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ABSTRACT 

Bidirectional Translation, devised by the author, is a 

structured approach to the teaching of addition and subtraction 

which aims to give children greater understanding of 

arithmetical operations. The approach systematically involves 

both: 

the translation of numerical representations into hypothetical, 

real world contexts; 

and 

the extraction of the appropriate numerical operations from 

hypothetical, real world contexts. 

It is this emphasis on translation from and to both the 

numerical representation and realistic contexts which gives 

rise to the name, Bidirectional Translation. 

An experimental group of 90 primary one children were taught to 

add and subtract (within 10) by the method of Bidirectional 

Translation. Post-test comparison of the experimental subjects' 

performance with that of a control group showed significantly 

superior performance on the part of the experimental subjects 

in terms of the utilizability of addition, the evocability of 

addition, the utilizability of subtraction and the evocability 

of subtraction for five different classes of verbal context, 

namely: Part-Part Whole, Separating, Joining, Equalizing and 

Comparison contexts. In all instances the probability of the 



results being chance ones were less than 5% and in most, were 

less than 1%. 

In both the experimental and control groups, most children 

performed better when they were required to utilize concepts 

than when they were required to evoke concepts. Similarly they 

performed better when they were required to add than when they 

were required to subtract. The differences, however, were not 

always significant. 

It is suggested that the effectiveness of the methodology of 

Bidirectional Translation is rooted in a structure which allows 

the child to make his/her thinking explicit and which allows 

the teacher to monitor this. 



CONTENTS 

It may be, that in a thesis of this size, the reader does not 

wish to read everything or, indeed, to read the text in the 

order in which it is written. There follows, therfore, a 

summary of what is in each of the ten chapters. 

Chapter 1 PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA is 

introductory in nature and considers why mathematics should 

have a place in the school curriculum together with some 

examination of why mathematics is generally perceived as 

'difficult'. 

Chapter 2 THE PROCESS PROBLEM AND THE TRANSLATION PROBLEM is an 

attempt to clarify what is meant by problem solving per se and 

how this pertains to mathematics. It is argued that what has 

traditionally been seen as mathematical problem solving in 

schools is TRANSLATION rather than PROCESS problem solving. 

Chapter 3 MATHEMATICAL CONCEPTUALIZATION tries to grapple with 

what this unobservable process might be. In so doing, it 

introduces and tries to make connections between some 

psychological concepts which have been described in the 

literature, namely: evocability, utilizability, intuitive 

intelligence, reflective intelligence and metacognition. 



Chapter 4 THE CONSTRUCTIVIST VIEW is, as the title might 

suggest, a consideration of three Piagetian concepts, namely; 

classification, seriation and conservation, in terms of their 

implications for the teaching of mathematics in school. it 

suggests that Piagetian ideas may have little direct relevance 

for the teacher of mathematics. 

Chapter 5 THE NEO-PIAGETIAN VIEW provides an account of 

mathematical learning which suggests that young children are 

far more capable than Piagetian theory gives them credit for. 

This alternative perspective gives primacy to counting. 

Chapter 6 THE BEGINNINGS OF THE EMPIRICAL WORK explores the 

counting abilities of thirteen primary one children in the 

researcher's own class. The findings show that all of these 

children can count to 10 when there has been no formal input by 

the teacher. 

Chapter 7 THE CONTINUATION OF THE EMPIRICAL WORK develops the 

researcher's investigations with her own class of primary one 

children by teaching them to add and subtract (within 10) using 

the method of Bidirectional Translation, an approach which she 

herself devised. The results are encouraging insofar as the 

children appear to understand what they are doing. 



Chapter 8 THE EXTENSION OF THE EMPIRICAL WORK continues the 

work described in the previous chapter by testing the method of 

Bidirectional Translation experimentally. The design, subjects, 

stimuli, apparatus and procedure are all described. 

Chapter 9 THE RESULTS, as suggested by the title, are 

tabulated, described and analysed. Broadly speaking the 

experimental subjects performed better than the control 

subjects though there are more detailed variations within this 

generalization. 

Chapter 10 CONCLUSIONS FROM THE DATA draw together the findings 

of the previous three chapters in an attempt to explain the 

phenomenon under investigation, namely children's learning of 

the concepts of addition and subtraction. It is argued that 

because the approach to teaching these concepts appears 

meaningful to the children, Bidirectional Translation does not 

conflict with a Piagetian conception of children's learning. 



PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

The Nature of Mathematics and its place in the Curriculum 

Education, formal or otherwise, may be thought of as the 

process of enabling the individual to become an autonomous 

human being. The curriculum is that set of events which the 

individual experiences in the name of formal education. Many 

demands are made on the curriculum for the development of 

certain knowledge, certain skill, certain concepts and certain 

attitudes to have high priority. And what is deemed to be of 

high priority at one point in time may have little significance 

at another. In all of the debate surrounding curricular 

content, it is rarely, if ever, disputed that mathematics is 

important and should be a significant part of the curriculum. 

Why? 

The simple, and simplistic, answer is that mathematics has 

utility. In our society some degree of mathematical skill is 

taken for granted, just as some degree of literacy is. Without 

skill in mathematics and reading a measure of independence is 

lost. However, a more penetrating response to the question of 

why mathematics is deemed important raises philosophical 

questions as to why this particular subject matter has to be 

defended as worthy of conveying to others. 
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PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

Phenix (1964) argues that mathematics is a discipline in the 

Symbolic Real= of Meaning. By this he means that mathematics 

has a commonality with language insofar as language is a 

symbolic system for communication. However, mathematics differs 

from ordinary language insofar as: 

1. it is an abstract means of communication with no necessary 

referents in reality; 

2. its symbolism, designed to achieve complete precision in 

communication, is artificial. 

From this it follows that what is abstract and artificial and 

neither concrete nor pragmatic is not going to be learned in 

some ad hoc, casual fashion. However, since, for Phenix (1964), 

mathematics is such a basic means of 'experiencing' meaning, it 

should be an essential part of the curriculum. 

Hirst (1965) argues that there are certain discrete 'forms of 

knowledge', of which mathematics is one, which are central to 

all but the simplest kinds of human activity. One may not 

always, according to Hirst (1965), be fully aware of how 

influential these 'forms of knowledge' are on one's daily 

functioning but they do define and regulate our lives in the 

sense of extending and elaborating the meaning of human 

experience. The various 'forms of knowledge' (seven in all - 

mathematics, science, morals, aesthetics, religion, human 

sciences, history) are distinct insofar as each has its own 
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PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

system of interconnected concepts and each has its own 

validation procedures. 

It is clear, even from this scant account of Phenix and Hirst, 

that mathematics may be seen as a distinctive way of making 

sense of the world. 

The power of mathematics as a means of representing and 

communicating human experience has, in pedagogic terms, been 

interpreted variously but there are two discernible strands, 

for which the following descriptors are crude and incomplete. 

Historically, there has been the 'old' mathematics; conceived 

of more or less as a list of things to be 'done'. Having 'done' 

long multiplication of money, the teacher then proceeds to 'do' 

fractions or whatever may be next on the list, always 

emphasizing the computational processes as processes and paying 

scant attention to the interrelationships between processes. 

Then there has been the 'new' mathematics which aims for 

'understanding' on the part of the child. To this end there has 

been a flood of structural material designed for use in the 

classroom. Through exploration of the material, the child 

allegedly perceives pattern and regularity, discovers 

procedures, and through investigation and experimentation 

develops a cohesive understanding of mathematics as a dynamic 

body of connected parts. As the former may be restrictive in 

what the teacher must 'do' and the child must learn, so the 
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PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

latter may be so fluid and nebulous as to defy any assessment 

of what has been learned. 

From these very different views of what mathematics teaching 

means, there would appear to- have emerged some sort of 

compromise. Mathematics, as the term is now typically used in 

Primary Education, refers to three distinct but not discrete 

components of Shape, Measurement and Number (Dept. of Ed. and 

Sc., 1979). Shape embraces the notions inherent in spatial 

relationships: height, length, width, - symmetry, perspective, 

scale, two and three dimensional shapes and their properties, 

patterning and tessellations. Measurement means the 

quantification of a continuous amount, such as the weight of 

the sand, the length of the ribbon and so on. Implicit in the 

measurement process is the idea that we can only measure to a 

certain degree of accuracy; which depends on the measuring 

instruments used and the purpose behind the measuring activity. 

Over ontogenetic time, at least three stages in the development 

of an understanding of measurement can be distinguished: 

1. comparison (ordering, equality, inequality, conservation, 

estimation, approximation); 

2. use of arbitrary units (tinfuls, cubits, lentils, pendulum); 

3. use of standard units, their notation and interpretation. 

Number refers to the quantification of discrete amounts. This 

demands a computational precision based on sound 
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PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

conceptualization of counting, place-value, the four processes 

of number, integers, fractions, proportion and probability. 

Clearly mathematics teaching is now conceived of as more than 

just computation. It is now seen as a part of one's general 

education, because even the most cursory reflection on what is 

a brief and incomplete taxonomy of content, draws attention to 

the importance of mathematical ideas in our daily lives. These 

ideas are basic to our understanding of, and competent 

functioning in, our environment as is exemplified in being able 

to tell the time, count our money, calculate the amount of 

curtain material needed, measure recipe ingredients, read 

timetables, and deal with charts, graphs and diagrams. This, 

however, is not to suggest that mathematics is merely a form of 

'social arithmetic' for which mastery of the most basic skills 

is sufficient. While on the one hand, mathematical content (as 

just described) does have an immediate utility, what gives it 

that utility seems to be rooted in the mathematical morphology, 

as the following section will try to explicate. 

Mathematics as a Means of Representation 

Mathematics is not only a body of knowledge. It is a process. 

Mathematics makes extensive use of symbolic notation and many 

different situations can be expressed by the same mathematical 

statement. For example, the addition and subtraction 
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PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

relationships between the numbers 3,4 and 7 (using them 

positively: 3+4-7,4+3=7,7-3=4 7-4=3) can, according to 

Carpenter & Moser (1982), be classified into at least six types 

of verbal contexts which in turn can describe potential real 

life situations: 

Type 1- Joining 
Jean has 3 sweets. She buys 4 more. How many sweets does she 
have now? or Jean has 3 sweets. How many more does she need to 
have 7 sweets altogether? or Jean has some sweets. She bought 4 
more. Now she has 7. How many sweets did she have to start 
with? 

Type 2- Separating 
John has 7p. He gave 4p to Bob. How much money has he left? or 
John has 7p. He lost some money. Now he_has 3p left. How much 
money did he lose? or John has some money. He gave 4p to Bob. 
Now he has 3p left. How much money did he have to start with? 

Type 3- Part-Part-Whole 
There are 3 girls and 4 boys in the group. How many children 
are there in the group altogether? or There are 7 children in 
the group. 4 of them are boys. How many are girls? 

Type 4- Comparison 
There are 3 girls and 7 boys in the group. How many more boys 
are there in the group? or There are 3 girls in the group. 
There are 4 more boys than girls in the group. How many boys 
are in the group? or There are 3 girls in the group. This is 4 
less than the number of boys in the group. How many boys are in 
the group? 

Type 5- Equalizing - Add On 
There are 3 boys and 7 girls in the group. How many boys should 
join the group so that there are the. same number of boys and 
girls? or There were 3 boys in the group. 4 more boys joined 
the group. Now there are the same number of boys and girls in 
the group. How many girls are in the group? or 7 children each 
want a carton of milk.. Mary gave out 3. more cartons of milk. 
How many cartons had she to put out to begin with? 

Type 6- Equalizing - Take Away 
There are 3 cups and 7 saucers on the table. How many saucers 
should I take away so that there are the same number of cups 
and saucers on the table? or There were 7 knives on the table. 
I put 3 of them away so that there would be the same number of 
knives as forks. How many forks were on the table? 
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PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

That different real life situations can be mathematically 

synonymous has important implications. Because the same 

mathematical statement can apply to more than one situation, 

results which have been obtained in one situation can be seen 

to apply to a different situation. Thus not only can 

mathematics be used to explain what has happened, it can be 

used to predict what will happen in a situation not yet 

experienced: as in how much petrol will be needed for a car 

journey not yet undertaken, or how much carpeting will be 

needed for the new house. This dual function of mathematics to 

explain and predict means that mathematics is an enormously 

powerful means of mental representation: that is, of how 

information is taken in, coded and remembered such that people 

behave on the basis of informed choice. As Lovell (1979) 

states, in mathematics lie "the origins of the concepts with 

which we structure the world". 

The Disquiet about Mathematics 

In spite of the central importance of mathematics in our lives, 

attitudes to mathematics appear to be negative. The authors of 

The 10 to 14 Report (The Consultative Committee on The 

Curriculum, 1986) point out that "many adults find little 

application for the mathematics of their schooldays in later 

life" and that "to claim to be 'no good' at mathematics is to 

invite sympathy rather than derision". Bell et al (1983) in 
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PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

their review of school children's attitudes to mathematics 

report that: 

1. the` utility of mathematics was not always readily 

perceived by pupils; 

2. "throughout school a decline in attitudes to 

mathematics appears to go on". 

As well as negative attitudes towards school mathematics, there 

is concern as expressed in official publications and by the 

public at large - about the low levels of mathematical 

competence of many children both in primary and secondary 

schools. Brown (1979) cites two sources of evidence, Rees 

(1972) and Levy (1977), which suggest that there may be at 

least some justification for the criticism. Bell et al (1983) 

argue that if 'falling standards' is a fact, then the 

phenomenon owes as much to social and cultural factors as it 

does to the reality of mathematical attainment. Moreover, Bell 

et al (1983) point out that the 'falling standards' trend is 

world wide. 

However, as McIntosh (1977) points out, the dissatisfaction 

with the mathematical understanding of the young has a long 

history. As far back as the turn of the century reports have 

been published which suggest that while children may be 

mechanically accurate in computation, they were unable to apply 

their skills in contextualized situations. McIntosh goes on to 
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PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

list the recommendations for improvement in mathematical 

understanding which were being suggested sixty to one hundred 

years ago! They were as follows: 

1. Don't start formal work too early. 
2. Use materials and start from practical activities. 
3. Give children problems and freedom initially to find 
their own methods of solution. 
4. Children must have particular examples from which to 
generalize. 
5. Go for relevance and the involvement of the child. 
6. Go for reasons and understanding of processes. Never 
give mechanical rules. 
7. Emphasize and encourage discussion by children. 
8. Follow understanding with practice and applications. 

McIntosh's contention is that although there is not evidence of 

falling standards there is nevertheless a serious problem: 

While the above mentioned list of recommendations is almost 

universally agreed in principle, "their translation into 

accepted and practical terms for the majority of primary 

teachers has not yet come about". 

The researcher's experience of 20 years of teaching children 

between the ages of 5 and 14 years would, broadly, agree with 

McIntosh's view that mathematics education has emphasized a 

'skills-in-a-vacuum' approach. The methodological route for 

presenting any mathematical topic goes something as follows: 

1. cursory reference to concrete material; 

2. graded presentation of, and practice in, what Brown 

(1979) refers to as "algorithmic skills" with the 'bright' 

children completing more and more examples to keep them 

busy (this variously being referred to as reinforcement, 
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enrichment or extension exercises! ), while the 'dull' 

children struggle to apply the formula(e) to a few 

'simple' examples; 

3. application of algorithmic skills to 'problems' 

involving numerical computation: this stage being tacitly 

recognized as the prerogative of the 'bright' children. 

Nor is this account of mathematics teaching idiosyncratic. 

Skemp (1971) claims that: 

What is inflicted on all too many children and older 
students is the manipulation of symbols having little or 
no meaning attached, according to a number of rote- 
memorized rules. 

This, in spite of official arguments that the "main reason for 

teaching mathematics is its importance in the analysis and 

communication of information and ideas" and that "the mere 

manipulation of numerical or algebraic symbols is of secondary 

importance" (Department of Education and Science, 1985). 

If this method of teaching were successful insofar as it 

resulted in people being mathematically competent and 

confident, the end might justify the means. But the difficulty 

created by this method of teaching is clearly delineated by 

Skemp (1971): 

Learning to manipulate symbols in such a way as to obtain 
the approved answer may be very hard to distinguish, in 
its early stages, from conceptual learning. The learner 

cannot distinguish between the two if. he has no 
understanding of mathematics. And all the teacher can see 
(or hear) are the symbols. Not being a thought reader, he 
has no direct knowledge of whether or not the right 
concepts, or any at all, are attached. The way to find out 

Chapter 1 Page 17 



PRIMARY SCHOOL MATHEMATICS AS A PROBLEM AREA 

is to test the adaptability of the learner to new, though 
mathematically related, situations. Mechanical computation 
does not do this. 

Thus it would appear that there are two distinct facets to 

mathematics: on the one hand there is the manipulation of 

symbols in approved and recognized ways, and on the other there 

is conceptual learning. Most teaching attention appears to be 

addressed to the former. Even with the advent of SPMG Infant 

and Primary Mathematics (1981) and of Ginn Mathematics (1983), 

the two most recent innovations in Scotland, maths education in 

the primary school seems to be based on the premise that "if a 

child repeats a meaningless process enough times it will become 

meaningful" (Holt, 1964). This is not to say that teachers are 

necessarily satisfied with this approach, nor that they should 

be, but, given the constraints of time; of policy at school, 

regional and national level; and the emphasis on providing a 

broad and balanced curriculum in the primary school; it is as 

much as many teachers can do to try to implement the schemes or 

programmes of work which they may feel have been foisted upon 

them. 

The Problem 

The problem with the 'skills-in-a-vacuum' approach to maths 

education seems to be rooted in two questionable assumptions: 

firstly, the assumption that there is a necessary, 

unidirectional progression from using concrete material through 
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learning algorithmic skills to applying the skills in so called 

problems and, by extension, the second assumption, that 

conceptual understanding of, and computational mastery in, a 

mathematical task are one and the same thing. 

Dealing with these assumptions in reverse order, what does it 

mean to have conceptual understanding of and computational 

mastery in a mathematical task? 

Conceptual understanding refers to a network of meaningful 

relationships which underpin the performance of skills. 

Conceptual understanding is exemplified by the ability to 

remedy a memory failure and go back to 'first principles' 

and/or adapt a skill or procedure to a new situation. As Bell 

et al (1983) point out: 

The real importance of the conceptual structure is that as 
a richly inter-connected network it constitutes a stable 
memory structure, in which any particular link which fades 
is relatively easily reinstated. 

They go on to say that: 

The learning of a new concept or relationship implies the 
addition of a node or link to the existing cognitive 
structure,. thus making the whole, if anything, more stable 
than before. 

Computational mastery, on the other hand, refers to sets of 

useful tools in the form of standard procedures. These tools 

are the skills which have been distilled out of a variety of 

diverse strategies. They are the final, shorthand versions 
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which mathematicians through their extensive experience have 

deemed useful ways of attacking the calculations required in 

mathematical tasks. To be able to perform these skills requires 

remembering what to do first, next, last and so on in any given 

' mathematical operation. As Bell et al (1983) point out, "the 

learning of a skill requires the establishing of a set of more 

or less arbitrary links between the steps". 

Relatively recent research by Rees (1972) and Brown (1979) has 

shown that the identification of the mathematical operation 

(that is, having a conceptual understanding of what is 

required) and its computation (that is, of being able to effect 

the algorithmic skill) have a fairly low positive correlation. 

In other words, being able to perform the algorithm need not 

imply any conceptual understanding of what one is doing and 

conversely, understanding does not guarantee computational 

proficiency. Similarly, Begle (1979) concludes that 

improvements in computation and in higher level acquisitions 

(comprehension, application and analysis) develop relatively 

independently of each other, with not very much interaction, 

and that "computation achievement is something quite different 

from achievements at higher cognitive levels". 

Since conceptual understanding and computational mastery are 

not one and the same thing, it now remains to turn to the first 

assumption, that there is a necessary, unidirectional order 
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from concrete experience through repetitive practice to the 

application of mathematical skills 
, 

in potentially real 

situations. 

In using concrete material, one is attempting to illuminate 

what otherwise might be too abstract for comprehension. It was 

Bruner (1966) who said that "any domain of knowledge can be 

represented in three ways: enactive representation (actions), 

iconic representation (pictures) and symbolic representation 

(symbols)". While Bruner pointed out that the younger the child 

the more likely he/she would be to use enactive representation 

and later progress through iconic to symbolic representation, 

he did also stress that "actions, pictures and symbols vary in 

difficulty and utility for people of different ages, different 

backgrounds, different styles". Thus 
. concretization of a 

thinking task is a strategy which can facilitate the thinking 

process. It is not something that must. immutably be regarded as 

a pre-requisite to further, sophisticated thought but should, 

rather, be regarded as an integral part of thinking which may 

at times be useful. 

Empirical support for this argument can be found in at least 

one source. The classic Wason four-card-selection task (Wason & 

Shapiro, 1971) requires subjects to solve the problem of naming 

those cards and only those cards which need to be turned over 

to determine whether the rule is true or false. When 
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presented in the abstract form of 'if a card has a vowel on one 

side, then it has an even number on the other', subjects 

frequently cannot solve the problem but when the task is 

presented in the concretized version of 'if I go to Manchester, 

then I travel by train'; then the majority of subjects can 

solve the problem. More interestingly, however, is the finding 

of Johnson-Laird et al (1972) that practice on a concretized 

version does not transfer to subsequent abstract presentation. 

While for Piaget (whose work will be considered in subsequent 

chapters) intellectual growth consisted of a series of 'stages' 

through which the individual has to pass before being capable 

of mature thought, for Bruner et al (1966) the growth of the 

human intellect is a successive mastering of the three forms of 

representation. However, for neither Bruner nor Piaget is there 

the suggestion, not even the implication, that as the 

individual takes on greater sophistication in thinking he/she 

never 'regresses' to less sophisticated modes of thought. Both 

acknowledge that the typically 'mature' thinker will, in 

situations for which more 'immature' modes of thought have not 

been fully worked through, revert to less 'mature' modes of 

thought when abstract and symbolic forms do not serve the 

purposes of the individual. The 'mature' thinker who does not 

concretize a thinking task does not do so because he/she does 

not need to. The 'mature' thinker who, on the other hand, will, 
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in certain situations, concretize a thinking task, does so 

because he/she needs the support of concretization. 

The utility of concretization, then, is as an aid to thinking 

and reasoning. As an end in itself, the use of concrete 

material probably has little value. If, in using concrete 

material, there is no attempt to strip. the 'noise' from the 

activity and extract the underlying 'mental meaning', it seems 

unlikely that the concretization has been of much benefit. It 

follows, therefore, that rather than view concretization as a 

necessary pre-requisite to thinking, it would be more 

appropriate to regard concretization as a prop to thinking, a 

prop which becomes less and less important with increasing 

maturity in thought but which may nevertheless be called upon 

from time to time. 

Application or Abstraction? 

If we can argue that the, traditional importance placed on 

concrete materials (both in terms of their intrinsic value and 

in terms of temporal positioning) is largely mythical, can the 

same be said of the emphasis placed on algorithmic skill 

practice followed by the application of such skills in problem 

form? It is certainly an assumption (albeit tacitly held) that 

"verbal problems are difficult for children of all ages" 

(Carpenter & Moser, 1982), and that children must learn the 
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necessary operations "before they can solve even simple verbal 

problems" (Carpenter & Moser, 1982). 

But someone who lacks the skill to compute the division 

operation suggested by the task, 'John wants to share 9 sweets 

equally amongst himself, Tom and Harry, so how many sweets will 

each boy get? ' may nevertheless be able to carry out the task. 

The task could be correctly effected by sharing out: by 

constructing a one-to-one correspondence between boys and 

sweets or, at a more advanced level, by repeated subtraction. 

Very young children can, and do, solve simple verbal problems 

using their own invented /developed procedures (Carpenter & 

Moser, 1982; Starkey & Gelman, "1982). This would suggest that, 

contrary to folklore, children do not learn maths and then 

apply it but rather, from their experiences of applications in 

the real world they abstract the mathematical properties from 

the applications. Clearly such a proposition is too simplistic 

to account for the learning of 'pure' and advanced mathematics, 

but for the initial introduction to the formalisms of this 

means of communication, it does have an appeal. 

The intuitive appeal for the view that young children may 

abstract rather than apply their mathematical knowledge gains 

some support from the following analysis. 
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The experienced, practising teacher will in all likelihood have 

noticed children's mathematical behaviour, when the children 

are required to solve verbal problems. Something approaching 

one or more of the following patterns may have been observed. 

First there are the children who never really become engaged 

in the task. They state that they don't understand, don't know 

what to do, don't want to explore the task. They may try to ask 

the teacher or somebody else what the solution/answer is. This 

is the case of children, as they themselves have clearly 

indicated, not being able to conceptualize what is required, 

within the constraints of the given task; in which case the 

children are being asked to engage in a task which, to them, is 

meaningless when, instead, they should be engaged in some 

kind(s) of work which is a precursor to the task in hand. For 

these children, the application of mathematics does not seem a 

viable proposition! 

Next there are the children who engage in the task using what 

the teacher might regard as an 'immature' approach (even when 

these children have allegedly been taught more sophisticated 

algorithms), such as carrying out a division task by 

constructing a one-to-one correspondence. For such children it 

is vitally important that they be allowed to become confident 

in carrying out tasks by this fashion. When thoroughly secure 

in their own methods, the possibility of the task being 

effected more economically by an alternative method, such as, 
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say, repeated subtraction, can be suggested and/or 

demonstrated. And finally, when the children begin to make the 

transformation for themselves into symbolic representation, the 

algorithmic skills can be explicated for potential application. 

For such children their initially 'immature' approach is a 

function of their understanding of the concept of division and 

until such times as they can appreciate the utility of the more 

conventional solution procedures, it cannot be said that they 

are applying what they have been taught (but which, it seems, 

they have not learned! ). 

Finally, there are the children who engage in the task and 

isomorphs of the task with confidence, using the most economic 

and appropriate algorithmic skills. Such children have 

developed a 'higher-order principle': a combination of 

understanding and rules which are stored in memory and which 

can be retrieved to address similar tasks in a quick, routine 

way. While these children are applying their knowledge, it is 

not at all clear that the application follows the abstraction. 

It just appears that way now that application and abstraction 

have become integrated with each other. 

The children who exhibit the third type of behaviour are a 

'pleasure' to teach. They probably don't have much need of the 

teacher anyhow! The children who exhibit the first type of 

behaviour are viewed by the teacher as having problems and in 
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need of remedial help which the teacher has no time to give 

them! 

But it is the children who are exhibiting the second type of 

behaviour who are most interesting from the point of view of 

developing the children's mathematical thinking. These children 

are making very clear to the teacher their level of immaturity 

or sophistication in mathematical thinking. This unwitting 

exposure by the children is the very phenomenon which will 

allow the sensitive teacher to facilitate the children's 

development and one which teachers should be at pains to 

nurture. 

From the above discussion, it seems that the assumption that 

algorithmic skills practice necessarily precedes their 

application is false. The obverse suggestion, that skills 

practice should follow experience in verbal problems, is just 

as unsatisfactorily extreme: one cannot apply skills which one 

has not learned. The possibility emerges that there should be 

some sort of compromise, not in the sense of reducing our 

expectations of pupils (since many would argue that these are 

already too low), but in the sense of strengthening the links 

between the algorithmic skills and the mathematical 

understanding. The relationship between the two should not be 

viewed as unidirectional, but rather as bidirectional. 
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The content of this first chapter has, perhaps, painted a 

somewhat depressing picture of the current state of 

mathematical achievement. If this phenomenon of low 

mathematical achievement were easy to understand, then it would 

presumably be possible to attenuate the worst effects of this. 

However, the issues involved are complex. The remainder of this 

thesis is an attempt to analyse what the issues might be and 

further, an attempt to address them. Chapter two considers the 

nature of 'problems' and 'problem solving' in relation to 

school mathematics. 

In summary: 

(i) though mathematics is an important constituent in our 

competent functioning in the world, mathematics teaching is 

viewed, retrospectively, as being of little value, by many 

people; 

(ii) children have, historically, found it difficult to apply 

computational skills in contextualized situations; 

(iii) this may be a function of teaching methodologies which 

subscribe to limited behavioural objectives and aim at 

'transmission' models of learning; 

(iv) conventional assumptions underlying mathematical learning 

are now held to be questionable and thus the time is ripe for 

revising such assumptions in the light of alternative teaching 

strategies. 
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The researcher's interest in formal arithmetical competencies 

in children, springs from her sympathy with the literature 

(Brown, 1979; Cockcroft, 1982; Bell et al, 1983; Hughes, 1983;, 

Hughes, 1986) in which it is argued that children see little if 

any relationship between arithmetical operations and their 

applications in the real world; and from her extensive 

experience in primary education where the children's lack of 

understanding of the significance and/or utility of mathematics 

was, sadly, evidenced on an almost daily basis. Essentially, 

the point of concern is that, crudely put, children may know 

how to compute but this does not ensure that they know when to 

compute. 

This phenomenon of relating the how and the when in mathematics 

is frequently referred to as problem solving. As Polya (1981) 

points out, mathematical "know-how" can be thought of as the 

ability to solve problems. The general consensus of alarm 

expressed by many researchers (Ballew & Cunningham, 1981; 

Threadgill-Sowder & Sowder, 1982; Wollman, 1983; Moyer et al, 

1984; Fischbein et al, 1985) about children's poor problem 

solving performance is neatly summed up in the following 

quotation by Carpenter et al (1980): 

If it were. necessary to single out one area that demands 
urgent attention, it would clearly be problem solving. At 
all age levels, and in virtually every content area, 
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performance was extremely low on exercises requiring 
problem solving or application of mathematical skills. 

it is, however, the present author's contention that great care 

should be taken in using the terms, PROBLEM and PROBLEM 

SOLVING; which should not be conflated with the term, 

APPLICATION OF MATHEMATICAL SKILLS. The remainder of this 

chapter then, is concerned to make the distinction between the 

two clear, by arguing through negative example that problem 

solving is much more than the application of mathematical 

skills, but that the application of mathematical skills is, in 

itself, of enormous importance. This strategy may seem clumsy 

and laborious but it is felt necessary, by this author, to make 

the distinction between problem solving and application of 

mathematical skills absolutely clear. 

Firstly, what is meant by the terms, PROBLEM and PROBLEM 

SOLVING? 

A problem is a hindrance, a blockage which prevents us from 

easily or immediately realizing an objective. Newell & Simon 

(1972) define a problem as a situation in which a person wants 

something (the goal state) but does not know immediately how to 

achieve the goal state, given his/her present conditions (the 

initial state). 
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Problems are pervasive and various. They can be: 

large - how to deal with drug abuse; 

small - how to locate one's misplaced spectacles; 

short range - how to get into the car when the keys are locked 

inside; 

long range - how a spinal injury victim can learn to walk 

again; 

well defined and specific - how to calculate how much wallpaper 

is needed for the sitting room; 

general and poorly defined - how to teach children to become 

mathematically effective. 

Problems are thus to do with the actuality of our being. They 

are part of our individual and corporate reality and manifest 

themselves in the context of a person's or people's cognitive 

and affective constructions of reality. Simplistically put, 

this means that if one does not construe a given situation as 

being problematic - either through lack of interest or lack of 

perception - then there is no problem for that person! Equally, 

what is a problem for a person today may not be a problem 

tomorrow because one's perceptions of the same set of 

conditions have changed. More than that, however, if one knows 

immediately how to proceed and how to effect a solution when 

faced with a set of conditions, one is not faced with a 

problem. Instead, one is faced with an exercise, a task or even 

just a chore. Yet it may be that that exercise, task or chore 
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was once a problem given that when confronted with a set of 

conditions for the first time we will, to a greater or lesser 

extent, be novices in how best to proceed. The inter-dependence 

of problem and problem solving is reflected in the terms being 

used interchangeably. Problem solving is the need to do 

something about what is perceived as a problem. Conversely if 

there is no problem there need be no problem solving activity. 

As has been implied above, problem solving is goal directed 

behaviour to effect a solution to what is seen as personally 

challenging to the individual. The individual's engagement 

with the problem, therefore, requires the person to make 

judgements, to reason, to understand, to remember, to pay 

attention; all of which can be described as thinking processes. 

Such thinking processes are active (in the sense that one has 

to do them personally - they cannot be done for one), 

exploratory (in the sense that at any point they can be 

abandoned - all decisions are tentative and subject to 

revision), and experienced-based (in the sense that one 

probably does not think about things one cannot conceive of). 

Thinking is a cognate human activity. It is reasonable, 

therefore, that problem solving or thinking should feature 

large in the formal education of the individual. 

But what are the implications of such claims for mathematics 

teaching? 
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One implication is that for the learner a range of choice and 

discretion over the mathematical tasks he/she engages in might 

be helpful. The teacher, quite understandably, need not 

necessarily be able to determine what will, or will not, truly 

engage the learner. Nevertheless, the teacher must manage the 

children's learning such that, as Burton (1980) points out; 

The mathematical task must pose a question which is 
intriguing or meaningful to children of the relevant age. 
The question need not always be real in the sense of being 
environmentally based since it has been found that 
children get greatly involved and achieve high 
satisfaction from cognitive challenges of the puzzle 
variety. The important factor is that the question is so 
posed that there is the chance for it to become their own. 

Another implication is that as a result of the task the 

learner's thinking should have been facilitated. In some way or 

ways the learner should 'know' more at the end of the task than 

he/she did at the beginning. This 'knowledge' is not so much of 

the declarative variety of 'knowing that' as of the procedural 

variety of 'knowing how', such that the learner is less 

dependent than previously on rigid algorithms and restrictive 

heuristics as strategies for problem solution. For Burton 

(1980), this will happen provided the task "calls out a range 

of explicit problem solving skills and procedures which are 

reinforced during the problem solving process". 

According to Burton (1980), the skills are to do with 

"comprehension, transformation and communication". These skills 
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are divided into two categories, representational skills and 

information analysis skills. 

Representational. skills are those which facilitate the 
construction and/or use of different modes of presentation 
and the appropriate choice of mode: 
1. Linguistic; 
2. Pictorial; 
3. Concrete; 
4. Symbolic; 
5. Translation; 
6. Modelling. 

Information analysis skills are those of collecting, 
organizing,. analysing and presenting information: 
1. Using representational skills to identify data and 
information; 
2. Making knowns and unknowns explicit; 
3. Using systematic arrangement of information; 
4. Presenting data. 

Burton's procedures for problem solving are the methods of 

tackling a problem such that the problem is moved into the 

domain where skills can be applied. The procedures are seen as 

being dynamic and are divided into three categories: 

Entry procedures are those which enable the solver to get 
to grips with the problem. They are the mechanisms which 
expose the problem and make it amenable to attack. They 
include techniques such as trial and error, defining of 
terms and relationships, information ordering and so on; 
Attack . procedures move the problem towards solution, 
although not always successfully. They include techniques 
such as working backwards, trying related problems, trying 
special cases, using empirical argument and the systematic 
control of variables; 
Extension procedures attempt to answer the question, 
'where do we go from here? '. They increase the solver's 
understanding of the problem' and help him to place the 
problem in a known context or to develop understanding of 
a new context. Extension procedures include generalisation 
to a class of problems, finding isomorphic problems and 
creating new problems. 
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Burton (1980) suggests that problem solving is a means by which 

mathematics can be pursued. At the same time she points out 

that the skills and procedures which are required to solve 

problems are not the exclusive preserve of mathematics but are 

appropriate to "other experimental activities". This type of 

activity emphasises the thinking processes for obtaining 

solutions. It demonstrates the need for, and gives practice in, 

understanding problems, developing and carrying out solution 

strategies, and evaluating outcomes. As such these problems are 

what Charles & Lester (1984) would describe as PROCESS 

PROBLEMS. 

If PROBLEM SOLVING is a process and the PROBLEMS to be solved 

are process problems, how does this tie up with typical 

problems in mathematical textbooks? Let us consider the 

following examples: 

example 1 Marty saw 59 old cars and 38 new cars. How many 
did he see altogether? (Ginn Mathematics, 1983); 
example 2 In a 500 kilometre stock car race all 17 
starters were able to finish. How many kilometres were 
driven in all? (Ginn Mathematics, 1983); 
example 3 There are 12 classes in Marshall Primary School. 
Each class has 34 pupils. If 37 pupils are absent, how 
many pupils are present? (Ginn Mathematics, 1983); 
example 4 How many lemonade bottles, each containing 1.55 
litres, can be filled from a tank which holds 372 litres? 
(S. P. M. G., Heinemann, 1981). 

It was suggested earlier that, for the learner, the element of 

choice might be facilitative. In the typical situation, in 

schools, the only person likely to be making the choice as to 
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whether or not the learner would be addressing any of the above 

four examples would be the teacher! It was further argued that 

problem solving enabled learning by extending comprehension and 

communication. It is not at all clear that, in the four 

examples above, communication and comprehension are being 

extended particularly if we apply some intuitive analysis of 

what the child is possibly doing. 

These examples came from children's textbooks, therefore it is 

reasonable to assume that the children would be required to 

read the problems for themselves. There is nothing wrong with 

making reading demands of the learner provided he/she can read. 

Reading involves more than being able to decode words. It means 

the skill of extracting meaning from words written on a page, 

the competent performance of which involves bringing to the 

text what knowledge one already has of a topic (Goodman, 1967; 

Ryan & Semmel, 1969). If the learner's reading skill is not 

commensurate with the structural/lexical/contextual complexity 

of the text, then the learner cannot begin to think 

mathematically, but this does not mean that the learner could 

not address the problem if it were presented in some other 

medium. In other words, what is being argued here, is that in 

textbook type mathematical problems the variable of reading may 

be given a place of undue importance. 
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A second. demand being placed on the learner is that he/she has 

to translate the linguistic expression into mathematical 

symbolic notation. This means having some sort of conceptual 

awareness of the task. Conceptual awareness is shown by the 

ability to remedy a memory failure and go back to first 

principles and/or adapt a skill or procedure to a new 

situation. In the developing child, the concept will be 

available to a greater or lesser extent. For example he/she 

might correctly solve the problem, 'Jim has 3 marbles and his 

friend gave him 4 more. How many marbles does Jim have now? ' 

but not be able to solve example 1 cited above because, as yet, 

the learner's understanding can only be applied to small 

numbers (Flavell, 1971; Gelman & Gallistel, 1978; Hughes, 

1986). This raises the possibility that the learner cannot 

make the problem his/her 'own', cannot mentally represent the 

problem to him/her self, in which case he/she does not 

understand what is required and therefore cannot begin to 

proceed. In other words, what is being argued here is that 

textbook type mathematical problems may be too restrictive, so 

that instead of opening up possibilities for exploration and 

investigation the stimulus material 'blocks' the child. 

A third demand made of the learner is that he/she should be 

able to activate the appropriate algorithm and perform the 

necessary computation correctly. This is, after all, the 

Chapter 2 Page 37 



THE PROCESS PROBLEM AND THE TRANSLATION PROBLEM 

purpose of the textbook type mathematical problems - to 

identify what is required and do it! 

Textbook type mathematical problems are then of a different 

order altogether from PROCESS PROBLEMS. Textbook type 

mathematical problems require the child to identify and 

accurately effect the relevant algorithm(s). These problems are 

what Charles & Lester (1984) would describe as TRANSLATION 

PROBLEMS because they involve translating the given information 

into numerical notation. Additionally, these translation 

probleas can be thought of as simple (the familiar one step 

problem that can be solved by adding, subtracting, multiplying 

or dividing as in examples 1,2 and 4) or complex (multiple 

step problems requiring two or more operations to find the 

solution as in multiplying and then subtracting in example 3). 

Such translation problems as are typically found in mathematics 

texts, and are often referred to as problems, do not then 

involve problem solving in the sense of process problem solving 

described above. This study is not concerned with investigating 

the process problem. It is, however, very much concerned with 

the translation problem. This is not to say, however, that the 

process and translation problems are mutually exclusive. One 

way of describing the relationship is to use the analogy of 

Gagne's (1977) learning hierarchy. This is a system of 

increasingly more complex learning processes, in which lower 
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levels of learning are prerequisite to higher levels. From the 

'top' the levels of learning are: 

Problem Solving 

Principles 

Concepts 

Discriminations 

Stimulus-Response Connections 

Accordingly, what constitutes a translation problem is classed 

as being at the conceptual level. This is subordinate to, and a 

necessary precursor of, problem solving per se, "a process by 

which the learner combines previously learned elements of 

knowledge, rules, techniques, skills and concepts to provide a 

solution to a novel situation" (Orton, 1987). In other words, 

the process problem subsumes the translation problem. 

The translation problem is, in effect, the "application of 

mathematical skills" (Carpenter et al, 1980). The translation 

between a verbally described situation and the appropriate 

symbols is an important part of process problem solving. 

However, such translation is also an incomplete 

characterization of process problem solving. Nevertheless, the 

translation is of fundamental importance in the understanding 

of mathematical operations. Without the ability to make the 

translation, there is no conceptual understanding of the 

operation in question. As Vergnaud (1982) points out: 
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Concepts and symbols are two sides of the same coin and 
one should always take care to view students' use of 
symbols in the light of their use of concepts. In other 
words the ability to solve problems in natural language 
issued from ordinary social, technical or economic life is 
the best criterion of the acquisition of concepts. 
Reciprocally, it is essential to know how mathematical 
symbolization helps students. 

Typically, the failure to successfully perform a translation 

problem is attributed to reading deficiency. This reading 

deficiency may be a generalized, cross-curricular one or it may 

be one arising out of what Kane (1967) calls Mathematical 

English, "a hybrid language composed of ordinary English 

commingled with various brands of highly stylized formal symbol 

systems". Kane (1970) believes that: 

Mathematical English and ordinary English are sufficiently 
dissimilar that they. require different skills and 
knowledge on the part of the readers to achieve 
appropriate levels of reading comprehension. 

Because, for whatever reason, the child cannot 'read' the 

problem but can 'do' the arithmetic, he/she may be allowed as 

Glenn (1978) points out, to complete page after page of 'sums' 

omitting those parts which use number in a verbal context. The 

result is that the child "may never learn to relate the symbols 

effectively to situations involving number" (Glenn, 1978) and 

may therefore "not develop a sense of number" (Glenn, 1978). 

Unwittingly the teacher is widening the gap between numerical 

representation and its possible real world application when 
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conceptual understanding of an arithmetical operation requires 

that the two be closely linked if not intermeshed. 

" If, for example, a child can perform the computation, 9 divided 

by 3 when it is presented as 9: 3 but cannot find the answer 

when the same operation is presented as 'Mary shares 9 sweets 

among her three brothers. How many sweets does each boy get? ' 

then such a child does not even have the most rudimentary 

concept of division (although he/she may have some 

computational skill in the division process) because having a 

concept means being able to apply associated skills in new 

situations or, to put it another way, being able to generalize 

from the learned situation to new contexts. Leaving aside the 

issue of whether or not the child can read the translation 

problem, the child's ability to address the translation problem 

in any purposeful way seems' to be crucially dependent on 

his/her having the appropriate concept as part of his/her 

cognitive structure. The child who can 'do' the translation 

problem has some sort of conceptual understanding of the 

mathematical content, whilst the child who cannot (and there 

are many of these, as teachers know intuitively and research 

has substantiated) would appear to be being asked to do 

something for which he/she is not equipped. 

This failure to conceptualize the mathematical content is not 

restricted to very young children. Brown (1979) for example, 
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found that one third of a representative sample of 1089 

children aged 11 to 12 did not recognize that a multiplication 

algorithm was required in the problem, 'An oven tray for 

cooking little cakes will hold 56 cakes. A baker fills 28 

trays. How many cakes will he cook? ' She also found that when 

children were asked to interpret the notation in terms of a 

verbal context, less than one third of them could think of any 

practical problem they could solve by multiplying 56 and 28. 

Clearly, some type of teacher intervention is required to 

enable children to make the links between computation and its 

application. The lack of skill application is further evidenced 

in Hughes's (1986) work where he found that while small 

children can very ingeniously represent quantity, "few managed 

to represent addition and subtraction" and even then, the "few" 

made no effective use of conventional operator signs, in spite 

of the fact that "they were using the formal symbolism of 

arithmetic every day in their workbooks". For example, although 

children were experienced in completing operations such as 5-3- 

or 2+4s, when they were asked to show the 'dynamic' nature of 

addition and subtraction, to show that an initial state had 

been changed, as in 'First we had two bricks and then we added 

two more', the most common response was to show the final 

quantity alone without reference to the action that had been 

carried out. 
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It cannot be conceded, however, that all types of teacher 

intervention (whatever they may be) are enabling to the child. 

Carpenter et al (1981) argue that before children have had 

"formal instruction" in addition and subtraction they have a 

high rate of success in solving addition and subtraction verbal 

problems. They conclude: 

Very few of them used the wrong operations in their 
solutions. Since this error has been observed primarily 
with older children who have already experienced formal 
instruction in addition and subtraction, it may actually 
be a result of learning symbolic representations. Because 
the operations are initially learned outside the context 
of verbal problems, they have no basis for using their 
natural intuition to relate the problem structure to the 
operations they have learned. In other words, their 
natural analytic problem-solving skills are bypassed, and 
they too often resort to relying on superficial problem 
characteristics to identify the correct operations. This 
may result not only in a superficial concept of addition 
and subtraction but also a decline in general problem 
solving. 

Perhaps, however, teacher intervention could be based on what 

children are actually doing. Resnick & Ford (1984) suggest that 

if only teachers would "cultivate their own skills of observing 

and questioning" then they would ultimately "begin to note 

details of children's thinking that had not been apparent 

before and find themselves able to follow children's lines of 

reasoning more clearly". What to the adult may seem an obvious 

arithmetical algorithm couched in a verbal context, may be 

perceived differently by the children. For example, Brown 

(1979) found that although some children could not recall the 

'official' algorithm for subtraction they could nevertheless 
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solve practical problems quickly and efficiently using their 

own private procedures which resulted from "a good conceptual 

understanding of the operation involved". Similarly, Carpenter 

& Moser (1982) found that young children made far greater use 

of counting strategies than they did of number facts when 

addressing addition and subtraction translation problems. 

The phenomenon of the arithmetical translation problem, then, 

is well documented, and the general conclusion is that 

performance on translation problems is poor. Such a conclusion 

is worrying since the (arithmetical) translation problem is 

synonymous with (arithmetical) conceptual understanding: 

successful performance on the translation problem means that 

the concept(s) involved in the problem's solution is/are being 

established in the conceptual system. Even more worrying, 

however, is the possibility that poor performance on 

translation problems may have implications for conceptual 

development in general. Bryant (1985) argues that the 

distinction between knowing when and knowing how to perform an 

arithmetical operation "might be one instance of a rather 

general rule in children's cognitive development". He points 

out that many of the erstwhile conclusions about young 

children's apparent incapacities were drawn from inadequate 

evidence: just because the child does not display a particular 

behaviour does not mean that he/she cannot display that 

behaviour. It merely means that, for whatever reason(s), the 
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situation was not 'conducive' to the manifestation of the 

particular behaviour. If children are not using the 'cognitive 

tools' they possess when it would be beneficial to them to do 

so, their development is not, it would seem, being facilitated. 

Bryant (1985) argues that there is; 

incontrovertible evidence that children's performance on 
most cognitive tasks depends on two quite separable 
things. One is the possession of the skill needed to solve 
the task and the other is their recognition of when that 
skill is needed. 

This in turn raises questions as to where in the mathematical 

situation the child's difficulty lies: is it in the recognition 

of what calculation is needed? is it in actually carrying out 

the calculation? or is it in both? 

Thus it would appear that not only is it mathematically 

desirable, it is psychologically necessary (from the point of 

promoting cognitive development) that the child be able to 

perform the aathenatical translation probles successfully. 

This chapter has been at pains to give the translation problem, 

otherwise known as the application of mathematical skills, its 

due and proper place; while at the same time distinguishing it 

from the process problem. The mathematical translation problem 

is intimately bound up with mathematical conceptualization. The 

next chapter analyses what mathematical conceptualization 

means. 
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In summary: 

(i) it has been argued that the terms, problem and problem 

solving are, generally speaking, used with a lack of precision 

in meaning as they pertain to mathematics; 

(ii) more precisely, problem solving, according to Gagne (1977) 

and Burton (1980), requires what we casually call 'thinking', 

is dependent on a large store of knowledge and capabilities, 

and is not restricted to mathematical content alone; 

(iii) those tasks which require the identification and 

execution of an arithmetical representation in the context of a 

hypothetical, real world scenario are more appropriately 

referred to as mathematical translation problems according to 

Charles & Lester (1984); 

(iv) empirical evidence from Brown (1979); Carpenter et al 

(1981); Bryant (1985) suggests that the successful execution of 

the translation problem is a criterion of conceptual 

understanding of the arithmetical operations involved; 

(v) for Bryant (1985) successful performance on translation 

problems may be important for cognitive development per se. 
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The Abstract Nature of Mathematics 

All established areas of knowledge or forms of understanding 

(Dearden, 1968) have their own explanatory concepts and related 

means of verification. Mathematics is one such domain of 

knowledge. These concepts, the result of hard thinking on the 

part of previously successive generations of people, are 

available to subsequently new generations of people. The 

question is, how are such concepts made available to people? 

Clearly, all people do not (fully) avail themselves of 

mathematical concepts, otherwise there would not be the 

concern, as exists today, for the impoverished nature of 

mathematical learning. And true mathematical learning, it 

seems, is heavily dependent on learning concepts. Brown (1979) 

points out that "conceptual learning is obviously fundamental 

in mathematics". And Orton (1987) states that "mathematics 

learning consists very largely of building understanding of new 

concepts onto previously understood concepts". 

Beyond the claim that "the actual construction of a conceptual 

system is something which each individual has to do for 

himself" (Skemp, 1971), the process of conceptualization in 

general and mathematical conceptualization in particular 

appears not to be clearly understood. One explanation of the 
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conceptualization process (Bourne & Restle, 1959; Collins & 

Quillian, 1969; Meyer, 1970; Rips, 1975) is that the critical 

attributes of a concept (which in the case of the concept, 

insect, would be the number of body segments and legs) are 

abstracted from a variety of positive and negative exemplars of 

the concept and constitute a list of defining features against 

which new instances are compared. This explanation is, however, 

problematic. Firstly it is difficult to accept that feature 

comparison is always and necessarily involved in deciding 

whether class membership obtains. Intuitively, we class apples 

as fruit, cats as animals and daffodils as flowers 

holistically, without recourse to feature analysis and feature 

matching. Secondly, and following on from the first point, it 

is questionable to'suggest or imply that defining features can 

be supplied for all concepts. What are the defining features of 

a house, for example? 

Another explanation (Rosch, 1975; Rosch & Mervis, 1975; Rosch 

et al, 1976) is that we construct a prototype, or the best 

example of a category (which has most of the attributes that 

are common to most members of the category and fewest of the 

attributes of nonmembers of the category). By unconsciously 

calculating the frequency of feature representation we compare 

new instances of a category with the prototype and decide 

whether or not the instance is to be included in the category. 

Thus in British culture, robins and sparrows would be very 

prototypical of the concept, bird, while ostriches and penguins 
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would be non prototypical. But this explanation is not without 

its problems either. While the prototype model avoids the 

feature comparison paradox of classifying an instance according 

to a list of defining features which are unknown or unknowable, 

it nevertheless does not allow for clear specification in 

ambiguous cases. By class membership being decided on the 

criterion of 'best fit', it follows that when an instance falls 

into an area where boundary categories overlap, classification 

will be context dependent, with resulting possibilities of 

disagreement. A pistol, for example, might be an ornament in 

one context and a weapon in another. ' 

Yet another explanation (Brooks, 1978) is that instances of a 

category are collected on the basis of their overall, global 

similarity to an earlier, known instance. This explanation 

posits concept acquisition as being more intuitive, implicit 

and non analytical, with far less conscious hypothesizing or 

analysis; and, what is more, could account for the way in which 

children acquire concepts insofar as complex feature 

combination rules, the encountering of many instances, and a 

perfect memory of previous experience are not necessary 

conditions. 

The empirical evidence for each of the above explanations is 

considerable, so rather than posit one in favour of the other 

two it is perhaps wiser to consider each as a plausible model, 
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depending on the individual learner and other context 

variables. It would not then be unreasonable to conclude that 

these alternative explanations can co-exist. 

The process of conceptualization is perhaps not well understood 

because the concept of a concept is in itself elusive. A 

lexical definition of the term, concept, such as will be found 

in any reputable dictionary, indicates that a concept is a 

general notion. This is hardly illuminating. Furthermore, usage 

of the term, concept is not necessarily constant among those 

practitioners who might be credited with knowing what concepts 

are. For example, Rae & McPhillimy (1985) claim that "after 

teaching a concept, the teacher will wish to check that the 

child has indeed acquired the concept". This suggests that a 

concept is an item which can be directly imparted by the 

teacher and directly received by the learner; that it is a 

discrete, tidy, unambiguous entity. On the other hand, Babin 

(1980) claims that "the teacher does not 'give' a concept to 

the learner: students acquire concepts through appropriate 

learning materials and experience". This suggests that a 

concept is a node or 'building block' (in the knowledge system) 

which is dependent on other nodes or 'building blocks' for its 

existence and which is built up piece by piece out of whatever 

sense the learner makes of his learning environment. Moreover, 

Babin's view implies an active process of constructing meaning; 
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meaning which can be revised, updated and enlarged as a result 

of learning experiences. 

However, the apparently opposing views of Rae & McPhillimy 

(1985) and Babin (1980) may not be as mutually exclusive as a 

rapid perusal of them might suggest. From what has been said 

above, one can speculate that a concept is a mental structure. 

As such a concept has no physical basis in existence. It refers 

to some underlying competence. One can further speculate from 

what has been said above that the function of a concept is to 

quickly sort experiences. In turn this implies firstly some 

classification of experience and secondly the fitting of new 

experiences into one of the classes. Finally, one can speculate 

that this mental referencing, the bringing to bear of previous 

experience on a new situation, is a continuous and automatic 

process so much so that it is only really noticed when 

something slightly incongruous occurs, such as when -a small 

child addresses a strange, adult male as 'daddy' because the 

child has only experienced 'daddy' but not uncles, grandfathers 

or any other men. 

In their power to organize data, there are different types of 

concepts. There are artificial concepts and there are natural 

concepts. Artificial concepts have well defined, criterial 

features. Thus there is little or no dubiety as to whether or 

not class membership obtains. Artificial concepts have been 
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constructed by people in 'society to fulfil the technical-, 

scientific, religious or legal needs of that society. Natural 

concepts, on the other hand, are characteristically ill defined 

in terms of defining features 'and clear boundaries. Natural 

concepts are everyday objects and informal events, instances of 

which depend heavily on function and context to determine class 

membership. Natural concepts are acquired informally and/or 

spontaneously while artificial concepts depend, to a much 

greater extent, on formal and/or structured teaching insofar as 

considerable verbal exposition may be needed to clarify 

relationships and/or make explicit the substratum of ideas 

(subordinate concepts) on which the concept rests. 

The artificial/natural distinction draws attention to the fact 

that there are different levels of conceptualization. Those 

concepts which are derived from our sensory experiences of the 

environment are fairly low level. These are what Skemp (1971) 

describes as primary concepts. But these concepts which are 

derived from our intellectual abstractions from experiences in 

the outside world are of a higher order. These are what Skemp 

(1971) describes as secondary concepts. And herein lies a 

fundamental characteristic of mathematical knowledge. Its 

concepts are artificial and they are secondary. As Skemp (1971) 

points out: 

Much of our everyday knowledge is learnt directly from our 
environment, and the concepts involved are not very 
abstract. The -particular problem (but also the power) of 
mathematics lies in its great abstractness and generality, 
achieved by successive generations of particularly 
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intelligent individuals each of whom has been abstracting 
from, or generalizing, concepts of earlier generations. 
The present-day learner has to process not, raw data, but 
the processing systems of existing mathematics. This is 
not only an immeasurable advantage, in_ that an able 
student can acquire in years ideas which took centuries of 
past effort to develop: it also exposes. the learner to a 
particular hazard. Mathematics cannot be learnt directly 
from the everyday environment, but only indirectly from 
other mathematicians. At best, this makes him largely 
dependent on his teachers (including all those who write 
mathematical textbooks); and at worst, it exposes him to 
the possibility of a lifelong fear and dislike of 
mathematics. 

From what Skemp (1971) says it is clear that the mathematics 

teacher has a crucial role to play in helping the child to 

develop mathematical concepts. At one and the same time the 

teacher has to help the child form initial mathematical 

concepts from whatever everyday reality may exist for the 

learner and also to help the child relate previously 

assimilated higher order concepts to successively more complex 

concepts in the hierarchy. This abstract quality of mathematics 

is not lost on Resnick et al (1987) when they point out: 

There are not, strictly speaking, denotable objects in 

mathematics. For example, although one can point to a set 
of three things, and to the written numeral 3, those 
physical objects do not in themselves have the property of 
number. Number is a strictly cognitive activity. People 
construct this cognitive entity, the concept of number, 
without the benefit of any physical numbers to inspect or 
analyse. Yet number is the basic object of arithmetic. So 
we have in mathematics a domain in which, from the very 
beginning, people must reason about objects that exist 
only as mental abstractions. 

The conceptualization of addition or subtraction, or for that 

matter, any other mathematical topic is not then going to be an 

Chapter 3 Page 53 



MATHEMATICAL CONCEPTUALIZATION 

abrupt metamorphosis from 'not having' to 'having' possession. 

In other words mathematical conceptualization for any given 

topic is not going to be an instantaneous once-and-for-all 

process which necessarily implies functional maturity. Since, 

according to Skemp (1971) all mathematical concepts are 

secondary concepts and since the formation of secondary 

concepts depends on being able to collect together lower order 

concepts which in turn have been detached from the 'sensory 

experiences from which they originated, it 'should' -not be 

surprising that mathematical conceptualization is a complex, 

lengthy business in which several years may lapse, according to 

Coon & Odom (1968), between "the emergence of a concept and its 

relative stability". 

Some language to describe the mysterious mechanisms of 
conceptualization. 

The term, conceptualization is respectable and useful as a 

short hand referent which alludes to learning and/or 

understanding in some comprehensive fashion.. It is less than 

helpful as it stands, however, for describing unobservable 

cognitive functioning. To suggest that conceptualization has or 

has not taken place requires further language to talk about the 

extent to which the individual has made sense of his/her 

environment. A number of psychologists (notably Flavell, 1971; 

Flavell & Wellman, 1977; Skemp, 1971; Brown & DeLoache, 1983) 

have indeed endeavoured to set up such language. But, as could 
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possibly be predicted, usage of terminology by leading 

proponents results in overlapping of meaning, synonymity of 

meaning and confusion of meaning which leaves the reader with 

feelings of frustration in understanding the nature of 

conceptualization. There follows then a consideration of some 

of the terms which can be found in the literature on 

conceptualization. There will firstly be some brief description 

of the terms evocability, utilizability, intuitive 

intelligence, reflective intelligence and 'etacognition with 

stipulative definitions where appropriate and secondly an 

attempt to integrate the meanings of these referents in terms 

of the significance of this research. 

(i) Evocability: While the term evocability may rightly be 

referred to as a bit of jargon (with all the contemptuous 

connotations of the referent 'jargon') the verbs, evoke, 

evocate, evocable and their associated adjectives are to be 

found in the lay person's lexicon. The essential meaning of 

these words is to arouse, to summon up or to call forth some 

memory, emotion or answer from the past. There -is also, in 

dictionary definitions, the suggestion that 'magical' or 

'spiritual' powers are at work when the memory, emotion or 

answer is being recalled. Although no such mysticism is 

intended here in the use of the term evocability, its meaning 

is nevertheless close to the general notion of 'evoking'. The 

evocability of a concept refers to the individual's ability to 
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trigger the concept into operation or, in perhaps simpler 

terms, to retrieve from long term memory pieces of knowledge 

which would or could help the individual to execute some task 

or other. For example, the car driver going on a long, 

previously untravelled'journey might know that an ability to 

read maps would or could help in'the plotting of the route. 

(The alternatives of would or could are used advisedly, for 

reasons which will hopefully become clearer later on). Another 

example might be that in order to have one's brand new 

electrical appliance function at all, the appliance needs to be 

fitted with a plug and so that one can connect the plug safely 

a knowledge of 'live', 'neutral' and 'earth' wires is needed. 

Perhaps another way of expressing what evocability means is in 

terms of knowledge of underlying principles. 

Flavell (1971) considers that conceptualization can be 

described in terms of degree of evocability: 

Low evocability would mean that only a very small 'easy' 
subset of the entire range of tasks or problems soluble by 
that concept will as yet stimulate the child to retrieve 
the concept from long-term memory and attempt to use it as 
a solution procedure; high evocability would mean that the 
concept is now readily retrieved for possible use with 
respect to most relevant problems, even when the concept- 
to-problem fit is partly camouflaged by task or other 
variables. 

In an arithmetical context then, the child who recognized that 

an addition operation was required when the numbers involved 

were integers less than ten but did not do so when they were of 

greater magnitude, could be described as being able to evoke 
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the concept of addition at a low level only. Equally, the child 

who recognized that an addition operation was required when the 

numbers were into thousands or included fractions of numbers 

could be described as being able to evoke the concept of 

addition at a high level. The foregoing scenario suggests that 

levels of evocability can be equated with the magnitude of the 

numbers and/or the complexity of the arithmetic. Such a 

suggestion is undoubtedly a restrictive exemplification of what 

Flavell was saying. There may well be other 'dimensions' on 

which levels of evocability can be differentiated, but which in 

this instance have not been explored. Nevertheless the critical 

point to be made is that some evidence for the presence of a 

concept does not of necessity mean that the concept is 

functionally mature. Whatever 'dimensions' there may be on 

which to differentiate levels of evocability, it 'would be 

reasonable to assume, in the light of Flavell's distinction 

between high and low evocability, that young children, in the 

early stages of schooling, would be able to evoke mathematical 

concepts at a low level only. 

According to Skemp (1971) there are two ways in which a concept 

can be evoked, or start functioning. The first is by 

experiencing an example of the concept in which case the the 

concept is evoked by classifying the particular example. For 

example, in order to describe similarities and differences 

between a Rolls-Royce and a Mini, the individual would have to 
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recognize that both are example of the concept, car. -Without 

the ability to activate the knowledge that cars are (usually) 

four wheeled vehicles which are powered by fuel, and which come 

in all shapes and sizes, and of which Minis and Rolls-Royces 

are but two examples, the task of making intelligent comment on 

Minis and Rolls-Royces would be impossible because the concept 

of car had never been activated. A second means of evoking a 

concept is, for Skemp (1971), by "hearing, reading or otherwise 

making conscious the name, or other symbol for the concept". 

This second means of evoking a concept is a specifically human 

phenomenon due, Skemp (1971) argues, to the human ability "to 

isolate concepts from any of the examples which give rise to 

them". Moreover, Skemp argues that this second means of 

activation is crucial in the process(es) of developing 

conceptualization because: - 

Only by being detachable from the sensory experiences from 
which they originated can concepts be 

, 
collected together 

as examples from which new concepts, of greater 
abstraction, can be formed. 

(ii) Utilizability: Just as for evocability, the derivation of 

utilizability has its place in common parlance. The verb, 

utilize is regularly understood as 'making use of'. In terms of 

conceptualization, utilizability then refers to the ability to 

make effective use of the 'knowledge' required to solve a 

particular problem or carry out a specific task. The 

utilizability of a concept refers to the tactical application 

of the 'knowledge' rather than to the executive management of 
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the 'knowledge' which is required in the evocability of a 

concept. The utilizability of addition and subtraction concepts 

would then be evidenced by the child knowing how to effect 

appropriate solutions to the operations of addition and 

subtraction when these operations were embedded in verbal 

contexts. 

(iii) The relationship between evocability and utilizability: 

Flavell (1971) believes that the evocability of a concept and 

the utilizability of a concept can operate independently. He 

also, however, implies that there is a relation between 

evocability and utilizability when he states that utilizability 

is effected once the individual has "sensed the concept-to- 

problem fit". This slight confusion as to how 

independent/dependent evocability and utilizability are, 

perhaps hinges on the means by which the concept is evoked. 

Returning briefly to Skemp's (1971) descriptions of how a 

concept can be evoked, there is firstly the evocability of a 

concept by classifying a particular example one encounters. In 

this simpler sense it follows that utilizability can be 

effected only after the concept has been evoked. One cannot 

apply a concept if one cannot recognize any instances or 

examples of the class. Being unable to recognize any instances 

of a particular class can only mean that the class, or concept, 

is not in one's cognitive repertoire. To this extent, 

utilizability and evocability would appear to be closely 
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related. However, for Skemp (1971) there is also the 

evocability of a concept by bringing into conscious awareness 

the referent for that concept. In this more complex sense it 

seems that one can entertain concepts without necessarily using 

them. For example, one might be fully aware that it is 

knowledge of electricity rather than some other knowledge which 

should be applied in fitting a plug to an electrical appliance, 

and yet be unable to utilize such knowledge because one has 

forgotten or never learned the electrical specifics involved. 

Equally, that one knows that map reading could help one in 

navigating a journey does not mean that one necessarily has the 

skill to use the map effectively. To this extent then, 

evocability and utilizability can be independent entities. 

What seems to be emerging from this exploration, in simple 

language, is that for the individual to really utilize a 

concept (and not merely to rely on routinized, algorithmic 

skill alone) he/she must be able to evoke the concept. However, 

evocability can be conscious or unconscious. If the evocability 

is conscious the individual is likely to experience success in 

the task solution because he/she can state, express, articulate 

or be aware of what is required. If, however, the evocability 

is at an unconscious level the utilizability may be 

appropriate. But it may instead be inappropriate, chance alone 

determining the individual's task solution since the individual 
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is not consciously aware of the principle(s) upon which the 

utilizability is structured. 

(iv) The overemphasis-on utilizability: Historically, in the 

field of education, those concerned with mathematical 

conceptualization (McIntosh, 1971; Brown, 1979; Riley et al, 

1983) have been concerned exclusively with the utilizability of 

concepts. This is implicit: 

in Vergnaud's (1982) view that "the ability to solve problems 

.. is the best criterion of the acquisition of concepts"; 

in Dickson et al's (1984) view that "there has been, and still 

is, much emphasis placed on children becoming skilled in the 

standard written procedures of computation regardless of 

whether or not they understand the basis of such techniques"; 

in Desforges & Cockburn's (1987) view that children's "capacity 

to use their skills appropriately to recognise, represent and 

solve problems" is limited. 

While of course, concern with the utilizability of concepts is 

desirable and even necessary, the emphasis, in the field of 

education, on utilizability to the exclusion of evocability may 

be hampering the child's growing conceptualizations in general 

and mathematical conceptualization in particular. Given Resnick 

et al's (1987) argument for number being a strictly cognitive 

entity and given Bryant's (1985) conclusion that performance in 

most cognitive tasks depends on both possessing the necessary 
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skill(s) and recognizing when the skill is needed, it seems 

that evocability of a concept (that is, being consciously aware 

that this particular concept is appropriate in this particular 

instance) has been neglected both in the study of mathematical 

conceptualization and in the development of mathematical 

conceptualization in children. 

Hitherto, the recognition of what is required on the part of 

the subject performing a cognitive task has been inferred by 

researchers. The presence or absence of a concept (in whole or 

in part) has been inferred from successful or unsuccessful 

overt performance on some behavioural index. To some extent 

this is perfectly correct since the field of cognitive 

psychology is exclusively concerned with mental functioning 

which of itself cannot be physically inspected. However, 

conclusions drawn from what abstractions are inferred to exist 

cannot really explain the evocability of concepts, if the 

distinction between evocability and utilizability is accepted. 

While such conclusions can account for the utilizability of 

concepts (which is essentially an exploration for/description 

of the behavioural manifestations of a concept's existence in 

the cognitive repertoire) evidence for the evocability of 

concepts - in Skemp's (1971) more complex interpretation of the 

process must come from the subject's direct expression of 

his/her awareness of the particular concept's availability to 

him/her. 

Chapter 3 Page 62 



MATHEMATICAL CONCEPTUALIZATION 

(v) Intuitive and Reflective Intelligence: Conceptualization in 

its fullest sense, according to Donaldson (1976) involves more 

than being able to respond to new and increasingly more complex 

groupings of stimuli. For Donaldson, conceptualization also 

involves a conscious awareness "not only of objects and events 

in the real world but also of our own thinking about these 

things". The notion of conceptualization embracing both 

representations of the world and an awareness of the 

representations themselves finds a parallel in Skemp's (1971) 

notions of intuitive and reflective intelligence. Intuitive 

intelligence is operating when "we are aware through our 

receptors of data from the external environment". Any task 

solution in which the individual is successful "without any 

awareness of the intervening mental processes involved" 

requires intuitive intelligence and to this extent intuitive 

intelligence would seem to resemble utilizability. Reflective 

intelligence, on the other hand, is operating when "these 

intervening mental activities become the object of 

introspective awareness", and would seem to resemble the 

complex, conscious means of evocability. These 'apparent' 

resemblances should not, however, bethought of in terms of 

simple substitutions or alternative referents. Rather the 

parallel comes from the 'whole' and not the 'parts'. Together 

evocability and utilizability would seem to 'add up' to the 

same as intuitive intelligence plus reflective intelligence. 

Conversely, the (qualitative) difference between intuitive 
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intelligence and reflective intelligence would seem to be like 

the difference between utilizability and evocability. 

According to Skemp (1971) this second order functioning of 

intelligence, that is, reflective intelligence is extremely 

powerful as a facilitator of conceptualization because, once 

one can at least to some extent reflect on one's own thinking 

one can: 

firstly communicate one's concepts/schemata with another; 

secondly build refinements onto existing concepts/schemata; 

thirdly replace old concepts/schemata with new ones; 

fourthly correct errors in existing concepts /schemata which 

will allow subsequent, improved task solutions. 

Reflective intelligence would seem to involve a consideration 

of the form of task solution rather than the content, whilst 

intuitive intelligence seems tied to a consideration of the 

content of task solution rather than the form. In this 

distinction between intuitive and reflective intelligence we 

are again reminded of the relationship between the 

utilizability and evocability of concepts; utilizability being 

'intuitive' and evocability being 'reflective'. 

According to Skemp (1971), in any topic area, intuitive 

intelligence develops first and the development of reflective 

intelligence follows. However, the development of reflective 
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intelligence is thought not to occur at all before adolescence. 

If this really is so then the young child is distinctly 

disadvantaged in that he/she cannot consciously communicate, 

refine, replace or update his/her thinking. The only progress 

that can be made has to be tied to content and context with the 

the resulting probability of success being a function of 

chance! 

In terms of the emergence of intuitive and reflective 

intelligence, a rule of thumb would have to be that intuitive 

intelligence emerges first. After all one cannot reflect on 

concepts which are not yet established or formed in the mind of 

the individual. Nevertheless it is arguably an abdication of 

responsibility on the part of the professionals if they do not 

attempt to find ways of encouraging reflective intelligence at 

an earlier age than Skemp claims is possible. It is not enough 

to say, as Skemp does, that reflective intelligence is 

"relatively late in arriving" given the earlier list of 'mental 

advantages' with which the person in possession of reflective 

intelligence is equipped. 

(vi) Metacognition: Being able to think about one's thinking or 

reflect on one's mental activities is now more commonly 

referred to as metacognition, a term coined by Flavell (1976). 

According to Flavell (1979), metacognitions are "not 

fundamentally different from other knowledge stored in long 
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term memory" and they can be activated "as a result of a 

deliberate conscious memory search" or "unintentionally and 

automatically by retrieval cues in the task situation". More 

importantly, however, Flavell (1979) claims that metacognitive 

knowledge "may and probably often does influence the course of 

the cognitive enterprise". 

It would seem from Flavell's (1971) notions of the 

utilizability and evocability of concepts, that metacognition 

does not have to involve utilizability, which is essentially 

the translation between a mental representation and an object 

or event in the real world, or as Skemp (1971) would put it, 

the use of intuitive intelligence. It would seem, however, 

that metacognition does involve evocability. Bringing into 

consciousness "the name or other symbol for the concept" 

(Skemp, 1971) either "as a result of deliberately conscious 

memory search" (Flavell, 1979) or "unintentionally and 

automatically" (Flavell, 1979) would seem to suggest that 

evocability is at least a part of metacognition. It hardly 

seems plausible that one can reflect on one's own mental 

processes without the essential tools of being able to detach 

concepts from the experiences which gave rise to them and 

being able to entertain such concepts in differing 

permutations. 
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Given Flavell's (1979) claim for the influence of metacognition 

on cognition, and given that evocability may well be a part of 

metacognition, it follows that the evocability of concepts, 

rather than just the utilizability of concepts should be given 

prominence in the study of conceptualization. The study of 

mathematical conceptualization is but one instance of this. 

Garofalo & Lester (1985) argue that "purely cognitive analyses 

of mathematical performance are inadequate because they 

overlook metacognitive actions". They maintain that the 

assumption that good tactical skill constitutes good 

mathematical performance is highly questionable; and believe 

that metacognition may account for a significant part of the 

"mental activity underlying the application of algorithms and 

heuristics". 

Not only now are there claims for the influence of 

metacognition on cognition, there is the further claim for the 

positive influence of metacognition on mathematical 

conceptualization. If, as was argued earlier, evocability is a 

part of metacognition, mathematical conceptualization requires 

both to be studied and developed in children in terms of 

utilizability (in which terms it is already well documented) 

and in terms of evocability. Turner (1984) makes a similar 

point when she states that in the education of the child, 

what is required . 
is a two-pronged attack, first by 

exposure to the forms of experience thought to give rise 
to the basic categories of human understanding, which are 
themselves a precondition for subsequent learning; and 
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secondly by alerting children to the nature 'of learning 
tasks in school. 

(vii) Metacognition and the young child: Although the term, 

metacognition, is, even in psychological parlance, relatively 

new, the idea itself is not. As Donaldson (1976) points out, 

"the ability to reflect on one's own reflections is placed by 

Piaget at the heart of his account of mature adult thought". 

Metacognition would not, in Piagetian theory, be available to 

the individual before the stage of formal operations. For 

example, Piaget (1928) found that children of seven years of 

age could correctly solve a translation problem such as '3 boys 

are given 9 apples, how many will each have? ' but could give no 

comprehensible, let alone coherent, account of how they had 

obtained their solutions. Subsequent research by others has 

demonstrated that primary school children are quite inept at 

monitoring their own cognitive performance. For example, 

Karabenick & Miller (1977) found that more than half of their 

5-, 6- and 7-year old subjects were unaware that they did not 

understand the message given to them. Reid (1966) found that 

some children did not understand what their parents were doing 

when they held a newspaper in front of them. Renwick (1984) 

found that some children expected to be able to read after 

their very first day at school. Garofalo & Lester (1985) cite 

considerable evidence all of which suggests that it is only 

r 
towards the end of primary education that the child begins to 
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become aware of his/her mental activity. Such findings present 

a somewhat pessimistic picture of children's metacognition. 

Brown & DeLoache (1983) however, are more optimistic. They 

discuss the phenomenon of metacognition in general and specific 

terms. Generally, there are basic metacognitive skills such as 

checking (did it work? ), monitoring (how am I doing? ) and 

reality testing (does this make sense? ), which although "basic 

characteristics of efficient thought" are nevertheless 

"transituational". Because the child has to learn the various 

metacognitive skills themselves and additionally learn that 

these skills are almost "universally applicable", it should not 

be surprising that the young child is overloaded in terms of 

processing. The metacognitive problem for the young child is 

not so much an executive one as a tactical one. Brown & 

DeLoache (1983) liken the young child to a novice in whom the 

lack of "intelligent self-regulation" is, they claim, a 

defining characteristic. 

In specific terms, Brown & DeLoache (1983) point out that tasks 

vary in the degree to which metacognitive control is required. 

They cite, for example, retrieval of objects from the 

environment as being easier than retrieval of information from 

memory. Brown (1978) and Brown & DeLoache (1983) do suggest, 

however, that it is possible to teach even young children some 

elementary metacognitive skills. Wolman et al (1975) found that 
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young children knowing that they would later have to recall the 

locus of an object, performed better than those not so 

instructed. Cosgrove & Patterson (1977) found that if children 

are shown how to ask questions they become adept at doing so 

when they need further information. 

Nisbet & Shucksmith (1984,1986) are also concerned that 

metacognitive skills should be considered an integral part of 

the teaching/learning activities of teachers and children in 

school. They do not indicate at what age, for the child (! ), 

this should start but they strongly suggest 'the sooner the 

better'. 

Because the area of metacognition is not, at the moment, well 

defined (Brown, 1978; Flavell, 1979; Nisbet & Shucksmith, 1984, 

1986; Garofalo & Lester, 1985), it is not at all clear quite 

how metacognition can be developed in and investigated in young 

children. However, given its suggested significance in 

conceptualization in general and in mathematical 

conceptualization in particular, and given the findings that 

even very young children can begin to learn to use 

metacognitive control, it would seem reasonable that a raw 

measure of metacognition could be gleaned from the individual's 

ability to evoke the concepts that are being/could be used in 

reflecting on a task. 
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The language for describing conceptualization seems, then, to 

fall into two distinct but not discrete groups. First there is 

the language which describes the form of conceptualization, 

language such as evocability, reflective intelligence and 

. etacognition. Then there is the language which describes the 

content of conceptualization, language such as utilizability, 

intuitive intelligence and cognition. 

Conceptualization 

Hetacognition 

Reflective Intelligence 

Evocability 

Cognition 

Intuitive intelligence 

Utilizability 

Conclusions on Conceptualization 

Grappling with a phenomenon which is not directly observable is 

no mean task. By inference and deduction one attempts to make 

claims for a competence which can only make itself evident 

through performance, and even then the performance may not 

truly reflect the competence. Such is the tentative status of 

conceptualization. And yet both of its strands, cognition and 

metacognition are the subjects of continuing investigation. The 

development of cognition has become a distinct and respectable 

area of psychology. The development of metacognition, hitherto 

referred to in somewhat oblique terms, is fast gaining 
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credence. Our knowledge of both owes much to the work of 

Piaget. 

While it is much debated that children between birth and 

adolescence progress through immutable stages of qualitatively 

different types of thinking, Piaget's central concepts of 

assimilation and accommodation nevertheless remain robust. The 

individual interprets events in his/her environment in terms of 

an existing frame of reference but if this is not altogether 

possible, the frame of reference itself can alter/change/adapt. 

These continual mechanisms of assimilation and accommodation 

constitute the expansion of the conceptual system, a system 

which has not only to construct complex representations of the 

world (cognition) but also has to take conscious control of 

such cognition and ultimately of itself (metacognition). 

In the development of cognition, Piaget and his followers 

claimed that appropriate experience was vital since only the 

child's active engagement with the environment (rather than 

inculcation by others) would promote real conceptual growth. In 

the development of metacognition (though nowhere near so 

clearly delineated) Piaget suggests (Donaldson, 1976), and 

others have substantiated, that talking about one's physical 

and mental activity is critical for progress. Further detail of 

Piaget's contribution to our understanding of children's 
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mathematical conceptualization will be the substance of the 

next chapter. 

In summary: 

(i) mathematical conceptualization is seen as extending over 

ontogenetic time and as being complex insofar as mathematical 

concepts are abstract; 

(ii) mathematical conceptualization, as one instance of 

conceptualization per se, is not a directly observable process; 

(iii) conceptualization can be described in terms of cognition 

and metacognition, the latter of which has not been delineated 

in any comprehensive way; 

(iv) the development of metacognition is, it seems, important 

for mature conceptualization but the early seeds of 

metacognition can be evidenced in very young children; 

(v) what is known about conceptualization is rooted in the work 

of Piaget. 
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classification, seriation and conservation 

The complexity of conceptualization has been touched upon in 

the previous chapter. Conceptualization is a phenomenon which 

is of interest to those who are involved in education, and can 

be explored from a variety of different perspectives: from the 

perspective of cognitive psychology with its interests in 

memory, perception, mental representation, language and 

artificial intelligence; from the perspective of social 

psychology with its interests in group dynamics, attitudes, 

self-concept and social constructions of reality; from the 

perspective of developmental psychology with its interests in 

learning, individual differences and qualitative change between 

birth and adolescence. This chapter is concerned to consider 

the implications of conceptualization for school mathematics 

and hence will take a predominantly 'developmental' 

perspective. 

Children, on entering the Scottish system of formal schooling 

at approximately 5 years of age, are typically introduced to a 

mathematics curriculum which embraces Shape, " Measurement and 

Number. Shape and Measurement are assigned relatively minor 

weightings, while Number is assigned a position of primacy. To 

begin to understand something of the rationale underlying the 

early mathematics curriculum it seems reasonable to begin with 

the work of Piaget, since as Hughes (1986) points out: 
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for some time now Jean Piaget has-been regarded as one of 
the leading authorities on the question of how children 
learn mathematics. 

For Piaget (1952), the child's understanding of number involves 

the simultaneous development of the ability to classify, the 

ability to seriate and the ability to conserve; and the 

superordinate ability to integrate these subordinate abilities 

to express relations. 

At its simplest level, the ability to classify refers to being 

able to abstract a common criterion from a variety of criteria 

available and to sort entities into a set according to the 

criterion. For example, to be able to classify according to 

colour requires the ability to recognize different colours and 

sort accordingly, whilst at the same time disregarding other 

attributes which the entities to be classified may or may not 

share. 

The ability to seriate is a refinement of - the ability to 

classify. Seriation demands a recognition of the relationship 

between and among members of the class. For example, a group of 

people may vary in height and can be arranged in order- from 

smallest to tallest. 

The ability to conserve is the recognition that attributes such 

as number, weight, -area and volume will remain invariant (that 
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is, remain constant) in the face of perceptual change, provided 

no real change has been made to the attribute in question. For 

example, 10 men are 10 men whether they are sitting close 

together or standing far apart from each other. 

In addition to possessing a competence in each of these three 

abilities, the child, in order to develop an understanding of 

number, must, according to Piaget, be able to unite these 

abilities. Thus the child needs to understand that a cardinal 

number represents a class of entities which: 

1. have an inherent relationship - that is the counting of the 

entities will indicate the total number; 

2. can both be broken down into sub classes, and combined with 

other classes to make a 'superordinate' class; 

3. can be enumerated with consistent accuracy however they be 

arranged. 

According to Piaget (1952), the child largely develops his 

understanding of number and other mathematical concepts by 

himself, "independently and spontaneously". 

Hughes (1983) suggests that Piaget's claims are widely accepted 

and supported: 

the idea that mathematical concepts are acquired through 
the child's mental growth - and in particular through 
activities involving concrete objects - is taken as 
virtually axiomatic by most nursery and infant school 
teachers. The majority of infant school mathematics 
schemes start off with very concrete activities, such as 
matching objects on a one-to-one basis, or sorting them 
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into sets. These activities are intended to develop the 
young child's general concept of number, as measured by a 
Piagetian conservation task. It is only when children seem 
to have grasped the idea of number conservation that they 
are considered ready to start on addition and subtraction. 

Hughes seems to describe the Piagetian influence as being 

interpreted by teachers in a linear fashion: concrete 

activities allow mental growth which in turn allows concept 

acquisition. But it seems impossible to distinguish between 

'mental growth' and 'concept acquisition' in terms of 

observable evidence. It further seems impossible to distinguish 

between 'mental growth' and 'achievement'. The child's 

achievement means what the child knows or can do now as a 

measure of progress from previous achievement. Thus, if a child 

knows more and can do more than previously, that is increased 

achievement. It is from such increases in achievement that we 

infer 'mental growth' and for many people, in casual usage 

especially within education, the notions of 'mental growth' and 

'increased achievement' may be regarded as broadly equivalent. 

The lack of specificity in Piagetian theory 

Piaget's conception of the child's intellectual development was 

never so specific as to indicate the precise age at which a 

given milestone was reached. Nor indeed could it be, since his 

primary concern was to understand how human knowledge is 

constructed. Crudely put, Piaget wanted to know, in the words 

of Lovell (1979): 
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if knowledge results from the accumulation of small bits 
of information or whether there must already be a mental 
structure or reference frame inside which some new piece 
of knowledge can be meaningful. 

To pursue this question, Piaget studied the cognitive 

development of the child through investigating the construction 

of the child's basic conceptualizations, rather than the build 

up of particular skills or the acquisition of specific pieces 

of information. To the extent that cognitive development is 

concerned to describe the intellectual changes which take place 

between birth and adolescence and, further, to try to explain 

how and why these changes occur, its frames of reference are 

not age specific. 

However, reference is frequently made as to the capabilities of 

the 'older' or 'younger' child: for example, "the youngest 

children were found to have no idea of class" (Turner, 1984); 

"young children generally fail and older children generally 

succeed with the traditional transitivity problems of the type 

administered by Piaget and by Smedslund" (Bryant, 1974); "young 

children might have very great difficulty with the invariance 

principle" (Bryant, 1974). Whilst it is accepted that 

chronological age and its correlation with any cognitive 

competence does not allow one to infer that age is an 

antecedent condition for increasing cognitive facility, it 

would nevertheless be more illuminating if one were to 

understand what is meant by the terms 'older' and 'younger' 
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children. It is, further, unclear, what is meant by the term, 

'capabilities'. Is this some undeveloped faculty which has the 

potential for manifestation? Or is it what the individual can 

actually de=onstrate? In other words, we are back at the age- 

old competence/performance argument which in turn, has 

implications for the behavioural indices that are to be taken 

as evidence and from which inferences are to be made concerning 

unobservable mental activity. 

The competence/performance can never be fully resolved because 

it is, in part, a function of differing predilections within 

the field of psychology: applied psychology is necessarily 

concerned with performance, while theoretical psychology is 

necessarily concerned with competence. Perhaps for the teacher 

who is wishing to make use of psychological findings there is a 

compromise. And that is, given that one cannot theorize about 

some unobservable mental functioning until one can 

comprehensively determine the specific situations in which 

performance reflects (albeit- impurely and imperfectly) the 

underlying competence, there has to be a strong emphasis on 

valid diagnosis of the performance(s). Smedslund (1969) 

expresses this idea neatly: 

The relationship between any set of behavioural indices 

and a mental process is an uncertain one, and a diagnosis 

will always have the status of a working hypothesis. 

Chapter 4 Page 79 



THE CONSTRUCTIVIST VIEW 

The ambiguity of age in relation to milestones in 

conceptualization is partially addressed by Flavell (1977). His 

commentary on the Piagetian system, suggests that children in 

early childhood (from approximately 2 to 6 years of age) show 

"some striking cognitive immaturities" when compared to 

children in middle childhood (from approximately 7 to 11 years 

of age). In other words, one is left to infer that the 

qualitative changes which occur in the child's thinking from 

about 7 years of age are what account for the differences 

between the younger and older child's ability to classify, 

seriate and conserve. The younger child appears not to have 

these abilities whilst the older child does. 

A further difficulty in understanding Piaget's precursors to 

mathematical understanding lies in the fact, as Hughes (1986) 

points out, that "Piaget never spelt out in detail how these 

ideas should be put into practice in the classroom". Hughes 

goes on to say that Piaget: 

has usually been interpreted as advocating a very late 
introduction to formal symbolism, with corresponding 
earlier emphasis on children's engaging in physical 
activities with materials such as sand, water, buttons, 
beads and bricks. It is assumed that pouring water from 

one container into another, or sorting objects into sets, 
will help develop children's mathematical concepts, and 
that they will proceed to formalisation only when they are 
conceptually ready. 

This is not to say there have not been attempts to apply 

Piagetian ideas in education. There have (Schwebel & Raph, 
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1973; Kamii & DeVries, 1976), where, the interest was not to 

have Piagetian schools in the way that there were and are 

'progressive schools' or 'alternative schools', but to have 

teachers who were 'innovative' and 'imaginative' and who were 

not 'constrained' by schemes-of-work, educational objectives 

and performance indicators. To this day it is still part of the 

educational rhetoric that Piagetian ideas are of central 

importance in the primary school. But how justified is this 

assertion? 

If it is the case that children must be able to classify, 

seriate and conserve before they can begin to develop an 

understanding of number and if it is the case that such 

precursors do not develop until approximately 7 years of age, 

then this author does not agree that belief in Piagetian theory 

is as widespread as exponents of the constructivist view would 

lead one to accept since, in Scotland at any rate, the typical 

Primary one child is expected to be able to add and subtract 

within 10, the typical Primary Two child to add and subtract 

within 20, and the typical Primary Three child to add and 

subtract within 100 (all with formal recording), by which time 

the typical Primary Three child may be barely 7 years of age! 

Perhaps regrettably, lip-service is paid to Piagetian ideas by 

using words such as 'readiness' or 'developmental'. These terms 

may suggest an adherence to Piagetian theory and therefore give 

a gloss or legitimacy to the curricular activities planned for 
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children without there being any real attempt to take account 

of the subtle differences among children and the qualitative 

differences between children and adults. But why should this 

be? Are the ideas poorly understood by those of us in 

education? Or are the ideas themselves not -really worth 

applying? 

In an attempt to reach a considered opinion as to the 

importance of classification, seriation and conservation in the 

child's understanding of number, it is worth examining how 

these abilities are empirically demonstrated. 

Classification 

There can be little, if any, doubt that classification is a 

basic, organizational strategy in human thinking. Studies have 

shown that people have strong spontaneous tendencies to 

organize stimulus items into categories and subcategories 

(Gregg, 1975; Baddeley, 1976). Nor is this phenomenon only 

observable in experimentally induced situations. Morton & Byrne 

(1975) found that housewives, when asked to list the items 

required to equip a house, systematically grouped the items 

either according to categories such as furniture, linen, china 

etc or according to the place in which the items would be put 

such as bedroom, kitchen etc. Intuitively this appears 

eminently reasonable. If as humans we made no effort to 
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categorize, then all new stimuli which were being attended to 

Would have to be regarded as completely novel phenomena, 

totally unrelated to what had been experienced previously. 

For Piaget, (Donaldson, 1978) the significance of 

classification for the understanding of number lay in the 

inference that if there are two or more sub-classes each of 

which contain at least one member, then the number of objects 

in the total class has to be greater than the number in any 

sub-class. It was Piaget's contention that children before the 

age of six or seven years could not compare a sub-class with a 

total class. The typical empirical test for this finding is to 

present the child with say 6 red flowers and 4 white flowers 

and then to ask the child, 'Are there more red flowers or more 

flowers? '. And typically, the young child answers that there 

are more red flowers because instead of comparing the sub-set 

of red flowers with the total set of flowers the child is 

comparing the subset of red flowers with the sub-set of white 

flowers. 

From a naive and pragmatic viewpoint, there would seem to be no 

useful purpose served in asking anyone to compare a sub-group 

with a total group, while it seems much more reasonable to 

compare two sub-groups. One might, for example, want to know 

whether there were more red or more white flowers in order to 

decide which vase(s) to put the flowers in, or in order to 
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decide where to site the flowers, or indeed in order to decide 

whether or not one should go and get more flowers of perhaps 

another colour. 

Donaldson (1978) points out that the young child's typical 

response to the standard class inclusion task "has provoked a 

great deal of controversy, and much research beyond that which 

initially produced it". She goes on to cite McGarrigle et al 

(1978) who found that the manipulation of the wording of the 

class inclusion question in such a way as to vary the emphasis 

placed on the total class, produced significantly different 

responses. Their conclusion is that the child's interpretation 

of the task is of paramount importance in determining their 

performance. In other words, a far higher percentage of 

children (below the age of six) than had hitherto been 

evidenced could successfully perform on a class inclusion task 

provided the context was a meaningful one for them. That the 

salience of the context will influence if not wholly determine 

the category into which one will classify an entity is a point 

made by Anderson & Ortony (1975) who state that "there are so 

many ways in which every object can be classified. .. there 

are cases in which only the context will help us to determine 

how to classify an object". 

The importance of classification then can be briefly 

summarized. The organizational strategy of classifying entities 

........ .......... .. 
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into categories is a central human activity. However, it is 

context dependent and failure on the standard class inclusion 

task does not mean that one cannot distinguish between 

subordinate and superordinate categories. Meaningful 

modifications of the task have demonstrated that children as 

young as three years of age can make the distinction 

(McGarrigle et al, 1978). 

Seriation 

The serial ordering, or seriation, of members of a class 

requires that the members be put into a sequence according to 

the property in question. For example different tins of beans 

could be sequenced according to weight (lightest -> heaviest), 

different strips of material could be sequenced according to 

length (shortest -> longest), different containers could be 

sequenced according to the volume of water or capacity of sand 

that they hold (holds least -> holds most). The significance of 

this ability is that it requires the recognition that Mary can, 

for example, be both shorter than Julie and taller than Susan: 

that is, that there is an ordinal relationship between the 

members of a set which allows one to co-ordinate separate 

judgements inferentially. Thus, in answer to the question, 'Who 

is the tallest girl? ' it is possible to infer, deductively, 

from the above that it is Julie. 
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As Bryant (1974) points out, it is rather important in 

educational terms that children should be able to infer 

transitively since the children who cannot, "clearly cannot 

understand even the most basic principles involved in measuring 

things". He goes on to say that: 

there will be little point, for example, in teaching such 
a child how to use a ruler, because he will have no 
conception that different things could be compared with 
each other through their common relations to it. 

The typical, Piagetian, transitive inference task is to compare 

two quantities (either different sizes or different weights) 

directly, A with B. Then one of these quantities, B, is 

directly compared to a third, B with C. Finally the child is 

asked about the relations between the two quantities which have 

not been directly compared, A with C. This last part is the 

point at which the child has to make the inference since in 

order to make a judgement about the AC relation the child must 

combine the information from the separate, direct comparisons 

between A and B and between B and C. 

Bryant (1974) points out that, typically, "children below the 

age of approximately seven or eight years of age were not able 

to answer the inferential AC question". And he also stated that 

amongst many other psychologists and across several different 

experiments there is the "same developmental trend from 

consistent failure to consistent success". 
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Bryant (1974), however, argues powerfully that young children's 

failure in the transitive inference task is principally due to 

their poorly developed memory systems and that their success in 

the task is possibly due in some measure to chance. In a 

modified version of the standard task, Bryant had the child 

make four initial direct comparisons, A and B, B and C, C and 

D, D and E; gave the child a lot of experience with these 

comparisons and made the BD relation the crucial test of the 

child's ability to make inferences. As a result, Bryant found 

that children as young as four were able to make transitive 

inferences. 

Nor does Bryant see any reason for thinking that children as 

young as four years' of age "could not also, make similar 

inferences about number". That the child does not cope with the 

ordinal relationships (which is essentially what being able to 

make a transitive inference involves) within number - that is 

understanding the necessity of the fact that if 4+2-6, then 6-4 

must equal 2- is, according to Bryant, due to memory failure 

rather than a competence lack. 

As in the case of classification then, it would appear that 

children can develop the ability to seriate (albeit with 

support) before they come to school. 
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Conservation 

For Piaget (Turner, 1984), conservation was the "centre of 

rationality": and according to Pinard (quoted in Turner) 

"extends beyond the few privileged domains to which it is 

customarily restricted". In the typical conservation experiment 

(in this instance to test the conservation of volume), the 

child is shown two identical containers, A and B, filled with 

identical quantities of liquid. The child is asked to confirm 

that both containers hold the same amount of liquid, and then 

watches while the liquid in container B is transferred to a 

third container, C, which is taller and thinner. On being asked 

which container now holds more, the young child tends to judge 

the quantities in A and C to be unequal and most often states 

that C, which has the highest level, contains more. For Piaget 

this failure in the conservation task is largely attributed to 

the child's inability to grasp the logical principle of 

invariance; that quantities remain unchanged over perceptual 

transformations. Piaget's interpretation has been variously 

challenged: 

1. Bruner, Olver & Greenfield (1966) do not believe that 

failure in the conservation task is due to a lack of 

understanding of the principle of invariance. According to 

them, from the different modes of mental representation 

(enactive, iconic and symbolic) available to people, the 
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enactive mode (which is based on internalized actions) and 

the iconic mode (which is based on internalized 

perceptions or images) predominate in the cognition of the 

younger child. When erroneous judgements in conservation 

tasks are made they are due to attention being focussed on 

the perceptual aspects of the task. The symbolic system 

'knows' that the liquid is the same after being poured 

into the new container but the iconic system insists that 

it is different and the iconic system dominates the 

response. Bruner et al demonstrated that if the perceptual 

differences were concealed from the child by a screen 

which allowed him/her to see the pouring take place, but 

not the resulting discrepant levels, he was more likely to 

judge correctly that the quantity of the liquid poured 

from one container to another remained the same. Thus it 

is Bruner et al's contention that correct conservation 

responses emerge only if the perceptual evidence is 

weakened, or later when the verbal system (symbolic mode) 

becomes stronger. 

2. Bryant (1974), from extensive study of the invariance 

principle, argues that young children seem to have two 

rules and use them in different situations. One rule is 

that if the child sees only one quantity (instead of two 

as in the traditional conservation task) which is then 

transformed, he/she applies the principle of invariance - 
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that is the child knows and asserts that since nothing has 

been added or taken away then nothing has changed. The 

other rule seems to be that if the child is required to 

compare two quantities he/she uses a perception-type cue 

(of 'looks' bigger, taller, longer, etc. ) Bryant maintains 

that the young child does not realize that these rules are 

inconsistent and so applies the first rule when he/she 

sees a quantity transformed and the second when he/she has 

to compare two quantities. 

3. Donaldson (1978), Donaldson & Balfour (1968) and Donaldson 

& Wales (1970) see linguistic confusion as being linked to 

nonconservation. Their research indicates that relative 

terms such as 'more' and 'less' do not have the same 

connotations for young children, as they do for adults. 

Clearly, then, if the child literally does not understand 

what the words 'more', 'less' and 'same' mean then he/she 

will not be able to carry out the task. Additionally, 

however, Donaldson and her colleagues argue that the 

conservation task (and for that matter the class inclusion 

task also) requires 'disembedded' thought - that is the 

child must think about the language used by the adult 

independently from the context in which it is being used. 

Prising the thought from its context such that the 

thinking becomes the "manipulation of meaningless symbols" 

is, as Donaldson (1978) points out, difficult even for 
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adults and yet, in our society, it is the type of thinking 

Which is highly prized in our educational system. The 

ability, to reason syllogistically is an obvious (albeit 

extreme) example. 

The importance of a salient context in which to demonstrate 

conservation is well exemplified in two studies. In Cohen's 

(1967) work a tea table experiment was carried out in which 

children of 4k years of age had to share out quantities fairly. 

They were extremely accurate in compensating for the 

differences in the shape of the containers provided. The 

correct nonverbal conservation responses were in contrast to 

the typical erroneous verbal responses given by a matched group 

of children who performed on the standard Piagetian version of 

the task. Similarly in Donaldson's (1978) work, with the 

transformation of the stimulus material carried out by 'Naughty 

Teddy' so as to suggest to children that the transformation had 

been accidental, the number of children successfully 

demonstrating the principle of invariance was markedly greater 

than in the traditional version. 

These two pieces of work illustrate the point alluded to at the 

beginning of this section - that the principle of invariance 

has application in everyday life. -It is not'so much a rule of 

logic which, once understood, will serve in any situation but, 

more, a convention which will have application in some contexts 
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but not in others. For example a heap of lego bricks is a tower 

when the child has built it up but not when he/she has knocked 

it down again. Similarly, each individual when described by 

his/her given name retains his/her identity in spite of changes 

in size and appearance through life, but when reference is made 

to the person's physical appearance as it changes from 

childhood through to middle age, then invariance is not 

preserved. The'notion of invariance is much 'bigger' than what 

can be encapsulated in a standard Piagetian conservation task. 

How the child performs'on such a `task will be influenced at 

least by the language used, the child's perceptions of the 

experimenter's intentions and the interaction between the two. 

In summary then, it would appear that while classification, 

seriation and conservation are in themselves robust concepts, 

their elicitation is context bound. Perhaps what should be 

remembered is that the types of experiments which have 

classically demonstrated classification, seriation and 

conservation are tasks in a social setting and therefore both 

the behaviour of the experimenter and, more importantly, the 

child's interpretation of the experimenter's behaviour must be 

taken into account. The traditional experiments assume that 

the task which the experimenter is setting is the same task 

that the child is doing. Subsequent studies (as cited above) 

cast doubt on that assumption. 
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The relevance of Piagetian theor 

The finding that children, even before school age can classify, 

seriate and conserve, ultimately leads one to question (in part 

at least) the relevance of Piagetian theory to early 

mathematical education. Certainly, Piagetian theory seems "to 

set limits on the kind of reasoning and understanding we can 

expect from children at any particular point in their 

development" (Resnick & Ford, 1984). This is all well and good 

as a general teaching principle, but it is altogether much too 

vague to allow one to draw from it teaching implications for 

specific mathematical tasks. And even those educationalists 

concerned to apply Piaget in the classroom are not sufficiently 

specific to enable practising teachers to see/understand what 

they should be doing in the name of Piagetian application. 

Ramii & DeVries (1976), for example, advocate a variety of 

musical, group and board games; describe some "situations 

particularly conducive to the construction of elementary 

number"; and expound half-a-dozen "principles of teaching"! 

Hughes (1986), however, draws attention to the nub of the 

matter. He points out not that Piaget's theory is incorrect 

"but that it lacks immediate relevance for those attempting to 

cope with, children's real difficulties in learning 

mathematics". Similarly, Groen & Kieran (1983) claim that there 

is a most serious gap "between Piaget's tasks and the tasks of 
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school mathematics". They argue that although there may be a 

connection between Piagetian tasks and school mathematics, "it 

is not an explicit one". The Piagetian tasks "lack the face 

validity or direct correspondence possessed by a task such as 

addition or solving equations" (Groen & Kieran, 1983). 

Groen & Kieran (1983) maintain that because Piagetian theory 

"provides no apparatus for bridging the gap" between empirical 

findings and school mathematics, and because Piagetian theory 

posits the notion that intelligence develops through a sequence 

of stages and substages, it is perfectly possible to infer a 

bridge between the two. They list this inference in terms of 

the following assumptions: 

1. Piaget's "intelligence" is the same as that required by 

school mathematics. 

2. Intelligence develops according to Piaget's "main 

sequence" of stages - sensorimotor, pre-operational, 

concrete and formal operations. 

3. The stages of this main sequence, together with their 

substages, define a particularly ordered set of slots into 

which the tasks of school mathematics can be inserted. 

This defines the level of intelligence necessary for 

successful performance on any given task. 

4. A given level is attainable only by going through all 

prior stages and substages. 

5. Performance in school mathematics can be improved by 
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explicitly teaching appropriate Piagetian tasks as 

generated by assumption 3- for example, improving 

addition by teaching conservation of number. 

Having, by inference, 'forced' a connection between Piaget's 

theory of how knowledge is structured and his theory of the 

sequence of any set of developmental events, it then becomes 

(relatively) easy to understand why assumptions 3,4 and 5 have 

become almost central tenets in what now can only be referred 

to as quasi-Piagetian approaches to school mathematics. This is 

not to say that Piagetian 'tasks might not be essential 

components of tasks in school mathematics. They may, somehow, 

very well define necessary conditions for success but it is 

becoming quite clear that traditional Piagetian tasks are not 

easily mapped onto conventional school mathematics. 

The appreciation that Piagetian measures of conceptualization 

in children do not have immediate application in the classroom 

is, however, a relatively recent phenomenon. Before Hughes 

(1986) and Groen & Kieran (1983), loyalty to the Piagetian 

framework would seem to have resulted in an almost 

unjustifiably reverent attribution of recommendations for good 

teaching practice to the findings of Piaget. For example, 

Lovell (1972) believes that the Piagetian, cognitive- 

developmental model does have something to say to teachers: 

firstly he suggests a move from the formal classroom, 
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whole-class teaching to small group and/or individual 

teaching; 

secondly he suggests that there be "opportunity for pupils 

to act on physical materials" - these being considered 

necessary for the abstraction of concepts; 

thirdly he suggests that classroom conditions allow 

teacher-child and child-child interactions - these being 

seen as important in helping the child to organize his/her 

thinking, and in eliciting "the strategies of thinking" 

available to the child; 

fourthly he suggests that "the initiative and the 

direction of the work must be the teacher's 

responsibility"; 

fifthly and finally he suggests that "alongside the 

abstraction of the mathematical idea from the physical 

situation, there must be the introduction of the relevant 

symbolization". 

Perusal of Lovell's (1972) implications may imbue the reader 

with feelings of deja-vu, and for good reason. As McIntosh 

(1977) points out, recommendations of this sort were being made 

"sixty to one hundred years ago" so however laudable they may 

be they cannot be said to derive exclusively from Piagetian 

theory. At best they are not inconsistent with it and what they 

really serve to tell us is that while Piaget's contribution to 

our understanding of children's conceptualization has been 
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enormous, any theory - including Piaget's theory - is merely a 

tentative statement that needs constant modification on the 

bases of evidence gained from the testing of its offspring 

hypotheses. Once a theory ceases to perform its function of 

incorporating new discoveries about human behaviour it can be 

set aside. 

Since Piaget's assessment of the cognitive abilities of young 

children was on the basis of tasks which have no obvious or 

direct application in the teaching of mathematics, there seems 

little point, in the context of this study, in pursuing his 

theory any further. Suffice to say that while what can be 

implied from his theory in respect of mathematical learning, as 

spelled out by Lovell (1972), is encouraging, it is not 

radically illuminating. It therefore now seems appropriate to 

consider the findings of those who have studied the 

mathematical achievements which young children have directly 

demonstrated. 

In summary: 

(i) the constructivist view of number conceptualization states 

that sound understanding of number involves the abilities of 

classification, seriation and conservation; 

(ii) research suggests that the ability to perform successfully 

in these tasks is a function of context, interpretation and 

memory; 
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(iii) the links between the concepts of class inclusion, 

transitive inference and invariance and the abilities to 

perform school mathematics may be tenuous, and are certainly 

not obvious; 

(iv) without in any way underestimating the importance of 

Piagetian theory in the development of mathematical 

conceptualization, it is fair to say that Piaget's findings are 

of little immediate relevance to the teacher of mathematics. 
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counting 

The purpose of this chapter is to consider the conceptual 

underpinnings of addition and subtraction from a perspective 

which is slightly different from that of- Piaget. This 

perspective is not opposed to the Piagetian view: rather it has 

grown out of the Piagetian view and as such can be referred to 

as neo-Piagetian. 

Gelman & Gallistel (1978), who have set about very thoroughly 

trying to establish what young children can do (as distinct 

from establishing what they cannot do), argue for the primacy 

of counting as the means whereby children begin to develop 

understanding of number. Moreover, they contend that children's 

early mathematical abilities develop in much the same way as we 

now understand early language development: by a system of self- 

generated rules. 

Starkey & Gelman (1982), react strongly against the Piagetian 

view that counting processes are "rote processes, the products 

of which have no numerical meaning or utility to the child" 

(Starkey & Gelman, 1982). Indeed Gelman & Gallistel (1978) go 

so far as to say that children cannot reason about number, that 

is think in the abstract, algebraic sense, until they have 

developed an understanding of how numerosities are obtained. 
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This understanding develops through counting which, in turn, is 

governed by five counting principles. For Gelman & Gallistel 

(1978), the developmental process in understanding number is 

one of: 

(a) learning the system of counting names; 

(b) perfecting the use of counting principles that constitute 

counting; 

(c) reasoning about number. 

Each-of these facets will now be explicated in turn, but in so 

doing it must be stressed that there is no implication that in 

actuality each follows the other in temporal sequence; in the 

sense of one being complete before another commences. 

(a) Learning the System of Counting Names 

According to Fuson & Hall (1983) number words have a variety of 

meanings and uses. The meaning of number words is determined by 

their uses in particular contexts. Fuson & Hall (1983) suggest 

the following contexts as ones in which young children acquire 

number words. 

(i) Sequence Context - The English language words, one, two, 

three, four, five, etc in their conventional sequence, are 

learned. In this context, sequence words are relatively 

meaningless in that there is no correspondence between the 
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words and the entities to be counted. Nevertheless sequence 

production activities are found to have a variety of (albeit 

low level) uses by children: spontaneously reciting a sequence 

to demonstrate to others the reciter's 'skill'; reciting a 

sequence to a pre-determined number in a game of Aide-and-Seek; 

reciting sequences in number rhymes - 1,2,3,4 Mary at the 

Cottage Door, or 1,2 Buckle my Shoe; reciting the sequence 

forward to find the number after 6, and backwards to find the 

number before 8. And even adults can be seen counting to 10 to 

control their temper! Fuson & Hall maintain that: 

each sequence production should contribute to the 
acquisition of the sequence and to its eventual fluent 
production but probably does not contribute substantially 
to any further knowledge regarding the number words. 

(ii) Counting Context - The sequence number words are 

successively assigned to countable items. In other words there 

is a one-to-one correspondence between number words and 

entities to be counted. In young children, counting can be 

accompanied by pointing which according to Fuson & Hall, 

connects the entity existing in space to the word existing in 

time; or counting may be accompanied by the physical act of 

moving the entities from the pile of uncounted to the pile of 

counted entities. Over ontogenetic time, the dependence on 

physically marking the items being counted, fades, if it was 

ever there at all, since some even very young children count 

without demonstrating overt indications of counting. 
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(iii) Cardinal Context - The number word describes the total 

numerosity'of the set of countable entities. Fuson & Hall cite 

evidence to show that children as young as two in western 

culture can use number words for small arrays in a cardinal 

context - for example, two shoes, two hands. However, as Fuson 

& Hall also point out, "the capacity to process numerosity 

information for small arrays does not mean that the child is 

aware that numerosity is a property of all sets". In other 

words the child may need help in generalizing from the 

different cardinal contexts he has experienced to abstract the 

concept of numerosity words as having context free meaning. 

(iv) Measure Context - The number word describes the numerosity 

of the units into which some continuous dimension of an entity 

has been divided - for example, two cups of flour, four 

footsteps, three litres of milk, five gallons of petrol. The 

measure context involves firstly an appreciation of non 

standard units and later an appreciation of standard scales. In 

using non standard units such as cupfuls, say, to measure a 

quantity of flour, the child must realize that each and every 

cupful be filled to the top with flour. Thereafter all the cups 

of flour can be counted or, if only one cup was available in 

the first place, a tally kept of the cupfuls so far counted. In 

using standard units, particular aspects of the use of each 

scale must be learned - for example, one's waist does not 

measure 26 inches if the tape has not been positioned correctly 
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all the way round the waist; one's body temperature is not 

constant in the face of differing environmental influences such 

as having a hot drink before a thermometer reading is taken and 

so on. Fuson & Hall argue that the measure context is so wide 

ranging in terms of the procedural and declarative knowledge 

required that: 

it seems likely that the measure concepts of children 
consist of a scattering of relatively isolated fragments, 
with little overall generality. 

(v) Ordinal Context - The number words, first, third, ninth etc 

describe the relative magnitude or the relative position of a 

discrete entity within a well-defined, totally ordered set of 

entities in which the ordering relation has a specified initial 

point as in the fist man to walk on the moon, the second police 

car to arrive at the scene of the accident, the third child in 

the line, the fourth child in the family and so on. Fuson & 

Hall maintain that ordinal words beyond first, second and third 

are probably learned by derivation from the standard word 

sequence rather than being learned in sequence as cardinal 

words are. 

(vi) Non Numerical Context - The number word is used as an 

identification. Post codes, telephone numbers, credit card 

numbers room numbers are but a few of the ubiquitous 

applications. 
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Given the variety of contexts in which the same number words 

are used, how then does the young child learn the system of 

counting names? According to Fuson & Hall: 

the child first learns the number word as several 
different context dependent words. Later these different 
meanings of the word become inter-related, resulting in a 
mature, closely connected set of meanings for that word. 

(b) Perfecting the use of the Counting Principles 

For Gelman & Gallistel (1978) it is the availability of certain 

principles as well as the ability to use the principles in 

concert which underpin the ability to count. 

The Principles 

(i) one-one principle 

(ii) stable order principle 

(iii) cardinal principle 

These first three principles are referred to as the how-to- 

count principles because they are procedural in that they 

specify the way to execute a count. 

(iv) abstraction principle 

This fourth principle is referred to as the what-to-count 

principle because it deals with the definition of what is 

countable. 

(v) order-irrelevance principle 

This fifth and final principle combines features of the other 

four principles. 
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The how-to-count principles 

Being able to count involves having an understanding of one-to- 

one correspondence in assigning a distinct counting word or tag 

to each of the entities in the countable array. There must be 

one and only one tag used for each item in the array. In the 

sophisticated counter in western culture this means using the 

traditional counting words in sequence. However the one-one 

principle is not dependent on the traditional naming sequence. 

Gelman & Gallistel found that very young children used their 

own idiosyncratic sequences such as counting a two-item array 

by saying "two, six" and a three-item array by saying "two, 

six, ten". What Gelman & Gallistel noticed was that children 

using idiosyncratic lists used them in a systematic fashion - 

that is, "the same sequence of tags occurred trial after 

trial". This consistency in assigning tags across a count is 

what is meant by the stable-order principle. Moreover, Gelman & 

Gallistel found that children who used idiosyncratic lists 

"were better able to apply the stable-order principle than were 

children who used conventional lists of number words": the 

explanation being that "the child remembers a list of his own 

making better than one imposed from outside". Nevertheless, in 

the interests of arithmetical communication it is essential 

that the child does learn to use the conventional sequence of 

number words. Gelman & Gallistel acknowledge that the child 

"probably will require considerable practice before he is 
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skilled in his use of the conventional list". The implication 

here is not that the child must be taught to count - he/she is 

already guided by the stable-order principle in counting - but 

that the child has to learn the conventions of counting. This 

will involve to some extent the rote learning of the sequence 

names although here again Gelman & Gallistel argue that after 

learning the sequence of the first twelve or thirteen 

conventional number words, subsequent number words are produced 

by generative rules. Fuson & Hall (1983) similarly mention that 

children seem to learn the one to nine pattern within the 

decade first and later produce the decades in conventional 

sequence. 

Being able to assign tags in a one to one fashion and being 

able to do so in a fixed order is not all that is involved in 

knowing how to count. A crucial component is the knowledge that 

numerosity is a property of all countable entities. For the 

child to indicate the numerosity of the set he/she must be able 

to state that the final tag applied to the last countable 

entity in the set represents the set's total numerosity. This 

is what Gelman & Gallistel mean by the cardinal principle which 

can be understood as having become established from any of the 

following behaviours: 

(i) being able to respond immediately with the correct 

cardinal or to a 'How many? ' question about a set; 

(ii) emphasis on the last word produced in counting by 
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louder and/or, slower pronunciation; 

(iii) repetition of the last word in counting; 

(iv) stating, without counting, the correct cardinal word 

after that same set has been counted on an earlier trial. 

Fuson & Hall (1983) point out that the actual response to a 

'How many? ' question has two successive stages (at least for 

sets too large to subitize), the first being enumeration and 

the second being the reporting of the final tag as a cardinal 

word. They go- on to say that the child who recounts to a 

repeated 'How many? ' question may be viewed as having mastered 

only the first of these two stages. According to the Gelman & 

Gallistel model this would be indicative of the one-one 

principle and the stable-order principle only having been 

acquired by the child. And indeed, Gelman & Gallistel do state 

that "the cardinal principle, which presupposes the other two, 

should develop later". 

Gelman & Gallistel believe that the how-to-count principles 

constitute a schema in the Piagetian sense: that children are 

intrinsically motivated to develop their counting abilities. 

The observed counting behaviour of children has shown that 

children count spontaneously in what to adults would seem 

purposeless counting activities, that they self correct, that 

they eventually learn to count accurately whether or not there 

has been planned and formal 'input to that end. Gelman & 
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Gallistel draw some parallels between the Piagetian model and 

their own. For example, Piaget's notion of children perfecting 

and practising newly developed schemata is seen as similar to 

spontaneous counting; Piaget's notion of the child's 

interpreting his/her world according to his/her existing frames 

of reference is seen as similar to the development of 

idiosyncratic counting lists; Piaget's notion of the 

environment impinging on the child and forcing change or 

'accommodation' is seen as similar to the child being forced to 

adopt the conventional counting list. 

This inherent need by young children to practise, consolidate, 

extend and apply their how-to-count schema is considered to be 

highly beneficial to the child and would seem to support the 

view that, historically we have underestimated children's 

mathematical abilities by failing to realize that the 

acquisition of early number concepts is, like the acquisition 

of early language, a process in which the child takes the 

initiative. 

The what-to-count-principle 

The abstraction principle is the understanding that the how-to- 

count principles can be applied to any array or collection of 

entities, be they physical or non physical, heterogeneous or 

homogeneous. Gelman & Gallistel's interest in the abstraction 
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principle stems from the fact that while for adults it is self 

evident that almost anything can be counted, some very eminent 

developmental theorists have argued that what the child sees as 

a collection to be counted is tied to his ability to classify 

objects and events into organized, - criterial groupings. 

Typically it has been postulated (Bruner et al, 1966; Piaget, 

1952) that children first classify according to the salient 

perceptual properties of objects, (such as colour and shape) 

and only later apply 'abstract' criteria (such as function, 

contextual association, logic etc) in their classification. 

Because Piaget, perhaps the chief protagonist, has emphasized 

the significance of classification in the development of number 

understanding, there has according to Gelman & Gallistel been 

"fostered the belief that children place restrictions on what 

can be counted". They do not argue that children do not place 

restrictions on what can be counted but they do argue that 

children do not restrict themselves to counting collections of 

identical objects. Gelman & Gallistel maintain that a complex 

classificatory schema need not necessarily mediate the ability 

to classify entities as 'things'. They state; 

It is possible to view the ability to classify the world 
into things and nonthings as a derivative of the ability 
to separate figures from grounds. In this case, the 
categorization of things as opposed to nonthings may well 
be among the earliest (most primitive? ) mental 
classifications. A differentiated and ordered hierarchy of 
subcategories of things may well be a later development. 

Chapter 5 Page 109 



THE NEO-PIAGETIAN VIEW 

What Gelman & Gallistel seem to be suggesting is that the 

earliest form of classification is the ability to get from the 

environment any information such that some discrimination can 

be made but that this discrimination may well not be at the 

relatively sophisticated level of shape, colour, function, 

association and so on. Thus, for Gelman & Gallistel, 

classification as a precursor to counting is at a very much 

cruder level than was suggested by Piaget. 

The order-irrelevance principle 

The order-irrelevance principle refers to the fact that the 

order of enumeration is irrelevant. In other words it does not 

matter how you count the collection of countables so long as 

you count them all and count each once only. Appreciating that 

the order of enumeration is irrelevant shows an awareness that 

firstly the number names, one, two, three and so on are not 

inherent properties of the countable items but merely arbitrary 

and temporary designations; and secondly the total cardinality 

of a set is not affected by the order in which the countables 

are processed. 

As well as demonstrating the ability to co-ordinate the how-to- 

count and what-to-count principles, the order-irrelevance 

principle demonstrates, according to Gelman & Gallistel, "an 

understanding of the fact that much about counting is 
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arbitrary". In their empirical work Gelman & Gallistel found 

that children of 4 and 5 years of age were "remarkably good" at 

modifying the order of enumeration when the experimenter 

designated a specific object (say 2nd or 3rd in a linear array) 

as 1. Moreover such children could "invoke the principle in 

their verbal account". In other words they would justify to the 

experimenter that the number word assigned to each object was 

dependent on the specific order of enumeration in any given 

count. This is not to say that the execution of the count was 

always perfect, but then neither is it with adults! 

It is Gelman & Gallistel's contention that in grasping the 

order-irrelevance principle the child knows what he/she is 

doing when counting. Furthermore Gelman & Gallistel believe 

that children possess this information by the time they come to 

school. 

(c) Reasoning about Number 

For Gelman & Gallistel, the child's ability to obtain 

representations of numerosity (which the child does by counting 

as outlined in parts (a) and (b) above) is a necessary 

prerequisite to his/her ability to reason arithmetically. 

Having grasped the how-to-count principles, the child 

routinizes his/her skill by increasingly applying the cardinal 

rule (that is counting aloud anything and everything in sight! ) 
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and later by increasingly stating the cardinal number name 

without having counted aloud. Gelman & Gallistel stress, 

however, that the counting process is not an intrinsic part of 

reasoning but that counting provides the representations of 

reality upon which the reasoning principles operate. They 

delineate the numerical reasoning principles as follows: 

(i) numerical relations; 

(ii) operations; 

(iii) solvability. 

(i) Numerical Relations refers to the child's ability to draw 

comparisons between two numerosities. Gelman &. Gallistel 

believe that young children can accurately compare two (small) 

numerosities and indicate whether or not the arrays are 

numerically equivalent. This occurs even if one of the arrays 

is made to 'look' larger as in having a 'long' line of 3 

counters to compare with a 'short' line of 3 counters. Gelman & 

Gallistel argue that the child's judgement of the 

equivalence/non equivalence in numerosity is mediated by 

representations of numerosity, which are in turn derived from 

counting. If the child does in fact count the members of each 

of the two arrays rather than construct a correspondence 

between the members of each set (which is the Piagetian view) 

then the concept of conservation as it applies to number seems 

somewhat redundant. Moreover, Gelman & Gallistel maintain that 

if a non equivalent relation holds between the two 
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numerosities, the child seems to recognize that an ordering 

relation holds. That is the child knows that one set holds more 

and another less - although the child rarely uses the 

nomenclature - by indicating the direction of inequivalence. 

That young children can, further, "use an ordering relation in 

an inferential manner" (Gelman & Gallistel) calls into 

question, once more, the significance attached to the results 

of the standard, Piagetian seriation task. 

(ii) Operations refers to the child's ability to manipulate 

numerosities and to know whether the manipulation has affected 

the numerosities. For example the child knows that spatial 

rearrangements, colour changes and item substitutions do not 

affect numerosity. This is what Gelman & Gallistel refer to as 

the operation of identity. Similarly when confronted with a 

transformation that has altered the numerosity the child knows 

that either something must have been added (in the case of an 

increase in numerosity) or that something must have been taken 

away (in the case of a decrease in numerosity). In every case 

the child makes his/her decision by counting. 

(iii) Solvability refers to the child's ability to repair the 

effects of the addition and subtraction operations. If the 

numerosity has been transformed by addition the child knows how 

to reverse its effects - by subtraction. Conversely if the 

numerosity has been transformed by subtraction the child knows 
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how to reverse its effects - by addition. Again however, the 

execution may be imperfect. The child knows how to solve the 

problem (that is by addition or subtraction) but he/she need 

not necessarily know exactly the number needed to make the 

reparation. 

The Piagetian and Neo-Piagetian Views 

Clearly there are differences between the Piagetian and neo- 

Piagetian views on how children develop an understanding of 

number. For proponents of the Piagetian view, children do not 

understand, can not understand what addition and subtraction 

mean until they can conserve, seriate and make inferences about 

number. And this seems to happen at about seven years of age. 

What is more, the Piagetian view claims that any 'counting' 

which a child does before then is meaningless and mechanistic. 

By way of contrast the neo-Piagetian view emphasizes the 

central importance of counting, believing it to be based on a 

number of principles all of which most children will have 

grasped, at least in part, by the time they go to school. Not 

only, for the neo-Piagetians, does counting start at an early 

age, it is the basis of understanding: 

that non numerical transformations do not affect 

numerosity; 

whether an addition or subtraction operation is required; 

that addition and subtraction are complementary functions. 
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The pivotal role of counting amongst pre-schoolers and early 

schoolers has, further, been evidenced by Ginsburg, 1977; 

Carpenter & Moser, 1982; Case, 1982; Fuson, 1982; Ginsburg, 

1982; Steffe et al, 1982; and Resnick, 1983. It is counting 

which allows young children to find solutions to various 

practical, addition and subtraction arithmetical problems. 

Within this realm of counting there are a number of strategies 

which children will use spontaneously: in addition there is 

'counting all' and 'counting on' (Fuson, 1982); in subtraction 

there is 'separating from/counting down from', 'adding on/ 

counting up from' and 'matching' to count the unmatched objects 

(Carpenter & Moser, 1982). 

Much of the counting behaviour observed by neo-Piagetians has 

included finger counting. Finger counting, though not always a 

reliable procedure, seems to be meaningful to young children 

(Hughes, 1986). Ginsburg (1977) maintains that young children 

are "likely to try to count on their fingers" and that teachers 

should facilitate this in their young pupils. Hughes (1986) 

specifically states that teachers should show children "how to 

use their fingers more effectively" and that the "different 

methods of different children" should be made "the focus of 

class discussion". 
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While the implications of the Piagetian view are difficult to 

understand in terms of classroom application, the implications 

of the neo-Piagetian view are much more direct. The child comes 

to school with some knowledge of and about counting. In this, 

then, there appears to be a form or structure on which teachers 

of young children can build. Obvious questions for the teacher 

might be: 

to what extent can each and every child in the class 

count? 

what is the range of counting skill amongst the class 

members? 

If, as the neo-Piagetian view argues, the ability to add and 

subtract has its origins in counting it is clearly important to 

investigate what children's counting performance is. The next 

chapter is given over to describing the present author's 

attempts to investigate the counting skills of the children in 

her primary one class. 

In summary: 

(i) the neo-Piagetian view sees counting as the basis of 

arithmetical understanding; 

(ii) counting begins to emerge in children as young as 2-, 3- 

years of age; 

(iii) counting skill is culturally transmitted - it is not the 

exclusive preserve of formal teaching - and is thought to 
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emerge is children in much the same way as language develops; 

(iv) the child's ability to count should be exploited when 

he/she begins to participate in formal schooling. 
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THE INITIAL STUDY 

If not in agreement in all respects, the literature cited in 

the previous chapters suggests that mathematics is ubiquitous. 

It has power and it has precision. Furthermore, mathematics is 

both a conceptual and computational tool with which children 

are keen to engage. The descriptions of incompetent functioning 

ascribed to pupils' learning would therefore seem less a 

function of mathematics per se and much more to do with how 

mathematical topics are taught in school. 

Given the enormous range of human intellectual accomplishment 

over phylogenetic time, it seems reasonable that by now we 

should have devised means to enable people (who in many other 

respects are autonomous learners) to become mathematically 

competent. The 'failure' would seem attributable to pedagogical 

practices. But pedagogical principles are derived from theories 

of learning, the preserve of psychologists. The superficially 

obvious conclusion to be drawn is that ineffective teaching has 

been perpetuated because psychological explanations of how 

learning occurs are inadequate. But this may be an invalid 

conclusion. 

While it is doubtless true that different theories of learning 

cannot, with equal comprehensiveness, account for all learning 
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phenomena, it is probably also true that different theories of 

learning do not have equal ease of applicability when they have 

to be translated into pedagogical principles and practice. Thus 

for all that the teacher wants the children in his/her care to 

be conceptually aware and mature in mathematical terms, the 

methodological route by which such understanding is achieved 

may not be practicable. How does the teacher fulfil parental 

and societal expectations of equipping tomorrow's adults with 

mathematical competence (in terms of a syllabus to be 

overtaken) and yet at the same time aspire to the ideal of 

supporting each individual child in a class of thirty or more 

through his/her individual rate of learning? 

On the one hand there is the tension which exists between the 

claims of society and the claims for the individual child -a 

philosophical question which is not central to this thesis. on 

the other hand there is, for the teacher, the dilemma of taking 

account of the differences- in performance of the children in 

the class given the pupil-teacher ratios, the minimal 

availability of resources and, in the specific case of 

mathematics, the competing demands of other curricular areas. 

All of these concerns, much evidenced in the researcher's 

twenty plus years of experience as a practising teacher, 

together with her reading, led the researcher to formulate the 

general research question: 
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Is it possible to improve pupil performance in primary 
school mathematics by methods which take specific account 
of children's existing mathematical understanding? 

Such a vast question needed clearer definition and much greater 

specificity both conceptually and methodologically: 

conceptually 

1. What was meant by 'improving pupil performance' and 

what was 'performance' anyway? 

2. What 'methods' were to be used? 

3. How was 'children's existing mathematical 

understanding' to be gauged? 

methodologically 

4. What aspect of primary school mathematics was to be 

dealt with? 

5. What age range of children was to be used? 

The generation of the above five questions, although slightly 

more specific than the original research question, did not 

permit easily available answers. They did, however, focus the 

researcher's thinking on how the research might proceed. In 

terms of contiguity an order began to emerge. 

Because the researcher was also a full time practising teacher 

in primary education, it was seen (by the researcher) as 

prudent and pragmatic that the research begin in her own class. 

r 
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It had also been decided (though not because of her research) 

that the researcher have a class of new entrants to the school. 

School policy dictated that for primary one children there be a 

heavy emphasis on number work. These 'constraints', in turn, 

had implications for how the rest of the research was to 

proceed. Thus the researcher decided that the focus of her 

research would be addition and subtraction. 

Children's 'understanding' of addition and subtraction was to 

be gauged by some form of testing. Such testing was to be of an 

oral nature and to be closely tied to the conceptual aspects, 

rather than the algorithmic aspects, of addition and 

subtraction. However, and additionally, in the light of the 

realization that the research was to be conducted with primary 

one children, an exploratory, initial study (see below) was 

decided upon to try to make some assessment of what number 

skills new entrants might bring to school. 

The 'methods' to be used for developing addition and 

subtraction in primary one children were to evolve out of 

theoretical positions discussed earlier: 

a) the significance of counting; 

b) the need to help the child to relate his/her informal 

knowledge with conventional symbolism and representation; 
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c) an openness and respect for children's existing skills 

and strategies. 

'Pupil performance' was to be taken as the behaviour displayed 

by the children in the arithmetical context. Such behaviour 

could be in the form of specific answers to test items or could 

be the spontaneous reactions of pupils during interaction with 

peers and/or the researcher. Claims for the improvement in 

pupil performance would be made in terms of the methods used 

for developing addition and subtraction in young children. 

THE INITIAL STUDY 

Since the age range of children participating in the research, 

and the focus of the research had been decided upon, the first 

research task was to mount the initial study. In attempting to 

gauge the current levels of attainment in number, amongst a 

small sample of primary one children, when there had been no 

formal teacher input, answers to the following questions were 

being sought: 

1. Within what number domain can the individual child 

(i) recall the number names in conventional sequence 

(ii) obtain the numerosity of a collection of countables 

(iii) represent a given numerosity 

(iv) represent an obtained numerosity? 

2. Is there any apparent pattern in children's performance on 
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such tasks? 

3. How do the children approach such tasks? 

4. Is there any apparent relationship between children's 

approach to and performance on the tasks? 

5. Is there any evidence of the children's skill in adding 

informally and if so, is this linked with obtaining 

numerosities? 

6. What implications can be drawn from the findings in terms of 

facilitating the development of formal addition and 

subtraction? 

Context 

In November, 1986, the initial study commenced. The researcher 

had a small class of new entrants (primary one) in a 

cosmopolitan school in Glasgow's west end. From August, 1986 

until mid way through October, 1986, the children attended 

school for mornings only. During that period the children were 

given no formal teaching in number work. Formal teaching in 

this context refers to any activity in which the children might 

be expected to: 

a) count to 10, and add and subtract within 10 and, 

further, 

b) represent his/her counting, addition and subtraction on 

paper using the conventional symbolism of numerals 0 to 9 

and the operator signs of +, -' and 
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However, the children had had lots of informal experience: 

a) playing with water, sand and plasticine; 

b) games to teach colour and shape; 

c) assembling jigsaws; 

d) construction activities with lego, bricks, construct-o- 

straws; 

e) colouring, painting, drawing, scribbling; 

f) group activities of 'chalk and chant' (in which the 

children chanted the number names to 10 and simultaneously 

scribed tally marks on to the blackboard); 

g) music and movement, dance, drama; 

h) craft activities using 'junk'; 

i) number rhymes, songs, nursery rhymes; 

j) dramatic play such as 'dressing up', 'in the house', 

'at the hairdressers', 'in the witch's cave', 'in the 

shop' and so on; 

all of which are fairly typical in a primary one class and are 

thought to afford opportunities for classification and 

seriation, which are the basic categories of human thought 

(Turner, 1984). 

Sub ects 

13 pupils out of a possible 20 were selected from the 

researcher's own class. The remaining 7 children had little or 

no control over the English language, thereby making it 
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. ........... 

impossible for the researcher to adequately communicate with 

them; and for this reason were excluded from the study. The 13 

selected subjects could be said to be representative of a wide 

spread of both ethnic and socio-economic backgrounds insofar 

as: 

a) Asian, African, West Indian and European ethnicity was 

represented in the school population as a whole and to a 

more diluted extent in each class; 

b) parental occupation included holding down prominent 

posts in education, the arts, industry, local politics; 

through working in the service areas in shops, in 

restaurants, driving buses and so on; to being unemployed 

and homeless thus needing state support in the form of 

finance, temporary hostel-type accommodation and social- 

work supervision. 

The age range of the subjects was as might be typically found 

in a primary one class. In November, 1986 the range was 5 years 

0 months to 5 years 7 months, with one exceptional subject who 

was only 4 years 2 months. The median age was 5 years 4 months 

and the mean age was 5 years 2 months. 

Procedure 

The initial study was concerned to find answers to questions 

(listed above) associated with counting tasks and the possible 
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relationship between such tasks. Each of these questions will 

now be considered in turn, in terms of description and 

analysis. 

1. WITHIN WHAT NUMBER DOMAIN CAN THE INDIVIDUAL CHILD: 
(i) RECALL THE NUMBER NAMES IN CONVENTIONAL SEQUENCE 
(ii) OBTAIN THE NUMEROSITY OF A COLLECTION OF COUNTABLES 
(iii) REPRESENT A GIVEN NUMEROSITY 
(iv) REPRESENT AN OBTAINED NUMEROSITY? 

Four criterion tasks were designed to elicit answers to this 

question. 

(i) Recalling the Number Names in Conventional Sequence 

In this task the subjects were required merely to demonstrate 

the extent to which they could recall the number names in 

conventional sequence (within twenty); that is how far they 

could chant one, two, three etc., since Gelman & Gallistel 

(1978) claim that very young children can have their own 

idiosyncratic naming sequences. Each subject was told: 

I want to hear how well you can count. 

It was anticipated that at least some subjects would not be 

able to sustain the sequences correctly to 20, in which case 

such subjects would not be pressed to continue beyond the point 

at which they became muddled. 

The cut-off number names of 5,10,15 and 20 were noted. 

(ii) Obtaining Total Numerosities 

Collections of 6,12 and 24 Logic People (see appendix 1for a 
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short description of Logic People) respectively were heaped in 

front of each subject who was each time instructed: 

Find out how many people are there. 

Again it was anticipated that not all subjects would 

comfortably manage all of the counts, in which case a 

subsequent presentation was not to be made by the researcher. 

The cut-off counts of 5,10,15 and 20 were noted. 

(iii) Representing Given Numerosities 

Each subject was given a card (see appendix 2 for the full list 

of cards) on which was written and drawn the instruction to 

draw a required number of pictures as in: 

rprJ 

64- 
This task was repeated 10 times over several successive days 

and a tally was kept by the researcher of the number of correct 

executions for each subject. 
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(iv) Representing Obtained Numerosities 

Subjects were given sheets of paper on which to represent 

obtained numerosities of pictorially represented quantities. 

There were 12 examples in the 0 to 5 range and 12 examples in 

the 6 to 10 range (see appendix 3). With the aid of felt pens 

the subjects were instructed to: 

Put something down to show how many things are in each 

set. 

The counting tasks were attempted by the subjects in the order 

in which they have been described. Over a period of days/weeks 

the researcher interviewed all 13 subjects individually, first 

for Recalling the Number Names, then for Obtaining Total 

Numerosities, later for Representing Given Numerosities and 

finally for Representing Obtained Numerosities. 

How the subjects performed on the four tasks 

Table 6.1 Recalling the Number Names 

Ss to 5 to 10 to 15 to 20 
1 yes yes yes yes 
2 yes yes yes yes 
3 yes yes yes yes 
4 yes yes yes yes 
5 yes yes yes yes 
6 yes yes yes yes 
7 yes yes yes yes 
8 yes yes yes yes 
9 yes yes yes yes 

10 yes yes yes yes 
11 yes yes yes yes 
12 yes yes yes yes 
13 yes yes - yes no 

r nrAi 13 13 13 12 

Chapter 6 Page 128 



THE BEGINNINGS OF THE EMPIRICAL WORK 

Table 6.2 Obtaining Total Numerosities 
.......... ..... 
Ss to 5 to 10 to 15 to 20 

1 yes yes yes yes 
2 yes yes yes yes 
3 yes yes yes yes 
4 yes yes yes yes 
5 yes yes yes yes 
6 yes yes yes yes 
7 yes yes yes yes 
8 yes yes yes yes 
9 yes yes yes yes 

10 yes yes yes yes 
11 yes yes yes yes 
12 yes yes yes no 
13 yes yes no no 

total 13 13 12 11 

Table 6.3 Representing Given Numerosities 

Ss the number of correct executions out of 10 
1 10 
2 10 
3 10 
4 10 
5 10 
6 10 
7 10 
8 10 
9 10 

10 10 
11 10 
12 10 
13 10 

total 130 
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Table 6.4 Representing Obtained-Numerosities 
the number of correct executions out of 24 

Ss 0-5 6-10. total 
1 12 12 2 
2 12 11 23 
3 12 11 23 
4 12 11 23 
5 12 11 23 
6 11 11 22 
7 12 11 23 
8 12 11 23 
9 12 12 24 

10 12 10 22 
11 12 12 24 
12 12 10 22 
13 12 12 . 24 

total 155 145 300 

Table 6.5 Distribution of Tally Marks and Cipherised Numerals 
in Representing Obtained Numerosities 

0-5 6-10 
Tallies/Civhers Tallies/Ciphers 

Ss 
1 10 2 10 2 
2 9 3 1 11 
3 10 2 0 12 
4 2 10 6 6 
5 10 2 6 6 
6 10 2 12 0 
7 7 5 12 0 
8 10 2 12, 0 
9 10 2 12 0 

10 10 2 -12 0 
11 6 6 0 12 
12 6 6 11 1 
13 2 10 1 11 

total 102 54 95 61 

2. IS THERE ANY APPARENT PATTERN IN CHILDREN'S PERFORMANCE 
ON SUCH TASKS? 
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As perusal of tables 6.1 to 6.4 shows, the subjects performed 

to a high degree of accuracy. 

Twelve out of the thirteen subjects performed with complete 

efficiency in Recalling the Number Names in Conventional 

Sequence as far as 20, and the subject who did not quite 

achieve this standard could nevertheless accurately produce the 

sequence as far as 15. 

In Obtaining Total Numerosities the subjects were similarly 

efficient with all but two managing to count an array of 20 and 

one of these two getting muddled when counting an array of 15. 

Nor was Representing Given Numerosities troublesome to the 

subjects. Each demonstrated complete mastery. 

And finally, in Representing Obtained Numerosities the subjects 

were very accurate. No subject made more than two errors and 

the errors were + or -1 of the cardinal number. 

It is fully conceded that recalling number names in sequence 

tells us nothing about the ability to count, a point made by 

Fuson & Hall (1983). Accurately produced number sequences 

merely facilitate communication between persons when counting 

proper is involved. 
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Counting performance involves two complementary behaviours. 

Firstly there is the behaviour of obtaining a total numerosity 

and secondly there is the behaviour of representing a given 

numerosity. Real life examples of obtaining a numerosity would 

include finding out how many people are in the room, 

calculating the amount of money in one's wallet and reckoning 

the number of miles for a particular journey. Real life 

examples of representing a given numerosity would involve 

choosing six apples, serving four bowls of soup or writing two 

letters. 

In reality these behaviours frequently have to be co-ordinated: 

one has to obtain a numerosity and represent it, so one has to 

make one's preparation for a journey and then make the journey, 

or one has to estimate the number of guests being invited to 

the party and prepare food accordingly! 

It was this perceived analysis of what constitutes counting 

performance which underpinned the design of the tasks which 

were administered to the subjects. If these tasks were tapping 

the underlying competence of counting, it seems reasonable to 

conclude, at least, tentatively, that counting for these 

subjects was well established. 

In the absence of disparate results amongst the subjects, their 

attempts to represent obtained numerosities was perhaps the 

most interesting aspect of their counting performance. 
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..... ... . ....... ......... 

3. HOW DO THE CHILDREN APPROACH SUCH TASKS? 

Generally speaking, the subjects tackled the tasks with 

confidence. There was no point at which any subject seemed 

perplexed or even unsure about what to do. From this one may 

conclude that the instructions to the subjects were specific 

and unambiguous. 

In Obtaining Numerosities different types of behaviour were 

observed amongst subjects. Some, of their own volition, brought 

a sense of order out of the heap of Logic People presented to 

them. They arranged the people in a line and either conducted 

the count after lining up the people, or lined up and counted 

the people simultaneously. Other subjects, however, tried to 

count the heap of Logic People as it was - in disarray - with 

the result that they could not distinguish between what had, 

and what had not, been counted. To these subjects the 

researcher suggested that it might help to make a line of Logic 

People. This the subjects did and then counted from one end of 

the line. 

Pointing to, and touching, the Logic People was much in 

evidence while the subjects were conducting their counts. 

Gelman & Gallistel (1978) suggest that "pointing behaviour 

seems to be central to the counting procedure". 
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Some subjects counted aloud while others counted silently (in 

which case the counting was deduced from the pointing/touching 

behaviours) and finally announced the cardinal number. Silent 

counting is regarded by Gelman & Gallistel (1978) as a 

developmental advance on counting aloud. 

These different, behaviours appeared to cluster in patterns: 

firstly, the subjects who needed the prompt from the researcher 

to line up the people invariably counted aloud; 

secondly, of the subjects who spontaneously lined up the people 

and then proceeded to count, some counted aloud whilst others 

counted silently; 

thirdly, the subjects who simultaneously lined up and counted, 

tended to count silently. 

These clusters of counting behaviour would seem to suggest a 

development in sophistication from the raw state, where the 

subject can deal with only one process at a time (that is, 

organizing the entities to be counted and then counting, aloud) 

to the more refined state where the subject can deal with more 

than one process at a time (that is, simultaneously organizing 

and counting, silently) with an intermediate state where the 

subject uses behaviours from each of the two extremes. 

In Representing Given Numerosities, the only comment to be made 

is about the meticulous way in which the subjects addressed 
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themselves to the task. For the larger numerosities (that is, 

beyond 4) subjects were frequently to be seen checking how many 

pictures they had drawn. For example, when required to draw 7 

cups the subjects could be seen counting when they had drawn 

only 5 cups and later when they had drawn 6 cups and finally 

when they had drawn 7 cups. The subjects had not been 

instructed to carry out such checks but since they all did so, 

the strategy was presumably, one of their own devising and one 

which had meaning for them. 

In Representing Obtained Numerosities there was variety in the 

subjects' approach. Some grappled with conventional notation. 

In her capacity as a teacher, the researcher had just begun 

teaching numeral formation. All of the subjects, however, used 

an amalgam of cipherised numerals and tally marks in 

representing their counting. Representations of zero ranged 

from the conventional nought to a dot, or sometimes the paper 

was deliberately left blank; the latter forms of representation 

being interpreted by the researcher as being part of the tally 

mark system. 

The researcher asked the subjects why they had used 'strokes' 

(the children's referent for tally marks). The typical answer 

was that "strokes are easier to make than numbers". Indeed some 

of the subjects were heard to complain, whilst executing this 

task, that they "couldn't make" particular numerical symbols; 
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three, five and eight being particularly problematic. The real 

explanation for this vacillation between the two systems is 

unclear. It may be, as the subjects themselves said, something 

to do with the manual problem of forming the numerals. On the 

other hand, the preference for tally marks may have had its 

roots in greater conceptual satisfaction for the subjects in 

making marks in one-to-one correspondence with the-items to be 

counted. Theoretical considerations of tally marks- will be 

discussed below. 

4. IS THERE ANY APPARENT RELATIONSHIP BETWEEN CHILDREN'S 
APPROACH TO AND PERFORMANCE ON THE TASKS? 

Counting performance, it will be recalled, was earlier 

delineated as comprising both the obtaining of numerosities and 

the representation of given numerosities in the co-ordinated 

activity of representing obtained numerosities. Mastery of 

both the subordinate skills and the superordinate skill was 

evidenced in all of the subjects. 

Counting competence, on the other hand, cannot be directly 

observed and is, according to Gelman & Gallistel (1978) an 

integrated, sophisticated system comprising five counting 

principles: 

a) the one-one-principle: attaching a different number name to 

one and only one of the entities to be counted; 
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b) the stable-order principle: applying the correct number 

names in sequence; 

c) the cardinal principle: asserting the numerosity of a set 

from the number name applied to the last member of the 

collection to be counted; 

d) the abstraction-principle: addressing the numerosity of a 

set and not being distracted by perceptual differences; 

e) the order-irrelevance principle: counting effectively even 

if the order of enumeration is altered. 

It is therefore. appropriate to consider the subjects' 

performance in the light of Gelman's counting principles to 

locate the descriptive, empirical data from this initial study 

in some sort of theoretical framework. 

In terms of the one-one principle, all subjects, within'the 

limits of the counting tasks were able to attach a different 

number name to one and only one of the Logic People; albeit 

that some subjects needed a prompt to line up the people for 

counting. 

In terms of the stable-order principle, all subjects were able 

to apply the correct number names in sequence. 

In terms of the cardinal principle, the subjects were able to 

assert the numerosity of the set from the number name applied 
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to the last member of the collection to be counted. They 

responded to the reminder question, 'So how many people are 

there? ', by simply repeating the name applied to the last 

countable. None demonstrated the phenomenon of responding to 

the reminder question by starting to count all over again 

which, in its manifestation, is, 'for Gelman & Gallistel (1978) 

an indicator that the child has not yet grasped the cardinal 

principle. 

In terms of the abstraction principle, all of the subjects 

addressed themselves to the numerosities of the collections and 

were not distracted by the perceptual differences of the Logic 

People: that is green, red, blue and yellow men, women, boys 

and girls who were walking, sitting or standing. 

In terms of the order-irrelevance principle, the subjects could 

count collections of 6 and 12 from any given point indicated by 

the researcher: such as from the middle, third from the right, 

fourth from the left and so on. That the subjects could 

remember the exact Logic Person from which they had started 

counting was perhaps facilitated by the variety of colours and 

shapes of the Logic People. This might not have held had the 

stimuli been all brown unifix Cubes, for example. When required 

to count collections of 24 from anywhere but one end of the 

collection, the subjects got somewhat muddled. While Gelman & 

Gallistel (1978) argue that a grasp of the order-irrelevance 
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principle subsumes a knowledge of the other four counting 

principles,, this distinction in performance between being able 

to count 12 and not being able to count 24 when the order of 

enumeration is altered would suggest that the counting 

principles develop in some concerted way and are applied to 

increasingly larger number domains, rather than developing in 

some discrete fashion. 

The strategy of repeatedly counting in Representing Given 

Numerosities would, further, seem indicative of Gelman & 

Gallistel's (1978) claim that children, having grasped the how- 

to-count principles (that is, the one-one principle, the 

stable-order principle and the cardinal principle), are 

motivated to routinize their counting in what Gelman & 

Gallistel regard as a truly Piagetian schema, a point of 

reference against which the individual checks his/her 

understanding of the world. 

In Piagetian parlance the schemata assimilate new 

situations/experiences and accommodate to them due to the basic 

need to reconcile imbalance between the cognitive structures 

and the environment. Translated into the neo-Piagetian terms 

and content of this thesis, the counting schema is an 

organizational framework which allows the child to evaluate and 

refine his/her counting behaviour. 
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The lining up of countables in Obtaining Numerosities seems 

indicative of both the abstraction principle and the order- 

irrelevance principle: 

of the abstraction principle because the 'lining up' took no 

account of the varying sizes, colours or shapes of the 

countables when the opportunity was (albeit implicitly) 

inherent in the task to firstly sort according to some 

criterion; 

of the order-irrelevance principle in that the subjects 

appreciated that each member of the array had to be counted, 

and counted only once - in this the subjects (many of them 

spontaneously but some with support from the researcher) 

demonstrated their knowledge that number names are temporary 

designations only. 

The task of Representing Obtained Numerosities was devised out 

of a desire to explore what Hughes (1986) sees as a "serious 

mismatch between the system of symbols which children are 

required to learn, and their own spontaneous 

conceptualizations". Hughes argues: 

that although they see written numerals around them all 
the time, children in most Western societies are not 
usually introduced to written arithmetic until they start 
school. The exact age at which this takes place varies 
from country to country but, whenever it happens, the 
basic problem is the same: children must learn to link the 
new written form of representation - with the concrete 
understanding of number which they already have when they 
start school. 
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Prior to carrying out the -task of Representing Obtained 

Numerosities, the subjects already knew something of "the 

system' of symbols" in that they could recognize some of the 

conventional numerical symbolism (when carrying out the 

Representing Given Numerosities task). However, they had had no 

opportunity to demonstrate "their own spontaneous 

conceptualizations" of how to represent a numerosity because in 

the earlier representational work, the subjects had been 

specifically instructed to make pictographic representations. 

In the event, the subjects seemed well aware of two systems for 

representing their counting, albeit that neither form of 

representation had been completely accessed by the subjects. 

Evidence for the subjects' awareness of conventional symbolism 

is to be found in the observations that: 

(i) all of the subjects had perfectly represented numerosities 

pictorially, when the stimulus for this had been supplied in 

conventional form (see Representing Given Numerosities task); 

(ii) none of the subjects made pictographic representations in 

the Representing Obtained Numerosities task. Although this 

would have been odd given that the stimuli for this task were 

in pictographic form, it would not have been unreasonable since 

the subjects had not been specifically directed as to how to 

make their representations. 

These observations would seem to suggest that the subjects knew 
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that their represented response had to be a translation from or 

to-a different level of abstraction. This would be in line with 

Hughes's (1986) view that young children do conceptualize some 

sort of representation of a stimulus which is at a different 

level of abstraction. 

The subjects' attempts to represent obtained numerosities in a 

conventional manner could be said to be "spontaneous" insofar 

as the subjects had not been instructed as to how the 

representation was to be made. The subjects' spontaneity, 

however, included the use of tally marks. Hughes (1986) refers 

to the phylogenetic origins of tally systems and raises the 

possibility that in using tally marks children are using a 

fundamental and universal method of representation. He points 

out that the physical action involved in making a downward 

stroke "is very close to the action of reaching out and 

touching objects when counting them: they are both ways of 

'marking off' which seems to be very fundamental". Moreover, 

Hughes (1986) found in his own work that in representing 

quantity "children themselves tend to use methods based on one 

to one correspondence". 

Given that the formation of cipherised numerals was problematic 

to many of the subjects, and given the relative ease with which 

tally marks are made, it is perhaps surprising that the 

subjects did not use the tally system to the exclusion of 
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conventional notation. And yet the subjects' use of the tally 

system was not necessarily perfect. In representing zero, for 

example, some subjects chose to make no mark; justifying this 

on the grounds that 'there was nothing there'. These subjects 

seemed not to see the need to 'acknowledge' that 'there was 

nothing there'. - 

A tentative explanation for the subjects' use of both 

conventional notation and the tally system (neither of which 

was used exclusively or perfectly) seems to be that while the 

subjects appreciate the existence of, and are keen to adopt, 

conventional notation for representing quantities they are 

nevertheless stymied by their own lack of manual dexterity in 

forming cipherised numerals; in which case they resolve their 

frustration by 'reverting' to the more secure, less abstract 

system of making tally marks. That the subjects are possibly 

conceptualizing not one but two imperfectly developed 

representational' systems and using both spontaneously is a 

strength rather than a weakness. 

5. IS THERE ANY EVIDENCE OF THE CHILDREN'S SKILL IN ADDING 
INFORMALLY AND IF SO, IS THIS LINKED WITH OBTAINING 
NIMEROSITIES? 

The Adding Bingo Game The subjects were in groups of not more 

than 5. Each subject was given one of the following cards. 
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........... 

Figure 6.1 
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Each card (measuring approximately 10cm by 5cm) had 6 cells, 

with each cell being represented by a number in conventional 

symbolism. Two conventional dice, the faces of each showing 

dots for numerosities 1 to 6, were shaken together. The dots 

thrown were summed and if the total matched a numerosity-on the 

card, a plastic counter was placed on top of the numeral. The 

first child to completely cover his/her card was the winner of 

the game. 

To begin with, the researcher prompted each subject after 

he/she had thrown the dice by asking: 

How many dots are there altogether? 

The context of the game, with its conventions of turn-taking 

and of there being a winner, was one with which the subjects 

were very familiar, and learning the particular rules of this 

game did not seem to present the subjects with too much 

difficulty. 

Initial reminders by the researcher to sum the dots were 

quickly dispensed with. Most of the time the subjects found the 

sum by counting, using the 'counting all' strategy. Finger 

pointing and head nodding showed this. A few of the subjects 

knew some of the smaller number bonds such as 1 and 1 are 2. 

One subject was able to derive a number fact from another known 
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fact. When asked how he knew that 5 and 5 are 10 he replied, 

"cause 4 and 4 are 8 and another 2 is 10". Yet another subject 

consistently and correctly knew all of the number bonds. When 

asked how he knew, his reply was, "cause I just know". 

Because counting/adding was an intrinsic part of the game, the 

subjects were constantly getting practice in the task without 

its seeming a chore or without its being imposed externally. 

Hughes (1986) makes a similar point when discussing the 

intrinsic motivation of games as a means by which number 

proficiency can be increased. 

There is, however, another advantage in using the games context 

which if it is not of immediate concern to the researcher it 

most certainly is to the teacher. And that is the advantage of 

keeping the children in the mathematical situation without the 

teacher necessarily having to be present. Floyd et al (1982) 

spell out this point when they say: 

many teachers reject the idea of producing practical 
learning experiences because of the worry that they will 
be tied down to being present throughout the time that the 
activity is going on, which is completely infeasible with 
any class of normal size. 

Floyd et al recommend that teachers "try and build the activity 

into a game where the winning strategy involves the very 

process you are trying to teach". 
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The Adding Bingo Game incorporated the advantages listed above 

and by providing additional cards, dice and plastic counters, 

became a game which many of the children in the researcher's 

class chose to play, thus freeing the researcher, in her 

capacity as a teacher, to attend to other groups of children. 

The purpose of the Adding Bingo Game was to explore the 

informal addition skills of children who had had no formal 

teaching in addition. As Gelman & Gallistel (1978) and others, 

have established, counting is a fundamental activity, from which 

informal addition appears to stem almost naturally; especially 

so when the counting involved employs the 'counting all' 

strategy. Nothing in the Adding Bingo Game denied that informal 

addition, when effected by the 'counting all' strategy, was a 

consequence of being able to obtain a numerosity. 

6. WHAT IMPLICATIONS CAN BE DRAWN FROM THE FINDINGS IN 
TERMS OF FACILITATING THE DEVELOPMENT OF FORMAL ADDITION 
AND SUBTRACTION? 

The purpose of this initial study had been to assess what 

number attainments primary one children had on entering school 

and to glean, from careful and controlled observation, factors 

which ought to be taken into account when formal number work 

commenced. So what was learned? 
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Children. are remarkably knowledgeable about our number system. 

They know it is a means through which one can make observations 

of one's environment. They also know that such observations can 

be recorded in different forms. They are nevertheless somewhat 

confused about the highly systematized nature of our number 

system. Through an inability (perhaps) to monitor their own 

cognitive behaviour they may not appreciate, for example, that 

it is prudent to spatially arrange the members of a 

disorganized array in some sort of order before executing a 

count. Similarly in their desire to be participating, 

functioning, 'doing' people, they do not yet appreciate the 

need for consistency in representing their observations; that 

in the real world adults do not usually vacillate between the 

tally system and conventional notation for representing their 

mathematical behaviour. 

Perhaps the most important implication to be drawn for early 

maths teaching is that we as teachers use as many intermediate 

steps as need be to help the child make links between his/her 

informal knowledge and regularized, conventional formalism. 

This means: 

1. helping the child to make explicit to self and others what 

knowledge he/she does have: if the child wants to use tally 

marks, fine, but this has to be recognized as a different 

system from conventional notation; 

2. building on what the child 'gives': if the child can 
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represent his/her counting pictorially then he/she can be 

assisted to represent addition and subtraction pictorially; 

3. removing unnecessary obstacles from the child's learning: if 

the formation of cipherised numerals is problematic, the 

learning of such a skill should be kept distinct from the 

teaching of number - plastic, magnetized numerals are readily 

available for children to manipulate instead; 

4. generally being 'open' to the child's contribution: as 

teachers we must believe that the child really is trying to 

make sense of his/her environment and not trying to sabotage 

our attempts to teach. 

Since formal symbolic notation is an intrinsic part of 

mathematical representation and since skill in such 

representation has not become routinized for the young child, 

it is essential that teachers make every effort to mesh their 

'expert' knowledge with the child's 'inexpert' knowledge. Not 

to do so and then claim that a child's number calculation is 

wrong is to make a judgement about the child's cognitive 

competence on the basis of psychomotor performance. That 

children come to school with a competence in counting is not in 

question. That they do, however, does not allow us to assume 

that they are conversant with all of its symbolism and 

conventions. 
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How generalizable are the findings likely to be? 

In carrying out research in the field of Social Science there 

is the desire on the part of the researcher to make generalized 

claims from his/her always limited experience to the wider 

social world. Indeed it can be argued that given the impossible 

logistics of describing, let alone explaining, the criterion 

behaviour(s) of the population at large, the whole point of 

carrying out research is to go beyond the information available 

from a small part and make inferences to the whole, in some 

cautious, precise and reliable fashion. 

To begin to make generalized claims for the results in this 

initial study firstly requires that the sample of subjects 

mirrors a population of primary one children. Was the sample 

truly representative of at least a Glasgow if not a Scottish 

population? Did each member of the population have an equal 

chance of appearing in the sample? 

It will be recalled that the sample used totalled 13 persons, a 

tiny number. However, given that the sample was drawn from a 

class which was one of three infant reception classes in one of 

the largest primary schools in Glasgow; given that children 

were assigned by the school to particular classes to 

counterbalance sex, age and ethnicity; and given that the 

school was commonly recognized by both politicians and 
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educationalists as being a microcosm of society in its ethnic 

and socio-economic make up, it is possible to claim that the 

sample is not obviously unrepresentative. 

But even if the sample is representative, the importance of the 

data gathered depends on how safely one can generalize from 

them, on the extent to which one can claim that the scoring by 

the subjects would truly describe the population. The 

quantification of the probability of error in such estimating 

is a matter for statistical analyses. 

But perusal of the data in tables 6.1,6.2,6.3,6.4 and 6.5 

shows the distribution of scores to be very skewed. Since the 

absence of a normal distribution in subjects' scores violates 

one of the assumptions for using parametric tests, it is 

clearly inappropriate to do so. This then leaves the question 

of whether there is anything to be learned from using non 

parametric tests. Non parametric tests mostly depend on the 

rank ordering of data to highlight significant differences or 

correlations. But since the differences between scores in this 

initial study are almost non existent it seems inappropriate to 

use non parametric tests. Statistical analyses seem irrelevant 

when it is recalled that: 

in Obtaining Total Numerosities all thirteen subjects could 

count to 10, twelve subjects could count to 15 and eleven 

subjects could count to 20; 
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in Representing Given Numerosities all thirteen subjects 

achieved 100% accuracy; 

in Representing Obtained Numerosities all subjects scored at 

least 22 out of 24 items correctly. 

Admittedly, however, more subjects made errors in Representing 

Obtained Numerosities. Only four subjects scored all 24 items 

correctly while the remaining nine subjects made one or two 

errors. It is interesting to speculate on why the majority of 

subjects in the Representing`Obtained Numerosities task should 

have made errors, as this contrasts with their respective 

performances on the other tasks. 

There may be an explanation in that in Representing Obtained 

Numerosities the subjects had to 'cope with a number of 

variables: 

a) remembering the obtained numerosity 

b) deciding whether to represent the numerosity by tally marks 

or cipherised numerals 

c) struggling with the mechanics of forming numerals when using 

conventional symbolism. 

By way of contrast, when being required only to Obtain 

Numerosities, the subject could announce the cardinal number as 

soon as he/she had finished counting. Similarly, when being 

required to Represent Given Numerosities, the subject had a 
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point of reference. The subjects had the card with specific 

instructions as to how to make the representation in front of 

him/her for as long as it was needed. In both of these tasks 

the subject's attention was focussed on only one facet of 

counting. But in Representing Obtained Numerosities, the 

subject's attention had to be given to both facets and to 

making a decision as to what form the representation should 

take. Given that the subject's short term memory trace of the 

obtained numerosity would fade in seconds (Baddeley, 1976; 

Gregg, 1975) which could mean that the subject had to obtain 

the numerosity several times (in other words recount, perhaps 

more than once) in the execution of one example; and given that 

the subject had choice in how to make his/her representation; 

and given that the formation of cipherised numerals was not yet 

routinized for the subject; it is reasonable to deduce (even if 

in an understated way! ) that the subject's processing capacity 

was heavily loaded. 

And yet representing an obtained numerosity is at the very 

heart of all we require children to do in formal number work. 

Children are expected to count, add, subtract, multiply and to 

divide, and to record this activity not only once a day in the 

course of school mathematics, but for as many times as there 

are examples provided for the children to work through. 
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As has been suggested already in this chapter, the most 

interesting aspect of the subjects' counting behaviour seems to 

have been revealed in Representing Obtained Numerosities 

insofar as it was on this task that subjects manifested 

greatest variability in execution. Are the differences, then, 

in any way real? Specifically, did the subjects have a personal 

preference in using the tally system or conventional notation? 

Furthermore did the magnitude of the numerosity affect the form 

of representation used? Wilcoxon tests were run on the 

distribution of tally marks and cipherised numerals in both the 

0-5 range and the 6-10 range. Subjects used tally marks 

significantly more often in the 0-5 range (p. <. l, two tailed) 

than they did cipherised numerals. For larger numbers, however, 

differences were such that they could be due to chance alone. 

Given the weak level of significance in preference for tally 

marks in the lower magnitude; - and given the lack of 

significance in difference between tally marks and cipherised 

numerals in the higher number magnitude, it cannot be claimed 

that the distributions of representation would be found either 

in another sample or in a parent population. 

Even if, however, the findings are not generalizable, the 

evidence from this small sample is probably as clear as it can 

be: that the subjects are sufficiently proficient in counting 

to be able to proceed to formal addition and subtraction. The 

issue now is whether or not a means for teaching formal 
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addition and subtraction can be found such that both processes 

are meaningful to the children. The next chapter describes this 

researcher's attempts to do just that. 

In summary: 

(i) young children, on entering the formal school system, are 

able to obtain numerosities and represent given numerosities 

very competently; 

(ii) the same children find it more difficult to combine these 

tasks into representing obtained numerosities, a task which is 

very characteristic of school mathematics; 

(iii) informal addition is an extension of being able to obtain 

a numerosity; 

(iv) the facility to represent obtained numerosities is more 

problematic: this may be due to the psychomotor 'newness' of 

using conventional notation or it may be due to the conceptual 

confusion of not knowing what form of representation to adopt; 

(v) as teachers we need to be aware of the previous point and 

be prepared to support children through their transitions from 

informal to formal characterization of the task in hand. 
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During the intervening months between November 1986 and March 

1987, excluding an extended Christmas holiday on account of 

inclement weather, the subjects had practised their counting 

skill on a 'daily basis: they had obtained numerosities, they 

had represented given numerosities and they had represented 

obtained numerosities. Many had learned to play number games 

such as Snakes and Ladders, Ludo and Dominoes; and they had 

continued to practise and improve their skills in the writing 

of cipherised numerals. 

The children's attainment in Recalling the Number Names in 

Conventional Sequence was also considerable. In March 1987 they 

demonstrated their chanting skills thus: 

Table 6.7 Recalling the Number Names 

Ss last cardinal name stated 
1 99 
2 100 
3 123 
4 98 
5 100 
6 100 
7 79 
8 49 
9 39 

10 69 
11 49 
12 39 
13 29 

Subjects 2,3,5 and 6 were stopped by the researcher. They 

could probably have gone on for longer but they were clearly 
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tired by. their efforts. Perusal, of the last number name stated, 

in table 6.7, shows that 8 out of 13 of the subjects stopped 

their chanting on a '9', the last number name before a new 

decade. When prompted by the researcher with the new decade 

nameýthe subjects were able to continue .. 1, .. 2, .. 3, until 

.. 9, when they became unstuck at the subsequent decade name. 

This phenomenon is noted also by Fuson & Hall (1983) who 

maintain that: 

word sequences produced by children aged 4k-6 years of age 
indicated that they knew the repeating one to nine pattern 
in the decades (eg thirty, thirty-one ...., thirty- 
nine) but that they had not yet solved the 'decade 
problem' (that is they did not, produce the decades in the 
right order). 

The subjects in this study would appear to have considerable 

control over the conventional number naming sequence. Fuson & 

Hall (1983) maintain that "the age at which the whole sequence 

to 100 is acquired seem heavily dependent upon the practices of 

individual teachers as well as on subject variables". They go 

on to claim that their observations in suburban schools suggest 

that "this can be accomplished by the end of kindergarten for 

most middle-class children if teachers provide moderate amounts 

of sequence production activities". 

If it is remembered that American children start formal 

schooling at 6 years of age, a year later than their Scottish 

counterparts, :, then kindergarten children will be the same age 

as primary one children in the Scottish system. 
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In this study the amount of teacher input into the generation 

of the cardinal number names had been very little. The teacher 

counted out loud the number of children present in the morning 

and afternoon but this certainly could not account for the 

chanting skills of the subjects. 

Gelman & Gallistel (1978) argue, however, that it is "the 

development of the child's ability to perceive underlying 

generative rules" which "leads to the mastery of a count 

sequence that requires a limited amount of rote learning but is 

capable of being extended indefinitely". In other words the 

child learns by rote the one to nine pattern and probably also 

the ten to fifteen pattern, although "fourteen is the first 

English count word whose derivation from an earlier member of 

the rote sequence is completely transparent" (Gelman & 

Gallistel, 1978). Thereafter the child learns the decade names: 

twenty, thirty, forty (and here again perception of their 

derivatives may enable the child to master the subsequent 

decade names of fifty, sixty, seventy, etc); at which point 

"all other count words can be derived from the application of 

the generative rules embodied in the already mastered count 

words" (Gelman & Gallistel, 1978). 

The subjects' intrinsic motivation to chant the number names 

and to apply their counting abilities in their daily living 

experiences was evidenced in the following types of informal, 

social interaction which the subjects themselves initiated. 
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Example 1 At lunch time when about half the class departs to 
the dining room for school lunch, the remainder gets ready to 
go home for lunch. Any one of the remaining children can 
announce how many people are left in the room. Sometimes the 
teacher is included as a countable, sometimes not; although she 
is usually told if she has been included. The count is usually 
correct, give or take one. 

Example 2 The children are beginning to gather round the 
teacher for a general instruction or a whole class activity 
such as a story or singing. Those who arrive early do one or 
both of the following: 
a) announce who has arrived first, second, third and so on as 
in 'I'm the first, Jean was second, Bob was third', although by 
the time the sixth or seventh person has arrived he/she is 
referred to by the cardinal rather than the ordinal number as 
in 'Andrew was number six and Peter was number seven'; 
b) count, in a cardinal context, the number of children who 
have arrived beside the teacher. 

Example 3 The teacher claims that she does not know how many 
people are in the class. A child offers to help by counting the 
people present. The offer is gratefully accepted and the child 
counts the- children who are sitting as a group round the 
teacher. After a first count the child is requested, by the 
teacher, to count again to check. Usually a second count 
produces a different answer. The discrepancy in the count is 
pointed out to the child who is then asked what he/she is going 
to do about it. The less efficient counters proceed to try to 
count yet again the muddled mass of bodies sitting on the 
floor. More efficient counters, however, suggest that everybody 
should sit in their own seat or that everybody should stand up 
in a straight line. The assembled body invariably acquiesces to 
the counter's request, amid reminders of 'Remember to count 
yourself'. Such an organizational strategy enables the counter 
to produce the correct count. 

Example 4 At milktime two children are give joint 

responsibility for giving out the cartons of milk and straws. 
They are asked by the teacher, 'Will there be enough cartons of 
milk? ' The milk cartons and all of the children are then 
counted by the helpers whereupon the teacher is reassured that 
because there are more cartons of milk than people in the 
class, there will be enough milk. Sometimes the teacher is even 
told that there will be two or three or four cartons left over 
because there are not enough children for all of the cartons of 
milk. When the helpers are asked by the teacher, 'Will there be 

enough straws? ' a similar counting procedure is effected by the 
helpers who sometimes have to tell the teacher that there are 
not enough straws. Again she may be specifically told how many 
more straws are needed. 
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Example 5 The children are lining up at the classroom door to 
leave. Those at the head of the queue start chanting a rhyme 
which has subsequently been learned by many others in the 
class, and by the teacher. The rhyme is as follows: 

first the worst, second the best, 
third the royal princess; , fourth the ghost, eating toast, 
halfway up a, lamp post. 

The rhyme had been introduced by one little girl who had 
learned it from her mother. Another little boy_ had learned a 
similar rhyme from his older sister. This rhyme makes greater 
use of ordinal number: 

first the worst, second the best, 
third the dirty donkey; 
fourth the king, 
fifth the queen, 
sixth the royal jelly bean. 

These informal observations exemplify some of the empirical 

findings noted by eminent researchers in the neo-Piagetian 

mould: 

firstly, that children learn number words in a variety of 

different social/linguistic contexts (Fuson & Hall, 1983); 

secondly, that children do want to apply their counting 

abilities to many situations (Gelman & Gallistel, 1978); 

thirdly, and perhaps most controversially, that the child's 

knowledge of numerical equivalence comes from obtaining a 

numerosity as distinct from constructing a physical 

correspondence (Gelman & Gallistel, 1978). 

This last point needs some explanation. 

The researcher was, quite understandably, excited by the 

counting accomplishments of her young subjects who were also 
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the pupils in her class. As is normal practice in schools, the 

researcher in her capacity as a teacher would discuss with 

colleagues the children's progress. During such discussion it 

was pointed out time and again to the researcher by her 

teaching colleagues that 'before children can count properly 

they must have one-to-one correspondence so before you teach 

children to count you must do all the pre-number work of 

matching, sorting, ordering and pairing'!!. This teacher had 

not, at least in any conscious or structured way, dealt with 

the 'pre-number work' and yet the children in her class 

appeared to be counting well. 

The strength of belief in others, of one-to-one correspondence 

being a necessary condition for counting forced the researcher 

to return to the literature. 

The literature on children's number accomplishments uses the 

term, one-to-one correspondence freely but rarely in any 

precise way, with the result that the reader may construe from 

the term a meaning not intended by the writer. One-to-one 

correspondence, for example, 

"means there is an 'exact match' between two sets" and the 

"practical experience of matching is a preparation for 

counting" (Deboys & Pitt, 1979); 

"is basic to the concept of number and it is much simpler 

than counting" (Liebeck, 1984); 
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"is a foundational concept of mathematics" (Klein & 

Starkey, 1987). 

What does all this mean? 

The following attempt to clarify what is meant by one-to-one 

correspondence owes much to Klein & Starkey (1987). 

One-to-one correspondence is, essentially, abstract knowledge. 

One-to-one correspondence is a hypothetical construct, the 

existence of which is inferred from certain types of behaviours 

in the real, ' physical world. One-to-one correspondence is not 

of itself a directly observable activity. There are, however, 

two classes of behaviour (in the context of number performance) 

which allow one to deduce that the person or persons involved 

in the behaviour is/are in possession of the knowledge of one- 

to-one correspondence. 

Class 1 Correspondence Construction 

Correspondence construction is the pairing or mapping of 

every member of a set with or onto one and only one member 

of a second set. If this pairing is 'perfect' the sets are 

equivalent but if the pairing is not 'perfect' (though 

accurately executed), the sets are non equivalent. 
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Class 2 Counting 

Counting is- the mapping of a consistent list of number 

names onto a- set of objects. The sequence of the number 

names may be conventional or idiosyncratic. A unique 

number name is assigned to each object in the set and the 

final number name that is used represents the cardinal 

value or numerosity of the set. 

Largely because children of less than 7 years of age typically 

fail the classic, Piagetian conservation of number test (the 

reason for this, it is argued, being principally because of a 

failure to grasp the principle of one-to-one correspondence) it 

is reasoned that an understanding of the principle of one-to- 

one correspondence is a necessary prerequisite to counting. In 

Piagetian theory, one-to-one correspondence "is the 

psychologically primitive basis for a judgement of numerical 

equality" (Gelman & Gallistel, 1978). 

Here again, however, what is meant by one-to-one correspondence 

is not made clear. Yes, of course, a knowledge of one-to-one 

correspondence in the counting sense (as referred to in class 

2, above) is required if one is going to count, but it does not 

follow that in order to count effectively one must necessarily 

be able to effect a correspondence construction (as referred to 

in class 1, above). 
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The research, in fact, (Gelman & Gallistel, 1978; Langer, 1980 

and 1986; Gopnik, 1981; Sugarman, 1983) indicates that the 

behaviours of constructing a correspondence and counting both 

begin to develop in the infant's second year of life. It does 

not therfore seem that one 'grows' out of the other. 

Furthermore Klein & Starkey (1987) have found that in young 

(between 4 and 6 years of age) children's arithmetical 

reasoning, the children's explanations for the outcome of the 

operations of addition and subtraction were heavily influenced 

by the type of behavioural scenario to which they had been 

exposed. When asked to make a judgement on the basis of 

counting the members of sets, the subjects referred to the 

cardinal values of the collections but when asked to make 

judgements on the basis of constructing correspondences between 

sets the subjects referred to the relationship between the 

members in the two sets. 

The concept of one-to-one correspondence must not therefore be 

conflated with correspondence construction. While 

correspondence construction implies a knowledge of one-to-one 

correspondence, so also does counting. The two behaviours of 

counting and correspondence construction are manifestly 

different even if they do grow from the one root of one-to-one 

correspondence. 
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Gelman & Gallistel (1978) argue that while "at some point in 

the individual's development he recognizes that sets that can 

be placed in one-to-one correspondence are equal", this is "a 

later stage in the use of reasoning principles". The very 

young child's criterion for deciding whether two sets are 

numerically equal is to count them and see, and on the basis of 

obtaining the same/different cardinal number for each set 

he/she will agree that the two sets are/are not equivalent. 

In summary: 

(i) children's counting performances develop when situations 

are provided which allow them to obtain and represent 

numerosities; 

(ii) this will occur when contexts are planned or exploited; it 

does not have to be formal and 'heavy handed'; it can be fun 

and appear to be spontaneous; 

(iii) one-to-one correspondence is a concept not an activity in 

the sense of a behavioural manifestation; 

(iv) counting and constructing correspondences are two classes 

of manifestation of one-to-one correspondence. 
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THE MAIN STUDY 

The Traditional Approach to Addition and Subtraction 

Traditionally, the teaching of addition and subtraction (and 

for that matter, multiplication and division) has been 

conceived of as being relatively straightforward. After minimal 

attention has been given to orienting the learners to the 

operation under consideration, the concentration of time and 

energy (both by learners and teachers) has been on the 

execution of routines which will achieve a correct answer. 

Practice in such routines has been considered very important, 

is usually provided in graded form, from 'simple' to 

'difficult', and is regarded by many teachers and learners as 

an end in itself. During the practising of such routines some 

children need the 'support' of using 'concrete materials'. But 

there is the suggestion of there being a certain stigma 

attached to the use of same. (It has been the researcher's 

observation that teachers consider that learners should be 

weaned away from such 'crutches' as quickly and as soon as 

possible, because these 'crutches' are 'unacceptable' in the 

real world! By the time the children are in the middle of their 

primary education, this rhetoric would seem to have been 

communicated to the children who, in turn, either boast about 

their 'superior' skills in not needing concrete materials, or 

try to conceal their alleged lack by surreptitious finger 
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counting. ) A small proportion of those children who succeed in 

executing these operational routines are deemed fit to proceed 

to 'problems' - contextualized versions of the operations 

learned. Such 'problems', which are regarded as extensions of 

algorithmic practice, cannot be 'taught' and must therefore 

remain the mystical preserve of that small minority who can 

divine their nebulous meaning! 

The reader can be forgiven for regarding the above diatribe as 

cynical. Such a conception of arithmetical operations which 

restricts learning to 'doing sums' and reduces teaching to 

demonstrating (usually on the blackboard to every member of the 

class simultaneously) how to 'do' subtraction by the 

decomposition method or how to 'do' long division by the DAMSON 

method is totally inadequate. And yet it has been the 

researcher's experience that this delineation of arithmetic as 

a series of formal algorithms is a reality. The literature 

(Skemp, 1971; Ginsburg, 1977; McIntosh, 1977; Glen, 1978; 

Dickson et al, 1984; Liebeck, 1984; Hughes, 1986; Desforges & 

Cockburn, 1987) too, argues against what is seen as an almost 

exclusive concentration on the formalism of arithmetic on the 

grounds that symbol manipulation becomes an end in itself; is 

meaningless to most children; and lays very shaky foundations 

for all subsequent mathematical development. 
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The Justification for an Alternative Approach 

Essentially put, the problem with traditional approaches to the 

teaching of number operations is that they allow little if any 

room for the conceptual underpinnings of the arithmetical skill 

a) to be made explicit 

or 

b) to develop in any way which allows the execution of the 

algorithm to have meaning or reality for the learner. 

If as teachers we want our pupils to be thinking people, 

growing towards intellectual autonomy; even if we just want our 

pupils to be good at mathematics, we must enable learners to 

develop the tools of thinking - concepts. Aid if conceptual 

development is to be at the forefront of our teaching we cannot 

hope that, by chance, concepts will develop. While on the one 

hand we cannot 'insert' concepts in another's mind as one would 

give another a pill or tablet, we can at least try to provide 

situations where concepts can begin to flower and grow. As 

Skemp (1971) points out, "the teacher must look far beyond the 

present task of the learner, and wherever possible communicate 

new ideas in such a way that appropriate long term schemas are 

formed". 

In attempting to address the problem of how we can better 

facilitate conceptual awareness in number, there is, however, 

Chapter 7 Page 167 



THE CONTINUATION OF THE EMPIRICAL WORK 

no point in throwing the baby out with the bath water. There is 

no suggestion intended that the formalisms of number be 

dispensed with: just that of themselves they are not enough. 
Hughes (1986) develops such a point when he says: 

What seems to be clear is that both the formal and 
the concrete are important, and the child who has one 
without the other is at a serious disadvantage. 
Children need help in freeing their thinking from the 
concrete, and formalization is essential in this 
process. At the same time, there is little virtue in 
children mastering the formal symbolism if the 
concrete understanding is lacking. The crucial new 
element introduced here is the emphasis on the links 
between the concrete and the formal. 

This is not to suggest that making the links requires a 

unidirectional progression from learning the algorithms to 

their applications in the real world. Indeed, as has been 

argued elsewhere in this thesis, such an approach is not 

particularly beneficial to children. What is being suggested, 

however, is that making the links requires bidirectional 

translation between the conceptual and formal representational 

facets of addition and subtraction. While it is necessary for 

the child to be able to extract the symbolic notation from the 

practical task, it is not sufficient. The child must also be 

able to interpret the notation in terms of a real life 

mathematical task. Only then can the child be said to have 

conceptual understanding of the operation involved. 

It was this abiding concern of the researcher's to find some 

means whereby addition and subtraction could be meaningfully 
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taught (in the sense of what has been said above) which led to 

the development of a somewhat novel but essentially simple 

methodology, entitled Bidirectional Translation. It was novel 

in the sense that it was devised out of necessity since most 

teacher's handbooks are (perhaps surprisingly) particularly 

vague in the pedagogical support they give to teachers; and the 

researcher was unaware of any other teacher or researcher using 

this approach. It was essentially simple insofar as it was 

based on two teaching principles: 

firstly, start from a point already identified as being one 

with which the learners are familiar and progress to greater 

complexity; 

secondly, explicitly model desirable/acceptable performance 

thereby providing opportunities for others to observe 'correct' 

responses. 

The Method of Bidirectional Translation 

Bidirectional Translation is a means by which addition and 

subtraction (and possibly the other operations) can be taught. 

Key features of this methodology include: 

(i) very finely graded steps of progression incorporating what 

the subjects themselves could bring to the learning situation; 

(ii) alternative strategies for dealing with a given situation; 

for example the choice of using fingers, Unifix Cubes (concrete 

materials) or tally marks for finding out an answer if the 
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number fact can not be recalled from long term memory; 

(iii) verbalization of operations; 

(iv) repeated translation from and to the numerical 

representation/hypothetical real world scenarios. 

On the following pages there follows a step-by-step, serial 

description of the methodology both for addition and 

subtraction. It reads as a series of notes and aides-memoire to 

the teacher, which is how it was written. 
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Series of steps for teaching addition 

Step 1 Setting the scene. 

The group of children is seated round the table, each child 
having a stack of 10 Unifix Cubes. The children are asked to 
take two cubes from their stacks. A magnetic numeral '2' is 
displayed on the magnet board. 

2 

MAGNET BOARD 

Attention is drawn to the two cubes in front of each child and 
to the numeral '2' on the board. The children are told that 
they are to take more cubes from their stacks and that to show 
on the board that they are taking more cubes, a sign is used. 
The children are told that the sign says 'plus' or 'add on'. 
The magnetic '+' is affixed to the board. 

2+ 

MAGNET BOARD 

The children are now asked to take a further three cubes from 
their stacks and to sit them beside the two cubes: 

A magnetic '3' is displayed on the board. 

2+3 

MAGNET BOARD 

Attention is drawn to the cubes in front of the children and to 
the display on the board. The children are asked to find out 
how many cubes they took from the stack altogether. After the 
total has been ascertained, the teacher explains that another 
sign is needed to show that something has been found out about 
2+3. The children are told that the sign says 'equals' or 
'makes' or 'is the same as'. The magnetic '_' is affixed to the 
board as is the magnetic 151. 

2+3-5 

MAGNET BOARD 
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Attention is drawn to the cubes in front of the children and to 
the 'number story' on the board (two. plus three equals five). 
The children are invited to 'read' the number story aloud. This 
entire procedure is repeated many more times over successive 
days using different number combinations within 10. Zero is 
introduced by instructing the children to take out 4 cubes and 
then take out no cubes. 

Step 2 Let's Pretend. 

The children are introduced to the notion that cubes can be 
used to represent just about anything in the real world. The 
teacher says to the children, "Let's pretend the cubes are 
bananas" or "cars" or whatever. The children are instructed to 
take out three bananas and then another three bananas and to 
find out how many bananas they have in front of them. As above, 
considerable practice is given, and every addition activity is 
accompanied by its representation in magnetic numeral form. 

Step 3 Silly Stories. 

The children are told to listen to a 'silly story'. While they 
are listening they have to take from their stack of cubes the 
numbers mentioned in the 'silly story' 

"Mummy gave me three lollipops and four sweets". 
The children are asked to show their three lollipops (whereupon 
each child holds up the three Unifix Cubes) and their four 
sweets (whereupon each child holds up the four Unifix Cubes). 
The teacher asks, "How many things did Mummy give me 
altogether? " When the total has been identified the teacher 
asks, "How did you find out the answer? " 

Step 4 Silly Stories and Number Stories. 

The teacher provides a complete 'silly story': 
"There are four blue sweets and two red sweets in the bag 
so that makes six sweets altogether". 

The children are invited to use the magnetic numerals and signs 
to represent the 'silly story' as a 'number story' (4+2-6). The 
children 'read' the 'number story' (four plus two equals six) 
and are required to indicate which number represents the blue 
sweets, which number represents the red sweets, which sign 
represents the operation of addition and which sign represents 
the outcome of the operation. Again, much practice is given in 
this activity. 

Step 5 Number Stories and Silly Stories. 

The teacher provides a complete 'number story' on the magnet 
board (for example 1+3=4) and the children are invited to 
provide a corresponding 'silly story'. Allow as many children 
as time allows, to provide verbal contexts for any given 
numerical representation. 
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Step 6 Drawing a story - first version. 

The children are instructed that instead of telling a 'silly 
story' they have to draw a 'silly story' for a bit of a number 
story which will be provided. The instruction 'draw 2+3' is 

given orally and is also put on the magnet board for the 
children to see. Provide paper and pencils/pens/ crayons and 
observe what happens. When each child has pictorially 
represented his/her 'silly story' ask the child to explain 
his/her story and scribe the story in front of the child. This 
procedure of drawing a 'number story' is repeated regularly 
over successive teaching sessions. 

Step 7 Drawing a story - second version. 

The children are invited to draw their own 'silly story' with 
no numerical stimulus being provided. In other words the 
children are not told of how many of each sub set to draw. 
There is now greater need than before for the children to 
describe/ explain their stories to the teacher (since both the 
numerical components and the verbal contexts are the children's 
own with no constraints imposed by the teacher) who again 
scribes at the child's dictation. 

Step 8 Strategies for finding the answer. 

The children are told that they will be given a bit of a 
'number story' (for example 3+4=) and that they will have to 
find the answer. The teacher asks the children how they will 
find out the answer if they do not already know. The children 
make various suggestions: 

a) count on their fingers 
b) count with cubes 
c) draw pictures 

each of which is positively received by the teacher who then 
points out that:, 

a) sometimes we might not have enough fingers (as when 
summing any numbers the total of which is greater than 
10) 
b) cubes are not always available 
c) pictures can take a long time to draw. 

The teacher the demonstrates a 'method which she sometimes 
uses'. Whereupon she writes 3+4= on the blackboard and sets out 
the appropriate number of tally marks: 

3+4 
III IIII 

MAGNET BOARD 
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The results are compared 
fingers, cubes and tally u 
in setting down 'number 
(referred to as strokes) 
methods is valid and that 
use) is to be theirs. 

using each of the three methods - 
arks. The children are given practice 
stories' and in using tally marks 
but are reassured that each of the 
the final choice (of which method to 

Step 9 Does it work? 

Only now are the children considered ready to undertake the 
conventional addition exercises of adding two numbers the total 
of which is within 10. The children undertake this activity 
outwith the direct supervision of the teacher - that is when 
she is working with other groups of children in the class. 
However, to check that the earlier steps in the series have 
been of use to the children, random, one-to-one interviews are 
held between the teacher and the child when the teacher in the 
light of a completed exercise: 
a) asks the child how he/she found the answer to a particular 
operation, say 6+2; 
b) invites the children to provide a 'silly story' for a 
particular addition operation, say. 5+0; 
c) requests the child to peruse all the examples in the 
exercise and identify which 'number story' is being referred to 
when the teacher provides a 'silly story'. 

Chapter 7 Page 174 



THE CONTINUATION OF THE EMPIRICAL WORK 

Series of steps for teaching subtraction 

Step 1 Setting the scene. 

The group of children is seated round the table, each child 
having a stack of 10 Unifix Cubes. The children are asked to 
take 6 cubes from their stacks. A magnetic numeral '6' is 
displayed on the magnet board. 

6 

MAGNET BOARD 

Attention is drawn to the six cubes in front of each child and 
to the numeral '6' on the board. The children are told that 
they are to take some cubes away from their set of six and that 
to show on the board that they are taking cubes away a sign is 
used. The children are told that the sign says 'minus' or 
'subtract' or 'take away'. The magnetic '-' is affixed to the 
board. 

6- 

MAGNET BOARD 

The children are now asked to take two cubes away from their 
stack of six and to return them to the 'bank'. A magnetic '2' 
is placed on the board. 

6-2 

MAGNET BOARD 

Attention is again drawn to the board which now displays 6-2. 
The children are asked to find out how many cubes they have 
left. After the answer has been ascertained the teacher reminds 
the children that a sign is needed to show that something has 
been found out about 6-2. The magnetic '-' is affixed to the 
board as is a magnetic '4'. 

6-2-4 

MAGNET BOARD 

The children are reminded that they started off with six cubes 
and that they took away two of them. They. are now left with 
four cubes in front of them. Attention is drawn to the 'number 
story' on the board (6-2-4) and the children are invited to 
'read' the 'number story' (six minus two equals four) aloud. 
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The entire procedure is repeated many more times over 
successive days using different number combinations within ten. 
Zero is used by instructing the children to take out eight 
cubes and then take away no cubes. 

Step 2 Let's Pretend. 

The children are reminded that cubes can be used to represent 
anything in the real world. The teacher tells the children, 
"let's pretend the cubes are dogs" or "houses" or whatever. The 
children are, instructed to take out five dogs and then to take 
three dogs away and to find out how many dogs are left. As 
before, considerable practice is given and every subtraction 
activity is accompanied by its representation in numerical 
form. 

Step 3 Silly Stories. 

The children are told to 
. 
listen to the 'silly story' and to 

operate with the cubes accordingly: 
"Mummy had four apples but she gave me one to eat". 

The children are asked to show their four apples (whereupon 
each child holds up his/her four Unifix Cubes) and to show that 
one was eaten (whereupon each child demonstrates the 
subtraction). When the children correctly identify how many 
apples are left, they are asked by the teacher how they found 
out the answer. 

Step 4 Silly Stories and Number Stories. 

The teacher provides_a complete 'silly story':. 
"Three cups were on the shelf. One of them got knocked on 
to the floor so that left only two cups". 

The children are invited to use the magnetic numerals and signs 
to represent the 'silly story' as a 'number story' (3-1-2). The 
children 'read' the 'number story' (three minus one equals two) 
and are required to indicate which number represents the cups 
at the beginning of the story, which number represents the cup 
that met with the accident, which number represents the cups at 
the end of the story, which sign represents the operation of 
subtraction and which sign represents the outcome of the 
operation. Many such verbal contexts are provided by the 
teacher. 

Step 5 Number Stories and Silly Stories. 

The teacher provides a complete 'number story' on the magnet 
board (for example 7-4-3), and the children are invited to 
provide a corresponding 'silly story'. Allow as many children, 
as time allows, to provide verbal contexts for any given 
numerical representation. 
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Step 6 Drawing a story - first version. 

The children are instructed that instead of telling a 'silly 
story' they will have to draw a 'silly story' for a bit of a 
'number story' which will be provided. The instruction 'draw 5- 
3' is given orally and is also put on the magnet board for the 
children to see. Provide paper and pencils/pens/crayons and 
observe what happens. Some teacher intervention may be required 
because the children may pictorially represent the five and 
also the three and proceed to add rather than subtract. If this 
happens, still request the child to explain/describe his/her 
'silly story'. If required to reflect on their own story the 
children may not be too happy with a story in which they have 
five sweets, eat three of them and then be left with eight! Ask 
the children how they can show on paper the initial quantity, 
the operation and the result. Some may suggest rubbing out the 
subtrahend. This is perfectly reasonable but in so doing: 
a) nobody will be able to see how many things were present at 
the beginning of the story; 
b) nobody will be able to see how many things were taken away. 
By emphasizing that the minuend and the subtrahend both be 
visually evident, hopefully some child or children will suggest 
that, the minuend is drawn and that the, subtrahend is 
represented by crossing out. Considerable practice is again 
required. 

Step 7 Drawing a story - second version. 

The children are invited to draw their own 'silly story' with 
no numerical stimulus being provided. In other words the 
children are not told how many things to draw initially or how 
many to score out. They must, however, verbally report the 
context in order that it can be written down by the teacher. 

Step 8 Strategies for finding the answer. 

The children are told that they 
'number story' (for example 7-2-) 
find the answer. The teacher asks 
answer if they do not already know. 
suggest one/all of the following: 

a) use their fingers 
b) use cubes 
c) use strokes 

will be given a bit of a 
and that they will have to 
how they will find out the 
Hopefully the children will 

The teacher checks that the children are able to use all of 
these strategies. 

Step 9 Does it work? 

Only now are the children considered ready to undertake 
conventional subtraction exercises, within ten. The children 
undertake this activity outwith the direct supervision of the 
teacher, who is meanwhile working with other groups of 
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children. However, as with addition, random, one-to-one 
interviews are held between the teacher and the individual 
child to check if the earlier steps in the series have been of 
use to the child. In each interview, and in the light of a 
completed subtraction exercise, the teacher: 
a) asks the child how he/she found the answer to a particular 
subtraction operation, say 8-3; 
b) invites the child to provide a 'silly story' for a 
particular subtraction operation say 2-2; 
c) requests the child to peruse all the examples in_ the 
exercise and identify which 'number story' is being referred to 
when the teacher provides a 'silly story'. 
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The-Context and Subjects of The Study 

By March 1987 it was evident that all of the children in the 

class were able to count, even those whose behaviour has not 

been recorded in this research. Admittedly not all could count 

to the same level of sophistication but a wide range of 

performance is to be expected amongst any collection of 

children who are assigned to a class on the bases of sex, 

social and racial mix, and age alone. The time was now 

considered appropriate to begin to introduce at least some of 

the children to addition, subtraction and their 

representations. 

16 children were selected as subjects for this study. They were 

all from the researcher's own class and included these from the 

initial study together with another 3 children who had joined 

that class at different times after the official intake in 

August 1986. These children were selected for study because 

their counting performance suggested that the transition to 

formal addition and subtraction would be stimulating and 

challenging to them. 

It must be said at this point that the researcher was in a 

particularly enviable position in respect of researcher-subject 

relationships. She was advantaged to a point beyond that which 

typically pertains in psychological, experimental 
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investigations. The researcher had had plenty of time (more 

than six months) to build a relationship with the subjects, a 

relationship which was warm and open. 
It, 

Moreover, the subjects were children who had gradually been 

acclimatized to this particular teacher's classroom ethos. It 

was an integral part of all teaching/learning that the children 

were expected to explain and justify themselves. Correct or 

socially acceptable responses were not merely accepted. They 

were followed up with open questions which forced the children 

to express their views and make their own reasoning explicit. 

one example of this was that after being involved in group 

activities at which the teacher could not be present (as is the 

case in any class where a differentiated programme of learning 

activities is operating) the children participated in 

debriefing discussion to reflect on their experiences and to 

make their individual or corporate evaluations of them. 

Another example was to be found when the children came to the 

teacher with a problem such as 'I don't know how to do such and 

such'/'the glue won't stick my model together' /'there's no 

purple paint', and the teacher did not offer ready solutions. 

The problems were left with the children with teacher responses 

like 'what are you going to do about such and auch? '/'go and 

talk to your friend about your model and see what you can do 
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about it'/'see if you can make purple paint from the colours 

you do have'. 

Finally, the children were very used to other adults in the 

room: 

a) parents of prospective pupils would come to see if they 

considered the teaching approaches suitable; 

b) teachers from within and outwith the school who were 

unfamiliar in the ways of working with first infants would come 

in to the class to observe and participate; 

c) a professional film recording unit spent nine weeks filming 

teacher techniques and child development in the teaching and 

learning of drama skills. 

In all of this the onus was on the children to explain to 

visitors the class routine, the purpose of what they were 

doing, the lines of demarcation and so on. Constantly the 

children were pushed to rely on their own resources, in the 

process of learning new skills. 

It is fair then to say that in a professional context the 

researcher and the subjects were comfortable and easy with each 

other. 
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The focus of The Research 

Given the sample of subjects and the rationale outlined above, 

the general research question derived was one of whether the 

method of Bidirectional Translation would enable primary one 

children to develop the concepts of addition and subtraction. 

In 'operationalized' terms, answers to the following questions 

were sought: 

1. about Bidirectional Translation 

(a) in executing addition and subtraction operations, what 

use is made of fingers, cubes, and tally marks and is this 

'suspended reality' of counting aids easily translatable 

to and from a realistic, everyday addition or subtraction 

context? 

(b) can the verbal contexts supplied by the subjects be 

categorized according to some criterion? 

(c) does the use of operator signs easily become 

incorporated into the numerical representation? 

2. about performance 

Within the number domain of 10 

(a) can the children translate from a verbal context to 

obtain the solution to an addition or subtraction 

operation? (This is subsequently referred to as the 

utlizability of the concept. ) 

(b) can the children translate from a verbal context to 
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identify an addition or subtraction operation? (This is 

subsequently referred to as the evocability of the 

concept. ) 

(c) is there any apparent relationship between being able 

to utilize and being able to evoke addition or subtraction 

concepts? 

3. about the effects of Bidirectional Translation 

(a) can the children, if required to do so, articulate how 

they obtained a solution when they had to utilize a 

concept in test performance? 

(b) given a predetermined selection of classes of verbal 

context with which to test children's conceptualizations, 

is there any apparent relationship between test 

performance in translating from a context and earlier pre- 

test performance of translating to a context? 

(c) what claims can be made for the methodology? 

The means by which answers to the above questions were to be 
found 

1. Answers to questions about the methodology itself were to be 

got from natural observations of the subjects' behaviours 

whilst they were being exposed to this method of teaching. 

2. Answers to questions about performance were to be got from 

testing. 
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3. Answers to questions about the effects of Bidirectional 

Translation were to be got from theoretical analysis. 

Description of The Testing 

The test items required the subjects to translate from a verbal 

context, thereby indicating whether the subjects could utilize 

and evoke the concepts of addition and subtraction. Subjects 

were to be tested individually on two different days. On one of 

the days the subjects were to be tested for the evocability of 

addition and subtraction. On the other day the subjects were to 

be tested for the utilizability of addition and subtraction. 

The total interview time was predicted as being just under two 

weeks, since testing was only to be done between 11 o'clock and 

mid-day and it was anticipated that the researcher could 

comfortably test four subjects per day. 

For evoking concepts the following instruction was to be given: 

I'm going to read you a silly story. Listen carefully and 
tell me if you should add or subtract to find the answer 
.. Well done, now let's try some more. 

For utilizing concepts the following instruction was to be 
given: 

I'm going to read you a silly story. You see if you can 
find out the answer and tell me what it is ... Well 
done, now let's try some more. 

The verbal contexts were to be read and reread to the subject. 

Any subsequent lapse of memory on the part of the subject was 
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to be remedied by the researcher's reading the verbal context 

yet again. 

To counterbalance for order effects, half of the subjects were 

to be tested first for evocability and the other half were to 

be tested first for utilizability. 

The number domain used was to be within 10. In other words for 

addition operations, the sum of the addends was not to be 

greater than 10, and for subtraction operations the minuend was 

not to be greater than 10. Zero quantities and doubles were not 

to be included because they frequently cause the verbal context 

to come across as 'strained' and unrealistic. The number 

triples generated according to these criteria were thus: 

(1,2,3) (1,3,4) (1,4,5) (1,5,6) (1,6,7) 
(1,7,8) (1,8,9) (1,9,10) (2,3,5) (2,4,6) 
(2,5,7) (2,6,8) (2,7,9) (2,8,10) (3,4,7) 
(3,5,8) (3,6,9) (3,7,10) (4,5,9) (4,6,10) 

Each subject would receive each number triple only once within 

the total of twenty verbal contexts to be presented to him/her. 

Number triples were to be matched to verbal contexts randomly, 

so that the particular combination of number triple and verbal 

context would be arbitrary. 

In all, twenty verbal contexts were generated by the researcher 

as test items. They were generated according to a taxonomy 

devised by Carpenter & Moser (1982) which will be discussed 
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later. Meanwhile the complete list of test items follows 

immediately. 

Figure 7.1 Items to test -conceptualization - of Addition and 
Subtraction 

The Utilizability of Addition 

Joinin : Betty has (x) dollies. Granny gave her (y) more 
dollies. 

_How 
many dollies has Betty got now? 

Separating: Fiona had some carrots. She gave (x) carrots to the 
rabbit and now she has (y) carrots left. How many did she have 
to start with? 
Part-Part-Whole: (x) girls and (y) boys went out to play in the 
playground. How many children went out to play? 
Comparison: Susan has (x) hats. Mummy has (y) more hats than 
Susan. How many hats has Mummy got? 
Equalizing: There were (x) red cars in the car park. (y) more 
red cars came in. Now there are the same number of red and blue 
cars in the car park. How many blue cars are there? 

The IItilizability of Subtraction 

Joinin : Mr Brown has (x) shirts. How many more shirts does he 
need to have (z) shirts altogether? 
Separating: John had (z) pencils. He 

.. gave(x) to his big 
brother. How many pencils does John have now? 
Part-Part-Whole: Daddy has (z) saws. (x) of them are very blunt 
and the rest are very sharp. How many very sharp saws does he 
have? 
Comparison: There are (z) men and (x) women standing at the bus 
stop. How many more men are at the bus stop? 
Equalizing: There are (z) forks and (x) knives in the drawer. 
How many forks should I_ take out, so that there are the same 
number of forks and knives in the drawer? 

The Evocability of Addition 

Joinin : Tom has (x) bananas. Susan gave him (y) more bananas. 
How many bananas has Tom got now? 
Separating: Neil had some toys. He gave (x) toys to his little 
brother and now he has (y) toys left. How many did he have to 
start with? 
Part-Part-Whole: There are (x). girls and (y) boys in the room. 
How many children are in the room altogether? 
Comparison: Mary has (x) cats. Christine has (y) more cats than 
Mary. How many cats does Christine have? 
Equalizing: There were (x) boys in the playground. (y) more 
went out. Now there are the same number of boys and girls in 
the playground. How many girls are in the playground? 
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The Evocability of Subtraction 

Joinin : Karen has (x) lollipops. How many more lollipops does 
she need to have (z) lollipops altogether? 
Separating: Imran had (z) sweets. He gave (x) to Linda. How 
many sweets does Imran have now? 
Part-Part-Whole: Eva has (z) pens for colouring with. (x) of 
them are blue and the rest are red. How many red pens has Eva 

got? 
Comparison: There are (z) girls and (x) boys in the cloakroom. 
How many more girls are in the cloakroom? 
Equalizing: There are (z) cups and (x) saucers on the table. 
How many saucers should I take away so that there are the same 
number of cups and saucers on the table? 

The order of presentation of verbal contexts was to be 

randomized (within conditions) for each subject. Unifix Cubes 

were to be available for the subjects' use when being tested 

for the utilizability of the concept. 

It is important to acknowledge at this point that the lexical 

complexity of the verbal contexts was not considered. Contexts 

were generated according to the Carpenter & Moser (1982) format 

which was concerned with the underlying logical structure of 

"word problems". This is not to say that the semantic 

characteristics can be divorced from the logical structure of 

the context. They probably cannot be. However, Carpenter & 

Moser (1982) were concerned to identify the type of action or 

relationship which is represented in most addition and 

subtraction contexts which are simple enough for primary-aged 

children to handle. This researcher modelled her selection of 

contexts on the Carpenter & Moser taxonomy (which will be 

discussed later), and although she did not analyse their 
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semantic characteristics, such an analysis might possibly be 

worthy of consideration by other researchers. 

THE FINDINGS 

The findings will be described and discussed in terms of the 

questions posed earlier. 

la IN EXECUTING ADDITION AND SUBTRACTION OPERATIONS, WHAT 
USE IS MADE OF FINGERS, CUBES AND TALLY MARKS AND IS THIS 
'SUSPENDED REALITY' OF COUNTING AIDS EASILY TRANSLATABLE 
TO AND FROM A REALISTIC, EVERYDAY ADDITION OR SUBTRACTION 
CONTEXT? 

In teaching the children to formally add and subtract using the 

method of Bidirectional Translation, addition was taught first, 

and then subtraction. Some teachers argue for teaching the 

skills 'together' in the name of trying to establish the 

complementary nature of the skills. However, Fehr & Phillips 

(1967) argue that: 

it is not good practice to introduce addition and 
subtraction at the same time. They are at first two 
distinct and different operations. After 

, 
the addition 

concept has been thoroughly developed, we can develop a 
new concept called subtraction. When the latter concept is 
well understood, then we can relate the two operations. 

In the early part of the protocol for addition (steps 1,2 and 

3) some subjects counted the cubes, others counted 

correspondingly on their fingers, while others still, used 

their knowledge of number facts and made no reference to 

fingers or cubes. That some subjects were observed counting on 
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their fingers when the sub sets to be totalled were already 

modelled in front of them in the form of Unifix Cubes, the 

researcher found surprising. On the face of it, this seemed a 

senseless performance: the countables were present in concrete 

form so why model further on the fingers? On reflection, and 

after subsequent discussion with those subjects on the use of 

fingers for counting, however, the strategy is both reasonable, 

and helpful to the children themselves. It is reasonable from 

the point of view that we always have fingers available in the 

way that we do not always have other concrete aids such as 

Unifix Cubes. More interesting to the researcher, however, were 

the subjects' comments when they were questioned about using 

their fingers for totals greater than ten, as say, in five plus 

seven. The responses were of three main types. An example of 

each is listed below. 

Type 1 You can use bits of your body to help, like your 

eyes; or you can use your elbows. 

This certainly seems to reflect ingenuity in that the subjects 

were not prepared to become 'stuck' or be put off. 

Type 2 Well then, I've got five fingers on this hand so 

that's five. On the, other hand I've got five fingers and 

I'll put two magic fingers on to make the seven. 

This second type of response seems more sophisticated than the 

first. Here seems to be the beginning of mental representation 

without concretization. The subject does not have to see the 
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two objects (or models of them) to accept that they are there 

for the purpose of being included in the addition operation. It 

is almost as if the subject can 'concretize in the mind' (if 

one can forgive the contradiction in terms! ). 

Type 3I don't use my fingers for all of the numbers. I 

just say, "There's five", and then I count out seven 

fingers. Then I say, "five, six, seven, eight, nine, ten, 

eleven, twelve". 

This third type of response seems the most sophisticated of the 

three. In essence the subject is demonstrating the transition 

to the 'counting on' strategy which is said to evolve out of 

the 'counting all' strategy (Carpenter & Moser, 1982; Fuson, 

1982). 

By way of contrast, subjects did not initially model 

subtraction operations on their fingers. They were quite 

prepared to use the Unifix Cubes provided. However, on 

observing this, and remembering how some of the same subjects 

had spontaneously used fingers to model addition, the 

researcher at one point early in the protocol for subtraction, 

removed the cubes, leaving the subjects with only their own 

resources. Those subjects who had a repertoire of number facts 

appeared to make use of them in that there was no overt 

indication of counting behaviour. All subjects were, however, 

encouraged to model the subtraction operation on their fingers: 

displaying the minuend, folding down the subtrahend and 
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counting the number of fingers still displayed. The use of 

fingers for subtracting was quickly and easily assimilated by 

the subjects. 

Hughes (1986) would seem to be right when he says that we 

should show children "how to use their fingers more 

effectively" when carrying out number operations. 

The subjects enjoyed the Let's Pretend features (step 2) of 

having-the Unifix Cubes represent objects in the real world. 

Their laughter was evidence of this. If the cubes were serving 

as sweets some of the subjects would pretend to eat them, or if 

they were cars the subjects would provide accompanying sound 

effects. This again suggests that we should not underestimate 

the importance of modelling procedures explicitly. 

Now and again, some of the subjects made unprovoked (by the 

researcher) statements such as "this is just like sums" or 

"we're doing real sums now" when they were required to 

translate verbal contexts into arithmetical notation (step 4). 

These remarks suggest that the subjects did have an awareness 

of arithmetical operations. Whether this was because these 

subjects had seen others 'doing sums' or were perhaps 

themselves 'doing sums' at home, is not clear, and was not 

pursued by the researcher. 
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Many of the subjects perceived the parallels between the 

addition and subtraction protocols because, frequently, they 

made comments such as, "we've done this before" and, "this is 

just like adding only we're taking away". Very informally, the 

researcher reacted to these comments by asking the subjects how 

they could reverse the effects of the subtraction operation and 

they were able to suggest that an addition operation was 

needed. 

There was a lot of enthusiasm to provide 'silly stories' (step 

5). This was clearly a meaningful activity. The subjects 

frequently remarked on their enjoyment of it, as they clamoured 

to contribute yet another verbal context for a numerical 

representation. The motivation, for the children, appeared to 

the researcher to be almost totally intrinsic. Granted, it 

would probably be reinforcing to subjects for them to have 

their contributions appreciated by peers but if peer approval 

alone was what was motivating the children, then they could 

just as easily. have taken. recourse to the most facetious 

contexts imaginable. But an alternative explanation is that the 

subjects did really want to rehearse their skill in translating 

to a verbal context; in the sense of it being a Piagetian 

schema. This translating-to-a-verbal-context schema is then the 

structure within which the child 'checks out' that he/she is 

making sense of the formalism of, in this study, addition and 

subtraction. 
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The pictorial representation of the subtraction protocol was, 

perhaps, the most problematic part of the protocol for most of 

the subjects. As anticipated by the researcher, the subjects 

initially drew pictures to represent the minuend and the 

subtrahend, and then proceeded to count the total number of 

pictures drawn. However, in that the subjects had made their 

own difficulty explicit, the researcher was able to ask them to 

'think again'. When the subjects tried to provide a verbal 

context for their drawings they found they were contradicting 

themselves, making an initial quantity smaller and yet ending 

up with more than they had started with!. By stressing to the 

subjects that they had to show that something had happened to 

the initial quantity but that the initial quantity had to be 

available for all to see, the subjects eventually resolved 

their problem by drawing the minuend and crossing out the 

subtrahend. 

The use of tally marks was quickly and easily assimilated by 

the subjects. This should not be surprising, given what has 

earlier been said about tally marks. In making their choice, 

about what type, if any, of counting aid to use, there seemed 

to be no pattern. Most subjects used all three types at 

different times and their choice seemed to depend as much as 

anything on what they felt like at the time; and this seems 

quite reasonable. If for us as adults, getting to work were 

equally practicable in all respects whether we travelled by 
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bicycle, car or train, no doubt our choice would also depend on 

what we felt like at the time! 

In summarizing an answer to the first question it can be said 

that subjects made considerable use of counting aids which they 

fully recognized as being a means to an end. 

lb CAN THE VERBAL CONTEXTS SUPPLIED BY THE SUBJECTS BE 
CATEGORIZED ACCORDING TO SOME CRITERION? 

In the verbal contexts provided by the subjects for steps 6,7 

and 9 in addition, the hierarchies of classification were very 

crude. Of the sixteen subjects, only seven consistently used 

immediately recognizable classifications such as boys, girls, 

toys, animals, sweets. Of the remaining nine subjects, the 

reader/observer would be strained to detect the 

classifications; which were mostly things to eat (for example 

carrots and lollipops) and things in the street (for example 

buses and houses). Other sub sets in the verbal contexts, such 

as people and Mars Bars, or kittens and ice-cream defy 

classification in all but the crudest sense of 'things'. It is 

perhaps significant that the seven subjects who did use easily 

recognizable classifications were the group of children earlier 

considered by the researcher to be the most proficient in terms 

of counting skill. These were also the subjects who had a 

repertoire of number facts at their disposal and were less 
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reliant on counting as a means of obtaining an answer to an 

addition operation. But since, as Gelman & Gallistel (1978) 

point out, children do not necessarily restrict themselves to 

counting collections of identical objects, it is perhaps 

reasonable to expect those subjects who computed addition 

operations by counting (as distinct from using number facts) 

would also provide verbal contexts in which miscellaneous and 

incongruent sub sets were to be added. 

Perhaps as a direct consequence of the nature of the 

subtraction operation, the hierarchy of classification appeared 

to be more refined than it had been for addition. What was 

subtracted and what was left were always sub sets of the 

original class of objects. In effect, the subjects were 

constrained by the subtraction operation and could do little 

else in respect of the classification content. 

The above analysis is, however, too simplistic. It implies that 

verbal contexts for all addition and subtraction operations are 

essentially homogeneous in nature and that while syntax, 

lexical items and context may vary, the underlying logical 

structure of the context is the same for all. Such an 

assumption is questionable. 

Carpenter & Moser (1982) suggest three dimensions on which the 

structure of verbal contexts can be analysed. 
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Firstly, there is the ACTIVE-STATIC dimension. Active contexts 

involve explicit or implicit reference to action that takes 

place. In other words something has to be 'done', usually to 

the initial quantity. Static contexts, on the other hand, 

require no action but rather a 'contemplation' or 

'consideration' of two given quantities. 

Secondly, there is the SET INCLUSION-DISJOINT QUANTITIES 

dimension. Set inclusion contexts are those where two of the 

quantities are necessarily a sub set of the third. In other 

words, either the two given quantities add up to the third, 

unknown quantity or the unknown quantity is what is left after 

a known quantity has been subtracted from a second, larger, 

known quantity. Disjoint quantities contexts imply no set- 

subset hierarchy, however. A disjoint quantities context can, 

then, involve 'things' which would not necessarily go together 

in a conventional, adult way because the disjoint quantities 

implies comparison. 

Finally, there is the INCREASE DECREASE dimension. This 

dimension only applies to contexts which already fulfil the 

action criterion in the active-static dimension, above. 

Contexts which involve action will result in an increase or 

decrease of the initial quantity. 

The permutations arising from combining these dimensions 

are, according to Carpenter & Moser (1982), as follows: 

1. The Joining Class ACTIVE, SET INCLUSION, INCREASE; 
2. The Separating Class ACTIVE, SET INCLUSION, DECREASE; 
3. The Part-Part-Whole Class STATIC, SET INCLUSION; 
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4. The Comparison Class STATIC, DISJOINT 
5. The Equalizing Add-On Class ACTIVE, DISJOINT, INCREASE 
6. The Equalizing Take-Away Class ACTIVE, DISJOINT, DECREASE 

A further complication to this analysis of verbal contexts is 

that for each of the different classes of verbal contexts there 

can be both addition and subtraction operations. The following 

outline may help to make clear what Carpenter & Moser (1982) 

seem to be saying. 

The Joining Class of verbal context has an initial quantity and 

some direct or implied action that causes a change in the 

quantity. 'The action causes an increase in the quantity. An 

addition operation in this class might be: Sheena has 3 

pencils. Bob gave her 4 more pencils. How many pencils does 

Sheena have now? A subtraction operation in this class might 

be: Sheena has 3 pencils. How many more does she have to buy to 

have 7 pencils altogether? 

The Separating Class of verbal context has an initial quantity 

and some direct or implied action that causes a change in the 

quantity. The action causes a decrease in the quantity. An 

addition operation in this class might be: Fred had some 

sweets. He gave 2 to Linda and now has 4 left. How many sweets 

did Fred have to start with? A subtraction operation in this 

class might be: Fred had 6 sweets. He gave 2 to Linda. How many 

sweets has Fred got left? 
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The Part-Part-Whole Class of verbal context describes a static 

relationship between two distinct quantities that are parts of 

a whole. An addition operation in this class might be: There 

are 4 hats and 2 coats in the cupboard. How many garments are 

in the cupboard? A subtraction operation in this class might 

be: Mary has 9 flowers. 6 of them are red and the rest of them 

are blue. How many blue flowers has Mary got? 

The Comparison Class of verbal context again describes a static 

relationship between two quantities but this time the 

quantities need not be parts of a whole. An addition operation 

in this class might be: Jimmy has 2 more footballs than Susie 

has dolls. Susie has 3 dolls. How many footballs has Jimmy got? 

A subtraction operation in this class might be: There are 5 

footballs and 3 dolls in the playroom. How many more footballs 

are there? 

Both of the Equalizing Classes of verbal context are complex to 

read about, and for most practical purposes quite unrealistic. 

However, a simplified interpretation would be that they firstly 

involve comparing two quantities and secondly that one of the 

quantities has to be changed so that the two quantities become 

equal. An addition operation in the Equalizing Class might be: 

There were 6 boys in the football team. 2 more boys joined the 

team. Now there are the same number of boys and girls in the 

team. How many girls are in the football team? A subtraction 
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operation in this class might be: There are 5 paint brushes and 

3 pots of paint on the table. How many paint brushes do I need 

to take away so that there will be the same number of paint 

brushes and pots of paint on the table? 

Carpenter & Moser (1982) claim that their taxonomy of verbal 

contexts has validity in that in their empirical work 

"children's solution processes clearly reflect" Carpenter & 

Moser's distinctions between types of verbal contexts. Using 

Carpenter & Moser's taxonomy as a criterion, the question turns 

on the extent to which the verbal contexts offered by subjects 

in this study can be classified. 

For each of the 16 subjects, ten verbal contexts were noted 

during the course of the teaching protocols, five contexts for 

addition and five for subtraction. The results of analysis of 

the verbal contexts offered by subjects were quite clear cut. 

All of the subjects when providing a verbal context for an 

addition operation, offered a context which fits into the Part- 

Part-Whole Class and all of the subjects when providing a 

verbal context for a subtraction operation, offered a context 

which fits into the Separating Class. Some examples are listed 

below. 

0 

Figure 7. 
_2 

Examples of Verbal Context Offered by Subjects 
for addition 

1. I bought 2 ice-creams and 3 worms. Altogether that made 5 
things.. . 

2.1 went to the sweetie shop and I got 3 ice-creams and 3 
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lollipops and altogether that made 6 things. 
3. I saw 2 houses and 4 skyscrapers and that made 6. 
4. I was walking down the street. I saw 4 girls and 2 boys. 

Altogether I saw 6 people. 
5. I went into a shop and bought 1 man and 5 apples. That 

made 6 things. 
for subtraction 

1. I got 4 balls and sold 1 of them. That left 3. 
2. I saw 3 cars and they all drove away. That left0 cars. 
3. There were 5 houses in the street. 4 went on fire and 

that left 1 house. 
4. I went to the toy shop and bought 3 dolls. 1 of them got 

broken and my mum chucked it in the bin. That left me with 
2 dolls. 

5. I had 6 precious things and the robber stole 1 of them 
and that left 5. 

Whether or not the children can deal with other types of verbal 

context, as defined by the Carpenter & Moser classification, 

remains to be seen. All that is being said at the moment is 

that the verbal contexts offered by subjects in this study fall 

into two main groups - that of Part-Part-Whole for addition and 

that of Separating for subtraction. 

lc DOES THE USE OF OPERATOR SIGNS EASILY BECOME INCORPORATED 
INTO THE NUMERICAL REPRESENTATION? 

When the subjects were required to draw a 'silly story' in the 

addition protocol (see steps 6 and 7) they, of their own 

volition, supplied the 'plus' and the 'equals' sign. This is in 

sharp contrast to Hughes's (1986) findings where the children 

in his study made no spontaneous use of the operator signs. 

Moreover, in this study, the subjects also provided the total 

numerosity without being instructed to do so. It would seem 
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reasonable to explain this phenomenon in terms of the 

preparatory steps to this point in the protocol having become 

so routinized that the subjects predicted that they would be 

required to 'complete' the story. But non of them completed the 

story by drawing the total numerosity. Each and all of them 

supplied the missing parts in symbolic notation. Perhaps the 

subjects were beginning to realize the utility of 

formalization. On the other hand, perhaps this was simply a 

chance finding and a function of the subjects being taught in a 

group situation where they were allowed to (and encouraged to) 

talk about what they were doing. 

It will be recalled that subjects found it much more difficult 

to pictorially represent subtraction. When they eventually 

found a means of depicting the minuend and the subtrahend, they 

made no effort (as they had previously done in addition) to 

supply the operator signs or the number which represented the 

outcome of the operation. The subjects were, however, perfectly 

willing to comply with the researcher's suggestion that the 

complete 'number story' should be recorded underneath the 

pictorial representations for subtraction and appeared to have 

no difficulty in doing so. 

Because of Hughes's (1986) findings that young children tend to 

disregard operator signs, it was anticipated, in this study, 

that a similar phenomenon might present itself. However, this 
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fear proved unfounded. Perhaps because in the protocols, time 

had been expended on explaining the significance of operator 

signs, the subjects did not regard them as arbitrary marks but 

as meaningful symbols which were as important to the 'number 

story' as the numbers themselves. Certainly there was no 

reluctance on the part of the subjects to use operator signs 

when they were undertaking the conventional addition and 

subtraction exercises. 

2a CAN THE CHILDREN TRANSLATE FROM A VERBAL CONTEXT TO 
OBTAIN THE SOLUTION TO AN ADDITION OR SUBTRACTION 
OPERATION? (This is subsequently referred to as the 
utilizability of the concept). 

Within each of the protocols, translating from a verbal context 

provided by the teacher could not distinguish between having 

the concept of addition and having the concept of subtraction. 

Bearing in mind that addition was taught first and then 

subtraction, the test of 'concept acquisition' had to wait 

until after subtraction had been taught so that the children 

could by process of elimination, or use of negative example, 

decide that subtraction was not addition and, conversely, that 

addition was not subtraction. 

The usual means of testing for 'concept acquisition' is to 

explore whether or not the learner can apply or utilize the 

Chapter 7 Page 202 



THE CONTINUATION OF THE EMPIRICAL WORK 

concept. This was duly done using the procedure outlined 

earlier. 

Table 7.3 The Number of Correct Responses for Utilizability of 
Addition and Subtraction 

Ss -Addition -Subtraction . -Total 
(out of 10) 

155 10 
255 10 
355 10 
4-3 4' 7 
555 10 
655 10 
755 10 
855 10 
9459 

10 55 10 
11 55 10 
12 55 10 
13 55 10 
14 55 10 
15 437 
16 549 

Credit was given if it was obvious that the subject was 

appropriately increasing or decreasing a quantity. In other 

words a slight computational error of margin (+ or -1 of the 

correct answer) is included in the scores. Inspection of Table 

7.3 shows that most of the subjects were well able to 

distinguish between addition and subtraction. The high 

incidence of correct responses makes statistical analysis 

irrelevant. The simple answer to the question posed here is 

that subjects could utilize addition and subtraction concepts 

within the number domain of 10. 
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2b CAN THE CHILDREN TRANSLATE FROM A VERBAL CONTEXT TO 
IDENTIFY AN ADDITION OR SUBTRACTION OPERATION? 
(This is subsequently referred to as the evocability of 
the concept). 

Table 7.4 The Number of Correct Responses for Evocability of 
Addition and Subtraction 

Ss Addition Subtraction Total (out of 10) 
155 10 
2538 
3448 
4448 
5437 
6448 
755 10 
8437 
9347 

10 426 
11 426 
12 448 
13 437 
14 448 
15 437 
16 --4 .3 .7.. 

Inspection of Table 7.4 shows that subjects less readily 

identified a subtraction operation as being appropriate than 

they did an addition operation. Only one subject performed 

better on subtraction than on addition while eight subjects 

performed better on addition than on subtraction, with the 

remaining seven subjects performing equally well on addition 

and subtraction. On a related t-test, considered to be very 

robust, a significant difference was found between performance 

on addition and subtraction, t-2.8248 (p<. 02). The null 

hypothesis was that differences in performance in evoking 
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addition and evoking subtraction were due to guessing. Because 

the observed value of t was larger than the critical value, the 

null hypothesis can be rejected. The difference in scores 

between evoking addition and evoking subtraction would then 

seem to suggest that evoking subtraction was more difficult for 

subjects than evoking addition. 

2c IS THERE ANY APPARENT RELATIONSHIP BETWEEN BEING ABLE TO 
UTILIZE AND BEING ABLE TO EVOKE ADDITION OR SUBTRACTION 
CONCEPTS? 

Table 7.5 The Number of Correct Responses for the Utilizability 
and Evocability of Addition 

Ss Utilizability Evocability Total (out of 10) 
1 5 5 10 
2 5 5 10 
3 5 4 9 
4 3 4 7 
5 5 4 9 
6 5 4 9 
7 5 5 10 
8 5 4 9 
9 4 3 7 

10 5 4 9 
11 5 4 9 
12 5 4 9 
13 5 4 9 
14 5 4 9 
15 4 4 8 
16 .5 - -4. .9 

Inspection of Table 7.5 shows that only one subject scored 

better on the evocability than on the utilizability of 

addition, four subjects scored equally well on the evocability 

and utilizability of addition but eleven out of the sixteen 
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subjects scored better on the utilizability of addition than 

they did on the evocability of addition. 

Table 7.6 The Number of Correct Responses for the Utilizability 

and Evocability of Subtraction 

Ss Utilizability Evocability Total (out of 10) 
1 5 5 10 
2 5 3 8 
3 5 4 9 
4 4 4 8 
5 5 3 8 
6 5 4 9 
7 5 5 10 
8 5 3 8 
9 5 4 9 

10 5 2 7 
11 5 2 `7 
12 5 4 9 
13 5 3 8 
14 5 4 9 
15 3 3 6 
16 4- 3-- - -7 

Inspection of Table 7.6 shows that twelve of the subjects 

scored better on the utilizability than on the evocability of 

subtraction while the remaining four subjects scored equally 

well on the utilizability and evocability of subtraction. 

On the criterion of scoring at least four out of five test 

items correct, all but three of the subjects (a different one 

in each condition) were able to utilize addition, to utilize 

subtraction and to evoke addition; but only half of the 

subjects were able to evoke subtraction. The breakdown of 

figures looks like this: 

Chapter 7 Page 206 



THE CONTINUATION OF THE EMPIRICAL WORK 

Table 7.7 Observed Frequencies of Evidence of Conceptualization 

Scoring Util + -Util - -Evoc +- Evoc(-) 
4/5 

<-4/5 - 

15 subjs. 
. 1-sub'. 

15 subjs. 
-1 subj.. 

15 subjs. 
1. sub'. -- 

8 subjs. 
.8 subs.. ' 

With the observed frequencies in three of the categories being 

so low, the expected frequencies, in these instances, fall 

below 5. Thus the use of the Chi-square test would yield 

unstable results. Statistical testing is, therefore, 

inappropriate at this point. There appears to be a relationship 

between being able to evoke and utilize addition. However, this 

apparent relationship does not seem to hold for subtraction. 

3a CAN THE CHILDREN, IF REQUIRED TO DO SO, ARTICULATE HOW 
THEY OBTAINED A SOLUTION WHEN THEY HAD TO UTILIZE A 
CONCEPT IN TEST PERFORMANCE? 

It had been a declared aim of the methodology of Bidirectional 

Translation, that the learners be encouraged to verbalize what 

they were doing: explaining how they did, and speculating on 

how they could, effect a computation. It seemed apposite to 

explore how supportive this strategy was to the subjects, 

particularly in the light of the uncertainties revealed in the 

relationships between the evocability and utilizability of 

addition and subtraction. 
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It will perhaps facilitate discussion to be able to refer to 

subjects' actual scores. The table below shows the distribution 

of correct responses for each of the classes of verbal context 

when the subjects were evoking and utilizing addition (+) and 

subtraction 

Table 7.8 Summary of Correct Responses in-each_Class of Verbal 
Context for each type of Conceptualization 

JOIN. - SEPA. -PART. COMP. EQUA. total 

EVOC +) 16 3- 16 15 16 66 out of 80 
EVOC(-) 2 16 16 4 14 52 out of 80 
UTIL(+) 16 14 16 14 16 76 out of 80 
UTIL(-) 15 16 . 16 13 . -16 76 out of 80 
total 49 49 -64 46 - 62 -270 out of 320 

As can be seen from Table 7.8, there was no particular example 

of verbal stimulus which was beyond the abilities of every 

subject. But Joining (Evoc -), Separating (Evoc +) and 

Comparison (Evoc -) 'polled badly' relative to the other 

examples. In the Joining Class only two subjects could state 

that a subtraction operation was required, yet fifteen subjects 

in a parallel condition could compute the subtraction 

operation. In the Separating Class only three subjects could 

state that an addition operation was required, yet fourteen 

subjects in a parallel condition could compute the addition 

operation. In the Comparison Class only four subjects could 

state that a subtraction operation was required, yet thirteen 

subjects in a parallel condition could compute the subtraction 

operation. 
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Somewhat concerned about this discrepancy, the researcher 

generated a series of isomorphs of those verbal contexts in 

which the subjects had performed so badly. She provided the 

subjects with Unifix Cubes and asked them to demonstrate with 

the cubes their processes for finding the answer. She further 

asked each subject, on completion of the task, whether an 

addition or subtraction operation had been performed. The 

results of this follow up study were consistent with the 

original findings and, as such, need not be discussed at 

length. Observations of the subjects' behaviours are, however, 

worthy of recording. 

In the Joining/Subtraction context the subjects set out the 

initial quantity of cubes as an addend, counted on the 

appropriate number of cubes till they reached the requisite 

number and then counted to what amounted to the second addend. 

When asked if they were adding or subtracting, the subjects 

stated that they were adding because they were taking more 

cubes from their 'bank'. 

In the Separating/Addition context the subjects constructed 

the addends and summed them but still maintained that they were 

subtracting because part of the quantity had been 'given away' 

and only some of it was 'left'. 
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In the Comparison/Subtraction context 

quantities were constructed and the diffe 

counted. Again the subjects maintained 

because, they argued, the smaller of 

quantities together with the difference was 

of the disjoint quantities. 

the two disjoint 

rence observed, and 

they were adding 

the two disjoint 

equal to the larger 

Clearly then, the subjects could give reasons for their 

behaviour and, what is more, their explanations shed possible 

light on the earlier, observed 'failure' of half of the 

subjects to evoke subtraction. 

Firstly, the subjects had tactical strategies for dealing with 

the verbal contexts. These strategies would appear to be based 

on counting. If the subjects do not have number facts available 

for instant recall (and there was very little evidence that 

they had) their own well developed counting skills are the only 

meaningful strategies they possess for addition and 

subtraction. In the case of Joining and Comparison contexts for 

subtraction it made sense to perform the subtraction operation 

by complementary addition or 'adding on'. 

Secondly, the subjects have, as yet, poorly developed executive 

strategies. They identify key words such as 'more' and 

'altogether' with addition, and 'left' and 'take away' with 

subtraction and will assign verbal contexts containing these 
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words accordingly. This does not mean, at this early stage of 

their formal education, that the children act on their 

executive decision. The Separating context for addition is a 

case in point, where the subjects counted additively but still 

claimed that it was a subtraction operation. 

That the subjects could 'talk through' what they were doing is 

not in doubt, when they were utilizing the concepts. Their 

evocability of concepts was, however, on their own terms. They 

viewed complementary addition as addition (what could be more 

reasonable! ) and they also viewed the comparison of disjoint 

quantities as addition. These 'misconceptions' as to what is 

classed as addition and what is classed as subtraction do, 

however, appear to have affected the subjects' performance on 

the evocability of subtraction. This point will be taken up 

later. 

3b GIVEN A PREDETERMINED SELECTION OF CLASSES OF VERBAL 
CONTEXT WITH WHICH TO TEST CHILDREN'S CONCEPTUALIZATIONS, 
IS THERE ANY APPARENT RELATIONSHIP BETWEEN TEST 
PERFORMANCE IN TRANSLATING FROM A CONTEXT AND EARLIER 
PRE-TEST PERFORMANCE TRANSLATING TO A CONTEXT? 

Inspection of Table 7.8 shows that, with the exceptions 

discussed in the previous section, children were well able to 

translate from verbal contexts. 
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It will also be recalled that the researcher's classification 

of verbal contexts provided by subjects during the teaching 

protocol, using the Carpenter & Moser (1982) taxonomy, resulted 

in subjects' offerings being exclusively' Part-Part-Whole for 

addition and Separating for subtraction. 

Given that Part-Part-Whole and Separating Classes were favoured 

by the subjects initially, it is' not surprising that in the 

test performance both categories resulted in high performance 

scores for both evocability and utilizability. But given also, 

the"restricted classification of texts offered by the subjects, 

it"is interesting that they -performed so well on contexts 

belonging to other classifications. 

Allowing for the possible 'misunderstandings' 'on the part of 

the subjects in evoking operations in the Joining Class for 

subtraction, the Separating Class for addition and the 

Comparison Class for subtraction (as discussed earlier) it 

seems reasonable to conclude that the subjects' experience of 

providing verbal contexts in the exposure to Bidirectional 

Translation possibly enabled the subjects to cope with a range 

of verbal contexts. 

3c WHAT CLAIMS CAN BE MADE FOR THE METHODOLOGY? 
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Claims for the methodology will be discussed in terms of the 

conceptualizations evidenced, and will not include 

considerations such as children's enjoyment of/engagement in 

the protocol or mechanical representations which, though 

important in themselves, are not the main focus of this study. 

The subjects were clearly able to utilize addition and to 

utilize subtraction. This suggests that subjects could 

distinguish between addition and subtraction operations. That 

they could extract the appropriate operation from the verbal 

context demonstrates that they had conceptual understanding of 

addition and subtraction. They could, in essence, perform 

successfully on the translation problem. Given what was earlier 

claimed for, in the synonymity of successful performance on the 

translation problem and conceptual understanding, it can be 

argued that the subjects had cognitive control of both addition 

and subtraction (albeit within a limited number domain). 

Crudely put, the subjects understood what they were doing when 

they added or subtracted, in that they knew when to add or 

subtract and how to add or subtract. 

In the light of this finding therefore, it would seem 

reasonable that young children should be exposed to the 

formalism of addition and subtraction and, presumably, to other 

types of arithmetical operations, by the type of approach 

adopted in Bidirectional Translation. If children were able, in 
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much higher proportions than are currently documented, to 

perform successfully on the translation problem, then much of 

the concern which has prompted this whole piece of research 

would die away. 

But as Skemp (1971), Donaldson (1976) and Flavell (1979) have 

pointed out, conceptual understanding is not restricted to only 

having cognitive control of the concepts in question. Mature 

conceptualization involves also having metacognitive control. 

Translated into the terms of this study, this means that being 

able to add and subtract effectively (yes, even when the 

operation is couched in a verbal context) is not enough. The 

subjects must, further, know that they could add or that they 

could subtract (without necessarily doing so) to effect an 

appropriate solution to a translation problem. In other words 

the subjects must be aware of their own mental activity insofar 

as they can determine in advance of actual implementation, or 

hypothesize in the absence of actual implementation, which 

operation is needed for translation problem solution. 

Now it could be argued that the researcher's pursuit of 

metacognition in primary one children is somewhat ambitious 

given the research evidence (Piaget, 1928; Reid, 1966; 

Karabenick & Miller, 1977; Renwick, 1984; Garofalo & Lester, 

1985) which suggests that children of 56 years of age are 

incapable of exercising metacognitive control. However, given 
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the views of Brown (1978), Flavell (1979), Brown & DeLoache 

(1983) and Nisbet & Shucksmith (1984,1986) that metacognition 

is an influence on cognition and that at least some notion of 

metacognitive control can begin to be developed in young 

children, it is the researcher's considered opinion that 

metacognition through the medium of evocability is worthy of 

exploration at least. 

At first glance, the subjects appeared not to be able to evoke 

the concepts as readily as they could utilize them. However, as 

further exploration found out, the subjects' 

'misconceptualizations' of some types of addition and 

subtraction would according to the subjects' own reasoning, 

appear to be, tied to the semantics of the context which 

'carries' the logical structure of the operation. There have 

been many investigations into the analyses of verbal contexts 

(Carpenter & Moser, 1982; Nesher, 1982; Verngaud, 1982; Dickson 

et al, 1984) and of how differing combinations of syntax and 

vocabulary variably affect performance. Engagement in this 

debate is not part of this study. However, that the same or 

similar words can be arranged in a variety of legitimate 

combinations to convey different meanings cannot be ignored 

since, as has been demonstrated in this study, different types 

of verbal context will affect the subjects' apprehension, not 

of what they are necessarily doing but of what they think they 

are doing; the case in point being when subjects believed 
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themselves to be adding when they were subtracting and 

conversely believed themselves to be subtracting when they were 

adding. But the subjects' 'errors' were only errors on the 

criterion of mature, adult, mathematical conceptualization. 

There was nothing, actually, inherently wrong in what the 

subjects were doing or in their thinking about what they were 

doing. Without the protocol of Bidirectional Translation to 

establish amongst the children that discussion about what one 

was actually doing was the 'norm', it seems unlikely that any 

of the insights gained in this study would have been available 

to the researcher. 

This difference between what the adult accepts as so, and what 

the child believes to be so, has implications for the teaching 

of addition and subtraction. The child needs help to adjust 

his/her conceptualizations to those commonly held in the 

mathematical world; just in the way that the child has to 

adjust from using his/her own idiosyncratic list of counting 

words to the conventional listing. Without the common frames of 

reference it is impossible to communicate clearly with others. 

The child who never learns that complementary addition is 

subtraction will have extreme difficulty in discussion with the 

teacher who does not see that complementary addition can be 

viewed as addition, particularly in the later stages of formal 

education when addition and subtraction are but a part of the 

task in hand. But how is the teacher to know that the child 
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conceptualizes complementary addition as addition and not as 

subtraction if there has been no effort made to elicit what the 

child thinks he or she is doing? 

For the young child at an early stage in number work, the 

strategy of latching on to key words such as 'more' or 'left' 

to make an executive decision does not seem to be too 

dangerous. His/her heavy reliance on the tactical business of 

counting ensures that a reasonably accurate computation can be 

performed. Up to a point this seems perfectly satisfactory. But 

there frequently comes the time (most noticeably in the middle 

and upper primary stages) when the teacher, in helping the 

child 'digest' the translation problem, says something like, 

"tell me how you are going to find the answer" (Dickson et al, 

1984) or "what shall we do? " (Kilpatrick, 1981), particularly 

as by then the translation problem may be a complex one in the 

sense of several operations to be computed (Charles & Lester, 

1984). What is then counter productive is to allow the child to 

continue to believe that all verbal contexts can be represented 

numerically simply by applying the operations suggested by the 

key word. In the context, 'Fiona had some carrots. She gave 3 

to the rabbit and now has 2 left. How many did she have to 

start with? ' the word, 'left' is not a cue to subtract. 

Similarly, in the context, 'Mr Brown has 4 shirts. How many 

more shirts does he need to have 6 altogether? ' the application 

of the addition operation will result in the wrong answer since 
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the word, 'more' is not the cue to add. However, if the child 

has been successful with this approach (because it has always 

previously happened that 'more' and 'left' have correctly been 

associated with addition and subtraction operations 

respectively) and believes the he/she always will be successful 

with this approach, then the child is likely to use it even 

when it is inappropriate. One possible corollary from this is 

that the child abandons his/her earlier, intuitive attempts to 

understand the relationship expressed in the verbal context and 

instead adopts some quasi-mathematical rote heuristic. 

The young subjects in this study certainly seemed to appreciate 

the need to search for meaning in the verbal context. As 

teachers we must nurture this phenomenon and not allow it 

(through an overdue emphasis on 'performance') to become 

subjugated to correct answers or speedy progression through a 

prescribed syllabus. In turn this suggests two possible 

recommendations to be included in policies for the teaching of 

mathematics: 

firstly, that there be an acknowledgement of the necessity to 

'revisit' abstract mathematical concepts over time. Only then 

can what were initially fragmented concepts have a chance of 

becoming developed in anything resembling a 'complete way'; 

secondly, that there be a genuine attempt on the part of the 

teacher to elicit from the child exactly what the child thinks 

he/she is doing when working on a translation problem. Just in 
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the way that no teacher would wittingly allow a child's 

incorrect overt performance to continue without some attempt to 

help the child make the correction, so too does the teacher 

need to appreciate that faulty performance may be due not to a 

lack of competence but to a less mature or disoriented 

conceptualization of the task. One way of accessing this 

conceptualization is through some exploration of evocability. 

Granted, the measure of evocability used in this study may be 

deemed to be a bit crude, but it is a start. 

In summary: 

(i) the subjects appeared to respond well to being taught the 

formalisms of addition and subtraction through the method of 

Bidirectional Translation; 

(ii) in their operations the subjects could clearly distinguish 

between addition and subtraction (that is they could utilize 

addition and subtraction) which is tantamount to saying that 

the subjects had cognitive control of the two concepts; 

(iii) in their reflections on hypothetical operations there 

appeared to be some confusion as to what constitutes addition 

and what constitutes subtraction (that is there was some 

difficulty in correctly evoking addition and subtraction) which 

in turn suggests that the subjects' metacognitive control of 

the concepts was less refined; 

(iv) this confusion is understandable insofar as it may be a 

function of the type of verbal context used, but nevertheless 
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is a confusion which should be regarded as legitimate and as 

worthy of 'teaching' as any aspect of pedagogical content, if 

the different types of verbal context are accorded equal 

veracity. 
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THE EXPERIMENT 

The findings of the Main Study were pleasantly rewarding to the 

researcher. It did seem possible to teach addition and 

subtraction in some comprehensible fashion such that learners 

were aware of what they were doing. They knew when and how to 

compute. They could make sense of their computations in terms 

of hypothetical, real-life scenarios. And they could speculate 

on whether addition or subtraction operations were an 

appropriate 'fit' for the particular translation problems under 

consideration. There was still, however, a large unanswered 

question, "Was Bidirectional Translation's 'success' merely a 

function of the idiosyncrasies of this particular teacher? ". 

Put more prosaically (or scientifically? ) were the findings of 

the Main Study conducted with a tiny sample, generalizable to a 

larger population? To find, or try to find, an answer to this 

question, the methodology had to be tested in some systematic 

way and, as characterizes much educational research, the most 

appropriate vehicle for such testing was seen as the 

experiment, a means of controlled observation. 

Factors to be considered 

While the experimental style of data collection does allow 

conclusions to be drawn about cause and effect, it is 

nevertheless an approach which is fraught with difficulties. 
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These difficulties can be reduced to what Campbell & Stanley 

(1963) refer to as two principles: those of internal and 

external validity. 

Internal validity means that the results obtained in the 

experiment are due to the experimental 'treatment' rather than 

to uncontrolled, extraneous factors. In terms of this study, 

performance on addition and subtraction test items would have 

to be demonstrably tied to the teaching methodology. 

External validity means that the results obtained in the 

experiment would apply in the real world, at other times, to 

other groups of people, in other geographical locations. In 

terms of this study, could any qualified primary teacher use 

the methodology? 

The principles of internal and external validity are 

inextricably linked. The tighter the control of the experiment 

itself (in terms of controlling variables) the higher the 

probability that the study is internally valid. However, the 

elimination of uncontrolled variables which freely reign in the 

real world proportionately reduces the external validity of the 

study. And yet, external validity is of little value if one can 

have no confidence in the the internal validity of the 

experiment. The solution lies in achieving the best possible 

trade off between factors involved in external validity and 
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those involved in internal validity. But what are those 

factors? Campbell & Stanley (1963) refer to the following: 

for internal validity 

1. the history. of-the subjects: This refers to 'events' in the 

subjects' environment, which are beyond the control of the 

researcher, and which may have a favourable or disturbing 

effect upon the performance of the subjects such that 

performance measures were being wrongly attributed to the 

experimental 'treatment'. Limitations on internal validity by 

virtue of history are dealt with by using a control group which 

can be expected to have experienced the same 'events' (that is, 

can be expected to have the same history) as the experimental 

group. 

2. the maturation of-the subjects: This refers to maturational 

and developmental experiences which occur normally and which 

could, rather than the experimental 'treatment', be responsible 

for a particular outcome. Particularly over extended time, it 

can be difficult to determine whether improved performance is 

due to the independent variable, or to maturation, or to an 

interaction between the two. Here again, the use of a control 

group composed of persons who can be expected to have had the 

same or similar developmental experiences can enable the 

researcher to control for this confounding effect. 

3. testirr : Tests may make subjects more aware of hidden 

purposes of the researcher, and as a result may act as a 
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stimulus to change on the part of the subjects. This is 

particularly problematic, it seems, if there is pre-testing 

prior to the experimental 'treatment'. The subsequent post-test 

may not then be measuring the effects of the independent 

variable but be measuring the consequent effects of the pre- 

test experience. In traditional experimental designs, this bias 

can be avoided by not having a pre-test. 

4. instrumentation: The measuring tools or techniques must be 

as reliable and as up-to-date as possible, otherwise the 

experiment's validity is threatened. Additionally, however, the 

researcher must handle his/her measuring instruments with care. 

As the experiment proceeds, the researcher can, unwittingly, 

affect the measures obtained by giving different subjects 

different cues, by asking different subjects different 

questions, or by coding the data differently. To avoid 

unreliable and invalid information, it is important to have at 

least one but preferably both of the following: 

to have a predetermined format for asking questions/recording 

data; 

to have interviewers/observers constant across time. 

5. selection of subjects: The selection of subjects is probably 

the most important factor in experimental research. To evaluate 

properly the influence of the 'treatment' variable it is 

necessary that both the experimental and control groups be as 

closely as possible equivalent in respect of all the factors 

that may influence the dependent variable except for the 
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factor(s) chosen as the independent variable. In practice it is 

extremely difficult to select the two groups from the 

population who are equivalent or comparable in all respects and 

the usually favoured resolution to this difficulty is to use 

some form of randomization: either selecting subjects randomly, 

or randomly assigning subjects to different treatments, or 

randomly assigning experimental 'treatments' to selected 

groups. 

6. stability: Test findings can be unreliable in that they can 

occur once but not consistently. To control for this factor the 

data need to be examined statistically. Statistical tests 

indicate the probability of the findings being due to chance. 

for external validity 

1. The Hawthorne Effect: This refers to the possibility that 

participants in an experiment, just because they know they are 

participants, will react more positively towards the 

independent variable than the independent variable really 

justifies, and thereby enhance the findings. The phenomenon of 

the Hawthorne effect often operates in experimentation in 

curriculum research: the subjects, pleased at having been 

singled out to participate in an experimental project, react 

more strongly to their pleasure than to the 'treatment'. (But 

when such projects are tried on a non-experimental basis they 

often yield different results. ) This means that performance 

measures may be more a function of the researcher's 
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intervention per se than the specifics of the intervention. 

This reactive effect can contribute considerably to the 

invalidity of the findings and there is no way of eradicating 

it. In order to make some judgement as to the 'true' effects of 

the experimental treatment, it is important to cause the 

control subjects to feel that they too are participating in the 

experiment by the researcher's introduction of some pseudo 

intervention which makes the control subjects feel they are 

involved and are important but which has no relation to the 

independent variable being evaluated. In this way the 

researcher can attempt to 'create' parity between the control 

and experimental subjects. 

2. sample bias: If one wishes to make generalized statements 

about populations (and that, after all, is the purpose of 

experimentation) it is essential that the sample truce 

represents the population in all its vagaries. This means 

controlling for factors such as geographical location and 

'culture', and using subjects whose performance in the target 

area of study covers a wide range. 

The researcher's task 

Using a Posttest-Only Control Group Design, the researcher was 

to assess the effects of Bidirectional Translation. Half of the 

subjects would constitute the experimental group, the remainder 

the control group. The experimental group was to experience 
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Bidirectional Translation, which would involve the researcher 

in some induction of teachers in the protocol of the 

methodology. The control group was to be taught addition and 

subtraction 'by whatever means the teachers in that group 

typically used. After the teaching methodologies had been 

effected, the researcher was to test a cross section of all the 

children who had been involved. 

Negotiating access to the subjects 

Taking full account of the provisos outlined above, the 

researcher planned and executed her access to a sample of 

subjects as follows: 

1. The researcher sought permission of the Director of 

Education to pursue her research interests in a number of 

schools, number as yet unspecified. 

2. Negotiations took place between the Glasgow Division 

Education Officer, the Primary Adviser with responsibility for 

Mathematics and the researcher; which resulted in agreement 

that the researcher could approach a manageable number (for the 

researcher) of schools to solicit their participation. 

3. The researcher decided that, given her teaching commitments 

which, incidentally, radically switched in February 1988 from 

teaching primary one children to teaching student teachers at 

the local college of education (to where the researcher had 

been seconded to 'lecture in psychology) the total number of 
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schools which she could comfortably 'manage' would be about 

twelve. 

4. An initial list of about twenty schools was drawn up on the 

basis of intelligence made available by the local education 

authority. Such intelligence consisted of the sizes of school 

rolls; the number of primary one classes in any given school; 

whether or not the school was in an area of priority treatment; 

the social and cultural composition of schools; the 

geographical location of schools and any features which were 

'peculiar' to a school. One 'peculiar' feature is, for example, 

that a small number of schools have a nursery class which is a 

part of the school whilst, for the most part, nursery education 

is provided in establishments which are distinct and autonomous 

from mainstream primary schools. The criteria for the selection 

of the provisional list of schools from the hundreds which were 

available to the researcher will be discussed later. 

5. Letters were sent to the head teachers of twelve schools. 

The letters merely indicated the researcher's area of interest 

and asked permission to visit each school with a view to talks 

between herself, the head teacher and the primary one teacher. 

Follow-up telephone calls to secure an invitation to visit, 

allowed head teachers to accept, or decline the offer of 

participation in the research without feeling pressurized or 

'losing face'. Three head teachers declined on the grounds that 

they had undertaken other piloting or inservice work and were 

thus fully committed. For these refusals another three schools 
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Were selected by the researcher. The replacement schools agreed 

to participate. 

6. Initial visits to experimental and control schools were 

carried out in February 1988. In the experimental schools, the 

researcher briefly outlined the rationale for Bidirectional 

Translation, talked the teacher through the guidelines for 

implementing the methodology, provided the teacher with the 

necessary materials and arranged to meet again with the teacher 

to collect feedback and have a chat with the children. In the 

control schools, the researcher merely indicated that she was 

collecting data on teachers' views of the teaching of addition 

and subtraction, had the teacher complete a questionnaire and 

arranged with the teacher to return to the school towards the 

end of the school term to have a chat with the children when 

they would have completed the teacher's usual programme for 

the teaching of addition and subtraction. 

The guidelines and questionnaire mentioned in (6) are appended 

at the end of this chapter. 

7. In May/June the researcher, by arrangement, visited all 

twelve schools having obtained permission to test 15 children 

in each school over two successive days for each school. 

Chapter 8 Page 229 



THE EXTENSION OF THE EMPIRICAL WORK: THE EXPERIMENT 

Factors which were considered 

The experimentation which took place in this research 

endeavoured to secure the best possible balance between 

internal and external validity. Much of what will be stated in 

this section has already been implied, but in the interests of 

precision, the factors constituting internal and external 

validity will be examined in terms of this piece of research. 

to attain internal validity 

1. The limitations of this study meant that the variable of 

history could not be controlled for beyond the most rudimentary 

levels: to have thoroughly investigated historical events in 

the subjects' environments would have meant research on a scale 

which would be impracticable for someone working single-handed. 

However, a few simple precautions were taken to attenuate the 

worst excesses of historical contamination. No schools were 

chosen which had been involved in closures or mergers as a 

result of local government rationalization in education. No 

schools were chosen which had experienced a particularly 

traumatic or dazzling event, such as a fire or a prestigious 

award/visit. These precautions were thought to eliminate 

variables such as stress or over-excitement which may have 

been implicated in the performance measures. A further 

precaution taken was that only schools which had one primary 

one class could be included, lest there be any notions' of 
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streaming, however tacit, in operation. If there was only one 

primary one class in the school, all the primary one children 

had to be there! 

2. The variable of maturation was controlled for by using only 

primary one children both in experimental and control schools 

and conducting the testing over a time scale of weeks rather 

than months. 

3. The possibly adverse effects of pre-testing were avoided by 

not conducting any pre-tests. A two-group design was used 

instead. 

4. The variable of instrumentation was controlled for by the 

researcher herself doing all the testing and using a 

predetermined format for this. 

5. The variable of subject selection was complex to handle. 

Constraints of practicality and ethics meant that it was 

necessary, though not perhaps ideal, to consider schools as 

experimental or control. But since schools vary on a variety of 

dimensions such as the cultural composition of its population, 

the ratio of pupils to teachers and the diversity of socio- 

economic status, it would be very easy to have an experimental 

group comprising children from advantageous circumstances and a 

control group comprising children from disadvantageous 

circumstances, with the resulting findings being heavily 

contaminated. Given that it was desirable to have a sample 

which was representative of a population of primary one 

children, and given that the experimental and control schools 
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were to be as equitable as possible, the following compromise 

in the selection of subjects was reached. Factors such as the 

geographical location of schools (whether inner city or in a 

peripheral housing estate); the cultural composition of 

individual school populations (mainly monocultural or mainly 

multicultural) and the incidence of compensatory provision in 

schools for 'disadvantaged' pupils (whether or not the school 

was designated as being in an area of priority treatment) were 

recognized as being powerful influences on the child's 

performance in school. These factors were therefore the initial 

criteria by which schools were selected. These factors do not, 

however, manifest themselves in isolation. Differing 

permutations result in schools which can be identified as: 

multicultural/A. P. T. /inner city schools, 

multicultural/non A. P. T. /inner city schools, 

monocultural/A. P. T. /inner city schools, 

monocultural/non A. P. T. /inner city schools, 

monocultural/A. P. T. /housing estate schools, 

monocultural/non A. P. T. /housing estate schools. 

The identities of schools having been determined, it was then a 

matter of selecting two schools of each 'type', one of which 

was arbitrarily designated as experimental and the other as 

control. 

A further compromise in the selection of subjects was that the 

subjects tested by the researcher were selected by their class 

teachers. The researcher requested 15 subjects in each school 
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who: 

a) had completed the, programme of addition and 

subtraction; 

and 

b) were in the teacher's professional opinion 'good' (5 

subjects), 'average' (5 subjects) and 'poor' (5 subjects). 

This is a somewhat irregular method for selecting subjects for 

testing but the researcher was at pains not to give 

participating teachers the impression that it was they who were 

being assessed, and so she considered it prudent, in the 

circumstances, to have the teachers select the subjects. 

However, the method comes close to random selection and 

probably did not damage the experiment. 

6. The variable of stability was controlled for by subjecting 

the test performance data to statistical analyses. 

to attain external validity 

1. The variable of the Hawthorne Effect was controlled for by 

having the teachers in the control schools complete a 

questionnaire on the teaching of addition and subtraction at 

the outset and securing their agreement for a return visit by 

the researcher. Neither the experimental nor the control group 

was made aware of the other's participation in the research, 

and since each group received the same number of visits from 

the researcher, each received (at face value) the same amount 

of researcher intervention. 
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2. The variable of sample bias has largely been dealt with in 

what was said about sample selection. Perhaps it should be 

added, however, that the schools were drawn from north, south, 

east and west of the city. 

The Scope and Aims of the experimentation 

The aim was to investigate the effect of Bidirectional 

Translation on the conceptual understanding of addition and 

subtraction. Specifically, the experimental hypothesis was that 

children exposed to the methodology of Bidirectional 

Translation will perform significantly better on addition and 

subtraction test items than children who are exposed to 

traditional methods which place a heavy reliance on computation 

alone. 

The scope of the experiment was restricted to exploring the 

extent of conceptualization of addition and subtraction. 

Specifically, the extent to which young children could evoke 

and utilize addition and subtraction operations was at issue. 

Procedure 

A list of 20 test items, 10 for evocability and 10 for 

utilizability, was used as it had been in the Main Study. The 

number domain used was within 10 and number triples were 
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randomly assigned to test texts, which, similarly, were 

presented to subjects in random order. The texts of the test 

items are included at the end of this chapter. 

The researcher visited each school on two successive days, on 

one day to test for evocability and on the other to test for 

the utilizability of addition and subtraction. Presentation of 

evocability and utilizability test items were counterbalanced. 

The researcher worked in a corner of the classroom withdrawing 

subjects one at a time from the main body of the class. The 

researcher spent a morning with the class on each visit. 

Interview time with each subject was about 10 minutes. The 

instructions to each subject were: 

for-evocability. 
I'm going to read you a silly story.. Listen carefully and 
tell me if you should add or subtract to find the answer 
9. Well done, now let's try some more. 

for utilizability 
I'm going to read you a silly story. You see if you can 
find out the answer and tell me what it is ... Well 
done, now let's try some more. 

After the subjects made a response, a few seconds were allowed 

to elapse before another verbal context was presented. The 

purpose of this was to enable the subject to reflect upon, and 

possibly change his/her decision. If the subject did make a 

change in his/her decision, he/she was asked by the researcher 
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to clearly indicate which response the subject believed to be 

correct. 

Each verbal context was read and reread to the subject. Any 

subsequent lapse of memory on the part of the subject was 

remedied by the researcher's reading the verbal context yet 

again. 

Successful/unsuccessful performance on each test item was 

noted. 

To conclude the researcher-visits to the schools, the 

researcher debriefed the participating teachers as follows. 

For the experimental teachers the researcher acknowledged their 

participation and explained that the children seemed to have a 

sound grasp of what they were doing when they added or 

subtracted. She further indicated that if the same results were 

found in other school participating in the research she would 

have grounds for recommending that the approach of 

Bidirectional Translation be adopted by other teachers. She 

also invited teachers' comments and collected what written 

feedback they had available. 

For the control teachers the researcher expressed her thanks 

for allowing her time to chat with the children and explained 
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that she now hoped to try to develop some method of linking the 

children's achievements in computation with contexts for 

addition and subtraction such that children could solve 

arithmetical problems more easily. She also invited teachers' 

comments on her 'idea'. 

In summary: 

(i) 180 subjects, 90 experimental and 90 control, from twelve 

Glasgow primary schools participated in assessment of their 

grasp of understanding of addition and subtraction; 

(ii) this grasp of understanding was measured in terms of 

evocability and utilizability; 

(iii) the experimental subjects were, before testing, taught to 

add and subtract using the methodology of Bidirectional 

Translation; 

(iv) the control subjects, before testing, had been taught to 

add and subtract by whatever was the teacher's usual 

methodology; 

(v) claims are made for the experimental design being both 

simple and efficient, a Posttest-Only Control Group Design. 
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Teaching Primary One Children to Add and Subtract with greater 
understanding: a research investigation. 

Guidelines for teachers participating in the investigation. 

Effie Maclellan, Division of Education and Psychology, 
Jordanhill College. 
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Preface 

The research evidence from researchers in Britain and elsewhere 
indicates that children can learn to add, subtract, multiply 
and divide when such operations are in the form of 'sums' such 
as 9+6,4x2,6-3. However, many children are unable to 

a) translate such an operation into a hypothetical, real world 
context: in other words they cannot envisage a situation in 

which such an operation would be required 

and conversely 

b) extract the appropriate numerical 
, 

operation from a 
hypothetical real world context: in other words they have 
extreme difficulty in solving the word problems as they 
typically appear in mathematical textbooks. 

I believe that unless children can. at least to some extent be 
proficient in (a) and (b) above (or, to put it more 
theoretically, bidirectionally translate between the numerical 
representation and a verbal context) the concept of addition or 
subtraction or multiplication or division has not established 
itself in the child's mind. It is with the aim of introducing 
the concepts of addition and subtraction in a fuller and more 
meaningful way that the following methodology has been 
developed. 

At several point in the Series of Steps for teaching Addition 

and Subtraction, there will be instructions to take out a 
specific number of cubes. This number is not sacred. Teachers 
should feel free to choose their own examples using small 
numbers. 

Throughout, frequent reference is made 
. 
to the terms 'number 

story' and 'silly story'. This is not meant. to be patronizing 
towards teachers. It is simply an easily understood distinction 
between formal, notational representation and verbal 
contextual ization of a numerical operation; and in using the 
terms, 'number story' and 'silly story' the children understand 
the distinction. 

In all of this booklet I have tried to avoid jargon. However 
there is one exception, found only in step 6 of Subtraction, 

where reference is made to the terms, minuend and subtrahend - 
purely because this is the most economical way of explaining 
what is subtracted from what: 

thus 9 minuend 
-6 subtrahend 
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The materials needed in using the following methodology are few 
and simple. The Unifix Cubes typically found in infant 
classrooms, or their equivalents are perfectly suitable as 
'concrete apparatus'. Additionally, the teacher needs some 
magnetic numerals and operator signs and a magnetic surface on 
which to use them. 

I'd like you to try out the following steps with your different 
groups of children. 
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Series of steps for-teaching addition 

Step 1 Setting the scene. 

The group of children is seated round the table, each child 
having a stack of 10 Unifix Cubes. The children are asked to 
take two cubes from their stacks. A magnetic numeral '2' is 
displayed on the magnet board. 

2 

MAGNET BOARD 

Attention is drawn to the two cubes in front of each child and 
to the numeral '2' on the board. The children are told that 
they are to take more cubes from their stacks and that to show 
on the board that they are taking more cubes, a sign is used. 
The children are told that the sign says 'plus' or 'add on'. 
The magnetic '+' is affixed to the board. 

2+ 

MAGNET BOARD 

The children are now asked to take a further three cubes from 
their stacks and to sit them beside the two cubes: 

[l 
M] 
IH] 

A magnetic '3' is displayed on the board. 

---------- --- --------- 

2+3 

MAGNET BOARD 

Attention is drawn. to the cubes in front of the children and to 
the display on the board. The children are asked to find out 
how many cubes they took from the. stack altogether. After the 
total has been ascertained, the teacher explains that another 
sign is needed to show that something has been found out about 
2+3. The children are told that the sign says 'equals' or 
'makes' or 'is the same as'. The magnetic '-' is affixed to the 
board as is the magnetic 151. 

2+35 

MAGNET BOARD 
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Attention is drawn to the cubes in front of the children and to 
the 'number story' on the board (two plus three equals five). 
The children are invited to 'read' the number story aloud. This 
entire procedure is repeated many more times over successive 
days using different number combinations within 10. Zero is 
introduced by instructing the children to take out 4 cubes and 
then take out no cubes. 

Step 2 Let's Pretend. 

The children are introduced to the notion that cubes can be 
used to represent just about anything in the real world. The 
teacher says to the children, "Let's pretend 

_the 
cubes are 

bananas" or "cars" or whatever. The children are instructed to 
take out three bananas and then another three bananas and to 
find out how many bananas they have in front of them. As above, 
considerable practice is given, and every addition activity is 
accompanied by its representation in magnetic numeral form. 

Step 3 Silly Stories. 

The children are told to listen to a 'silly story'. While they 
are listening they have to take from their stack of cubes the 
numbers mentioned in the 'silly story' 

"Mummy gave me three lollipops and four sweets". 
The children are asked to show their three lollipops (whereupon 
each child holds up the three Unifix Cubes) and their four 
sweets (whereupon each child holds up the four Unifix Cubes). 
The teacher asks, "How many things did Mummy give me 
altogether? " When the total has been identified the teacher 
asks, "How did you find out the answer? " 

Step 4 Silly Stories and Number Stories. 

The teacher provides a complete 'silly story': 
"There are four blue sweets and two red sweets in the bag 
so that makes six sweets altogether". 

The children are invited to use the magnetic numerals and signs 
to represent the 'silly story' as a 'number story' (4+2-6). The 
children 'read' the 'number story' (four plus two equals six) 
and are required to indicate which number represents the blue 
sweets, which number represents the red sweets, which sign 
represents the operation of addition and which sign represents 
the outcome of the operation. Again, much practice is given in 
this activity. 

Step 5 Number Stories and Silly Stories. 

The teacher provides a complete 'number story' on the magnet 
board (for example 1+3-4) and the children are invited to 
provide a corresponding 'silly story'. Allow as many children 
as time allows, to provide verbal contexts for any given 
numerical representation. 
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Step 6 Drawing a story - first version. 

The children are instructed that instead of telling a 'silly 
story' they have to draw a 'silly story' for a bit of a number 
story which will be provided. The instruction 'draw 2+3' is 
given orally and is also put on the magnet board for the 
children to see. Provide paper and pencils/pens/ crayons and 
observe what happens. When each child has pictorially 
represented his/her 'silly story' ask the child to explain 
his/her story and scribe the story in front of the child. This 
procedure of drawing a 'number story' is repeated regularly 
over successive teaching sessions. 

Step 7 Drawing a story - second version. 

The children are invited to draw their own 'silly story' with 
no numerical stimulus being provided. In other words the 
children are not told of how many of each sub set to draw. 
There is now greater need than before for the children to 
describe/ explain their stories to the teacher (since both the 
numerical components and the verbal contexts are the children's 
own with no constraints imposed by the teacher) who again 
scribes at the child's dictation. 

Step 8 Strategies for finding the answer. 

The children are told that they will be given a bit of a 
'number story' (for example 3+4-) and that they will have to 
find the answer. The teacher asks the children how they will 
find out the answer if they do not already know. The children 
make various suggestions: 

a) count on their fingers 
b) count with cubes 
c) draw pictures 

each of which is positively received by the teacher who then 
points out that: 

a) sometimes we might not have enough fingers (as when 
summing any numbers the total of which is greater than 
10) 
b) cubes are not always available 
c) pictures can take a long time to draw. 

The teacher the demonstrates a 'method which she sometimes 
uses'. Whereupon she writes 3+4. ' on the blackboard and sets out 
the appropriate number of tally marks: 

3+4= 
III (III 

MAGNET BOARD 
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The results are compared 
fingers, cubes and tally n 
in setting down 'number 
(referred to as strokes) 
methods is valid and that 
use) is to be theirs. 

using each of the three methods - 
iarks. The children are given practice 

stories' and in using tally marks 
but are reassured that each of the 
the final choice (of which method to 

Step 9 Does it work? 

Only now are the children considered ready to undertake the 
conventional addition exercises of adding two numbers the total 
of which is within 10. The children undertake this activity 
outwith the direct supervision of the teacher - that is when 
she is working with other groups of children in the class. 
However, to check that the earlier steps in the series have 
been of use to the children, random, one-to-one interviews are 
held between the teacher and the child when the teacher in the 
light of a completed exercise: 
a) asks the child how he/she found the answer to a particular 
operation, say 6+2; 
b) invites the children to provide a 'silly story' for a 
particular addition operation, say 5+0; 
c) requests the child to peruse all the examples in the 
exercise and identify which 'number story' is being referred to 
when the teacher provides a 'silly story'. 
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Questions to guide the teacher's observations of the children 
whilst teaching addition. 

Step 1 How do the children find the 'altogether' number. Do 
they 

a) use cubes, if so how many? 
b) count on their fingers, if so how many? 
c) make use of number facts, if so how many? 
d) other? 

Step 2 What comments, if any, do the children make when they 
are pretending that the Unifix Cubes are objects in the real 
world? 

Step 3 Can the children report how they performed the 
addition operation? Do they make reference to strategies such 
as those outlined in Step 1? 

Step 4 What hesitancies/difficulties, if any, do the children 
have when using the magnetic numerals/signs to record a 
'story'. For example, do the children use the operator signs 
effectively? 

Step 5 Please include, about 6, transcriptions of children's 
'silly stories'. 

Step 6 a) Do the children insert the operator signs 
appropriately? 

b) Do the children complete the addition operation of 
their own volition? 

Step 7 as for Step 6 

Step 8 a) What suggestions do the children make as to how the 
answer can be obtained? 

b) How do the children respond to the tally marks? 

Step 9 Please comment on the children's performance in the 
one-to-one interviews for 9 (a), (b) and (c). 
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Series of-steps for teaching-subtraction 

Step 1 Setting the scene. 

The group of children is seated round the table, each child 
having a stack of 10 Unifix Cubes. The children are asked to 
take 6 cubes from their stacks. A magnetic numeral 161 is 
displayed on the magnet board. 

6 

MAGNET BOARD 

Attention is drawn to the six cubes in front of each child and 
to the numeral '6' on the board. The children are told that 
they are to take some cubes away from their set of six and that 
to show on the board that they are taking cubes away a sign is 
used. The children are told that the sign says 'minus' or 
'subtract'-or 'take away'. The magnetic '-' is affixed to the 
board. 

6- 

MAGNET BOARD 

The children are now asked to take two cubes away from their 
stack of six and to return them to the 'bank'. A magnetic '2' 
is placed on the board. 

6-2 

MAGNET BOARD 

Attention is again drawn to the board which now displays 6-2. 
The children are asked to find out how many cubes they have 
left. After the answer has been ascertained the teacher reminds 
the children that a sign is needed to show that something has 
been found out about 6-2. The magnetic '-' is affixed to the 
board as is a magnetic '4'. 

6-24 

MAGNET BOARD 

The children are reminded that they started off with six cubes 
and that they took away two of them. They are now left with 
four cubes in front of them. Attention is drawn to the 'number 
story' on the board (6-2-4) and the children are invited to 
'read' the 'number story' (six minus two equals four) aloud. 
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The entire procedure is repeated many more times over 
successive days using different number combinations within ten. 
Zero is used by instructing the children to take out eight 
cubes and then take away no cubes. 

Step 2 Let's Pretend. 

The children are reminded that cubes can be used to represent 
anything in the real world. The teacher tells the children, 
"let's pretend the cubes are dogs" or "houses" or whatever. The 
children are instructed to take out five dogs and then to take 
three dogs away and to find out how many dogs are left. As 
before, considerable practice is given and every subtraction 
activity is accompanied by its representation in numerical 
form. 

Step 3 Silly Stories. 

The children are told to listen to the 'silly story' and to 
operate with the cubes accordingly: 

"Mummy had four apples but she gave me one to eat". 
The children are asked to show their four apples (whereupon 
each child holds up his/her four Unifix Cubes) and to show that 
one was eaten (whereupon each child demonstrates the 
subtraction). When the children correctly identify how many 
apples are left, they are asked by the teacher how they found 
out the answer. 

Step 4 Silly Stories and Number Stories. 

The teacher provides a complete 'silly story': 
"Three cups were on the shelf. One of them got knocked on 
to the floor so that left only two cups". 

The children are invited to use the magnetic numerals and signs 
to represent the 'silly story' as a 'number story' (3-1-2). The 
children 'read' the 'number story' (three minus one equals two) 
and are required to indicate which number represents the cups 
at the beginning of the story, which number represents the cup 
that met with the accident, which number represents the cups at 
the end of the story, which sign represents the operation of 
subtraction and which sign represents the outcome of the 
operation. Many such verbal contexts are provided by the 
teacher. 

Step 5 Number Stories and Silly Stories. 

The teacher provides a complete 'number story' on the magnet 
board (for example 7-4-3), and the children are invited to 
provide a corresponding 'silly story'. Allow as many children, 
as time allows, to provide verbal contexts for any given 
numerical representation. 
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Step 6 Drawing a story - first version. 

The children are instructed that instead of telling a 'silly 
story' they will have to draw a 'silly story', for a bit of a 
'number story' which will be provided. The instruction 'draw 5- 
3' is given orally and is also put on the magnet board for the 
children to see. Provide paper and pencils/pens/crayons and 
observe what happens. Some teacher intervention may be required 
because the children may pictorially represent the five and 
also the three and proceed to add rather than subtract. If this 
happens, still request the child to explain/describe his/her 
'silly story'. If required to reflect on their own story the 
children may not be too happy with a story in which they have 
five sweets, eat three of them and then be left with eight! Ask 
the children how they can show on paper the initial quantity, 
the operation and the result. Some may suggest rubbing out the 
subtrahend. This is perfectly reasonable but in so doing: 
a) nobody will be able to see how many things were present at 
the beginning of the story; 
b) nobody will be able to see how many things were taken away. 
By emphasizing that the minuend and the subtrahend both be 
visually evident, hopefully some child or children will suggest 
that the minuend is drawn and that the subtrahend is 
represented by crossing out. Considerable practice is again 
required. 

Step 7 Drawing a story - second version. 

The children are invited to draw their own 'silly story' with 
no numerical stimulus being provided. In other words the 
children are not told how many things to draw initially or how 
many to score out. They must, however, verbally report the 
context in order that it can be written down by the teacher. 

Step 8 Strategies for finding the answer. 

The children are told that they 
'number story' (for example 7-2-) 
find the answer. The teacher asks 
answer if they do not already know. 
suggest one/all of the following: 

a) use their fingers 
b) use cubes 
c) use strokes 

will be given a bit of a 
and that they will have to 
how they will find out the 
Hopefully the children will 

The teacher checks that the children are able to use all of 
these strategies. 

Step 9 Does it work? 

only now are the children considered ready to undertake 
conventional subtraction exercises, within ten. The children 
undertake this activity outwith the direct supervision of the 
teacher, who is meanwhile working with other groups of 
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children. However, as with addition, random, one-to-one 
interviews are held between the teacher and the individual 
child to check if the earlier steps in the series have been of 
use to the child. In each interview, and in the light of a 
completed subtraction exercise, the teacher: 
a) asks the child how he/she found the answer to a particular 
subtraction operation, say 8-3; 
b) invites the child to provide a 'silly story' for a 
particular subtraction operation say 2-2; 
c) requests the child to peruse all the examples in the 
exercise and identify which 'number story' is being referred to 
when the teacher provides a 'silly story'. 
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Questions to guide the teacher's observations of the children 
whilst teaching subtraction. 

Step 1 How do the children find what is 'left' after 
subtracting. Do they 

a) use cubes, if so how many children do? 
b) count on their fingers, if so how many? 
c) make use of number facts, if so how many? 
d) other? 

Step 2 What comments, if any, do the children make when they 
are pretending that the Unifix Cubes are objects in the real 
world? 

Step 3 Can the children report how they performed the 
subtraction operation? Do they make reference to strategies 
such as those outlined in Step 1? 

Step 4 What hesitancies/difficulties, if any, do the children 
have when using the magnetic numerals/signs to record a 
'story'. 

_For 
example, do the children use the operator signs 

effectively; do they order the numbers in the same sequence as 
in the 'silly story'? 

Step 5 Please include, about 6, transcriptions of children's 
'silly stories'. 

Step 6 a) Do the children complete the subtraction operation 
of their own volition? 

b) If the children depict the minuend and the 
subtrahend as two distinct entities do they insert the operator 
signs appropriately, and, if so do they 

c) complete the subtraction operation appropriately? 

Step 7 as for Step 6 

Step 8 What suggestions do the children make as to how the 
answer can be obtained? 

Step 9 Please comment on the children's performance in 
the one-to-one interviews for 9 (a), (b) and (c). 
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Questionnaire on the teaching of Addition -and- -Subtraction 
Operations to Primary-One Children 

1. Are you using a commercially produced Maths Programme or 
Scheme? YES NO 
If yes, which one? 

2. Do you have children in your class who came to school 
already able to add? YES NO 

3. Do you have children in your class who came to school 
already able to subtract? YES NO 

4. Do you aim to teach automatic recall of addition number 
bonds? YES NO 

5. Do you aim to teach automatic recall of subtraction number 
bonds? YES NO 

6. Do you prefer to teach addition first and then subtraction? 
YES NO 

7. Do you prefer to teach addition and subtraction as converse 
operations? YES NO 

8. Do you explain the '+' sign as 'plus'? 
YES NO 

9. Do you explain the '+' sign as 'and'? 
YES NO 

10. Do you explain the '+' sign as 'add on'? 
YES NO 

11. Do you explain the '-' sign as 'minus'? 
YES NO 

12. Do you explain the '-' sign as 'subtract'? 
YES NO 

13. Do you explain the '-' sign as 'take away'? 
YES NO 

14. Do you explain the '-' sign as 'equals'? 
YES NO 

15. Do you explain the sign as 'the same as'? 
YES NO 

16. Do you allow children to use their fingers to find the 
answer? YES NO 
Please give a reason for your point of view. 
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17. Do you approve of children using their fingers to find the 
answer? YES NO 
Please give a reason for your point of view. 

18. Do you 'embed' the addition operation in a verbal context - 
i. e. provide a word problem? YES NO 
Please give a reason for your answer. 

19. Do you 'embed' the subtraction operation in a verbal 
context? YES NO 
Please give a reason for your answer. 

20. In your professional opinion is Maths teaching beat kept as 
a distinct curricular area? 

YES NO 
Please give a reason for your answer. 
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Items to test-the conceptualization of Addition and Subtraction 

The Utilizability. of. Addition 

Joinin : Betty has (x) dollies. Granny gave her (y) more 
dollies. How many dollies has Betty got now? 
Separating: Fiona had some carrots. She gave (x) carrots to the 

rabbit and now she has (y) carrots left. How many did she have 

to start with? 
Part-Part-Whole: (x) girls and (y) boys went out to play in the 
playground. How many children went out to play? 
Comparison: Susan has (x) hats. Mummy has (y) more hats than 
Susan. How many hats has Mummy got? 
Equalizing: There were (x) red cars in the car park. (y) more 
red cars came in. Now there are the same number of red and blue 
cars in the car park. How many blue cars are there? 

The Utilizability of Subtraction 

Joinin : Mr Brown has (x) shirts. How many more shirts does he 
need to have (z) shirts altogether? 
Separating: John had (z) pencils. He gave(x) to his big 
brother. How many pencils does John have now? 
Part-Part-Whole: Daddy has (z) saws. (x) of them are very blunt 
and the rest are very sharp. How many very sharp saws does he 
have? 
Comparison: There are (z) men and (x) women standing at the bus 
stop. How many more men are at the bus stop? 
Equalizing: There are (z) forks and (x) knives in the drawer. 
How many forks should I take out so that there are the same 
number of forks and knives in the drawer? 

The Evocability. of Addition 

Joinin : Tom has (x) bananas. Susan gave him (y) more bananas. 
How many bananas has Tom got now? 
Separating: Neil had some toys. He gave (x) toys to his little 
brother and now he has (y) toys left. How many did he have to 
start with? 
Part-Part-Whole: There are (x) girls and (y) boys in the room. 
How many children are in the room altogether? 
Comparison: Mary has (x) cats. Christine has (y) more cats than 
Mary. How many cats does Christine have? 
Equalizing: There were (x) boys in the playground. (y) more 
went out. Now there are the same number of boys and girls in 
the playground. How many girls are in the playground? 

The-Evocability"of Subtraction 

Joinin : Karen has (x) lollipops. How many more lollipops does 
she need to have (z) lollipops altogether? 
Separating: Imran had (z) sweets. He gave (x) to Linda. How 
many sweets does Imran have now? 
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THE EXTENSION OF THE EMPIRICAL WORK: THE EXPERIMENT 

Part-Part-Whole: Eva has (z) pens for colouring with. (x) of 
them are blue and the rest are red. How many red pens has Eva 
got? 
Comparison: There are (z) girls and (x) boys in the cloakroom. 
How many more girls are in the cloakroom? 
Equalizing: There are (z) cups and (x) saucers on the table. 
How many saucers should I take away so that there are the same 
number of cups and saucers on the table? 
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RESULTS 

The purpose of a chapter such as this is twofold. First, it 

presents the results of the study in a summary form and then it 

points out some patterns observed within the data. In both of 

these processes interpretation is taking place. The summary 

involves data reduction and it is necessary to show that the 

categories or dimensions implied in this process are reasonable 

ones. Here descriptive statistics can provide rigour. The 

process of extracting patterns involves making distinctions and 

comparisons and again statistical tests can ensure that the 

author's interpretation is true to the data. 

The remainder of this chapter will thus attempt to describe, 

and generalize from: 

(i) how the subjects performed on the different tasks; 

(ii) variations and associations within the data; 

(iii) differences between the experimental and control 

subjects. 

The data being dealt with in this chapter will be considered to 

be on an interval scale. However, it is acknowledged that this 

involves an assumption common in dealing with test results in 

education and psychology; that the correct answer to any one 

item is exactly equivalent (in terms of the 'amount' of the 

underlying competence expressed) to the correct answer for any 

other item. 
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The dubiety expressed about the scale of measurement is not 

merely cautionary, but has implications for the type of 

statistical tests used on the data. Statisticians of the 

'purist' school would claim that at least an interval scale is 

a necessary condition for the use of parametric tests. 

Statisticians of the more 'liberal ' school would, on the other 

hand, claim that parametric tests are so robust that they can 

still be applied even if the equal units in the interval scale 

are more quasi than real. For the researcher who is naive in 

statistical theory, it is not clear which type of advice one 

should follow. As a result, the position being adopted here is 

as follows. 

The data are assumed to be on an interval scale. Having said 

that however, it does not necessarily mean that the tests used 

will be, exclusively parametric, since another necessary 

condition for the use of parametric tests is that the results 

be normally distributed. As will be seen later this assumption 

is not met in the data in this study. But here again, there is 

some disagreement amongst the experts. Some would claim that 

parametric tests should not be used if the data are skewed, 

others would claim that there can be considerable deviation 

from normality without the result of the parametric test being 

affected. 
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While the non parametric tests are not so powerful as their 

parametric counterparts (that is, they can 'lose' valuable 

information in the data), they nevertheless have greater 

generality. To use a parametric test inappropriately can 'add' 

information which is not justified. Although the parametric 

test can detect significance where a non parametric test might 

not do so, the corollary to that is that if a non parametric 

test does find significance so must its parametric counterpart. 

Accordingly then, non parametric tests will be used 

principally, and only in instances where there seems further 

cause to tease out the data, will parametric tests be used. 

SUMMARY OF-OBSERVATIONS 

There were 90 experimental subjects and 90 control subjects. 

Overall, 20 responses for each subject were scored. 

Table. 9.1 Frequency Distribution of-Class Intervals-of Correct 
Scores for-180 Subjects 

scores experimental 
between - frequencies 
18 - 20 15 
15 - 17 24 
12 - 14 22 
9- 11 24 
6-8 21 
3-5 47 

Number 180 
Mode 4 
Median 8 
Mean 8.75 
S. D. 5.89 
Sk. 0.38 ------ -- -------. - 

Chapter 9 Page 257 



RESULTS 

The frequency distribution can also be depicted graphically as 

the following bar graph shows. 

Figure 9.1-Bar-Graph-to show Frequency-of. Scores 
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Overall frequency distributions are of limited interest given 

that the test items were not all of one type. The following 
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table shows the number of correct responses (in percentage 

terms) to each type of item within each class of verbal 

context. 

Table 9.2 Percentage Matrix of Correct= Respons 
different items for 180 Subjects 

Type of 
concept. 

Class of Verbal Context 

- 
Join Sepa Part Comp Equa MEANS 

Util + 87.8 64.4 94.4 40.6 36.1 64.7 
Util - 42.2 84.4 67.8 21.7 39.4 51.1 
Evoc + 48.9 12.8 56.7 28.3 27.2 34.8 
Evoc - 7.2 -. 47.8 37.8 .-5.6. -23.3 24.3 
MEANS 46.5 52.4 64.2 -24.1 31.5 - 43.7 

Visual inspection of Table 9.2 shows the numbers of correct 

responses for all of the subjects and conceals the difference 

in performance between the experimental and control subjects. 

So what can be gleaned from Table 9.2 is information regarding 

overall mean performance, and as such is not of great interest. 

On average more subjects responded correctly when they were 

required to utilize concepts than when they were required to 

evoke concepts. More subjects responded correctly when addition 

was at issue than when subtraction was at issue. And finally, 

amongst the different classes of verbal context, more subjects 

responded correctly to the Part-Part Whole class of verbal 

context than to any other. 

This variability in correct response can be more specifically 

described by tabulating the percentage of correct respondents 

es- to the 
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for each of the twenty items. Again, however, these figures do 

not distinguish between experimental and control subjects. 

Table 9.3 Percentage of Correct 
180 subjects in rank order 

Item 
(P)UTIL+ 
(J)UTIL+ 
(S)UTIL- 
(P)UTIL- 
(S)UTIL+ 
(P) EVOC+ 
(J)EVOC+ 
(S)EVOC- 
(J)UTIL- 
(C)UTIL+ 
(E)UTIL- 
(P)EVOC- 
(E)UTIL+ 
(C)EVOC+ 
(E) EVOC+ 
(E)EVOC- 
(C)UTIL- 
(S)EVOC+ 
(J)EVOC- 
(C)EVOC- 

% Correct 
94.4 
87.8 
84.4 
67.8 
64.4 
56.7 
48.9 
47.8 
42.2 
21.7 
36.1 
37.8 
36.1 
28.3 
27.2 
23.3 
21.7 
12.8 
07.2 
05.6 

)ondents-for-each item (. for 

key to reading Table. 9.3 The first 

represents the class of verbal context: 
- Joining, S- Separating, C- Compari. 
The letters UTIL and EVOC represent. 
evocability of concepts and the + and - 
and subtraction. 

letter (in brackets) 
P- Part-Part Whole, J 

son and E- Equalizing. 
the utilizability and 
signs are for addition 

HOW THE-SUMMARY DIVIDES FOR EXPERIMENTAL AND CONTROL SUBJECTS 

The above figures have given only a global picture of task 

performance, which is of minor importance in this study. It is 

more important to see how the experimental and control subjects 

performed separately. 
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Table 9.4 Frequency Distribution of Class Intervals of Correct 
Scores for 180 Subjects 

scores experimental control 
between frequencies frequencies 
18 - 20 12 3 
15 - 17 24 0 
12 - 14 21 1 
9- 11 20 4 
6-8 8 13 
3-5 4 43 
0-2 1 26 

Number 90 90 
Mode 14 4 
Median 14 4 
Mean 13.122 4.378 
S. D. 4.354 3.514 
Sk. -0.61 0.32 

Figure 9.2 Bar Graph to show Frequency of Scores for 

experimental and control subjects 
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From inspection of the data above, the findings are very much 

as anticipated, and as we shall see, the patterns within them 

are consistent. The results indicate that experimental subjects 

performed better than the control subjects, with the scores of 

the experimental subjects bunching towards the top end of the 

scale but the scores of the control subjects bunching towards 

the bottom end of the scale. This strong difference favours 

the methodology of Bidirectional Translation. 

For each group of cases the modal and median values were the 

same but the mean value was different. For the experimental 

group the results were negatively skewed so that the mean was 

slightly lower than the median while for the control group the 

results were positively skewed so that the mean was higher than 

the median. The variance of scores for the experimental 

subjects was greater than that for the control subjects because 

the control subjects performed so poorly that their scores did 

not allow much room for variance. Again, differences in the 

directions indicated are not unexpected. 

While experimental subjects overall performed better than the 

control subjects, it still has not been made clear that for 

each type of verbal context and for each type of 

conceptualization, the experimental subjects scored higher than 

their control counterparts. It will be remembered that there 

were five types of verbal context (Joining, Separating, part- 
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Part Whole, Comparison and Equalizing) and four types of 

conceptualization (utilizability of addition, utilizability of 

subtraction, evocability of addition and evocability of 

subtraction). The frequencies of occurrence for each is 

tabulated below. 

Table 9.5 Matrix of Correct Respon_ses_for. 90. Experimental. (Exp) 
and 90 Control (Con) Subjects 

------------ --- --- 
Type of Class of Verbal Context 
concept. -. loin . --Se pa - .. Part-----Comp .. -- E qua 

Exp/Con Exp/Con Exp Con Exp Con Exp/Con 
Util + 89 69 80 36 89 81 62 11 48 17 
Util - 60 16 87 65 85 37 34 5 60 11 
Evoc + 82 6 20 3 87 15 48 3 45 4 
Evoc -- -12 --1 . 80.. -6 -. 64 . 4---10 . -0---39 -. 3 

Table 9.6 Summarizing Totals from Table-9.5 

Column Totals 
(Class of Context) 

Row 

-(T e 
Totals 
of. Context) 

Exp Con Exp Con 
Join 243 92 ütil + 368 214 
Sepa 267 110 Util - 326 134 
Part 325 137 Evoc + 282 31 
Comp 154 19 Evoc - 205 14 
E ua. .. 192 . -35 

Totals 1181 393 ... 1181 . 393 

Inspection of Tables 9.5 and 9.6 allows the following 

observation: 

For the five classes of verbal context, the order of 

performance was Part-Part-Whole > Separating > Joining > 

Equalizing > Comparison. This trend was the same for both 

experimental and control subjects. The same similarity was 

found for the types of conceptualization where the order of 

performance was the utilizability of addition > the 

Chapter 9 Page 263 



RESULTS 

utilizability of subtraction > the evocability of addition > 

the evocability of subtraction. 

As might be expected, the correct response to the different 

test items was variable. Below follows a listing of item means. 

Table 9.7 Item Means for-experimental and control subjects in 
rank order 

Exp. Subjs. Con. Subjs. 
Item Mean Item Mean 

(P)UTIL+ 0.989 (P)UTIL+ 0.900 
(J)UTIL+ 0.989 (J)UTIL+ 0.767 
(S)UTIL- 0.967 (S)UTIL- 0.722 
(P)EVOC+ 0.967 (P)UTIL- 0.411 
(P)UTIL- 0.944 (S)UTIL+ 0.400 
(J)EVOC+ 0.911 (E)UTIL+ 0.189 
(S)UTIL+ 0.889 (J)UTIL- 0.178 
(S)EVOC- 0.889 (P)EVOC+ 0.167 
(P)EVOC- 0.711 (C)UTIL+ 0.122 
(C)UTIL+ 0.689 (E)UTIL- 0.122 
(J)UTIL- 0.667 (J)EVOC+ 0.067 
(E)UTIL- 0.667 (S)EVOC- 0.067 
(E)UTIL+ 0.533 (C)UTIL- 0.056 
(C)EVOC+ 0.533 (P)EVOC- 0.044 
(E)EVOC± 0.500 (E)EVOC+ 0.044 
(E)EVOC- 0.433 (E)EVOC- 0.033 
(C)UTIL- 0.378 (C)EVOC+ 0.033 
(S)EVOC+ 0.222 (S)EVOC+ 0.033 
(J)EVOC- 0.133 (J)EVOC- 0.011 
(C)EVOC- 0.111 (C)EVOC- 0.000 

key to -reading -Table . 9.7 The first letter (in brackets) 
represents the class of verbal context: P- Part-Part Whole, J 

Joining, S- Separati ng, C- Comparison and E- Equalizing. 
The letters UTIL and EVOC represent the utilizability and 
evocabilit y of concepts and the + and - signs are for addition 
and subtra ction. 

Perusal of Table 9.7 shows that at the very top and the very 

bottom of the listings, the rank orderings are the same. In 

total 8 of the items occupy the same ranks for each group of 

subjects but the remaining 12 are slightly different. 
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VARIATIONS WITHIN-THE DATA 

The rank ordering of item means (see Table 9.7) suggested a 

similarity of pattern for both the experimental and control 

subjects. In order to test this null hypothesis that the 

relative percentages of correct response to each item was a 

function of chance and nothing whatsoever to do with the nature 

of the items, the data in Table 9.7 were subjected to the 

Spearman Rank-Difference Test. The rho coefficient was 0.955, 

significant at the 1% level (two tailed). This high positive 

correlation between the ranks is not surprising given the 

'parallel' performance between experimental and control 

subjects observed in Tables 9.5 and 9.6. 

It did seem to be emerging from the data that conceptualization 

could be inhibited or facilitated by the type of verbal context 

which the subjects were working within at any one time. The 

matrix of correct responses (see Tables 9.5) suggested that the 

different classes of verbal context could be ordered in terms 

of difficulty. To test the null hypothesis that there was no 

significant difference between the different classes and that 

differences were a function of chance, the Page's L Trend Test 

was used. For both the experimental (L=206.5, p<0.01) and 

control (L=211.5, p<0.001) groups the null hypothesis, was 

rejected. Overall, there was a trend showing that subjects 

performed best on Part-Part-Whole items, followed by 
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Separating, Joining and Equalizing items. The subjects 

performed least well on Comparison items. 

While the Page's L Trend Test demonstrated a global trend, it 

was not clear if this trend held for each type of 

conceptualization. In other words, did the trend hold for the 

utilizability of addition, the utilizability of subtraction, 

the evocability of addition and the evocability of subtraction? 

So to test the null hypothesis that for each type of 

conceptualization there was no significant difference between 

the different classes of context and that differences were a 

function of chance, Chi-Square Tests were run on the data from 

each type of conceptualization 

In the experimental group, for each type of conceptualization, 

the same trend was found (significant at the 1% level), that 

the Part-Part-Whole Class was easiest followed by the 

Separating Class, the Joining Class, the Equalizing Class and 

finally the Comparison Class. In the control group the trend 

was repeated in the utilizability of concepts, and in the 

evocability of addition. It was not possible to run the Chi- 

Square Test for the evocability of subtraction since the 

expected frequencies in this instance were less than five, at 

which point the computed value forX2 would have been unstable. 
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Table " -9.8 "- "Chi-Square -- -values ." for - .. different -" types -' of 
conceptualization in experimental subjects 

Type of 

-concept . - - ý(2values -. -d. f. -. si gnificance-leveI 
Util + 17.73 4 p <0.01 
Util - 29.01 4 p <0.01 
Evoc + 55.26 4 p <0.01 
Evoc 93.99. -- ... 4- ----- - -<0.01-------- 

Table ., 9.9. - Chi- 
conceptualization 

Type of 
concept ..... 'X2values. --d. f. -significance. level 
Util + 90.39 4 p <0.01 
Util - 89.53 4 p <0.01 
Evoc +. -. .. 16.58 . -4-. -. . ---p. <0.01--. --- . 

Clearly then, there is a difference between the different types 

of verbal context. Intuitively, this seems to make sense. The 

Equalizing Class had items which, by definition, had to be 

wordy and thus made perhaps rather heavy demands on the 

individual's processing capacity. Similarly, the Comparison 

Class had items which traditionally teachers have known (Floyd 

et al, 1982), and which research (Donaldson & Balfour, 1968; 

Donaldson & Wales, 1970) has substantiated, can be problematic 

for young children. 

ASSOCIATIONS WITHIN-THE DATA 

Given the earlier theorizing in chapter three, on the close 

relationship between cognition and metacognition and the 

possibility that utilizability and evocability of concepts 

could be manifestations of these two strands of 

luare -. values -. for. different . types. of 
n control subjects 
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conceptualization, it seemed appropriate 'to explore the 

relationships between the utilizability and evocability scores. 

Was there any association between the utilizability of addition 

and the utilizability of subtraction, between the evocability 

of addition and the evocability of subtraction, between the 

utilizability and the evocability of addition, between the 

utilizability and the evocability of subtraction? To test the 

null hypothesis that the utilizability and evocability of 

concepts were essentially unrelated, the Chi-Square Test of 

Association was used on the data. 

Table 9.10 Chi-Square -values - for different types -. of 
conceptualization in experimental subjects 

Type of 
concept values- -d. f. -sig nificance level 
Util +- 13.05 4 p <0.02 
Evoc +/- 109.78 4 p <0.001 
Util/Evoc + 27.41 4 p <0.001 
Util/Evoc'- -26.48 - ---4--- -- -<0.001-. -. - 

For the control subjects the Chi-Square Test could only be 

computed for the utilizability of addition and subtraction 

(since in the other types of conceptualization expected 

frequencies fell below five), where it was found 1-45.32, 

p<0.001. 

The above findings are quite interesting. There is significant 

association between utilizability and evocability of addition 

and subtraction concepts, this association being particularly 
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noticeable for subjects who have been exposed to a teaching 

methodology which puts emphasis on talking about what one is 

doing. 

DIFFERENCES BETWEEN THE-EXPERIMENTAL AND CONTROL SUBJECTS 

This entire research study was mounted in the hope of finding a 

more effective means, than seems currently available, of 

teaching children to add and subtract with greater 

understanding. The acid test would be whether or not children 

exposed to Bidirectional Translation performed any better than 

those who had not been. The raw data clearly showed differences 

between experimental and control groups but were these 

differences really significant? To test the null hypothesis 

that differences found between experimental and control 

subjects were due to chance and nothing whatsoever to do with 

the independent variable of Bidirectional Translation, the 

Wilcoxon Test should (according to the introductory rationale) 

have been run on the data. However, visual inspection of the 

data showed that within each type of verbal context, and for 

each type of conceptualization, the experimental subjects 

almost invariably scored higher than their control counterparts 

which would cause a preponderance of ranks of one sign, leading 

to significance. Since the difference was obviously 

significant, it seemed reasonable to seek the size of the 

difference. To do this, the correlated t-test was needed. A 
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further argument in defence of the t-test at this point is that 

in a large-sample case (large meaning more than eight pairs of 

scores) the violation of the assumption of normality becomes 

less important since the sampling distribution of the Wilcoxon 

T statistic itself approaches the normal distribution. Thus t 

values were computed. 

Table 9.11 ' Differences between experimental and control 
subjects 

class/concept t value significance 
J UTIL+ 4.81 0.000 

(J)UTIL- 7.60 0.000 
(J)EVOC+ 21.05 0.000 
(J)EVOC- 3.24 0.002 
(S)UTIL+ 7.92 0.000 
(S)UTIL- 4.78 0.000 
(S)EVOC+ 3.94 0.000 
(S)EVOC- 19.33 0.000 
(P)UTIL+ 2.64 0.010 
(P)UTIL- 9.27 0.000 
(P)EVOC+ 18.25 0.000 
(P)EVOC- 12.63 0.000 
(C)UTIL+ 9.43 0.000 
(C)UTIL- 5.67 0.000 
(C)EVOC+ 8.90 0.000 
(C)EVOC- 3.34 0.001 
(E)UTIL+ 5.12 0.000 
(E)UTIL- 8.95 0.000 
(E)EVOC+ 7.95 0.000 
(E)EVOC- 7.16 0.000 

key to reading Table 9.11 The first letter (in brackets) 
represents the class of verbal context: P- Part-Part-Whole, J 

Joining, S- Separating, C= Comparison and E- Equalizing. 
The letters 'UTIL and EVOC represent the utilizability and 
evocability of concepts and the + and - signs are for addition 
and subtraction. 

The differences between the experimental and control subjects 

for every class. of verbal context and every type of 
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conceptualization are very clear and strongly support the value 

of Bidirectional Translation. They are highly significant and, 

at times, of considerable magnitude. This was particularly 

noticeable for some instances of evocability of concepts. 

While the differences between experimental and control groups 

seem to give some credence to the hypothesis that Bidirectional 

Translation does enable children to conceptualize addition and 

subtraction in a more comprehensive fashion than other methods 

do (insofar as only 3 items produced scores above 50% amongst 

control subjects whilst 15 of the 20 items produced scores of 

at least 50% amongst the experimental subjects, as can be seen 

in Table 907), it cannot be claimed that Bidirectional 

Translation 'solves' the problem of teaching addition and 

subtraction. Even with the methodology of Bidirectional 

Translation, 5 of the items produced scores of less than 50%. 

This, in turn, raises questions as to how appropriate it is for 

us as teachers to address ourselves to all the types of verbal 

context which were used in the study. Given the comments 

earlier, on the complexity of the Comparison and Equalizing 

Classes, it may be that such items are inappropriate at such an 

early stage of schooling. But how are we to make decisions as 

to what to include and what to exclude? 

If we were to adopt as a criterion of mastery, that when 80% of 

the class is successful in a given content area the concepts 
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and skills involved therein are deemed broadly 'suitable' for 

the learners in question, then we would not include Comparison 

and Equalizing Classes, both of which fell below a 70% success 

rate for the experimental subjects, and below 20% for the 

control subjects. On an 80% criterion of mastery it can be seen 

from Table 9.7 that 8 of the items were achieved using 

Bidirectional Translation whereas only 1 item was achieved 

using alternative methods. So even if Bidirectional Translation 

cannot 'solve' the problem of teaching addition and 

subtraction, it nevertheless seems to have some 'power' in the 

teaching process. 

DIFFERENCES BETWEEN ADDITION AND SUBTRACTION 

It was a deliberate strategy in this research to teach addition 

and subtraction operations separately, for the reason given 

earlier. Opinion is divided on this. Because the operations 

are complementary, some teachers would advocate their being 

taught simultaneously. This view presupposes that because the 

adult/sophisticated learner understands the operations to be 

related so will the novice learner. If the novice learner does 

conceive of the operations as being complementary, then, 

logically, there should be no difference, at least in terms of 

evocability (where computation is not required), between 

performance on addition and performance on subtraction. To test 

the null hypothesis that differences between the evocability of 
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addition and the evocability of subtraction were random, t- 

tests were computed on the data. 

Table 9.12 Differences between addition and subtraction in 
terms of evocability (exp. subis. ) 

class/concept ýt value 2 tail prob. 
Join 17.65 0.000 
Sepa -12.18 0.000 
Part 5.23 0.000 
Comp 7.72 0.000 
E qua 1.35 0.181 

Table 9.13 Differences between addition and subtraction in 
terms of evocability (cont. subjs. 

class/concept t value 2 tail prob. 
Join 2.29 0.025 
Sepa -1.35 0.181 
Part 3.52 0.001 
Comp 1.75 0.083 
E qua 1.00 0.320 

Both the experimental and control subjects found addition 

easier than subtraction in all classes of verbal context except 

the Separating Class. However, the difference was not 

significant in the Equalizing Class for the experimental 

subjects and the differences were only significant for the 

control subjects in the Joining and Part-Part-Whole Classes. 

A somewhat similar pattern was found when differences between 

the utilizability of addition and the utilizability of 

subtraction were found. 
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Table 9.14 Differences between addition and subtraction in 
terms of utilizability (exp. subjs. ) 

- class/concept t value 2 tail prob. class/concept t value 2 tail prob. - 
Join 6.50 0.000 
Sepa -2.39 0.019 
Part 2.03 0.045 
Comp 6.34 0.000 
E qua -- -2.64 - . 0.010 - 

Table 9.15 Differences between 
-addit 

terms of utilizability (cont. subis. 
subtrac 

class/concept t value 2 tail prob. 
Join 11.29 0.000 
Sepa -5.48 0.000 
Part 9.23 0.000 
Comp 2.52 0.013 
E qua 1.51 0.134 

in 

Both experimental and control subjects found subtraction easier 

than addition in the Separating Class and, additionally, the 

experimental subjects found subtraction easier than addition in 

the Equalizing Class. Apart from the Equalizing Class for the 

control subjects, all other differences were significant. 

The consistent finding is that addition is easier than 

subtraction except in the case of the Separating Class (in all 

types of conceptualization, for all subjects) and in the case 

of the Equalizing Class (for experimental subjects in the 

utilizability condition). There is no clear explanation for 

this. Perhaps in the case of the Separating Class, the only 

possible hint lies in what the subjects had said to the 

researcher in the Main Study (see Chapter 7) when a similar 

phenomenon had occurred. There, the subjects had performed very 
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badly on Separating (evocability +) items because they had been 

influenced by the semantics of the verbal context to the 

detriment of its logical structure. By default, then, they had 

performed better on subtraction items. But this explanation is 

only partial insofar as it may account for the evocability 

condition. Perhaps the only reasonable explanation, in the 

absence of further information, is that in the few cases where 

the subjects had found subtraction easier than addition they 

had somehow given greater prominence to cues such as 'gave' and 

'take out' than they had in other instances, and that sometimes 

this corresponded to the correct answer and sometimes it did 

not. 

It would appear then, that by whatever method young children 

are taught to add and subtract, they do not experience the 

complementary operations as being of equal ease/difficulty. 

DIFFERENCES WITHIN THE EXPERIMENTAL GROUP AND WITHIN THE 
CONTROL GROUP 

While differences between the experimental group and control 

group were obvious, what was not so immediately clear was if 

there was any overall difference within the experimental group 

and, again, within the control group. There were 6 experimental 

schools and 6 control schools. Tabulated below are the total 

number of correct responses for each school. 
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Table 9.16 Total Number of Correct Responses for each school 
out of a possible 300 

School Experimental Control 
A 259 (86.3%) 89 29.7X 
B 156 (52%) 39 (13%) 
C 196 (65.3%) 77 (25.7%) 
D 183 (61%) 59 (19.7%) 
E 188 (62.7%) 68 (22.7%) 
F 200 (66.7%) 61 (20.3%) 

Visual inspection of Table 9.16 clearly shows variation in 

performance both among the experimental and control schools,. 

but again, are these differences significant? To test the null 

hypothesis that the sample schools within each group were from, 

respectively, the same populations the Kruskal-Wallis test was 

applied to the data. 

Within the experimental group there was a significant 

difference (H - 21.44, p<. 001). This difference was an overall 

difference amongst the samples in the experimental group, and 

while it does not indicate which pairs of samples were 

significantly different from each other, the fact that there 

was an overall difference is justification for further analysis 

of pairs of samples (Siegel, 1956). The Mann-Whitney test 

showed School A to be significantly different from each of the 

others (for example, as compared with School F- which was 

second in terms of performance - the value of U was 52.5, 

significant at the probability level of . 02, two-tailed). What 

this difference is caused by is not clear. It could be that 

School A performed better because the children were 'brighter', 

Chapter 9 Page 276 



RESULTS 

or the teacher was more effective, or some combination of both. 

Nor can it be excluded that some other, indeterminate 

environmental factors may have been at work. School A in the 

experimental group was the 'matched pair' of School A in the 

control group, and inspection of Table 9.16 shows School A in 

the control group also to demonstrate 'best performance'. 

Similarly, for both experimental and control groups School B 

demonstrated 'poorest performance'. 

Within the control group the difference in performance amongst 

the six schools was not significant. Within group variations 

are, then, clearly less than differences between the 

experimental and control groups. This would appear to be 

attributable to Bidirectional Translation. 

In Summary 

(i) the sample of children exposed to Bidirectional Translation 

performed significantly better on number conceptualization 

tests than did the sample of children who were not exposed to 

Bidirectional Translation; 

(ii) for both the experimental and control groups there was a 

significant trend in terms of the difficulty of the different 

classes of verbal context - Part-Part-Whole contexts were 

easiest, Separating contexts were more difficult, Joining 

contexts were even more difficult, Equalizing contexts 

presented further difficulty and Comparison contexts were the 
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most difficult; 

(iii) this trend held for the four different types of 

conceptualization - the utilizability of addition, the 

utilizability of subtraction, the evocability of addition and 

the evocability of subtraction; 

(iv) differences between addition and subtraction performance 

were less clear cut - in most instances performance on addition 

was better than performance on subtraction though this 

difference was not always significant; 

(v) for the experimental subjects the utilizability and 

evocability functions were significantly associated; 

(vi) within the experimental group only, there was a 

significant overall difference in performance; 

(vii) the methodology of Bidirectional Translation would appear 

to significantly affect performance - reasons for this will be 

explored in the next chapter. 
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The research written about in this thesis was an attempt to 

make a contribution to the pedagogy of early number work in 

primary education, particularly in the areas of counting, and 

addition and subtraction which follow on from counting. In 

this, the final chapter, a number of issues need to be 

'revisited' and commented upon, in an attempt to understand 

what was happening. But attempts at explanation imply causal 

mechanisms, which can be difficult to pin down, which may not 

be correct, and even if correct may not be complete. 

Nevertheless, there follows an attempt to understand the 

relationship between teaching methodology and test performance: 

firstly by the negative process of eliminating some of the 

likely causal factors (and acknowledging where methodological 

flaws preclude this! ); 

and 

secondly by the positive process of positing a psychological 

concept which might substantiate the findings. 

This twin-pronged approach is an attempt to leave the reader 

With a reasonably coherent and integrated impression of the 

experimental findings. 
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A Process of Elimination 

If, in teaching young children to add and subtract, we want to 

promote the individual's understanding of what he/she is doing 

then the methodology of Bidirectional Translation would seem to 

be worthy of consideration for teaching purposes. Children 

exposed to this method perform better than children who are 

not. This rather sweeping generalization presupposes that the 

samples of control and experimental subjects were alike in all 

respects apart from the teaching techniques they experienced. 

While every reasonable sampling precaution was taken in the 

name of the internal and external validity factors outlined in 

a previous chapter, it is freely acknowledged that in the field 

of social science one is working with people in whom there are 

a multitude of extraneous variables not all of which may 

actually be controlled for. 

One possible flaw in the design of the experiment was that 

control subjects were asked to comment on 'silly stories' when, 

in fact, they may have been confused by the referents. The word 

'silly' may have implied that no real logic need be applied to 

the problem. Unlike the experimental subjects, the control 

subjects had not systematically built up an association between 

the term 'silly story' and the contextualization of addition 

and subtraction operations. With hindsight, this seems a 

glaring error and if it has foundation, could invalidate the 
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data collected. Undoubtedly, the control subjects would have 

had experience of being told stories; if not at home, at least 

at school. It is also probable that they would have had some 

notion of what the word, silly, meant; as being slightly 

amusing albeit somewhat ridiculous. Although the experimental 

subjects did generate amusing and implausible verbal contexts, 

this was not the researcher's principal intention. It was her 

intention, merely, that the subjects should locate an addition 

or subtraction operation in some sort of scenario which had 

meaning for each child, and the use of the terms 'silly story' 

and 'number story' had been coined for experimental subjects to 

make clear the distinction between verbal context and numerical 

representation. If the term, 'silly story' confused some of the 

control subjects, which is one possible explanation to be 

deduced from some of the control subjects' failure to make a 

response to the stimulus item, it did not confuse all of the 

control subjects. It was not a characteristic of control 

subjects that they failed to respond, although many of them 

responded wrongly. Out of the 90 control subjects only 5 scored 

zero out of a total of twenty items. And while most of the 

control subjects performed miserably when required to evoke a 

concept, 85 of the 90 were able to utilize a concept, even if 

such utilization did not extend to all classes of verbal 

context. While not trying to defend what now is seen as a 

design fault, it would seem, on balance, that the control 

subjects did have some grasp of what the term, 'silly story' 
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meant. This does not, however, preclude the possibility that 

the control subjects' responses might have been different if 

the term 'silly story' was a part of their working vocabulary, 

as it was for the experimental subjects. Any replications of 

this work would require the issue of terminology to be 

resolved. 

Another possible factor to account for the large difference 

between experimental and control subjects inheres in the 

piloted methodology. It is possible that the newness of the 

approach, rather than the structure of the approach energized 

the participating teachers into more effective teaching. This 

possible source of contamination could not really be obviated 

in this research. An attempt to control for the Hawthorne 

Effect was made in having the teachers of control subjects 

complete a questionnaire on the teaching of addition and 

subtraction. The answer to the question of whether it was the 

newness of Bidirectional Translation or the structure of 

Bidirectional Translation which effected superior performance 

can only be found if the methodology were to be taken on board 

more generally by teachers and were to exposed to testing after 

a passage of time. In other words, it is only when 

Bidirectional Translation is no longer new that the power of 

its structure can be analysed. However, even at this stage it 

is possible to make claims for the power of Bidirectional 

Translation in terms of its structure. Firstly, the statistical 
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analyses (in the previous chapter) showed that differences 

between the experimental and control groups were clearly 

greater than any variations within the experimental and control 

groups. This would seem to suggest that Bidirectional 

Translation is robust enough to withstand any differences among 

teachers. And secondly, participating teachers, of their own 

volition, made comments to the effect that the methodology 

assisted them insofar as: 

1. it enabled the children to remain on task without 

prompts or reminders from the teacher; 

2. the children were enthusiastic about Maths lessons, 

whereas in the teachers' previous experiences with the 

same content, Maths sessions had been a struggle for the 

children and tortuous for the teacher; 

3. the teachers themselves had found the approach a 

learning experience since they had not hitherto 

appreciated just how much time the children needed to 

explore the language of addition and subtraction and 

unpack the meaning of the symbolism in terms of everyday 

events; 

4. the teachers, again of their own volition, said they 

would use the methodology when teaching subsequent groups 

of young children to add and subtract. 

New or old, any approach which removes pressure and 'nag' from 

teaching, and which gives the child 'ownership' of his/her 

learning, and which does not lead to the 'de-skilling' of the 
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child is welcomed by the teacher (Ausubel & Robinson, 1969; 

Desforges & Cockburn, 1987; Ashman & Conway, 1989). While these 

claims for Bidirectional Translation cannot be fully 

substantiated in this piece of research, it would seem that 

there is at least some justification for them. As a result, the 

newness factor is not probably of much significance, insofar as 

the approach of Bidirectional Translation appears to support 

the teacher's function and the child's learning. 

The final factor to be considered which might explain the 

significant differences between control and experimental 

subjects is the subjects themselves. The two groups could have 

been inherently so different that Bidirectional Translation 

neither facilitated the experimental subjects nor did 

alternative methodologies disadvantage the control subjects. 

After all, there was no pre-testing done by the researcher on 

any subjects, there was no standardized measure taken of their 

performance in number prior to the teaching of addition and 

subtraction. The possibility that the experimental subjects 

would have post-tested well irrespective of what methodology 

they had experienced, and the possibility that the control 

subjects would have post-tested badly if they had been exposed 

to Bidirectional Translation cannot be denied. However, it is 

probably unlikely that experimental and control groups each 

Were homogeneous in all of the multitude of variables on which 

human beings differ. Six experimental and six control schools 
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were involved and while traditional indicators such as 

intelligence and social class were not investigated, sampling 

procedures did attempt either to randomize or counterbalance 

the effects of the more obvious variables. The extent to which 

such attempts were successful in neutralizing intervening 

variables cannot really be determined. None of the 

participating schools were previously known to the researcher 

so there was no personal bias on the part of the researcher, 

such as selecting schools where she knew she would get entry 

and co-operation. But the real reason for the schools agreeing 

to participate may in itself have been a biassing feature. They 

may, for example, have agreed to participate because of some 

perceived increase in importance for doing so rather than for 

the more altruistic reasons of furthering work in children's 

learning. If, however, schools did agree to take part for 'the 

wrong reasons', this chance factor would at least apply equally 

to the experimental and control schools. As such, this would 

weaken the external validity of the experiment although not the 

internal validity. 

The solution to the imponderables raised here would seem to lie 

in much larger samples being used in further replications of 

the work to try to negate the differences found here. If the 

differences between Bidirectional Translation and other 

methodologies still continued, then it would be reasonable to 

conclude that the design flaws outlined here were not critical. 
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A Process of Substantiation 

Nevertheless, if, for the moment, it can be assumed that 

sampling was adequate the question that has to be asked is what 

was it about Bidirectional Translation that effected the 

difference in performance? Why did children experiencing 

Bidirectional Translation perform better than those children 

who did not? 

The effects of Bidirectional Translation suggest genuine 

optimism in the teaching of addition and subtraction, optimism 

that it is possible rather than impossible to teach children to 

compute in ways which, from the very beginning, have face 

validity for them. This is not to say that teachers are 

redundant or that teaching addition and subtraction are trivial 

activities, but it does raise questions as to the traditional 

role of the teacher in this curricular area. The classroom 

folklore suggests that children come to school with virtually 

no numerical experience and with blank numerical minds. The 

classroom folklore further suggests that the remedy for this 

tabula rasa state is to force impressions on the minds of 

children by providing them with numerical experience, by 

showing them how to express this experience in regular 

mathematical forms; and that children hold such impressions in 

their minds by continuing to rehearse them until they 'stick'. 

This model clearly must have some plausibility since it has a 
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dominant hold in the pedagogy of number. Yet the orientation of 

the model is at odds with the recent research which clearly 

demonstrates that 'children come to school with a wealth of 

numerical impressions and experience (albeit informal) which 

they are perfectly willing to share with teacher and peers in 

the school context. The teacher who fails to take account of 

this phenomenon is not facilitating the child's learning - the 

very task with which the teacher is charged! 

Perhaps, as Hughes (1986) points out, the concept of 

translation is the useful thinking tool when considering the 

intervention the teacher should make to facilitate the child's 

learning: 

Mastering, the formal code of arithmetic involves 
negotiating a complex of subtle and inter-related 
transitions. Some of these transitions can be 
distinguished: from actual to hypothetical situations, 
from concrete to abstract elements, from spoken to written 
language, from embedded to disembedded thought, from words 
to symbols and from the informal to the formal. This 
sequence is not intended to suggest any particular linear 
order, although clearly some transitions must precede 
others. At any stage in a child's mathematical 
development, they are therefore involved in consolidating 
what they already understand, and in trying to link up the 
novel and unfamiliar with their existing state of 
knowledge. 

The transitions outlined above are not peculiar to mathematics, 

though they are an integral part of it. Such transitions can 

and do occur in other areas of knowledge. Thus making the 

transitions must be a characteristic learning tool. The idea of 

translation becomes a tool that the teacher can use, a tool 

that does not dehumanize learning because it corresponds to one 
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aspect of the voluntary activities of mental processing. To 

translate means to turn from one form into another, to express 

the sense of something in an alternative form of 

representation. And when, as individuals we are making our 

translations we make them in terms of what we already know! 

Translation then can act as a tool because it encapsulates an 

awareness, a precise awareness that allows the teacher to seek, 

and find, definite ways of helping the child to make explicit 

the existing 'state' of his/her own learning. Translation also 

makes clear to the pupils that they own a personal resource 

which will bring learning nearer, if they choose to use this 

resource. But translation is also a tool in a less metaphorical 

sense. As was demonstrated earlier in this thesis, translation 

becomes a technique for dynamically exploring the articulation 

of mathematical situations so that the learner becomes familiar 

with the interconnections of the mathematics and how the 

learner's own processing defines the structure. 

Throughout, there has been an emphasis on translation, which 

may suggest that such a tool can be applied everywhere in the 

learning of mathematics. It is not, however, the author's 

intention to leave readers with the impression that translation 

is a multi-purpose tool capable of teaching anything. Complex 

learning jobs require a variety of tools, most of which have 

probably not- been invented. The research described and 
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discussed here has focussed on one tool that has proved useful. 

There is no implication that it is the only one or the only 

kind. Rather, the work here seems to the author to serve as a 

paradigm for the invention of tools to support the teaching of 

mathematics. 

If translation is one useful tool in the teaching of addition 

and subtraction then perhaps another is modelling, or learning 

by observation. Modelling is not to be thought of as blind, 

mindless imitation, nor in terms of crude stimulus-response 

mechanisms. Rather, modelling is the adoption of selected 

actions and behaviours on the part of the learner, such 

selection being mediated by cognitive processes. What might 

these processes be? 

1. Perception 

One cannot learn much from observing another unless one attends 

to, or accurately perceives, the salient cues and distinctive 

features of the other's behaviour. In other words it is a 

necessary but not sufficient condition for the learner to see 

the model and what the model is doing. Beyond that, however, 

the learner must also attend to the model with enough 

perceptual accuracy to extract the relevant information to use 

in imitating the model. This is not to say that all of the 

modelled behaviour will be 'taken on board' by the learner. A 

myriad of factors involving the learner, the model and the 

.......... ._..... ......... 
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interaction between the two can militate against the learning 

process. 

2. Encoding 

A second possible process in learning by observation concerns 

long-term memory storage of behaviours that have been modelled 

at one time or another. Crudely put, one cannot be affected 

much by observation of another's behaviour if one has no memory 

of it. Indeed without the facility to recall what the model 

did, the learner is unlikely to demonstrate any enduring 

behavioural change. 

For the learner to benefit from the behaviour of the model when 

the model is either no longer present to serve as a guide, or 

present but not exhibiting the specific behaviours to be 

learned, the learner must code the modelled behaviour in some 

symbolic form which may later be recalled to enable the 

performance of the behaviour. This coding could be in the form 

of a visual image the kind of everyday phenomenon which 

allows us to 'see in our mind's eye' a picture of a person or 

an event previously experienced. Another possible coding could 

be of a verbal kind - vocal or subvocal commentaries of what 

the model is doing which can be rehearsed internally without an 

overt enactment of the behaviour. Both types of coding seem 

intuitively plausible. 
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3. Recoding 

A third possible process involved in learning by observation 

consists of translating the symbolically coded memories into 

appropriate behaviour. Even with accurate perception, and 

efficient encoding which has included rehearsal the learner may 

still be unable to enact the behaviour correctly. The co- 

ordination of component parts of the total behaviour may not be 

sufficiently refined. It is at this point that practice is 

required; practice to learn, not practice to the point of 

monotony. Furthermore, the practice will only be valuable to 

the learner if he/she can make self-corrective adjustments to 

the behaviour on the basis of informative feedback. 

4. Motivation 

The fourth and final process is possibly to do with positive 

reinforcement. Reinforcement is whatever actual or anticipated 

consequence of a behaviour encourages one to continue to engage 

in the behaviour. However well one has perceived, encoded and 

decoded a particular behaviour, it is unlikely to find 

expression in overt terms if it is negatively sanctioned, 

unfavourably received or in some way decidedly uncomfortable 

for the participant. The reinforcer can be experienced either 

directly or vicariously, and it can come from within the 

learner (i. e. the learner can find the behaviour intrinsically 

satisfying) or from a source external to the learner. The point 

of importance about reinforcement is that it provides the 
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learner with information, information as to what to expect as a 

result of performing the behaviour correctly or incorrectly, 

and this information is essential if one is to correctly 

anticipate the probable consequences of one's actions and 

thereby make informed choices. Without the capacity for 

anticipatory behaviour, all manner of human thinking activity 

such as reasoning by analogy and hypothesis testing would be 

unavailable to us. 

How modelling can explain Bidirectional Translation. 

In Bidirectional Translation the teacher was the initial and 

principal model. Teachers, especially teachers of young 

children, are generally perceived as being of high status. Many 

parents will testify to their young child's constant and 

somewhat irritating reference to the teacher being the source 

of all knowledge, the fountain of all goodness and the model of 

excellence to which the child aspires! Beyond the general 

notion, however, of the teacher being a person who commands 

considerable attention from his/her young pupils, can 

Bidirectional Translation be explained in terms of modelling? 

In terms of perception, there were many key points to which the 

learners had to attend: the connection between numbers (the 

abstract ideas) and the numerals (the written symbols), between 

words and operator signs; the connection between verbal 

Chapter 10 Page 292 



CONCLUSIONS FROM THE DATA 

contexts and'numerical representations; the connection between 

verbal context, pictorial representation and numerical 

representation; the means by which answers could be found. The 

learner's attention to these key features was a function or 

the teacher's repeated provision of opportunity for each of 

these to be the focus of a learning/teaching session. 

In terms of encoding, both visual imagery and verbal rehearsal 

were being encouraged. The learners saw, and subsequently 

reproduced, the construction of a numerical representation of a 

verbal context. They also made representations of their visual 

images of addition and subtraction operations when they drew 

pictures of-their 'silly stories' (their self-generated verbal 

contexts). Verbal rehearsal was being made quite explicit when 

the learners were required to 'read' the 'number stories' and 

signal as to what each component part of the numerical 

representation meant. Verbal rehearsal was further encouraged 

when the'learners were invited to share with their peers their 

methods of solution for obtaining answers. 

In terms of recoding, the learners were constantly being 

required to effect the translation from one form to another; 

from verbal to numerical and from numerical to verbal. This was 

a critical part of Bidirectional Translation, and 

proportionately, took up the largest amount of teaching and 

learning time. At the inception of each of the steps of the 
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methodology there were frequent false starts which needed time, 

patience and practice to correct. 

In terms of motivation, the learners were reinforced in various 

ways. There was lots of praise from the teacher for even the 

most tentative approaches to the desired performance. As well 

as being directly reinforcing to the particular learner making 

the contribution, the praise was vicariously reinforcing to the 

learner's peers within the group of children who were currently 

with the teacher. When the learners were required to provide 

verbal contexts for numerical representations there was what 

seemed a never ending succession of offers to contribute 'silly 

stories'. Each learner was very willing to, and indeed 

clamoured to, make several contributions. This can be 

interpreted as a need for either direct or vicarious 

reinforcement from the teacher or it can be interpreted as a 

need for self reinforcement: the generation of yet another 

context by the learner being further 'evidence' for the learner 

that his/her little 'hypothesis' was a correct one in the given 

situation. 

What seems to becoming clear in all of this is that modelling 

and translation are not discrete. Translation is a part of 

modelling, possibly in all of the cognitive processes of 

modelling but most certainly in the process of recoding. In the 

.......... 
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ordinary everyday world, recoding and translation are probably 

two referents for the same concept. 

Modelling has its origins in, but is not restricted to, 

behaviourism, a theory which, posits that all behaviour is 

lawfully determined, predictable and capable of being brought 

under environmental control through stimulus response 

mechanisms. The strictest form of behaviourism will not 

countenance mentalistic explanatory constructs on the grounds 

that their empirical validation is impossible. Modelling, on 

the other hand, while acknowledging that external stimuli and 

environmental responses are powerful determinants of human 

behaviour, - gives a central role to these cognitive processes 

for the regulation and organization of human activity. 

To the reader, it might seem that there is some tension or 

conflict developing. On the one hand Bidirectional Translation 

can be explained in terms of a psychological concept which has 

strong behaviourist connotations. On the other hand, however, 

the researcher's whole thesis was driven by the premise that 

the child's conceptualization and understanding of what he/she 

was doing was of primary consideration, and such 

conceptualization was held to be rooted in Piagetian ideas. So 

the question which arises from this is, to what extent is 

modelling compatible with Piagetian or neo-Piagetian thinking 

where concern for individual development, discovery learning, 
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and active involvement on the part of the child are all of 

paramount importance? 

Fifteen or twenty years ago, when the implications of Piagetian 

theory were becoming better understood, a psychological 

explanation for the paucity of achievement in number work at 

school would have been that children were being asked to engage 

with material for which they had not yet developed the relevant 

schemata. Since, according to Piaget (1964), "learning is 

subordinate to development". Piagetian theory was commonly 

interpreted as meaning that there are definite limits on the 

extent to which the child's progress can be accelerated by 

environmental influences, and that the passage of time rather 

than experience promotes internal growth. Whatever 

misunderstandings there may have been in this explanation, a 

colloquial description for this state of affairs was that 'the 

child was not ready'. The notion of readiness seemed to be 

subject to various interpretations. At one extreme, it became a 

universal but tautologous explanation: whenever a child failed 

to learn, or refused to engage in a task, the child must not 

have been 'ready' (Sharp & Green, 1975). More usually, 

'readiness' would be strongly associated with biological 

maturation, because Piaget had shown that children's thinking 

was different for different age groups. This can be criticised 

as an unjustified inference of causation. 
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While some sort of readiness notion appears to be implicit in 

Piagetian theory, it nevertheless does not constitute 

justification for delaying or terminating attempts to teach the 

child whatever he/she is allegedly not ready for! Taken to its 

logical conclusion, one could wait forever and some children 

would still not be ready. The notion of readiness might be a 

more useful one if it were stripped of the underlying 

assumption of biological maturation and recast in terms of 

conceptual maturation. In order to engage in a specific type of 

complex cognitive task (such as mathematics or reading, which 

occupies a large part of early schooling), the child must have 

a variety of abilities and predispositions, which can be 

identified if we, as teachers, understand the task and the 

demand it poses. To be able to learn to add and subtract 

involves knowing, at least, that these are activities which, in 

the real world, people engage in frequently in a wide variety 

of contexts. It further involves learning how to engage in 

these activities and, where need be, how to communicate the 

findings of these activities in recognized and recognizable 

forms. By acknowledging that each of the component parts is 

necessary and by structuring these component parts of addition 

and subtraction into a form which progressively embraces all of 

the parts (which was what the methodology of Bidirectional 

Translation was attempting to do), the need to make assumptions 

about the child's state of readiness is obviated. Specific 

learning experiences 'prepare' the child for subsequent 

Chapter 10 Page 297 



AR 

CONCLUSIONS FROM THE DATA 

learning. Furthermore, a structure such as Bidirectional 

Translation provides a practical procedure for instituting 

remedial intervention. 

The 'mystique' of discovery learning (as being distinct from, 

and superior to, reception learning) can similarly be 

dismantled. There seems to have developed in education, the 

polarised view that only discovery learning is meaningful and 

that all reception learning is rote in nature. Discovery 

learning is claimed by its advocates (Shulman & Keisler, 1966) 

to be inherently more meaningful, to be retained longer and to 

motivate further learning more effectively than reception- 

learning approaches. But sight seems to have been lost of what 

Ausubel and others (Ausubel & Robinson, 1969) were saying which 

was that if the learner attempts to retain an idea by relating 

it to what he/she already knows, and thereby make some sense of 

it, then meaningful learning will result. By contrast, if the 

learner merely memorizes 'an idea, without relating it to 

his/her existing knowledge, then rote learning is said to take 

place. 

In what Ausubel was saying there is nothing, to suggest that the 

only meaningful learning which takes place is effected through 

'discovery'. For meaningful learning to take place it is 

critical that what is to be learned should somehow connect with 

what is already known. Sometimes this connection is best made 
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by the teacher structuring the material which is to be learned 

and if all that is required on the part of the learner is 

assimilation, then the teacher's job is relatively easy. If, 

however, accommodation is required of the learner the teacher's 

job is more complex in that two possibilities emerge. One is to 

leave the learner to restructure his/her schemata, as in some 

form of discovery learning. The other is to find out more about 

these schemata and shape the teaching accordingly: a technique 

such as as Bidirectional Translation can help in that the 

structured dialogue which forms the spine of the approach 

allows the learner to reveal his/her existing knowledge. 

A main disadvantage of discovery learning is that there must be 

a high prospect of success to sustain the learner through the 

process of trial and error. Such 'discovery' as there is, is 

likely to be time consuming and not easy to guarantee. Of 

perhaps lesser importance in practical terms is the objection 

to discovery learning raised by Ausubel & Robinson (1969). 

They point out that it is a repudiation of the very concept of 

culture. We do not make progress by continually Ire-inventing 

the wheel'. Modelling, on the other hand, allows the learner to 

I observe the target response Which, if complex, might never be 

'discovered'. 

Active involvement, the third of the so called Piagetian ideas, 

is similarly vague. The assumption that has been espoused by 
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many educators, particularly those who claim to be 

'progressive' in their philosophy, is that children need to 

learn by doing. Few psychologists would discount the importance 

of direct personal experience on a task in assisting learning. 

It is, however, quite another thing to insist that a child must 

be engaged in direct performance before any real learning can 

occur. Consider the practical problem in requiring children to 

directly participate: the teacher is faced with the child who 

is reluctant to perform on a particular task, particularly if 

the task is unfamiliar. Even the promise of attractive rewards 

for task performance does not encourage or effect 'activity'. 

An intuitive explanation for this phenomenon is that the child 

is afraid of failure. Whatever the real explanation is, if 

inducements do not succeed, the teacher is left with three 

alternatives: one is to 'force' the child to participate, which 

is somewhat self-defeating and objectionable on moral grounds; 

another is to postpone the teaching until some future time when 

the child is 'ready', which, as has been argued above, is 

something of a fallacy. The third alternative (and for the 

author, the only sensible course of action) is to have the 

'recalcitrant' child watch another child/other children 

participate first. In most situations, the observing child 

will, after a few demonstrations, 'assert' his/her right to 

participate: yet another example of the child learning through 

modelling. 
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At this juncture it is perhaps worth making clear what Piaget 

himself regarded as active learning. As Schwebel & Raph (1973) 

point out the nature of the activity is critical. That 

"children move about the classroom, that seats are not fixed, 

and that children even hop, skip, and jump do not make the 

active process educative". What makes any active process 

educative is the effect of the experience on the child's 

subsequent behaviour. If the activity causes no intellectual 

change, then the activity has not facilitated learning. Kamii 

(1973), in summarizing what Piaget said about active methods, 

points out that what makes an 'active' method active is not the 

external actions of the learner but the criterion of the 

learner actively constructing his/her own knowledge. This in 

turn requires some systematization on the part of the teacher 

such that "structuring, elaborating and reasoning processes" 

are a genuine part of the contact between teacher and learner. 

However, along with the more common misrepresentations of 

Piagetian theory, there is perhaps a small but nevertheless 

significant gap in the folklore about what Piaget really said. 

And that is that he himself recognized modelling to be germane 

to intellectual development. Around the time when the young 

child is making the transitions from the sensori-motor to the 

pre-operational stages of development, the child can be seen 

employing what is referred to in Piagetian terms as deferred 

imitation. As Flave. ll (1977) reports: 
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One of Piaget's children, for example, watched in mute 
fascination while another child threw a three-star temper 
tantrum. She then produced an excellent imitation of it 
the next day. 

For the observed behaviour to be reproduced so accurately after 

a temporal delay means that in observing the other, the child 

must have represented the event mentally; a classic example of 

modelling. 

Nor is deferred imitation only to be witnessed at the start of 

the pre-operational stage. The teacher of young children 

frequently has opportunity to witness his/her pupils in 'free' 

or sociodramatic play. Here the teacher sees the child being 

mummy or daddy or whoever. The enactment of such roles involves 

dialogue and behaviours which, without a memory of having 

observed a related or similar scenario, would be impossible for 

the young child to produce. Clearly then, modelling is a 

powerful learning medium for young children. They would appear 

to use it spontaneously. That being the case, it makes sense 

for the teacher to capitalize on it. 

For the teacher who has professed but ill-formed notions of 

'child-centred' education, the idea of teaching through 

explicit modelling may seem an anathema. But child-centred 

education need not imply non-intervention while we wait for 

growth. Rather it means active partnership between teacher and 

child ensuring that children's mental experiences are 

structured in ways that are most likely to be fruitful. For 
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this to happen it seems important that the child should 

understand the purpose of the activity in which he/she is 

engaging, should anticipate success, and should be engaged in 

the task to the extent that he/she can direct his/her full 

attention to the learning that is supposed to be brought about 

by the task. This thesis has been but a tiny attempt in this 

direction. Hopefully it will encourage a more eclectic approach 

in the teaching of early number work. 
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APPENDIX 1 
Short description of Logic People. 

Logic People are a variation of the Logic Blocks which are to 
be found in many infant departments. Sometimes the Logic Blocks 
are referred to as Attribute Blocks because each set consists 
of blocks of plastic, not all of which have the same 
attributes. Typically a set of Logic Blocks (or Attribute 
Blocks) consists of 
triangles, squares, circles and rectangles which are: 
red, blue or yellow; 
large or small; 
thick or thin. 

By playing different games with this material, the child has 
the experience of classifying the blocks of plastic according 
to differing attributes. 

Logic People are less abstract than the Logic Blocks in that 
the pieces of plastic are people rather than geometric shapes. 
A set of Logic People consists of__ 
men, women, girls and boys who are: 
red, blue, yellow or green and who are 
sitting, walking or standing. 

There was nothing inherent in the Logic People which caused the 
researcher to use them as countables. They were used because 
they were easy for the children to lift, hold and move around, 
and, because the children were already familiar with them 
through free play activities. 
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Stimulus cards for Representing Given Numerosities. 
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Stimulus material for Representing Obtained Numerosities. 
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