example, it has been related to processes operating on the products

of retrieval (Mecklinger, 1998), and has also been described as a strategic search

process for retrieving source information (Senkfor & Van Petten, 1998). More

importantly, it has been related to monitoring retrieval to avoid classifying simi-

lar lures as old (Curran, 2000), which fits well with the idea that items that are

associated with a greater degree of fluency (i.e., studied and primed) will elicit a

larger LPN, as was found in the current study.

For memory effects, contrasting ERPs for the primed and unprimed conditions

revealed an intriguing pattern of results. Data for the unprimed condition demon-

strated the presence of mid-frontal old/new effects that were consistent with the

distribution of FN400 old/new effects previously reported in the literature, and
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continued into the 500-800ms time window. Surprisingly, given recent links be-

tween priming induced fluency and familiarity, mid-frontal old new effects were

not evident in the data for the primed condition. One potential criticism of the

current data is that old/new differences were present in the primed condition but

were not measurable due to overlap with the N400 effect during the same time

window. However, this explanation of the current data is highly unlikely, given

that previous research employing a design analogous to the one used has clearly

demonstrated the presence of priming and familiarity effects during the same time

period (e.g., Lucas et al., 2012; Woollams et al., 2008). In addition, it could be

argued that failure to find FN400 effects in the primed condition was due to a

lack of power, but as trial numbers were matched across conditions and FN400

effects were present in the unprimed condition, it is also highly unlikely that this

can account for the difference in findings across conditions. In short, the current

data demonstrates a genuine absence of the FN400 following priming, suggesting

that repetition priming can support recognition in the absence of explicit memory

signals.

The current results are only partially consistent with prior research demonstrating

the absence of mid-frontal old/new effects, because unlike earlier work significant

left-parietal old/new effects were not clearly evident in the data for the primed

condition, and the stimuli employed here were meaningful (e.g., Voss et al., 2010b;

Yovel & Paller, 2004). The current findings strongly suggest that it is not merely

the degree of meaningfulness that determines the presence or absence of FN400

effects, but that its presence or absence directly relates to the mode of retrieval.

In a previous ERP study, Badgaiyan and Posner (1997) employed a word-stem

completion task and varied the retrieval instructions. Implicit instructions re-

quired participants to complete stems with the first word that came to mind, and
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explicit instructions required participants to complete stems with words shown

during the study phase. The authors found activity reductions for primed words

in the right posterior cortex under implicit and explicit instructions, but only

found additional activity at frontal sites under explicit instructions, when prim-

ing was not a sufficient basis for making a response. While the current study

did not directly manipulate retrieval instructions, speeding the old/new decision

and employing a two stage RK procedure, where subjective reports were only re-

quired after the old/new decision had been made, may have reduced requirement

for an explicit memory search, driving the observed absence of FN400 effects in

the primed condition.

The absence of explicit old/new effects in the primed condition combined with

matched behavioural performance across conditions demonstrates that priming is

sufficient to support accurate recognition, consistent with previous findings (Voss

et al., 2008), but goes further in demonstrating that priming can also support

recognition for meaningful stimuli. N400 priming effects found in the current

study differed in magnitude and distribution on the outer edges of effects, with

additional activity at left-frontal locations for unstudied compared to studied

words. A number of functional imaging studies have implicated reductions in

the Left Inferior Prefrontal Cortex (LIPC) with the retrieval of lexical/semantic

knowledge (e.g., Fiez, 1997; Poldrack et al., 1999). As such, the appearance of

additional left-frontal activity for correct rejections could actually be driven by

an underlying reduction in the LIPC for studied words, cancelling out positivity

at left-frontal sites for hits as a result of prior exposure to words at study. While

this claim is tentative, interpreting the difference in N400 effects found here in

this way provides evidence for changes in effects as a result of study exposure, and

suggests that implicit recognition may be based on fluency signals from enhanced
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lexical access driven by repetition. However, this account is not straightforward

as it would also imply that performance should be poorer for unstudied words

that were primed at test, as these too would be processed more fluently, leading

to misattribution.

Between 800-1100ms the data demonstrated the presence of a negativity for hits

that was larger for the primed than for the unprimed condition. This late on-

setting difference between hits and correct rejections also resembled the LPN re-

ported earlier for the priming contrast. Previous research has demonstrated that

the LPN is larger when source information is necessary for accurate discrimina-

tion (Cycowicz, Friedman & Snodgrass, 2001). On this view, the late negativity

reported in the current experiment may act as a control mechanism for lexical

fluency by reconstructing information from the study episode prior to response

execution (Johansson & Mecklinger, 2003). Recognition performance driven by

facilitated access to abstract lexical representations may predict an increase in

false alarm rates following priming, but it is plausible that if multiple repetitions

lead to a high degree of fluency, as is the case for studied words that are also

primed, that this fluency initiates a search for a corresponding episodic trace.

The greater negativity for primed hits found in the current study is consistent

with this interpretation, and on this view, facilitated access to lexical representa-

tions does not necessitate changes in behavioural performance when recognition

is not reliant upon explicit familiarity.

5.5.1 Summary

Overall, the findings are consistent with the existence of neural circuits support-

ing priming that are independent of circuits associated with familiarity, and that
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priming signals are sufficient to drive accurate recognition in the absence of the

FN400. Crucially, in contradiction to recent findings in the literature, the cur-

rent study strongly suggests that the FN400 is not directly related to conceptual

priming. In line with the findings reported here, a recent study by De Chaste-

laine, Friedman, Cycowicz and Horton (2009) demonstrated that FN400 effects

were not related to familiarity or conceptual priming, suggesting instead that the

FN400 may reflect a control process that is required to support retrieval only

when memory traces are weak. Moreover, it has been demonstrated that prim-

ing can enhance the formation of episodic memory traces (Gagnepain, Lebreton,

Desgranges & Eustache, 2008), suggesting that priming in the current experi-

ment negated the need for explicit control of retrieval by producing a stronger

memory trace. While the details of the exact mechanisms driving recognition in

the absence of awareness remain unclear at this stage, the current study clearly

demonstrates that under certain circumstances feelings of familiarity may become

redundant and unnecessary.
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ERP 2

6.1 Introduction

ERP research to date has largely focused on the relationship between priming and

episodic familiarity as indexed by the FN400, based on a wealth of behavioural

evidence suggesting that fluency induced by priming selectively impacts familiar-

ity. However, recent evidence suggests that measures used to identify the con-

tribution of familiarity and recollection behaviourally, particularly the standard

remember know procedure, may prevent detection of interactions between prim-

ing and recollection (e.g., Higham & Vokey, 2004). Basically, the problem posed

is that dual-process models and the binary RK decisions based on them, presup-

pose that R responses can only be reported for studied words, due to reliance of

retrieval of context to characterize recollection, excluding the possibility that the

phenomenological experience of recollection could be illusory and influenced by

fluency. Higham and Vokey (2004) investigated illusory recognition, employing an

independent scales methodology, where participants were asked to rate each item
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for familiarity and recollection on a 4-point scale, to address issues associated

with binary RK decisions, and demonstrated an increase in illusory R responses

for old/new targets preceded by repetition primes. These findings suggest that

repetition induced fluency can also impact recollection and have been supported

by more recent studies employing this independent ratings method.

Kurilla and Westerman (2008) demonstrated that under standard RK conditions

fluency induced by masked repetition primes selectively increases the proportion

of know responses, but under independent RK conditions they found increases in

the proportion of both R and K responses for repetition and conceptual primes.

Brown and Bodner (2011) took this approach further and found parallel effects

of priming and levels of processing on both processes, demonstrating increases

in the proportion of recollection and familiarity for both manipulations. Taken

together, the findings from these behavioural studies suggest that under certain

circumstances recollection is influenced by priming, but this independent ratings

method has not been widely adopted in the literature, making it difficult to

assess whether it is the independent or standard RK ratings that in fact lead to

artifactual conclusions in this case. Importantly for the purposes of the current

investigation, reports of fluency increasing the proportion of recollection are not

limited to investigations employing independent ratings and have also been found

on occasion by studies employing more standard RK procedures.

Taylor and Henson (2012) employed a masked priming paradigm with a binary

RK decision to examine the effects of repetition and conceptual priming on sub-

jective reports of familiarity and recollection. Results demonstrated an increase

in the proportion of remember responses for studied words that were preceded by

conceptual primes, but not for words preceded by repetition primes, which were

associated with the standard increase in K responses for studied and unstudied
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words. This behavioural finding was replicated in a follow-up fMRI study using

the same design, which additionally demonstrated that conceptual primes modu-

lated activity in parietal regions previously associated with recollection (Taylor,

Buratto & Henson, 2013). The finding that only conceptual priming increased

the proportion of R responses is odd given that the evidence reported earlier

demonstrates increases in R responses for repetition and conceptual primes, and

in light of the fact that the authors failed to replicate the result when conceptual

blocks were not intermixed with repetition blocks. It is likely that differences

in results across these experiments can be accounted for by factors other than

the specific nature of the prime itself, such as differences in prime duration or

visibility between experiments. Nonetheless, the fMRI findings of Taylor and col-

leagues go some way towards moving beyond difficulties with the details of RK

procedures, relating conceptual priming to brain regions previously associated

with recollection.

The studies reviewed so far have all employed priming during the recognition test

phase, but recollection has also been related to priming in another fMRI study

examining the impact of priming at encoding on subsequent memory. Gagne-

pain et al. (2011) contrasted primed and unprimed auditory words presented

along with distracting sounds and found that priming at encoding increased the

occurrence of subsequent recollection. In addition, the authors demonstrated

that repetition priming reduced activity in MTL regions previously associated

with recollection. The authors suggest that priming facilitates better encoding

of contextual details, resulting in the observed increase in recollection, because

it reduces the level of attentional resources tied up in processing of the item in-

formation. While these findings deal with encoding rather than retrieval, they

highlight the key point that priming serves to facilitate processing by reducing
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level of cognitive resources recruited to process previously encountered items,

leading to faster and more efficient processing.

As noted in the introduction, dual-process models posit that familiarity is a fast

and automatic process, while recollection is a slow and effortful process that

places larger demands on cognitive resources (Yonelinas, 2002). Further evidence

supporting the idea of potential interactions between priming and recollection

comes from studies demonstrating that under certain circumstances recollection

can operate faster than familiarity, undermining the assumptions of dual-process

models. Gardiner, Ramponi and Richardson-Klavehn (1999) employed a response

deadline procedure to contrast R and K responses and found that for the shorter

deadline, designed to force reliance on more automatic responding, conceptual

processing produced a greater proportion of R than K responses, suggesting that

remembering can also be fast and automatic in nature. Recollection has also been

demonstrated to be available earlier than familiarity in reaction time studies

employing RK measures (Dewhurst & Conway, 1994; Henson, Rugg, Shallice,

Josephs & Dolan, 1999). However, early reports of faster reaction times for R

responses were claimed to be driven by the nature of RK instructions rather

than differences in underlying processing, because participants only make a K

responses once both processes are complete and they have failed to recollect

(Yonelinas, 2002).

In a more recent study, Dewhurst, Holmes, Brandt and Dean (2006) set out to

address issues concerning the specifics of the RK procedure by contrasting results

from one-step and two-step RK measures, reasoning that the two-step procedure

could lead to R responses in the RK decision when the initial old/new decision

was in fact made on the basis of familiarity, giving the appearance of faster re-

sponses on the old/new decision for items that are reported to be recollected.
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The authors demonstrated faster reaction times for R responses irrespective of

the RK procedure employed and suggest that experiences of remembering are

rapid and automatic in nature, while the experiences of knowing are more likely

to involve decision processes that require conscious control. While these stud-

ies make no reference to priming specifically, faster R responses have also been

observed following masked repetition priming of recognition test cues (Woollams

et al., 2008), suggesting that the degree of priming from prior exposure may at

least partially contribute to this earlier onsetting, more automatically driven,

form of recollection.

It is difficult to assess, based on the evidence reported above, the precise nature

of interactions between priming and recollection, but the findings clearly support

the conclusion that they do in fact occur. The current study sought to investigate

interactions between priming and recollection further, by employing ERPs to look

for changes in the left-parietal effect, which indexes recollection, as a function

of masked priming following a deep encoding task. The evidence reported above

suggests two independent predictions of how priming may influence brain activity

in areas associated with recollection. Firstly, based on the work of Gagnepain

and colleagues, interactions between priming and recollection may be expected to

reduce the magnitude of left-parietal old/new effects, indexing a reduction in the

amount of cognitive resources engaged in retrieving a recently encountered item.

Secondly, based on studies demonstrating fast R responses, repetition priming

may produce observable changes in the timing of left-parietal old/new effects

associated with recollection, speeding their onset.
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6.2 Methods

Stimulus materials and experimental procedures were identical to those specified

in Chapter 4, but differed in the encoding task employed. To encourage rec-

ollection participants performed a deep encoding task at study and were either

instructed to read each word out loud, or to fit each one into a short sentence as

it appeared on the screen. The alternative encoding tasks were employed to allow

examination of recollection as a function of the depth of meaning employed at

encoding, reasoning that this difference may produce differential engagement of

the neural correlates of priming and recollection. However, differences in priming

and recollection as a function of encoding task were not evident in the ERP data

and as a result all data are reported collapsed across encoding task. Thirty-four

undergraduate psychology students from the University of Stirling participated

in the experiment, two participants were excluded due to excessive EEG arte-

facts, resulting in insufficient ERP trials for critical contrasts (<16 trials). The

remaining thirty-two participants comprised of 17 females and 15 males with a

mean age of 21 (range=18-34; SD=3.09).

6.3 Behavioural results

In total 85% of participants reported being unaware of the existence of the masked

prime, 6% reported that they detected flickering on the screen but were unable

to detect any of the words, and the remaining 9% reported that they were aware

of seeing the word blank appear before the onset of the target on a few trials, but

none of the participants reported being aware of the repetition of the target words.

Initial examination of the behavioural data as a function of reported awareness
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confirmed no differences in the pattern of results for participants who reported

being aware of flickering on the screen or aware of the word blank compared to

unaware participants, and as a result the data were analysed collapsed across

awareness categories.

Table 6.1: Memory performance. Percentage of correct responses, discrimination and
bias measures for the unprimed and primed conditions (standard error of the mean). The
data clearly demonstrate no difference in performance measures or bias across conditions.

Correct % Discrim. & Bias

Old New Pr Br

Unprimed 75.11 (3.33) 93.05 (1.29) 0.68 (0.04) 0.25 (0.04)

Primed 75.69 (3.14) 92.44 (1.30) 0.68 (0.04) 0.27 (0.04)

Table 6.1 shows a summary of recognition performance for the current experiment,

and demonstrates that measures of recognition and bias were unaffected by the

priming manipulation. Crucially, initial analysis confirmed that participants were

able to discriminate between old and new words in both conditions (paired t-tests

comparing hits and false alarms for both conditions were significant [p<0.001] in

all comparisons). Mean accuracy data were analysed using ANOVA with the

factors of condition (unprimed, primed) and test status (old, new). This revealed

a significant main effect of test status [F (1,31)=28.60, p<0.001], but no main

effect of condition or interaction between condition and test status, reflecting

higher accuracy for new words. Subsidiary analysis collapsed across conditions

confirmed that mean accuracy was higher for new words than for old words at

test (t(31)=5.35, p<0.001). Discrimination rates were also unaffected by the

priming manipulation, and measures of response bias were equally conservative

across conditions (p>0.05 in all comparisons). Overall, this pattern of results

suggests that priming did not impact recognition performance.
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Table 6.2: Response by RK. Mean percentage of all response types split by test status
and condition (standard error of the mean). The data demonstrate a slight increase in the
proportion of K hits in the primed condition.

Remember Know New

Old Unprimed 56.64 (4.17) 18.48 (2.70) 24.89 (3.33)
Primed 56.06 (4.10) 19.62 (2.84) 24.29 (3.14)

New Unprimed 1.62 (0.48) 5.33 (1.15) 93.05 (1.29)
Primed 1.68 (0.58) 5.88 (1.15) 92.44 (1.31)

Table 6.2 shows the breakdown of responses by RK judgement in each cate-

gory for old and new words in the unprimed and primed conditions. The data

suggests a slight increase in the proportion of K responses to old words in the

primed compared to the unprimed condition. ANOVA contrasting old responses

revealed no significant main effect or interactions including the factor of condition,

indicating no difference in the raw proportion of R and K responses. Corrected

estimates of familiarity and recollection were calculated as reported in Chapter 4,

and analysis again demonstrated no differences in the engagement of familiarity

(unprimed=0.40, primed=0.40) or recollection (unprimed=0.55, primed=0.54)

across conditions. As for overall recognition performance, the pattern of results

clearly demonstrates that repetition priming did not impact reported levels of

familiarity and recollection.

Table 6.3 shows a summary of response times for hits and correct rejections in

the primed and unprimed conditions, along with the magnitude of the priming

difference between conditions. The data clearly demonstrate that the priming

manipulation speeded response times for hits and correct rejections. ANOVA re-

vealed a significant main effect of condition [F (1,31)=71.52, p<0.001], and a sig-

nificant interaction between condition and test status [F (1,31)=20.46, p<0.001].

Follow up t-tests confirmed that response times were significantly faster for hits
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Table 6.3: Response times (ms). Mean response time data for correct responses split
by test status and the magnitude of the difference between unprimed and primed response
times split by test status (standard error). The data demonstrate speeded response times
for hits and correct rejections in the primed condition, with a larger effect for hits than for
correct rejections.

Old (Hits) New (CRs)

Unprimed 959.65 (26.78) 947.25 (31.39)
Primed 844.05 (32.72) 877.24 (33.45)

Difference 115.60 (12.41) 70.01 (11.73)

(t(31)=9.31, p<0.001) and for correct rejections (t(31)=5.97, p<0.001) in the

primed compared to the unprimed condition. The data and the reported inter-

action between condition and test status suggest an increase in the magnitude

of priming effects for hits compared to correct rejections (45.59ms). Subsidiary

analysis performed on the difference in response times between the unprimed and

primed conditions confirmed that the magnitude of priming was larger for hits

than for correct rejections (t(31)=4.52, p<0.001). Importantly, this difference

in magnitude between hits and correct rejections indicates a greater degree of

facilitation as a result of exposure to words at study.

While it is unlikely, given the low proportion of K responses in the current experi-

ment, it is possible that facilitation effects for hits reported above could have been

driven by faster K and not R responses in the primed condition. Examination of

response time data for correct responses in the initial old/new decision that were

subsequently rated as remembered suggested faster response times for the primed

(mean=855.79ms, S.E=33.23ms) compared to the unprimed (mean=969.64ms,

S.E=28.86ms) condition. Analysis confirmed that response times for words sub-

sequently reported to be remembered were significantly faster for primed words

than for unprimed words (t(31)=8.24, p<0.001), suggesting that priming speeded
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the onset of recollection. The magnitude of the difference between correct R re-

sponses to unprimed and primed words (113.85ms, S.E=13.83) did not differ

substantially from the magnitude reported for hits collapsed across correct R and

K responses.

6.3.1 Summary

In summary, response time data demonstrated the presence of robust priming ef-

fects for hits and correct rejections, which were larger in magnitude for hits, pro-

viding clear evidence of priming carried over from exposure to words at study. In

addition, the data provided evidence of faster remember responses in the primed

condition, suggesting that priming speeded the onset of recollection. Despite clear

evidence of priming on response times, measures of recognition performance and

estimates of familiarity and recollection were unaffected by the priming manipu-

lation.

6.4 ERP results

To examine priming and memory effects grand average ERPs were formed for

hits and correct rejections in the primed and unprimed conditions. The prime

inclusive epoch (-500-1500ms) was used in all analyses to maintain consistency

across experiments. The mean number of trials contributing to the waveforms

for hits was 78 for the primed condition, and 78 for the unprimed condition. The

mean number of trials contributing to waveforms for correct rejections was 94 for

the primed condition and 93 for the unprimed condition.
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6.4.1 Priming effects

Figure 6.1 shows grand average ERPs time locked to the onset of the prime for hits

and correct rejections from both the unprimed and primed conditions at a repre-

sentative sample of electrodes. Visual inspection of the waveforms again indicated

the presence of three priming related modulations, an early (-50-150ms) posterior

negativity, followed by a widespread central positivity (250-500ms) and a later

(500-1100ms) posterior negativity for primed compared to unprimed words. The

central positivity evident between 250-500ms and the later posterior negativity

evident between 500-1100ms both appear larger for hits than for correct rejec-

tions, suggesting that these effects were modulated by priming carried over from

encoding. Time windows submitted for analyses of priming effects were identical

to those employed in the first experiment (-50-150ms, 250-500ms, 500-1100ms)

and the data for hits and correct rejections were again analysed separately.

The first level of analysis on the data to identify variations in priming effects

across conditions and time windows employed ANOVA with the factors of condi-

tion (unprimed, primed), location (Fz, FCz, Cz, CPz, Pz, POz) and time window

(-50-150ms, 250-500ms, 500-1100ms). Results for hits revealed a significant main

effect of condition [F (1,31)=5.43, p=0.026], and a significant interactions between

condition, location and time window [F (3,92.8)=41.41, p<0.001]. Analysis for

correct rejections produced no main effect of condition, but did produce a signifi-

cant interaction between condition, location and time window [F (2.6,80.3)=44.47,

p<0.001]. The presence of these interactions provides strong evidence of variation

in the pattern of priming effects across locations and time windows for both hits

and correct rejections.
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Figure 6.1: Priming effects. Grand average ERPs for hits and correct rejections in the
unprimed and primed conditions. Waveforms display the presence of three priming related
modulations, an early posterior negativity, followed by a widespread central positivity and a
later posterior negativity for primed compared to unprimed words. Both of the later effects
appear to be modulated by priming carried over from encoding, with larger effects for hits
than for correct rejections.
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Follow up analysis was performed separately for hits and correct rejections on

the data from each time window, using ANOVA with the factors of condition

(unprimed, primed) and location (Fz, FCz, Cz, CPz, Pz, POz); the results of this

analysis are summarised in table 6.4. For hits the results demonstrated interac-

tions between condition and location in all three time windows, along with main

effects of condition in the later two time windows. Results for correct rejections

demonstrated significant interactions between condition and location for all three

time window, with main effects evident only for the first two time windows. These

results provide evidence of variation in the pattern of priming effects by location

within each time window, suggesting that the time windows chosen were suitable

for examination of priming effects for hits and correct rejections.

Table 6.4: Priming ANOVAs by time window. Results of ANOVAs contrasting midline
sites with the factors of condition and location over the three time windows chosen for
analysis of priming effects.

-50-150ms 250-500ms 500-1100ms

Hits Cond - F (1,31)=33.27, p<0.001 F (1,31)=17.10, p<0.001

Cond*Loc F (1.7,51.8)=9.89, p<0.001 F (1.7,53.3)=30.18, p<0.001 F (1.7,51.5)=14.45, p<0.001

CRs Cond F (1,31)=13.23, p=0.001 F (1,31)=48.98, p<0.001 -

Cond*Loc F (1.4,43.5)=18.30, p<0.001 F (1.8,55.7)=32.91, p<0.001 F (1.5,46.1)=4.15, p=0.032

Subsidiary analysis took the form of contrasts between unprimed and primed

conditions, performed separately for hits and correct rejections, using ANOVA

with the factors of condition (unprimed, primed), location (F, FC, C, CP, P, PO),

hemisphere (left, right) and electrode (inferior, mid, superior). The results for

each time window are reported separately in the following sections.
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6.4.1.1 Time window -50 to 150ms

From 50ms prior to the onset of target words, waveforms for primed hits and cor-

rect rejections were more negative going than waveforms for unprimed hits and

correct rejections at posterior locations (see Figure 6.2 for the data from POz).

For hits, this posterior negativity was also accompanied by a frontal positivity

over the right hemisphere. Initial analysis for hits revealed a significant interac-

tion between condition, location, hemisphere and electrode [F (3.8,119.3)=3.38,

p=0.013]. As can be seen in the topographic map shown in Figure 6.2 this inter-

action suggests the presence of a negativity for primed hits compared to unprimed

hits towards posterior locations in the left hemisphere, accompanied by a posi-

tivity over right frontal locations.
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Figure 6.2: Priming @ POz (-50-150ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode POz. Topographic maps show
the difference between the unprimed and primed conditions for hits and correct rejections.
Primed hits and correct rejections were more negative going than unprimed hits and correct
rejections at posterior locations, accompanied by right-frontal positivity for hits.

Results of subsidiary analysis at separate locations are summarised in Table 6.5,

and demonstrate interactions between condition, hemisphere and electrode at

frontal and fronto-central locations, along with main effects of condition at pari-

etal and parieto-occipital locations. Focused analysis confirmed that differences
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between conditions at right-frontal locations were larger over inferior electrode

sites (t(31)=2.58, p=0.015) than at medial sites. The presence of main effects

at parietal and parieto-occipital locations demonstrates the presence of an evenly

distributed negativity for primed words across posterior locations. Further ex-

amination of the data demonstrated that overall, differences between conditions

for hits were maximal at PO3 (t(31)=2.66, p=0.012).

Initial analysis for correct rejections revealed a significant main effect of condi-

tion [F (1,31)=14.88, p=0.001], along with significant interactions between con-

dition and location [F (1.4,42.7)=17.04, p<0.001] and condition and electrode

[F (1.1,33.8)=5.51, p=0.022]. As can be seen in the topographic map in Fig-

ure 6.2, these interactions reflect the presence of a negativity at posterior lo-

cations, maximal towards superior electrode sites. Results of subsidiary anal-

ysis at separate locations are shown in table 6.5, analysis revealed significant

interactions between condition and electrode extending from central to parieto-

occipital locations. Focused analysis, collapsed across locations demonstrating

significant interactions and hemispheres, revealed that differences between con-

ditions were significantly larger over medial (t(31)=3.71, p=0.001) and superior

sites (t(31)=3.17, p=0.004) than at inferior sites, confirming the presence of a

negativity for primed correct rejections at posterior locations focused over the

midline. Further examination of the data demonstrated that the difference be-

tween conditions was maximal at POz (t(31)=5.81, p<0.001).

Magnitude analysis was performed to compare the amplitude of priming effects

for hits and correct rejections, and employed ANOVA with the factors of test

status (old, new), Location (F, FC, C, CP, P, PO), hemisphere (left, right) and

electrode (inferior, mid, superior), The results revealed no significant main effect

or interactions including the factor of test status. These findings indicate that
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Table 6.5: Priming by location (-50-150ms). Results of subsidiary analysis at separate locations for hits and correct rejections.

Hits (-50-150ms) F FC C CP P PO

Cond F (1,31)=5.48, p=0.026 F (1,31)=6.34, p=0.017

Cond*Hem F (1,31)=4.77, p=0.037 F (1,31)=4.64, p=0.039

Cond*Elec

Cond*Hem*Elec F (1.4,44)=7.74, p=0.004 F (1.3,41.6)=5.68, p=0.014

CRs (-50-150ms) F FC C CP P PO

Cond F (1,31)=11.15, p=0.002 F (1,31)=21.24, p<0.001 F (1,31)=27.93, p<0.001 F (1,31)=32.49, p<0.001

Cond*Hem

Cond*Elec F (1.2,36.7)=5.26, p=0.023 F (1.2,38.1)=7.00, p=0.008 F (1.1,34.5)=9.07, p=0.004 F (1.1,34.9)=9.63, p=0.003

Cond*Hem*Elec
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priming effects for hits and correct rejections were comparable in size and distri-

bution, and suggest that right-frontal effects evident in the data for hits could not

be differentiated. Focused analysis on the magnitude of the priming difference for

hits and correct rejections at right-frontal site F6 demonstrated larger differences

between condition for hits (t(31)=2.24, p=0.032), providing tentative evidence

supporting the presence of additional right-frontal activation for hits.

In summary, during the -50 to 150ms time window primed hits and correct re-

jections were more negative going than unprimed hits and correct rejections,

and these effects were maximal over parieto-occipital locations. In addition,

waveforms for hits were slightly more positive going for primed words than for

unprimed words at inferior right-frontal locations. Crucially, magnitude analy-

sis confirmed the absence of differences in amplitude, suggesting that this early

priming effect was driven largely by exposure to the masked prime at test.

6.4.1.2 Time window 250 to 500ms

Between 250-500ms time waveforms for primed hits and correct rejections were

more positive going than waveforms for unprimed hits and correct rejections

over central and posterior locations, where the effect appears larger for hits than

for correct rejections (see Figure 6.3 for the data from CPz). Initial analysis

for hits revealed a significant main effect of condition [F (1,31)=36.17, p<0.001],

and a significant interaction between condition, location, hemisphere and elec-

trode [F (3.7,113.5)=3.37, p=0.015]. As can be seen in the topographic maps

in Figure 6.3, these interactions suggest that the positivity for primed words is

maximal towards superior electrodes over central and posterior locations, with

a slight skew towards the right hemisphere at more anterior locations. Ini-
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Figure 6.3: Priming @ CPz (250-500ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode CPz. Topographic maps show
the difference between the unprimed and primed conditions for hits and correct rejections.
Primed hits and correct rejections were more positive going than unprimed hits and correct
rejections across central and posterior locations, where the effect appears larger for hits
than for correct rejections.

tial analysis for correct rejections revealed a significant main effect of condition

[F (1,31)=51.33, p<0.001], and significant interactions between condition and lo-

cation [F (1.6,50.1)=44.32, p<0.001], and condition, hemisphere and electrode

[F (1.3,41.1)=7.63, p=0.005]. As can be seen in the topographic maps in Figure

6.3 these interactions suggest that the positivity for primed words is maximal

towards superior electrodes over central and posterior locations, again displaying

a slight skew over the right hemisphere towards more anterior locations.

Table 6.6 shows the results of subsidiary analysis at separate locations for hits

and correct rejections. For hits analysis revealed interactions including the factor

of hemisphere extending from frontal to centro-parietal locations, along with in-

teractions between condition and electrode across locations. Focused analysis on

the data collapsed from frontal to centro-parietal locations and across electrodes

confirmed the presence of stronger effects over the right hemisphere (t(31)=3.36,

p=0.002). Further investigation revealed that priming effects for hits were maxi-

mal towards superior locations for the left hemisphere (mid: t(31)=4.04, p<0.001,
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Table 6.6: Priming by location (250-500ms). Results of subsidiary analysis at separate locations for hits and correct rejections.

Hits (250-500ms) F FC C CP P PO

Cond F (1,31)=8.04, p=0.008 F (1,31)=17.37, p<0.001 F (1,31)=32.35, p<0.001 F (1,31)=47.67, p<0.001 F (1,31)=54.72, p<0.001 F (1,31)=59.79, p<0.001

Cond*Hem F (1,31)=9.08, p=0.005 F (1,31)=13.45, p=0.001 F (1,31)=9.76, p=0.004

Cond*Elec F (1.4,44)=4.51, p=0.027 F (1.1,34.5)=17.00, p<0.001 F (1.2,35.7)=25.61, p<0.001 F (1,32.2)=26.57, p<0.001 F (1.1,33.3)=14.39, p<0.001 F (1.1,34.6)=23.61, p<0.001

Cond*Hem*Elec F (1.2,37.5)=4.23, p=0.040 F (1.5,45.3)=6.44, p=0.007 F (1.5,47.7)=7.27, p=0.004 F (1.2,37.6)=8.89, p=0.003

CRs (250-500ms) F FC C CP P PO

Cond F (1,31)=6.13, p=0.019 F (1,31)=24.48, p<0.001 F (1,31)=48.83, p<0.001 F (1,31)=72.24, p<0.001 F (1,31)=79.06, p<0.001 F (1,31)=75.38, p<0.001

Cond*Hem

Cond*Elec F (1.3,40.9)=7.95, p=0.004 F (1.1,32.8)=11.06, p=0.002 F (1.1,33.7)=12.86, p=0.001 F (1.1,33.6)=24.40, p<0.001 F (1.1,33.1)=25.74, p<0.001 F (1.1,33.5)=46.47, p<0.001

Cond*Hem*Elec F (1.4,42.1)=7.78, p=0.004 F (1.7,51.8)=7.12, p=0.003 F (1.3,40.54)=5.84, p=0.014
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inferior: t(31)=5.47, p<0.001), priming effects for the right hemisphere did not

differ across superior and mid electrode sites (t(31)=1.40, p=0.171), but effects

were larger at both sites than effects at inferior sites (superior: t(31)=3.16,

p=0.004, mid: t(31)=4.14, p<0.001). This pattern of results demonstrates the

presence of a widespread positivity for primed hits focused over midline sites, with

a slight skew over the right hemisphere at frontal and central locations.

Analysis for correct rejections also demonstrated interactions between condition

and electrode across locations, and interactions including the factor of hemisphere

extended from frontal to central locations. Focused analysis on the data collapsed

from frontal to central locations and across electrodes failed to demonstrate a sig-

nificant difference between hemispheres (t(31)=1.83, p=0.077). Further analysis

contrasting electrode sites revealed larger effects towards superior sites in the

left hemisphere (mid: t(31)=3.27, p=0.003, inferior: t(31)=4.24, p<0.001), and

no difference between superior and mid electrode sites in the right hemisphere

(t(31)=1.04, p=0.302), reflecting a slight skew over the right hemisphere at more

anterior locations.

Overall, the pattern of results demonstrates the presence of a widespread posi-

tivity for primed hits and correct rejections focused over midline sites, but with

a slight skew over the right hemisphere at the locations identified, and suggest

that effects observed for hits and correct rejections had a similar focus. Further

examination of the data demonstrated that priming effects for hits (t(31)=6.81,

p<0.001) and correct rejections (t(31)=8.12, p<0.001) were both maximal at

electrode CPz. Magnitude analysis, performed to compare priming effects iden-

tified for hits and correct rejections, employing ANOVA with the factors of test

status (old, new), Location (F, FC, C, CP, P, PO), hemisphere (left, right) and

electrode (inferior, mid, superior), revealed a significant main effect of test status
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[F (1,31)=6.29, p=0.018], but no interactions including the factor of test status.

Results confirm that the magnitude of priming was larger for hits than for correct

rejections across locations and suggests that effects for hits and correct rejections

differed only in amplitude and not in distribution, providing evidence that this

positive effect was modulated by additional priming carried over from encoding

for hits.

In summary, during the 250 to 500ms time window primed hits and correct rejec-

tions were more positive going than unprimed hits and correct rejections. This

effect was maximal at superior centro-parietal locations for hits and correct rejec-

tions and exhibited a slight skew over the right hemisphere towards frontal and

central locations. Importantly, the magnitude of this effect was larger for hits

than for correct rejections, providing clear evidence of priming carried over from

the encoding phase.

6.4.1.3 Time window 500 to 1100ms

From 500ms after target onset, waveforms for primed hits and correct rejections

were more negative going than for unprimed hits and correct rejections at poste-

rior locations, with the largest difference between conditions for hits (see Figure

6.4 for the data from POz). Initial analysis for hits revealed a significant main

effect of condition [F (1,31)=17.31, p<0.001], along with a significant interac-

tion between condition, location and electrode [F (3,94.1)=5.65, p=0.001], and

a marginally significant interaction between condition, hemisphere and electrode

[F (1.3,39.2)=3.59, p=0.056]. Initial analysis for correct rejections produced a

significant main effect of condition [F (1,31)=5.27, p=0.029], but no significant in-

teractions including the factor of condition. Exploration of the data revealed that
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main effects of condition were present at centro-parietal [F (1,31)=5.18, p=0.030],

parietal [F (1,31)=8.03, p=0.008] and parieto-occipital [F (1,31)=44.20, p<0.001]

locations for correct rejections. Further examination of the data confirmed that

the effect for correct rejections was maximal at POz [t(31)=3.11, p=0.004].
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Figure 6.4: Priming @ POz (500-1100ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode POz. Topographic maps show
the difference between the unprimed and primed conditions for hits and correct rejections.
Primed hits and correct rejections were more negative going than unprimed hits and correct
rejections at posterior locations, with the largest difference between conditions for hits.

Table 6.7 shows results of subsidiary analysis at separate locations for hits. Re-

sults revealed main effects and interactions including the factor of hemisphere

extending from fronto-central to parieto-occipital locations and interactions in-

cluding the factors of hemisphere and electrode at centro-parietal and parietal

locations. As can be seen in Figure 6.4 these results confirm the presence of a

negativity for primed compared to unprimed hits at posterior locations that is

larger over the left hemisphere and towards superior electrode sites. Further ex-

amination of the data demonstrated that the effect for hits was maximal at POz

(t(31)=7.05, p<0.001). The foregoing results and inspection of the data suggests

potential differences in the magnitude and distribution of this late priming effect

for hits and correct rejections.
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Table 6.7: Priming for hits by location (500-1100ms). Results of subsidiary analysis at separate locations for hits.

Hits (500-1100ms) F FC C CP P PO

Cond F (1,31)=4.70, p=0.038 F (1,31)=10.99, p=0.002 F (1,31)=25.55, p<0.001 F (1,31)=40.73, p<0.001 F (1,31)=44.21, p<0.001

Cond*Hem F (1,31)=4.99, p=0.033 F (1,31)=9.62, p=0.004 F (1,31)=13.39, p=0.001 F (1,31)=10.93, p=0.002 F (1,31)=6.69, p=0.015

Cond*Elec F (1.1,34.5)=6.54, p=0.013 F (1.1,34.2)=11.31, p=0.001 F (1.2,36.4)=27.73, p<0.001

Cond*Hem*Elec F (1.1,35.3)=5.11, p=0.026 F (1.4,44.3)=7.04, p=0.005
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Contrasting the magnitude of effects revealed a significant interaction between

test status, hemisphere and electrode [F (1.2,37.1)=5.13, p=0.024]. Follow up

analysis at separate locations confirmed the presence of interactions between test

status, hemisphere and electrode at central [F (1.4,42.2)=3.94, p=0.042], centro-

parietal [F (1.2,38.4)=4.63, p=0.030], and parietal [F (1.3,40.9)=6.83, p=0.008]

locations, reflecting larger effects towards superior electrode sites in the left hemi-

sphere for hits and towards superior sites in the right hemisphere for correct re-

jections. Topographic analysis on the rescaled data produced a significant inter-

action between test status and hemisphere [F (1,31)=5.39, p=0.027], confirming

that the priming effects for hits and correct rejections differed in distribution and

suggesting that the effects were driven by at least partially non-overlapping sets

of neural generators.

In summary, during the 500-1100ms time window primed hits and correct rejec-

tions were more negative going than unprimed hits and correct rejections, and

these effects were maximal at parieto-occipital locations. These late priming

effects differed in magnitude and distribution, with larger effects focused over

superior sites in the left hemisphere for hits, in contrast to smaller effects with a

focus over superior sites in the right hemisphere for correct rejections.

6.4.2 Summary

Analysis of the data confirmed the presence of three priming related modulations,

an early (-50-150ms) negativity, followed by a widespread positivity (250-500ms)

and a later (500-1100ms) negativity for primed compared to unprimed words (see

Figure 6.5). Between -50-150ms primed hits and correct rejections were more

negative going than unprimed hits and correct rejections at posterior locations.
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Figure 6.5: Priming topographic summary. Topographic maps summarise differences
between the unprimed and primed conditions for hits and correct rejections over time.

In addition, waveforms for hits were more positive going for primed than for un-

primed words at inferior right-frontal sites. During the 250-500ms time window

primed hits and correct rejections were more positive going than unprimed hits

and correct rejections. This effect was maximal at superior centro-parietal lo-

cations for hits and correct rejections and exhibited a slight skew over the right

hemisphere towards over frontal and central locations. Importantly, the magni-

tude of this effect was larger for hits than for correct rejections, providing clear

evidence of priming carried over from the encoding phase. Between 500-1100ms

primed hits and correct rejections were more negative going than unprimed hits

and correct rejections at posterior locations, where effects differed in magnitude

and distribution, with larger effects focused over superior sites in the left hemi-

sphere for hits, in contrast to smaller effects with a focus over superior sites in

the right hemisphere for correct rejections.
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6.4.3 Memory effects

Figure 6.6 shows grand average ERPs time locked to the onset of the prime for

hits and correct rejections in the unprimed condition, and Figure 6.7 shows grand

average ERPs for the primed condition. Visual inspection of the grand average

waveforms shows that ERPs elicited in the unprimed condition were more positive

going for hits than for correct rejections between 500 and 800ms, with the great-

est differences at left-parietal locations. By contrast, for the primed condition

old/new differences with a left-parietal distribution were evident earlier between

300 and 500ms. Critically, familiarity related mid-frontal old/new differences

were not evident in either condition during the 300 to 500ms time window. In

contrast to the first experiment, neither condition exhibited a clear negativity for

hits compared to correct rejections between 800 and 1100ms, with only a slight

negativity at midline sites towards the end of the epoch evident in the primed

condition. Based on visual inspection and to maintain consistency with the pre-

vious experiment, the time windows chosen for analysis of memory effects were

300-500ms, 500-800ms and 800-1100ms.

The first level of analysis was designed to identify variations in the patterns

of old/new effects across conditions and time windows. Due to the left sided

distribution of memory effects in the current experiment, the data was submitted

to ANOVA with the factors of condition (unprimed, primed), test status (old,

new), location (F3, FC3, C3, CP3, P3, PO5) and time window (300-500ms, 500-

800ms, 800-1100ms). Results identified an interaction between condition, test

status, location and time window [F (3,93.8)=6.75, p<0.001], indicating variation

in the pattern of old/new effects between conditions and across time windows. To

further elucidate the pattern of memory related activity, a second level of analysis
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Figure 6.6: Memory effects for unprimed words. Grand average ERPs for hits and
correct rejections in the unprimed condition. Waveforms were more positive going for hits
than for correct rejections at left-parietal locations between 500-800ms, consistent with
previous identifications of recollection.
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Figure 6.7: Memory effects for primed words. Grand average ERPs for hits and correct
rejections in the primed condition. Waveforms were more positive going for hits than for
correct rejections at left-parietal locations between 300-500ms, during the time window nor-
mally associated with familiarity, and continued into the 500-800ms time window. Towards
the end of the epoch, waveforms for hits were slightly more negative going than waveforms
for correct rejections at posterior midline sites.
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was performed separately on the data from each time window, using ANOVA with

the factors of condition (unprimed, primed), test status (old, new) and location

(F3, FC3, C3, CP3, P3, PO5). The results of this analysis are summarised in

Table 6.8 and demonstrate that old/new effects varied across time windows but

only interacted with the factor of condition during the 300-500ms and 500-800ms,

as a result only these windows were submitted to further analysis.

Table 6.8: Memory ANOVAs by time window. Results of ANOVAs contrasting midline
sites with the factors of condition, test status and location over the three time windows
chosen for analysis of old/new effects.

300-500ms 500-800ms 800-1100ms

Test status F (1,31)=32.86, p<0.001 F (1,31)=22.74, p<0.001 -

Test status*Loc - - F (1.7,52.7)=5.16, p=0.012

Test Status*Cond F (1,31)=4.98, p=0.033 F (1,31)=9.64, p=0.004 -

Test status*Cond*Loc F (1.8,58.19)=3.64, p=0.035 -

Subsidiary analyses employed to investigate old/new effects were performed on

the average activity over three electrodes sites for four regions of interest: left-

frontal (LF: F1, F3, F5), right-frontal (RF: F2, F4, F6), left-parietal (LP: P1, P3,

P5) and right-parietal (RP: P2, P4, P6). The analysis took the form of contrasts

between hits and correct rejections performed separately for each condition, using

ANOVA with the factors of test status (old, new), location (frontal, parietal),

hemisphere (left, right) and electrode (inferior, mid, superior); the results for

each time window are reported separately in the following sections.

6.4.3.1 Time window 300 to 500ms

Between 300-500ms waveforms in the primed condition were more positive going

for hits than for correct rejections at left-parietal locations. Unprimed waveforms
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Figure 6.8: Memory @ P3 (300-500ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode P3. Topographic maps
show the difference between the hits and correct rejections for both conditions. Primed
waveforms were more positive going for hits than for correct rejections at left parietal
locations. Unprimed waveforms show a very slight positivity for hits compared to correct
rejections across locations in the the left hemisphere.

show a very slight positivity for hits compared to correct rejections across loca-

tions in the the left hemisphere (see Figure 6.8 for the data from P3). Initial

analysis for the unprimed condition revealed a significant main effect of test sta-

tus [F (1,31)=5.33, p=0.028], and a significant interaction between test status,

hemisphere and electrode [F (1.2, 35.7)=4.27, p=0.041]. As can be seen in Figure

6.8, these results reflect the presence of a slight positivity for hits compared to

correct rejections across locations in the left hemisphere that appears larger to-

wards inferior electrode sites. This result was confirmed with additional analysis,

collapsed across locations in the left hemisphere, to directly compare the effects
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across electrode sites (inferior vs. medial: t(31)=4.46, p<0.001). Consistent with

this interpretation of the data, further examination confirmed that old/new dif-

ferences for the unprimed condition were maximal at electrode CP5 (t(31)=4.73,

p<0.001).

Initial analysis for the primed condition revealed a significant main effect of test

status [F (1,31)=19.23, p<0.001], and a significant interaction between test sta-

tus, location and hemisphere [F (1,31)=6.18, p=0.019]. As can be seen in Figure

6.8 these results reflect the presence of a positivity for hits compared to correct

rejections over posterior locations in the left hemisphere. Subsidiary analysis at

frontal locations revealed a significant main effect of test status [F (1,31)=10.94,

p=0.002], but no significant interactions including the factor of test status, re-

flecting slightly more positive going effects for hits than for correct across frontal

sites. Analysis at parietal locations revealed a significant main effect of test status

[F (1,31)=24.89, p<0.001], and a significant interaction between test status and

hemisphere [F (1,31)=8.03, p=0.008], reflecting the presence of an old/new differ-

ence over the left hemisphere at parietal locations. This result was confirmed by

analysis performed on subtraction data, contrasting effects for each hemisphere at

parietal locations, collapsed across electrode sites (t(31)=2.83, p=0.008). Con-

sistent with this view of the data, further examination revealed that old/new

differences for the primed condition were maximal at electrode CP3 (t(31)=4.81,

p<0.001).

Magnitude analysis was performed on subtraction data to compare the amplitude

of old/new effects for the primed and unprimed conditions, using ANOVA with

the factors of condition (unprimed, primed), location (frontal, parietal), hemi-

sphere (left, right) and electrode (inferior, mid, superior). The results revealed a

significant main effect of condition [F (1,31)=4.99, p=0.033], but no interactions
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including the factor of condition, indicating much weaker effects for the unprimed

compared to the primed condition across locations. In summary, analysis for the

unprimed condition confirmed the presence of a slight positivity for hits across

locations in the left hemisphere that was maximal over inferior centro-parietal

sites. Analysis for the primed condition confirmed the presence of a stronger

old/new difference focused over parietal locations in the left hemisphere, consis-

tent with the distribution of effects that have previously been associated with

recollection.

6.4.3.2 Time window 500 to 800ms

Between 500 and 800ms waveforms in the unprimed condition became more pos-

itive going for hits than for correct rejections at left-parietal locations. For the

primed condition waveforms continued to be more positive going for hits than for

correct rejections into the the 500-800ms time window at left-parietal locations

(see Figure 6.9 for the data from P3). Initial analysis for the unprimed con-

dition revealed a significant main effect of test status [F (1,31)=34.19, p<0.001],

along with interactions between test status and location [F (1,31)=7.63, p=0.010],

test status and hemisphere [F (1,31)=5.57, p=0.025], and a marginally signifi-

cant interaction between test status, hemisphere and electrode [F (1.5,46.5)=3.49,

p=0.051]. As can be seen in Figure 6.9 these results confirm the presence of a

widespread old/new difference with a focus over left-parietal locations.

Subsidiary analysis at frontal locations revealed a significant main effect of test

status [F (1,31)=21.87, p<0.001], and a significant interaction between test sta-

tus and electrode [F (1.3,39.4)=5.05, p=0.023], reflecting more positive going ac-

tivity for hits than for correct rejections over medial sites at frontal locations
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Figure 6.9: Memory @ P3 (500-800ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode P3. Topographic maps
show the difference between the hits and correct rejections for both conditions. Unprimed
waveforms were more positive going for hits than for correct rejections at left-parietal
locations. For the primed condition waveforms continued to be more positive going for hits
than for correct rejections into the the 500 to 800ms time window at left-parietal locations.

(inferior: t(31)=2.88, p=0.07, superior: t(31)=2.34, p=0.026). Analysis at pari-

etal locations produced a significant main effect of test status [F (1,31)=39.91,

p<0.001], and a significant interaction between test status, hemisphere and elec-

trode [F (1.4,42.8)=7.03, p=0.006], reflecting the presence of an old/new differ-

ence in the left hemisphere, with a maxima over medial electrode sites. Consis-

tent with this pattern of results, further examination of the data confirmed that

the old/new difference for the unprimed condition was maximal at electrode P3

(t(31)=7.07, p<0.001).
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Initial analysis for the primed condition revealed a significant main effect of test

status [F (1,31)=11.21, p=0.002] and a significant interaction between test status,

location and hemisphere [F (1,31)=4.31, p=0.046]. As can be seen in Figure 6.9,

this pattern of results suggests a slight continuation of old/new differences with a

left-parietal distribution into the 500 to 800ms time window. Subsidiary analysis

at frontal locations revealed a significant main effect of test status [F (1,31)=9.18,

p=0.005], reflecting more positive going activity for hits than for correct rejections

across frontal locations. Analysis at parietal locations produced a significant main

effect of test status [F (1,31)=9.86, p=0.004] and a significant interaction between

test status and electrode [F (1.3,40.4)=7.63, p=0.005], reflecting more positive

going activity for hits than for correct rejections at parietal locations with focus

over mid and inferior electrodes. Follow up analysis contrasting electrode sites

collapsed across hemispheres demonstrated larger effects over mid (t(31)=3.99,

p<0.001) and inferior (t(31)=2.91, p=0.007) electrodes sites than at superior

sites. Despite the presence of additional activity over the right hemisphere at

parietal locations, the data is consistent with the presence of continued activation

over left-parietal sites from the earlier time window, and further examination

of the data confirmed that old/new differences for the primed condition were

maximal at electrode P5 (t(31)=3.44, p=0.002).

Magnitude analysis was performed on subtraction data using activity averaged

over three electrode sites (LP: P5, P3, P1) to compare the amplitude of old/new

effects at left-parietal locations for the primed and unprimed conditions. Results

revealed significantly larger old/new differences for the unprimed than for the

primed condition (t(31)=3.66, p=0.001), suggesting that the 500-800ms time

window captures the reduction to offset of old/new effects at left-parietal sites

for the primed condition. In summary, the data demonstrate the onset of left-
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parietal old/new effects for the unprimed condition, and continuation of old/new

effects with a left-parietal distribution from the earlier time window for the primed

condition.

6.4.3.3 Left-parietal old/new effects

The next level of analysis sought to detect differences in magnitude or distribution

of left-parietal old/new effects across the 300 to 500ms and 500 to 800ms time

windows for the primed and unprimed conditions.
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Figure 6.10: Memory @ P3 (300-500ms & 500-800ms). Grand average ERPs for hits
and correct rejections in the unprimed and primed conditions at electrode P3. Topographic
maps show the difference between the hits and correct rejections for both conditions. Wave-
forms demonstrate early onset of left-parietal old/new effects for the primed compared to
the unprimed condition.
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Magnitude analysis contrasting left-parietal effects evident between 300-500ms

for the primed condition and between 500 and 800ms for the unprimed condition

revealed no main effect or interactions including the factor of condition, suggesting

that left-parietal effects evident in the data did not differ in size or distribution

across conditions or time windows. These findings support the conclusion that

the same effect is present in both conditions and that left-parietal effects onset

earlier in the primed condition (see Figure 6.10 for the data from P3). The next

level of analysis was designed to quantify this difference in the onset time of

left-parietal effects across conditions.
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Figure 6.11: Topographic maps 200-800ms. Topographic maps showing the difference
between the hits and correct rejections for both conditions between 200-800ms after target
onset, split into the 100ms time bins that were used for comparison of the onset time of
left-parietal old/new effects across conditions.

To establish the difference in onset times, the data from parietal electrode sites

were first split into six consecutive time bins (200-300ms, 300-400ms, 400-500ms,

500-600ms, 600-700ms, 700-800ms). Figure 6.11 shows topographic maps of ef-

fects for the primed and unprimed conditions over time and inspection of the data

suggests that left-parietal effects for the primed condition are evident as early as
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200ms after target onset, with effects for the unprimed condition onsetting later

around 500ms after target onset. The data were submitted to ANOVA with the

factors of test status (old, new), hemisphere (left, right) and electrode (inferior,

mid, superior), performed separately for the unprimed and primed conditions

and for each time bin. Onset times of left-parietal effects were identified by the

earliest bin demonstrating a main effect of test status and an interaction between

test status and hemisphere for the unprimed and primed conditions.

The results are summarised in Table 6.9, and suggest a clear difference between

conditions in the onset-time of left-parietal effects, with differences for the primed

condition onsetting from around 200ms after target onset, and differences for the

unprimed condition not becoming significant at left-parietal locations until be-

tween 400-500ms after target onset. To confirm this result, follow up t-tests

were performed contrasting activity for hits and correct rejections at electrode

P3, for each condition and time bin from 200-800ms. Onset time in this case

was defined as the first window of three consecutive windows demonstrating the

presence of significant differences between hits and correct rejections. Results

were consistent with the previous level of analysis, demonstrating a significant

difference between hits and correct rejections for the primed condition onset-

ting from 200ms after target onset (t(31)=4.91, p<0.001), with differences for

the unprimed condition not onsetting until later from 400ms after target onset

(t(31)=4.38, p<0.001).

As noted earlier in Chapter 2, the onset time of differences in average waveforms

represent the earliest onset time from all contributing waveforms, and may not

always be representative. To investigate the possible impact of a difference across

participants in the latency of left-parietal effects for the primed condition, the

ERP data were split into two equal groups based on the median average response
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Table 6.9: Timing of LP effects by condition. Results of subsidiary analysis at parietal locations investigating the onset time
of old/new effects shown separately for the unprimed and primed conditions.

Unprimed 200-300ms 300-400ms 400-500ms 500-600ms 600-700ms 700-800ms

Test status F (1,31)=6.29, p=0.018 F (1,31)=42.46, p<0.001 F (1,31)=55.90, p<0.001 F (1,31)=8.67, p=0.006

Test*Hem F (1,31)=4.23, p=0.048 F (1,31)=5.61, p=0.024 F (1,31)=13.56, p=0.001 F (1,31)=10.55, p=0.003 F (1,31)=18.14, p<0.001 F (1,31)=6.71, p=0.014

Test*Elec F (1.1,34.7)=4.35, p=0.041 F (1.2,35.8)=7.45, p=0.007

Test*Hem*Elec F (1.1,35.2)=8.70, p=0.004 F (1.3,38.9)=4.50, p=0.032 F (1.5,46.5)=10.59, p=0.001

Primed 200-300ms 300-400ms 400-500ms 500-600ms 600-700ms 700-800ms

Test status F (1,31)=21.72, p<0.001 F (1,31)=30.03, p<0.001 F (1,31)=18.25, p<0.001 F (1,31)=16.51, p<0.001 F (1,31)=9.19, p=0.005

Test*Hem F (1,31)=5.76, p=0.023 F (1,31)=10.57, p=0.003 F (1,31)=4.78, p=0.036

Test*Elec F (1.3,40.9)=7.05, p=0.007 F (1.3,40)=20.11, p<0.001

Test*Hem*Elec F (1,4,43.5)=5.26, p=0.017
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time for primed hits, reasoning that contrasting participants with fast and slow

response times may also reveal differences in the onset time of left-parietal effects.

The median response time for primed hits was 806.16ms, and splitting the data

produced a fast response group (mean=689.72ms, S.E=20.49ms, range=557.50-

799.47ms) and a slower response group (mean=998.39ms, S.E=28.79ms, range=

843.19-1265.71ms) that differed significantly (t(30)=8.74, p<0.001). As above,

t-tests were employed to contrast activity for hits and correct rejections at elec-

trode P3 for both groups. Results revealed no difference in the onset time of

left-parietal effects between groups, with significant differences between hits and

correct rejections evident between 200-300ms for the fast (t(15)=3.95, p=0.001)

and slow groups (t(15)=2.97, p=0.010).

In summary, analysis revealed the presence of left-parietal old/new effects in

both conditions, that did not differ in magnitude or distribution, but did differ

in onset time. Left-parietal effects for the primed condition onset around 200ms

after target onset, continuing into the time window normally associated with the

FN400. By contrast, effects for the unprimed did not become evident until around

400ms after target onset, consistent with previous reports of the time window for

recollection.

6.4.4 Summary

In summary, the preceding analyses clearly demonstrated that left-parietal effects,

linked in the literature to recollection, were modulated by repetition induced flu-

ency. ERPs revealed statistically significant old/new effects with a left-parietal

distribution in both conditions, but the conditions differed in the onset time of

these effects. Unprimed ERPs were consistent with previous identifications of rec-
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Figure 6.12: Memory topographic summary. Topographic maps summarise differences
between hits and correct rejections for the unprimed and primed conditions over time.

ollection (500-800ms), but in primed ERPs the left-parietal old/new effect was

evident earlier during the 300-500ms time window, which is normally associated

with the onset of familiarity as indexed by the FN400. Further analysis demon-

strated that left-parietal effects for the primed condition onset around 200ms after

target onset, with effects for the unprimed not evident until around 400ms after

target onset. Overall, this pattern of results strongly suggests that repetition

induced fluency speeds the onset of recollection signals.

6.5 Discussion

The main aim of the current experiment was to query the relationship between

repetition induced fluency and neural correlates of recollection. Two independent

predictions were made concerning how fluency could impact signals of recollec-

tion based on the evidence reported earlier. Firstly, that interactions between

priming and recollection may reduce the magnitude of old/new effects, indexing

a reduction in the amount of cognitive resources engaged in retrieving a recently
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encountered item. Secondly, that repetition priming may produce observable

changes in the timing of left-parietal old/new effects associated with recollection,

speeding their onset. The current data confirmed the latter prediction, demon-

strating earlier onsetting left-parietal old/new effects for the primed condition,

consistent with the findings of Woollams et al. (2008). Response time measures

evidenced the presence of fluency, demonstrating faster reaction times for primed

hits and correct rejections. In addition, an increase in the magnitude of facilita-

tion for hits provided evidence of priming carried over from exposure during the

encoding phase. Despite this clear demonstration of fluency all other behavioural

measures were again unaffected by the priming manipulation.

Three priming related modulations were again evident in the ERP data, an early

(-50-150ms) posterior negativity, followed by a widespread centro-parietal pos-

itivity (250-500ms), and a later (500-1100ms) posterior negativity for primed

compared to unprimed words. Overall, the priming effects found in the current

experiment largely replicated those reported in the first experiment, but differed

in one important respect. The N400 effect evident between 250-500ms at centro-

parietal locations was larger in magnitude for hits than for correct rejections,

mapping onto the response time data, and providing evidence of additional prim-

ing from study exposure. Analysis of the memory data clearly demonstrated that

left-parietal effects, linked in the literature to recollection, were modulated by

repetition induced fluency. ERPs revealed statistically significant old/new effects

with a left-parietal distribution in both conditions, but the conditions differed in

the onset time of these effects. Unprimed ERPs were consistent with previous

identifications of recollection (500-800ms), but in primed ERPs the left-parietal

old/new effect was evident earlier during the 300-500ms time window, which is

normally associated with the onset of familiarity as indexed by the FN400. Fur-
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ther analysis demonstrated that left-parietal effects for the primed condition onset

around 200ms after target onset, with effects for the unprimed not evident until

around 400ms post target onset.

As noted earlier, this pattern of results is consistent with those reported by Wool-

lams et al. (2008), but differs in the exact onset latency of effects for the primed

condition. The current experiment ensured that presentation of prime words was

subliminal, and the onset time of parietal old/new effects was not found to be

proportionate to the prime-target SOA, as was the case in the earlier study by

Woollams and colleagues. As a result, the current findings provide stronger evi-

dence of a genuine change in the onset latency of recollection following priming.

Vilberg, Moosavi and Rugg (2006) also reported an early onsetting left-parietal

effect similar to the one found here, during a source memory task employing a

modified RK procedure, where participants were required to indicate whether

visual objects were fully or partially recollected. Crucially, the authors found

that full recollection of contextual information was associated with earlier onset-

ting left-parietal effects between 200-500ms after stimulus onset. Interpreting the

current findings in light of this evidence suggests that priming in this case may

have served to reinstate the study context, which led to faster and more complete

retrieval of contextual information associated with the study episode.

De Chastelaine et al. (2009) also found that parietal old/new effects decreased in

latency over multiple study-test repetitions, moving into the time window for the

FN400 (decreasing from 400ms to 300ms), and were associated with a matched

increase in discrimination and reduction in reaction times across test repetitions.

Crucially, the authors found that decreases in the onset time of parietal effects

were selectively associated with R responses, demonstrating that this reflected a

change in recollection. Both of these studies suggest that early onsetting parietal
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old/new effects are associated with superior recollection, but the current data

did not demonstrate differences in discrimination as a result of the earlier onset

of old/new differences in the primed condition, so it is difficult to interpret the

findings on this basis. Alternatively, this early onsetting form of recollection,

while not topographically dissociable from the standard old/new effect associated

with recollection between 500-800ms, may index a more automatic non-strategic

form of recollection that is divorced from subjective experience.

Moscovitch (2008) proposes that recollection should be conceived of as a two-stage

process. The first stage is considered to be rapid automatic retrieval process which

occurs when a retrieval cue interacts with stored information, but its products

are not accessible to consciousness although it can influence performance. The

second stage is more closely aligned with dual-process accounts of recollection,

being slower and accessible to consciousness. This view is supported by studies

demonstrating hippocampal contributions during implicit memory tests in the

absence of explicit retrieval (e.g., Daselaar, Fleck, Prince & Cabeza 2006; Hannula

& Ranganath, 2009; Schacter, Dobbins & Schnyer, 2004). It is plausible that the

presence of the repetition primes in the current study acted as a proximal retrieval

cue, engaging the first stage of recollection in the primed condition, while the

unprimed condition relied on conscious recollection to bridge the temporal gap

between study and test. On this view, the early onsetting parietal old/new effect

observed in the primed condition reflects an implicit form of recollection, and

the later effect observed in the unprimed condition reflects the strategic search

associated with the subjective feeling of recollection.

These views and the current data are difficult to reconcile with dual-process

models that assume that recollection is always slow and effortful, indexing a

strategic conscious memory search. However, the current findings are consistent
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with behavioural research questioning this key assumption of dual-process models,

which demonstrate faster reaction times for R than for K judgements and suggest

that experiences of remembering are sometimes rapid and automatic in nature

(Dewhurst & Conway, 1994; Dewhurst et al., 2006; Henson et al., 1999). As

noted in the introduction, it has been argued that these behavioural findings

are driven by the nature of RK instructions rather than differences in underlying

processing, because participants only make a K responses once both processes are

complete and they have failed to recollect (Yonelinas, 2002). The current findings

refute this criticism evidencing a clear change in the timing of underlying neural

processing related to recollection, and demonstrating that the degree of priming

influences the speed of recollection during recognition tests.

6.5.1 Summary

The current findings clearly demonstrate the presence of an interaction between

repetition priming and neural correlates of recollection, and challenge a key as-

sumption of dual-process models of recognition, namely that recollection is slow

and effortful. Moreover, the findings prove that priming from exposure at encod-

ing can carry over to the test phase during standard recognition tests, modulating

the same N400 component as masked priming during the 250-500ms time window.

In addition to the response time data, which showed greater facilitation for stud-

ied words, this modulation confirms that evidence of neural priming would have

been present at test in the absence of masked primes. Importantly, the memory

data demonstrated that priming influenced the neural correlates of recollection,

with left-parietal effects for the primed condition onsetting 200ms after target

onset and effects for the unprimed not evident until 400ms after target onset.
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While early onsetting recollection effects have been reported previously in the

literature, the exact nature of the early onsetting recollection effect reported here

remains an open question. It could reflect a more automatic form of recollection,

divorced from subjective experience, or it could index more complete retrieval of

contextual information. Nonetheless, the current study contributes additional in-

sights to a slowly growing literature demonstrating that priming and recollection

do in fact interact.
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ERP 3

7.1 Introduction

The first two experiments reported in this thesis were specifically designed to ma-

nipulate the degree of priming within the confines of a standard recognition task

by including masked repetition at test. Across both of these experiments the de-

gree of repetition was held constant, while varying the encoding task to re-create

conditions that are commonly used in tests of recognition. The remaining experi-

ments reported in this thesis represent a departure from this initial strategy, and

focus on manipulating the degree of masked priming more directly. Specifically,

the remaining experiments were designed to investigate mechanisms driving the

absence of FN400 old/new effects reported in the first data chapter, in an attempt

to identify some of the factors that determine whether retrieval will be implicit or

explicit. In addition, we sought to investigate N400 effects observed in the first

experiment, in an attempt to delineate lexical and post-lexical interpretations of

the observed outcome. To achieve these goals, the study reported in the current
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chapter manipulated the Stimulus Onset Asynchrony (SOA) between prime and

target parings to vary the degree of priming.

The choice of prime-target SOA in ERP research is partially driven by the prag-

matics of measuring overlapping neural signals related to presentation of prime

and target items in close proximity (Holcomb & Grainger, 2006). As far as we

are aware, this approach of directly manipulating the SOA between prime and

target pairings during recognition testing is novel with respect to the ERP litera-

ture, despite the fact that across studies the prime-target SOA tends to be highly

variable. For example, Woollams et al. (2008) employed a prime-target SOA of

43ms, while Lucas et al. (2012) employed an SOA of 600ms. The findings of these

studies differed appreciably with respect to the N400 signals observed; in the for-

mer N400 signals onset 150ms post target and continued into the 300-500ms time

window, while in the latter N400 signals were much shorter lived, appearing only

between 300-400ms. It is plausible that the exact nature of priming eliciting

N400 like effects may have differed across these experiments. Previous research

has demonstrated that while increasing the SOA between prime-target pairings

consistently increases response priming (Van den Bussche, Van den Noortgate &

Reynvoet, 2009), most lexical and sub-lexical masked priming effects are elim-

inated by 500ms after prime onset (Ferrand, 1996), and it has been suggested

that all that remains beyond 500ms is residual semantic activity (Holcomb &

Grainger, 2006).

On this basis, the effect characterized as an N400 by Woollams et al. (2008)

could be largely lexical in nature, while the effect reported by Lucas et al. (2012)

may entirely reflect post-lexical semantic processing. The first two experiments

reported in this thesis employed a prime-target SOA of 398ms, and the timing

of N400 effects observed in both experiments was highly consistent with the la-
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tency of previous reports of N400 effects in the literature, appearing during the

250-500ms time window (Kutas & Federmeier, 2011). However, given that the

prime-target SOA was less than 500ms, and that the N400 observed in the first

experiment did not appear to be modulated over centro-parietal locations for

studied compared to unstudied words, it could be argued that effects in the first

experiment were driven by lexical rather than post-lexical fluency. Therefore, to

gain a better understanding of the mechanisms driving implicit recognition in the

first experiment, it is essential to establish the level and nature of priming con-

tributing to this outcome. The current experiment employed the standard SOA

from the previous experiments, and contrasted this with a longer SOA of 698ms

to differentiate between these accounts of the N400. In addition, we reasoned that

increasing the SOA between prime-target pairings should elicit a greater degree

of fluency by allowing extra time for semantic information to be processed, and

that this higher degree of fluency may promote reliance on familiarity.

7.2 Methods

Stimulus materials and procedures were identical to those reported in chapter

4 with an added manipulation of SOA between prime and target words. In all

other experiments reported in this thesis the SOA between prime and target was

398ms, the current experiment employed this standard SOA on 50% of trials

and the remaining trials employed an SOA of 698ms. The SOA of 698ms was

chosen to reduce the contribution of sub-lexical and lexical effects resulting from

presentation of the masked prime. To implement the longer SOA, the duration

of the backwards mask was increased by 300ms, and to maintain consistency

in the appearance of the masking procedure the duration of the forwards mask
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Figure 7.1: Test procedure. During the test phase participants were shown 120 words, 60
old words and 60 new words, fifty percent of old and new words were primed. A: On primed
trials target presentation was preceded by a repetition of the target. B: On unprimed trials
the presentation of the target word was preceded by the word blank.

was also increased (see Figure 7.1). The number of words in each test list was

maintained at 120. Across the entire experiment participant viewed 240 trials

in each condition (unprimed, primed), 120 trials with the 398ms SOA and 120

with the 698ms SOA (60 old, 60 new) randomly intermixed. Thirty-eight under-

graduate psychology students from the University of Stirling participated in the

experiment. Six participants were excluded due to excessive EEG artefacts, re-

sulting in insufficient ERP trials for critical contrasts (<16 trials). The remaining

thirty-two participants comprised of 21 females and 11 males with a mean age of

20 (range=18-26; SD=2.25).

7.3 Behavioural results

In total 69% of participants reported being unaware of the existence of the masked

prime, 9% reported that they detected flickering on the screen but were unable
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to detect any of the words, and the remaining 22% reported that they were aware

of seeing the word blank appear before the onset of the target on a few trials,

but none of the participants reported being aware of the repetition of the tar-

get words. Initial examination of the behavioural data as a function of reported

awareness confirmed no differences in the pattern of results for participants who

reported being aware of flickering on the screen or aware of the word blank com-

pared to unaware participants, and as a result the data were analysed collapsed

across awareness categories. Table 7.1 shows a summary of memory performance

measures for the current experiment. The data demonstrate a reduction in mean

accuracy for new words in the primed condition, accompanied by an overall reduc-

tion in discrimination for primed words. Response bias was conservative across

conditions, but the data suggest a trend towards a more liberal bias for primed

words.

Table 7.1: Memory performance. Percentage of correct responses, discrimination and
bias measures for the unprimed and primed conditions split by SOA (standard error of the
mean). The data demonstrate a slight reduction in mean accuracy for new words, and
a slight reduction in discrimination accompanied a slight increase in response bias for the
primed compared to the unprimed condition at both SOAs.

Correct % Discrimination

Old New Pr Br

398ms Unprimed 54.82 (2.07) 81.67 (1.98) 0.36 (0.02) 0.28 (0.03)
Primed 55.55 (2.49) 78.49 (2.33) 0.34 (0.03) 0.32 (0.03)

698ms Unprimed 55.56 (2.37) 80.34 (1.86) 0.36 (0.02) 0.31 (0.03)
Primed 55.70 (2.01) 75.77 (2.13) 0.31 (0.02) 0.35 (0.03)

Crucially, analysis confirmed that participants were able to discriminate between

old and new words in both conditions (paired t-tests comparing hits and false

alarms for both conditions and at each SOA were significant [p<0.001] in all

comparisons). Mean accuracy data were submitted to analysis using ANOVA
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with the factors of condition (unprimed, primed), test status (old, new), and

SOA (398ms, 698ms). Results revealed main effects of condition [F (1,31)=5.95,

p=0.021], and test status [F (1,31)=50.36, p<0.01], and a marginally significant

interaction between condition and test status [F (1,31)=3.77, p=0.061]. Sub-

sidiary analysis performed on the data collapsed across SOA confirmed that mean

accuracy was lower for new words in the primed compared to the unprimed con-

dition (t(31)=3.73, p=0.001).

For the discrimination data, ANOVA revealed a significant main effect of con-

dition [F (1,31)= 6.02, p=0.02], but no interaction between condition and SOA.

Follow up analysis collapsed across SOA confirmed a significant reduction in dis-

crimination for primed words (t(31)=2.45, p=0.02). Analysis of response bias also

revealed a main effect of condition [F (1,31)=6.65, p=0.015], but no interaction

between condition and SOA. Subsidiary analysis collapsed across SOA identified

a more liberal response bias for primed than for unprimed words (t(31)=2.57,

p=0.015). Overall the pattern of results demonstrates lower performance rates

for primed new words irrespective of SOA and that this reduction was driven by

an increase in false alarm rates to new words, supported by the reported increase

in response bias for primed words.

Table 7.2: Response by RK. Mean percentage of RK responses split by condition, test
status and SOA (standard error of the mean). The data demonstrate a slight increase in
the proportion of R and K false alarms in the primed condition for both SOAs.

398ms 698ms

R K R K

Old Unprimed 29.31 (2.32) 25.50 (1.64) 29.97 (2.47) 25.59 (2.02)
Primed 29.53 (2.41) 26.02 (1.95) 28.90 (2.33) 26.79 (1.90)

New Unprimed 5.94 (1.36) 12.39 (1.59) 5.21 (1.26) 14.45 (1.62)
Primed 6.54 (1.39) 14.97 (1.94) 7.35 (1.52) 16.88 (1.87)
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Table 7.2 shows the breakdown of responses by RK judgement for each cate-

gory of old and new words in the unprimed and primed conditions split by SOA,

and suggests that priming slightly increased the raw proportion of R and K

false alarms. ANOVA contrasting RK responses, including the factors of con-

dition (unprimed, primed), test status (Hits, FAs), response type (R, K) and

SOA (398ms, 698ms), produced an interaction between condition and test status

[F (1,31)=5.96, p=0.021]. Subsidiary analysis on false alarms collapsed across

SOA revealed main effects of condition [F (1,31)=13.63, p=0.001], and response

[F (1,31)=15.43, p<0.001]. Follow up t-tests confirmed that the main effect of

condition indicated an increase in the proportion of R (t(31)=2.84, p=0.008) and

K false alarms (t(31)=2.49, p=0.019) for the primed compared to the unprimed

condition, and that the main effect of response reflected a higher proportion

of K than R false alarms (t(31)=3.93, p<0.001). Estimates of familiarity and

recollection were calculated and submitted to ANOVA including the factors of

condition (unprimed, primed), SOA (398ms, 698ms) and retrieval process (famil-

iarity, recollection). Analysis demonstrated that differences apparent in the raw

proportions of RK responses did not survive correction for independence.

Table 7.3 shows the response time data for hits and correct rejections in the un-

primed and primed conditions split by SOA, and the magnitude of the difference

between the unprimed and primed conditions at each SOA. The data demon-

strates speeded response times for primed words compared to unprimed words

for hits and correct rejections, with larger effects for the 698ms SOA. Mean re-

sponse time data were analysed using ANOVA including the factors of condition

(unprimed, primed), test status (old, new), and SOA (398ms, 698ms), which re-

vealed significant main effects of condition [F (1,31)=138.37, p<0.001], test status

[F (1,31)=4.68, p=0.038] and SOA [F (1,31)=93.25, p<0.001], along with signifi-
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Table 7.3: Response times (ms). Mean response time data for correct responses split
by SOA and test status, and the magnitude of the difference between unprimed and primed
response times split by SOA and test status (standard error of the mean). The data
demonstrate that response times were faster for hits and correct rejections in the primed
condition at both SOAs, with much larger effects for hits and correct rejections at the 698ms
SOA, and slightly larger effects for hits compared to correct rejections at both SOAs.

398ms 698ms

Old (Hits) New (CRs) Old (Hits) New (CRs)

Unprimed 933.53 (31.62) 864.40 (26.05) 894.37 (34.53) 848.20 (26.88)
Primed 833.97 (38.34) 788.52 (33.29) 681.47 (40.60) 666.17 (36.68)

Magnitude 99.56 (17.14) 75.78 (13.13) 212.90 (15.75) 182.03 (17.65)

cant interactions between condition and test status [F (1,31)=4.23, p=0.48], and

condition and SOA [F (1,31)=95.57, p<0.001]. This result clearly indicates that

priming effects were present on response times and suggests that differences in

the size of these effects exist as a function of test status and SOA. Despite the

data suggesting a trend towards larger priming effects for hits than for correct

rejections (398ms: 23.78ms, 698ms: 30.87ms), subsidiary analysis performed on

the magnitude of the difference between unprimed and primed response times

revealed that these differences were not significant for either SOA (p>0.05). Con-

trasting the magnitude of the difference for hits and correct rejections across SOA

confirmed the presence of larger priming effects for hits (t(31)=6.25, p<0.001)

and for correct rejections (t(31)=7.60, p<0.001) at the 698ms SOA.

7.3.1 Summary

In summary, the accuracy data demonstrated a slight increase in false alarm

rates and a slightly more liberal bias for the primed condition, resulting in poorer

discrimination for primed words irrespective of SOA. The Remember/Know data
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demonstrated a slight increase in the raw proportion of R and K false alarms

for the primed condition across SOAs, but analysis on corrected estimates of

familiarity and recollection failed to reveal differences between the unprimed and

primed conditions as a function of SOA. Response time data demonstrated faster

responses for primed words across SOAs, with larger effects overall for the 698ms

SOA.

7.4 ERP results

Grand average ERPs were formed for hits and correct rejections in the unprimed

and primed conditions. Visual inspection confirmed the presence of early priming

effects onsetting prior to the onset of the target words for both SOAs. Due to

the manipulation of SOA, it was necessary to employ two different epochs to

capture the onset of the prime. For the 398ms SOA the epoch ran from -500-

1500ms, and for the 698ms SOA the epoch ran from -800-1200ms. For the -500-

1500ms epoch the mean number of trials contributing to waveforms for hits was

29 in both conditions and the mean number of trials contributing to waveforms

for correct rejections was 44 for the unprimed condition and 42 for the primed

conditions. For the -800-1200ms epoch 30 trials contributed to waveforms for hits

in both conditions and waveforms for correct rejections comprised of 43 trials in

the unprimed condition and 40 trials in the primed condition. Due to different

epochs and timing, priming and memory effects for each SOA were analysed

separately and the analysis proceeded in the same manner as in the previous

chapters. Magnitude and topographic comparisons performed on the data from

matching time windows across SOAs are reported at the end of each section.
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7.4.1 Priming 398ms SOA

Figure 7.2 shows grand average waveforms for hits and correct rejections in the

unprimed and primed conditions. Visual inspection of the waveforms confirmed

the presence of three priming related modulations. An early negativity (-50-

150ms) at central locations for primed compared to unprimed correct rejections,

followed by a widespread central positivity (250-500ms), and then later posterior

negativity (500-1100ms) towards the end of the epoch for primed words com-

pared to unprimed words. In short, the data for the standard SOA exhibits

priming effects similar to those reported for the previous experiments. The first

level of analysis on the data was designed to identify variations in priming ef-

fects across conditions and time windows, employing ANOVA with the factors of

condition (unprimed, primed), location (Fz, FCz, Cz, CPz, Pz, POz) and time

window (-50-150ms, 250-500ms, 500-1100ms). Results for hits revealed a signifi-

cant main effect of condition [F (1,31)=7.76, p=0.009] and a significant interac-

tion between condition, location and time window [F (2.7,82.4)=18.18, p<0.001].

Analysis for correct rejections also revealed a significant main effect of condi-

tion [F (1,31)=11.02, p=0.002] and an interaction between condition, location

and time window [F (2.7,82.5)=23.86, p<0.001]. The presence of these interac-

tions provides strong evidence of variation in the pattern of priming effects across

locations and time windows for both hits and correct rejections.

Follow up analysis was performed separately for hits and correct rejections on

the data from each time window, using ANOVA with the factors of condition

(unprimed, primed) and location (Fz, FCz, Cz, CPz, Pz, POz); the results of

this analysis are summarised in Table 7.4. For hits the results demonstrated no

main effect or interaction in the first time window, but did reveal main effects
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Figure 7.2: Priming effects 398ms SOA Grand average ERPs for hits and correct rejec-
tions in the unprimed and primed conditions with the 398ms prime-target SOA. Waveforms
display the presence of three priming related modulations, an early central negativity for
primed correct rejections, followed by a widespread central positivity and a later posterior
negativity for primed compared to unprimed words.
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and interactions with the factor of location in the later two windows. Results

for correct rejections revealed a main of condition in the first and second time

window and interactions between condition and location in the second and third

time windows. This pattern of results is consistent with the presence of priming

effects that vary by location for hits and correct rejections in the later windows

and suggests differences in the pattern of effects for hits and correct rejections in

the first and last time windows.

Table 7.4: Priming ANOVAs by time window. Results of ANOVAs contrasting midline
sites with the factors of condition and location over the three time windows chosen for
analysis of priming effects.

-50-150ms 250-500ms 500-1100ms

Hits Cond - F (1,31)=43.44, p<0.001 F (1,31)=4.87, p=0.035

Cond*Loc - F (1.6,48.4)=17.02, p<0.001 F (1.6,48.6)=6.20, p=0.007

CRs Cond F (1,31)=6.39, p=0.017 F (1,31)=64.21, p<0.001

Cond*Loc - F (1.6,49.8)=19.21, p<0.001 F (2,63.7)=8.68, p<0.001

Subsidiary analysis took the form of contrasts between the unprimed and primed

conditions, performed separately for hits and correct rejections, using ANOVA

with the factors of condition (unprimed, primed), location (F, FC, C, CP, P, PO),

hemisphere (left, right) and electrode (inferior, mid, superior) and the results for

each time window are reported separately in the following sections.

7.4.1.1 Time window -50 to 150ms

From 50ms prior to the onset of target words, waveforms for primed correct

rejections were more negative going than for unprimed correct rejections across

frontal and central locations, but waveforms for hits did not demonstrate this

early central negativity (see Figure 7.3 for the data from Cz). Initial analysis
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for hits revealed no main effect or interactions including the factor of condition,

confirming that no priming effects were evident for hits during the -50-150ms

time window. Analysis for correct rejections revealed a significant main effect of

condition [F (1,31)=8,79, p=0.006], but no significant interactions including the

factor of condition.
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Figure 7.3: Priming @ Cz (-50-150ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode Cz. Topographic maps show
the difference between the unprimed and primed conditions for hits and correct rejections.
Waveforms for primed correct rejections were more negative going than for unprimed correct
rejections across frontal and central locations, with no difference between conditions for hits.

Despite failure to find interactions, inspection of the data suggests that the early

negativity was strongest at central locations, with slightly larger effects over the

right hemisphere. In support of this interpretation, subsidiary analysis at sepa-

rate locations revealed significant main effects of condition extending from frontal

to parietal locations (p<0.05 in all cases), and a significant interaction between

condition, hemisphere and electrode [F (1.1,35.5)=4.07, p=0.046] at central lo-

cations. As can be seen in Figure 7.3 these results indicate the presence of a

slight but widespread negativity for primed correct rejections that is stronger

over the right hemisphere at central locations. Further examination of the data

confirmed that priming effects for correct rejections were maximal at electrode
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C2 (t(31)=4.01, p<0.001). In summary, the data demonstrated the presence of

a widespread negativity for correct rejections extending from frontal to parietal

locations with a focus over the right hemisphere at central locations, but this

early negativity was not apparent in the data for hits.

7.4.1.2 Time window 250 to 500ms

From 250ms after target onset, waveforms for primed hits and correct rejections

were more positive going than for unprimed hits and correct rejections across

central and posterior locations, where the difference appeared slightly larger

in magnitude for hits than for correct rejections (see Figure 7.4 for data from

CPz). Initial analysis for hits revealed a significant main effect of condition

[F (1,31)=40.86, p<0.001], along with interactions between condition, location

and electrode [F (2.5,79)=3.83, p=0.017], and condition, hemisphere and elec-

trode [F (1.2,37.3)=9.46, p=0.002]. Initial analysis for correct rejections produced

a significant main effect of condition [F (1,31)=55.13, p<0.001], and significant

interactions between condition and hemisphere [F 1,31)=4.81, p=0.036], and con-

dition, location and electrode [F (1.9,60.4)=4.02, p=0.024]. As can be seen in Fig-

ure 7.4, these results reflect the presence of a positivity for primed hits and correct

rejections over central and posterior locations that appears slightly stronger over

the right hemisphere.

Table 7.5 shows the results of subsidiary analysis at separate locations for hits and

correct rejections. Results for hits revealed interactions between condition and

electrode, and condition hemisphere and electrode across locations, reflecting the

presence of a widespread positivity for primed hits at superior electrode sites that

appears slightly stronger over inferior sites in the right hemisphere. Follow up
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Figure 7.4: Priming @ CPz (250-500ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode CPz. Topographic maps
show the difference between the unprimed and primed conditions for hits and correct re-
jections. Waveforms for primed hits and correct rejections were more positive going than
for unprimed hits and correct rejections across central and posterior locations, where the
difference appeared slightly larger in magnitude for hits than for correct rejections.

analysis collapsed across locations confirmed this result, demonstrating slightly

larger effects at inferior sites in the right hemisphere (t(31)=2.13, p=0.041) and

that the difference between conditions was larger at superior sites than at medial

(t(31)=3.41, p=0.002) or inferior sites (t(31)=4.93, p<0.001). Further exami-

nation of the data for hits confirmed that this priming effect was maximal at

electrode CPz (t(31)=7.48, p<0.001).

Results for correct rejections revealed significant interactions between condition

and electrode across locations, with interactions including the factor of hemi-

sphere at central, centro-parietal and parietal locations, reflecting the presence

of a widespread positivity for primed correct rejections at superior electrodes

with a slight skew over the right hemisphere extending from central to parietal

locations. Follow up analysis collapsed across locations and hemispheres again

confirmed that effects were larger over superior sites than at medial (t(31)=5.76,

p<0.001) or inferior sites (t(31)=7.90, p<0.001). Focused analysis on the data

collapsed from central to parietal locations demonstrated that interactions be-
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Table 7.5: Priming by location (250-500ms). Results of subsidiary analysis at separate locations for hits and correct rejections.

Hits (250-500ms) F FC C CP P PO

Cond F (1,31)=9.68, p=0.004 F (1,31)=19.59, p<0.001 F (1,31)=35.35, p<0.001 F (1,31)=52.90, p<0.001 F (1,31)=70.98, p<0.001 F (1,31)=86.93, p<0.001

Cond*Hem F (1,31)=4.37, p=0.045

Cond*Elec F (1.1,34.4)=4.00, p=0.05 F (1.1,35)=13.30, p=0.001 F (1.1,33.7)=21.49, p<0.001 F (1.2,35.7)=22.12, p<0.001 F (1.3,38.9)=17.71, p<0.001 F (1.2,37.9)=31.48, p<0.001

Cond*Hem*Elec F (1.5,47.8)=5.10, p=0.016 F (1.5,45.7)=3.94, p=0.038 F (1.2,37.4)=8.51, p=0.004 F (1.5,46.4)=5.32, p=0.014 F (1.5,48)=5.96, p=0.009 F (1.4,41.8)=6.04, p=0.011

CRs (250-500ms) F FC C CP P PO

Cond F (1,31)=10.73, p=0.003 F (1,31)=26.50, p<0.001 F (1,31)=45.45, p<0.001 F (1,31)=64.66, p<0.001 F (1,31)=91.51, p<0.001 F (1,31)=102.63, p<0.001

Cond*Hem F (1,31)=4.99, p=0.033

Cond*Elec F (1.2,36.1)=4.66, p=0.032 F (1.2,37.6)=20.26, p<0.001 F (1.2,37.3)=42.83, p<0.001 F (1.1,34.3)=45.17, p<0.001 F (1.2,35.8)=54.49, p<0.001 F (1.1,35.4)=75.19, p<0.001

Cond*Hem*Elec F (1.3,40.5)=8.10, p=0.004 F (1.5,45.1)=5.13, p=0.017
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tween condition, hemisphere and electrode were driven by slightly larger effects

over inferior sites in the right hemisphere (t(31)=2.23, p=0.033). Further exam-

ination of the data confirmed that priming effects for correct rejections were also

maximal at electrode CPz (t(31)=8.32, p<0.001).

The foregoing results suggest potential differences in the magnitude and distri-

bution of priming effects for hits and correct rejections, but magnitude analysis

contrasting effects for hits and correct rejections revealed no main effects or in-

teractions including the factor of condition, confirming that the priming effects

observed for hits and correct rejections were comparable in magnitude and dis-

tribution. In summary, during the 250-500ms time window primed hits and

correct rejections were more positive going than unprimed hits and correct rejec-

tions. Priming effects were maximal at superior centro-parietal locations for hits

and correct rejections and did not differ substantially in magnitude or distribu-

tion.

7.4.1.3 Time window 500 to 1100ms

From 500ms after target onset, waveforms for primed hits and correct rejections

were more negative going than for unprimed hits and correct rejections at poste-

rior locations in the left hemisphere, with the largest difference between conditions

for hits (see Figure 7.5 for the data from PO3). Initial analysis for hits revealed

a significant main effect of condition [F (1,31)=4.48, p=0.043], and significant

interactions between condition and location [F (5,155)=7.48, p=0.004], and con-

dition and electrode [F (1.1,32.8)=6.25, p=0.016]. Analysis for correct rejections

produced a significant interaction between condition, location, hemisphere and

electrode [F (10,310)=2.55, p=0.04]. As can be seen in Figure 7.5, these results
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reflect the presence of a negativity for primed hits and correct rejections at pos-

terior locations, that appears slightly larger over the left hemisphere.
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Figure 7.5: Priming @ PO3 (500-1100ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode PO3. Topographic maps
show the difference between the unprimed and primed conditions for hits and correct re-
jections. Waveforms for primed hits and correct rejections were more negative going than
for unprimed hits and correct rejections at posterior locations, with the largest difference
between conditions for hits.

Table 7.6 shows the results of subsidiary analysis at separate locations for hits and

correct rejections. Results for hits demonstrated main effects of condition and

interactions between condition and electrode extending from centro-parietal to

parieto-occipital locations, with interactions including the factor of hemisphere

at parietal and parieto-occipital locations. This pattern of results reflects the

presence of a negativity for primed hits towards superior electrode sites across

posterior locations, with larger effects over inferior sites in the the left hemi-

sphere at parietal and parieto-occipital locations. Follow up analysis on the

data collapsed from centro-parietal to parieto-occipital locations demonstrated

that effects were larger over superior (t(31)=2.77, p=0.009) and medial sites

(t(31)=2.93, p=0.006) than at inferior sites. Analysis collapsed over parietal

and parieto-occipital locations confirmed that interactions including the factor of

hemisphere reflected that effects were slightly larger over inferior sites in the left
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Table 7.6: Priming by location (500-1100ms). Results of subsidiary analysis at separate locations for hits and correct
rejections.

Hits (500-1100ms) F FC C CP P PO

Cond F (1,31)=5.53, p=0.041 F (1,31)=8.10, p=0.008 F (1,31)=11.60, p=0.002

Cond*Hem F (1,31)=5.40, p=0.027

Cond*Elec F (1.1,33.5)=4.03, p=0.05 F (1.1,34.9)=5.30, p=0.024 F (1.1,34.1)=13.06, p=0.001

Cond*Hem*Elec F (1.3,38.8)=4.60, p=0.030

CRs (500-1100ms) F FC C CP P PO

Cond F (1,31)=4.82, p=0.036

Cond*Hem

Cond*Elec

Cond*Hem*Elec
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hemisphere at these locations (t(31)=2.06, p=0.048). Further examination of the

data demonstrated that priming effects for hits were maximal at electrode PO3

(t(31)=4.28, p<0.001).

Subsidiary analysis at separate locations for correct rejections revealed a signif-

icant main effect of condition at parieto-occipital locations, reflecting a slight

negativity for primed correct rejections that did not differ across sites. Further

examination of the data demonstrated that priming effects for correct rejections

were maximal at electrode PO5 (t(31)=2.47, p=0.019). Magnitude analysis con-

trasting priming effects for hits and correct rejections revealed a significant inter-

action between test status and electrode [F (1.1,33.4)=8.49, p=0.005], reflecting

a difference in the size of priming effects for hits and correct rejections over su-

perior electrode sites, with greater negativity for hits. Topographic comparison

performed on the rescaled data revealed no main effect or interactions including

the factor of test status, suggesting that the observed effects for hits and correct

rejections did not differ in distribution.

In summary, during the 500-1100ms time window primed hits and correct re-

jections were more negative going than unprimed hits and correct rejections at

posterior locations. These late priming effects differed in magnitude but not in

distribution, with larger effects over superior sites for hits, demonstrating that

this late priming effect was modulated by exposure to words at study.

7.4.2 Priming 698ms SOA

Figure 7.6 shows grand average waveforms for hits and correct rejections in the

unprimed and primed conditions. Visual inspection of the waveforms confirmed

the presence of three priming related modulations. An early central negativity
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Figure 7.6: Priming effects 698ms SOA Grand average ERPs for hits and correct rejec-
tions in the unprimed and primed conditions with the 698ms prime-target SOA. Waveforms
display the presence of three priming related modulations, an early central negativity, fol-
lowed immediately by a widespread central positivity and a later posterior negativity for
primed compared to unprimed words.
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(-350 to -150ms), followed by a central positivity (-100-500ms), and a later poste-

rior negativity (500-1100ms) for primed hits and correct rejections. The first level

of analysis on the data was again designed to identify variations in priming effect

across conditions and time windows, employing ANOVA with the factors of condi-

tion (unprimed, primed), location (Fz, FCz, Cz, CPz, Pz, POz) and time window

(-350 to -150ms, -100-500ms, 500-1100ms). Results revealed significant interac-

tions between condition, location and time window for hits [F (2.5,77.7)=9.64,

p<0.001], and correct rejections [F (2.1,66.2)=13.07, p<0.001], providing strong

evidence of variation in the pattern of priming effects across locations and time

windows for hits and correct rejections. Follow up analysis was performed sepa-

rately for hits and correct rejections on the data from each time window, using

ANOVA with the factors of condition (unprimed, primed) and location (Fz, FCz,

Cz, CPz, Pz, POz); the results of this analysis are summarised in Table 7.7.

Table 7.7: Priming ANOVAs by time window. Results of ANOVAs contrasting midline
sites with the factors of condition and location over the three time windows chosen for
analysis of priming effects.

-350 to -150ms -100-500ms 500-1100ms

Hits Cond - F (1,31)=51.96, p<0.001 F (1,31)=24.40, p<0.001

Cond*Loc - F (1.3,42.1)=4.20, p=0.035 F (1.2,37.4)=8.37, p=0.004

CRs Cond F (1,31)=12.59, p=0.001 F (1,31)=48.38, p<0.001 F (1,31)=21.01, p<0.001

Cond*Loc - F (1.8,56.4)=16.86, p<0.001 F (1.5,45.8)=18.79, p<0.001

For hits the results demonstrated no main effect or interaction in the first time

window, but did reveal main effects and interactions with the factor of location

in the later two windows. Results for correct rejections revealed main effects of

condition in all time windows and interactions between condition and location in

the second and third time windows. This pattern of results is consistent with the
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presence of priming effects that vary by location for hits and correct rejections

in the later time windows and suggest a difference in the pattern of effects for

hits and correct rejections in the first time window. Subsidiary analysis took the

form of contrasts between the unprimed and primed conditions performed sepa-

rately for hits and correct rejections, using ANOVA with the factors of condition

(unprimed, primed), location (F, FC, C, CP, P, PO), hemisphere (left, right)

and electrode (inferior, mid, superior) and the results for each time window are

reported separately in the following sections.

7.4.2.1 Time window -350 to -150ms

From 350ms after onset of the prime, waveforms for primed hits and correct re-

jections were more negative going than for unprimed hits and correct rejections

across central and posterior locations (see Figure 7.7 for the data from CPz). Ini-

tial analysis for hits revealed no main effects or interactions including the factor

of condition, demonstrating the absence of substantial priming effects for hits.

Analysis for correct rejections produced a significant main effect of condition

[F (1,31)=13.28, p=0.001], along with interactions between condition, location

and hemisphere [F (2.4,74.6)=5.19, p=0.005], and condition, location and elec-

trode [F (3,93.8)=3.42, p=0.020]. As can be seen in Figure 7.7, these results reflect

the presence of a negativity for primed correct rejections over central locations

at superior electrode sites, with a slight skew over the right hemisphere.

Table 7.8 shows the results of subsidiary analysis at separate locations for cor-

rect rejections. Results revealed significant main effects of condition across lo-

cations, interactions between condition and electrode extending from frontal to

parietal locations and interactions involving the factor of hemisphere from cen-
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Figure 7.7: Priming @ CPz (-350 to -150ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode CPz. Topographic maps show
the difference between the unprimed and primed conditions for hits and correct rejections.
Waveforms for primed hits and correct rejections were more negative going across central
and posterior locations, with the largest difference between conditions for correct rejections.

tral to parieto-occipital locations. This pattern of results confirms the presence

of a widespread negativity for primed correct rejections at superior electrode sites

across locations, with a skew towards the right hemisphere over central and pos-

terior locations. Follow up analysis on the data collapsed from frontal to parietal

locations and across hemispheres confirmed that effects were larger over supe-

rior sites than at medial (t(31)=2.84, p=0.008), or inferior sites (t(31)=2.92,

p=0.006). Collapsing the data over locations producing interactions including

the factor of hemisphere and electrode sites confirmed the presence of stronger

effects over the right hemisphere (t(31)=2.87, p=0.007) extending from central to

parieto-occipital locations. Further examination of the data for correct rejections

confirmed that the priming effect was maximal at electrode CPz (t(31)=3.43,

p=0.002).

In summary, the data for hits did not produce significant priming effects despite

evidence of a difference between conditions in the waveforms. Inspection of the

data suggests that this lack of effect for hits may have been driven by the onset

of an early old/new difference in the primed condition (see Section 7.4.6.1 for

206



Table 7.8: Priming for CRs by location (-350 to -150ms). Results of subsidiary analysis at separate locations for correct
rejections.

CRs (500-1100ms) F FC C CP P PO

Cond F (1,31)=9.01, p=0.005 F (1,31)=11.04, p=0.002 F (1,31)=12.51, p=0.001 F (1,31)=12.36, p=0.001 F (1,31)=11.06, p=0.002 F (1,31)=10.86, p=0.002

Cond*Hem F (1,31)=5.32, p=0.028 F (1,31)=9.67, p=0.004 F (1,31)=12.71, p=0.001

Cond*Elec F (1.3,39.4)=8.68, p=0.003 F (1.1,34.6)=8.29, p=0.005 F (1.1,33.3)=7.69, p=0.008 F (1.1,34)=5.41, p=0.023 F (1,32.4)=4.14, p=0.049

Cond*Hem*Elec F (1.4,42.1)=3.74, p=0.048 F (1.3,40.2)=6.59, p=0.009 F (1.2,37.9)=6.95, p=0.008
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data), increasing the level activity for primed hits and thus reducing the size of

the difference between primed and unprimed hits. Data for correct rejections

revealed a widespread negativity for primed words maximal at superior centro-

parietal sites, with a slight skew towards the right hemisphere over central and

posterior locations.

7.4.2.2 Time window -100 to 500ms

From 100ms prior to target onset, waveforms for primed hits and correct re-

jections were more positive going than for unprimed hits and correct rejections

across central and posterior locations (see Figure 7.8 for data from CPz). Initial

analysis for hits revealed a significant main effect of condition [F (1,31)=54.65,

p<0.001], along with significant interactions between condition and electrode

[F (1.1,34.5)=18.35, p<0.001], and condition, location and hemisphere [F (1.7,52)

=6.62, p=0.004]. Initial analysis for correct rejections also produced a signif-

icant main effect of condition [F (1,31)=55.50, p<0.001], along with significant

interactions between condition and electrode [F (1.1,33.6)=18.83, p<0.001], and

condition, location and hemisphere [F (2.1,65.6)=4.66, p=0.011]. As can be seen

in Figure 7.8, these results reflect the presence of a positivity for primed hits

and correct rejections towards superior electrode sites, with a focus over central

and posterior locations, that appears slightly skewed over the right hemisphere

towards frontal locations.

Table 7.9 shows the results of subsidiary analysis at separate locations for hits

and correct rejections. Results for hits revealed main effects of condition and

interactions between condition and electrode across locations, along with interac-

tions between condition and hemisphere at frontal and fronto-central locations.
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Figure 7.8: Priming @ CPz (-100 to 500ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode CPz. Topographic maps show
the difference between the unprimed and primed conditions for hits and correct rejections.
Waveforms for primed hits and correct rejections were more positive going than for unprimed
hits and correct rejections across central and posterior locations.

This pattern of results confirms the presence of a widespread positivity for primed

hits at superior electrode sites over central and posterior locations, with a slight

skew over the right hemisphere at frontal locations. Follow up analysis collapsed

across locations and hemispheres confirmed the presence of larger effects over

superior (t(31)=4.29, p<0.001), and medial sites (t(31)=5.09, p<0.001), than

at inferior sites. Focused analysis on the data collapsed over frontal locations

and electrodes confirmed the presence of larger effects over the right hemisphere

(t(31)=2.78, p=0.009), on the outskirts of the priming effect for hits. Further

examination of the data confirmed that effects for hits were maximal at electrode

CPz (t(31)=7.19, p<0.001).

Analysis at separate locations for correct rejections revealed significant main ef-

fects and interactions between condition and electrode extending from fronto-

central to parieto-occipital locations, along with a main effect and interaction

between condition, hemisphere and electrode at frontal sites. The pattern of

results is comparable to the outcome for hits demonstrating the presence of a

widespread positivity for primed correct rejections at superior electrode sites over
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Table 7.9: Priming by location (-100-500ms). Results of subsidiary analysis at separate locations for hits and correct
rejections.

Hits (-100-500ms) F FC C CP P PO

Cond F (1,31)=25.41, p<0.001 F (1,31)=36.79, p<0.001 F (1,31)=47.92, p<0.001 F (1,31)=54.52, p<0.001 F (1,31)=51.52, p<0.001 F (1,31)=44.23, p<0.001

Cond*Hem F (1,31)=9.31, p=0.005 F (1,31)=5.58, p=0.025

Cond*Elec F (1.2,36.2)=6.15, p=0.014 F (1.2,36.4)=16.88, p<0.001 F (1.1,35.1)=15.23, p<0.001 F (1.1,35.5)=13.74, p<0.001 F (1.1,34.8)=4.92, p=0.029 F (1.1,35.4)=15.01, p<0.001

Cond*Hem*Elec

CRs (-100-500ms) F FC C CP P PO

Cond F (1,31)=8.32, p=0.007 F (1,31)=24.15, p<0.001 F (1,31)=46.30, p<0.001 F (1,31)=72.88, p<0.001 F (1,31)=83.10, p<0.001 F (1,31)=72.78, p<0.001

Cond*Hem

Cond*Elec F (1.2,38.3)=9.48, p=0.002 F (1.1,34.1)=10.97, p=0.002 F (1.1,34.2)=14.35, p<0.001 F (1.1,33.9)=10.81, p=0.002 F (1.1,34.1)=27.20, p<0.001

Cond*Hem*Elec F (1.6,50)=4.08, p=0.030
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central and posterior locations, with a slight skew over the right hemisphere at

frontal locations. Follow up analysis on the data collapsed from fronto-central

to parieto-occipital locations again confirmed the presence of larger effects over

superior (t(31)=3.82, p=0.001), and medial sites (t(31)=4.27, p<0.001), than at

inferior sites. Further examination of the data confirmed that priming effects

for correct rejections were also maximal at electrode CPz (t(31)=7.62, p<0.001).

The results reported above for hits and correct rejections suggest no differences

in the magnitude or distribution of priming effects. In support of this interpre-

tation, magnitude analysis performed on the subtraction data revealed no main

effect or interactions including the factor of condition, confirming that priming

effects for hits and correct rejections were comparable.

In summary, during the -100 to 500ms time window the data for hits and cor-

rect rejections produced comparable effects, demonstrating the presence of a

widespread positivity for primed words over superior sites extending from frontal

to parieto-occipital locations, that was maximal for hits and correct rejections

over centro-parietal locations.

7.4.2.3 Time window 500 to 1100ms

From 500ms after target onset, waveforms for primed hits and correct rejections

were more negative going than for unprimed hits and correct rejections at poste-

rior locations, with the largest difference between conditions for hits (see Figure

7.9 for the data from Pz). Initial analysis for hits revealed a significant main effect

of condition [F (1,31)=20.74, p<0.001], and a significant interaction between con-

dition, location and electrode [F (3.1,95.6)=5.45, p=0.002]. Analysis for correct

rejections also produced a significant main effect of condition [F (1,31)=22.09,
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p<0.001], and a significant interaction between condition, location and electrode

[F (1.1,33.9)=8.05, p=0.006]. As can be seen in Figure 7.9 these results reflect

the presence of a negativity over superior electrode sites at posterior locations for

hits and correct rejections.
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Figure 7.9: Priming @ Pz (500 to 1100ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode Pz. Topographic maps show
the difference between the unprimed and primed conditions for hits and correct rejections.
Waveforms for primed hits and correct rejections were more negative going at posterior
locations, with the largest difference between conditions for hits.

Table 7.10 shows the results of subsidiary analysis at separate locations for hits

and correct rejections. Results for hits revealed significant main effects of condi-

tion across locations, and significant interactions between condition and electrode

extending from fronto-central to parieto-occipital locations, indicating the pres-

ence of a negativity for primed hits at superior electrode sites. Follow up analysis

on the data collapsed from fronto-central to parieto-occipital locations confirmed

that effects were larger over superior sites than at medial (t(31)=3.69, p=0.001),

or inferior sites (t(31)=4.86, p<0.001). Further examination of the data con-

firmed that the priming effect for hits was maximal at electrode P1 (t(31)=6.37,

p<0.001). Results for correct rejections produced main effects of condition from

fronto-central to parieto-occipital locations, and interactions between condition

and electrode from central to parieto-occipital locations, reflecting the presence
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Table 7.10: Priming by location (500-1100ms). Results of subsidiary analysis at separate locations for hits and correct
rejections.

Hits (500-1100ms) F FC C CP P PO

Cond F (1,31)=5.46, p=0.026 F (1,31)=10.13, p=0.003 F (1,31)=18.54, p<0.001 F (1,31)=25.42, p<0.001 F (1,31)=31.46, p<0.001 F (1,31)=25.37, p<0.001

Cond*Hem

Cond*Elec F (1.2,38.5)=4.91, p=0.026 F (1.2,36.9)=11.71, p=0.001 F (1.1,37.1)=22.06, p=<0.001 F (1.2,38.3)=28.49, p<0.001 F (1.2,36)=38.17, p<0.001

Cond*Hem*Elec

CRs (500-1100ms) F FC C CP P PO

Cond F (1,31)=7.82, p=0.009 F (1,31)=16.45, p<0.001 F (1,31)=24.18, p<0.001 F (1,31)=30.15, p<0.001 F (1,31)=33.91, p<0.001

Cond*Hem

Cond*Elec F (1.2,36.8)=4.12, p=0.043 F (1.2,35.6)=16.77, p<0.001 F (1.1,33.3)=19.16, p<0.001 F (1.1,34.4)=17.85, p<0.001

Cond*Hem*Elec
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of a negativity for primed correct rejections with a similar distribution as was ob-

served for hits, extending over central and posterior locations at superior electrode

sites. Follow up analysis on the data collapsed from fronto-central to parieto-

occipital locations confirmed that effects were larger over superior sites than at

medial (t(31)=4.54, p<0.001) or inferior sites (t(31)=4.10, p<0.001). Further

examination of the data confirmed that the priming effect for correct rejections

was maximal at electrode Pz (t(31)=5.65, p<0.001).

The data suggest differences in the magnitude of effects for hits and correct

rejections, with a stronger negativity evident for hits. Magnitude analysis per-

formed on subtraction data revealed a marginally significant main effect of test

status [F (1,31)=4.14, p=0.051], along with a significant interaction between

test status and electrode [F (1.3,38.8)=6.26, p=0.012], reflecting a stronger ef-

fects over medial sites for hits. Topographic analysis performed on the rescaled

data also revealed a significant interaction between test status and electrode

[F (1.3,38.8)=5.99, p=0.014], indicating that effects for hits and correct rejec-

tions were driven by at least partially non overlapping sets of neural generators.

In summary, during the 500-1100ms time window the data for hits and correct

rejections demonstrated a priming related negativity maximal over parietal loca-

tions at superior electrode sites, that was larger in amplitude for hits than for

correct rejections and also differed in distribution.

7.4.3 SOA comparisons

The next stage of analysis sought to compare the magnitude and distribution of

priming effects reported in the previous sections across SOAs. Despite differences

in the pre-target epoch timing across SOAs, the early negativity for both SOAs
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occurs 350ms after prime onset facilitating comparison of this early effect. The

late negativity reported for both SOAs occurs 500ms after target onset in both

cases allowing direct comparison of this late priming effect. The widespread

positivity present for hits and correct rejections at both SOAs differed in onset

time and duration across SOAs. To facilitate comparison of the positive going

priming effects across SOA, the much longer lasting effect for the 698ms SOA

(-100-500ms) was split into two consecutive time windows (-100-250ms, 250ms-

500ms) to allow direct comparison with the effect evident in the data for the 398ms

SOA between 250-500ms. Results of magnitude and topographic comparison of

the data for hits and correct rejections across SOAs for each time window are

reported separately in the following sections.

7.4.3.1 Early negativity (350ms post-prime)

From 350ms after the onset of the prime words, waveforms for primed correct

rejections were more negative going than for unprimed correct rejections for both

SOAs, but as can be seen in Figure 7.10, the effects appeared to differ in size

and distribution. Analysis contrasting the magnitude of effects for correct re-

jections across SOAs, using ANOVA with the factors of SOA (398ms, 698ms),

Location (F, FC, C, CP, P, PO), hemisphere (left, right) and electrode (infe-

rior, mid, superior), revealed significant interactions between SOA and electrode

[F (1,32.4)=5.02, p=0.031], and SOA, location and hemisphere [F (2.2,67.2)=7.03,

p=0.001]. Subsidiary analysis at separate locations identified significant interac-

tions between SOA and electrode at frontal [F (1.4,43.8)=4.00, p=0.038], centro-

parietal [F (1.1,33.2)=4.92, p=0.031], and parietal locations [F (1.1,33.8)=6.91,

p=0.011], along with significant interactions between SOA and hemisphere at
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parietal [F (1,31)=5.88, p=0.021] and parieto-occipital locations [F (1,31)=7.03,

p=0.013].
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Figure 7.10: Early negativity (350ms post-prime). Topographic maps show the dif-
ference between the unprimed and primed correct rejections at each SOA. Primed correct
rejections were more negative going then for unprimed correct rejections for both SOAs,
but the effects appeared to differ in magnitude and distribution.

As can be seen in Figure 7.10, this pattern of interactions reflects greater nega-

tivity for the 698ms SOA over superior electrode sites at frontal, centro-parietal

and parietal locations, and larger effects over the right hemisphere at parietal and

parieto-occipital locations. Topographic analysis on the rescaled data revealed a

significant interaction between SOA, location and hemisphere [F (2,62.8)=6.08,

p=0.004], reflecting the recruitment of additional sets of neural generators in the

right hemisphere at posterior locations for the 698ms SOA.

7.4.3.2 Post-target positivity (250-500ms)

To facilitate comparison of the positive going priming effects across SOA, the

much longer lasting effect for the 698ms SOA (-100-500ms) was split into two

consecutive time windows (-100-250ms, 250ms-500ms) to allow direct comparison

with the effect evident in the data for the 398ms SOA between 250-500ms. Before

investigating the size and distribution of effects for the 250-500ms time window

across SOAs, the pattern of priming effects present in the new time windows for

the 698ms SOA were analysed. Between -100-250ms waveforms for primed hits
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Figure 7.11: Priming @ CPz (-100-250ms & 250-500ms). Grand average ERPs for hits
and correct rejections in the unprimed and primed conditions at electrode CPz. Topographic
maps show the difference between the unprimed and primed conditions for hits and correct
rejections in each time window. Primed words were more positive going than unprimed
words in both time windows, with the posterior distribution evident in the earlier window
becoming more centrally focused over time.

and correct rejections were more positive going than for unprimed hits and correct

rejections with a focus over posterior locations. Between 250-500ms waveforms for

primed hits and correct rejections continued to be more positive for primed hits

and correct rejections but appeared to become more centrally distributed, with

stronger effects over the right hemisphere towards frontal locations (see Figure

7.11 for the data from CPz).
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For the earlier window, initial analysis for hits revealed a significant main ef-

fect of condition [F (1,31)=23.15, p<0.001], along with significant interactions

between condition and location [F (1.2,37.4)=3.95, p=0.047], and condition and

electrode [F (1.1,33.9)=18.97, p<0.001]. Analysis for correct rejections produced

a significant main effect of condition [F (1,31)=24.24, p<0.001], and a signif-

icant interaction between condition, location and electrode [F (2.4,74.5)=4.24,

p=0.013]. As can be seen in Figure 7.11, these results reflect the presence of

a positivity for primed words at posterior locations with a focus over superior

electrode sites. For the later 250-500ms window, initial analysis for hits revealed

a significant main effect of condition [F (1,31)=72.95, p<0.001], along with signif-

icant interactions between condition, location and hemisphere [F (1.6,50.3)=7.16,

p=0.003], condition, location and electrode [F (2.6,80.9)=5.58, p=0.003], and con-

dition, hemisphere and electrode [F (1.2, 36.6)=4.86, p=0.028]. Analysis for cor-

rect rejections produced a significant main effect of condition [F (1,31)=85.10,

p<0.001], along with significant interactions between condition, location and

hemisphere [F (1.8,55.7)=4.30, p=0.022], and condition, hemisphere and electrode

[F (1.1,34.7)=9.91, p=0.003]. This pattern of results suggests the presence of a

centrally distributed positivity for primed hits and correct rejections, with a skew

over the right hemisphere towards anterior locations.

Table 7.11 displays the results of subsidiary analysis at separate locations for

hits and corrects rejections over the time windows of interest and demonstrates

changes in the pattern of effects over time. For hits and correct rejections during

the -100 to 250ms window the data evidenced the presence of a positivity for

primed words at superior electrode sites with a focus over posterior locations.

In the later window these positive priming effects for hits and correct rejections

displayed a more central distribution, with a skew over the right hemisphere across

218



Table 7.11: Priming for 698ms SOA by location. Results of subsidiary analysis at separate locations for hits and correct
rejections over the -100-250ms and 250-500ms time windows.

Hits (-100-250ms) F FC C CP P PO

Cond F (1,31)=13.41, p=0.001 F (1,31)=16.77, p<0.001 F (1,31)=19.98, p<0.001 F (1,31)=20.95, p<0.001 F (1,31)=21.51, p<0.001 F (1,31)=22.86, p<0.001

Cond*Hem

Cond*Elec F (1.2,36)=5.69, p=0.019 F (1.2,36.5)=13.32, p<0.001 F (1.2,35.9)=12.76, p=0.001 F (1.1,34.8)=14.55, p<0.001 F (1.1,33.7)=11.10, p=0.002 F (1.1,33.9)=17.50, p<0.001

Cond*Hem*Elec

CRs (-100-250ms) F FC C CP P PO

Cond F (1,31)=7.06, p=0.012 F (1,31)=19.46, p<0.001 F (1,31)=32.36, p<0.001 F (1,31)=39.36, p<0.001 F (1,31)=38.57, p<0.001

Cond*Hem

Cond*Elec F (1.2,36.8)=5.05, p=0.025 F (1.1,33.9)=8.19, p=0.006 F (1.1,33.6)=13.71, p=0.001 F (1,32.9)=16.20, p<0.001 F (1.1,33.1)=29.52, p<0.001

Cond*Hem*Elec

Hits (250-500ms) F FC C CP P PO

Cond F (1,31)=28.27, p<0.001 F (1,31)=56.45, p<0.001 F (1,31)=82.73, p<0.001 F (1,31)=86.85, p<0.001 F (1,31)=45.02, p<0.001 F (1,31)=18.79, p<0.001

Cond*Hem F (1,31)=20.08, p<0.001 F (1,31)=18.85, p<0.001 F (1,31)=9.04, p=0.005

Cond*Elec F (1.1,35.5)=8.58, p=0.004 F (1.1,33.8)=6.66, p=0.012

Cond*Hem*Elec F (1.4,42.9)=4.71, p=0.025 F (1.5,47.6)=7.88, p=0.003 F (1.4,43.7)=5.09, p=0.019

CRs (250-500ms) F FC C CP P PO

Cond F (1,31)=27.09, p<0.001 F (1,31)=53.09, p<0.001 F (1,31)=78.53, p<0.001 F (1,31)=98.83, p<0.001 F (1,31)=66.57, p<0.001 F (1,31)=34.93, p<0.001

Cond*Hem F (1,31)=10.19, p=0.003 F (1,31)=10.33, p=0.003 F (1,31)=9.72, p=0.004

Cond*Elec F (1.3,42.3)=14.38, p<0.001 F (1.2,35.9)=12.59, p=0.001 F (1.1,35.3)=8.72, p=0.004

Cond*Hem*Elec F (1.5,47.5)=7.06, p=0.004 F (1.4,43.2)=9.88, p=0.001 F (1.3,41.3)=11.63, p=0.001 F (1.1,35.6)=6.59, p=0.012 F (1.1,34.6)=4.07, p=0.047
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frontal and central locations. The pattern of results reported above for hits and

correct rejections during the 250 to 500ms time window for the 698ms SOA,

appears similar to the pattern of effects identified for the 398ms SOA during the

same time window (see Section 7.4.1.2 for data). The next level of analysis sought

to contrast the magnitude and distribution of these effects across SOAs.

Figure 7.12 shows topographic maps of effects for hits and correct rejections

at each SOA, and inspection of the data suggests that the effects differ in dis-

tribution across SOAs, with more anterior effects for the 698ms SOA. Mag-

nitude analysis employing ANOVA with the factors of test status (old, new)

SOA (398ms, 698ms), location (F, FC, C, CP, P, PO), hemisphere (left, right)

and electrode (inferior, mid, superior), revealed a significant interaction between

SOA, location and hemisphere [F (1.6,50)=4.17, p=0.029], and SOA, location

and electrode [F (2.8,85.6)=4.65, p=0.006]. Subsidiary analysis at separate lo-

cations revealed significant interactions between SOA and hemisphere at frontal

[F (1,31)=4.84, p=0.035], fronto-central [F (1,31)=5.53, p=0.025], and central lo-

cations [F (1,31)=4.61, p=0.040], reflecting stronger effects over the right hemi-

sphere at these locations for the 698ms SOA. Subsidiary analysis at posterior

locations revealed significant interactions between SOA and electrode at centro-

parietal [F (1.1,33.4)=6.60, p=0.013], parietal [F (1.1,32.9)=12.05, p=0.001], and

parieto-occipital locations [F (1,32.5)=11.01, p=0.002], reflecting stronger effects

over medial and superior sites at these locations for the 398ms SOA.

The foregoing results suggest differences in the distribution of effects across SOAs.

To investigate whether these differences reflect genuine changes in topography

analysis was performed on difference waveforms for the 398ms and 698ms SOAs,

using rescaled data. Results confirmed the presence of significant interactions

between SOA, location and hemisphere [F (1.6,49.4)=4.80, p=0.018], and SOA,
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Figure 7.12: Post-target positivity (250-500ms). Topographic maps show the difference
between the unprimed and primed conditions for hits and correct rejections at each SOA.
Primed hits and correct rejections were more positive going than unprimed correct rejections
for both SOAs, but the effects appeared to differ slightly in distribution, with a slightly more
anterior focus for hits and correct rejections at the 698ms SOA.

location and electrode [F (2.8,86.9)=4.61, p=0.006], indicating that effects for the

398ms and 698ms SOA were driven by partially non-overlapping sets of neural

generators. As can be seen in figure 7.12, these findings confirm the presence of

additional activation in the right hemisphere over anterior locations for the 698ms

SOA, and additional posterior activation over medial and superior sites for the

398ms SOA.

7.4.3.3 Late negativity (500-1100ms)

From 500ms after the onset of the target words, waveforms for primed hits and

correct rejections were more negative going than for unprimed hits and correct

rejections at posterior locations for both SOAs. As can be seen in Figure 7.13,

effects for hits were larger than effects for correct rejections at both SOAs, with

no real differences in amplitude apparent across SOAs. Analysis contrasting the

magnitude of effects for hits and correct rejections across SOAs, using ANOVA

with the factors of test status (old, new), SOA (398ms, 698ms), location (F,

FC, C, CP, P, PO), hemisphere (left, right) and electrode (inferior, mid, su-

perior), revealed a significant interaction between test status, SOA, location,
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hemisphere and electrode [F (4.1,129.4)=3.74, p=0.006]. Subsidiary analysis con-

trasting effects for hits across SOAs revealed a significant main effect of SOA

[F (1,31)=10.68, p=0.003], and an interaction between SOA, hemisphere and elec-

trode F (1.2,35.9)=4.22, p=0.042]. Analysis contrasting priming effects for correct

rejections revealed a significant main effect of SOA [F (1,31)=14.50, p=0.001], and

a significant interaction between SOA, location and electrode [F (3,92.7)=4.27,

p=0.007].

(500-1100ms) 

398ms SOA 698ms SOA 
+3 

µv 

-3 
Hits CRs 

+5 

µv 

-5 
Hits CRs 

Figure 7.13: Late negativity (500-1100ms). Topographic maps show the differ-
ence between unprimed and primed conditions for hits and correct rejections at each
SOA.Waveforms for primed hits and correct rejections were more negative going than for
unprimed hits and correct at posterior locations for both SOAs, with larger effect for hits
than for correct rejections.

As can be seen in Figure 7.13, these results reflect the presence of larger effects

for hits at the 698ms SOA, with more widespread effects over the right hemi-

sphere at medial sites across locations. Effects for correct rejections are also

larger for the 698ms SOA, with the greatest difference over superior sites. The

foregoing results suggest differences in the distribution of effects across SOAs.

To investigate whether these differences reflect genuine changes in topography,

analysis was performed on difference waveforms for the 398ms and 698ms SOAs,

using rescaled data. Results revealed a significant 5-way interaction between

SOA, test status, location, hemisphere and electrode [F (4.5,139)=2.75, p=0.026].

Subsidiary analysis contrasting priming effects for hits revealed a marginally sig-

nificant interaction between SOA, hemisphere and electrode [F (1.2,35.8)=3.94,
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p=0.049], reflecting the recruitment of additional generators for the 698ms SOA

across locations in the right hemisphere. Analysis contrasting priming effects

for correct rejections revealed significant interactions between SOA and electrode

[F 1.1,33.3)=6.45, p=0.014], and SOA, location and hemisphere [F (1.8,55)=4.22,

p-0.024], reflecting recruitment of additional sets of neural generators towards

anterior locations in the right hemisphere for correct rejections.

7.4.4 Summary

For the 398ms SOA, the data demonstrated the presence of an early widespread

negativity for correct rejections extending from frontal to parietal locations with

a focus over the right hemisphere at central locations, but this early negativity

was not apparent in the data for hits. Between 250-500ms primed hits and correct

rejections were more positive going than unprimed hits and correct rejections at

superior centro-parietal locations and did not differ substantially in magnitude or

distribution. Between 500-1100ms primed hits and correct rejections were more

negative going than unprimed hits and correct rejections at posterior locations.

These late priming effects differed in magnitude but not in distribution, with

larger effects over superior sites for hits, demonstrating that this late priming

effect was modulated by exposure to words at study.

For the 698ms SOA, the data demonstrated the presence of an early widespread

negativity for primed correct rejections maximal at superior centro-parietal sites,

with a slight skew towards the right hemisphere over central and posterior loca-

tions, but data for hits again failed to produce significant priming effects. From

100ms prior to target onset primed hits and correct rejections produced compa-

rable effects demonstrating a widespread positivity over superior sites extending
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Figure 7.14: Priming topographic summary 398ms SOA. Topographic maps summarise
differences between the unprimed and primed conditions for hits and correct rejections for
the 398ms SOA.

from frontal to parieto-occipital locations, that were maximal for hits and correct

rejections at centro-parietal locations. Between 500-1100ms, the data for hits

and correct rejections demonstrated a priming related negativity maximal over

parietal locations at superior electrode sites, that was larger in amplitude for hits

than for correct rejections. Effects for hits and correct rejections and also differed

in topography, confirming that effects were driven by partially non-overlapping

sets of neural generators.

Comparison across SOAs of the early negativity for correct rejections onsetting

350ms after prime onset, confirmed the presence of greater negativity for the

698ms SOA over superior electrode sites at frontal, centro-parietal and parietal

locations, and larger effects over the right hemisphere at parietal and parieto-

occipital locations. Topographic analysis confirmed that effects for the 398ms

and 698ms SOAs were driven by partially non-overlapping sets of neural gener-

ators, with additional activation at posterior locations in the right hemisphere

for the 698ms SOA. To facilitate comparison of the positive going priming effects

across SOA, the much longer lasting effect for the 698ms SOA (-100-500ms) was
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Figure 7.15: Priming topographic summary 698ms SOA. Topographic maps summarise
differences between the unprimed and primed conditions for hits and correct rejections for
the 698ms SOA.

split into two consecutive time windows (-100-250ms, 250ms-500ms) to allow di-

rect comparison of this effect across SOAs. Comparison of these effects revealed

the presence of larger effects over right-frontal locations for the 698ms SOA and

larger effects over medial and superior sites at parietal and parieto-occipital loca-

tions for the 398ms SOA. Topographic analysis confirmed that these differences

reflected a genuine change in distribution, with a more anterior right-sided focus

for the 698ms SOA. For the late negativity, comparison across SOAs demonstrated

the presence of larger effects for hits at the 698ms SOA, with more widespread

effects over the right hemisphere at medial sites across locations. Priming effects

for correct rejections are also larger for the 698ms SOA, with the greatest dif-

ferences between SOAs over superior sites at posterior locations. Topographic

analysis confirmed that priming effects for hits and correct rejections were driven

by partially non-overlapping neural generators.
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7.4.5 Memory 398ms SOA

Figures 7.16 and 7.17 show grand average ERPs time locked to the onset of the

prime for hits and correct rejections, displayed separately for the unprimed and

primed conditions. Visual inspection of the grand average waveforms shows that

ERPs elicited in the unprimed condition were more positive going for hits than for

correct rejections between 300-500ms and 500-800ms, with the greatest differences

at anterior locations, and additional activity over left-parietal locations between

500-800ms. By contrast, waveforms in the primed condition were more positive

going for hits than for correct rejections, but old/new effects exhibited a left-

parietal focus between 300-500ms and a right-frontal focus between 500-800ms.

For memory contrasts the data were analysed over -250-150ms, 300-500ms and

500-800ms time windows. While early old/new differences were not evident in

the data for the 398ms SOA, this time window was included in the first stage of

analysis for consistency.

The first level of analysis was designed to identify variations in old/new ef-

fects across conditions and time windows. Due to the presence of old/new ef-

fects with mid-frontal, left parietal and right frontal distributions, the data were

submitted to ANOVA with the factors of test status (old, new), condition (un-

primed, primed), location (F, FC, C, CP, P, PO), laterality (left: medial, mid-

line, right: medial) and time window (-250-150ms, 300-500ms, 500-800ms), to

capture all memory effects. Results revealed a significant main effect of test

status [F (1,31)=11.25, p=0.002], and a significant five-way interaction between

test status, condition, location, laterality and time window [F (4.9,151.5)=5.16,

p<0.001]. The presence of this significant interaction provides strong evidence of
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Figure 7.16: Memory effects for unprimed words 398ms SOA. Grand average ERPs
for hits and correct rejections in the unprimed condition. Waveforms were more positive
going for hits than for correct rejections between 300-500 and 500-800ms, with the greatest
differences over anterior locations, and additional activity over left-parietal locations evident
between 500-800ms.
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Figure 7.17: Memory effects for primed words 398ms SOA. Grand average ERPs for
hits and correct rejections in the primed condition. Waveforms were slightly more positive
going for hits than for correct rejections at left-parietal locations between 300-500ms and
right-frontal locations between 500-800ms.
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variation in the pattern of old/new effects across conditions, locations and time

windows.

Table 7.12: Memory ANOVAs by time window. Results of ANOVAs with the factors of
condition, test status, location and laterality for the three time windows chosen for analysis
of old/new effects.

-250-150ms 300-500ms 500-800ms

Test status - F (1,31)=23.12, p<0.001 F (1,31)=16.84, p<0.001

Test status*Cond*Loc*Lat - F (3.4,106.2)=12.14, p<0.001 F (3.8,118.1)=9.60, p<0.001

To further elucidate the pattern of memory related activity, a second level of

analysis was performed separately on the data from each time window, using

ANOVA with the factors test status (old, new), condition (unprimed, primed),

location (F, FC, C, CP, P, PO) and laterality (left, midline, right). The results

of this analysis are summarised in Table 7.12, and demonstrate that old/new

effects were not present in the first time window, but were present in the later

two windows and interacted with the factors of condition, location and laterality,

suggesting variation in the pattern of old/new effects across conditions for each

time window. Subsidiary analyses were performed on the average activity over

three electrodes sites for four regions of interest: left-frontal (LF: F1, F3, F5),

right-frontal (RF: F2, F4, F6), left-parietal (LP: P1, P3, P5) and right-parietal

(RP: P2, P4, P6). The analysis took the form of contrasts between hits and

correct rejections performed separately for each condition, using ANOVA with

the factors of test status (old, new), location (frontal, parietal), hemisphere (left,

right) and electrode (inferior, mid, superior); the results for each time window

are reported separately in the following sections.
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7.4.5.1 Time window 300 to 500ms

Between 300-500ms, waveforms for unprimed hits were more positive going than

for unprimed correct rejections at frontal and central locations, with a slight

skew over the left hemisphere. By contrast, waveforms for primed hits were more

positive going than for primed correct rejections at left-parietal locations (see

Figure 7.18 for data). Inspection of the data suggests that old/new differences

onset earlier than 300ms for the primed condition, but to maintain consistency

across experiments initial analysis will focus on the 300-500ms time window, be-

fore going on to identify the exact onset time of left-parietal effects for the primed

condition. Initial analysis for the unprimed condition revealed a significant main

effect of test status [F (1,31)=5.28, p=0.029], but no significant interactions in-

cluding the factor of test status, reflecting the presence of a slight but widespread

positivity for hits across locations. Further examination of the data confirmed

that old/new effects for the unprimed condition were maximal at electrode C3

(t(31)=2.44, p=0.020).

Initial analysis for the primed condition revealed a significant main effect of test

status [F (1,31)=14.99, p=0.001], and a significant interaction between test sta-

tus, location and hemisphere [F (1,31)=5.38, p=0.027], reflecting the presence

of an old/new difference at posterior locations in the left hemisphere. Sub-

sidiary analysis at frontal locations revealed a significant main effect of test status

[F (1,31)=9.16, p=0.005], but no interactions including the factor of test status,

indicating a slight positivity for hits over frontal sites. Analysis at parietal loca-

tions revealed a significant main effect of test status [F (1,31)=14.68, p=0.001],

and a significant interaction between test status and hemisphere [F (1,31)=6.13,

p=0.019], confirming the presence of old/new effects for the primed condition
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Figure 7.18: Memory (300-500ms). Grand average ERPs for hits and correct rejections
in the unprimed condition at electrode C3 and primed condition at electrode P3. Topo-
graphic maps show the difference between the hits and correct rejections for both conditions.
Waveforms for the unprimed condition displayed a slight positivity for hits over frontal and
central locations, with a slight skew over the left hemisphere. Waveforms for the primed
condition displayed the presence of an old/new difference at left-parietal locations.

with a left-parietal distribution. Follow up analysis on the data from parietal

sites collapsed across electrodes supported this pattern of results, demonstrat-

ing the presence of larger effects over the left hemisphere (t(31)=2.48, p=0.019).

Consistent with this pattern of results, further examination of the data confirmed

that old/new effects for the primed condition were maximal at electrode CP3

(t(31)=4.29, p<0.001). While analysis so far has employed standard windows

for identification of familiarity and recollection; inspection of the waveforms for

the primed condition suggests that old/new differences are present at left-parietal

locations earlier than 300ms after target onset.
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Figure 7.19: Topographic maps 0-700ms. Topographic maps showing the difference
between the hits and correct rejections for both conditions between 0-700ms after target
onset, split into the 100ms time bins that were used to establish the onset time of left-
parietal old/new effects in the primed condition.

To establish a more precise onset time for the left-parietal old/new effect in the

primed condition; the data were first split into six consecutive 100ms time bins

starting from target onset. As can be seen in the topographic maps in Figure

7.19, data for the primed condition appears to exhibit a positivity for hits over

left-parietal sites from as early as target onset. To demonstrate the presence of

early onsetting LP effects, t-tests were performed contrasting activity for hits and

correct rejections at electrode P3, for each time bin from 0-700ms. Onset time

in this case was defined as the first window of three consecutive windows demon-

strating the presence of significant differences between hits and correct rejections.

Results confirmed a difference between hits and correct rejections for the primed

condition emerging between 0-100ms after target onset (t(31)=2.98, p=0.006).

Old/new effects for the unprimed did not exhibit a strong left-parietal distribu-

tion, appearing more centrally distributed. Analysis contrasting hits and correct

rejections for the unprimed condition at electrode P3 confirmed that old/new

differences for the unprimed condition did not emerge until between 500-600ms
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after target onset (t(31)=4.78, p<0.001) on the outer edges of old/new effects

present during this time window for the unprimed condition.

In summary, analysis for the unprimed condition demonstrated the presence of a

slight positivity for hits across locations, that was maximal over medial central

sites. Initial analysis for the primed condition confirmed the presence of old/new

differences with a left-parietal distribution between 300-500ms. Further exami-

nation of the data demonstrated that significant old/new differences were present

at left-parietal sites from target onset, evidencing the presence of very early on-

setting left-parietal old/new effects for the primed condition that continued into

the 300-500ms time window.

7.4.5.2 Time window 500 to 800ms

Between 500-800ms, waveforms for unprimed hits were more positive going than

waveforms for unprimed correct rejections at mid-frontal locations, with addi-

tional activity apparent over left-parietal locations. Primed waveforms were more

positive going for hits than for correct rejections over right-frontal and left-parietal

locations (see Figure 7.20). Initial analysis for the unprimed condition revealed a

significant main effect of test status [F (1,31)=15.87, p<0.001], and a significant

interaction between test status and electrode [F (1.2,35.7)=5.12, p=0.026]. De-

spite failure to identify interactions including the factor of location, inspection

of the data suggests the presence of mid-frontal activity combined with a spread

over left-parietal locations. Subsidiary analysis at frontal locations revealed a

main effect of test status [F (1,31)=11.98, p=0.02], and a significant interaction

between test status and electrode [F (1.1,34.1)=4.22, p=0.044], indicating larger

effects over superior sites at frontal locations. Analysis at parietal locations re-
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Figure 7.20: Memory (500-800ms). Grand average ERPs for hits and correct rejections
in the unprimed and primed conditions at representative electrodes. Topographic maps show
the difference between the hits and correct rejections for both conditions. Waveforms for
unprimed hits were more positive going than for unprimed correct rejections at mid-frontal
locations, with additional activity apparent over left-parietal locations. Primed waveforms
were more positive going for hits than for correct rejections over right-frontal and left-
parietal locations.

vealed a main effect of test status [F (1,31)=14.13, p=0.001], but no interactions

including the factor of test status, indicating the presence of a slight positivity for

hits across parietal locations. Consistent with the apparent frontal distribution of

this effect, further examination of the data confirmed that old/new effects for the

unprimed condition were maximal at electrode FCz (t(31)=3.48, p=0.002).

Initial analysis for the primed condition produced a significant main effect of test

status [F (1,31)=6.18, p=0.019], and a significant interaction between test status,

location, hemisphere and electrode [F (1.6,50.8)=7.18, p=0.003], reflecting the
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continuation of left-parietal old/new effects for the 300-500ms time window, ac-

companied by additional activation at right-frontal locations. Subsidiary analysis

at frontal locations revealed a significant main effect of test status [F (1,31)=9.02,

p=0.005], and an interaction between test status and hemisphere [F (1,31)=11.88,

p=0.002], indicating larger effects over the right hemisphere at frontal sites. Anal-

ysis at parietal locations revealed interactions between test status and hemi-

sphere [F (1,31)=8.48, p=0.07], and test status and electrode [F (1.1,34.4)=5.83,

p=0.019], indicating the presence of a slight positivity over medial sites at pari-

etal locations in both hemispheres, but that is greater in magnitude over the

left hemisphere. Consistent with the apparent right-frontal distribution, further

examination of the data confirmed that old/new effects for the primed condition

were maximal at electrode F4 (t(31)=3.74, p=0.001).

Magnitude analysis was performed on subtraction data to compare old/new ef-

fects for the primed and unprimed conditions, using ANOVA with the factors of

condition (unprimed, primed), location (frontal, parietal), hemisphere (left, right)

and electrode (inferior, mid, superior). Results revealed significant interactions

between condition and electrode [F (1.2,37.6)=9.25, p=0.003], and condition, lo-

cation and hemisphere [F (1,31)=9.53, p=0.004]. Subsidiary analysis at frontal lo-

cations revealed an interaction between condition and hemisphere [F (1,31)=6.86,

p=0.014], and analysis at parietal locations produced a significant interaction be-

tween condition and electrode [F (1.1,35.5)=7.95, p=0.006]. As can be seen in

Figure 7.20, these results suggest a difference in distribution at frontal sites, with

old/new effects exhibiting a more right-sided focus in the primed condition. To-

pographic analysis contrasting the distribution of old/new effects revealed signif-

icant interactions between condition and electrode [F (1.2,37.6)=9.52, p=0.002],

and condition, location and hemisphere [F (1,31)=6.43, p=0.016], confirmed that
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memory effects evident between 500-800ms were supported by non-overlapping

sets of neural generators. In summary, waveforms for hits were more positive

going than waveforms for correct rejections in both conditions, but differed in

distribution, with a focus over mid-frontal locations for the unprimed condition

and over right-frontal locations for the primed condition.

7.4.5.3 Topographic analysis

The foregoing results suggest changes in the pattern of activity over time for the

primed condition, with old/new effects exhibiting a left-parietal distribution be-

tween 300-500ms and a right-frontal distribution between 500-800ms. The next

level of analysis was designed to contrast the distribution of old/new effects for

the unprimed and primed conditions across time windows. Analysis was per-

formed separately for each condition on rescaled data, using ANOVA with the

factors of time window (300-500ms, 500-800ms), location (frontal, parietal), hemi-

sphere (left, right) and electrode (inferior, mid, superior). Analysis contrasting

the distribution of effects for the unprimed condition revealed no main effect or

interactions including the factor of time window, indicating that old/new differ-

ences present between 300-500ms reflect the onset of mid-frontal differences that
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Figure 7.21: Memory over time 398ms SOA. Topographic maps show the difference
between hits and correct rejections in the unprimed and primed conditions for the 398ms
SOA. Old/new differences for the primed condition exhibited a shift over time from a left-
parietal to a right-frontal distribution, but no substantial changes in the distribution were
apparent for the unprimed condition.
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become more evident during the 500-800ms time window and are driven by the

same underlying neural generators. Analysis contrasting the distribution of ef-

fects over time for the primed condition revealed a significant interaction between

time window and electrode [F (1.2,36.5)=5.82, p=0.017], confirming that effects

for the primed condition were driven by partially non-overlapping sets of neural

generators.

7.4.6 Memory 698ms SOA

Figures 7.22 and 7.23 show grand average ERPs time locked to the onset of the

prime for hits and correct rejections, displayed separately for the unprimed and

primed conditions. Visual inspection of the grand average waveforms shows that

ERPs elicited in the unprimed condition were only more positive going for hits

than for correct rejections between 300-500ms and 500-800ms, with the greatest

differences at mid-frontal locations. Waveforms for the primed condition were

more positive going for hits than for correct rejections from 250ms prior to tar-

get onset and between 300-500ms and 500-800ms. Effects were focused over

fronto-polar and frontal locations from 250ms prior to target onset, over mid-

frontal locations between 300-500ms, and over right-frontal locations between

500-800ms.

The first level of analysis on the data was designed to identify variations in

old/new effects across conditions and time windows, employing ANOVA with

the factors of test status (old, new), condition (unprimed, primed), location

(F, FC, C, CP, P, PO), laterality (left: medial, midline, right: medial) and

time window (-250-150ms, 300-500ms, 500-800ms). Results revealed a significant

main effect of test status [F (1,31)=13.31, p=0.001], and a significant five-way
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Figure 7.22: Memory effects for unprimed words 698ms SOA. Grand average ERPs for
hits and correct rejections in the unprimed condition.Waveforms were more positive going
for hits than for correct rejections between 300-500ms and 500-800ms, with the greatest
differences at mid-frontal locations in both time windows.
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Figure 7.23: Memory effects for Primed words 698ms SOA. Grand average ERPs for
hits and correct rejections in the primed condition. Waveforms for the primed condition were
more positive going for hits than for correct rejections between -250-150ms, 300-500ms and
500-800ms. Old/new effects were focused over fronto-polar and frontal locations between
-250-150ms, over mid-frontal locations between 300-500ms, and over right-frontal locations
between 500-800ms
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interaction between test status, condition, location, laterality and time window

[F (4.4,135.1)=3.33, p=0.010]. The presence of this significant interaction pro-

vides strong evidence of variation in the pattern of old/new effects between con-

ditions and across time windows. To elucidate the pattern of memory effects,

a second level of analysis was performed separately on the data from each time

window, using ANOVA with the factors of test status (old, new), condition (un-

primed, primed), Location (F, FC, C, CP, P, PO) and laterality (left, midline,

right). The results of this analysis are summarised in table 7.13, and demonstrate

that old/new effects were present in all three time windows and suggest variation

in the pattern of memory effects across conditions for each time window.

Table 7.13: Memory ANOVAs by time window. Results of ANOVAs with the factors
of condition, test status and location and laterality for the three time windows chosen for
analysis of old/new effects.

-250-150ms 300-500ms 500-800ms

Test status F (1,31)=8.18, p=0.008 F (1,31)=13.18, p=0.001 F (1,31)=14.70, p=0.001

Test*Cond*Loc*Lat F (2.7,83.6)=2.90, p=0.045 F (3.8,118.1)=4.06, p=0.005 F (4.5,138.5)=5.38, p<0.001

Subsidiary analyses were performed on the average activity over three electrodes

sites for four regions of interest: left-frontal (LF: F1, F3, F5), right-frontal (RF:

F2, F4, F6), left-parietal (LP: P1, P3, P5) and right-parietal (RP: P2, P4, P6).

The analysis took the form of contrasts between hits and correct rejections per-

formed separately for each condition, using ANOVA with the factors of test status

(old, new), location (frontal, parietal), hemisphere (left, right) and electrode (in-

ferior, mid, superior); the results for each time window are reported separately

in the following sections.
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7.4.6.1 Time window -250 to 150ms

From 250ms prior to target onset, waveforms in the primed condition were more

positive going for hits than for correct rejections over fronto-polar and frontal

locations, but there was no evidence of old/new differences during the pre-target

period for the unprimed condition (see Figure 7.24 for data from Fz). Impor-

tantly, initial analysis for the unprimed condition revealed a significant interac-

tion between test status and location [F (1,31)=6.51, p=0.016], but subsidiary

analysis at frontal and parietal locations failed to reveal main effects or inter-

actions including the factor of test status, confirming the absence of substantial

old/new differences for the unprimed condition during this time window. Initial

analysis for the primed condition revealed a significant main effect of test sta-

tus [F (1,31)=19.04, p<0.001], along with a significant interaction between test

status and electrode [F (1.1,32.8)=6.43, p=0.015], and a marginally significant in-

teraction between test status, location and electrode [F (1.2,36.6)=3.70, p=0.056],

reflecting the presence of a positivity for hits that is maximal over superior sites

at frontal locations.

For the primed condition, subsidiary analysis at frontal locations revealed a sig-

nificant main effect of test status [F (1,31)=18.04, p<0.001], and a significant

interaction between test status and electrode [F (1.1,33.9)=8.80, p=0.005], con-

firming the presence of a positivity for hits over superior sites at frontal locations.

Analysis at parietal locations revealed a significant main effect of test status

[F (1,31)=7.54, p=0.010], but no interactions including the factor of test status,

indicating a slight positivity for hits across parietal sites. Further examination of

the data confirmed that old/new effects for the primed condition were maximal

at electrode F1 (t(31)=3.95, p<0.001). Due to absence of old/new effects for the
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Figure 7.24: Memory @ Fz (-250-150ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at representative electrodes. Topographic
maps show the difference between the hits and correct rejections for both conditions. Wave-
forms for primed hits were more positive going than waveforms for primed correct rejections
over frontal sites, but there was no evidence of substantial old/new differences in the un-
primed condition between -250-150ms.

unprimed condition it was not necessary to perform comparisons of magnitude

across conditions. In summary, analysis for the unprimed condition confirmed

the absence of early onsetting pre-target old/new differences. By contrast, anal-

ysis for the primed condition clearly demonstrated the presence old/new effect at

frontal locations, onsetting 250ms prior to target onset (450ms post-prime) and

continuing into the post-target period.
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7.4.6.2 Time window 300 to 500ms

Between 300-500ms, waveforms for primed and unprimed hits were more positive

going than for correct rejections at mid frontal locations (see Figure 7.25 for the

data from FCz). Initial analysis for the unprimed condition revealed a significant

main effect of test status [F (1,31)=11.28, p=0.002], and a significant interaction

between test status, location and electrode [F (1.3,38.8)=4.86, p=0.026], reflect-

ing the presence of a positivity for hits that is maximal towards superior sites at

frontal locations. Subsidiary analysis at frontal locations revealed a significant

main effect of test status [F (1,31)=9.14, p=0.005], along with a significant inter-

action between test status and electrode [F (1.1,35.4)=8.44, p=0.005], reflecting

the presence of an old/new effect that is maximal towards superior sites at frontal

locations. Analysis at parietal locations revealed a significant main effect of test

status [F (1,31)=6.35, p=0.017, but no interactions including the factor of test

status, indicating the presence of a slight positivity for hits across sites at parietal

locations. Further examination of the data confirmed that old/new effects for the

unprimed condition were maximal at electrode FC1 (t(31)=3.83, p=0.001).

Initial analysis for the primed condition also revealed a significant main effect of

test status [F (1,31)=7.68, p=0.009], and a significant interaction between test

status, location and electrode [F (1.2,37,5)=10.66, p=0.001], again reflecting the

presence of a positivity for hits that is maximal towards superior sites at frontal

locations. Subsidiary analysis at frontal locations revealed a significant main

effect of test status [F (1,31)=10.36, p=0.003], and a significant interaction be-

tween test status and electrode [F (1.1,34.8)=13.14, p=0.001], demonstrating the

presence of an old/new effect maximal over superior sites at frontal locations.

Analysis a parietal locations revealed no main effect or interactions including the
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Figure 7.25: Memory @ FCz (300-500ms). Grand average ERPs for hits and correct
rejections in the unprimed and primed conditions at electrode FCz. Topographic maps show
the difference between hits and correct rejections for both conditions. Mid-frontal old/new
effects were evident for both conditions during the 300-500ms time window, and appeared
similar in magnitude and distribution across conditions.

factor of test status, confirming the absence of old/new effects at parietal loca-

tions. Further examination of the data confirmed that old/new effects for the

primed condition were maximal at electrode FC2 (t(31)=3.28, p=0.003).

Magnitude analysis was performed on subtraction data to compare the amplitude

of old/new effects for the primed and unprimed conditions, using ANOVA with

the factors of condition (unprimed, primed), location (frontal, parietal), hemi-

sphere (left, right) and electrode (inferior, mid, superior). Results revealed no

main effect or interactions including the factor of condition, indicating that mem-

ory effects for the unprimed and primed conditions did not differ substantially in
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magnitude or distribution between 300-500ms. In summary, between 300-500ms

mid-frontal old/new effects were evident in both conditions and did not differ in

magnitude or distribution, demonstrating that FN400 signals were unaffected by

the priming manipulation.

7.4.6.3 Time window 500 to 800ms

Between 500-800ms, waveforms in the unprimed condition were more positive

going for hits than for correct rejections at mid-frontal locations. By contrast,

old/new effects evident for the primed condition exhibited a right-frontal focus

(see Figure 7.26 for data). Initial analysis for the unprimed condition revealed

a significant main effect of test status [F (1,31)=14.33, p=0.001], and a signif-

icant interaction between test status location and electrode [F (1.1,35.7)=4.05,

p=0.047], reflecting the presence of a positivity for hits that is larger over supe-

rior sites at mid-frontal locations. Subsidiary analysis at frontal locations revealed

a significant main effect of condition [F (1,31)=9.05, p=0.005], and a significant

interaction between test status and electrode [F (1.1,35.2)=10.66, p=0.002], indi-

cating the continuation and strengthening of old/new differences at superior mid-

frontal locations. Analysis at parietal locations revealed a significant main effect

of test status [F (1,31)=15.35, p<0.001], and a significant interaction between

test status and electrode [F (1.1,34.5)=5.65, p=0.020], reflecting the presence of a

slight positivity for hits over superior sites in both hemispheres. Further exami-

nation of the data demonstrated that old/new effects for the unprimed condition

were maximal at electrode FCz (t(31)=3.63, p=0.001).

Initial analysis for the primed condition revealed significant interactions between

test status, location and hemisphere [F (1,31)=5.33, p=0.028], and test status,
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Figure 7.26: Memory (500-800ms). Grand average ERPs for hits and correct rejections
in the unprimed and primed conditions at representative electrodes. Topographic maps show
the difference between the hits and correct rejections for both conditions. Frontal old/new
effects were evident in both conditions, with a left-sided distribution for the primed condition
and a focus over superior sites for the unprimed condition.

location and electrode [F (1.2,37.9)=5.32, p=0.024], reflecting the presence of a

positivity for primed hits towards inferior sites at right-frontal locations. Sub-

sidiary analysis at frontal sites revealed a significant main effect of test status

[F (1,31)=4.66, p=0.039], along with interactions between test status and hemi-

sphere [F (1,31)=7.44, p=0.010], and test status and electrode [F (1.1,34)=4.32,

p=0.042], reflecting the presence of a presence of a positivity for hits maximal over

superior sites in the right hemisphere at frontal locations. Analysis at parietal lo-

cations revealed no main effects or interactions including the factor of test status,

confirming the absence of substantial old/new differences at parietal locations.
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Further examination of the data supported this pattern of results, demonstrating

that old/new effects for the primed condition were maximal at electrode FC2

(t(31)=2.62, p=0.013).

Magnitude analysis was performed on subtraction data to compare the amplitude

of old/new effects for the primed and unprimed conditions, using ANOVA with

the factors of condition (unprimed, primed), location (frontal, parietal), hemi-

sphere (left, right) and electrode (inferior, mid, superior). Initial analysis failed

to identify a main effect or interactions including the factor of condition. Inspec-

tion of the data strongly suggested a difference in the distribution of memory ef-

fects across conditions, so the analysis was repeated contrasting fronto-central and

parietal sites to better capture the maxima of frontal effects. Results revealed sig-

nificant interaction between condition and electrode [F (1.3,40.7)=5.61, p=0.016],

indicating a difference in distribution, with old/new effects for the unprimed con-

dition focused over superior sites and effects for the primed condition exhibiting

a skew towards medial sites in the right hemisphere. Subsidiary analysis was

performed on the rescaled data to investigate whether these differences reflected

genuine changes in distribution across conditions. Results also revealed a signif-

icant interaction between condition and electrode [F (1.3,41.2)=3.82, p=0.046],

confirming that old/new effects present for the unprimed and primed conditions

were driven by partially non-overlapping sets of neural generators.

In summary, analysis for the unprimed condition demonstrated the continuation

of mid-frontal old/new effects into the 500-800ms time window. Analysis for the

primed condition also suggested the presence of an old/new difference at frontal

sites with a focus over the right hemisphere. Topographic analysis confirmed that

old/new effects for the unprimed and primed conditions were driven by partially

non-overlapping sets of neural generators.
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7.4.6.4 Topographic analysis

The foregoing results suggest changes in the pattern of memory related activity

over time for the primed condition, with old/new effects exhibiting a mid-frontal

distribution between 300-500ms, followed by a right-frontal distribution between

500-800ms. The next level of analysis was designed to contrast the distribution

of old/new effects for the unprimed and primed conditions across time windows.

Analysis was performed separately for each condition and time window contrast,

using ANOVA with the factors of time window (window1, window2), location

(frontal, parietal), hemisphere (left, right) and electrode (inferior, mid, superior).

Analysis contrasting the distribution of memory effects between 300-500ms and

500-800ms for the unprimed condition revealed no main effect or interactions in-

cluding the factor of time window, confirming that mid-frontal old/new effects

evident in both time windows, were driven by the same underlying neural gener-

ators.
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Figure 7.27: Memory over time 698ms SOA. Topographic maps show the difference
between hits and correct rejections in the unprimed and primed conditions for the 698ms
SOA. Old/new differences for the primed condition exhibited a shift over time from a mid-
frontal to a right-frontal distribution, but no substantial changes in the distribution were
apparent for the unprimed condition.

Analysis contrasting old/new effects evident between -250-150ms and 300-500ms

for the primed condition revealed a significant interaction between time window,

location, hemisphere and electrode [F (1.4,42.9)=4.68, p=0.025], suggesting that
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effects were driven by partially non-overlapping neural generators across time

windows. As can be seen in Figure 7.27, the early positivity has a more anterior

distribution encompassing fronto-polar sites, and as a result the previous analysis

may have failed to adequately capture this early anterior effect. More focused

analysis was performed contrasting three strings of frontal electrodes (fronto-

polar: FP1, FPz, FP2; frontal: F1, Fz, F2; fronto-central: FC1, FCz, FC2),

using ANOVA with the factors of time window (-250-150ms, 300-500ms), loca-

tion (fronto-polar, frontal, fronto-central) and electrode (left, mid, right). Results

revealed no main effect or interactions including the factor of time window, in-

dicating that mid-frontal effects in both time windows were driven by the same

underlying neural generators. Contrasting old/new effects for the primed condi-

tion between 300-500ms and 500-800ms revealed a significant interaction between

time window, hemisphere and electrode [F (1,31)=8.37, p=0.004], demonstrating

that the mid-frontal old/new effect between 300-500ms and the later right-frontal

effect between 500-800ms were driven by at least partially non-overlapping sets

of neural generators.

7.4.7 SOA comparisons

The next stage of analysis sought to compare the magnitude and distribution

of priming effects reported in the previous sections across SOAs for each time

window. Contrasts took the form of within condition comparisons across SOAs

for the 300-500ms and 500-800ms time windows. Results of magnitude and to-

pographic analyses on the data across SOA for each time window are reported

separately in the following sections.
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7.4.7.1 300-500ms

Between 300-500ms, unprimed hits were more positive going than unprimed cor-

rect rejections over frontal and central locations for both SOAs. Data for the

primed condition demonstrated a difference in distribution across SOA, with a

left-parietal old/new difference evident for the 398ms SOA, in contrast to a mid-

frontal old/new difference for the 698ms SOA (see Figure 7.28 for topographic

maps). Analysis contrasting the magnitude of memory effects across SOAs for

the unprimed condition, using ANOVA with the factors of SOA (398ms, 698ms),

location (frontal, parietal), hemisphere (left, right) and electrode (inferior, mid,

superior), revealed no significant main effect or interactions including the factor

of SOA, indicating that old/new effects did not differ in magnitude or distribution

across SOAs.
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Figure 7.28: Memory effects (300-500ms). Topographic maps show the difference
between unprimed and primed hits and correct rejections. Old/new effects in the unprimed
condition were present over frontal and central locations across SOAs. Old/new effects in
the primed condition demonstrated a difference in distribution across SOAs, with a left-
parietal focus for the 398ms SOA, and a mid-frontal focus for the 698ms SOA.

Contrasting the magnitude of memory effects across SOAs for the primed con-

dition revealed a significant interaction between SOA, location and hemisphere

[F (1,31)=6.36, p=0.017], reflecting the presence of stronger old/new effects at

frontal sites with a slight skew over the right hemisphere for the 698ms SOA,

and stronger effects over left-parietal locations for the 398ms SOA. To inves-
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tigate whether these differences reflect a genuine change in topography across

SOAs analysis was performed on rescaled data, using ANOVA with the factors

of SOA (398ms,698ms), location (frontal, parietal) and electrode (inferior, mid,

superior). Results also revealed a significant interaction between SOA, location

and hemisphere [F (1,31)=5.89, p=0.021], confirming that old/new effects for the

primed condition varied as a function of SOA and were driven by partially non-

overlapping sets of neural generators.

7.4.7.2 500-800ms

Between 500-800ms, old/new differences appeared similar in magnitude and dis-

tribution across SOAs, with mid-frontal effects evident for the unprimed condi-

tion and right-frontal effects evident for the primed condition (see Figure 7.29 for

topographic maps).
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Figure 7.29: Memory effects (500-800ms). Topographic maps show the difference
between unprimed and primed hits and correct rejections at each SOA. Old/new differences
appeared similar in magnitude and distribution across SOAs, with mid-frontal effects evident
for the unprimed condition and right-frontal effects evident for the primed condition

Analysis contrasting the magnitude of effects across SOAs for the unprimed con-

dition revealed no significant main effect or interactions including the factor of

SOA, confirming that mid-frontal memory effects did not differ in magnitude or

distribution across SOAs. Contrasting memory effects for the primed condition
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across SOAs revealed no significant main effect or interactions, confirming that

right-frontal effects did not differ in magnitude or distribution across SOAs.

7.4.8 Summary

For the 398ms SOA, the data demonstrated the presence of old/new differences

between 300-500ms and 500-800ms in both conditions. Analysis for the unprimed

condition demonstrated the presence of a slight positivity for hits across locations,

that was maximal over medial central sites between 300-500ms, followed by a mid-

frontal positivity between 500-800ms. Contrasting these early and late effects for

the unprimed condition demonstrated the absence of differences in magnitude

or distribution across time windows, suggesting that the 300-500ms time win-

dow captures the onset of mid-frontal effects evident during the 500-800ms time

window. Analysis for the primed condition confirmed the presence of old/new

differences with a left-parietal distribution between 300-500ms, followed by dif-

ferences over right-frontal locations between 500-800ms. Further examination of

the data demonstrated that significant old/new differences were present at left-

parietal sites from target onset in the primed condition, and continued into the

300-500ms time window. Contrasting effects for the 300-500ms and 500-800ms

time windows for the primed condition confirmed that old/new effects differed in

distribution, with a focus over left-parietal locations between 300-500ms, and over

right-frontal locations between 500-800ms. Comparison of memory effects across

conditions for each time window identified the presence of a difference in the

magnitude and distribution of effects in the 500-800ms time window, confirming

that effects were driven by non-overlapping sets of neural generators.
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Figure 7.30: Memory topographic summary 398ms SOA. Topographic maps sum-
marise differences between hits and correct rejections for the unprimed and primed condi-
tions over time.

For the 698ms SOA the data demonstrated the presence of old/new differences for

the unprimed condition between 300-500ms and 500-800ms, with a mid-frontal

distribution in both windows. Contrasting these early and late memory effects

for the unprimed condition failed to reveal differences in magnitude or distribu-

tion over time, confirming that effects in the 500-800ms time window reflected

a continuation of mid-frontal effects evident between 300-500ms. Analysis for

the primed condition demonstrated the presence of three memory related effects,

starting with an additional pre-target positivity for hits at frontal sites, onsetting

250ms prior to target words and continuing into the post-target period. This

early memory effect was followed by a mid-frontal positivity between 300-500ms

and then a right-frontal positivity between 500-800ms.

Contrasting effects for the primed condition over time failed to reveal differences

in the magnitude or distribution during the -250-150ms and 300-500ms time win-

dows, but did confirm differences for the 300-500ms and 500-800ms time windows,

demonstrating that mid-frontal old/new effects between 300-500ms and right-

frontal effect between 500-800ms were driven partially non-overlapping sets of
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Figure 7.31: Memory topographic summary 698ms SOA. Topographic maps sum-
marise differences between hits and correct rejections for the unprimed and primed condi-
tions over time.

neural generators. Comparison of memory effects across conditions for each time

window demonstrated no difference in magnitude or distribution of mid-frontal

effects during the 300-500ms time window, but did reveal a between condition

difference in the later window, confirming mid-frontal effects in the unprimed con-

dition and right-frontal effects in the primed condition were driven by partially

non-overlapping sets of neural generators.

Comparison across SOAs demonstrated no difference in the magnitude or dis-

tribution of old/new effects for the unprimed condition between 300-500ms or

500-800ms, exhibiting a largely mid-frontal distribution across SOAs and time

windows. Comparison across SOAs for the primed condition confirmed the ab-

sence of differences in magnitude or distribution of right-frontal effects evident

during the 500-800ms time window, but did reveal a difference in the magnitude

and distribution of old/new effects evident between 300-500ms. Analysis demon-

strated the presence of stronger old/new effects at frontal sites with a slight skew

over the right hemisphere for the 698ms SOA, in contrast to larger effects over left-

parietal locations for the 398ms SOA. Topographic analysis confirmed that these
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differences reflected a genuine change in the distribution of memory effects as a

function of SOA. These findings demonstrate a difference in process engagement

across SOAs during the 300-500ms time window, with left-parietal effects previ-

ously associated with recollection evident for the 398ms SOA, and mid-frontal

differences previously linked to familiarity evident for the 698ms SOA.

7.5 Discussion

The main aim of the current experiment was to investigate mechanisms driving

the absence of FN400 old/new effects reported in the first data chapter, in an

attempt to identify factors that determine whether retrieval will be implicit or

explicit. In addition, we sought to investigate N400 effects observed in the first

experiment, in an attempt to delineate lexical and post-lexical interpretations

of the observed outcome. Response time data demonstrated faster responses

for primed words across SOAs, with larger effects overall for the 698ms SOA.

Despite significantly larger facilitation effects on response times for the 698ms

SOA, the SOA manipulation did not directly influence the pattern of memory

performance. However, in contrast to the previous experiments, the behavioural

data demonstrated a slight increase in false alarm rates and a slightly more liberal

response bias for the primed condition, resulting in poorer discrimination for

primed words. The Remember/Know data also demonstrated a slight increase

in the raw proportion of R and K false alarms for the primed condition, but

analysis on corrected estimates of familiarity and recollection failed to support

this result. These findings suggest that while the SOA manipulation did not

produce measurable changes in behavioural performance, beyond the expected

increase in facilitation on response times, inclusion of the longer SOA appears to
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have driven a change in retrieval processing. The ERP results are illuminating

in this respect, and as such, we will return to this issue in more detail after

discussion of the ERP data.

Contrasting ERPs for primed and unprimed words shown with the standard SOA

revealed the presence of three priming related modulations; an early central neg-

ativity (-50-150ms) that was only evident for correct rejections, followed by a

centro-parietal positivity (250-500ms) for primed hits and corrects rejections, and

a later (500-1100ms) negativity over posterior locations for primed hits and cor-

rect rejections. In short, the data displayed a very similar pattern of priming

effects to those observed in the first experiment: N400 effects did not differ sub-

stantially in magnitude or distribution, and the late negativity was again mod-

ulated by study exposure, being larger in magnitude for hits than for correct

rejections. Contrasting ERPs for primed and unprimed words shown with the

longer SOA again revealed the presence of three priming related modulations: an

early central negativity (-350 to 150ms) that was only significant for correct rejec-

tions, followed by long lasting centro-parietal positivity (-100-500ms) for primed

hits and correct rejections that did not differ in magnitude or distribution, and a

later negativity (500-1100ms) over posterior locations for primed hits and correct

rejections, that was again larger in magnitude for hits. In essence, the most no-

table difference in priming effects across SOAs was the apparent modulation of the

N400, which onset earlier and was longer in duration for the 698ms SOA.

Comparison of N400 effects across SOAs over the 250-500ms time window, where

the effect was observed for the standard SOA, revealed that the N400 had a more

anterior distribution for the longer SOA. In a recent study, Eddy and Holcomb

(2010) manipulated prime-target SOA in a semantic categorization task using

pictures, and found that increasing the SOA between prime-target pairings did
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not modulate the size of N400 effects, but did result in a more anterior focus at

longer SOAs. On this basis, the authors concluded that increasing SOA duration

does not encourage in-depth high level processing of the prime to occur. However,

the longest duration used was 470ms, which is substantially shorter than the

SOA employed here, and it is plausible that the use of pictures and semantic

categorization is not directly comparable to the use of words within a recognition

task, so an increase in high-level semantic processing cannot be ruled out in the

current experiment. In addition, N400 effects in the current study for the 698ms

SOA persisted for 600ms, suggesting that an increase in semantic processing of

the prime may be indexed by an increase in the duration of the N400 rather than

by differences in amplitude in this case.

For memory effects, contrasting ERPs for unprimed hits and correct rejections at

both SOAs revealed a similar pattern of results. Old/new effects with a largely

mid-frontal distribution were present during the 300-500ms time window and

continued into the 500-800ms time window for both SOAs. Data for the primed

condition shown with the standard SOA exhibited old/new differences with a

left-parietal distribution between 300-500ms, replicating the findings from the

second experiment, followed by differences over right-frontal locations between

500-800ms. Further examination of the data demonstrated that old/new differ-

ences at left-parietal locations were evident within 100ms of target onset. For the

longer SOA, data for the primed condition demonstrated the presence of three

memory related effects, starting with an additional pre-target positivity for hits

with a fronto-polar distribution, onsetting 250ms prior to target words, and con-

tinuing into the post-target period. This early memory effect was followed by

a mid-frontal positivity between 300-500ms, and then a right-frontal positivity

between 500-800ms. In essence, the most notable differences were the presence of
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left-parietal old/new effects for the short SOA, in contrast to mid-frontal old/new

effects for the longer SOA between 300-500ms, and the presence of an additional

fronto-polar old/new effect for the longer SOA.

A number of studies have reported an early onsetting fronto-polar old/new effect,

with a similar distribution to the one found here for primed words at the longer

SOA (Curran & Dien, 2003; Diana, Vilberg & Reder, 2005; Duarte et al., 2004;

Friedman, 2004; Tsivilis, Otten & Rugg, 2001). The functional significance of

this early effect, which usually appears between 100-300ms after stimulus onset,

remains unclear. Tsivilis et al. (2001) suggested that it could reflect a priming

effect unrelated to recognition, or that it may reflect early access to informa-

tion concerning prior exposure to an item that contributes to recognition. More

recently, Diana et al. (2005) have suggested that it reflects the initiation of a

memory search. The current data appear to support the latter suggestion; the

effect onsets 450ms post-prime which falls outside time windows normally associ-

ated with priming (i.e., P150, N250, P325), and is not consistent with the normal

timing and distribution of N400 effects. Therefore, we interpret this effect as

reflecting initiation of a memory search prior to target onset as a result of the

match between study exposure and presentation of the prime, which is in turn

predictive of the upcoming target.

As noted earlier, the SOA manipulation also caused differential process engage-

ment during the 300-500ms for primed words, with left-parietal effects evident

for the shorter SOA, and mid-frontal old/new effects supporting recognition for

the longer SOA. Based on the extended N400 effect observed for the longer SOA,

it appears that an increase post-lexical semantic processing does result in famil-

iarity based retrieval, while the shorter SOA elicits less semantic elaboration and

promotes recollection. However, the first experiment demonstrated the absence
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of FN400 and left-parietal effects with an SOA of 398ms, therefore the presence of

early-onsetting left-parietal effects in the current study for the short SOA suggests

that the inclusion of the longer SOA indirectly influenced process engagement by

changing the strength of evidence available from the prime. Specifically, present-

ing short and long SOA trials randomly intermixed appears to promote direct and

automatic access to memory traces for short SOA trials, while excessive seman-

tic elaboration appears to produce interference, leading to a sense of familiarity

rather than recollection. Therefore, it could be argued that combining evidence

from lexical and post-lexical processing serves as a more effective cue for retrieval

of contextual information than post-lexical processing in isolation.

In addition to the effects discussed above, the current study revealed the pres-

ence of right-frontal old/new effects between 500-800ms for primed words at both

SOAs, that were not apparent in the data from the previous experiments. These

right-frontal old/new effects did not differ in magnitude or distribution as a func-

tion of SOA, but their presence may be illuminating in understanding the reduc-

tion in discrimination for primed words in the current study. As noted earlier

(see Chapter 3, Section 3.1.3), right-frontal old/new effects have been found in

a number of recognition memory experiments (e.g., Hayama et al., 2008; Schlo-

erscheidt & Rugg, 2004; Wilding & Rugg, 1996; Woodruff et al., 2006), but the

exact functional significance of this effect remains unclear, although most com-

monly related to monitoring the products of retrieval. For example, Wilding and

Rugg (1996) reported larger right-frontal effects for correct than for incorrect

source judgements, but right-frontal effects have also been found in the absence

of correct source judgements (Trott et al., 1999), suggesting that they are not

directly related to accuracy. In the current context, the fact that right-frontal

effects were only present for primed items suggests that they may reflect the at-
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tribution of fluency to prior exposure. As a result, the reduction in discrimination

found in the current study could be driven by additional processing related to

attribution, that was not observed in our earlier studies, potentially accounting

for the difference in findings.

7.5.1 Summary

The main aims of the current experiment were to identify factors that determine

whether retrieval will be implicit or explicit, and to investigate the processing

nature of the N400, by manipulating the prime-target SOA. The findings clearly

demonstrated that increasing the SOA modulated the N400, which onset earlier

and was longer in duration. However, randomly intermixing short and long SOA

trials had a number of unexpected consequences. The pattern of memory results

in the ERP data for the short SOA failed to replicate the findings of the first

experiment, demonstrating the presence of early onsetting left-parietal old/new

differences, and in contrast to the first two experiments, memory performance

was lower for the primed condition. Recent research has discovered that priming

is highly sensitive to context effects. For example, Taylor and Henson (2012) con-

trasted repetition and conceptual primes in intermixed blocks during a masked

priming paradigm, finding an increase in the proportion of remember responses

for studied words that were preceded by conceptual primes, but not for words pre-

ceded by repetition primes. However, the authors failed to replicate their results

when conceptual blocks were not intermixed with repetition blocks. Therefore,

it seems that one of the factors determining how retrieval will proceed is the

comparative degree of fluency between items in recognition tasks.
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8.1 Introduction

The main aim of the current study was to query the relationship between N400

priming effects and FN400 effects associated with familiarity. Recently it has

been suggested that the N400 and FN400 may be functionally equivalent (Voss &

Federmeier, 2011), and while the other experiments reported in this thesis suggest

that this view is not entirely appropriate, further manipulation of the N400 effect

would facilitate assessment of this claim more directly. In essence, the current

experiment sought to establish whether the FN400 old/new effect is impacted by

changes in the N400. Based on the findings of the previous study, we reasoned

that introducing an additional manipulation that varied the comparative degree

of priming across conditions would modulate the N400 and promote reliance on

familiarity, allowing changes in both components to be assessed simultaneously.

To achieve this goal the current study matched the design of the first experiment

but introduced a third partial prime condition, where prime items consisted of a
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repetition of the target word with the first letter removed, reducing the degree of

semantic overlap between prime and target words.

Partial-word priming is normally used to enable manipulation of the degree of

informativeness of prime words (Davis, 2003), and clear differences in the size of

priming effects on response times have been observed as a function of the specific

position of the letter that is removed. For example, Grainger and Jacobs (1993)

contrasted facilitation effects for five letter partial prime words where the first,

third or fifth letters were removed. The authors found that removing the last

letter of the prime produced greater facilitation effects than removing the first or

third letters and concluded that these results confirmed the presence of a word-

initial superiority effect (also see Humphreys, Evett & Quinlan, 1990). However,

it is also important to note that letter position effects interact with the level of

ambiguity created by removing specific letters in words, based on the number

of potential candidates for completion. For example, Hinton, Liversedge and

Underwood (1998) contrasted facilitation effects in a lexical decision task where

four letter words either had one (unambiguous) or three (ambiguous) potential

completions, finding that priming effects were larger for unambiguous than for

ambiguous words. The stimuli used in the current thesis were not prepared with

this manipulation in mind, and the intention in the current experiment was not to

elicit competition between lexical representations. Therefore, removing the first

letter was considered to be the best option for controlling effects of ambiguity

and reducing facilitation effects.

In addition to behavioural research demonstrating changes in facilitation effects

for partial primes, ERP research employing masked priming has demonstrated

that partial repetition modulates the amplitude of N400 effects, with full primes

being more positive going than partial primes, which in turn are more positive
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going than unrelated primes (Holcomb & Grainger, 2006). As noted earlier, the

absence of FN400 effects for stimuli that do not support semantic processing,

for example geometric patterns (Voss & Paller, 2009) and novel faces (MacKen-

zie & Donaldson, 2007), has opened up debate on whether FN400 effects dur-

ing recognition memory tests arise from conceptual priming, and as such should

not be considered functionally dissociable from N400 effects (Voss & Federmeier,

2011). Moreover, it has been argued that the logic applied to dissociate familiar-

ity and recollection has greatly contributed to the misattribution of the FN400

as a generic marker of pure familiarity, by identifying neural correlates of famil-

iarity on the basis of exclusion (Paller et al., 2007). In essence, neural signals

of familiarity are often identified by demonstrating that they are not influenced

by factors that influence neural signals associated with recollection, making the

link between the FN400 and familiarity indirect, and leaving open the possibil-

ity that FN400 effects could, at least in part, reflect the operation of conceptual

priming.

Based on this view, it would appear that factors that modulate N400 repetition

effects should also influence FN400 effects during recognition tests. Specifically,

manipulating the ease of semantic integration between prime and target pairings

to reduce the magnitude of N400 effects, could potentially influence the magnitude

of FN400 potentials, if both are sensitive to the degree of conceptual priming.

It is difficult to predict exactly how the relationship between N400 and FN400

potentials will unfold on the basis of the existing literature, which is reasonably

limited at this stage, but there are two logical predictions that can be made

within the context of the current masked priming paradigm. Firstly, if N400

and FN400 potentials are functionally equivalent, reductions in the N400 would

be expected to be matched by reductions in FN400 potentials. Alternatively, if
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N400 and FN400 potentials are functionally independent, then manipulating the

ease of semantic integration between prime and target pairings should modulate

N400 potentials, but leave FN400 potentials largely unaffected. The current

experiment sought to differentiate between these predictions by employing partial

primes at test to modulate N400 effects and to assess the consequences for FN400

potentials.

8.2 Methods

Stimulus materials and procedures were identical to those reported in chapter 4,

but with the addition of a partial prime condition. In the partial prime condition

the first letter of each prime word was removed to reduce the degree of semantic

overlap between prime and target words. The assignment of words to the three

conditions was again fully counterbalanced across participants. The number of

words in each test list remained 120 and included 40 trials for each condition,

across the entire experiment participants viewed 160 trials for each of the three

conditions (80 old, 80 new). Thirty-seven undergraduate psychology students

from the University of Stirling participated in the experiment. Seven participants

were excluded due to excessive EEG artefacts, resulting in insufficient ERP trials

for critical contrasts (<16 trials). The remaining thirty participants comprised of

18 females and 12 males with a mean age of 22 (range=18-35; SD=4.70).

8.3 Behavioural results

In total 75% of participants reported being unaware of the existence of the masked

prime, 13% reported that they detected flickering on the screen but were unable
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to detect any of the words, and the remaining 12% reported that they were

aware of seeing the word blank appear before the onset of the target on a few

trials, but again none of the participants reported being aware of the repetition

of the target words. Initial examination of the behavioural data as a function of

reported awareness confirmed no differences in the pattern of results for partici-

pants who reported being aware of flickering on the screen or aware of the word

blank compared to unaware participants, and as a result the data were analysed

collapsed across awareness categories. Table 8.1 shows a summary of memory

performance measures for the current experiment and suggests a slight increase

in performance for old items in the primed condition accompanied by an increase

in discrimination and bias.

Table 8.1: Memory performance. Percentage of correct responses, discrimination and
bias measures for the unprimed, part primed and primed conditions (standard error of the
mean). Data demonstrate an increase in mean accuracy and for the primed condition
compared to the unprimed and part primed conditions. Bias measures were conservative
across conditions, but were slightly less conservative for primed words.

Correct % Discrimination

Old New Pr Br

Unprimed 52.58 (2.85) 75.35 (2.78) 0.28 (0.02) 0.34 (0.04)
Part primed 51.13 (2.93) 77.11 (2.65) 0.28 (0.02) 0.32 (0.04)
Primed 56.67 (3.25) 75.12 (2.97) 0.32 (0.02) 0.37 (0.04)

Importantly, analysis confirmed that participants were able to discriminate be-

tween old and new words in all three conditions (paired t-tests comparing hits

and false alarms for the three conditions were significant [p<0.001] in all compar-

isons). Mean accuracy data were submitted to analysis using ANOVA with the

factors of condition (unprimed, part primed, primed), and test status (old, new).

Results revealed a significant main effect of condition [F (1,29)=3.47, p=0.038],

and a significant interaction between condition and test status [F (1,29)=8.63,
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p=0.001]. Subsidiary analysis confirmed that this interaction reflected an in-

crease in mean accuracy for old words in the primed condition compared to the un-

primed (t(29)=3.44, p=0.002), and part primed conditions (t(29)=3.48 p=0.002).

Discrimination scores increased slightly for the primed condition compared to

the unprimed (t(29)=2.20, p=0.036), and part primed conditions (t(29)=2.20,

p=0.036), but this did not survive correction for multiple comparisons. Response

bias was conservative across conditions, but demonstrated a slightly less conser-

vative bias in the primed compared to the part primed condition (t(29)=3.29,

p=0.003), and did not differ between the unprimed and primed conditions. Over-

all, the pattern of results demonstrate a slight increase in mean accuracy and a

slightly less conservative bias for primed compared to part primed words, but no

substantial difference in discrimination rates across conditions.

Table 8.2: Response by RK. Mean percentage of all response types split by test status
and condition (standard error of the mean). The data demonstrate a slight increase in the
raw proportion of K hits in the primed condition, and a reduction in R false alarms in the
part primed condition.

Remember Know New

Old Unprimed 28.30 (3.04) 24.28 (2.42) 47.42 (2.85)
Part primed 28.61 (3.07) 22.52 (2.30) 48.87 (2.93)
Primed 29.93 (3.67) 26.74 (2.71) 43.33 (3.25)

New Unprimed 11.06 (2.24) 13.60 (1.88) 75.35 (2.78)
Part primed 8.62 (1.88) 14.27 (2.06) 77.11 (2.65)
Primed 11.01 (2.11) 13.87 (2.09) 75.12 (2.97)

Table 8.2 shows the breakdown of responses by RK judgement for old and new

words in the unprimed, part primed and primed conditions. The data suggest

a slight increase in the raw proportion of K hits in the primed condition, and

a reduction in R false alarms in the part primed condition. ANOVA contrast-

ing RK responses including the factors of condition (unprimed, part primed,

266



Chapter 8. ERP 4

primed), test status (Hits, FAs) and response type (Remember, Know) produced

a significant main effect of condition [F (2,58)=8.78, p<0.001], along with a signif-

icant interaction between condition and test status [F (2,58)=3.65, p=0.032], and

a marginally significant interaction between condition, test status and response

type [F (2,58)=3.02, p=0.056]. Follow up t-tests demonstrated an a slight increase

in the proportion of K hits for the primed compared to the part primed condition

(t(29)=2.94, p=0.006), and a decrease in the proportion of R false alarms for

the part primed compared to the primed (t(29)=3.65, p=0.001), and unprimed

(t(29)=3.11, p=0.004) conditions.

Table 8.3: IRK estimates of recollection and familiarity. Average corrected estimates
of familiarity and recollection (standard error of the mean). The data demonstrate a re-
duction in corrected estimates of familiarity for the part primed condition, while estimates
of recollection were unaffected by the priming manipulation.

Rec. Fam.

Unprimed 0.17 (0.02) 0.18 (0.02)
Part primed 0.20 (0.02) 0.15 (0.02)
Primed 0.19 (0.03) 0.21 (0.02)

Table 8.3 shows the IRK estimates of familiarity and recollection calculated as

described in Chapter 4, and the data suggest lower levels of familiarity in the part

primed condition. ANOVA with the factors of condition (unprimed, primed) and

retrieval process (familiarity, recollection), revealed a significant main effect of

condition [F (2,58)=3.72, p=0.030], and a significant interaction between condi-

tion and retrieval process [F (2,58)=4.51, p=0.015]. Follow up t-tests confirmed

the presence of greater levels of familiarity for primed (t(29)=3.24, p=0.003), and

unprimed words (t(29)=2.23, p=0.034), compared to part primed words, but no

difference in levels of recollection across conditions. Overall, this pattern of re-

sults confirms that reported levels of recollection were unaffected by the priming
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manipulation, while levels reported familiarity were slightly higher for primed

than for part primed words.

Table 8.4: Response times (ms). Mean response time data for correct responses split
by test status (A) and the magnitude of the difference between unprimed response times
and those for the part primed and primed conditions (B) split by test status (standard
error of the mean). The data demonstrate a graded reduction in response times, with
the fastest responses in the primed condition, but no difference in magnitude for hits and
correct rejections.

(A) Old (Hits) New (CRs)

Unprimed 994.90 (35.65) 945.89 (41.83)
Part primed 971.26 (39.61) 924.03 (42.05)
Primed 926.06 (40.05) 889.93 (45.37)

(B) Old (Hits) New (CRs)

Part primed 23.65 (13.11) 21.86 (8.81)
Primed 68.84 (14.10) 55.96 (13.13)

Table 8.4 shows the response time data for hits and correct rejections in the un-

primed, part primed and primed conditions, and the magnitude of the difference

between the unprimed condition, and the part primed and primed conditions.

Response times were faster for primed and part primed words compared to un-

primed words for hits and correct rejections, with the primed condition producing

the greatest decrease in response times. ANOVA including the factors of condi-

tion (unprimed, part primed, primed) and test status (old, new) confirmed the

presence of a significant main effect of condition [F (2,58)=21.06, p<0.001], but

no interaction between condition and test status, indicating that the observed dif-

ferences in response times were comparable for hits and correct rejections.

Follow up t-tests on the mean RT data collapsed across test status revealed

faster response times for part primed (t(29)=3.00, p=0.002) and primed words

(t(29)=5.53, p<0.001) compared to unprimed words. Reaction times were also
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significantly faster for primed words compared to part primed words (t(29)=3.98,

p<0.001). While the subtraction data suggested a trend towards greater priming

for hits than for correct rejections in the primed condition (12.88 ms), ANOVA on

the difference between the unprimed and both priming conditions produced only

a main effect of condition [F (1,29)=15.84, p<0.001]. This result reflects a greater

degree of facilitation on reaction times for the primed words than for part primed

words, with no difference in the degree of priming effects within conditions for

hits and correct rejections.

8.3.1 Summary

In Summary, the accuracy data demonstrated a slight increase in mean accu-

racy for studied words in the primed condition compared with words in the part

primed and unprimed conditions, and a slightly less conservative bias for primed

compared to part primed words, but no substantial difference in discrimination

rates across conditions. Analysis of the RK data demonstrated a slight increase

in the proportion K hits in the primed compared to the part primed condition,

and a reduction in R false alarms for the part primed condition. Corrected esti-

mates of familiarity and recollection revealed an increase in levels of familiarity for

the primed compared to the part primed condition. Response time data demon-

strated a graded reduction in response times for part primed and primed words

compared to unprimed words, with the fastest responses in the primed condition,

but did not reveal differences in the magnitude of facilitation effects across hits

and correct rejections.
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8.4 ERP results

To examine priming and memory effects, grand average ERPs were formed for hits

and correct rejections in the unprimed, part primed and primed conditions. Vi-

sual inspection of the waveforms again confirmed the presence of an early priming

effect onsetting before the onset of the target words, as a result the -500-1500ms

epoch, which includes the onset of the prime, was chosen to capture all effects in

the current experiment. The mean number of trials contributing to waveforms for

hits was 37 for the unprimed condition, 36 for the part primed condition and 39

for the primed condition. The mean number of trials contributing to waveforms

for correct rejections was 54 for the unprimed and part primed conditions and 52

for the primed condition.

8.4.1 Priming contrasts

Figure 8.1 and 8.2 show grand average waveforms for hits and correct rejections

in the unprimed, part primed and primed conditions. Visual inspection of the

waveforms confirmed the presence of three priming related modulations for both

hits and correct rejections, with differences in the pattern of effects across hits

and correct rejections. For hits the data indicate the presence of an early graded

negativity between -100-150ms, with part primed hits more negative going than

primed hits, which were in turn more negative going than unprimed hits. This

early effect was followed by a graded positivity between 250-500ms, with primed

hits more positive going than part primed hits, which were in turn more posi-

tive going than unprimed hits. From around 500ms after target onset until the

end of the epoch, waveforms for hits were more negative going for primed and

part primed hits than for unprimed hits at posterior locations. The data for cor-
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Figure 8.1: Priming effects for hits. Grand average ERPs for hits in the unprimed, part
primed and primed conditions. The data demonstrated the presence of three priming related
modulations: (i) an early graded posterior negativity that was most negative for the part
primed condition (ii) a later graded posterior positivity between 250-500ms, with primed
hits more positive going than part primed hits, which were in turn more positive going
than unprimed hits (iii) and a late negativity at posterior locations between 500-1100ms
for primed and part primed hits compared to unprimed hits.
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Figure 8.2: Priming effects for CRs. Grand average ERPs for correct rejections in
the unprimed, part primed and primed conditions. The data demonstrated the presence
of three priming related modulations: (i) an early posterior negativity that was equally
more negative going for the primed and part primed conditions (ii) a later graded posterior
positivity between 250-500ms, with primed hits more positive going than part primed hits,
which were in turn more positive going than unprimed hits (iii) and a late negativity at
posterior locations between 500-1100ms for primed correct rejections compared to part
primed and unprimed correct rejections.
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rect rejections demonstrated the presence of the same graded posterior positivity

between 250-500ms, but differs from the data for hits in pattern of effects in

the part primed condition for the early and late negativities. In contrast to the

graded effect evident in the data for hits, in the early time window, waveforms for

primed and part primed correct rejections were equally more negative going than

waveforms for unprimed corrects rejections. In contrast to more negative going

activity for primed and part primed hits than for unprimed hits at posterior loca-

tions for hits, the data for correct rejections indicate more negative going activity

for primed compared to part primed and unprimed correct rejections.

Visual inspection of the data suggested that the early negativity in the current

experiment onset slightly earlier than in the previous experiments. As a result

the standard time window was altered to capture this difference, and the time

windows chosen for analysis of priming effects were -100-150ms, 250-500ms and

500-1100ms, maintaining consistency across experiments for the later windows.

To separate priming contrasts from memory contrasts the data for hits and cor-

rect rejections were analysed independently. The first level of analysis on the

data was designed to identify variations in priming effects across conditions and

time windows, employing ANOVA with the factors of condition (unprimed, part

primed, primed), location (Fz, FCz, Cz, CPz, Pz, POz) and time window (-

100-150, 250-500, 500-800). Results for hits revealed a significant main effect of

condition [F (2,58)=6.75, p=0.002], along with a significant interaction between

condition, location and time window [F =(3.8,110.1)=14.09, p<0.001]. Analysis

for correct rejections also revealed a significant interaction between condition,

location and time window [F (4.4,127.8))=16.13, p<0.001]. The presence of these

interactions provides strong evidence of variation in the pattern of priming effects

across locations and time windows for hits and correct rejections.
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Table 8.5: Priming ANOVAs by time window. Results of ANOVAs contrasting midline
sites with the factors of condition and location over the three time windows chosen for
analysis of priming effects.

-100-150ms 250-500ms 500-1100ms

Hits Cond F (2,58)=15.67, p<0.001 F (2,58)=38.56, p<0.001 F (2,58)=4.70, p=0.013

Cond*Loc F (2.8,80.1)=3.02, p=0.038 F (2.7,77.5)=11.26, p<0.001 -

CRs Cond F (2,58)=27.71, p<0.001 F (2,58)=29.61, p<0.001 F (2,58)=9.53, p<0.001

Cond*Loc F (2.4,70.2)=4.46, p=0.010 F (2.7,78.6)=7.46, p<0.001 F (2.8,80.4)=3.25, p=0.029

A second level of analysis was performed separately for hits and correct rejections

on the data from each time window, using ANOVA with the factors of condition

(unprimed, part primed, primed) and location (Fz, FCz, Cz, CPz, Pz, POz). The

results of this analysis are summarised in Table 8.5, and confirm that priming

effects were present in each time window for hits and correct rejections, interacting

with the factor of location for all contrasts except for hits during the 500-1100ms

time window. Subsidiary analysis took the form of paired contrasts between each

condition performed separately for hits and correct rejections, using ANOVA

with the factors of contrast (unprimed vs primed / unprimed vs part primed /

primed vs part primed), location (F, FC, C, CP, P, PO), hemisphere (left, right)

and electrode (inferior, mid, superior), and the results for each time window and

contrast are reported separately in the following sections.

8.4.1.1 Time window -100-150ms

From 100ms prior to the onset of target words, waveforms for primed and part

primed hits were more negative going than waveforms for unprimed hits at pos-

terior locations, with the greatest degree of negativity for part primed hits (see

Figure 8.3 for data from CPz). Initial analysis contrasting unprimed and primed

hits produced no main effects or interactions including the factor of condition,
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demonstrating that the effect apparent in the data did not reach significance.

Contrasting unprimed and part primed hits revealed a significant main effect of

condition [F (1,29)=20.22, p<0.001], and a significant interaction between con-

dition, location and electrode [F (2.9,85.2)=4.00, p=0.011]. As can be seen in

Figure 8.3, these results reflect the presence of a negativity for part primed hits

over superior sites at posterior locations. Comparison of primed and part primed

hits also produced a main effect of condition [F (1,29)=14.51, p=0.001], and a sig-

nificant interaction between condition, location and electrode [F (3.4,98.6)=2.96,

p=0.030]. As can be seen in Figure 8.3, these results again reflect that part primed

hits were more negative going than primed hits over superior sites extending from

fronto-central to parietal locations.
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Figure 8.3: Priming for hits (-100-150ms). Grand average ERPs for hits in the unprimed,
part primed and primed conditions at electrode CPz. Topographic maps show the difference
between conditions for paired contrasts. Waveforms for primed and part primed hits were
more negative going than waveforms for unprimed hits at posterior locations, with the
greatest degree of negativity for part primed hits.

Table 8.6 shows the results of subsidiary analysis at separate locations for the

significant contrasts reported above for hits. Results revealed significant main

effects of condition and significant interactions between condition and electrode

extending from frontal to parieto-occipital locations for both contrasts, indicating
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Table 8.6: Priming contrasts by location (-100-150ms). Results of subsidiary analysis at separate locations for contrasts producing
significant priming effects, shown separately for hits and correct rejections.

Hits (PP/U) F FC C CP P PO

Cond F (1,29)=6.84, p=0.014 F (1,29)=12.66, p=0.001 F (1,29)=20.74, p<0.001 F (1,29)=24.85, p<0.001 F (1,29)=27.90, p<0.001 F (1,29)=17.13, p<0.001

Cond*Hem

Cond*Elec F (1.2,36.3)=12.18, p=0.001 F (1.2,34.8)=17.28, p<0.001 F (1.1,32.8)=18.24, p<0.001 F (1.2,33.4)=26.85, p<0.001 F (1.1,30.9)=32.39, p<0.001 F (1.2,35.9)=32.95, p<0.001

Cond*Hem*Elec

Hits (P/PP) F FC C CP P PO

Cond F (1,29)=7.79, p=0.009 F (1,29)=10.52, p=0.003 F (1,29)=13.64, p=0.001 F (1,29)=14.60, p=0.001 F (1,29)=15.66, p<0.001 F (1,29)=10.62, p=0.003

Cond*Hem

Cond*Elec F (1.1,32.6)=4.58, p=0.036 F (1.1,31.7)=8.22, p=0.006 F (1.1,32.9)=13.52, p=0.001 F (1.2,34.4)=22.72, p<0.001 F (1.12,33.9)=31.20, p<0.001 F (1.2,35.3)=15.62, p<0.001

Cond*Hem*Elec
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the presence of priming effects for hits that were maximal towards superior sites

across locations. The preceding analysis failed to elucidate the interaction with

location reported for hits in the first level of analysis; to better characterize the

location of effects, activity from midline sites (Fz, Cz, Pz) was compared for each

significant contrast using paired samples t-tests. Results of analysis contrasting

part primed and unprimed hits demonstrated the presence of larger effects over

central (t(29)=3.36, p=0.002), and parietal sites (t(29)=3.15, p=0.004) than at

frontal sites. Consistent with this pattern of results, further examination of the

data confirmed that the difference between part primed and unprimed hits was

maximal at electrode CPz (t(29)=5.56, p<0.001). Analysis contrasting priming

effects at midline sites for primed and part primed hits failed to reveal signifi-

cant differences across locations, confirming the presence of a negativity for part

primed hits extending from frontal to parietal locations. Further examination of

the data confirmed that the difference between primed and part primed hits was

maximal at electrode FCz (t(29)=3.85, p=0.001).

The foregoing results suggest variation in the magnitude of effects across con-

trasts, with larger effects over posterior locations for part primed compared to

unprimed hits, and effects with a more anterior distribution for part primed com-

pared to primed hits. The next level of analysis was performed on difference

waveforms to compare the magnitude of priming effects, using ANOVA with

the factors of contrast (part primed-unprimed, primed-part primed), location (F,

FC, C, CP, P, PO), hemisphere (left, right) and electrode (inferior, mid, su-

perior). Analysis revealed a significant main effect of contrast [F (1,29)=24.54,

p<0.001], and a significant interaction between contrast, location and electrode

[F (3.5,100.6)=4.90, p=0.002], reflecting larger effects over posterior locations

across medial and inferior sites for part primed compared to unprimed hits than
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for part primed compared to primed hits. To investigate whether these differences

in magnitude reflect genuine changes in topography, analysis was performed on

rescaled data, using ANOVA with the factors of contrast (part primed-unprimed,

primed-part primed), location (F, FC, C, CP, P, PO), hemisphere (left, right)

and electrode (inferior, mid, superior). Analysis also revealed a significant inter-

action between contrast, location and electrode [F (3.6, 103.3)=4.71, p=0.002],

demonstrating that effects were driven by partially non-overlapping sets of neu-

ral generators.
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Figure 8.4: Priming for CRs (-100-150ms). Grand average ERPs for correct rejections
in the unprimed, part primed and primed conditions at electrode CPz. Topographic maps
show the difference between conditions for paired contrasts. Waveforms for primed and part
primed words were more negative going then waveforms for unprimed words at posterior
locations, with no apparent differences between the primed and part primed conditions.

For correct rejections, waveforms for primed and part primed words were more

negative going than waveforms for unprimed words at posterior locations, with no

apparent differences between the primed and part primed conditions (see Figure

8.4 for the data from CPz). Initial analysis contrasting unprimed and primed

correct rejections produced a significant main effect of condition [F (1,29)=33.36,

p<0.001], and significant interactions between condition and location [F (1.4,41.7)

=5.47, p=0.014], and condition and electrode [F (1.1,31.3)=14.89, p<0.001]. As
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can be seen in Figure 8.4, these results reflect the presence of a negativity for

primed words towards superior sites over central and parietal locations. Analysis

comparing unprimed and part primed correct rejections revealed a main effect of

condition [F (1,29)=42.85, p<0.001], and a significant interaction between condi-

tion, location and electrode [F (2.6,74.1)=3.28, p=0.032], reflecting the presence

of a negativity for part primed words at superior sites over central and posterior

locations. Finally, analysis contrasting primed and part primed correct rejec-

tions confirmed the absence of priming difference, producing no main effects or

interactions including the factor of condition.

Table 8.6 shows the results of subsidiary analysis at separate locations for primed

and part primed compared to unprimed correct rejections. Results for primed

correct rejections revealed significant main effects of condition across locations,

and interactions between condition and electrode extending from frontal-central

to parieto-occipital locations. Results for part primed correct rejections revealed

significant main effects and interactions between condition and electrode across

locations. The preceding analysis again failed to elucidate the interaction with

location reported in the first level of analysis. Analysis contrasting priming ef-

fects at midline sites (Fz, Cz, Pz) for primed correct rejections demonstrated

the presence of larger differences over central (t(29)=3.17, p=0.004), and pari-

etal locations (t(29)=2.92, p=0.007), than at frontal locations. Consistent with

this pattern of results, further examination of the data confirmed that the dif-

ference between primed and unprimed correct rejections was maximal at elec-

trode CPz (t(29)=6.12, p<0.001). Analysis contrasting priming effects at midline

sites for part primed correct rejections again revealed larger effects over central

(t(29)=3.07, p=0.005), and parietal locations (t(29)=2.27, p=0.031), than at

frontal locations. Further examination of the data confirmed that the difference
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Table 8.7: Priming contrasts by location (-100-150ms). Results of subsidiary analysis at separate locations for contrasts producing
significant priming effects, shown separately for hits and correct rejections.

CRs (P/U) F FC C CP P PO

Cond F (1,29)=11.56, p=0.002 F (1,29)=23.72, p<0.001 F (1,29)=31.99, p<0.001 F (1,29)=35.15, p<0.001 F (1,29)=35.66, p<0.001 F (1,29)=28.68, p<0.001

Cond*Hem

Cond*Elec F (1.2,34.1)=6.01, p=0.016 F (1.1,32.9)=12.39, p=0.001 F (1.2,34.5)=15.09, p<0.001 F (1.2,35.5)=13.96, p<0.001 F (1.1,30.72)=20.24, p<0.001

Cond*Hem*Elec

CRs (PP/U) F FC C CP P PO

Cond F (1,29)=15.33, p=0.001 F (1,29)=27.39, p<0.001 F (1,29)=39.82, p<0.001 F (1,29)=45.32, p<0.001 F (1,29)=48.13, p<0.001 F (1,29)=45.45, p<0.001

Cond*Hem

Cond*Elec F (1.2,34.9)=8.49, p=0.004 F (1.3,37.7)=14.73, p<0.001 F (1.3,36.6)=27.64, p<0.001 F (1.2,34.4)=26.14, p<0.001 F (1.2,33.5)=23.74, p<0.001 F (1.1,32.2)=35.47, p<0.001

Cond*Hem*Elec
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between part primed and unprimed correct rejections was also maximal at elec-

trode CPz (t(29)=6.90, p<0.001).

Figure 8.5 shows a summary of the data for the -100-150ms time window at a

representative electrode site, along with topographic maps of significant contrasts

for hits and correct rejections. The next level of analysis was designed to compare

the magnitude of effects for part primed compared to unprimed words for hits

and correct rejections, as this contrast was significant in both cases. Analysis was

performed on difference waveforms, using ANOVA with the factors of test status

(old, new), location (F, FC, C, CP, P, PO), hemisphere (left, right) and electrode

(inferior, mid, superior). Results revealed no main effect or interactions including

the factor of test status, indicating that effects did not differ in magnitude or

distribution for hits and correct rejections.
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Figure 8.5: Summary data (-100-150ms). Bar charts display the amplitude of activity
for hits and correct rejections in the unprimed, part primed and primed conditions at a
representative electrode (error bars show S.E.M). Topographic maps show the distribution
of priming effects for significant contrasts.
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In summary, analysis of the priming data during this early time window revealed

a different pattern of results for primed hits and correct rejections. In the data

for hits, primed words did not differ from unprimed words, while in the data

for correct rejections both priming conditions were equally more negative going

at superior centro-parietal locations than waveforms for the unprimed condition.

Magnitude analysis contrasting effects for part primed compared to unprimed

hits and correct rejections confirmed the presence of a centro-parietal negativity

that was equivalent in magnitude and distribution.

8.4.1.2 Time window 250-500ms

From 250ms after onset of target words, waveforms for primed hits were more

positive going than for part primed hits, which were in turn more positive going

than waveforms for unprimed hits, with the largest differences between condi-

tions evident at posterior locations (see Figure 8.6 for the data from CPz). Ini-

tial analysis contrasting unprimed and primed hits revealed a significant main

effect of condition [F (1,29)=69.00, p<0.001], along with significant interactions

between condition, location and electrode [F (2.5,72.7)=5.49, p=0.003], and con-

dition, hemisphere and electrode [F (1.4,40.7)=8.45, p=0.003]. Results of sub-

sidiary analysis at separate locations are shown in Table 8.8, and confirmed the

presence of interactions between condition, hemisphere and electrode extending

from frontal to parietal locations, and interactions between condition and elec-

trode extending from fronto-central to parieto-occipital sites. As can be seen in

Figure 8.6, these results reflect the presence of a widespread positivity for primed

hits compared to unprimed hits that is maximal over superior sites, but with a

slight skew over the right hemisphere. Consistent with this pattern of results,
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further examination of the data confirmed that the difference between primed

and unprimed hits was maximal at electrode CPz (t(29)=8.42, p<0.001).
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Figure 8.6: Priming for hits (250-500ms). Grand average ERPs for hits in the unprimed,
part primed and primed conditions at electrode CPz. Topographic maps show the difference
between conditions for paired contrasts. Waveforms for primed hits were more positive
going than for part primed hits, which were in turn more positive going than waveforms
for unprimed hits, with the largest differences between conditions evident over posterior
locations.

Initial analysis contrasting unprimed and part primed hits produced a significant

main effect of condition [F (1,29)=12.30, p=0.001], but no significant interac-

tions including the factor of condition, reflecting the presence of a slight but

widespread positivity for hits across locations. Analysis comparing primed and

part primed hits revealed a significant main effect of condition [F (1,29)=30.63,

p<0.001], and a significant interaction between condition, location and electrode

[F (2.7,76.8)=4.23, p=0.011]. Results of subsidiary analysis at separate locations

are shown in Table 8.8, and demonstrated the presence of main effects and inter-

actions between condition and electrode extending from fronto-central to parieto-

occipital locations. As can be seen in Figure 8.6, these results reflect the presence

of a positivity for primed hits compared to part primed hits over superior elec-

trode sites at posterior locations. Further examination of the data confirmed that
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the difference between primed and part primed hits was maximal at electrode CPz

(t(29)=6.19, p<0.001).

Inspection of the data for hits suggests variation in the magnitude of effects across

contrasts, with the largest difference between primed and unprimed hits. To inves-

tigate this, the next level of analysis was performed on difference waveforms, using

ANOVA with the factors of contrast (primed-unprimed, part primed-unprimed,

primed-part primed), location (F, FC, C, CP, P, PO), hemisphere (left, right)

and electrode (inferior, mid, superior). Analysis revealed a significant main ef-

fect of contrast [F (2,58)=11.93, p<0.001], and significant interactions between

condition and location [F (1.8,50.8)=3.42, p=0.046], and condition and electrode

[F (1.3,37.3)=6.45, p=0.010], confirming the presence of differences in magnitude

across contrasts. To characterize this difference paired contrasts were performed

on subtraction data for each effect. Analysis comparing the size of the difference

between primed and part primed words and the unprimed baseline revealed a

significant main effect of contrast [F (1,29)=30.63, p<0.001], and a significant in-

teraction between contrast, location and electrode [F (2.7,76.8)=4.23, p=0.011],

reflecting larger differences for primed compared to part primed hits over poste-

rior locations at superior electrode sites.

Analysis of effects for primed compared to unprimed, and primed compared to

part primed hits revealed a significant main effect of contrast [F (1,29)=12.30,

p<0.001], but no interactions including the factor of contrast, confirming the

presence of a larger difference between primed and unprimed hits than between

primed and part primed hits. Analysis of effects for part primed compared to

unprimed, and part primed compared to primed hits revealed a marginally sig-

nificant interaction between condition and electrode [F (1.1,31.2)=4.07, p=0.050],

suggesting a difference in the distribution of effects. To investigate whether these
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Table 8.8: Priming contrasts for Hits by location (250-500ms). Results of subsidiary analysis for hits at separate locations for
all contrasts producing significant priming effects, shown separately for each contrast.

Hits (P/U) F FC C CP P PO

Cond F (1,29)=10.69, p=0.003 F (1,29)=33.13, p<0.001 F (1,29)=58.77, p<0.001 F (1,29)=69.20, p<0.001 F (1,29)=74.23, p<0.001 F (1,29)=81.00, p<0.001

Cond*Hem

Cond*Elec F (1.3,36.4)=13.89, p<0.001 F (1.2,34.2)=24.58, p<0.001 F (1.1,31.89)=25.69, p<0.001 F (1.1,30.9)=17.10, p<0.001 F (1.2,35.6)=23.65, p<0.001

Cond*Hem*Elec F (1.5,43.4)=5.23, p=0.016 F (2,58)=4.37, p=0.017 F (1.6,47)=4.73, p=0.019 F (1.4,41.4)=5.86, p=0.011 F (1.2,35.4)=5.10, p=0.024

Hits (P/PP) F FC C CP P PO

Cond F (1,29)=11.37, p=0.002 F (1,29)=24.29, p<0.001 F (1,29)=37.48, p<0.001 F (1,29)=44.09, p<0.001 F (1,29)=44..50, p<0.001

Cond*Hem

Cond*Elec F (1.1,33.2)=7.84, p=0.007 F (1.1,31.6)=16.32, p<0.001 F (1,30.4)=16.73, p<0.001 F (1.1,30.8)=12.62, p=0.001 F (1.3,37.3)=10.15, p=0.001

Cond*Hem*Elec
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differences in magnitude identified above reflect genuine changes in topography,

analysis was performed on rescaled data using ANOVA with the factors of con-

trast (primed-unprimed, part primed-unprimed, primed-part primed), location

(F, FC, C, CP, P, PO), hemisphere (left, right) and electrode (inferior, mid,

superior). Results revealed no main effects or interactions including the factor

of contrast, suggesting that priming effects for all three contrasts for hits were

supported by the same sets of underlying neural generators.
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Figure 8.7: Priming for CRs (250-500ms). Grand average ERPs for correct rejections
in the unprimed, part primed and primed conditions at electrode CPz. Topographic maps
show the difference between conditions for paired contrasts. Waveforms for primed correct
rejections were more positive going than for part primed correct rejections, which were in
turn more positive going than waveforms for unprimed correct rejections, with the largest
differences between conditions evident over posterior locations.

For correct rejections, the pattern of effects at posterior locations appeared iden-

tical to the pattern for hits, waveforms for primed words were more positive

going than for part primed words, which were in turn more positive going than

waveforms for unprimed words (see Figure 8.7 for the data from CPz). Initial

analysis contrasting unprimed and primed correct rejections revealed a main ef-

fect of condition [F (1,29)=38.03, p<0.001], along with a significant interaction

between condition, hemisphere and electrode [F (1.1,30.9)=7.66, p=0.008], and

286



Chapter 8. ERP 4

a marginally significant interaction between condition, location and electrode

[F (2.8,81.5)=2.75, p=0.051]. Results of subsidiary analysis at separate locations

are shown in Table 8.8, and confirmed the presence of interactions between con-

dition and electrode across locations, and significant interactions including the

factor of hemisphere extending from frontal to parietal locations. As can be seen

in Figure 8.7, these results reflect the presence of a posterior positivity for primed

correct rejections over superior sites, that is slightly skewed over the right hemi-

sphere at the locations identified. Further examination of the data confirmed

that the difference between primed and unprimed correct rejections was maximal

at electrode Pz (t(29)=7.78, p<0.001).

Analysis comparing unprimed and part primed correct rejections produced a sig-

nificant main effect of condition [F (1,29)=7.92, p=0.009], along with a signif-

icant interaction between condition, location and electrode [F (2.8,80.3)=3.18,

p=0.032], and a marginally significant interaction between condition and hemi-

sphere [F (1,29)=4.16, p=0.051]. Subsidiary analysis at separate locations re-

vealed main effects of condition from central to parieto-occipital locations, in-

teractions including the factor of electrode across locations, and interactions in-

cluding the factor of hemisphere at frontal and fronto-central locations (see Table

8.9 for results). As can be seen in Figure 8.7, these results reflect the presence

of a posterior positivity for part primed correct rejections over superior sites,

with a slight skew over the right hemisphere at frontal sites on the outskirts of

the effect. Further examination of the data confirmed that difference between

the part primed and unprimed correct rejections was maximal at electrode CPz

(t(29)=3.92, p<0.001).

Analysis contrasting primed and part primed correct rejections revealed a main

effect of condition [F (1,29)=23.72, p<0.001], along with significant interactions
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Table 8.9: Priming contrasts for CRs by location (250-500ms). Results of subsidiary analysis for correct rejections at separate
locations for all contrasts producing significant priming effects, shown separately for each contrast.

CRs (P/U) F FC C CP P PO

Cond F (1,29)=8.21, p=0.008 F (1,29)=17.44, p<0.001 F (1,29)=31.78, p<0.001 F (1,29)=43.16, p<0.001 F (1,29)=48.68, p<0.001 F (1,29)=40.16, p<0.001

Cond*Hem F (1,29)=5.92, p=0.021 F (1,29)=9.80, p=0.004 F (1,29)=7.01, p=0.013 F (1,29)=5.52, p=0.026 F (1,29)=4.58, p=0.041

Cond*Elec F (1.2,33.4)=11.50, p=0.001 F (1.3,37)=17.29, p<0.001 F (1.2,34.8)=29.71, p<0.001 F (1.2,34.5)=33.69, p<0.001 F (1.1,31.6)=31.55, p<0.001 F (1.3,36.7)=33.16, p<0.001

Cond*Hem*Elec F (1.3,38.7)=5.63, p=0.015 F (1.3,36.4)=5.57, p=0.018 F (1.2,33.9)=9.33, p=0.003 F (1.1,32.8)=7.64, p=0.007

CRs (PP/U) F FC C CP P PO

Cond F (1,29)=9.22, p=0.005 F (1,29)=11.33, p=0.002 F (1,29)=11.46, p=0.002 F (1,29)=6.81, p=0.014

Cond*Hem F (1,29)=4.96, p=0.034 F (1,29)=4.59, p=0.041

Cond*Elec F (1.3,38)=5.66, p=0.015 F (1.2,33.5)=9.45, p=0.003 F (1.1,31.4)=12.34, p=0.001 F (1.1,31.2)=13.53, p=0.001 F (1.2,34.2)=11.76, p=0.001

Cond*Hem*Elec F (2,58)=6.16, p=0.004

CRs (PP/P) F FC C CP P PO

Cond F (1,29)=4.70, p=0.038 F (1,29)=9.25, p=0.005 F (1,29)=19.67, p<0.001 F (1,29)=28.47, p<0.001 F (1,29)=30.96, p<0.001 F (1,29)=31.46, p<0.001

Cond*Hem

Cond*Elec F (1.3,37.2)=6.30, p=0.011 F (1.2,35.8)=6.81, p=0.009 F (1.2,33.6)=4.84, p=0.030 F (1.1,32)=4.45, p=0.039 F (1.1,32.6)=6.01, p=0.017 F (1.4,39.2)=10.50, p=0.001

Cond*Hem*Elec
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between condition and location [F (1.4,39.4)=6.74, p=0.008], and condition and

electrode [F (1.1,32.3)=10.12, p=0.002]. Subsidiary analysis at separate locations

revealed significant main effects of condition and significant interactions between

condition and electrode across locations (see Table 8.9 for results). As can be

seen in Figure 8.7, these results reflect the presence of a widespread positivity for

primed correct rejections over superior electrode sites that appears maximal over

posterior locations. Consistent with this interpretation of results, further exami-

nation of the data confirmed that the difference between primed and part primed

correct rejections was maximal at electrode Pz (t(29)=5.46, p<0.001).

Inspection of the data for correct rejections also suggests variation in the magni-

tude of effects across contrasts, with the largest difference between primed and

unprimed correct rejections. To investigate this, the next level of analysis was

performed on difference waveforms, using ANOVA with the factors of contrast

(primed-unprimed, part primed-unprimed, primed-part primed), location (F, FC,

C, CP, P, PO), hemisphere (left, right) and electrode (inferior, mid, superior).

Analysis revealed a significant main effect of contrast [F (2,58)=8.25, p=0.001],

and a significant interaction between contrast and electrode [F (1.4,39.6)=4.84,

p=0.024], confirming the presence of differences in magnitude across contrasts. To

characterize this difference, paired contrasts were performed on subtraction data

for each effect. Analysis comparing the size of the difference between primed and

part primed words and the unprimed baseline revealed a significant main effect

of contrast [F (1,29)=23.73, p<0.001], along with significant interactions between

contrast and location [F (1.4,39.4)=6.74, p=0.008], and contrast and electrode

[F (1.1,32.3)=10.12, p=0.002], reflecting larger differences for primed than for

part primed correct rejections at superior sites over posterior locations.
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Analysis of effects for primed compared to unprimed, and primed compared

to part primed correct rejections revealed a significant main effect of contrast

[F (1,29)=7.92, p=0.009], along with a significant interaction between contrast, lo-

cation and electrode [F (2.7,80.3)=3.18, p=0.001], reflecting the presence of larger

difference over posterior locations for primed vs. unprimed than for primed vs.

part primed correct rejections. Analysis of effects for part primed compared to

unprimed, and part primed compared to primed correct rejections revealed no

significant main effect or interactions including the factor of contrast, indicat-

ing that priming effects did not differ substantially in magnitude or distribution.

To investigate whether these differences in magnitude identified above reflect

genuine changes in topography, analysis was performed on rescaled data using

ANOVA with the factors of contrast (primed-unprimed, part primed-unprimed,

primed-part primed), location (F, FC, C, CP, P, PO), hemisphere (left, right)

and electrode (inferior, mid, superior). Results revealed no main effects or in-

teractions including the factor of contrast, suggesting that priming effects for all

three contrasts for hits were supported by overlapping sets of underlying neural

generators.

Figure 8.8 shows a summary of the data for the 250-500ms time window at a

representative electrode site, along with topographic maps of significant priming

effects for hits and correct rejections. The next level of analysis on the data was

designed to compare the magnitude and distribution of effects for hits and correct

rejection across all three priming contrasts. Magnitude analysis was performed

separately for each contrast on difference waveforms, using ANOVA with the

factors of test status (old, new), location (F, FC, C, CP, P, PO), hemisphere (left,

right) and electrode (inferior, mid, superior). Analysis contrasting the magnitude

of effects across hits and correct rejections for primed compared to unprimed

290



Chapter 8. ERP 4

words revealed no main effects or interactions including the factor of test status,

indicating that the size of the difference between primed and unprimed words

was comparable in magnitude and distribution for hits and correct rejections.

Analysis contrasting the magnitude of effects across hits and correct rejections

for part primed compared to unprimed words again revealed no main effects

or interactions, demonstrating that effects were again comparable for hits and

correct rejections.
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Figure 8.8: Summary data (250-500ms). Bar charts display the amplitude of activity
for hits and correct rejections in the unprimed, part primed and primed conditions at a
representative electrode (error bars show S.E.M). Topographic maps show the distribution
of effects for significant contrasts.

Contrasting the magnitude of effects across hits and correct rejections for primed

compared to part primed words did reveal a significant interaction between test

status, location and electrode [F (3.7,108)=3.17, p=0.019], reflecting the pres-

ence of larger differences for hits over superior sites at posterior locations. To

investigate whether this difference in magnitude reflected a genuine change in

topography, analysis was performed on rescaled data using ANOVA with the fac-
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tors of test status (old, new), location (F, FC, C, CP, P, PO), hemisphere (left,

right) and electrode (inferior, mid, superior). Results revealed no main effects or

interactions including the factor of test status, indicating that effects were driven

by overlapping sets of neural generators.

In summary, analysis of the priming data during the 250-500ms time window

revealed a similar pattern of results for hits and correct rejections. Overall, the

data demonstrated a graded priming effect for hits and correct rejections over

centro-parietal locations, with primed waveforms more positive going than part

primed waveforms, which were in turn were more positive going than unprimed

waveforms. Magnitude comparisons for hits and correct rejections across con-

trasts revealed a larger difference between part primed and primed words for

hits than for correct rejections, the size and distribution of all other effects were

comparable for hits and correct rejections.

8.4.1.3 Time window 500 to 1100ms

From around 500ms after target onset, waveforms for primed and part primed

hits appeared more negative going than waveforms for unprimed hits at pos-

terior locations (see Figure 8.9 for data from POz). Initial analysis contrast-

ing unprimed and primed hits revealed a significant main effect of condition

[F (1,29)=8.78, p=0.006], and a significant interaction between condition and

electrode [F (1.1,31.2)=6.79, p=0.012], reflecting the presence of a negativity for

primed hits towards superior sites across locations. Inspection of the data sug-

gests that this difference is largest over posterior sites and further examination

of the data confirmed that the difference between primed and unprimed hits was

maximal at electrode Pz (t(29)=3.28, p=0.003). Initial analysis contrasting part
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primed and unprimed hits revealed a marginally significant main effect of con-

dition [F (1,29)=3.97, p=0.056], and a significant interaction between condition

and electrode [F (1.1,31.3)=4.41, p=0.041], reflecting the presence of a slight neg-

ativity for hits over superior sites across locations. Inspection of the data again

suggested that effects had a posterior focus, and consistent with this interpre-

tation of the data, further examination confirmed that the difference between

part primed and unprimed hits was also maximal at electrode Pz (t(29)=2.88,

p=0.007). Initial analysis contrasting primed and part primed confirmed the ab-

sence of differences between conditions, revealing no significant main effect or

interactions with the factor of condition.
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Figure 8.9: Priming for hits (500-1100ms). Grand average ERPs for hits in the un-
primed, part primed and primed conditions at electrode POz. Topographic maps show the
difference between conditions for paired contrasts. Waveforms for primed and part primed
hits were more negative going than waveforms for unprimed hits at posterior locations.

Inspection of the data for hits suggests a slight variation in the magnitude of the

differences identified for primed and part primed hits compared to the unprimed

baseline, with the largest difference between primed and unprimed hits. To in-

vestigate the next level of analysis was performed on difference waveforms, using

ANOVA with the factors of contrast (primed-unprimed, part primed-unprimed),
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location (F, FC, C, CP, P, PO), hemisphere (left, right) and electrode (inferior,

mid, superior). Results revealed no main effect or interactions including the fac-

tor of contrast, indicating that effects for the primed and part primed conditions

did not differ in magnitude or distribution between 500-1100ms, with waveforms

for both conditions equally more negative going than waveforms in the unprimed

condition at posterior locations.
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Figure 8.10: Priming for CRs (500-1100ms). Grand average ERPs for correct rejections
in the unprimed, part primed and primed conditions at electrode POz. Topographic maps
show the difference between conditions for paired contrasts. Waveforms for primed correct
rejections were more negative going than waveforms for part primed and unprimed correct
rejections over central and posterior locations.

The data for correct rejections displayed a different pattern of results during

the 500-1100ms time window, with waveforms for primed correct rejections more

negative going than waveforms for part primed and unprimed correct rejections

over posterior locations (see Figure 8.10 for data from POz). Initial analysis

contrasting primed and unprimed correct rejections revealed a significant main

effect of condition [F (1,29)=15.01, p=0.001], and a significant interaction be-

tween condition and location [F (1.4,39.4)=5.05, p=0.021]. Subsidiary analysis

at separate locations revealed a significant main effect of condition extending

from fronto-central to parieto-occipital locations (p<0.05 in all cases), reflecting
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the presence of a negativity for primed correct rejections across these locations.

Inspection of the data suggests that this difference has a focus over posterior

sites; subsidiary analysis contrasting activity at midline sites (Fz, Pz) confirmed

this interpretation of the data, demonstrating the presence of larger effects at

parietal sites than at frontal sites (t(29)=2.22, p=0.035). Consistent with this

pattern of results, further examination of the data confirmed that the difference

between primed and unprimed correct rejections was maximal at electrode POz

(t(29)=5.54, p<0.001).

Initial analysis comparing unprimed and part primed correct rejections revealed

an interaction between condition and location [F (1.3,37.1)=4.08, p=0.041]. Sub-

sidiary analysis at separate locations failed to reveal significant main effects or

interactions including the factor of condition, indicating the absence of substan-

tial differences between part primed and unprimed correct rejections during the

500-1100ms time window. Initial analysis contrasting primed and part primed

correct rejections revealed a significant main effect of condition [F (1,29)=13.87,

p=0.001], but no interactions including the factor of condition, reflecting the

presence of a widespread centrally distributed negativity for primed correct rejec-

tions across sites and locations. Consistent with this interpretation of the results,

further examination of the data confirmed that the difference between primed

and part primed correct rejections was maximal at electrode C2 (t(29)=4.00,

p<0.001).

Inspection of the data for correct rejections suggests variation in the magnitude

of differences identified for primed correct rejections when contrasted with part

primed and unprimed correct rejections. To investigate the potential differences

in magnitude that may indicate differences in distribution, the next level of anal-

ysis was performed on difference waveforms, using ANOVA with the factors of
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contrast (primed-unprimed, primed-part primed), location (F, FC, C, CP, P, PO),

hemisphere (left, right) and electrode (inferior, mid, superior). Results revealed

a significant main effect of contrast [F (1,29)=7.92, p=0.009], and a significant in-

teraction between contrast, location and electrode [F (2.8,80.3)=3.18, p=0.032].

As can be seen in Figure 8.10, these results reflect the presence of larger dif-

ferences for primed compared to part primed correct rejections over frontal and

central locations. To establish whether this difference in magnitude reflected a

genuine change in topography, analysis was performed on rescaled data using

ANOVA with the factors of test status (old, new), location (F, FC, C, CP, P,

PO), hemisphere (left, right) and electrode (inferior, mid, superior). Results re-

vealed no main effects or interactions including the factor of test status, indicating

that effects in both cases were driven by overlapping sets of underlying neural

generators.
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Figure 8.11: Summary data (500-1100ms). Bar charts display the amplitude of activity
for hits and correct rejections in the unprimed, part primed and primed conditions at a
representative electrode (error bars show S.E.M). Scalp maps show the distribution of effects
for significant contrasts.
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Figure 8.11 shows a summary of the data for the 500-1100ms time window at a

representative electrode site, along with topographic maps of significant priming

effects for hits and correct rejections. The next level of analysis on the data was

designed to compare the magnitude and distribution of effects for for primed com-

pared to unprimed hits and correct rejections, as this contrast was significant in

both cases. Analysis was performed on difference waveforms, using ANOVA with

the factors of test status (old, new), location (F, FC, C, CP, P, PO), hemisphere

(left, right) and electrode (inferior, mid, superior). Results revealed no main

effect or interactions including the factor of test status, indicating that effects

for the primed vs. unprimed contrast did not differ in magnitude or distribution

across hits and correct rejections.

In summary, analysis of the priming data during the 500-1100ms time window

revealed a different pattern of effects for hits and correct rejections at posterior

locations. For hits primed words were more negative going than unprimed words,

with no difference evident between primed and part primed words. By contrast,

for correct rejections waveforms for primed words were more negative going than

waveforms for part primed and unprimed words.

8.4.2 Summary

Between -100-150ms analysis of the data revealed a different pattern of results

for primed hits and correct rejections. In the data for hits, primed words did not

differ from unprimed words, while in the data for correct rejections both priming

conditions were equally more negative going at superior centro-parietal locations

than waveforms for the unprimed condition. Between 250-500ms, analysis of the

data revealed a similar pattern of results for hits and correct rejections. Overall,
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Figure 8.12: Priming topographic summary. Topographic maps summarise differences
between hits and correct rejections for the unprimed part primed and primed conditions.
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the data demonstrated a graded priming effect for hits and correct rejections over

centro-parietal locations, with primed waveforms more positive going than part

primed waveforms, which were in turn more positive going than unprimed wave-

forms. Magnitude comparisons for hits and correct rejections across contrasts

revealed a larger difference between part primed and primed words for hits than

for correct rejections, the size and distribution of all other effects were compa-

rable for hits and correct rejections. Between 500-1100ms, analysis of the data

revealed a different pattern of effects for hits and correct rejections at posterior

locations. For hits primed words were more negative going than unprimed words,

with no difference evident between primed and part primed words. By contrast,

for correct rejections waveforms for primed words were more negative going than

waveforms for part primed and unprimed words.

8.4.3 Memory contrasts

Grand average ERPs for correct responses to old and new words are displayed for

the unprimed condition in Figure 8.13, for the part primed condition in Figure

8.14, and for the primed condition in Figure 8.15. From 150ms prior to target

onset waveforms for primed words were more positive going for hits than for cor-

rect rejections at central locations, but this effect was not evident in waveforms

for unprimed or part primed words. Between 300-500ms after onset of target

words waveforms were more positive going for hits than for correct rejections in

all three conditions, but appeared to differ in distribution. Old/new effects for

the unprimed condition appeared frontally focused, while effects for the primed

condition appeared to be focused over central and posterior locations. By con-

trast, differences for the part primed condition were widespread, covering frontal,
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Figure 8.13: Memory effects for unprimed words. Grand average ERPs for hits and
correct rejections in the unprimed condition. Waveforms were more positive going for hits
than for correct rejections at mid-frontal locations between 300-500ms, and continued to
be more positive going into the 500-800ms time window, but with a skew over right-frontal
locations.
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Figure 8.14: Memory effects for part primed words. Grand average ERPs for hits and
correct rejections in the part primed condition. Waveforms were more positive going for hits
than for correct rejections across locations between 300-500ms, and continued to be more
positive going into the 500-800ms time window, but with a skew towards frontal locations.
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Figure 8.15: Memory effects for primed words. Grand average ERPs for hits and cor-
rect rejections in the primed condition. Waveforms were slightly more positive going for
hits than for correct rejections from 150ms prior to target at superior sites over central loca-
tions. Between 300-500ms, waveforms were again more positive going for hits over central
locations, and this positivity continued into the 500-800ms time window, but exhibited a
right-frontal focus in the later window.
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central and posterior locations. Between 500-800ms, waveforms continued to be

more positive going for hits than for correct rejections in all three conditions,

with an apparent focus over right-frontal locations.

For memory contrasts time windows submitted to analysis were -150-150ms, 300-

500ms, 500-800ms. The first window was chosen to capture the pre-target central

old/new effect evident in the data for the primed condition, and the later two

windows were chosen to capture the neural correlates of familiarity and recollec-

tion reported in the literature. The first level of analysis on the data was designed

to identify variations in old/new effects across conditions and time windows, em-

ploying ANOVA with the factors of test status (old, new), condition (unprimed,

part primed, primed), location (F, FC, C, CP, P PO), laterality (left, midline,

right) and time window (-150-150ms, 300-500ms, 500-800ms). Results revealed a

significant five-way interaction between test status, condition, location, laterality

and time window [F (9.1,264.4)=3.63, p<0.001], and the presence of this interac-

tion provides strong evidence of variation in the pattern of old/new effects over

the three time windows chosen for analysis.

Table 8.10: Memory ANOVAs by time window. Results of ANOVAs contrasting midline
sites with the factors of condition, test status, location and laterality for the three time
windows chosen for analysis of old/new effects.

-150-150ms 300-500ms 500-800ms

Test status - F (1,29)=24.71, p<0.001 F (1,29)=17.66, p<0.001

Test status*Cond F (2,58)=3.80, p=0.028 - -

Test*Cond*Loc*Lat - F (5.9,171.5)=4.47, p<0.001 F (6.2,180.1)=6.46, p<0.001

To further elucidate the pattern of memory related activity, a second level of

analysis was performed separately on the data from each time window, using

ANOVA with the factors of test status (old, new), condition (unprimed, part
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primed, primed), and location (Fz, FCz, Cz, CPz, Pz, POz). The results of this

analysis are summarised in Table 8.10 and demonstrate that old/new differences

were present in all three time windows; varying as a function of condition in

the first time window, and as a function of condition, location and laterality in

the later two time windows. Subsidiary analyses to characterize old/new effects

were performed on average activity over three electrodes sites for four regions

of interest: left-frontal (LF: F1, F3, F5), right-frontal (RF: F2, F4, F6), left-

parietal (LP: P1, P3, P5) and right-parietal (RP: P2, P4, P6). The analysis took

the form of contrasts between hits and correct rejections performed separately

for each condition, using ANOVA with the factors of test status (old, new),

location (frontal, parietal), hemisphere (left, right) and electrode (inferior, mid,

superior); the results for each time window are reported separately in the following

sections.

8.4.3.1 Time window -150 to 150ms

From 150ms prior to the onset of the target words, waveforms for primed words

were more positive going for hits than for correct rejections at central locations,

but this effect was not evident in waveforms for unprimed and part primed words

(see Figure 8.16 for data from CPz). Importantly, initial analysis for the unprimed

and part primed conditions confirmed the absence of pre-target old/new differ-

ences, revealing no main effects or interactions including the factor of test status.

Analysis for the primed condition revealed a significant main effect of test status

[F (1,29)=8.25, p=0.008], but no significant interactions including the factor of

test status, reflecting the presence of a slight positivity for hits over frontal and

parietal locations. Inspection of the data suggests that this early old/new effect is

larger over central sites, which were excluded from initial analysis. Analysis was
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repeated including two additional regions of interest, left-central (LC: C1, C3, C5)

and right-central (RC: C2, C4, C6); to better capture the locus of this early effect.

Results revealed a significant main effect of test status [F (1,29)=8.91, p=0.006],

and an interaction between test status, location and electrode [F (1.8,52.9)=3.55,

p=0.04]. As can be seen in Figure 8.16, this result reflects the presence of a

positivity for primed hits over central locations at superior electrode sites.
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Figure 8.16: Memory @ Cz (-150-150ms). Grand average ERPs for hits and correct
rejections in the primed condition at electrode Cz. Topographic maps show the difference
between the hits and correct rejections. Waveforms were more positive going for hits than
for correct rejections across central and posterior locations at superior electrode sites.

Subsidiary analysis at frontal locations revealed no main effect or interactions

including the factor of test status, demonstrating the absence of old/new dif-

ferences. Analysis at central locations revealed a significant main effect of test

status [F (1,29)=9.77, p=0.004], and a significant interaction between test sta-

tus and electrode [F (1.1,33.2)=6.06, p=0.016]. Analysis at parietal locations

also produced a significant main effect of test status [F (1,29)=11.53, p=0.002],

and a significant interaction between test status and electrode [F (1.1,31.3)=6.84,

p=0.012]. Consistent with this pattern of results, further examination of the

data for the primed condition confirmed that old/new differences for the primed

condition were maximal at electrode CPz (t(29)=3.53, p=0.001). In summary,
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the data for the primed condition demonstrated the presence of a centrally dis-

tributed old/new effect that was not present in the data for the unprimed or part

primed conditions.

8.4.3.2 Time window 300 to 500ms

From 300-500ms after the onset of target words, waveforms were more posi-

tive going for hits than for correct rejections in all three conditions but ap-

peared to differ in distribution, with the largest difference between hits and

correct rejections for the primed condition over central and posterior locations

(see Figure 8.17 for data from Cz). As some of the old/new effects in the cur-

rent time window appeared more centrally distributed, initial analysis was again

adapted to employ six regions of interest, including central sites. Initial anal-

ysis for the unprimed condition revealed a significant main effect of test status

[F (1,29)=9.30, p=0.005], along with significant interactions between test sta-

tus and electrode [F (1.1,31.4)=15.47, p<0.001], and test status, location and

hemisphere [F (1,29)=5.99, p=0.009], reflecting the presence of a positivity for

unprimed hits over superior electrode sites, with a slight skew over the right

hemisphere at frontal sites. Subsidiary analysis revealed significant main ef-

fects and significant interactions between test status and electrode at frontal

[F (1.1,31.1)=6.10, p=0.017], central [F (1.2,34.4)=12.09, p=0.001], and parietal

locations [F (1.1,31.7)=11.08, p=0.002], confirming the presence of a positivity for

unprimed hits at superior sites extending from frontal to parietal locations. Fur-

ther examination of the data for the unprimed condition confirmed that old/new

differences were maximal at electrode FCz (t(29)=3.85, p=0.001).
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Figure 8.17: Memory @ Cz (300-500ms). Grand average ERPs for hits and correct re-
jections for the unprimed, part primed and primed conditions at electrode Cz . Topographic
maps show the difference between the hits and correct rejections for each condition. Wave-
forms were more positive going for hits than for correct rejections in all three conditions,
but appeared to differ slightly in distribution.
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Initial analysis for the part primed condition revealed a significant main effect

of test status [F (1,29)=12.89, p=0.001], but no interactions including the fac-

tor of test status, indicating the presence of a slight but widespread positivity

for part primed hits across locations and electrode sites. Further examination

of the data for the part primed condition confirmed that old/new differences

were maximal at electrode Cz (t(29)=3.01, p=0.005). Initial analysis for the

primed condition revealed a significant main effect of test status [F (1,29)=12.58,

p=0.001], and a significant interaction between test status, location and electrode

[F (2.1,59.8)=5.30, p=0.007], reflecting the presence of a positivity for primed

hits at superior sites over central and posterior locations. Subsidiary analysis at

frontal locations only revealed a marginally significant main effect of test status

[F (1,29)=4.15, p=0.051], but no interactions including the factor of test sta-

tus. Analysis at central locations revealed a significant main effect of test status

[F (1,29)=12.93, p=0.001], and a significant interaction between test status and

electrode [F (1.1,31.3)=10.81, p=0.002]. Subsidiary analysis at parietal locations

also revealed a significant main effect of test status [F (1,29)=18.10, p<0.001],

and a significant interaction between test status and electrode [F (1.1,30.7)=6.90,

p=0.012]. Consistent with this pattern of results, further examination of the

data for the primed condition confirmed that old/new differences were maximal

at electrode Cz (t(29)=3.89, p=0.001).

The next level of analysis was designed to contrast the magnitude of old/new ef-

fects across conditions and was performed on difference waveforms, using ANOVA

with the factors of condition (unprimed, part primed, primed), location (frontal,

central, parietal), hemisphere (left, right) and electrode (inferior, mid, superior).

Results revealed a significant interaction between condition, location and elec-

trode [F (4,117.2)=2.53, p=0.044]. Subsidiary analysis contrasting the magnitude
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of effects for the primed and unprimed condition confirmed the presence of an in-

teraction between condition, location and electrode [F (1.9, 55.3)=3.37, p=0.043].

Analysis contrasting the primed and part primed conditions also revealed a sig-

nificant interaction between condition, location and electrode [F (2.5,75.2)=4.37,

p=0.01]. As can be seen in Figure 8.17 these results reflect the presence of larger

effects for the primed compared to the unprimed and part primed conditions at

superior sites over posterior locations. Follow up analysis contrasting the magni-

tude of effects at electrode Pz confirmed this interpretation, demonstrating the

presence of significantly larger effects for the primed compared to the unprimed

(t(29)=2.55, p=0.016), and part primed (t(29)=3.33, p=0.002), conditions.

To investigate whether these differences reflected genuine changes in topography,

follow up analysis was performed on rescaled data for each contrast. Analysis

contrasting effects for the unprimed and primed conditions revealed a signif-

icant interaction between condition, location and electrode [F (2.4,72.2)=3.56,

p=0.024], confirming that the difference in magnitude reflected a genuine change

in distribution, with a more posterior focus for the primed compared to the un-

primed condition. All other contrasts were non-significant, indicating the absence

of differences in distribution. Inspection of the data also suggested that old/new

differences onset earlier for the primed compared to the unprimed and part primed

conditions, diverging from around 200ms after target onset. To investigate, the

data for the primed condition during the 200-300ms time window was submitted

to ANOVA with the factors of test status (old, new), location (frontal, central,

parietal), hemisphere (left, right) and electrode (inferior, mid, superior). Results

revealed a significant main effect of test status [F (1,29)=5.56, p=0.019], and a sig-

nificant interaction between condition, location and electrode [F (2.4, 58.2)=3.37,

p=0.036]. These results matched the pattern of results reported above for the
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primed condition during the 300-500ms time window and confirm that old/new

effect at central locations onset earlier in the primed condition.

In summary, during the 300-500ms time window significant old/new differences

were present for all three conditions and were maximal over superior locations.

Analysis of the data demonstrated that old/new effects were larger in magnitude

over posterior locations for the primed compared to the unprimed and part primed

conditions. Topographic analysis confirmed that old/new effects for the unprimed

and primed conditions differed in distribution, with a more posterior focus for

the primed condition. In addition, old/new effects for the primed condition onset

100ms earlier than effects for the unprimed and part primed conditions.

8.4.3.3 Time window 500 to 800ms

From 500-800ms after target onset, waveforms for hits were more positive go-

ing than waveforms for correct rejections in all three conditions, with a fo-

cus over right-frontal and locations (see Figure 8.18 for data). Initial analy-

sis for the unprimed condition revealed a significant main effect of test status

[F (1,29)=32.79, p<0.001], and a significant interaction between test status, loca-

tion, hemisphere and electrode [F (1.6,47.6)=5.84, p=0.008]. Subsidiary analysis

at frontal locations revealed a significant main effect of test status [F (1,29)=20.63,

p<0.001], and a significant interaction between test status, hemisphere and elec-

trode [F (1.8,51.7)=6.98, p=0.003]. Analysis at parietal locations revealed a sig-

nificant main effect of test status [F (1,29)=29.41, p<0.001], and a significant

interaction between test status and electrode [F (1.2,35.1)=15.27, p<0.001]. As

can be seen in Figure 8.17, these results demonstrate the presence of a positiv-

ity at right-frontal sites, with a spread over superior sites at parietal locations.
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Figure 8.18: Memory (500-800ms). Grand average ERPs for hits and correct rejec-
tions in the unprimed, part primed and primed conditions at representative electrodes.
Topographic maps show the difference between the hits and correct rejections for each
condition. Waveforms were more positive going for hits than for correct rejections in all
three conditions with a right-frontal focus.
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Consistent with this pattern of results, further examination of the data for the

unprimed condition confirmed that old/new differences were maximal at electrode

F4 (t(29)=5.46, p<0.001).

Initial analysis for the part primed condition revealed a significant main effect

of test status [F (1,29)=4.92, p=0.034], and a significant interaction between test

status, location, hemisphere and electrode [F (1.9,54.3)=5.92, p=0.006], again

reflecting the presence of a positivity for part primed hits at right-frontal loca-

tions. Subsidiary analysis at separate locations confirmed this pattern of results,

demonstrating a significant main effect of test status [F (1,29)=4.62, p=0.040],

and a significant interaction between test status and hemisphere [F (1,29)=7.47,

p=0.011] at frontal locations, but no main effect or interactions including the

factor of test status at parietal locations. Further examination of the data for the

part primed condition confirmed that old/new differences were also maximal at

electrode F4 (t(29)=2.76, p=0.016). Initial analysis for the primed condition re-

vealed a significant main effect of test status [F (1,29)=11.32, p=0.002], and a sig-

nificant interaction between test status, location and hemisphere [F (1,29)=4.80,

p=0.037]. As can be seen in Figure 8.17, this interaction again suggests the

presence of right-frontal old/new differences in the primed condition. Subsidiary

analysis at separate locations confirmed this pattern of results, demonstrating

a significant main effect of test status [F (1,29)=9.15, p=0.005], and a signif-

icant interaction between test status and hemisphere [F (1,29)=4.50, p=0.043]

at frontal locations, but only a significant main effect of test status at parietal

locations [F (1,29)=10.15, p=0.003]. Further examination of the data for the

primed condition confirmed that old/new differences were maximal at electrode

C2 (t(29)=3.11, p=0.004).
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The next level of analysis was designed to contrast the magnitude of old/new ef-

fects across conditions and was performed on difference waveforms, using ANOVA

with the factors of condition (unprimed, part primed, primed), location (frontal,

central, parietal), hemisphere (left, right) and electrode (inferior, mid, superior).

Results revealed no main effect or interactions including the factor of test status,

confirming that old/new effects did not differ in magnitude or distribution across

conditions. In summary, between 500-800ms the data evidenced the presence

of old/new differences with a largely right-frontal distribution across conditions,

that did not differ substantially in magnitude or distribution.

8.4.3.4 Topographic analysis

The next level of analysis was designed to compare the distribution of old/new ef-

fects across time windows. Analysis was performed separately for each condition,

using ANOVA with the factors of time window (300-500ms, 500-800ms), location

(frontal, central, parietal), hemisphere (left, right) and electrode (inferior, mid,

superior). Results for the unprimed condition revealed a significant interaction

between time window, location and hemisphere [F (2,58)=6.17, p=0.004], and re-

sults for the part primed condition also revealed a significant interaction between

time window, location and hemisphere [F (2,58)=3.71, p=0.03]. These results

confirm a change in distribution for the unprimed and part primed condition over

time from central to right-frontal locations. Analysis contrasting effects across

time windows for the primed condition revealed a significant interaction between

time window and hemisphere [F (1,29)=5.16, p=0.031], indicating a shift from a

more left sided distribution between 300-500ms to a more right sided distribution

during the 500-800ms time window. Contrasting the early onsetting old/new ef-

fect evident between -150-150ms with the later effect between 300-500ms failed
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to reveal significant interactions including the factor of time window, indicating

that these effects did not differ in distribution over time.

8.4.4 Summary

Between -150-150ms, data for the primed condition demonstrated the presence

of a centrally distributed old/new effect that was not present in the data for

the unprimed or part primed conditions. During the 300-500ms time window

significant old/new differences were present for all three conditions and were

maximal over superior locations. Analysis of the data demonstrated that old/new

effects were larger in magnitude over posterior locations for the primed compared

to the unprimed and part primed conditions.
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Figure 8.19: Memory topographic summary. Topographic maps summarise differences
between hits and correct rejections for the unprimed part primed and primed conditions.

314



Chapter 8. ERP 4

Topographic analysis confirmed that old/new effects for the unprimed and primed

conditions differed in distribution, with a more posterior focus for the primed

condition. In addition, old/new effects for the primed condition onset 100ms

earlier than effects for the unprimed and part primed conditions. Between 500-

800ms the data evidenced the presence of old/new differences with a largely

right-frontal distribution across conditions, that did not differ substantially in

magnitude or distribution.

8.5 Discussion

The main aim of the current study was to query the relationship between N400

priming effects and FN400 effects associated with familiarity. Specifically, manip-

ulating the ease of semantic integration between prime and target pairings was

intended to reduce the magnitude of N400 and investigate the consequences of

this reduction for FN400 potentials. We made two predictions of the relationship

between N400 and FN400 potentials. Firstly, we reasoned that if N400 and FN400

potentials are functionally equivalent, reductions in the N400 would be expected

to be matched by reductions in FN400 potentials. Secondly, we reasoned that if

N400 and FN400 potentials are functionally independent, then manipulating the

ease of semantic integration between prime and target pairings should modulate

N400 potentials, but leave FN400 potentials largely unaffected. In contrast to

the previous experiment the behavioural data demonstrated a slight increase in

mean accuracy for the primed compared to the unprimed and part primed condi-

tions, along with an increase in corrected estimates of familiarity for the primed

compared to the part primed condition. Response time data demonstrated a

graded reduction in response times for part primed and primed words compared
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to unprimed words, with the fastest responses evident for the primed condition.

Consistent with the pattern of response times the ERP data clearly evidence the

presence of changes in priming effects.

The pattern of effects for hits and correct rejections differed for the early and

late negativities. During the early time window waveforms for part primed hits

were more negative going than for unprimed hits at centro-parietal locations, but

waveforms for primed hits did not differ substantially from activity from unprimed

hits. By contrast, for correct rejections waveforms were equally more negative

going for primed and part primed compared to unprimed correct rejections at

centro-parietal locations. Taken together, these findings appear to suggest that

prior exposure at study changed processing related to anticipation of the target

in the current study. However, the presence of an early onsetting memory effect

in the primed condition warns against this conclusion, suggesting instead that the

lack of difference between primed and unprimed hits was driven by a memory re-

lated increase in activity for primed hits. The late negativity between 500-1100ms

over posterior locations also exhibited a different pattern between conditions for

hits and correct rejections. For hits, waveforms for primed and part primed words

were equally more negative going than waveforms for unprimed words. By con-

trast, for correct rejections waveforms for primed words were more negative going

than waveforms for part primed and unprimed words. On this basis, it appears

that the negativity for part primed words is modulated by whether or not it can

be related to a recently accessed post-lexical representation, with fluency at this

stage only apparent when prior exposure at study facilitates completion of the

partial prime.

In contrast to differences evident between hits and correct rejections for the early

and late negativities, the data for hits and correct rejections during the time win-
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dow for the N400 displayed a similar pattern of results. Replicating the findings

of Holcomb & Grainger (2006), the data demonstrated the presence of graded

N400 effects over centro-parietal locations, where primed waveforms were more

positive going than part primed waveforms, which were in turn were more positive

going than unprimed waveforms. While the priming data clearly demonstrated

that inclusion of the partial prime modulated N400 potentials, the memory ef-

fects apparent in the data failed to directly confirm either of our predictions,

as clear mid-frontal old/new differences were only apparent in the data for the

unprimed condition between 300-500ms. Comparison of memory effects across

conditions confirmed that old/new effects onset earlier and were larger in magni-

tude over posterior locations for the primed compared to the unprimed and part

primed conditions. In addition, topographic analysis confirmed that old/new ef-

fects for the unprimed and primed conditions differed in distribution, with a more

posterior focus for the primed condition. There are two potentially plausible in-

terpretations of the current data. Firstly, it could be argued that old/new effects

across conditions reflect the operation of conceptual priming, with the distribu-

tion across the scalp varying with the degree of semantic overlap. Alternatively,

it could be argued that effects for the part primed and primed conditions consist

of partially overlapping FN400 and N400 effects.

On the basis of the current data, it is difficult to rule out either of these interpre-

tations. Previous research has demonstrated that the distribution of N400 effects

can be dependent upon the exact nature of the eliciting stimuli. For example,

N400 effects have been found to exhibit a more frontal distribution for pictures

than for words (Kounios & Holcomb, 1994), and for concrete compared to ab-

stract words (Ganis, Kutas & Sereno, 1996). However, the eliciting stimuli in the

current experiment were consistent across conditions, so the difference in distri-
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bution between the primed and unprimed conditions cannot be accounted for by

differences in stimulus properties, but may be accounted for by differences in the

underlying representations supporting retrieval. Data for the primed condition

also evidenced the presence of an early onsetting pre-target old/new difference

over central locations that did not differ in distribution from the old/new differ-

ence present during the 300-500ms time window. Based on the assumption that

exposure to the prime facilitated semantic access pre-target, it could be argued

that successful retrieval was supported by reactivating the same post-lexical entry

after target onset. By contrast, it could be argued that retrieval for the unprimed

condition required access to an episodic trace, causing the observed difference in

distribution, and tentatively suggesting that neural correlates of conceptual prim-

ing and familiarity should be dissociable.

8.5.1 Summary

The main aim of the current study was to query the relationship between the

N400 and FN400 effects previously associated with familiarity. We made two

predictions concerning the potential relationship between N400 and FN400 po-

tentials. Firstly, we reasoned that if N400 and FN400 potentials are function-

ally equivalent, reductions in the N400 would be expected to be matched by

reductions in FN400 potentials. Secondly, we reasoned that if N400 and FN400

potentials are functionally independent, then manipulating the ease of semantic

integration between prime and target pairings should modulate N400 potentials,

but leave FN400 potentials largely unaffected. While the priming data clearly

demonstrated that inclusion of the partial prime modulated N400 potentials, the

memory effects apparent in the data failed to confirm either of our predictions.
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It remains possible that the current data for the primed and part primed condi-

tions may reflect overlapping N400 and FN400 potentials, making it impossible

to assess whether they are functionally equivalent or independent. Nonetheless,

differences in the distribution of old/new effects for the primed and unprimed

conditions tentatively suggest that neural correlates of conceptual priming and

familiarity can be differentiated.
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General discussion

This thesis reported a series of studies designed to investigate interactions between

implicit priming and explicit recognition. These investigations attempted to an-

swer two broad questions. Firstly, do implicit priming and explicit recognition

interact at retrieval, and secondly, what is the nature of the relationship between

priming, familiarity and recollection. These broad questions were addressed by

employing masked repetition priming within the confines of a standard recog-

nition test, to directly investigate how the degree of priming influenced neural

correlates of familiarity and recollection. This final chapter will provide a brief

overview of the main findings from each experiment, and will discuss these find-

ings in relation to the wider literature. As the findings for each experiment have

already been discussed in detail in the relevant chapters, the current chapter will

focus on discussion of the pattern of findings across experiments. The research

questions outlined in Chapter 3 (Section 3.3) will also be addressed, before direc-

tions for future research are outlined, and conclusions that can be drawn on the

basis of the data reported in this thesis are presented.
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9.1 Summary of results

Experiments 1 and 2 were designed to explore interactions between repetition

priming and neural correlates of familiarity and recollection, by manipulating the

degree of priming via masked repetition at test, within the confines of a standard

recognition task. Experiment 1 employed a shallow encoding task and responses

at test were speeded to encourage reliance on familiarity based recognition. Ex-

periment 2 was identical in design, but in contrast to experiment 1, employed a

deep encoding task to promote recollection. Experiments 3 and 4 represented a

departure from this initial strategy and were designed to manipulate the degree

of priming more directly. Experiment 3 manipulated the SOA between prime and

target pairings, seeking to identify factors determining whether retrieval will be

implicit or explicit, and investigate the nature of N400 effects. Experiment 4 ma-

nipulated the degree of priming via the addition of a partial prime condition and

was specifically designed to investigate the relationship between the N400 and

FN400 effects. The following sections will provide a brief overview of the electro-

physiological results for priming and memory contrasts across experiments.

9.1.1 Priming effects

Priming contrasts for Experiments 1 and 2 both revealed the presence of three

priming related modulations, an early (-50-150ms) posterior negativity, followed

by a widespread centro-parietal positivity (250-500ms), and a later (500-1100ms)

posterior negativity for primed compared to unprimed words. In both experi-

ments the magnitude and distribution of the early negativity did not differ for

hits and correct rejections, while the late negativity was modulated by exposure

to words at study, being larger in magnitude for hits than for correct rejections.
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Crucially, N400 effects evident between 250-500ms in both experiments did differ

as a function of the encoding task. Under shallow encoding conditions in Experi-

ment 1, N400 effects were equivalent in magnitude for hits and correct rejections.

By contrast, under deep encoding conditions in Experiment 2, N400 effects were

larger in magnitude for hits than for correct rejections, mapping onto the response

time data, and providing clear evidence of additional priming carried over from

the encoding phase.

The pattern of priming effects in Experiment 3 for the standard SOA largely

replicated the findings reported above for experiment 1, with the exception that

the early negativity was not apparent in the data for hits. For the longer SOA the

data again evidenced the presence of an an early central negativity (-350 to 150ms)

that was only significant for correct rejections, and a later posterior negativity

(500-1100ms), that was larger for hits than correct rejections. The most notable

difference in priming effects across SOAs was the apparent modulation of the

N400, which onset earlier and was longer in duration (-100-500ms) for the 698ms

SOA. In addition, comparison of the late negativity across SOAs demonstrated

larger effects for hits and correct rejections at the longer SOA. In Experiment

4, the data again revealed the presence of three priming related modulations, an

early posterior negativity (-100-150ms), followed by a centro-parietal positivity

(250-500ms), and a later posterior negativity (500-1100ms). Importantly, N400

effects evident between 250-500ms were modulated by the priming manipulation,

with primed waveforms more positive going than part primed waveforms, which

were in turn were more positive going than unprimed waveforms.

The early negativity found for hits and correct rejections in experiments 1, 2 and

4, and for correct rejections in experiment 3 has not been observed in previous

research employing masked priming. As noted earlier, previous research has iden-
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tified a number of early onsetting components that are modulated by immediate

masked priming (Holcomb & Grainger, 2006), but the early effect found here

across experiments does not map directly onto any of these early visual compo-

nents. It is common practice in priming research to use unrelated words as an

unprimed baseline, but the current series of experiments employed repetition of

the word “blank” to act as a more neutral baseline, based on research suggesting

that repetition over a large number of trials leads to habituation (Dien et al.,

2006). On this basis, it is plausible that the effect onsetting pre-target in the

current series of experiments reflects an artifact of differences in processing cre-

ated by habituation, rather than being directly related to priming per se. The

presence of the early effect for unstudied words across experiments supports this

interpretation. In essence, studied words could legitimately produce pre-target

priming effects at test, due to the match between the study words and masked

primes, but this is not the case for unstudied words.

In summary, the pattern of priming effects across experiments was reasonably

consistent, with differences between experiments directly related to the intended

manipulations. Of specific interest in the current context are the reported mod-

ulations of N400 potentials. Contrasting shallow and deep encoding tasks across

Experiments 1 and 2 evidenced larger N400 effects for hits under deep encoding

conditions. Increasing the SOA between prime and target pairings in Experiment

3 produced N400 effects that onset earlier and were longer in duration. Finally,

manipulating the degree of match between prime and target pairings in Experi-

ment 4, by including a partial prime condition, produced graded N400 effects for

hits and correct rejections. As the results for priming contrasts have already been

discussed in detail in the relevant chapters, further reference to priming effects
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in the current chapter will be limited to discussion of the relationship between

priming and memory effects where necessary.

9.1.2 Memory effects

In contrast to priming effects, the pattern of memory effects was highly variable

across experiments and between conditions. In Experiment 1, data for the un-

primed condition demonstrated the presence of mid-frontal old/new effects, that

were consistent with the distribution and latency of FN400 old/new effects previ-

ously reported in the literature. Surprisingly, given recent links in the literature

between priming induced fluency and familiarity, mid-frontal old/new effects were

not evident in the data for the primed condition. In Experiment 2, data for both

conditions evidenced the presence of left-parietal old/new effects, but the condi-

tions differed in the onset time of these effects. Unprimed ERPs were consistent

with previous identifications of recollection (500-800ms), but in primed ERPs the

left-parietal old/new effect was evident earlier during the 300-500ms time win-

dow, which is normally associated with the onset of familiarity as indexed by the

FN400. Further analysis demonstrated that left-parietal effects for the primed

condition onset around 200ms after target onset, with effects for the unprimed

not evident until around 400ms after target onset.

In Experiment 3, data for the unprimed condition displayed a similar pattern

across SOAs, with mid-frontal old/new effects evident for both SOAs during the

300-500ms time window and continuing into the 500-800ms time window. By

contrast data for the primed condition varied as a function of SOA during the

300-500ms time window, with left-parietal old/new effects evident for the short

SOA and mid-frontal old/new effects evident for the longer SOA. In addition, fur-
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ther examination of the data demonstrated that significant old/new differences

were present at left-parietal sites from target onset for the short SOA and con-

tinued into the 300-500ms time window. Comparing the distribution of memory

effects across SOAs for the primed condition between 300-500ms confirmed that

differences apparent in the data reflected a genuine difference in process engage-

ment, with left-parietal effects previously associated with recollection evident for

the short SOA, and mid-frontal effects previously linked to familiarity evident

for the long SOA. Right-frontal old/new differences were present in the primed

condition for both SOAs between 500-800ms, and did not differ substantially in

magnitude or distribution. In addition to old/new effects in the time windows

associated with familiarity and recollection, the data for the primed condition

also revealed the presence of a pre-target old/new difference over fronto-polar

sites that continued into the post-target period for the long SOA.

In Experiment 4, data for the primed condition evidenced the presence of a cen-

trally distributed pre-target old/new effect that continued into the post-target

period, and was not present in the data for the unprimed or part primed con-

ditions. During the 300-500ms time window significant old/new differences were

present for all three conditions and were maximal over superior locations, but

appeared to differ in distribution. Old/new effects with a clear mid-frontal distri-

bution were only evident for the unprimed condition. Data for the part primed

condition displayed the presence of a widespread positivity across locations, while

data for the primed condition exhibited a focus over central and posterior lo-

cations. Analysis of the data demonstrated that old/new effects were larger in

magnitude over posterior locations for the primed compared to the unprimed and

part primed conditions. Comparing the distribution of memory effects across con-

ditions confirmed that old/new effects for the unprimed and primed conditions
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differed in distribution, with a more posterior focus for the primed condition.

In addition, old/new effects for the primed condition onset 100ms earlier than

effects for the unprimed and part primed conditions. Right-frontal old/new dif-

ferences were present in all three conditions between 500-800ms, and did not differ

substantially in magnitude or distribution.

In summary, across experiments clear mid-frontal old/new effects were only evi-

dent for the primed condition in Experiment 3 at the longer SOA. Left-parietal

old/new effects were present for the primed condition in Experiment 2 and in

Experiment 3 for the short SOA. In both cases, left-parietal effects were evident

during the 300-500ms time window normally associated with the onset of famil-

iarity. In Experiment 2, left-parietal effects became evident from 200ms after

target onset, while in Experiment 3 old/new differences at left-parietal sites were

present from target onset. In addition, Experiments 3 & 4 both elicited pre-

target old/new effects for the primed condition, but these early memory effects

differed in distribution across experiments, with a focus over fronto-polar sites

for the long SOA in experiment 3, and a focus over central sites in Experiment

4. Right-frontal old/new effects were present for the primed condition between

500-800ms in Experiment 3 for both SOAs and in Experiment 4 across conditions.

The previous sections have provided a brief overview of the main findings from

all of the experiments reported in this thesis, the following sections will discuss

these findings in relation to the research questions and within the context of the

wider literature.
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9.2 Theoretical implications

Despite a wealth of research employing ERPs to dissociate multiple potential con-

tributions to recognition, less attention has been paid to potential interactions

between priming and recognition, and as such the relationship between these im-

plicit and explicit forms of memory has remained unclear. Importantly, it has

recently been claimed that the operation of implicit memory during explicit mem-

ory tests presents a significant confound for ERP investigations of recognition,

limiting theoretical progress by “contaminating” neural correlates of explicit re-

trieval (Voss & Paller, 2007). The main aim of this thesis was to explore the

nature of potential interactions between priming and episodic memory, in the

hope of gaining a better understanding of the respective contributions of implicit

and explicit processing to recognition. The findings of the studies reported in this

thesis generally support the view that priming, familiarity and recollection are

independent memory processes with distinct neural correlates, but that interac-

tions between implicit and explicit retrieval processes do occur during recognition

tests. Moreover, across experiments priming appears to act as a gating mecha-

nism, with the engagement of familiarity or recollection being dependent on the

outcome of implicit processing.

The bulk of behavioural research to date supports the view that priming selec-

tively influences recognition based on familiarity (e.g., Rajaram & Geraci, 2000;

Miller et al., 2008; Woollams et al., 2008). As noted earlier, the majority of

ERP research in this area has focused on investigating conceptual priming, based

on the proposal that differences between old and new items in recognition tests

can potentially be driven by repeated access to semantic information, calling

into question links between mid-frontal old/new effects and familiarity (Paller
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et al., 2007). A number of studies have demonstrated that mid-frontal old/new

effects are absent in conditions that do not support access to conceptual informa-

tion (e.g., Voss & Paller, 2006; Yovel & Paller, 2004), but others have shown that

mid-frontal effects are present for stimuli that are not inherently meaningful (e.g.,

see Curran, 1999; Curran et al., 2002; Groh-Bordin et al., 2006). More generally,

a number of authors have commented on the possibility that the qualitative expe-

rience of familiarity may be supported by more than one source of evidence, and

that both perceptual and conceptual priming may serve as pre-cursors to explicit

recognition (e.g., Groh-Bordin et al., 2006; Rugg & Curran, 2007).

The current series of experiments did not set out to separate perceptual and

conceptual contributions to priming. As noted earlier, repetition from study to

test and between prime-target pairings means that priming could be perceptual

or conceptual in nature. While initially repetition primes were thought to provide

a measure of the degree of perceptual priming (e.g., Tulving & Schacter, 1990),

more recently it has been appreciated that repetition can also produce conceptual

priming, particularly when the stimuli involved are words (Voss et al., 2010b).

The current findings are consistent with this view, demonstrating the presence of

reliable N400 effects across experiments, and with prior work demonstrating that

masked words can be processed for meaning in the absence of awareness (Dehaene

et al., 1998). Despite evidence that masked primes were processed for meaning in

the current series of experiments, the data do not support the view that FN400

effects are merely driven by repeated access to semantic information. The absence

of mid-frontal old/new effects for primed words in the first experiment is not

consistent with prior research demonstrating the absence of mid-frontal old/new

effects, because the stimuli employed here were meaningful (e.g., Yovel & Paller,
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2004), demonstrating that the presence or absence of FN400 effects is not entirely

driven by the properties of the eliciting stimulus.

In fact, only one experiment reported in this thesis evidenced the presence of clear

mid-frontal old/new effects for primed words, when the SOA between prime and

target pairings was increased (Experiment 3). It was reasoned that increasing

the distance between prime and target words would engender a greater degree

of fluency by allowing extra time for semantic information from the prime to be

processed, and that this higher degree of fluency may promote reliance on fa-

miliarity. In addition to eliciting FN400 effects as we expected, increasing the

duration of the SOA between prime and target pairings modulated N400 effects,

which onset earlier and were longer in overall duration. On the basis of the data

from experiment 3 it appears that an increase in post-lexical semantic processing

may engender reliance on familiarity based retrieval under certain circumstances.

Taken together, the findings of the first and third experiments appear to sug-

gest that it is not the availability of conceptual information that determines the

presence or absence of FN400 effects, but the extent of semantic elaboration.

However, another potentially critical difference between these experiments was

whether retrieval was automatic or strategic.

As noted earlier, Badgaiyan & Posner (1997) contrasted implicit and explicit re-

trieval instructions during word stem completion, finding that activity at frontal

sites was only present under explicit instructions, when priming alone was not

a sufficient basis for making a response. The absence of mid-frontal effects for

primed words in the first experiment is consistent with this evidence, and the

matched memory performance across conditions clearly demonstrates that prim-

ing can be sufficient to drive accurate recognition. Recently, De Chastelaine et al.

(2009) suggested that FN400 potentials may reflect a control process that is re-
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quired to support retrieval only when memory traces are weak. Interpreting the

presence of mid-frontal effects when increasing the SOA between prime and target

on this basis suggests that a greater degree of semantic elaboration, as indexed by

more sustained N400 effects, creates interference and forces reliance upon famil-

iarity. Contrasting memory performance across the series of experiments reported

in this thesis also supports the view that differences in the engagement of retrieval

processes were potentially driven by changes in retrieval strategy.

Previous research has indicated that fluency induced by priming impacts memory

performance (e.g., Cleary, 2004; Jacoby & Whitehouse, 1989; Westerman et al.,

2002, 2003; Whittlesea et al., 1990; Parkin et al., 2001). In essence, priming is

thought to encourage a more liberal response bias (Ratcliff & McKoon, 1996;

Thapar & Rouder, 2001), increasing the probability that a primed item will be

classified as studied at test. As noted earlier, one undesirable aspect of this view

is that it is difficult to see how priming can be classified as an implicit mem-

ory phenomenon per se, given that fluency manipulations also tend to increase

illusory recognition. Voss et al. (2008) were the first to demonstrate the possibil-

ity of accurate implicit recognition, and the data reported in the current thesis

provide support for this view, demonstrating that priming does not necessitate

changes in memory performance. Interestingly, across experiments the presence

of right-frontal old/new effects appeared to be predictive of changes in memory

performance for primed words, suggesting that decision monitoring processes play

a critical role in determining performance outcomes.

In the first two experiments right-frontal old/new effects were not apparent in the

data and memory performance was matched for the primed and unprimed condi-

tions. In the the third experiment right-frontal effects were apparent in the data

for the primed condition between 500-800ms across SOAs, and the behavioural

330



Chapter 9. General discussion

data demonstrated an increase in false alarm rates for the primed compared to

the unprimed condition. In the final experiment, right-frontal effects were present

across all three conditions, and the behavioural data demonstrated an increase

in the hit rate for the primed compared to the unprimed and part primed condi-

tions. As such, findings from the later experiments are consistent with previous

research demonstrating that fluency induced by priming can increase the prob-

ability that a primed item will be classified as studied at test (e.g., Jacoby &

Whitehouse, 1989; Whittlesea et al., 1990). Interestingly, across experiments the

magnitude of right-frontal effects was not modulated by priming, supporting the

view that right-frontal old/new effects are not directly related to evaluating the

products of retrieval, but instead reflect a generic marker of decision making pro-

cesses (Hayama, Johnson & Rugg, 2008). More importantly, the data suggest

that changes in performance are not directly related to the operation of famil-

iarity or recollection, as right-frontal effects were found following both forms of

retrieval.

Recently, it has been demonstrated that fluency manipulations can also influence

recollection (e.g., Brown & Bodner, 2011; Kurilla & Westerman, 2008; Taylor

& Henson, 2012). As noted earlier, one line of evidence supporting the idea

of potential interactions between priming and recollection comes from studies

demonstrating that under certain circumstances recollection can operate faster

than familiarity (Dewhurst & Conway, 1994; Gardiner et al., 1999; Henson et al.,

1999). The current findings are consistent with this evidence and go further

by demonstrating that these findings are not merely an artifact of behavioural

methods applied to dissociate familiarity and recollection (Yonelinas, 2002), but

reflect a genuine change in the timing of underlying neural processing related to

recollection, consistent with the findings of Woollams et al. (2008). Across exper-
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iments the onset time of left-parietal effects varied. Under deep encoding condi-

tions differences became apparent between 200-300ms after target onset (Exp.2),

while under shallow encoding conditions differences were apparent within 100ms

of target onset (Exp.3). Taken together, this difference in onset times across

experiments suggests that temporal characteristics of recollection can be highly

variable, but it is clear that priming can elicit left-parietal effects that occur early

and can potentially overlap into the time window normally associated with the

FN400 and N400 effects.

As noted earlier, based on the literature there are a number of possible interpre-

tations of the early onsetting left-parietal effects found here and its functional

significance remains an open question. One potential objection to the current

data would be to argue that masked priming merely facilitates processing of item

information, allowing a retrieval attempt to be initiated earlier in the processing

stream. However, the difference in onset times across experiments, and the fact

that onset times are not proportional to the distance between prime and target

pairings, suggests that this view of the current data is not appropriate. Our

preferred interpretation is that the early onsetting left-parietal old/new effects

reported here reflect a more automatic form of recollection divorced from subjec-

tive experience, supported by studies demonstrating hippocampal contributions

during implicit memory tests in the absence of explicit retrieval (e.g., Daselaar

et al., 2006; Hannula & Ranganath, 2009; Schacter et al., 2004). On this view,

the presence of the repetition primes acted as a proximal retrieval cue, engaging

the first stage of recollection described by Moscovitch (2008).

So far, the current section has focused on discussion of the differences in findings

across experiments in relation to the literature, the remainder of this section

332



Chapter 9. General discussion

will relate these findings to the broad research questions that this thesis set out

address shown below.

Research questions:

1. Do implicit priming and explicit recognition interact?

2. What is the relationship between priming, familiarity and recollection?

The findings of the studies reported in this thesis generally support the view that

priming, familiarity and recollection are independent memory processes with dis-

tinct neural correlates. Interestingly, across the entire series of experiments re-

ported in this thesis, neural correlates of familiarity and recollection were never

present together within a single condition, supporting the view that they oper-

ate entirely independently, and that either process can result in retrieval. More-

over, the current findings demonstrate that the engagement of explicit recognition

signals can be determined or influenced by the outcome of implicit processing,

suggesting that interactions between priming and explicit retrieval processes do

occur during recognition testing. Crucially, priming appears to influence when,

or even if, neural signals previously associated with explicit recognition will be

observed.

As noted earlier, some dual-process theories suggest that common processes may

underlie both familiarity in recognition memory and priming on implicit memory

tests (Jacoby & Dallas, 1981; Mandler, 1980), and it has also been claimed that

familiarity is closely related to conceptual priming (Paller et al., 2007). The cur-

rent data suggests instead that priming acts as a gating mechanism determining

whether or not familiarity will be observed, with only a high degree of semantic
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elaboration engaging neural correlates of familiarity. Moreover, the data clearly

demonstrate that priming is sufficient to support recognition in the absence of

neural signals associated with explicit recognition. In addition, and in contrast

to the bulk of prior evidence, the current findings also demonstrate an interaction

between priming and neural correlates of recollection, with priming reducing the

latency of left-parietal effects.

9.3 Future directions

Although the research reported in this thesis clearly demonstrates interactions

between priming and neural correlates of recollection, the exact nature of this

early onsetting recollection effect remains unclear on the basis of the current

data. While early onsetting left-parietal old/new effects have been reported pre-

viously (e.g., De Chastelaine et al., 2009; Vilberg et al., 2006; Woollams et al.,

2008), it is open to debate whether these effects reflect superior recollection of

contextual information, or whether recollection should be considered a two-stage

process (Moscovitch, 2008), with earlier onsetting left-parietal effects indexing a

more automatic non-strategic form of recollection. Future research should query

this early onsetting left-parietal effect further to establish if it differs in nature

from later onsetting left-parietal effects previously associated with recollection.

Specifically, the addition of an incidental source task to the current design would

help to differentiate between these options.

In addition, future work should attempt to identify factors involved in whether

or not priming will impact memory accuracy. The findings reported here suggest

that changes in the comparative degree of fluency between conditions, due to

manipulating prime-target SOA and including the partial primes in the later ex-
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periments, resulted in changes in performance for primed words. Moreover, the

presence of right-frontal old/new effects was implicated in these changes, sug-

gesting that right-frontal effects may reflect the attribution of fluency to prior

exposure. Right-frontal old/new effects have been reported in a number of recog-

nition memory experiments, but it remains a matter of debate whether they are

related to accuracy (e.g., Hayama et al., 2008; Trott et al., 1999; Wilding & Rugg,

1996). Right-frontal effects were not modulated by priming in the experiments

reported in this thesis, making it difficult to assess on the basis of the current

data exactly how right-frontal activity drives changes in performance.

The data reported in this thesis suggest that N400 priming effects and FN400

old/new effects make independent contributions to recognition. However, Experi-

ment 4 set out to directly test whether FN400 and N400 potentials were indepen-

dent or functionally equivalent, but the results were less than clear as a result of

potential of component overlap between N400 and FN400 potentials. Relatively

few studies to date have directly contrasted N400 and FN400 effects (although

see Voss & Federmeier, 2011). In order to address claims that FN400 potentials

are equivalent to N400 potentials, more research in this area is warranted. How-

ever, the outcome of attempting to contrast these effects in the current thesis

suggests that a novel approach will be required to avoid component overlap, and

that convergent evidence from functional imaging is necessary.

9.4 Conclusion

The aim of this thesis was to explore interactions between priming and episodic

memory using ERPs to investigate the respective contributions of priming, famil-

iarity and recollection to retrieval. The findings from the series of experiments
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reported in this thesis have provided new insights into interactions between prim-

ing and recognition. Importantly, in contrast to the majority of findings in the

literature, the current findings demonstrate the presence of interactions between

priming and recollection, and that mid-frontal old/new effects indexing familiar-

ity are not merely driven by repeated access to semantic information. In addition,

the current series of experiments have also demonstrated that under certain cir-

cumstances, priming is sufficient to support accurate recognition, and does not

necessitate changes in memory performance. Moreover, the data suggest that

priming can act as a gating mechanism, with the engagement of familiarity or

recollection being dependant on the outcome of implicit processing. Overall, the

current data clearly demonstrate that there are multiple potentially interacting

routes to recognition. Investigating the nature of these complex interactions be-

tween implicit priming and explicit recognition will undoubtedly continue to be

a fascinating topic of research for years to come.
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