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Abstract

Natural populations may be managed by humans for a number of reasons, with mathemat-

ical modelling playing an increasing role in the planning of such management and control

strategies. In an increasingly heterogeneous, or ‘patchy’ landscape, the interactions between

distinct groups of individuals must be taken into account to predict meaningful management

strategies. Invasive control strategies, involving reduction of populations, such as harvesting

or culling have been shown to cause a level of disturbance, or spatial perturbation, to these

groups, a factor which is largely ignored in the modelling literature.

In this thesis, we present a series of deterministic, differential equation models which are used

to investigate the impact of this disturbance in response to control. We address this impact in

two scenarios. Firstly, in terms of a harvested population, where extinction must be prevented

whilst maximising the yield obtained. Secondly, we address the impact of disturbance in an

epidemic model, where the aim of the control strategy is to eradicate an endemic pathogen,

or to prevent the invasion of a pathogen into a susceptible population. The movement of

individuals between patches is modelled as both a constant rate, and a function which is

increasing with population density. Finally, we discuss the ‘optimal’ control strategy in this

context.

We find that, whilst a population harvested from a coupled system is able to produce an

inflated yield, this coupling can also cause the population to be more resistant to higher har-

vesting efforts, increasing the effort required to drive the population to extinction. Spatial

perturbation raises this extinction threshold further still, providing a survival mechanism not

only for the individuals that avoid being killed, but for the population as a whole.

With regards to the eradication of disease, we show that disturbance may either raise or lower

the pathogen exclusion threshold depending on the particular characteristics of the pathogen.

In certain cases, we have shown that spatial perturbation may force a population to be sus-

ceptible to an infectious invasion where its natural carrying capacity would prevent this.
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Chapter 1

Introduction and literature review

1.1 Introduction

Humans have been controlling wildlife populations for thousands of years. Modern motivations

for population control are wide ranging and include, amongst others, hunting or harvesting for

food, culling populations for conservation purposes or disease control, and trophy hunting of

so called ‘big game’. This thesis will use mathematical modelling to assess how the movement

of wild or free ranging animals affects the impact of these control strategies. This chapter

begins with a review of the motivations for the control of animal species, before detailing the

importance of mathematical modelling in devising control strategies. The spatial consider-

ations when controlling populations are then discussed, and the mathematical literature is

reviewed for approaches to this problem. Finally, context is given to the problem of spatial

perturbation and its implications for population control.

1.2 Control of natural populations

In an increasingly overpopulated world, the interactions between humans and wildlife are

becoming more frequent. Either directly or indirectly, human populations are having an in-

creasing effect on wildlife across the world. Direct interactions between humans and wildlife

occur in a variety of ways, from habitat management to the culling or harvesting of species.

It is the latter of these that we shall discuss throughout this thesis. Wildlife control through
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the killing of individuals may be referred to as either harvesting or culling depending on the

motivation for control. There are three main drivers for culling or harvesting wildlife, the

term ‘culling’ is usually used when populations are reduced for conservation reasons [140],[22]

or in an attempt to control the spread of disease [31],[72],[127]. ‘Harvesting’ is usually only

used when we are interested in the yield achieved, that is, the number of individuals we are

able to remove [119],[53]. Wild populations are therefore ‘harvested’ purely for their value to

humans, and ‘culled’ if their death has a wider ecological impact.

Management of wild populations is a key aspect of conservation science. Invasive alien species

such as signal crayfish (Pacifastacus leniusculus) [45], or the grey squirrels (Scirius carolinen-

sis) [136] are a major cause of population decline of native species through competition for

resources, the introduction of infection or through a combination of these factors. Culling

of invasive species is often the most efficient way to reduce their numbers rapidly, and has

been used widely in the UK for the control of grey squirrels [100]. However culling methods

such as shooting of individuals can be costly and time consuming, particularly if the invasive

species has already been allowed to establish itself in the habitat [137]. Culling practices are

not limited to invasive species, and native populations may also be controlled for conservation

purposes. For example, Red deer (Cervus elaphus)) numbers in Scotland have been increasing

for decades, with such high densities having long term impact on native woodlands and other

conservation sites due to grazing. Culling is one option for control of this wild population [95].

Disease control is possibly the most well reported, and controversial reason for wild ani-

mal culling. Many commentators have made the distinction between the control of wildlife

for the eradication of a pathogen, and the control of wildlife to prevent the transmission of

infection to humans or domestic animals [11], [149]. Wobeser suggests that ‘one could argue

that any intervention to alter the course of infectious disease in wild animals is an undesirable

intrusion’ [149] and it is because of this danger that the majority of culls occur to prevent

the spread of infection to human or domestic hosts. For example, raccoon and skunk pop-

ulations in North America can carry rabies and are often found at high densities in urban

areas. This increases the risk of transmission of infection to the human population, and both
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vaccination and culling strategies have been used to control these populations [28]. Red fox

(Vulpes vulpes) populations are regularly subject to culling in Europe due to their ability to

spread rabies to livestock and domestic animals [127]. In August 2013 the UK government

announced the start of a badger cull in the counties of Gloucestershire and Somerset for the

control of bovine tuberculosis (bTB) [109]. Transmission of bTB between domestic cattle and

wild badgers (Meles meles) is well documented [80]. Cattle are regularly culled to prevent the

spread of infection within the domestic population, but it is widely believed that eradication

will be impossible without the control of the infection in the wildlife reservoir. Badger culls

have been used in the past to control bTB and the randomised badger culling trial (RBCT)

was an extensive trial to assess the effectiveness of a badger cull on the prevalence of bTB in

cattle [152] [82].

The third major driver for the removal of animals from their natural environment is the

harvesting of populations for food. The hunting of wild meat for human consumption is a

major cause of extinction of species and loss of biodiversity, as well as providing a key source

of both food and income to many rural communities [104]. The problems associated with

hunting are not limited to terrestrial species, and centuries of overfishing of aquatic stocks

has also been a major contributing factor to the decline of many marine species [81].

The change over time of a population and their response to culling or harvesting practice

is a dynamic process which lends itself to mathematical modelling. The models detailed

throughout this thesis are given mathematically by systems of ordinary differential equations,

the analysis of which is well understood, featuring in most undergraduate texts. Mathemat-

ically, the properties of these models can be determined either through analysis, or in most

cases through numerical approximation using ODE solvers available in programmes such as

MATLAB. The application of deterministic systems of ODEs to the fields of biology and ecol-

ogy has a long and rich history, and has lead to advances within both of these fields as well as

to the field of mathematics [105], [25]. Biological systems are however inherently stochastic

and there will inevitably be elements of the environment which cannot be captured by the
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model. This stochasticity leads to chance happenings and the collection of noisy data. The

purpose of deterministic modelling is therefore not to produce perfect predictions of biolog-

ical dynamics, but to inform of the underlying mechanisms which cause the general trends

observed in the field, and to determine key relationships.

1.3 Mathematical modelling of population and disease control

1.3.1 Models of harvested populations

Continuous time mathematical modelling of biological populations is traditionally traced back

to Malthus’ ‘An essay on the Principle of Population’ (1798) [96]. This discussion of the

growth of populations via the processes of reproduction and death lead to the formulation of

the well known, so called ‘Malthus model’ for population growth. Malthus hypothesised that,

if provided with sufficient resources, each individual in the population would reproduce at a

constant rate b, and would die at a constant rate d. The change in population, N , over time

can then be given by

dN

dt
= bN − dN. (1.1)

The solution of this differential equation can be found explicitly to be

N(t) = N0e
(b−d)t (1.2)

hence this model predicts that the population grows exponentially over time if b > d or

decays exponentially if b < d. Natural populations are not, however, provided with suffi-

cient resources, but are bounded by constraints such as food, space, number of mates, or

competition from other species. These factors all impose a limit to the naturally obtainable

population size. This limit is often referred to as the carrying capacity of the environment,

and can be defined as ‘the maximum population size that can be supported indefinitely by a

given environment, at which intraspecific competition has reduced the per capita net rate of

increase to zero’ [17]. The term ‘intraspecific competition’ in this definition refers to competi-

tion for resources between members of the same species, and is often modelled by a reduction

in the growth rate as the size of the population reaches this limit. The logistic model for
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population growth was first presented by Verhulst in 1838 [143] and has become a central

tenet of mathematical biology. In this model, the change over time of the population size is

given by

dN

dt
= rN(1−N/K). (1.3)

The intrinsic growth rate is hence r(1 − N/K) and is clearly population dependent. For a

small population, N ≈ 0, the population grows exponentially at rate r. As N increases, the

growth rate slows, and approaches 0 as N → K. The parameter K is therefore the carrying

capacity of the population. Whilst the logistic model is used extensively throughout the

population dynamics literature, it is not the only model allowing for a limited population.

In many models of infectious disease spread (for example [6], and those found in [84]), the

growth rate of the population is given by

dN

dt
= a− bN. (1.4)

In this case, new individuals are recruited into the population at a constant rate, a which

is independent of the population size. The death rate however increases as the population

size increases and the population reaches an equilibrium (dN/dt = 0) at its carrying capacity

given by N = a/b. The constant per capita death rate b has units of 1/time, and 1/b is the

average lifespan of an individual from this population. Since this formulation of population

growth is linear, it is mathematically simpler and enables a deeper level of analysis than the

non-linear logistic model.

It is a natural extension of these basic models to determine the effects that a culling or

harvesting strategy will have on a population. Harvesting models have been in existence

since the early 20th century, with the first models being developed in the contexts of fisheries

[19],[118]. Early models detailed the dynamic effect of a constant harvesting effort on a single

population, often taking into account the age or size structure of the harvested population

[117], [44]. Brauer and Sanchez [26] analysed a range of mathematical models with constant-

yield harvesting for single species systems as well as systems of two hosts in competition

with each other. Constant yield harvesting assumes that a constant number of individuals is
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removed per unit time regardless of the size of the population, an example of which is

dN

dt
= rN

(
1− N

K

)
−H.

This formulation of harvesting effort has a practical interpretation, and the parameter H can

simply defined as the number of individuals harvested per unit time. This is based on the

assumption that the target yield is reached whatever the population size. This model is in

equilibrium, with dN/dt = 0 when

N = K ±
√
K2 − 4KH

r
/2

and hence has no real equilibrium for yields above Hc = Kr/4. This harvesting rate of Hc

therefore represents the critical value above which no positive equilibrium can be achieved

and this model has no biological relevance [26].

An alternative formulation of the harvesting problem is that found in Beddington and May

[14] [99]. In this case, the harvesting effort is given by a constant rate multiplied by the

population size hN . The harvested, logistic growth model is therefore given by

dN

dt
= rN

(
1− N

K

)
− hN.

The harvesting rate here is thought of as the product of the effort applied, in terms of, for

example, number of ships, length of time spent fishing, and the ‘catchability’ of the population.

This formulation captures the notion of ‘catch per unit effort’, which is a measure commonly

used in the harvesting of natural populations. It is for this reason that this model will be

used as the basis of the work presented in chapter 2.

1.3.2 Modelling disease control

Mathematics has been used in the study of epidemiology for many years, with initial work by

Bernoulli [18] in the mid 18th century. The early 20th century saw a boom in mathematical

epidemiology and the development of the first structured compartmental models by Ross and
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Hudson [120] and Kermack and McKendrick [86]. These models detail the transition of in-

dividuals within a population through three infectious compartments or classes. Individuals

can be classed as either susceptible, those who have not encountered the disease but are able

to become infected, infected, those individuals who currently have the disease and are able

to transmit it to the susceptible population, and recovered individuals who are assumed to

have gained lifelong immunity to the disease. This SIR model has been the basis for many

modern studies. Specific properties of particular diseases are easily incorporated into this

type of model through the addition or removal of compartments. Latency in infection, i.e

an incubation period between becoming infected, and being infectious, can be included by

creating an exposed class where individuals are infected with the disease but unable to infect

others, whilst removal of the recovered class allows us to model the effect of reinfection.

Transmission of infection can be modelled in a number of ways depending on the biology

of the system. In the compartmental models considered throughout this thesis, we consider

only direct transmission of a pathogen between susceptible and infected individuals, rather

than considering indirect transmission of the pathogen via a vector or environmental trans-

mission. When considering direct transmission of infection the two most commonly used ex-

pressions are frequency-dependent or density-dependent transmission. Frequency-dependent

transmission of infection, given by the term βSI/N suggests that the contact rate between

individuals, and therefore transmission of infection is independent of the total population size

N [101]. In this case, individuals are assumed to make a fixed number of contacts per unit

time, and this contact rate does not increase with the population size. Density-dependent

transmission βSI makes the assumption that the higher the concentration of individuals, the

more contacts there are between susceptible and infected, and transmission increases with

population density. As a crude approximation, it has been claimed that density dependent

transmission is more appropriate for the spread of infection through wildlife species, where the

social structure present in human populations is not as distinct [84]. Whilst it is clear from

the literature that there is an element of debate over what form, if any, disease transmission

should be reduced down to [101], [15], [94], in order to build on previously well understood

models throughout this thesis transmission is assumed to be density dependent.
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In subsequent models we will introduce the idea of a population within a patch. The definition

of a patch, in this context, is a group of individuals which are within close contact with each

other, a very small scale example of which would be the individuals within a badger sett. A

larger population within each patch, therefore results in an increased contact rate between

individuals and hence an increased chance of disease transmission.

The study of epidemics through mathematical modelling has lead to an understanding of

the necessary conditions required for a disease to ‘take off’ and to cause an epidemic to per-

sist within a population. As an example, the model given by equation (1.5) is a simple SI

model. In this case, it is assumed that the host does not recover from the disease, the disease

is fatal and the infectious period is 1/γ, the parameterγ is therefore the rate at which infected

individuals die from their infection. All other parameters in this model are as described above,

dS

dt
= a− βSI − bS

dI

dt
= βSI − bI − γI. (1.5)

Bovine tuberculosis in the badger population is one example of this type of infection where

hosts can live with the disease, but rarely recover from it once infected.

This model has two equilibria, given by (S∗, I∗), the disease free, E0 and the endemic E1

where

E0 =
(a
b
, 0
)
, E1 =

(
b+ γ

β
,
b

β

(
βa

b(b+ γ)
− 1

))
. (1.6)

Equilibrium E1 is only biologically realistic when it is positive, since a negative population

of individuals does not make sense. This is achieved when aβ
b(b+γ) > 1. If this inequality is

reversed, then the infectious population in this equilibrium becomes negative. We are able

to analyse the local stability of these equilibria by considering the Jacobian matrix of this

system. The Jacobian matrix is the matrix of partial derivatives of the dynamical system.
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Rewriting the system given in (1.5) as

dS

dt
= f(S, I) (1.7)

dI

dt
= g(S, I), (1.8)

the Jacobian of this system is given by

J(S, I) =

 ∂f
∂S

∂f
∂I

∂g
∂S

∂g
∂I

 . (1.9)

For the system (1.5) the Jacobian is therefore given by

J(S, I) =

 −b− βI −βS

βI βS − b− γ

 . (1.10)

This matrix, evaluated at the equilibrium gives the linearisation of the system at that point.

Local stability of the equilibria can be ascertained by looking at the eigenvalues of the Ja-

cobian at that point. Eigenvalues with positive real part mean that any small perturbations

from the equilibria will diverge from this point over time. If both eigenvalues are positive,

the equilibrium is hence unstable. If both eigenvalues have negative real part, then small

perturbations from the equilibrium will decrease over time, and hence their trajectories will

return to the equilibrium. In this case, the point is said to be stable. If there is a mixture of

eigenvalues with positive and negative real parts, then the equilibrium is said to be a saddle

point. In this case, trajectories near to the equilibrium will move away from the point in the

positive direction, and towards it in the negative direction. The aim of this thesis is to find the

necessary conditions for disease eradication from the systems concerned. This is equivalent

to finding the conditions where the disease free equilibrium is stable, and hence where the

eigenvalues of the Jacobian, evaluated at the disease free equilibrium, have negative real part.

In the above model, the disease free equilibrium E0 has eigenvalues λ1 = −b, and λ2 =
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β(a/b)− b− γ. This equilibrium is therefore locally asymptotically stable when

βa

b
− b− γ < 0

βa

b(b+ γ)
< 1. (1.11)

Hence, the disease free equilibrium is locally stable precisely when the endemic equilibrium is

not biologically relevant. By the same analysis, the endemic equilibrium is found to be stable

if this inequality is reversed and

βa

b(b+ γ)
> 1.

This threshold of disease persistence/extinction is also known as the basic reproduction ratio

of the infection, denoted R0, which is defined as ‘the expected number of secondary cases

produced, in a completely susceptible population, by a typical infected individual during its

entire period of infectiousness’ [38]. The condition R0 > 1 must therefore be satisfied for

an infectious disease to take off in a naive population. The basic reproductive ratio is at the

heart of epidemiology, and has been used for many years in the evaluation of control strategies.

Since the early 1980s, this quantity has been calculated for, and used in the treatment of many

infectious diseases, particularly of humans [7]. Diekmann and Heesterbeek [38] presented a

generalisation of the calculation of R0 to structured populations, whilst Van den Driessche and

Watmough [141] presented a general framework for the calculation of R0 in compartmental

ODE models. It has been argued that R0 is ‘the most important quantity in the study of

epidemics’ [74]. In equation (1.11), it is clear that for this simple model, the two equations

are equivalent, and any control strategy which successfully reduces R0 < 1, also forces the

expression βS − γ − b < 0. This expression is thought of as the rare invader approximation

[64],[60], and it is this condition which is calculated throughout this thesis. The rare invader

approximation gives the dynamics of infection under the assumption that the population is

entirely susceptible. The introduction of a very small number of infected individuals in this

case will either lead to the spread of infection βS−γ−b > 0, or to the infection to die out before

it becomes established βS−γ−b < 0. The majority of mathematical models of disease spread

have assumed a single host population where all the individuals interact equivalently with all
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others. These traditional homogeneous mixing models [86],[6] have been developed to include

elements such as age structure, or multiple species interactions, as reviewed by Hethcote [76]

however it is only in recent times that spatial dynamics have been more thoroughly considered.

In the following sections, we shall discuss the importance of considering the movement of

populations on a spatial scale, the implications of this movement for the spread of infectious

disease, along with a review of recent modelling techniques.

1.4 The importance of spatial interactions in population con-

trol

1.4.1 Ecological Factors Affecting Dispersal

Dispersal of individuals is an essential trait for living species. The resources available within

an area of habitat will only support a given number of adults, and it is often necessary or

at least beneficial for a proportion of the population, or the juvenile offspring to disperse to

establish their own territories [88]. From a genetic point of view, dispersal is obviously ad-

vantageous in terms of genetic diversity. Movement away from the family nest will reduce the

inbreeding in a population. Obstacles to natural dispersal have been shown to be deleterious

to the genetic variation within a species [49].

Factors which affect dispersal will depend on the species being considered and the landscape

inhabited. Wiens [148] suggests that there are two decisions which influence when and how

an individual disperses. An individual must decide to begin dispersal, to leave its maternal,

home patch in search of new habitat. This may be prompted by factors such as local popu-

lation density, genetic predisposition, age or reproductive status. The second decision to be

considered is the choice to stop dispersing, to settle at an appropriate new patch. The choice

of patch may be decided by properties of the habitat which make it particularly suitable, or

by the individual’s physiological factors such as exhaustion.

It is impossible in a mathematical model to capture the methods of, and motivations for
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dispersal generally for all situations. Species may move between patches for different reasons,

which may affect how this movement should be modelled. Hansson [71] highlights three cate-

gories of factors affecting dispersal. These are firstly migration due to lack of resources. A low

supply of food, or nest sites or other resources will lead to movement to other habitats. The

second category is the conflict between individuals for resources. This is clearly linked to the

first reason, as limited resources will often lead to more conflict. The second category makes

explicit the fact that, in this case it is the inferior competitors which will be forced out of the

patch. The final category is the interior motivation for migration to avoid inbreeding. This is

described as a genetic predisposition to move away from the home patch, and is seen in many

species with dispersal varying between sexes depending on the species. In most mammal

species it is the male offspring which will usually leave to establish territories, with several

females inhabiting an area with only one or relatively few males. Conversely, in many bird

species it is the female which will leave the maternal nest in search of mates and territory [65].

In terms of mathematical modelling, the form that migration will take will depend entirely

on the biological motivations for the movement. For example, migration could be assumed

to occur at a constant rate with a constant proportion of individuals leaving the home patch

regardless of the within patch dynamics. This approach is commonly taken in metapopula-

tion models [69], [9]. Alternatively, migration may be dependent on the local conditions, for

example the density of the resident population [5]. Hansson suggests [71], intuitively, that

if the motivation for movement is a genetic predisposition, then migration is likely to be a

constant rate, where migration removes a constant proportion of all juveniles. If migration is

influenced by external factors, as in the first and second categories above, then the number of

individuals leaving a patch will depend on the resources available to them in their home patch.

It seems intuitive to assume that as the density of individuals within a patch increases, the

migration out of the patch will also increase, although in some communities of small rodents

an inverse relationship has been found with offspring staying in the home patch at high popu-

lation densities [71]. Many species exhibit the allee effect; there is a minimum population size,

below which the population cannot survive [33]. In this case, migration at low population

levels would have a detrimental effect, suggesting that there would be a minimum population
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size below which migration simply does not occur.

The benefits a species gains in choosing to migrate must be weighed against the costs of

dispersal. There is no guarantee, when leaving an area of habitat, that the individual will

find other suitable habitat in which to nest or forage etc. In some species then there may be

an evolutionary trade-off between the ability to migrate, and cope with the possibility of less

favourable habitats and the effects of inbreeding depression.

1.4.2 Mathematical modelling of spatial dynamics

All of the models previously discussed are based on the assumption that the interactions

between individuals are homogeneous, i.e. all individuals mix randomly with all others in the

population. However, in a world where many species naturally live in closely connected social

groups such as familial clans (e.g badgers [8]) or high density nests (e.g social insects such

as bumblebee species [59]), and many more populations are forced into fragmented groups

due to habitat fragmentation [50], it is important to realise the impact of spatial structure

in population dynamics and the transmission of disease. Kareiva [83] detailed three common

approaches to mathematical modelling of spatial population dynamics. Firstly continuum

modelling views space as a constant variable and models the movement of individuals as

through reaction-diffusion type equations [112], [78]. These models take the form of partial

differential equations, and are often given by

∂u(x, t)

∂t
= f(u(x, t)) +D

∂2u(x, t)

∂x2
. (1.12)

This form assumes that all individuals within a population move randomly, and at the same

rate regardless of space or time [78]. Here D is the diffusion coefficient, giving the rate of dis-

persal of individuals across the spatial environment. Reaction diffusion modelling of spatially

explicit populations has been an important facet of spatial modelling, being used for a wide

range of applications for example, biological invasions [125] or pathogen dispersal [146]. The

second category of spatial models are stepping stone models, where the population is subdi-

vided into patches, which have a specific location [87]. In these models, the spatial distribution
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of patches is explicitly defined, with individuals only permitted to move to their immediate

neighbours. In this way, the distance between patches can be defined as the number of ‘steps’,

and the difference between long and short range movement can be analysed. Stepping stone

models are commonly used in terms of genetic drift, and in the field of population dynamics

this type of model may fall under the umbrella of ‘metapopulation model’. This is the third

and final type of spatial model as specified by Kareiva [83]. These models do not necessarily,

explicitly define the spatial location of the patches that the population is divided into, rather

distinct populations are coupled through dispersal. It is common in these models to assume

that the patches are fully connected, and individuals leaving each patch have an equal prob-

ability of entering any of the other patches in the metapopulation. Of these broad categories,

the work presented in this thesis falls most comfortably into the metapopulation domain.

Metapopulation modelling began in earnest in the 1960s with the Levins model [91], [92]

dp

dt
= mp(1− p)− ep. (1.13)

This ODE model follows the change over time of p(t), which is the fraction of habitat patches in

a system which are occupied at time t. This fraction is determined by the local extinction rate

e, and the local colonisation rate of empty patches m. In this original model, the within patch

population dynamics were not considered, rather patches were characterised by the presence

or absence of a species. Levins’ model has been widely used in the ecological literature [142],

[70], [89] and developed to incorporate the local population dynamics within a patch [68], [10].

This approach, coupled with a rich literature in network theory and analysis [34], has lead to

metapopulation models being used in many applications such as the spread of cholera after the

Haitian earthquake in 2010 [138], and in the control of foot and mouth disease in the UK [85],

[52]. The work presented in this thesis aims to evaluate the impact the culling or harvesting

strategies has on the local populations within a patchy metapopulation. It is therefore essential

for this purpose, that local population dynamics are modelled explicitly. This work evaluates

the importance of combined harvesting or culling strategies where neighbouring patches of

habitat are controlled independently, and hence the space considered is divided into discrete
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areas, rather than being modelled as a continuous landscape.

1.5 Disturbance and spatial perturbation in response to con-

trol

As well as considering the effects of spatial structure on local population and disease con-

trol, this thesis takes a novel approach to modelling the impact of spatial perturbation or

disturbance of individuals in response to human intervention. Throughout this thesis, the

terms ‘spatial perturbation’ and ‘disturbance’ are used interchangeably, to mean a change in

behaviour of individuals in response to the culling or harvesting activities. This effect has

most commonly been discussed in reference to badger populations culled for the control of

bovine TB [102],[139]. The perturbation effect, defines the increase in disease incidence in

response to culling strategies, and was observed during the randomised badger culling trial,

which aimed to evaluate the effectiveness of badger culling as a method of TB control in cattle

[150],[42],[43]. As well as the implications of human disturbance with respect to disease con-

trol, there is a rich literature of the impact of disturbance in terms of conservation strategies

for many species [55]. In particular studies have detailed the impact of human disturbance on

the breeding success of sea birds such as kittiwakes Rissa tridactyla and guillemots Uria aalge

[12]. A study by Thomas also found that human visits disturbed hibernating little brown

(Myotis lucifugus), and northern long eared (Myotis septentrionalis) bat species, causing a

marked increase in flight activity [132].

Despite the implications of spatial perturbation, this effect is a factor which is largely over-

looked, with models assessing the impact of control strategies in isolation whilst neglecting

the explicit effects of disturbance. Swinton et. al. (1997) investigated this perturbation effect

for a badger population by assuming that transmission of bovine tuberculosis increased with

removal of individuals [129], and a recent PhD thesis by Prentice [114], addresses the problem

more generally in a stochastic, spatial framework, however to date there has been no thor-

ough investigation of the general effects of perturbation on simple deterministic population or

disease models. We incorporate this phenomenon into the simple patch models as an increase
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in movement rate directly dependent on the rate of control applied.

1.6 Thesis plan and outline

The models presented throughout this thesis have been developed to assess the importance

of the effects of spatial coupling, and disturbance on both population and disease control

strategies. In terms of population control, we will investigate two main issues. Firstly the

impact of coupling and spatial perturbation on the conditions necessary to cause population

extinction, addressing the question of whether disturbance makes it easier or harder to drive

a population extinct. Secondly, we address the impact of perturbation on the yield obtained

from simple harvesting models. In terms of disease control, we will investigate the impact

of coupling and disturbance on the necessary conditions for disease eradication. This takes

the form of threshold analysis and involves approximating the disease thresholds through

numerical simulations. The effect of the form of movement or coupling of patches is also

discussed, with a comparison between a constant per capita rate of movement, and a density

dependent rate. This thesis is broken into the following chapters

1. Chapter 2: Harvesting populations with constant movement

Here we present two basic population models, a constant recruitment and a logistic

growth model over two distinct patches. We assume that the populations in each patch

are coupled through the movement of individuals, which occurs at a constant per capita

rate in the absence of harvesting. Spatial perturbation is then included into these models

in two ways. Firstly we assume that movement out of the patch increases linearly with

the harvesting effort applied, and secondly we assume this increase saturates at high

levels of harvesting.

2. Chapter 3: Disease control in coupled patches with constant movement (pub-

lished in Journal of Theoretical Biology (2013))

This chapter presents an SI model over two patches coupled by constant movement. We

evaluate the effect of two forms of spatial perturbation (linear and saturating) on the

pathogen exclusion thresholds. In this case, the perturbation effect increases with the

total number removed, rather than simply the effort applied. This model is then ex-
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tended to a two host model where one species is free ranging and the other is restricted.

This model is loosely based on the transmission of bovine tuberculosis between cattle

and badgers.

3. Chapter 4: Harvesting populations with density dependent movement

In this chapter we relax the assumption of constant dispersal or movement between

the patches. We investigate the behaviour of both the constant recruitment and the

logistic model for a density dependent dispersal function. It is assumed that individuals

are more likely to leave a patch if the population density is high, and more likely to

remain in a sparsely populated patch. We then investigate the addition of linear spatial

perturbation on both these cases.

4. Chapter 5: Disease control in populations with density dependent movement

Here we investigate the spread of disease throughout a two patch system governed by

the form of density dependent dispersal detailed in chapter 4. We present both the

necessary conditions for disease eradication, as well as the effect of density dependent

movement on the transient dynamics of the populations both with and without spatial

perturbation.

5. Chapter 6: Optimal control of disease in 2 and 3 patches

This chapter presents a discussion of the optimal disease control strategy in the coupled

system. Using Lagrangian optimisation techniques we aim to determine the control

strategy which minimises the effort applied, and maximises the population size remain-

ing. This is done in the two patch model before being extended to a three patch system,

where we consider a fully connected configuration, and a linearly connected configura-

tion.

22



Chapter 2

Harvesting populations in patchy

environments with constant

dispersal

2.1 Introduction: Why dynamics of harvesting is important

Resources may be harvested for a number of reasons. The definition of the term ‘resource’

is used in its widest sense here, referring to a supply of a substance (living or not) which

has some benefit to humans. Types of benefit may include financial (for example precious

metals), nutritional (crops, livestock etc), environmental (conservation of endangered species,

rainforests, etc), or to provide energy (e.g. fossil fuels). It is inevitable that non-renewable

resources will decline monotonically as a result of harvesting, hence the need to invest in

alternatives in the event of supplies running out. However, harvesting of renewable resources

requires a more subtle approach. Renewable resources will regenerate, and continue to be

produced given appropriate conditions. Harvesting of these resources can therefore be done

sustainably in order to maintain the resource at appropriate levels.

Addressing what the appropriate levels of harvesting may be is not trivial, particularly when

harvesting refers to the removal of a proportion of a living population. Shea [124] discusses
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the management of animal populations with respect to the sometimes conflicting areas of

conservation, harvesting and control. The driving concerns when removing individuals from

a population will differ depending on the reasons for removal. Conservation will be concerned

with preventing species extinction, harvesting will be concerned with financial benefit, and

obtaining the maximal, sustainable yield, and control will be constrained by reducing the

population beyond some threshold. Population control may be carried out for a number of

reasons, including pest control [131], the reduction of species densities to protect prey species

or vegetation [126], or in order to control the spread of infectious diseases. Consideration of

population control requirements alongside conservation efforts is required in order to achieve

the desired result without forcing the controlled population to extinction.

Throughout this chapter we aim to evaluate the effect of harvesting or culling on a living

population, initially we consider a single population distributed homogeneously throughout

an environment, and offer a review of the maximal sustainable yield in this system. This is

then extended to a single species inhabiting a patchy environment consisting of two patches,

with dispersal between the patches occurring. Finally, this chapter addresses the impact that

the response to disturbance caused by harvesting activity has on the yield obtained by that

activity.

2.2 Basic Modelling: Single harvested population

Modelling the interaction of natural regeneration and harvesting effort is done in a basic way

by a single ordinary differential equation of the form

dN

dt
= f(N)− c(N), (2.1)

as seen in Britton [27] and Murray [105]. If, on average, individuals survive in the population

for a time of 1/c prior to harvesting, then the harvesting rate can be given by a constant

term c and is a measure of the effort put into harvesting per unit time. The number removed

per unit time, or the yield, is then given by cN . The growth function f(N) may take any

relevant form. Here we consider two density dependent growth functions, firstly a constant
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recruitment model with a per capita death rate, and secondly a logistic growth model with

density dependent births.

2.2.1 Constant Recruitment

In the constant recruitment model, it is assumed that the population size is limited by the

available resources. This formulation entails the assumption that births or recruitment into

the population occur at a constant rate, which is density independent. Death, and therefore

removal from the population occurs at a constant per capita rate, and the number removed

per unit time therefore increases with population density. In this case equation (2.1) is given

by

dN

dt
= a− bN − cN (2.2)

This type of model is particularly relevant in open populations such as marine systems where

local production of offspring can have little effect on the overall growth rate, with new recruits

mainly coming from outside the population [30]. Constant recruitment models may also be

relevant for farmed stocks such as fisheries where the recruitment or stocking is managed [103].

In this model, in the absence of harvesting, the population reaches a natural equilibrium

at N = a/b. Due to the constant recruitment into the population, this model has no zero

equilibrium, and the population can never go extinct. The effect of harvesting therefore causes

a reduction in population to a lower equilibrium of N = a/(b+ c) which tends to 0 as c→∞

and causes a reduction in equilibrium by half when c = b. This model however encounters

the problem that it requires an infinite amount of removal to harvest or cull the population

to extinction. Once harvesting is stopped the population will regenerate. This is perhaps not

as unrealistic as it initially seems. Areas which have a low, or non-existent population due

to over culling may regenerate in the absence of control due to the influx of individuals from

surrounding areas making use of the low population density, and hence low competition levels

and the resulting abundance of available resources.
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2.2.2 Logistic Growth

The second growth function considered is the well documented logistic growth

f(N) = rN

(
1− N

K

)

where K is the carrying capacity of the environment. Here the population grows rapidly

for small populations, but growth slows as the population gets larger eventually reaching an

equilibrium when N = K. This growth rate incorporates the idea that the rate of reproduction

of a population within an area, and therefore the population size is dependent on the amount

of resource within that area. The resource can only support a finite number or density of

individuals, hence the growth of the population slows as this maximum carrying capacity is

reached. In this case, equation (2.1) is given by

dN

dt
= rN

(
1− N

K

)
− cN (2.3)

This model has been discussed in detail by Murray [105], and Beddington et al. [14] and has

equilibria at N = 0 (extinction) and r(1 −N/K) = c, when harvesting balances the natural

growth rate. In this case, the harvested equilibrium is achieved at N∗ = K(1−c/r). It is clear

that when c > r, then this equilibrium is negative, and stability analysis confirms that there

is a transcritical bifurcation at c = r, as shown in figure 2.1. The yield, given at equilibrium

by Y = cN∗ is found to be Y = Kc−Kc2/r which attains its maximum value when c = r/2

as shown in figure 2.2. Harvesting this population at the maximum sustainable rate gives a

maximum sustainable yield of Ymax = rK/4 and leads to a reduction in population size from

N = K to N = K/2. This result suggests the counter-intuitive idea that, if the growth rate

is large enough, r > 2, then it is possible to reduce the population to K/2, whilst attaining a

yield Ymax > K/2. This is a consequence of the strength of density dependence acting on the

growth rate. At low densities, the population regenerates at a high enough rate, that over

half of the population can be removed to maintain the equilibrium at K/2.

26



Figure 2.1: Bifurcation diagram showing change in stability at x = r = 5. when c < r
harvested population is stable, when c > r, zero equilibrium is stable and population is
extinct.

Figure 2.2: Yield obtained from logistic model with r = 5.
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2.3 Harvesting and yield in two coupled patches

2.3.1 Dynamics of coupled patches

The simplest way to model spatial heterogeneity of populations is to simply split the single

population over two patches. Within each patch, the population will grow according to a

given growth function fi(Ni), where f ′i(Ni) < 0 such that the intrinsic growth rate slows as

the population increases. The general two patch model without harvesting is thus given by

dN1

dt
= f1(N1)−m1N1 +m2N2 (2.4)

dN2

dt
= f2(N2)−m2N2 +m1N1 (2.5)

where mi is the constant per capita rate of movement out of patch i and into patch j. The

carrying capacity of each patch, Ki, is thought of as the stable population size of the patch

in isolation. Transition of individuals between patches is likely to change this equilibrium

such that a patch with a large number of immigrants will swell to higher numbers than a

patch with low immigration rates. Holt [79] detailed the behaviour of this model if movement

between patches occurs at equal rates, finding that as m1 = m2 = m → ∞, both patches

tend to a common size. That is, increasing the rate of movement between patches has a

homogenising effect. A summary of Holt’s analysis is given below. We then show that the

equal dispersal case can be extended to give limiting properties if movement is asymmetric

where m1/m2 = φ.

Taking the general model given in (2.4-2.5) with m1 = m2 = m, Holt [79] found conditions

on the equilibrium values of the populations by taking the sum and the difference of these

equations at equilibrium, giving

f1(N1) = −f2(N2) (2.6)

2m =
f1(N1)− f2(N2)

N1 −N2
(2.7)

These conditions are represented graphically, for logistic growth, in Figure 2.3. In this fig-
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Figure 2.3: Change in growth rate as population size increases. Solid line represents growth
of patch 1, dashed line growth of patch 2, with patch 1>patch 2. If m = 0 equilibria are at
K1 and K2. As m increases equilibrium from patch 1 decreases from K1 to N∗1 as m = 3.6
and N+

1 as m = 8.5. The equilibrium in patch 2 increases from K2 to N∗2 at m = 3.6 and
N+

2 at m = 8.5. As m increases to infinity the equilibria in both patches tend to a common
intermediate value.

ure, each curve shows the growth of a single patch as a function of population size. Condition

2.6 implies that the system is in equilibrium when the y-value of one curve is equal to the

negative y-value of the second. When this is the case, the corresponding x-co-ordinates give

the equilibrium values. Furthermore, the gradient between these two equilibrium points is

proportional to the movement rate between the patches. Therefore, if there is no movement in

the system then each patch is at equilibrium at its respective carrying capacity. As movement

increases, the larger patch reduces in size and the smaller patch increases until both patches

attain a common patch size of

NC =
a1 + a2
b1 + b2

in the constant recruitment model, and

NL =
r1 + r2

r1/K1 + r2/K2

in the case of logistic growth. Using these common values, we are able to determine whether

coupling the patches causes a change in the total population, at least as m→∞. In the case
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of constant recruitment, in the absence of coupling, the total population is given by

T0 =
a1
b1

+
a2
b2
.

In the limit as m → ∞, the total population is T∞ = 2NC. The difference between these

totals is therefore

Tdiff =T∞ − T0

=
2(a1 + a2)

b1 + b2
−
(
a1
b1

+
a2
b2

)
=

(b1 − b2)(b2a1 − b1a2)
b1b2(b1 + b2)

. (2.8)

Tdiff = 0 if either b1 = b2, hence the death rates of both patches are equal, or a1/b1 = a2/b2

and the equilibria of the patches in the absence of movement are equal, hence the patches will

support the same number of individuals. If neither of these conditions are satisfied, then

Tdiff

 < 0, if bi > bj &
aj
bj
> ai

bi

> 0, if bi > bj & ai
bi
>

aj
bj

(2.9)

If Tdiff < 0, then the coupled total is less than the total population of the two isolated

patches. If Tdiff > 0, then coupling the patches increase the total population as m→∞.

Extending the Holt model to include asymmetric movement rates we see that this analysis no

longer applies. Asymmetric movement rates are characterised here by their ratio m1/m2 = φ,

where m2 = m, and m1 = φm. A value of φ < 1 therefore implies that m1 < m2, with

this condition reversed if φ > 1. It is possible to show that as the basic rate of movement,

m increases, then the ratio of the populations at equilibrium, N1/N2 → 1/φ, and hence
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N1/N2 → m2/m1. This result is shown by simply rearranging equation (2.4) giving

0 = f(N1)− φmN1 +mN2 (2.10)

φmN1 = f(N1) +mN2 (2.11)

N1

N2
=
f(N1)

φmN2
+

1

φ
, → 1

φ
as m→∞. (2.12)

This has the intuitive consequence that if φ < 1, so movement out of patch 1 is less than

movement out of patch 2, then the population size in patch 1 is greater than that of patch 2

and vice versa. The ratio of the two patches at equilibrium as m→∞ is therefore independent

of the growth rates within the patches.

2.3.2 Harvesting in coupled patches

In reality, harvesting within a connected patch system will impact not only the patch being

directly harvested, but also the surrounding areas. Removing individuals from an area will

reduce the number of migrants to the surrounding regions. Here we discuss harvesting in a

coupled system in terms of both the effort required and a given yield and the reduction in

harvested population. We look specifically at the two growth functions detailed in the single

species case: constant recruitment and logistic growth.

Constant recruitment model over two patches

In the first case, we extend the model with constant recruitment (2.2) to two coupled patches,

both of which have growth functions of this form. This full model is given by

dN1

dt
= a1 − b1N1 −m1N1 +m2N2 − c1N1 (2.13)

dN2

dt
= a2 − b2N2 −m2N2 +m1N1 − c2N2. (2.14)

In the absence of any movement or harvesting between the patches, each patch reaches its

equilibrium at Ni = ai/bi. As movement between the patches increases, the larger patch gets

smaller and the smaller patch increases. If both patches are equal, then symmetric movement

will not affect the equilibria. The general expression for the equilibrium, in the absence of
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any harvesting is given by

N∗i =
ai(bj +mj) + ajmj

(b1 +m1)(b2 +m2)−m1m2

which, as movement increases, is limited by Ni = (a1 + a2)/(b1 + b2). The first question to

address here is the issue of yield for a given effort. In the single patch model, with constant

harvesting effort c, the population reaches equilibrium at N∗ = a/(b + c), and the yield is

given by

Y (c) =
ac

b+ c

hence the yield increases with effort, and saturates at a maximum of Y (∞) = a. This

yield equates to removing all individuals as soon as they enter the population. In the coupled

system, harvesting of a single patch whilst leaving the second patch untouched (c1 > 0, c2 = 0),

gives a yield of

Y1(c1, 0) = c1N
∗
1 =

c1(a1b2 + (a1 + a2)m2)

c1(b2 +m2) + (b1 +m1)(b2 +m2)−m1m2
.

In this case the yield saturates at

Y1(∞, 0) =
a1b2 + (a1 + a2)m2

b2 +m2

as c1 → ∞. Hence coupling of the two patches sees an increase of yield for a given effort in

comparison to the yield of a single patch. Rewriting this expression for the limit of the yield

gives

Y (∞, 0) = a1 + a2

(
m2

m2 + b2

)
which can be thought of as removal of all those born into patch 1, a1, plus those born in patch

2 multiplied by the probability of moving from patch 2 to patch 1, a2(m2/(m2 + b2)). In this

limit, the population in patch 1 is effectively zero, since all individuals are removed as soon

as they enter the patch. The equilibrium population in patch 2 is given by

N∗2 =
a2(b1 +m2 + c1) + a2m1

c1(m2 + b2) + (m1 + b1)(m2 + b2)−m1m2
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which as c1 →∞ reduces to

N∗2 =
a2

m2 + b2
.

Hence this population can also be significantly reduced if movement out of patch 2 is large

enough. Harvesting of the population within a single patch can hence have a serious effect on

the coupled population.

If harvesting occurs in both patches, then the yield in a given patch will be dependent on the

harvesting effort in both patches. The yield in patch i is therefore given by

Yi(c1, c2) =
ci(ajmj + ai(bj +mj+cj))

(b2 +m2+c2)(b1 +m1 + c1)−m1m2
(2.15)

with the expressions highlighted in bold showing the additional effect of a joint harvesting

strategy on the yield in patch i. The total yield if both patches are harvested is then given

by

YT = Y1 + Y2 =
(a1b2 + (a1 + a2)m2)c1 + (a2b1 + (a1 + a2)m1)c2 + (a1 + a2)c1c2

(b2 +m2 + c2)(b1 +m1 + c1)−m1m2
(2.16)

The change in yield as c1 and c2 increase is given in figure 2.4(a) in which it is clear that the

total yield is bounded above, and YT → a1 + a2 as (c1, c2) → (∞,∞). This upper limit is

expected since a1 + a2 is the total influx of new individuals into the system per unit time. A

yield of a1 + a2 is hence a complete removal of all individuals in this constantly replenishing,

or stocked system. The single patch yield, given by (2.15) tends to

Y1(c1,∞) =
c1a1

b1 +m1 + c1

as c2 → ∞. This is also expected, since this limit equates to the yield in patch 1, with a

constant emigration rate, and no immigrants. Figure 2.4 (a) shows this limiting behaviour,

but also highlights the decrease in yield as harvesting in patch 2 increases from c2 = 0.
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Figure 2.4: Change in yield as harvesting effort in both patches varies and linear disturbance
increases. Top row shows the change in yield of a single patch, whilst the bottom row shows
the change in total yield. 3 strengths of linear disturbance are shown, a) No disturbance,
constant movement model, b) weak disturbance φ = mj/b, c)strong disturbance φ > mj/b.
Parameters used ai = 2, bi = 0.02,mi = 0.1

Constant recruitment model with spatial perturbation

The operation of harvesting or culling a mobile population can cause significant disturbance

to the remaining population. In response to harvesting or culling practices, many wildlife

species have been found to increase their ranging behaviour [139], [1],[122], and subsequently

increase contact with surrounding areas. In the model above, we are able to incorporate

this spatial perturbation by replacing the constant rate of outward movement, m1,m2 with

the increasing functions M1(c1),M2(c2) which are dependent on the harvesting effort applied

within each patch c1, c2. We define this function to be such that it satisfies M1(0) = m1 and

M ′1(c1) ≥ 0 and similarly for patch 2. Once again we examine the yield produced in this

model, firstly if only a single patch is harvested, and secondly if harvesting pressure is applied

to both patches.

Whilst the precise nature of this movement function is unknown, and very possibly different

for different species, an increase in emigration rates away from areas of culling have been

observed in several systems from populations of elephants in South Africa [1], to badgers
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in the UK [150]. We propose and compare two simple functions to capture this increase

in emigration. Firstly we assume that the rate of emigration increases linearly with the

harvesting rate. At very high harvesting rates, this model is unrealistic since the decision to

move permanently away from the home patch in response to an external stimulus will take

time. The second movement function we propose is therefore a Holling Type II response which

saturates as harvesting rates increase.

If patch 1 alone is harvested, then in addition to the removal of individuals due to har-

vesting, movement out of patch 1 will also increase. Harvesting thus has a two-fold effect in

terms of population reduction. The yield achieved in patch 1 is thus reduced by this increase

of emigration, and becomes

Y1(c1, 0) =
c1(a1b2 + (a1 + a2)m2)

c1(b2 +m2) + (b2 +m2)(b1 +M1(c1))−m2M1(c1)
,

which, as c1 →∞, tends to

Y1(∞, 0) = a1

(
b2 +m2

b2 +m2 + b2L

)
+ a2

(
m2

b2 +m2 + b2L

)

where L = limc1→∞M1(c1)/c1. This value is less than the constant movement yield given

above if L > 0. Figure 2.4 illustrates this property, when cj = 0, the yield decreases along

the ci axis as the strength of disturbance increases (from (a) to (b) to (c))

If harvesting pressure is applied to both patches, then the total yield, given by

YT (c1, c2) =
c1(a1b2 + (a1 + a2)M2(c2)) + c2(a2b2 + (a1 + a2)M1(c1)) + (a1 + a2)c1c2

(b1 +M1(c1) + c1)(b2 +M2(c2) + c2)−M1(c1)M2(c2)

(2.17)

once more reaches an upper limit of a1 + a2 as (c1, c2) → (∞,∞). Whilst this limit in the

extreme is the same regardless of the effect of disturbance, for moderate, and realistic har-

vesting strategies, the yields can be different. In order to show this behaviour we investigate

two specific examples of movement functions. We compare the behaviour given both a lin-

early increasing and a saturating disturbance function as harvesting effort is increased. These

functions are shown in figure 2.5
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Figure 2.5: Illustration of the different disturbance functions described in the text as harvest-
ing or population control rate increases.

Linear Disturbance

Firstly we assume that movement increases linearly with harvesting effort, with the specific

functions in this case given by M1(c1) = m1 + σc1 and M2(cj) = m2 + ρcj where σ and ρ

measure the strength of disturbance. In the following sections, we assume for simplicity, that

a1 = a2 = a and b1 = b2 = b, and hence the patches are equal in demographic properties. In

the case of linear perturbation, the individual patch yields and the total yield are given by

Y1(c1, c2) =
ac1(b+ 2m2 + 2ρc2 + c2)

(b+m1 + σc1 + c1)(b+m2 + ρc2 + c2)− (m1 + σc1)(m2 + ρc2)
, (2.18)

Y2(c1, c2) =
ac2(b+ 2m1 + 2σc1 + c1)

(b+m1 + σc1 + c1)(b+m2 + ρc2 + c2)− (m1 + σc1)(m2 + ρc2)
, (2.19)

YT (c1, c2) =
ab(c1 + c2) + 2a(m1 +m2) + 2a[σc1c2 + ρc1c2 + c1c2]

b(b+m1 +m2 + σc1 + ρc2) + c1m2 + c2m1 + (σc1c2 + ρc1c2 + c1c2)
. (2.20)

Figure 2.4 shows the change in yield in patch 1 alongside the total yield for varying c1 and

c2, as the strength of disturbance increases. Here we assume that disturbance acts equally

within each patch, hence σ = ρ. It is clear from this figure that for low σ = ρ, that is a weak

level of disturbance (figure 2.4 a), the yield obtained in patch 1 begins high when c2 = 0 and
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decreases as harvesting in the second patch increases. This decrease in yield in patch 1 as

harvesting in patch 2 increases is due to the reduction in immigration into patch 1 as the

coupled population is reduced. As the strength of disturbance increases (figure 2.4 b) and c)),

the initial yield, with c2 = 0 is lower and harvesting of the patch 2 actually causes an increase

in the patch 1 yield. Differentiating the yield in patch 1, Y1(c1, c2) with respect to c2, we are

able to show that

dY1
dc2

=
ac1(b+ c1 + 2m1 + 2σc1)(bρ−m2)

[(b+m1 + σc1 + c1)(b+m2 + ρc2 + c2)− (m1 + σc1)(m2 + ρc2)]2
(2.21)

which is positive for ρ > m2/b and negative for ρ < m2/b. Biologically, these parameter

groupings suggest that if the rate of linear disturbance out of patch 2 is greater than the ratio

of outward movement to natural death of patch 2, then a joint harvesting effort across both

patches will cause an increased yield in patch 1. This is a result of the relatively high level

of disturbance. If there is no harvesting in patch 2, then individuals are forced out of patch

1 at an increased rate, but only move into patch 1 at the natural baseline rate m2. The net

effect of this movement will lead to a significantly smaller patch size, and hence a reduction

in single patch yield (when c2 = 0) as ρ = σ increases. When ρ > m2/b, then any level of

harvesting in patch 2 will force individuals into patch 1 at a rate high enough to significantly

increase the population in patch 1 and hence increase yield.

Saturating Disturbance

If the movement function saturates with increasing harvesting effort, then the situation is an-

alytically more difficult. In this case, we use the example functions M1(c1) = m1+σc1/(1+c1)

and M2(c2) = m2+ρc2/(1+c2). In these cases, as effort increases to infinity, M1(c1)→ m1+σ

and M2(c2)→ m2+ρ. The change in yield for this model as the strength of disturbance ρ = σ

increases is given in figure 2.6. In this case, as the strength of disturbance increases, the initial

yield in patch 1 (c2 = 0) decreases. However, whereas in the linear disturbance model, a low

initial yield grows/declines monotonically to a maximum/minimum, as harvesting in patch 2

increases, when movement saturates we see for a given c1, an increase in yield with increasing

c2 up to a maximum, followed by a decrease. The yield in patch 1 for fixed harvesting effort
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Figure 2.6: Change in yield as harvesting effort in both patches increase for saturating dis-
turbance levels for increasing strength of disturbance. Top row shows the change in yield of a
single patch, whilst the bottom row shows the change in total yield. 3 strengths of saturating
disturbance are shown, a) No disturbance, constant movement model, b) weak disturbance,
c)strong disturbance. Parameters used ai = 2, bi = 0.02,mi = 0.1

c1, as harvesting effort in patch 2 c2 increases is given in figure 2.7. The behaviour of the yield

in this model as c2 increases is explained as follows. For very low or zero c2, the increased

strength of disturbance forces more individuals out of patch 1 and hence results in a drop in

yield in patch 1 at c2 = 0 for increasing ρ = σ. However, for small levels of harvesting in

patch 2, if c2 < c1, the disturbance in patch 2 causes an increase in immigrants to patch 1 and

hence an increase in equilibrium and yield. As c2 increases further, c2 > c1, the harvesting

effort in patch 2 exceeds that in patch 1 and hence the number of immigrants to patch 1 from

patch 2 decreases and so the yield decreases. The models examined above assume that distur-

bance is caused simply by applying an increased harvesting effort. However, in many cases,

particularly structured populations or compartmental models, where a specific age or disease

class is targeted for harvesting, it may be reasonable to assume that the level of disturbance

increases with total number of individuals removed, rather than just the effort applied. This

is the approach taken in chapters 3 and 5, when modelling the impact of spatial disturbance

on disease spread. When disturbance is modelled in this way, the yields of both patches show
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Figure 2.7: Change in yield in patch 1 for c1 = 5 as strength of saturating disturbance
increases. For high levels of disturbance the initial increase in yield becomes more exaggerated.

qualitatively similar results to the non-linear movement shown in figure 2.6.

Harvesting in coupled patches with logistic growth

The constant recruitment model of the previous sections gives us analytic tractability and

may be relevant for systems where individuals are stocked at a constant rate (for example

some farms or fisheries). In this section, we assume that the population is governed by a more

natural reproductive process, modelled by logistic growth

fi(Ni) = riNi

(
1− Ni

Ki

)
. (2.22)

For simplicity, and to isolate the effects of harvesting, we assume a symmetry between the

patches, with the exponential growth rate and the carrying capacity of the two patches being
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equal r1 = r2 = r and K1 = K2 = K. The full model detailed in this section is given by

dN1

dt
= rN1

(
1− N1

K

)
−m1N1 +m2N2 − c1N1 (2.23)

dN2

dt
= rN2

(
1− N2

K

)
−m2N2 +m1N1 − c2N2 (2.24)

The positive equilibrium of this system is the solution of a cubic, and is hence analytically

intractable. In the absence of any harvesting, (c1, c2) = (0, 0), it is possible to show that the

(N1, N2) = (0, 0) equilibrium is always unstable, for r > 0. Using phase plane analysis, we

are also able to discern that the positive equilibrium (N∗1 , N
∗
2 ) is always stable if it exists, see

appendix A for details. Through stability analysis of the zero equilibrium, we are also able to

discern the extinction threshold for harvesting. Whereas in the constant recruitment model,

there was no extinction equilibrium, and in all cases, cessation of harvesting practice would see

a regeneration of the population to it’s natural state, the presence of this extinction threshold

in the logistic model means that harvesting at a high enough rate can cause unrecoverable

extinction to the population. In the single patch model, this critical harvesting effort was

reached when c > r, that is when harvesting effort exceeded the growth rate. If the patch to

be harvested were coupled with a second patch, this threshold condition changes. The effect

of harvesting in a single patch (c1 > 0, c2 = 0) is analysed through linear stability analysis

about the (0, 0) equilibrium. The Jacobian matrix of the harvested system at this point is

given by

J =

 r −m1 − c1 m2

m1 r −m2

 . (2.25)

As in appendix A, the stability of this point depends on the values r −m1 and r −m2. The

outcomes of the four possible cases are given below, see appendix B for details.

1. r −m1 > 0, r −m2 > 0: If growth rate is faster than movement out of both patches,

then harvesting of a single patch will be insufficient to drive the entire population to

extinction. In this case, whilst it may be possible to apply sufficient effort that the

harvested population is effectively zero, the coupled population will survive. Cessation

of harvesting in this case will see an eventual regrowth of the harvested population due
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to immigrants from patch 2.

2. r−m1 < 0, r−m2 < 0: Here the movement out of either patch occurs at a higher rate

than the growth rate within each patch. In this case, the extinction threshold is given

by

c1 > r +
rm1

m2 − r
. (2.26)

If the harvesting effort satisfies this inequality, then the removal of individuals within

patch 1 causes a sufficient reduction in the populations of both patches that the entire

system goes extinct and cannot recover. The threshold given above has a minimum of

c1 > r when there is no movement and the system reduces to the single patch case. As

movement increases, this threshold is increased , indicating that a coupled population

is more robust to harvesting than a single patch. This is due to the influx of individuals

from the patch which is not harvested. Harvesting effort can therefore be increased

without causing extinction, however if harvesting is large enough, then extinction will

be caused in both the harvested and the non-harvested patch.

3. r − m1 > 0, r − m2 < 0: If movement out of patch 1 is lower than growth, and

movement out of patch 2 is higher, then the extinction threshold is given as in (2.26),

and increasing movement results in an increase in threshold. In this case, harvesting

effort is targeted at an important area which has a high level of inward movement, a

pseudo-sink [145]. Targeting this area makes the population as a whole more vulnerable

to extinction. This result highlights the importance of avoiding key areas and ecosystems

when applying harvesting effort to prevent extinction. Alternatively these pseudo-sinks

should be targeted if the goal of harvesting or culling is to eradicate the population.

4. r − m1 < 0, r − m2 > 0: If outcome 3 is reversed, and harvesting is focussed on an

area where movement out is greater than movement in, then the population is robust to

harvesting in a single area and will not be forced to extinction. Once again, as in case

1, the effect of harvesting patch 1 does not have a sufficient effect on the second patch

since in this case individuals are leaving patch 1 faster than they are entering it. Patch

1 in this case is a pseudo source to patch 2 [145].
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Figure 2.8: Yield in patch 1 as harvesting effort increases in the four cases outlined above. In
case a) and d) harvesting in a single patch does not cause complete population extinction, in
b) and c) the yield goes to zero when the population is extinct. Dashed lines in the plots show
the harvesting effort and maximal sustainable yield for a single patch with logistic growth.
Parameters ri = 5, Ki = 50, mi = 2 or 6.

The above discussion is concerned with ensuring that the population being harvested is

not driven to extinction. However, as in the single patch case. we are also concerned with

maximising the yield of a harvested population. Since we are unable to find the equilibrium

value of this model analytically, we are unable to find an expression for the yield in all cases.

Simulation results, as shown in figure 2.8, suggest that a coupled patch leads to an increase in

the yield obtained when compared to an uncoupled patch. To understand how the coupling

of populations affects the yield, we will analyse the yield when movement is large. Here, as in

section 2.3.1, we allow the ratio between the two movement rates to be given by m1/m2 = φ,

with m1 = φm and m2 = m. By varying this ratio, we are able to account for the three

possible cases, m1 < m2, m1 = m2 and m1 > m2 corresponding to φ < 1, φ = 1 and φ > 1

respectively. By employing the analysis of Holt [79], we have shown that the ratio of N1/N2
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tends to 1/φ as m→∞, hence for high levels of movement the equilibrium sizes tend to

N∗1 = K

(
1− c1 + φc2

(1 + φ)r

)
N∗2 = φK

(
1− c1 + φc2

(1 + φ)r

)
(2.27)

Harvesting in a single patch therefore gives a yield of

Y = c1K

(
1− c1

(1 + φ)r

)
,

which achieves it’s maximum value at

Ymax =
Kr(1 + φ)

4
. (2.28)

This yield is achieved at a harvesting effort of c1 = (1 + φ)r/2. From this formulation the

maximal sustainable yield for high movement rates increases linearly with movement ratio.

As the ratio increases, the movement into patch 1 becomes much higher than the movement

out, causing an increase in the size of patch 1 and hence the yield. When movement occurs at

equal rates, this maximal yield is given by Kr/2 which is twice the yield of a single isolated

patch of size K. Hence, as movement tends to infinity, in regards to the yield, the patch

structure dissolves to a single large patch of size 2K. This formulation of the maximal yield

also shows that for any level of coupling, φ > 0, then it will always be possible to achieve a

maximal yield greater than that of a single patch.

The above expression for Ymax is only applicable for very large m. The change in maximal

sustainable yield for low and moderate values of m is shown in figure 2.9. This figure shows

that for φ < 1 (m1 < m2) the maximal sustainable yield attains its maximum for a moderate

movement rate. For φ > 1 (m1 > m2), for similarly moderate levels of movement, the maximal

sustainable yield drops before increasing to the maximum as m→∞. This increase in yield

for φ < 1 is a result of a higher rate of movement into patch 1 than out. This imbalance causes

the population size in patch 1 to swell and leads to a higher yield for moderate movement rates.

As the rate of movement increases, the population in patch 2 decreases due to the knock on
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effect of harvesting in patch 1. Hence for high m, the numbers of individuals moving between

the patches per unit time balance, and the maximum sustainable yield approaches Ymax. The

inverse of this phenomenon is observed when φ > 1. In this case, the rate of movement out of

patch 1 is greater than movement in, and hence for low m, the population size in patch 1 is

significantly decreased by the introduction of coupling. Once again, as m → ∞, the patches

balance and the maximum yield tends to Ymax

Figure 2.9: Change in maximal sustainable yield, if a single patch is harvested, as movement
rate increases for a) φ < 1 where movement into patch 1 is greater than movement out, b)φ = 1
where movement between patches occurs at equal rates, and c)φ > 1 where movement out of
patch 1 is greater than movement in.

If harvesting effort is applied to both patches, then a combined harvesting strategy may

possibly drive the population to extinction where harvesting of a single patch would not. The

general threshold for extinction is given by

c1 =
m1m2

c2 +m2 − r2
+ r1 −m1 (2.29)

This threshold is shown as a curve in the c1−c2 plane (figure 2.10), and any combined harvest-

ing strategy above this threshold will lead to population extinction. Below this threshold, the

population in either patch decreases as the harvesting effort increases, but remains stable and

will regenerate to natural levels if harvesting effort is stopped. The yield however increases

to a maximum before decreasing to zero at the extinction threshold, as shown in figure 2.11.

The extinction threshold, detailed in appendix C, is dependent only on the growth rates and

the movement rates, hence the size of the population or the carrying capacities of the patches

do not affect the necessary conditions for extinction. The threshold is given by the upper
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Figure 2.10: Threshold in c1 − c2 plane outlining regions where the population persists and
where harvesting drives the population to extinction, when m1 = m2

branch of the hyperbolic curve, and regardless of dispersal rate, will always pass through the

point c1 = r1, c2 = r2. These control rates are the rates required for extinction in completely

isolated patches, hence to eradicate disease from the entire system either c2 > r2 or c1 > r1.

As movement increases, the curve of this threshold decreases, and the threshold tends to a

straight line given by c2 = r1 + r2 − c1, and the sum of the control efforts must be greater

than or equal to the sum of the growth rates for extinction.

In this case, as m → ∞, the population equilibria are given in equations (2.27) with the

relative yields given by

Y1 = c1K

(
1− c1 + φc2

(1 + φ)r

)
, Y2 = c2φK

(
1− c1 + φc2

(1 + φ)r

)
(2.30)

and the total yield given by

YT = K(c1 + φc2)

(
1− c1 + φc2

(1 + φ)r

)
(2.31)

Steady state analysis of these surfaces in c1 − c2 shows that the maximum yield within each

patch is located on the axis, meaning that the maximum yield in patch 1, is found when the

harvesting effort in patch 2 is zero, and vice versa. If, we consider the total yield, then as
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m→∞, the total yield achieves its maximum along the line

y =
(1 + φ)r

2φ
+
c1
φ

as shown in figure 2.11

Figure 2.11: Total yield achieved in logistic model as c1 and c2 vary. Maximum yield is
attained along a threshold curve which tends to a straight line at high movement rates (lower
plot).

Spatial perturbation in the logistic model

If the population is spatially perturbed in response to the harvesting effort applied, then the

behaviour of both the extinction threshold and the yields within each patch will change. We

use the linear and saturating disturbance functions as in the constant recruitment model be-

low to detail this effect. In the first instance, we shall look at the effect of harvesting in a

single patch whilst leaving the coupled patch unscathed. Once more, for clarity, we assume
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that both patches are equal in size and movement rate, unless otherwise stated.

Linear disturbance M1(c1) = m1 + σc1

The extinction threshold if harvesting is carried out in patch 1 only is given by the upper

branch of

c1 =
(r1 −m1)(r2 −m2)−m1m2

r2(1 + σ)−m2

which has an asymptote at r2(1+σ)−m2 = 0. If movement out of patch 2 and into patch 1 is

such that m2 > r2(1+σ) then patch 1 is a source of individuals to patch 2, and hence patch 2

is vulnerable to extinction when patch 1 is harvested. This is in contrast to the condition in

the previous section whereby patch 2 was vulnerable if m2 > r2, Hence, for a given movement

rate m, the higher the strength of disturbance, the higher the harvesting effort must be to

cause extinction, this relationship is shown in figure 2.12. When harvesting occurs in a single

Figure 2.12: Decrease in extinction threshold as movement increases for increasing strength
of disturbance. Extinction occurs above the line, hence for a given movement rate m, the
higher the disturbance, the more effort is required to drive the system to extinction.

patch, disturbance causes the population to become more robust to extinction. Therefore,

movement out of a patch in response to harvesting benefits not only the individuals which
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may avoid being caught, but also the entire population is less likely to go extinct due to this

movement.

If harvesting occurs across both patches, then the general form of the extinction threshold is

given by

c1 =
M1(c1)M2(c2)

M2(c2) + c2 − r
+ r −M1(c1).

If disturbance in response to harvesting is linear, then the threshold is given by

c1 =
r1(m2 + (1 + ρ)c2 − r2) +m1(r2 − c2)

m2 + (1 + ρ+ σ)c2 − (1 + σ)r2

and has the following properties

1. For symmetric natural movement (m1 = m2) and equal harvesting efforts (c1 = c2),

the threshold point is also given by c1 = c2 = r. The extinction thresholds with

and without perturbation intersect at this point. This property is true regardless of

disturbance function.

2. This threshold has asymptotes at

c2 =
(1 + σ)r2 −m2

1 + ρ+ σ
, c1 =

(1 + ρ)r1 −m1

1 + ρ+ σ

The second of these properties enables us to derive conditions whereby extinction is easier

or harder to achieve if spatial perturbation occurs. If we assume that the disturbance acts

with equal strengths within both patches (ρ = σ = ε), then, the asymptotes of the extinction

threshold can be rewritten as

c1 = A1(ε) = r1 −m1

(
1 + ε(r1/m1)

1 + 2ε

)
, c2 = A2(ε) = r2 −

(
1 + ε(r2/m2)

1 + 2ε

)

and differentiating these with respect to the strength of disturbance gives

A′i(ε) = − ri − 2mi

(1 + 2ε)2
.
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Hence the asymptotes of the threshold are equal to ri −mi for constant movement, decrease

as disturbance increases if ri/mi > 2 and increases with increasing disturbance if this condi-

tion is reversed. If exponential growth is greater than twice the rate of emigration, then an

increase in movement in response to harvesting, means that the system is more vulnerable to

extinction at lower harvesting rates than if movement were constant.

Saturating disturbance (M1(c1) = m1 + σc1/(1 + c1),M2(c2) = m2 + ρc2/(1 + c2))

For the saturating disturbance function, the behaviour of the thresholds is not easy to discern

analytically. However, since for low effort, σc1/(1 + c1) ≈ σc1 and ρc2/(1 + c2) ≈ ρc2, it is

reasonable to assume that if the extinction threshold occurs at relatively low values of c1 and

c2, then the two disturbance functions will behave similarly. Since the thresholds intersect at

c1 = c2 = r, if r is low, then the entire threshold will be low, and as r increases, the efforts

required for extinction will rise. Simulations show that for low r, the thresholds behave in

quantitatively similar ways. As harvesting effort increases, the saturating disturbance func-

tion saturates at M1(c1) = m1 + σ and M2(c2) = m2 + ρ. Hence for high r, the extinction

threshold has asymptotes which tend to c1 ≈ r−m1−σ and c2 ≈ r−m2−ρ. This means that

if growth is sufficiently high, and movement saturates with increasing harvesting effort, then

regardless of the within patch parameters, the extinction threshold will always be lower with

perturbation than without. Hence, if movement saturates, and growth is high, perturbation

will always make it easier to cause extinction.

Maximum sustainable yield with spatial perturbation

In the final section of this chapter we aim to assess the impact of spatial perturbation on the

maximum sustainable yield in the logistic model over two patches. To do this we will look at

both the effect as strength of disturbance increases, and also the change in yield in patch 1

for a given effort, as the effort in patch 2 increases. In this way we hope to detail the effect

of working with, or ignoring the behaviour of surrounding harvested patches. In the first

instance, the behaviour of the maximal sustainable yield is qualitatively the same regardless

of whether disturbance is linear or saturating, and all simulation results are given using linear
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Figure 2.13: Maximal sustainable yield as natural movement rate increases. Comparison of
constant movement model (black lines) with linear perturbation (blue dashed lines)

perturbation. If only a single patch is harvested in a coupled system, then constant movement

predicts that, for high m, the maximal yield will be given by equation (2.28). This limiting

case is the same regardless of movement function and is hence the limit for high levels of

natural dispersal even if the system is spatially perturbed. However, for moderate, natural

movement rates, the maximal sustainable yield is given in figure 2.13. These plots show that

if m1 < m2 (φ < 1) then there is a range of natural movement rates for which spatial per-

turbation causes a decrease in the maximal yield obtainable, (region (1)). In this case, for

very rapid natural movement, perturbation sees the maximal yield increased (region (2)). If

movement is symmetric (φ = 1) or is skewed so that m2 > m1 (φ > 1), then perturbation

in response to harvesting in patch 1 forces the maximal sustainable yield to be always lower

than the constant movement model predicts.
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Simulation results for the yield of combined harvesting strategies targeting both patches in

this system are given in figure 2.14. If harvesting is asymmetric then the yield is lower if the

system is perturbed. For example, if c2 is high, and c1 is low, then the perturbed system will

see individuals from patch 2 forced out, and fewer individuals from patch 1 forced in hence a

lower population in patch 2 and a lower total yield since this patch is the focus of the largest

effort. The maximum total yield possible is unchanged under spatial perturbation, however,

the maximum possible yield in a single patch decreases as strength of disturbance increases

(figure 2.15). If movement is constant, then the maximal yield within each patch is obtained

when that patch alone is harvesting. However, as the strength of disturbance increases, it is

beneficial for patch i if patch j harvests by a small amount. This is because those individuals

forced out by disturbance will be compensated for to some extent by those forced in from the

second patch. The total maximal yield is always obtained using the same strategy (the black

point in figure 2.16). For high levels of disturbance, the maximum strategy within each patch

tends to this optimal total strategy.

2.4 Discussion

The work presented in this chapter is an exploration of the impact of movement of individ-

uals between independently controlled patches, and the consequences that these movements

have on the yield obtained from harvesting the individuals. By considering both the constant

recruitment model and the logistic growth model, we are able to assess the importance of

joint harvesting strategies across two patches for the case where the populations are ‘stocked’

at a constant rate, as well as a naturally reproducing population. By assuming a constant

rate of natural movement between the two patches, a constant, per capita, rate of migrants

is built into the model. This assumption has the consequence that any positive population

in either patch will produce immigrants into the second, coupled patch of the system. It has

been shown previously, [79], that a high rate of constant movement between the two patches

reduces the heterogeneity in the population sizes, causing the patches to become more similar

in size. We have extended the work of Holt [79] in section 2.3.1, to the case when the move-

ment rate between the patches is not equal, and have shown that ratio of the population sizes
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Figure 2.14:
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Figure 2.15: Change in maximum yield with increasing strength of disturbance. Total yield
(dashed line) is constant, but within patch yield decreases as strength of disturbance increases

Figure 2.16: Plot of optimal harvesting strategies producing maximum yield in patch 1 (red),
patch 2 (green) and the maximum total yield (black). For low ρ, the optimal within patch
strategy harvests only that patch. As ρ increases, the optimal strategy moves to a joint
harvesting strategy and converges on the strategy for maximising total yield as disturbance
increases.
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N1/N2 as movement tends to infinity, tends to the inverse of the ratio of the emigration rates.

Hence, if individuals leave patch 1 at a rate which is twice as fast as those leaving patch 2,

then as movement increases, maintaining this ratio, the population in patch 1 will tend to

half the size of that found in patch 2.

If a single patch is harvested in a coupled system, then the constant influx of individuals

from the neighbourhood may be sufficient to sustain the population. If the populations are

constantly stocked, modelled by the constant recruitment growth function, then the yield

increases and saturates for increasing effort. We have shown that the coupling of two patches

increases this upper limit of the yield. If however, the populations reproduce in a more nat-

ural way, as modelled by the logistic growth function, then the yield reaches a maximum

before decreasing as the populations are over harvested. The maximal sustainable yield is

found to be higher in the coupled patch than in an isolated population, once again due to the

constant influx of immigrants. In the case of logistic growth however, it is possible to drive

the entirety of the populations over both patches to extinction if the patch being harvested

is a pseudo sink. This term is used to describe a patch which has a low rate of emigration

to other patches. Immigrants into this patch are more likely to remain there for a sustained

period of time, and hence harvesting in this area, whilst likely to produce a high yield, makes

the surrounding populations more vulnerable to extinction.

Harvesting across both patches, a constant effort ci and increasing cj , leads to a reduction in

yield in patch i, due to the decrease in the number of immigrants as the population in patch j

is increasingly harvested. If the populations are disturbed by the practice of harvesting, such

that their emigration rate out of the harvested patch is increased, then this reduction in yield

can be reversed. If disturbance is sufficiently high, then the yield in the neighbouring patch,

j, may be increased by harvesting in patch i. This is of course to the detriment of the yield

in patch i due to individuals fleeing the harvesting practice. Spatial perturbation or distur-

bance in a naturally reproducing system may however mean that a higher harvesting effort is

required to force a system to extinction. Fleeing the effects of harvesting, not only prolongs

the life of those individuals, but may also lead the entire system of patches to be sustained.
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This is because the pseudo-sink property previously discussed, is countered by the increase in

emigration rate. Thus a patch which was a pseudo-sink will have this property reduced, and

hence the whole population over the two patches becomes more robust to harvesting.

In this chapter, we have discussed only the consequences of harvesting, and disturbance on

the total population sizes present in each patch. However, an increase in the emigration rate

out of a patch, whilst making the population sizes more robust to harvesting, may lead to

an unnatural skew in the balance of the ecosystem. This in turn may result in an increase in

predation on one of the species, an increase in competition for resources, or an increase in the

transmission of disease [75],[56], [136]. It is the last of these possibilities that is addressed in

the following chapter.
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Chapter 3

The impact of increased dispersal in

response to disease control in

patchy environments

3.1 Preamble

This chapter has been published in the Journal of Theoretical Biology, credited to R. Lintott,

R. Norman and A. Hoyle [93]. The form in which this work appears is an exact copy of the

published article. As such, this chapter has a slightly different style to the other chapters in

this thesis, and the notation in this chapter is not the same as used throughout. For clarity

therefore, table 3.1 has been included to highlight the difference in notation between this

chapter and the preceding one.

Parameter Name Rest of thesis Chapter 3

Birth rate a µ or m

Death rate b ν or v

Migration rate m a

Table 3.1: Difference in notation between the rest of this thesis and the parameters used
throughout this chapter
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3.2 Introduction

Around 60% of all species of infectious agent are zoonotic, with the vast majority of these

having reservoirs within animal populations [130, 153]. With such a large proportion of human

infection contracted through this route, it is of little surprise that management of wildlife

populations through culling, vaccination, habitat management and others (as reviewed by

Wobeser [149]) is becoming a key part of disease control [35]. Human well being is not

the only reason for increasing control of wildlife diseases. Wildlife populations which are

reservoirs for livestock diseases such as bovine tuberculosis or bluetongue are often targeted for

control to prevent costly outbreaks in livestock populations [108, 151, 97, 58]. Game species,

managed for hunting are also at an increased risk of disease outbreaks due to unnaturally high

population densities during hunting seasons [57]. If wild populations are to be targeted for

disease control then models used to predict appropriate, cost effective control strategies must

be able to capture all of their key population characteristics in order to produce realistic and

useful predictions.

Simple, classical models of epidemic control generally consider a species which is uniformly,

randomly distributed over an area of homogeneous landscape [6]. This premise restricts the

biological realism of the models leading to oversimplified predictions of required control strate-

gies. The assumption of homogeneity in wildlife populations fails to account for clustering of

groups of individuals either within social groups, for example pack animals or social insect

populations, or due to habitat fragmentation. This clustering of populations into areas of

high population density divided by areas with fewer individuals can be modelled in several

ways. Network models are able to detail the spread of disease over a wide area, and have been

successfully used to evaluate the effectiveness, and cost of control strategies [47]. This type of

modelling is invaluable in efforts to control livestock diseases and has been used extensively

since the 2001 foot and mouth epidemic to optimise future control strategies in the face of

another outbreak [135, 134]. Network analysis is particularly useful when contact networks

can be traced, and are known throughout a population. In the UK, movements of livestock

are well documented and hence these contact networks can be accessed. In the case of wildlife

populations, this process of contact tracing is almost impossible and other methods must be
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developed.

The movements of wildlife populations are determined by the structure of the habitat

available and by the specific behaviour of the population. For many species, dispersal is an

essential trait. The resources available within an area inhabited by a species will not change

with an increasing number of offspring, and it is often necessary for offspring to disperse to

find sufficient resources and establish their own territories [148]. As well as these natural

motivations for dispersal, individuals may be forced to leave an area in response to human

disturbance. Much research has gone into assessing the impact of human disturbance on

wildlife species, particularly in terms of conservation strategies [12, 55]. The presence or

absence of humans in an area populated by a wild species may have a significant impact

on the behaviour of that species [39]. In the context of infectious disease control, human

disturbance is necessary in the implementation of any active control strategy. In the case

of wild animal populations a natural response to this disturbance is to move away from the

controlled area. This natural behaviour is seen in countless species. In Colorado, for example,

Rocky mountain elk (Cervus elaphus nelsoni) populations have been found to move out of their

home range in response to the hunting season [32]. In England, the wide spread of bovine

TB is often attributed to the movement of the European Badger (Meles meles). Badgers

infected with bovine TB have been observed to forage over a larger area than healthy badgers

[54]. It has also been observed that in areas where culling takes place, badgers are likely to

extend their territory and ranging behaviour and are thus likely to encounter badger setts

or areas housing cattle which otherwise would have been uninfected [151]. The theoretical

models presented here aim to assess the importance of the effects of this disturbance on

disease control thresholds. This perturbation effect is a factor which is largely overlooked,

with models assessing the impact of control strategies in isolation whilst neglecting the explicit

effects of disturbance. Swinton et. al. (1997) investigated this perturbation effect for a badger

population by assuming that transmission of bovine tuberculosis increased with removal of

individuals [129], however this model did not address the movement of individuals between

distinct groups, nor the interaction with a secondary, bovine, host. This scenario will be

considered in section 3.4.

Epidemiological models are often created for the purpose of evaluating an optimal control
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strategy aimed at eradicating an infection with the minimum cost to the environment and

the minimum financial cost [47, 134, 138]. Realistic models are essential in the evaluation

of optimal control strategies, since over estimation of control may have negative economic or

environmental implications, whilst underestimation may result in persistence of infection and

failure of the control strategy. In this paper, we aim to evaluate the effect of disturbance

increased dispersal between two populations on the prediction of optimal control strategies

in a simple model. Whilst the models investigated are entirely theoretical, we predict that

the results obtained and the insight into the behaviour of the control thresholds will be

generalisable to realistic situations and thus inform future control regimes. In the first part of

the paper, we use a simple two patch model [144] as the basis of our investigations. Control

maps, 2-dimensional graphs showing regions of successful and failed control strategies, are

used to compare the effect of increased dispersal due to increased control. Since different

species will respond in different ways to human disturbance, we consider three functional

responses. Firstly we assume that dispersal is unchanged with control, secondly dispersal

increases linearly with control, and finally it is assumed that dispersal increases to some

maximum then saturates, indicating that, at high levels of control, there is no additional

disturbance to the population. This third functional form is similar to the effect used by

Swinton et. al. [129], and whilst it is more biologically sound, this model is analytically

intractable.

The second part of this paper uses this two patch single species model to investigate the

importance of between patch movements on disease dynamics in multiple hosts. Around 80%

of the worlds pathogens are generalist, making the interactions between hosts paramount in

considering disease controls [153]. The interest in population and disease dynamics of multiple

hosts have been of increasing interest [107, 16, 23, 62, 63, 60, 61] particularly with regards

to wildlife reservoirs which are able to transmit infectious diseases to humans or livestock

populations. The interactions between multiple hosts provide ecologists with options for

control strategies. Greenman and Hoyle [60] were able to determine the characteristics of

disease reservoirs in terms of the infection invasion matrix and to provide criteria for optimal

control of a multi-host pathogen in two species. We extend this work by considering a two

patch system. It is assumed that each patch is home to two species, one which we term
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‘livestock’ and whose movement is controlled, and one which is termed ‘wildlife’ which is free

to move between the two patches. We investigate the necessary control strategies when the

livestock population is the reservoir for infection, when the wildlife population is the reservoir,

and when it is the interaction of both species which sustains the pathogen.

3.3 Single Species models of disease control in two patches

The model we consider is a two patch extension of a standard, and well documented SI model

[6, 7, 84]. We consider two patches consisting of dynamic populations made up of individuals

which may be either susceptible or infected with total population size within each patch given

by N(t) = S(t) + I(t). Individuals are introduced to the population at a constant rate νi

and it is assumed that newly introduced individuals are susceptible. A constant recruitment

rate is a simplification of any biological system, however it is appropriate here as a first

approximation in order to simplify the dynamic behaviour of the population in the absence

of control, and to isolate the impact of different dispersal functions on this simple system.

Individuals leave the population through death at a constant per capita rate µi with infected

individuals dying at an additional per capita rate of γi with subscripts denoting patch number.

Infection is transmitted within patch only, and the rate of infection is given by βi, we assume

that transmission is through direct contact between infected and susceptible individuals, and

follows the assumptions of mass-action [15]. The two patches are coupled by movement of

individuals from one patch to the next (from i to j) at a rate Ai(ci) which may depend on the

control parameters c1 and c2. In the absence of control it is assumed that individuals disperse

at a constant per capita rate ai = Ai(0). Model 3.1 gives the general form of the two patch
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model with disease control.

Patch 1

dS1
dt

=ν1 − β1S1I1 − µ1S1 − c1S1 −A1(c1)S1 + φA2(c2)S2

dI1
dt

=β1S1I1 − (µ1 + γ1 + c1)I1 −A1(c1)I1 + φA2(c2)I2

Patch 2 (3.1)

dS2
dt

=ν2 − β2S2I2 − µ2S2 − c2S2 −A2(c2)S2 + φA1(c1)S1

dI2
dt

=β2S2I2 − (µ2 + γ2 + c2)I2 −A2(c2)I2 + φA1(c1)I1.

The parameter φ is a measure of how hazardous dispersal is and indicates the proportion of

dispersing individuals which successfully reach their target patch. It may be assumed that

those (1 − φ) individuals which do not reach the target patch either die or become resident

in areas outside the scope of the model. It is assumed that dispersal is equally hazardous

to individuals from either patch, hence the same proportion is lost moving from patch 1 to

patch 2, as is lost moving from patch 2 to patch 1. This assumption could be relaxed by

the introduction of a directed risk parameter φi giving the loss of individuals moving from

patch i to j. We control this system by removing individuals from patch i at the constant,

per capita, rate ci. This control could be implemented in various ways. The model is written

such that control is given as an additional death rate, which would suggest that the species

considered is to be culled, however, in terms of the dynamics of the system, any reduction

in the carrying capacity of the environment, eg through habitat management, removal or

quarantine of individuals would have the same effect.

Model (3.1) provides the basis for considering and comparing three different functional

responses to control. We evaluate the necessary conditions for disease exclusion when (i)

dispersal is constant and therefore unchanged by control Ai(ci) = ai, (ii) dispersal increases

linearly with control, Ai(ci) = ai + κiciNi and (iii) dispersal increases but saturates with in-

creasing control, the third case is given by a Holling Type II function with Ai(ci) = ai+
κiciNi
1+hci

.

The functions defined in (ii) and (iii) are given in terms of the total, within patch popula-

tion size Ni, this accounts for the fact that direct control applied to any infectious class will
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cause disturbance to the population as a whole. This also results in larger populations being

affected more severely by disturbance and having subsequently higher dispersal rates than

smaller populations. The parameters κi determine the increase in movement per individual

controlled and in all simulations this parameter is assumed to be 1, although a higher rate

would suggest that for each individual removed, more than one individual leaves the patch

due to disturbance. The dispersal function in (iii) ranges between ai and ai + Ni
h as control is

increased, and the three dispersal functions are given in Figure 3.1.

Figure 3.1: Dispersal functions considered in the three different cases

3.3.1 Methods of Analysis

For each of the dispersal functions we are able to find the pathogen exclusion threshold which

defines the necessary conditions to eradicate the disease from the entire system. Whilst com-

plete eradication of disease may not always be the goal of the control strategy, the pathogen

exclusion threshold provides a useful metric by which to judge the effect of dispersal in re-

sponse to control. This threshold may be defined as the curve in c1 − c2 space satisfying

R0 = 1 where R0 is the basic reproductive number as defined in [38, 141]. This threshold is

found by taking a rare invader approximation [60].

By taking the rare invader approximation, the 4 × 4 Jacobian of the full 2 patch disease
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model can be decoupled to give the 2×2 infection invasion matrix which allows us to evaluate

whether introduction of a small amount of infection will cause growth of the infectious classes,

(i.e spread of disease) or an immediate decline in infection, such that the disease is unable

to establish itself. This threshold between disease spread and decline is given by the sign of

the maximum eigenvalue, λmax of the infection invasion matrix. A positive eigenvalue giving

growth of infection and negative giving decline. In the absence of control this matrix and its

eigenvalues will be defined by the parameters of the system. The introduction of control in

this system will serve to reduce the maximum eigenvalue, with a successful control strategy

being one which forces the maximum eigenvalue into the negative half plane. Since we are

interested in using control strategies to rid a system of disease, the origin in control space,

(c1 = c2 = 0) will always give a positive λmax, hence the disease is assumed to be naturally

endemic in the system. The same parameter values are used throughout all simulations unless

otherwise stated, and are based loosely on the population and disease parameters for bovine

TB in badgers given in [8], the sensitivity of the models to these parameters is tested in section

3.3.4.

Of course, the rare invader analysis details the spread of infection if control is applied when

the infection is in its early stages. Whilst this approach is often used to calculate R0, and thus

determine the potential for a population to sustain a pathogen, in practice control strategies

are usually applied when the disease is already endemic in the population. The analysis

detailed above ensures the local stability of the disease free equilibrium, but this does not

prove that controls introduced at endemic levels will be sufficient for disease eradication. In

order to do this, the local behaviour of the endemic equilibrium must be investigated. The

endemic equilibrium is the positive solution of the equations given in (3.1) with left hand side

equal to zero. Since analysis of this equilibrium is intractable, in order to test the stability

of the endemic equilibrium, extensive simulations have been carried out, with a range of

parameter values, an example of which is shown in figure 3.4. These simulations confirm that

the threshold for stability of the endemic equilibrium coincides with the pathogen exclusion

threshold found by the rare invader analysis. These thresholds provide necessary conditions

for pathogen exclusion and are applicable even if control is applied to a population in which

infection is endemic. Figure 3.2 gives the time series of the total number infected over both
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patches, and the effect of applying control at different points after infection. As predicted by

the pathogen exclusion threshold in Figure 3.3, the rates of control (c1, c2) = (0.2, 1) result in

the disease being eradicated and the number of infected individuals becoming zero regardless

of level of infection when control is initiated

Figure 3.2: Time series showing total number of infected individuals. The solid line is the
number in the absence of control, with the number of infected after control shown in black.
The control dependent dispersal models both show a faster rate of eradication than constant
dispersal for the same control rates. Parameters used νi = 2, µi = 0.2, γi = 1, β1 = 0.308, h =
1, κ = 1, i = 1, 2. Control parameters used c1 = 0.2, c2 = 1

3.3.2 Properties of Pathogen Exclusion Thresholds

One of the key factors in the evaluation of the pathogen exclusion threshold is the equilibrium

achieved by the system in the absence of disease. Since we are controlling both susceptible

and infected individuals, this disease free equilibrium will depend on the level of control

applied. Thus the change in the pathogen exclusion threshold may be explained in part by

the behaviour of this equilibrium. In the absence of control (c1 = c2 = 0, and Ai(0) = ai),

the disease free equilibrium is given in all models by

S∗i =
ajνi + φajνj + µjνi

a2µ1 + a1µ2 + µ1µ2 + (1− φ2)a1a2
. (3.2)
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Throughout this paper, unless otherwise specified, we begin simulations with identical patches

in order to isolate the effect of control dependent dispersal. In this case, if both patches are

equal sizes and dispersal becomes skewed such that individuals leave patch i at a higher per

capita rate than patch j, then the patch with highest rate of outward dispersal will lose

individuals faster than gaining them and hence the population in patch i will become smaller,

whilst the population in patch j will become larger. The addition of control into this model

shifts the equilibrium to

S∗i =
Aj(cj)νi + φAj(cj)νj + (µj + cj)νi

A1(c1)(µ2 + c2) +A2(c2)(µ1 + c1) + (µ1 + c1)(µ2 + c2) + (1− φ2)A1(c1)A2(c2)
. (3.3)

The behaviour of the equilibria for mixed control strategies is intuitive, with control applied

within a patch causing a reduction in the equilibrium size of that patch. Control of a single

patch alone will lead to a monotonic reduction in size of the uncontrolled patch only when

dispersal is constant. If dispersal is dependent on control, then controlling a single patch will

cause an influx of individuals into the uncontrolled patch thus swelling its numbers. If natural

dispersal is fast enough, or the control rate is high enough, then control of a single patch will

cause a decline in the size of the uncontrolled patch due to constant removal of naturally

dispersing individuals. When dispersal is given as a function of the control parameters,

the equilibria must be estimated through simulations. It is possible to show (Appendix D)

that in the models considered, the unique positive steady state is always locally stable for

biologically relevant parameter values. Once this equilibrium has been determined, it is

possible to construct the infection invasion matrix given in (3.4)

J(c1, c2) =

 P1 − c1 −A1(c1) φA2(c2)

φA1(c1) P2 − c2 −A2(c2)

 (3.4)

where Ai(ci) is dependent on the model being analysed, and is evaluated at the disease free

equilibrium and Pi = βiS
∗
i − µi − γi. Once this matrix is constructed, it is possible to find

the maximum eigenvalue, and determine how this eigenvalue changes with varying levels of

control.

Given that the infection invasion matrix (3.4) has positive off diagonal terms, we are
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able to use the Perron-Frobenius Theorem [123] to find the upper and lower bounds on the

maximum eigenvalue. This eigenvalue will be bounded above and below by

rowmin ≤ λ ≤ rowmax (3.5)

colmin ≤ λ ≤ colmax (3.6)

where rowmin/max, colmin/max are the minimum and maximum row and column sums respec-

tively. For all dispersal functions Ai(ci), in the case of complete dispersal (φ = 1), one can

show (Appendix E) that the maximum eigenvalue of (3.4) is bounded by the column sums

min{P1 − c1, P2 − c2} ≤ λ ≤ max{P1 − c1, P2 − c2}.

If both patches have equal properties (recruitment, death and transmission rates) and are

controlled at equal rates, then the equilibria are independent of dispersal function. In this

case, c1 = c2 and P1 = P2 in the inequality above, it is clear that under these conditions,

λmax is constant and equal for all models. We expect, therefore that the pathogen exclusion

thresholds for all models will be equal when c1 = c2. This convergence is shown in Figure 3.3.

In the case of a hazardous barrier (φ < 1), the bounds on the eigenvalue are again given by

the column sums of matrix 3.4

min{P1−c1−(1−φ)A1, P2−c2−(1−φ)A2} ≤ λ ≤ max{P1−c1−(1−φ)A1, P2−c2−(1−φ)A2}.

In this case the bounds on the maximum eigenvalue explicitly depend on the dispersal mech-

anism being considered, hence we would expect a more significant difference in thresholds in

this case. Indeed when the intrinsic, within patch properties are equal such that P1 = P2 and

the control rates applied to each patch are equal such that c1 = c2, then the higher the disper-

sal rate Ai(ci), the lower we expect the threshold to be. This is since a higher dispersal rate

reduces the bounds on the maximum eigenvalue. As shown in Figure 3.1, constant dispersal

occurs at a lower rate than saturating dispersal, which occurs at a lower rate than linear

dispersal, and hence the threshold for the constant dispersal model should be higher than

the control dependent dispersal models. The difference in thresholds in this case is shown in

66



Figure 3.3: Pathogen exclusion thresholds for each of the three models considered when both
patches are reservoirs for infection. Both models with increasing dispersal in response to
control show similar behaviour. For these parameters, higher levels of control are required
if dispersal increases in response to control. Parameters used νi = 2, µi = 0.2, γi = 1, β =
0.308, ai = 1, φi = 1, h = 1, κ = 1, i = 1, 2.

Figure 3.4: The total number of infected individuals at equilibrium as control is varied in the
case of constant dispersal. The threshold for the endemic equilibrium is shown to intersect with
the pathogen exclusion threshold (white line). This result holds for all dispersal mechanisms.
Parameters used νi = 2, µi = 0.2, γi = 1, β = 0.308, ai = 1, φi = 1, i = 1, 2.
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Figure 3.5. This reduction in threshold corresponds to a lower requirement for control and

is the result of a greater number of individuals failing to reach their target patch during dis-

persal. This result confirms the intuitive idea that if the boundary between the two patches

is hazardous to the species considered, for example a busy road or river, then the control

strategies required would be less severe than if all dispersal was successful. If the control

strategies cause an increase in dispersal, then an even lower rate of control is required since

the disturbance caused will incorporate an additional level of control by forcing individuals

to cross a potentially fatal boundary.

Figure 3.5: Control map showing the thresholds for all models when 50% of the dispersing
population fail to reach their target patch. Parameters used νi = 2, µi = 0.2, γi = 1, β =
0.308, φi = 0.5, h = 1, κ = 1ai = 0.1, i = 1, 2.

It is clear that if both P1−c1 and P2−c2 are negative, then for all 0 ≤ φ ≤ 1, λmax < 0 and

the pathogen will be unable to persist in the environment. The amount of control necessary

is thus intrinsically linked to the values of Pi. These values can be thought of as determining

the disease thresholds of the patch in isolation, and will thus determine whether or not the

patch is a reservoir of infection.
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3.3.3 Reservoirs of Infection

An isolated population may be able to support an infection without the need for transmission

from an outside source. If this is the case, this population is termed a reservoir of infection [73].

Mathematically, this definition corresponds to the condition that Pi = βSi−µi−γi > 0. When

considering the coupling of two patches through dispersal, the dynamics of a population in

isolation may influence the control strategies chosen. In the absence of dispersal (A1 = A2 = 0)

and of any control strategy (c1 = c2 = 0), with the two patches in isolation, the eigenvalues

of (3.4) are P1 and P2 respectively. There are three different scenarios to consider in a single

species system, (i) neither patch is a reservoir (P1, P2 < 0), (ii) a single patch only is a

reservoir (Pi > 0, Pj < 0) or (ii) both patches are reservoirs (P1, P2 > 0).

P1, P2 < 0

If neither patch is a reservoir, then the disease is not supported by either patch in isolation.

If two non-reservoir patches are connected to allow dispersal between populations, then the

pathogen exclusion threshold is given when the maximum eigenvalue of (3.4) is zero

0 = P1 + P2 −A1 −A2 +
√

(P1 + P2 −A1 −A2)2 − 4((P1 −A1)(P2 −A2)− φ2A1A2). (3.7)

If P1, P2 < 0, the trace of (3.4) is negative, and for this condition 3.7 to be satisfied we require

only that

((P1 −A1)(P2 −A2)− φ2A1A2) < 0

which cannot be satisfied for any Ai when P1, P2 < 0. This result suggests that two non-

reservoir patches in isolation will not be able to support the pathogen even if connected.

This result relies on the assumption that movement between two patches has no effect on

the population equilibrium. This assumption is only valid if both patches are identical, and

dispersal occurs at equal rates. If this is the case, then increasing the dispersal equally between

patches has no impact on the population size within a single patch. However, if dispersal is

biased towards one patch to the detriment of the other, then the numbers of individuals

in one patch will swell, whilst the other patch will deplete in population size. This may
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cause a drastic change in the population size allowing the larger patch to exceed the critical

community size [73], become a reservoir for infection, and hence lead to the persistence of

disease. If dispersal is incomplete (φ < 1) the same qualitative results apply, however the

difference in dispersal rates must be much more severe to force a non-reservoir patch to reach

the critical community size.

Pi > 0, Pj < 0

If a single patch is a reservoir and is therefore a source of infection for the second population

it can be shown that dispersal between patches will be sufficient for disease persistence. This

result is analogous to that found in Greenman & Hoyle [60] when considering multiple hosts

within a single patch, only a single reservoir is required to sustain disease in a two-host or

two-patch system. If a single reservoir patch causes infection to be transmitted into a non-

reservoir patch, then a reduction in the dispersal rate between patches through barrier control,

through erecting fencing or other physical barriers, would be sufficient for the disease to die

out in the non-reservoir patch, allowing control to be focussed on the reservoir patch. This

case represents the idea that an infected patch is spreading disease to an otherwise disease

free patch through the connectivity and dispersal of the population and supports the idea,

posited by Hess [75], that there may be negative consequences to increased connectivity of

patchy landscapes. The control map for this situation is given in Figure 3.6. The pathogen

exclusion threshold for constant dispersal is as we would expect, it predicts that control of

the reservoir patch alone is sufficient to exclude the pathogen. However, the thresholds for

both of the control dependent dispersal models tell a different story. In these cases it is

necessary to apply control to both patches simultaneously. Control of a single source patch

is insufficient to exclude a pathogen if dispersal is influenced by control. This result is again

due to the dispersal caused by disturbance of the population and highlights the significance

of considering the connectivity between patches in disease control. If control measures cause

individuals from an infected patch to move at a higher rate into areas unable to support the

pathogen, then both populations must be directly controlled to effectively rid the system of

the disease. If the reservoir patch alone is controlled, then the increased movement into the

non-reservoir patch causes the numbers in that patch to swell and transmission of infection
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to increase within the non-reservoir patch. Taken to the extreme, this situation can be used

Figure 3.6: Control map for initially distinct patches, when patch 1 is a reservoir of infection
and patch 2 is unable to support the infection alone. Control dependent dispersal models
show that control strategies must be applied to both patches in order to exclude the pathogen,
suggesting that at high levels of disturbance, control strategies cannot simply be focused on
areas of infection. Parameters used νi = 2, µ1 = 0.2, µ2 = 0.5, γi = 1, β = 0.308, φi = 1, h =
1, κ = 1, ai = 0, i = 1, 2.

to look at the effect of disturbance due to control on initially distinct patches (ai = 0), there

is no natural dispersal between patches, and when one patch is infected and the other is

disease free. If we assume that the introduction of control causes sufficient disturbance that

individuals from these distinct patches begin to interact, then control of the original source

patch is insufficient for disease eradication and could lead to the sustainment of disease into

a previously disease free area.

Examining the dynamics in more detail, we are able to determine the difference in number

controlled in comparison with the number of individuals which move as a result of disturbance.

Figure 3.7 shows the difference in the number of individuals moved between the constant,

saturating and linear models. Indeed this case considers two distinct patches such that only

the movement in response to control causes them to be connected. The saturating model sees

fewer individuals moved than the linear, which is to be expected since the linear increasing
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model predicts a greater increase in dispersal rate. Figure 3.7 also shows the drop in the

number controlled in patch i, in the saturating and linear models in comparison with the

constant dispersal. This is due to the drop in population size due to the outward movement

of individuals. Figure 3.7 looks at the case when only one patch is controlled, however,

this property is observed for any asymmetric control strategy. The patch with the higher

control rate will see a reduction in the number removed by control, and an increase in the

number disturbed as we move from constant dispersal, to the saturating and linear models.

If we increase the level of control applied to a patch, then we see an increase in the number

controlled in each of the models. For the control dependent dispersal models however, we see

a reduction in the number moved at higher control levels compared with lower controls. This

is due to the reduction in patch size through control, leading to lower levels of disturbance.

Thus at higher control rates, the influence of the number controlled directly on the patch size,

and the disease dynamics becomes more significant.

Figure 3.7: Number removed through control compared with number moved out of patch
through disturbance in the case of P1 > 0, P2 < 0. Control is only applied to the reservoir
patch (patch 1). Parameter values: νi = 2, µ1 = 0.2, µ2 = 0.5, γi = 1, βi = 0.308, ai = 0, φ =
1, h = 1, κ = 1, c1 = 0.5, c2 = 0, i = 1, 2

P1, P2 > 0

If both populations are able to support the pathogen in isolation, then in order to exclude

the pathogen any control strategy must be sufficient to remove disease from both patches.

If the connectivity between patches, and therefore the dispersal rate is increased, then this

causes a decrease of the threshold as given in Figure 3.8. In this case, efforts to increase the

connectivity between patches may ease the amount of direct control required for pathogen
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exclusion, making it possible to exclude the pathogen from both patches with control of a

single patch only. It is shown in Figure 3.8 that increasing natural dispersal has a much less

significant effect when dispersal is dependent on control. One possible explanation for this

phenomena is that the baseline level of dispersal represents the number of emigrants out of

and immigrants into a patch. If dispersal is increased by control within a patch, then the

number of emigrants out of a patch will increase, without a subsequent increase in the number

of immigrants. Thus for a given control rate ci in patch i, increased dispersal will result in a

further increase in individuals leaving patch i with the chance of introducing, or propagating

infection in patch j. Hence control of patch j is still needed to eliminate infection from the

whole system.

Figure 3.8: Reduction of pathogen exclusion threshold in c1 − c2 space as natural dispersal
increases, shown for all models considered. The model with constant dispersal shows the
most striking change in threshold, with the control dependent dispersal models showing a
more gradual reduction. Parameters used νi = 2, µi = 0.2, γi = 1, β = 0.308, φi = 1, h =
1, κ = 1, i = 1, 2.

3.3.4 Parameter dependence of single species model

Since the disease free equilibria of the control dependent dispersal models are analytically

intractable, the results of the previous section have been found through simulations using

a numerical ODE solver (ode15s) in MATLAB. In order to assess the robustness of these

results we must test the behaviour of the system in response to change in the parameters

73



used. We focus this section on the case when both patches are reservoirs in isolation, and aim

to determine how the qualitative properties of these thresholds change with disease dependent

parameters. As we would expect, diseases with high transmission rates require higher rates

of control in order to completely eradicate infection. Highly lethal diseases, (high γ) require

a lower rate of control than less harmful pathogens. Pathogens which cause little or no death

are able to survive for long infectious periods and therefore have a higher probability of being

transmitted. If γ is high, then the chance of the infected individual dying before they are

able to transmit the disease will be greater. Hence the need for higher levels of control at low

values of γ.

In the previous simulations the constant dispersal model has generally had a higher thresh-

old than the control dependent dispersal models. When this is the case, the simple 2 patch

model with constant dispersal overestimates the amount of control required to exclude the

pathogen. However, for certain parameter values, it is found that the order of the thresh-

olds switched, with constant dispersal having a lower threshold than disturbance dependent

dispersal. In this case, constant dispersal models will underestimate the amount of control

required, leading to ineffective control strategies if movement is increased by control. In these

regions of parameter space, the increased movement in response to control is a much more

significant problem for disease control.

In order to determine the full effect of varying β and γ on the order of the thresholds,

extensive simulations have been run to produce the maps in β − γ space in figure 3.9. We

present two maps comparing a low natural dispersal (ai = 0.1) and a higher natural dispersal

(ai = 1). The figures 3.9 split the β − γ (tranmission-virulence) parameter space into regions

determined by the order of the thresholds for the three dispersal functions. These regions

are described as (i) disease free (DF), indicating that the pathogen is naturally unable to

survive, (ii) Constant dispersal predicts the lowest threshold, with the saturating and linear

dispersal models predicting higher control strategies (C < S < L). In these cases, when

control is uneven between patches, such that ci < cj , the surge in individuals out of patch

j into patch i negates the lower control strategy cj , leading to an increase in the population

in patch j which is able to support the pathogen. (iii) Constant dispersal predicts a higher

control strategy than saturating or linearly increasing dispersal functions (S < L < C).
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Figure 3.9: Map showing the properties of the control thresholds as β and γ are varied.
Parameter space is divided into 4 sections: DF=disease free, *=Disease free at origin, but
control leads to infection, C < S < L=constant dispersal predicts the lowest threshold,
and may underestimate control if disturbance is caused, C=S=L=no discernable difference
between the thresholds for these parameter values, and S < L < C=control dependent
dispersal predicts a lower threshold than constant dispersal models. Parameters used νi =
2, µi = 0.2, φi = 1, h = 1, κ = 1, i = 1, 2.

In these regions, the constant model may overestimate the amount of control, however this

model will still be suitable for the design of control strategies as the predicted controls will

be sufficient to eradicate the disease. (iv) The linear model predicts a higher threshold, and

there is negligible difference between the constant and the saturating dispersal functions, and

(v) There is negligible difference between the thresholds on the control space within the region

[0, 1]× [0, 1] (C = S = L). The two regions shown in white in figure 3.9 and not mentioned in

this list are an area labelled END within which the pathogen fails to be excluded and hence

remains endemic on this range of control parameters; and the area labelled ∗, which exhibits an

interesting phenomenon whereby in the absence of control, the population is naturally disease

free, however, the increased dispersal due to control forces a change in the population size

allowing the pathogen to become established. Thus in this region, it is the control strategies

which are creating a suitable environment for disease to take hold. This behaviour highlights

the dangers of culling or hunting individuals to the extent that their remaining numbers

become so concentrated that the risk of infection is increased (for example in game species

[57]).

There are stark differences between the maps shown in figure 3.9. When dispersal is low,

the behaviour of the thresholds is determined in a large degree by the change in β, with a

large region of this parameter space given the classification (S < L < C). If dispersal is low,
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then only for very low values of β that constant dispersal is lower than or equal to control

dependent dispersal. This is due to the fact that at low levels of β, the threshold occurs at

low control levels. At low levels of control, the increase in dispersal in the linear and the

saturating models is relatively small. As β increases, the control required increases, and the

dispersal due to control has a more significant effect. As figure 3.8 shows, increasing the levels

of dispersal causes a flattening, or reduction in the pathogen exclusion threshold. Therefore,

at high levels of β, the higher controls required mean that the dispersal due to control increases

and the threshold for the linear and saturating models decreases, becoming lower than the

constant model. For higher levels of natural dispersal, the constant dispersal threshold is

equal to or lower than the control dependent dispersal thresholds for a much wider range of

β. This is since the increase in dispersal due to control has a much less significant effect on

the population sizes when natural dispersal is high.

3.4 Two host ‘Wildlife-Livestock’ model

The single species models form a basis for understanding the importance of disturbance and

increased dispersal in multi-host models. Multi-host dynamics are particularly relevant when

wildlife species act as reservoirs of infection for livestock or domestic animals. The model given

in (3.8) represents transmission of infection in a livestock-wildlife system, where the subscripts

Li and Wi represent the livestock and the wildlife populations in patch i respectively. The

movements of the livestock population are assumed to be restricted such that there is no

between patch interaction, and therefore no disease transmission between the two livestock

populations. We assume that the livestock populations share a habitat with a wild and free-

roaming species which is modelled as in the single species case, and the two species do not
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interact in the absence of the pathogen.

Livestock


dSLi/dt = vi − β11SLiILi − β12SLiIWi −miSLi − cLiSLi

dILi/dt = β11SLiILi + β12SLiIWi − (mi + gi)ILi − cLiILi

(3.8)

Wildlife


dSWi/dt = νi − β21SWiILi − β22SWiIWi − µiSWi − cWiSWi −Ai(cWi)SWi + φAj(cWj)SWj

dIWi/dt = β21SWiILi + β22SWiIWi − (µi + γi)IWi − cWiIWi −Ai(cWi)IWi + φAj(cWj)IWj .

In the absence of disease and control, the livestock populations achieve equilibrium at SLi =

vi/mi for i = 1, 2, and the wildlife populations achieve equilibria as in the single species case

given by (3.3) .

When considering single patch models, the presence of a second host can have drastic con-

sequences on the disease dynamics, the proportion of infected individuals within a population

and the controls necessary to rid a population of a pathogen. When considering interacting

species, the disease dynamics are determined by the potential for infection of each species.

Specifically, whether each species considered is a reservoir for infection or not. Greenman

and Hoyle [60, 61] have shown that in multiple host populations, pathogen exclusion may be

possible by control of a single species, only if that species is a source of infection to the second,

non-reservoir host.

In the two patch case, we must make the distinction between reservoir patches and reservoir

hosts. A patch containing two species is a reservoir patch if, in the absence of dispersal, that

patch is able to support the pathogen. The patch will support the pathogen if either of the

species within that patch is a reservoir host, and would support the pathogen alone in the

environment, or if the interaction between the two hosts within a patch is sufficient to support

the pathogen. As shown in the single species case, if neither of the patches are reservoir

patches, then dispersal between the two will not be sufficient for pathogen persistence, unless

dispersal of the wild populations is dramatically skewed one way or the other. However, if
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one or both of the patches is a reservoir, then control methods must be employed to free the

system of the pathogen. If both patches are reservoirs of infection, then the specifics of control

are determined by the within patch disease dynamics. In order to successfully rid the entire

two patch system of the pathogen, we must ensure that control is sufficient for infection to

be successfully removed from both patches.

There are a number of possible control strategies which may be implemented when dealing

with two hosts over multiple patches. It is often the case that disease control will be focussed

on the domestic populations in the first instance, with control of wild populations avoided

unless absolutely necessary [111], with this in mind, we first consider the necessary conditions

for successful disease control whilst controlling only the livestock species of the population.

We then go onto investigate a wildlife only control, and finally a joint strategy controlling all

wildlife and livestock by independent rates.

It is trivial to show that control of a single species, either wildlife or livestock, will be

successful only if the controlled species is responsible for the pathogen persistence. If the host

to be controlled is the reservoir of infection, or the infection is sustained only by the interaction

of two hosts, then control of a single species will be sufficient for pathogen exclusion. If

however, the host which is uncontrolled is a reservoir, then pathogen exclusion is not possible.

We therefore only compare the cases when the pathogen is supported by a single species to

be controlled, or by the interaction of two non-reservoir hosts.

3.4.1 Control of Livestock Only

If direct control strategies are applied to the livestock population only, then there will be no

disturbance of the wildlife population, and all three previously considered models will predict

the same threshold. Hence we only consider the constant dispersal model. If the livestock

species is the reservoir for infection within each patch, and serves to support the pathogen in

the wildlife population, then control of wildlife alone will never result in pathogen exclusion.

The livestock population must be controlled to a level which prevents the pathogen being

supported by that population.

If the livestock is a reservoir or it is the interaction of the two species which supports the

pathogen within each patch, then an increase in the rate of dispersal between wild populations
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may help to reduce the amount of livestock control required over the two patches. Figure 3.10

shows that, as in the single species case, a higher rate of dispersal, and therefore increased

mixing of two wild populations causes a reduction of the pathogen exclusion threshold with

livestock control. A higher level of control in one patch will have a more severe effect on the

second if the two patches are coupled at a high rate. This may allow levels of control to be

reduced in some areas and increased in others, allowing the pressure of control strategies to

be eased for some farms. If all populations of livestock are to be controlled at the same rate,

then the impact of the wildlife host does not affect the necessary control.

Figure 3.10: Increased coupling, increasing the parameter a, of spatially distinct livestock
populations by movement of wildlife may ease the required amount of control. Asymmetric
control strategies may prove more cost effective in this situation. Here the pathogen is sup-
ported by the interaction of both species. Parameters used νi = vi = 2, µi = mi = 0.5, γi =
gi = 1, βii = 0.05, βij = 0.5, φi = 1, h = 1, κ = 1i = 1, 2.

3.4.2 Control of Wildlife Only

If the wildlife population alone is controlled, then we would expect the results to be similar

to the single species case. Of course, when the between species transmission, βij is 0 then the

thresholds are identical to the single species case. Increase of between species transmission

leads to a significant increase in the necessary control rates for pathogen exclusion, as shown

in Figure 3.11. The order of the thresholds, as discussed in section 3.3.4 remains unchanged
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by this increase in βij . If the wildlife species is a reservoir for infection, the necessary control

strategy is significantly larger than if the pathogen were supported by the interaction of

both species. This result is intuitive since the reservoir species will exert a higher force of

infection on the community and therefore require more control [40]. In the case where the

pathogen is sustained by the interaction between the two species, reduction in between species

transmission will significantly reduce the amount of direct control required. In the extreme,

if this contact can be reduced to zero, then the pathogen will be unable to survive. This

highlights the importance of reducing contact between multiple hosts in order to lower the

burden of control.

Figure 3.11: Increase in threshold shown for all three dispersal functions when between host
contact, βij is increased. Here the wildlife species is the reservoir of infection and must be
controlled to exclude the pathogen. Parameters used ai = 1, φ = 1, νi = 2, µi = 0.2, γi = 0.1,
βii = 0.05, h=1,κ = 1, vi = 2, mi = 0.5, g = 1

3.4.3 Mixed Control of Both Wildlife and Livestock

If both species are controlled simultaneously, and controls are equal across both patches, then

any increase in dispersal has no effect on the ultimate threshold for pathogen exclusion. The

single species model predicts that equal controls applied across both patches will have the

same threshold independent of the dispersal rate, so this result is to be expected.

If both species are required for pathogen persistence, then control of both species will have

an impact on the pathogen exclusion threshold. Figure 3.12 shows the reduction in threshold

in cW1 − cW2 space as the control applied to the livestock population is increased in the

case of constant dispersal. Similar control maps are given when dispersal is increased with

control. Control of the livestock species reduces the required control of wildlife species in this
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system, highlighting the importance of a joint control strategy. Since livestock populations

are managed constantly, reducing the size, and density of the livestock population will have

a beneficial effect on the pathogen exclusion threshold, and will be easier to administer than

the often high levels of wildlife control required to eradicate the pathogen. This is modelled

here by a continuous control applied to the livestock population, however the same outcome

would be achieved if the livestock population was reduced in discrete intervals, or by any other

feasible, and less intensive method. In Figure 3.12, the three thresholds given are given for

cL = 0, which represents no reduction in livestock population abundance, cl = 0.1 which gives

approximately a 17% reduction in livestock abundance, and finally cL = 0.2 which represents

a 40% reduction in livestock abundance. Livestock farmed at less intensive levels will therefore

reduce the risk of infection from wildlife, and in the case of infection, disease will be easier to

control through wildlife control if livestock are farmed less intensively.

Figure 3.12: Decreasing threshold as control of livestock population increases if both species
are needed to support the pathogen. Control map shown for constant dispersal only. Param-
eters used νi = vi = 2, µi = mi = 0.5, γi = gi = 1, βii = 0.05, βij = 0.5, φi = 1, i = 1, 2.
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3.5 Discussion

The models presented here are used to investigate the impact of dispersal of individuals

between spatially distinct patches of habitat and the implications of this dispersal for disease

control. A single host, two patch, SI model (3.1) is proposed based on the assumption that

human disturbance of a population, through the implementation of invasive disease control

strategies such as culling, may cause individuals to leave their home patch at an increased

rate. The motivation behind this research is a desire to explain the mechanisms underpinning

disease transmission between wildlife and livestock hosts. This transmission is particularly

important due to the emergence and widespread incidence of diseases such as bovine TB and

bluetongue. As such, the parameters chosen throughout this paper have been loosely based

on estimates taken from [8] and approximate the spread of bovine TB in a population of

badgers.

It was found that the disturbance/control dependent dispersal models predict a different

pathogen exclusion threshold when compared to the constant dispersal model. These thresh-

olds converge to the same control strategy if both patches are identical, dispersal is equal

between the patches, and control is applied equally to both patches (Figure 3.3), however this

situation is realistically unlikely. Figures 3.9 show that, if natural dispersal is high enough,

then for a large range of transmission rates, and hence a large range of potential pathogens,

constant dispersal gives a lower threshold than control dependent dispersal. Indeed, in this

case insufficient control strategies will see a reduction in disease incidence in the patch with

higher control, and an increase in the incidence in the other patch. This is due to the move-

ment of both susceptible and infected individuals out of the controlled patch. This response

to control was recorded in badgers during the randomised badger culling trial in the UK [102].

This result suggests that insufficient regard for surrounding populations when implementing a

control strategy may lead to persistence of disease. Infectious diseases such as bovine tubercu-

losis in badgers [102], chronic wasting disease in mule deer [51] and hendra and nipah viruses

in bat populations [36] have been shown to have important spatial characteristics being trans-

mitted between populations through dispersal or migration. We have shown that any increase

in this natural level of dispersal may cause an increase in the level of necessary control. It
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is therefore essential to take these dispersal factors into consideration when designing control

strategies.

Connectivity is often cited as being a means for disease spread and increased proliferation

of a pathogen from a reservoir patch into disease free areas [75]. Reservoir patches may be

targeted in isolation as a method of control, however, Figure 3.6 reveals that, whilst this

strategy would work for constant dispersal rates, when control methods cause disturbance,

then both the reservoir and the non-reservoir patch must be controlled in order to achieve

pathogen exclusion. This result is found in both the single species and the two host case and

may have significant consequences for disease control between captive and wild populations

to prevent disease spread between isolated areas of captivity such as farms.

The results from a basic two patch model reveal a similar pattern when one species is free

moving and the other is stationary and unable to roam. In this case however, we were able

to see the effect of movement of a wildlife reservoir on disease spread in two distinct areas of

livestock. Figure 3.10 shows that increased interaction between the patches of wildlife, through

increased connectivity, may ease the level of control required in a single farm. Mixed control

strategies targeting both livestock and wildlife populations will be effective when both species

support the pathogen, however our models show that targeting livestock alone is insufficient

if the wildlife population is a reservoir, and vice versa.

The models considered here are basic models, designed to isolate the effect of increased

dispersal. The results presented suggest that controlling disease in patchy habitats may

be more complex than constant dispersal models would initially predict. The thresholds

produced by these models give the necessary conditions for pathogen exclusion, and hence

provide conditions for optimal control schemes. We have shown that for low transmission or

high virulence, constant dispersal models can underestimate the required control strategy. As

transmission increases, all thresholds increase however the constant dispersal model responds

more sensitively, such that at higher transmission rates, the constant dispersal threshold is

higher than the control dependent thresholds. Optimisation of disease control strategies aims

to minimise the rates of control, and therefore the cost of control. This cost may be given by

the financial burden of the control strategy, or in terms of loss of life and animal welfare, or

a combination of these factors. The pathogen exclusion thresholds define a key constraint to
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optimal control, with overestimation of thresholds causing the predicted control methods to

be suboptimal, resulting in a greater financial spend than necessary or in an unnecessary loss

of life.

The models considered here are based on basic assumptions of population growth and

dispersal throughout a landscape. In particular, reproduction is given in this paper by a

constant rate νi. Realistically, reproduction will be impacted by density dependent factors

which would produce a logistic-type growth curve. Excess culling (or harvesting) a biological

population will result in a population decline to extinction as the population is unable to

replace itself [81]. This phenomenon does not occur in the model presented here, due to

the constant recruitment term and hence the idea of maximum sustainable yield [105] is

not coherent for this model. The balance between culling a species to extinction, and culling

sufficiently so as to eradicate a disease is an important one, and is the focus of future research.

A closer critique of the mechanisms of dispersal, including density dependent migration would

also help to increase the realism and thus the applicability of this model. This work may also

be extended to form part of a metapopulation analysis to evaluate the disturbance effect of

populations over a large number of patches. The interesting results apparent from a simple

model such as this form a firm basis for further investigation of the effect of disturbance on

disease spread in wild populations and its implications for control.
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Chapter 4

Density dependent movement:

implications for harvesting practices

4.1 Introduction

In the previous chapters, we have investigated how harvesting practices and disease control

strategies are changed when populations are coupled by movement or dispersal between dis-

tinct areas. Dispersal can however be governed by several processes. The process of dispersal

is often described as the cumulative effect of three separate individual decisions: emigration

(the decision to leave a patch), movement (the distance, and direction etc) and immigration

(the decision to remain in a patch) [24, 148]. It has been suggested, that reducing these three

processes down to a single constant rate is an oversimplification stemming from the lack of

consistent empirical descriptions of dispersal [24]. Many studies focus only on a single part of

this process [24], hence it is difficult to discern the key factors affecting dispersal for a given

species which may then be incorporated into a theoretical model. In this chapter, we aim

to target a middle ground between the extremes of complete reduction of the process to a

single parameter, and modelling each facet of dispersal distinctly. In particular we focus more

specifically on the local, environmental drivers for emigration. In the models considered here,

we investigate the impact that local population density has on this process and the implica-

tions that density dependent movement has in terms of harvesting practices and population

control.
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There is a rich experimental literature supporting the hypothesis that local population

density affects the process of emigration in a variety of species. For example, many species of

aphid (family Aphididae) have migratory life stages which will develop only at high density,

preventing dispersal at low population densities [37]. Density dependent emigration has also

been observed in species of beetle inhabiting cow pats [113], as well as female root voles

Microtus oeconomus [2]. In these and other examples, individuals may be forced out of a

patch by high population densities and limited resources. By using ‘population density’ in

this context we shall refer to the ratio of the population size to the carrying capacity. The

carrying capacity of a patch is defined as ‘the maximum population size that can be supported

indefinitely by a given environment, at which intraspecific competition has reduced the per

capita net rate of increase to zero’ [17]. If the population density within an environment is

greater than 1, then the population size exceeds its carrying capacity and the per capita growth

rate of individuals within the patch is negative. This chapter aims to quantify the effect of

density dependent movement in terms of the population response to harvesting practices, as

well as the change in yield predicted by considering these density dependent effects. These

considerations are discussed initially in a simple model with no disturbance before being

developed to include a perturbation response to harvesting efforts.

4.2 Density dependent emigration in a 2-patch system

4.2.1 General Dynamics

If individuals are forced to leave their original patch due to high densities, then we assume

that the rate of movement out of a patch increases with population density. If we consider

a general growth function f(Ni), then the carrying capacity of the patch is given by the

equilibrium solution of

dNi

dt
= f(Ni),

where f(Ni) could, for example, be given by constant recruitment or logistic growth. If we

define the carrying capacity of patch i in isolation as Ki, then density dependent emigration
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can be modelled in the following way

dN1

dt
=f(N1)−m

(
N1

K1

)s
N1 +m

(
N2

K2

)s
N2

dN2

dt
=f(N2)−m

(
N2

K2

)s
N2 +m

(
N1

K1

)s
N1 (4.1)

where the parameter m represents the species dependent rate of response to crowding. If m

is high then the species moves at a faster rate for a given density. For simplicity, in the basic

model, we assume that this quantity is the same across both patches. This is not unreasonable,

since it represents the particular response of the species to its local environment. Note that

this assumption does not necessarily imply that the movement rate between patches are equal,

since the rate of movement is dependent on the population density multiplied by this constant.

The parameter s ≥ 0 defines the strength of the density dependent emigration response, with

s = 0 equating to a density independent response, and hence a constant per capita movement

rate. In this case, when s = 0, the model is identical to that discussed in chapter 2. This

model is based on that given by Amarasekare [5]. The per capita, and total movement rates,

for different strengths of density dependence, are shown in figure 4.1 which highlights the

distinction between constant and density dependent per capita movement rates. If the per

capita movement is constant, then individuals in a very small population will have the same

per capita movement rate as those at a very high population density. Even with a very weak

level of density dependence, the per capita rate of movement will decrease to zero for very

low population densities. In terms of the total movement rate, the number leaving the patch

per unit time, decreases to zero as the population density decreases. This is true for both

the constant movement model as well as the density dependent model. Density dependence

simply reduces the total rate of movement faster than the constant movement model.

Recall from chapter 2 that as the constant movement rate m increases, the equilibrium

of the patch sizes tend to the same value (N∗1 = N∗2 ) as m → ∞ if movement is symmetric

(where m = m1 = m2), and tend to φN∗1 = N∗2 as m → ∞ if movement is asymmetric

(m = m2 and φ = m1/m2). In the density dependent model however, the movement rate

is varied with the population size. As the response rate m increases to infinity, we are able

to find the equivalent ratio of the population sizes. By taking the first equation in (4.1) at
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Figure 4.1: Per capita (left), and total (right) movement rates against population density for
increasing strength of density dependence s.

equilibrium,

0 = f(N1)−m
(
N1

K1

)s
N1 +m

(
N2

K2

)s
N2 (4.2)

m

(
N1

K1

)s
N1 = f(N1) +m

(
N2

K2

)s
N2 (4.3)

N s+1
1

N s+1
2

=
Ks

1f(N1)

N s+1
2 m

+
Ks

1

Ks
2

(4.4)

which, as m→∞ reduces to

N s+1
1

N
s+1
2

=
Ks

1

Ks
2

(4.5)

N1

N2
=

(
K1

K2

)s/(s+1)

. (4.6)

This implies that if the carrying capacity of patch 1 is larger than the carrying capacity of

patch 2, then the population size in patch 1 will remain larger than that of patch 2 even if

movement between the patches is very frequent. Density dependent dispersal therefore limits

the synchrony between distinct patches, meaning that a patchy landscape will remain patchy

even if there is high potential for dispersal. If both patches in a two patch system are of equal

carrying capacities, then the system will attain a stable equilibrium at (N∗1 , N
∗
2 ) = (K,K).
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For a full comparison with the constant movement model detailed in chapter 2, we explore the

behaviour of this model, and therefore evaluate the impact of density dependent emigration

for two potential growth functions. Constant recruitment models the dynamic response of a

constantly stocked system, whilst logistic growth models a naturally reproducing population.

4.2.2 Constant recruitment model

In the case of constant recruitment, f(N) = (a− bN), an increase in population density has

the dual effect of increasing the death rate of the population as well as increasing the outward

movement. The rate of recruitment into the population is however unchanged by population

density or harvesting. The carrying capacity of each patch in this case is given by Ki = ai/bi.

The two patch model is therefore given by

dN1

dt
= a1 − b1N1 −m

(
b1N1

a1

)s
N1 +m

(
b2N2

a2

)s
N2 − c1N1 (4.7)

dN2

dt
= a2 − b2N2 −m

(
b2N2

a2

)s
N2 +m

(
b1N1

a1

)s
N1 − c2N2, (4.8)

where ci is the constant harvesting rate in patch i. In the absence of any harvesting, a

symmetric system (a1 = a2 = a, b1 = b2 = b) will always reach equilibrium at Ni = a/b within

both patches. This can easily be shown by substituting this value into the equations (4.8)

and confirming that the system is indeed at equilibrium and dNi/dt = 0.

dNi

dt
= a− ba

b
−m

(
ba

ab

)s a
b

+m

(
ba

ab

)s a
b

(4.9)

= a− a−ma

b
+m

a

b
(4.10)

= 0. (4.11)

Any asymmetry in the system is in part compensated for by the coupling of the two patches

which acts to reduce the difference in population size. If we consider two isolated patches

with populations at their carrying capacities such that a1/b1 > a2/b2, and open a corridor

between these patches such that dispersal is able to occur (this is done mathematically by
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increasing m, such that m > 0), then initially, the dynamics of the larger patch are given by

dN1

dt
= a1 − b1

a1
b1
−m

(
a1b1
b1a1

)s a1
b2

+m

(
a2b2
b2a2

)s
(4.12)

= m

(
a2
b2
− a1
b1

)
< 0. (4.13)

The larger patch thus decreases in density since individuals leave this patch at a faster rate

than those entering it from patch 2. It can similarly be shown that patch 2 increases in

population density due to this imbalance of movement. The decrease in population density

slows down the rate of movement out of patch 1, and the increase in density increases the rate

of movement out of patch 2. The extent to which the population density affects the movement

rate is governed by the magnitude of the parameter s. As s increases, any change in density

will have an increasingly more significant impact on the movement rate. Hence the reduction

in density of the larger population, will lead to a severe drop in movement rate if s is high.

This will curb the number of migrants leaving the patch, and maintain a higher population

density. The population size within each patch is shown in figure 4.2 for a range of s. Since

the larger patch will always be the reduced in density as a result of coupling, and this patch

makes the most significant contribution to the population as a whole, this severe reduction

in dispersal out of the larger patch has a strong effect on the distribution of the population

across the patches. Therefore increasing s maintains the asymmetry in the patches closer to

their isolated carrying capacity for a given value of m.

Harvesting in the constant recruitment model

In the following simulations, we have assumed that both patches have equal carrying capac-

ities (a/b) in the absence of any harvesting. It is therefore the practice of harvesting the

populations that introduces asymmetry in the populations. In the first instance we assume

that a single patch alone is harvested.

Harvesting a single patch

Recall from Chapter 2, that if the harvesting effort is applied to a single, isolated population,
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Figure 4.2: Population size after coupling of two, asymmetric patches. Patch 1, green lines,
has a higher carrying capacity than patch 2, blue.

then the equilibrium will decrease to

NC =
a

b+ c
.

If a corridor of dispersal is now opened up between this patch and another, unharvested

patch of similar size (denoted N2, with equilibrium a/b), then the harvested population size

will change dependent on the equation

dNC

dt
= a− bNC −m

(
b

a
NC

)s
NC +mN2 − cNC (4.14)

dNC

dt
= a− ba

b+ c
−m

(
b

b+ c

)s a

b+ c
+m

a

b
− ca

b+ c
(4.15)

dNC

dt
= ma

(
c+ b(1− Ω)

b(b+ c)

)
> 0, Ω =

(
b

b+ c

)s
≤ 1. (4.16)

Since this rate of change is positive, the harvested population will increase in response to

coupling with a separate patch. As the strength of density dependence s increases, Ω de-

creases, and dNC/dt becomes more positive. This suggests that strong density dependent

dispersal can lead to a faster repopulation, and compensatory response to harvesting if a

wildlife corridor between similar sized patches is opened. This of course does not tell us any-
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thing about the ultimate patch size reached, rather the rate of movement into the patch. The

precise population size reached cannot be found analytically in the general density dependent

movement case, however, we are able to show the effect of increasing the strength of den-

sity dependence through simulation results. Figure 4.3 shows the response of the harvested

population after it is coupled with an identical, but unharvested patch for a range of density

dependent movement strengths. The three graphs show the change in harvested population

for different harvesting efforts. A low harvesting effort, c = 0.002 = 0.1b, shows an increase

in harvested population as density dependent movement, s increases. This result is also seen

as the harvesting effort is increased to be equal to the death rate c = 0.02. The increase in

harvested equilibrium as density dependent movement increases is due to the reduction in

emigrants out of the harvested population. If s is high, then a very small reduction in popula-

tion density will cause a more significant reduction in emigrants. The net flow of individuals

in the harvested patch will therefore be dominated by immigrants from patch 2. This leads

to an increase in the equilibrium population in the harvested patch. For very high harvesting

efforts, c = 0.2, relative to the natural death rate, density dependent movement can have a

detrimental response to the equilibrium population size. At high harvesting rates, individuals

are removed from the patch soon after they arrive. In this case, the reduction in emigrants

is sufficient to reduce the patch 2 population. This leads to a reduction in the number of

immigrants into the harvested patch, and a reduction in equilibrium size as the strength of

density dependence increases.

The results shown in figure 4.3 for the behaviour of the harvested patch after coupling

are reversed for the coupled patch. At low harvesting efforts, density dependent movement

predicts a lower coupled population size than constant movement. This relationship switches

as harvesting effort increases, and is a direct response to the dynamic behaviour described in

the case of the harvested patch.

It is unclear from figure 4.3 whether the harvested population at equilibrium changes

monotonically with strength of density dependence for a given harvesting effort. Simulation

results (figure 4.4) show that as the strength of density dependence increases, approaching

a step function, as assumed by Prentice [114], the equilibrium population of the harvested

patch (i) increases monotonically for low harvesting rates, (ii) increases to a maximum before
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Figure 4.3: Population size in harvested patch after coupling with a similar, unharvested
patch. The density dependent movement model shows higher population size than the
constant movement model. Initial values are isolated patch equilibria. Parameters used
a = 2, b = 0.02,m = 0.1.
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Figure 4.4: Population size at equilibrium of harvested population for increasing strength of
density dependence. Parameters used a = 2, b = 0.02,m = 0.1

decreasing below the population given by constant movement for harvesting rates similar

to natural death, (iii) decreases monotonically for very high harvesting rates. Quantifying

the strength of the density dependence in the movement rate can therefore have important

consequences in terms of the population sizes predicted by the model.

Figure 4.4 highlights the proportional difference in population equilibrium size. The y-

axis scale of figure 4.4 a) is very small, indicating that at very low harvesting effort, even

a very strong density dependent effect has a negligible effect on the population. For higher

harvesting effort the difference in strength of density dependence becomes more pronounced,

as can be seen with respect to the yield shown in figure 4.5.

Given that for very low harvesting efforts, the population size predicted by the density

dependent model is higher than that predicted by the constant movement model, and for

high harvesting levels this relationship is switched, we may expect the behaviour of the yield

predicted by the corresponding models to mimic this relationship. In chapter 2, we found
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the expression for the yield in the constant movement model, when only a single patch was

harvested, was given by

Y = c1N
∗
1 =

c1(a1b2 + (a1 + a2)m2)

c1(b2 +m2) + (b1 +m1)(b2 +m2)−m1m2
. (4.17)

Adapting this expression for the density dependent model, the yield can be expressed as

Y = c1N
∗
1 =

c1(a1b2 + (a1 + a2)mθ2)

c1(b2 +mθ2) + (b1 +mθ1)(b2 +mθ2)−m2θ1θ2
. (4.18)

where θi = (N∗i /Ki)
s, and Ki = ai/bi. This yield is monotonically increasing as c1 increases,

with the limit as c1 →∞ given by

Y → a1 +
a2m(N2/K2)

s

m(N2/K2)s + b2
. (4.19)

This expression, as with constant movement, is made up of the birth rate in patch 1 plus

the birth rate in patch 2 multiplied by the probability of moving from patch 2 to patch

1. If both patches are equal in the absence of harvesting, then harvesting in patch 1 alone

will lead to a reduction in both populations such that N∗i /Ki < 1 in both patches. In a

symmetric system, an increase in the strength of density dependent emigration will therefore

lead to a reduction in yield, since (N2/K2)
s decreases for increasing s. This result is shown in

figure 4.5. This figure confirms that at high harvesting efforts, the yield is lower for density

dependent movement than the constant movement model. This is the expected result given

the equilibrium behaviour shown in figure 4.3. At low harvesting efforts, we would expect the

density dependent model to predict a higher yield than constant movement, however, figure

4.5 shows that at such low harvesting efforts the difference in yields is negligible.

If however, harvesting takes place in an asymmetric system, such that the natural carrying

capacity of patch 1 is greater than that of patch 2 (K1 > K2), this result does not always

apply. In this case, coupling of the two patches causes a decrease in size of the larger patch,

such that N∗1 /K1 < 1, but an increase in size of the smaller patch in the absence of harvesting.

This leads the population density in patch 2 to be N∗2 /K2 = θ2 > 1. Harvesting the larger

patch will therefore have the effect that the population density in patch 1 is reduced further,
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and the population density in patch 2 is reduced such that NC
2 /K2 < θ2 (where NC

2 is the

population equilibrium in patch 2 during harvesting). For intermediate harvesting efforts,

however, this second condition does not necessitate that NC
2 /K2 < 1 , and hence it is possible

that an increase in the strength of density dependent emigration may result in an increase

in yield. In any case, as the harvesting effort increases, the patch 2 population is decreased

enough to reduce the rate of immigration into the harvested patch, and eventually the yield

predicted by this model will be less than that predicted by the constant model. This is shown

in figure 4.6.

Figure 4.5: Yield obtained from a single patch in a symmetric two patch system. Solid
line shows the constant movement model, dashed line shows density dependent movement.
Parameters used: a = 2, b = 0.02,m = 0.1.

Yield if both patches are harvested

The discussion above has concerned the population and yield of the single harvested patch

within a two patch system. However, the harvesting effort applied in a single patch has a

knock on effect on the population dynamics of the coupled patch. Specifically, harvesting will

cause a reduction in the size of the coupled population due to removal of potential immigrants.

In the density dependent model, there are a number of other factors that affect the popula-
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Figure 4.6: Yield obtained from a single patch in an asymmetric system. Here the larger of
the two patches is harvested. In this case, density dependent emigration leads to an increase
in yield. Parameters used: a = 2, b1 = 0.02, b2 = 0.2,m = 0.1.

tion sizes. Harvesting reduces the rate at which migrants leave the harvested patch and enter

the coupled patch. We would expect therefore that an increase in the strength of density

dependence leads to a decrease in the population size of the coupled patch. Harvesting will

also however reduce the population size of the coupled patch which will trigger the density

dependent movement response, and prevent individuals leaving, hence buffering the coupled

patch against the effects of harvesting.

If both patches are harvested, then the yield is given by

Yi(c1, c2) =
ci(ajmθj + ai(bj +mθj + cj))

(b1 +mθ2 + c2)(b1 +mθ1 + c1)−m2θ1θ2
. (4.20)

In a fully symmetric system, with equal demographic parameters, and equal harvesting efforts,

then the populations in both patches equal

N∗i =
a

b+ c
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and the yields are hence given by

Yi(c, c) =
ca

b+ c
.

We are therefore interested in the predicted yield when harvesting occurs asymmetrically.

Figure 4.7 shows the difference between the constant movement model, and the density de-

pendent movement model with s = 1 in terms of both the population equilibrium in patch

i, and the yield in patch i. Cooler regions, dark blue, represent regions where the constant

movement model predicts a higher population size or yield than the density dependent model.

These regions fall predominantly below the ci = cj line, and hence occur when ci > cj . If this

is the case, then harvesting in patch 1 is more intense than the effort in patch 2. In these

regions, the behaviour of the system is essentially the same as that described in the single

patch case. If however, cj > ci, then the population size, and hence the yield predicted in

patch i is lower in the constant movement model than the density dependent model. This

is because the difference in patch sizes is maintained more in the density dependent model

than the constant. In the constant movement model, the disparity in harvesting effort is

compensated for by the movement of individuals. Since a lower harvesting rate in patch 1,

would lead to a larger population there than in patch 2, density dependent movement will

maintain this higher population, whereas constant movement forces the patches to become

more synchronised. It is clear from this difference in predicted yields that neglecting the

effects of density dependent movement in coupled systems could lead to predictions that are

too high, if neighbouring patches are harvesting at lower rates, or too low if neighbouring

patches are harvesting at higher rates.

4.2.3 Logistic growth model

Harvesting and Extinction Conditions

As discussed in chapter 2, the constant recruitment model provides us with a simple model

of limited population growth, and is an appropriate approximation for stocked and managed

systems. The constant recruitment model also enables more analysis due to its simple form.

However, as in chapter 2, we wish to also consider a more realistic growth function which

allows reproduction to be regulated by intraspecific competition, modelling this by logistic
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Figure 4.7: Left: Difference in patch 1 population size predicted by density dependent model
with s = 1 and constant model. Negative areas show regions where density dependent model
predicts lower population size than constant. Right: Difference in yields predicted in patch
1, as harvesting efforts across both patches vary. Negative regions indicate where density
dependent movement predicts a lower yield than constant movement. Parameters used a =
2, b = 0.02,m = 0.1.

growth. The full two patch model is therefore given by

dN1

dt
= r1N1

(
1− N1

K1

)
−m

(
N1

K1

)s
N1 +m

(
N2

K2

)s
N2 − c1N1 (4.21)

dN2

dt
= r2N2

(
1− N2

K2

)
−m

(
N2

K2

)s
N2 +m

(
N1

K1

)s
N1 − c2N2. (4.22)

The logistic model differs from the constant recruitment model in that, if harvesting is carried

out at a fast enough rate, then it is possible to drive the system to extinction. The extinction

equilibrium (N1, N2) = (0, 0), is stable in the density dependent model if the eigenvalues of

J =

 r1 − c1 0

0 r2 − c1

 (4.23)

are both negative. The eigenvalues of matrix J are given by λ1 = r1 − c1, and λ2 = r2 − c2.

For positive growth rates (r1, r2 > 0) density dependent movement therefore implies that

harvesting in a single patch will never be sufficient to drive the population to extinction. In

fact the extinction threshold in the density dependent model is identical to that in a system of

two uncoupled, isolated populations. Both patches must be harvested at rates exceeding their
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Figure 4.8: Comparison between constant movement model a), and density dependent model
b) when a single patch is harvested. Density dependent movement allows the coupled patch
to maintain a much higher equilibrium. Parameters used r1 = r2 = 0.09,K1 = K2 = 100,m =
0.1, c1 = 1.

growth rates in order to drive the system to extinction. This is because harvesting reduces

the population size, therefore reducing the movement rate between the patches.

Harvesting in a single patch

If a single patch is harvested, the rate at which individuals leave the harvested patch and

enter the coupled patch is reduced. This in turn causes a reduction in the size of the coupled

patch. Since reproduction is density dependent, as well as movement, in the logistic model,

this reduction in population size causes the number of emigrants from the coupled patch to

reduce, and the growth rate to increase. This allows the coupled population to recover from

the effects of harvesting in it’s neighbour, and to maintain a positive equilibrium. The effect

of harvesting in a single patch can clearly be seen in figure 4.8. Here the harvested popu-

lation is not significantly different between the constant and the density dependent model,

however, the coupled population is much more severely affected by harvesting in the constant

movement model than in the density dependent case.

Whilst it appears in figure 4.8 that the harvested population does not differ by a signifi-

cant amount between models, the equilibrium value in the density dependent model is in fact

higher than that predicted by the constant model, albeit by a small amount. The equilibrium

size of the harvested patch is shown in figure 4.9 as the strength of density dependence in-
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creases. In the logistic growth model, as in the constant recruitment, we observe an increase

in harvested equilibrium for low harvesting effort, c < r1, however, as harvesting increases

c = r1, the harvested population shows an increase if density dependence is small, however,

for very strong density dependence, the population begins to drop.

Harvesting in both patches

Figure 4.9: Harvested population size as strength of density dependence increases in the
logistic growth model. Parameters used r = 2,K = 100,m = 0.1

As seen in the constant recruitment model, equal harvesting rates, across equal patches main-

tain the symmetry in both models, and hence the effect does not differ between constant or

density dependent movement. If however, the harvesting rates do not balance, c2 = αc1, then

for α 6= 1 the equilibrium values are shown in figure 4.10. In this figure, the x-axis shows

the harvesting effort applied in patch 1, with c2 = 0.5c1 in plot a), and c2 = 1.5c1 in plot

b). The blue lines show the change in patch 1 equilibrium, and the green show the patch 2
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Figure 4.10: Equilibrium sizes as effort increases for asymmetric harvesting efforts. Plot a) is
for c2 = 0.5c1 and plot b) is when c2 = 1.5c1. Solid lines give equilibrium values for constant
movement, dashed show the results when s = 1, and dotted show s = 2.

equilibrium. It is clear from these plots that for very small harvesting effort, the addition of

density dependence into the model makes very little difference, the lines for the three cases

considered (s = 0, 1, 2) are on top of each other. However, as the harvesting effort in patch 1

approaches the growth rate in patch 1, c1 → r1, the differences between the models become

more apparent. In plot a), α < 1 and patch 2 is harvested at a lower rate than patch 1. In

this case, density dependent movement causes a decreases the population size in patch 1 and

an increase in the population size in patch 2. The converse is seen in figure b). However in

both cases, the patch with the lower harvesting effort sees an increase in population size if

movement is density dependent, and the patch with the higher effort sees a decrease in size.

This reflects the results when a single patch alone is harvested, and the reasoning behind

these dynamics is the same. These properties are shown in contour plots in figure 4.11. The

vivid regions of these plots, deep blue and yellow-red show the divergence of the two models

close to the extinction threshold.

Yield if a single patch is harvested

As the strength of density dependence increases, the yield follows the equilibrium behaviour

shown in figure 4.9. In all of theses cases, for weakly density dependent movement, s ≈ 1,

the equilibrium is higher than that predicted by the constant model. We would therefore
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Figure 4.11: Contour plots showing regions where density dependent model predicts higher
yield than constant (warm regions), and vice versa (cool regions). Black square represents
extinction.

expect that the yield predicted by the density dependent model for s = 1 is higher than

that predicted by the constant movement model. This is shown in figure 4.12. Figure a) of

4.12 shows the yield if both patches have positive growth rates, and are therefore sources of

individuals to other patches. In this case, it is impossible to eradicate the population entirely

through harvesting in a single patch alone. In the second plot of figure 4.12, the growth rate

in patch 2 is negative, and the harvested patch is a source, in a source-sink system. In this

case, harvesting at a high enough rate drives the population to extinction. In both these

cases, density dependent dispersal predicts a higher yield.

Yield if both patches are harvested

Once again, we expect the yield if both patches are harvested to follow the equilibrium pop-

ulations shown in figures 4.10 and 4.11. This is indeed the case and the yield produces a

similar contour map to that shown in figure 4.11.

4.3 Density dependent emigration in perturbed systems

In the following sections, we address the impact that spatial perturbation, in response to

harvesting practices, has on this system. In the previous models discussed throughout this

chapter, harvesting practices have been viewed as equivalent to a natural reduction in pop-
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Figure 4.12: Yield obtained from patch 1 for different strengths of density dependence.
Increasing density dependence leads to an increase in the yield. Parameters used: a)
r1 = r2 = 2,K1 = K2 = 100,m = 0.1, b) r2 = −2.

ulation density. Accordingly, movement away from the harvested patch has reduced as the

population density is reduced. However, the behaviour of individuals in the presence of dis-

turbances such as hunting can be vastly different to their response to natural population

reduction. For example, a significant increase in the number of ‘take-offs’ in a population of

snow geese (a good measure of disturbance response) was observed in response to hunting

activities [13]. This increased avoidance behaviour differs from the response to natural levels

in population reduction due to the effect of human interference in the natural environment.

Evolved traits for optimising movement activities to take advantage of lower population num-

bers may be overcome by these external factors which may be perceived as an imminent threat

to life and therefore cause a more extreme avoidance behaviour.

In chapter 2, we have shown that both a linearly increasing movement rate, and a sat-

urating movement rate cause qualitatively similar behaviour. In this section we therefore

consider only the linear function. The addition of density dependent movement into the

model provides the mechanism whereby removal of individuals, through harvesting, acts in

two opposing ways. Firstly, harvesting is assumed to cause disturbance to the resident popula-

tion and increase emigration from the patch. This outward flux is counteracted by the second

consequence of harvesting which is to reduce the size of the resident population. The reduced

population density causes a reduction in the emigration rate, and a subsequent reduction in
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the number of individuals which would naturally leave the patch. Density dependent dispersal

therefore provides a buffer to the effects of disturbance in terms of population numbers. We

would therefore expect that the yield predicted under the assumption of density dependent

movement would be higher than that predicted by constant movement in spite of spatial per-

turbation.

In chapter 2, we assumed that any disturbance was modelled by an increase in the rate of

movement in addition to the natural rate. For a direct comparison with those results, we use

the same assumptions here. The perturbation effect is therefore modelled by the following

general model

dN1

dt
= f(N1)−mN1

(
N1

K1

)s
− σc1N1 +mN2

(
N2

K2

)s
+ ρc2N2 − c1N1 (4.24)

dN2

dt
= f(N2)−mN2

(
N2

K2

)s
− ρc2N2 +mN1

(
N1

K1

)s
+ σc1N1 − c2N2, (4.25)

with the perturbed rate of movement out of a patch of the form M1(c1) = m1

(
N1
K1

)s
+ σc1.

In this section we detail the effect of this form of spatial disturbance on the yield obtained in

both the constant recruitment model, and the logistic growth model, when either one or both

patches are harvested. We then investigate the impact that density dependent movement has

on the population dynamics once harvesting is stopped.

4.3.1 Perturbation effect with constant recruitment

Harvesting in a single patch

In the first instance, we assume that patch 1 alone is harvested, whilst patch 2 is left un-

touched. In the constant recruitment model we have shown (figure 4.5) that if both patches

are of equivalent carrying capacity, then the yield obtained in a single patch in the density

dependent emigration model is less than that given by the constant movement model. It

has also been shown in Chapter 2 that as the strength of disturbance (perturbation effect)

increases, the yield obtained in decreases for any given harvesting rate. This result holds

regardless of the form of movement, either constant or density dependent. Figure 4.13 shows

the change in yield obtained when only patch 1 is harvested (c2 = 0), as the strength of
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disturbance increases. In all cases, it is clear that increasing disturbance causes a decrease in

yield as is to be expected due to the reduction in population. At very low rates of harvesting,

(c1 = 0.002) the relative effect of disturbance is low, even if the response per unit effort is

high. In this case the actual reduction in yield is low, and the difference between the models

could be considered to be negligible. From figure 4.13, it is clear that the relationship between

the thresholds in the absence of disturbance is maintained as the strength of disturbance in-

creases. For example, if in the absence of disturbance the density dependent model predicts

a higher yield than the constant, then even for high levels of disturbance this relationship is

maintained.

Figure 4.13 shows only this relationship for three harvesting rates. It is clear from these

plots that for low harvesting rates, the density dependent model predicts a higher yield than

the constant movement model, with this relationship switching as harvesting effort increases.

In order to gain an understanding of the importance of perturbation as the harvesting rate

increases, the figures shown in 4.14 show the difference in the yields predicted by the two

models. The contours shown in these plots show where the yield predicted by the density

dependent model is equal to that predicted by the constant movement model (YDD−YC = 0).

The plots in figure 4.14 show this contour for two cases, weak and strong coupling between

the populations. It is clear that for a system of weakly coupled patches, with a low rate of

movement between them, then the difference in the models is dependent on both the harvesting

effort applied and the strength of disturbance. For low ρ, i.e weak disturbance, and low c1,

the density dependent model predicts a higher yield than the constant movement model. This

is due to the density dependent reduction in emigration rate out of patch 1 in response to

the population reduction. As harvesting effort increases, the population in patch 2 becomes

more significantly reduced. The density dependent response in this case causes a reduction

in the number of immigrants into patch 1, and hence the constant movement model predicts

a higher yield. Increasing the strength of disturbance in this case offsets the reduction in the

patch 2 population, due to the influx of individuals out of patch 1. This maintenance in size of

patch 2 population maintains the immigrants into patch 1, and hence the density dependent

movement model predicts a higher yield than the constant for a larger range of harvesting

rates. If the natural rate of movement is high, then figure 4.14 shows that the strength of
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Figure 4.13: Change in yield in patch 1 as strength of disturbance varies. In all cases,
increasing disturbance causes a decrease in yield obtained due to an increase in emigrants in
response to harvesting. Parameters used ai = 2, bi = 0.02,m = 0.1, c2 = 0

disturbance becomes much less significant and the difference between the predicted yields

is strongly dependent on the harvesting effort applied. For a low harvesting rate of around

c1 = 0.045, ρ = 0 would predict that the constant movement model has a higher yield

than the density dependent model. As disturbance increases, then this relationship switches.

This harvesting rate is however so close to the threshold, that the difference between the

predicted yields is slight, with the largest difference between the yields, for the strongest level

of disturbance evaluated, ρ = 10, being around 0.4%.

Harvesting across both patches

The results described above apply only to harvesting a single patch in a coupled system. We

now consider the effect of harvesting both patches simultaneously. Previously, we have shown
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Figure 4.14: Parameter space showing difference in yields predicted by the constant and the
density dependent models as c1 and ρ are varied. R1 shows the region where the constant
movement model predicts a higher yield in patch 1 than the density dependent movement
model. R2 shows the reversal of this condition. Parameters used a1 = 2, b1 = 0.02, low
m = 0.1, high m = 1.

that symmetric patches, harvested at equal rates will reach the same yield given by

Y =
ac

b+ c
.

This yield is independent of both the strength of density dependence in movement, and also

the strength of disturbance observed in response to harvesting. If however harvesting between

the two patches is unequal, with c2 = αc1, then the asymmetry in harvesting practices triggers

a density dependent response in movement. In this case, the yield predicted by the constant

movement model and the density dependent model will be different. In Chapter 2, we were

able to show that, with linear disturbance, the yield in patch i, as cj increases, either increases

if ρ > m2/b, or decreases if ρ < m2/b, as shown in figure 4.15 (a). In the density dependent

case, we are unable to find the exact threshold, however, simulation results detailing the yield

in patch 1 for a given effort, as the effort in patch 2 changes are shown in figure 4.15(b).

These show that for high enough levels of disturbance ρ = 2 in this example, the predicted

yields are qualitatively similar, with the patch 1 yield increasing monotonically. However, for

intermediate levels of disturbance, (ρ = 0.5, 1) the yield obtained in patch 1 sees an initial

drop as harvesting in patch 2 increases before a ’recovery’ of the yield to higher levels as the

neighbouring harvesting rate increases further.
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Figure 4.15: Yield achieved in patch 1 as harvesting effort in patch 2 varies, for a constant
harvesting effort in patch 1.

This dip in yield is due to the density dependent response of the patch 2 population for

low levels of harvesting. The reduction in population density reduces the movement out of

patch 2 and into patch 1. As the harvesting rate intensifies in patch 2, the density dependence

is overcome by the strength of the perturbation effect, and individuals leave the patch due to

disturbance. This leads to an increase in immigrants into patch 1, and therefore an increase in

the yield obtained there. Figure 4.15 shows the yield in patch 1 for a single harvesting effort.

In order to capture the effect of density dependent movement more generally, we compared the

yield predicted in patch i by the constant model and the density dependent model for a range

of both c1 and c2. The difference in predicted yields is demonstrated in the contour plots in

figure 4.16. These plots confirm that when c1 = c2, the effect of density dependent movement

is cancelled out by the symmetry of the system. If cj > ci, then the density dependent model

predicts a higher yield in patch i than the constant model. If ci > cj , then the density depen-

dent model predicts a lower yield in patch i than the constant movement model. Figure 4.16

also shows the effect of increasing the strength of disturbance ρ when harvesting across both

patches. We see that for high ρ, the difference between the models becomes less pronounced.

This is to be expected since density dependence offsets the effects of perturbation, so will have

a stronger effect for weak perturbation. As ρ increases, the strength of disturbance dominates

the dynamics, and the difference induced by the movement rates is reduced.
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Figure 4.16: Contour plots showing differences in patch 1 yield between density dependent
model (s = 1) and constant movement model. Positive regions show where density dependent
model predicts a higher yield.

110



4.3.2 Perturbation effect in the logistic growth model

In the case of the logistic growth model, we once again assume that disturbance leads to an

increase in movement in addition to the natural rate. This leads to

dN1

dt
= r1N1

(
1− N1

K1

)
−mN1

(
N1

K1

)s
− ρc1N1 +mN2

(
N2

K2

)s
+ ρc2N2 − c1N1 (4.26)

dN1

dt
= r2N2

(
1− N2

K2

)
−mN2

(
N2

K2

)s
− ρc2N2 +mN1

(
N1

K1

)s
+ ρc1N1 − c2N2. (4.27)

Harvesting in a single patch

In this case, if a single patch alone is harvested, Jacobian matrix evaluated at the (0, 0)

equilibrium is given by

J(0, 0) =

 r1 − ρc1 − c1 0

ρc1 r2

 . (4.28)

The eigenvalues of which are given by

λ1 = r1 − ρc1 − c1 (4.29)

λ2 = r2. (4.30)

As shown in the unperturbed model, extinction is only possible in this system if the un-

harvested patch is a population sink, with intrinsic growth rate r2 < 0. If r2 > 0, then

the unharvested population will always produce immigrants into the harvested patch, allow-

ing this patch to be repopulated once harvesting is ceased. If patch 2 is a sink, then total

population extinction will occur if

c1 >
r1

1 + ρ

hence an increase in the perturbation effect (ρ) will lead to a reduction in the harvesting

effort needed to cause extinction. In contrast to the constant movement model, the necessary

condition for population extinction relies only on the population growth rate and the strength

of the perturbation effect. As the strength of perturbation increases this threshold decreases

to zero, and is not affected by the strength of the natural movement rate, since this tends to

zero at low densities.
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Figure 4.17: Maximal sustainable yield obtained from harvesting in patch 1 as strength of
disturbance increases. Different lines represent different strengths of density dependent emi-
gration. Fixed parameters: r1 = r2 = 2,K1 = K2 = 100,m = 0.1.

The unperturbed system, exemplified in figure 4.12 has shown that density dependent move-

ment causes an increase in the maximal sustainable yield obtained from harvesting a single

patch. In the perturbed system, we observe a similar increase in the MSY as the strength of

density dependence increases. Figure 4.17 shows the change in MSY as the strength of distur-

bance increases. As observed in the constant recruitment model, an increase in disturbance

causes a reduction in the yield obtained. Also noticeable from figure 4.17 is the fact that

increasing the strength of the density dependent movement response, in strongly perturbed

systems, causes a more significant increase in the MSY obtained. For low rates of disturbance

ρ, the effect of density dependence in terms of the yield is very small. This result is clarified

in figure 4.18 which shows the change in maximal sustainable yield as the strength of density

dependent emigration increases. The four plots represent increasing strengths of disturbance.

Whilst high levels of disturbance will cause a reduced yield compared to low disturbance, if a

system is disturbed, then density dependent movement predicts a higher yield than a constant

rate of movement.
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Figure 4.18: Maximal sustainable yield as the strength of density dependent emigration in-
creases. Different graphs represent increasing strengths of disturbance.
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Harvesting across both patches

If harvesting is carried out across both patches, then the equivalent of the Jacobian matrix

in (4.28) is given by

J(0, 0) =

 r1 − σc1 − c1 ρc2

σc1 r2 − ρc2 − c2

 . (4.31)

The (0, 0) equilibrium is therefore stable when

c1 >
r1((1 + ρ)c2 − r2)

(1 + ρ+ σ)c2 − (1 + σ)r2
. (4.32)

As in the case of the constant movement model, for a symmetric system of patches, with

r1 = r2 = r, ρ = σ and c1 = c2, then the extinction threshold is given by the point c1 = c2 = r.

As such, this point is independent of both the strength of disturbance and the strength of

density dependent emigration. Away from this point, the strength of perturbation begins to

take effect. The extinction threshold in this model has asymptotes at

c1 =
(1 + σ)r1
1 + σ + ρ

, c2 =
(1 + ρ)r2
1 + σ + ρ

, (4.33)

which are at higher values of c1, c2 than the equivalent asymptotes in the constant movement

model. This indicates that a higher level of harvesting effort is required to cause population

extinction if movement rates are density dependent. This broad qualitative result is true for

any strength of disturbance.

4.4 Discussion

In this chapter, we have expanded the work presented in Chapter 2, to consider the effect

that density dependent movement of individuals between patches has on the population sizes

found within those patches, and also the yield. This study is predominantly a comparison

between the constant movement model in chapter 2, and the analogous model with density
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dependent movement. We have shown that density dependent movement between patches

limits the synchrony of the population sizes in a patchy environment. Synchrony between

patches is often observed in metapopulation or patch models where the rate of movement be-

tween patches is high. This leaves the populations vulnerable to the dynamics of surrounding

patches. Catastrophic events such as local patch extinctions have a much wider ranging and

serious impact if the coupled populations have a high degree of synchrony. We have shown

that density dependent movement buffers individual patches against the dynamics of other

patches, thus providing a mechanism for a population within a patch to survive surrounding

catastrophes. This buffering effect is also seen in regards to the effects of harvesting. We have

shown that, whilst harvesting causes a more severe reduction in the target patch if move-

ment is density dependent, the unharvested patch, or area of lower harvesting rate, has an

increased population size if movement is assumed to be density dependent. The addition of

density dependent movement in the model suggests that harvesting efforts may be more tar-

geted than the constant movement model would suggest. Spatial disturbance or perturbation

in this model offsets the effects of density dependence, with the difference between the density

dependent, and the constant models becoming less significant for high levels of disturbance.

In terms of the yield attained, if a single patch in this system is harvested, we have shown that

the density dependent movement model predicts a higher yield only if the harvesting rate is

low. This is due to the reduction in emigration as a density dependent response to population

reduction. An increase in movement due to spatial disturbance suggests that the density de-

pendent movement response gives a higher yield than constant movement for a higher range

of harvesting efforts. We have shown that the density dependent movement model changes

the dynamics and the effect of harvesting a population, we now wish to investigate the combi-

nation of density dependent movement and the control of disease in this patchy environment,

and this is the focus of the following chapter.
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Chapter 5

Density dependent movement:

implications for disease control

5.1 Introduction

The following chapter builds on the work presented in the previous two chapters by combining

the density dependent movement function with a directly transmitted disease. As in chapter

3 we are concerned here with culling the populations across both patches for the purpose of

disease control. We consider the asymptotic conditions of long term constant control strate-

gies and compare the pathogen exclusion thresholds calculated with those in chapter 3. In

addition to the long term control conditions, this chapter also investigates the transient ef-

fects of culling in this system, along with the population and disease dynamic consequences

of ceasing a culling strategy prior to disease eradication.

We begin by focusing on the difference in disease control conditions due to density dependent

emigration only. The second section of this chapter then considers the effect that spatial

perturbation has on this system.
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5.2 SI model with density dependent emigration

5.2.1 General dynamics

We begin this section with a description of the full, two patch, SI model with density dependent

movement. As we have done in chapter 3, for increased analytic tractability, we consider only

the constant recruitment growth function. The full model is therefore given by

dS1
dt

= a1 − b1S1 − β1S1I1 −m
(
N1

K1

)s
S1 +m

(
N2

K2

)s
S2 − c1S1

dI1
dt

= β1S1I1 − (b1 + γ1)I1 −m
(
N1

K1

)s
I1 +m

(
N2

K2

)s
I2 − c1I1

dS2
dt

= a2 − b2S2 − β2S2I2 −m
(
N2

K2

)s
S2 +m

(
N1

K1

)s
S1 − c2S2

dI2
dt

= β2S2I2 − (b2 + γ2)I2 −m
(
N2

K2

)s
I2 +m

(
N1

K1

)s
I1 − c2I2, (5.1)

where Ni = Si + Ii and Ki = ai/bi. As in the previous chapter, the assumption of density

dependence means that the movement rates between the patches are determined by the relative

population densities, the parameterm is therefore a measure of the access between the patches.

If m is high, and the system is at equilibrium, then the rate of movement between the patches

is fast. In the absence of infection, this model reduces to that detailed in chapter 4, and in the

case that s = 0, the model reduces to the two patch, SI model with constant movement, as

detailed in chapter 3. The aim of this chapter is to quantify the epidemic effects of increasing

parameter s, and moving from a constant movement rate between patches, to a density

dependent one. This is done by evaluating the pathogen exclusion threshold, following the

analysis detailed in [93]. The pathogen exclusion threshold is the bifurcation curve in c1 − c2

space where the disease free equilibrium (S∗1 , 0, S
∗
2 , 0) changes from instability to stability.

This curve is found by evaluating the Jacobian matrix at this point. In the case of strictly

density dependent movement, s > 0, this Jacobian is given by

J =

 A B

0 C

 (5.2)
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where

A =

 −b1 −m(s+ 1)
(
b1S1
a1

)s
− c1 m(s+ 1)

(
b2S2
a2

)s
m(s+ 1)

(
b1S1
a1

)s
−b2 −m(s+ 1)

(
b2S2
a2

)s
− c2

 , (5.3)

B =

 −(s+ 1)m
(
b1S1
a2

)s
(s+ 1)m

(
b2S2
a2

)s
(s+ 1)m

(
b1S1
a1

)s
−(s+ 1)m

(
b2S2
a2

)s
 (5.4)

C =

 β1S1 − (b1 + γ1)−m(s+ 1)
(
b1S1
a1

)s
− c1 m(s+ 1)

(
b2S2
a2

)s
m(s+ 1)

(
b1S1
a1

)s
β2S2 − (b2 + γ2)−m(s+ 1)

(
b2S2
a2

)s
− c2

 .

(5.5)

Since this matrix is block upper triangular, the eigenvalues of J are equal to the eigenvalues of

A and C. It is possible to show that the eigenvalues of A always have negative real part, since

the maximum eigenvalue is bounded by {−b1 − c1,−b2 − c2} and stability of the disease free

equilibrium is therefore determined entirely by the eigenvalues of the infection invasion matrix

C. As in the case of constant movement, we are able to determine the pathogen exclusion

threshold which is given by the upper branch of the hyperbola defined by det(C) = 0. The

pathogen exclusion threshold is therefore given by

c2 = β2S
∗
2− (b2 +γ2)−m(s+1)

(
b2S
∗
2

a2

)s
− m2(s+ 1)2(b1S

∗
1)s(b2S

∗
2)s)

as1a
s
2

(
β1S∗1 − (b1 + γ1)−m(s+ 1)

(
b1S∗

1
a1

)s
− c1

) ,
(5.6)

which has asymptotes at

c1 =β1S
∗
1 − (b1 + γ1)−m(s+ 1)

(
b1S
∗
1

a1

)s
c2 =β2S

∗
2 − (b2 + γ2)−m(s+ 1)

(
b2S
∗
2

a2

)s
. (5.7)

Comparing this threshold to the constant movement case, when s = 0, we see that the

pathogen exclusion threshold for constant movement has asymptotes at

c1 =β1S
∗
1 − (b1 + γ1)−m

c2 =β2S
∗
2 − (b2 + γ2)−m. (5.8)
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It must be noted that the difference between these thresholds is not simply defined by the

density dependent term (s+1)
(
b1S∗

1
a1

)s
. The equilibrium populations S∗i are dependent on the

control strategy applied, and will differ depending on the form of movement. In particular, we

have shown in the previous chapter that density dependent movement can lead to a reduced

culling effect for a given effort in the culled population, and an increased effect in the coupled

population when compared to the constant movement model if culling rates are low, and a

reversal in this relationship if culling is more intensive, with ci >> bi. Since we are unable

to find an explicit expression for the population size in the density dependent model, we

must rely on simulation results to elucidate these differences. We address the differences in

these thresholds by considering three cases: (i) both patches are symmetric, and neither is

a reservoir of infection, (ii) both patches are symmetric and both are reservoirs of infection,

(iii) one patch is a reservoir for infection, coupled to a second non-reservoir patch.

5.2.2 Reservoirs of infection

Recall from chapter 3 that a reservoir of infection is defined as a population which could

sustain an infectious agent in the absence of any coupling with surrounding populations.

Mathematically, a patch is a reservoir of infection if Pi = βiS
∗
i − bi − γi > 0, where S∗i is the

disease free equilibrium of patch i. We have previously shown that, if movement between two

patches occurs at a constant rate, then the pathogen can be excluded from the system simply

by culling the reservoir patch. Here we compare the properties of the pathogen exclusion

thresholds between the constant model and the density dependent movement model with

s = 1 in the three cases outlined above.

P1 < 0,P2 < 0

We have shown in chapter 3 that constant rate of movement between non-reservoir patches

is insufficient to sustain an infection. The same holds true in the case of density dependent

dispersal. The coupling of patches in both the constant movement case, and the density

dependent movement case causes a level of homogenisation of the population sizes. That is,

any difference in population size between the two patches will be reduced by coupling. Thus,

even if the two patches have very different population sizes, if neither patch in isolation could
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support infection, coupling will only serve to reduce the size of the larger population, and will

therefore be insufficient to maintain the infection.

P1 > 0,P2 > 0

If both patches are reservoirs of infection in isolation and movement is constant, then an

increase in the movement rate between patches will cause a significant reduction in the neces-

sary control efforts [93]. Since any positive culling strategy (c1, c2) will reduce the populations

in both patches, assuming both patches are symmetric with equal demographic and disease

parameters, then both b1S1/a1 and b2S2/a2 will be less than 1. If this is the case, then

the asymptotes of the pathogen exclusion threshold will increase for increasing s and density

dependent emigration will lead to an increase in the control strategy necessary for disease

eradication. This is shown in figure 5.1.

Figure 5.1: Pathogen exclusion thresholds for constant movement model (blue) and density
dependent movement model (red). Density dependent movement requires a more intensive
level of control to eradicate disease due to the decline in movement rates. Parameters used:
a) a1 = a2 = 2, b1 = b2 = 0.2,m = 1, β1 = β2 = 0.308, γ1 = γ2 = 1. b) a1 = a2 = 2, b1 =
0.2, b2 = 0.5,m = 1, β1 = β2 = 0.308, γ1 = γ2 = 1.s = 1

This increase in the pathogen exclusion threshold for density dependent movement is a product

of the reduction in movement rate as the population is reduced by culling. As the populations

are decreased through culling, the movement between the patches is reduced. A reduction

in the movement rate leads to a higher pathogen exclusion threshold which is closer to that
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predicted if the two patches were in isolation. The culling effort applied in one patch has a

reduced effect on the coupled patch if the coupling strength is weak, meaning that for a given

effort in patch 1, a higher effort is required in patch 2 in order to achieve disease eradication.

P1 > 0,P2 < 0

If there is a difference in the size of the two patches such that in isolation, one would be a

reservoir, and the second would not support the infection, then the extent of coupling may

have one of two outcomes. Either, coupling may cause the infection to die out, as the larger

patch is reduced in size, or it may facilitate the disease to spread, as infected individuals are

able to migrate into areas where infection would naturally die out. If either patch is large

enough to maintain the disease, then the whole system will become infected.

The two models considered respond differently to the coupling strength. The parameter

m in the constant movement model is the rate at which individuals move from one patch to

the other. In the density dependent model, individuals move at this rate if both patches are at

their carrying capacity, and so the parameter m takes on a different role. It is perhaps more

correctly thought of as the potential for the patches to be coupled. In the constant move-

ment model, the populations always use this potential to full effect, whereas in the density

dependent model, a reduced population, below its carrying capacity, will migrate at a lower

rate than m, and the movement of an inflated population will be mediated by the size of this

parameter. Varying this parameter will therefore affect the equilibrium size of the population

resident in each patch. Figure 5.2 considers only the effect in this change of population size on

the reservoir potential for infection, showing Pi = βiS
∗
i − bi − γi for both patches as they are

increasingly coupled. This figure is divided into two regions. In region (1), infection is able

to spread in both models as patch 1 is a reservoir and hence a source of infection to patch 2.

In region (2) in figure 5.2, the constant model predicts that P1 < 0. In the constant model in

this case, infection would naturally die out as the asymmetry in the populations is smoothed

out by coupling. However, as discussed in chapter 4, if movement is density dependent, then

the patches maintain more of their isolated heterogeneity in spite of coupling. In the density

dependent model therefore, increasing the potential for coupling, by opening up a corridor
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between patches of habitat, is not sufficient to cause higher rates of movement, and does not

affect the population sizes as much. Patch 1 therefore remains a reservoir of infection and a

source to patch 2 because the patch 1 population is maintained at a high enough level.

Figure 5.2: Reservoir property Pi of patch i as the coupling between the patches, m, is
increased. In isolation, m = 0, patch 1 is a reservoir of infection, P1 > 0, and patch 2
is a non-reservoir. Solid line represents constant movement model, dashed line is density
dependent movement.

An example pathogen exclusion threshold for asymmetric patches is shown in figure 5.1 (b),

showing clearly that it is much easier to eradicate disease if movement is constant rather than

density dependent.

These results show that it can be significantly harder to eradicate disease in a patchy system if

movement between patches is density dependent. Pathogen exclusion thresholds give a good

indication of the necessary conditions for disease eradication, however, tell us nothing about

the difference between the models in terms of transient dynamics. We address this problem

directly by comparing the transient dynamics of both the constant and the density dependent

models.
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5.2.3 How does density dependent movement affect transient dynamics?

The aim of this section is to evaluate whether density dependent movement affects the length of

time to eradication if sufficient control is applied. Throughout this section, we use parameters

which require an approximately 70% removal of individuals within each patch for complete

disease eradication. This figure has been chosen as an example to be in line with the UK

government’s targets for the badger cull carried out in October 2013 [110]. We shall compare

the time to disease eradication if this culling intensity is achieved, as well as investigating the

transient dynamics if this target is not met.

A note on parameter choices

The overall aim of this thesis is to determine the general qualitative impact of movement

between patches on the necessary conditions for population and disease control. As such, the

parameters throughout are chosen to show the particular behaviour being discussed. In this

section we wish to demonstrate the thought process used when determining a simple culling

strategy, and how movement between patches affects this assumption. To do this, we fix the

carrying capacity within each patch to be 100. This can be done somewhat arbitrarily, and

here we use a constant birth rate a = 2 and a per capita death rate of b = 0.02. The unit in

which time is measured is also somewhat arbitrary, however if we assume that time is measured

in months, then these demographic parameters tell us that, on average, 2 new individuals are

welcomed into the population each month, and the average lifespan of a healthy individual

is 1/0.02 ≈ 50 months, which is just over 4 years. In the following section we wish to create

a system whereby a cull of 70% of the population is necessary for disease eradication. We

make the assumption that this figure is based on a single patch model. In a single patch,

the disease free equilibrium in the absence of a cull is a/b = 100, and the equilibrium of the

culled population is a/(b+ c). The percentage reduction in population caused by the cull, is

therefore given by

100× (a/b− a/(b+ c))

a/b
= 100× c

b+ c
(5.9)

and hence, a 70% reduction in population is achieved by a culling rate of 0.0467 per month,

throughout this section we approximate this by a culling rate of c = 0.05. The remaining
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parameters in the model are the transmission rate β and the virulence of the infection, γ. We

assume that the infection is only slightly virulent and therefore set γ = 0.002 to be a factor of

10 smaller than the natural death rate. This leaves us with only one parameter which must be

fixed. We have assumed that this reduction in population is sufficient for disease eradication,

hence we must have

βa

b+ c
− (b+ γ + c) < 0.

This requires that the transmission rate is set at approximately 0.00243. In the following

simulations we use the transmission rate β = 0.0024.

Transient effects with density dependent emigration

If the single patch defined by the parameters above is coupled by movement to a second iden-

tical patch, then the pathogen exclusion threshold of the two patch system is given in figure

5.3. The blue line here represents the constant movement model with m = 0.1, and the red

line in this figure shows the threshold if emigration is density dependent (with s = 1). It

is clear, that as in the earlier discussion, the two thresholds intersect when c1 = c2 ≈ 0.05.

If the patches are not culled evenly, however density dependent movement requires a higher

combined culling strategy.

If we cull both patches evenly at just above the necessary rate c1 = c2 = 0.06, (strategy C1 in

Figure 5.3) then the symmetry between the patches negates any effect of density dependent

movement, and both models predict identical transient effects. These are shown in figures 5.4

(a-d). In both cases, the infection rapidly takes off in the population, reaching its peak preva-

lence in approximately 45 months (5.4 (a)). The disease is endemic, affecting approximately

90% of the population within each patch (5.4 (b)). Once culling begins, the infected popu-

lation decreases rapidly, whilst the susceptible population decreases for a short time, before

increasing due to the removal of infected individuals. It should be reiterated here that both

susceptible and infected individuals are culled at the same rates, and hence any increase in

susceptibles is due to the drop in transmission rate as the population size is depleted. With a

culling rate in both patches of 0.06, the infected population takes approximately 175 months
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Figure 5.3: Pathogen exclusion thresholds for parameters estimated in section 4.1. Blue
threshold represents constant movement (s = 0) and red threshold shows the density de-
pendent emigration model (s = 1). Parameters used: ai = 2, bi = 0.02, γi = 0.002, βi =
0.0024,m = 0.1 for i = 1, 2.

to drop below 1%. This long time to pathogen exclusion highlights the limitations of using

only the pathogen exclusion threshold as a condition for disease control, and the importance of

considering transient dynamics. In these simulations, we ran the model with this culling rate

for 1000 months, and took the population sizes after this as our initial conditions for figure

5.4d. This final figure shows the regrowth of the population, achieving 99% of its carrying

capacity in approximately 250 months.

If only a single patch in this system can be culled, then the pathogen exclusion threshold is

clearly (from figure 5.3) going to be different depending on the type of movement exhibited

by the species. If a single patch model is used to estimate the required rate of culling, the

predicted rate would be c = 0.05 (strategy C2 in figure 5.3) in this example, which is below

the pathogen exclusion threshold regardless of the movement rate. Culling at this rate would

allow the infection to persist in the population in both the constant movement, and the den-

sity dependent emigration model, as shown in figure 5.5. In both models, as expected, culling
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Figure 5.4: Identical transient dynamics of both constant movement and density dependent
movement models if both patches are culled equally. Plots a)-c) show the dynamics before,
during and after cull, showing regrowth of population after disease has been eradicated. Both
models predict identical behaviour. Parameters used ai = 2, bi = 0.02, βi = 0.0024, γi =
0.002,mi = 0.1, ci = 0.05.

leads to a more significant drop in the population of patch 1 that patch 2. The number of

infected individuals in both patches decreases significantly, however the susceptible popula-

tion in patch 2 (not culled) sees a more significant increase during the culling period than

the culled patch. This is because the susceptible population in patch 1 is suppressed by the

cull. Once the cull is ended, the susceptible population in patch 1 sees an initial increase

due to the reduced infected population. However, as the number of infected individuals in

patch 1 increases, the number of susceptibles decreases. The number of infected individuals

in patch 2 increases more slowly than patch 1 after the cessation of culling, but the number
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of susceptible individuals in patch 2 does not see a significant increase after culling, only a

drop in number due to infection.

Figure 5.5: Transient dynamics of constant movement model (top row), and density dependent
model with s = 1 (lower row) if patch 1 alone is culled at a rate of 0.06. Culling rate
is insufficient to rid the population of infection. Parameters used ai = 2, bi = 0.02, βi =
0.0024, γi = 0.002,mi = 0.1, c1 = 0.06, c2 = 0.

The density dependent emigration model, figure 5.5 lower row, shows the same qualitative

behaviour as described above, however the reduction in the infected population in patch 2

(not culled) is less significant. This leads to a smaller susceptible population in patch 2 due

to the larger number of infected individuals. This reduced effect on patch 2 is due to the

reduction in movement induced by culling patch 1. The increase in the susceptible population

in patch 1 is slightly more significant after the cessation of culling. This is due to the fact
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that patch 2 has a larger population, and therefore a faster movement rate into patch 1. The

smaller population in patch 1 means that the movement rate out of this patch is much slower,

and hence this imbalance means that the net movement of individuals causes patch 1 to swell

in size more significantly than the constant movement model.

If the constant movement model is used to calculate the required level of control in patch

1, then a rate of around 0.15 would be predicted. In figure 5.6 we have used a culling rate

in patch 1 of 0.16 (strategy C3 in figure 5.3). It is clear from these plots that eradication is

achieved in the constant movement model, whereas the disease persists in the density depen-

dent model. This persistence occurs because culling in patch 1 reduces the population, and

hence the rate of emigration. This leads to an imbalance in movement rates, since emigration

out of patch 2 is higher due to the larger patch size. This imbalance in movement means that

individuals arrive into the culled patch faster than they leave, and the culling rate predicted

by the constant movement model is insufficient.

The density dependent pathogen exclusion threshold for these parameter values does not, in

fact, cross the axes. This indicates that control of a single patch will always be insufficient to

cause complete eradication of disease since the second patch will always support the pathogen.

For the final part of this section, we will look at the effect of a successful, but skewed control

strategy in both models. To do this, we fix the culling rate in patch 2 at c2 = 0.05 and allow

that of patch 1 to vary from 0 to 1. From the thresholds in figure 5.3, we expect all values of

c1 > 0.05 to cause total eradication of infection in both models. We are interested in the effect

of density dependent movement on the time to pathogen exclusion. Since we cannot find this

time analytically, we must define complete extinction for the purpose of simulations. In the

simulations used to produce figure 5.7 we have assumed an infection free system corresponds

to one where the number of infected individuals within each patch is below 0.001. More severe

tolerances have been tested and the same qualitative behaviour is observed. The roughness

of the curves shown in this figure are due to this cut off in the numerical simulation, however

lower tolerances do not serve to significantly smooth the curves out. Figure 5.7 shows that,
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Figure 5.6: Transient dynamics of constant movement model (top row), and density dependent
emigration model (lower row). Left column shows dynamics during cull, right column shows
population regrowth after cull ends. Parameters used ai = 2, bi = 0.02, βi = 0.0024, γi =
0.002,mi = 0.1, c1 = 0.16, c2 = 0.

whilst both models do indeed predict pathogen exclusion for c1 > 0.05, the constant move-

ment model predicts a faster rate of removal than the density dependent emigration model.

If movement is influenced by the population density in this way, then the constant move-

ment model will therefore predict both a rate of control which may be insufficient, as well as

predicting that control may be ceased earlier than necessary. Neglecting density dependent

emigration may therefore lead to persistence of the pathogen even in the face of seemingly

suitable control strategies.
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Figure 5.7: Time to extinction as control in patch 1 varies for both the constant movement
model and density dependent emigration. Parameters used ai = 2, bi = 0.02, βi = 0.0024, γi =
0.002,mi = 0.1, c2 = 0.05.

5.3 What difference does spatial perturbation make if move-

ment is density dependent?

Chapter 3 has detailed the effect of spatial perturbation on the pathogen exclusion threshold

if the movement rate in the absence of culling is constant. Here we aim to evaluate the effect

of spatial perturbation on the density dependent model. In order to do this, we assume that

the perturbation effect is modelled by an increasing movement rate, which increases linearly

with the total number of individuals removed. Hence the full model in the perturbed case is
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given by

dS1
dt

= a1 − b1S1 − β1S1I1 −m
(
N1

K1

)s
S1 −mρc1N1S1 +m

(
N2

K2

)s
S2 +mρc2N2S2 − c1S1

dI1
dt

= β1S1I1 − (b1 + γ1)I1 −m
(
N1

K1

)s
I1 −mρc1N1I1 +m

(
N2

K2

)s
I2 +mρc2N2I2 − c1I1

dS2
dt

= a2 − b2S2 − β2S2I2 −m
(
N2

K2

)s
S2 −mρc2N2S2 +m

(
N1

K1

)s
S1 +mρc1N1S1 − c2S2

dI2
dt

= β2S2I2 − (b2 + γ2)I2 −m
(
N2

K2

)s
I2 −mρc2N2I2 +m

(
N1

K1

)s
I1 +mρc1N1I1 − c2I2,

(5.10)

showing the additional per capita migration rate as mρci(Si + Ii).

5.3.1 Threshold behaviour

Since the effect of spatial perturbation is additive, and equivalent in both the constant move-

ment and the density dependent movement models, we may expect that the difference in

thresholds is maintained, with the density dependent model predicting a higher pathogen

exclusion threshold than the constant movement. Simulation results dispute this fact, as

exemplified in figure 5.8, which shows that the difference between the thresholds is greatly

reduced in the perturbed system, and density dependent movement predicts a lower threshold

than constant movement in this case. The threshold shown in figure 5.8 is equivalent to that

shown in figure 5.1 with both models perturbed. Spatial disturbance in this case causes an

increase in the pathogen exclusion threshold in both the constant and density dependent mod-

els, but the increase is less severe in the density dependent model. This result is analogous

to the results of chapter 4 which have shown that density dependent movement offsets the

effects of disturbance to a certain extent, particularly for low levels of disturbance.

We have shown, in chapter 3, that the effect of perturbation is dependent on the disease

specific parameters, with an increase in transmission rate β being particularly important in

determining whether disturbance will cause disease eradication to be easier or harder.

In order to investigate this property further, a series of simulations were run to find the
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Figure 5.8: Pathogen exclusion thresholds of the perturbed constant movement model (solid
line) and density dependent model (dotted). Parameters used a = 2, b = 0.2, β = 0.308, γ =
1,m = 1, ρ = 1, κ = 1.

pathogen exclusion thresholds for a range of these disease parameters. The β − γ (trans-

mission rate-virulence) space was then divided into those areas where i) the system was

naturally disease free, ii) the perturbed pathogen exclusion threshold was higher than the

unperturbed system, iii) the two thresholds were approximately identical, iv) the pathogen

exclusion threshold in the perturbed system was lower than the unperturbed and (v) regions

where the disease remained endemic for the range of control parameters considered. In all

of the simulations, for comparison with chapter 3, figure 3.9, the range of control rates con-

sidered ranged from 0 to 1, leading to a maximum population reduction of around 85% in

both patches. In figures 5.9 a) and c), there is a small additional region (*) whereby spatial

perturbation induces disease, where otherwise the system would be disease free. The results

of these simulations, shown in figure 5.9 suggest that at low connectivity, small m, the effect

of spatial disturbance is qualitatively the same regardless of whether movement is constant

or density dependent. In this case, plots a) and c) of figure 5.9, the majority of parameter

space is occupied by region (iv), suggesting that spatial disturbance makes pathogen exclusion

easier. The notable difference between these plots is the presence of region (v) in plot a). As
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Figure 5.9: Order of pathogen exclusion thresholds as β and γ vary. Left hand plot shows
low natural movement rate, right hand shows higher movement rate. The parameter space is
divided into 5 main regions. (i) Disease free, (ii) perturbation threshold higher than unper-
turbed, (iii) perturbed and unperturbed thresholds indistinguishable, (iv) perturbed threshold
lower than unperturbed, (v) endemic disease. Region (*) is described in text.

discussed previously in this chapter, density dependent movement raises the threshold when

compared to constant movement. This has the effect that at very high transmission rates, the

range of control efforts considered is unable to exclude the pathogen if movement is density

dependent. The region (*) in plot c) is notably smaller in the density dependent model. This

is to be expected, as perturbation has a less significant effect on population sizes if movement

is density dependent, leading to a reduced effect which fails to distort the populations enough

to become susceptible to pathogen invasion.

The second set of plots, b) and d) in figure 5.9 do show a significant difference. In this

case, the patches are assumed to be well connected, with high m, such that movement is
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allowed to happen at a faster rate. In this case, the constant movement model predicts that

the majority of parameter space is occupied by region (ii), with disturbance making disease

eradication more difficult. In the case of constant movement, there is no region where dis-

turbance leads to a reduced threshold. The density dependent model, however, predicts that

the majority of parameter space is dominated by this region (iv), where disturbance lowers

the pathogen exclusion threshold, making disease easier to control. Figure 5.10 shows the

pathogen exclusion thresholds corresponding to the high movement rate cases, m = 1, with

fixed γ = 0.5. Here β is either β = 0.2 or β = 0.5. It is clear that the higher transmission

Figure 5.10: Comparison between pathogen exclusion thresholds for low and high transmission
rates. Left hand plots show constant movement, right hand plots show density dependent
movement. All plots compare perturbed and unperturbed systems. Parameters used a =
2, b = 0.2,m = 1.

rate moves the pathogen exclusion threshold higher in both the c1 and c2 directions, since

a very transmissible disease is harder to control through culling. Therefore, if transmission
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is high, then culling efforts must be high in order to eradicate infection. However, if culling

rates are high, then the coupling strength, or movement between the patches in the density

dependent model is significantly reduced. This leads the pathogen exclusion threshold to be

more curved in the density dependent model than the constant movement model. This is seen

by comparing the dark blue and red thresholds in the lower row of figure 5.10. At high culling

rates, between patch movement in the density dependent model is so severely restricted that

any disturbance caused in response to culling is significant enough to overcome this reduction,

and hence reduce the pathogen exclusion threshold. At low transmission rates, a relatively

weak control effort is required for pathogen exclusion. In this case, perturbation leads to a

significant increase in the coupled patch and a higher rate across both patches is necessary to

eliminate disease.

In order to investigate this behaviour further, we choose a point in this region, with

β = γ = 0.5, and consider in detail the behaviour of the pathogen exclusion threshold, and

the transient dynamics of the models in this case.

5.3.2 Transient effect of spatial perturbation

In order to explore the transient effects of spatial perturbation, we shall address the constant

movement and the density dependent models individually. For simplicity, we assume that the

demographic and disease parameters are equal across both patches, with both populations

reaching equilibrium at 100 individuals. Once again, due to the symmetry of the system, if the

same effort is applied across both patches, then this symmetry is maintained, and there is no

difference in the transient dynamics, regardless of type of movement or spatial perturbation.

For comparison with section 2.3, the same parameters are used, hence a1 = a2 = 2, b1 =

b2 = 0.02, γ = 0.002 and β = 0.00243. The pathogen exclusion thresholds for the perturbed

systems are shown in figure 5.11, along with the unperturbed thresholds for comparison

(dashed lines). This figure shows that perturbation raises the threshold in the constant

movement model, and lowers it in the density dependent case. In fact, figure 5.11 shows that

the perturbed thresholds for both models are very similar for these parameter values. In

the following sections, we consider culling strategies which lie between the unperturbed and

perturbed thresholds, these are shown on figure 5.11 and are given by C1 (0.16, 0) for the
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Figure 5.11: Pathogen exclusion threshold for constant and density dependent movement
model both with and without perturbation. Parameters used a = 2, b = 0.02, γ = 0.002, β =
0.0024,m = 0.1. (note: the thresholds for both the constant and d.dependent models when
perturbed are almost identical, and so not easily discernible.)

constant model and C2 (0.18, 0.02) for the density dependent.

Transient effect of perturbation on constant movement

As mentioned above, in the absence of culling, the perturbed and the unperturbed models are

identical. In the constant movement model, with culling strategy C1, the disease progression

prior to culling are given in figure 5.4 (a). Once culling commences, the unperturbed model

predicts that the infected populations of both patches decrease monotonically to zero, with

the infection in patch 1 being reduced faster than patch 2. If the system is perturbed however,

figure 5.12 shows a marked increase in the number of susceptible individuals in patch 2, and

a significant peak in the initial dynamics of infected individuals due to the influx of indi-

viduals from the more intensive culling of patch 1. This disturbance of individuals in patch

1 is reflected in the sharp drop after culling commences in both susceptible and infected in

patch 1. In the unperturbed system, the number of infected in patch 1 drop more gradually

at first, but continues to drop to a lower level than the perturbed system. In the perturbed

system, after the severe initial drop in infection, the number of infected individuals levels out.

Correspondingly, the number of susceptible individuals in the constant model drops initially
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due to the onset of culling before recovering to a higher level due to the removal of infected

individuals. In the perturbed system, because the number of infected individuals stabilises

at a higher level, the susceptible population does not recover as much or as quickly if the

population is disturbed by the culling strategy.

Figure 5.12: Transient dynamics of susceptible ((a) and (c)) and infected ((b) and (d)) classes
in the constant movement model under culling strategy C1. Enclosed region in (a) and (b) is
shown in (c) and (d) for clarity. Parameters used a = 2, b = 0.02, β = 0.0024, γ = 0.002,m =
0.1, c1 = 0.16, c2 = 0.
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Transient effect of perturbation on density dependent model

In the case of density dependent movement, in the absence of disturbance, culling strategy

C2 leads to a reduction in movement and effectively drives the populations towards isolation.

The lower culling rate in patch 2 is insufficient to control infection in an isolated patch, and

hence infection is allowed to persist in the density dependent system. If the populations

are disturbed by culling, then the combination of outward movement, and direct removal of

individuals reduces the population below the critical threshold for disease persistence and

disease dies out. In this case, once culling is ceased, it is the unperturbed model that sees

the system return to the endemic equilibrium, after a peak in the prevalence as the disease

spreads through the increasing population. In the perturbed system, the behaviours of the

populations soon after the onset of culling are qualitatively the same as those seen in the

constant model and described above. The population in patch 2 sees a severe increase due to

the influx of individuals from patch 1 which have been displaced by the culling regime. The

population in patch 1 sees an initial rapid drop in population size, however, in the density

dependent model, this drop is followed by a gradual recovery of the susceptible population and

a continued drop in the infected population. Unlike the constant movement model, where the

number of infected individuals stabilised under perturbation at a higher level, perturbation in

the density dependent model drives the infected population to zero as shown in figure 5.13.

Figure 5.13: Transient dynamics of susceptible (left) and infected (right) populations in the
density dependent model with and without spatial perturbation. Parameters used a = 2, b =
0.02, β = 0.0024, γ = 0.002,m = 0.1, c1 = 0.18, c2 = 0.02.
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Figure 5.14: Time to pathogen exclusion for the perturbed and unperturbed models, plot a)
shows the constant movement model, plot b) shows the density dependent model. Parameters
used a = 2, b = 0.02, β = 0.0024, γ = 0.002,m = 0.1, c2 = 0.05.

Time to pathogen exclusion

In the final section of this chapter we investigate the effect that perturbation has on the

time to pathogen exclusion. We have shown in figure 5.7, that density dependent movement

increases the time to pathogen exclusion if the system is unperturbed. Here we take the

parameter values used in figures 5.12 and 5.13, and fix the control rate applied to patch 2

at c2 = 0.05. Figure 5.14(a) shows the time to pathogen exclusion for the constant model,

indicating that perturbation may increase the time to pathogen exclusion for control strategies

close to the threshold, however, for less optimal strategies, the time to pathogen exclusion is

shorter if the system is perturbed. In the density dependent model (figure 5.14(b)) however,

disturbance has the effect of lowering the time to pathogen exclusion for equivalent strategies.

This property is due to the fast reduction in the infected population shown in figure 5.13

which happens at a faster rate, and hence shorter time, than in the unperturbed model.

5.4 Discussion

The work presented in this chapter evaluates the impact of density dependent dispersal or

movement between discrete habitats on the necessary conditions for disease control. In order

to model this density dependence it is assumed that the rate of movement out of each patch

increases with population density. Population density is the number of individuals in the patch
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divided by the carrying capacity of the patch. For ease of explanation, all results shown assume

that the rate of emigration increases linearly with the population density, and all results are

shown when s = 1. We have shown (figure 5.1) that, when compared to a similar, two

patch model with constant movement, the inclusion of density dependent dispersal raises the

pathogen exclusion threshold making disease eradication significantly more difficult, and only

possible for higher culling rates. Movement has been shown to be strongly density dependent

in several systems [2], [98], some of which may be susceptible to invading pathogens. We have

shown that controlling these populations via culling, leading to low local densities, will cause

the number of emigrants leaving the population to be reduced. This creates an asymmetry

in the movement rates between patches. A single control effort targeted at a single patch in

a patchy system, will only effect the movement out of the targeted patch. The number of

immigrants into the target patch will not be significantly changed, and hence the removal of

individuals due to culling will be mediated by the continued influx of neighbouring individuals.

Density dependent movement has been shown to increase both the necessary effort for disease

exclusion, and also the length of the culling period required in order to reduce the infected

population to zero. As discussed in chapter 4, density dependent movement may act as a buffer

in a patchy system, guarding populations against the fluctuations in surrounding patches.

Whilst this prevents species from going extinct in the case of harvesting in the surrounding

areas, this also makes control of disease persistence much more difficult. Disturbance of a

population in response to culling mediates the effects of density dependence, maintaining an

outward movement during culling. We have shown that this may be beneficial to the cause

of pathogen exclusion, leading to a reduced effort required (figure 5.8), as well as a shorter

required culling period 5.14. Whilst this result may be harnessed to eliminate infection over a

shorter time period, the transient dynamics shown in figure 5.13 shows a marked increase in the

number of infected individuals in the uncontrolled patch in the time immediately following the

onset of culling. Whilst disturbance may lead to a reduction in pathogen exclusion threshold,

and drive the population to extinction in a shorter time, this may be at the risk of inducing

a high prevalence for a short period of time.

This analysis of the impact of disturbance behaviour on disease spread in controlled popu-

lations is particularly relevant to the spread of bovine TB in the UK badger population. There
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is strong evidence to suggest that culled badgers change their ranging behaviour in response

to the culling activities [150]. Results from the randomised badger culling trial, a large scale

experiment to evaluate the effects of different badger culling strategies on the prevalence of

bovine TB, showed that localised culling efforts can help to reduce the incidence of disease

within the culled area, whilst increasing the prevalence in surrounding areas [42]. This in-

crease in prevalence in surrounding areas was most striking after the initial cull, with the

effect reducing after subsequent culls, indicating a possible density dependent response. Bad-

gers from surrounding areas are allowed to re-enter the culled area once culling has finished.

The possibility of this response in the wild badger population means that different efficiencies

in culling strategies across the spatial range of the population will lead to local increases in

disease prevalence as seen in Figure 5.13. If the controlled population is a reservoir of infection

to other populations, as in the case of the culling of badgers to prevent bovine TB in cattle,

then this high prevalence could lead to further infections in livestock populations. If culling

could be carried out consistently across all areas, then the increased movement caused by

culling could potentially lead to a reduction in the time to disease eradication (Figure 5.14),

however the potential cost of this strategy makes it unlikely to be achieved in this system.

The pathogen exclusion thresholds in all the models previously discussed have maintained a

similar shape, with symmetric patch systems yielding thresholds that pass through a common

point, regardless of perturbation, or form that movement takes. In these cases, the symmetry

of the system is maintained, and the opposing forces of population movement, culling and

growth are in equilibrium. In order to counteract the effects of density dependence, or per-

turbation, one may assume that this point is the optimal culling strategy. This concept is

discussed in detail in the following chapter.
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Chapter 6

Optimal control of disease in 2 and

3 patches

6.1 Introduction

The final study in this thesis involves the formulation of the optimal strategies for control

of disease in the patchy systems that we have so far considered. Optimal control theory is

concerned with finding the ‘best’ combination of parameters to solve a problem. In the context

of control of infectious disease, this ‘best’ combination will be that which minimises the cost of

control [90]. Due to the importance of designing reasonable control policies given the economic

constraints, optimal control applied to mathematical models has been used in a range of

studies. Historically, models were used to optimise culling practices in livestock systems [77].

With the increasing popularity and realism of mathematical modelling of biological systems,

increasingly complex problems. These include control of disease by vaccination or culling on

vast national networks as in the case of foot and mouth disease [135], [133], as well as studies

of optimal control in metapopulations [121], or multi-species systems [61].

In this chapter, we use Lagrangian optimisation to discuss the optimal control strategy in

the models previously defined. Using standard techniques, we are able to draw conclusions

about the impact of disturbance on the optimal control strategies in these systems.

Throughout this thesis thus far, we have considered only systems which are divided into

two distinct patches. Whilst this may be an appropriate approximation for considering move-
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ment at a local scale, for example from inside to outside of a protected area, or area designated

for culling, this approach is limited when considering the wider landscape. In this chapter we

aim to quantify disease control amongst a wider metapopulation. To do this, we introduce the

concept of an optimal control strategy in the two patch system. This optimal control is then

scaled up to a system of three patches, enabling us to explore the consequences of different

local, spatial configurations of patches on the necessary conditions for disease control.

6.2 Optimal disease control in two patches

6.2.1 Introduction to Lagrangian optimisation

In its simplest terms, optimal control theory is concerned with finding a set of control param-

eters ci which optimise a problem subject to a set of constraints. In the case of optimising

control of disease in patchy environments, the important constraint is the condition that

disease is successfully eradicated. This constraint is non-linear, and hence the problem is a

non-linear programming problem (NLPP). The classical constrained non-linear optimisation

problem was first explored by Lagrange, and we begin this chapter by providing a general

overview of this method. The classical NLPP is defined as follows

Minimise f(x) subject to g(x) = 0, (6.1)

where f(x) is the objective function to be minimised, and g(x) = 0 is the constraint. The

Lagrangian optimisation method then states that every optimal solution of (6.1) must be a

solution of the system

∇f(x)− λ∇g(x) = 0, g(x) = 0 (6.2)

the constant λ is the Lagrangian multiplier corresponding to the constraint g(x). This for-

mulation states that the optimal solution of (6.1) is found when the gradients of the objective

function f(x) and the constraint g(x) are parallel.
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6.2.2 The optimisation problem in 2 patches

The first task in setting up the non-linear programming problem is to define the relevant

objective function to be minimised. The aim here is to find the control strategy, defined by

the pair of points (c1, c2), which minimises the cost of the total effort exerted, whilst also

successfully eradicating the pathogen from the system. The cost of a control strategy will, in

reality, depend on many factors involved in the logistics of carrying out such a strategy. Of

course, there are many economic considerations to take into account when designing a culling

strategy. These factors can range above and beyond the simple logistics of carrying out

the cull, for example the knock on effect of the local economy if a farmers herd is culled. We

cannot hope to capture all the intricacies of this situation in this problem, and so the objective

functions are chosen for tractability. We consider two possible objective cost functions:

f1(c1, c2) = h1c1 + h2c2 (6.3)

f2(c1, c2) =
√

(h1c1)2 + (h2c2)2. (6.4)

The first of these costs, f1, is simply the weighted sum of the culling efforts applied to each

patch. The coefficients hi define the cost per unit effort to cull in patch i. For example, if a

population to be culled inhabits a particularly difficult or dangerous terrain, then the costs

of culling that population may be much higher than the costs of culling a common species in

easily accessible landscape. Similarly, the costs of hunting and culling a wild species, may be

much higher than culling livestock. The cost defined by f1 assumes that there is complete

independence between the culling efforts of the two patches. The total cost is simply the sum

of the costs, and culling in one patch does not change the cost of the second strategy in any

way. The second cost function f2, inherently assumes that the total cost of the joint culling

strategy is lower than the sum of the independent strategies. We analyse the consequences

of this cost function as an alternative to f1 in order to represent a culling strategy which is

centrally organised across the whole scale of the patch system. If this is the case, then it is

feasible that the infrastructure which must be in place in order to cull in a single patch will

not be repeated for each subsequent patch, and hence the cost is less than the independent

strategies. In the following analysis, we assume that the cost of culling in either patch is
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equivalent, and hence we set h1 = h2 = 1.

A graphical representation of these costs is shown in figure 6.1. Culling strategies which lie

on the same straight line contour have the same cost as defined by f1, whilst culling strategies

lying on the same arc have the same cost f2(c1, c2). This figure highlights the difference in

the cost functions. For example, take the control strategy defined by the point C in figure

6.1. Under f1, this strategy would have a cost of 0.8, whilst under f2 the cost would be 0.6.

The optimisation problem in two patches is constrained by two requirements. The first of

Figure 6.1: Contours showing different costs associated with different culling strategies.
Straight line contours represent culling strategies with equivalent costs under f1(c1, c2), whilst
concentric circle contours show strategies with equivalent costs under f2(c1, c2). Thick con-
tour gives pathogen exclusion threshold, g(c1, c2) = 0 and hence represents the constraint for
the NLPP.

these is that the culling efforts c1, c2 must be non-negative and the second is that the optimal

strategy must successfully remove infection from the system. Throughout this thesis, when

considering disease control, the pathogen exclusion thresholds have been calculated, providing

a boundary in control space, beyond which the disease cannot invade and an endemic disease

will no longer be able to persist. This threshold therefore defines the lower bound of the

second constraint. If control strategies lie on or above this boundary, then disease will die

out. Since both formulations of the cost functions are increasing in both c1 and c2, this non-
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linear programming problem (NLPP) reduces to finding the (c1, c2) which minimise fi(c1, c2)

along this threshold.

The optimisation problem can therefore be fully defined as follows:

Minimise: fi(c1, c2)

subject to: g(c1, c2) = 0, c1 ≥ 0, c2 ≥ 0

where g(c1, c2) = (β1H1(c1, c2)−G1 −m1 − c1)(β2H2(c1, c2)−G2 −m2 − c2)−m1m2.

(6.5)

In this NLPP, the constraint g(c1, c2) is the determinant of the Jacobian of the system,

discussed in chapter 3. In this formulation, the notation has been slightly condensed, with

Gi = γi + bi

Hi(c1, c2) =
aimj + ajmj + ai(bj + cj)

m1(b2 + c2) +m2(b1 + c1) + (b1 + c1)(b2 + c2)
.

From condition (6.2) defined above, the minimal control strategy must therefore satsfy

∂fi
∂c1

= λ
∂g

∂c1
,

∂fi
∂c2

= λ
∂g

∂c2
, g(c1, c2) = 0 (6.6)

for cost i. It is clear that the gradient of the two cost functions are given by

∂f1
∂c1

= 1,
∂f1
∂c2

= 1

∂f2
∂c1

=
c1√
c21 + c22

,
∂f2
∂c2

=
c2√
c21 + c22

Differentiating the pathogen exclusion threshold g(c1, c2) with respect to the control param-

eters we have

∂g

∂c1
=β1β2

(
∂H1

∂c1
H2 +H1

∂H2

∂c1

)
− β1(G2 +m2)

∂H1

∂c1
− c2β1

∂H1

∂c1
− β2(G1 +m1)

∂H2

∂c1

− β2(c1
∂H2

∂c1
+H2) + (G2 +m2 + c2) (6.7)
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and

∂g

∂c2
=β1β2

(
∂H1

∂c2
H2 +H1

∂H2

∂c2

)
− β1(G2 +m2)

∂H1

∂c2
− c1β2

∂H2

∂c2
− β2(G1 +m1)

∂H2

∂c2

− β1(c2
∂H1

∂c2
+H1) + (G1 +m1 + c1) (6.8)

Where

∂Hi

∂ci
= − (ajmi + ai(mj + bj + cj))(mj + bj + cj)

((mj(bi + ci) +mi(bj + cj) + (bi + ci)(bj + cj))2

and

∂Hi

∂cj
= − mi(aimj + aj(mi + bi + ci))

(mi(bj + cj) +mj(bi + ci) + (bi + ci)(bj + cj))2

Even in the case of fully symmetric patches, with all demographic and disease parameters

equal, this problem becomes analytically impossible due to the implicit nature of the function

g(c1, c2). We must therefore employ a different technique in order to address this optimisation

problem. Although we cannot derive the optimal point, we are able to test if a proposed

point minimises fi(c1, c2) along the threshold g(c1, c2) = 0. To do this we must show that the

proposed point satisfies the equations given in (6.6).

6.2.3 Symmetric Patches

If both patches are equal in all demographic and disease parameters, we know from the

symmetry of the system that the pathogen exclusion threshold is symmetric about c1 =

c2. The shape of the contour shown in figure 6.1, suggests that the control strategy which

minimises both f1 and f2 occurs when c1 = c2. If c1 = c2 = c, and the patches are symmetric,

then both populations will achieve their disease free equilibrium at

Hi =
a

b+ c
.

The pathogen exclusion threshold at this point is therefore given by

(
β

a

b+ c
−G−m− c

)(
β

a

b+ c
−G−m− c

)
−m2 = 0.
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Since the disease free equilibria in this case are independent of movement rate m, the threshold

at this point is the same regardless of the magnitude of m. It is for this reason that all

thresholds converge at this point if the patches are symmetric. Setting m = 0, we effectively

decouple the system, and find that the pathogen exclusion threshold at this point is equivalent

to culling both independent patches sufficiently to drive the pathogen to extinction. If the

patches are decoupled, then the pathogen exclusion threshold in a single patch must satisfy

β
a

b+ c
− γ − b− c = 0,

and hence

c = −2b− γ +
√
γ2 + 4βa/2.

In order to prove that this point minimises fi(c1, c2), we must show that this point satisfies

6.6. To do this, it is first noted that

∇f1(c, c) =

 ∂f1/∂c1

∂f1/∂c2

 =

 1

1

 and ∇f2(c, c) =

 ∂f2/∂c1

∂f2/∂c2

 =
1√
2

 1

1

 .

(6.9)

This implies that the gradient vectors of both the objective cost functions are in the same

direction, at this point, and hence if culling strategy (c, c) minimises f1, then it also minimises

f2. Using the Lagrangian conditions given in 6.6, the gradient vector of the constraint, that is

the pathogen exclusion threshold, must be parallel to the gradient of the objective function,

and so

∇g =

 ∂g/∂c1

∂g/∂c2

 =
1

λ

 1

1

 . (6.10)

Hence in order to show that this point (c, c) is the minimum control strategy, it suffices to

show that

∂g

∂c1
=

∂g

∂c2
. (6.11)
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By evaluating equations 6.7 and 6.8 along the line c1 = c2, we can simplify these equations to

∂g

∂c1
=− βm

(
∂H1

∂c1
+
∂H2

∂c1

)
+m (6.12)

∂g

∂c2
=− βm

(
∂H1

∂c2
+
∂H2

∂c2

)
+m, (6.13)

and from the symmetry of the system ∂H1/∂c1 = ∂H2/∂c2 and ∂H1/∂c2 = ∂H2/∂c1. Hence

equation 6.11 is satisfied and the point (c, c) gives the minimum combined control effort re-

quired to exclude infection from a symmetric two patch system, if cost is defined by either f1

or f2.

Minimum control, maximum population?

The point which corresponds to the minimum control effort, may be assumed to correspond

to the maximum population sizes within each patch, and hence this strategy maintains the

largest total population whilst eradicating the disease. This result is intuitive in this case, since

control has no other effect than reducing the population. Hence we expect a monotonically

decreasing total population as c1 or c2 are increased. The total population is given by

T (c1, c2) =
a(4m+ 2b+ c1 + c2)

m(2b+ c1 + c2) + (b+ c1)(b+ c2)
(6.14)

which has negative derivatives in both control directions

∂T

∂c1
< 0,

∂T

∂c2
< 0.

Increasing either the total sum of the control strategy, or the euclidean distance hence has

the effect of decreasing the total population size, and the maximum population along the

pathogen exclusion threshold is found when fi(c1, c2) is at its minimum, hence the point

(c, c). This result is confirmed by numerical simulations of f1(c1, c2), f2(c1, c2) and T (c1, c2)

along the pathogen exclusion threshold as shown in figure 6.2. This result shows that if two

patches are equal in size, and the movement between them is constant and at equal rates,
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Figure 6.2: Left: Total cost combined control strategy along pathogen exclusion threshold as
evaluated by f1 and f2. Minimum shown appears approximately when c1 = c2. Right: Total
disease free population size achieved along pathogen exclusion threshold. Maximum shown
at approximately c1 = c2.

then the spatial distinction between the two patches does not affect the necessary conditions

for disease control. The necessary control strategy applied to each patch to ensure disease

eradication whilst maximising the total population is equal to that derived from modelling

the two patches independently. This result is to be expected since the net movement in this

case is zero, and each patch is effectively independent.

6.2.4 Asymmetric Patches

Asymmetry in the patches can be introduced in many ways, either demographically or epi-

demiologically. For example, two patches may be asymmetric in their carrying capacities,

hence the size of one patch is different to the size of the other, and the amount of resources

each patch contains differs. In this model this can be thought of as either a change in the

constant recruitment term a1 6= a2 or in the per capita death term b1 6= b2. Since the constant

recruitment term is not dependent on the population within the patch, and can be thought

of as a predominantly external driver for population growth, we shall assume that this is

constant between both patches. The asymmetry in patch size must therefore be modelled

by varying the per capita death term. A high bi means that individuals have, on average a

short life span of 1/bi, and we think of patch i as being a ‘small’ patch, with a low carrying

capacity. To be explicit in our evaluation of asymmetry, we will assume that the death rates
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are related by the ratio b1 = φb2 with φ < 1. Hence patch 2 has a lower death rate than

patch 1, implying a higher carrying capacity and is the larger patch. Figure 6.3 represents the

Figure 6.3: Asymmetric patches with b1 > b2. Here φ = 1/20.

NLPP for this asymmetric case. It is clear from this plot that the optimal point no longer lies

on the line c1 = c2. From the structure of the infection invasion matrix, described in detail in

chapter 3 and Appendix E, we know that the maximum eigenvalue is bounded by the column

sums, and hence in the two patch case

min {βH1 − γ − b− c1, βH2 − γ − φb− c2} ≤ λ ≤ max {βH1 − γ − b− c1, βH2 − γ − φb− c2}

In the symmetric system, the minimum control strategy was found when these bounds were

equal. We expect, when considering patches of different sizes, that applying control to the

larger patch will be more effective. Based on the result in the symmetric case, we propose that

the minimum control strategy is found when the forces of infection balance between patches,

hence

β1H1 − γ1 − b1 − c1 = β2H2 − γ2 − b2 − c2.
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In the case of asymmetry in carrying capacity, this condition is achieved when

βH1 − γ − b− c1 = βH2 − γ − φb− c2 (6.15)

c2 = β(H2 −H1) + b(1− φ) + c1. (6.16)

This equation is dependent on the difference in size of the two populations, given by

H1 −H2 =
a(b(1− φ) + c1 − c2)

m(b(1 + φ) + c1 + c2) + (b+ c1)(φb+ c2)
(6.17)

which is zero when

b(1− φ) + c1 − c2 = 0

c2 = b(1− φ) + c1. (6.18)

The proposed minimum point is therefore the point along the pathogen exclusion threshold

which satisfies the ratio (6.18). This is the point at which the culling strategies balance the

asymmetry of the system. If the two patches are culled in this ratio, then both populations

will be reduced to be equal in size. In order to show that this point minimises the cost of

culling, we must once again show that the conditions 6.6 are satisfied. In order to achieve

pathogen exclusion along this line in control space, we require that the maximum eigenvalue

of the Jacobian matrix, J, is negative, where

J =

 βH1 − γ − b−m− c1 m

m βH2 − γ − b−m− c2

 . (6.19)

Along the line defined by equation (6.18), this condition is given by

βa

b+ c1
− γ − b− c1 = 0 (6.20)
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and hence the minimum control strategy is given by the point (C1, C2) where

C1 =
[
−2b− γ +

√
γ2 + 4βa

]
/2 (6.21)

C2 = [−2φb− γ +
√
γ2 + 4βa]/2. (6.22)

Firstly we must find the gradient of the functions fi(c1, c2) at this point. These are given by

∇f1(C1, C2) =

 1

1

 , and ∇f2(C1, C2) =
1√

C2
1 + ((1− φ)b+ C1)2

 C1

b(1− φ) + C1

 .

(6.23)

Since the gradient of the cost defined by f1 is constant, this expression is not dependent on

the culling strategy considered and is the same as in the symmetric case. The gradient of f2

is however different at this point. Once more, evaluating ∇g at this point gives

∇g = m

(
1 +

β

(b+ c1)2

) 1

1

 (6.24)

which is parallel to the gradient of f1. This point therefore minimises the cost as defined

by f1. Defining the cost in this linear manner means that the optimum control strategy in

the asymmetric system is independent of the movement function, since this control strategy

balances the asymmetry in the populations.

If the cost of culling is defined by f2(c1, c2), then the strategy (C1, C2) does not lead to the

optimal point. This point was chosen since it is independent of movement between patches,

and all models, regardless of the movement rate, will converge at this point for pathogen

exclusion. If this point is suboptimal, then the minimum control strategy will depend on the

movement rate between patches. To investigate how this optimal point changes with increasing

movement, we assume that movement between the patches is equal, hence m1 = m2. The

results presented below are for the two cases where a) both patches are reservoirs of infection,

and b) the larger patch is a source of infection to the second, non-reservoir.
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Both patches are reservoirs of infection.

Recalling the definition of a reservoir of infection, if both patches are reservoirs then, in the

absence of any coupling via dispersal, both patches will support the pathogen and will require

independent culling strategies for pathogen eradication. As movement increases, it may be

feasible to achieve pathogen eradication through control of a single patch alone. We have

shown that a culling rate defined by (C1, C2) given above is optimal if the cost of culling is

defined as the sum of the culling strategies. This optimum cost is invariant as the rate of

movement changes. However, if the cost of culling is given by f2, the question remains as to

how the minimum combined culling strategy changes as movement increases, along with how

the burden of control is distributed between the patches. This question must be answered

numerically, and the code for the algorithm described below is given in Appendix G.

For each movement rate, m:

1. Evaluate pathogen exclusion threshold in c1 − c2 space.

2. Store co-ordinates (ci1, c
i
2) for all points sampled along this threshold.

3. For each point i along the pathogen exclusion threshold, evaluate the cost of culling

f i2 =
√

(ci1)
2 + (ci2)

2.

4. Find minimum f2 along this threshold and store this cost along with corresponding

co-ordinates.

Figure 6.4 shows that the minimum total culling effort, defined by
√
c21 + c22 in fact decreases

as movement increases. Hence an increase in connectivity between distinct areas reduces the

effort required to eradicate the disease. The right hand graph of figure 6.4 shows that this

reduction involves a shift in the burden of control, with the rate of control being reduced in

the larger patch, whilst the smaller patch is controlled more at higher movement rates. This is

due to the synchrony achieved between the two patches at high movement rates, encompassing

the fact that the difference in size between the two populations is reduced as coupling via

movement increases.
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Figure 6.4: Minimum culling rates for pathogen exclusion, as the rate of coupling via dispersal
increases. Combined culling effort decreases as movement increases. Culling in patch 2 (larger
patch) decreases as movement increases, and more of the burden of control is pushed onto the
smaller patch. Parameters used a = 2, b = 0.2, φ = 0.05, β = 0.308, γ = 1.

One patch is a reservoir of infection, one is a non-reservoir.

If one patch (in the following analysis patch 2) is a reservoir for infection, and is coupled to a

second non-reservoir, then from chapter 2 we saw that it is possible to eradicate infection by

only controlling the reservoir population if movement is constant. If we wish to minimise the

total effort expended, we wish to know if this culling strategy (c1, c2) = (0, C2) is optimal.

Once again, we assume the carrying capacity of patch 2 is larger with the death rates in each

patch given by b1 = b and b2 = φb where φ < 1. The rate of culling required in patch 2 is

found to be

(βH1(c2)− γ − b−m)(βH2(c2)− γ − φb−m− c2)−m2 = 0 (6.25)

C2 = βH2(c2)− γ − φb−m−
m2

βH1(c2)− γ − b−m
. (6.26)

Once again, if this point is optimal it must satisfy equations 6.6, where

∂f1
∂c1

= 1,
∂f1
∂c2

= 1, or
∂f2
∂c1

= 0,
∂f2
∂c2

= 1 (6.27)

depending on the cost function defined. Hence we must show that both

∂g

∂c1
=

1

λ
,

∂g

∂c2
=

1

λ
(6.28)
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Figure 6.5: Optimal culling strategies as movement rate increases for costs defined by f1 (a),
and f2 (b). Cost f1 is minimised by culling the reservoir patch only, whilst f2 is reduced by
employing a mixed strategy.

if (0, C2) minimises f1, or

∂g

∂c1
= 0,

∂g

∂c2
=

1

λ
(6.29)

for (0, C2) to minimise f2. Evaluating ∂g/∂c1 we have

∂g

∂c1
= β(βH2−γ−φb−m−c2)

∂H1

∂c1
+β(βH1−γ−b−m)

∂H2

∂c1
−(βH2−γ−φb−m−c2). (6.30)

Substituting the expression for C2 into this, ∂g/∂c1 simplifies to

∂g

∂c1
=

βm2

βH1 − γ − b−m
∂H1

∂c1
+ β(βH1 − γ − b−m)

∂H2

∂c1
− m2

βH1 − γ − b−m
. (6.31)

If this expression is equal to 1, then the strategy (0, C2) minimises the cost defined by f1,

whilst it must be zero if (0, C2) is optimal for f2. Figure 6.5 shows the optimal culling rates

in both patches, as the rate of movement between patches changes. Whilst we are unable

to show this analytically, plot a) confirms that the optimal strategy for f1 is found when

the culling rate in patch 1, the non-reservoir patch, is set to zero. If the cost of culling is

defined by f2 however, plot b) shows that the optimal strategy is to cull across both patches.

This second result is confirmed mathematically by showing that ∂g/∂c1 cannot equal zero.
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Assuming this condition can be satisfied, equation 6.31 becomes

0 = βm2∂H1

∂c1
+ β(βH1 − γ − b−m)2

∂H2

∂c1
−m2.

We are then able to insert the expressions for ∂H1/∂c1 and ∂H2/∂c1, leaving the requirement

that

0 = −βam2A−m2B− βamC (6.32)

where

A = (2m+ φb+ c2)(m+ φb+ c2) > 0 (6.33)

B = (m(b(1 + φ) + c2) + b(φb+ c2))
2 > 0 (6.34)

C = (βH1 − γ − b−m)2(2m+ φb+ c2) > 0 (6.35)

and hence equation 6.32 cannot be satisfied and (0, C2) is not the minimum possible culling

strategy. To put this in the context of controlling infectious disease in biological populations, if

infectious disease is spread between an area which is a reservoir of infection, and an area which

is not a reservoir, then a combined culling effort which targets both patches will minimise the

overall amount of effort applied if the combined costs is lower than the sum of the independent

control strategies.

6.3 Optimal disease control in 3-patch systems

In order to expand this work to more complex spatial systems we begin by making the addition

of a third patch. This expansion of the model allows us to consider the impact of the spatial

arrangement of distinct areas, whether individuals enter a patch from two neighbouring sites,

or just one. The two potential network structures of a three patch system are shown in figure

6.6. In the first instance, we consider the fully connected model, which in the absence of
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Figure 6.6: Possible structural configurations of a system of three patches

infection is given by

d

dt


H1

H2

H3

 =


a1

a2

a3

−


b1 +m12 +m13 + c1 −m21 −m31

−m12 b2 +m21 +m23 + c2 −m32

−m13 −m23 b3 +m31 +m32 + c3




H1

H2

H3

 .

(6.36)

Introducing infection into this model in the same way as in the two patch case will lead to a

pathogen exclusion threshold given by a surface g(c1, c2, c3) = 0. Once again, if the system

is entirely symmetric, and all patches have equal demographic and disease parameters and

movement between all patches is equal, then the minimum combined control strategy will be

independent of movement rate and will be given by

c1 = c2 = c3 = βH − γ − b.

We are however interested in the conditions for disease control in asymmetric systems. In

order to investigate the effect of asymmetry on each patch configuration, we assume that the

system is comprised of one dominant patch, with significantly larger carrying capacity than

the other two smaller patches. For simplicity, we assume that the two smaller patches are
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equal in size.

6.3.1 Fully Connected (1 reservoir 2 non-reservoirs): is it optimal to cull

just reservoir patch?

In the two patch model, we have shown that even if one patch is a reservoir and a source

of infection to the second, it is optimal under f2, to apply a combined control effort to both

patches, whilst the f1 cost function predicts that it is optimal to cull the reservoir patch

alone. Here we consider the case that a single patch, patch 3, in a fully connected system is

a source to two non-reservoir patches. It is necessary in the three patch system to develop

a numerical algorithm for finding the minimum control strategy. To to do this, we find the

pathogen exclusion threshold in c1 − c2 space, for a number of levels of c3, as shown in figure

6.7. Along each level of c3, we find the minimum combined control strategy defined as either

f1 or f2 and shown by the open circles in figure 6.7. The minimum strategy over all levels

of c3 is given by the closed circle in figure 6.7. Figure 6.7 is a sample output for a limited

range of c3, for a single movement rate. To produce the plots shown in figure 6.8, control

parameters were varied such that (c1, c2, c3) ∈ [0, 1] × [0, 1] × [0, 1], with step size given by

0.01. The minimum cost was found within this parameter space for a range of movement

rates between 0 and 1. The optimal strategy producing this minimum cost is shown in figure

6.8. The line T in this figure represents the computational tolerance, any points below this

line are due to the discretisation of control space, and the step size used. We therefore do

not consider control rates below this tolerance to be significantly different to zero. Figure

6.8 shows similar results to the two patch case, if cost is defined as a simple sum, then it is

optimal to cull the reservoir patch alone, whilst a combination strategy is preferred if cost is

lower than the sum.

6.3.2 Linearly connected: Symmetric patches

It remains to investigate the effect of the linear configuration of patches in this extended

system. Here we wish to control disease in three distinct areas which are not fully connected.

Individuals in this system must pass through patch 2 in order to move from patch 1 to patch

3, or vice versa. In the first instance, we assume that all patches are equal in terms of
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Figure 6.7: Pathogen exclusion threshold in three patches with patch 3 a reservoir of infection
to the other patches. Contours show thresholds at increasing levels of control in patch 3, c3.
Minimum control strategy is shown on each level (open circles) and minimum control over all
the levels in the simulation is shown by the star. Parameters used a = 2, b1 = b2 = 0.5, b3 =
0.2,m = 0.1, β = 0.308, γ = 1

Figure 6.8: Optimal control strategies for a fully connected 3 patch system with patch 3
reservoir. Plot a shows strategies that minimise cost defined by f1, and b for cost defined by
f2. Parameters used a = 2, b1 = b2 = 0.5, b3 = 0.2, β = 0.308, γ = 1.

160



demographic parameters, and that movement from one patch to another occurs at the same

rate in either direction. In the linear model, the movement matrix M is given by

M =


−m21 m12 0

m21 −m12 −m32 m23

0 m32 −m23

 (6.37)

indicating that individuals in patches 1 and 3 can only move into patch 2, but those from

patch 2 may move into either patch 1 or 3. Symmetric patches all achieve the same disease free

equilibrium, regardless of network structure, and simulations show that the optimal control

strategy is to apply equal control to each patch. This can once more be deduced from the

structure of the infection invasion matrix given by

IIM =


βH1 − b− γ −m m 0

m βH2 − b− γ − 2m m

0 m βH3 − b− γ −m

 . (6.38)

Since movement between any two patches is symmetric, even if the network is not fully

connected, in a symmetric system, the maximum eigenvalue will be given by λ = βH − b− γ,

and hence control of all patches by this amount will result in pathogen exclusion and is the

minimum possible combination of control. The pathogen exclusion thresholds for both the

fully connected and the linear configurations are shown in figure 6.9. Whilst the optimal

control strategy may be the same regardless of patch configuration, figure 6.9 shows that at

suboptimal points, the configuration may skew the required controls. For example, if we cull

patch 2 at a rate of 0.33 individuals per unit time, then for pathogen exclusion in the fully

connected system, patch 1 must be culled at a rate of at least 0.31 individuals per unit time.

If the system is connected linearly, then the required control rate in patch 1 is increased to

at least 0.32 individuals per unit time. This implies that in a linear structure, the amount of

control applied throughout the system has a reduced effect on the extremities. This is due to

the effect of culling on the population size. In the fully connected patch, culling any single

patch will cause an equal effect on the rest of the network. In the linear model, culling the
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Figure 6.9: Pathogen exclusion thresholds in 3 dimensions, contours show the thresholds at
given levels of c3. Left hand plot shows the contours for the symmetric system, right hand
plot shows the linear system. The optimal point in both cases is the same (closed circles).

central patch will have an equal effect on the end patches, however, culling an end patch,

patch 1 for example, will lead to a greater reduction in the population size of patch 2 than

that in patch 3. The effect of control reduces the further from the control the patch is. These

results hold regardless of whether the cost of the culling strategy is given by f1 or f2.

6.3.3 Linearly connected: reservoir in central position

If the patch network is made up of a single reservoir of infection located at the central node

in a linearly connected system, and the cost of culling is defined by the sum of the culling

rates, then, as in the two patch case, the simulation results show that it is optimal to control

only the central patch, as shown in figure 6.10 a). If however the cost of culling is defined

by f2(c1, c2, c3), (figure 6.10 b)) then the majority of the culling effort should be targeted on

the reservoir of infection, however, as the rate of movement between patches increases, the

optimal culling strategy increases in the non-reservoir patches, and decreases in the reservoir.

It appears from these simulation results, that if m > bres, where bres is the death rate in the

reservoir patch, then the optimal culling strategy does not change as m increases. If this is

the case, then 1/m < 1/bres and the average length of time spent in a patch before moving

is shorter than the average lifespan of the individuals, and hence each individual is expected

to move patches at least once in their lifetime. If this is the case, then the optimal culling
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Figure 6.10: Optimal culling strategies for a linearly connected system, with a reservoir of
infection at the central patch, patch 2. Plot a) shows optimal strategy for cost defined by f1
and b) shows strategy for f2. Parameters used: ai = 2, b1 = b3 = 0.5, b2 = 0.2, β = 0.308, γ =
1

strategy does not depend on the specific movement rate.

6.3.4 Linearly connected: reservoir at end position

If the reservoir of infection is situated at the end of the three patch linear configuration,

then once again, the f1(c1, c2, c3) cost function predicts that the optimal strategy is simply to

control the reservoir alone. As in the previous cases, if the cost is defined by f2(c1, c2, c3), then

a mixed strategy is optimal. The reservoir patch should take the main burden of culling with

the optimal culling rate decreasing with increasing distance. As the movement rate between

the patches increase, then the optimal strategy is to decrease the culling rate in the reservoir,

and increase it in the other patches. As the movement rate increases, the optimal culling

effort in the central patch increases to a maximum before decreasing and saturating at the

same level as the culling effort in patch 3, the furthest from the reservoir.

6.4 Conclusions/discussion

The work presented in this chapter has been an investigation in the optimal control of infec-

tious disease in patchy systems. The two potential cost functions predict the same minimal

control strategy if the system is symmetric, that is, if all patches are of equal size, with equal
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Figure 6.11: Optimal control strategy for a linearly connected system of three patches, with
reservoir of infection in patch 1, as the movement rate between the patches increases. Plot a)
shows the optimal strategies for f1 and plot b) shows the strategies for f2.

response to disease. This optimal strategy is to cull all patches equally. This strategy is

identical to that predicted by considering each patch in isolation, and using a simple model,

such as those discussed in many textbooks [105], [7], [84]. Simple models are therefore a good

approximation to necessary conditions for culling if patches of habitat, and the populations to

be culled are similar, however, this approximation fails when distinct, and asymmetric popula-

tions interact through dispersal. In this case, the act of movement between the patches causes

a synchrony between the patches. Our results in two patches suggest that, if the difference in

populations is a result of different death rates, due to the patch specific conditions, then the

asymmetry can be counteracted by adjusting the culling strategy. The adjusted culling strat-

egy shown in equation (6.18) compensates for the asymmetry, and suppresses the populations

to the same size. If the cost of culling is measured as a sum of independent strategies, then

it is optimal to adopt this method, and to force the total population to be evenly distributed

between the patches. If however the culling strategies are assumed to be jointly managed,

and cost is measured, or example, by the function f2, then the burden of culling should be

focussed on the larger patch. In both cases, an increase in movement between the patches

reduces the required strategy. This is in good agreement with our previous results discussed

in chapters 3 and 5, which show that increasing the rate of movement between patches lowers

the pathogen exclusion threshold.
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Scaling the two patch system up to three patches, we have considered firstly the case

where all patches are demographically equivalent, and have equal rates of movement between

populations. In this system, simulation results show that all patches should be culled equally,

and this strategy is optimal regardless of the cost function, or the configuration of the patches.

If there is an asymmetry between the patches in the three patch case, with one patch being

a reservoir of infection to the others, then the optimal culling strategy, if cost is calculated

by the sum of the individual culling rates, is to target the reservoir patch alone. If however,

the cost is calculated by f2(c1, c2, c3), then it is optimal to control all patches. As has been

found in the two patch case, increasing the movement between the two patches leads to a

reduction in the total cost of culling. In the case of the f2 cost function, the burden of

culling is redistributed as movement increases, with an increasing culling rate applied to the

non-reservoir patches. These results suggest that the movement between patches can heavily

influence the necessary culling regime to eradicate infection. Simple models, assuming each

patch is a closed, uncoupled population, are appropriate for equivalent sized populations, but

will predict suboptimal strategies for systems consisting of reservoir and non-reservoir patches.

In these cases, the effect of movement on the population size and the spread of disease should

be taken into account.

165



Chapter 7

Discussion

7.1 Thesis aims and key findings

The overall aim of this thesis has been to evaluate the effect of spatial coupling, and distur-

bance, on the effects of harvesting or culling a free moving population. In order to do this we

have used the framework of a two patch, ordinary differential equation model of two popula-

tions coupled via dispersal of individuals between the patches. This within-patch, metapop-

ulation type model has been used in the research of many ecological systems in particular

dynamics of butterfly metapopulations [21],[67],[70], plant ecology [3], or lion conservation

in Africa [41] however, the effects of population control on this type of system are not well

known. In this final discussion of the work presented here, we shall outline the key results of

this work, before discussing the ecological consequences of these results. We then go on to

outline the direction of future research and extensions to this work.

7.1.1 Population dynamic consequences of harvesting (Chapters 2 and 4)

It has long been known that coupling of patches of individuals leads to a level of synchrony,

or homogeneity between the populations in patch models [48],[20]. By modelling the dispersal

of individuals by a constant per capita rate, any difference in the population sizes is reduced.

Through the work presented in chapters 2 and 4 of this thesis, we have shown that the

coupling of two patches in this way causes an increase in yield if only one of the patches is

harvested. This result holds regardless of whether movement is constant or density dependent
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and is independent of the growth rate of the populations. By allowing, or facilitating a

porous boundary of a patch, the harvested population is constantly replenished by both

the reproduction of the resident population, and also by the influx of immigrants into the

harvesting zone from neighbouring sites.

The work presented in chapter 4 compares the predicted yield if movement is constant

with that predicted if movement is density dependent. We have shown that density dependent

movement reduces the synchrony between the patches, and this form of dispersal maintains

the heterogeneity in patch size. In constantly stocked systems, with growth defined by the

constant recruitment function, harvesting efforts produce a reduced yield if movement is

density dependent, when compared to the constant movement model. Neglecting the impact

of density dependence in this system can therefore lead to overestimation of the achievable

yields. If population growth is logistic, then density dependent movement predicts a higher

yield than the constant model, and hence constant movement underestimates the potential

yield. This difference in model behaviour is due to the feedback produced by harvesting in

the logistic model. In this case, the population is able to bounce back from the removal of

individuals by increasing the growth rate. In the constant recruitment model there is no

feedback to the growth rate of the population, and hence the population size, and therefore

the yields achieved are detrimentally affected by harvesting.

Combined harvesting strategies, where c1 is fixed and c2 increases, leads to a reduction

in the patch 1 yield due to an increase in removal of individuals from the population as a

whole. If however, surviving individuals in the population react to harvesting by dispersing

or emigrating from the patch at an increased rate, then a combined strategy may be optimal.

If this is the case, then a single harvesting strategy will force individuals out of the harvested

patch, decreasing the yield. If the second patch is harvested in combination, then the second

patch is no longer a refuge, and those forced out of patch 1 are more likely to be replaced

by those forced out of patch 2. Hence a combination strategy can lead to a higher yield if

harvesting causes disturbance. It is therefore essential, when devising harvesting strategies to

understand the effects of the migration of individuals from and to the area to be harvested,

whilst also understanding the impacts of surrounding harvesting efforts.
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7.1.2 Consequences of disease control (Chapters 3 and 5)

The work presented in chapters 3 and 5 detail the impact of spatial coupling on the necessary

control strategies which will ensure disease eradication. In these sections, we have focussed

on a constant recruitment growth rate and have shown that the coupling of two patches can

reduce the burden of control. For a given control rate in patch 1, increasing the rate of coupling

between patches causes a decrease in the required control rate in patch 2. We have shown that

density dependent movement will cause an increase in the pathogen exclusion threshold when

compared with the constant movement model, and this is due to the reduction in efficacy of

the control on the surrounding areas if movement is density dependent.

Density dependent movement hence provides a buffer against the removal of individuals.

Whilst this is detrimental in terms of disease eradication, it may highlight an evolutionary

advantage, offering protection against predation or other risks to the population. Density

dependent movement allows a patch to become a refuge for the individuals residing there,

and prevents small populations being exposed to the risks involved in dispersal.

If individuals are disturbed by the onset of culling strategies, then this effect may either

increase, or decrease the pathogen exclusion threshold depending on the infectious parameters

of transmission and virulence. In general, for very low transmission rates, perturbation will

lead to an increase in the necessary culling strategies. If this is the case, neglecting the

perturbation effect will predict pathogen exclusion thresholds which are insufficient to exclude

the disease. This underestimation may lead to a long term disease control strategy which will

never be sufficient to eradicate the disease due leading to a large waste of money and effort.

As transmission increases, there is a switch in thresholds, and perturbation may predict that

pathogen exclusion requires less control effort than a similar model without perturbation. In

this case however, transient dynamics show that culling causes a period of unnaturally high

prevalence in the surrounding patches. Whilst pathogen exclusion may be achieved more

easily in a perturbed system, culling strategies which cause this prevalence may need to be

avoided.

Analysis of the threshold behaviour for a range of transmission and virulence parameters

has also shown that there is a region whereby, in the absence of any culling, the system is
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naturally disease free, yet the disturbance caused by the culling strategy forces the populations

to become squeezed and hence to become susceptible to disease spread. This phenomenon has

not previously been discussed in the modelling literature, and may be a crucial consequence of

human intervention in natural populations. This ‘squeezing’ of populations into concentrated

groups raises not only the chance of infection becoming endemic in the population in question,

but also increases the risk of infection to alternative hosts or to humans.

7.1.3 Optimal disease control strategies (Chapter 6)

The work presented in chapter 6 confirms that if control strategies are independent, and the

total cost of culling is the sum of the costs of each strategy, then the minimal strategy is to

account for the difference in size of the populations, forcing the populations to be equal in size.

If the populations in the patch system are similar in size, and the movement between patches

is symmetric, then the minimal control strategy is independent of the rate of movement. In

this case, the minimal culling strategy is exactly that predicted by the uncoupled system of

differential equations. Patch dynamics must be taken into account when this property is not

met. In the case of asymmetric patches, the movement rate will determine the population

densities at equilibrium and will be key to minimising the control strategy.

7.2 Ecological relevance of this work

7.2.1 Harvesting and population control

The patch dynamics explored throughout this thesis are applicable to a range of ecological

systems . Patches may be formed due to the social structure and behaviour of a species.

Herding or other social segregation behaviours, as exhibited by deer and other ungulates,

are an example of this [4]. In these populations, large social groups are formed and offer

individuals protection from predation. In order to maintain the population density, and to

reduce genetic inbreeding, offspring, particularly males, are likely to disperse [116],[147][128].

Patch structure may also be due to a lack of homogeneous resource, for example roosting

populations of bats inhabit large maternity colonies which are coupled by the movement of

individuals, such as solitary males, between roosts. Alternatively, patchy dynamics may be
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the result of anthropomorphic factors such as habitat fragmentation i.e agricultural expansion

or urbanisation. Discretisation of a habitat into patches may also be imposed on a habitat

due to ownership of land. If this is the case, one could argue that movement of individuals

between these ‘patches’ will be more frequent, since the patch structure is not a natural

part of the population structure. This arbitrary human division of habitat is particularly

relevant in the case of fishing territories in regions such as the North sea. Many of these

populations are, or could potentially be targets for active control strategies. Harvesting of

wild populations may occur for several reasons. These include to reduce the population density

within a given area, or alternatively to obtain a sustainable yield from the population. Proper

management of harvesting strategies is key to maintaining a healthy, and functioning natural

environment, and many systems have been destroyed by poorly planned harvesting strategies

[106], [29]. Mathematical modelling is an important tool in predicting the potential impact

of a proposed harvesting strategy, and it is therefore important to understand the theoretical

consequences of a model. Until recently [129], [114],[115] the issue of spatial perturbation has

been unaddressed in the literature, and to our knowledge, has never been addressed in the

context of harvesting and yield dynamics.

We have shown that if the purpose of a harvesting strategy is to obtain a yield in an area,

then it is important to understand, and co-operate with the management of surrounding

patches. If there is a level of disturbance, then from the management perspective of an

individual patch, it may be optimal to develop a combined harvesting strategy with the

surrounding patches, and hence to be able to catch those individuals forced out of other

areas. If the aim of a harvesting strategy is to rid an area of a population, then we have

shown that if similar sized patches are coupled, then the minimum harvesting strategy is to

cull both patches equally. However, if an area is difficult to control, then it may be possible

to indirectly curtail the population growth by increasing the harvesting effort in surrounding

patches, and allowing dispersal between habitats.

7.2.2 Disease control

Culling of individuals in order to reduce the population density, and hence the rate of disease

transmission, occurs in a wide variety of ecological contexts, many of which fall into the patchy
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framework discussed here [66]. The recent drive to counteract the negative effects of habitat

loss and fragmentation through opening up wildlife corridors brings with it the potential for

an increase in disease spread through a network of patches [56].

The primary motivation for this work was the relevance of the perturbation effect to the

control of bovine tuberculosis in badgers, and the transmission of this bacterium from the

wildlife reservoir to the domestic cattle population. During the randomised badger culling

trial, it was found that a higher incidence of infection was found in areas surrounding culling

sites. The transient results shown in chapter 5 agree with this finding, showing that an

increase in movement can lead to a very high number of infected individuals in the immediate

aftermath of the onset of the cull. Over time, this prevalence will drop, however, the high

numbers reached are significantly higher than they would have reached naturally, and may

take several years to return to even natural levels of infection.

As discussed above, our results have shown that the effect of spatial disturbance may be

either beneficial or detrimental in terms of the necessary control strategy, depending on the

particular characteristics of the disease involved. It is theoretically possible therefore, that

the perturbation effect may be used to reduce the control strategy required. Once more, the

transient dynamics in chapter 5 show that, even when this is possible, this threshold condition

shows only the asymptotic behaviour of the infectious population. In the immediate aftermath

of the cull, even when the disease can be theoretically wiped out, we have shown that very a

high prevalence is achieved. This may have dire consequences, particularly if the system is a

reservoir of infection to other species of wildlife or livestock as in the case of bovine TB.

7.3 Future research

The work presented here is just the beginning of a potentially rich and productive investigation

into the dynamic consequences of spatial perturbation. We have only considered the impact

of human interference in natural populations through direct removal of individuals. However,

species may be perturbed by many different factors, both anthropomorphic and natural. It

would be of great interest to extend this work to model the perturbation induced by the

introduction of a predator, or natural competitor into the environment. This would force the
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resident population in a similar way to culling, by reducing the number of individuals able to

survive within an area, and potentially encouraging the movement of individuals out of the

patch. However, a predator-prey system with this framework would have a natural feedback

to the predator population, and therefore may have interesting dynamic consequences to be

explored.

In many of the examples discussed here, only a specific subset of the population is likely to

disperse. In many systems, the mechanisms of dispersal are sex specific, with different sexes

of the same species often requiring different resources. The impact of spatial perturbation on

the sex bias in a population, and the wider ecological or evolutionary consequences of this

would therefore be a rich field of research.

Spatial perturbation is may also be induced in species without direct removal. The frame-

work presented here could also be used to investigate the behavioural changes observed in

species when encountering communal feeding sites such as shared flowers in insect systems

[46], or the impact of diversionary feeding schemes. An increase in contact rates between

species has already been noted in red and grey squirrels populations who come into contact

more often in urban areas due to aggregated food resources; with subsequent increases in

disease transfer. Similarly, supplementary feeding of bird populations has led to territorial

breakdowns of social structures which in turn lead to greater contact either between species

or between distinct social groups of the same species.

The work presented in this thesis has scratched the surface of the potential implications

of coupled patches, and the impact of spatial disturbance in these systems, in this thesis, we

have opened the door to investigate this impact further, and to make a significant contribution

to the understanding of population and disease control.
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Appendix A

Instability of Zero Equilibrium in

Logistic Model over 2 patches

The stability of the zero equilibrium is determined by the Jacobian matrix evaluated at (0, 0).

This matrix is given by

J =

 r1 −m1 m2

m1 r2 −m2)

 . (A.1)

For stability, we require that both the trace of the Jacobian is negative, and the determinant

is positive, i.e

Tr(J) = r1 −m1 + r2 −m2 < 0

Det(J) = (r1 −m1)(r2 −m2)−m1m2 > 0

If either of these conditions are not satisfied, then the zero equilibrium is unstable. There are

four conditions to consider

1. r1 − m1 > 0 and r2 − m2 > 0. If this is the case then the Tr(J) > 0 and (0, 0) is

unstable.

2. ri −mi > 0 and rj −mj < 0. Here the product of (r1 −m1)(r2 −m2) < 0 and hence

det(J) < 0 and (0, 0) is unstable.

3. r1 −m1 < 0 and r2 −m2 < 0. In this case, Tr(J) < 0. At first glance it is not clear
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Figure A.1: Phase plane analysis of the equilibria of the logistic model with dispersal between
two patches. Stable, positive equilibrium is shown as the closed black circle, with the open
circle showing the (0, 0) equilibrium. Grey circles signify non-viable (not biologically possible)
equilibria. All positive trajectories approach the stable positive equilibrium.

that det(J) < 0 also, however, rearranging we see that

det(J) = r1r2 − r1m2 − r2m1

= r1(r2 −m2)− r2m1 < 0

since r2 −m2 < 0.

Hence for all cases, if ri > 0 and mi > 0 as required, then the zero equilibrium is unstable.

Instability of the zero equilibrium alone does not guarantee stability of the positive equilib-

rium, however, by phase plane analysis of this system we are able to determine representative

phase planes for each stability determining case. Figure A.1 shows the phase planes for each

of the four cases. In all cases there are two viable equilibria, one at (0, 0) and a coexistance,

positive equilibrium. In all cases, this positive equilibrium is stable, with all trajectories

originating in the positive quadrant approaching this equilibrium.
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Appendix B

Extinction thresholds for logistic

model, harvesting in one patch

If harvesting effort is applied to patch 1 at a constant per capita rate, x, then the population

is forced to extinction when the (0, 0) equilibrium is stable. This stability occurs when the

eigenvalues of

J =

 r1 −m1 − x m2

m1 r2 −m2)

 . (B.1)

are both negative. As in appendix A, we use conditions on the trace and determinant of this

matrix to determine stability in 4 cases.

1. r1−m1 > 0, r2−m2 > 0: Here, for simplicity, we label r1−m1 = P , and r2−m2 = Q,

where P,Q are both positive.

Trace: P +Q− x < 0 (B.2)

x > P +Q (B.3)

Determinant: PQ− xQ−m1m2 > 0 (B.4)

PQ−m1m2 > Qx (B.5)

x < P − m1m2

Q
. (B.6)

In order to satisfy both these conditions we require that x lies between P + Q and
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P −m1m2/Q. This requires that

P +Q < P − m1m2

Q
(B.7)

Q2 < −m1m2. (B.8)

This resulting contradiction shows that if r1−m1 > 0 and r2−m2 > 0, then harvesting

of patch 1 alone is always insufficient to cause extinction.

2. r1 −m1 < 0, r2 −m2 < 0: Here let r1 −m1 = −P and r2 −m2 = −Q.

Trace: x > −P −Q (B.9)

Determinant: PQ+ xQ−m1m2 > 0 (B.10)

x >
m1m2

Q
− P (B.11)

The trace condition is always true for x ≥ 0 hence the extinction threshold is equivalent

to the determinant condition.

3. r1 −m1 > 0, r2 −m2 < 0: Here let r1 −m1 = P , r2 −m2 = −Q.

Trace: x > P −Q (B.12)

Determinant: x >
m1m2

Q
+ P (B.13)

Here x > max(P −Q,P +m1m2/Q) hence x > P +m1m2/Q.

4. r1 −m2 < 0, r2 −m2 > 0. Let r1 −m1 = −P and r2 −m2 = Q then.

Trace: x > Q− P (B.14)

Determinant: x < −m1m2

Q
− P (B.15)

which cannot be satisfied for x ≥ 0 hence extinction is impossible in this case.
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Appendix C

Harvesting in a 2 patch logistic

growth model

As detailed above, the zero equilibrium is always unstable if ri > 0. Harvesting of this

population will change this condition. If harvesting occurs in both patches, then the Jacobian

of the system becomes

J(c) =

 r1 −m12 − c1 m21

m12 r2 −m21 − c2

 . (C.1)

By inspection of the trace and determinant of this matrix we can determine the conditions

of the harvesting parameter to ensure stability. In all cases we can see that the trace and

determinant of J are given by

Tr(J(h)) = r1 −m12 + r2 −m21 − (c1 + c2) (C.2)

Det(J(h)) = (r1 −m12)(r2 −m21)−m12m21 − c1(r2 −m21)− c2(r1 −m12) + c1c2 (C.3)

(C.4)
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Hence for stability of the (0, 0) equilibrium and therefore extinction of the population the

harvesting rate must satisfy both

c1 + c2 > Tr(J(0))

ci >
m12m21

cj +mji − rj
+ (ri −mij)

From the second of the above conditions we are able to show that the intersection of the

extinction threshold with the axes in control space is given by

ĉi =
det(J(0))

rj −mj

The extinction threshold is given by the upper branch of the hyperbolic curve det(J(c)) = 0.

This curve asymptotes at c1 = r1−m12 and c2 = r2−m21. Hence the four cases given below.

1. r1 − m12 > 0, r2 − m21 > 0. Here both asymptotes are positive, and the extinction

threshold does not cross the axes in c1 − c2 space. In this case, harvesting a single

species will never result in total population extinction because the unharvested patch

will be a source of individuals for the harvested patch.

2. ri −mij > 0, rj −mji < 0. Here the ci asymptote is positive, and the cj asymptote is

negative, in this case, the extinction threshold crosses the ci axis but not the cj axis.

This indicates that when one patch is a source to the second, then control of the source

patch alone, beyond the threshold ĉi, will lead to population extinction. Control of the

sink patch will not cause population extinction.

3. r1 −m12 < 0, r2 −m21 < 0. In this case, both asymptotes are negative indicating that

excessive harvesting of either patch will cause the entire population over both patches

to crash to extinction.

These results are given in Figure C.1
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Figure C.1: Extinction thresholds for the four possible cases. Dashed lines indicate asymptotes
of the threshold.
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Appendix D

Stability of Positive Equilibria

The disease free equilibrium is given by the solution of

ν1 − (µ1 + c1)S1 −A1(c1)S1 +A2(c2)S2 = 0 (D.1)

ν2 − (µ2 + c2)S2 −A2(c2)S2 +A1(c1)S1 = 0. (D.2)

The nullclines of this system are given by hyperbolic curves, the positive arms of which

intersect in the positive quadrant. This intersection is the unique positive equilibrium for the

system. The nullcline of (D.1) is a hyperbola with transverse axis parallel to the S2-axis while

the nullcline of (D.2) is also a hyperbola, perpendicular to the first. If we define Ŝ1 and Ŝ2 as

the unique positive steady states we can show that this point is locally stable by considering

the Jacobian of the disease free system evaluated at this equilibrium.

 −µ1 − c1 −A′1Ŝ1 −A1(c1) A′2Ŝ2 +A2

A′1Ŝ1 +A1 −µ2 − c2 −A′2Ŝ2 −A2

 . (D.3)

where A′i = dAi
dSi
|Si=Ŝi

.

By evaluating the trace and determinant of this matrix and using the Routh-Hurwitz

conditions [105] we can see that this equilibrium is always stable for positive parameters.

Trace = −µ1 − c1 −A′1Ŝ1 −A1(c1)− µ2 − c2 −A′2Ŝ2 −A2 < 0
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Determinant = (µ1 + c1 +A′1Ŝ1 +A1(c1))(µ2 + c2 +A′2Ŝ2 +A2)− (A′2Ŝ2 +A2)(A
′
1Ŝ1 +A1) > 0

= (µ1 + c1)(µ2 + c2) + (A′1Ŝ1 +A1)(µ2 + c2) + (A′2Ŝ2 +A2)(µ1 + c2) > 0

Figure D.1: Nullclines
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Appendix E

Bounds on Maximum Eigenvalue of

Matrix 3.4

The Perron-Frobenius theorem [123] shows that the maximum eigenvalue λ of a real positive

matrix A is real and positive, and is bounded by the maximum and minimum row sum and

also by the maximum and minimum column sum, hence the maximum eigenvalue must be

bounded by

max{rowmin, colmin} ≤ λ ≤ min{rowmax, colmax}.

This result can be applied to the maximum eigenvalue of a matrix which is positive but with

possibly negative diagonal entries, and hence to the matrix 3.4. We must consider two cases,

firstly the case of complete dispersal, when φ = 1 and secondly when φ 6= 1.

1. φ = 1 : In this case, the row sums of 3.4 are P1 − c1 − A1 + A2, P2 − c2 − A2 + A1,

the minimum of which is ≤ min{P1 − c1, P2 − c2} and the maximum of which is ≥

max{P1 − c1, P2 − c2}. The column sums of 3.4 when φ = 1 are simply P1 − c1, P2 − c2

and hence

min{P1 − c1, P2 − c2} ≤ λ ≤ max{P1 − c1, P2 − c2}.

2. φ < 1 : In the case of incomplete dispersal, φ < 1, then the row sums are given by

P1− c1−A1 +φA2, P2− c2−A2 +φA1. The column sums are Pi− ci− (1−φ)Ai. Now

if A1 ≤ A2 say, then P1− c1−A1 +φA2 > P1− c1− (1−φ)A2 and P2− c2−A2 +φA1 <
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P2 − c2 − (1− φ)A1 and hence

min{P1−c1−(1−φ)A1, P2−c2−(1−φ)A2} ≤ λ ≤ max{P1−c1−(1−φ)A1, P2−c2−(1−φ)A2}.
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Appendix F

MATLAB code for pathogen

exclusion threshold

We present below the annotated sample Matlab code for both the constant movement model

without perturbation, and the corresponding model with linear perturbation. All pathogen

exclusion thresholds follow this format.
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Figure F.1: MATLAB code for pathogen exclusion threshold with constant movement and no
spatial perturbation.
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Figure F.2: MATLAB code for pathogen exclusion threshold for constant movement model
with linear perturbation
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Appendix G

MATLAB code for calculating

minimum control effort along

pathogen exclusion threshold
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Figure G.1: Matlab code used in Chapter 6 to calculate minimum cost along the pathogen
exclusion threshold
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