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THESIS ABSTRACT 

This series of studies began with an examination of the effects of training status (Tr vs UTr) 
and sex on the resting levels and redistribution of senescent (CD28-CD57+) and naïve 
(CD28+CD57-) T-lymphocytes (CD4+, CD8+) following a treadmill test to volitional exhaustion. 
In this first study exercise elicited a redistribution of senescent CD4+, CD8+ and naïve 
CD4+,CD8+ T-lymphocytes. UTr had a higher proportion of senescent and a lower proportion 
of naïve CD8+ T-lymphocytes than Tr. Males had a higher proportion of senescent and lower 
proportion of naïve T-lymphocytes than females with the highest percentage of senescent 
and lowest percentage of naïve T-lymphocytes observed in UTr males. CMV was a covariate 
in the senescent and naïve CD8+ T-lymphocytes. This study highlighted important sex and 
training status differences in the senescent and naïve T-lymphocyte redistribution in 
response to exercise. 

These findings led on to an investigation of the T-lymphocyte (CD4+, CD8+, γδ+) response to 
a period of 2 weeks increased volume training (39% increase in volume) in trained females 
(Tr, n=13) compared to a period of 2 weeks habitual activity in female controls (UTr, n=13). 
This second study observed no difference in the resting T-lymphocyte profile from the pre to 
post increased volume training period. The resting number of CD3+ and proportion of γδ+ T-
lymphocytes was greater in the Tr compared to the UTr. The resting proportion of CD4+T-
lymphocytes and the CD4+:CD8+ ratio was greater in the UTr compared to the Tr. CMV was 
a covariate in the analysis of CD8+, CD28+ CD8+, and naïve CD8+ T-lymphocyte cell 
numbers but not in the analysis of T-lymphocyte proportions. The increased volume training 
period had no effect on resting T-lymphocyte populations in Tr females, and T-lymphocyte 
populations also did not change with 2 weeks of habitual exercise in UTr. The total energy, 
carbohydrate and protein intake was greater in Tr compared to the UTr during the increased 
volume training period and was greater than normal in the Tr group. These dietary influences 
may partly explain the absence of any change in T-lymphocyte proportions pre to post 
training period in Tr. Differences in the proportions of γδ+, CD4+ and the ratio of CD4+:CD8+ 
T-lymphocytes at rest between the Tr and UTr warrants further investigation.  

The final study of this series is presented in two parts. The first part focused on the influence 
of 4 weeks supplementation at 0.1g/kg body mass/day with n-3 polyunsaturated fatty acids 
(PUFA) as fish oil (FO, n=10), or short-chain saturated fatty acids (SFA) as coconut oil (CO, 
n=10) on T-lymphocyte (CD4+,CD8+, γδ+) differentiated populations at rest and in response 
to exercise in trained males. Changes were examined by Day (Baseline to pre 
supplementation, Pre Sup (4 week control period), and pre supplementation to post 
supplementation, Post Sup (4 week supplementation period)). During a 4 week baseline 
control period no changes were observed in the blood lipid profile in both FO and CO 
groups. During the control period a main effect of exercise was observed in all the CD3+ and 
γδ+ T-lymphocytes subsets. During the control period an interaction of group-by-day was 
observed in the senescent CD8+ T-lymphocytes from BL to Pre Sup the proportion and 
number decreased in the FO group and increased in the CO group. Inclusion of CMV as a 
covariate introduced a main effect of group on the CD4+ naïve proportions and cell counts 
and the group-by-day interaction observed on the CD8+ senescent T-lymphocyte proportions 
and cell counts disappeared. During the 4 week supplementation period this study observed 
an increase in the n-3 PUFAs, EPA (20:5n-3), DHA (22:6n-3) and DPA (22:5n-3) in the FO 
group but not in the CO group (with no changes in blood lipid profile on CO). During the 
supplementation period a main effect of exercise was observed in all the CD3+ and γδ+ T-
lymphocyte subsets except for the proportion of CD8+ naïve T-lymphocytes. The proportion 
of CD8+ naïve T-lymphocytes was lower at rest and in response to exercise in FO and CO 
groups after supplementation. CMV was a significant covariate in senescent CD4+ T-
lymphocyte cell counts. At the post exercise time point the γδ+ T-lymphocyte count increased 
in the FO group but decreased in the CO group, following the supplementation period. 
However, this observation did not quite reach statistical significance. Although a difference 
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between the groups was evident for γδ+ T-lymphocyte count and proportion there was 
insufficient evidence to conclude whether the difference was supplement related. It would 
appear that dose, duration and type of fatty acids ingested could all be important in the 
overall response but these require further study.  

The second part of this final study investigated the influence of 4 week supplementation at 
0.1g/kg body mass/day with n-3 polyunsaturated fatty acids (PUFA) as fish oil (FO, n=10) or 
short-chain saturated fatty acids (SFA) as coconut oil (CO, n=10) on plasma Th1 cytokine:  
IL-2, TNF- α and IFN-γ, and Th2 cytokine IL-4, IL-6 and IL-10 concentrations, and 
expression of the T-lymphocyte activation marker CD69 at rest and in response to exercise 
in trained males. Changes were examined by Day (Baseline to pre supplementation (4 week 
control period), and pre supplementation to post supplementation (4 week supplementation 
period)). This study observed an increase in n-3 PUFAs, EPA (20:5n-3), DHA (22:6n-3) and 
DPA (22:5n-3) in the FO group but not in the CO group. There was a significant mobilisation 
of activated CD4+ CD69+ and CD8+ CD69+ (P<0.05) T-lymphocyte numbers in response to 
exercise in both FO and CO groups. CMV infection was a significant covariate on the 
number and proportion of CD4+CD69+ T-lymphocytes (P<0.05) but not on the number or 
proportion of CD8+CD69+ T-lymphocytes. During the supplementation period there was a 
significant effect of Day on TNF-α, IL-6, IL-4 and IL-2 with IFN-γ and IL-10 trending towards 
a difference. The plasma cytokine concentration was greater at post supplementation 
compared to pre supplementation for both FO and CO groups. Latent CMV infection was a 
significant covariate for TNF-α, IL-6, IL-4, IL-2, IFN-γ and IL-10. In the current study we 
observed no evidence of a difference between the CO and FO groups for early T-lymphocyte 
activation marker or plasma cytokine concentrations despite the membrane lipid composition 
change over the 4 week supplementation period. It would appear that the plasma Th1 and 
Th2 cytokine concentration increased from pre supplementation to post supplementation on 
both PUFA and SFA, highlighting a potential link between fatty acid incorporation and 
cytokine expression that needs closer examination.    

The results of this series of studies highlight that sex and training status impact upon the T-
lymphocyte pool at rest and in response to exercise. Increasing the volume of training for 2 
weeks without dietary restriction does not alter the resting T-lymphocyte pool in trained 
females. Alterations to the T-lymphocyte pool at rest and in response to exercise are not 
related to FO or CO supplementation. Furthermore, the response of Th1, Th2 plasma 
cytokines, and the early activation marker CD69 at rest and in response to exercise does not 
differ between a group supplemented with FO compared to a group supplemented with CO it 
would appear that Th1 and Th2 plasma cytokines increase post supplementation in both 
groups. 

Particular avenues of interest for future research would be, to explore the sex differences in 
T-lymphocyte subsets at rest and in response to exercise, to determine whether these sex 
differences are key in susceptibility to disease/infection and to determine the tissue targets 
of lymphocytes mobilised during exercise.      
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THESIS INTRODUCTION 

The resting T-lymphocyte pool is known to be influenced by many factors, infection (Mallia et 

al, 2014), age (Simpson et al, 2008), sleep (Dinges et al, 1994), baseline fitness (Spielmann 

et al, 2011), macronutrient intake (Witard et al, 2013), training volume (Witard et al, 2012), 

body composition (Tchkonia et al, 2010), sex (Yan et al, 2010) and latent CMV infection 

(Pawelec et al, 2009; Turner et al, 2013). However the effects of these factors, and the T-

lymphocyte populations mobilised, in response to exercise are not fully understood, 

additionally the effect of fatty acid supplementation on the T-lymphocyte pool and response 

to exercise is currently unknown.   

Thus, the first study of this thesis aimed to characterise the effect of training status and sex 

on the senescent T-lymphocyte response to an acute bout of intense exercise. In 

accordance with Spielmann et al. (2011), we hypothesized that there would be less 

senescent T-lymphocytes in the blood compartment of trained individuals. Given that 

previous work reported a greater age-related increase in effector memory cells in males vs. 

females (Yan et al, 2010), we hypothesized that a higher proportion of senescent T-

lymphocytes would be observed in males vs. females at rest and in response to exercise.  

To further understand the influence of training status and the effect of an increased volume 

of training on the resting T-lymphocyte pool the aim of the second study in this thesis was to 

examine the effects of 14-days of increased training volume on the composition of the blood 

T-lymphocyte pool in highly trained soccer players. Previous work reported a blunted 

response of effector memory T-lymphocytes in response to a period of increased training 

volume (Witard et al, 2012). Therefore, we hypothesized that the increased training period in 

the second study of this thesis would result in marked reductions in the proportions of 

senescent blood T-lymphocytes in soccer players with no change in untrained controls. 

n-3 polyunsaturated fatty acids (PUFA) have been observed to alter T-lymphocyte 

proliferation which could lead to altered T-lymphocyte differentiation influencing the T-
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lymphocyte pool (Kew et al, 2004). Thus, to fully understand the influence of different dietary 

fatty acids on T-lymphocyte differentiated populations at rest and in response to exercise in 

the first part of the third study in this thesis we matched participants for baseline blood n-3 

status and then supplemented the diet of trained males with either short chain saturated fatty 

acids (coconut oil) or n-3 polyunsaturated fatty acids (fish oil). We hypothesized a PUFA 

related decrease in T-lymphocyte proliferation would result in a decrease in senescent T-

lymphocytes at rest in response to PUFA supplementation when investigated in vivo in 

humans. 

In cell culture studies it has been observed that different T-lymphocyte populations secrete 

different cytokines (LaVoy et al, 2013). In the final study of the thesis we examined the 

influence of n-3 PUFA and indeed short chain fatty acids as biological mediators of this 

response by measuring the plasma cytokine concentration. Additionally to investigate if fatty 

acid supplementation influences the activation of T-lymphocytes we examined the early 

activation marker CD69 as a measure of T-lymphocyte function at rest and in response to 

exercise. We hypothesized that PUFA supplementation would potentially increase 

lymphocyte activation and Th-1 cytokines with a decrease in the Th-2 cytokines.   
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Introduction 

The human immune system is a vastly complex interplay of many different cells, with one 

specific aim; protection of the host. The system is constantly evolving to combat the rapidly 

evolving pathogens faced by the host. Different cells provide protection in different ways. 

This protection can be roughly split into two branches, the innate and the adaptive immune 

response. Commonly known as the first line of defence innate immunity is omnipresent, 

encoded by genes in the hosts germ line. Therefore, the innate response is generic and non-

specific. The first defence mechanisms are: the physical barrier of the skin; antimicrobial 

chemical barriers that rupture some microbial and other pathogenic membranes at mucosal 

surfaces; the constant movement of epithelial cilia in gastrointestinal and respiratory tracts 

that remove the bacteria before they have a chance to colonise; and sheer competition 

between the commensal bacteria in the gut flora to prevent colonisation of a pathogenic 

bacteria strain (Chaplin, 2003; Chaplin, 2005; Chaplin, 2010; Tosi, 2005). Beyond these 

barriers are blood resident proteins which trigger a cascade of proteases called the 

complement system that opsonises the pathogen for lysis by other cells and signals 

inflammation via C3a and C5a (Dunkelberger and Song, 2010). It is important to distinguish 

between self and non self to prevent autoimmune damage to healthy cells. The innate 

immune system achieves this by recognising conserved molecular patterns present on 

microbes but not on the host and indicators of cell damage. This recognition occurs through 

various pattern recognition receptors (Toll like receptors (TLRs), NOD like receptors (NLRs), 

dectin-1, the collectins and the ficolins) observed both on and within leukocytes (monocytes, 

macrophages, dendritic cells, neutrophils, eosinophils, Langerhans cells) and epithelial cells 

(Chaplin, 2003; Chaplin, 2006; Chaplin, 2010; Dempsey et al, 2003; Tosi, 2005). Activation 

of the pattern recognition receptors and the complement system triggers signalling pathways 

producing chemical signals. These signals are mainly cytokines and chemokines which have 

local and systemic effects recruiting both innate cells like phagocytic macrophages and 

neutrophils, along with cells of the adaptive immune response, to the site of infection 
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triggering an inflammatory response (Dempsey et al, 2003; Dunkelberger and Song, 2010; 

Esche et al, 2005). Natural Killer cells (NK cells) are also part of the innate response. NK 

cells are a type of cytotoxic lymphocyte that identify and trigger apoptosis in compromised 

host cells like tumour and virally infected cells. NK cells do not recognise foreign microbes 

(Chaplin, 2003; Chaplin, 2006; Chaplin, 2010; Dempsey et al, 2003; Tosi, 2005). Gamma 

delta (γδ) T cells are a further subset of cell involved in the innate immune response. Large 

numbers are observed within an hour of infection (Nanno et al, 2007). These are unusual as 

they possess characteristics of both innate and adaptive immunity and are often thought of 

as the ‘bridge between innate and adaptive immunity’(Chaplin, 2003; Nanno et al, 2007; 

Nanno and Ishikawa, 2005; Tsuchiya et al, 2003; Uezu et al, 2004).  

 

The adaptive immune response, commonly known as cell mediated immunity, identifies each 

specific pathogen and subsequently provides an immune response to clear the specific 

pathogen. This response is encoded by gene elements that somatically rearrange during 

lymphocyte development in lymphoid organs producing very specific antigen binding 

molecules, T cell receptors (TCRs) on T lymphocytes that only bind antigen in the context of 

MHC and immunoglobulin (B Cell antigen receptor) on B lymphocytes (Bonilla and Oettgen, 

2010; Chaplin, 2010; Dempsey et al, 2003). This ensures that different receptors are 

produced to specifically recognise, in a lock and key fashion, the potential pathogens the 

host could face. Each pathogen recognised elicits a very specific immune response 

triggering the production of different subsets of T-lymphocytes, B-lymphocytes or both. This 

response depends on chemical signals in the form of cytokines and chemokines (Bonilla and 

Oettgen, 2010; Chaplin, 2010; Esche et al, 2005). Each immune response produces a 

subset of memory T- and B-lymphocytes which are long lived cells remaining in the host and 

remembering the specific antigen trigger. The result of this immunological memory is a faster 

more efficient immune response during subsequent infections with the same pathogen 

(Bonilla and Oettgen, 2010).  
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Originally it was widely believed that the innate and adaptive immune responses were two 

very separate entities. The job of the innate immune response was to fight the infection 

before the cells of the adaptive immune system arrived later to sterilise the area. However 

there is increasing evidence to show this is not the case. In fact, the systems work 

synergistically complementing each other to produce the best possible immune response 

and fight the infection in the quickest most efficient way. This evidence can be seen in the so 

called cells that bridge the gap of innate and adaptive immunity like the γδ T-lymphocytes 

(Chaplin, 2010; Nanno et al, 2007) which have characteristics of both innate and adaptive 

immunity. Complement opsonisation and derived signalling provides an essential 

prerequisite to prime pathogens for destruction by both innate and adaptive cells 

(Dunkelberger and Song, 2010). The innate immune response still provides the initial 

defence against infection during the first few hours of infection, giving the adaptive immune 

response time to develop during the next few days with the help of innate immunity to 

produce antigen specific cells and combat an infection.  

 

What becomes apparent when researching the immune system, is the immune response as 

a whole is a massive systemic reaction to stress. Such a reaction can be triggered by many 

different stressors produced during the inflammatory response to an infection by a pathogen 

or tissue damage. Exercise, provides an excellent whole body stress model from which to 

investigate the way in which the various components of the immune system react to the 

specific exercise stress (Shek and Shephard, 1998). The well-established ‘J shaped 

curve’ (Figure1) 

has been used to model the relationship between exercise and susceptibility to infection 

(Nieman, 1994). Moderate activity leads to enhanced immune function compared to a 

sedentary lifestyle while regular, prolonged high intensity exercise leads to impaired immune 

function compared to moderate activity.  
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Fig 1. ‘J-shaped curve’ model of the relationship between exercise and risk of respiratory 

tract infection, suggests that moderate exercise lowers the risk, but excessive exercise 

increases the risk taken from Nieman (1994).  

 

Regular moderate exercise of about two hours per day has been reported to decrease the 

risk of an upper respiratory tract infection (URTI) by 29% compared to a sedentary lifestyle 

(Matthews et al, 2002). Contrastingly, there is evidence that regular, prolonged, high-

intensity exercise impairs immune function. Six days of intensified endurance training in a 

group of trained cyclists significantly lowered the lymphocyte proliferation at rest (Lancaster 

et al, 2004). Lymphocyte proliferation increased back to pre-study values after two weeks of 

reduced training (Lancaster et al, 2004). In addition, a study using professional soccer 

players observed a decrease in T- lymphocyte proliferation during the competitive season, 

returning to baseline at the end of the competitive season (Bury et al, 1998). Training volume 

was increased in a group of elite runners for three weeks, as a result T-lymphocyte 

proliferation was decreased after a 30 min run at 80%  ̇O2max  compared to pre training 
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values (Verde et al, 1992). Various aspects of the innate and adaptive immune response to 

acute and chronic exercise have been investigated in order to understand the mechanisms 

responsible for the ‘J-shaped curve’ model, and to advise athletes during periods of high-

intensity exercise training.   

 

Exercise and the innate immune system 

Complement  

Complement consists of more than 30 proteins located on cell surfaces or free in the 

plasma. Recognition of a foreign antigen initiates the activation of complement which triggers 

a proteolytic cascade via one or possibly all three distinct pathways simultaneously. These 

pathways are known as classical, lectin or alternative depending on the mode of recognition 

(Dunkelberger and Song, 2010; Sahu and Lambris, 2001). The three pathways trigger 

different proteolytic cascades with the same aim, termination of the foreign antigen by 

inflammation. This process which recruits immune cells to the site of infection results in lysis 

of the bacteria / infected cell or opsonisation (coats the antigen with complement protein 

which attracts and binds phagocytic cells) of the pathogen.  

 

Various different studies have examined the effect of both acute and chronic exercise on 

complement proteins. The main complement protein studied as an indication of complement 

activation is C3 because it is the most abundant and promotes activation of all three 

pathways (Sahu and Lambris, 2001), C4 promotes activation of the classical and lectin 

pathways, and C5a is an inflammation trigger produced by all three pathways (Dunkelberger 

and Song, 2010; Gasque, 2004). Differing results have been observed from acute exercise 

studies. A series of studies all observed a decrease in C3 and C4 after an acute exercise 

protocol (Karacabey et al, 2005; Nieman et al, 1989; Saygin et al, 2006). Although all three 
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studies differed in protocols, subject characteristics, numbers and age which makes them 

difficult to compare. Wolach et al observed decreased levels of early complement 

components C1q and C1r in trained and untrained young females following an acute 

exercise protocol (Wolach et al, 1998). The majority of studies, however, report an increase 

in complement protein levels following an acute exercise protocol (Camus et al, 1994; 

Castell et al, 1997; Dufaux et al, 1991; Dufaux and Order, 1989; Romeo et al, 2008; Semple 

et al, 2006; Smith et al, 1990). Semple et al (2006) observed a significant increase in the C4 

levels of pro cyclists 10 days into a three week tour, however, the increase was not as 

pronounced as those observed in marathon and ultramarathon runners. It was hypothesized 

that more damage to muscles through weight bearing and footstrike produces a more 

pronounced inflammatory response (Nieman et al, 2013). This can perhaps explain the few 

studies that observed no change in complement proteins when using a cycling exercise 

protocol (Cordova et al, 2010; Thomsen et al, 1992; Ytting et al, 2007). These studies 

highlight the importance of exercise duration and intensity on the complement response. The 

effect of chronic exercise on complement proteins is largely general across the literature with 

most studies observing a decrease in the resting concentrations of complement proteins C3 

and C4 in athletes compared to controls (Dufaux et al, 1984; Mattusch et al, 2000; Nieman 

et al, 1989; Smith et al, 1990; Wolach et al, 1998). The literature suggests acute exercise 

activates the complement pathways aiding the acute immune response in an exercise 

duration and intensity dependant manner. Whereas, chronic exercise results in a decrease 

in the resting complement proteins suggesting a training effect.    

 

Toll like receptors (TLRs) 

Toll like receptors (TLRs) are highly conserved transmembrane proteins (Lemaitre et al, 

1996) that are important for recognition of foreign antigens and subsequent signalling to both 

innate and acquired immune systems for appropriate resolution of the pathogen (Takeda et 



Chapter 1                                                                                      General introduction 

23 
 

al, 2003; Takeda and Akira, 2004). To date there have been 11 TLRs identified (Takeda and 

Akira, 2005) located on and within various different cells of the immune system (monocytes, 

macrophages, dendritic cells, neutrophils, eosinophils, Langerhans cells) and epithelial cells 

(Chaplin, 2010; Takeda et al, 2003; Takeda and Akira, 2005). These TLRs recognise 

different pattern associated molecular patterns (PAMPs) which are specific to foreign 

pathogens only and not to the host (Chaplin, 2010; Takeda et al, 2003). For example, TLR4 

recognises lipopolysaccharide (LPS) in the cell wall of gram negative bacteria (Hoshino et al, 

1999; Takeda et al, 2003; Takeda and Akira, 2005). Other PAMPs include viral double 

stranded RNA and various other features shared by bacterial cells (Takeda et al, 2003; 

Takeda and Akira, 2004; Takeda and Akira, 2005). Once the TLRs recognise a foreign 

pathogen an intracellular signalling pathway is triggered inducing the production of 

inflammatory cytokines and antimicrobial activity by both the innate and adaptive immune 

systems (Botos et al, 2011; Takeda et al, 2003; Takeda and Akira, 2004; Takeda and Akira, 

2005).  

 

Various studies have observed decreased monocyte cell surface expression of TLRs 

following both acute and chronic exercise. The first to report a change in TLR expression 

with chronic exercise was Flynn et al (2003) who observed that resistance trained older 

women had significantly lower whole blood TLR4 mRNA content than sedentary untrained 

older women (Flynn et al, 2003). A follow up study was conducted by McFarlin et al (2004) to 

investigate the effect of an acute bout of resistance exercise on the monocyte cell surface 

expression of TLR4 in trained and untrained women. This study observed lower monocyte 

cell surface expression of TLR4 in the trained compared to the untrained women, with no 

effect of the acute exercise bout on TLR4 expression. Concluding that chronic exercise 

training, but not an acute exercise session, lowers the monocyte cell surface TLR4 

expression in older women (McFarlin et al, 2004). However, the exercise protocol carried out 

by McFarlin et al only lasted 1 hour which may not be long enough to induce a fall in 
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monocyte cell surface TLR expression (Gleeson et al, 2006). Follow up studies by Stewart et 

al (2005) and McFarlin et al (2006) investigated chronic exercise training and compared 

trained to untrained. These studies confirmed the earlier observation that physically active 

participants have significantly lower monocyte cell surface TLR4 expression than physically 

inactive subjects irrespective of age (Flynn et al, 2003; McFarlin et al, 2004; McFarlin et al, 

2006; Stewart et al, 2005). The only study to examine TLR mRNA in skeletal muscle, as 

opposed to monocytes, observed decreased levels of TLR4 mRNA in skeletal muscle of 

obese subjects following 12 weeks of both endurance and resistance exercises (Lambert et 

al, 2008). In 2005, Lancaster et al were the first to observe a decrease in monocyte TLR1, 

TLR2 and TLR4 expression following acute prolonged aerobic exercise (Lancaster et al, 

2005). The subjects were exercised in the heat (34˚C) to potentiate the exercise induced 

stress response and thus maximise the observed effect. In 2006, Gleeson et al carried out a 

follow up experiment to investigate the effect of exercising in the heat on TLR expression. 

This confirmed that the difference Lancaster observed was due to the acute exercise bout 

and not the heat stress (Gleeson et al, 2006). The TLR expression observed by Lancaster 

was on the total monocyte population. However, there are different populations of 

monocytes and the difference observed post exercise could have been the mobilisation of 

one of these populations. Therefore, Simpson et al (2009) carried out a study to determine if 

the change in surface expression of TLRs on total blood monocytes after acute exercise was 

influenced by altered proportions of monocyte subpopulations. This was the first study to 

show that TLR4 expression on the total monocyte cell population was lower during the 

recovery phase of acute exercise in comparison to the pre exercise value. Despite the 

greater expression of TLR4 in the pro-inflammatory monocyte population the reduced 

expression of TLR4 on the total monocyte cell population was due to a decrease on the 

classic monocytes and not the pro-inflammatory monocytes (Simpson et al, 2009). The 

effects of acute and chronic exercise on TLRs are inconclusive, future understanding of how 

small changes in surface expression of TLRs impact the intracellular signalling pathways 

following pathogen recognition remains to be determined.   
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Cytokines (inflammatory response) 

Cytokines are small signalling molecules released from activated cells which bind to 

transmembrane cell surface receptors and include chemokines, interferons, interleukins (IL), 

lymphokines and tumour necrosis factor. Binding of the cytokine alters the function of the cell 

(Chaplin, 2010; Tosi, 2005). There are two main cytokine populations, pro-inflammatory and 

anti-inflammatory cytokines (Gleeson, 2007; Santos et al, 2007; Tosi, 2005). Pro-

inflammatory cytokines (IFNγ, IL-1, TNFα, IL-6) mediate an inflammatory response triggering 

the activation of macrophages, cytotoxic immune cells and other mediators of inflammation. 

This response triggers subsequent apoptosis of virus infected cells and pathogen 

phagocytosis (Gleeson, 2007). The anti-inflammatory cytokines (IL-5, IL-13, IL-4, IL-10, IL-6) 

mediate an anti-inflammatory response by suppressing the pro-inflammatory cytokine 

production and steering the response towards the less damaging antibody production, they 

also stimulate Th2 inflammation against asthma and helminth infection (Gleeson, 2007). 

There are many cytokines, with the interleukin class alone numbering from IL-1 to IL-36. The 

kinetics of the various cytokines involved during exhaustive exercise are reviewed by Suzuki 

et al (Suzuki et al, 2002). 

 

Various different studies have been carried out to identify the effect of exercise on the 

cytokine response (Andersson et al, 2010; Ascensao et al, 2008; Bishop et al, 2002; Bishop 

et al, 2002; Castellano et al, 2008; Croft et al, 2009; de Salles et al, 2010; Donges et al, 

2010; Fischer et al, 2004; Gokhale et al, 2007; Ispirlidis et al, 2008; Izquierdo et al, 2009; 

Kumae et al, 2009; Nemet et al, 2009; Ostrowski et al, 1999; Pedersen et al, 2000; Phillips 

et al, 2008; Rosa et al, 2007; Stewart et al, 2007; Zembron-Lacny et al, 2010). The majority 

of studies have focused on IL-6 for two reasons:  firstly, it is produced by exercising skeletal 

muscle (Steensberg et al, 2000); and secondly it has both pro and anti-inflammatory 

properties (Petersen and Pedersen, 2006). Cytokine studies are difficult to compare since 
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there are many variables to consider (King et al, 2003). Age, sex, muscle mass involved, 

exercise type, duration and intensity can all differ and affect the cytokine response in 

studies. However, the general conclusion is that acute exercise elicits an inflammatory 

response similar to a mild form of the septic shock reaction (Camus et al, 1994; Shek and 

Shephard, 1998), determined by an increase in pro-inflammatory cytokines and the 

subsequent recruitment of cytotoxic cells to the peripheral blood stream (Gleeson, 2007). 

Chronic exercise training has the opposite effect by decreasing the resting levels of various 

inflammatory markers (King et al, 2003) and blunting the magnitude of inflammatory cytokine 

response to a single bout of exercise (Gokhale et al, 2007; Woods et al, 2000). The nature of 

this response has led to exercise being recommended as an anti-inflammatory therapy 

(Bruunsgaard, 2005; Nader and Lundberg, 2009; Pedersen and Bruunsgaard, 2003; 

Petersen and Pedersen, 2006; Timmons, 2005). The cytokine response to an acute bout of 

exercise does not appear to vary between trained and untrained individuals (Gokhale et al, 

2007). Acute exercise still elicits a pro-inflammatory response and therefore it is only the 

magnitude of this response that is smaller in trained individuals (Croft et al, 2009; Fischer et 

al, 2004; Gokhale et al, 2007; Santos et al, 2007). Current literature on the cytokine 

response to acute and chronic exercise is conflicting. Reasons for confusion is the pleotropic 

nature of the IL-6 cytokine released from working muscles during exercise, the speed of the 

influx and removal of cytokines from the peripheral blood stream and the various different 

cells that produce and are influenced by cytokines.   

 

Cytokine expression in response to a marathon (Nieman et al, 2001), incremental cycling 

(Moyna et al, 1996) and steady state cycling (Timmons et al, 2005) does not differ markedly 

between the sexes from the few studies that exist. Potential sex differences in IL-6 have 

been observed after maximal exercise (Edwards et al, 2006). Genes involved in 

inflammation are differentially upregulated at different phases of the menstrual cycle phase 

in response to exercise (Northoff et al, 2008) highlighting the importance of investigating the 
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response to exercise at different phases of the menstrual cycle phase on different immune 

markers and controlling for menstrual cycle phase and oral contraceptive. 

 

Dietary supplementation has been briefly investigated in relation to the cytokine response to 

exercise. Ingestion of a carbohydrate supplement before and/or during prolonged exercise 

attenuates increases in anti-inflammatory cytokines IL-6, IL10 and IL1ra (Davison and 

Gleeson, 2005; Nieman, 1998; Nieman and Bishop, 2006). In vitro research provides an 

anti-inflammatory post-exercise rational for n-3 polyunsaturated fatty acid supplementation. 

However, the limited data from athletes is non-supportive and mixed (Nieman et al, 2009) 

and warrants further investigation in athletic populations. 
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Macrophages 

Macrophages are a vital cell in the day-to-day function of the immune system as a whole. 

Monocytes are the precursors to macrophages. Produced in the bone marrow, monocytes 

migrate to tissues where they differentiate to produce tissue specific macrophages, 

peritoneal in the abdomen, alveolar in the lungs and Langerhans cells in the skin (Robbins 

and Swirski, 2010). Macrophages remain resident in the specific tissue until they are primed 

for type 1 activation by a cytokine interferon-γ (IFN-γ) (Boehm et al, 1997). The immune 

systems ability to react to new challenges relies on these tissue specific macrophages 

having different functions. Macrophages are ubiquitous and move by way of chemotaxis 

attracted by cytokines and chemokines produced by various cells like activated T-

lymphocytes to sites of infection and tissue damage indicators like histamine (Stow et al, 

2009; Watts, 1997). Macrophages constantly survey the environment by way of non-specific 

pinocytosis, or the more specific endocytosis and phagocytosis, in search of foreign 

pathogens (micro-organisms, bacteria, proteins and other smaller cells) that could potentially 

harm the host (Adams and Hamilton, 1984). Phagocytosis is the process by which 

macrophages engulf the pathogen (Adams and Hamilton, 1984; Djaldetti et al, 2002). 

Macrophages recognise foreign pathogen and opsonised foreign antigens through TLRs and 

complement receptors on the antigen surface. They then attach to the antigen using 

complement and fragment crystallisable region (Fc) receptors on their surface and ingest the 

antigen, which is subsequently broken down by potent enzymes contained within 

phagolysosomes inside the macrophage. Peptide fragments from the broken down antigen 

are then presented on the surface of the macrophage by major histocompatibility complex 

(MHC) class II molecules for interaction with T cells (Unanue, 1984). During this process the 

macrophage also secrets various different molecules, pro-inflammatory cytokines TNF-α 

and IL-6 and anti-inflammatory cytokines IL-10 and IL-4 (Stow et al, 2009), chemokines to 

regulate lymphocytes, molecules with tumouricidal or microbicidal activity, and molecules to 

aid tissue remodelling (Hume, 2006). The molecules produced by the macrophage are 
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dependent on the specific antigen recognised and the best possible way of destroying it 

while causing the least damage to the host. 

 

An acute bout of exercise induces the mobilisation of various cells including 

monocytes/macrophages (McCarthy et al, 1991). This mobilisation results in an increase in 

the monocyte numbers in the peripheral blood (Woods et al, 1999). There are potential 

exercise intensity or duration dependent changes in monocyte subpopulations, therefore, the 

dose of exercise in various studies is important. For example, following long duration acute 

exercise mature monocytes may migrate out of the vasculature (Gabriel et al, 1994), thus 

altering the blood monocyte profile. Contrastingly, chronic exercise training appears to have 

no effect on monocyte numbers in the peripheral blood of resting subjects (Woods et al, 

1999). 

 

Numerous studies have been carried out to determine the effect of both acute and chronic 

exercise on macrophage functions. Macrophage function experiments have mostly used 

animal models due to the difficulty in acquiring differentiated human macrophages. One 

study published in 1988 observed that acute exercise increased tissue macrophage 

chemotaxis and phagocytosis in humans (Michna, 1988). Various groups have focused on 

different aspects of macrophage function, used different animal species, different 

macrophage subsets and different doses of exercise. However, in general it has been 

observed that acute exercise has a positive effect on certain aspects of the phagocytosis 

pathway. Studies using both mice and guinea pigs of various ages have observed that acute 

swimming to exhaustion results in an increase in peritoneal macrophage chemotaxis, 

adherence and phagocytosis (De la et al, 1990; De la et al, 1993; Forner et al, 1994; Ortega 

et al, 1992; Ortega et al, 1993; Ortega et al, 1996; Ortega et al, 1997). In one study, Silveria 

et al (2007) observed that an acute bout of moderate swimming in rats increased phagocytic 
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capacity in circulating macrophages. The effect of exercise on macrophage anti-tumour 

cytotoxicity has been investigated in mouse. Peritoneal macrophage cytotoxicity increased 

after an acute bout of exercise (Woods et al, 1993; Woods et al, 1994a; Woods et al, 

1994b). Anti-tumour cytotoxicity has also been investigated in mouse alveolar macrophages, 

where it was demonstrated that prolonged exercise could have a protective effect on lung 

tumour metastases and enhance alveolar macrophage anti-tumour cytotoxicity (Davis et al, 

1998). Despite these positive responses to exercise, evidence suggests that acute 

exhaustive exercise can result in a decrease in alveolar macrophage antiviral resistance to 

herpes simplex virus (HSV-1). Macrophage resistance to HSV-1 following the exhaustive 

exercise bout caused a subsequent exercise induced increase in HSV-1 viral replication 

(Davis et al, 1997; Kohut et al, 1998a; Kohut et al, 1998b). Ceddia et al observed a 

suppression of antigen presentation in mouse peritoneal macrophages following acute 

exhaustive exercise (Ceddia and Woods, 1999; Woods et al, 1997). In a follow up study the 

same group of authors (Ceddia et al, 2000) investigated the intracellular mechanisms 

responsible for suppression of antigen presentation and concluded that exercise induced 

suppression was due to an intracellular defect in the macrophage antigen processing 

pathway. 

 

There are not many studies covering the effects of chronic exercise training on macrophage 

function. The few studies that exist have investigated age and training concluding aging 

reduces, and exercise training increases the capacity of resident peritoneal macrophages to 

respond to IFN-γ and lipopolysaccharide (LPS) with increased tumour cytolysis (Lu et al, 

1999; Woods et al, 2000). The effect of chronic exercise training on the acute exercise 

response in animal models reveals that exercise training can increase induced inflammatory 

responses of peritoneal macrophages. Exercise training, with or without a low fat diet, 

reduces visceral adipose tissue and systemic inflammation by reducing macrophage 

infiltration and pro-inflammatory cytokine gene expression (Vieira et al, 2009a,b). Reductions 
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in the macrophage inflammatory responses appear to occur in response to chronic training 

of 30 days, or less, reducing the magnitude of the acute exercise inflammatory response 

(Fehr et al, 1988; Ortega et al, 1992; Ortega et al, 1993; Ortega et al, 1996). 

 

To conclude, it appears that both moderate and exhaustive exercise have both positive and 

negative effects on the macrophage response. The overall positive effect of exercise is the 

innate first line response of macrophages to antigen by enhancing various phagocytic 

functions. Exercise has been suggested as a possible therapeutic strategy in the 

progression of cancers following the observed increase in anti-tumour cytotoxicity promoted 

by exercise. However, further research in this field is required since studies have not shown 

that an increase in cytotoxicity decreases tumour size, or progression, in response to 

exercise. Animal studies have highlighted the decreased antiviral responses of alveolar 

macrophages following strenuous exercise. When related to humans this could partly explain 

an increase in upper respiratory symptoms (URS) observed in athletes (Gleeson et al, 

1999). Innate effector functions of macrophages are increased in response to exercise, 

however, cell mediated accessory functions like antigen presentation and MHC Class II 

loading appear to be negatively affected by strenuous exercise. These observations could 

help explain the increase in infections after strenuous exercise (Cox et al, 2007; Cox et al, 

2008) and in overtraining (MacKinnon, 2000). 

 

 No difference in total number of blood monocytes were observed between the sexes after 

submaximal exercise in sedentary participants (Barriga et al, 1993). In an animal inoculation 

study, the female mice that exercised at moderate intensity had a greater macrophage 

resistance to herpes simplex virus -1 (HSV-1) than the male mice (Brown et al, 2004). 

Further investigation into the potential mechanisms for this resistance and future human 
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studies investigating the macrophage response to exercise between the sexes is warranted 

before any conclusions can be made. 

 

Various studies have investigated the immune response to exercise and the effect of 

carbohydrate supplementation (Davison and Gleeson, 2005; Nieman, 1998; Nieman and 

Bishop, 2006). One of the parameters measured was blood monocyte counts. Carbohydrate 

supplementation reduced the exercise induced increase in monocytes (Nieman et al, 

1998b), highlighting examination of the influence of dietary supplementation on the immune 

response to exercise needs well controlled future studies.  

 

Neutrophils  

Neutrophils are another member of the phagocytic family of cells that have been investigated 

pre and post exercise. Neutrophils are one of the first cell types to arrive at a site of infection. 

Like macrophages they engulf foreign antigens with the help of TLRs, complement and Fc 

receptors on both antigen and neutrophil surface. They then produce reactive oxygen 

species (ROS) vital for the endogenous destruction of an ingested pathogen. ROS are 

damaging and toxic to host tissue if overproduced (Sen, 2001). The rapid recruitment, 

usually within minutes, to the infection site is due to neutrophil prevalence, they make up 60-

70% of the circulating white blood cell count (Mackinnon, 2000), and their anatomical 

location, in the blood stream which gives them easy access to tissues. As a result it is easy 

to isolate neutrophils from human peripheral blood samples. In vivo experiments to 

investigate exercise effects on neutrophils have provided conflicting results.  

Previous research has focussed on neutrophil count, phagocytic activity and ROS 

production. Following acute exercise the peripheral blood circulating neutrophil concentration 

increases (Chinda et al, 2003; Gabriel et al, 1995; Kakanis et al, 2010; Sureda et al, 2009; 
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Umeda et al, 2008). Kakanis et al observed a 5 fold increase in neutrophil numbers at 2 

hours post exercise (Kakanis et al, 2010) suggesting that 80% of neutrophils circulating 

during the post exercise period were mobilised from the marginal pool and bone marrow 

(Gabriel et al, 1995; Hack et al, 1992). The observed peak neutrophil count at 2 hours post 

exercise is suggestive of circulating stress hormones involvement in mobilising neutrophils 

(Ortega, 2003; Pedersen et al, 1998). Research has provided varying results for neutrophil 

phagocytic activity. Some studies have observed a decrease in activity (Chinda et al, 2003; 

Chinda et al, 2003; Kakanis et al, 2010; Muns, 1994; Takahashi et al, 2007) while others 

have observed that phagocytic activity stayed the same or increased (Ortega et al, 1993; 

Scharhag et al, 2005) post-exercise. Contrasting results have also been observed in the 

ROS studies. Some studies have observed an increase in ROS production in response to 

exercise (Chinda et al, 2003; Mochida et al, 2007; Pedersen and Bruunsgaard, 1995; 

Takahashi et al, 2007; Umeda et al, 2008). Other studies have observed a decrease in ROS 

production following exercise (Chinda et al, 2003; Miyazaki et al, 2001; Mochida et al, 2007; 

Takahashi et al, 2007). The reasons for the differing functional results are unknown. 

However, there is a lot of variability in the subjects and study protocols used, indicating that 

neutrophil function is very sensitive to exercise type/dose and subjects individual fitness 

level or simply very variable (Umeda et al, 2008). Mochida et al argue that the variation 

observed in phagocytic activity and ROS production are symptomatic of the immune system 

as a whole, continually adapting and compensating to provide the best possible immune 

response (Mochida et al, 2007). The increased neutrophil count post-exercise is thought to 

be the result of muscle damage caused by exercise. Damaged muscle tissue releases 

intracellular  enzymes in to the blood (Flynn et al, 1994; Koutedakis et al, 1993), the increase 

in such intracellular enzymes has a positive correlation with the increase in neutrophil 

numbers observed post exercise (Suzuki et al, 1999; Tidball, 2005; Umeda et al, 2008). 

However, data that uses creatine kinase (CK) as a marker of muscle damage should be 

interpreted with care due to the massive differences in individual responses to damage 

(Brancaccio et al, 2007). But speculatively, strenuous exercise causes damage to the 
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exercising muscle. Following strenuous exercise intracellular enzymes are released along 

with cytokines and stress hormones resulting in the mobilisation of neutrophils from the 

marginal pool and bone marrow to the circulation to control and repair muscle damage. 

The effect of chronic exercise on neutrophils was reviewed by Mackinnon (Mackinnon, 

2000). Neutrophil count does not change with chronic exercise training. Comparing athletes 

to non-athletes the pre and post exercise neutrophil count and respiratory burst is attenuated 

in athletes, the same is observed in athletes during periods of high intensity compared to 

moderate intensity training (Bury et al, 1998; Bury and Pirnay, 1995; Flynn et al, 1994; Hack 

et al, 1994; Pyne et al, 1995; Saito et al, 2003; Smith et al, 1990). It has been suggested that 

this attenuated response is a protective mechanism to prevent chronic inflammation and 

subsequent overproduction of potentially toxic ROS following frequent strenuous exercise in 

athletes (Smith, 1994). 

 

At rest and after 90 mins of steady state cycling higher numbers of circulating neutrophils 

were observed in females taking oral contraceptives (OC) compared to men and non-users 

of contraceptives (Timmons et al 2005). No difference in circulating neutrophils was 

observed between the men and the non-users of contraceptives, highlighting the importance 

of oral contraceptive use and pregnancy hormones in the immune response to exercise.  

 

Supplementation with high dose vitamins and/or minerals has been investigated in response 

to exercise. The rationale is that they quench the increased ROS in response to exercise. No 

conclusive evidence for a decrease in exercise induced ROS production has been observed 

for vitamin and/or mineral supplementation (Davison and Gleeson, 2005; Davison and 

Gleeson, 2006; Gleeson et al, 2004; Nieman et al, 2002; Nieman et al, 2004). Carbohydrate 

supplementation attenuates exercise induced increases in neutrophil counts (Davison and 
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Gleeson, 2005; Nieman et al, 1998; Nieman and Bishop, 2006), further highlighting the 

importance of more detailed dietary supplementation studies.  

 

Natural Killer cells  

Natural killer cells (NK cells) are a major component of the innate immune system. They are 

a cytotoxic lymphocyte, important in the defence against viruses and cancer, due to their 

ability to destroy certain virally infected and tumour cells in an MHC class I independent way. 

NK and T-lymphocyte subsets can be identified using monoclonal antibodies, which 

recognise cell surface markers, known as cluster of differentiation (CD). The NK cell 

phenotype is classified by the presence or absence of certain surface CD receptors. The NK 

cell phenotype is recognised as CD3-CD16+CD56+. Since the NK cell killing mechanism is 

not MHC class I restricted it does not express the T cell receptor (TCR) therefore it is TCR 

co-receptor CD3 negative, it does however co-express FcγIII (CD16) and a cell adhesion 

molecule (CD56). Based on the intensity of CD56 two functionally distinct NK cell 

subpopulations have been identified. CD3-CD56bright cells, which express low or no levels of 

CD16 and CD3-CD56dim cells, which express high levels of CD16 and are the more cytotoxic 

subtype (Lanier et al, 1986). A meta-analysis carried out by (Shephard and Shek, 1999) 

examined 94 studies  for the acute and chronic exercise effects on NK cells. The general 

conclusion suggested that acute exercise elicits an increase in the numbers of circulating NK 

cells, followed by a suppression of the circulating NK cell count during the recovery period. 

This suppression persists for a few hours, combined with a smaller decrease in total cytolytic 

activity and a suggestion of decreased cytolytic activity per NK cell (NKCA). Gleeson and 

Bishop (2005) published a review and suggested that NKCA is depressed for several hours 

following a prolonged, intense and stressful bout of exercise. (Timmons and Cieslak, 2008) 

reviewed the effect of exercise on NK cell subtypes reporting that both CD56bright and 

CD56dim cells are mobilised into peripheral blood circulation with acute exercise. The more 
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cytotoxic CD56dim cell subset was shown to be more responsive to acute exercise. The 

importance of further research, investigating the individual functional responses of the 

subsets, sensitive to acute exercise, was highlighted by observations of the same group 

(Timmons et al, 2004; Timmons et al, 2005; Timmons et al, 2006b; Timmons et al, 2006a; 

Timmons and Bar-Or, 2007). These studies demonstrated that carbohydrate intake, sex, 

puberty, exercise duration and intensity could all influence subset mobilisation. 

 

Gamma-Delta T-lymphocytes  

Gamma-delta T-lymphocytes (γδ T cells) are a versatile lymphocyte often referred to as ‘the 

bridge between the innate and adaptive immune response’ (Carding and Egan, 2002; 

Girardi, 2006; Kalyan and Chow, 2009) referring to the shared characteristics of both innate 

and adaptive immunity which these cells display. For example, γδ T-lymphocytes use pattern 

recognition receptors to recognise and respond to various different antigens just like cells of 

the innate immune system, but γδ T-lymphocytes can also develop a memory phenotype 

similar to T-lymphocytes (Girardi, 2006). In humans γδ T-lymphocytes account for about 5% 

of the whole blood lymphocytes, but up to 50% of T-lymphocytes in the epithelial tissues, 

such as the skin and lining of the gastro-intestinal, respiratory and genito-urinary tracts 

(Carding and Egan, 2002). γδ T-lymphocytes are important in the process of eliminating 

bacterial infection (Nakasone et al, 2007), in delayed-type hypersensitivity reactions 

(Askenase, 2001), and in wound repair (Girardi, 2006; Jameson et al, 2002). γδ T-

lymphocytes also have immunosurveillance and antigen presenting properties (Brandes et 

al, 2005; Girardi, 2006).  

 

With regards to exercise the γδ T-lymphocyte literature is sparse. The first study (Anane et 

al, 2009) to investigate the effect of exercise on γδ T-lymphocytes observed they are stress 



Chapter 1                                                                                      General introduction 

37 
 

responsive, mobilized by acute exercise, psychological stress and β-agonist infusion. The 

same group (Anane et al, 2010) further investigated the phenotypes of the γδ T-lymphocyte 

subtypes mobilised by psychological stress. They observed that the subset mobilised by 

stress was mostly γδ memory lymphocytes with high cytotoxic capability, tissue homing 

potential and capacity for rapid, innate like target recognition. Following this research the 

group concluded that the selective mobilisation observed following acute exercise, 

psychological stress and β-agonist infusion provides protection in situations where tissue 

damage and antigen exposure are more likely to occur. These conclusions support the idea 

of γδ cell involvement in innate responses (Anane et al, 2009; Anane et al, 2010). 

No work, to my knowledge, has examined dietary supplementation or any differences 

between sexes for γδ T-lymphocytes in response to exercise. 

 

The majority of early exercise immunology work focussed on the innate immune response to 

exercise. Understandably, it is the first line of defence against infection, either dealing with 

the antigen itself, or signalling for help from the adaptive immune response. Therefore 

understanding the innate arm of the immune response was initially logistically easier 

because it is the first to respond to exercise stress. Early exercise immunology studies used 

the self-reported URTI as a marker of infection incidence with the hypothesis that changes in 

innate immune cell numbers and markers were indicative of infection risk. An examination of 

this work demonstrates the importance of exercise stress on immune response and also 

possibly age and training status, but little evidence exists investigating the effect of sex or 

dietary intervention on the immune response to exercise. If countermeasures such as 

nutritional supplements targeted the innate arm of the immune response the risk of infection 

would be more effectively countered than targeting the slower moving adaptive immune 

response. 
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Exercise and the adaptive immune response  

In recent years, due to developments in fluorescent antibodies various T-lymphocyte sub-

types and receptors can be identified, allowing for a more detailed understanding of the 

specific sub-populations of T-lymphocytes involved in the response. As a result the adaptive 

immune response has come under scrutiny. The adaptive arm of the immune response is of 

more interest to study, not only due to relatively less work having been done on the adaptive 

response but in relation to the roles the innate and adaptive immune responses play. The 

innate response is non-specific while the adaptive is very specific, and as a result specific T-

lymphocytes are recruited, with specific properties to eliminate a pathogen. The T-

lymphocyte pool alters throughout life as a result of chronological aging and latent virus 

infection, but very little work exists on the influence of training status, sex and dietary 

supplementation on the T-lymphocyte pool at rest and in response to acute exercise. 

 

T-lymphocytes 

During T-lymphocyte development in the thymus, T-lymphocytes acquire a T-cell receptor 

(TCR) that fits the major histocompatibility complex (MHC) unique to the individual, before 

entering the periphery as a fully functional naïve T-lymphocyte (Simpson, 2011). Therefore, 

all T-lymphocyte recognition and killing is MHC restricted. Unlike NK cells, T-lymphocytes 

are TCR co-receptor CD3 positive, helper T-lymphocytes express CD4, and most cytotoxic 

T-lymphocytes express CD8. In resting blood and secondary lymphoid organs, 60% to 70% 

of T-lymphocytes are helper CD4+ T-lymphocytes and 30% to 40% are cytotoxic CD8+ T-

lymphocytes (Bruunsgaard et al, 1999). When the MHC class II molecule displays the 

antigen on the cell surface of antigen presenting cells (APCs), CD4+ T-lymphocytes bind to 

the antigen and stimulate the APC to release the cytokine interleukin 1 (IL-1). IL-1 stimulates 

T-lymphocyte growth and division. CD4+ and CD8+ T-lymphocytes are stimulated to undergo 
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further proliferation and growth from IL-2, in an autocrine fashion (Gleeson et al, 2006). In 

the resolution phase of an immune response, most of the excess clones of effector T-

lymphocytes die by apoptosis, but some recirculate to tissues to protect the host against 

further attacks from the same infectious agent, providing an immunological memory of 

previously encountered antigens (Simpson, 2011). 

 

Previous studies have observed no difference in lymphocyte count between the sexes in 

response to submaximal exercise (Barriga et al, 1993) and incremental cycling (Moyna et al, 

1996). However, in a study that investigated oral contraceptive (OC) use on the immune 

response to exercise females taking OC had a greater post exercise increase in 

lymphocytes compared to men and non-OC users (Timmons et al, 2005). A greater post 

exercise increase in lymphocytes was also observed in the non-OC users compared to men 

after steady state moderate cycling (Timmons et al, 2005). Differences in immune markers 

as a result of oral contraceptive use, highlights the importance of investigating the effect of 

sex hormones on the immune response to exercise.  

 

Carbohydrate supplementation before and/or during prolonged exercise observed no effect 

on the T-lymphocyte response (Davison and Gleeson, 2005; Nieman et al, 1998; Nieman 

and Bishop, 2006), highlighting the importance of investigating other dietary supplements on 

the T-lymphocyte response to exercise.   

 

Senescent T-lymphocytes  

Cellular senescence is a state whereby cells are unable to further proliferate in response to 

stimuli. Senescence can be caused by excess rounds of cell division in response to repeated 
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antigenic stimuli (Effros, 2007). During culture conditions cellular proliferation is known to 

stop after a fixed number of cell divisions (the  ‘Hayflick  limit’) (Effros, 2004a; Effros, 2004b). 

However, this limit is dependent upon the particular cell type (von, 2002). Cellular 

senescence is therefore affected by the replicative history of cells, not necessarily by 

chronological time (von, 2002). Human blood lymphocytes in vitro, have been reported to 

undergo around 33 cellular divisions for CD4+ T-lymphocytes and around 23 in CD8+ T-

lymphocytes in culture before cell-cycle arrest (Pawelec et al, 1996; Perillo et al, 1993). 

 

At the terminal ends of linear chromosomes there are repeated DNA sequences called 

telomeres (Effros, 2007). Short telomeres have been suggested as a marker of replicative 

senescence (Effros, 2004; Effros, 2007a; Effros, 2007c; van et al, 2005a). Telomeres 

shorten by 50-100 base pairs with each cell division as a result of DNA replication, ultimately 

resulting in critically short telomeres after repeated rounds of cell division. When telomeres 

reach a critical length cell cycle arrest is triggered. The signal for the arrest has been 

suggested to be either the cell detecting DNA damage, a reduction in telomere-binding 

proteins, or the shortened telomeres themselves (Effros, 2007). In order to prevent further 

cell division and potential tumourigenesis, signalling mechanisms for senescence are 

triggered (Effros, 2007).  

 

CD57 is a cell surface glycoprotein expressed on the surface of T-lymphocytes with a 

senescent phenotype (Brenchley et al, 2003). In healthy participants, the CD57 antigen is 

expressed by a minority of CD8+ and CD4+ T-lymphocytes in peripheral blood (Focosi et al, 

2010). CD8+ CD57+ T-lymphocytes have a higher cytotoxic effector potential including 

perforin, granzymes and granulysin, and express more adhesion molecules and chemokine 

receptors than CD8+ CD57- T-lymphocytes (Focosi et al, 2010). In response to TCR, IL-2, IL-

7 and IL-15 stimulation CD8+ CD57+ T-lymphocytes express a lower level of genes involved 
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in cell-cycle regulation (Focosi et al, 2010). CD28 is an important co-stimulatory cell surface 

glycoprotein receptor on the surface of T-lymphocytes (Linsley and Ledbetter, 1993). T-

lymphocytes expressing CD57 on the cell surface have short telomeres, a long history of 

proliferation, lack the ability to proliferate in response to mitogenic stimuli (Brenchley et al, 

2003), and do not express the co-stimulatory receptor molecule CD28 on the cell surface 

(Bruunsgaard et al, 1999). When T-lymphocytes encounter an APC expressing either of the 

CD28 ligands, B7-1 or B7-2 a co-stimulatory signal is transduced through CD28 (Boise et al, 

1995). CD4+ Helper T-lymphocyte cytokine production is enhanced by CD28 co-stimulation, 

through transcriptional and post-transcriptional regulation of gene expression (Thompson et 

al, 1989). The cytolytic potential of cytotoxic CD8+ T-lymphocytes is activated by CD28 co-

stimulation (Boise et al, 1995). CD28 is clearly important for the activation and proliferation 

of naïve T-cells (Labalette et al, 1999; Linsley and Ledbetter, 1993; Ouyang et al, 2003). T-

lymphocytes lacking the expression of CD28 have a lower proliferative capacity (Nociari et 

al, 1999), have shorter telomere lengths (Effros et al, 1996), and in cell culture these 

senescent T-lymphocytes lose expression of CD28 altogether (Effros, 2004). CD28 is even 

important in the activity of the telomere protective enzyme, telomerase (Valenzuela and 

Effros, 2002; Weng et al, 1997). Telomere analysis and proliferation assays confirm the 

surface expression of CD57+ and CD28- T-lymphocytes define the end-stage cell in the 

senescent pathway (Brenchley et al, 2003). On antigen recognition, CD8+ T- lymphocytes 

proliferate more than CD4+ (Foulds et al, 2002), have shorter telomeres (Bruunsgaard et al, 

1999), and lack the ability to upregulate telomerase (Effros, 2007). Therefore a higher 

proportion of senescent T-lymphocytes are observed in the CD8+ T-lymphocyte population 

(Simpson et al, 2008). 

 

The proportion of naïve and activated T- lymphocyte populations in the peripheral T-

lymphocyte pool is tightly controlled (Freitas et al, 1996; Rocha et al, 1989; Tanchot and 

Rocha, 1995). It has been suggested that T-lymphocyte senescence may involve a central 
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block in apoptosis signalling pathways (Spaulding et al, 1999). Apoptosis and proliferative 

status are linked, so the inability of senescent cultures to enter cell cycle is a factor in the 

reduced apoptosis (Spaulding et al, 1999). Due to the lack of apoptosis the proportion of T-

lymphocytes with a senescent phenotype may increase (Spaulding et al, 1999) replacing the 

naïve T-lymphocytes, causing the naïve T-lymphocyte repertoire to shrink (Koch et al, 2006). 

Naïve T-lymphocytes are vital in the response to novel antigen therefore the shrinking naïve 

T-lymphocyte repertoire may leave an individual at a greater risk of infection or accumulation 

of CD8+ T-lymphocytes (Koch et al, 2007; Ouyang et al, 2003; Pawelec et al, 2006). The 

proportion of senescent T-lymphocytes in older adults positively correlates with disease 

status (Effros, 2007), the pathogenesis of autoimmune disorders (Effros, 2007), a blunted 

response to influenza (Goronzy et al, 2001), and increased mortality risk (Wikby et al, 2002).  

 

Senescent CD4+ and CD8+ T-lymphocytes are preferentially mobilised to the peripheral 

blood circulation, followed by a subsequent egress from the circulation, in response to 

exercise (Campbell et al, 2008; Simpson et al, 2007; Simpson et al, 2008; Turner et al, 

2010). This preferential influx of cytotoxic senescent CD8+ T-lymphocytes to the circulation 

and subsequently into peripheral tissues is considered important for immunosurveillance. A 

model proposed by Dhabhar et al (2012) suggests that in response to a stressor naïve T-

lymphocytes traffic to lymph nodes where they come into contact with novel antigens 

(Dhabhar et al, 2012). Concomitantly antigen experienced effector and memory T-

lymphocytes traffic to peripheral tissues like the skin, lung or mucosal lining of the gut where 

they encounter familiar antigens (Dhabhar et al, 2012). In agreement with this model, Bosch 

et al (2003) observed a selective mobilisation of T-lymphocytes primed for inflammation in 

response to an acute stressor (Bosch et al, 2003). 
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The percentage of circulating T-lymphocytes with a senescent phenotype at rest is known to 

be influenced by body composition (Tchkonia et al, 2010), age (Tchkonia et al, 2010; Yan et 

al, 2010), maximal aerobic capacity (Spielmann et al, 2011), sex (Yan et al, 2010), and latent 

CMV infection (Pawelec et al, 2009; Turner et al, 2014) but responses to training status, 

increased volume of training or dietary manipulation are unknown.  

 

Latent Herpes viruses 

Prevalent herpes viruses in humans are herpes simplex virus (HSV-1, HSV-2), 

cytomegalovirus (CMV), Epstein-Barr Virus (EBV) and Varicella Zoster Virus (VZV) 

(Simpson, 2011). These viruses are symptomatic on primary infection for example 

chickenpox on primary infection with VZV. The viruses then remain in the host in a latent 

state. Further reactivations of the latent virus can occur during periods of stress, for example 

reactivation of VZV causes shingles. This reactivation of latent viruses as a result of stress 

induces CD8+ T-lymphocyte proliferation (Koch et al, 2006; Koch et al, 2007; Pawelec et al, 

2009). Thus, frequent latent viral reactivation is associated with a greater frequency of 

senescent T-lymphocytes in the periphery (Koch et al, 2007). As a result of persistent viral 

reactivation, excess viral specific T-lymphocytes are not apoptosed post infection because 

they are needed by the host for further reactivation of the latent virus. Alternatively, the 

excess viral specific T-lymphocytes join the memory T-lymphocyte pool taking up ‘immune 

space’ and shrinking the naïve T-lymphocyte repertoire by replacing the antigen 

inexperienced naïve T-lymphocyte population (Simpson, 2011). The mobilisation of 

senescent T-lymphocytes to the peripheral blood circulation and subsequent egress is 

amplified in latent CMV infection (Turner et al, 2010). Acute psychological stress mobilises 

CMV- and EBV-specific effector T-lymphocytes into the blood (Atanackovic et al, 2006). This 

observation suggests that acute exercise may initiate a beneficial feedback loop by 

mobilising senescent T-lymphocytes to the periphery thus freeing ‘immune space’ for 
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occupation by antigen inexperienced naïve T-lymphocytes thus restoring the naïve T-

lymphocyte repertoire that was preoccupied by the viral specific T-lymphocytes (Simpson, 

2011).   

 

The sex difference in herpes viruses has only been investigated in animal inoculation 

models. Male and female mice inoculated with herpes simplex virus 1 (HSV-1) were equally 

susceptible to an infection at rest and post exercise. However, more females survived the 

infection (Brown et al, 2007). The female mice that exercised at moderate intensity had a 

greater number of macrophages resistant to HSV-1 than the male mice (Brown et al, 2004). 

This greater macrophage resistance in the females may be responsible for the difference in 

mortality between the sexes. Although these studies were only carried out in animal models, 

it highlights not only a sex difference, but a sex difference in response to exercise worth 

investigating.  

To summarise, the current exercise immunology literature has produced confusing and often 

contrasting findings. Perhaps more so in the innate immune field due to the vast 

redundancies that occur when responding to a pathogen or a stressor, the speed of the 

response and the pleotropic nature of cytokines for example IL-6. The T-lymphocyte pool at 

rest is known to be influenced by many factors, infection (Mallia et al, 2014), age (Simpson 

et al, 2008), sleep (Dinges et al, 1994), baseline fitness (Spielmann et al, 2011), 

macronutrient intake (Witard et al, 2013), training volume (Witard et al, 2012), body 

composition (Tchkonia et al, 2010), sex (Yan et al, 2010) and latent CMV infection (Pawelec 

et al, 2009; Turner et al, 2013). However the effects of these factors, and the T-lymphocyte 

populations mobilised, in response to exercise are not fully understood, additionally the 

effect of fatty acid supplementation on the T-lymphocyte pool and response to exercise is 

currently unknown.   
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2.1 Abstract 
PURPOSE: Investigate training status and sex effects on the redistribution of senescent and 

naïve T-lymphocytes following acute exercise. METHODS: Sixteen (8 male, 8 female) 

trained (18.3±1.7yrs) soccer players (Tr) and sixteen (8 male, 8 female) untrained 

(19.3±2.0yrs) controls (UTr) performed a treadmill running test to volitional exhaustion. Blood 

lymphocytes were isolated before (Pre), immediately post, and 1-hour post-exercise for 

assessment of cell surface expression of CD28 and CD57 on CD4+ and CD8+ T-lymphocyte 

subsets. Plasma was used to determine Cytomegalovirus (CMV) serostatus. RESULTS: 

Exercise elicited a redistribution of senescent CD4+(F(1,31)=3.53,P<0.05), 

CD8+(F(1,31)=13.4,P<0.05) and naïve CD4+(F(1,31)=7.48,P<0.05), CD8+(F(2,83)=18.94,P<0.05) 

T-lymphocytes. A main effect of training status was observed for senescent 

CD4+(F(1,15)=5.66,P<0.05), CD8+(F(1,15)=8.0,P<0.05) and naïve CD8+(F(1,15)=4.31,P<0.05) T-

lymphocytes: UTr had a higher proportion of senescent and a lower proportion of naïve 

CD8+ T-lymphocytes than Tr. A main effect of sex was observed in senescent 

CD4+(F(1,15)=10.20,P<0.05), CD8+(F(1,15)=20.18,P<0.05) and naïve CD4+(F(1,15)=7.56,P<0.05), 

CD8+(F(1,15)=14.70,P<0.05) T-lymphocytes. Males had a higher proportion of senescent and 

lower proportion of naïve T-lymphocytes than females. A sex-by-training status interaction 

was observed for the senescent (F(1,15)=11.0,P<0.05) and naïve (F(1,15)=8.83,P<0.05) CD4+ 

T-lymphocytes (but not CD8+) with the highest percentage of senescent and lowest 

percentage of naïve T-lymphocytes observed in UTr males. CMV exerted a significant main 

covariate effect in the senescent (F(1,15)=17.76,P<0.05) and naïve (F(1,15)=18.88,P<0.05) 

CD8+ T-lymphocytes but not in the senescent (F(1,15)=0.67,P >0.05) and naïve 

(F(1,15)=1.65,P>0.05) CD4+ T-lymphocytes. CONCLUSION: This study highlights important 

sex and training status differences in the senescent and naïve T-lymphocyte redistribution in 

response to exercise that warrants further investigation.  

 

Keywords: Immunosurveillance; CD4+ T-lymphocytes; CD8+ T-lymphocytes; Trained; 

Untrained.   
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2.2 Introduction 
 

T-lymphocytes that fail to divide in response to antigenic stimulation are considered 

senescent (Brenchley et al, 2003). Despite this loss of novel antigen defence, senescent T-

lymphocytes retain immediate effector functions, such as recognition and killing of virally 

infected cells (Effros, 2004). Antigen-experienced CD4+ and CD8+ effector and memory T-

lymphocytes with a senescent phenotype (Table 1) undergo preferential mobilisation into the 

peripheral blood circulation followed by a subsequent egress from the circulation in response 

to exercise (Campbell et al, 2008; Simpson et al, 2007; Simpson et al, 2008; Turner et al, 

2010). This preferential influx of CD4+ and cytotoxic senescent CD8+ T-lymphocytes to the 

peripheral tissues with retained effector killing functions following exercise is considered 

important for immunosurveillance. A model proposed by Dhabhar et al (2012) suggests that 

in response to a stressor naïve T-lymphocytes traffic to lymph nodes where they come into 

contact with novel antigens. Concomitantly antigen-experienced effector and memory T-

lymphocytes traffic to peripheral tissues like the skin, lung or mucosal lining of the gut where 

they encounter familiar antigens. In agreement with this model Bosch et al (2003) observed 

a selective mobilization of T-lymphocytes primed for inflammation in response to an acute 

stressor (Bosch et al, 2003). 

 

The percentage of circulating T-lymphocytes with a senescent phenotype at rest is known to 

be influenced by body composition (Tchkonia et al, 2010), age (Tchkonia et al, 2010; Yan et 

al, 2010), maximal aerobic capacity (Spielmann et al, 2011), sex (Yan et al, 2010) and latent 

CMV infection (Pawelec et al, 2009; Turner et al, 2013) and infection (Mallia et al, 2014). It 

was recently demonstrated that one week of high-intensity exercise training resulted in a 

blunted mobilisation of effector memory CD8+ T-lymphocytes compared with normal-intensity 

training in trained cyclists (Witard et al, 2012). Given that the trafficking pattern of 

lymphocytes is very sensitive to acute exercise training, characterising how training status, 
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as opposed to an acute bout of high-intensity exercise impacts exercise-induced changes in 

senescent T-lymphocyte redistribution warrants investigation. Given that senescent T-

lymphocytes accumulate at rest in CMV+ individuals (Pawelec et al, 2009; Turner et al, 

2013), and the response of lymphocytes, particularly CD8+ T-lymphocytes, to exercise is 

influenced by CMV infection history (Turner et al, 2010), it is important to consider CMV 

serostatus when investigating differences between groups for senescent T-lymphocyte 

responses to exercise. Although total lymphocyte counts at rest are similar between sexes 

(Giltay et al, 2000), the percentage of T cells is lower in males (Bouman et al, 2004).  

However, it remains unknown whether sex alone or in combination with training status 

influences the redistribution of senescent T-lymphocytes in young adults. 

 

Thus, the primary aim of this study was to characterise the effect of training status and sex 

on the senescent T-lymphocyte response to an acute bout of intense exercise. In addition, 

we simultaneously characterised the redistribution of naïve T-lymphocytes into or out of the 

blood compartment. In accordance with Spielmann et al. (2010), we hypothesized that the 

redistribution of senescent T-lymphocytes into or out of the blood compartment would be 

blunted in trained individuals. Given that previous work reported a greater age-related 

increase in effector memory cells in males vs. females (Yan et al, 2010), we hypothesized 

that a higher proportion of senescent T-lymphocytes would be observed in males vs. 

females at rest and in response to exercise.  
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2.3 Methods 
Participants 

Sixteen well-trained soccer players (eight male [mean ± SD age: 17.8 ± 0.7 yr., height: 180.4 

± 5.3 cm, mass: 74.5 ± 6.0 kg, body fat: 10.7 ± 1.5 %] and eight female [age: 18.9 ± 2.3 yr., 

height: 166.0 ± 8.3 cm, mass: 61.8 ± 7.8 kg, body fat: 18.2 ± 3.4 %]) were compared to a 

group of 16 age-matched untrained controls (eight male [age: 19.4 ± 2.3 yr., height: 180.1 ± 

4.2 cm, mass: 74.4 ± 11.7 kg, body fat: 10.7 ± 4.3 %] and eight female [age: 19.1 ± 1.8 yr., 

height: 169.0 ± 5.3 cm, mass: 59.9 ± 4.2 kg, body fat: 17.5 ± 3.8 %]). All participants were 

non-smokers who were not taking any medication and were free from infectious illness for 6 

weeks. prior to the study. Each participant completed a pre-participation health screen 

questionnaire and provided their written informed consent. Ethical approval was granted by 

the University of Stirling Research Ethics Committee. To be included in the study, it was 

important that untrained active controls were not exercising any more than the UK 

Department of Health recommended healthy living guidelines of 2-3 hours per week 

(Department of Health, Reducing Obesity and Improving Diet, 2011).  

 

Experimental protocol 

Participants arrived at the laboratory in the morning (between 7:30-9:30am) after a >10h fast 

and after 24 h of rest and were instructed to rest supine on a treatment couch for 

approximately 5 min. Next, a cannula was inserted into a forearm vein connected with 

cannula extension tube (Becton Dickson, Oxford, UK). After returning to a seated position, a 

baseline 10mL blood sample was collected in a K2EDTA blood collection tube (Becton 

Dickson, Oxford, UK) that was placed horizontal on a mixer at room temperature for later 

separation of cells.  

Participants then completed an incremental exercise test to volitional exhaustion on a 

motorised treadmill (Powerjog G100). Starting speed was 10km/h for trained males and 
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8km/h for trained females, untrained males and untrained females. These starting speeds 

elicited similar relative exercise intensities for all participants in an attempt to match total 

exercise duration between groups. The incline of the treadmill was set at 1% to best simulate 

outdoor running conditions (Jones and Doust, 1997). Treadmill speed was increased by 

1km/h at 3 min increments. Heart rate (HR) during the test was recorded using Polar 

RS200sd HR monitors (Finland). Rating of perceived exertion (RPE) also was recorded at 

the end of each increment using the category-ratio Borg (CR10) scale (Borg, 1982a; Borg, 

1982b). Participants were verbally encouraged to run to volitional exhaustion. At exhaustion, 

participants straddled the running belt and treadmill speed was decreased to 3.5km/hr for a 

short recovery walk (2 min) whilst a second 10mL blood sample was collected. A final 10mL 

blood sample was collected 1-hour post-exercise. Participants were allowed to consume 

water ad libitum during the test.  

 

Peripheral blood mononuclear cells (PBMC) isolation 

The methods used to isolate peripheral blood mononuclear cells (PBMCs) from whole blood 

have been described elsewhere (Simpson et al, 2006). Briefly, peripheral blood mononuclear 

cells (PBMCs) were isolated from whole blood using density gradient centrifugation 

(Lymphoprep®, Axis-Shield, Dundee, UK). Whole blood was diluted with an equal volume of 

0.9% NaCl (B. Braun, Melsungen AG), and 6 ml of the diluted blood was layered over 3 ml of 

density-gradient media. Samples were then centrifuged for 30 min at 2000rpm at 20°C. 

Following centrifugation, the distinct band formed by the PBMCs was carefully removed and 

washed twice for 10 min at 1100rpm at 20°C, firstly with 0.9% NaCl then with RPMI-1640 

growth medium (Sigma-Aldrich, Ltd, UK). Staining the cells with trypan blue revealed ~98% 

viability for all samples. 

 The isolated PBMCs were then stored in 70% (700µl) foetal bovine serum (Sigma-Aldrich, 

Ltd, UK), 20% (200µl) RPMI-1640 growth medium (Sigma-Aldrich, Ltd, UK) and 10% (100µl) 
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DMSO (Sigma-Aldrich, Ltd, UK) that was added to the samples on ice. Samples were snap 

frozen in liquid nitrogen and stored until later analysis. Plasma was also obtained from whole 

blood centrifugation for later analysis of latent CMV infection serostatus.  

 

Labelling of cell-surface antigens  

Overlapping phenotypes exist for senescent T-lymphocyte identification as shown in Table 1. 

Hence, prior studies have used several different markers for characterisation of the same 

distinct T-lymphocyte subsets. In this study we used the CD57+ CD28- phenotype to identify 

senescent T-lymphocytes and the CD57- CD28+ phenotype to identify naïve T-lymphocytes.  
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PMBC’s were labelled with an APC conjugated anti-CD3 (Clone SK7) or anti-CD4 (Clone 

SK3) monoclonal antibody (mAb), a PerCP Cy-5.5 conjugated anti-CD8 (Clone RPA-T8) 

mAb, a PE conjugated anti-CD28 (Clone CD28.2) mAb and an FITC conjugated anti-CD3 

(Clone MEM-57) or anti-CD57 (Clone NK-1) mAb in preparation for a four-colour direct 

immunofluorescence procedure. Cells were incubated with 50µl of each pre-diluted mAb for 

1-hour at room temperature, protected from the light. The anti-CD28 mAb was purchased 
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from BD Pharmingen (San Jose, CA, USA). The anti-CD3, anti-CD4 and anti-CD8 mAbs 

were purchased from Ebioscience (San Diego, CA, USA) and the anti-CD57 mAb from 

Abcam (Cambridge, UK). Cells also were labelled with each mAb in a one-color 

immunofluorescence procedure to account for spectral overlap and adjust compensation 

settings during flow cytometry analysis. Appropriately conjugated isotype controls also were 

used in each assay to account for background binding of immunoglobulin (Ig). After 

incubation the cell and mAb mixture was vortexed to resuspend the cells in solution before 

analysis using flow cytometry. 

 

Flow cytometry 

Fluorescence of the directly conjugated mAbs bound to the cell surface was detected on an 

Accuri C6 flow cytometer (Accuri, Ann Arbor, MI, USA), equipped with a blue laser emitting 

light at a fixed wavelength of 488 nm and a red laser emitting light at a fixed wavelength of 

640 nm. The cells were identified and electronically gated using the forward and side light-

scatter mode using Accuri C6 (CFlow ® v1) software. Side scatter was used to identify and 

gate the CD3+ cells. The CD4+ or CD8+ populations were then identified in the CD3+ cell 

population. For each sample, 40,000 CD3+/CD4+ or CD3+/CD8+ events were collected for 

analysis. The expression of CD57 and CD28 was assessed on the CD4+ and CD8+ T-

lymphocytes by four colour flow cytometry. The percentage of all CD3+/CD4+ or CD3+/CD8+ 

T-lymphocyte subsets expressing the markers of interest was tabulated for statistical 

analysis. 
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CMV serostatus 

CMV serostatus was defined for all participants. Plasma from baseline blood samples was 

assayed for IgG antibodies to CMV using a commercially available enzyme-linked 

immunosorbent assay (ELISA) and a SpectromaxM2 plate reader (Molecular Devices, CA, 

USA).  

  

Data presentation and statistical analysis 

All data are presented as means ± standard deviation (SD), unless otherwise stated. Data 

were analysed using Mini-tab v-16 software. Physical characteristics and exercise capacity 

were compared between groups by independent sample t-tests. Lymphocyte data were 

analysed using a 3-factor ANCOVA with cell type as the dependent variable and time, 

training status and gender as independent factors with CMV serostatus representing the 

covariate factor. Post-hoc analysis used the Tukey test and 95% confidence interval. Main 

effects and interactions were accepted as statistically significant at the P < 0.05 level. 
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2.4 Results 
 

No differences were observed between trained (n=16) and untrained (n=16) participants 

within each gender group for any physical characteristics. Body fat percentage was 

significantly greater in females compared to males. Females were also shorter and had a 

lower body mass than males. Training load was approximately four-fold greater in trained 

(mean for both males and females: 10.5 ± 1.5 hr/wk) vs. untrained groups (mean for both 

males and females: 2.5 ± 0.9 h/wk, P < 0.05, Table 2). Total exercise duration was 

unmatched between groups. Exercise test duration was significantly shorter in untrained 

females (15.8 ± 4.5 min) compared with all other groups (Table 2). However, no difference 

was observed for the max RPE, max heart rate or final lactate concentration obtained at 

volitional exhaustion between groups.  
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Senescent CD4+ and CD8+ T-lymphocyte redistribution in response to acute exercise 

A significant main effect of exercise was detected for both senescent CD4+ (P < 0.05) and 

CD8+ (P < 0.05) T-lymphocyte subsets. The increase (P < 0.05) in percentage of senescent 

CD8+ T-lymphocytes immediately post exercise subsequently decreased (P < 0.05) 1-hour 

post exercise (Figure 1A). A similar, albeit less pronounced, pattern was observed for the 

senescent CD4+ T-lymphocyte subset, although the increased proportion with exercise did 

not reach statistical significance (P > 0.05). However, the reduction from post-exercise to the 

1-hour post exercise period was significant (P < 0.05) (Figure 1A).   

 

Naïve CD4+ and CD8+ T-lymphocyte redistribution in response to acute exercise 

A significant main effect of exercise was detected for both naïve CD4+ (P < 0.05), and CD8+ 

(P < 0.05), T-lymphocyte subsets. The significant decrease (P < 0.05) in the percentage of 

naïve CD8+ T-lymphocytes immediately post exercise was followed by a significant increase 

(P < 0.05) 1-hour post exercise (Figure 1B). A similar, albeit less pronounced, response was 

observed for the naïve CD4+ T-lymphocyte subset, although the decreased proportion with 

exercise was trending towards significant (P < 0.05). However, the increase from post-

exercise to the 1-hour post exercise period was significant (P < 0.05) (Figure 1B). 
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Effect of training status on senescent and naïve CD4+ and CD8+ T-lymphocyte redistribution 

in response to acute exercise  

There was a main effect of training status on the senescent CD4+ (P < 0.05) and CD8+ (P < 

0.05) T-lymphocyte subsets, whereby overall, the proportion of senescent T-lymphocytes 

was higher in UTr vs. Tr (Figure 2). There was a main effect of training status on the naïve 

CD8+ (P < 0.05) T-lymphocyte subset but not the naïve CD4+ T-lymphocyte subset (P > 

0.05). Overall, the proportion of naïve CD8+ T-lymphocytes was lower in the UTr vs. Tr. No 

exercise × training status interaction (P > 0.05) was observed.   
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 Effect of sex on senescent and naïve CD4+ and CD8+ T-lymphocyte redistribution in 

response to acute exercise  

There was a main effect of sex on the senescent CD4+ (P < 0.05) and CD8+ (P < 0.05), T-

lymphocyte subsets, whereby the overall proportion of senescent T-lymphocytes was higher 

in males vs. females (Figure 3).  

 

A significant sex × training status interaction was observed on the senescent CD4+ (P < 

0.05) whereby the proportion of senescent CD4+ T-lymphocytes was significantly higher in 

the UTr males compared to all other groups (Table 3). No sex × training status interaction 

was observed on the senescent CD8+ T-lymphocyte subset (P > 0.05).  
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There was a main effect of sex on the naïve CD4+ (P < 0.05) and CD8+ (P < 0.05) T-

lymphocyte subsets, whereby the overall proportion of naïve T-lymphocytes was lower in the 

males vs. females (Figure 3). A significant sex × training status interaction was observed on 

the naïve CD4+ (P < 0.05) T-lymphocyte subset, whereby the proportion of naïve CD4+ T-

lymphocytes was lower in the UTr males compared to all other groups. In females, no 

difference in senescent and naïve T-lymphocyte subsets was observed between the T and 

UTr groups (Table 3).  
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CMV serostatus status  

Twenty-five per cent of the untrained group was defined as positive for CMV. Fifty-six per 

cent of the trained group was defined as positive for CMV. CMV serostatus was evenly 

distributed between the sexes, forty-four per cent of the female and thirty-eight per cent of 

the male group was defined as positive for CMV. Covariate analysis revealed CMV to be a 
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significant covariate for both senescent (P < 0.05) and naïve (P < 0.05) CD8+ T-lymphocyte 

subset redistribution, but not for senescent (P > 0.05) or naïve (P > 0.05) CD4+ T-

lymphocyte redistribution. 
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2.5 Discussion 
 

This study investigated the influence of training status and sex on the redistribution of 

senescent and naïve CD4+ and CD8+T-lymphocytes in response to an acute bout of 

exhaustive treadmill exercise. We observed that the redistribution of senescent CD4+ and 

CD8+T-lymphocytes was lower in the trained compared with untrained group. Conversely, 

the redistribution of naïve CD8+T-lymphocytes was higher in the trained compared to the 

untrained group. In addition, irrespective of training status, the redistribution of senescent 

CD4+ and CD8+ T-lymphocytes was lower in females compared with males. Naïve CD4+ and 

CD8+ T-lymphocyte redistribution mirrored the senescent response. Untrained males, in 

particular, appeared to have a higher proportion of senescent, and a concomitant lower 

proportion of naïve CD4+T-lymphocytes at rest and in response to exercise. In the senescent 

and naïve CD8+ T-lymphocyte subsets, CMV serostatus was a significant covariate 

indicating that a latent CMV infection influences the effect of training status and sex on the 

redistribution of senescent and naïve CD8+ T-lymphocytes. However, this observation must 

be interpreted with caution due to the small number of CMV positive subjects in the sub-

groups, in particular the 25% in the untrained group is equivalent to four of sixteen subjects. 

 

We have demonstrated that in males training status influences the proportion of senescent 

T-lymphocytes at rest and redistribution of senescent T-lymphocytes in response to acute 

exercise. A previous study demonstrated that, at rest, participants with a high maximal 

aerobic capacity exhibited more naïve CD8+ T-lymphocytes and less senescent CD4+ and 

CD8+ T-lymphocytes, compared to a group with a lower maximal aerobic capacity 

(Spielmann et al, 2011). However, maximal aerobic capacity is not an accurate measure of 

training status and resting blood measurements do not indicate how senescent or naïve T-

lymphocytes respond to exercise. Accordingly, the present study observed lower senescent 

CD4+ and CD8+ T-lymphocytes, and higher naïve CD8+ T-lymphocytes at rest and in 
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response to exercise in trained compared to untrained participants. Latent CMV infection 

status does not appear to impact the senescent or naïve CD4+ T-lymphocyte response to 

exercise. This is not unexpected since it has been previously reported that CD4+ T-

lymphocyte responses to exercise are not influenced by CMV serostatus (Turner et al, 

2010). It is also well known that the CD8+ T-lymphocyte subset is more responsive to 

exercise than the CD4+ subset (Anane et al, 2009; Campbell et al, 2009; Simpson et al, 

2007; Simpson et al, 2008). Thus, it would appear that exercise training for competitive 

soccer reduces the redistribution of senescent CD4+ and CD8+ T-lymphocytes and increases 

the redistribution of naïve CD8+ T-lymphocytes in response to exercise, independent of CMV 

serostatus.  

 

Our observation of a blunted senescent T-lymphocyte response, together with an increased 

naïve T-lymphocyte response to exercise in trained compared to untrained, lend support to 

the theory that regular exercise training mobilizes senescent T-lymphocytes and thus frees 

up ‘immune space’ for naïve T-lymphocytes (Simpson, 2011). In response to exercise, 

senescent T-lymphocytes are mobilized and subsequently egress to the peripheral tissues 

where they experience a proapoptotic environment (Kruger et al, 2008). Simpson et al 

(2011) propose a negative feedback loop that controls the peripheral T-lymphocyte numbers. 

Hence, after senescent T-lymphocytes undergo apoptosis, peripheral T-lymphocyte numbers 

are low. The subsequent feedback loop increases the output of naïve T-lymphocytes from 

the thymus and thus restores the peripheral T-lymphocyte pool. If the feedback loop were to 

be apparent, it would occur more frequently in trained participants, who undergo regular 

bouts of exercise. While this is not a widely accepted theory and further investigation is 

warranted, our data do provide support for this theory.  

Another novel observation in this study was that males exhibited a greater proportion of 

senescent CD4+ and CD8+ T-lymphocytes at rest and in response to exercise than females. 
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Conversely males exhibited a lower proportion of naïve CD4+ and CD8+ T-lymphocytes at 

rest and in response to exercise. Exercise duration for the trained females was the same as 

the trained males and untrained males. Furthermore, absolute exercise intensity was the 

same for trained females and untrained females and groups were similar in age. Hence, 

differences in the proportion of senescent and naïve CD4+ and CD8+ cells at rest and in 

response to exercise observed herein do not appear to be attributed to age differences. 

 

Alternatively, body composition may be a salient factor to explain the sex-differences in 

senescent and naïve T lymphocytes. Indeed, a higher body fat percentage has been 

associated with an increased proportion of senescent T-lymphocytes (Tchkonia et al, 2010). 

However, in the present study the opposite association was observed whereby males 

exhibited greater proportions of senescent T-lymphocytes (both CD4+ and CD8+) and a 

lower body fat percentage. Hence, these data suggest that body composition is likely only an 

important factor in the redistribution of senescent T-lymphocytes within, rather than between 

sexes. Therefore, sex-differences in the redistribution of senescent and naïve CD4+ and 

CD8+ T-lymphocytes must be attributed to another, yet to be determined, factor, possibly 

contributing to the sex- specific differences observed in autoimmune and inflammatory 

diseases like rheumatoid arthritis (Tengstrand et al, 2004), asthma, cystic fibrosis and 

chronic obstructive pulmonary disease (Tam et al, 2011).  

 

Speculatively, the sex-difference in T-lymphocyte redistribution could be explained by 

hormones, namely oestrogen concentrations. T-lymphocytes are known to express 

oestrogen receptors and the CD8+ T-lymphocyte subset binds oestrogen with high affinity 

(Cutolo et al, 1995). Indeed, cell culture studies reveal that in the presence of 17 B-estradiol 

(E2), the ratio of activated CD4+/CD8+ human T-lymphocytes is decreased (Athreya et al, 

1993). Moreover, the promoter region of interferon gamma (IFN-y) appears to be positively 
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modulated by oestrogen (Betz and Fox, 1991). In turn, IFN-y is produced by senescent T-

lymphocytes and has been reported to up-regulate the enzyme telomerase in lymphoid cell 

lines (Xu et al, 2000). Hormones change cyclically with the menstrual cycle (Oertelt-Prigione, 

2012). Reductions in CD4+ T-lymphocyte number have been observed in the luteal 

compared to early follicular phase of the cycle (Lee et al, 2010). It is unknown what influence 

cycling hormones have on senescent T-lymphocytes. Interestingly, we observed no 

difference in the redistribution of senescent T-lymphocytes in response to exercise between 

trained and untrained females, whereas a difference was observed between trained and 

untrained males. This observation suggests a sex-specific effect of training status on the 

redistribution of senescent T-lymphocytes and supports the notion that oestrogen may 

provide a preventative mechanism against T-lymphocyte telomere shortening in females that 

possibly contributed to the lower proportion of senescent CD4+ and CD8+ T-lymphocytes at 

rest and in response to exercise.  However, without assessment of menstrual cycle phase or 

hormonal responses, this supposition cannot be confirmed. 

 

Stress hormones influence the differential redistribution of T-lymphocytes (Landmann, 1992). 

Epinephrine and norepinephrine mobilise T-lymphocytes via activation of B adrenergic 

receptors located on the cell surface of T-lymphocytes (Dhabhar et al, 2012). Due to the 

descriptive nature of this study design, no measurements of stress hormone (i.e., 

epinephrine and cortisol) concentrations in blood were collected. Previous work has 

demonstrated a smaller epinephrine response to submaximal exercise in trained compared 

to untrained individuals (Hong et al, 2005; Kjaer et al, 1985; Vinten and Galbo, 1983). A 

lower epinephrine response in trained would be expected to be associated with a lower 

redistribution of senescent cells into the blood. In the present study, it is worth highlighting 

that one group (untrained females) ran for a significantly shorter duration than the other 

groups. However, despite a shorter running duration, all groups exercised to volitional 

exhaustion and there was no difference between groups for maximum heart rate and final 
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lactate concentration. At maximal exercise intensity, we would expect trained participants to 

have a higher epinephrine response (Kjaer et al, 1985). Thus, the present data imply, albeit 

indirectly, that training status may override the impact of stress hormones on the 

redistribution of senescent cells in response to exercise. 

 

To conclude, the redistribution of senescent and naïve T-lymphocytes is influenced by 

training status and sex. The sex-differences in lymphocyte redistribution cannot be fully 

explained by our dataset. Differences between the sexes observed in the incidence of 

various autoimmune and inflammatory diseases supports the lymphocyte redistribution sex- 

differences we observed. However, we speculate that training status does not influence the 

redistribution of senescent T-lymphocytes in females due to inherent sex-differences in 

oestrogen concentration.  
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3.1 Abstract 
PURPOSE: To investigate the T-lymphocyte response to a period of increased volume 

training in trained females compared to a period of habitual activity in female controls 

METHODS: Thirteen trained female (19.8 ± 1.9 yrs) soccer players (Tr) were monitored 

during a 2 week long intensified training period and thirteen female untrained (20.5 ± 2.2 yrs) 

controls (UTr) were monitored during 2 weeks of habitual activity. Training/habitual activity 

and diet was monitored during the 2 week period. Blood lymphocytes were isolated before 

and after the 2 week period for assessment of cell surface expression of CD28 and CD57 on 

CD4+ and CD8+ T-lymphocytes and γδ+ T-lymphocyte subsets. Plasma was used to 

determine Cytomegalovirus (CMV) serostatus. RESULTS: Training was increased by 39% in 

the Tr group during the intensified training period and the Tr did significantly more physical 

activity than the UTr. The total energy, carbohydrate and protein intake was greater in the Tr 

compared to the UTr. The number of CD3+ T-lymphocytes was greater in the Tr compared to 

the UTr (P<0.05). No significant main effects (P>0.05) were observed for the proportion of 

senescent (CD28- CD57+) or naïve (CD28+ CD57-) CD8+ or CD4+ T-lymphocytes between 

the Tr and the UTr. The proportion of CD4+T-lymphocytes was greater in the UTr compared 

to the Tr (P<0.05). The proportion of γδ+ T-lymphocytes was greater in the Tr compared to 

the UTr (P<0.05). The CD4+:CD8+ ratio was greater in the UTr compared to the Tr (P<0.05). 

8% of the UTr were defined as positive for CMV. 23% of the Tr were defined as positive for 

CMV. Covariate analysis revealed CMV to be a significant covariate in the analysis of CD8+ 

(P<0.05), CD28+ CD8+ (P<0.05) and naïve CD8+ (P<0.05) T-lymphocyte cell numbers. 

However, CMV was not a significant covariate in the analysis of T-lymphocyte proportions. 

CONCLUSION: The increased volume training period had no effect on T-lymphocyte 

populations in Tr females, and T-lymphocyte populations also did not change with 2 weeks 

of habitual exercise in UTr. Differences in the proportions of γδ+, CD4+ and the ratio of 

CD4+:CD8+ T-lymphocytes observed between the Tr and UTr warrants further investigation. 

 

Keywords: CD4+ T-lymphocytes; CD8+ T-lymphocytes; Trained; Untrained; Diet; CMV 

infection; γδ+ T-lymphocytes.   
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 3.2 Introduction 

Senescent T-lymphocytes are mitotically older T-lymphocytes that have undergone multiple 

rounds of division, and thus fail to respond to antigenic stimulation (Brenchley et al, 2003). 

However, senescent T-lymphocytes remain effective killers of virally infected cells (Effros, 

2004). It has recently been observed that seven days of intensified overload training results 

in a blunted mobilisation of effector memory CD8+ T-lymphocytes in trained males (Witard et 

al, 2012). However, intensified training had no effect on resting T-lymphocytes in a trained 

population during the cross-over design (Witard et al, 2012). This study by Witard et al had 

no untrained group for comparison, but it seems clear that an increase in volume and 

intensity of training modulated the immune response to exercise in trained males when fed a 

carbohydrate restricted diet (Witard et al, 2012).  

 

Further to this, we have recently shown that the redistribution of senescent T-lymphocytes in 

response to exercise is influenced by sex and training status (Brown et al, 2013). At rest and 

in response to exercise the proportion of senescent T-lymphocytes was greater in untrained 

males compared to trained males. However, there were no differences at rest or in response 

to exercise between trained and untrained females. As well as a specific sex effect another 

potential explanation for this discrepancy in observations between sexes is the greater 

difference in weekly training volume between trained and untrained males (12 hrs/wk vs.3 

hrs/wk, respectively) compared to the difference between trained and untrained females 

(9hrs/wk vs. 2hrs/wk, respectively) in our previous work. The higher training volume in the 

trained males could account for the lower senescent T-lymphocytes at rest compared with 

untrained males. Regular mobilisation and egress of these cells to a proapoptotic 

environment (Kruger et al, 2008) in response to exercise could drive the resting proportions 

down in a trained population. Therefore, if training volume is an explanation we would expect 

to see lower senescent T-lymphocyte proportions in a trained group after a period of 
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intensified training. An influence of training status has been recently corroborated by Teixeira 

and colleagues who observed a greater proportion of effector memory T-lymphocytes in an 

untrained population compared to trained swimmers (Teixeira et al, 2014). Therefore, to 

confirm whether there is a training volume effect on senescent T-lymphocyte proportions it 

seems prudent to compare trained females who have undergone a period of intensified 

training (increased volume and intensity) with a control group of untrained females. 

 

To fully identify any training status difference, or explain any lack thereof, it is also of interest 

to examine other exercise responsive cells with similar properties to senescent and effector 

memory T-lymphocytes, for example gamma delta (γδ+) T-lymphocytes. γδ+ T-lymphocytes 

have high cytotoxic capabilities, tissue homing potential, and a capacity for rapid innate-like 

target recognition. They are also preferentially mobilised following acute exercise, 

psychological stress and β-agonist infusion (Anane et al, 2009), indicating that they provide 

protection in situations where tissue damage and antigen exposure are more likely to occur 

(Anane et al, 2009; Anane et al, 2010). Investigating senescent T-lymphocytes alongside γδ+ 

T-lymphocytes in trained and untrained females will hopefully provide a greater 

understanding of previously observed training status differences in immune response. 

 

The aim of this study was to examine the effects of 14-days of increased volume training on 

the composition of the blood T-lymphocyte pool in highly trained soccer players. We 

hypothesized that the training period would result in marked reductions in the proportions of 

senescent blood T-lymphocytes in soccer players with no change in controls.  
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3.3 Methods 
Subjects 

A group of 13 well trained female soccer players [mean ± SD age: 19.8 ± 1.9 yr., height: 

162.7 ± 5.7 cm, mass: 60.9 ± 8.6 kg, body fat: 18.2 ± 3.4 %] were monitored before and after 

a two week long intensified training camp and compared to 13 age matched untrained 

females [age: 20.5 ± 2.2 yr., height: 169.0 ± 6.5 cm, mass: 64.8 ± 6.7 kg, body fat: 25.1 ± 4.1 

%] monitored during habitual living for two weeks. All subjects were non-smokers who were 

not taking any medication and were free from infectious illness for 6 wk. prior to the study. 

Each participant completed a pre-participation health screen questionnaire and provided 

their written informed consent. Ethical approval was granted by the University of Stirling 

Research Ethics Committee. To be included in the study it was important that the untrained 

group were not exercising any more than the recommended healthy living guidelines of 2-3 

hours per week.  

 

Experimental protocol 

All participants visited the laboratory on two separate occasions. The first visit was before 

the training camp for the trained females, or before the two weeks of monitored activity for 

the untrained females. This visit consisted of the completion of a pre-screening 

questionnaire followed by measurements of height, body mass and body fat percentage 

(using bioelectrical impedance analysis) and a 10ml fasted blood sample. The second visit 

consisted of a second 10ml blood sample obtained within two days after the training camp 

for the trained or immediately after the two weeks of recorded activity for the untrained. On 

both visits the participants arrived at the laboratory in the morning (between 7:30-9:30am) 

after a >10h fast and after 24 h of rest and were instructed to rest supine on a treatment 

couch for approximately 5 min before a baseline 10mL blood sample was collected from a 

forearm vein. The blood sample was collected into a K2EDTA blood collection tube (Becton 
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Dickson, Oxford, UK) and placed horizontally on a mixer at room temperature for later 

separation of cells.  

 

Training camp monitoring 

Heart rate (HR) data was used to monitor intensity and volume of training during every 

session throughout the training camp. This was completed using the Activio team sport HR 

system (Activio AB, Sweden). This system enabled simultaneous monitoring of HR data for 

multiple players during each session of the training camp. Twenty sessions in total were 

monitored including field based training (12 sessions), pool based recovery (2 sessions), 

competitive matches (2 matches) and strength sessions (4 sessions). Not all players 

participated in the full seventy minutes of match-play in each match situation and thus HR 

data for any thirty-five minute half spent on the pitch was used for the analysis of results. 

Maximum HR was assessed prior to the training camp. Subjects wore a numbered HR belt 

around their chest (directly contacting the skin) for the duration of each session. Data was 

recorded with a 5-s sample rate throughout the session, and included any time spent 

warming up and cooling down. Reports were then created on an individual basis at a later 

stage once the HR values associated with each individuals training zones had been 

determined. 

 

Determination of Intensity zones and training load 

Within the two week period after the training camp (to allow for recovery), each trained 

participant completed an incremental exercise test to volitional exhaustion on a motorised 

treadmill (Powerjog G100). Starting speed was 8km/h. The incline was set at 1% to best 

simulate outdoor running conditions (Jones and Doust, 1997). Treadmill speed was 

increased by 1km/h at 3 min intervals. At the end of each 3 min increment blood lactate was 
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measured. Heart rate (HR) during the test was recorded using Polar RS200sd HR monitors 

(Finland). Rating of perceived exertion (RPE) also was recorded at the end of each 

increment using the category-ratio Borg (CR10) scale (Borg, 1982a; Borg, 1982b). 

Participants were verbally encouraged to run to volitional exhaustion. At exhaustion, 

participants straddled the running belt and treadmill speed was decreased to 3.5km/hr for a 

short recovery walk (2 mins). Participants were allowed to consume water ad libitum during 

the test.  

By plotting blood lactate against work intensity, a specific lactate curve was determined and 

lactate threshold (LT1) and lactate turn-point (LT2) markers estimated for each subject using 

a 3 part linear regression. Through knowledge of lactate markers and use of the Activio 

computer software package, the HR values associated with LT1 and LT2 were entered for 

each specific subject enabling HR data to be separated into time spent in Z1, Z2 and Z3 for 

each session. The percentage of time spent in each intensity zone for every subject was 

then calculated for all training sessions during the camp. Time spent in each intensity zone 

was then converted into a training impulse (TRIMP) value using the calculation.  

Total TRIMP= (Frequency * Duration)* Intensity 

Intensity was given a number to signify intensity zone, 1 for low intensity (Z1), 2 for moderate 

intensity (Z2) and 3 for vigorous intensity (Z3).  

 

Determination of physical activity intensity and activity load during habitual exercise period 

Physical activity in the untrained females was monitored during two weeks of habitual activity 

using the long form, self-administered version of the international physical activity 

questionnaire (IPAQ) detailed elsewhere (Craig et al, 2003). The IPAQ long form evaluates 

habitual physical activity performed in everyday life in the four domains, namely leisure, 

work, transport and domestic/gardening. Participants were asked to report frequency and 
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duration of vigorous, moderate and low intensity activities lasting for more than 10 minutes. 

To allow for comparison with the trained activity levels, the untrained leisure time activity was 

broken down into intensity zones and allocated a corresponding number. 1 for low, 2 for 

moderate intensity and 3 for vigorous intensity. TRIMP values were then calculated using the 

same calculation. 

 

Dietary analysis 

During the training camp the players recorded food intake for four days, two training days, 

one match day and one recovery day, using portable electronic scales (CS series, Pine 

Brook, NJ, USA). During the two weeks of monitored activity the untrained females recorded 

food intake for three days, two week days and one weekend day using the same type of 

portable electronic scales. Energy, macronutrient, and micronutrient intake was then 

analysed using Microdiet software (Salford, UK). 

 

Peripheral blood mononuclear cells (PBMC) isolation 

The methods used to isolate peripheral blood mononuclear cells (PBMCs) from whole blood 

have been described elsewhere (Simpson et al, 2006). The isolated PBMCs were then 

stored in 70% (700µl) foetal bovine serum (Sigma-Aldrich, Ltd, UK), 20% (200µl) RPMI-1640 

growth medium (Sigma-Aldrich, Ltd, UK) and 10% (100µl) DMSO (Sigma-Aldrich, Ltd, UK) 

that was added to the samples on ice. Samples were snap frozen in liquid nitrogen and 

stored until later analysis. Plasma was also obtained from whole blood centrifugation for later 

analysis of latent CMV infection serostatus.  
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Labelling of cell-surface antigens  

Overlapping phenotypes exist for senescent T-lymphocyte identification as shown in Chapter 

2. Hence, prior studies have used several different markers for characterisation of the same 

distinct T-lymphocyte subsets. In this study we used the CD57+ CD28- phenotype to identify 

senescent T-lymphocytes and the CD57-CD28+ phenotype to identify naïve T-lymphocytes.  

PMBC’s were labelled with an APC conjugated anti-CD3 (Clone SK7) or anti-CD4 (Clone 

SK3) monoclonal antibody (mAb), a PerCP Cy-5.5 conjugated anti-CD8 (Clone RPA-T8) 

mAb, a PE conjugated anti-CD28 (Clone CD28.2) or anti-γδ (Clone B1.1) mAb and a FITC 

conjugated anti-CD3 (Clone MEM-57) or anti-CD57 (Clone NK-1) mAb in preparation for a 

four-colour direct immunofluorescence procedure. Cells were incubated with 50µl of each 

pre-diluted mAb for 1-hour at room temperature, protected from the light. The anti-CD28 

mAb was purchased from BD Pharmingen (San Jose, CA, USA). The anti-CD3, anti-CD4, 

anti-γδ and anti-CD8 mAbs were purchased from Ebioscience (San Diego, CA, USA) and 

the anti-CD57 mAb from Abcam (Cambridge, UK). Cells also were labelled with each mAb in 

a one-color immunofluorescence procedure to account for spectral overlap and adjust 

compensation settings during flow cytometry analysis. Appropriately conjugated isotype 

controls also were used in each assay to account for background binding of immunoglobulin 

(Ig). After incubation the cell and mAb mixture was vortexed to resuspend the cells in 

solution before analysis using flow cytometry. 
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Flow cytometry 

Fluorescence of the directly conjugated mAbs bound to the cell surface was detected on an 

Accuri C6 flow cytometer (Accuri, Ann Arbor, MI, USA), equipped with a blue laser emitting 

light at a fixed wavelength of 488 nm and a red laser emitting light at a fixed wavelength of 

640 nm. The cells were identified and electronically gated using the forward and side light-

scatter mode using Accuri C6 (CFlow ® v1) software. Side scatter was used to identify and 

gate the CD3+ cells. The CD4+, CD8+ and γδ+ populations were then identified in the CD3+ 

cell population. For each sample, 40,000 CD3+/CD4+, CD3+/CD8+ or CD3+/ γδ+ events were 

collected for analysis. The expression of CD57 and CD28 was assessed on the CD4+ and 

CD8+ T-lymphocytes by four colour flow cytometry. The percentage of all CD3+/CD4+ or 

CD3+/CD8+ T-lymphocyte subsets expressing the markers of interest was tabulated for 

statistical analysis. 

 

CMV serostatus 

CMV serostatus was defined for all participants. Plasma from baseline blood samples was 

assayed for IgG antibodies to CMV using a commercially available enzyme-linked 

immunosorbent assay (ELISA) and a SpectromaxM2 plate reader (Molecular Devices, CA, 

USA).  

 

Data presentation and statistical analysis 

All data are presented as means ± standard deviation (SD), unless otherwise stated. 

Physical characteristics and exercise capacity were compared between groups by 

independent sample t-tests. Lymphocyte data were analysed using a 3 factor ANCOVA with 

cell type as the dependent variable and sample time and training status as independent 

factors. CMV serostatus was the covariate. Post-hoc analysis used the Tukey test and 95% 
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confidence. Main effects and interactions were accepted as statistically significant at the 

p<0.05 level. Data were analysed using Mini-tab v-16 software.  
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3.4 Results 
Physical characteristics  

The trained and untrained groups were age matched and there was no difference in body 

mass (P>0.05), but the untrained were taller 169.0 ± 6.5cm than the trained 162.7 ± 5.7cm 

(P<0.05), and had significantly higher body fat percentage than the trained (25.1 ± 4.1% 

compared to 18.2 ± 3.4%; P<0.001).   

Physical activity monitoring 

Prior to the intensified training camp participants in the trained group routinely trained for 9 

hr/wk. During the study training volume was increased to 12 hr/wk. Over the duration of the 

study the time spent in low, moderate and vigorous physical activity, measured in minutes 

and converted to total TRIMP score, differed between groups (Table 1). Total training time 

as well as time spent in low and vigorous activity was higher in the trained compared to the 

untrained (P<0.05). However, time in moderate intensity activity was not significantly 

different between the trained and untrained (P>0.05). When converted to total TRIMP scores 

the trained total TRIMP score was significantly greater (P<0.05) than the untrained. 

 

 Untrained Trained P-value 

Total (hrs/wk) 3.6 ± 5.8 12.5 ± 3.1 <0.05 

Low (min) 131 ± 274 618 ± 74 <0.01 

Moderate (min) 87 ± 74 96 ± 80 >0.05 

Vigorous (min) 0 ± 0 36 ± 31 <0.05 

Total TRIMPS 306 ± 303 918 ± 325 <0.01 

 

Table 1: Physical activity volume and intensity recorded during 2 weeks of 1 
habitual activity (untrained group) or 2 weeks of increased volume training 2 
(trained group). Values are mean  SD 3 
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Dietary analysis 

Energy intake 

The overall mean energy intake in the trained group for the recorded days was 3077 ± 574 

Kcal/day. The untrained group overall mean energy intake was 1741 ± 483 Kcal/day and 

was significantly lower than the trained (P<0.05, Table 2).  

Table 2: Dietary intake Table 2: Values are means ± SD of macronutrient intake per day or 

percent of total energy intake in trained during the increased volume training period and 

untrained during the period of activity monitoring.  

 Trained % Energy 

intake 

Untrained % Energy 

intake 

P-value 

Energy intake 

(Kcal/day) 

3077 ± 716  1741 ± 603  <0.01 

Carbohydrate 

(g/day) 

Carbohydrate 

(g/kg/day) 

547 ± 169 

 

9.3 ± 3.3 

67 261 ± 107 

 

4.1 ± 1.8 

57 <0.01 

 

<0.01 

Protein (g/day) 

Protein (g/kg/day) 

104 ± 25 

1.8 ± 0.5 

13 67 ± 24 

1.0 ± 0.4 

16 <0.01 

<0.05 

Fat (g/day) 67 ± 27 20 52 ± 26 27 >0.05 

 

 

  



Chapter 3                                                                                                          Study 2  

 

104 
 

Macro-nutrients 

The overall mean carbohydrate (CHO) intake for the recorded days in the trained group was 

9.3 ± 2.9 g·kg-¹·day-¹. The untrained group overall mean CHO intake was significantly lower 

at 4.1 ± 1.5 g·kg-¹·day-¹ (P<0.05).  

The trained overall mean protein intake was 1.8  0.5 g·kg-¹·day-¹. The untrained overall 

mean protein intake was significantly less at 1.0  0.4 g·kg-¹·day-¹ (P<0.05). Overall there 

was no significant difference in total fat intake between the trained (67 ± 20 g/day) and the 

untrained (52 ± 18 g/day) (P>0.05).  When the constituent fats are examined, saturated 

(SFA) fat intake was not significantly different between trained 35% (24 ± 8g/day) and 

untrained 37% (19 ± 7g/day) (P>0.05). However, the trained consumed significantly more 

monounsaturated (MUFA) fats (35% (24 ± 8g) vs 30% (16 ± 6g)) and polyunsaturated 

(PUFA) fats (30% (20 ± 8) vs 16% (8 ± 6g) ) than the untrained (P<0.05). SFA, MUFA and 

PUFA data may be underestimated due to incomplete data in the McCance and 

Widdowson’s reference database for all foods. As a result the total fat reported may not 

match the breakdown of SFA, MUFA and PUFA reported.  

 

Micro-nutrients  

The trained and untrained showed no significant difference in intake of the micro-nutrients 

examined: iron (22 ± 8mg and 17 ± 18), calcium (985 ± 221mg and 874 ± 364) and vitamin D 

(4 ± 3µg and 4 ± 7µg) intake (P>0.05). However, the trained consumed more vitamin C than 

the untrained (1269 ± 693 mg vs. 371 ± 544 mg) during the dietary analysis period, 

respectively.  
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CD3+ T-lymphocytes 

All CD3+ T-lymphocyte population cell counts are presented in Table 3. A significant main 

effect of training status was observed in the CD3+ population. The number of CD3+ T-

lymphocytes was greater in the trained compared to the untrained (P<0.05). Time was not a 

significant main effect (P>0.05), therefore trained had more CD3+ T-lymphocytes than 

untrained irrespective of the intensified training camp intervention. No interaction between 

training status and time was observed (P>0.05).  



Chapter 3                                                                                                          Study 2  

 

106 
 

 

 

 

  



Chapter 3                                                                                                          Study 2  

 

107 
 

Senescent and naïve T-lymphocytes 

No significant main effect of time (P>0.05), training status (P>0.05) or any time-by-training 

status interactions (P>0.05) were observed for the proportion of senescent (CD28- CD57+) or 

naïve (CD28+ CD57-) CD8+ or CD4+ T-lymphocytes (Figure 1 and 2).  
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CD4+ T-lymphocytes  

A significant main effect of training status was observed on the proportion of CD4+T-

lymphocytes to total lymphocytes. The proportion of CD4+T-lymphocytes was greater in the 

untrained compared to the trained (P<0.05). The mean trained was 56.5% and the mean 

untrained was 61.2% with a mean difference of 4.7% (-8.7<-4.7<-0.7). However, time was 

not a main effect (P>0.05) and no time-by-training status interaction (P>0.05) was observed 

on the proportion of CD4+T-lymphocytes (Figure 3).  

 

γδ+ T-lymphocytes  

A significant main effect of training status was observed on the proportion of γδ+ T-

lymphocytes. The proportion of γδ+ T-lymphocytes was greater in the trained compared to 

the untrained (P<0.05). The mean trained was 10.2% and the mean untrained was 7.9% 

with a mean difference of 2.3% (0.1<2.3<4.5). However, time was not a main effect (P>0.05) 

and there was also no time-by-training status interaction (P>0.05) observed on the γδ+ T-

lymphocytes (Figure 4). 
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CD4+:CD8+ ratio 

A significant main effect of training status was observed on the ratio of % CD4+T-

lymphocytes to % CD8+ T-lymphocytes (CD4+:CD8+). The CD4+:CD8+ ratio was greater in 

the untrained compared to the trained (P<0.05). Time was not a main effect (P>0.05). No 

time-by-training status interaction (P>0.05) was observed on the CD4+:CD8+ (Figure 5). 
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CMV serostatus 

Eight per cent of the untrained group was defined as positive for CMV. Twenty-three per 

cent of the trained group was defined as positive for CMV. Covariate analysis revealed CMV 

to be a significant covariate in the analysis of CD8+ (P<0.05), CD28+ CD8+ (P<0.05) and 

naïve CD8+ (P<0.05) T-lymphocyte cell numbers. Participants with CMV positive serostatus 

had increased numbers of CD8+, CD28+ CD8+ and naïve CD8+ T-lymphocytes. However, 

CMV was not a significant covariate in the analysis of T-lymphocyte proportions.  
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3.5 Discussion 
 

This study investigated resting T-lymphocyte populations in a trained female group before 

and after a period of increased training volume compared to an untrained female group 

before and after a period of habitual physical activity. We observed that physical activity 

levels were 3-fold greater in the trained group compared to the untrained group for the 

duration of the study. The training volume in the trained group was increased by 39% from 

the normal weekly training volume during the study. The increase in training volume 

succeeded in matching that of trained males in our previously reported study (Brown et al, 

2013) in which we observed a greater proportion of senescent T-lymphocytes at rest in 

untrained males compared to trained males. The present study highlights that a two week 

period of increased training volume has no effect on resting proportions of senescent T-

lymphocytes in trained females. However, we did observe a lower proportion of CD4+ T-

lymphocytes at rest in the trained group compared to the untrained group. Additionally, a 

higher proportion of γδ+ T-lymphocytes was observed at rest in the trained group compared 

to the untrained group.  

 

Total lymphocyte numbers were greater in the trained compared to the untrained for CD3+, 

CD8+, CD8+CD28+, naïve CD8+ (CD8+CD28+CD57-), intermediate CD8+ (CD8+CD28+CD57+) 

and γδ+ T-lymphocytes. This appears to be driven primarily by the fact that trained 

participants tended to have more T-lymphocytes at rest than those who were untrained (1.6 

± 0.5 x109/L vs 1.3 ± 0.3 x109/L respectively, P<0.05). Therefore analysis was carried out on 

the lymphocyte proportions as a percentage of total CD3+ T-lymphocytes to allow for a fair 

comparison within and between groups to be made. In addition, participants who were CMV 

positive had greater numbers of resting CD8+, CD8+CD28+ and CD8+CD28+CD57- T-

lymphocytes compared to CMV negative participants. But with CMV not being a significant 
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covariate for the T-lymphocyte proportions this potential confounding variable drops out of 

consideration. 

No difference was observed for the resting proportions of naïve, intermediate or senescent 

phenotypes between the trained and untrained participants. This contradicts previous 

literature in males in which greater resting proportions of senescent T-lymphocytes were 

observed in untrained compared to trained (Brown et al, 2013; Spielmann et al, 2011), and 

confirms our earlier observation in females (Brown et al, 2013). It is also interesting that 

there was no difference observed for the resting proportions of naïve, intermediate or 

senescent phenotypes from pre-camp to post-camp in the trained group despite the 

increased training volume. Recently, we observed that seven days of high intensity training 

resulted in an impaired exercise induced CD8+ T-lymphocyte mobilisation in trained males 

(Witard et al, 2012). In a trained group of swimmers it has been shown that terminal effector 

memory RA (TEMRA) CD8+ T-lymphocytes decreased for the first 7 weeks of the season 

(Teixeira et al, 2014). Therefore, the increase in training volume during the present study 

could have impaired the CD8+ T-lymphocyte mobilisation response, similar to Witard’s study, 

but the duration or intensity of the training was likely not long enough or high enough to 

observe any changes in resting CD8+ T-lymphocyte proportions. 

 

Many factors influence the T-lymphocyte compartment, training volume, baseline fitness and 

macronutrient intake. The current study was not designed to manipulate or control diet, it 

was just recorded. However, since it is one of the factors that could influence the T-

lymphocyte compartment the observations could provide a further explanation for the lack of 

differences between pre-camp and post-camp in the trained group. The carbohydrate 

consumption of the trained females during the two week intensified training period meets the 

recommended 8-10 g·kg-1 body mass·day-1 for athletes during periods of high volume 

training (Burke et al, 2004; Burke et al, 2007). Protein intake of 1.8g/kg is at the upper end of 
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recommended intake for athletes and is well above the 1.0g/kg ingested by untrained or 

0.66g/kg recommended for the general population (Pedersen et al, 2013). Previous analysis 

of the diet of the trained footballers in the present study indicates that total energy intake, 

carbohydrate and protein intake were increased on the camp compared with normal intake. 

Total energy intake increased from 1932 kcal/day to 3077 kcal/day, carbohydrate increased 

from 268 g/day to 547 g/day and protein increased from 71 g/day to 103 g/day. Therefore, 

the increase in carbohydrate consumption in this study was likely sufficient to prevent 

impaired T-lymphocyte function post-exercise (Henson et al, 1998; Nieman et al, 1998). This 

hypothesis is strengthened by the findings that increasing dietary protein intake restores the 

impaired mobilisation of CD8+ T-lymphocytes during high intensity exercise training (Witard 

et al, 2013). When a high-protein diet is ingested, gluconeogenesis can increase by 40% 

(Linn et al, 2000) thus providing the potential for gluconeogenic pathways to increase muscle 

and liver glycogen  availability during periods of high intensity exercise training. Thus, the 

impaired CD8+ T-lymphocyte mobilisation observed during high intensity exercise training by 

Witard et al (2012) was likely due to suboptimal carbohydrate consumption, and could 

probably be restored by directly increasing the carbohydrate intake or indirectly increasing 

carbohydrate availability through increasing protein intake (Witard et al, 2013).  

 

Resting CD4+ T-lymphocyte proportions were greater in the untrained compared to the 

trained in the current study. Existing literature on resting immune cell numbers between 

trained and untrained is very variable (Gleeson et al, 1995; Hong et al, 2005; Hooper and 

Mackinnon, 1995; LaPerriere et al, 1994; Matthews et al, 1995; Pedersen and Toft, 2000). 

There were no differences in circulating CD4+ T, CD8+ T, or NK cells at rest between elite 

female rowers (Nieman et al, 2000) or trained female gymnasts (Eliakim et al, 1997) 

compared with age-matched untrained females. The discrepancies between proportions of 

resting CD4+ T-lymphocytes observed in this study could be a result of the menstrual cycle 

phase. Reductions in CD4+ T-lymphocyte number have been observed in the luteal 
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compared to the early follicular phase of the cycle (Lee et al, 2010). Although we did not 

directly record menstrual cycle phase in this study it is unlikely that all untrained were in the 

follicular phase and all trained were in the luteal phase at the time of sampling. Therefore, 

the training status difference we observed in the CD4+ T-lymphocyte proportions cannot be 

fully explained. 

 

The greater proportions of CD4+ T-lymphocytes observed in the untrained compared to the 

trained drove the CD4+:CD8+ ratio up, thus contributing to the significantly higher CD4+:CD8+ 

ratio observed in the untrained group. People with autoimmune diseases tend to have an 

increased CD4+:CD8+ ratio, while those with viral infections have a decreased ratio. A further 

explanation for the higher CD4+:CD8+ ratio observed in the untrained compared to the 

trained group in the current study could be due to the higher body fat percentage observed 

in the untrained group compared to the trained group. Obesity is associated with increased 

inflammation due to increased fat tissue (Tchkonia et al, 2010), while the untrained group in 

the current study are not obese, the higher body fat percentage could be contributing to the 

higher CD4+:CD8+ ratio as a result of increased inflammation. However, without 

measurement of inflammatory markers this is merely an observation and needs further 

investigation before any conclusions can be made. In the current study, the difference 

between the ratio in trained and untrained could also be speculatively explained by 

Cytomegalovirus (CMV) infection. Infection with CMV is associated with a lower CD4+:CD8+ 

ratio. A higher percentage (23% (3 of 13)) of the trained population compared to (8% (1 of 

13) the untrained population were positive for CMV. CMV infection was also a significant 

covariate in the CD8+ T-lymphocyte population. Thus, suggesting that increased numbers of 

CD8+ T-lymphocytes in the CMV positive participants (Chidrawar et al, 2009; Khan et al, 

2002; Weinberger et al, 2007) could be driving the CD4+:CD8+ ratio down in the trained 

group due to the greater number of CMV positive participants. However, CMV was not a 

significant covariate in the CD4+:CD8+ ratio and we did not observed any significant 
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differences between the trained and untrained CD8+ T-lymphocytes so any conclusions 

made based on CMV must be interpreted with care due to the small number of CMV positive 

participants. Therefore, the significantly higher CD4+:CD8+ ratio in the untrained compared to 

the trained observed in this study was a result of the greater proportion of CD4+ T-

lymphocytes observed respectively.  

 

The proportion of resting γδ+ T-lymphocytes was greater in the trained compared to the 

untrained group. Similarly, a previous study observed an increase in the percentage of γδ+ 

T-lymphocytes from week 7 until the end of the season in swimmers (Teixeira et al, 2014). It 

is known that the resting population of γδ+ T-lymphocytes is also influenced by age (Pistillo 

et al, 2013), and CMV infection (Pistillo et al, 2013). Age was matched between groups in 

the present study and CMV was not a significant covariate in the γδ+ T-lymphocyte 

differences observed in our study. However, the lack of a CMV effect cannot be considered 

conclusive, since CMV positive participants were a very small number and not matched 

between groups. Speculatively, the reason for the greater proportion of γδ+ T-lymphocytes in 

the trained compared to the untrained could be a result of the frequent mobilisation of this 

lymphocyte subset in response to the regular exercise training stimulus.  Mobilisation of this 

lymphocyte subset would provide protection in situations where tissue damage and antigen 

exposure are more likely to occur (Anane et al, 2009; Anane et al, 2010) such as during the 

open window of opportunity immediately after exercise when athletes are reputedly more 

susceptible to URTIs. 

 

To conclude, increasing the training volume in a group of trained females does not reduce 

resting senescent T-lymphocyte proportions as hypothesised from data obtained in trained 

vs. untrained males. The training intervention had no effect on resting T-lymphocyte subsets, 

the reason for this is unclear. We can however, speculate from our observations of dietary 
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intake that appropriate increases in consumption of key macronutrients during the increased 

training volume warrants further investigation. The resting proportion of CD4+, γδ+ T-

lymphocytes and CD4+:CD8+ ratio differed between trained and untrained participants, 

highlighting the importance of training status/volume, and potentially CMV infection status 

when exploring immune responses to exercise training interventions. 
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supplementation on T-lymphocyte populations at rest 
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4.1 Abstract 
PURPOSE: To investigate the influence of different dietary fatty acids on T-lymphocyte 
differentiated populations at rest and in response to exercise. METHODS: Twenty trained 
male soccer players visited the lab on three occasions to participate in a battery of soccer 
specific exercise tests. The first visit was baseline (BL). The second visit 4 weeks later 
(control period) was pre supplementation (Pre Sup) at this visit participants were pair 
matched and randomized to a polyunsaturated fatty acid (PUFA) fish oil (FO) (n=10) or a 
saturated fatty acid (SFA) coconut oil (CO) (n=10) supplement at 0.1g/kg body mass/day for 
4 weeks (supplementation period) based upon their initial baseline blood analysis for n-3 
fatty acids. The third visit 4 weeks later was post supplementation (Post Sup). Whole blood 
was collected at each visit for blood lipid analysis. Blood lymphocytes were isolated before 
(Pre), immediately post (Post) and 1-hour post (1h) the exercise tests for assessment of cell 
surface expression of CD28 and CD57 on CD4+ and CD8+ T-lymphocytes and γδ+ T-
lymphocyte subsets. Plasma was used to determine Cytomegalovirus (CMV) serostatus. 
RESULTS: There was no difference in blood lipid analysis from BL to Pre Sup in the FO or 
CO groups (P>0.05). The n-3 PUFAs, EPA (20:5n-3), DHA (22:6n-3) and DPA (22:5n-3) 
increased from Pre Sup to Post Sup in the FO group (P<0.05) but not in the CO group 
(P>0.05). During the control and supplementation period a main effect of exercise (P<0.05) 
was observed in all the CD3+ and γδ+ T-lymphocytes subsets, increasing from Pre to Post 
and decreasing from Post to 1-hr. During the control period an interaction of group-by-day 
(P<0.05) was observed in the senescent CD8+ T-lymphocytes from BL to Pre Sup the 
proportion and number decreased in the FO group and increased in the CO group. Inclusion 
of CMV as a covariate introduced a main effect of group (P<0.05) on the CD4+ naïve 
proportions and cell counts and the group-by-day interaction observed on the CD8+ 
senescent T-lymphocyte proportions and cell counts disappeared. During the 
supplementation period no main effect of exercise (P<0.05) was observed on the CD8+ 
naïve T-lymphocyte proportion but there was a day-by-exercise interaction (P<0.05). The 
proportion of CD8+ naïve T-lymphocytes was lower at rest and in response to exercise in FO 
and CO groups after supplementation. A main effect of group (P<0.05) was observed on 
senescent CD4+ T-lymphocyte cell counts when CMV was included as a covariate. There 
was trend towards a group-by-exercise interaction on γδ+ T-lymphocyte counts in the 
supplementation period. At the post exercise time point the γδ+ T-lymphocyte count 
increased in the FO group but decreased in the CO group following the supplementation 
period. CMV was not a significant covariate (P>0.05) for the γδ+ T-lymphocyte population, 
during the control or supplementation periods. CONCLUSION: Although a difference 
between the groups was evident for γδ+ T-lymphocyte count and proportion there was 
insufficient evidence to conclude whether the difference was supplement related. Dose, 
duration and type of fatty acids may be important in the response but these require further 
study.  

 

Keywords: PUFA , SFA, CD4+ T-lymphocytes; CD8+ T-lymphocytes; Trained; Untrained; 

Diet; CMV infection; γδ+ T-lymphocytes.    
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4.2 Introduction 
 

Previously we have shown at rest and in response to acute exercise that senescent T-

lymphocytes are influenced by sex and training status (Brown et al, 2013), but a period of 

increased volume training has no effect on senescent T-lymphocyte number or proportion at 

rest (Brown et al, in review). Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), that 

consist primarily of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and 

docosapentaenoic acid (DPA), are abundant in oily fish sources. These n-3 PUFAs are 

known to exhibit strong anti-inflammatory properties (Thies et al, 2003) leading to dietary fish 

oils being implicated in neurological and chronic inflammatory diseases, such as Alzheimer’s 

(Samieri et al, 2008), diabetes mellitus (Nettleton and Katz, 2005) and cardiovascular 

disease (Lemaitre et al, 2003). However, the effect of these n-3 PUFAs on T-lymphocyte 

populations at rest and in response to exercise is currently unknown. 

 

Like other cells the membrane of many immune cells is composed of both omega-3 (n-3) 

and omega-6 (n-6) PUFAs. These PUFAs are essential precursors for inflammatory 

mediators; increased circulating n-6 can be pro-inflammatory, whereas n-3 is thought to be 

pro-resolution (Calder, 2006; Galli and Calder, 2009). Increasing dietary consumption of n-3 

PUFAs eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) is known to alter 

the lipid composition of the immune cell membrane (Yaqoob et al, 2000). In addition within 

T-lymphocytes EPA and DHA interrupt inflammatory signalling by disrupting the formation of 

lipid rafts, important platforms on which proteins are combined for signalling (Stulnig et al, 

2001; Stulnig and Zeyda, 2004; Zeyda et al, 2002; Zeyda et al, 2003; Zeyda and Stulnig, 

2006). Despite the beneficial health-related characteristics of n-3 PUFA’s, there is limited 

evidence examining the effects of n-3 PUFA supplementation on T-lymphocyte differentiated 

subsets despite the evidence that n-3 PUFA supplementation reduces T-lymphocyte 

proliferation (Rossetti et al, 1997; Stulnig et al, 1998; Zeyda et al, 2002; Zurier et al, 1999). 
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Supplementation with a low level of n-3 0.77 or 1.7g EPA+DHA/day over 6 months has no 

effect on proliferation of T-lymphocytes by mitogens in vitro (Kew et al, 2003). With a higher 

dose of n-3 supplementation, and in vivo measurement of T-lymphocyte differentiated 

populations at rest and in response to exercise, it might be possible to observe a more 

global view. Whether dietary supplementation with n-3 PUFA or short chain saturated fatty 

acids (SFA) influences the mobilisation of T-lymphocyte populations in response to exercise 

over a 4 week supplementation period during exercise training has not been investigated. 

PUFAs are incorporated into lipid rafts in the T-lymphocyte membrane leading to altered 

signalling within the T-lymphocyte; This altered signalling impairs the production of IL-2 from 

the lymphocyte itself and impairs the cell surface expression of IL-2R in turn reducing T-

lymphocyte proliferation in vitro (Zeyda et al, 2003). This reduction in T-lymphocyte 

proliferation could alter the T-lymphocyte compartment. Proliferation is the clonal expansion 

of T-lymphocytes via cell division which leads to the differentiation of T-lymphocytes to 

effector, memory and senescent T-lymphocytes. Therefore, a PUFA related decrease in T-

lymphocyte proliferation could result in a decrease in senescent T-lymphocytes in response 

to PUFA supplementation when investigated in vivo in humans. Acute exercise is also 

known to alter the T-lymphocyte compartment, but the effects of PUFA supplementation and 

acute exercise are unknown. 

 

Thus, to fully understand the influence of different dietary fatty acids on T-lymphocyte 

differentiated populations at rest and in response to exercise we pair-matched participants 

for baseline blood n-3 status and then supplemented the diet of trained males with either 

short chain saturated fatty acids (coconut oil) or n-3 polyunsaturated fatty acids (fish oil).  
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4.3 Methods 
Participants 

A group of 20 (20.3 ± 4.6 yrs) well-trained male soccer players participated in this study. All 

participants were non-smokers, not taking any medication and were free from infectious 

illness for 6 wk prior to the study. Each participant completed a pre-participation health 

screen questionnaire and provided their written informed consent. Ethical approval was 

granted by the University of Stirling Research Ethics Committee. 

 

Experimental design and protocol.  

The study was conducted as a single blind trial over 8 consecutive weeks. All participants 

entered the study on their normal diet with each participant acting as their own control during 

a 4 week control period. After this control period participants were assigned to receive 

0.1g/kg body mass/day of either fish oil (n=10) containing polyunsaturated fatty acids EPA 

(70%), DHA (20%), DPA (2%) and Vitamin E (0.2%), or coconut oil (n=10) containing short 

chain saturated fatty acids (Caprylic acid 8:0 (7.06%), Capric acid 10:0 (91.75%) Lauric acid 

12:0 (0.91%) and Palmitic acid 16:0 (0.28%)) for 4 weeks. Fish oil and coconut oil capsules 

were matched for size shape and were provided by Glasgow Health Solutions Ltd. 

Participants were pair matched and randomized to fish oil or coconut oil based upon their 

initial baseline blood analysis for n-3 fatty acids. 

The timeline of the study is shown in Figure 1. All participants reported to the laboratory, in 

the morning after an overnight fast at the beginning of the study (baseline), at the end of the 

control period (pre-supplementation), and at the end of the fish oil or coconut oil 

supplementation period (post-supplementation). On each visit a venous cannula was 

inserted into a forearm vein and fasted venous blood samples were drawn before exercise, 

immediately post exercise and 1hr post-exercise. Blood samples were used for peripheral 

blood cell count, T-lymphocyte activation, and for analysis of plasma and T-lymphocyte 
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cytokine production. The morning fasted blood samples were also used for analysis of full 

blood lipid profile. Training and competition load was quantified during the 8 weeks using the 

pre-published method of Foster et al (2001) based on volume and intensity of exercise 

undertaken. 

  

Exercise performance tasks 

At baseline, pre-supplementation and post-supplementation time points participants 

completed football specific exercise tasks. These tasks were conducted on the same surface 

at the same time of day and in exactly the same order. The tasks were designed to assess 

strength, power, speed and aerobic endurance. The football specific exercise task data are 

reported elsewhere (Gravina et al., in preparation). No differences were observed in the 

scores obtained on any task from the male players in the present study between the 

baseline, pre-supplementation and post-supplementation sample time points.   

Analysis of whole blood sample lipid profile 

4 week period no 
supplementation

4 week  fish oil/coconut oil 
supplementation
0.1g/kg body mass/day

Blood samples

Exercise 
performance 
tasks

Baseline Pre 
Supplementation

Post
Supplementation

 1 

Fig 1. Timeline of the experimental protocol.   2 



Chapter 4                                                                                             Study 3 Part I  

 

128 
 

Samples of whole blood were placed onto two circular collection spots on Whatman 903 

collection cards. The cards were left open and allowed to dry for 3 h after which the dried 

whole blood sample was detached from the collection device using forceps and placed into a 

screw-cap vial containing 1 ml of methylating solution (1.25M methanol/HCl). The vials were 

placed in a hot block at 70oC for 1 h. The vials were allowed to cool to room temperature and 

then 2 ml of distilled water and 2 ml of saturated KCl solution were added. Fatty acid methyl 

esters (FAME) were then extracted using 2 ml of iso-hexane + butylated hydroxytoluene 

(BHT) followed by a second extraction using 2 ml of isohexane alone. 

FAME were separated and quantified by gas chromatography (ThermoFisher Trace, Hemel 

Hempstead, England) using a 60 m x 0.32 mm x 0.25 µm film thickness capillary column (ZB 

Wax, Phenomenex). Hydrogen was used as carrier gas at a flow rate of 4.0 ml/min and the 

temperature programme was from 50 to 150oC at 40oC/min then to 195oC at 2oC/min and 

finally to 215oC at 0.5oC/min. Individual FAME were identified compared to well 

characterised in house standards as well as commercial FAME mixtures (Supelco™ 37 

FAME mix, Sigma-Aldrich Ltd., Gillingham, England).  

  

Peripheral blood cell count and peripheral blood mononuclear cell (PBMC) isolation 

Total lymphocyte counts were determined using a Sysmex XP300 automated haematology 

analyser. Absolute cell numbers of the lymphocyte subset populations were determined by 

multiplying the percentage of all lymphocytes expressing CD3+/CD4+ or CD3+/CD8+ (as 

determined by flow cytometry) by the total lymphocyte count. The methods used to isolate 

peripheral blood mononuclear cells (PBMCs) from whole blood have been described 

elsewhere (Simpson et al, 2006). The isolated PBMCs were stored in 70% (700µl) foetal 

bovine serum (Sigma-Aldrich, Ltd, UK), 20% (200µl) RPMI-1640 growth medium (Sigma-

Aldrich, Ltd, UK) and 10% (100µl) DMSO (Sigma-Aldrich, Ltd, UK) that was added to the 
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samples on ice. Samples were snap frozen in liquid nitrogen and stored at -80 °C until later 

analysis.  

 

Labelling of cell-surface antigens  

Overlapping phenotypes exist for senescent T-lymphocyte identification as shown in Chapter 

2. Hence, prior studies have used several different markers for characterisation of the same 

distinct T-lymphocyte subsets. In this study we used the CD57+ CD28- phenotype to identify 

senescent T-lymphocytes and the CD57-CD28+ phenotype to identify naïve T-lymphocytes.  

PMBC’s were labelled with an APC conjugated anti-CD3 (Clone UCHT1) (BD cat 555335, lot 

15521) monoclonal antibody (mAb), a PE-CY5 conjugated anti-CD8 (Clone HIT8a BD cat 

555636, lot 63949) mAb or a PE-CY5 conjugated anti-CD4 (Clone RPA-T4 BD cat 555348, 

lot 10591), a PE conjugated anti-CD28 (Clone L293) (BD cat 348047, lot 3028673) mAb or a 

PE conjugated anti-gamma-delta (Clone B1.1 Ebio cat 129959, lot E021659) mAb, a FITC 

conjugated anti-CD4 (Clone RPA-T4 BD cat 555346, lot 75982) mAb or a FITC conjugated 

anti-CD57 (Clone HNK-1 BD cat 333169, lot 3056577) mAb, in preparation for a four-colour 

direct immunofluorescence procedure. Cells were incubated with 50µl of each pre-diluted 

mAb for 1-hour at room temperature, protected from the light. The anti-CD28, -CD57, -CD4, 

and -CD8 mAb’s were purchased from BD Pharmingen (San Jose, CA, USA). The anti-

gamma-delta mAb was purchased from Ebioscience (San Diego, CA, USA). Cells also were 

labelled with each mAb in a one-color immunofluorescence procedure to account for spectral 

overlap and adjust compensation settings during flow cytometry analysis. Appropriately 

conjugated isotype controls also were used in each assay to account for background binding 

of immunoglobulin (Ig). After incubation the cell and mAb mixture was vortexed to resuspend 

the cells in solution before analysis using flow cytometry. 
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Flow cytometry 

Fluorescence of the directly conjugated mAbs bound to the cell surface was detected on an 

Accuri C6 flow cytometer (Accuri, Ann Arbor, MI, USA), equipped with a blue laser emitting 

light at a fixed wavelength of 488 nm and a red laser emitting light at a fixed wavelength of 

640 nm. The cells were identified and electronically gated using the forward and side light-

scatter mode using Accuri C6 (CFlow ® v1) software. Side scatter was used to identify and 

gate the CD3+ cells. The CD4+, CD8+ and γδ+ populations were then identified in the CD3+ 

cell population. For each sample, 40,000 CD3+/CD4+, CD3+/CD8+ and CD3+/γδ+ events were 

collected for analysis. The expression of CD57 and CD28 was assessed on the CD4+ and 

CD8+ T-lymphocytes by four colour flow cytometry. The percentage of all CD3+/γδ+ T-

lymphocytes and the CD3+/CD4+ and CD3+/CD8+ T-lymphocyte subsets expressing the 

markers of interest was tabulated for statistical analysis. 

 

CMV serostatus 

CMV serostatus was defined for all participants. Plasma from baseline blood samples was 

assayed for IgG antibodies to CMV using a commercially available enzyme-linked 

immunosorbent assay (ELISA) and a SpectromaxM2 plate reader (Molecular Devices, CA, 

USA).  

 

Data presentation and statistical analysis 

All data are presented as means ± standard deviation (SD), unless otherwise stated. 

Statistical analysis was performed using Mini-tab v-16 statistical software. Physical 

characteristics and dietary intake were compared between groups by independent sample t-

tests.  Repeated measures analysis of variance (ANOVA) was used to compare between 

condition changes over time in the blood fatty acid profile with n-3%, n-6% and n-3: total 
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(highly unsaturated fatty acids) HUFA% as dependent variables and test day as independent 

variable. Lymphocyte data were analysed using a 3 factor ANCOVA with cell type as the 

dependent variable and time, training status and test day as independent factors. CMV 

serostatus was the covariate. Post-hoc analysis was performed using the Tukey HSD test 

and 95% confidence. Main effects and interactions were accepted as statistically significant 

at the p<0.05 level.  
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4.4 Results 
Participant Characteristics and dietary analysis  

There was no significant difference between the fish oil and coconut oil groups for any 

physical characteristics, exercise training, habitual dietary intake or baseline blood lipid 

parameters (Table 1).  

 

Fatty Acid Profile 

Blood fatty acid profile was analysed at baseline, pre and post supplementation (Table 2). 

No significant differences were observed during the control period for any fatty acids in the 

fish oil or coconut oil group. A significant main effect of treatment (P < 0.05) and a treatment-

by-time interaction (P < 0.05) was observed for n-3% whereby participants in the fish oil 

group had an increase n-3% (105% ± 52) compared to the coconut oil group (3% ± 23). A 

significant main effect of treatment (P< 0.05) and a treatment-by-time interaction (P < 0.05) 

was observed for n-6% whereby participants in the fish oil group observed a decrease in n-

6% (-6% ± 9) compared to the coconut oil group (2% ± 5). A significant main effect of 

treatment (P < 0.05) and a treatment-by-time interaction (P < 0.05) was observed for n3: 

total HUFA (%) whereby participants in the fish oil group observed an increase the ratio of 

n3: total HUFA % (83% ± 43) compared to the coconut oil group (2% ± 6).   
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A significant main effect of treatment (P < 0.05) and treatment-by-time interaction (P < 0.05) 

was observed in the fish oil group for other blood lipids (Tables 3-4). The active omega-3 fish 

oil ingredients EPA (20:5n-3), DHA (22:6n-3) and DPA (22:5n-3) increased from pre 

supplementation to post supplementation, whereas the omega-6 fatty acids linolenic acid 

(18:3n-6), eicosadienoic acid (20:2n-6), dihomo-gamma-linolenic acid (20:n-3n-6), 

arachidonic acid (20:4n-6), adrenic acid (22:4n-6) and docosapentaenoic acid (22:5n-6) all 

decreased from pre to post supplementation in the fish oil group. No significant differences 

were observed from pre to post supplementation in the coconut oil group for any omega-3 

(n-3) or omega-6 (n-6) fatty acids.    
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Table 3: Blood lipid membrane composition. The breakdown and total saturated and monosaturated fatty acids in the fish oil and coconut oil 

groups before and after the control and supplementation periods. Values are % of total lipid expressed as mean ± SD. * indicates a significant 

difference between the start and the end of the control or supplementation period. 
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Table 4. Blood lipid membrane composition. The breakdown and total omega 6 and omega 3 fatty acids in the fish oil and coconut oil groups 

before and after the control and supplementation periods. Values are % of total lipid expressed as mean ± SD. * indicates a significant 

difference between the start and the end of the control or supplementation period. 
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T-lymphocyte data 

Control period 

During the control period a main effect of exercise was observed in the total CD3+ T-

lymphocytes whereby the number of CD3+ T-lymphocytes increased in response to acute 

exercise followed by a decrease in the 1-hour post exercise period. As a result a main effect 

of exercise was observed for all of the T-lymphocyte subsets. All subsets followed the same 

pattern of an immediate post exercise increase followed by a 1-hour post exercise decrease 

(Table 5).  
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Table 5: T-lymphocyte counts at Baseline, Pre-supplementation and Post-supplementation. Values are means ± SD count in x106/L of the T-

lymphocyte populations. A box round the data indicates a significant main effect of exercise in the total CD3+ T-lymphocytes that results in a 

main effect of exercise in all T-lymphocyte subsets (P<0.05). ** indicates a significant difference from pre and 1hr post exercise (P<0.05). $ 

indicates a significant difference between groups at the post exercise time point (P<0.05). * indicates a significant difference from post exercise 

(P<0.05).   
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There was no significant effect of group or any interactions for the naïve CD4+, CD8+ or 

senescent CD4+ T-lymphocyte proportions (Figure 2 and 3) or cell counts (Table 6) during 

the control period. However during the control period the senescent CD8+ T-lymphocytes 

responded differently. There was an additional interaction of group-by-day on the senescent 

CD8+ T-lymphocytes. From baseline to pre-supplementation the proportion and number of 

senescent CD8+ T-lymphocytes decreased in the fish oil group and increased in the coconut 

oil group (Table 6). During the control period covariate analysis revealed infection with CMV 

to be a significant covariate (P<0.05) for both the CD4+ and CD8+ naïve and senescent T-

lymphocyte proportions and cell counts. Inclusion of CMV as a covariate introduced a main 

effect of group (P<0.05) on the CD4+ naïve proportions and cell counts. The group-by-day 

interaction observed on the CD8+ senescent T-lymphocyte proportions and cell counts 

disappeared when CMV was included as a covariate. 
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Table 6: CD4+ and CD8+ T-lymphocyte subsets expressed as naïve, intermediate and senescent phenotypes. Values are means (±SD) count 

x106/L of the T-lymphocyte populations ** indicates a significant difference from pre and 1hr post exercise (P<0.05). $ indicates a significant 

difference between groups at the post exercise time point (P<0.05). * indicates a significant difference from post exercise (P<0.05). 
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Supplementation period 

During the supplementation period there was a main effect of exercise on the total CD3+ T-

lymphocytes whereby the number of CD3+ T-lymphocytes increased in response to acute 

exercise followed by a decrease in the 1-hour post exercise period. As a result a main effect 

of exercise was observed for all of the T-lymphocyte subsets and all subsets followed the 

same pattern of an immediate post exercise increase followed by a 1-hour post exercise 

decrease (Table 5). No main effect of exercise was observed on the CD8+ naïve T-

lymphocyte proportion. There was however a day-by-exercise interaction. Whereby the 

proportion of CD8+ naïve T-lymphocytes was lower at rest and in response to exercise in 

both groups after supplementation (Figure 3). During the supplementation period CMV was a 

significant covariate (P<0.05) for the CD4+ naïve cell count and senescent proportions and 

cell counts. CMV was a significant covariate (P<0.05) for the CD8+ naïve cell count and 

senescent T-lymphocyte proportions. A main effect of group (P<0.05) was observed on 

senescent CD4+ T-lymphocyte cell counts when CMV was included as a covariate. 

 

Gamma delta (γδ+)T-lymphocytes 

A main effect of exercise (P<0.05) was observed during both the control and 

supplementation period for both the proportions (Figure 4) and numbers of γδ+ T-

lymphocytes (Table 5). The proportion and number of γδ+ T-lymphocytes increased in 

response to exercise, followed by a decrease, one hour post in both groups. No interactions 

were observed on the γδ+ T-lymphocyte proportions in the control or supplementation period 

(Figure 4). However, there was trend towards a group-by-exercise interaction on γδ+ T-

lymphocyte counts in the supplementation period. At the post exercise time point the γδ+ T-

lymphocyte count increased in the fish oil group but decreased in the coconut oil group 

following the supplementation period (Table 5). CMV was not a significant covariate 

(P>0.05) for the γδ+ T-lymphocyte population, during the control or supplementation periods. 
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CMV serostatus 

Forty percent of the fish oil group was defined as positive for CMV, four out of the ten 

participants. Twenty percent of the coconut oil group was defined as positive for CMV, two 

out of the ten participants. 
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4.5 Discussion 
 

The immunomodulatory effects of n-3 PUFAs are well established (Calder, 2011). Despite 

the evidence of reduced T-lymphocyte proliferation as a result of PUFAs (Zeyda et al, 2002) 

the effect of PUFA on mobilisation of T-lymphocyte differentiated populations has not been 

characterised. In the present study, although we observed some differences between 

groups, most likely as a result of differences in CMV infection history, it is clear that four 

weeks ingestion of short chain saturated fats (coconut oil) or n-3 PUFA’s (fish oil) has little 

effect on T-lymphocyte differentiated subsets at rest and in response to acute exercise in an 

active male sample.  

 

During the control period no significant differences were observed for any of the blood fatty 

acids in either fish oil or coconut oil groups, confirming that no underlying major dietary 

differences existed between the groups. There was also no difference observed for any of 

the n-3 or n-6 fatty acids in blood during the supplementation period in the coconut oil group.  

However, during the supplementation period we observed an increase in n-3 PUFAs with a 

concomitant decrease in n-6 PUFAs in the fish oil group. As confirmed by our results 

supplementation with n-3 PUFAs like EPA and DHA results in an alteration of the blood cell 

lipid membrane composition whereby EPA and DHA are incorporated into the cell 

membrane at the expense of AA (Calder et al, 1994; Kew et al, 2003; Kew et al, 2004). Two 

studies have previously investigated supplementation with EPA (2.1g/day) and DHA 

(1.1g/day) for one week (Faber et al, 2011) and 12 weeks (Yaqoob et al, 2000). Faber et al. 

observed significant incorporation of EPA and DHA into the blood cell lipid membrane after 1 

day of supplementation. Together both studies suggest maximum incorporation of PUFAs 

into human PBMCs occurs after about 7 days of supplementation. Incorporation is quicker 

and with a lower dose than previously thought (Faber et al, 2011). If maximum incorporation 

into the PBMC membrane occurred after 7 days, with 2.1g/day EPA and 1.1g/day of DHA, 
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the four weeks supplementation period used in the current study may have been too long 

and the dose (0.1g/kg/day) too high to identify any differences in the T-lymphocyte 

populations.   

 

We observed that the acute mobilisation of senescent CD4+ and CD8+ T-lymphocytes was 

not influenced by quite marked changes in the lipid profile of blood. Although it would appear 

that the subsequent egress of senescent CD4+ T-lymphocytes was more pronounced in the 

fish oil group at the post-supplementation visit, it is more likely a result of natural variation in 

response between baseline, pre and post supplementation time points. During both the 

control and supplementation periods in the fish oil and coconut oil groups we observed that 

acute exercise elicits an increase in the proportions and numbers of total CD3+ T-

lymphocytes, senescent CD4+, CD8+ and γδ+ T-lymphocyte subsets as previously reported 

(Anane et al, 2009; Brown et al, 2013; Campbell et al, 2009; Simpson et al, 2007). We also 

observed a concomitant decrease in the proportion of T-lymphocytes and measured subsets 

in the 1-hr post exercise. The numbers of naïve and senescent CD4+ and CD8+ and γδ+ T-

lymphocytes increased post exercise reflected the increase in total CD3+ T-lymphocytes 

mobilised in response to exercise. This response could be explained by a feedback loop, as 

previously discussed in Chapter 2, in which senescent T-lymphocytes migrate to peripheral 

tissues for immunosurveillance after acute exercise, creating vacant immune space that is 

then filled by naïve T-lymphocytes (Simpson, 2011). It is known that the post exercise T-

lymphocyte response is improved by carbohydrate supplementation (Henson et al, 1998; 

Nieman, 1998). It has recently been observed that the aforementioned exercise induced 

mobilisation was impaired during 7 days of high-intensity training (Witard et al, 2012) and 

subsequently restored with increased protein consumption (Witard et al, 2013). We have 

now observed that supplementing the diet with short chain SFA or n-3 PUFA has no effect 

on the mobilisation and egress of T-lymphocyte subsets in response to acute strenuous 

exercise. 
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During the control period the proportion and number of senescent CD8+ T-lymphocytes 

decreased in the fish oil group and increased in the coconut oil group. This observation 

highlights a particular strength of our study design. Participants training, age and body 

composition were matched between groups. Therefore, including the control period allowed 

us to observe any natural variation between participants as a result of genetic 

polymorphisms, latent CMV infection, or natural fluctuations in T-lymphocyte subsets within 

and between groups that occurred in the T-lymphocyte responses over the 4 weeks. Thus, 

our design precluded any false interpretation of responses observed during the 4 week 

supplementation period. The difference observed between groups during the control period 

is likely a result of CMV infection history, since there were a greater number of CMV+ 

individuals in the fish oil group. CMV was a significant covariate in the CD4+ and CD8+ naïve 

and senescent T-lymphocyte numbers and proportions. Adding CMV to the statistical 

analysis model as a covariate introduced a main group effect on the naïve CD4+ T-

lymphocyte counts and proportions, suggesting the greater CD4+ T-lymphocytes observed 

between treatment groups was a result of latent CMV infection. Inclusion of CMV as a 

covariate also removed the group-by-day interaction on the senescent CD8+ T-lymphocyte 

counts and proportions suggesting this interaction was an artefact of latent CMV infection.  

 

We observed a lower proportion of CD8+ naïve T-lymphocytes at rest and in response to 

exercise in both groups after supplementation but no effect on the senescent T-lymphocyte 

population. T-lymphocyte activation is triggered by the activation of the T-cell receptor 

(TCR)-CD3 complex. This elicits a signalling cascade that is partially dependent on CD28 a 

co-stimulatory molecule on the surface of naïve T-lymphocytes (Ward, 1996). Eventually, in 

the presence of a signal from the TCR-CD3 complex and co-stimulation from CD28, 

transcription factors like NF-AT and NF- κB are switched on inducing the transcription of the 

T-lymphocyte proliferation factor IL-2 (Cantrell, 1996). Previous studies have observed a 

reduction in the CD3/CD28 induced activation of NF-AT with PUFA supplementation 
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reducing T-lymphocyte proliferation (Zeyda et al, 2003). Perhaps the reduction in CD3/CD28 

induced activation previously observed is due to a reduction in available naïve T-

lymphocytes to provide the co-stimulatory signal, which would be supported by the lower 

proportions of CD8+ naïve T-lymphocytes observed in the current study. However, the data 

on cell counts does not fully support this speculative argument. CMV was a significant 

covariate in the CD4+ and CD8+ naïve and senescent T-lymphocyte numbers and 

proportions. Including CMV as a covariate adds a significant main effect of group to the 

naïve CD4+ T-lymphocyte count suggesting the greater number of naïve CD4+ T-

lymphocytes observed in the fish oil group was a result of latent CMV infection.  

 

At the post exercise time point the γδ+ T-lymphocyte count increased in the fish oil group but 

decreased in the coconut oil group following the supplementation period. It is not fully 

understood if the observed increase in γδ+ T-lymphocytes post exercise is a beneficial or 

detrimental observation. In the context of this study the higher post exercise count of γδ+ T-

lymphocytes in the fish oil group could be beneficial for immunosurveillance. The increased 

γδ+ T-lymphocytes attract and stimulate more immune cells (Tikhonov et al, 2006), promote 

wound healing (Jameson et al, 2002) and present antigen for recognition by other T-

lymphocytes (Brandes et al, 2005). Conversely the increased γδ+ T-lymphocyte count could 

enhance atherosclerotic plaque formation by attracting immune cells into the inflamed sub 

endothelia in healthy active participants (Bosch et al, 2003; Dyugovskaya et al, 2003). The 

increased γδ+ T-lymphocyte count in response to exercise in the group supplemented with 

fish oil is not a result of CMV infection therefore warrants further investigation to fully 

understand the relationship between fatty acid supplementation, cytokines and γδ+ T-

lymphocytes.             

The present study examined 4 weeks of supplementation with fish oil at a dose of 0.1g/kg 

body mass/day compared to coconut oil at a dose of 0.1g/kg body mass/day on T-
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lymphocyte subsets and the subset responses to acute strenuous exercise. Although a 

difference between the groups was evident for γδ+ T-lymphocyte counts and proportion there 

was insufficient evidence to conclude whether the difference was supplement related. Dose, 

duration and type of fatty acids may be important in the response but these require further 

study. Additional work examining specific cytokine responses to supplementation with 

saturated fat or PUFA’s is warranted to explore whether the changes we have observed in 

lymphocyte numbers/proportions are potentially supplement related. 
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5.1 Abstract 
PURPOSE: To investigate the influence of different dietary fatty acids on plasma cytokine 
concentrations and expression of T-lymphocyte activation marker CD69 at rest and in 
response to exercise. METHODS: Twenty trained male soccer players visited the lab on 
three occasions to participate in a battery of soccer specific exercise tests. The first visit was 
baseline (BL). The second visit 4 weeks later (control period) was pre supplementation (Pre 
Sup) at this visit participants were pair matched and randomized to a polyunsaturated fatty 
acid (PUFA) fish oil (FO) (n=10) or a saturated fatty acid (SFA) coconut oil (CO) (n=10) 
supplement at 0.1g/kg body mass/day for 4 weeks (supplementation period) based upon 
their initial baseline blood analysis for n-3 fatty acids. The third visit 4 weeks later was post 
supplementation (Post Sup). Whole blood was collected at each visit for blood lipid analysis. 
Blood lymphocytes were isolated before (Pre) immediately post (Post) and 1-hour post (1h) 
the exercise tests for assessment of cell surface expression of CD69 on CD4+ and CD8+ T-
lymphocytes subsets. Plasma concentration of Th1 cytokines:  IL-2, TNF- α and IFN-γ, and 
Th2 cytokines IL-4, IL-6 and IL-10 was analysed at Pre, Post and 1h. Plasma was also used 
to determine Cytomegalovirus (CMV) serostatus. RESULTS: There was no difference in 
blood lipid analysis from BL to Pre Sup in the FO or CO groups (P>0.05). The n-3 PUFAs, 
EPA (20:5n-3), DHA (22:6n-3) and DPA (22:5n-3) increased from Pre Sup to Post Sup in the 
FO group (P<0.05) but not in the CO group (P>0.05). There was a significant mobilisation of 
activated CD4+ CD69+ and CD8+ CD69+ (P<0.05) T-lymphocyte numbers in response to 
exercise in both FO and CO groups, but no group, or group x time interaction (P>0.05). CMV 
infection was a significant covariate on the number and proportion of CD4+CD69+ T-
lymphocytes (P<0.05) but not on the number or proportion of CD8+CD69+ T-lymphocytes 
(P>0.05). During the control period there were no significant main effects or interactions 
(P>0.05) on the cytokine concentrations in the FO or CO groups. During the 
supplementation period there was a significant effect of day on TNF-α, IL-6, IL-4 and IL-2 
(P<0.05) with IFN-γ and IL-10 trending towards a difference. The plasma cytokine 
concentration was greater at Post Sup compared to Pre Sup for both FO and CO groups. 
Latent CMV infection was a significant covariate for TNF-α, IL-6, IL-4, IL-2, IFN-γ and IL-10 
(P<0.05). CONCLUSION: In the current study we observed no evidence of a difference 
between the CO and FO groups for early T-lymphocyte activation marker or plasma cytokine 
concentrations despite the membrane lipid composition change over the 4 week 
supplementation period. 

 

Keywords: PUFA , SFA, CD4+ T-lymphocytes; CD8+ T-lymphocytes; Trained; Diet; CMV 

infection; CD69+.   
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5.2 Introduction 
 

It has been previously shown that supplementation with both long chain polyunsaturated 

(fish oil) fatty acids (PUFA) and short chain saturated fatty acids had no effect on resting or 

post exercise T-lymphocyte populations (Chapter 4). T-lymphocyte maturation, proliferation 

and function is controlled by cytokines (Banchereau et al, 2012). Different fatty acid 

supplements have previously been shown to alter cytokine expression (Bladbjerg et al, 2011; 

Ferrucci et al, 2006). Therefore, understanding the cytokine expression pattern and early T-

lymphocyte activation that results from manipulating the blood fatty acid profile may help to 

explain the lack of difference we have observed in the T-lymphocyte populations.  

 

The immune cell membrane includes both n-3 and n-6 PUFAs. PUFAs are essential 

precursors for inflammatory mediators and eicosanoids (Calder, 2006; Galli and Calder, 

2009). Immune cell membranes contain high proportions of the n-6 PUFA arachidonic acid 

(AA) that provides the precursor for pro-inflammatory mediators such as prostaglandins eg 

PGE2. Increasing dietary consumption of n-3 PUFAs eicosapentaenoic (EPA) and 

docosahexaenoic (DHA) alters the composition of the immune cell membrane with AA in the 

cell membrane being replaced by EPA and/or DHA (Yaqoob et al, 2000). Thus, since AA is a 

precursor for pro-inflammatory mediators like PGE2 a decrease in AA alters the cytokine 

milieu (Calder, 2006; Calder, 2007; Galli and Calder, 2009; Simopoulos, 2007). In vitro PGE2 

inhibits lymphocyte proliferation (Goodwin et al, 1977) and the production of cytokines (IL-2 

and IFN-γ) by T-helper 1(Th1) T-lymphocytes (Betz and Fox, 1991; Fedyk et al, 1997; 

Hilkens et al, 1996), subsequently indirectly stimulating the production of cytokines (IL-4, IL-

5 and IL-10) by T-helper 2 (Th2) T-lymphocytes (Betz and Fox, 1991; Fedyk et al, 1997; 

Hilkens et al, 1996). 
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Evidence addressing the cytokine response to exercise with PUFA and SFA 

supplementation has provided contrasting outcomes. Immune derived IL-6 production was 

initially shown to be decreased (Meydani et al, 1991) following n-3 fatty acid 

supplementation in young and old women. However, other studies have observed no effect 

(Nieman et al, 2009; Toft et al, 2000), during PUFA supplementation. Post exercise 

peripheral blood mononuclear cell (PBMC) IL-2 production increased in a PUFA 

supplemented group of healthy active males (Gray et al, 2012). However, in their study no 

post exercise effect of PUFA supplementation was observed on PBMC production of IL-4 or 

IFN-γ (Gray et al, 2012). Elsewhere no effect of PUFA supplementation was observed on 

PBMC production of IL-2 or IFN-γ but an increase in IL-4 was reported, however, this was 

not an exercise study (Miles et al, 2006). Recently it was observed that exercise results in an 

increase of both Th1 and Th2 cytokine expression from late differentiated CD8+ T-

lymphocytes on an individual cell basis (LaVoy et al, 2013), in Chapter 4 we observed a 

mobilisation of the same cell type in response to exercise, but it is unknown if the increased 

cytokine expression per cell relates to whole body expression measured in the plasma and if 

fatty acid supplementation impacts the response. 

 

In order to understand the influence of n-3 PUFA and indeed short chain fatty acids as 

biological mediators on the immune response to exercise in athletes, we examined the same 

population as in Chapter 4 with the same dose of coconut and fish oils and investigated the 

plasma concentration of Th1 cytokines:  IL-2, TNF- α and IFN-γ, and Th2 cytokines IL-4, 

IL-6 and IL-10 and the early T-lymphocyte activation marker CD69 as a marker for T-

lymphocyte function at rest and in response to exercise. We hypothesized that PUFA 

supplementation would potentially increase lymphocyte activation and Th-1 cytokines with a 

decrease in the Th-2 cytokines.   
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5.3 Methods 
Participants 

A group of 20 (20.3 ± 4.6 yrs) well-trained male soccer players participated in this study. All 

participants were non-smokers, not taking any medication and were free from infectious 

illness for 6 wk. prior to the study. Each participant completed a pre-participation health 

screen questionnaire and provided their written informed consent. Ethical approval was 

granted by the University of Stirling Research Ethics Committee. 

 

Experimental design and protocol.  

The study was conducted as a single blind trial over 8 consecutive weeks. All participants 

entered the study on their normal diet with each participant acting as their own control during 

a 4 week control period. After this control period they were assigned to receive either fish oil 

(n=10) 0.1g/kg body mass of omega-3 (700mg of EPA, 200mg of DHA, 20mg of DPA and 

0.02mg of Vitamin E per 1g capsule), or coconut oil (n=10) 0.1g/kg body mass of short chain 

saturated fats (breakdown) daily for 4 weeks. Fish oil and coconut oil capsules were 

matched for size shape and were provided by Glasgow Health Solutions.  

 

The timeline of the study is shown in Chapter 4 Figure 1. At the beginning of the study 

(baseline) at the end of the control period (pre-supplementation) and at the end of the fish oil 

or coconut oil supplementation period (post-supplementation) all participants reported to the 

laboratory, in the morning after an overnight fast. A venous cannula was inserted into a 

forearm vein and fasted venous blood samples were drawn before exercise, immediately 

post exercise and 1hr post-exercise. Blood samples were used for peripheral blood cell 

count, T-lymphocyte activation, plasma and T-lymphocyte cytokine production. The morning 

fasted blood samples were used for analysis of blood lipid profile. Training and competition 
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load was quantified during the 8 weeks using the pre-published method of Foster et al 

(2001) based on volume and intensity of exercise undertaken.  

 

Exercise tests 

At baseline, pre-supplementation and post-supplementation participants completed exactly 

the same battery of football specific exercise tasks, on the same surface at the same time of 

day and in exactly the same order. These tasks were designed to test strength, power, 

speed and aerobic endurance and the data are reported elsewhere.   

 

Analysis of whole blood sample lipid profile 

Samples of whole blood were placed onto two circular collection spots on Whatman 903 

collection cards. The cards were left open and allowed to dry for 3 h after which the dried 

whole blood sample was detached from the collection device using forceps and placed into a 

screw-cap vial containing 1 ml of methylating solution (1.25M methanol/HCl). The vials were 

placed in a hot block at 70oC for 1 h. The vials were allowed to cool to room temperature and 

then 2 ml of distilled water and 2 ml of saturated KCl solution were added. Fatty acid methyl 

esters (FAME) were then extracted using 1 x 2 ml of iso-hexane + butylated hydroxytoluene 

(BHT) followed by a second extraction using 2 ml of isohexane alone. 

FAME were separated and quantified by gas-liquid chromatography (ThermoFisher Trace, 

Hemel Hempstead, England) using a 60 m x 0.32 mm x 0.25 µm film thickness capillary 

column (ZB Wax, Phenomenex). Hydrogen was used as carrier gas at a flow rate of 4.0 

ml/min and the temperature programme was from 50 to 150oC at 40oC/min then to 195oC at 

2oC/min and finally to 215oC at 0.5oC/min. Individual FAME were identified compared to well 

characterised in house standards as well as commercial FAME mixtures (Supelco™ 37 

FAME mix, Sigma-Aldrich Ltd., Gillingham, England).  



Chapter 5                                                                                             Study 3 Part II  

 

161 
 

 Peripheral Blood Cell count and Peripheral blood mononuclear cells (PBMC) isolation 

Total lymphocyte counts were determined using a Sysmex XP300 automated haematology 

analyser. Absolute cell numbers of the lymphocyte subset populations were determined by 

multiplying the percentage of all lymphocytes expressing CD3+/CD4+ or CD3+/CD8+ (as 

determined by flow cytometry) by the total lymphocyte count.  The methods used to isolate 

peripheral blood mononuclear cells (PBMCs) from whole blood have been described 

elsewhere (Simpson et al, 2006). The isolated PBMCs were then stored in 70% (700µl) 

foetal bovine serum (Sigma-Aldrich, Ltd, UK), 20% (200µl) RPMI-1640 growth medium 

(Sigma-Aldrich, Ltd, UK) and 10% (100µl) DMSO (Sigma-Aldrich, Ltd, UK) that was added to 

the samples on ice. Samples were snap frozen in liquid nitrogen and stored until later 

analysis.  

Plasma was also obtained from whole blood centrifugation for cytokine analysis. 

 

Labelling of cell-surface antigens  

Cells were incubated with 20µl of pre-diluted CD3/CD8/CD69 (Clone SK7, SK1, L78) 

fastimmune kit (BD Biosciences, UK) according to manufacturers instructions for 1-hour at 

room temperature, protected from the light. After incubation the cell and mAb mixture was 

vortexed to resuspend the cells in solution before analysis using flow cytometry. 

 

Flow cytometry 

Fluorescence of the directly conjugated mAbs bound to the cell surface was detected on a 

FACs Calibur flow cytometer (BD Biosciences, UK), equipped with a blue laser emitting light 

at a fixed wavelength of 488 nm and a red laser emitting light at a fixed wavelength of 640 

nm. The cells were identified and electronically gated using the forward and side light-scatter 
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mode using Cell Quest software. Side scatter was used to identify and gate the CD3+ cells. 

The CD4+ and CD8+ populations were then identified in the CD3+ cell population. For each 

sample, 10,000 CD3+/CD4+ and CD3+/CD8+ events were collected for analysis. The 

expression of CD69 was assessed on the CD4+ and CD8+ T-lymphocytes by four colour flow 

cytometry. The percentage of all CD3+/CD4+ and CD3+/CD8+ T-lymphocyte subsets 

expressing the markers of interest was tabulated for statistical analysis. 

 

Cytokine analysis 

Cytokines TNFα, IFNγ, IL-2, IL-10, IL-6 and IL-4 were measured in the plasma from the pre 

and post exercise blood samples using a commercially available cytokine bead assay (BD 

Biosciences, UK) and read on a FACs array (BD Biosciences,UK).  

 

CMV serostatus 

CMV serostatus was defined for all participants. Plasma from baseline blood samples was 

assayed for IgG antibodies to CMV using a commercially available enzyme-linked 

immunosorbent assay (ELISA) and a SpectromaxM2 plate reader (Molecular Devices, CA, 

USA).  

 

Data presentation and statistical analysis 

All data are presented as means ± standard deviation (SD), unless otherwise stated. 

Statistical analysis was performed using Mini-tab v-16 statistical software. Physical 

characteristics and dietary intake were compared between groups by independent sample t-

tests. Repeated measures analysis of variance (ANOVA) was used to compare between 

condition changes over time in the blood fatty acid profile with n-3%, n-6% and n-3: total 
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highly unsaturated fatty acid (HUFA%) as dependent variables and test day as independent 

variable. Lymphocyte and cytokine data were analysed using a 3 factor ANCOVA with cell 

type or cytokine as the dependent variable and exercise, group and test day as independent 

factors. CMV serostatus was the covariate. Post-hoc analysis was performed using the 

Tukey HSD test and 95% confidence. Main effects and interactions were accepted as 

statistically significant at the p<0.05 level. 
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5.4 Results 
Participant Characteristics and dietary analysis  

There was no significant difference between the fish oil and coconut oil groups for any 

physical characteristics, exercise training or dietary intake as in Chapter 4.  

 

Fatty Acid Profile 

Blood fatty acid profile was analysed pre to post supplementation as in Chapter 4. A 

significant main effect of treatment (P < 0.05) and a treatment-by-time interaction (P < 0.05) 

was observed for n-3% whereby participants in the fish oil group had an increase n-3% 

(105% ± 52) compared to the coconut oil group (3% ± 23). A significant main effect of 

treatment (P< 0.05) and a treatment-by-time interaction (P < 0.05) was observed for n-6% 

whereby participants in the fish oil group observed a decrease in n-6% (-6% ± 9) compared 

to the coconut oil group (2% ± 5). A significant main effect of treatment (P < 0.05) and a 

treatment-by-time interaction (P < 0.05) was observed for n3: total HUFA (%) whereby 

participants in the fish oil group observed an increase the ratio of n3: total HUFA % (83% ± 

43) compared to the coconut oil group (2% ± 6). 

 

T-lymphocytes 

A significant effect of exercise was observed for all T-lymphocytes (CD3+) (P < 0.05). The 

mobilisation of CD3+ T-lymphocytes increased in response to exercise as shown in Chapter 

4. There was a significant mobilisation of activated CD4+ CD69+ (P < 0.05) (Figure 1A) and 

CD8+ CD69+ (P<0.05) (Figure 1B) T-lymphocyte numbers in response to exercise. Despite 

significant mobilisation there was no significant effect of group and no significant interaction 

(group x time) observed on the CD4+CD69+ or CD8+CD69+ T-lymphocyte numbers. There 

was no significant effect of exercise, group or interaction on the CD4+CD69+ or CD8+CD69+ 
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T-lymphocyte proportions (Figure 2 and 3). CMV infection was a significant covariate for the 

number and proportion of CD4+CD69+ T-lymphocytes (P<0.05). CMV was not a significant 

covariate for the number or proportion of CD8+CD69+ T-lymphocytes (P>0.05). 
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Plasma Cytokines 

There were no significant main effects or interactions on the cytokine concentrations in the 

fish oil or coconut oil groups during the control period (baseline to pre-supplementation) 

(Figure 4, 5). A significant effect of day during the supplementation period (pre-

supplementation to post-supplementation) was observed for TNF-α (P<0.05), IL-6 (P<0.05), 

IL-4 (P<0.05) and IL-2 (P<0.05) with IFN-γ (P<0.05) and IL-10 (P<0.05) tending towards a 

difference (Figure 4, 5). The plasma concentrations of TNF-α, IL-6, IL-4, IL-2, IFN-γ and IL-

10 was greater at post-supplementation compared to pre-supplementation for both fish oil 

and coconut oil groups (Figure 4, 5). Latent CMV infection was a significant covariate for 

TNF-α, IL-6, IL-4, IL-2, IFN-γ and IL-10 (P<0.05).   
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5.5 Discussion 
 

Four weeks of supplementation with long chain n-3 PUFA or short chain SFA altered the 

blood fatty acid profile significantly. Supplementation with PUFA and SFA had no effect on 

the expression of the early activation marker CD69 on the surface of T-lymphocytes at rest 

or in the response to exercise. However, plasma concentrations at rest and following 

exercise of the Th1 cytokines TNF-α, IFN-γ and IL-2 and Th2 cytokines IL-10, IL-6 and IL-4 

increased as a result of both PUFA and SFA supplementation compared with the control 

period.  

 

During the supplementation period we observed an increase in blood n-3 PUFAs with a 

concomitant decrease in n-6 PUFAs in response to 4 weeks of fish oil supplementation. This 

observation supports a mechanism that could explain the anti-inflammatory benefits of 

PUFA’s. Membrane lipids consist of both n-3 and n-6 PUFAs and many reviews and primary 

literature have been published detailing the immunomodulatory effects of fish oil 

supplementation on cell membrane lipid composition (Calder, 1997; Calder, 1998; Calder, 

2006; Calder, 2010; Calder, 2011; Calder, 2012; Calder, 2013a; Calder, 2013b; Calder and 

Deckelbaum, 2014; Calder and Yaqoob, 2009; Calder and Yaqoob, 2009; Chapkin et al, 

2008; Kim et al, 2010; Shaikh and Teague, 2012; Yaqoob, 2004; Colas et al 2014). The n-6 

PUFA arachidonic acid (AA) is the precursor to pro-inflammatory signalling molecules, 

eicosanoids (Calder et al, 1992). Whereas eicosanoids derived from the n-3 PUFAs EPA 

and DHA are and pro-resolving (Kinsella and Lokesh, 1990). EPA is a precursor for E-series 

resolvins and DHA is a precursor for D-series resolvins, known to coordinate down 

regulation of inflammation and exert protection in experimental animal models of 

inflammatory disease (Hong et al, 2003; Hudert et al, 2006). Fish oil supplementation also 

increases E- and D- series resolvins in humans (Mas et al, 2012). As confirmed by our 

results supplementation with n-3 PUFAs like EPA and DHA results in an alteration of the 
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whole blood lipid order EPA and DHA are incorporated into the cell membrane at the 

expense of AA (Calder et al, 1994; Kew et al, 2004), likely resulting in a decrease in the 

precursor for pro-inflammatory eicosanoid production and an increase in the precursor for 

pro-resolving mediator production (Bagga et al, 2003; Wada and Tango, 2007).  

 

In the current study we observed no effect of PUFA or SFA supplementation on the T-

lymphocyte surface expression of CD69. CD69 is the earliest marker of activation expressed 

on the surface of an activated T-lymphocyte (Marzio et al, 1999). Previously no effect of 

supplementation with DHA alone has been observed on lymphocyte proliferation (Kelley et 

al, 1998; Thies et al, 2001) but a lower expression of CD69 indicating a lower level of 

activation was observed after 4 weeks of supplementation with 4.9g/day of DHA, 2004 (Kew 

et al, 2004). DHA disrupts lipid raft molecular organisation (Chapkin et al, 2008; Turk et al, 

2013) indicating a possible role of DHA in alteration of lymphocyte function but not 

proliferation. In the present study, we observed no effect of an n-3 PUFA supplement that 

contained both EPA and DHA on surface T-lymphocyte expression of CD69 suggesting the 

function of DHA is different in the presence of EPA, or the DHA dose of 1.5g/day was too 

low to observe a change given the dose was 4.9g/day in the Kew study (Kew et al, 2004). 

We observed a higher level of CD69 activation in our samples than Kew et al (2004). One 

potential explanation could be that Kew used healthy but not trained participants. Our results 

indicated, an increase in activated CD4+CD69+ and CD8+CD69+ T-lymphocytes at the post 

exercise time point in both PUFA and SFA supplemented groups. This would suggest that 

higher level of CD69 activation at rest in our samples could be a result of regular exercise 

that regularly activates CD4+ and CD8+ T-lymphocytes. Thus, regular mobilisation could 

result in a higher level of CD69 activation at rest, however, a full explanation is not 

immediately apparent and follow-up analysis does not indicate that this was a result of 

freezing our cells (see appendix). Latent CMV virus was a significant covariate in the 

activated CD4+CD69+ T-lymphocytes but not the CD8+CD69+ T-lymphocytes. Suggesting 
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CMV infection results in an increased number and proportion of activated CD4+ T-

lymphocytes but not activated CD8+ T-lymphocytes. This observation is contrary to what 

would be expected from previous literature, in which the CMV effect was greater in the CD8+ 

T-lymphocyte population (Turner et al, 2011). However, the study was not designed to 

investigate CMV infection so the number of individuals that were CMV positive and CMV 

negative were not equal or matched, therefore I think there could be a power issue in the 

analysis.  

 

Increased EPA and DHA in the cell membrane reputedly supresses inflammatory signalling 

via nuclear factor kappa-light-chain (NF-kB) (Lo et al, 1999; Novak et al, 2003; Zhao et al, 

2004). Located in the cytosol of T-lymphocytes, NF-kB controls gene transcription (Gilmore 

and Herscovitch, 2006). Activation of the T-lymphocyte by the T-cell receptor and membrane 

associated recognition receptors like Toll-like receptors (TLRs) trigger a cascade of 

phosphorylation events resulting in activated NF-kB entering the nucleus to upregulate 

genes involved in T-lymphocyte development, maturation, proliferation and Th1 and Th2 

cytokine production (Perkins, 2007). Recent studies suggest three mechanisms by which 

EPA and DHA exert anti-inflammatory properties through suppression of signalling via NF-

kB. These are interfering with early membrane events involved in activation of NF-kB via 

TLR-4 (Wong et al, 2010), activation of the nuclear receptor PPARy which physically 

interacts with NF-kB preventing nuclear translocation (Kong et al, 2010; Zapata-Gonzalez et 

al, 2008) and action via G-protein coupled receptor GPR120 which initiates an anti-

inflammatory signalling cascade that inhibits activation of NF-kB (Oh et al, 2010). However, 

Zeyda et al observed unaltered CD69 expression after supplementation with PUFA similar to 

the results of the current study suggesting the altered signalling mechanisms previously 

observed are independent of CD69 expression (Zeyda et al, 2003). Alterations in the fatty 

acid content of membranes suggest that an increased content of SFAs decreases the 

functional activity of immune cells, but an increased content of PUFAs increases their activity 
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(Kew et al, 2004). However, in the current study we observed no evidence of a difference 

between the SFA and PUFA groups for early T-lymphocyte activation marker despite whole 

blood lipid composition change over the 4 week supplementation period.  

 

 Supplementation with both PUFA and SFA resulted in an increase in the resting plasma 

concentrations of Th1 cytokines TNFa and IL-2 and Th2 cytokines IL-6 and IL-4 with a trend 

towards significance in Th1 cytokine IFN- γ and Th2 cytokine IL-10. The effect of PUFA 

supplementation on in vitro cytokine production has provided contrasting results ((Molvig et 

al, 1991; Soyland et al, 1994; Yaqoob et al, 2000). Similar to the current study, Trebble et al 

(2003) observed an increase in both the Th1 cytokine IFN- γ and a trend towards an 

increase in the Th2 cytokine IL-4 after supplementation with (up to 2g/d) of EPA and DHA 

(Trebble et al, 2003). However this was PBMC cytokine production in vitro and was not 

assessed in vivo through analysis of plasma cytokine concentrations. The current study 

observed no difference in the plasma concentrations of Th1 or Th2 cytokines in response to 

the exercise protocol. Similarly, Gray et al observed no difference in the Th2 cytokine IL-6 

immediately and up to 3 hours after 1-hour of cycling at 70% VO2max and no effect of 

supplementation with 3g/day of EPA and DHA on plasma IL-6 (Grey et al, 2012). 

Contrastingly, (Toft et al, 2000) observed an increase in the plasma concentration of the Th1 

cytokine TNF-α and the Th2 cytokine IL-6 in response to a marathon but no effect of 6 

weeks supplementation with 6g/day of EPA and DHA. These observations suggest that 

exercise intensity and duration rather than an alteration in cell lipid composition drives the 

release of these cytokines. Supplementation with 2.4g/day of EPA and DHA for 6 weeks had 

no effect on plasma Th1 and Th2 cytokine concentrations in response to 3 days of intense 

exercise (Nieman et al, 2009). It would appear that the longer duration of exercise in the Toft 

study is the reason for the increase in plasma TNF-α and IL-6 observed post exercise and 

supported by previous studies (Drenth et al, 1995; Northoff and Berg, 1991; Ostrowski et al, 

1998; Ostrowski et al, 1999; Pedersen et al, 1998). Differences in dose between studies 
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could also be responsible for the inconsistent findings (Caughey et al, 1996; Yaqoob, 2003). 

It has been previously speculated that the relationship between nutrients and immune 

function is ‘bell shaped’ (Chandra, 1991) suggesting increased ingestion of PUFAs due to 

habitual dietary intake increases immune cell function by altering the plasma membrane thus 

altering the Th1 and Th2 cytokine production. Intakes of n-3 PUFAs higher than habitual 

intake decrease immune cell function by producing plasma membranes that are too fluid 

(Gonzalez et al, 2000). Alterations in eicosanoid profiles (Caughey et al, 1996) and effects 

on cell signalling (Denys et al, 2001; Miles and Calder, 1998) will also alter the genes which 

are upregulated, and will subsequently alter cytokine production. The high dose of both 

PUFA and short chain SFA supplementation used in this study, much higher than habitual 

intake, could be masking any differences between the PUFA and SFA supplemented Th1 

and Th2 cytokine responses. The general increase in plasma cytokine concentration is not 

specific to Th1 or Th2 cytokines, or to the PUFA or SFA supplementation, suggesting that 

the increase could simply be the response to an overall dose of PUFA and SFA that is just 

too high. 

 

The increase in plasma concentrations of both Th1 and Th2 cytokines after supplementation 

for 4 weeks with both SFA and PUFA can, therefore, not be fully explained. Previous studies 

that have investigated cytokine concentrations have such contrasting levels it makes it 

difficult for a comparison to be made or they have measured a single cytokine. The natural 

variation between participants (Calder and Kew, 2002) means for a difference to be 

significant it would have to be very large. Latent CMV infection was a significant covariate for 

all the Th1 and Th2 cytokines measured in this study suggesting CMV is related to the Th1 

and Th2 cytokine concentrations, but not to any one specific cytokine or family of cytokines 

in particular. Given that the changes observed in this study are not specific to a single 

cytokine or a family of cytokines, and that they are not specific to the PUFA or the SFA 

supplementation and CMV infection is accounted for in the analysis, it would seem that the 
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changes are a result of natural variation in plasma cytokine levels combined with a 

supplementation of a PUFA or SFA at a dose that is higher than habitual intake. It is possible 

that the high dose masked any differences between the fatty acid supplementation groups. 

The lack of clear evidence of cytokine responses reflects the lack of changes in lymphocyte 

subset proportions observed in Chapter 4, and suggests that supplementation with PUFA or 

SFA has no beneficial effects on T-lymphocyte proportions, T-lymphocyte activation, or 

cytokine release. These observations highlight that supplementation with PUFA and SFA at 

the dose used in the present study is not recommended in a young, healthy, trained, male 

population for immune function purposes. However, future dose-response investigations 

would seem prudent before ruling out any possible beneficial effects of these fatty acid 

supplements. 
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6.1 Introduction 
 

The resting T-lymphocyte pool is known to be influenced by many factors: infection (Mallia et 

al, 2014) age; sleep; baseline fitness; macronutrient intake; training volume; body fat; and 

sex. However, the effects of these factors, and the T-lymphocyte populations mobilised in 

response to exercise, are not fully understood. Additionally, the effect of different fatty acid 

supplementation protocols (saturated fats vs. polyunsaturated fats) on the T-lymphocyte pool 

and response to exercise is currently unknown.  The novel data in this thesis may enhance 

our understanding of different T-lymphocyte subsets at rest, and their response to acute 

exercise. By investigating factors that could impact on the T-lymphocyte population 

responses, like training status, sex, increased training volume, PUFA supplementation and 

latent CMV infection, the thesis provides the framework to guide further investigations of the 

adaptive immune response in male and female exercisers. 

 

Chapter 2 investigated the effect of training status and sex on senescent T-lymphocytes at 

rest and in response to acute maximal exercise. A training status difference was observed 

with the untrained group with a higher proportion of senescent and a lower proportion of 

naïve CD8+ T-lymphocytes than the trained group. A sex effect was also observed with the 

male participants having a higher proportion of senescent and a lower proportion of naïve T-

lymphocytes than the females. It also appeared that the untrained male population was 

driving both the training status and sex differences observed in this study. Speculatively, the 

sex differences observed may be due to the protective effect of oestrogen against telomere 

shortening, with less senescent T-lymphocytes observed in females. The training status 

differences observed are likely due to a more regular mobilisation of senescent T-

lymphocytes in the trained compared to the untrained, resulting in a lower resting population 

of senescent T-lymphocytes in trained individuals.  
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Chapter 3 compared the T-lymphocyte composition changes over time in a trained group that 

trained hard, versus an untrained group that did not train hard, and investigated the impact of 

increasing training volume in the trained group. It was observed that the increase in training 

volume over a 2 week period had no effect on T-lymphocyte populations in trained females. 

However, there were differences in the proportions of γδ+, CD4+ and the ratio of CD4+:CD8+ 

T-lymphocytes between the trained and untrained groups. Although the study was not 

designed to manipulate diet, we observed increased macronutrient intake, above normal, in 

the trained group during the increased training volume period. The lack of change in T-

lymphocyte populations in the trained group after a period of increased training volume 

indicates that macronutrient intake was likely sufficient for optimal recovery or that they’re 

used to training.  

 

Chapter 4 assessed the effect of 4 weeks supplementation with short chain SFA versus n-3 

PUFA on T-lymphocyte populations at rest and in response to acute exercise. A difference 

between groups was evident for the proportion and number of γδ+ T-lymphocytes but there 

was no conclusive evidence to suggest that the difference was related to the 

supplementation period. 

 

Chapter 5 continuing on from Chapter 4 examined the effect of 4 weeks of supplementation 

with short chain SFA versus n-3 PUFA on the early T-lymphocyte activation marker CD69 

and the plasma cytokine concentrations of Th1 and Th2 cytokines. No differences in CD69 

expression were observed between the supplemented groups. Plasma concentrations of 

both Th1 and Th2 cytokines increased after supplementation in both groups possibly 

highlighting the impact of high dose supplementation on cytokine response.   
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From the body of work as a whole what can we conclude about acute exercise responses, 

training status, increases in training volume, diet manipulation, gender, and CMV serostatus? 

What does the thesis contribute to the literature? 

 

Two theories exist surrounding the senescent T-lymphocyte response to exercise. These 

theories are not opposing, they could exist alongside each other, but they both focus on a 

slightly different aspect of the response. The first model proposed by Dhabhar et al (2012) 

suggests that the preferential influx of cytotoxic senescent CD8+ T-lymphocytes to the 

peripheral tissues with retained effector killing functions following exercise (Campbell et al, 

2008; Simpson et al, 2007; Simpson et al, 2008; Turner et al, 2010) is important for 

immunosurveillance (Dhabhar et al, 2012). The mechanisms of the model suggest that in 

response to a stressor (i.e. exercise) naïve T-lymphocytes traffic to the lymph nodes where 

they come into contact with novel antigens. Concomitantly, antigen-experienced effector and 

memory T-lymphocytes traffic to peripheral tissues like the skin, lung or mucosal lining of the 

gut where they encounter familiar antigens. In agreement with this model Bosch et al (2003) 

observed a selective mobilisation of T-lymphocytes primed for inflammation in response to 

an acute stressor (Bosch et al, 2003). The data presented in this thesis support this theory. 

We observed a decrease in naïve T-lymphocyte proportions immediately post exercise 

suggesting that naïve T-lymphocytes have trafficked to the lymph nodes during the exercise 

bout with a return to baseline in the 1 hour post exercise. We also observed an increase in 

senescent T-lymphocytes during exercise suggesting they are mobilised into the blood 

stream during exercise, and in the observed egress in the 1 hour post exercise they have 

trafficked to the peripheral tissues (Figure 1). 
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Fig 1. Model of stress-induced changes in leukocyte distribution from Dhabhar et al 2012. It 
is based on data presented in the literature (Dhabhar, 2009; Dhabhar et al, 2012a; Dhabhar 
and McEwen, 1996; Dhabhar and McEwen, 1997; Dhabhar and Viswanathan, 2005; 
Rosenberger et al, 2009; Viswanathan and Dhabhar, 2005). Norepinephrine (NE), 
epinephrine (EPI), and corticosterone (CORT), monocyte (MO).  

 

The second theory proposed by Simpson et al (2011) relates to the acute response to 

exercise but also the effect of regular training on the senescent T-lymphocyte population. In 

response to exercise, senescent T-lymphocytes are mobilised and subsequently egress to 

the peripheral tissues where they experience a proapoptotic environment (Kruger et al, 

2008). Simpson et al (2011) propose a negative feedback loop that controls the peripheral T-

lymphocyte numbers. Hence, when senescent T-lymphocytes undergo apoptosis, peripheral 

T-lymphocyte numbers are low. The subsequent feedback loop increases the output of naïve 

T-lymphocytes from the thymus and thus restores the peripheral T-lymphocyte pool. If the 

feedback loop were to be apparent, it would occur more frequently in trained participants, 

who undergo regular bouts of exercise. While this is not a widely accepted theory and further 

investigation is warranted, our observation of a blunted senescent T-lymphocyte response, 
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together with an increased naïve T-lymphocyte response to exercise in trained compared to 

untrained, lend support to the theory that regular exercise training mobilises senescent T-

lymphocytes and thus frees up ‘immune space’ for naïve T-lymphocytes. From the work of 

the current thesis this model seems to apply to males but possibly not females (Figure 2).  

 

 

 

 

 

 

 

 

 

Fig 2. A model taken from Simpson et al (2011) demonstrating the effect of repeated bouts 
of acute exercise on the immune space.  

Both of the above theories suggest that the mobilisation and subsequent egress of 

senescent T-lymphocytes in response to exercise is a beneficial response. Accumulation of 

the senescent T-lymphocyte population, and a diminished naïve T-lymphocyte population at 

rest, has been linked to the increase in infection susceptibility in older adults. This has not 

been tested experimentally but it is assumed to be due to the lesser ability of senescent T-

lymphocytes at recognising new infections. Both of these theories highlight the importance of 

a balance in the T-lymphocyte populations within the T-lymphocyte pool. 

To really answer these questions in the future we need to understand exactly where the 

senescent T-lymphocytes are coming from into the blood in response to an exercise 
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stimulus, and where they end up after exercise. This could be done by obtaining tissue 

samples in human participants. Animal studies have found that lymphocytes migrate to the 

lungs and intestinal Peyer patches after exercise (Kruger et al, 2008; Kruger et al, 2009). At 

this stage experiments like that are not possible in humans. Even a muscle tissue biopsy 

itself would cause a significant inflammatory response thus making it difficult to differentiate 

what was a result of exercise and what was a response to the muscle insult. 

 

A slight limitation that could have provided a more in depth insight into the training status 

differences observed is hormone measurements. Current thinking suggests that stress 

hormones influence the differential redistribution of T-lymphocytes (Landmann, 1992). Due to 

the descriptive nature of Chapter 2, no measurements of stress hormones (i.e., epinephrine 

and cortisol) concentrations in blood were collected. Previous work has demonstrated a 

smaller epinephrine response to submaximal exercise in trained compared to untrained 

individuals (Hong et al, 2005; Kjaer et al, 1985; Vinten and Galbo, 1983). A lower 

epinephrine response in trained would be expected to be associated with a lower 

redistribution of senescent cells into the blood. However, at maximal exercise intensity, we 

would expect trained participants to have a higher epinephrine response (Kjaer et al, 1985). 

Thus, the present data imply, albeit indirectly, that training status may override the impact of 

stress hormones on the redistribution of senescent cells in response to exercise. Thus, 

measurement of hormones would have allowed us to directly compare the training status vs 

stress hormone response on the senescent T-lymphocyte response and identify if training 

status overrides the stress hormone impact.  

 

One unexplored explanation for the differences in T-lymphocytes observed between trained 

and untrained populations is the role of diet composition. Previous work has observed 

carbohydrate ingestion during exercise results in a lower post-exercise lymphocytosis 
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(Henson et al, 1999; Lancaster et al, 2003; Nieman et al, 1997; Nieman et al, 2004; Timmons 

et al, 2004). However, this has not been confirmed by other groups (Bishop et al, 2005; 

Green et al, 2003; Henson et al, 2004; McFarlin et al, 2004; Nieman and Bishop, 2006; 

Peake et al, 2008). During the increased training volume study reported in Chapter 3 dietary 

intake was monitored. It was observed that the trained consumed sufficient carbohydrate to 

prevent any impaired mobilisation of T-lymphocytes. An impaired mobilisation has previously 

only been observed elsewhere in a study that fixed carbohydrate intake at a low level during 

high intensity training (Witard et al, 2012). A further study by these same authors 

demonstrated that increased protein intake restored impaired T-lymphocyte mobilisation 

during high intensity training when energy balance was matched between high and low 

intensity exercise groups through an increase in dietary fat (Witard et al, 2013). We observed 

in chapter 3 that our trained group consumed significantly more protein, monounsaturated 

(MUFA) and polyunsaturated (PUFA) fatty acids during the high intensity period of increased 

volume training than the habitual diet of an untrained group. Of the dietary PUFA’s, omega-3 

(n-3) fatty acids, that consist primarily of eicosapentaenoic acid (EPA), docosahexaenoic 

acid (DHA) and docosapentaenoic acid (DPA), are abundant in oily fish sources. These n-3 

PUFAs are also known to exhibit strong anti-inflammatory properties (Thies et al, 2003) 

leading to dietary fish oils being implicated in neurological and chronic inflammatory 

diseases, such as Alzheimer’s (Samieri et al, 2008b; Samieri et al, 2008a), diabetes mellitus 

(Nettleton and Katz, 2005) and cardiovascular disease (Lemaitre et al, 2003). PUFA 

supplementation studies have observed contrasting results of immune/inflammatory markers 

and T-lymphocyte function in both supplementation alone and supplementation combined 

with exercise studies. The contrasting results could be explained by variations in the 

experimental design of the various studies. Dose, duration and placebo used differ between 

studies, some studies use a single cell model and others use a whole body model. A suitable 

placebo for comparisons with n-3 PUFA must be a fatty acid that does not alter the n-6:n-3 

ratio. Corn oil is used in many studies as a placebo, however, corn oil is an n-6 fatty acid 

therefore it will alter the n-6:n-3 ratio and  observations from studies using corn oil as a 
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placebo should therefore be interpreted with caution. Olive oil is a suitable placebo, it is a n-9 

PUFA therefore would not alter the n-3:n-6 ratio and it is believed that the coconut oil used in 

Chapters 4 and 5 is also a suitable placebo. Coconut oil is comprised of short chain 

saturated fatty acids therefore does not alter the n-3:n-6 ratio. However, it is worth 

mentioning at this point that recent health related benefits have been associated with 

coconut oil (Amarasiri and Dissanayake, 2006). One recent study observed antioxidant and 

anti-inflammatory effects of coconut oil on adjuvant induced arthritis in rats (Vysakh et al, 

2014). Although their study used an animal model and has not been investigated in humans, 

it could highlight a reason for the coconut and fish oil groups similar cytokine response to the 

supplementation period observed in Chapter 5. 

 

Various studies have used different experimental models for investigating the effects of 

PUFA on immune function. Often single cell models are used to identify the mechanisms but 

it can be difficult to replicate the findings in whole body models and vice versa. In Chapters 4 

and 5 we used a whole body model to observe the outcome of supplementation with n-3 

PUFA or SFA. Therefore, we can only speculate about the mechanisms using the outcomes 

observed. In future n-3 PUFA supplementation studies due care should be applied to the 

dose, duration, placebo and experimental model used. A combination of isolated single cell 

in vitro mechanistic work in combination with the in vivo whole body response in the same 

participants is worth investigating. The immune system is so diverse that any future 

supplementation studies should look to combine more than one supplement, potentially in a 

carbohydrate beverage (Bakker et al, 2010) as this would probably work better than one 

supplement on its own.  

 

Speculatively, the sex-difference in T-lymphocyte redistribution could be explained by 

hormonal differences between sexes, namely oestrogen concentration. T-lymphocytes are 
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known to express oestrogen receptors and the CD8+ T-lymphocyte subset binds oestrogen 

with high affinity (Cutolo et al, 1995). Indeed, cell culture studies reveal that in the presence 

of 17 B-estradiol (E2), the ratio of activated CD4+/CD8+ human T-lymphocytes is decreased 

(Athreya et al, 1993). Moreover, the promoter region of interferon gamma (IFN y) appears to 

be positively modulated by oestrogen (Betz and Fox, 1991). In turn, IFN-y is produced by 

senescent T-lymphocytes and has been reported to up-regulate the enzyme telomerase in 

lymphoid cell lines (Xu et al, 2000). The hormonal milieu is known to change cyclically with 

menstrual cycle phase (Oertelt-Prigione, 2012). Reductions in CD4+ T-lymphocyte number 

have been observed in the luteal compared to early follicular phase of the cycle (Lee et al, 

2010). It is unknown what influence a changing hormonal milieu will have on senescent T-

lymphocytes. Interestingly, we observed no difference in the redistribution of senescent T-

lymphocytes in response to exercise between trained and untrained females, whereas a 

difference was observed between trained and untrained males. This observation suggests a 

sex-specific effect of training status on the redistribution of senescent T-lymphocytes. Our 

observations also support the notion that oestrogen may provide a preventative mechanism 

against T-lymphocyte telomere shortening in females that could possibly have contributed to 

the lower proportion of senescent CD4+ and CD8+ T-lymphocytes at rest and in response to 

exercise.  However, menstrual cycle phase was not controlled for and no hormone 

measurements were collected. Therefore, to fully understand the sex effect observed in 

Chapter 2 further investigation into the effect of exercise on the T-lymphocyte population at 

rest and in response to exercise at different phases of the menstrual cycle is important.  

In older people infected with CMV a large proportion of their memory T-lymphocyte pool are 

specific for CMV virus resulting in a higher proportion of senescent T-lymphocytes and a 

lower proportion of naïve T-lymphocytes (Simpson, 2011). The accumulation of CMV viral 

specific T-lymphocytes ‘squeezes’ the memory T-lymphocytes for other antigens out of the 

memory pool increasing the risk of infection with a new antigen, but also with a previously 

encountered antigen that the memory T-lymphocytes have been squeezed out (Figure 3).  
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Fig 3. Latent viral infection (CMV) alters the immune space and subsequent infection risk. 
Taken from Simpson (2011). 

Early signs of this immunosenescence known to affect the elderly (Pawelec et al, 2010), 

have recently been observed in a younger population (Turner et al, 2014). Senescent T-

lymphocyte proportions are therefore greater in CMV seropositive individuals at rest. In 

response to exercise the senescent T-lymphocyte mobilisation and egress is amplified 

(Turner et al, 2010). Despite the previously discussed beneficial immunosurveillance of 

senescent T-lymphocytes, the amplified response of senescent T-lymphocytes as a result of 

CMV infection increases the mobilisation of senescent T-lymphocytes to the tissues and 

areas of atherosclerotic plaques, increasing inflammatory damage in tissues (Bosch et al, 

2003). An interesting observation in both Chapter 2 and 3 was the higher per cent of CMV 

positive individuals in the trained population compared to the untrained population. This 

difference could be explained by living in close quarters together and sharing water bottles 

during training camp environments. Throughout this thesis CMV was never a main factor in 

any of the study designs i.e. we did not recruit specifically for CMV positive or CMV negative 

individuals because it was not our main aim in any of the studies. However, due to the 



Chapter 6                                                                                        General discussion 

 

194 
 

previously discussed known influence of CMV on T-lymphocyte populations it was always 

included as a covariate in the data analysis in the studies. A study design similar to the 

Turner et al (2014) comparing large numbers of CMV positive to CMV negative participants 

in response to exercise could be an enlightening future direction. 

 

A number of limitations exist within this body of work. Firstly a lack of hormonal measures, 

the measurement of both stress and sex hormones would have provided further insight to the 

reasons for the differences between the trained and untrained groups and the males and 

females. In addition controlling for the menstrual cycle, would have removed menstrual cycle 

phase as a variable. However, the trained female participants all lived together so their 

menstrual cycles could have been in sync, but without measurements this is speculative. 

Secondly the anatomical location of where senescent T-lymphocytes are mobilised from and 

egressed too is not fully understood, therefore it is unknown if the response is beneficial or 

detrimental. Finally, CMV infection influences the T-lymphocyte pool and the response to 

exercise but it was never investigated as a factor on its own.      

 

The main findings from this thesis that warrant further work are; males had higher 

proportions of senescent T-lymphocytes compared to females. An untrained group had 

higher proportions of senescent T-lymphocytes compared to a trained group. CMV infection 

appears to be more prevalent in trained populations than untrained populations. Increasing 

the volume of training in a trained female group for 2 weeks has no effect on the resting T-

lymphocyte pool. Four weeks of PUFA or SFA supplementation has no effect on the T-

lymphocyte pool at rest or in response to exercise in a group of trained males.  

Considering both the limitations and the main findings of this thesis, future studies should be 

designed to examine the effect of exercise on the T-lymphocyte pool at different phases of 

the menstrual cycle. This would fully identify the influence of sex hormones on the response 
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in females. The differential influence of stress hormones in response to exercise on the T-

lymphocyte pool in both trained and untrained populations requires closer examination. 

Exact anatomical locations of where senescent T-lymphocytes are mobilised from and 

egress to could be investigated by bio mathematical modelling of the response or more 

invasive techniques like skin, muscle or fat biopsies this could provide a more in depth 

insight into the senescent T-lymphocyte response to exercise. Studies in which large 

numbers of CMV positive and CMV negative participants are matched would allow for the 

effect of CMV infection on the T-lymphocyte response to exercise to be fully elucidated. 

Future research should consider moving into clinical populations. By investigating 

populations in which immune system dysfunction exists, and the mechanisms of the 

dysfunction are understood, would allow questions about effects of exercise, periods of 

increased training volume, or fatty acid supplementation / diet to be explored. It would also 

be of interest to determine whether sex differences in immune response remain in these 

populations, such as those known to exist in autoimmune diseases like rheumatoid arthritis. 

This approach would allow for whole body analysis to be made and the overall outcome of 

the immune response investigated. This would be an important step for exercise 

immunology research due to the nature of the multifactorial immune response.  
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Introduction 

As mentioned in chapter 5 we observed a higher level of T-lymphocyte CD69+ activation 

when compared to previous studies (Kew et al, 2004). To investigate this discrepancy, we 

carried out some retrospective further analyses. The main difference between the analysis 

conducted in Chapter 5 and that of previous work was that we froze and stored our samples 

before batch analysing, for logistical reasons. Therefore, to investigate if the freezing 

procedure has any effect on the CD69+ expression we performed two small experiments. 

Initially, we obtained blood from participants and examined CD69+ expression in fresh vs. 

frozen PBMC’s. We then performed a second experiment in which cultured PBMC’s were 

treated fresh and frozen (from the same participant) with a mitogen (PHA) at a low 

(2.5ug/106cells) medium (5ug/106cells) and high (7.5ug/106cells) concentration.  
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Methods 

Participants 

For the first experiment n=6 and for the second n=5 participants were recruited. A blood 

sample was taken from a forearm vein and the sample was equally split into two, one half for 

analysis of the fresh sample the other half was frozen and stored then analysed.  

 

Peripheral blood mononuclear cells (PBMC) isolation 

The methods used to isolate peripheral blood mononuclear cells (PBMCs) from whole blood 

have been described elsewhere (Simpson et al, 2006). Briefly whole blood was mixed with 

an equal volume of 0.9% NaCl and layered over 3ml of Lymphoprep (Axis-Shield, Oslo, 

Norway). Samples were centrifuged at 2000rpm for 30mins at 20˚C. After centrifugation, the 

PBMCs at the sample/medium interface were removed and washed twice for 10 mins with 

0.9% NaCl then once for 10 mins with RPMI-1640 medium (Sigma-Aldrich, Ltd, UK). 

 

The isolated PBMCs were then analysed fresh, cultured or stored in 70% (700µl) fetal 

bovine serum (Sigma-Aldrich, Ltd, UK), 20% (200µl) RPMI-1640 growth medium (Sigma-

Aldrich, Ltd, UK) and 10% (100µl) DMSO (Sigma-Aldrich, Ltd, UK) that was added to the 

samples on ice. Samples were then snap frozen in liquid nitrogen and stored in liquid 

nitrogen until later analysis.  
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Cell culture 

Isolated PBMC’s were cultured fresh or thawed and resuspended in 10ml of RPMI-1640 

medium (Sigma-Aldrich, Ltd, UK), supplemented with 5% heat inactivated fetal bovine serum 

(Sigma-Aldrich, Ltd, UK), and 1% sodium azide. Cells were counted using a 

haemocytometer to determine the appropriate PHA concentrations to be added, 2.5ml of the 

cell suspension was then distributed into 6 well plates (Thermo Scientific). Cells were then 

incubated at 37°C with 5% CO2 with or without different concentrations (0, 2.5, 5 and 

7ug/106 cells) of PHA (Sigma-Aldrich, Ltd, UK) for 6h. After incubation supernatant was 

removed and stored for further analysis. Cells were washed for 10mins at 300g (CR 312) 

with 1ml of PBS (Sigma-Aldrich, Ltd, UK), supplemented with 0.1% BSA and 0.1% sodium 

azide. Fastimmune kit (BD biosciences San Diego CA) combining antibodies CD8 FITC 

CD69 PE and CD3 perCP was added according to the manufacturers instructions. Cells 

were washed again for 10mins at 300g with 1ml of PBS. After the wash cells were fixed with 

400ul of 0.5% formaldehyde and stored at 4°C until acquisition on the flow cytometer.  

 

Flow Cytometry  

Fluorescence of the directly conjugated mAbs bound to the cell surface was detected on a 

FACSCalibur (Becton Dickinson, Oxford, UK) flow cytometer equipped with a blue laser 

emitting light at a fixed wavelength of 488 nm and a red laser emitting light at a fixed 

wavelength of 640 nm. The cells were identified and electronically gated using the forward 

and side light-scatter mode using CellQuest Pro software. Fluorescence triggering in the FL3 

channel to gate on CD3+ was used for acquisition. Data was then displayed as two-colour 

dot plots (FL1 versus FL2) to determine the proportion of activated lymphocyte subsets 

expressing CD69. Following acquisition, FCS files were transferred to a third party software 

programme for analysis by FlowJo version 7.6.3. 
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Data presentation and statistical analysis 

All data are presented as means ± standard deviation (SD), unless otherwise stated. 

Statistical analysis was performed using Mini-tab v-16 statistical software. Repeated 

measures analysis of variance (ANOVA) was used to compare between fresh and frozen at 

the different mitogen concentrations. Post-hoc analysis used the Tukey test and 95% 

confidence interval. Main effects and interactions were accepted as statistically significant at 

the P < 0.05 level.  
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Results  

In resting samples with no mitogen stimulation there was no significant difference between 

the fresh and frozen samples for CD69 cell number and proportion of CD69+ in the CD4+ and 

CD8+ T-lymphocyte populations (Figure 1). 

A significant main effect of the freezing process was observed (Figure 2A,C) whereby the 

samples assessed when fresh had a higher proportion of activated T-lymphocytes than the 

samples assessed after freezing. There was no significant main effect of mitogen 

concentration or a mitogen-by-freezing interaction observed in the CD8+ T-lymphocytes, 
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indicating the mitogen was not activating either the fresh or frozen samples. However, when 

the data is expressed as % change at the different mitogen concentrations (Figure 2B) it 

does appear that the mitogen is activating the fresh but not frozen samples. A significant 

main effect of mitogen and a mitogen-by-freezing procedure interaction was observed on the 

CD4+ T-lymphocytes (Figure 2C) indicating the mitogen is activating the fresh but not the 

frozen samples in a dose dependent manner. The % change further supports this 

observation (Figure 2D). 
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To further support the observed mitogen activation in the fresh but not the frozen (Figure 2B, 

C and D) the raw flow cytometry plots below demonstrate that there is still an effect of 

mitogen in the fresh samples (Figure 4) but not the frozen (Figure 3). 

     

 

Fig 3. Flow cytometry plots of CD69+ expression in the CD3+ population at 0 (A) low (B) 
medium (C) and high (D) concentrations of PHA mitogen. These plots are from samples that 
were frozen and stored prior to being thawed for analysis.  
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Fig 4. Flow cytometry plots of CD69+ expression in the CD3+ population at 0 (A) low (B) 
medium (C) and high (D) concentrations of PHA mitogen. These plots are all from the same 
participant as (Figure 2) and the samples were cultured fresh. 
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Discussion 

The aim of these retrospective analyses was to identify if freezing PBMC’s after isolation 

influenced the activation and therefore expression of CD69+. No significant difference was 

observed between the fresh and frozen resting samples with no mitogen (Figure 1). 

However, the SD in the frozen samples suggests when treated frozen the samples become 

more variable. Although there was not a statistically significant difference between the fresh 

and frozen, the CD4+CD69+ T-lymphocytes do seem to be higher in the fresh samples. This 

was a small study using only 6 participants, with more participants this difference could 

become more apparent. From the current analyses it is clear that the freezing procedure 

blunts the number and proportion of CD8+CD69+ T-lymphocytes observed in response to a 

PHA mitogen (Figure 1). These data suggest that the freezing procedure damages the cells 

to the point where the early activation marker on the cell surface is lost, and that the cells are 

unable to express this marker upon exposure to the mitogen (PHA). When the data is plotted 

as percentage change at the different mitogen concentrations (Figure 2) and the individual 

responses are observed within the same participant between the fresh and frozen sample it 

is quite clear (Figure 3 and 4) that the freezing procedure is preventing the expression of 

CD69+. This data suggests the freezing procedure increases the variability of the cell count 

and proportions of activated T-lymphocytes at rest. It does not result in a statistically 

significant difference from the proportions and counts of activated T-lymphocytes in fresh 

samples at rest. But it was carried out in a small subject number suggesting if repeated with 

more participants the difference between fresh and frozen samples could become more 

apparent. However, from this data the freezing procedure cannot be held responsible for the 

higher proportions of activated T-lymphocytes observed in Chapter 5 compared to previous 

studies (Kew et al, 2004), the resting values in Chapter 5 were even higher than the data 

from the frozen samples presented here.  

An interesting observation from the second of these small studies is the blunted mitogen 

activation observed in the frozen CD4+ T-lymphocyte samples, while this did not reach 
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statistical significance in the CD8+ T-lymphocytes the likely explanation is low power from 

the small participant cohort.  A possible explanation for the blunted mitogen activation lies in 

the experimental protocol, after the PMBC’s were defrosted they were not rested for 24 

hours as a very recent paper published since I have done all of this analysis suggests (Mata 

et al, 2014) while this study did not investigate CD69 expression, it investigated other 

functional markers in PBMC’s and suggested after thaw the PBMC’s should be rested for 24 

hours. Highlighting the importance of redoing the whole procedural experiments using frozen 

cells that are rested for 24 hours after thawing. Only this would confirm if there is a real 

reduction in retention or expression of the CD69 surface marker in response to the freezing 

procedure.
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