
O P T I M I S I N G S T R U C T U R E D P2P NETWORKS FOR

COMPLEX QUERIES

jamie robert furness

For the Degree of Doctor of Philosophy

Institute of Computing Science and Mathematics

University of Stirling

June 2014

D E C L A R AT I O N

I, Jamie Robert Furness, hereby declare that this work has not been submitted for any other

degree at this University or any other institution and that, except where reference is made to the

work of other authors, the material presented is original.

June 2014

ii

A B S T R A C T

With network enabled consumer devices becoming increasingly popular, the number of connected

devices and available services is growing considerably - with the number of connected devices es-

timated to surpass 15 billion devices by 2015. In this increasingly large and dynamic environment

it is important that users have a comprehensive, yet efficient, mechanism to discover services.

Many existing wide-area service discovery mechanisms are centralised and do not scale to

large numbers of users. Additionally, centralised services suffer from issues such as a single point

of failure, high maintenance costs, and difficulty of management. As such, this Thesis seeks a

Peer to Peer (P2P) approach.

Distributed Hash Tables (DHTs) are well known for their high scalability, financially low barrier

of entry, and ability to self manage. They can be used to provide not just a platform on which

peers can offer and consume services, but also as a means for users to discover such services.

Traditionally DHTs provide a distributed key-value store, with no search functionality. In recent

years many P2P systems have been proposed providing support for a sub-set of complex query

types, such as keyword search, range queries, and semantic search.

This Thesis presents a novel algorithm for performing any type of complex query, from

keyword search, to complex regular expressions, to full-text search, over any structured P2P

overlay. This is achieved by efficiently broadcasting the search query, allowing each peer to

process the query locally, and then efficiently routing responses back to the originating peer.

Through experimentation, this technique is shown to be successful when the network is stable,

however performance degrades under high levels of network churn.

To address the issue of network churn, this Thesis proposes a number of enhancements which

can be made to existing P2P overlays in order to improve the performance of both the existing DHT

and the proposed algorithm. Through two case studies these enhancements are shown to improve

not only the performance of the proposed algorithm under churn, but also the performance of

traditional lookup operations in these networks.

iii

L I S T O F P U B L I C AT I O N S

• Jamie Furness and Mario Kolberg. A Survey of Blind Search Techniques in Structured P2P

networks. In Proceedings of The 11th Annual PostGraduate Symposium on The Convergence of

Telecommunications, Networking and Broadcasting, Liverpool, UK, 2010

• Jamie Furness and Mario Kolberg. Considering complex search techniques in DHTs under

churn. 2011 IEEE Consumer Communications and Networking Conference (CCNC), pages

559–564, January 2011

• Jamie Furness and Mario Kolberg. Improving Wide Area P2P Service Discovery Mechanisms

using Complex Queries. In Anand R. Prasad, John F. Buford, and Vijay K. Gurbani, editors,

Future Internet Services and Service Architectures, chapter 9, pages 183–203. River Publishers,

2011

• Dom Schlienger, David Irvine, James Irvine, Mario Kolberg, Jamie Furness, Swee Keow Goo,

Jorge Eliécer Gómez Gómez, and Velssy Hernandez Riaño. Works in Progress-A Survey,

Cloud File Sharing, and Object Augmentation. IEEE Pervasive Computing, 11(2):96, 2012

• Jamie Furness, Mario Kolberg, and Marwan Fayed. An Evaluation of Chord and Pastry

Models in OverSim. In Modelling Symposium (EMS), 2013 European, pages 509–513, 2013

• Jamie Furness, Farida Chowdhury, and Mario Kolberg. An Evaluation of EpiChord in

OverSim. In 5th International Conference on Networks and Communication. ACM Press, 2013

iv

TA B L E O F C O N T E N T S

1 introduction 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Structure of the Thesis . 4

2 p2p overlays 6

2.1 Background . 6

2.1.1 Unstructured Overlays . 8

2.1.2 Structured Overlays . 8

2.1.2.1 Distributed Hash Tables . 9

2.1.2.2 Data replication in Distributed Hash Tables 9

2.1.3 Hybrid Overlays . 13

2.2 State of the Art . 13

2.2.1 Multi-hop Overlays . 14

2.2.1.1 Chord . 14

2.2.1.2 Kademlia . 15

2.2.1.3 Pastry . 16

2.2.1.4 CAN . 17

2.2.1.5 DKS . 18

2.2.2 Single-hop Overlays . 19

2.2.2.1 D1HT . 19

2.2.2.2 Epichord . 20

2.2.3 Variable-hop Overlays . 21

2.2.3.1 Accordion . 21

2.2.3.2 Chameleon . 22

2.3 Summary . 22

3 complex queries 24

3.1 Background . 24

3.1.1 Unstructured Overlays . 26

3.1.2 Structured Overlays . 27

3.1.3 Hybrid Overlays . 27

3.2 State of the Art . 28

3.2.1 Token pointers in a DHT . 28

3.2.2 d-dimensional index space mapping using Space Filling Curves (SFCs) . . . 31

3.2.3 Load balancing with Virtual Peers . 33

3.2.4 Tree structured networks . 33

3.2.5 Indexing by Semantic Vector . 35

3.2.6 Efficient Broadcasting . 36

v

3.3 Summary . 39

4 a blind-search system 42

4.1 Introduction . 42

4.1.1 Design Criteria . 43

4.1.2 Related Work . 44

4.2 Query Distribution . 45

4.2.1 Ring based DHTs . 45

4.2.2 Prefix routing DHTs . 46

4.2.3 Cartesian space based DHTs . 46

4.2.4 Hypercube based DHTs . 47

4.3 Response Routing . 47

4.3.1 Routing with Collation . 48

4.3.2 Reverse Tree Navigation . 49

4.4 Load balance . 49

4.5 Performing under churn . 50

4.6 Summary . 51

5 optimising dhts for blind-search 53

5.1 Increasing routing table size . 54

5.1.1 Address caching . 55

5.2 Increasing routing table accuracy . 55

5.2.1 Downlists . 56

5.2.2 Levelling . 56

5.3 Optimising data replication . 57

5.3.1 Symmetric Replication . 57

5.3.2 Replica Teams . 58

5.4 Summary . 59

6 experimentation 61

6.1 Introduction . 61

6.1.0.1 OverSim . 62

6.2 Simulation setup . 63

6.2.1 Validating the underlying network . 64

6.2.2 Validating the overlaying network . 67

6.2.3 Validating the environment . 68

6.3 Blind-Search . 70

6.3.1 Performing under churn . 74

6.4 Optimising data replication . 75

6.4.1 Symmetric Replication . 76

6.5 Distributed Hash Table Optimisations . 77

6.5.1 Increasing routing table size . 77

6.5.1.1 Address caching . 77

6.5.2 Increasing routing table accuracy . 80

vi

6.5.2.1 Levelling . 80

6.6 Summary . 83

7 conclusions 85

7.1 Contributions . 86

7.1.1 A Blind-Search system . 86

7.1.2 Novel query response routing algorithm . 86

7.1.3 Advancements in maintenance algorithms 86

7.1.4 Advancements in DHT data replication . 87

7.2 Limitations . 88

7.2.1 Real world deployment . 88

7.3 Future Work . 88

7.3.1 Scoping the search . 88

7.3.2 Branching factor in heterogeneous networks 89

7.3.3 Address cache staleness . 89

7.3.4 Downlists with bloom filters . 89

7.3.5 Data replication factor . 90

7.4 Summary . 90

a appendix a 1

vii

L I S T O F F I G U R E S

Figure 2.1 Placement of replica in the successor replication strategy. 10

Figure 2.2 Placement of replica in the leaf replication strategy. 10

Figure 2.3 Placement of replica in the multiple hash function replication strategy. . . 11

Figure 2.4 Placement of replica in the correlated hashing replication strategy. 11

Figure 2.5 Placement of replica in the symmetric replication strategy. 12

Figure 2.6 Placement of replica in the path replication strategy. 13

Figure 2.7 A Chord network, showing the choice of finger nodes for node A. 15

Figure 2.8 A Kademlia network, with 4 buckets. 16

Figure 2.9 A Content Addressable Network (CAN). As the zones are not all equal size
it is said to be imperfectly partitioned. 18

Figure 2.10 Event propagation using Event Detection and Report Algorithm (EDRA) in a
d1ht system. Note that a d1ht network uses a ring structure, but is shown
linearly for ease of presentation. 20

Figure 3.1 An example Attribute-Value Tree (AVTree) as used in International Naming
System (INS)/Twine. 28

Figure 3.2 Example mapping of keywords to key tokens with application of a hash
function to produce the r-bit identifier used by Keytoken-based Index and
Search Scheme for Wild-cards (KISS-W). 31

Figure 3.3 A Hilbert SFC on top of a 2-dimensional keyword space, showing location
of a document indexed by keywords "Scotland" and "Weather". 32

Figure 3.4 A segment tree with a range [0, 7] and the range [2, 6] via three subranges. 34

Figure 3.5 An example pSearch system, shwoing positions of services on top of a CAN

network. Due to Latent Semantic Indexing (LSI), similar services are closer
together, as indicated by the green nodes. 36

Figure 3.6 Structure of a 2-dimensional HyperCup network. 37

Figure 4.1 Efficient Broadcasting with a ring-based DHT. Left: The broadcast operation
from nodeN0 depicted on a Chord ring. Right: The same operation, depicted
as a broadcast tree. 46

Figure 4.2 Broadcasting in a Cartesian space. Left: The broadcast operation from node
G depicted on a CAN. Right: The same operation, depicted as a broadcast tree. 47

Figure 4.3 Response routing with collation and a delay of 1 second. 48

Figure 4.4 Extreme example of branching factor 2, gives a tree depth of 3. 50

Figure 4.5 Extreme example of branching factor N, gives a tree depth of 1. 50

Figure 4.6 A broadcast tree with failure at N4 prevents half the network from receiving
the search query. 51

Figure 5.1 A Kademlia routing table with 3 buckets. 54

Figure 5.2 Placement of replica in the symmetric replication strategy. 57

viii

Figure 5.3 Distribution of replicated data within a typical broadcast tree, comparing
neighbour (left) and symmetric (right) replication. 58

Figure 5.4 Comparing the distribution of replicated data within a network using
neighbour replication (left), symmetric replication (center), and replica
teams (right). 59

Figure 6.1 Modular architecture of OverSim. Data replication strategies are implemen-
ted in Tier 1, and Blind-Search in Tier 2, showing how they are both usable
over any routing implementation (such as Chord, EpiChord, Pastry). . . . 63

Figure 6.2 Lookup latency of SimpleUnderlayNetwork against InetUnderlayNetwork
in OverSim, showing an almost linear discrepancy in results. 65

Figure 6.3 Hop count of SimpleUnderlayNetwork against InetUnderlayNetwork in
OverSim, showing both SimpleUnderlayNetwork and InetUnderlayNetwork
results are identical. 66

Figure 6.4 Bytes sent from SimpleUnderlayNetwork against InetUnderlayNetwork in
OverSim, showing no significant differences. 67

Figure 6.5 Success rate under high churn for Chord, Pastry, and Kademlia. 69

Figure 6.6 Blind-Search success rate for Chord and Pastry without churn, under 100%
due to network stabilisation. 70

Figure 6.7 Blind-Search message duplication for Chord and Pastry, showing zero
message duplication in both cases. 71

Figure 6.8 Hop count of Blind-Search for Chord and Pastry. 72

Figure 6.9 Bandwidth usage during Blind-Search for Chord and Pastry. 73

Figure 6.10 Bandwidth distribution during Blind-Search for Chord and Pastry. 74

Figure 6.11 Blind-Search success rate under high churn for Chord and Pastry, showing
a lifetime mean of less than 1 hour has a huge impact on success rate. . . . 75

Figure 6.12 Success rate of Blind-Search over Chord with Neighbour Replication, show-
ing no significant difference in success rate with number of replica. 76

Figure 6.13 Success rate of Blind-Search over Chord with Symmetric Replication, show-
ing 100% success rate being achieved using 8 replica. 76

Figure 6.14 Nkademlia: Lookup latency under churn, showing an address cache as
small as 64 nodes even has a performance improvement over Kademlia in a
1,000 node network. 78

Figure 6.15 Nkademlia: Lookup success rate under churn, showing address caching has
no significant effect. 79

Figure 6.16 Nkademlia: Maintenance bandwidth usage under churn, showing an ad-
dress cache as small as 64 nodes even provides a reduction in maintenance
bandwidth in a 1,000 node network. 79

Figure 6.17 Nkademlia: Routing table accuracy under churn. Although previous figures
showed NKad results in improved performance, this figure shows that in
fact routing table accuracy is lower. 81

Figure 6.18 Nkademlia: Routing table accuracy over time, with and without the use of
Levelling. 82

Figure 6.19 Nkademlia: Lookup latency over time, with and without the use of Levelling. 82

ix

L I S T O F TA B L E S

Table 6.1 NKademlia: Simulation parameters. 77

Table 6.2 Nkademlia: Simulation parameters. 81

x

L I S T O F A C R O N Y M S

API Application Programming Interface

AVTree Attribute-Value Tree

CAN Content Addressable Network

DHT Distributed Hash Table

DKS Distributed K-ary Search

DST Distributed Segment Tree

EDRA Event Detection and Report Algorithm

GPRS General Packet Radio Service

INS International Naming System

IP Internet Protocol

KBR Key-Based Routing

K-D Tree K-Dimensional Tree

KISS-W Keytoken-based Index and Search Scheme for Wild-cards

KSS Keyword-Set Search System

LSI Latent Semantic Indexing

MAC Machine Address Code

ODISSEA Open DIStributed Search Engine Architecture

P2P Peer to Peer

RPC Remote Procedure Calls

RPS Recursive Partitioning Search

SFC Space Filling Curve

SHA-1 Secure Hash Algorithm 1

SLA Service Level Agreement

TCP Transmission Control Protocol

TTL Time-To-Live

UDP User Datagram Protocol

VSM Vector Space Model

xi

T E R M I N O L O G Y

churn

The act of peers joining and departing an overlay is referred to as network churn. The more

stable the network, the lower the rate of churn is said to be.

complex query

In this Thesis the term complex query is used to describe any form of search query more

complex than an exact match. This encapsulates query types such as keyword search, range

queries, and complex regular expressions. This idea is expanded upon in Chapter 3.

overlay

An overlay network is a network built on top of another network. In a peer to peer context

an overlay network refers to a network of all participating peers, built at the application

layer, on top of another, usually Internet Protocol (IP), network.

peer

Within a P2P network there is no notion of clients or servers - only peers. Peers are always

treated equally, and act as both clients and servers simultaneously. Also known as a node.

underlay

The underlay network is the native IP network which sits underneath an overlay network.

As the IP network sits on top of the link layer it can span over multiple physical protocols,

such as Ethernet, WiFi, and General Packet Radio Service (GPRS).

xii

1
I N T R O D U C T I O N

As network enabled consumer devices are becoming more and more popular, the number of

connected devices is growing considerably. In this large and dynamic environment it is important

to have a comprehensive yet efficient means of service discovery.

Most existing wide-area service discovery mechanisms are centralised, bringing the issues of

scalability, single points of failure, maintenance costs, censorship, and dictatorship.

In industry Peer to Peer (P2P) networks are becoming more and more popular for providing

services. These services include file sharing (e.g. Gnutella, Bittorrent), media streaming (e.g.

Spotify, Joost), digital currency (e.g. Bitcoin). Service discovery, on the other hand, is yet to take

this leap.

Structured P2P networks allow storage an retrieval of data using an exact key. The current state

of the art builds upon this to provide systems which can index data by (sometimes multiple)

keywords, add support for range queries, or wildcard - however there is no system to date that

1

can efficiently locate a data item without placing restrictions on the query types or structure of

the network in which it runs. In general existing systems which want to perform complex queries

flood the query within the network, hoping that it will eventually be forwarded to a node that

contains the desired data, resulting in high traffic and low success rates.

In my opinion this lack of a flexible yet efficient query system is one of the main issues holding

back the use of P2P networks for service discovery. In this thesis a generic system for supporting

complex queries in Structured P2P networks is designed, which allows for comprehensive, yet

efficient, service discovery on top of a Structured P2P network through the use of efficient

broadcasting. The generic aspect is important, as this system should not dictate the structure of

the P2P network used - rather the system should independantly sit on top of the P2P network.

The system presented in this thesis is built on top of a Distributed Hash Table (DHT). A DHT is

a data storage layer built on top of a Structured P2P network in which data items are hashed, and

stored within the network using the same algorithm that places nodes within the network. As this

system is based on a DHT it is scalable, resilient, avoids censorship, and has no single controlling

authority.

Taking these properties in to consideration, and the requirements of supporting complex

queries in a large networks of heterogeneous consumer devices, the objectives of the Thesis will

now be described.

1.1 objectives

The main objectives of this work are as follows:

• Design a generic approach for routing complex queries in different types of DHT, without

storing extra information but that is also applicable to many DHT types. This approach

should solve all complex query types, rather than just a subset.

• Design an optimal data replication strategy for use with the above approach which optimises

placement of replica for success and performance of complex queries, without having a

negative impact on regular DHT operations.

• Design optimisations that are applicable to many DHT types which optimise for success and

performance of complex queries.

2

1.2 contributions

In order to understand the entire scope of the problems associated with complex queries within

DHTs, this Thesis examines what is meant by the term complex query, and the requirements to

support such a query type. In addition, a survey of existing solutions is performed, identifying

which types of complex queries are supported by each, and where gaps exist in the state of the

art.

The following list of contributions are made throughout this Thesis, as outcomes of the

objectives described in Section 1.1:

• A Blind-Search system

A Blind-Search system is designed, which brings together the state of the art in broadcast

techniques from different overlay networks, and adapts them for use in a search system. This

addresses the first objective of this Thesis, providing a system that works across different

DHT types, and supports all complex query types.

• Novel query response routing algorithm

To complete the Blind-Search system, a novel query response routing algorithm is presented.

This algorithm uses reverse tree routing and message collation to reduce load, especially in

searches with a large number of positive responses.

• Advancements in DHT data replication

The state of the art in DHT data replication algorithms is advanced through the analysis of

Symmetric replication and introduction of Replica Teams, the idea of grouping replica in

a replication strategy such as Symmetric Replication, to get the advantages of Symmetric

Replication, with the lower maintenance cost of Neighbour Replication.

• Advancements in maintenance algorithms

Optimisations to the routing table in DHTs are explored and evaluated. Multiple generic

optimisations are presented, that can be applied to many DHT routing table types, and it is

shown that they can improve success rate, performance, and reduce maintenance traffic.

In summary, this thesis presents a Blind-Search system with efficient query response routing,

that achieves a high success rate and high performance through use of an novel, more appropriate,

choice of data replication, and optimised DHT routing table and maintenance algorithms.

3

1.3 structure of the thesis

This Thesis is composed of seven chapters:

• Chapter 1 - Introduction

Introduces the thesis, providing context, objectives and achievements.

• Chapter 2 - P2P Overlays

Introduces the background to P2P networks; unstructured, structured, hybrid, multi-hop,

single-hop, and variable-hop. This background is necessary to understand the design of

DHTs, and the challenges associated with complex queries.

• Chapter 3 - Complex Queries

Introduces the background to Complex Queries. This includes a breakdown of what can

be considered a complex query, and a full review of existing systems claiming to provide

support for complex queries, or a subset of complex query types.

The work presented in this chapter provides motivation and a base for the proposed system

presented in Chapter 4.

• Chapter 4 - Blind-Search

Describes the Blind-Search system designed. Starting with the design criteria and the related

work that it is built upon, then following with a novel approach for response routing and

observations of load balance and performance under churn.

This work in this chapter provides the core of the proposed Blind-Search system, which the

following chapter builds upon through optimisations to the DHT.

• Chapter 5 - Optimising DHTs for Blind-Search

Explores a collection of different optimisations that can be applied to the DHT, to optimise

for Blind-Search success and performance.

Starting with increasing routing table size to increase branching factor, moving onto in-

creasing routing table accuracy to decrease failures, and finishing with the choice of data

replication strategy to best locate data such that failures in the broadcast tree have minimal

effect. In this chapter the concept of Replica Teams is introduced, providing an adaption of

the symmetric data replication strategy with a lower maintenance cost in the majority of

DHT types.

4

• Chapter 6 - Experimentation

Presents simulation results relating to the previous work discussed in this Thesis. This

chapter starts by describing the simulation environment used, and validating the environ-

ment as well as the models in use.

The Blind-Search system is then evaluated, including performance under high levels of

churn. The optimised data replication, described in Chapter 5 is then applied, and results

compared.

Results for further optimisations to the DHT, including increasing routing table size and

accuracy are also presented.

• Chapter 7 - Conclusions

Concludes the work presented in this Thesis. The strengths, and weaknesses, of the work

are summarised, and the extent to which the original research objectives have been met is

reviewed. Possible future work and open questions are discussed.

• Appendix A

Includes two referenced papers validating the OverSim models for Chord, Pastry, and

EpiChord.

5

2
P 2 P O V E R L AY S

This chapter firstly discusses the background of P2P overlay networks, focusing on structured

overlays, and in particular DHTs. Secondly this chapter looks at the current state of the art for

structured P2P overlays.

2.1 background

The concept of P2P networks is simple - instead of all users requesting data from a designated set

of nodes, the data is distributed among all users. All nodes within the network are treated as

equal, and expected to fail or leave at any time.

A P2P network architecture has multiple advantages over traditional client-server architecture:

6

• Resource (cost) savings - As data and computation are distributed among users rather than

concentrated on dedicated machines, the responsibility and cost of operation is distributed

to the users.

• Scalability - Since data and computation are distributed to users of the network, as more

users join the network so do more resources.

• Low barrier of entry - Due to the resource savings identified above, and the inherent

scalability, the upfront setup cost of a P2P network is far lower than that of traditional

architectures.

• Redundancy - As all nodes within a network are treated equally, there is no reliance on any

single point. Due to the assumption that any node can fail or leave at any time, by design,

data is automatically replicated at multiple locations. P2P networks have no single point of

failure.

• Lack of authority - By having all nodes treated equally, and data distributed among all

users, there is no single authority which can be considered in charge. This can be considered

an advantage in certain domains, both for privacy and legality.

However, these advantages are not totally free - P2P networks have the following assumptions

baked in to their design:

• Resource ownership - As mentioned above, data and computing is distributed among users

of the network. This clearly complicates the question of trust considerably. Within a network

there should be no assumption that a node is trustworthy.

• Node reliability - All machines can fail. Consumer machines generally fail more than

dedicated servers, and even if they do not, it cannot be assumed they will shut down

correctly or leave the network gracefully.

• Heterogeneity - P2P networks are heterogenous. Users have machines with different pro-

cessing capabilities, amounts of storage, and bandwidth. Not only do the nodes differ

from each other, but the resources on a single node are likely to differ over time - as other

processes on the machine compete for them.

A large number of P2P overlays have been designed, with differing trade-offs and levels of

performance. At the highest level P2P these can be divided in to two categories. These are now

discussed.

7

2.1.1 Unstructured Overlays

An unstructured P2P overlay defines no, or at least a very loose set of, rules over how the overlay

is formed. Links between nodes are established arbitrarily in an ad-hoc fashion. Such a network

is easy to construct, as new nodes can simply copy existing routing tables from other nodes, and

then over time form their own links within the network.

Because of the inherit lack of structure within unstructured overlays, they can only provide

probabilistic routing and performance estimates.

In general this Thesis focuses primarily on structured overlays, except in Chapter 4 where

inspiration in drawn from search in unstructured overlays.

2.1.2 Structured Overlays

Structured P2P overlays define a strict set of rules over how the overlay is formed and how nodes

are addressed. The majority of structured P2P overlays make use of consistent hashing for node

addressing. This strict organisation makes structured overlays more complex and increases the

amount of maintenance required by nodes to continually conform to the rules while other nodes

join, leave, and move around the overlay. However, this extra cost buys a few extra features:

• Deterministic routing - By making use of the structure inherit in the overlay, messages can

always be forwarded closer to their destination on each hop. This provides efficient message

delivery, with no duplicated or redundant messages generated.

• Guaranteed performance - Given the size of the network, it is possible to calculate the best,

average, and worst case performance for message routing.

Generally most proposed overlays provide three distinct functions: message routing, main-

tenance, and data storage/retrieval. While conceptually very different functions, the boundary

between them is often blurred in reality, with authors describing an overlay structure, routing

algorithm, maintenance algorithm, and data storage algorithm as a single system. In this thesis

the three functions are separated as much as possible, both for clarity, and because in the majority

of cases there is no need for the data storage algorithm to be tied to a specific overlay - they are,

and should be, interchangeable.

routing

The routing algorithm is responsible for directing a message from a source node to a

destination. This puts restrictions on the structure and minimum size of the routing table.

8

maintenance

The maintenance algorithm is responsible for ensuring node failures are detected, and the

routing tables are kept as full and up-to-date as possible.

storage

The storage algorithm is responsible for placing data items within the DHT, and determining

which nodes should be contacted to find a specific result.

The majority of structured P2P networks which provides data storage and retrieval functionality

fall within the category of DHTs.

2.1.2.1 Distributed Hash Tables

Distributed Hash Tables (DHTs) expose a hash table interface built on-top of a structured P2P

overlay. In a DHT, key-value pairs are stored within the network, allowing any node to efficiently

retrieve the value associated with a given key by routing a message to the storing node.

As previously noted, it is an assumption of P2P networks that nodes will fail. As such, it is

important that data stored within a DHT is replicated and stored at multiple locations in the

network.

2.1.2.2 Data replication in Distributed Hash Tables

There are multiple ways in which data can be replicated within a DHT and still allow for efficient

storage and retrieval operations. This section describes the most popular three.

neighbour replication Neighbour replication is the term used to describe different

replication strategies, such as successor replication and leaf set replication, in which data is

replicated at neighbours of the original node, as can be seen in Figure 2.1 and Figure 2.2.

9

Figure 2.1: Placement of replica in the successor replication strategy.

Figure 2.2: Placement of replica in the leaf replication strategy.

Neighbour replication is the default used by the majority of existing overlays. Neighbour

replication is cheap to maintain, since in most DHTs nodes already store and maintain a list of

their neighbours. The main advantage to neighbour replication is that data will usually be in the

right location even post failure. For example, in many overlays when a node leaves the network

the responsibility falls to its successor - since data is replicated at the nodes successors it will

already be in the right place.

multi-publication replication Multi-publication replication is different from neigh-

bour replication in that the data is published at multiple keys within the network, each of which

is of equal importance. There are three proposed strategies for implementing multi-publication

replication [39], described below.

10

Multiple hash functions To generate R unique keys R different hash functions are used. How

replica are spread will depend on the hashing functions chosen. An example of replica placement

when using symmetric replication can be seen in Figure 2.3.

Figure 2.3: Placement of replica in the multiple hash function replication strategy.

Correlated hashing To generate R unique keys the numbers r = 0 . . . R− 1 are prepended to

the original key before hashing. Assuming consistent hashing, replica should be spread evenly

throughout the network. An example of replica placement when using symmetric replication can

be seen in Figure 2.4.

Figure 2.4: Placement of replica in the correlated hashing replication strategy.

Symmetric replication To generate R unique keys, first the hash h is calculated, then the keys

are defined as (h+ (r ∗ NR))%N where r = 0 . . . R and N is the size of the key space. Using this

formula, replica will be spread perfectly evenly throughout the network. An example of replica

placement when using symmetric replication can be seen in Figure 5.2.

11

Figure 2.5: Placement of replica in the symmetric replication strategy.

The ability for nodes to calculate the location of all replica has various advantages. For example,

the querying node then has the ability to send multiple parallel requests for the data, or even

choose a replicating node in its local proximity by choosing the numerically closest replica key.

path replication Path replication replicates a data item along the path which the look-up

message was forwarded. As messages in a DHT are routed towards the destination from different

sources they are likely to converge at a node before the actual destination node, hence path

replication shortens the routes and accelerates the look-ups. However, path replication is a lot

less structured compared to the other approaches. For example, the number of replica depends

on the route length and the placement depends on which nodes are requesting data. Removing

or modifying data items is also problematic as it is not possible to calculate which nodes contain

replica. A data items primary node would be required to maintain a list of all replicating nodes,

requiring additional node state.

12

Figure 2.6: Placement of replica in the path replication strategy.

2.1.3 Hybrid Overlays

In hybrid P2P overlays the concept of equality between peers is sacrificed, and nodes are categor-

ised in to multiple classes. There are a few common architectures for hybrid overlays:

• Central server - An example of this class is the BitTorrent protocol, in which a central server

is used to mediate connections between peers. This simplifies the protocol considerably,

removing all complexity associated with publishing and locating data. This simplification,

however, comes at a huge cost, with the network losing its advantages of scalability,

redundancy, and lack of authority.

• Super-node - In a super-node network, higher capacity nodes are designated as super-nodes

and used to relay requests for lower capacity nodes. For example, a super-node may hold

indexes for its connected children, or communication may be proxied through a super-node.

This thesis does not consider hybrid overlays a solution to complex search, as they sacrifice the

main advantages of a P2P overlay.

2.2 state of the art

Structured P2P overlays can be categorised in to three categories, based on the bound on the

number of hops required to reach a desired node: Multi-hop (Section 2.2.1), Single-hop (Section

2.2.2), and Variable-hop (Section 2.2.3).

13

2.2.1 Multi-hop Overlays

Multi-hop overlays are, as the name suggests, structured overlays in which messages typically

require multiple hops to reach their destination. Commonly multi-hop overlays have a routing

table size of O(log(N)) and can guarantee delivery of a message within a maximum of O(log(N))

hops. Multi-hop overlays are designed to reduce the size of the routing table required by each

node, and hence reduce the amount of maintenance traffic required to keep routing tables up-to-

date. In other words, performance is traded off against maintenance overhead. The most relevant

multi-hop networks are discussed below.

2.2.1.1 Chord

In Chord [59] a consistent hash function, such as Secure Hash Algorithm 1 (SHA-1), is used to

assign each node and data item an m-bit identifier. Nodes are then ordered numerically to form a

ring structure modulo 2m. Data items are assigned to the first node whose identifier is equal to

or follows in the ring.

In a network of size N each node maintains routing state information for O(log2(N)) other

nodes, specifically the k nodes succeeding it, known as the successors, and a set of what are

known as finger nodes. The finger nodes are chosen at logarithmically increasing distance around

the ring, the ith entry in the table at node n contains the identity of the first node that succeeds n

by at least 2i−1 (i > 1). This means that nodes have a more complete view of the area nearby, with

less links to far away nodes in the network. As a message is forwarded around the network, the

closer it becomes to the destination the more likely nodes are to have a link to the destination node.

An example Chord network showing the choice of finger table nodes can be seen in Figure 2.7.

To route a message to the destination identifier d within a Chord network, the originating node

selects the finger node whose identifier most immediately precedes d and asks that node for the

identifier of the node it knows closest to d. By repeating this process the originating node learns

the identifier of the node preceding d. Since every node maintains a link to its successor, the

node preceding d must know the node whose identifier follows d, and hence the message can be

delivered to the node responsible for d. Using this algorithm the maximum path length should

be O(log2(N)) hops.

14

Figure 2.7: A Chord network, showing the choice of finger nodes for node A.

To keep the routing tables up-to-date when nodes join and depart from the network, Chord

makes use of periodic maintenance. When a node failure is detected, the detecting node updates

its successor list instantly, ensuring look-ups can always succeed eventually. However, to update

the finger table, nodes probe their fingers every D seconds, and seek replacement nodes if

necessary. When D is high, or the network is unstable, the finger table can become out-of-date

for a period of time. This form of periodic maintenance cuts down on the maintenance cost,

however results in less accurate routing tables and hence degraded performance when a network

is unstable.

Chord recommends the use of successor replication (Section 2.1.2.2) for redundancy, in which

data is replicated at the 6 k nodes succeeding the data item.

Based on Chord, Koorde [37] is a P2P overlay which makes use of a De Bruijn graph.

2.2.1.2 Kademlia

Kademlia is another structured P2P overlay, designed by Petar Maymounkov and David Mazires

[45]. Kademlia uses a 160− bit consistent hashing function to assign identifiers to nodes and

data items, and an xor (exclusive or) function to calculate distance between nodes, ensuring that

during routing every hop moves a message closer to its destination.

Kademlias routing table is formed of b buckets, where b is the bit-length of the identifier used

(i.e. 160). Every bucket contains nodes at a given distance, for example nodes in bucket d have

15

a distance with the most significant bit d. This results in exponentially increasing numbers of

candidate nodes for each bucket (half the nodes in a network will have a differing b bit, of those

that match, half of them will have a differing b− 1 bit...).

As messages are received from nodes in the network they are added to the appropriate bucket,

assuming the bucket isn’t full. If the bucket is full, the older nodes in the bucket are preferred,

and the new discarded. This decision was based on the observation that the longer a node exists

in a network, the higher chance there is it will continue to exist in the network [60]. Kademlia

specifies a parameter k, used to define the maximum size of a bucket. Because of this, Kademlia’s

buckets are often referred to as k-buckets.

Figure 2.8: A Kademlia network, with 4 buckets.

Kademlia is one of the more widely used DHT in reality, with open-source implementations

available in many major languages. It is used by the Kad Network, BitTorrent for its DHT-based

implementation, and Gnutella (which moved away from flooding and towards a DHT-based

approach is more recent versions).

2.2.1.3 Pastry

Pastry [51] also assumes a circular identifier space. Each node and data item is assigned a 128-bit

identifier using either a consistent hash function or uniform random number generator, and

ordered in a circular namespace modulo 2128. Data items are stored at the node whose identifier

is numerically closest to the data items identifier.

Each Pastry node maintains a routing table, a neighbourhood set, and a leaf set (otherwise

known as the namespace set). In a network of size N, using identifiers with base 2B, each nodes

routing table is designed with logB(N) rows, where each row holds B− 1 entries. All the entries

at row r of the routing table each refer to a node whose identifier shares the current nodes

identifier in the first r digits, but whose (r+ 1)th digit does not match that of the current node.

16

The neighbourhood set contains links to the m closest nodes, and the leaf set contains the k nodes

whose identifiers are closest and centred around the local nodes identifier.

To route a message to the destination identifier d within a Pastry network, the originating node

first checks if d falls in the range of the leaf set. If so, the message is forwarded directly to the

destination. If not, then the routing table is used and the message is forwarded to a node who

shares a common prefix with d by at least one more digit than the current node. If no such node

exists then the message is forwarded to a node who shares a common prefix with d at least as

long as the current node, but whose identifier is numerically closer. By repetition the message is

eventually forwarded to the node whose identifier is numerically closest to d, in other words the

node responsible for d. A message will always reach its destination in no more than O(log2B(N))

hops.

When a node failure is detected, the detecting node updates its routing table, neighbourhood

set, and leaf set instantly. This means routing tables are kept accurate, however as more failures

are detected the maintenance overhead increases. In some cases this increased traffic could cause

other nodes to become overloaded, and hence also detected as failed, further increasing the

overhead.

Leaf set replication (Section 2.1.2.2) is performed by Pastry. A data item i is replicated with k
2

replica preceding i and k
2 replica succeeding i.

2.2.1.4 CAN

Content Addressable Network (CAN) [48] is a rather unique type of overlay, designed around

a virtual d-dimensional Cartesian coordinate space. The entire coordinate space is dynamically

partitioned among all the nodes in the system such that every node owns an individual zone.

Data items are mapped onto a point in the coordinate space using a consistent hash function, and

the node responsible is the node whose zone contains that coordinate.

In a CAN with dimension d, each node has at least 2d neighbours with which links must be

maintained; one to move forward in dimension d and one to move backwards. An example CAN

network can be seen in Figure 2.9.

Routing a message with a CAN network is simply a case of greedily forwarding the message to

the neighbour with coordinates closest to the destination identifier. In a network of size N this

results in a path length of O((d/4)(n1/d)) hops.

17

Figure 2.9: A CAN. As the zones are not all equal size it is said to be imperfectly partitioned.

In CAN, nodes periodically send updates to their neighbours indicating they are still within the

network. If a node detects a failure it will take over the failed nodes zone, and update its routing

table accordingly.

For redundancy CAN suggests the use of multiple hash functions, as described in Section 2.1.2.2.

2.2.1.5 DKS

In [1] a DHT known as Distributed K-ary Search (DKS) (sometimes referred to as DKS(N,k, f)) is

presented. In a DKS network N is the maximum number of nodes that can be within the system,

such that N = kL (k > 2). f defines the fault tolerance of the system and is typically a small factor

of k.

A DKS network is organised as a ring, modulo N. Like other DHTs, nodes and data items are

assigned unique identifiers using a consistent hash function. Data items are stored at the first node

succeeding the data items identifier. Each node in the network maintains a link to its predecessor

p and a routing table with O(logk(N)) levels numbered from 1 to L. At each level l a node n

has a view of the identifier space defined as [n,n⊕ N
kl−1

). This means that at level one, the view

consists of the whole identifier space, and at any other level, one kth of the previous level is

considered. At every level the view is partitioned into k equally-sized intervals. This method for

partitioning the identifier space is known as the k-ary principle, and is described fully in [23].

Using DKS a message can be routed in at most O(logk(N)) hops. To deliver a message d a

node forwards it to the first node in its routing table that succeeds d on the identifier circle. The

18

receiving node checks if they are responsible for d, and if so returns the data item. Otherwise the

message is forwarded onwards.

To keep routing tables up-to-date DKS uses a correction-on-use technique. By embedding extra

information in messages, when node n ′ receives a message from node n, node n ′ can determine

whether the routing information used by node n when sending the message was correct or not. If

n ′ finds out the routing information was incorrect, it will immediately inform node n. Using this

technique any out-of-date routing information is eventually corrected.

For redundancy DKS makes use of symmetric replication, as described in Section 2.1.2.2.

2.2.2 Single-hop Overlays

Single-hop networks (sometimes referred to as one-hop networks) are structured peer-to-peer

networks in which messages can usually be delivered directly from the source to the destination

without the need to route via intermediate nodes. This means nodes must keep larger routing

tables, and hence there is a higher maintenance cost than in multi-hop networks. However, as

a single hop in a peer-to-peer network usually means a number of hops in the underlying IP

network, the ability to transmit messages directly provides a much lower message latency.

2.2.2.1 D1HT

In [46] a one-hop DHT called d1ht is presented, arguing that by efficiently propagating events

one-hop performance can be achieved with a reasonable amount of maintenance traffic. Similarly

to Chord, d1ht uses a ring structure modulo 2m, with both nodes and data items assigned an

m-bit identifier using consistent hashing, then ordered numerically around the ring. Also like

Chord, data items are assigned to the key’s successor.

Every node in the d1ht network maintains a full routing table, containing links to every other

node within the network. As such routing of messages is trivial, and can be achieved with one

hop.

To keep the routing table up-to-date, d1ht uses a maintenance protocol known as Event

Detection and Report Algorithm (EDRA), which is able to notify an event to the whole system in

logarithmic time and yet have good load-balance properties and low bandwidth overhead.

To disseminate information about events, each node n sends up to ρ propagation messages

at each θ seconds time interval, where ρ = log2(N) and θ is a system parameter. Each message

has a Time-To-Live (TTL) counter l in the range [0 . . . ρ− 1) and will be sent to succ(p, 2l). In

19

other words the messages are sent to nodes at logarithmically increasing distance from n. In each

message is both information about any events detected by n, as well as all events brought to n by

messages with a higher TTL, received in the last θ seconds. To avoid messages wrapping around

the ring, before sending a message to k, node n will discharge all events related to any node

within the range [n,k].

An example of event propagation using EDRA can be seen in Figure 2.10.

Figure 2.10: Event propagation using EDRA in a d1ht system. Note that a d1ht network uses a ring structure,
but is shown linearly for ease of presentation.

d1ht makes use of successor replication, as described in Section 2.1.2.2, for redundancy,

replicating data items on the following O(log2(N)) nodes around the ring.

2.2.2.2 Epichord

Epichord [41] is a DHT algorithm which can achieve one-hop look-up performance under look-up

intensive workloads, and at worst case O(log2(N)) hop, such as offered in many multi-hop

networks. As the name suggests, Epichord is based on the Chord DHT (see Section 2.2.1.1), and

shares its ring structure as well as mapping of data items to the succeeding node. In addition to

maintaining a successor list of k nodes, Epichord also maintains a predecessor list of k nodes.

Instead of maintaining a finger table, as in Chord, Epichord maintains a cache of nodes. Nodes

update their cache by observing look-up traffic, and add an entry any time they are queried by a

node not already in the cache. Nodes in the cache each have a timeout, resulting in stale nodes

being removed.

To guarantee worst case look-up performance of O(log2(N)) the address space is divided into

two sets of exponentially smaller slices. Each node maintains their cache such that every slice

contains at least j
1−γ cache entries at all times, where j is a network parameter and γ is a local

estimate of the probability that a cache entry is out-of-date. Nodes periodically check their cache

slices to ensure that there are sufficient unexpired cache entries.

20

In general terms Epichord can be thought of as Chord with a cache of extra node addresses. As

such the routing algorithm is the same as that in Chord (see Section 2.2.1.1). With a well populated

cache this results in look-up performance of one hop. Under high churn the performance drops

to that of Chord, O(log2(N)) hops in the worst case.

In [41] there is no indication as to what replication strategy Epichord uses, however as it is

based on Chord common implementations use successor replication, described in Section 2.1.2.2.

2.2.3 Variable-hop Overlays

Variable-hop networks are a class in between multi-hop and one-hop networks, in which nodes

may have single-hop performance or may have multi-hop performance. Such networks can have

advantages in heterogeneous environments, allowing nodes which will benefit from decreased

latency, and have the available bandwidth, to achieve one-hop performance, without imposing

extra maintenance overhead on nodes which either do not require or can not afford single-hop

performance.

2.2.3.1 Accordion

In [42] a variable-hop DHT is proposed which is designed to automatically tune routing table

size to fit within a specified bandwidth budget. Accordion borrows Chords (see Section 2.2.1.1)

protocols for maintaining a successor list, and like other DHTs, assigns unique m-bit identifiers to

nodes and data items using consistent hashing, then orders them numerically in a ring modulo

2m. Each node learns of new neighbours as a side effect of ordinary look-ups, but selects them so

that the density of its neighbours is inversely proportional to their distance in the identifier space.

In practise look-up keys are not always distributed uniformly, and thus Accordion devotes a small

amount of its bandwidth budget to actively exploring for new neighbours. This allows Accordion

to vary the routing table size while still providing the same worst-case look-up of O(log2(N)) as

most multi-hop DHTs. The rate with which a node learns of new neighbours is determined by

its bandwidth budget, and nodes are removed from the routing table after a timeout, hence the

routing table size is determined by the equilibrium between the learning and removal processes.

The routing algorithm is also borrowed from Chord (see Section 2.2.1.1). Depending on the

bandwidth budget and churn rate the path length can vary from O(log2(N)) to one hop.

21

There is no replication technique specified by Accordion, however as it borrows various

protocols from Chord it is assumed that it makes use of successor replication, described in

Section 2.1.2.2.

2.2.3.2 Chameleon

A two-tier variable-hop overlay known as Chameleon is presented in [8]. In Chameleon nodes

assess their available bandwidth to determine whether they should be classed as a high or low

bandwidth node. High bandwidth nodes, known as H-nodes, operate using the EDRA algorithm

from d1ht (see Section 2.2.2.1), offering one-hop performance. Low bandwidth nodes, known as

L-nodes, operate using the Epichord algorithm (see Section 2.2.2.2), offering lower performance at

a reduced cost.

For H-nodes look-ups are trivial and are completed in one-hop. For L-nodes the look-up algorithm

is borrowed from Epichord (see Section 2.2.2.2), as such look-ups are completed in between one

hop and O(log2(N)) hops.

Chameleon does not specify which replication technique should be used, however as it borrows

from both d1ht and Epichord, common implementations use successor replication, described in

Section 2.1.2.2.

2.3 summary

In summary, this Chapter has shown that P2P networks come in three main types: Unstructured,

Structured, and Hybrid. This Chapter (and rest of Thesis) focused on Structured P2P networks, of

which there are many different types, such as ring-based, prefix-based, De Bruijn graph based,

and Cartesian based. These different types of network have very different structures, and vary the

tradeoff between routing table size and average lookup path length. This implies that designing

a generic system to support Complex Queries, as one of the primary objectives of this Thesis,

is a hard problem to solve, and will require a generic system that can make use of multiple

algorithms, rather than a single generic algorithm.

This Chapter also introduced the use of DHTs as a data storage layer, along with the most

common data replication strategies used and their main advantages: Neighbour replication

supports automatic failover by clustering replica together, multi-publication replication allows

any node within the network to locate all replica by publishing them with a uniform distribution

22

using a well known algorithm, and path replication automatically replicates data where it is used

the most.

It is noted that although a DHT consists of multiple different layers with distinct concerns,

this boundary is often blurred, with some overlays dictating a specific storage algorithm and

replication strategy, and others concentrating solely on the routing algorithm.

23

3
C O M P L E X Q U E R I E S

This chapter explores what is meant by the term complex query, and how such queries are

supported in existing P2P systems.

3.1 background

Complex query is a vague term which is used to describe any form of search query more complex

than an exact match. To properly understand the term the differing forms of search queries are

described below (using a search for a BMW car as an example):

exact-match

An exact-match lookup allows retrieval of a document only via the exact key under which

it was initially indexed.

24

key: bmw320d

matching query: bmw320d

keyword

Documents can be indexed using a limited set of keywords. A query for any of these

keywords will return the original document.

keywords: bmw, 320, diesel

matching query: bmw

range

Range queries are a type of query which look for any document, possibly indexed by

keywords, which lies within a given range.

keywords: bmw, 320, diesel

matching query: 310-330

semantic

Semantic search is a content-based search, in which queries are expressed in natural

language instead of keywords. The goal in semantic search is to use semantics, the meaning

of words, to return results which are relevant to the search terms, without simply matching

keywords.

keywords: bmw, 320, diesel

matching query: car

wild-card

The term wild-card search is used to describe a search in which part of the search term is

unknown. Note that wild-card search is related to range queries, but not exactly the same.

For example, assuming keywords were restricted to a . . . z, the wild-card search for acm*

can be converted to a range query for everything between acm and acn. However other

forms, such as *acm, a*m, or *acm* are difficult to map to a range query [35].

25

keywords: bmw, 320, diesel

matching query: di*l

full-text

Full text search refers to a technique for examining all words in all documents, to try match

the search term supplied by the user. While this type of search may initially sound similar

to the keyword search, keyword search solutions assume a limited number of keywords

and do not scale well above a certain limit.

text: the bmw 320d touring is a car that removes ambiguity from life

matching query: car that removes ambiguity

regular expression

Although not often mentioned, in some circumstances it may be desirable to have the ability

to search for data using regular expressions. A regular expression is an extremely powerful

method for string matching.

text: bmw320d

matching query: bmw[0-9]+[di]?

If DHT based systems are to become more prevalent, they need to provide support for a much

more comprehensive set of query types. Just now almost all real-world P2P systems are either

unstructured, or hybrids of a DHT combined with a centralised search index.

3.1.1 Unstructured Overlays

In unstructured P2P overlays routing algorithms have no network structure to assist in request

routing. Without a way for a message to answer “how far am I currently from my target“, it has

no way to determine if it is moving in the right direction or not. Because of this, querying in

unstructured overlays tends to be probabilistic rather than deterministic, with most techniques

looking at methods for improving the probability of finding the requested data, or reducing the

cost of doing so.

The most basic approach to search in any P2P network is flooding. Flooding is the most simple

approach imaginable to distributing a message within any network. Any origin node wishing to

26

distribute a message does so by sending the message to every other node it is aware of within

the network. In turn, every receiving node sends this message to every other node it is aware of,

and the process repeats. The primary flaws with this approach is the lack of termination of the

message (the protocol is stateless, nodes will forward a query every time they receive it), and

high load on the network due to the huge number of redundant messages.

Flooding forms the basis of many real-world P2P networks in operation, such as Gnutella. To

prevent queries from propagating infinitely and never terminating Gnutella limits the number of

hops a query can take to a maximum of 7. While this solves the termination problem, it becomes

impossible to search the entire network, and the probability of finding data becomes relative to

its popularity.

3.1.2 Structured Overlays

Due to the hash-table nature of a DHT, the only form of search query supported (beyond that

of unstructured overlays) without some form of extension is an exact match. All DHTs support,

either directly or indirectly, a hash-table interface providing the methods put(key,value) and

get(key). Given the key corresponding to a service, a DHT can guarantee the return of results,

usually within a specific number of hops, if any such results exist. DHTs and the lookup process

are discussed in detail in Section 2.1.2.1.

There are many more complex search techniques which are built on top of structured P2P

overlays, these are discussed below in Section 3.2.

3.1.3 Hybrid Overlays

As discussed in Section 2.1.3, Hybrid overlays are formed of both regular nodes and are what

usually referred to as super-nodes (or super-peers). In this design flooding is still the most

common technique, however regular nodes will send the query to its known super-nodes, which

in turn will flood the query to a much larger number of nodes.

The alternative design sometimes used in Hybrid networks is a central server for coordination.

In this design all nodes register the data they have with the central server, and any queries are

sent directly to the central server. This makes searching for data a relatively trivial task, however

introduces a single point of failure and authority.

27

3.2 state of the art

In many cases the limited support for search provided by structured P2P overlays is not sufficient

and clearly does not qualify as support for complex queries. This has resulted in many proposed

systems which build support for more complex queries on top of the exact match facility.

3.2.1 Token pointers in a DHT

A simple approach to supporting keyword-based search, as used by International Naming

System (INS)/Twine [5], is to index pointers to the service at multiple locations within the

network, defined by the associated keywords.

The term resolvers is introduced to describe a service for resolving a resource to a location. In

INS/Twine resolvers collaborate as peers. The system maps resources to resolvers by transforming

descriptions in to numeric keys, which are then mapped on to the DHT.

The authors claim a resource discovery system should have three main goals:

• Handle complex resource descriptions and queries.

• Dynamically handle changes in resource state and location.

• Scale along with the network.

The INS/Twine system extracts which it calls strands, unique subsequences of attributes and

values, from a resource description. Each strand is then hashed and stored within the DHT.

Strands are extracted by first converting resource descriptions in to a canonical form: an

Attribute-Value Tree (AVTree).

Figure 3.1: An example AVTree as used in INS/Twine.

28

To handle dynamic changes within the network, all resources are stored with soft-state and are

refreshed periodically. Failure to refresh results in the resource description being removed from

the network.

The beauty of this approach is its simplicity. It works over any existing DHT without modification

to the routing or lookup algorithms, and can make use of existing algorithms for replication

and redundancy. By republishing periodically and expiring entries it is possible to trade off

maintenance traffic against data freshness depending on the use case.

A query in INS/Twine must only consist of a small number of keywords otherwise it may result

in a large query fan-out, as each keyword requires a sub query to a different peer.

Supported query types: Exact-match, Keyword

Similarly, the Open DIStributed Search Engine Architecture (ODISSEA) system [62] maintains a

distributed global inverted index, by hashing extracted tokens and storing pointers within the

network. The primary difference between ODISSEA and INS/Twine is use of an inverted index

rather than simply keywords.

This approach builds on the feature set of INS/Twine by adding full-text support, however this

is arguable. The inverted index is distributed across the network, and practical query can only

consist of a small set of keywords without resulting in a large query fan-out. Additionally, while

the system can determine which documents contain a set of keywords, it cannot guarantee their

ordering.

Supported query types: Exact-match, Keyword, Full-text

eSearch [63] is a P2P keyword search system based on a hybrid indexing structure.

Keywords are extracted and published within the DHT, however instead of simply publishing

a keyword and pointer, the entire keyword set is published at each location. This adds storage

overhead, but allows a multi-term query to be processed locally by a single node.

This approach solves the query fan-out problem of INS/Twine - a query with multiple keywords

need only be routed to a single node responsible for any of the keywords. That node is then able

to determine if a document exists that matches all keywords.

Supported query types: Exact-match, Keyword

Keyword-Set Search System (KSS) [27] is a system for supporting keyword search in P2P networks

using distributed inverted indexes. These indexes are stored within the P2P network by hashing

the set of keywords and storing at the appropriate peer. The novel approach in KSS is the use

29

of keyword-sets rather than individual keywords, hence queries can be processed at a single

node rather than combining results from many. The trade-off is a much higher insert and storage

overhead due to more index entries per document.

Like eSearch solves the query fan-out problem of INS/Twine, KSS solves the query fan-out

problem of ODISSEA. However, since KSS and ODISSEA make use of inverted indexes rather than

extracting top keywords, the storage cost of storing the entire index at every responsible node is

considerable, and grows with the number of unique terms in the document.

Supported query types: Exact-match, Keyword, Full-text

Keytoken-based Index and Search Scheme for Wild-cards (KISS-W) [34, 35, 36] is a system in

which wild-card search is supported over a hypercube based network by extracting key-tokens

from keywords. A key-token is a pair {c,i}, where c is a character in the keyword and i is

the characters position. Key-tokens are also extracted counting backwards to allow queries

where the wild-card is of unknown length. The keyword acm would result in a key-token set

of {a,1},{c,2},{m,3},{a,-3},{c,-2},{m,-1}, and the search term a*m would result in the key-

token set {a,1},{m,-1}. After extraction the key-tokens are mapped to the key-token space then

converted to an r-bit vector by applying a hash function, as shown in Figure 3.2. The document,

or a pointer to the document, is then stored at the node with the identifier corresponding to the

calculated r-bit vector.

To perform a search the set of nodes which may index a service matching the description need

to be identified. It is easy to see that these nodes must all contain the key-token set extracted

from the search term, and hence their identifiers must all have 1 at the same positions as the r-bit

vector calculated from the search term key-token set. Using a spanning binomial tree [33] of the

sub-hypercube matching the search terms r-bit vector, the appropriate nodes can be queried and

matching services found.

30

Figure 3.2: Example mapping of keywords to key tokens with application of a hash function to produce the
r-bit identifier used by KISS-W.

KISS-W is a keytoken-based system which supports wild-card search. To solve this problem the

simplicity and flexibility of the other keytoken-based techniques has been sacrificed - this system

only works over hypercube-based networks

Supported query types: Exact-match, Keyword, Wild-card

3.2.2 d-dimensional index space mapping using Space Filling Curves (SFCs)

An alternative approach for keyword search, known as Squid [55, 57, 56], represents services in a

d-dimensional coordinate space with their position defined by a set of keywords. For example

using base-26 coordinates, a service providing the weather in Scotland may be stored at the

coordinates (scotland,weather), as shown in Figure 3.3. This d-dimensional coordinate space is

then mapped to a 1-dimensional index space using a Hilbert SFC, allowing the query to be routed

by the underlying DHT.

A SFC is a continuous mapping from a d-dimensional space to a 1-dimensional space. Using

this mapping it is possible to describe a point in a cube either by its spatial coordinates or by its

distance along the curve.

SFCs have 2 important properties that make them suitable:

31

• A SFC always has equal length of the curve contained in each sub-cube, which means it has

n(k ∗ d) segments.

• A SFC is locality preserving. Close points in the 1-dimensional space are guaranteed to be

close points in the d-dimensional space. However the reverse is not true.

Figure 3.3: A Hilbert SFC on top of a 2-dimensional keyword space, showing location of a document indexed
by keywords "Scotland" and "Weather".

Query processing in Squid is a two step process: translating the query to potential clusters of

the SFC-based index space, and distributing the query to nodes within those clusters.

If the query consists of complete keywords (no wildcards or ranges) then it will be mapped

to a single point in the index space, and hence an individual node. If the query contains partial

keywords, wildcards, or ranges, the query will be mapped to a range of the index space, and

hence a cluster of nodes.

The use of restricted base coordinate system obviously restricts the flexibility of such a system -

while alphabetic keywords may be enough for some domains, others may need alphanumeric

support. When languages other than English come in to the equation such a system becomes

unusable. Similarly when using such a system a key-space must be defined which can then be

mapped on to the 1-dimensional key-space. By placing bounds on the key-space, bounds are

placed on the minimum and maximum length of keywords that can be supported.

Supported query types: Exact-match, Keyword, Range, Wildcard

A very similar approach which makes use of a Hilbert SFC on top of the CAN overlay is described

by Andrzejak and Xu [2].

32

3.2.3 Load balancing with Virtual Peers

By removing the consistent hashing algorithm and hence preserving data locality, PRoBe [52]

provides support for range queries. PRoBe organises peers into a multi-dimensional logical space,

similar to that used by CAN [48]. Since the data items and queries are directly mapped onto the

logical space, locality is preserved and the range queries can be processed by only visiting the

relevant peers. To balance load virtual peers are used, allowing peers to manage multiple zones

rather than a single zone. When a peer P finds that the ratio between the load of its most loaded

neighbour and itself crosses a threshold, it will hand over its virtual peers to its least loaded

neighbour. P then splits the load with the most loaded neighbour such that their loads are nearly

equal.

The approach of removing consistent hashing is a simple solution to supporting range queries

- with data locality preserved querying a range becomes a trivial exercise. The problem then

becomes one of load balancing while maintaining the relative position of data within the network.

PRoBe solves this by decoupling the logical boundaries in the key-space with the physical

boundaries between peers. This adds an additional layer of complexity to the system, as well as

complexity via an algorithm to handle load calculation and zone handoff between neighbours.

Supported query types: Exact-match, Keyword, Range

A similar approach called P-Ring is proposed by Crainiceanu, Linga, and Machanavajjhala

[12]. In P-Ring consistent hashing is removed, and load is based by adding a layer above the P2P

network. This layer partitions the ring in to ranges, ranges are then mapped on to the underlying

peers.

Karger and Ruhl [38] also propose a methods for load balancing a P2P system when consistent

hashing is not in use, also through the use of virtual peers.

Gupta, Agrawal, and Abbadi [29] propose a method for supporting range queries through the

use of locality sensitive hashing [43].

3.2.4 Tree structured networks

The Skip Graph system [3] changes traditional overlay structure by exploiting the underlying tree

structure rather than using consistent hashing, to allow tree functionality rather than hash table

functionality.

33

The Skip Graph system organises peers in to a skip list structure. Searching for a node with a

particular key involves searching first in the highest level, and repeatedly dropping down a level

when determining the node is not in the current level.

A similar approach, also making use of skip graphs is proposed by Gonzalez-Beltran, and Sage

[28].

By changing the network structure to a tree the fundamental design of the network is changed.

As discussed by Aspnes and Shah [3], a tree structure has single points of failure, and hence in

fact a graph structure must be adopted. This adds further complexity, both in terms of the theory,

as well as the maintenance required to balance.

Like removing the use of consistent hashing, using a tree-based structure rather than a hash-

based structure introduces the problem of load balance.

Supported query types: Exact-match, Range

The baton system [30] describes a P2P network based on a balanced tree structure. Since the

peers form a tree structure range queries are supported.

Supported query types: Exact-match, Range

Distributed Segment Trees (DSTs) [71] aims to solve the problem of range queries and cover

queries through the use of segment trees. A segment tree is a data structure for storing ranges,

and allows querying which of the stored segments contains a given point. A cover query is

defined as a query in which the goal is to find all the ranges currently in the system that cover a

given key.

Figure 3.4: A segment tree with a range [0, 7] and the range [2, 6] via three subranges.

To address the issue of load balancing a mechanism termed downward load stripping is

introduced. With downward load stripping each peer keeps track of the count of keys it has that

34

could be covered by either it’s left or right child. If either of the counters reaches a threshold the

key is discarded and any query for such key will be split across both children instead.

Since the segment tree is a full binary tree the usual tree operations, and hence both range and

cover queries, are supported.

Supported query types: Exact-match, Range

Wu, Gao, and Yu [68] extend the use of a tree structure, and make use of K-Dimensional

Trees (K-D Trees) to support multi-dimensional range queries. Gao and Steenkiste [20] also make

use of K-D Trees to support range queries.

A K-D Tree is a space partitioning data structure for distributing keys in a d-dimensional space.

This builds on the other tree-based approaches by adding support for high dimensional range

queries, such as required for image comparison.

Supported query types: Exact-match, Range

3.2.5 Indexing by Semantic Vector

An approach for semantic search is known as pSearch [64], built on top of a hierarchical version

of CAN known as eCAN [69]. Given a document or service description, term vectors are computed

using a Vector Space Model (VSM). From these term vectors, a semantic vector S is computed

using Latent Semantic Indexing (LSI), and the document or service description is then stored in

the DHT at the coordinates denoted by S, resulting in similar services being close together. During

search the semantic vector Q of the search query is computed and the query is routed to the

coordinates denoted by Q. Upon receiving the search query, the node responsible for Q floods the

query to nodes within a defined radius based on the similarity threshold, as shown in Figure 3.5.

Receiving nodes perform a local search using LSI, and return their results to the querying node.

35

Figure 3.5: An example pSearch system, shwoing positions of services on top of a CAN network. Due to LSI,
similar services are closer together, as indicated by the green nodes.

Load balancing is addressed by modifying the bootstrap process - when a node joins it randomly

picks a document that it will publish and uses the semantic vector of that document as the point

towards which the join request is routed. Assuming that nodes contents tend to be related, this

adds capacity at the part of the network in which more capacity is about to be required. This also

means that documents will tend to be stored on either the owning node, or it’s neighbours.

While this approach efficiently solves the problem of semantic search, it does not address other

query types. It also requires a specific key-space and structure in the network, and hence cannot

be generalised to all DHTs.

Supported query types: Exact-match, Semantic

3.2.6 Efficient Broadcasting

Schlosser et al. propose a new network structure known as HyperCup [54] which allows for

efficient broadcast and search. The structure proposed organises peers into a hypercube, or more

generally a Cayley graph, topology. Edges in the graph are tagged based on their dimension.

Figure 3.6 shows a hypercube topology with base b = 2, which in 3 dimensions turns out to be a

hypercube with b nodes in each dimension. A complete hypercube graph consists of N = bL+1

nodes, where all nodes have (b− 1)× (L+ 1) neighbours, (b− 1) in each dimension - where L+ 1

is the number of dimensions.

A broadcast algorithm is described which is guaranteed to reach all nodes with exactly N− 1

messages. A node invoking a broadcast sends the broadcast to all its neighbours, tagging it

36

with the edge label on which the message was sent. Nodes receiving the message restrict the

forwarding of the message to those links tagged with higher edge labels.

Figure 3.6: Structure of a 2-dimensional HyperCup network.

This approach is limited to a specific DHT structure, in this case HyperCup. It approach is

designed primarily for broadcasting, but mentions search as a possible application. It does not

however consider the fact that a query need not reach the entire network to be successful, and

does not deal with the issue for replies when a matching document is discovered. Using a naive

approach of messaging the query originator when a match is found is likely to result in the

originator being overloaded when searching for a popular term.

Additionally, the issue of out-of-date routing tables in high-churn environments was not

discussed. When broadcasting a broadcast tree is implicitly constructed, and breakages in that

tree can result in large sections being missed.

Supported query types: Exact-match, Keyword, Range, Semantic, Wild-card, Full-text,

Regex

In the Self-Correcting Broadcast algorithm [24] is an algorithm for broadcasting a search query

over an entire DKS network. This allows the query to be processed locally, and hence provides

the same flexibility and broad range of supported query types as flooding in an unstructured

network.

A node issuing a search query iterates through all levels of the routing table, starting at the

first level. At each level, the node moves in counter-clockwise direction through all of its intervals,

broadcasting a message to each responsible node r. Each broadcast message carries with it the

parameters l (level), i (interval) and the limit. The message first delivers the intended data to the

37

receiving node. Secondly it serves as a request to cover all nodes in the interval (r⊕ i ∗ N
kl

, limit).

Due to outdated routing tables some intervals might not seem to have any nodes even though

they are populated. The responsibility of covering those intervals is delegated to the next interval.

If node n gives another node the responsibility to cover other preceding intervals and other nodes

exist in those intervals, the node will trigger correction-on-use, and the routing information will

be corrected at node n.

Self-Correcting broadcast builds on the approach of Efficient Broadcasting [14], but is custom-

ised for use over DKS networks. It does not generalise to all DHTs.

While the correction-on-use technique allows discovery of extra nodes that are not in the

routing table, though should be, it does not solve the issue of delegating sections of the tree to

nodes which are no longer alive, and hence will not perform well in high churn environments.

Supported query types: Exact-match, Keyword, Range, Semantic, Wild-card, Full-text,

Regex

A framework called Recursive Partitioning Search (RPS) for Blind-Search over structured peer-

to-peer overlays is presented in [67], with a realisation for Chord. RPS is a version of the Efficient

Broadcasting algorithm [14], however it includes a TTL value as well as a limit, and a node will

only broadcast the query to its sub-tree if it cannot satisfy the query itself first. With enough data

replication the whole network does not need to be searched to find the data, and once a single

copy has been found there is no need to continue looking.

[66] consider ways to restrict the number of nodes visited but without reducing the query

success rate. In a network of size N, if the TTL value is set to log2(N) then in a stable network

the algorithm results in a 100% success rate, so it is a maximum reasonable value for the TTL. In

most cases a smaller TTL value can still achieve high success rates because most resources are

replicated among multiple nodes.

A variation of the algorithm to control the query message traffic is as follows: The query

originator selects a partial list of its fingers and sends the query to them first. The tag in the

message now contains two values, the nodes local search limit and the global search limit.

Receiving nodes update the local limit as before, but do not touch the global limit. This variation

allows a node to divide the search space and perform RPS sector by sector sequentially, if required.

In [66] realisations of RPS for both Chord and Pastry are presented. To reduce network load the

use of go-stop signals (RPS+G) and local indices (RPS+L) are suggested.

38

Typically Blind-Search algorithms generate multiple query messages that traverse the network

concurrently, thus even when one of the query messages finds a result the others continue to

search. To reduce the number of these messages some intermediate nodes enquire if the search

originator has already found the target resource. The initiator either sends a go signal if the

search is still pending, or a stop signal to terminate the query message. By using go-stop signals

the scalability of Blind-Search algorithms can be enhanced.

RPS is a framework and selection of techniques for optimising Efficient Broadcast [14] in the

context of search. These techniques are not DHT specific and build on the observation that a query

need not reach every node in a network to be successful.

Supported query types: Exact-match, Keyword, Range, Semantic, Wild-card, Full-text,

Regex

3.3 summary

In summary, search queries can be categorised in to a large number of types, ranging from

keyword to regular expression. In this Chapter a review of the state of the art of Complex Queries

was presented, which showed that while there are many systems which can handle certain types

of search queries, only those based on efficient broadcasting can handle all types of search queries.

token pointers

Token pointers is a technique that involved extracting keywords from a document, and

inserting pointers to the document in to the DHT at locations defined by the keywords. It

supports indexing of a limited number of keywords per document, with larger numbers of

keywords increasing the cost of updates and maintenance.

Supported: Exact-match, Keyword

Systems: INS/Twine [5], ODISSEA [62], eSearch [63], KSS [27], KISS-W [34, 35, 36]

space filling curves

Systems that make use of space filling curves are able to reduce a multi-dimensional index

space in to a single dimension. This is used to map from a collection of keywords to a single

point in the DHT index space, and hence locate the node responsible for a document match-

ing those keywords. Over token pointers, this approach retains the locality of documents,

allowing for range queries. The downsides of this approach are even more restrictions on

39

the number and length of keywords, as well as unbalanced load due to retention of data

locality.

Supported: Exact-match, Keyword, Range, Wild-card

Systems: Squid [55, 57, 56], Andrzejak and Xu [2]

virtual peers

The use of virtual peers allows systems to avoid the use of consistent hashing, preserve

data locality, and hence support range queries on keywords. Virtual peers are introduced to

balance load. Like above, documents are indexed by keywords and have a restriction on the

number of keywords per document.

Supported: Exact-match, Keyword, Range

Systems: PRoBe [52], P-Ring [12], Karger and Ruhl [38], Gupta et al. [29]

tree structured

Tree structured systems are yet another approach that removes the use of consistent hashing

within DHTs, and preserves data locality. Like Space filling curves, systems based on tree

structures can support range queries, but inherit problems with load balance and limitations

of number of keywords.

Supported: Exact-match, Range

Systems: Skip graphs [3], González-Beltrán et al. [28], baton [30], DSTs [71], Wu et al. [68],

Gao and Steenkiste [20]

semantic vectors

The use of semantic vectors allows storing a document within the DHT at a location determ-

ined by its semantic vector value rather than consistent hashing. Again this preserves data

locality, meaning semantically similar documents are stored together, and it is possible to

retrieve similar documents using range queries. This approach introduces the issue of load

balance, and is only applicable to semantic search.

Supported: Exact-match, Semantic

Systems: pSearch [64]

40

efficient broadcast

Systems making use of efficient broadcast don’t place any requirements on location of

data during storage, instead moving the complexity to finding the data during query time.

They exploit the network structure to build a broadcast tree at query time, distributing the

search query to all nodes within the network. The search query is then processed locally by

every node, meaning it is possible to support much more complex types of query. Efficient

broadcast based systems have a much higher query cost to others, as each query has to

reach O(N) nodes.

Supported: Exact-match, Keyword, Range, Semantic, Wild-card, Full-text, Regex

Systems: HyperCup [54], Self-Correcting broadcast [24], RPS [67, 66]

Of the existing systems which can support all types of search queries, HyperCup and Self-

Correcting broadcast are very prescriptive, and require a very specific network structure to

support the search algorithm used. This ties together the search query processing layer, the

data storage layer, and the request routing layer, making it difficult to modify any of these

independantly. This rules them out as options, as one of the primary objectives of this thesis is a

generic system which can be applied on top of an existing DHT.

The only system identified which meets the objectives of this thesis is RPS. RPS also provides

multiple optimisations in the context of search, however does not consider the impact of high

churn environments, low bandwidth environments, or how to efficiently respond to successful

search queries.

The next chapter builds on this observation, introducing a novel search system based on

efficient broadcasting, capable of supporting all types of complex queries.

41

4
A B L I N D - S E A R C H S Y S T E M

As shown in Chapter 3 there are a plethora of systems adding support for certain types of complex

queries to DHTs, but only one small family of systems which can support any type of query. This

is the family of systems based on efficient broadcasting, which is termed blind-search. In this

chapter the concept of blind-search is introduced, and a novel blind-search system capable of

supporting complex queries is presented.

4.1 introduction

The term Blind-Search is used to describe a search operation in which no information about the

search space is known, other than to distinguish the goal state from all others. In other words, as

a query traverses through the network it has either reached the goal or it has not. There is no

42

concept of distance to the goal as with regular operations in a DHT. As such a Blind-Search query

can be thought of as the structured equivalent to flooding (see Section 3.1.1).

4.1.1 Design Criteria

When designing A Blind-Search System I evaluated the system against the following criteria:

coverage of all nodes

The search query should be delivered to every node currently within the network (if

required). This provides a deterministic search, guaranteeing that if a match exists, it will

be discovered.

minimal redundant messages

Redundant messages waste network resources, and should be avoided when possible. This

reduces load on the network, and removes the requirement for nodes to store a history

of processed queries for filtering duplicates. It is also important to note that redundant

messages in the context of broadcasting are different from redundant messages in the

context of searching - once a search has found a result it may, or may not, be desired that

the query continues to all other nodes.

balanced load

During a search the load generated should be reasonably balanced throughout the network.

No single node should be required to contribute an unfair share of resources.

support for heterogeneous networks

Taking the load balance requirement into account, a node should be allowed to contribute

more or less resources than average depending on their free capacity.

efficient response delivery

Query responses should be delivered in an efficient manner which does not risk overloading

the query originator when large numbers of matches are found.

generic solution

A solution should be generalisable and not rely on a specific overlay structure. By decoupling

the search algorithm from the network structure, implementers are free to choose whichever

overlay best suits their needs.

43

survival under churn

High levels of churn should not impact the success of a search query any more than it

impacts the success of routing in the underlying DHT.

4.1.2 Related Work

Looking back at the efficient broadcast based solutions in Section 3.2.6, it can be seen that these

solutions all meet some of the requirements, but none meet all of them.

hypercup

While the HyperCup system provides support for blind-search, it does not meet the majority

of the requirements set out above. It is tied to a specific DHT structure, without consideration

for high churn environments or heterogeneous networks. It also does not consider efficient

response delivery, or the ability to halt a query once a result is obtained.

self-correcting broadcast

Self-Correcting Broadcast attempts to improve network structure by detecting missing nodes

within the broadcast tree. This will improve the general correctness of the routing tables

and help in the long term. However, it does not consider heterogeneous networks, efficient

response delivery, or the ability to halt a query once a result is obtained.

recursive partitioning search

RPS is much closer to what can be considered a full solution, with a broadcast algorithm that

can generalise to different DHTs and optimisations specific to the use case of search. This

includes go-stop signals to halt the search upon successful completion, and the introduction

of a TTL to restrict the scope of the search, building on the assumption that most data is

going to be replicated at multiple points within the network and hence searching the entire

network is redundant. It is, however, still missing any analysis in high churn environments,

and provides no solution for efficient response delivery or heterogeneous networks.

The work in this Chapter builds on top of the Efficient Broadcasting algorithm [14] and

a combination of the above mentioned Self-Correcting broadcast and Recursive Partitioning

Search (RPS) systems. This Chapter fills in the gaps in the query response routing, further optimise

the distribution in the context of search, and optimise the load balance of the algorithm for real

world networks (i.e. heterogeneous with potentially high levels of churn). In Chapter 5 these

44

optimisations are extended from the search algorithm to the DHTs itself, with a set of optimisations

that can be applied regardless of the DHT structure used, which improves both the structure and

correctness of the DHT, as well as the ability to efficiently perform blind-search.

4.2 query distribution

Query distribution in my proposed system works by dynamically building a broadcast tree at

runtime using the structure of the DHT. The algorithm is broadly based on the Efficient Broadcast-

ing algorithm [14], though since the structure varies depending on the DHT, the algorithm used

must also vary depending on the DHT.

In this Section 4.2 existing algorithms are discussed that will be built upon, for efficiently

broadcasting a query over different DHT types.

4.2.1 Ring based DHTs

Ring-based overlays, such as Chord [59], can generally be covered using the Efficient Broadcasting

algorithm [14] by El-ansary et al..

Efficient Broadcasting [14] is an algorithm for broadcasting complex queries, or indeed any

data, over DHTs using Chord [59] as an example. To initiate a query, a node n will send the query

along with a limit to every node in its finger table. The limit parameter given is the identifier of

the next finger in the finger table, and is used to restrict the forwarding space of the receiving

node to (n, limit). The last node in the finger table is given a limit of the originating node. When

the message is received by a node it forwards the broadcast to any fingers it has within the

forwarding space, giving each one a new limit.

45

Figure 4.1: Efficient Broadcasting with a ring-based DHT. Left: The broadcast operation from node N0
depicted on a Chord ring. Right: The same operation, depicted as a broadcast tree.

4.2.2 Prefix routing DHTs

Castro et al. [9] describe an algorithm for broadcasting over Pastry, and other prefix routing based

networks.

While not specifically designed with search in mind, it can be used to broadcast complex

queries. A node broadcasts a message by sending the message to all nodes in its routing table;

each message is tagged with the routing table row r. When a node receives a message it forwards

the message to all nodes in its routing table with rows greater than r. This continues until a node

receives a message tagged with r and has no entries in rows greater than r.

4.2.3 Cartesian space based DHTs

Multi-dimensional cartesian space based overlays, such as CAN [48], make use of a broadcast

algorithm described by Ratnasamy et al. [49] for performing application-level multicast over CAN.

In a CAN with dimension d, each node has at least 2d neighbours; one to move forward in

dimension d and one to move backwards. To initiate a broadcast the source node forwards the

message to all its neighbours. When a node receives a broadcast message from a node with

which it neighbours along dimension i, it will forward the message to those neighbours along

dimension 1...(i− 1) and the neighbours in dimension i on its other side. To prevent the message

from looping back around a node it does not forward a message along a particular dimension if

that message has already traversed at least half-way across the space from the source coordinates

along that dimension. It is worth noting that for a perfectly partitioned coordinate space the

46

algorithm ensures each node receives the message exactly once. For an imperfectly partitioned

space, a node may receive the same message from multiple neighbours.

Figure 4.2: Broadcasting in a Cartesian space. Left: The broadcast operation from node G depicted on a CAN.
Right: The same operation, depicted as a broadcast tree.

4.2.4 Hypercube based DHTs

Hypercube-based overlays, such as HyperCup [54], can be covered using the broadcast algorithm

described by Schlosser et al. [54] for broadcast search over HyperCup.

This algorithm has already been covered in Section 3.2.6.

Using the appropriate above mentioned algorithm the proposed blind-search system can be

applied to the majority of existing DHTs. This gives implementers the ability to choose the DHT

which best suits the needs of their application.

While all of these broadcasting algorithms can be used for search query distribution, they do

not consider the case of responses. In particular, this Thesis focuses on the case where many

results are found, and hence a naive direct response will overwhelm the originator.

4.3 response routing

The most simple, and most naive, approach to response routing is for the search query to contain

either the identifier or IP:port of the query originator, and have the locating node either route the

response or contact the originator directly. Whether this approach is appropriate depends on how

many responses are expected to be received. This depends on the popularity of the search term,

and the scope of the search.

47

The scope of the search can be greatly reduced by the use of a TTL or Go+Stop signals [66],

however this might not always be appropriate, in some cases a query might be specifically

searching for all occurrences. In these cases a smarter form of response routing is required.

In this section (4.3) two novel approaches for efficient response routing are proposed.

4.3.1 Routing with Collation

The first approach for efficient response routing, called Routing with Collation, that I propose,

trades search speed for simplicity. In Routing with Collation a search query will include with it

the originating nodes identifier, and a unique search identifier. Any nodes with search matches

will recursively (independently of the routing algorithm specified by the DHT) route the result to

the originator, including both the originators identifier and the search identifier in the response.

Each node along the route will delay the forwarding by a set length of time, and collate any

responses they receive during this window.

Figure 4.3: Response routing with collation and a delay of 1 second.

This approach makes use of the fact that as a message is routed through a DHT, it will converge

as it reaches nearer the destination, allowing nodes around the destination to handle part of the

load. As the number of responses increases, the distance from the destination that the messages

will start to converge increases, and hence the number of nodes responsible for collating the

response increases.

The effectiveness of this approach will vary depending on the characteristics of the underlying

DHT. For example in a one-hop network such as dh1t [46] all responses would be routed directly

to the originator without passing through any other nodes, and hence have no chance of being

collated.

48

While this approach is simple, it does add a large time penalty, which may or may not be

acceptable depending on the use case. Choosing an appropriate time window is also challenging,

as nodes near the top of the search broadcast tree will start sending responses much before nodes

at the bottom have even received the request.

4.3.2 Reverse Tree Navigation

The second approach I propose for efficient response routing is to make use of the same broadcast

tree that the request used, and propagate responses back up the tree.

In this approach, again a search query will include a unique search identifier, and will already

know its parent in the tree as it is the node from which the message was received. Any nodes

with search matches will send the result to their parent, which in turn will forward it to their

parent, until it reaches the search origin.

There can be two variations of this approach, a node may either send its response to its parent

as soon as it’s available, or it may wait for responses from all of its children first.

Sending the response when it becomes available is simple, but will not reduce the amount of

traffic reaching the originating node - only guarantee it arrives in a predictable way. However this

approach can then take advantage of the technique used by Routing with Collation, with every

node waiting and collating responses before forwarding to their parent.

This approach also will add a large time penalty to search responses, though solves the problem

of differing underlying DHTs - as long as the broadcast tree has been constructed with a reasonable

branching factor (see Section 4.4) there will always be a reasonable number of hops through

which the responses can be collated.

4.4 load balance

In terms of load balance, the most important part of the algorithm, which is not covered in any

previous work at the time of writing, is the branching factor.

The branching factor is the number of children nodes which a node includes when constructing

the broadcast tree, this can range anywhere from 0 to N, depending on the routing table size,

the nodes position in the tree, and the structure of the underlying DHT. In networks such as

CAN [48], the broadcast mechanism does not lend itself to changing the branching factor; it

would fundamentally change the behaviour of the algorithm and prevent all nodes being covered.

49

However in networks making use of the Efficient Broadcasting [14], the branching factor can

easily be varied, with lower branching factors delegating a larger portion of work to other nodes,

and larger branching factors resulting in a quicker search.

Figure 4.4: Extreme example of branching factor 2, gives a tree depth of 3.

Figure 4.5: Extreme example of branching factor N, gives a tree depth of 1.

The ability for nodes to choose their own branching factor allows for a more much balanced

use of resources within a heterogeneous network. Networks with larger routing tables, such as

Epichord [40], allow for a much higher branching factor if desired, and are better positioned to

take full advantage of this.

4.5 performing under churn

Tree-based structures are inherently poor at handling breakages. Any missing node in the tree

results in its children, and their children, and their children, ..., being split from the main tree. In

the context of blind-search, this means a single failure can cause a large section of the network to

not receive the search query. For example consider the case, shown in Figure 4.6, where a node in

the first level of the tree fails, causing half the network to not receive the search query.

50

Figure 4.6: A broadcast tree with failure at N4 prevents half the network from receiving the search query.

It would be possible to attempt to detect this situation using a failure detector, such as described

by [23], however this adds significant complexity to the algorithm. In Chapter 5 optimisations of

the DHT are considered, to reduce both the occurrences and impact of such failures. Experimental

results can be found in Chapter 6.

4.6 summary

In summary, in this Chapter a novel system, "A Blind-Search System", for efficiently performing

blind-search over varying types of DHT has been presented. This system uses a combination of

different efficient broadcast algorithms, which all build on the idea of using the existing structure

in the DHT to generate a broadcast tree on the fly. The specifics for how this is done depends

on the type of DHT, but each implementation follows the same theory - that is, partitioning the

network based on your routing table and delegating coverage of sections to child nodes. In my

system, "A Blind-Search System", each algorithm implements the same interface - allowing the

system to select the most appropriate algorithm for a given DHT type.

Looking back at the design criteria for such a system, in a steady state my system guarantees

delivery of the search query to every node in the network, with minimal redundant messages, by

virtue of the efficient broadcasting algorithms used.

Load balance varies depending on the underlying DHT routing table structure, but the system

is capable of varying branching factor during broadcast, allowing nodes to decide for themselves

what a suitable load is. By choosing a branching factor of 2 (the minimum possible) the broadcast

tree has a depth of O(log2(N)), and a single node is responsible for at most 2 messages per query.

51

This allows for performance to be optimised in heterogenous networks, where a mobile node

may choose a branching factor of 2 though a server may choose not to limit the branching factor.

Efficient response routing is performed using a technique proposed called Reverse Tree Navig-

ation. With Reverse Tree Navigation the response to a search query is always sent to the node

from which the query was received. This allows responses to be collated as they traverse back up

the broadcast tree, ensuring the load generated from search responses is proportional to the load

generated from search requests (in other words, the branching factor chosen by a node is also

respected by the nodes sending responses to it).

In all efficient broadcasting based systems the main weak point is susceptibility of the system to

churn. In the existing efficient broadcast based systems HyperCup and RPS this is not addressed.

In Self-Correcting broadcast the issue of churn is tackled through the use of a complex failure

detector which attempts to detect and re-route failed messages. In Chapter 5 I address the issue

of churn through optimisations to the underlying DHT and choice of data replication algorithm.

In Chapter 6, experimental results covering the system in this chapter are presented.

52

5
O P T I M I S I N G D H T S F O R B L I N D - S E A R C H

In the previous chapter A Blind-Search System was presented, with efficient response routing,

query scoping, and load balancing. While this algorithm itself is optimised in the context of search,

further optimisation can be performed at a lower level. In this chapter I present optimisations to

the underlying DHT, which can be made to improve the performance, both in terms of success

rate and query latency, of blind-search.

It is important to note that the optimisations in this chapter are designed to be applicable to

any DHT, not just a specific family.

53

5.1 increasing routing table size

In many DHTs a nodes routing table size is limited, often in the order of log(N). While this allows

for a guarantee of the average maximum hop count for a request, it also enforces that guarantee

on the average minimum hop count.

In the context of blind-search, a limit to the size of a nodes routing table restricts the maximum

branching factor the node can choose. This prevents nodes with high capacity increasing their

branching factor, preventing speeding up the search or alleviating load being delegated to other

nodes which may not have as much free capacity.

Looking at Kademlia [45] as a concrete example (see Section 2.2.1.2); the most distant bucket

in a nodes routing table is accountable for half of the entire address space, as can be seen

from Figure 5.1. Although there may not be a node for every possible node identifier, it can be

reasonably assumed that nodes will be distributed evenly across the address space due to their

use of consistent hashing. Around half of the nodes will therefore be from the opposite side of the

address space. This means that Kademlia is artificially limiting the amount of information about

the other half of the network. Lookups of these nodes will happen via the k nodes in this bucket,

potentially putting an excessive demand on these nodes, and increasing hop count unnecessarily.

Figure 5.1: A Kademlia routing table with 3 buckets.

There are two ways in which the Kademlia routing table can be modified - changing the number

of buckets, or changing the number of nodes that reside within the buckets. By changing the

number/layout of buckets the maintenance traffic required is also affected, as it is directly linked

to the amount of buckets in use. Instead, in this Chapter I propose changing the number of nodes

that reside within the buckets, using a generic technique referred to as Address Caching.

54

5.1.1 Address caching

In various one-hop networks, such as Epichord [40], nodes keep a cache of all nodes they have

heard of. Epichord maintains the minimum guarantees that Chord has, but also keeps the cache of

other nodes. This optimisation proposes that the limit of k nodes per bucket in Kademlia can be

removed, and indeed any other network that imposes similar constraints, by storing information

about all nodes learned of in a cache. For Kademlia we refer to this as NKademlia.

To prevent an increase in maintenance traffic, buckets only need to keep up-to-date information

for k nodes, where k is the original node limit defined by the DHT. The remaining nodes in the

bucket are cached and are available to refill the bucket upon failure of one of the k nodes.

Storing a User Datagram Protocol (UDP) address and time stamp takes around 12 bytes of

storage: IP address (4 bytes), port number (2 bytes), time stamp (8 bytes). Even storing a cache of

addresses for 1 million nodes takes as little as 12Mb of memory. Since local storage is cheap this

is not seen to be a problem.

Analysing the routing table as a whole, including the cached addresses, the accuracy is likely

to be lower than that of the original DHT without address caching. If it is decided to only use the

cache to replace entries leaving in the original routing table, then this is not an issue, however if

making use of these extra nodes during lookups, or blind-search, it becomes more important to

keep these cache entries maintained.

Experimental results for Address Caching can be found in Chapter 6.

5.2 increasing routing table accuracy

By using address caching the size of the routing table has been increased, but the accuracy of

these extra nodes is lower than that of the primary routing table. This sub-section discusses

optimisations aimed at increasing routing table accuracy.

Improvements to the maintenance algorithm can help improve both the routing table size and

accuracy. This has benefits for the regular operation of the DHT as well as for blind-search, with

reduced occurrences of tree failures, and increased choice in branching factor.

55

5.2.1 Downlists

In many DHTs, nodes are only able to detect offline nodes if they are used when performing a

lookup. To improve this situation I propose nodes who discover offline entries while performing

a lookup should share this information with appropriate other nodes.

Each node maintains a list of all nodes which it has discovered are offline during its last lookup.

At the end of the lookup the entries in this list are sent to all other nodes which were responsible

for providing those entries during the lookup. These nodes then also remove the received off-line

entries from their own routing table.

A protocol for removing nodes based on data received from other nodes could easily be

misused by a malicious node. This problem can be minimised by verifying the offline nodes are

actually offline using a ping message.

This approach can be further extended by nodes forwarding information about failed nodes

onto the k closest neighbours of the failed node - those nodes are more likely to know of the

failed node and hence should be updated.

It should be noted that this modification will not have any effect when using recursive lookups,

as the nodes are responsible for forwarding the message themselves, and hence will detect and

handle any failures locally.

5.2.2 Levelling

I also propose a routing table maintenance modification called Levelling, based on nice[32]. In

Levelling maintenance the routing table is continuously refreshed and checked for connectivity.

The refresh task is triggered periodically, and selects a region then sends a ping message to the

most stale node. Regions can be selected either sequentially or at random. This continuous refresh

guarantees each region has at least one contactable node, and distributes maintenance traffic in a

smooth way.

In the original nice algorithm, which Levelling is based upon, a region is selected with no

consideration for the size of the region. In certain DHTs, like Kademlia, many regions are sparsely

populated while a small number are highly populated. Uniform maintenance of all regions is

not necessarily the most useful. With Levelling, I instead select regions by randomly selecting

an identifier anywhere in the key-space, then selecting the region responsible for the chosen

identifier. This increases the chances of large regions being chosen, with the chance proportional

to the size of the region.

56

This algorithm can either be applied to the entire DHT routing table, or just the address cache,

depending on the underlying DHT in use. Experimental results can be found in Chapter 6.

5.3 optimising data replication

In the context of blind-search, optimisations to data storage itself provide no real benefit. However,

optimisations to data replication can have a huge effect on both speed and success of blind-search.

As discussed in Chapter 2 there are three main families of data replication algorithms: neighbour,

path, and multi-publication. Some DHTs prescribe the use of a specific data replication algorithm,

and some do not. In almost all cases there is no need to couple a specific data replication algorithm

with a DHT, and changing the algorithm in use can provide an easy boost in performance.

5.3.1 Symmetric Replication

Symmetric replication [25] is part of the multi-publication family of data replication algorithms,

and was described in detail in Section 2.1.2.2.

Figure 5.2: Placement of replica in the symmetric replication strategy.

In the context of blind-search, symmetric replication has the advantage of evenly distributing

data across the entire key-space. When a broadcast tree is constructed it is likely that nodes close

together in the key-space belong to the same branch in the broadcast tree. This is because tree

construction tends to assign sequential ranges of the key-space to specific nodes, as shown in

Figure 5.3.

57

Figure 5.3: Distribution of replicated data within a typical broadcast tree, comparing neighbour (left) and
symmetric (right) replication.

In this situation, replicating data among neighbours provides almost no redundancy. By

changing to symmetric replication is is guaranteed that the failure of a branch in the broadcast

tree can never lose every replica in the network.

Symmetric replication is an existing concept, introduced by Ghodsi, Alima, and Haridi [25].

While it is compared to other replication strategies in terms of lookups, this Chapter presents a

novel use as a replacement for other replication strategies in existing DHTs as a means to improve

the success rate of blind-search.

Experimental results comparing symmetric replication to other replication strategies, both in

terms of regular lookup and blind-search, can be found in Chapter 6.

5.3.2 Replica Teams

While symmetric replication has many advantages over other replication strategies, neighbour

replication has the advantage of automatic failover - in most DHTs when a node leaves the network

the responsibility of its data falls to an adjacent node. With neighbour replication this adjacent

node will already have a replica of the data, and can take over responsibility immediately. With

any multi-publication replication strategy this is not the case, and the query would need to be

serviced by another request to a different publication of the data.

To solve this I propose Replica Teams, which takes an approach in between Neighbour and

Symmetric replication. In Replica Teams, teams of replica are split symmetrically across the

network, as shown in Figure 5.4. Symmetric replication can be thought of as replica teams with

the number of nodes per team set to one.

58

Figure 5.4: Comparing the distribution of replicated data within a network using neighbour replication (left),
symmetric replication (center), and replica teams (right).

5.4 summary

In summary, this chapter has presented a collection of DHT level optimisations, all within the

context of blind-search, which have been generalised and can be applied to almost any network,

independent of the underlying DHT structure. While each of the optimisations is presented in the

context of blind-search, they all also have benefits outside of this context and make sense to be

implemented regardless of the use of A Blind-Search System.

An optimisation called Address Caching was presented, in which nodes maintain a cache of

other nodes they discover through regular operation. This cache can be used both to replace dead

nodes in the primary routing table and hence reduce maintenance costs, as well as to increase

the possible branching factor during blind-search by supplementing the primary routing table.

As discussed in Chapter 4, the choice of branching factor is important for load balance, and

optimising performance in heterogenous networks.

To increase the routing table accuracy and hence reduce the occurrence of failure during

broadcast two optimisations, called Downlists and Levelling, were presented. With Downlists,

nodes include lists of down addresses in regular communication, allowing faster propagation of

failures across the network, and hence faster removal of failed nodes from routing tables.

Levelling introduces a light weight maintenance algorithm aimed primarily at use within the

above presented address cache, in which periodically a random key in the network is chosen and

the closest node in the address cache is probed to ensure it is still alive. This helps to ensure that

the address cache does not become stale.

The most important optimisation presented, in the context of blind-search, is the use of

Symmetric Replication instead of Neighbour Replication, for replication of data within the DHT.

59

Due to how broadcast trees are constructed by the efficient broadcasting algorithms used, nodes

close together in the broadcast tree tend to be close together in the DHT. This means, with

Neighbour Replication, replica tend to be grouped within the same branch of the broadcast tree,

and hence no redundancy against failure of that branch exists. Symmetric Replication on the other

hand guarantees an even distribution of replica in the DHT, and hence guarantees that replica

will never be grouped within the same branch of the broadcast tree. By making use of Symmetric

Replication instead of Neighbour Replication the impact of failure on blind-search can be greatly

reduced.

Finally, a modification to Symmetric Replication is presented, which I call Replica Teams.

Replica Teams is a middle ground between Neighbour and Symmetric replication, where teams

of replica are evenly distributed across the DHT. This is done because in the majority of DHTs

when a node fails, the responsibility for its data falls to its neighbour. By creating teams of replica,

the neighbouring node will already have the required data and be able to instantly take over

responsibility - yet the benefits of Symmetric Replication still exist. Maintenance costs are also

reduced, as in the majority of DHTs neighbouring nodes are already monitored closely anyway.

With the mentioned optimisations applied, my system ("A Blind-Search System, presented in

Chapter 4) becomes resilient to churn. This is done not only through reducing the occurrences of

failure, though also through optimising the placement of replica within the network such that the

impact of failure is considerably lower. In Chapter 6 simulation results for the optimisations in

this chapter are presented.

60

6
E X P E R I M E N TAT I O N

This chapter builds upon the previous three chapters. Chapter 3 introduced the problem of

Complex Queries in DHTs. The solution of Blind-Search, along with its known weaknesses, was

introduced in Chapter 4. A number of optimisations both to Blind-Search itself (Chapter 4)

and the underlying DHT (Chapter 5) was presented to combat these weaknesses. In this chapter

experimental evidence motivating the work in this Thesis and backing up previous claims is

presented.

6.1 introduction

DHTs are an important building block for P2P applications because they offer scalable and efficient

routing between nodes within a bounded number of hops. Since DHTs are designed to scale to

hundreds of thousands, or even millions, of nodes it is important to have a way to test these

61

algorithms as well as the applications which might make use of them, on a large scale. To solve

this problem a number of P2P simulation frameworks have been developed, with the most well

known being: OverSim [6], P2PSim [26], Peersim [31], and PlanetSim [21].

For this work, OverSim was chosen as the simulation framework. OverSim benefits from

a modern modular architecture (described below), making it easier to work with than most

alternatives. This also gives it more power and flexibility than most alternatives. Instead of trying

to reinvent the wheel, OverSim sits on top of the well known and proven network simulation

framework, OMNeT++, and its inet package. Using this, OverSim can run the same simulation

code over a simple approximation of an Internet Protocol (IP) network, a full stack simulation of

an IP network, or even over a real IP network between real nodes.

A further advantage of OverSim is its development team and community. OverSim is a mature

simulation framework, yet is still under active development and maintenance, unlike many

alternatives that have not been updated in years.

6.1.0.1 OverSim

OverSim [6] is designed as a modular simulation framework, with many common overlay features

implemented as part of a generic base overlay class. OverSim provides message passing using

Remote Procedure Calls (RPC), and supports both iterative and recursive routing. Applications

within OverSim are split into multiple tiers, allowing an application (such as the DHT TestApp) to

sit on-top of another application (such as the DHT layer). These applications are implemented as

modules and interface with overlays through the Key-Based Routing (KBR) Application Program-

ming Interface (API) [13], which represents basic capabilities common to all structured overlays.

The OverSim architecture is illustrated in Figure 6.1.

The main applications provided by OverSim are the KBR TestApp and the DHT TestApp. The

KBR TestApp is used to test the KBR services exposed by each overlay, such as routing look-up

requests to specific keys. The DHT TestApp is used to test the DHT application, by performing DHT

put and get requests with randomly generated data items.

OverSim provides a number of different network models, for both structured and unstructured

overlays. At the time of writing, the current version of OverSim is OverSim-20121206, and contains

models for Bamboo [50], Broose [65], Chord [59], GIA [11], Kademlia [45], Koorde [37], NICE [7],

NTree [22], Pastry [51], Quon [4], and Vast [10].

62

At the lower layer OverSim provides multiple underlay models to allow simulation in more

detail at an extra cost of performance, or abstraction for better performance but less detail in the

underlying network. Using the simple network model data packets are sent directly from one

node to another by using a global routing table and a delay proportional to a randomly assigned

physical location. The inet underlay model includes simulation models for all network layers,

including UDP (or Transmission Control Protocol (TCP)) and IP. The single host underlay allows

for simulation of a single node, connected to other OverSim instances over a real network.

Figure 6.1: Modular architecture of OverSim. Data replication strategies are implemented in Tier 1, and
Blind-Search in Tier 2, showing how they are both usable over any routing implementation (such
as Chord, EpiChord, Pastry).

6.2 simulation setup

Throughout this chapter default OverSim configuration parameters are used, except where

specified otherwise. Each experiment is repeated ten times and the results averaged.

The first step in the experimental phase is to validate assumptions around the simulation

framework in use. This is split into three main tasks: validating the simulated underlying

UDP/IP network, validating the simulated overlaying P2P network, and validating the simulated

environment.

63

6.2.1 Validating the underlying network

As discussed above, an OverSim model can make use of multiple underlying network models [6]

depending on the accuracy of the simulation that is required, and the computation power that is

available.

simple

The Simple underlay model is by far the most scalable. This model maintains a global

routing table, allowing packets to be sent directly from one node to another. Packets

between nodes are delayed by either a constant time, or by placing each node in a two-

dimensional Euclidean space and calculating a delay based on the nodes distance from each

other. Nodes can also be assigned a bandwidth, access delay, and packet loss ratio. This

allows all relevant [6] influences of the underlying network to be simulated with a single

event. Due to the simplicity of the Simple model, it allows simulation of a much larger

number of nodes.

inet

The inet model is built on top of the inet package for OMNeT++, which provides simulation

of all network layers from the Machine Address Code (MAC) layer. This provides a more

accurate simulation than the Simple model, at a much higher cost. The main advantages

to the inet model come when working with overlay node placement in the underlying

network.

singlehost

The SingleHost model allows OverSim to only simulate an individual node, which can be

connected to other nodes over a real network. This allows for reuse of existing models when

testing on services such as PlanetLab.

The following results in this chapter make use of the Simple underlay network, allowing

simulation of much larger scale networks than would otherwise be possible. However, first it is

important to confirm that the Simple model does indeed accurately simulate the entire underlying

network stack, and that the results taken from an application sitting on top of a Simple model are

akin to those taken from an application on top of an inet model.

For these experiments a Chord network was used, with no churn, and network sizes ranging

from 50 nodes to 20,000 nodes. OverSims KBRTestApp was used, with a one-way test.

64

The first set of results compares the lookup latency across different network sizes.

In this experiment, Figure 6.2 shows that in fact the simple network (modelled using the

SimpleUnderlayNetwork class) does not provide a perfect model of the inet network (as modelled

using the InetUnderlayNetwork class), with lookup latency following a similar shape to that of

the InetUnderlayNetwork, but at an elevated level of almost 3 times the expected.

Figure 6.2: Lookup latency of SimpleUnderlayNetwork against InetUnderlayNetwork in OverSim, showing
an almost linear discrepancy in results.

However, when looking at metrics purely based on performance of the overlay network there

is, as expected, no difference between the SimpleUnderlayNetwork and InetUnderlayNetwork.

Figure 6.3 shows the lookup hop count to be exactly the same.

65

Figure 6.3: Hop count of SimpleUnderlayNetwork against InetUnderlayNetwork in OverSim, showing both
SimpleUnderlayNetwork and InetUnderlayNetwork results are identical.

The last set of results, shown in Figure 6.4, in this experiment look at the bandwidth consump-

tion of the overlay, when using SimpleUnderlayNetwork compared to InetUnderlayNetwork. As

expected, there is no significant difference to be seen.

66

Figure 6.4: Bytes sent from SimpleUnderlayNetwork against InetUnderlayNetwork in OverSim, showing no
significant differences.

In conclusion, this experiment shows that the SimpleUnderlayNetwork is indeed not a perfect

model of real IP/UDP traffic, and will provide different latency results than the InetUnderlayNet-

work. However, it also showed that for purely overlay-based metrics the underlying network

model makes no difference. Hence using the more efficient SimpleUnderlayNetwork is acceptable.

6.2.2 Validating the overlaying network

As well as validating the underlying network model, the P2P overlay models in use in this Thesis

must also be validated. These models include: Chord (Section 2.2.1.1), Kademlia (Section 2.2.1.2),

Pastry (Section 2.2.1.3), and Epichord (Section 2.2.2.2). This validation has been published separ-

ately in ’An Evaluation of EpiChord in OverSim’ [18] and ’An Evaluation of Chord and Pastry

Models in OverSim’ [19], and is included in Appendix A.

67

6.2.3 Validating the environment

The main environmental factor within the simulated environment is the distribution and rate of

churn - that is, how often and in what pattern nodes are created and destroyed in the simulated

network. In OverSim, churn can be simulated using five different models or a combination there

of.

nochurn

The NoChurn model should not be considered as a churn model, though technically it is.

Nodes are added to the network until it reaches a defined size, after which it provides a

stable environment with no churn. It is the default churn model used by OverSim.

tracechurn

The TraceChurn model reads events from an input file and models the network churn

accordingly. This allows importing of very specific churn patterns which cannot be generated

by an algorithm. Often this is used for either replaying a captured real-world scenario or

testing uneven patterns of churn, such as a simulated network split.

randomchurn

The RandomChurn model is the most basic algorithmic model for simulating churn, whereby

nodes are randomly created or destroyed according to a schedule and defined probability

value. The nodes destroyed are chosen at random, hence no bias is given to the properties

of the chosen node.

lifetimechurn

The LifetimeChurn model calculates the nodes lifetime upon creation using a given probab-

ility function. The node then has its death scheduled according to the calculated lifetime.

Upon death, a deadtime is calculated, after which a new node will be added back in to the

network. Supported probability functions are weibull, pareto shifted, and truncnormal.

paretochurn

The ParetoChurn model is similar in result to the LifetimeChurn model, but approached in

a two stage process, as described by Yao et al. [70].

The following results in this section all make use of the LifetimeChurn model using the weibull

probability function, as recommended by Steiner et al. [58], Stutzbach and Rejaie [61], and Nurmi

et al. [47].

68

Steiner et al. [58] also present results showing lifetime mean in the real world P2P networks

Gnutella, Kad, and BitTorrent. In Gnutella and Kad they show that roughly 90% of nodes have a

lifetime that lasts 5 minutes or longer, however less than 50% last over half an hour. BitTorrent

fares much worse, with less than 90% nodes having a lifetime lasting for even 1 minute, and

only 20% making it to half an hour. For modelling BitTorrent Steiner et al. suggest a weibull

distribution with γ = 40. For Gnutella and Kad no figures are given, so γ = 60 is taken as a

reasonable lower bound for experiments.

Figure 6.5: Success rate under high churn for Chord, Pastry, and Kademlia.

Figure 6.5 shows the effect of LifetimeChurn using the weibull probability function on varying

network sizes. This provides a baseline for the expected effect of churn, as well as confirming

that the churn function is behaving as expected. We see that in fact the success rate of Chord

under high churn is incredibly poor, dropping to almost total message failure at a churn rate of 2

minutes, where-as both Pastry and Kademlia cope much more reasonably, with a delivery ratio

of over 90% even under churn as high as lifetime mean of 2 minutes.

In summary, the simple underlay model in OverSim provides a reasonable estimated simulation

of a real UDP/IP network, though results relating to metrics from the UDP/IP itself are not as

69

accurate as the inet underlay model. The overlay models of Chord, Kademlia, Pastry, and

Epichord have all been independently validated against the authors original models, and proven

to provide accurate metrics. The different churn models in OverSim have been evaluated, and the

Lifetime churn model with a Weibull distributed chosen for future use.

6.3 blind-search

First the basic Blind-Search algorithm is implemented without any optimisations, proving the

correctness of the algorithm and providing a baseline for measuring optimisations against. The

following results are taken using the overlays Chord and Pastry. A search is considered successful

when the node containing data is successfully contacted with the search query (routing of

responses is not yet considered).

In these experiments the network size is varied to investigate how Blind-Search scales. There is

no churn introduced yet.

Figure 6.6: Blind-Search success rate for Chord and Pastry without churn, under 100% due to network
stabilisation.

70

Figure 6.6 shows that Blind-Search without churn can obtain a high query success rate. The

success rate is between 96% and 97% for both Chord and Pastry. Although there is no churn the

network requires a certain length of time to stabilise fully after creation, while maintenance runs

and routing tables become fully populated. When altering the transition time (that is, the initial

time given for the network to stabilise before collecting results) this success rate raises and lowers,

confirming the hypothesis that the lower than 100% success is due to routing tables continuing to

stabilise.

Figure 6.7: Blind-Search message duplication for Chord and Pastry, showing zero message duplication in
both cases.

In Figure 6.7 the number of duplicated messages is shown to be zero for all network types and

sizes. This, combined with the success rate, shows that the algorithms described are correct.

71

Figure 6.8: Hop count of Blind-Search for Chord and Pastry.

Figure 6.8 shows that the mean hop count for Blind-Search queries grows logarithmically with

network size, hence at least in terms of query time, these algorithms do indeed scale.

72

Figure 6.9: Bandwidth usage during Blind-Search for Chord and Pastry.

Comparing the mean total bytes sent per node during Blind-Search, Figure 6.9 shows that the

mean bandwidth usage also grows logarithmically with network size.

73

Figure 6.10: Bandwidth distribution during Blind-Search for Chord and Pastry.

Figure 6.10 shows that although the bandwidth usage not high, it is also not balanced across

the entire network. Looking at a single run of Chord, while the majority of nodes have a similar

bandwidth usage, there are a few outliers responsible for double that of others. These are the

nodes near the top of the broadcast tree, with the highest fanout.

6.3.1 Performing under churn

The final step for evaluating Blind-Search is to introduce churn.

In Figure 6.11, churn with a lifetime mean ranging from 2 minutes to 2 hours in introduced. It

shows that as the churn rate increases, the success rate of Blind-Search dramatically decreases,

becoming almost useless when the lifetime mean gets to minutes.

74

Figure 6.11: Blind-Search success rate under high churn for Chord and Pastry, showing a lifetime mean of
less than 1 hour has a huge impact on success rate.

Overall, the results presented show that Blind-Search can successfully be performed over Chord

and Pastry networks, despite their fundamentally different design and network topology. Under

optimum conditions a success rate of close to 100% can be achieved with no redundant messages,

with minimal bandwidth usage and a logarithmic hop count.

We see that by varying the branching factor during Blind-Search, the bandwidth consumption

can be shared more fairly across the network at the cost of overall hop count, and hence latency.

Introducing churn, however, highlights the weakness of the efficient broadcasting algorithms,

whereby a single node failure can have a dramatic effect on a section of the network. Hence high

node failures rates cause incredibly poor Blind-Search success rates. In the following section a

solution to this using data replication is presented.

6.4 optimising data replication

As discussed in Section 5.3, DHTs can be optimised for Blind-Search by altering the data replication

strategy in use.

75

6.4.1 Symmetric Replication

The largest gain in query success rate under churn can be obtained by making use of Symmetric

Replication instead of the more traditional Neighbour Replication, used by Chord, Pastry, and

Kademlia by default.

Figure 6.12: Success rate of Blind-Search over Chord with Neighbour Replication, showing no significant
difference in success rate with number of replica.

Figure 6.12 shows the success rate of Blind-Search over the Chord DHT, with varying degrees

of data replication, using the default Neighbour Replication. This shows that the degree of

replication when using Neighbour Replication has no significant effect on the success rate of

Blind-Search - making the replication redundant in this use case.

Figure 6.12 also shows that with a churn rate of 2 minutes the success rate drops as low as 50%.

Realistically, any churn rate with a lifetime mean under 15 minutes causes the success rate to

drop below 90%, and this approach becomes unreliable.

Figure 6.13: Success rate of Blind-Search over Chord with Symmetric Replication, showing 100% success
rate being achieved using 8 replica.

When the Neighbour Replication is replaced with Symmetric Replication, Figure 6.13 shows

that the degree of replication now has a dramatic effect on the success rate, increasing the success

rate of Blind-Search by roughly 30% per replica. Using Symmetric Replication 8 replica able

to keep a Blind-Search success rate of 100% even with a lifetime mean of as low as 1 minute

(compared to a success rate of 50% with 8 replica using Neighbour Replication).

76

These results show that the use of Symmetric Replication over Neighbour Replication has huge

benefits for Blind-Search, and in fact for Blind-Search to work reliably under churn could be

considered a requirement. Because of this it is argued that the data replication strategy used

should not be determined by the network type, but considered as an extra layer on top of the DHT

which should be chosen to suit the requirements.

6.5 distributed hash table optimisations

In Chapter 5 optimisations to DHTs which can be made to benefit Blind-Search were discussed.

Experimental results for these optimisations are now presented.

6.5.1 Increasing routing table size

6.5.1.1 Address caching

The below simulations were performed using the proposed NKademlia algorithm, in which

an address cache is used allowing growth of the routing table up to a set limit. For example,

NKademlia 2048 defines a maximum routing table size of 2048 nodes. NKademlia is described in

more detail in Section 5.1.1.

Parameter Value(s)

key length 512bits

network size 10, 000

nodes per bucket (k) 8

bucket refresh 3, 600s

max stale count 2

bits to consider (b) 1

lifetime mean 1800s, 3600s, 7200s, 14000s

measurement time 1, 200s

lookup rate 10s

routing type iterative

max routing table size 64 . . . 2048

Table 6.1: NKademlia: Simulation parameters.

77

In all NKademlia results I compare against both Kademlia and nr128. nr128 [32] is the state

of the art optimisation to Kademlia in which the routing table bucket responsible for the most

nodes is increased to hold 128 entries, with each subsequent bucket half the previous (until a

minimum size of k).

From these simulations we observe a reduced lookup latency compared to regular Kademlia,

shown in Figure 6.14, with the latency decreasing as the routing table size increases. With a

network size of 10,000 nodes the latency settles with a maximum routing table size of around

1,000 nodes, with further increases in routing table size having little effect.

Figure 6.14: Nkademlia: Lookup latency under churn, showing an address cache as small as 64 nodes even
has a performance improvement over Kademlia in a 1,000 node network.

78

Figure 6.15: Nkademlia: Lookup success rate under churn, showing address caching has no significant effect.

Figure 6.15 shows that the increased routing table has no effect on the success rate of lookups,

as is to be expected.

Figure 6.16: Nkademlia: Maintenance bandwidth usage under churn, showing an address cache as small as
64 nodes even provides a reduction in maintenance bandwidth in a 1,000 node network.

Figure 6.16 shows there is reduction in bandwidth when using a higher maximum routing

table size. This is because the extra nodes in the routing table do not cost anything as they are

purely a cache, and no active maintenance is performed on them. However, when one of the

primary nodes in a bucket is ejected, the bucket is automatically refilled without any additional

79

maintenance. In the best case, this node is alive and no maintenance was required. In the worst

case this node is dead and another must be chosen, again requiring either no maintenance or a

regular lookup if the cache is now empty. Additionally, this lower bandwidth usage can also be

attributed to a lower number of messages being sent during a lookup, as the hop count reduces.

Overall, the NKademlia system, when compared to regular Kademlia or nr128, provides lower

latency for regular lookup operations, a higher branching factor for Blind-Search, and reduced

maintenance costs.

6.5.2 Increasing routing table accuracy

Increasing the routing table size shows a significant decrease in lookup latency, at the cost of

decreased routing table accuracy, as can be seen in Figure 6.17. For regular lookup operations

this does not appear to have much effect on success rate. However, for Blind-Search this reduced

accuracy will have a major effect, similar to the effect reduced accuracy due to high churn rates

has.

6.5.2.1 Levelling

The first approach for increasing routing table accuracy is the use of Levelling maintenance, in

which periodically a random key is chosen, and the responsible node is sent a ping message to

ensure liveliness. Levelling is described in more detail in Section 5.2.2.

80

Figure 6.17: Nkademlia: Routing table accuracy under churn. Although previous figures showed NKad
results in improved performance, this figure shows that in fact routing table accuracy is lower.

As shown in Figure 6.17 having greater than k nodes in a bucket causes Kademlia maintenance

to become ineffective and routing table accuracy to drop. Next, the previous simulations is re-ran

over a longer time period, measuring how the routing table accuracy and lookup latency change

over time.

Parameter Value(s)

key length 512bits

network size 10, 000

nodes per bucket (k) 8

bucket refresh 3, 600s

max stale count 2

bits to consider (b) 1

lifetime mean 7, 200s

measurement time 12, 000s

lookup rate 10s

routing type iterative

Table 6.2: Nkademlia: Simulation parameters.

81

Figure 6.18: Nkademlia: Routing table accuracy over time, with and without the use of Levelling.

Figure 6.19: Nkademlia: Lookup latency over time, with and without the use of Levelling.

As seen in Figure 6.18 and Figure 6.19 the routing table accuracy of Nkademlia drops to a

much lower level than that of regular Kademlia, however this does not seem to negatively impact

the lookup latency. It is also shown that the introduction of Levelling maintenance helps keep the

routing table accuracy and lookup latency at a steady level over time, compared to the upwards

curve for lookup latency when using NKademlia without Levelling maintenance.

82

By making use of address caching in DHT it is possible to reduce the average hop count for

requests, both in terms of regular lookups and Blind-Search. The side effect of this is reduced

maintenance costs. By introducing techniques such as Levelling, the accuracy of the routing table

over time can be dramatically improved, leading to higher success rates and lower hop counts,

again both in regular lookups and Blind-Search.

6.6 summary

In this chapter I first justified the choice of OverSim as the P2P simulation framework, then

provided validation of the techniques and models that are used in the remainder of this chapter.

The main advantage of OverSim is its modular design, allowing it to reuse the industry standard

network simulator OMNeT++ as a base. This modular design also allows for plugging together

of components to build a complete system - for example it is possible to take the widely used

Chord, Pastry, and DHT modules, and build just the blind-search module on top. Validation of the

used models is provided in independantly published papers, but also included in Appendix A.

Simulation results for my Blind-Search System (see Chapter 4), first without churn, were

presented. These showed a query success rate of between 96% and 97%, with no duplicated

messages, and logarithmic growth in hop count as network size increases. These were as expected,

and showed that without churn the system is a success.

When the system was placed under high churn the results showed the query success rate drop

to between 2% and 58%, confirming the hypothesis that any efficient broadcast based system is

highly susceptible to churn.

The first, and most significant in the context of blind-search, optimisation for which results are

presented is the replacement of Neighbour Replication with Symmetric Replication.

Simulation results of A Blind-Search System over Chord with Neighbour Replication showed a

success rate of 50% under high churn, and no significant difference between 1 replica, 2 replica, 4

replica, and 8 replica. Replacing with Symmetric Replication, the success rate ranges from 50% to

100% - with 4 replica providing a success rate of 90%, and 8 replica a success rate of 100%.

These results showed that while indeed A Blind-Search System is highly susceptible to churn, by

simply replacing the default Neighbour Replication in many DHTs with a more suited Symmetric

Replication the impact of failures can be greatly reduced, to the point where the system can

efficiently operate even under high churn.

83

The next optimisation presented was Address Caching (see Chapter 5), in which nodes maintain

a cache of addresses for other nodes they have passively discovered. This cache is then used to

refill the routing table, as well as supplement it to allow an increased branching factor during

blind-search.

Compared to Kademlia and nr128 [32], Kademlia with Address Caching (referred to as

NKademlia) significantly reduced lookup latency by up to 40% over Kademlia and 8% over

nr128. Maintenance bandwidth consumption was also significantly reduced when compared to

Kademlia, also by up to 40%.

While Address Caching was originally proposed primarily to increase the possible branching

factor, in the context of blind-search, these results show that it has far wider applications than

just blind-search.

Results for Downlists and Levelling (see Chapter 5) were presented, showing that without

either routing table accuracy of both Kademlia and NKademlia decreases over time, and hence

the lookup latency increases over time. With the introduction of Downlists and Levelling the

routing table accuracy is shown to stay constant, resulting in a constant lookup latency over time.

Overall, through simulation this chapter has shown that this system meets the original design

criteria of efficient distribution with minimal duplicate messages. It has shown that churn is a

huge problem for any system based on efficient broadcasting, and then shown that the solutions

proposed in Chapter 5 do indeed solve this issue for A Blind-Search System.

84

7
C O N C L U S I O N S

The goal of this thesis was to design an efficient method for performing complex queries, which

will work across a large range of DHT types, in a heterogeneous and high churn environment.

Towards this goal, a review of P2P networks and complex queries were first presented in Chapters

2 and 3.

These reviews showed that while there are a large number of search systems built on structured

P2P networks, there is only a single family of systems that is able to support all types of complex

queries - those built on the principal of efficient broadcasting. Efficient broadcast uses the structure

of the network to broadcast a message to all nodes, with minimal duplicates. It also showed that

the majority of existing systems were very prescriptive, requiring the use of a specialised DHT

structure, which would trade off certain properties such as load balance to achieve their goals.

Of the systems which were capable of supporting all types of complex queries, only one was a

85

generic solution capable of working on multiple types of DHT - and this system had no resiliency

to churn.

7.1 contributions

7.1.1 A Blind-Search system

In Chapter 4 my Blind-Search System was presented, bringing together the state of the art in

broadcast techniques from different underlying networks and adapting them for use in a search

system. This provided a generic system that works across different DHT types, supports all

complex query types, and produces minimal redundant messages.

Simulation results, shown in Chapter 6, showed that in a stable environment this system could

successfully support all complex query types in an efficient manner. However, without the below

contributions, this system was susceptible to overloading the search originator during searches

for populate services, and to degraded performance under high levels of churn.

After the below optimisations were applied, the system was capable of performing all types

of complex queries with a success rate of 100% even under high churn, and minimal redundant

messages.

7.1.2 Novel query response routing algorithm

An observation made from the above Blind-Search system, is the ability to flood the origin node

when performing a popular search, with as many as O(N) response messages. To solve this

problem, a novel query response routing algorithm was presented in Chapter 4, which uses

reverse tree navigation and message collation to reduce load, especially in searches with a large

number of positive responses.

With this query response routing algorithm, this Thesis has advanced the state of the art in

routing of search results within DHTs and allowed the proposed Blind-Search system to operate

without the risk of overloading nodes performing searches.

7.1.3 Advancements in maintenance algorithms

Optimisations to the routing table in DHTs were evaluated, with multiple generic optimisations

presented in Chapter 5 which improve success rate and performance, while reducing overall

maintenance traffic.

86

These optimisations included increasing the routing table size through Address Caching -

keeping a cache of all nodes that an individual learns about through passive observation. This

address cache can then be used for replacing missing nodes in the primary routing table when

they are lost due to maintenance, as well as supplementing the routing table during Blind-Search.

Results presented in Chapter 6 showed an up to 40% decrease in both lookup latency and

maintenance bandwidth when Address Caching is introduced in a Kademlia network.

A further optimisation increased the routing table accuracy, through the use of Downlists -

in regular communication, nodes include an extra field with their messages, including a list of

recent nodes they have detected as being offline. Receiving nodes can verify this information with

a ping message, then update their routing tables immediately rather than waiting for a failed

request of their own.

A final optimisation called Levelling helped to distribute maintenance traffic evenly over

the entire network rather than evenly over the set of buckets in Kademlia. This resulted in an

improved routing table accuracy, especially in combination with the address cache.

The combination of these optimisations was presented in Chapter 6, showing improvement to

the routing table accuracy, and hence success rate and performance of Blind-Search, and actually

reduced background maintenance costs.

7.1.4 Advancements in DHT data replication

This Thesis has argued for treating DHT data replication separately from the routing algorithm,

and in Chapter 6 has shown that by making use of Symmetric Replication instead of Neighbour

Replication during blind-search it is possible to increase the success rate from as low as 50%

to 100% at no additional cost. This is achieved through the observation that neighbours in the

DHT are likely to belong to the same branch of a broadcast tree, and hence in the context of

blind-search, Neighbour Replication provides no redundancy.

The state of the art in DHT data replication algorithms was advanced through the introduction

of Replica Teams. Replica Teams allow the use of types of replication algorithms other than

Neighbour Replication, while keeping the lower maintenance cost of Neighbour Replication. This

is achieved by splitting replica in to teams rather than individual nodes and distributing the

teams per the replication algorithm.

87

Bringing together these contributions results in A Blind-Search System, capable of performing

all types of complex queries across a large range of different DHT types. This system can perform

searches for both rare and common services/documents, with efficient response routing that will

not overload the search originator.

By making use of Symmetric Replication using Replica Teams and the DHT maintenance

optimisations discussed, the success rate and performance of Blind-Search can be kept at a

high level even under extreme churn rates, without additional cost or sacrifice to regular DHT

operations.

7.2 limitations

7.2.1 Real world deployment

The work in this thesis has been backed through extensive simulations, using the well known

simulation engine OverSim. The environment is validated in Chapter 6, showing that while simu-

lated latency results are likely to be inaccurate, the actual algorithms are correctly implemented,

and hence results around correctness and success of queries can be trusted.

As it is unfeasible to deploy a test network of sufficient scale for testing purposes there has

been no testing of the work presented in real world deployments. It may be interesting to evaluate

query latency, as well as its effect on success due to message timeouts. However, the effect on this

system, if any, is likely to just look like an increase in churn rate.

7.3 future work

In this section potential future research questions posed by this work are discussed.

7.3.1 Scoping the search

In search, there are 2 primary desired outcomes: finding a matching result, and finding all

matching results.

In this Thesis the focus is on finding all matching results. Once a search is initiated it is not

considered complete until it has reached as many nodes within the network as was possible.

A potential future research direction is the investigation of support for searches in which the

desired outcome is only to find a single matching result. In this case, the search can be optimised

using techniques such as Go+Stop Signals [66] and TTL scoping [44], to terminate as soon after a

88

successful match as possible. In this case data replication plays a role in not just redundancy, but

also efficiency and performance. There is a tradeoff to be made with a replication ranging from

O(1), providing results in O(N) queries, to a replication factor of O(N), providing results in O(1)

queries.

7.3.2 Branching factor in heterogeneous networks

In Section 4.4 the load balancing of Blind-Search was discussed, in which the branching factor

(the number of children a node decides to send the query to) plays a large role. In some networks,

such as Chord, the branching factor is relatively fixed due to the amount of nodes in the routing

table, however in others such as EpiChord or d1ht, the branching factor can be as high as O(N).

In heterogeneous networks, some nodes will have an abundance of resources, so forwarding

the query to a large number of children is not a problem. On the other hand some nodes, perhaps

mobile devices, will have severely limited resources and will struggle to forward the query.

By exploiting this observation it may be possible to design a system which dynamically varies

the branching factor based on a nodes self-identified resources. This would result in a more

manageable load for all participants and increased performance in the presence of high resourced

nodes.

7.3.3 Address cache staleness

The concept of an address cache (Section 5.1.1) was introduced in this thesis. It allows much

cheaper and faster replacement of nodes removed from the primary routing table, resulting in

lower maintenance costs and higher success rates. However, over time this address cache is likely

to fill with stale nodes, resulting in dead nodes in the primary routing table being replaced by

dead nodes from the address cache.

Future work could investigate the use of a cheap maintenance algorithm, perhaps such as

Levelling maintenance, to be used on the address cache, ensuring liveliness of its contents.

7.3.4 Downlists with bloom filters

Including Downlists (Section 5.2.1), lists of nodes that are known to have gone offline recently, in

regular communication has been shown to provide improvement in routing table accuracy, at the

cost of increased bandwidth usage during regular communication.

89

Bloom Filters provide a way of very efficiently encoding a set, such that the receiver can be

confident an element is not in the set, with a low rate of false positives. Considering the Downlists

algorithm already makes use of a ping operation on each node it considers to be down to confirm

received data is valid, these false positives would be acceptable, and bloom filters may provide a

dramatic bandwidth reduction in DHTs implementing Downlists.

7.3.5 Data replication factor

While this thesis investigated the use of different data replication strategies, and proposed the

use of a new concept, Replica Teams, the comparisons of different strategies was always relative.

The work in this thesis did not aim to recommend specific values for data replication that would

be required to achieve specific Service Level Agreements (SLAs) for success rate or performance.

7.4 summary

In this chapter the key achievements and research contributions of this Thesis have been high-

lighted, along with the limitations and open research questions which surfaced.

This Thesis presented a novel, generic, Blind-Search system which can efficiently perform all

types of complex queries over multiple DHT types. This is achieved through the use of efficient

broadcasting algorithms, and advancements in both DHT maintenance and data replication. Over

existing systems, A Blind-Search System provides support for all types of queries rather than

just a subset, in a generic system that can be applied over any existing DHT type. Due to the

optimisations presented in Chapter 5 this system is the only such system that is also resilient to

high levels of churn, and optimised for use in heterogenous networks.

To conclude, the research presented in this Thesis has extended the state of the art in DHT

complex queries, blind-search, data replication, and maintenance. It met the requirements and

objectives outlined in Chapter 1, and finally offered potential future directions for continuation of

work in the area of Blind-Search.

90

A
A P P E N D I X A

• Jamie Furness, Mario Kolberg, and Marwan Fayed. An Evaluation of Chord and Pastry

Models in OverSim. In Modelling Symposium (EMS), 2013 European, pages 509–513, 2013

• Jamie Furness, Farida Chowdhury, and Mario Kolberg. An Evaluation of EpiChord in

OverSim. In 5th International Conference on Networks and Communication. ACM Press, 2013

1

An Evaluation of Chord and Pastry Models in OverSim
Jamie Furness, Mario Kolberg, Marwan Fayed

Computing Science and Mathematics
University of Stirling

Stirling, Scotland
{jrf,mko,mmf}@cs.stir.ac.uk

Abstract—Peer-to-peer (P2P) simulation frameworks are
excellent tools for developing and testing P2P algorithms,
however there has been very little work done on validation of
the models within these frameworks. Validation of these
models is an important issue, as without knowing the models
are valid we can not necessarily rely on the results generated
using such models. In this work we provide an independent
evaluation of both the Chord and Pastry Distributed Hash
Table (DHT) models within OverSim, and validate the models
by comparison against results presented in the original Chord
and Pastry papers.

Keywords—Peer-to-Peer overlay, Distributed Hash Table,
OverSim, Chord, Pastry.

I. INTRODUCTION
 Distributed Hash Tables (DHTs) are an important
building block for Peer-to-Peer (P2P) applications because
they offer scalable and efficient routing between nodes
within a bounded number of hops. Since DHTs are designed
to scale to hundreds of thousands, or even millions, of nodes
it is important to have a way to test these algorithms as well
as the applications which might make use of them, on a
large scale.
 To solve this problem, a number of P2P simulation
frameworks have been developed: OverSim [1], P2PSim
[2], Peersim [3], PlanetSim [4], and many others. In this
work we look at validating some of the models provided
within OverSim.
OverSim is an open-source P2P simulation framework that
we are using in our ongoing work, based on the discrete
event simulation system OMNeT++. OverSim includes both
a simple underlay model for larger scale simulation as well
as a more detailed underlay model derived from the INET
framework of OMNeT++, which allows for simulation of all
network layers down to the MAC layer. Also included with
OverSim are models of many different overlay networks:
Bamboo [5], Broose [6], Chord [7], GIA [8], Kademlia [9],
Koorde [10], NICE [11], NTree [12], Pastry [13], Quon
[14], and Vast [15].

A. Contributions
 As is the case with any simulation, results that rely on a
model can only be considered valid if the model itself is
valid. We could find no such independent validation, and
present this work to fill that gap. The main contribution of
this paper is an independent evaluation of both the Chord
and Pastry models included with OverSim. We define
scenarios, based on parameters taken from the original
papers, which test both the routing algorithm and
maintenance algorithm for each model. In the first scenario
we measure both the success rate and performance (path

length) of look-up queries. In the second scenario we
measure the look-up success rate after multiple node
failures. We compare the results obtained using the models
in OverSim against the results presented in the original
Chord and Pastry papers.
 The remainder of the paper is organized as follows:
Section II acknowledges related work. Section III gives a
short overview of the Chord and Pastry algorithms. In
Section IV OverSim is described, in particular the models
for Chord and Pastry. Section V presents results comparing
the OverSim models against results from the original papers.
We conclude in Section VI.

II. RELATED WORK
 There are a number of different P2P simulation
frameworks which provide models of the Chord and/or
Pastry algorithms, as listed in Section I. Despite the large
number of overlay models available the only validation we
are aware of considered Chord, and involved comparing
only the average path lengths generated by the OverSim
model against those generated by the P2PSim model [1],
instead of against the original paper. Our work aims to fill
this gap by validating both the Chord and Pastry models
against results from their original papers.

III. BACKGROUND
 In this section we present an overview of both the
Chord and Pastry algorithms for completeness.

A. Chord
 Nodes in a Chord [7] network are ordered numerically
in a ring structure modulo 2m, where m is a network
parameter. Data items are assigned to the first node which
has an identifier that is equal to or follows in the ring.
 In a network of size N each node maintains routing
state information for O(log2(N)) other nodes, namely the k
nodes succeeding it, known as the successors, and a set of
finger nodes. The finger nodes are chosen at logarithmically
increasing distance around the ring, the ith entry in the table
at node n contains the identity of the first node that succeeds
n by at least 2i-1 (i ≥ 1). This means that nodes have a more
complete view of the area nearby, with less links to far away
nodes in the network. As a message is forwarded around the
network, the closer it becomes to the destination the more
likely nodes are to have a link to the destination node. An
example Chord network showing the choice of finger table
nodes can be seen in Figure 1.
Due to the distribution of nodes within a Chord routing
table, it is expected that the average path length increases
logarithmically with the size of the network.

 In the original Chord paper [7] the protocol is evaluated
by simulation. Results evaluated the distribution of keys
across all nodes within the network, as well as the average
path length and distribution for varying network sizes. To
evaluate the stabilization protocol look-up failures were
compared against node failures. In Section V-A we compare
these original results to results obtained using the Chord
model within OverSim.

Figure 1: An example Chord network, showing the choice of finger nodes

for Node N8.

 Pastry [13] also assumes a circular identifier space with
each node ordered in a circular name-space modulo 2128.
Data items are stored at the node whose identifier is
numerically closest to the data items identifier.
 Each Pastry node maintains a routing table, a
neighbourhood set, and a leaf set (otherwise known as the
name-space set). In a network of size N, using identifiers
with base 2b, each nodes routing table is designed with
logb(N) rows, where each row holds b - 1 entries. All the
entries at row r of the routing table each refer to a node
whose identifier shares the current nodes identifier in the
first r digits, but whose (r + 1)th digit does not match that of
the current node. The neighbourhood set contains links to
the m closest nodes, and the leaf set contains the k nodes
whose identifiers are closest and centred around the local
nodes identifier.
 The number of nodes traversed while routing a message
is expected to increase logarithmically with the size of the
network. The maximum path length is expected to be
log2

b(N).
In the original Pastry paper [13] results are presented
displaying the average path length and distribution for
varying network sizes. Additionally results are presented to
evaluate the locality properties of Pastry routes, by
comparing the distance a message travels using Pastry with
that of a message in a routing scheme that maintains
complete routing tables.

IV. OVERSIM MODELS
 OverSim [1] is designed as a modular simulation
framework, with many common overlay features
implemented as part of a generic base overlay class.
OverSim provides message passing using RPC, and
supports both iterative and recursive routing. Applications
within OverSim are split into multiple tiers, allowing an

application, such as the DHT TestApp, to sit on-top of
another application, such as the DHT layer. These
applications are implemented as modules and interface with
overlays through the Key-Based Routing (KBR) API [16],
which represents basic capabilities common to all structured
overlays. The OverSim architecture is illustrated in Figure
2.
 The main applications provided by OverSim are the
KBR TestApp, and the DHT TestApp. The KBR TestApp is
used to test the KBR services exposed by each overlay, such
as routing look-up requests to specific keys. The DHT
TestApp is used to test the DHT application, by performing
DHT PUT and GET requests with randomly generated data
items.
 OverSim provides a number of different network
models, for both structured and unstructured overlays. At
the time of writing the current version of OverSim is
OverSim-20101103, and contains models for Bamboo [5],
Broose [6], Chord [7], GIA [8], Kademlia [9], Koorde [10],
NICE [11], NTree [12], Pastry [13], Quon [14], and Vast
[15].
 At the lower layer OverSim provides multiple underlay
models to allow simulation in more detail at an extra cost of
performance, or abstraction for better performance but less
detail in the underlying network. Using the simple model
data packets are sent directly from one node to another by
using a global routing table. The INET underlay model
includes simulation models for all network layers. The
single host underlay allows for simulation of a single node,
connected to other OverSim instances over a real network.

A. Chord Overlay Model
 The Chord model provided within OverSim is an
implementation of the algorithms described in the original
Chord paper [7], as well as various additions, described
below.

1) Aggressive join mode: When aggressive join mode is
enabled a node will update its predecessor pointer as soon as
it receives a join request, and respond to the joining node
with the address of its old predecessor. A message is then
passed to the old predecessor to alert them of their new
successor.
2) Memorize failed successor: This modification keeps
note of when a successor node fails, and uses this to decide
if we should accept the node provided in a stabilize
response.
3) Extended finger table: The extended finger table
modifies the finger table to include buckets of nodes at each
finger position, instead of a single node at each position.
4) Proximity routing: If using the extended finger table
modification, proximity routing will sort the contents of
each finger bucket based on their observed latency. This
prioritises lower latency nodes when there are multiple to
choose.
5) Merge optimizations: The merge optimizations are a set
of different optimizations which can be made. They include
informing the original predecessor when we receive a new
predecessor, informing a node who incorrectly believes they

are our predecessor of our real predecessor, and pinging
fingers in our finger table to clear dead nodes.
 Each of the additions described is optional, and can be
toggled in the simulation configuration file. An overview of
the simulation parameters used can be found in Table I.

Figure 2: Modular architecture of OverSim.

TABLE 1: CHORD SIMULATION PARAMETERS.
 Parameter Scenario 1 Scenario 2

 routing type iterative iterative

 look-up interval 1m -

 network size {8, 16 . . . 16,284} 1,000

 number data items - 10,000
 replication rate - 1

 transition time 2m 15m

 measurement time 2h -

 stabilize delay 20s 20s

 fix fingers delay 120s 120s

 check predecessor delay 5s 5s
 successor list s ize 8 8

 aggressive join on on

 extended finger table off off

 proximity routing off off
 memorize failed successor off off
 merge optimizations off off

B. Pastry Overlay Model
 The Pastry model within OverSim is an implementation
of the algorithms described in the original Pastry paper [13],
with various optional components, described below.

1) Optimize look-ups: By default Pastry will try to find the
closest destination node from its routing table only. The
optimize look-ups modification searches the routing table,
neighbourhood set, and leaf set to ensure that the returned
node is definitely the closest that we know about.
2) Discovery algorithm: The discovery algorithm attempts
to discover a reliable node with low latency to send the

initial join request to, instead of using the bootstrap node. It
works by recursively querying the closest known node for
its routing table until no closer node is found.
3) Proximity neighbour selection: Using proximity
neighbour selection, when nodes are merged in to the
routing table they will replace existing entries if they have a
lower latency than the existing entry.
4) Minimal join state: Instead of transferring the entire
routing table, neighbourhood set, and leaf set on join, the
neighbourhood set and leaf set are only transferred if
required.
 As with the Chord model, each of the additions
described is optional, and can be toggled in the simulation
configuration file. An overview of the simulation
parameters used can be found in Table 2.

TABLE 2: PASTRY SIMULATION PARAMETERS.
Parameter Scenario 1 Scenario 2

routing type semi-recursive semi-recursive

look-up interval 1m -
network size {1,000 . . . 10,000} 1,000

number data items - 10,000
replication rate - 1
transition time 2m 15m

measurement time 2h -
bits per digit (b) 4 4

number of leaves 16 16
number of neighbours 32 32

optimize look-ups off off

discovery algorithm off off
proximity neighbours on on

partial join path off off
minimal join state off off

C. Memory Requirements
 Observed memory requirements for a selection of
different OverSim models are shown in Figure 3. As
expected the memory usage of multi-hop networks such as
Chord, Broose, or Kademlia grew close to linearly, as each
node only maintains state for a logarithmic number of other
nodes.

Figure 3: Memory required for simulating varying sized networks using
OverSim models with default parameters.

 In Figure 3 we observe that the memory usage of a
Pastry network using the OverSim model does not seem to
match that of other multi-hop networks, possibly implying
that the Pastry model might have a memory leak.

V. EXPERIMENTAL RESULTS
 To evaluate the models we define 2 scenarios under
which both models are tested.
 In Scenario 1 the network is first populated with a set
number of nodes. Once the network has reached the desired
size it is given time to stabilize, and then look-ups are
initiated from random nodes for random keys using
OverSim’s KBRTestApp, at an average rate of 1 look-up
per node per minute. During this time both the result
(success or fail) and hop count are recorded for each look-
up. This scenario allows us to compare both the success rate
and look-up performance of each model, validating the
models routing algorithm.
 In Scenario 2 the network is first populated with a set
number of nodes, as in Scenario 1. Once the network has
reached the desired size it is given time to stabilize, and then
a set number of random data items are distributed within the
DHT using OverSim’s DHTTestApp and a trace file. We
then kill a percentage of nodes within the network, and
again give it time to stabilize. Finally we issue look-ups
from random nodes for all the data items originally stored
within the network, including those belonging to now dead
nodes. This scenario allows us to test the models
maintenance algorithms when faced with multiple node
failures, validating the models maintenance algorithm.
 Each scenario was repeated 10 times, with results
averaged.

A. Chord Results
 In Scenario 1 the Chord network completed 100% of
lookups successfully, as to be expected when the network is
stable. The average path length for each measured network
size was a close match to that reported in the original paper,
as shown in Figure 4. The distribution of look-up path
lengths in a 4,096 node network (as chosen in the original
paper) is shown in Figure 5, again we can see this is a close
match.

Figure 4: Chord: The average path length as a function of network size.

 The results for Chord from Scenario 2, showing look-
up failures versus node failures, are shown in Figure 6.
These results show that the maintenance algorithm is able to
correctly repair routing tables, and the only data lost is that
which was stored on the nodes which failed.

Figure 5: Chord: Distribution of the path length in the case of a 212 node

network.

Figure 6: Chord: Look-up failures as a function of node failures.

B. Pastry Results
 Due to memory constraints, discussed in Section IV-C,
we were unable to simulate a Pastry network larger than
40,000 nodes. In the original paper, results were presented
for network sizes ranging from 1,000 to 100,000 nodes. We
have limited our comparisons to networks ranging from
1,000 to 10,000 nodes.

Figure 7: Pastry: The average path length as a function of network size.

 In Scenario 1 the look-up success rate for Pastry was
also 100%, as expected. The average look-up path length is
shown in Figure 7. Again they are a close match to the
results in the original paper, and in fact keep in line with the
theoretical maximum path length of log2b (N). Due to
memory constraints we could not obtain path length
distribution for a 100,000 node network to compare with the
original paper, however the path length distribution for a
10,000 node network using the OverSim model, and for a
100,000 node network from the original paper can be seen
in Figure 8. In both cases the shape of the distribution is a
close match, however offset due to the differing network
size.

Figure 8: Pastry: Distribution of the path length in the case of a 10,000
node OverSim network and 100,000 node network from original paper.

 In Scenario 2 the maintenance algorithm is able to,
again, correctly repair routing tables, and the only data lost
is that which was stored on the nodes which failed - shown
in Figure 9.

Figure 9: Pastry: Look-up failures as a function of node failures.

VI. CONCLUSIONS
 In this paper we have given an overview of both the
Chord and Pastry DHT algorithms, as well as the OverSim
P2P simulation framework. We have described both the
Chord and Pastry models provided with OverSim, and
compared results obtained using these models against those

provided in the original papers as a form of validation. Our
results have shown than both the Chord and Pastry models
behave as expected, and produce results which closely
match the original papers. This allows us to conclude that
both models are valid representations of their respective
algorithms, and that any data obtained from work building
on-top of these models is realistic.

REFERENCES
[1] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay

Network Simulation Framework,” in Proceedings of 10th IEEE
Global Internet Symposium (GI ’07) in conjunction with IEEE
INFOCOM 2007. Anchorage, AK, USA: IEEE, May 2007, pp. 79–
84.

[2] T. M. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling, “p2psim: a
simulator for peer-to-peer (p2p) protocols.” [Online]. Available:
http://pdos.csail.mit.edu/p2psim/

[3] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The Peersim
Simulator.” [Online]. Available: http://peersim.sf.net

[4] P. García, C. Pairot, R. Mondéjar, J. Pujol, H. Tejedor, and R. Rallo,
“PlanetSim: A New Overlay Network Simulation Framework,”
Software Engineering and Middleware, pp. 123–136, 2005.

[5] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn
in a DHT,” in Proceedings of the annual conference on USENIX
Annual Technical Conference, 2004, p. 10.

[6] L. Viennot, “Broose: a practical distributed hashtable based on the de-
Bruijn topology,” in Proceedings. Fourth International Conference on
Peer-to-Peer Computing, 2004. Proceedings. Ieee, 2004, pp. 167–174.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” in SIGCOMM ’01. ACM Press, 2001, pp. 149–160.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker,“Making gnutella-like P2P systems scalable,” in SIGCOMM
’03. USA: ACM Press, 2003, pp. 407–418.

[9] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric,” Peer-to-Peer
Systems, vol. 2429, pp. 53–65, 2002.

[10] M. F. Kaashoek and D. Karger, “Koorde: A Simple Degree-Optimal
Distributed Hash Table,” Peer-to-Peer Systems II, vol. 2735, pp. 98–
107, 2003.

[11] B. Bhattacharjee, S. Lee, R. Morselli, R. Sherwood, D. Levin, and
Suman Banerjee, “NICE.” [Online]. Available:
http://www.cs.umd.edu/projects/nice/

[12] C. GauthierDickey, V. Lo, and D. Zappala, “Using n-trees for
scalable event ordering in peer-to-peer games,” in NOSSDAV ’05.
ACM Press, 2005, pp. 87–92.

[13] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-scale Peer-to-peer Systems,” in
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, 2001, pp. 329–350.

[14] H. Backhaus and S. Krause, “QuON - a Quad-Tree Based Overlay
Protocol for Distributed Virtual Worlds,” International Journal of
Advanced Media and Communication, vol. 4, no. 2, pp. 126–139,
2010.

[15] S.-C. Chang, T.-H. Chen, J.-S. Chiou, Y.-L. Huang, S.-Y. Hu, and G.-
M. Liao, “VAST.” [Online]. Available: http://vast.sourceforge.net/

[16] F. Dabek, B. Zhao, P. Druschel, and J. Kubiatowicz, “Towards a
Common API for Structured Peer-to-Peer Overlays,” Peer-to-Peer
Systems II, vol. 2735, pp. 33–44, 2003.

An Evaluation of EpiChord in OverSim

Jamie Furness, Farida Chowdhury, Mario Kolberg

Computing Science and Mathematics,
Universty of Stirling, Stirling, Scotland
{jrf,fch,mko}@cs.stir.ac.uk

Abstract. EpiChord is a Distributed Hash Table (DHT) algorithm which supports
data storage/retrieval in large scale distributed systems. It removes the typical
O(logn)-state-per-node restriction imposed by the majority of other DHT
topologies by employing a reactive routing state maintenance strategy that
amortizes network maintenance costs into lookup queries. Under ideal condition,
EpiChord’s lookup performance can approach O(1) hops - with maintenance
costs comparable to traditional multi-hop DHTs. This paper presents an
implementation of EpiChord in OverSim, and validates the performance of our
model against the performance reported in the original EpiChord paper. We also
present some adjustments to the algorithm to remove a discrepancy and then
compare our modified results with the original ones. Finally, we present
additional results showing the EpiChord algorithm is stable over time and
performs well for larger networks.

1 Introduction
Distributed Hash Tables (DHTs) [2] supported Peer-to-Peer (P2P) applications are an
ideal substrate for building large scale distributed systems because they are self-
organizing, adaptable and scalable and offer efficient routing between nodes within a
bounded number of hops. EpiChord [1] is a DHT lookup algorithm which demonstrates
that node state restrictions can be relaxed which were imposed by the majority of other
DHT algorithms by using a reactive routing state maintenance strategy. Nodes
piggyback additional network information on lookup queries to keep their routing state
up-to-date. This makes EpiChord ideally suited to large scale environments. This paper
discusses an implementation [24] of EpiChord within the OverSim Simulator [3]. The
model is validated against the original EpiChord paper. Specifically, the contributions
of the paper are as follows:
 An independent evaluation of EpiChord, by comparing results from our simulation

model to the results presented in the original EpiChord paper.
 Performance evaluation in multiple scenarios, defined in the original paper, which

test both the routing and maintenance algorithms of the model.
 Amendments to the original model together with a comparison of the results

obtained from our model against the corrected results from the original model.
 Performance evaluation of EpiChord in larger networks and for longer simulations.
 A freely available EpiChord model in OverSim.
 A review of available simulators.
The original implementation of EpiChord was a model for the SSFNet simulation
framework [4] which is not publicly available. The authors are not aware of other
EpiChord models which are publicly available. In other work [5] we have validated the
models for both Chord and Pastry in OverSim.
The remainder of the paper is structured as follows: Section 2 discusses related work,
Section 3 provides an overview of the EpiChord DHT algorithm, Section 4 compares

network simulators, Section 5 discusses implementation details of the EpiChord model
in OverSim, Section 6 presents an evaluation of results after changes to the original
EpiChord model. Section 7 presents validating results from our EpiChord model as
well as results demonstrating EpiChord’s scalability. Section 8 concludes this paper.

2 Related Work

A large number of multi-hop structured Peer-to-Peer (P2P) algorithms have been
proposed [2]. These algorithms are characterized by O(log N) hop count. Because each
overlay hop translates to potentially many hops in the underlying network, multi-hop
overlays have a relatively poor latency characteristic for connecting large numbers of
peers. Consequently, systems have been developed to trade-off latency for larger
routing tables. However these designs lead to increased network traffic for managing
the larger routing tables. Thus efficient overlay maintenance in O(1)-hop (one-hop)
overlays is an important research question. Two techniques have emerged [2] for
maintaining routing tables in overlays: active stabilization where peers have fixed
communication to maintain a target routing table accuracy, and opportunistic updating
where routing table maintenance depends on lookup load and available bandwidth.

An example active stabilization algorithm is EDRA (Event Detection and Reporting
Algorithm) used in the D1HT one-hop overlay [8]. EDRA has been proposed to give
reasonable message rate for high levels of routing table accuracy. For example, D1HT
has up to an order magnitude lower maintenance bandwidth usage compared to the
OneHop [10], another active stabilization one-hop overlay. EDRA* [11] offers some
improvements over EDRA. Examples of opportunistic overlay maintenance include
EpiChord [1] (used in this paper) and Accordion [9].

Kelips [7] is a O(1)-hop overlay which uses an epidemic multicast protocol for
exchanging overlay membership and other soft state between nodes. Such a protocol
consists of two sub-protocols: a multicast data dissemination protocol and a gossip
protocol to exchange message history for reliability purposes.

Accordion [9] is a variable hop overlay, in which a peer limits its routing table
update message level based on its available bandwidth. During periods of low
bandwidth, routing table accuracy can approach that of multi-hop overlays while for
higher bandwidth, routing table accuracy reaches one-hop. Accordion uses recursive
parallel lookups so as to maintain fresh routing table entries in its neighborhood of the
overlay and reduce the probability of timeout. Note that recursive parallel lookups
create more load on the target peer compared to iterative parallel lookups.

3 EpiChord Background

EpiChord [1] is a DHT algorithm which can achieve one-hop lookup performance
under lookup intensive workloads, and at worst case O(log2(N)) hop, as offered in
many multi-hop networks. As the name suggests, EpiChord is based on the Chord DHT
[6]. Like Chord, EpiChord is organized in a one-dimensional circular address space
where each node is assigned a unique node identifier. The node responsible for a key is
the node whose identifier most closely follows the key. In addition to maintaining a list
of k succeeding nodes, EpiChord also maintains a list of the k preceding nodes. Instead
of maintaining a finger table, as in Chord, EpiChord maintains a cache of nodes. Nodes

update their cache by observing lookup traffic, and add an entry anytime they learn of a
node not already in the cache. Nodes in the cache each have a timeout, resulting in stale
nodes being removed.

In general terms EpiChord can be thought of as Chord with a cache of extra node
addresses. As such the routing algorithm is similar to that in Chord. With a well
populated cache this results in lookup performance of one hop. Under high churn the
performance drops to that of Chord, O(log2(N)) hops in the worst case.

3.1 Lookup Algorithm

EpiChord uses an iterative lookup algorithm, as it avoids sending redundant queries
when using parallel requests. It also allows the querying node to receive all information
related to the query path, and hence updates its cache with new entries. To lookup a
data item with the key id, a node will initiate p queries in parallel - to the node
immediate succeeding id and to the p-1 nodes preceding id. When queried, a node will
respond as follows (l and p are both system parameters):
 If it owns id, it will return the value associated with id, and information on its

predecessor and successor.
 If it is a predecessor of id relative to the querying node, it will provide information

about its successor and the l best next hops towards the destination.
 If it is a successor of id relative to the querying node, it will provide information on

its predecessor and the l best next hops towards the destination.
When a reply is received, further queries are dispatched in parallel if the querying node
learns about any node closer to the target id than the best successor and predecessor
nodes that have already responded.

3.2 Cache Invariant

To guarantee worst case lookup performance of
O(log2(N)) each node divides the address space into
two sets of exponentially smaller slices, as seen in
Fig. 1. Each node maintains their cache such that
every slice contains at least

ଵିఊ
 cache entries at all

times, where j is a network parameter and γ is a
local estimate of the probability that a cache entry is
out-of-date. Nodes periodically check their cache
slices to ensure that there are sufficient unexpired
cache entries. To calculate γ, each node keeps track
of np, the number of messages sent, and nt, the
number of messages which timed out. γ is calculated
using nt / np. In addition, np and nt are periodically

(when the cache is flushed) multiplied by a network parameter δ to obtain
exponentially weighted moving averages.

 Fig. 1. Example of slicing of
 address space for N8.

3.3 Routing Table Updates

Each node periodically probes their immediate neighbours to ensure that they are still
alive. The delay between these stabilization attempts is calculated based on the
observed lifetime of nodes in the finger cache. For this reason the finger cache also
contains a map of dead nodes, and the observed lifetime is calculated by taking the
time between first learning of the node (sstart) until learning of its death (send). The
observed lifetime for each dead node is averaged, and the obtained estimate is then
multiplied by the lifetime estimate multiplier, ω, to calculate when the next
stabilization attempt should be scheduled.

ݏ = ∑ ௦ିୱೞೌೝ

∙ 	߱ (1)
In case where the sample size, n, is less than 5, the stabilization interval is simply set to
the network parameter s.

With active propagation, nodes will inform their neighbours of any detected
changes in the successor or predecessor lists as soon as they happen, rather than
waiting for the next stabilization attempt. This increases the maintenance bandwidth
when under high churn, however also results in more accurate successor and
predecessor lists, and hence fewer false-negatives.

If a node has an outdated view of the local key space that they are responsible for,
they may fail to respond correctly to all queries. By including their believed
predecessor and successor in the query response, the querying node can either make a
step towards the destination or, if the believed predecessor does not respond, determine
that the responsible node is dead. This false-negative detection allows the querying
node to resolve the lookup correctly. If a false-negative is detected, the querying node
will immediately inform the new responsible node that their predecessor has failed and
now they should be responsible for the requested key.

4 Review of Simulators

Before deciding on OverSim, a detailed review of other available and active P2P
network simulators was carried out. A summary of these tools is provided in Table 1.
 PeerSim [6] is written in Java. Its main focus is to provide high scalability and can
handle a network of up to 106 nodes. However, this scalability comes at the cost of not
including a model of the behavior of the underlying communication network, e.g.
TCP/IP stack and latencies. P2PSim [13] is a discrete event simulator for P2P overlays
written in C++. It supports Chord, Accordion, Koorde, Kelips, Tapestry, and Kademlia.
However, these implementations are specific to P2PSim and do not model all features
of the protocols. P2PSim has been simulated with up to 3,000 nodes using the Chord
implementation. This simulator is largely undocumented and therefore hard to extend.
 Overlay Weaver [14] is a toolkit for P2P Overlays written in Java. It has been tested
with tens of thousands of nodes (their website quotes 300,000). Chord, Kademlia,
Pastry, Tapestry and Koorde are available. The simulations have to be run in real-time
environments and there is no statistical output which makes its use very limited.
PlanetSim [14] is a discrete event simulation framework for both structured and
unstructured overlays, written in Java. It has a modular, well-structured architecture
and services can be re-used for other overlays. Chord and Symphony models exist and
can consist of up to 100,000 nodes. However, it provides rather limited support to

collect statistics. It also has a very simplified underlying network layer without any
consideration of bandwidth and latency costs.

Table 1. A comparison of available active P2P simulators.

Simulator P2P Protocols Network size Language
PeerSim

P2PSim

Overlay
Weaver

PlanetSim
NS2

SSFNet
OverSim

PeerfactSim.Kom

D-P2P-Sim+

Collection of internally
developed P2P models
Chord, Accordian, Koorde,

Kelips, Tapestry, Kademlia
Chord, Kademlia, Koorde,

Pastry, Tapestry and FRT-Chord
Chord, Symphony

Gnutella
Chord, EpiChord

Chord, Kademlia, Pastry,
Bamboo, Broose, Gia

CAN, Chord, Kademlia, Gia, C-
DHT, Gnutella 0.4/0.6, Pastry

Chord

>106

3000

Tens of
thousand

100,000
N/A

33,000
100,000

50,000

400,000

Java

C++

Java

Java
C++/OTcl

Java/C++/DML
C++

Java

Java

NS2 [16] is a discrete-event simulator that provides substantial support for
simulation of lower layer protocols. Only one P2P protocol, Gnutella, is available in
NS2. Simulations in NS2 are constructed using C++ and OTcl. It is mostly used for
small networks and is generally unsuitable for large scale P2P overlay networks.

SSFNet [4] is a discrete-event simulation framework written in Java and C++. This
framework is built on the Scalable Simulation Framework (SSF) and uses the Domain
Modelling Language (DML) to configure networks. Chord and EpiChord have been
implemented in SSFNet. There is a claim that SSFNet manages to run models with
33,000 nodes, however, the authors of the original EpiChord paper [1] and ourselves
could not simulate networks with more than 10k nodes.

OverSim [1] is an open-source P2P simulation framework for the OMNeT++
simulation environment. It provides a generic lookup mechanism and an RPC interface
to facilitate additional protocol implementations. It allows large-scale simulations of
simplified networks as well as complex heterogeneous underlay networks. Several P2P
algorithms such as Chord, Kademlia, Bamboo, Broose, Koorde, NICE, NTree, Pastry,
and GIA have been implemented in OverSim. Models can scale to over 100,000 nodes.
More comprehensive surveys of P2P network simulators can be found in [19,20].

PeerfactSim.Kom [17] is a discrete event based P2P simulator environment. Its
focus is on being extendable and on large scale network models. This simulator offers
the potential to model different types of peer-to-peer systems including distributed
CDNs, streaming applications and overlay systems. It comes with a built-in churn
generator. The simulator includes models of lower layers but does not yet include TCP.

D-P2P-Sim+[18] is a distributed simulation environment which employs multi-
threading, asynchronous message passing and distributed environment with graphical
user interface. There is little information on this simulator besides a short paper and
poster. These report simulated network sizes of up to 400,000 nodes. It seems the only
implemented overlay algorithm is Chord. However, the system is extendible and other
algorithms could be implemented. Multiple computers running the simulator may be
interconnected to achieve larger simulated network sizes.

Based on this study OverSim was selected for our experimentation due to its
flexibility with respect to underlay characteristics and possible high scalability.

5 Oversim Implementation

OverSim [3] is designed as a modular simulation framework, with many common
overlay features implemented as part of a generic base overlay class. OverSim provides
message passing using Remote Procedure Calls (RPC), and supports both iterative and
recursive routing. Applications within OverSim are split into multiple tiers, allowing an
application to sit on-top of another application. These applications are implemented as
modules and interface with overlays through the Key-Based Routing (KBR) API [21],
which represents basic capabilities common to all structured overlays. As mentioned

above, OverSim provides a number of different
network models, for both structured and
unstructured overlays. The OverSim architecture
is illustrated in Fig. 2.
 At the lower layer OverSim provides multiple
underlay models to allow for inclusion of specific
underlay characteristics in the simulation (at a
cost of scalability), or underlay abstraction for
increased scalability. Using the simple model,
data packets are sent directly from one node to
another by using a global routing table. The INET
underlay model includes simulation models for
all network layers. The single host underlay
allows for simulation of a single node, connected
to other OverSim instances over a real network.

 Below we discuss some alterations which we
made to the original EpiChord protocol when implementing it as an OverSim module.

5.1 Node Join Protocol

In the original EpiChord algorithm, upon receipt of a join request a node will instantly
update their predecessor list and finger cache to include the joining node. In our
implementation we found this was occasionally causing messages to be routed to nodes
who are still in the process of joining, and not yet ready to correctly handle requests.
To solve this issue we implemented a three-way handshake. In our implementation the
joining node will send a final acknowledgment when they are ready to handle requests,
indicating they can now be safely added as a predecessor.

5.2 Lookup Algorithm

The OverSim framework provides modules for iterative and recursive routing, as can
be seen in Fig. 2, with support for parallelism. While this makes implementation of
many overlays easier and reduces duplicated code, only certain parts of the module can
be easily overridden. This was a problem for EpiChord, primarily due to the non-linear
order in which nodes are to be queried, and EpiChord’s ability to check for false
negative responses. To implement these features we had to make changes to the
iterative routing module, allowing us to override additional parts of the module with
code specific to EpiChord.

 Fig. 2. Oversim architecture

6 Results - Changes to the Original Model
6.1 Application layer Lookups
In the original EpiChord model all lookup types (JOIN, MAINTENANCE, and
APPLICATION) are included when calculating results. The KBRTestApp in OverSim
only includes lookups it has initiated (APPLICATION) in the results. We feel this is
actually a more useful metric for anyone wishing to build on-top of EpiChord, so we
instead recalculated the results from the original model using only APPLICATION
lookups. A comparison of the average path lengths can be seen in Fig. 3; the other
metrics remained unchanged.

Fig. 3. Comparison of average path length with APPLICATION lookups only vs. all lookup.

In [22], authors proposed two generic classes of workloads: lookup intensive and churn
intensive. These metrics were adopted by the EpiChord authors for experimentation.
For the purposes of validating our model, we also adopt these two metrics. In the
lookup intensive workload, node lifetimes are exponentially distributed with a mean of
10 minutes, and each node performs lookups on average every 0.5 seconds. In this
scenario the background maintenance traffic is negligible compared to the active
lookup rate. In the churn intensive workload, node lifetimes are again exponentially
distributed with a mean of 10 minutes, however this time each node only performs
lookups on average every 100 seconds. In this scenario the lookup rate is so low, most
of the lookups captured are lookups arising from node joins and cache maintenance.

Fig 3 shows the average path length remains unchanged for the lookup intensive
workload. This is to be expected, as the lookup intensive workload is dominated by
APPLICATION lookups. In the churn intensive workload we see a rise in average hop
count as the network size increases; this is because the result was originally dominated
by JOIN and MAINTENANCE lookups, which tend to be for closer keys.

6.2 Fixing p

In the source of the original model we encountered a minor mistake1, which, in
many cases, resulted in p+1 parallel requests being generated - rather than the
supposed maximum of p. Results comparing the average path lengths and success rates
when p=1 can be seen in Fig. 4.

From these results we observe a rise in average path length, and a small decline in
lookup success rate, for both workloads. We also observe a drop in the size of nodes
cache tables, which increases with the network size. This is to be expected, as fewer
queries are dispatched and hence fewer new nodes are discovered.

1When receiving a timeout or negative response, further queries are dispatched while pending <= pmax,
resulting in pmax+1 pending queries.

Fig. 4. Average path length and success rate with fixed p.

7 OverSim Results

To match the original scenarios, lookups were performed throughout the entire
simulation, with measurements taken from the very beginning. OverSim, by default,
only starts performing lookups and recording measurements once the network has
reached the desired size, however this is configurable in the settings.

An overview of the simulation parameters can be found in Table 2. When we refer
to results from the original model, we refer to the results generated after taking the
changes in Section 6 into account. All results are averages of 5 simulation runs.

 Table 2. OverSim simulation parameters.
Description Lookup Intensive Churn Intensive
Lookup Interval 0.5s 100s
Network Size {600,…..,2000} {600,…..,2000}
Lifetime Mean 600s 600s
Stabilize Delay 60s 60s
Cache TTL
Cache Flush Delay
Cache Check Multiplier
Measurement Time
Neighbour list size
Redundant nodes, l
Parallelism, p
Required nodes/slice, j
Lifetime multiplier, ω
Slice multiplier, δ

120s
20s
3

3000s
4
3

1,3,5
2

0.5
0.5

120s
20s
3

3000s
4
3

1,3,5
2

0.5
0.5

7.1 Finger Cache State

During simulation we measure the average finger cache size for each node, as well
as the average accuracy of each node’s finger cache. The accuracy is a measure of how
many nodes in the finger cache are actually still active within the network.

We observe an average finger cache accuracy of 87% across all network sizes and
both scenarios - almost identical to that of 87.5% reported in the original paper.

As expected the finger cache size observed in the lookup intensive workload is
much larger than that in the churn intensive workload, due to the extra node
information received within lookup messages. The observed finger cache size for
varying network sizes under a lookup intensive workload and churn intensive workload
can be seen in Fig. 5.

Fig. 5. Cache composition for p-way EpiChord under lookup intensive and churn intensive workload.

7.2 Lookup Success Rate

Every lookup performed can be classified into one of four categories:

 Success: The node responsible for the requested key responds positively.
 Failure: No positive response received and no more viable candidates, or reached

the maximum hop/time limit
 False-positive: A node has responded positively but is not responsible for the

requested key.
 False-negative: A node did not respond positively but should be responsible for

the requested key.

By using false-negative detection, described in Section 3.3, nodes can detect and
handle false-negatives; ultimately they are treated as successful lookups.

The observed success rate for both lookup intensive and churn intensive workloads
is shown in Fig. 6. Here we use column diagram to show the success rate for p-way
parallel queries (p=1,3,5) for different network sizes up to 2000 nodes.

Fig. 6. Comparison of Success Rate for p-way EpiChord for varying network sizes under lookup intensive
and churn intensive workload.

As shown in Fig. 6, the lookup success rate is marginally higher for lookup intensive
workload than for the churn intensive workload. This is expected as under the lookup
intensive workload, the larger number of lookups helps to keep the routing state up-to-
date whereas for the churn intensive workload, the information propagation rate is
lower. Increasing parallelism has only a very slight effect on the success rate. It appears
that the lookup improvement is not worth the extra cost of the parallel lookups. The
success rates for p=5 is marginally lower than for p=3. This rather counter intuitive
behavior has also been observed in the original paper and is due to the 5-way network
generating fewer cache-refreshing lookups than a 3-way EpiChord network.

7.3 Lookup Path Length

For each successful lookup performed we also measure the path length - the number of
hops taken to find the final destination. Fig. 7 shows the observed path length for both
lookup intensive and churn intensive workloads. We observe that in the lookup
intensive workload, the hop count varies from 1.1 to 1.4 in both 3-way and 5-way
EpiChord networks, which signifies that each node has almost complete routing table
information and thus allows passing messages nearly in one hop. On the other hand, the
hop count varies from 2.8 to 3 under churn intensive workloads with fewer lookups
which also satisfies the O(log n)-hop lookup performance as depicted in the original
paper. Again, the results suggest that an increased level of parallelism in the lookups
only marginally improves the hop count, whereas the increased number of lookups
issued in the lookup intensive workload has a much more pronounced positive effect.

Fig. 7. Comparison of Lookup Path Length for p-way EpiChord for varying network sizes under Churn
Intensive and Lookup Intensive workload.

7.4 Stability and Scalability

We measured the stability of the EpiChord model in OverSim. Fig. 8(a) shows the
measurement phase vs. success ratio graph for p=1, 3, 5. In OverSim, during the
measurement phase, the statistics are collected. Our model has been tested up to
100,000s and demonstrates that the model is stable after an initial period of between
10000s (for p=1) and 20000 (for p=3,5). EpiChord also has been tested for scalability
in terms of network size for scenarios with 5,000 - 20,000 nodes. Fig. 8(b) shows the
results for lookup success ratio for different network sizes. This set of results means
that the network size does not affect the success rate of EpiChord. As before, p only
improves the performance in a rather minor way.

Fig. 8. a) Success Ratio of EpiChord for varying measurement times for p=1,3,5 demonstrating the stability
of the model; b) Average Success Ratio of EpiChord for networks with 5,000 to 20,000 nodes.

8 Conclusion
This paper presented our OverSim EpiChord model, and validated it by comparing our
results against the performance of the original EpiChord model. The results for our
model closely match those from the original model, supporting the claim that our
model is a valid implementation of the EpiChord algorithm. We have then presented
amendments to the model and investigated the effects on the performance of the model.
Furthermore we have shown that EpiChord and our model in OverSim is stable over an
extended period of time. We have also demonstrated that EpiChord achieves excellent
results for larger networks. EpiChord’s performance is strongly influenced by the
number of lookups issued by the nodes as routing table information is attached to
lookup return messages. Thus an increased number of lookup message improve the
performance of the network, whereas an increased level of parallelism only marginally
improves performance. Due to its excellent lookup performance for large scale
networks, EpiChord appears well suited to support large distributed environments.

Separately, we have used this model to simulate the effect of different lookup traffic
setups, and high node churn to investigate EpiChord’s suitability for use in mobile
networks [23].

References
1. B. Leong, B. Liskov, and E. D. Demaine. EpiChord: Parallelizing the Chord Lookup

Algorithm with Reactive Routing State Management. Computer Communications, Elsevier
Science, Vol. 29, pp. 1243-1259.

2. K. Dhara, Y. Guo, M. Kolberg, X. Wu, Overview of Structured Peer-to-Peer Overlay
Algorithms, Handbook of Peer-to-peer Networking, Springer, 2009.

3. I. Baumgart, B. Heep, S. Krause. OverSim: A Flexible Overlay Network Simulation
Framework. 10th IEEE Global Internet Symposium (GI ’07), May 2007.

4. The SSFNet project. Accessed 01-August-2012. [Online]. Available:http://www.ssfnet.org/
5. J. Furness, M. Kolberg, Considering complex search techniques in DHTs under churn, in:

2011 IEEE Consumer Communications and Networking Conference (CCNC), IEEE, 2011.
6. I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, H. Balakrishnan. Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications. Conf on Applications, technologies,
architectures, and protocols for computer communications (SIGCOMM ’01), 2001. ACM.

7. I. Gupta, K. Birman, P. Linga, A. Demers, R. van Renesse. Kelips: Building an efficient and
stable P2P DHT through increased memory and background overhead. 2nd Intl. Workshop
on Peer-to-Peer Systems (IPTPS ’03), 2003.

8. L. Monnerat, C. Amorim. D1HT: A Distributed One Hop Hash Table. 20th IEEE
International Parallel & Distributed Processing Symposium (IPDPS), April 2006.

9. J. Li, J. Stribling, R. Morris, M. F. Kaashoek. Bandwidth-efficient management of DHT
routing tables. Symposium on Networked System Design and Implementation (NSDI) 2005.

10. A. Gupta, B. Liskov, R. Rodrigues. Efficient routing for peer-to-peer overlays. 1st
Symposium on Networked Systems Design and Implementation (NSDI), 2004.

11. J. Buford, A. Brown, M. Kolberg. Analysis of an Active Maintenance Algorithm for an
O(1)-Hop Overlay. IEEE Globecom 2007.

12. PeerSim P2P Simulator. Accessed 05-Jan-2013. http://peersim.sourceforge.net.
13. P2Psim: A Simulator for Peer-to-Peer (P2P) Protocols. http://pdos.csail.mit.edu/p2psim/
14. K. Shudo, Y. Tanaka, S. Sekiguchi. Overlay Weaver: An Overlay Construction Toolkit,

Computer Communications,Vol.31, Issue2, pp. 402-412 (2007).
15. PlanetSim: An Overlay Network Simulation Framework. http://planet.urv.es/planetsim
16. The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/

17. D. Stingl, C. Groß, J. Rückert, L. Nobach, S. Kovacevic, R. Steinmetz. PeerfactSim.KOM:
A Simulation Framework for Peer-to-Peer Systems, Intl. Conf. on High Performance
Computing & Simulation (HPCS), 2011.

18. S. Sioutas, K. Tsichlas, G. Papaloukopoulos, Y. Manolopoulos, E. Sakkopoulos. A novel
Distributed P2P Simulator Architecture: D-P2P-Sim. ACM Intl. Conf. on Information and
Knowledge Management (CIKM), Hong Kong, 2009

19. A. Brown and M. Kolberg. Tools for peer-to-peer network simulation. Internet-Draft
Version 00, IETF, January 2006.

20. S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai. A Survey of Peer-to-Peer Network
Simulators. In The Seventh Annual Postgraduate Symposium, Liverpool, UK, 2006.

21. F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz. Towards a Common API for Structured
Peer-to-Peer Overlays. Peer-to-Peer Systems II, 2735:33–44, 2003.

22. J. Li, J. Stribling, F. Kaashoek, R. Morris, and T. Gil. A Performance vs. Cost Framework
for Evaluating DHT Design Tradeoffs under Churn. In INFOCOM, 2005.

23. F.Chowdhury, M.Kolberg. An Investigation of EpiChord with high Node Churn. Submitted.
24. J. Furness, F. Chowdhury, M. Kolberg. EpiChord model for OverSim.

http://www.cs.stir.ac.uk/~fch/EpiChord_Model/

B I B L I O G R A P H Y

[1] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi. DKS(N, k, f): A Family of

Low Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications. In

Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International

Symposium on, pages 344–350. IEEE, 2003. ISBN 0-7695-1919-9. doi: 10.1109/CCGRID.

2003.1199386. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

1199386.

[2] Artur Andrzejak and Zhichen Xu. Scalable, efficient range queries for grid information

services. Proceedings. Second International Conference on Peer-to-Peer Computing,, pages 33–40,

2002. doi: 10.1109/PTP.2002.1046310. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=1046310.

[3] James Aspnes and Gauri Shah. Skip graphs. ACM Transactions on Algorithms, 3(4):37–es, 2007.

ISSN 15496325. doi: 10.1145/1290672.1290674. URL http://portal.acm.org/citation.cfm?

doid=1290672.1290674.

[4] Helge Backhaus and Stephan Krause. QuON - a Quad-Tree Based Overlay Protocol for

Distributed Virtual Worlds. International Journal of Advanced Media and Communication, 4(2):

126–139, 2010.

[5] Magdalena Balazinska, Hari Balakrishnan, and David Karger. INS/Twine: A Scalable Peer-

to-Peer Architecture for Intentional Resource Discovery. Proceedings of the First International

Conference on Pervasive Computing, pages 195 – 210, 2002.

[6] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. OverSim: A Flexible Overlay

Network Simulation Framework. In Proceedings of 10th IEEE Global Internet Symposium (GI

’07) in conjunction with IEEE INFOCOM 2007, pages 79–84, Anchorage, AK, USA, May 2007.

IEEE. ISBN 978-1-4244-1697-4. doi: 10.1109/GI.2007.4301435. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=4301435.

[7] Bobby Bhattacharjee, Seungjoon Lee, Ruggero Morselli, Rob Sherwood, Dave Levin, and

Suman Banerjee. NICE. URL http://www.cs.umd.edu/projects/nice/.

i

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1199386
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1199386
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1046310
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1046310
http://portal.acm.org/citation.cfm?doid=1290672.1290674
http://portal.acm.org/citation.cfm?doid=1290672.1290674
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4301435
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4301435
http://www.cs.umd.edu/projects/nice/

[8] Alan Brown, Mario Kolberg, and John Buford. Chameleon: An Adaptable 2-Tier Variable

Hop Overlay. In Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th

IEEE, pages 1–6, Las Vegas, NV, USA, 2009. IEEE.

[9] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Antony Rowstron, Marvin Theimer,

Helen Wang, and Alec Wolman. An Evaluation of Scalable Application-level Multicast Built

Using Peer-to-peer Overlays. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the

IEEE Computer and Communications. IEEE Societies, volume 2, pages 1510–1520. IEEE, 2003.

ISBN 0-7803-7752-4. doi: 10.1109/INFCOM.2003.1208986. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=1208986.

[10] Shao-Chen Chang, Tsu-Han Chen, Jiun-Shiang Chiou, Yu-Li Huang, Shun-Yun Hu, and

Guan-Ming Liao. VAST. URL http://vast.sourceforge.net/.

[11] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making

gnutella-like P2P systems scalable. In Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communications - SIGCOMM ’03, pages

407–418, New York, New York, USA, 2003. ACM Press. ISBN 1581137354. doi: 10.1145/

863997.864000. URL http://portal.acm.org/citation.cfm?doid=863955.864000.

[12] Adina Crainiceanu, Prakash Linga, Ashwin Machanavajjhala, Johannes Gehrke, and Jayavel

Shanmugasundaram. P-Ring : An Index Structure for Peer-to-Peer Systems. Technical report,

In Cornell Technical Report, 2004.

[13] Frank Dabek, Ben Zhao, Peter Druschel, and John Kubiatowicz. Towards a Common

API for Structured Peer-to-Peer Overlays. Peer-to-Peer Systems II, 2735:33–44, 2003. doi:

10.1007/b11823. URL http://www.springerlink.com/content/r9p1gmyek16kfklq/.

[14] Sameh El-ansary, Luc Onana Alima, Per Brand, and Seif Haridi. Efficient Broadcast in

Structured P2P Networks. In 2nd International Workshop On Peer-To-Peer Systems (IPTPS ’03),

Berkeley, CA, USA, 2003.

[15] Jamie Furness and Mario Kolberg. A Survey of Blind Search Techniques in Structured P2P

networks. In Proceedings of The 11th Annual PostGraduate Symposium on The Convergence of

Telecommunications, Networking and Broadcasting, Liverpool, UK, 2010.

ii

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1208986
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1208986
http://vast.sourceforge.net/
http://portal.acm.org/citation.cfm?doid=863955.864000
http://www.springerlink.com/content/r9p1gmyek16kfklq/

[16] Jamie Furness and Mario Kolberg. Considering complex search techniques in DHTs under

churn. 2011 IEEE Consumer Communications and Networking Conference (CCNC), pages 559–564,

January 2011.

[17] Jamie Furness and Mario Kolberg. Improving Wide Area P2P Service Discovery Mechanisms

using Complex Queries. In Anand R. Prasad, John F. Buford, and Vijay K. Gurbani, editors,

Future Internet Services and Service Architectures, chapter 9, pages 183–203. River Publishers,

2011.

[18] Jamie Furness, Farida Chowdhury, and Mario Kolberg. An Evaluation of EpiChord in

OverSim. In 5th International Conference on Networks and Communication. ACM Press, 2013.

[19] Jamie Furness, Mario Kolberg, and Marwan Fayed. An Evaluation of Chord and Pastry

Models in OverSim. In Modelling Symposium (EMS), 2013 European, pages 509–513, 2013.

[20] Jun Gao and Peter Steenkiste. Efficient Support for Similarity Searches in DHT-Based Peer-

to-Peer Systems. 2007 IEEE International Conference on Communications, 5(1):1867–1874, 2007.

ISSN 10842756. doi: 10.1053/siny.1999.0115. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=4288982.

[21] Pedro García, Carles Pairot, Rubén Mondéjar, Jordi Pujol, Helio Tejedor, and Robert Rallo.

PlanetSim: A New Overlay Network Simulation Framework. Software Engineering and

Middleware, pages 123–136, 2005. doi: 10.1007/11407386_10.

[22] Chris GauthierDickey, Virginia Lo, and Daniel Zappala. Using n-trees for scalable event

ordering in peer-to-peer games. In Proceedings of the international workshop on Network and

operating systems support for digital audio and video - NOSSDAV ’05, pages 87–92, New York,

New York, USA, 2005. ACM Press. ISBN 158113987X. doi: 10.1145/1065983.1066005. URL

http://portal.acm.org/citation.cfm?doid=1065983.1066005.

[23] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD thesis, The

Royal Institute of Technology (KTH), 2006.

[24] Ali Ghodsi, Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi. Self-Correcting

Broadcast in Distributed Hash Tables. In 15th International Conference on Parallel and Distributed

Computing and Systems (PDCS 2003), Marina del Rey, CA, USA, 2003.

iii

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4288982
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4288982
http://portal.acm.org/citation.cfm?doid=1065983.1066005

[25] Ali Ghodsi, LO Alima, and Seif Haridi. Symmetric replication for structured peer-to-peer

systems. In Proceeding DBISP2P’05/06 Proceedings of the 2005/2006 international conference on

Databases, information systems, and peer-to-peer computing, pages 74–85, Berlin, 2007. URL

http://link.springer.com/chapter/10.1007/978-3-540-71661-7_7.

[26] Thomer M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and Jeremy Stribling. p2psim: a

simulator for peer-to-peer (p2p) protocols. URL http://pdos.csail.mit.edu/p2psim/.

[27] Omprakash D Gnawali. A keyword-set search system for peer-to-peer networks. Technical

report, Massachusetts Institute of Technology, 2002.

[28] A González-Beltrán, P Milligan, and P Sage. Range queries over skip tree graphs. Computer

Communications, 31(2):358–374, 2008. ISSN 01403664. doi: 10.1016/j.comcom.2007.08.003.

URL http://linkinghub.elsevier.com/retrieve/pii/S0140366407002940.

[29] Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadi. Approximate Range Selection

Queries in Peer-to-Peer Systems. In Proceedings of the 1st Biennial Conference on Innovative

Data Systems Research (CIDR 2003), 2003.

[30] H V Jagadish, Beng Chin Ooi, and Quang Hieu Vu. BATON : A Balanced Tree Structure for

Peer-to-Peer Networks. In VLDB ’05 Proceedings of the 31st international conference on Very

large data bases, pages 661–672, 2005. doi: 10.1.1.118.5966.

[31] Márk Jelasity, Alberto Montresor, Gian Paolo Jesi, and Spyros Voulgaris. The Peersim

Simulator. URL http://peersim.sf.net.

[32] Raul Jimenez, Flutra Osmani, and Bjorn Knutsson. Sub-Second Lookups on a Large-Scale

Kademlia-Based Overlay. In 11th IEEE International Conference on Peer-to-Peer Computing 2011,

number June, 2011.

[33] S. Lennart Johnsson and Ching-Tien Ho. Optimum Broadcasting and Personalized Commu-

nication in Hypercubes. IEEE Transactions on Computers, 38(9):1249 – 1268, 1989.

[34] Yuh-Jzer Joung and Li-Wei Yang. KISS: A Simple Prefix Search Scheme in P2P Networks. In

Proc. Ninth Int’l Workshop Web and Databases (WebDB ’06), pages 56–61, 2006. doi: 10.1.1.84.

3592.

[35] Yuh-Jzer Joung and Li-Wei Yang. Wildcard Search in Structured Peer-to-Peer Networks.

IEEE Transactions on Knowledge and Data Engineering, 19(11):1524–1540, November 2007. ISSN

iv

http://link.springer.com/chapter/10.1007/978-3-540-71661-7_7
http://pdos.csail.mit.edu/p2psim/
http://linkinghub.elsevier.com/retrieve/pii/S0140366407002940
http://peersim.sf.net

1041-4347. doi: 10.1109/TKDE.2007.190641. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=4339217.

[36] Yuh-Jzer Joung, Li-Wei Yang, and Chien-Tse Fang. Keyword search in DHT-based peer-

to-peer networks. IEEE Journal on Selected Areas in Communications, 25(1):46–61, January

2007. ISSN 0733-8716. doi: 10.1109/JSAC.2007.070106. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=4062563.

[37] M. Frans Kaashoek and David Karger. Koorde: A Simple Degree-Optimal Distributed

Hash Table. Peer-to-Peer Systems II, 2735:98–107, 2003. doi: 10.1007/b11823. URL http:

//www.springerlink.com/content/unmqcqy0yxpu32xp/.

[38] David R Karger and Matthias Ruhl. Simple efficient load balancing algorithms for peer-to-

peer systems. Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms

and architectures SPAA 04, 3279(i):36, 2004. ISSN 03029743. doi: 10.1145/1007912.1007919.

URL http://portal.acm.org/citation.cfm?doid=1007912.1007919.

[39] Salma Ktari, Mathieu Zoubert, Artur Hecker, and Houda Labiod. Performance Evaluation of

Replication Strategies in DHTs under Churn. In Proceedings of the 6th international conference

on Mobile and ubiquitous multimedia (MUM ’07), pages 90–97, Oulu, Finland, 2007. ACM. ISBN

9781595939166. doi: 10.1145/1329469.1329481. URL http://portal.acm.org/citation.cfm?

doid=1329469.1329481.

[40] B Leong, B Liskov, and E Demaine. EpiChord: Parallelizing the Chord lookup algorithm with

reactive routing state management. Technical Report 9, May 2006. URL http://linkinghub.

elsevier.com/retrieve/pii/S0140366405003750.

[41] Ben Leong, Barbara Liskov, and Eric D. Demaine. Parallelizing the Chord Lookup Algorithm

with Reactive Routing State Management. In Proceedings. 2004 12th IEEE International

Conference on Networks (ICON 2004), volume 2004, pages 270–276, Singapore, 2004. IEEE.

ISBN 0-7803-8783-X. doi: 10.1109/ICON.2004.1409145. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=1409145.

[42] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek. Bandwidth-efficient

Management of DHT Routing Tables. In Proceedings of the 2nd conference on Symposium on

Networked Systems Design & Implementation, pages 99–114. USENIX Association, 2005.

v

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4339217
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4339217
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4062563
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4062563
http://www.springerlink.com/content/unmqcqy0yxpu32xp/
http://www.springerlink.com/content/unmqcqy0yxpu32xp/
http://portal.acm.org/citation.cfm?doid=1007912.1007919
http://portal.acm.org/citation.cfm?doid=1329469.1329481
http://portal.acm.org/citation.cfm?doid=1329469.1329481
http://linkinghub.elsevier.com/retrieve/pii/S0140366405003750
http://linkinghub.elsevier.com/retrieve/pii/S0140366405003750
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1409145
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1409145

[43] Nathan Linial and Ori Sasson. Non-Expansive Hashing. In Proceeding STOC ’96 Proceedings

of the twenty-eighth annual ACM symposium on Theory of computing, volume 18, pages 509–518,

January 1996. doi: 10.1145/237814.237999.

[44] Min-Yen Lue, Chung-Ta King, and Ho Fang. Scoped Broadcast in Structured P2P Networks.

In Proceedings of the 1st international conference on Scalable information systems - InfoScale ’06,

Hong Kong, 2006. ACM. ISBN 1595934286. doi: 10.1145/1146847.1146899. URL http:

//portal.acm.org/citation.cfm?doid=1146847.1146899.

[45] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Information System

Based on the XOR Metric. Peer-to-Peer Systems, 2429:53–65, 2002. doi: 10.1007/3-540-45748-8\

_5. URL http://www.springerlink.com/content/2ekx2a76ptwd24qt.

[46] Luiz R Monnerat and Claudio L Amorim. D1HT: A Distributed One Hop Hash Table. In

Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, pages 1–10,

Rhodes Island, Greece, 2006. IEEE. ISBN 1-4244-0054-6. doi: 10.1109/IPDPS.2006.1639278.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1639278.

[47] Daniel Nurmi, John Brevik, and Rich Wolski. Modeling machine availability in enterprise

and wide-area distributed computing environments. Springer Berlin Heidelberg, 2005. ISBN

978-3-540-28700-1. doi: 10.1007/11549468_50.

[48] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A Scalable

Content-Addressable Network. In Proceedings of the 2001 conference on Applications, technologies,

architectures, and protocols for computer communications, volume 31, pages 161–172, San Diego,

California, United States, October 2001. ACM. doi: 10.1145/964723.383072. URL http:

//portal.acm.org/citation.cfm?doid=964723.383072.

[49] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Application-Level

Multicast using Content-Addressable Networks. Networked Group Communication, 2233:

14–29, 2001. doi: 10.1007/3-540-45546-9_2. URL http://www.springerlink.com/content/

ahdgfj8yj9exqe03/.

[50] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn in a

DHT. In Proceedings of the annual conference on USENIX Annual Technical Conference, page 10,

2004. URL http://portal.acm.org/citation.cfm?id=1247425.

vi

http://portal.acm.org/citation.cfm?doid=1146847.1146899
http://portal.acm.org/citation.cfm?doid=1146847.1146899
http://www.springerlink.com/content/2ekx2a76ptwd24qt
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1639278
http://portal.acm.org/citation.cfm?doid=964723.383072
http://portal.acm.org/citation.cfm?doid=964723.383072
http://www.springerlink.com/content/ahdgfj8yj9exqe03/
http://www.springerlink.com/content/ahdgfj8yj9exqe03/
http://portal.acm.org/citation.cfm?id=1247425

[51] Antony Rowstron and Peter Druschel. Pastry: Scalable, Distributed Object Location and

Routing for Large-scale Peer-to-peer Systems. In IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware), pages 329–350, Heidelberg, Germany, 2001.

[52] O. D. Sahin, S. Antony, D. Agrawal, and A. El. Abbadi. PRoBe: Multi-dimensional Range

Queries in P2P Networks. Web Information Systems Engineering – WISE 2005, pages 332 – 346,

2005. doi: 10.1007/11581062_25.

[53] Dom Schlienger, David Irvine, James Irvine, Mario Kolberg, Jamie Furness, Swee Keow Goo,

Jorge Eliécer Gómez Gómez, and Velssy Hernandez Riaño. Works in Progress-A Survey,

Cloud File Sharing, and Object Augmentation. IEEE Pervasive Computing, 11(2):96, 2012.

[54] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. A Scalable and

Ontology-Based P2P Infrastructure for Semantic Web Services. In Second International

Conference on Peer-to-Peer Computing, page 104, Washington, DC, USA, 2002. IEEE Computer

Society. URL http://portal.acm.org/citation.cfm?id=824472.825529.

[55] Cristina Schmidt and Manish Parashar. Flexible Information Discovery in Decentralized Dis-

tributed Systems. In Proceedings of the 12th IEEE International Symposium on High Performance

Distributed Computing, Seattle, Washington, 2003.

[56] Cristina Schmidt and Manish Parashar. Enabling flexible queries with guarantees in p2p

systems. IEEE Internet Computing, 8(3):19–26, May 2004. ISSN 1089-7801. doi: 10.1109/MIC.

2004.1297269. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

1297269.

[57] Cristina Schmidt and Manish Parashar. A Peer-to-Peer Approach to Web Service Dis-

covery. World Wide Web, 7(2):211–229, June 2004. ISSN 1386-145X. doi: 10.1023/B:

WWWJ.0000017210.55153.3d. URL http://www.springerlink.com/openurl.asp?id=doi:

10.1023/B:WWWJ.0000017210.55153.3d.

[58] Moritz Steiner, Taoufik En-Najjary, and Ernst W Biersack. A global view of kad. In Proceedings

of the 7th ACM SIGCOMM conference on Internet measurement - IMC ’07, page 117, New York,

New York, USA, 2007. ACM Press. ISBN 9781595939081. doi: 10.1145/1298306.1298323. URL

http://portal.acm.org/citation.cfm?doid=1298306.1298323.

[59] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A

Scalable Peer-to-Peer Lookup Service for Internet Applications. In Conference on Applications,

vii

http://portal.acm.org/citation.cfm?id=824472.825529
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1297269
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1297269
http://www.springerlink.com/openurl.asp?id=doi:10.1023/B:WWWJ.0000017210.55153.3d
http://www.springerlink.com/openurl.asp?id=doi:10.1023/B:WWWJ.0000017210.55153.3d
http://portal.acm.org/citation.cfm?doid=1298306.1298323

technologies, architectures, and protocols for computer communications (SIGCOMM ’01), pages

149–160, San Diego, California, United States, 2001. ACM Press. ISBN 1581134118. doi:

10.1145/383059.383071. URL http://portal.acm.org/citation.cfm?doid=383059.383071.

[60] Daniel Stutzbach and Reza Rejaie. Characterizing Churn in Peer-to-Peer Networks. Technical

report, University of Oregon CIS-TR-2005-03, 2005.

[61] Daniel Stutzbach and Reza Rejaie. Understanding Churn in Peer-to-Peer Networks. In 6th

ACM SIGCOMM on Internet measurement (IMC ’06), pages 189–202, Rio de Janeriro, Brazil,

2006. ACM. ISBN 1595935614. doi: 10.1145/1177080.1177105. URL http://portal.acm.org/

citation.cfm?doid=1177080.1177105.

[62] Torsten Suel, Chandan Mathur, Jo-Wen Wu, Jiangong Zhang, Alex Delis, Mehdi Kharrazi,

Xiaohui Long, and Kulesh Shanmugasundaram. ODISSEA: A Peer-to-Peer Architecture for

Scalable Web Search and Information Retrieval. In In WebDB, 2003. doi: 10.1.1.12.6196. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6196.

[63] Chunqiang Tang and Sandhya Dwarkadas. Hybrid Global-Local Indexing for Efficient

Peer-to-Peer Information Retrieval. System, 1(ii):16, 2004. URL http://portal.acm.org/

citation.cfm?id=1251175.1251191.

[64] Chunqiang Tang, Zhichen Xu, and Mallik Mahalingam. pSearch: Information Retrieval in

Structured Overlays. ACM SIGCOMM Computer Communication Review, 33(1):89–94, 2003.

ISSN 01464833. doi: 10.1145/774763.774777. URL http://portal.acm.org/citation.cfm?

doid=774763.774777.

[65] L. Viennot. Broose: a practical distributed hashtable based on the de-Bruijn topology.

In Proceedings. Fourth International Conference on Peer-to-Peer Computing, 2004. Proceedings.,

pages 167–174. Ieee, 2004. ISBN 0-7695-2156-8. doi: 10.1109/PTP.2004.1334944. URL http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1334944.

[66] Vladimir Vishnevsky, Alexander Safonov, Mikhail Yakimov, Eunsoo Shim, and Alexander D.

Gelman. Scalable Blind Search and Broadcasting in Peer-to-Peer Networks. In Sixth IEEE

International Conference on Peer-to-Peer Computing (P2P’06), pages 259–266, Cambridge, UK,

2006. IEEE. ISBN 0-7695-2679-9. doi: 10.1109/P2P.2006.34. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=1698621.

viii

http://portal.acm.org/citation.cfm?doid=383059.383071
http://portal.acm.org/citation.cfm?doid=1177080.1177105
http://portal.acm.org/citation.cfm?doid=1177080.1177105
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6196
http://portal.acm.org/citation.cfm?id=1251175.1251191
http://portal.acm.org/citation.cfm?id=1251175.1251191
http://portal.acm.org/citation.cfm?doid=774763.774777
http://portal.acm.org/citation.cfm?doid=774763.774777
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1334944
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1334944
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1698621
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1698621

[67] Vladimir Vishnevsky, Alexander Safonov, Mikhail Yakimov, Eunsoo Shim, and Alexander D.

Gelman. Tag Routing for Efficient Blind Search in Peer-to-Peer Networks. In 11th IEEE

Symposium on Computers and Communications (ISCC’06), pages 409–416. IEEE, 2006. ISBN

0-7695-2588-1. doi: 10.1109/ISCC.2006.157. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1691062.

[68] Sai Wu, Hong Gao, and Bei Yu. Supporting High Dimensional Range Queries in Peer-to-Peer

Systems. In Euro-Par 2006, Parallel Processing, 12th International Euro-Par Conference, Dresden,

Germany, 2006. doi: 10.1007/11823285_106.

[69] Zhichen Xu and Zheng Zhang. Building Low-maintenance Expressways for P2P Systems.

Technical report, HP Laboritories, Palo Alto, 2002.

[70] Zhongmei Yao, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov. Modeling Het-

erogeneous User Churn and Local Resilience of Unstructured P2P Networks. Proceed-

ings of the 2006 IEEE International Conference on Network Protocols, pages 32–41, November

2006. doi: 10.1109/ICNP.2006.320196. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=4110276.

[71] Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker. Distributed Segment Tree :

Support of Range Query and Cover Query over DHT. In IPTPS’06: Electronic publications of

the 5th International Workshop on Peer-to-Peer Systems, 2006.

ix

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1691062
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1691062
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4110276
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4110276

	Title
	Declaration
	Abstract
	Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Terminology
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Structure of the Thesis

	2 P2P Overlays
	2.1 Background
	2.1.1 Unstructured Overlays
	2.1.2 Structured Overlays
	2.1.2.1 Distributed Hash Tables
	2.1.2.2 Data replication in Distributed Hash Tables

	2.1.3 Hybrid Overlays

	2.2 State of the Art
	2.2.1 Multi-hop Overlays
	2.2.1.1 Chord
	2.2.1.2 Kademlia
	2.2.1.3 Pastry
	2.2.1.4 CAN
	2.2.1.5 DKS

	2.2.2 Single-hop Overlays
	2.2.2.1 D1HT
	2.2.2.2 Epichord

	2.2.3 Variable-hop Overlays
	2.2.3.1 Accordion
	2.2.3.2 Chameleon

	2.3 Summary

	3 Complex Queries
	3.1 Background
	3.1.1 Unstructured Overlays
	3.1.2 Structured Overlays
	3.1.3 Hybrid Overlays

	3.2 State of the Art
	3.2.1 Token pointers in a DHT
	3.2.2 d-dimensional index space mapping using SFCs
	3.2.3 Load balancing with Virtual Peers
	3.2.4 Tree structured networks
	3.2.5 Indexing by Semantic Vector
	3.2.6 Efficient Broadcasting

	3.3 Summary

	4 A Blind-Search System
	4.1 Introduction
	4.1.1 Design Criteria
	4.1.2 Related Work

	4.2 Query Distribution
	4.2.1 Ring based DHTs
	4.2.2 Prefix routing DHTs
	4.2.3 Cartesian space based DHTs
	4.2.4 Hypercube based DHTs

	4.3 Response Routing
	4.3.1 Routing with Collation
	4.3.2 Reverse Tree Navigation

	4.4 Load balance
	4.5 Performing under churn
	4.6 Summary

	5 Optimising DHTs for Blind-Search
	5.1 Increasing routing table size
	5.1.1 Address caching

	5.2 Increasing routing table accuracy
	5.2.1 Downlists
	5.2.2 Levelling

	5.3 Optimising data replication
	5.3.1 Symmetric Replication
	5.3.2 Replica Teams

	5.4 Summary

	6 Experimentation
	6.1 Introduction
	6.1.0.1 OverSim

	6.2 Simulation setup
	6.2.1 Validating the underlying network
	6.2.2 Validating the overlaying network
	6.2.3 Validating the environment

	6.3 Blind-Search
	6.3.1 Performing under churn

	6.4 Optimising data replication
	6.4.1 Symmetric Replication

	6.5 Distributed Hash Table Optimisations
	6.5.1 Increasing routing table size
	6.5.1.1 Address caching

	6.5.2 Increasing routing table accuracy
	6.5.2.1 Levelling

	6.6 Summary

	7 Conclusions
	7.1 Contributions
	7.1.1 A Blind-Search system
	7.1.2 Novel query response routing algorithm
	7.1.3 Advancements in maintenance algorithms
	7.1.4 Advancements in DHT data replication

	7.2 Limitations
	7.2.1 Real world deployment

	7.3 Future Work
	7.3.1 Scoping the search
	7.3.2 Branching factor in heterogeneous networks
	7.3.3 Address cache staleness
	7.3.4 Downlists with bloom filters
	7.3.5 Data replication factor

	7.4 Summary

	A Appendix A
	Bibliography

