
O P T I M I S AT I O N O F D E F I N I T I O N S T R U C T U R E S &

PA R A M E T E R VA L U E S I N P R O C E S S A L G E B R A M O D E L S

U S I N G E V O L U T I O N A RY C O M P U TAT I O N

david ralix oaken

Doctor of Philosophy

Computing Science and Mathematics, School of Natural Sciences

University of Stirling

March 2014

David Ralix Oaken: Optimisation of Definition Structures & Parameter Values in Process Algebra

Models Using Evolutionary Computation, Doctor of Philosophy, © March 2014

D E C L A R AT I O N

I declare that all work presented in this document is my own unless expressly stated otherwise,

whereupon acknowledged work is fully referenced. Furthermore, I certify that all work

presented is true and in accordance with academic rules and ethical conduct.

Stirling, March 2014

David Ralix Oaken

A B S T R A C T

Process Algebras are a Formal Modelling methodology which are an effective tool for defining

models of complex systems, particularly those involving multiple interacting processes.

However, describing such a model using Process Algebras requires expertise from both the

modeller and the domain expert. Finding the correct model to describe a system can be

difficult. Furthermore, even with the correct model, parameter tuning to allow model outputs

to match experimental data can also be both difficult and time consuming.

Evolutionary Algorithms provide effective methods for finding solutions to optimisation

problems with large and noisy search spaces. Evolutionary Algorithms have been proven to

be well suited to investigating parameter fitting problems in order to match known data or

desired behaviour.

It is proposed that Process Algebras and Evolutionary Algorithms have complementary

strengths for developing models of complex systems. Evolutionary Algorithms require a

precise and accurate fitness function to score and rank solutions. Process Algebras can be

incorporated into the fitness function to provide this mathematical score.

Presented in this work is the Evolving Process Algebra (EPA) framework, designed for

the application of Evolutionary Algorithms (specifically Genetic Algorithms and Genetic

Programming optimisation techniques) to models described in Process Algebra (specifically

PEPA and Bio-PEPA) with the aim of evolving fitter models.

The EPA framework is demonstrated using multiple complex systems. For PEPA this includes

the dining philosophers resource allocation problem, the repressilator genetic circuit, the

G-protein cellular signal regulators and two epidemiological problems: HIV and the measles

virus. For Bio-PEPA the problems include a biochemical reactant-product system, a generic

genetic network, a variant of the G-protein system and three epidemiological problems derived

from the measles virus.

Also presented is the EPA Utility Assistant program; a lightweight graphical user interface.

This is designed to open the full functionality and parallelisation of the EPA framework to

beginner or naive users. In addition, the assistant program aids in collating and graphing

after experiments are completed.

iv

A C K N O W L E D G M E N T S

I would like to thank my wonderful parents Lynne and Raymond Marco for encouraging

me and supporting me through life and academia; my beloved husband Kaspian Oaken for

keeping me sane; my primary supervisor Carron Shankland for pushing me to network and

publish; and my secondary supervisor David Cairns for putting me on the path to studying

evolutionary computation.

Another big thank you to SICSA (Scottish Informatics and Computer Science Alliance) for the

prize studentship award which funded my studies.

A thanks to all family, friends, colleagues and strangers that have influenced how I got to

where I am now.

v

L I S T O F P U B L I C AT I O N S

• D. Marco, C. Shankland, and D. Cairns, "Optimisation of Process Algebra Using Evolu-

tionary Computation," in IEEE Congress on Evolutionary Computation, pp. 1296–1301, IEEE,

2011.

• D. Marco, E. Scott, D. Cairns, A. Graham, J. Allen, S. Mahajan, and C. Shankland, "In-

vestigating co-infection dynamics through evolution of Bio-PEPA model parameters," in The

10th Conference on Computational Methods in Systems Biology, vol. 7605, pp. 227–246, LNCS,

Springer-Verlag, 2012.

• D. Marco, C. Shankland, and D. Cairns, "Evolving Bio-PEPA Process Algebra Models Using

Genetic Programming," in GECCO Conference Proceedings, pp. 177–183, ACM, 2012.

These papers were published under the author’s pre-married name. David Marco changed his

name to David Oaken in January 2013. Supporting documentation is available upon request.

vi

C O N T E N T S

1 introduction 1

1.1 Thesis Statement . 2

1.2 Thesis Structure . 2

2 state of the art 4

2.1 Complex Systems . 4

2.2 Process Algebras . 6

2.2.1 PEPA . 6

2.2.2 Bio-PEPA . 8

2.2.3 PEPA or Bio-PEPA . 11

2.3 Evolutionary Computation . 12

2.3.1 Evolutionary Computation Concepts . 12

2.3.2 Evolutionary Computation Representations 15

2.3.3 Variation . 18

2.3.4 Genetic Algorithms . 19

2.3.5 Genetic Programming . 20

2.4 State of the Art Summary . 22

3 related work 24

3.1 Parameter Optimisation . 24

3.2 Model Structure Optimisation . 25

3.3 Neighbouring Fields . 25

3.3.1 Applying GP to ODEs . 26

3.3.2 Simulated Annealing . 27

3.3.3 Bayesian Inference . 28

3.4 No Free Lunch . 30

3.5 Related Work Summary . 30

4 evolving process algebra framework 32

4.1 The Combined Individual . 33

4.1.1 Representing Solutions . 34

4.2 Variable Summary . 36

4.3 The Evolving Process Algebra Lifecycle . 37

4.3.1 Utilising Domain Knowledge . 39

4.3.2 Replications . 40

4.3.3 Failure Timeout . 42

4.3.4 Euclidean Distance Fitness Scoring . 43

vii

contents viii

4.3.5 GP Tree Fitness Scoring . 44

4.3.6 GP Node Weight Fitness Scoring . 46

4.3.7 Additional Fitness Scoring . 46

4.3.8 Tournament Selection . 47

4.3.9 Elitism . 48

4.3.10 Variation . 49

4.3.11 Validity . 57

4.3.12 Replacement . 57

4.4 Evolving Process Algebra Framework Summary 59

5 parameter matching experiments 60

5.1 Dining Philosophers . 62

5.1.1 Background & Model . 62

5.1.2 Experiment - n . 63

5.2 Internet Worm . 65

5.2.1 Background & Model . 65

5.2.2 Experiment - all rates . 67

5.3 HIV . 68

5.3.1 Background & Model . 68

5.3.2 Experiment - pInfect & pImmigrate . 71

5.4 Repressilator . 72

5.4.1 Background & Model . 72

5.4.2 Experiment - all rates . 76

5.5 G-protein (PEPA) . 78

5.5.1 Background & Model . 78

5.5.2 Experiment - all rates . 80

5.6 Parameter Matching Experiments Summary . 82

6 species structure optimisation experiments 83

6.1 Biochemical Reactant-Product . 84

6.1.1 Background & Model . 84

6.1.2 Experiment - all species . 85

6.2 Measles (Frequency-dependent transmission) . 86

6.2.1 Background & Model . 86

6.2.2 Experiment 1 - Inf . 88

6.2.3 Experiment 2 - Exp & Inf . 89

6.2.4 Experiment 3 - Exp & Inf (with domain knowledge) 90

6.3 Generic Genetic Network . 91

6.3.1 Background & Model . 91

6.3.2 Experiment - P2 . 93

contents ix

6.4 G-Protein (Bio-PEPA) . 94

6.4.1 Background & Model . 94

6.4.2 Experiment 1 - RL . 96

6.4.3 Experiment 2 - RL (with domain knowledge) 97

6.4.4 Experiment 3 - RL & G . 98

6.4.5 Experiment 4 - RL & G (with domain knowledge) 98

6.5 Species Structure Optimisation Experiments Summary 100

7 kinetics structure optimisation experiments 101

7.1 Biochemical Reactant-Product . 102

7.1.1 Background & Model . 102

7.1.2 Experiment - alpha . 102

7.2 Measles (Density-dependent transmission) . 103

7.2.1 Background & Model . 103

7.2.2 Experiment 1 - contact . 105

7.2.3 Experiment 2 - contact, S, Exp & Inf . 105

7.3 Measles (Full) . 107

7.3.1 Background & Model . 107

7.3.2 Experiment - contact . 110

7.3.3 Results Discussion . 112

7.4 Kinetics Structure Optimisation Experiments Summary 113

8 parameter matching & structure optimisation 114

8.1 Biochemical Reactant-Product . 114

8.1.1 Background & Model . 114

8.1.2 Experiment - all segments . 115

8.2 Kinetics Structure Optimisation Experiments Summary 117

9 conclusion 118

9.1 Thesis Statement . 119

9.2 Custom Fitness Functions . 119

9.3 Potential Developments . 120

9.3.1 Supported Representations . 120

9.3.2 Smarter Ban List . 121

9.3.3 Equality Engine . 121

9.3.4 Algebraic Simplification Engine . 122

9.4 Moving Forwards . 122

a appendix a: epa utility assistant 124

a.1 EPA HTCondor Assistant . 124

a.2 EPA Results Collator . 127

a.2.1 Raw Result Files . 128

contents x

a.2.2 Processed Result Files . 130

bibliography 132

L I S T O F F I G U R E S

Figure 2.1 Configuration one (aggressor behaviour) captured at two second intervals 5

Figure 2.2 Configuration two (defender behaviour) captured at two second intervals 5

Figure 2.3 SEIR epidemiology model written in PEPA 7

Figure 2.4 Biochemical Reactant-Product model written in Bio-PEPA 9

Figure 2.5 Selection scenario in wolves of different fur colours 13

Figure 2.6 Pseudo-code representation of Ant Colony Optimisation 15

Figure 2.7 Pseudo-code representation of Particle Swarm Optimisation 16

Figure 2.8 Pseudo-code representation of Estimation of Distribution Algorithms . 17

Figure 2.9 Detailed pseudo-code representation of GA and GP optimisation techniques 18

Figure 2.10 Translating a DNA strand to a binary string 19

Figure 2.11 Crossover (left) and Mutation (right) operators on binary string solutions 20

Figure 2.12 Crossover operator on a generic GP tree 21

Figure 2.13 Mutation (point) operator on a generic GP tree 21

Figure 2.14 Mutation (subtree) operator on a generic GP tree 22

Figure 3.1 Pseudo-code representation of Simulated Annealing 27

Figure 4.1 The EPA combined individual structure 33

Figure 4.2 Translating a DNA strand to a binary string with example EPA individuals 34

Figure 4.3 Bio-PEPA species syntax defined as a GP tree 35

Figure 4.4 The EPA lifecycle . 38

Figure 4.5 Three runs with 100 (left), 1 (centre) and 1 (right) internal replications . 41

Figure 4.6 Three runs with 100 (left), 1 (centre) and 1 (right) internal replications . 41

Figure 4.7 Crossover (left) and Mutation (right) operators on example EPA individuals 50

Figure 4.8 Crossover operator on a Bio-PEPA syntax GP species tree 51

Figure 4.9 Crossover operator on a Bio-PEPA syntax GP species tree (with violation) 52

Figure 4.10 Mutation operator on a Bio-PEPA syntax GP species tree 52

Figure 4.11 Crossover operator on a Bio-PEPA syntax GP kinetics tree 54

Figure 4.12 Mutation (point) operator on a Bio-PEPA syntax GP kinetics tree 55

Figure 4.13 Mutation (subtree) operator on a Bio-PEPA syntax GP kinetics tree 55

Figure 5.1 Dining philosophers model written in PEPA 62

Figure 5.2 Trace of fitness for each value of n . 64

Figure 5.3 Internet Worm SIR model written in PEPA 66

Figure 5.4 Histogram plots for Internet worm SIR: beta, delta and gamma 68

Figure 5.5 UK HIV SEI model written in PEPA . 70

xi

List of Figures xii

Figure 5.6 Trace of fitness for each value of pInfect and pImmigrate 71

Figure 5.7 Histogram plots for HIV SEI: pInfect and pImmigrate 72

Figure 5.8 The repressilator synthetic genetic regulatory network 73

Figure 5.9 Repressilator system model written in PEPA 74

Figure 5.10 The protein expression trace of the repressilator system 74

Figure 5.11 Pseudo-code for the repressilator fitness function 75

Figure 5.12 Histogram plots for repressilator: t, d, u and b 77

Figure 5.13 G-protein system model written in PEPA 79

Figure 5.14 Histogram plots for G-protein (PEPA): rl, rlm, rd0, rd1, ga, gd1 and g1 . . 81

Figure 6.1 Biochemical Reactant-Product model written in Bio-PEPA 84

Figure 6.2 Frequency-dependent transmission measles SEIR model written in Bio-PEPA 87

Figure 6.3 Species analysis for Measles SEIR (Frequency Version): Inf 89

Figure 6.4 Generic genetic network model written in Bio-PEPA 91

Figure 6.5 Processes of a generic genetic network 92

Figure 6.6 Species analysis for genetic network: P2 93

Figure 6.7 G-protein activation cycles . 94

Figure 6.8 G-protein system model written in Bio-PEPA 95

Figure 6.9 Species analysis for G-protein: RL . 96

Figure 6.10 Species analysis for G-protein: RL with restrictions 97

Figure 6.11 Species analysis for G-protein: G with restrictions 99

Figure 6.12 Species analysis for G-protein: RL with restrictions 99

Figure 7.1 Density-dependent transmission measles SEIR model written in Bio-PEPA 104

Figure 7.2 The 60 England & Wales cities in the Grenfell et al. study 107

Figure 7.3 Full measles SEIR model written in Bio-PEPA 108

Figure 7.4 The number of measles incidents in Leeds between 1944 and 1964 . . . 109

Figure 7.5 Pseudo-code for the full measles fitness function 110

Figure 8.1 Histogram plots for biochemical reactant-product: r 116

Figure 8.2 Species analysis for biochemical reactant-product: Z 117

Figure A.1 The EPA Utility Assistant - HTCondor assistant view 125

Figure A.2 The EPA Utility Assistant - component selector view 126

Figure A.3 The EPA Utility Assistant - file parameter selector view 126

Figure A.4 The EPA Utility Assistant - HTCondor assistant ready view 127

Figure A.5 The EPA Utility Assistant - results collator view 128

Figure A.6 The EPA Utility Assistant - fitness graph output 131

L I S T O F TA B L E S

Table 4.1 Default EPA variables by category . 37

Table 4.2 Euclidean distance fitness measure . 44

Table 4.3 GP Node Weights . 46

Table 4.4 Tournament selection example, sorted in ascending order by fitness . . 48

Table 5.1 Dining philosophers (n) specific and EPA override parameter values . . 64

Table 5.2 Internet worm SIR specific and EPA override parameter values 67

Table 5.3 Internet worm SIR results . 67

Table 5.4 HIV SEI specific parameter values . 72

Table 5.5 HIV SEI results . 72

Table 5.6 Repressilator specific and EPA override parameter values 76

Table 5.7 Repressilator results . 76

Table 5.8 G-protein (PEPA) specific parameter values 80

Table 5.9 G-protein (PEPA) results . 81

Table 6.1 Biochemical (X, Y and Z) specific and EPA override parameter values . 85

Table 6.2 Measles SEIR (Inf) specific and EPA override parameter values 88

Table 6.3 Genetic network specific and EPA override parameter values 93

Table 6.4 G-protein (Bio-PEPA) (RL) specific and EPA override parameter values . . 96

Table 6.5 G-protein (Bio-PEPA) (RL & G) specific and EPA override parameter values 98

Table 7.1 Biochemical (alpha) specific and EPA override parameter values 103

Table 7.2 Measles SEIR (contact) specific and EPA override parameter values 105

Table 7.3 Measles SEIR (contact) specific and EPA override parameter values 111

Table 8.1 Biochemical (alpha) specific and EPA override parameter values 115

xiii

A C R O N Y M S

ABC Approximate Bayesian Computation

ACO Ant Colony Optimisation

Bio-PEPA Biologically-Inspired PEPA

CTMC Continuous Time Markov Chain

DE Differential Evolution

EA Evolutionary Algorithm

EC Evolutionary Computation

ECJ Evolutionary Computation Java

EDA Estimation of Distribution Algorithm

EM Expectation-Maximisation

EPA Evolving Process Algebra

FM Formal Modelling

GA Genetic Algorithm

GP Genetic Programming

HODE Higher-order Ordinary Differential Equation

IDE Integrated Design Environment

NFL No Free Lunch

ODE Ordinary Differential Equation

PA Process Algebra

PC Process Calculi

PEPA Performance Evaluation Process Algebra

PSO Particle Swarm Optimisation

SBGN Systems Biology Graphical Notation

SBML Systems Biology Markup Language

SBSI Systems Biology Software Infrastructure

SBW Systems Biology Workbench

SEIR Susceptible-Exposed-Infected-Recovered

SEI Susceptible-Exposed-Infected

SIR Susceptible-Infected-Recovered

SI Swarm Intelligence

WSCCS Weighted Synchronous Calculus of Communicating Systems

xiv

1
I N T R O D U C T I O N

Proposed here is the application of Evolutionary Computation (EC) techniques for the optim-

isation of models to more accurately describe systems defined in Process Algebras (PAs) in

order to match existing time series data. The hybrid approach will utilise the complementary

strengths of EC techniques and PA modelling while negating individual weaknesses for the

description of complex bioscience systems.

Process Algebra is one of many established formal methods adopted by computational

biology for constructing models of complex systems. It is especially good for capturing

interactions between individual elements [4]: for instance, describing a biological system which

may be viewed as large networks of interacting components, where they themselves have

individual complex stochastic behaviour. This field of research and the contributions of this

work hold potential for assisting users in creating models to describe complex systems: domain

experts most likely will not be well-versed in Formal Modelling (FM) techniques. Therefore a

individual focused approach may be more familiar when producing early-stage models. Once

created, these early models can be optimised and refined into accurate descriptions of the

systems.

Evolutionary Computation (also and interchangeably referred to as Evolutionary Algorithm

(EA)) techniques are powerful and flexible search algorithms, capable of finding robust

solutions in a large or deceptive search space [2, 3]. More traditional, systematic or exhaustive

search techniques frequently become too computationally costly to apply to these sorts of

problems.

Independently, the domains of Formal Modelling and Evolutionary Computation are

established and well explored. Research into combining these disciplines is still in its infancy.

As mentioned above, these two approaches have complementary strengths which can negate

the weaknesses of using either individually. For example, a valid and well-defined model along

with relevant performance criteria are all vital for an Evolutionary Algorithm to successfully

find robust solutions. The use of a formal approach such as a Process Algebra can provide

this model.

However, a general difficulty in using Process Algebras is fine-tuning models to accurately

match known data. This uncertainty as to the correct model structure provides an appropriate

search space ideally suited to the application of an Evolutionary Algorithm. This is especially

true as the size and complexity of the PA model increases: the computational power required

for the application of systematic search techniques becomes infeasible.

1

1.1 thesis statement 2

The Process Algebras used are Performance Evaluation Process Algebra (PEPA) [40] and

the Biologically-Inspired PEPA (Bio-PEPA) [20], with the majority of work done using the

latter. The Evolutionary Computation techniques used here are a Genetic Algorithm (GA) for

parameter matching work and a tree-based Genetic Programming (GP) technique for model

structure optimisation. These components are combined into the developed Evolving Process

Algebra (EPA) framework. The research focuses mostly on the combination of the two domains

as well as reproducibility, therefore more complex EA techniques are not utilised.

1.1 thesis statement

The aim of this research is to develop a bridging framework by combining Evolutionary

Computation techniques with Process Algebra models. The purpose of such a framework will

be in assisting domain experts. The Evolving Process Algebra (EPA) framework will be used

for parameter matching optimisation and direct optimisation of the Process Algebra models,

written in PEPA or Bio-PEPA notation.

The focus is on biological and epidemiological models with available existing data. Knowing

this focus, the EPA framework can incorporate prebuilt constructs to improve experimental

results.

Domain experts most likely will not be well versed in Formal Modelling techniques. Process

Algebras offer a lower level, individual based approach to modelling. This may be more

familiar when producing early-stage models which can be optimised using the developed EPA

framework. The framework itself is a command-line entity with no user interface. The EPA

Utility Assistant, a complimentary program, provides the user interface for the domain expert

to use the EPA framework.

1.2 thesis structure

The structure of this document is as follows. Chapter 2 provides background information and

elaborates on the current state of the art with descriptions of the Evolutionary Computation

and Process Algebra fields bridged by the EPA framework. Related work currently being

done in the field follows in Chapter 3. This includes examples of immediate neighbours

and alternatives to this field, such as direct optimisation of Ordinary Differential Equation

(ODE) structures, simulated annealing and Bayesian inference. The technical specifics of the

EPA framework are detailed in Chapter 4 which provides information on the framework’s

implementation and functions. The choice of default values and justifications for these values

are also presented in this chapter.

The following four chapters detail the experiments performed for incrementally develop-

ing and testing the EPA framework. Chapter 5 details the PEPA models utilised by the EPA

1.2 thesis structure 3

framework during initial Genetic Algorithm parameter matching experiments. Chapter 6

moves the focus onto Genetic Programming optimisation of systems described in Bio-PEPA;

specifically the species definition segments of those models. Following the species definition

optimisation, the kinetics definition experiments are detailed in Chapter 7. Chapter 8 details

the final experiments which combine the work of the three previous chapters to perform

Genetic Algorithm and Genetic Programming optimisation simultaneously.

The conclusions and final discussion are presented in Chapter 9 which summarises the

work done in this thesis and discusses the overarching impacts of the EPA framework. Future

uses for the framework and possible enhancements are also presented in this chapter.

Following the final chapter and finishing this document is Appendix A, EPA Utility Assistant.

This section presents the assistant program designed to aid with using the EPA framework with

the HTCondor high throughput computing toolkit (Chapter 4 provides details of HTCondor

and its implementation). The assistant program also aids in post-experiment result collation

and graphing.

2
S TAT E O F T H E A RT

The hybrid approach of this work bridges two fields of research: Evolutionary Computation

(EC) and Formal Modelling (FM). This chapter provides an overview of both overarching

fields plus specifics on Genetic Algorithms (GAs), Genetic Programming (GP), Performance

Evaluation Process Algebra (PEPA) and Biologically-Inspired PEPA (Bio-PEPA).

The Evolving Process Algebra (EPA) framework is discussed fully in Chapter 4. In short,

the framework is applied to partial Process Algebra models which describe complex systems

to improve their accuracy. This chapter will also discuss complex systems and the related

emergent behaviour to provide background on what is being modelled by the Process Algebras

and why they are useful.

2.1 complex systems

A complex system is a system comprised of individual parts which are interconnected, can

communicate and exhibit one or more specific behaviours [44]. Examples of complex systems

can be found in many problem domains; for example:

systems biology : epidemiology models, metabolic networks, cell signalling networks

economics : artificial stock market, currency exchange predictors

geophysics : climate modelling, rock formation patterns

social science : Schelling’s Tipping Point, Artificial Anasazi

In any domain, the complexity of a system can be one of two types: disorganised or organised

complexity [68]. Disorganised complexity is caused by a huge number of individuals existing

simultaneously in the system. Organised complexity can exist in systems of any scale and is

system specific; it is the behaviours, connectedness and interdependencies of parts inside the

system that dictate the system’s complexity.

The Greek philosopher Aristotle famously quoted: "The whole is greater than the sum of its

parts" which particularly applies to emergent behaviour. By its nature, the overall behaviour

of a system which exhibits emergent properties cannot be predicted by considering the parts

in isolation. Only when the complex system is observed operating as a whole can we see the

emergent properties or emergent behaviour.

For an example of emergent behaviour, consider the social interaction models posited by

Pruitt & Gahagan [59]. Pruitt was influential in the development of three important social

4

2.1 complex systems 5

models: the aggressor-defender model, the conflict spiral model and the structural change model.

The most signature of Pruitt’s social models is the aggressor-defender model.

The rules of the aggressor-defender interaction are as follows: each individual in the system

will arbitrarily target two other individuals when the system starts; the two targets are then

labelled as aggressor, defender or victim. The behaviour associated with the system depends

on the configuration of these labels. Figures 2.1 and 2.2 illustrate these two configurations

and related behaviours as simulated in Java by Icosystem [24]. The colour of the individuals is

added to make tracking movements easier; it is not related to the labels.

In configuration one (the aggressor behaviour) the individual is threatened by one target

which it labels an aggressor and must protect itself using the second target which it labels a

defender. Every individual in the system follows the same configuration and each individual

can be targeted multiple times.

Figure 2.1: Configuration one (aggressor behaviour) captured at two second intervals

At all times, every individual attempts to keep its defender between itself and its aggressor.

Figure 2.1 displays the behaviour of the system under these rules: individuals start distributed

around the space and seem to drift around randomly to maintain the positioning of their

aggressor and defender targets. Individuals will drift in this manner indefinitely.

In configuration two (the defender behaviour) the individual labels its first target as a victim

which is under threat from its second target which is labelled an aggressor. As in configuration

one, each individual in the system follows the same configuration and each individual can be

targeted multiple times.

Figure 2.2: Configuration two (defender behaviour) captured at two second intervals

The rules of this configuration dictate the individual must interpose itself between its victim

and its aggressor. Figure 2.2 illustrates the behaviour of the system with these rules: as in

configuration one, individuals start distributed around the space. However, all individuals in

2.2 process algebras 6

the system quickly converge and cluster together. Individuals will remain clustered indefinitely

but may move together around the space.

In neither the aggressor or defender configuration is it possible to predict the behaviour of

the system by examining the properties of nodes with the aggressor, defender or victim labels

independently. Frequently, only by simulating the system as a whole does the emergent

behaviour become apparent.

2.2 process algebras

Process Algebras (PAs), also known as Process Calculi (PC), are a Formal Modelling (FM)

technique with a strict mathematical semantic structure. This formality allows rigorous testing

and analysis of the described systems. The mathematical structure and small collection of

operators allows large complex systems to be described using a small collection of semantic

building blocks.

Originally, Process Algebras were developed in the early 1970s to model distributed compu-

tation systems. For a full historical overview, see Baeten [4]. By nature, computer networks are

highly distributed, concurrent, involve communication and also co-operation. This behaviour

of interactions, communications and synchronisations can be seen in biological and epidemi-

ological systems. Interest in using Process Algebras for the modelling of bioscience systems

has been increasing over the last decade [22, 23, 58].

Process Algebras describe complex systems by the composition of multiple parallel agents,

called processes. Each process carries out actions, which may require communication with

other processes to complete. Choices between actions can be made in a deterministic or

stochastic way.

One of the main advantages of Process Algebras is modelling at an individual level. By

tracking individuals as they navigate a system, local changes can become tipping points

that lead to changes in the overall system, thus resulting in emergent behaviour, as discussed

previously in Section 2.1.

The constrained nature of Process Algebra syntax makes them suitable for use with Genetic

Programming optimisation techniques. They are mathematically based and allow rigorous

analysis, meaning it is possible to effectively evaluate the fitness of candidate solutions in

several ways during the selection process, see Section 2.3.1.2.

2.2.1 PEPA

Performance Evaluation Process Algebra (PEPA) was developed at the University of Edinburgh

by Hillston [40]. PEPA is described as an enhanced Process Algebra originally designed

for performance modelling. It has a broad application area including biological [15] and

2.2 process algebras 7

epidemiological systems [10]. Furthermore, it is not so restricted to those fields as to be

unusable in other problem domains; for instance, priority queue modelling [19].

Consider Figure 2.3, a simple Susceptible-Exposed-Infected-Recovered (SEIR) epidemiolo-

gical model written in PEPA. The PEPA syntax consists of a few elements which are combined

to describe complex systems.

rContact = 0.5 rInfect = 0.1 rRecover = 0.4

S
def
= (contact,>).E

E
def
= (infect, rInfect).I

I
def
= (contact,>).I + (recover, rRecover).R

R
def
= (idle,>).R

Transmitter
def
= (contact, rContact).Transmitter + (recover,>).Dormant

Dormant
def
= (infect,⊥).Transmitter

(S[990] || I[10]) BC
contact,infect,recover (Transmitter[990] || Dormant[10])

Figure 2.3: SEIR epidemiology model written in PEPA

Components (S, E, I, R, Transmitter and Dormant) describe any individual inside the system

and the states in which they can exist. In epidemiology, for example, an individual could be

a human which can move from a susceptible state (S), to being exposed to some pathogen

(E), infected by that pathogen (I) before eventually entering a recovered state (R). Consider

malaria transmitted via mosquito bite as an example; a susceptible human can enter the

mosquito’s territory and become exposed, once bitten they will enter an infected state until

eventually being cured and entering a recovered state. The roles of additional components,

such as Transmitter and Dormant, are discussed later in this section.

Actions (contact, infect, recover, idle) are performed and will lead to transitions from one state

into another state. For instance, a susceptible individual (S) can perform a contact action and

become exposed (E). An infected individual performing the same action will remain in the

infected state. PEPA can be viewed as a Markov Chain; due to the structure of this underlying

Markov Chain, the state still transitions by following an edge back into the infected state.

If one action appears in many component definitions (such as contact appearing in S, I and

Transmitter), it is handled by the system equation, explained below.

Rates (rContact, rInfect, rRecover) determine when an action can occur; the larger the rate

value, the more readily all associated actions becomes available to be performed. Rates are

acceptable in numeric form or scientific e notation, i.e. 0.001 or 1.0e− 3. The special rate infinity

(>) denotes an action which is always available, such a rate will be restricted by the rates

of cooperating actions; discussed below with communication. Similarly, the special rate ⊥

denotes an action which is rarely available. Consider the recovered state (R) in Figure 2.3; this

2.2 process algebras 8

species requires a definition but performs no meaningful action, ⊥ is useful for representing

the rate for such an action.

Communication between components and the initial population sizes are defined in the final

line of the PEPA syntax: the system equation. Components on the left can communicate with

those on the right over actions which appear under the PEPA cooperation symbol (BC
actionSet).

In the SEIR example in Figure 2.3, the contact, infect and recover actions connect the S and I

components to the Transmitter and Dormant components.

Choice (denoted by a +) allows different actions to occur. The path chosen is determined

by which action and cooperating components are ready first. Readiness is determined by

all communicating components for a particular action being present when a rate becomes

stochastically available.

One restriction of the PEPA syntax is that components cannot be created or destroyed.

Instead creation is modelled by recruiting from idle pools (Transmitter and Dormant) of waiting

components and destruction returns individuals to those pools. This syntactical structure is

also required for the modelling of one-to-one communication paths instead of the default

mass communication. For instance, to allow one infected to encounter one susceptible in

a contact action; instead of all infected individuals encountering all susceptible individuals

simultaneously.

As previously mentioned, Process Algebras allow for rigorous algebraic testing and analysis.

A plug-in, also developed at Edinburgh University, allows PEPA models to be interpreted

in many ways [29], including as Continuous Time Markov Chains (CTMCs) and Ordinary

Differential Equations (ODEs).

This research uses the simulation option to produce the time series data results. ODEs view

the system from the population level and may miss emergent behaviours which may be

of interest to modellers. Simulation will track individual scale interactions and changes in

population level to capture the emergent behaviours. This is the default method used by the

EPA framework, however ODE evaluation is possible if the domain expert prefers.

2.2.2 Bio-PEPA

Biologically-Inspired PEPA (Bio-PEPA) is a descendant of PEPA aimed at problems in the

biological domain, developed by Ciocchetta with PEPA’s creator Hillston [20]. Bio-PEPA models

utilise a different view of complex systems than PEPA. With PEPA, agents are considered along

with activities in which they may participate and the paths they may follow during execution

in a reagent-centric view. However, with Bio-PEPA, the focus is on changing values or levels of

those agents in a pathway-centric view.

Consider the model in Figure 2.4 which represents the biochemical reaction 2X + Y→ 3Z. A

standard PEPA view of this system is that molecule X can change state to behave like molecule

2.2 process algebras 9

Z. Similarly, molecule Y can also change state to behave like molecule Z. This does not make

sense in the context of biochemistry, therefore the Bio-PEPA view of the system is that levels of

species X and Y decrease as number of species Z increases.

r = 0.001

kineticLawOf alpha : fMA (r)

X
def
= (alpha,2)� X

Y
def
= alpha� Y

Z
def
= (alpha,3)� Z

X[200] <alpha> Y[100] <∗> Z[0]

Figure 2.4: Biochemical Reactant-Product model written in Bio-PEPA

The simple model in Figure 2.4 demonstrates the core components of the Bio-PEPA syntax. A

system modelled in Bio-PEPA can have rates (r). Just as in PEPA, these can be numeric or use

scientific e notation.

Species (X, Y and Z) are defined in a similar manner to PEPA syntax. Note that the expression

Y def
= (alpha, 1)� Y is equivalent to Y def

= alpha� Y. When the stoichiometry coefficient is 1, it

and the brackets may be removed. Additionally the expression Y def
= alpha� Y is equivalent to

Y def
= alpha�. The final species identifier is a throwback to PEPA semantics where this indicates

a species transition. No such species transition occurs in Bio-PEPA so this identifier can be

omitted in any species definition. These are both examples of syntactic shorthand which do

not change the model’s function.

The operators � and � (shortened from the ASCII >> and << which the EPA utilises)

indicate that the species either increases in the interaction (a product), or decreases in the

interaction (a reactant), respectively. When an action linked to these operators is executed, the

level of all species involved is either raised or lowered by their stoichiometry coefficient (or by

1 if no coefficient is listed).

Additional operators available include the (+) and (−) to indicate an activator (or enzyme: a

biological catalyst) or an inhibitor respectively. Finally, there is a generic modifier (.) which

is neither an activator nor an inhibitor and indicates the species is involved in the reaction

without altering the behaviour of that reaction. If a species uses one of these operators in a

reaction then its quantity remains unchanged: these operators only modify the behaviour of

other species involved in the reaction. For example, this may be used to describe a molecule

which must be present to participate in a reaction, but which is not depleted or increased by

that reaction.

Just as in PEPA, Bio-PEPA syntax supports species definitions which can contain multiple

statements separated by the choice operator (a plus, +). Which path is chosen is dictated by

the rates of each action involved: actions with faster rates are more likely to occur, assuming

2.2 process algebras 10

the activities in which they take part are all enabled. For instance, the alpha kinetic action in

Figure 2.4 can only be performed if the X, Y and Z species are all available: i.e. involved species

are not performing another action and have sufficient levels to satisfy their stoichiometry

coefficients.

There are inbuilt kinetic laws which define the rates of activity (alpha) based on rates and

stoichiometry coefficients. This example uses the kinetic law of mass action (fMA) and the

information that two molecules of X are needed for every one molecule of Y to create three

molecules of Z. Kinetic rates may also be defined by mathematical expressions which can

involve species levels, arithmetic functions and trigonometric functions.

For a model to be considered well-formed, only species which cooperate on an action can be

used in the definition of that action. Therefore, a species definition should include an action

in order for that species to appear in the action definition.

Similarly to PEPA syntax, the final line is the system equation that defines communication

paths and initial population sizes. In this example, X and Y can communicate only over action

alpha while Z can communicate over any action (alpha is the only action, but this illustrates

the syntax). The populations start at size 200, 100 and 0 respectively; if no population size is

stated for a species, it is assumed to be one.

A further syntactical element exists; the compartment allows a notion of separate physical

space where species can exist. An epidemiology example could include one species of pathogen

carrying individuals which could move between two or more physical locations while retaining

the same properties of that individual. The compartment is partially supported by the EPA

framework: GA parameter matching can be performed on a model that contains compartments,

however GP optimisation techniques of species definitions to include compartments are not

supported.

The concept of separate physical spaces and how individuals can move between such

spaces requires understanding of the represented system. Genetic Programming techniques

do not understand the systems to which they are applied, as such, they would be unable to

incorporate this level of understanding during evolution. An additional reason compartments

were not included was the capability to represent the same notions of physical space using

naming conventions; i.e. by using differently named species definitions which each model the

same behaviours.

A sibling plug-in to the PEPA plug-in was also developed at the University of Edinburgh

for use with Bio-PEPA [21]. The plug-in is capable of evaluating models in many ways, such

as simulation, CTMCs or ODE analysis. The EPA framework utilises this plug-in to simulate

Bio-PEPA models; just as the work with PEPA models, simulation is used to capture the emergent

properties of the models. As with PEPA work described in the previous section, this is the

default approach used by the EPA framework, however ODE evaluation is possible at the

domain expert’s preference.

2.2 process algebras 11

2.2.3 PEPA or Bio-PEPA

During the transition from GA parameter matching work to GP structure optimisation tech-

niques, the choice between PEPA and Bio-PEPA was a decision to be finalised before commencing

with GP experiments. PEPA is a more succinct language, thus is capable of expressing complex

behaviour with relatively few syntactic building blocks.

The drawback is this smaller number of available building blocks can lead to models with

complicated structures. Consider the need for PEPA to contain mirrored components to treat

as recruitment pools for individuals, as detailed in Section 2.2.1. Such structures are time

consuming to achieve using an evolutionary approach.

Bio-PEPA has a more complex grammar than PEPA, giving it a larger number of semantic

building blocks. Additionally, a measure of the model complexity is moved into the semantics

of the kinetic laws. Consequently, models described in Bio-PEPA tend to be more elegant

and compact, although the components themselves are more complex. While the elegance

of a Process Algebra model is a modeller’s concern, the increased number of higher level

operators allows the Evolutionary Computation techniques to skip evolving such constructs

from scratch.

A model describing crowd dynamics in PEPA and Bio-PEPA syntax was presented by Scott [64].

The nature of mirror components and counting mechanisms in the PEPA syntax were complex

and unwieldy. The Bio-PEPA version of this model is far smaller and less complex while still

accurately describing the system. The G-protein system provides an example used by the EPA

framework; Section 5.5 describes the system in PEPA and Section 6.4 describes the same system

more succinctly in Bio-PEPA.

When selecting a Process Algebra for application of GP optimisation, Bio-PEPA became the

preferred choice. This is because Bio-PEPA has the larger bank of operators and does not require

mirrored components which generally means a smaller model size.

The species identifier being the same as the species being defined makes converting Bio-PEPA

into GP tree structures simpler, see Section 4.1.1.2.

I PEPA
def
= (recover, rRecover).R

R PEPA
def
= (idle,⊥).R

I Bio·PEPA
def
= recover� I

R Bio·PEPA
def
= recover� R

Notice the state change in the definition of I using PEPA notation; when the recover action is

taken, I transitions to R. In Bio-PEPA notation, this is viewed as a reduction in the level of I and

an increase in the level of R. Bio-PEPA syntax guarantees the species identifier (the final term in

a definition) is the same as the species identifier (the first term).

Additionally, the simulation time of Bio-PEPA models is significantly shorter than equivalent

models written in PEPA. Average simulation time is measured in minutes for PEPA models

2.3 evolutionary computation 12

but in seconds for Bio-PEPA. This is because the PEPA simulator uses a semi-complex apparent

rate calculation which increases the simulation time due to how PEPA selects which action to

perform. This is especially true as the number of choices and complexity of a model increases:

this is organised complexity (Section 2.1). Model specific complexity is discussed with the

presentation of complex systems utilised by the EPA framework with the experimental results,

see Chapters 5, 6, 7 and 8.

PEPA was used exclusively for Genetic Algorithm parameter matching functionality. Bio-PEPA

became the focus as the EPA framework was extended to incorporate Genetic Programming

optimisation techniques. The EPA framework supports GA parameter matching for PEPA models.

Additionally, the framework is capable of GA parameter matching and GP direct model

optimisation for Bio-PEPA: this can be done simultaneously or independently.

2.3 evolutionary computation

Evolutionary Algorithms (EAs) are a subset of optimisation techniques. EAs are a set of generic

metaheuristic optimisation techniques capable of searching a vast search space for an optimum

solution. Study in this area started as early as the 1950s with the work of Nils Aall Barricelli [7],

though his publication was not widely noticed. In the late 1950s Alex Fraser published work

regarding artificial selection [34].

The popularity of these computing techniques increased in the 1960s; developments during

that time are still present in modern EC techniques. Important works include Fraser and

Burnell [35] for their explanations of general genetic theory and algebraic evolutionary

methods; Crosby [26] created his own language (Mendol) which he uses to explain the

methodology and programming of genetic simulations; and Bremermann [17] who studies

the mathematics of biological optimisation. Additional pioneers in the field have had their

early papers reprinted by Fogel [32].

Artificial selection is the process of artificially selecting desirable traits to solve a given

problem; this is inspired by natural selection. Charles Darwin presented the concept of natural

selection in his signature text The Origin of Species [27]. Natural selection is the fundamental

mechanism of evolution which allows nature to fill narrow biological niches. Evolutionary

Computation optimisation techniques seek to emulate natural selection and the processes of

biological evolution with the goal of evolving strong and robust solutions: where a solution

will solve a specified problem.

2.3.1 Evolutionary Computation Concepts

In essence evolutionary techniques are guided trial-and-error approaches. The initial gen-

eration is populated with random solutions, though some prior knowledge can be seeded

2.3 evolutionary computation 13

into the first generation. These solutions are evaluated against a desired behaviour; high

scoring individuals are more likely to pass their attributes onto future solutions whereas

poorer individuals die out.

2.3.1.1 Fitness

Selection occurs in choosing which individuals will breed and pass on their traits to the next

generation. It is not necessarily the strongest or smartest individual which is selected. Instead,

by choosing the best suited and most adapted individuals the species as a whole will prosper.

The measure of how suited an individual is to its environment (or solution is to its problem)

is its fitness.

As a simplified example, consider Figure 2.5, a pack of wolves living in a snowy environment.

Hunting will be easier with natural camouflage: i.e. wolves with darker fur must expend more

effort to survive because prey will notice them more easily. This additional expenditure of

time and energy will lead to less food, poorer health and less chance at breeding. Therefore,

over the generations, dark-furred wolves will die out. Thus, the better suited light-furred

wolves will be selected for reproduction and pass on their favourable attributes, i.e. their

light-furred pelts.

Figure 2.5: Selection scenario in wolves of different fur colours

Each candidate solution in a generation will be scored by some predefined fitness function.

In Evolutionary Computation (EC), by convention the fitness score is generally minimising:

the score spans zero (best) and positive infinity (worst). The default fitness function for this

research scores deviation from a target using Euclidean distance; description of this measure

and reasons for its use are detailed in Section 4.3.4.

2.3.1.2 Selection

Once a fitness has been assigned, selection criteria must be chosen. Selection techniques can

be exploitative or explorative. An exploitation-heavy approach will optimise rapidly but is

2.3 evolutionary computation 14

prone to premature convergence: finding and becoming stuck in a local optimum. In contrast,

exploration-heavy techniques are near random: jumping around the search space with little

guidance. A balance of exploitation and exploration must be maintained for the most fit

solutions to be located.

Two popular selection techniques are Roulette-Wheel selection and Tournament selection.

Roulette-Wheel selection normalises the fitness scores of all candidate solutions in a popu-

lation to a total of 1; fitter individuals will occupy a larger portion of the hypothetical wheel.

Selection for breeding is done by generating a random number between 0 and 1 and selecting

the corresponding individual from the wheel. This technique favours the fittest individuals for

selection. Roulette-Wheel is more exploitative so premature convergence at a local optimum

must be avoided.

Tournament selection arbitrarily selects a group of candidate solutions, this is called the

tournament pool. The most fit individual of a pool is selected for breeding. The size of

the tournament pool influences the balance of exploitation and exploration. A larger pool

encompasses more of the population, therefore the most fit individual of the generation

is more likely to be found, leading towards exploitation. Conversely, a smaller pool will

allow weaker individuals to be chosen, leading towards exploration. A benefit of tournament

selection is the ease of adjusting this balance just by altering the pool size.

Another factor influencing selection is elitism. A specified number of highest fitness in-

dividuals, elites, automatically bypass the selection process. They gain a free entry into the

following solution set. This ensures the best solutions cannot be lost to overly explorative

selection criteria. Elitism can cause a negative impact on optimisation if too many elites are

permitted into subsequent generations; the elites would dominate the population and cause a

premature convergence.

2.3.1.3 Replacement

After selection, breeding occurs to create new candidate solutions for the next generation.

Newly created offspring individuals can be added to parent solutions, replace them, or some

combination.

The technique chosen also affects the balance of exploration versus exploitation; keeping

more of the previous generation leans towards exploration by allowing more time to investigate

poorer solutions, whereas more replacement tends towards exploitation.

The steady-state replacement technique is one form of replacement. This technique breeds

a small number of offspring individuals: this can be as low as one. The same number of

individuals (plus any elites) are then removed from the existing population and are discarded.

This removal can be done arbitrarily, or by a reverse-selection technique; i.e., the poorest fitness

individuals are most likely to be selected for removal. The new individuals are then entered

into the population to replace those removed. This approaches preserves the majority of the

2.3 evolutionary computation 15

parent population each generation, increasing explorative influences. Steady-state can be more

stable, but also slow to change with new individuals being suppressed by the population of

high scoring individuals.

The generational replacement technique is another form of replacement. This technique

breeds an entirely new generation of individuals from selected parents. Once breeding is

complete, the parent generation is discarded entirely. The new population comprises entirely

of elites and offspring individuals. This approach is highly exploitative because the whole

generation is built upon favourable traits preserved during selection and breeding. As such,

this requires balancing with explorative influences

2.3.2 Evolutionary Computation Representations

Under the heading of EC there are many implementations: including Ant Colony Optimisation

(ACO) and Particle Swarm Optimisation (PSO), two examples of Swarm Intelligence (SI), as well

as Estimation of Distribution Algorithms (EDAs). Examples of each will be presented through

the following subsections.

It should be noted that there will be similarities between all Evolutionary Computation

techniques. The variations will appear in the representation of individuals and implementation

of the algorithms.

2.3.2.1 Ant Colony Optimisation

Ant Colony Optimisation solves optimisation problems by modelling ants and their pher-

omone trails [28]. In nature, ants explore the area surrounding their nest for food. Initially,

their paths will be random. Once a food supply is located, the ant returns to the nest and

produces a pheromone trail. As ants journey to that food supply, the pheromone trail becomes

stronger. Unused trails will evaporate quickly. Larger collections of food will have more ants

visiting it, which in turn leads to an even stronger pheromone trail. Smaller food supplies will

have weaker pheromone trails.

1. Build population p of ’ant trails’ (an ACO candidate solution)

2. do

3. for: Each ant trail ati in p

4. if Best = null or Fitness(ati) > Fitness(Best)

5. Best = ati
6. Update p with strong traits based on high scoring trails

7. while Best < ideal and time != expired and generations < max

8. return Best

Figure 2.6: Pseudo-code representation of Ant Colony Optimisation

The pseudo-code for the ACO algorithm is presented in Figure 2.6. If we consider the

pheromone trails to be equivalent to optima, the largest (strongest) will be the global optimum.

2.3 evolutionary computation 16

The implementation contains no concept of the ants themselves, but focuses on the pheromone

trails instead. Ant Colony Optimisation attempts to identify the strongest pheromone trail

(ant trail).

Originally, Ant Colony Optimisation was called the Ant System and was designed to

solve the travelling salesman problem. A major advantage of ACO over other Evolutionary

Computation techniques is its ability to dynamically adjust at runtime to a changing search

space.

2.3.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation solves optimisation problems by modelling the flocking and

swarming behaviour of fish and birds [45]. Individuals, called particles, traverse a search space

and move based on the fitness gradient around their position in attempts to locate the global

optimum.

1. Build swarm s of ’particles’ (a PSO population and candidate solution)

2. do

3. for: Each particle pi in s

4. if Best = null or Fitness(pi) > Fitness(Best)

5. Best = pi
6. for: Each particle pi
7. Adjust velocity vi (see description)

8. while Best < ideal and time != expired and generations < max

9. return Best

Figure 2.7: Pseudo-code representation of Particle Swarm Optimisation

Figure 2.7 illustrates the pseudo-code for Particle Swarm Optimisation. Unlike other optim-

isation techniques, PSO uses a static population and updates the swarm for each optimisation

iteration without any form of selection or replacement.

The adjusted velocity (Figure 2.7, Line 7) of a particle is based upon a portion of: the

particle’s previous velocity, the particle’s individual global best and the overall population’s

best. Additionally, a jump size variable allows particles to traverse areas of poor fitness

to approach new areas of the search space, thus helping to avoid premature convergence

or stagnation. An advantage of Particle Swarm Optimisation is the ability to optimise on

particularly irregular or noisy search spaces.

2.3.2.3 Estimation of Distribution Algorithm

Estimation of Distribution Algorithms (EDAs) are a form of EC designed to break away from

the traditional one-parent (asexual) or two-parent (sexual) reproduction systems found in

nature. As inspired by nature, many EC techniques perform selection twice for each breeding

occurrence: this mimics two parent breeding in nature. The biological restriction of one- or

two-parent reproduction need not apply to Evolutionary Algorithms, this multi-parent avenue

2.3 evolutionary computation 17

has led to Estimation of Distribution Algorithms (EDAs) which sample many parents to form

offspring [49].

1. Build population pop

2. do

3. for: Each individual indi in pop

4. if Best = null or Fitness(indi) > Fitness(Best)

5. Best = indi
6. for: popsize times

7. for: num_parents

8. Parent pi = Selection(pop)

9. Offspring o = BreedViaDistribution(selectedParents)

10. Update pop with new offspring individuals

11. while Best < ideal and time != expired and generations < max

12. return Best

Figure 2.8: Pseudo-code representation of Estimation of Distribution Algorithms

The pseudo-code for EDAs is illustrated in Figure 2.8. Unlike traditional Genetic Algorithm

techniques (discussed next), three or more parents are selected for breeding. Similar to tour-

nament selection (Section 2.3.1.2), the number of parents influences the balance of exploration

and exploitation. At each position in the solution structure, that same point is examined on

all parents and a distribution is formed. Consider a binary example, with four parents:

P 1 0 1 1 1 0 1 0 0

P 2 1 0 1 0 0 1 0 1

P 3 0 1 1 0 0 0 1 1

P 4 0 0 1 1 0 1 1 1

O 0.25 0.5 1 0.5 0 0.75 0.5 0.75

The offspring individual is made up of a probability set based on the distribution of the

selected parents. These probabilities will become a variable set appropriate to the problem; in

this example, a set of binary values.

By incorporating desirable traits from multiple parents, the resultant offspring aims to be

fitter than in one- or two-parent algorithms. Interest in applying multi-parent techniques to

other EA techniques has been growing [1].

2.3.2.4 Genetic Algorithms & Genetic Programming

Further EA implementations include Genetic Algorithms (GAs) and Genetic Programming (GP):

the two EC techniques utilised for this research. The research focuses mostly on the combination

of the two domains as well as easy reproducibility, therefore more complex Evolutionary

Algorithm techniques are not utilised. The pseudo-code for both GA and GP optimisation

techniques is illustrated in Figure 2.9. This example is more detailed as it is implemented in

the EPA framework.

As noted, Genetic Algorithm and Genetic Programming optimisation techniques utilise the

same pseudo-code for optimisation. The differences are in the representations of the solution

2.3 evolutionary computation 18

1. Population pop = null

2. for: popsize times

3. pop = pop + new individual

4. Best = null

5. do

6. for: Each individual indi in pop

7. if Best = null or Fitness(indi) > Fitness(Best)

8. Best = indi
9. Population tmp = null

10. for: popsize times

11. Parent p1 = Selection(pop)

12. Parent p2 = Selection(pop)

13. Offspring o = Breed(p1, p2)

14. tmp = tmp + o

15. pop = tmp

16. while Best < ideal and time != expired and generations < max

17. return Best

Figure 2.9: Detailed pseudo-code representation of GA and GP optimisation techniques

individual. Each will be discussed in finer detail in Sections 2.3.4 and 2.3.5 respectively. First,

Section 2.3.3 details how variation is added into the candidate solutions with each generation

(Figure 2.9, Line 13).

2.3.3 Variation

Stagnation in the course of optimisation would occur quickly if selected individuals (Figure 2.9,

Lines 11 & 12) for breeding were cloned (i.e. copied unchanged) into the offspring generation

(Figure 2.9, Line 14). Selected parents go through a breeding process to introduce variation

into the created offspring. In Genetic Algorithms and Genetic Programming optimisation

techniques, breeding is represented through the use of recombination (or crossover) and

mutation operators.

The recombination operator, commonly called crossover, mixes the solution structure of

two selected parents. This attempts to combine the fit attributes of two selected parents into

an even fitter offspring.

The mutation operator has a chance of resetting the value at a random location on the

solution structure. A higher mutation rate reduces the chance of becoming caught in a local

optimum, thus reducing the chance of premature convergence or stagnation. However, if the

rate becomes too high the EA technique will have difficulty locating an optimised solution

because solutions will bounce near-randomly around the search space.

As previously mentioned, the key differences between Evolutionary Computation tech-

niques are in the representation used. The representation is both EC specific and problem

specific, meaning a solution structure cannot be transplanted from one problem domain into

2.3 evolutionary computation 19

an alternative problem domain. How variation is applied to GA and GP representations is

discussed separately over the following sections.

2.3.4 Genetic Algorithms

Genetic Algorithms (GAs) are one track which developed from Evolutionary Computation

work, made popular in the 1970s by the work of John Holland [42]. As a biologically-themed

approach, biological terms are used interchangeably with computational terms. For example,

individual and candidate solution, population and a group of solutions, or generation and a

search iteration.

Like other Evolutionary Computation techniques, GAs use methods inspired by natural

selection to optimise solutions, these include selection, reproduction, recombination and

mutation. The concept of reproduction to produce offspring solutions is achieved through

recombination and mutation of the selected parent individuals. In-depth details can be found

in Goldberg [38].

Genetic Algorithms take inspiration from nature for their structure. Chromosomes are

strings of DNA which exists in all cells of all living organisms. A single chromosome consists

of blocks of DNA, otherwise known as genes. These genes encode traits about the organism

and any possible settings for these genes are called alleles. For example, the trait of hair colour

would have alleles of blond, brown, black or red. The position of a gene on a chromosome is

called its locus.

Figure 2.10: Translating a DNA strand to a binary string

The traditional representation of solutions in Genetic Algorithms is as a string of binary

digits. This mimics the nucleic acid molecules: adenine, cytosine, guanine and thymine (A, C,

G and T), which sprout from the unfurled DNA strand, as seen in Figure 2.10. While a binary

string representation is traditional, many others now exist. For simplicity, the remainder of

this section will use binary string representation examples.

With the linear structure of GA solutions, the implementation of crossover operators is

simplified. There are three forms of crossover operator; one-point, two-point and uniform

crossover. One-point crossover is presented to the left of Figure 2.11. The chromosome

structure is split at an arbitrary point; in this case, between locus 5 and 6. The offspring

solutions comprise of the left section of one parent and the right of the other. One-point

2.3 evolutionary computation 20

crossover allows links between alleles of neighbouring loci to be preserved while adding

variation.

Figure 2.11: Crossover (left) and Mutation (right) operators on binary string solutions

Two-point crossover operates similarly, except two arbitrary points are selected along the

chromosome length. The offspring solution comprises of one parent between those two points

with the remainder on each end from the other parent. Two-point crossover maintains links

between alleles of neighbouring loci, particularly those representative of circular DNA, such

as E. coli. Uniform crossover moves along the length of the chromosome; for each locus, the

offspring’s locus is randomly chosen from either of its parents. This effectively randomises

each locus and breaks any dependencies that may exist; as such, this is more explorative than

the other crossover operators.

The mutation operator has a chance of resetting the value at zero or more random locations

on the chromosome. To the right of Figure 2.11, the fifth locus has been selected and the value

is reset from 0 to 1.

With GAs, the crossover operator is heavily exploitative. Conversely, the mutator operator is

explorative as changes can move the solution into new areas of the search space.

2.3.5 Genetic Programming

Another track which developed from Evolutionary Computation work was Genetic Program-

ming (GP). In 1964, On the Organization of Intellect by Fogel [33] became the basis for further

work in the GP field. Later, in 1985, the first description of the modern tree-based GP techniques

was given by Cramer [25]. This field was expanded greatly by the work of Koza, a leading

pioneer in Genetic Programming development. A list of Koza’s work is available at [48].

Similar to GAs, and other evolutionary approaches, GPs use techniques inspired by natural

selection and use biological terminology. In-depth details can be found in Koza [47] and

subsequent texts.

The GP crossover operator is not multimodal (i.e. one-point, two-point or uniform) in the

same way as the GA crossover operator. The GP crossover operator functions by choosing

a connecting edge between two nodes on both parent individuals; due to the large variety

of tree dynamics, it is unlikely but permissible for the same edge on both parents to be

2.3 evolutionary computation 21

chosen. Figure 2.12 illustrates the GP crossover operator on two arbitrary definition trees. Once

selected, all nodes below the connecting edge (referred to as the subtree) are detached and

swapped, thus resulting in two new offspring individuals.

a	
 b	
 Parent 1 Parent 2

a	
 b	
 Child 1 Child 2

crossover

/	

Z	

*	

7	

/	

Z	

*	

+	

Y	
 X	

+	

Y	
 X	

X	

7	
 X	

a
def
= Z / (X + Y) ⇒ a

def
= Z / 7

b
def
= 7 ∗X ⇒ b

def
= (X + Y) ∗X

Figure 2.12: Crossover operator on a generic GP tree

The standard GP mutation operator has two functions available to it: the point mutation and

the subtree mutation. These two modes can be applied at different ratios to change the balance

of exploration and exploitation, as discussed in Section 2.3.1.2.

The point mutation operator is illustrated in Figure 2.13. One node is stochastically chosen

and that node has its contents reset to any permissible value; numbers will still be numbers,

etc. To maintain the tree dynamics (i.e. tree depth, width, structure), the resultant node will

have the same number of child nodes, no other part of the GP tree is altered. The point mutator

is heavily exploitative of the parent structure.

/	

Z	

Parent a	
 a	

/	

Z	

mutation

Child

+	

Y	
 X	

/	

Y	
 X	

a
def
= Z / (X + Y) ⇒ a

def
= Z / (X / Y)

Figure 2.13: Mutation (point) operator on a generic GP tree

The GP subtree mutation operator can cause a more drastic change to the parent structure

than the point mutation operator. Figure 2.14 illustrates the subtree mutator with the same

2.4 state of the art summary 22

initial parent and selected node as the point mutator above. The key difference is what is

mutated. Any existing child nodes (and their children) of the selected node are entirely

removed. The chosen node is then rebuilt as a new subtree which can be a terminal or include

child nodes, child-of-child nodes, etc..

/	

Z	

Parent a	
 a	

/	

Z	

mutation

Child

+	

Y	
 X	

-­‐	

2	
 *	

Z	
 Y	

a
def
= Z / (X + Y) ⇒ a

def
= Z / ((Y ∗Z) − 2)

Figure 2.14: Mutation (subtree) operator on a generic GP tree

The point mutation operator can guarantee the tree size and structure will not change,

whereas the subtree mutation has a low probability of retaining the original tree dynamics.

Losing the original tree dynamics is not necessarily bad; it allows new areas of the search

space to be explored. The subtree mutator is more exploitative than the crossover operator,

while being more explorative than the point mutation operator.

When using Genetic Programming optimisation techniques, the roles of the crossover and

mutator operators are reversed. The crossover operator is the more destructive influence on

breeding due to the large changes that can be realised by swapping large subtrees. GP crossover

operators are most successful when they are heavily constrained so they will crossover like

with like definitions. This is biologically pertinent; for instance, the genetic material of a heart

will not be recombined with material of an ear since the result would likely be biologically

invalid.

In contrast, the mutator operator allows for more subtle changes to the structure of the GP

definition trees. This is less true for the subtree mutator operator which can have similar effects

to a crossover from a non-existent parent, depending on the depth at which the operator is

applied.

2.4 state of the art summary

This chapter has presented the background and concepts of the two major domains bridged

by the EPA framework: Evolutionary Computation (EC) techniques and Process Algebra (PA)

Formal Modelling (FM) languages. The choice of moving from PEPA to Bio-PEPA was made due

to the concise nature of the Bio-PEPA syntax and the higher level syntactic building blocks

2.4 state of the art summary 23

available to it. After this discussion, the EC techniques which would be applied to those

Process Algebras were detailed.

The concepts of EC optimisation have been discussed with some pseudo-code examples

of Ant Colony Optimisation (ACO), Particle Swarm Optimisation (PSO) and Estimation of

Distribution Algorithms (EDAs) with detailed pseudo-code for Genetic Algorithm (GA) and

Genetic Programming (GP) optimisation techniques. The generic concepts for these have

been detailed in this chapter. The Evolving Process Algebra (EPA) framework is discussed

in Chapter 4 with full implementation specifics of these generic concepts, along with exact

variable values and accompanying justifications.

3
R E L AT E D W O R K

This work proposes that Evolutionary Computation (EC) techniques and Process Algebras (PAs)

have complementary strengths for the modelling of complex bioscience systems. Other

researchers and groups are performing related work which will be discussed in this chapter.

The discussion is broken down into sections based on what is being optimised: the parameters

or the model structure itself. This chapter concludes with a discussion of neighbouring fields.

3.1 parameter optimisation

This research uses Genetic Algorithms (GAs) to navigate a search space to find fitter parameter

values for Process Algebra models. The research done in this area is not novel, it acted

as a stepping stone towards the overarching goal of direct PA model optimisation. The

individual work of Gesweiller [36] and Prandi [57] use other optimisation techniques to

optimise parameter fitting for Process Algebra models.

Geisweiller has developed EM-PEPA which finds rate values inside a PEPA model through

the application of two Expectation-Maximisation (EM) algorithms [36]. This is an iterative

process which attempts to fit a set of parameter values to expected observations to locate a

local maxima in the search space. This is akin to the hill-climbing exploitative half of a GA

technique with minimal exploration influence.

Prandi utilises Particle Swarm Optimisation (PSO) instead of GA optimisation techniques. PSO

is an Evolutionary Algorithm optimisation technique which works by simulating the flocking

behaviour in birds and fish as detailed previously in Section 2.3.2. Prandi implemented his

work inside the R system with BlenX (a stochastic Process Algebra) to optimise parameter

fitting [57]. This was demonstrated using a system of an idealised ecological food web example

and matching to a synthetic oscillatory behaviour. The system was able to provide sets of

parameter values to match the original model.

The Systems Biology Workbench (SBW) was developed in attempts to unify the increas-

ing number of different representations available for complex bioscience systems [62]. The

workbench allowed for assistance in modelling, analysis, and data manipulation of bioscience

systems. The primary strength of the SBW is the component view of different compatible

packages; this allows for users to employ the strengths of multiple modelling techniques sim-

ultaneously. Furthermore, the SBW introduced the Systems Biology Markup Language (SBML)

as a new standard for systems biology representation.

24

3.2 model structure optimisation 25

Specific to the parameter fitting of Bio-PEPA models is the Systems Biology Software In-

frastructure (SBSI) developed by SynthSys at the University of Edinburgh [65]. The SBSI tool

accepts models written in SBML, as mentioned above. Bio-PEPA models can be automatically

translated into SBML using the plug-in tool, see Chapter 4. Once in SBML notation, a model can

be translated back into Bio-PEPA form via a prototype translator developed by Loewe, Moodie

& Hillston [52]. This is achieved by first translating the SBML into Systems Biology Graphical

Notation (SBGN) and then into Bio-PEPA notation.

The SBSI tool can perform simultaneous Genetic Algorithm calculations to find fitter para-

meter values. This is equivalent to the EPA parameter matching work performed on PEPA

models.

3.2 model structure optimisation

Ross and Imada have laid down the foundations for this work by demonstrating the feasibility

of applying Evolutionary Computation techniques to Process Algebra models. They apply

an EA to a subset of stochastic π-calculus to evolve their models [61]. The focus of their work

is on determining the best way to measure fitness for candidate solutions through a suite of

statistical tests. These tests include raw means, raw standard deviations, distribution skew,

serial correlation, chaos and periodicity.

Their approach has been applied to a genetic circuit, a chemical reaction model and a

version of the repressilator (used with the EPA framework, see Section 5.4). Their experiments

evolved both the parameters and the model itself.

A major difference between their work and this research is the focus. Their work concentrates

on the statistical suite and manually determining which test(s) are most appropriate for scoring

fitness of solutions. This research uses simpler tests so the focus can remain on the optimisation

process itself. Though the focuses are different, the two works may be combined cooperatively

for a stronger optimisation approach.

Their research and this work have had success with simple models. Future work for both

their and this research is in handling stochastic noise and scaling up the complexity of the

models that can be successfully evolved. This interdisciplinary field of research is in its infancy.

Work to this point is far from exhaustive and still holds potential.

3.3 neighbouring fields

This section discusses optimisation techniques which are closely neighbouring to the applica-

tion of Evolutionary Algorithm techniques to Process Algebra models as used in this research.

Three specific fields have been highlighted, including simulated annealing as an approach sim-

ilar to this work and inference as a non-empirical alternative approach. Discussion commences

3.3 neighbouring fields 26

with the growing field of utilising Genetic Programming techniques on Ordinary Differential

Equation (ODE) structures directly.

3.3.1 Applying GP to ODEs

An Ordinary Differential Equation is a form of equation commonly found in the fields of

mathematics and science; ODEs are comprised of an independent variable and any derivatives

of that variable. Representing and solving ODEs is an intricate process. ODEs are solved by

hand or, increasingly, by computer and provide approximate solutions which are equivalent

to large numbers of averaged simulations at a population level.

The Bio-PEPA plug-in allows for Bio-PEPA models to be translated and interpreted as Ordinary

Differential Equations. However, the EPA framework is incapable of optimising the structure of

ODEs directly. This could be a logical extension of the EPA framework (discussed in Section 9.3),

but is beyond the scope of this work. Other research groups are making progress in this area,

discussed below.

In 1999, Cao et al. used a combination of Genetic Algorithm and Genetic Programming

optimisation techniques to construct ODE models [18]. The GP optimisation was utilised for the

structure and the GA techniques for the parameters. The ODEs created may include arithmetic

operators in addition to trigonometric functions. Furthermore, the ODE definitions could

potentially include Higher-order Ordinary Differential Equations (HODEs). Most ODEs describe

change over time so that the values of t are dependent on the values at t-1. HODEs go further

and may describe change over time to include t-1, t-2 to t-n. Cao et al. score the fitness of each

candidate via a normalised difference between the observed and target solutions; this is akin

to the Euclidean distance measure as described in Section 4.3.4.

Tun’s thesis focused on this field of work; ODEs are optimised by using a combination of

Evolutionary Computation techniques [67]. A Genetic Programming technique was used for

the structure of the Ordinary Differential Equation. Various EA methods were utilised for the

parameter estimation; a small portion is GA optimisation with the majority being Differential

Evolution (DE): an abstract form of Evolutionary Algorithm similar to GAs. Tun measures

fitness of candidate solutions by a normalised difference function, similar to Cao et al. and

the Euclidean distance measure of this research. In addition, the fitness can be adjusted based

on the complexity of the constructed ODE. Finally, the ODE model produced is analysed with

a statistical analysis tool to check the performance of the EC; for example, gene diversity &

distribution and average model size.

As a final example of applying GP techniques to generate ODEs; Iba & Sakamoto did work

which uses a combination of Genetic Programming techniques and least squares means to

produce ODE models [43]. Least square means works by attempting to minimise a squared

difference between an observed value and its target, commonly used in data fitting problems.

3.3 neighbouring fields 27

For simplicity, the ODEs constructed in Iba & Sakamoto’s work omits trigonometric functions.

They offer a quote which highlights the nature of work involving GP techniques: "Our aim is

to obtain the candidates scattered in the huge search space and to propose to users the possible causal

relationship among the observable components." This field of work and neighbouring fields can

offer multiple strong candidate solutions to a given problem. In turn, a singular best solution

is unlikely to be found, but valuable insight into the nature of the described system can be

gained and returned to the user.

3.3.2 Simulated Annealing

Annealing is a metallurgical heat treatment performed on metals to increase its ductility: the

ability for a metal to deform under high stress thus becoming more workable. This is done by

heating the metal above its critical temperature; this is metal specific but is generally to the

point of glowing red or even white. Once heated, the metal is allowed to cool gradually in

resting air where bonds broken during the heating stage are allowed to recrystallise, resulting

in a higher quality metal.

Simulated annealing is a generic probabilistic metaheuristic which optimises by imitating the

metallurgical annealing process. Simulated annealing is commonly used in discrete search

spaces. Similar to Evolutionary Computation techniques, simulated annealing can offer a

strong solution more efficiently than an exhaustive search but may not find the singular best

solution in a noisy search space.

1. Temperature t = some initially high value

2. Best = Solution s = some randomly chosen candidate solution

3. do

4. Solution v = Vary(s)

5. if Quality(v) > Quality(s) or Random(0, 1) < P(t, v, s)

6. s = v

7. Decrement t

8. if Quality(s) > Quality(Best)

9. Best = s

10. while Best < ideal and time != expired and generations < max

11. return Best

Figure 3.1: Pseudo-code representation of Simulated Annealing

Figure 3.1 illustrates the pseudo-code for the simulated annealing algorithm [54]. The imple-

mentation includes a temperature variable which influences the behaviour of the optimisation

process. This is controlled by the P(t, v, s) term (Figure 3.1, Line 5) which is defined as:.

P(t, v, s) = e
Quality(v)−Quality(s)

t

where e is a mathematical constant (sometimes referred to as Euler’s number). For clarity,

e is raised to the power. This equation approaches 1 in two ways: if Quality(v) is close to

3.3 neighbouring fields 28

Quality(s), secondly if t is a high value. The higher this temperature, the more likely a poorer

fitness solution will be accepted as an alternative to the current solution. Therefore, as the

temperature cools, the strength of the current solution will tend towards a strong solution.

From an Evolutionary Algorithm perspective, the simulated annealing algorithm utilises a

steady state replacement technique (Section 2.3.1.3) with a population size of one. The parent

solution may be replaced by its child with a probability based on its comparative fitness and

the current temperature.

While the temperature is high, the offspring solution is more likely to replace the parent,

resulting in a high degree of exploration. As the temperature cools, the child must be a stronger

solution than the parent for this replacement which is akin to an exploitative hill-climbing

approach. The heating and cooling process can be performed iteratively in an attempt to find

a stronger solution.

3.3.3 Bayesian Inference

This research and the previous sections of related and neighbouring fields have discussed

empirical approaches for optimisation. Therefore, any solution discovered and returned by a

discussed optimisation technique has been observed and is known to be highly fit. Inference

is an alternative approach which draws logical conclusions based on premises assumed or

known to be true. In statistics, inference can be used to draw conclusions from datasets

afflicted by variation: such as noisy data.

The English mathematician Thomas Bayes (1701 - 1761) posited a solution to an inverse

probability problem in an essay which was read to the Royal Society in 1763 after Bayes’ death.

Due to the success in solving probability problems in the early eighteenth century, this became

known as Bayes’ theorem (alternatively Bayes’ rule or Bayes’ law). Bayes’ theorem in the theory

of probability has been likened to Pythagoras’ theorem in geometry due to their impacts in

their respective fields.

In mathematics, Bayes’ theorem explains the relationship between probabilities. Given

statements A and B and their probabilities of being true P(A) and P(B), the conditional

probabilities of A given B and vice versa are P(A|B) and P(B|A). Using this notation, Bayes’

theorem can be simply stated as:

P(A | B) =
P(B | A) P(A)

P(B)

where observations A and B need not be singular entities. Frequently A and/or B are collections

of observations; where each such observation will have its own associated probability of

trueness.

In the context of parameter matching and structure optimisation of mathematical models,

the Approximate Bayesian Computation (ABC) method (also known as likelihood-free method)

3.3 neighbouring fields 29

has been gaining popularity in the last decade [55]. As an example of inference related to

this research, below is a representation of the repressilator system; this was chosen because

the PEPA version is used with the EPA framework. The PEPA centric view and related Process

Algebra model of the repressilator system are presented in Section 5.4. The inference version

of the repressilator is taken from the work of Barnes et al. [6].
dxi(t)
dt = −xi(t) + α

1+yn−i(t)
+α0

dyi(t)
dt = −β(yi(t) − xi(t))


where there are three genes. Protein 1 (y1) inhibits expression of gene 2 (x2) which would

express protein 2 (y2), this in turn inhibits gene 3 (x3) that would express protein 3 (y3) which

completes the cyclic behaviour by inhibiting gene 1 (x1). The observations of known gene

expression levels (xi) and protein expression levels (yi) are used to infer the values of alpha

(α) and beta (β). This example only infers the parameter values; the model structure is not

included.

One implementation of ABC is the rejection algorithm; inference proceeds by an iterative

cycle of sampling points from the known observations to improve upon or match those

observations. The known observations (P(A)) are sampled a user-specified number of times;

each time a new set of observations is generated. The discrepancy between the known and

generated observations is then measured, possibly by Euclidean distance (Section 4.3.4). At a

user-specified tolerance, the discrepancy will cause the generated observations to be accepted

to further improve upon in the next inference iteration.

The inference view of the repressilator system was included to highlight the differences in

representation as compared to the PEPA view of Section 5.4. As a simpler example of Bayes’

theorem, consider the following scenario.

An ornithologist is categorising a bird which may be one of two subspecies; one common and

one rare. The rarer subspecies frequently has red feathers (90%) and the common subspecies

infrequently has red feathers (7%); also assume the rarer subspecies takes up 1% of the bird

species population. What is the likelihood of the bird being of the rarer subspecies with red

feathers? Using the expanded version of Bayes’ theorem:

P(A | B) =
P(B | A) P(A)

P(B)

P(rare | red) =
P(red | rare) P(rare)

P(red | rare) P(rare) + P(red | common) P(common)

=
0.9 ∗ 0.01

0.9 ∗ 0.01+ 0.07 ∗ 0.99

≈ 11.5%

By knowing the probabilities of the related facts being true, the probable value of the categor-

ised bird being rare can be inferred. Given the scenario variables, there is approximately a

11.5% likelihood that the bird is of the rare subspecies and has red feathers.

3.4 no free lunch 30

All three authors of the Barnes et al. work have assisted in development of ABC-SysBio: a tool

developed for parameter inference and model selection [50]. Using this tool, the parameters

of the repressilator model were inferred. Barnes et al. noted the correlation of the results

indicated the variables were difficult to infer; this is because statistical approaches assume

independence in the inferred variables.

Due to the underlying nature of dynamic systems, only certain combinations of variables

may be inferable. Consider an epidemiological system where individuals may enter the

population through birth and then leave through death. If birth and death rates are inferred

together, a range of acceptable values may be discovered because the variables are not

independent. Discovering acceptable combinations of variables would be assisted by input

from a domain expert.

3.4 no free lunch

This chapter has detailed work related to the optimisation of rate values, the optimisation

of model structures and also neighbouring fields such as ODE optimisation and inference.

Beyond the illustrated examples, other optimisation techniques will exist further afield. In

addition, continuing work will attempt to improve new and existing techniques. With constant

improvement, it could be assumed that one technique will eventually master all optimisation

problems.

The No Free Lunch (NFL) theorem was explored by Wolpert and Macready [69]. NFL posits

that all optimisation algorithms that search a problem space have a cost for doing so. When

averaged across all possible optimisation problems, all algorithms of a given cost perform

equally well. For an algorithm to improve its performance to solve a particular problem, it

must become less suited to solving problems in other areas; i.e. the cost must be paid from its

performance to solve other problems.

The generic metaheuristic optimisation algorithms, such as GAs and GP techniques, illustrate

this trade off. They are capable of finding strong solutions in large and complex search spaces

with the trade off of not guaranteeing the global optimum solution will be located.

3.5 related work summary

This chapter has presented the related work of the two major domains being bridged by the

EPA framework: Evolutionary Computation (EC) techniques and Process Algebra (PA) Formal

Modelling (FM) languages. Firstly, the parameter optimisation work which has been applied

to PA models was discussed and the successes in this area were highlighted.

3.5 related work summary 31

Next, the use of optimising PA model structures to develop fitter models was explored. This

is a comparatively new field with work still in its infancy allowing for further potential to be

unlocked.

The related work chapter concluded with discussion of neighbouring fields with specific

examples including GP optimisation of Ordinary Differential Equations (ODEs). ODE optimisa-

tion is of growing interest due to the widespread use of ODEs in many domains; similar to the

optimisation of Process Algebras this is relatively new.

Further neighbouring field examples included simulated annealing and Bayesian inference.

Simulated annealing is a close neighbour to EC techniques and similarly attempts to find a

strong solution if not the exact global optimum. Bayesian inference is a different track and

utilises probability inference to solve optimisation problems.

4
E V O LV I N G P R O C E S S A L G E B R A F R A M E W O R K

The Evolving Process Algebra (EPA) framework is the primary software application developed

during this research. The EPA framework is designed to bridge the gap between Evolutionary

Computation (EC) techniques and the Process Algebra (PA) models to which they will be

applied.

On the Evolutionary Computation side, the framework is built on top of the Evolutionary

Computation Java (ECJ) toolkit created by Luke and now maintained by Luke and a large

team at George Mason University [53]. ECJ is a powerful and highly flexible research tool

capable of running multiple types of Evolutionary Computation techniques. Written in Java,

ECJ aims to be easily user-customisable whilst maintaining runtime efficiency for long and

computationally expensive EC projects.

On the Process Algebra side, two plug-ins allow PEPA and Bio-PEPA to be controlled, manip-

ulated and simulated within a Java environment. Both plug-ins were created at the University

of Edinburgh [29, 21]. Further features include a graphical interface for the Eclipse IDE and

error detection for their relevant Process Algebra.

The EPA framework has one particular bottleneck which slows its operation: the simulation

of Process Algebra models, particularly PEPA models. To help alleviate this impedance and

allow for multiple concurrent runs, the EPA framework is able to work with HTCondor (called

Condor until 2012) [66]. HTCondor is a high throughput computing toolkit maintained by the

University of Wisconsin-Madison and is designed to distribute experiments over multiple

available nodes. In-house, experiments were conducted across approximately 200 Linux nodes,

depending on availability.

Linux nodes are preferred for stability. A running EPA job may become suspended from

an HTCondor node, most likely because a user requires the computer to which that node

belongs. If a job becomes suspended during PA simulation on a non-Unix machine, there is

a chance the EPA run will not be able to continue and will be aborted instead. This is due

to how the HTCondor Sigterm (suspend) signal is handled on different architectures and its

interaction with the Process Algebra plug-ins. Such an aborted job will still produce some

output but is not likely to provide a solution as strong as a completed job.

A main driving goal behind the EPA framework is bridging the gap between domain experts

and modelling. HTCondor is not aimed at this, so an assistant program was developed to

ease the use of the framework across HTCondor nodes. The EPA Utility Assistant, presented in

Appendix A, is designed for this purpose.

32

4.1 the combined individual 33

In this chapter, the structure of the EPA Individual (solution representation) is discussed

next in Section 4.1, followed by the summary of default values used in the EPA framework in

Section 4.2. Finally, in Section 4.3, the EPA lifecycle is described along with justification of the

values used.

4.1 the combined individual

The ECJ toolkit contains multiple core classes and interfaces which are utilised by the EPA

framework. By extending known superclasses and implementing known interfaces, the frame-

work can utilise the expansive predefined Evolutionary Computation library in the ECJ toolkit.

The most important predefined construct is the Individual: the representation of a solution.

Each Individual has an associated species which dictates the available representations, fitness

functions and breeding operators. The ECJ species should not be confused with the Process

Algebra species model segment.

The ECJ toolkit only allows for one type of Individual to exist in a population. However, at

least two Individual types are required, one for the Genetic Algorithm (GA) representation

of rate and population solutions, the other for the Genetic Programming (GP) tree-based

representation of kinetic and species solutions. To overcome this restriction, the EPA framework

utilises the CombinedIndividual, illustrated in Figure 4.1.

Rates	

Combined	

Kine/cs	
 Species	

Popula/ons	

Meta

GA

GP

Figure 4.1: The EPA combined individual structure

The CombinedIndividual is a meta-Individual which contains four sub-Individuals; the

two GA Individuals for rates and population solutions (middle row, highlighted in yellow),

plus two GP Individuals for kinetics and species solutions (bottom row, highlighted in green).

Representations for the GA and GP sub-Individuals are discussed in Section 4.1.1 below.

By utilising this meta-Individual approach, the EPA gains many advantages. Each sub-

Individual can be handled independently, allowing for tailored Individual definitions, fitness

functions and breeding operators. Each of these concepts are detailed later in this chapter

with discussion of the EPA lifecycle in Section 4.3.

A further advantage of the meta-Individual representation is the ability to extract sub-

Individuals and analyse them in isolation. This allows for sub-Individuals to be scored

independently of the overall fitness of the CombinedIndividual. At its least involved, this

could be used to give the domain-expert insight into the relative fitness of each of the evolved

4.1 the combined individual 34

Individuals. This data could also be used to weight certain sub-Individuals with a higher

priority than others. Furthermore, complex selection or breeding operators could be developed

to build offspring meta-Individuals from multiple sub-Individual parents should a problem

require it. For easy reproducibility of experiments, such functionality has not been utilised

during this work; it remains a logical next step for further EPA development.

4.1.1 Representing Solutions

The solution structure for an Evolutionary Computation technique is highly specific. It is

specific to the EA itself and also the problem to which it is applied. This means the solution

structure for one problem cannot be applied directly to a different problem. How these

representations are varied during the breeding process is detailed later in Section 4.3.10

during the Breed step of the EPA lifecycle.

4.1.1.1 Representing Genetic Algorithms

The background descriptions of Genetic Algorithms (GAs) were detailed in Section 2.3.4. The

traditional representation of solutions in Genetic Algorithms is as a string of binary digits. Fig-

ure 4.2 illustrates this traditional representation followed by the two specific implementations

utilised by the EPA framework.

1.2 10.5 8.9 0.01

RateIndividual

44.0 1.1 327 123 750 450 1 22

PopulationIndividual

Figure 4.2: Translating a DNA strand to a binary string with example EPA individuals

The EPA framework uses a string of doubles to represent rate solutions and a string of

integers to represent population solutions (lower left and lower right of Figure 4.2 respectively).

In both representations, values are non-negative and can range from 0 (inclusive) to positive

infinity (exclusive). This range can be restricted globally for an Individual or each locus may

have its own specified range.

4.1.1.2 Representing Genetic Programming

Genetic Programming techniques utilise a tree based solution structure. The size and shape of

the tree can vary hugely between different problem domains and within solutions to the same

4.1 the combined individual 35

problem. Due to the strict nature of the Bio-PEPA syntax, the GP syntax is different for species

and kinetics definitions: Section 2.2.2 details the responsibilities of these PA segments and their

definitions.

PEPA work concentrated exclusively on parameter matching problems and did not use any

GP techniques, therefore there is no associated GP tree for the PEPA syntax.

The species portion of the Bio-PEPA model was the first section considered for optimisation

using Genetic Programming techniques. The syntax is defined by Ciocchetta & Hillston [20],

copied here for convenience. The syntax is displayed in ASCII as this is used by the EPA

framework.

S ::= (α, κ) op Sid | S + S

op = � |� | (+) | (−) | (.)

Figure 4.3 represents the tree structure used in this research to model species definitions.

These definitions have a highly constrained syntax and will all have this structure. Note, solid

connecting lines are required nodes and dashed lines are zero or more optional additional

nodes.

Choice	

Tree	
 Root	

Defini/on	
 Defini/on	

Defini/on	

Prefix	

Ac/on	
 Coefficient	

Operator	

Species	
 ID	

Figure 4.3: Bio-PEPA species syntax defined as a GP tree

The Choice and Prefix nodes always appear in the structure of the species GP tree, however

their design includes a self-hiding mechanism when they are not required. In Section 2.2.2 the

concept of syntactic shorthand was introduced which would hide the stoichiometry coefficient

if it was equal to one; this causes the Prefix node to only display the contents of the Action

node instead. Additionally, if there is no choice in a species definition (i.e., no +) the Choice

node will be blank.

The kinetics definition was the second segment of the Bio-PEPA model to be evolved using

Genetic Programming techniques. The syntax used by the EPA framework is more restrictive

than the complete Bio-PEPA kinetics syntax. For the purposes of simplicity, trigonometric

functions have not been included in the evolvable definitions: the work on kinetic evolution

followed on from the species optimisation work, therefore it was applied to simpler systems,

as discussed in Chapter 7. Similarly, only the function of mass action (fMA) has been included

for simplicity.

The composite node (c) is an EPA addition to the Bio-PEPA kinetics syntax. These nodes were

developed with utilising domain knowledge in mind and are specific to the epidemiological

4.2 variable summary 36

domain. These nodes are built to model the density-based and frequency-based transmission

contact rates in disease spread systems. By modelling these high level constructs, the EPA

framework can be seeded with additional domain knowledge, see Section 4.3.1. The composite

node is a form of library component and is only applicable to the domain where the knowledge

is being utilised. Using these composite nodes comes with an associated cost, as described in

Section 4.3.6. Additional problem-specific composite nodes could be developed and included

for any domain.

Another important difference is the use of bytes instead of integer values. This limits the

range of numbers from integer −(231) to (231 − 1) down to byte −(27) to (27 − 1); this is

a practicality based choice and is designed to restrict the search space that the GP has to

explore. Floating point values have also been omitted from being directly evolved. However,

the combination of the byte and division nodes can form decimal values (i.e. 3/2 = 1.5).

Discrete floating point numbers are uncommon in kinetic functional rate definitions; this setup

ensures their uncommon status while still making them possible. Note, this only influences

the evolution of kinetic definitions: this does not affect user-specified kinetic definitions or

rate variables in any way.

As above, the kinetics definition has been copied here for convenience.

K ::= byte | id | c | KmK | KK | fMA(rate)

id = rate | species

m = + | − | / | ∗

c = βSI | βSI/s | s

β = byte | id | c | K m K | KK

s =
∑
species

Note, the rate and species are defined here as the identifier of any rate or species in the

system. By default, SI in the epidemiological composite node c is defined as ’S ∗ Inf ’ but may

be changed by the user to match the model specific identifiers for the susceptible and infected

species in a system.

4.2 variable summary

The default set of variables utilised by the EPA framework are presented in Table 4.1. The

values chosen as defaults attempt to balance the reliability of results and the computational

power to achieve those results.

A brute-force systematic exploration of the search space would guarantee the optimum

result(s), however this approach is intractable, especially as a problem’s complexity increases.

If computational resources allowed, variables such as population size, number of generations,

number of internal or external replications and number of independent runs could be increased

to improve the quality of results.

The concepts of exploration and exploitation were introduced previously in Section 2.3.1.2. In

addition to balancing computational requirements with result quality, the default variables

4.3 the evolving process algebra lifecycle 37

attempt to strike a balance between exploration and exploitation. This balance may be

maintained across multiple parameters; where one may lead to heavy exploitation, another

may be very explorative.

EC Population Variables

Population Size 100

Generations 200

EC Breeding Variables

Selection type Tournament
Tournament pool 5%
Elitism 1%
Crossover type 1-point
Crossover rate 100% / 90% ∆

Mutation rate 5% / 100% ∆

Mutation type ratio 1 : 1 ∆

Adaptive window size 5 ∆

Kinetic rebreeding Rebuild ∆

Replacement type Generational

EC Scoring Variables

Fitness (GA & sub-) Euclidean
Fitness (GP) Tree Size ×

Bloat type Gradient ×

Bloat penalty ~5% ×

PEPA & Bio-PEPA Variables

Simulation algorithm Gibson-Bruck
Internal replications 10

External replications 1

Failure timeout ~10s ♦

EPA System Variables

Independent runs 50

Memory allocation 510Mb (per run)

∆ : kinetics only × : GP only ♦ : Bio-PEPA only

Table 4.1: Default EPA variables by category

The EPA framework’s user is able to override any value of the default variable set should

they desire. This can be achieved from the command line or via the EPA Utility Assistant for

novice users.

How these variables are utilised by the framework is described throughout the next section

as each stage of the EPA lifecycle is discussed.

4.3 the evolving process algebra lifecycle

The EPA framework follows a six-step lifecycle during execution, as illustrated in Figure 4.4.

The Start and Simulate steps (highlighted in yellow) are in the Process Algebra domain and

are accomplished using the relevant PA plug-in. The Score, Select, Breed and Finish steps

(highlighted in green) are in the Evolutionary Computation domain and are executed in the

ECJ toolkit or the EPA framework itself. A small portion of the Start step is also in the EC

domain.

A single execution of the EPA lifecycle would yield 100 (the population size) possible

solutions, of which at least one is hoped to be the (or close to the) global optimum. To achieve

statistical significance, the EPA is executed multiple times with the results from each run

collated together. If an individual solution appears in multiple runs it is more likely to be

a high fitness individual. Also, multiple runs allow the EPA to avoid being entirely stuck

4.3 the evolving process algebra lifecycle 38

in a local optimum: while one system run may become stuck, many others will still finish

successfully.

Simulate	

Breed	

Score	

Select	

Start	
 Finish	

Figure 4.4: The EPA lifecycle

The EPA framework is designed to be parallelised using HTCondor, described above. Each

full lifecycle, from Start to Finish steps, takes place on one HTCondor node (but may be moved

to another node if suspended). Each separate lifecycle is executed on a separate node. The

default number of EPA runs is 50, but this value could be increased depending on available

nodes.

The remainder of this section elaborates on each of the six steps in the EPA lifecycle.

(i) start

The Start step is only done once per EPA framework execution as a preparation for the

following steps. The first input to the framework is a prebuilt PEPA or Bio-PEPA model; this

could be prepared freehand or developed in the appropriate plug-in tool. The second input is

the target for the EC techniques to achieve; this commonly takes the form of a time series trace,

but could be a desired set of behaviours (for instance, the cyclic behaviour of the repressilator

system in Section 5.4), or both.

One or more segments of the model will be flagged for optimisation; this will be the rate

and/or starting population values for GA evolution in PEPA models; or additionally, kinetic

action and/or species definitions for GP optimisation in Bio-PEPA models. The flagged segments

need not have values or be defined; only the segment name needs to exist in the initial model,

for example:

X def
= ...

Y def
= ...

Z def
= (alpha, 3)� Z

This is a valid Bio-PEPA species definition snippet for the EPA framework only if the X and Y

species are flagged for optimisation. If they are not, the framework will detect the incomplete

model and report the error before terminating. Any existing definitions or part definitions for

a flagged segment will be overwritten by the evolved definitions during the Simulate step. As

such, Z may be flagged for optimisation, despite having a complete species definition.

In addition to accepting the model and target inputs, the Start step also prepares the

initial population of the system, i.e. generation 0. This generation is generally a random

distribution across the search space; the size of a search space is problem specific and may

4.3 the evolving process algebra lifecycle 39

become particularly large, especially kinetics experiments (Chapter 7). If desired, the starting

population can be partially or wholly seeded with domain knowledge of the search space or

continue from where a previous population finished.

4.3.1 Utilising Domain Knowledge

Previously, in Section 2.3, Evolutionary Computation techniques were described as guided

trial-and-error methods for finding optimal solutions in a large search space. By utilising

domain knowledge during the Start step, the search can start or focus in a more fruitful region

of the problem space.

The EPA framework has no innate knowledge of what the species, the actions, or their

interactions mean. The solution structures created are driven entirely by the fitness function

(discussed in the Score step below). Therefore, if the solution is scored a good fitness, its

domain-specific validity is irrelevant. This can be addressed through the use of domain

knowledge.

Consider the G-protein system, described fully in Sections 5.5 and 6.4. The G-protein system

comprises of two separate cycles, one on the outside of the cell and one on the inside, where

the first has an excitatory effect on the second. Actions available to the first cycle are not

available to the second and vice versa. For example, the bind_RL action (in Bio-PEPA notation)

binds receptors and ligands which exist outside the cell, this action is not applicable to the

other cycle inside the cell. A domain expert would know this, whereas the EPA framework

would not.

When incorporating domain knowledge, the EPA framework can be given species-action

ban lists. When generation 0 is seeded, each individual will not violate the restrictions of

the ban list; species are restricted to only utilising kinetic actions not on their list. Checks

are in place to ensure not all actions are restricted, thus leading to no valid solutions. This

knowledge is also used in the Breed step to ensure subsequent generations do not violate these

restrictions.

While utilising domain knowledge, caution should be exercised. Being overly restrictive

could adversely affect the course of optimisation. This could either be by causing premature

convergence, or by restricting the solutions to what the domain-expert wants rather than for

allowing proper exploration of the search space.

(ii) simulate

The Simulate step will normally be reached from the Breed step, with the exception being from

generation 0, where the individuals being simulated will be those seeded during the Start

step. In preparation for simulation, an individual is parsed to form a complete model. Elites,

discussed below in the Breed step, do not need to be parsed in subsequent generations as their

structure will not change.

4.3 the evolving process algebra lifecycle 40

Each individual comprises of sets of numeric values for the GA rate and population values,

also GP tree structures for the kinetic and species definitions. The EPA framework uses multiline

pattern-matchers to remove any whole or part definitions that may already exist in the

precursor model, as described in the Start step.

rate: ^\s*<variable>(\s*=\s*)\d*\.?\d*E?-?\d*;

kinetic: kineticLawOf\s*<variable>\s*:\s*.*;

species: <variable>\s*=\s*(\w+|\(\w+,\s*\d\))\s*...?\s*<variable>

(\s*\+\s*(\w+|\(\w+,\s*\d\))\s*...?\s*<variable>)*;

population: \W\s*<variable>\s*\[\d+\]\s*

In each pattern, the <variable> term is replaced by the name of the segment being flagged.

Through use of generic regular expressions (such as \s* for any amount of whitespace), poorly

or differently formatted models may be handled safely. Also note, each backslash is duplicated

in the Java environment, this is to escape the original backslash at compile-time.

After preparation, the Process Algebra model is supplied as a String to the plug-in for error

checking and simulation. If errors prevent the model from being simulated, it will be flagged

as poor for the Score step. The PA plug-ins can also detect poorly formed models, but these

can still be simulated to termination.

Once past the error checks, the Process Algebra model is ready for simulation. The Gillespie

PA simulator algorithm is a standard method of simulation. The Gibson-Bruck simulator

algorithm builds on the Gillespie simulator for the purposes of time and computational

resource efficiency [37]. As a default, it is the Gibson-Bruck simulator algorithm used by the

EPA framework, however the Gillespie algorithm is also useable. The simulation is conducted

from a start point, to an end point with a particular granularity; all these variables are

user-specified and model specific.

4.3.2 Replications

Process Algebra simulation is a stochastic operation. For this reason, if a model is simulated

multiple times it will result in different output time-series traces, even if simulated with

identical parameter settings. This can cause a large amount of stochastic noise which will hide

model behaviour.

In addition, Evolutionary Computation optimisation techniques can also be noisy, further

hiding these behaviours. This stochastic noise must be reduced to discover model behaviour

and accurately measure fitness.

4.3.2.1 Internal Replications

Consider Figure 4.5, three arbitrary traces. The left image presents a standard reduced-

noise trace produced with 100 replications, notice the smooth curves along each trace series.

4.3 the evolving process algebra lifecycle 41

Compare this to the centre image, the same model run with only 1 replication, notice the

more jagged and unrefined trace produced under these conditions.

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

Figure 4.5: Three runs with 100 (left), 1 (centre) and 1 (right) internal replications

Lastly, consider the right image, this represents a trace produced from the same model with

only 1 replication; the differences can be explained by the stochastic nature of PA simulation.

Such a difference in the trace could cause a fit model to be scored poorly despite how well

that model would normally perform. Conversely, a normally poor solution could be scored

strongly because of these stochastic differences.

Internal replications are the primary method used by the EPA framework to reduce the

impact of outlier results and stochastic noise. For each individual, the parsed model is run

N times (where N is the number of internal replications, default 10). The time series traces

produced from each of those runs is then averaged over N to give a singular final time series

trace which will be scored.

4.3.2.2 External Replications

In some systems, the application of internal replications can cause further stochastic noise or

entirely mask the system’s behaviour. This is especially true for systems which exhibit cyclic

or seasonal behaviour.

0	

500	

1000	

1500	

2000	

0	

500	

1000	

1500	

2000	

0	

500	

1000	

1500	

2000	

Figure 4.6: Three runs with 100 (left), 1 (centre) and 1 (right) internal replications

Figure 4.6 presents three results from one Susceptible-Exposed-Infected-Recovered (SEIR)

model, each spike is indicative of an epidemic outbreak. The left image is produced with

100 internal replications, notice the multiple smaller peaks caused by averaging many runs.

The centre and right images of this figure are examples of 1 internal replication run. This

SEIR example exhibits cyclic behaviour where the pattern of infectious spikes is not consistent

enough to average using internal replications.

Work with the repressilator system, discussed later in Section 5.4, inspired the implementa-

tion of external replications.

4.3 the evolving process algebra lifecycle 42

External replications follow a different view of the lifecycle, combining the Simulate and

Score steps into an iterative cycle. The model is simulated and the resultant time series trace is

then immediately scored. To reduce the impact of outliers and stochastic noise, this process is

then repeated N times and the sum of these fitness scores is then averaged over N to produce

the final fitness score.

Normally, external and internal replications will not be combined. If a model includes cyclic

or seasonal behaviour, or otherwise warrants external replications, the number of internal

replications will be set to one.

However, it is possible to use external and internal replications together. If both are used,

the number of replications is calculated multiplicatively: for each external replication, the full

number of internal replications are completed.

4.3.3 Failure Timeout

The failure timeout feature is only available for Bio-PEPA models which are running on threads.

By default, each model simulation is dispatched on a separate thread and the results are

collected together when the simulation ends. The time a simulation has been running on a

thread is tracked.

It is possible to run each Bio-PEPA simulation sequentially without using separate threads,

however this approach is very time-inefficient and is normally only used for the purposes of

debugging.

Bio-PEPA models generally have a short simulation time which allowed for the introduction

of the failure timeout variable. The exact value of this variable should be approximately 2.5

times the normal simulation time. If a simulation exceeds this duration then it is prematurely

terminated and flagged as poor for the Score step. These simulations will have increased

species levels beyond which the simulator can operate. Removing these solutions early reduces

time wasted on known failures.

(iii) score

The Score step is only reached from the Simulate step. The individual solution and associated

raw time series trace are provided to the EPA scoring package where the solution will be

assigned a fitness score representing its match to the target time series trace and any desired

behaviours.

In general, a higher fitness score indicates a better solution. Evolutionary Computation (EC)

techniques frequently use a minimising function, therefore a lower fitness score indicates a

better solution.

An optimal score is zero, or no difference; indicating the solution provided an exact match

to the model’s target trace and any desired behaviour. The maximum fitness score is system

dependent, but is normally positive infinity. A perfect score of zero is theoretically possible

4.3 the evolving process algebra lifecycle 43

but is impossible to achieve in practice. The stochastic nature of simulations will always add

some element of noise to the raw time series trace, partially obscuring behaviour and causing

the fitness score to be non-zero.

If an individual is passed into the Score step with a poor fitness flag, it is assigned the worst

fitness possible for that system. This value is normally positive infinity. This flag can be caused

by a solution containing errors or taking too long to simulate. Nothing more needs to be done

during the Score step for these flagged individuals.

Choosing how to score a model is equally as important as the model itself. The fitness

function accepts the time series trace from the Simulate step and objectively measures the

individual’s performance against the target trace and/or desired behaviours. The fitness

function must be specific enough to capture all the desired behaviour without being overly

constrained that the results prematurely converge.

In addition to being specific, the fitness function must be accurate: EC techniques are prone

to taking any shortcuts available. For an example, consider a fitness function that penalises

a GP tree structure based on size in order to control bloat (described fully in Section 4.3.5

below). If the penalty is too high, it will outweigh the score to match the target trace or desired

behaviour. Instead, the fitness function will concentrate on reducing the size of solution trees,

leading to poor yet high scoring solutions.

4.3.4 Euclidean Distance Fitness Scoring

The Euclidean distance measure is a basic fitness function which scores individuals based on

the difference between two matrices, where one matrix is the simulated time series trace and

the other is the target time series trace.

During preliminary incorporation of new models, the Euclidean distance fitness function

was used; this was to avoid adding additional complexity through use of more complex

fitness functions. During GP optimisation work, additional fitness functions were developed

to score fitnesses using more complex measures other than distance: details follow in Sec-

tions 4.3.5, 4.3.6 an 4.3.7.

Consider Table 4.2 as an example: the target consists of two sets of time series data, the first

column ranges from 0 to 10, and the second from 0 to 50. The values are first normalised to a

range between 0 and 1, these normalised values are shown after the arrow in each column.

This normalisation allows time series data to exist on different ranges and still be weighted

equally and compared fairly.

Columns three and four are the time series trace produced from the evolved individual

as passed in from the Simulate step, then normalised across the same range as columns one

and two. The final column is the squared difference; calculated by taking the square of the

differences between each series of the target trace and the corresponding value from the

evolved trace. The Euclidean distance is the square root of the sum of the final column. It

4.3 the evolving process algebra lifecycle 44

is this value which is assigned as the fitness to the solution which created the evolved time

series data.

Target Trace Evolved Trace Differences2

0 → 0 0 → 0 0 → 0 0 → 0 02 + 02 = 0

4 → 0.4 12 → 0.24 3 → 0.3 9 → 0.18 0.12 + 0.062 = 0.0136

5 → 0.5 24 → 0.48 5 → 0.5 14 → 0.28 02 + 0.22 = 0.04

8 → 0.8 30 → 0.6 9 → 0.9 20 → 0.4 −0.12 + 0.22 = 0.05

10 → 1 50 → 1 10 → 1 25 → 0.5 02 + 0.52 = 0.25

raw value→ normalised value
∑

Differences = 0.3536

Distance (Fit) = 0.5946

Table 4.2: Euclidean distance fitness measure

A feature of using the Euclidean distance measure for fitness scoring is the ability to

accurately calculate the maximum (worst) fitness value. With each value on every time series

trace normalised to a range of 0 and 1, the greatest possible difference at each point is 1.

Therefore the maximum fitness value is equal to the number of data points which is also

equal to the time series trace length multiplied by the number of columns in that trace. So,

max_ fitness = num_ data_ points = timeseries_ length ∗ num_ columns. Knowing the maximum

fitness value, the fitness score can be viewed along the scale of possible scores, thus giving an

indication of the solution’s overall performance.

The simple Euclidean distance measure can be built upon to capture additional desirable

behaviour. To score solutions more accurately, fitness functions can be tailored to individual

problems. This is especially desirable for large models or those describing particularly complex

systems.

4.3.5 GP Tree Fitness Scoring

The kinetic and species definitions use Genetic Programming (GP) techniques for optimisation,

full details can be found in Section 2.3.5. Each GP tree consists of multiple nodes to build up

a definition, this immediately presents an additional criteria to score: the tree size. Ideally,

the GP tree will adequately describe the model’s behaviour in a concise manner. This is not

always the case; since Genetic Programming techniques are prone to bloat.

Bloat is defined as an increase in the GP tree size with no appreciable improvement in that

tree’s fitness score or function. Bloat is principally controlled by the fitness function. The

tree-size evaluator fitness function is built directly on top of the Euclidean distance fitness

function detailed in the previous section. However, it can be built onto any other fitness

function, now called the sub-fitness function. During GP tree fitness scoring, the sub-fitness

4.3 the evolving process algebra lifecycle 45

function provides a fitness score based on the target trace and/or desired behaviours, now

called the trace score.

The tree-size evaluator assigns a score to the individual based on the GP tree structure

regardless of the target trace, the desired behaviours or the trace score. The species GP

definition trees are not overly susceptible to bloat; the maximum number of choices in a

species definition has an upper bound equal to the number of kinetic actions. However, the

kinetic GP definition trees are far more susceptible to bloat; the maximum number of nodes is

bounded by a depth variable, this is 5 as an ECJ and Koza [47] default. The tree-size fitness

score gets higher (poorer) proportionate to the GP tree sizes of the individual being scored. If

species and kinetic trees are optimised together, they are weighted equally in terms of the

tree-size fitness score.

The bloat penalties are based on the number of nodes used in a solution (num_ nodes), the

number of available kinetic actions available in the model (num_ kinetics) and the number of

children of the Choice node (num_ choices).

The species bloat penalty is calculated as species_ bloat = num_ choices / num_ kinetics and

the kinetics bloat penalty is calculated as kinetics_ bloat = num_ nodes / (2 tree_ depth − 1). Once

calculated, the trace score is augmented by the tree-size fitness score. This is done additively.

Doing so multiplicatively would skew the final fitness score, poor solutions would become

even poorer. Furthermore, the tree-size fitness scores could not be fairly compared if applied

multiplicatively.

The maximum bloat penalty should be approximately 5% of the maximum fitness range, or

an appropriate amount if the maximum is positive infinity. Testing bloat penalties from 3%

to 15% inclusive, 5% provided the strongest solutions in GP experiments which utilised the

tree-size evaluator fitness function. If a concise definition is particularly important, the bloat

penalty can be increased accordingly. This weighting allows the fitness function to pressure

solutions into a more concise form, without overpowering the trace score and leading to small

but useless solutions.

The tree-size evaluator fitness score is not always applied to the trace score; the EPA

framework has four preprogrammed modes which can be used. None indicates there is no

bloat penalty, the final fitness score is entirely based on the trace score. Conversely, Always

will apply the whole bloat penalty for every individual from generation 0. The Switch mode

comes with a user-defined generation between 1 and the number of generations, before this

generation there is no bloat penalty (as with the None mode) and after this generation there is

a full bloat penalty (as with the Always mode). Finally, Gradient; the bloat penalty is multiplied

by (current_ generation / num_ generations) before being added to the trace score.

The Gradient mode is the EPA default. Using this formula the penalty is at its weakest during

early iterations of the EPA lifecycle, allowing exploration, but becomes stronger towards the

final iterations, which encourages exploitation of compact solutions.

4.3 the evolving process algebra lifecycle 46

4.3.6 GP Node Weight Fitness Scoring

The tree-size evaluator fitness function, described above in Section 4.3.5, scores a GP tree based

on its size regardless of the tree’s content or meaning. If a correct definition is large while

correctly encapsulating the system’s behaviour it may be scored poorly due to its size. The

kinetics GP definition tree can utilise a second built in fitness function: the node-weight evaluator,

which allows large definitions to score well based on their composition.

The node-weight fitness function is built on top of a sub-fitness function in the same design

as the tree-size evaluator described above. During GP tree fitness scoring, the sub-fitness

function provides a fitness score based on the target trace and/or desired behaviours, which

is then augmented by its node weighting.

Table 4.3 presents the weights used by the EPA framework. Each weight is a positive non-zero

value; the values chosen should be small in comparison to the trace score to not overshadow

the original trace. In addition, the ratio of each weighting is proportional to the commonality

of that node in kinetic definitions: i.e. Math, Rate and Species nodes are particularly common so

their weight is small. Composite nodes, as described in Section 4.1.1.2, are high level solution

structures and are used at an increased penalty; this encourages new solutions to be built

rather than relying on the composite nodes.

Weight Kinetic Node(s)

0.1 Math, Rate, Species

0.2 Power

0.3 ByteVal, MassAction

0.5 βSI, βSI / n, Sum

Table 4.3: GP Node Weights

Through use of the GP node-weight evaluator, larger structures can be evolved without

being judged solely on their size. If desired, the node-weight evaluator and tree-size evaluator

can be chained together so an individual can be scored on both size and structure. The scoring

for both GP evaluators is additive, so neither takes precedence over the other.

The node-weight evaluator is not compatible with species definition trees. The structure

of a species GP tree is far stricter than a kinetics GP tree. The children of a Choice node are

identically structured (see Figure 4.3), therefore a node-weight fitness score would differ only

by the number of these children in the same way as the species tree-size evaluator fitness

function, described above.

4.3.7 Additional Fitness Scoring

The Euclidean distance, GP tree-size and GP node-weight fitness evaluators presented in this

section are the most frequently used fitness functions used in this work. Should a user require

4.3 the evolving process algebra lifecycle 47

a more complex fitness function, the EPA framework can be extended. All fitness function are

subclasses to an abstract AbstractEvaluator superclass; the abstract getFitness method must

be implemented to return the fitness score to a provided individual. All inbuilt EPA fitness

functions are stored in the internal scoring package. However, any custom fitness function

may be utilised if addressed in the parameter file; detailed with the EPA Utility Assistant in

Appendix A.

(iv) select

The output of the Score step is an EPA FitnessData object which is passed into the Select step.

The FitnessData contains all scoring data: the trace score, any penalty types applied, the

penalty values applied and the final fitness score.

The role of the Select step is to choose which individuals will be parents and put their

attributes forwards into the next generation in the form of offspring. Selection is one of the

major influences between exploration and exploitation. Selection techniques which favour

only the most fit individuals are highly exploitative, whereas techniques which allow poorer

individuals to pass on their attributes are more explorative.

4.3.8 Tournament Selection

The background of the tournament selection algorithm was discussed in Section 2.3.1.2. The

tournament selection function involves running several tournaments where each will yield

an individual from the population with good fitness, but may not be the most fit individual.

These individuals will be put forwards as parents.

A tournament pool is formed of a specified size; this size influences the exploration-

exploitation balance. The larger the pool, the more likely the most fit individual will be

encompassed, leading to exploitation. Conversely, a smaller pool may miss more fit indi-

viduals, allowing for more exploration of the search space. A pool of size one is effectively a

random selection algorithm and a pool size equal to the population size is equivalent to a

exploitative hill-climbing algorithm.

The tournament pool is populated by randomly choosing individuals from the population

for entry. The same individual may not be duplicated in a pool; for this reason, the tournament

pool cannot be larger than the population size. However, the same individual may appear in

multiple pools and be selected multiple times.

Once the tournament pool is full, the most fit individual of the pool ’wins’ and is put

forwards as a parent for the Breed step. Each individual to be bred requires two parents, so this

process is done twice for each such individual. Per generation the number of tournament pools

required for selection is (population_ size − num_ elites) ∗ 2. Elitism is discussed in Section 4.3.9.

Table 4.4 presents a hypothetical population of ten individuals with their fitness scores.

These individuals are sorted in ascending order by fitness; this is for readability, in general

4.3 the evolving process algebra lifecycle 48

selection algorithms will not need to sort the population. Consider a tournament pool of size

three which is randomly populated with individuals 2, 7 and 9; the winner for parent one

is individual 2. A second tournament pool is randomly populated with individuals 3 and

7; tournament entries are unique therefore 3 cannot be duplicated, however individual 7 is

permitted in pools for both parents. The final individual for the second pool is 10; the winner

for parent two is individual 3.

Fitness # Fitness

1 0.0036 6 1.7438
2 0.0112 7 1.9942
3 0.0458 8 2.6745
4 0.1955 9 4.8340
5 0.5782 10 9.4372

Table 4.4: Tournament selection example, sorted in ascending order by fitness

It is possible, though unlikely, to get the same individual in both parent slots. The offspring

can still differ from the parents due to the breeding operators, discussed in the Breed step.

Notice, the most fit individual of the population was not entered into a tournament pool and

is therefore ineligible for selection.

4.3.9 Elitism

Elitism is a modifier to the normal selection procedure which can be combined with any

selection algorithm. Elitism involves selecting a number of elite individuals in a population

which gain a ’bye’. That is, elite individuals immediately enter the next generation, unmodified,

following normal replacement techniques. Possible variations and replacement techniques are

discussed in the Breed step.

Elitism is a stabilising factor which allows selection algorithms to be more explorative

without the risk of losing the current best individual; for instance, by not entering a tournament

pool and being ineligible for selection. This ensures that the best individual can pass on their

strong attributes to the next generation.

The more elites in a system, the heavier the exploitation of the current population. Care must

be taken to not include too many elites; this would cause the elite individuals to dominate the

system, leading to a lack of exploration and a premature convergence.

(v) breed

Once high fitness individuals have been selected to pass on their attributes, the Breed step

is responsible for improving upon those individuals, now called the parents. The selected

parents represent relatively good solutions that have been found in the search space. It is

assumed that good solutions will be neighboured by solutions of similar or higher fitness. By

4.3 the evolving process algebra lifecycle 49

combining the attributes of two parents, new and possibly fitter areas of the search space can

be discovered.

The iterative nature of the EPA lifecycle aims to discover more and more fit solutions each

generation, towards the global optimum. In actuality, combining two fit individuals can lead

to poor solutions, especially when combining GP trees or complex individuals. This is because

interconnected values are not always preserved during the breeding process. Poorer fitness

children are permitted to replace their parents, this promotes further exploration of the search

space.

4.3.10 Variation

Stagnation would quickly occur if all selected individuals were cloned into the child generation.

Selected parents are bred to introduce variation into the created offspring. Breeding is

represented through recombination (or crossover) and mutation operators.

The recombination operator, commonly called crossover, mixes the solution structure of

two selected parents. This attempts to combine the fit attributes of two selected parents into

an even fitter offspring.

The mutation operator has a chance of resetting the value at a random location on the

solution structure. A higher mutation rate reduces the chance of becoming caught in a

local optimum. However, if the rate becomes too high the Evolutionary Algorithm will have

difficulty locating an optimised solution because solutions will bounce near-randomly around

the search space.

An important note: if multiple segments of a Process Algebra model are flagged for op-

timisation, an individual will be comprised of different structures to optimise those flagged

segments (Section 4.1): GA representations for rate and population levels and GP representa-

tions for kinetic and species definitions. During the Breed step, like can only be bred with like:

rates with rates, kinetics with kinetics, species with species and lastly population levels with

populations levels.

Varying GA and GP representations are discussed separately over the following sections.

Many of the breeding examples display two offspring solutions being generated; this is to

highlight the crossover and mutation operators. At runtime, only one of the child solutions

of a breeding occurrence is passed into the offspring generation. This choice allows for

more exploration of the search space by halving the exploitative influence of each breeding

occurrence.

4.3.10.1 Varying GAs

The representation and variation of Genetic Algorithms was discussed previously in Sec-

tion 2.3.4. The EPA framework implements two GA individuals: the RatesIndividual and Popula-

tionsIndividual. Both these individuals use the linear chromosome representation of values.

4.3 the evolving process algebra lifecycle 50

The only difference is that rates are double values whereas populations are integer values (it is

not possible to have a fractional member of a population).

The values held in the representation of a GA Individual do not affect the breeding op-

erators available to that individual. Figure 4.7 illustrates a one-point crossover example on

a RatesIndividual and a mutation example on a PopulationsIndividual, to the left and right

respectively.

1.2 10.5 8.9 0.01 44.0 1.1

4.7 12.0 0.0 27.1 57.2 0.7

1.2 10.5 0.01

4.7 12.0

0.0

27.1

57.2 0.7

8.9 44.0 1.1

1 2 3 4 5

327 123 750 450 1 631

327 123 750 450 1 22

1 2 3 4 5 6

Figure 4.7: Crossover (left) and Mutation (right) operators on example EPA individuals

There are three forms of crossover operator: one-point, two-point and uniform crossover

operators. One-point (as illustrated) stochastically selects a gap between loci and builds

offspring solutions from the left portion from one parent and the right from the other parent.

Two-point crossover operates similarly, except two arbitrary points are selected along the

chromosome length. The offspring solution comprises of one parent between those two points

with the remainder on each end from the other parent. Uniform crossover moves along the

length of the chromosome; for each locus, the offspring’s locus is randomly chosen from either

of its parents. This effectively randomises each locus and is more explorative than the other

crossover operators.

The mutation operator is simpler and has a chance of resetting the value at zero or more

random locations on the chromosome. To the right of Figure 4.7, the fifth locus has been

selected. The mutated value can be any number in the user-specified permissible range; in

this example 22 is mutated to 631.

With Genetic Algorithms, the crossover operator is heavily exploitative. Conversely, the

mutator operator is explorative as changes can move the solution into new areas of the search

space.

Both GAs use the one-point crossover operator and the standard mutation operator. The

crossover operator is applied to all GA breeding occurrences to reduce the likelihood of

premature convergence. The mutation operator has a 5% chance to be applied to a locus, this

further allows for exploration of the search space without being too high to become overly

explorative.

The uniform crossover approach will arbitrarily mix the alleles of both parent solutions;

increasing the probability of associations between neighbouring loci being lost. Using one-

point crossover means any associations between neighbouring loci will likely be preserved.

4.3 the evolving process algebra lifecycle 51

The chromosome representation of a GA in the EPA framework is linear, not circular, so no

extra benefit is gained by using two-point crossover.

4.3.10.2 Varying GP - Species

This section focuses on the GP species syntax tree along with the crossover and mutation

operators available to it. Traditional GP tree structures, discussed in Section 2.3.5, allow the

crossover operator to be performed where different edges (or connections) are chosen on each

parent. Due to the strict Bio-PEPA syntax this is not permissible as it would lead to violations of

the syntax and would automatically fail upon simulation. To prevent this, the same connection

is chosen in both parents; this can be achieved because all species GP trees follow a strict

structure as illustrated previously in Figure 4.3.

Some GP breeding operators allow multiple connections to be selected with multiple subtree

crossovers; however, the EPA framework uses a single connection crossover technique akin to

GA one-point crossover.

(Blank)	

Exp	

Reactant	

(__	
 ,	
 __)	
 Exp	

3	
 find	

(Blank)	

Inf	

Enzyme	

(Blank)	
 Inf	

1	
 contact	

Parent 1 Parent 2

(Blank)	

Exp	

(Blank)	

Inf	
 Child 1 Child 2

crossover
Reactant	

(__	
 ,	
 __)	
 Inf	

3	
 find	

Enzyme	

(Blank)	
 Exp	

1	
 contact	

Exp
def
= (find, 3)� Exp

Inf
def
= contact (+) Inf

⇓

Exp
def
= contact (+) Exp

Inf
def
= (find, 3)� Inf

Figure 4.8: Crossover operator on a Bio-PEPA syntax GP species tree

When performing crossover on a GP tree structure the arbitrary point selected is a connecting

branch. In Figure 4.8, one-point crossover is performed on the connection between the Choice

and Operator nodes; denoted by the dashed lines. As mentioned above, the same branch is

chosen on the second parent.

To satisfy the Bio-PEPA syntax, the SpeciesID node has its value changed to match the new

TreeToot identifier. In this example, the Exp from (find, 3) � Exp becomes a Inf to match the

new TreeRoot; similarly the Inf from contact (+) Inf becomes Exp.

4.3 the evolving process algebra lifecycle 52

The crossover operator occurs for all species GP breeding occurrences. Due to the strict

syntax of these trees, the crossover is not as destructive as in traditional GP crossover, allowing

the EPA framework to be more explorative. This is not to say that all crossover operations will

result in viable offspring.

(Blank)	

Exp	

Reactant	

(__	
 ,	
 __)	
 Exp	

3	
 find	

(Blank)	

Inf	

Enzyme	

(Blank)	
 Inf	

1	
 contact	

Parent 1 Parent 2

(Blank)	

Exp	

Reactant	

(__	
 ,	
 __)	
 Exp	

3	
 find	

(Blank)	

Inf	

Enzyme	

(Blank)	
 Inf	

1	
 contact	

Child 1 Child 2

crossover

Exp
def
= (find, 3)� Exp

Inf
def
= contact (+) Inf

⇓

Exp
def
= contact� Exp

Inf
def
= (find, 3) (+) Inf

Figure 4.9: Crossover operator on a Bio-PEPA syntax GP species tree (with violation)

Figure 4.9 shows a crossover operation deeper in the GP tree; between the Operator and

Prefix nodes: again, denoted by the dashed lines. This recombination is simpler because no

node values need to be changed to ensure syntactical correctness.

(Blank)	

Exp	

Enzyme	

(Blank)	
 Exp	

1	
 find	

(Blank)	

Exp	

Enzyme	

(Blank)	
 Exp	

1	
 contact	

mutation

Parent Child

Exp
def
= find (+) Exp ⇒ contact (+) Exp

Figure 4.10: Mutation operator on a Bio-PEPA syntax GP species tree

However, in this example, the crossover will cause a violation in the Bio-PEPA syntax because

a modifier (Section 2.2.2) cannot have a stoichiometry coefficient that is not equal to 1: this

crossover has caused a value of 3 to be used. The EPA framework attempts to remove such

erroneous offspring during the replacement process, described in Section 4.3.12. Figure 4.10

4.3 the evolving process algebra lifecycle 53

demonstrates the effect of the mutator operator on a GP tree structure. The mutator operator

has a 5% chance to alter the state of a node in an offspring individual; as with the tree depth

variable, this is an ECJ and Koza [47] default. This value allows a degree of exploitation of the

parent GP tree structure, without being too exploitative or mutating too frequently to become

overly explorative. One node is selected at random and is reset to any permissible value: an

Action node can only contain actions, the Operator node can only contain operators, etc.

The mutator cannot be applied to SpeciesID or Prefix nodes. The SpeciesID node is a place-

holder and can only contain the identifier of the TreeRoot node. The Prefix node is a container

element designed to group the Action node with its stoichiometry coefficient in brackets, or

remain hidden and only display the Action node if the stoichiometry coefficient is equal to 1.

By removing these two nodes as possible mutation targets, the EPA ensures each mutation will

have an impact on the resultant offspring.

Though not the most efficient approach, this simplified implementation while also keeping

in line with ECJ design principles.

An additional special case is if the mutator is applied to the Choice node, where the number

of child nodes will be altered. If the number is reduced, random subtree branches are removed

to match this new lower value. Conversely, if the number is increased, new branches are

generated and added to the GP tree. These generated branches are appended to the list of

child nodes in the Choice node, the order of child nodes is unimportant. The blank Choice node

contains +’s if it has more than one child node.

With Genetic Programming techniques, the roles of the crossover and mutator operators

are reversed compared to GA operators. The crossover operator is heavily explorative and can

be destructive too; two GP trees may individually have good fitnesses but combining the two

will normally lead to a poor fitness region of the search space. The mutator operator is the

exploitative influence; taking fit GP trees and mutating a single node is more likely to yield

stronger offspring.

4.3.10.3 Varying GP - Kinetics

This section focuses on the Genetic Programming kinetics syntax tree along with the crossover

and mutation operators available to it. The crossover operator for a kinetics GP tree is more

indicative of traditional crossover (Section 2.3.5) than the species crossover operator, described

above. This is because the Bio-PEPA syntax for kinetics definitions is not as strict as for species

definitions.

Unlike crossover for species trees, the chosen node connection can be at different positions

and depths on each parent; the size of the detached subtree can also be different, as in

Figure 4.11. In addition, there are no special cases which would require a node to have its

value changed: such as changing the SpeciesID node to match the TreeRoot node, as previously

seen in Figure 4.8.

4.3 the evolving process algebra lifecycle 54

The likelihood of applying the crossover operator to a GP kinetics tree is reduced in

comparison to the species crossover operator. Crossover is performed in 90% of kinetics

breeding occurrences, the remaining 10% of breeding simply copies one of the selected

parents into the offspring generation. The EPA framework implementation copies parent one

for the offspring solution. This copying is not the same as elitism or cloning: copied individuals

are still subject to possible mutation, described below. Kinetic GP crossover does not maintain

the original tree dynamics of width, depth or number of nodes. Therefore, crossover in kinetics

GP trees can quickly cause a large degree of bloat (discussed previously in Section 4.3.5); the

crossover probability is reduced to aid in lowering bloat.

alpha	
 beta	
 Parent 1 Parent 2

alpha	
 beta	
 Child 1 Child 2

crossover

/	

+	
 contact	

Inf	
 S	

*	

infect	
 recover	

/	

contact	

*	

infect	
 recover	
 +	

Inf	
 S	

kineticLawOf alpha : (S + Inf)/contact ⇒ kineticLawOf alpha : recover/contact

kineticLawOf beta : infect ∗ recover ⇒ kineticLawOf beta : infect ∗ (S + Inf)

Figure 4.11: Crossover operator on a Bio-PEPA syntax GP kinetics tree

Like the species mutation operator, the kinetic mutation operator has a 5% chance of

occurring. The mutation operator for the kinetics GP trees has two types: the point mutation

and the subtree mutation (Section 2.3.5). When mutation occurs, one of these two types is

utilised. The ratio of point to subtree mutation being selected is 1:1, so each has equal chance

of being selected.

Mutation is the exploitative influence for GP tree variation. Point mutation is the more

exploitative of the two operators available while subtree mutation is more traditional and

highly explorative. While both mutation operators are exploitative, the ratio between point and

subtree mutation allows a balance between exploitation and allowing additional exploration.

If an offspring individual is not subject to recombination for any reason, the chance of the

mutation operator being applied is overridden to 100%. This could be because the 10% chance

of copying was taken, or two identical parents were selected for breeding thus resulting in a

crossover operation which produced an offspring identical to its parents. The exact mutation

operator applied (point or subtree) is then determined based on the ratio described above. By

4.3 the evolving process algebra lifecycle 55

guaranteeing mutation when offspring solutions match the selected parents, the EPA aims to

further avoid population stagnation or premature convergence.

Figure 4.12 provides an example of the point mutation operator. When this occurs, a random

node is selected anywhere on the GP kinetic tree. Unlike the species mutator operator, all

nodes can be selected because all nodes impact the final definition. The selected node retains

its type but has its value reset to any permitted value, a Byte node can only contain a byte

value, etc.

/	

+	
 contact	

Inf	
 S	

Parent alpha	
 alpha	

/	

*	
 contact	

Inf	
 S	

mutation

Child

kineticLawOf alpha : (S + Inf)/contact ⇒ kineticLawOf alpha : (S ∗ Inf)/contact

Figure 4.12: Mutation (point) operator on a Bio-PEPA syntax GP kinetics tree

Figure 4.13 demonstrates the subtree mutation operator on the same parent GP tree as the

point mutation above. Similarly to the point mutation operator, a random node is selected

from anywhere on the GP kinetic tree. The key difference is what is mutated. Any existing

child nodes (and their children) of the selected node are entirely removed. The chosen node is

then rebuilt as a new subtree which can be a terminal or include child nodes, child-of-child

nodes, etc.

/	

+	
 contact	

Inf	
 S	

Parent alpha	
 alpha	

/	

-­‐	
 contact	

2	
 *	

mutation

Child

recover	
 Exp	

kineticLawOf alpha : (S + Inf)/contact ⇒ kineticLawOf alpha : ((Exp ∗ recover) − 2)/contact

Figure 4.13: Mutation (subtree) operator on a Bio-PEPA syntax GP kinetics tree

The point mutation operator can guarantee the tree size and structure will not change,

whereas the subtree mutation has a low probability of retaining the original tree dynamics.

Losing the original tree dynamics is not necessarily bad; it allows new areas of the search

space to be explored.

To be considered well formed, the Bio-PEPA syntax enforces that kinetic action definitions

may only include species identifiers if that species cooperates across the defined action, as

4.3 the evolving process algebra lifecycle 56

described in Section 2.2.2. If a kinetic action definition is flagged with no species segments, the

permitted species identifiers for that kinetic action are constant and the Bio-PEPA syntactical

requirement is easily adhered to.

In problems that flag at least one kinetic action and at least one species segment simul-

taneously, a new problem is presented during optimisation: the permitted species will be

different from one individual to another. The permitted species from parents to offspring

will also be different because of recombination and mutation operators. Ensuring syntactical

correctness is handled by kinetic rebreeding.

4.3.10.4 Kinetic Rebreeding

The EPA framework employs kinetic rebreeding to ensure offspring solutions adhere to the

Bio-PEPA syntax requirements. The rebreeding action was included in the EPA framework to

help explore the far larger kinetics optimisation search space and to improve experiment

results. The exact size of a search space is problem specific; an example of the size differences

between species and kinetic optimisation is provided with the first kinetic optimisation

experiment in Section 7.1.

The kinetic rebreeding action is multimodal and can be selected appropriate to the problem.

Choosing None indicates the kinetic rebreeding actions are turned off: offspring individuals

with syntax violations are permitted into the next generation. The Replace option is the

basic rebreeding action: if a syntactic violation is detected, the individual is replaced by a

new individual generated from scratch. Finally, the Rebuild option allows for a more precise

detection technique: the syntactic violation is narrowed down to a specific subtree. The node

above that subtree is then rebuilt using an operator similar to the subtree mutator operator

(Section 4.3.10.3), thus removing the violating subtree.

Using the Replace or Rebuild kinetic rebreeding techniques may introduce new syntactic

violations into the population. This is to be expected. These kinetic rebreeding actions are

iteratively attempted three times to reduce syntactic violations. However, it is infeasible to

always remove all violating individuals.

By detecting and resolving kinetic violations now, time and computational resources are

saved later during the Simulate step. Furthermore, the newly created or updated individuals

allow the EPA framework to explore new areas of the search space.

4.3.10.5 Adaptive Depth Bias

There is an additional aspect to consider for breeding operators on kinetic action definitions:

the depth at which the operator is applied. The higher up the tree structure (or lower its depth)

a chosen node exists, the larger the impact on the resultant offspring the operator will have.

This is especially true for the subtree mutation operator; if a high level node is chosen, large

portions of the tree will be rebuilt. In an extreme case the root node is selected: this causes the

4.3 the evolving process algebra lifecycle 57

entire tree to be rebuilt as if from scratch, thus losing any favourable traits which caused the

parents to be selected.

When selecting a node for mutation or crossover, higher (or lower depth) selection leads to

greater exploration whereas lower (or higher depth) selection tends towards exploitation. The

EPA framework was extended for kinetic-specific GP work to include an adaptive depth bias.

This is used to alternate between exploration and exploitation depending on which is most

desirable at the time of selection.

The probability of a node being selected is (node_ depth / tree_ depth) + adaptive_ offset where

the tree root node is at depth 1. This gives a minimal (but not 0%) chance of choosing the root

node and a 100% certainty of choosing the deepest terminal node. Disregarding the adaptive

offset, this calculation will favour nodes deeper in the GP tree structure.

The adaptive offset is calculated based on a trailing window behind the current generation,

the size of which is specified by the adaptive window size variable. If the overall fitness of the

population has been improving, the standard deviation of generation-on-generation fitness in

the trailing window will be high. However, if this deviation is low, the overall fitness of the

population has plateaued. The adaptive offset is increased inversely to the standard deviation,

bounded between 0 and 0.5; a probability greater than 1 is treated as 1. Therefore, a plateau

will cause a spike of explorative behaviour, helping the EPA framework to avoid becoming

stuck in a local optimum.

4.3.11 Validity

The entire offspring population is checked through the appropriate Process Algebra plug-in.

This check will flag all individuals which contain errors that would prevent simulation. This

is similar to the kinetic rebreeding action described above. The EPA framework will attempt

to improve the validity of the offspring population by removing failed individuals. Each

failure will be replaced by a newly created individual; this replacement process is iteratively

attempted three times.

Similar to kinetic rebreeding actions (Section 4.3.10.4); by detecting and replacing individuals

in this step, time and computational resources are saved later during the Simulate step.

Furthermore, the newly created individuals are not bred from parent individuals; this gives

the EPA framework an additional chance to explore the search space.

4.3.12 Replacement

Once breeding and validity checks are complete, the elites and offspring individuals must

be introduced into the new population. The technique used for this introduction influences

the balance between exploration and exploitation. There are different forms of replacement

techniques, each with varying advantages and disadvantages.

The two techniques considered for use with the EPA framework are steady-state replacement

and generational replacement. They both maintain a constant population size; this is a desirable

4.3 the evolving process algebra lifecycle 58

trait because it simplifies implementation and improves efficiency. Both techniques were

introduced in Section 2.3.1.3.

The steady-state replacement technique breeds a small number of offspring individuals (as

low as one) which will replace individuals in the current population. The replacement may be

done arbitrarily or through a reverse-selection technique; i.e., the poorest fitness individuals

are most likely to be selected for replacement. This approaches preserves the majority of

the parent population each generation. This preservation allows for stability in subsequent

generations but conversely makes any change harder to achieve because each new individual

is competing with the majority of the previous generation.

The generational replacement technique discards the entire parent population. The new

population comprises entirely of elites and offspring individuals bred during this step. This

approach leans towards exploitation and is faster in finding optimal solutions compared to

steady-state replacement. However, generational replacement is also more volatile because

potentially strong solutions may be lost when a generation is discarded.

The EPA framework utilises a generational replacement technique. Once validity checks are

complete, the entire parent population is discarded and replaced by bred offspring and elites.

Due to the exploitative nature of generational replacement, this was desirable to balance the

explorative influences of kinetic rebreeding and population validity checks.

With regards to Process Algebras, repeated scoring each generation reduces the risk of

outliers or stochastic noise adversely influencing scoring. This challenges individuals and

elites to maintain their good fitness generation-on-generation: if an individual is not a good

fit, chances are low of it maintaining a fluke strong fitness.

(vi) finish

The Simulate, Score, Select and Breed steps continue their iterative cycle until a stopping criteria

is met and the lifecycle moves into the Finish step. The most common stopping criteria is the

number of generations to be completed. Certain care must be taken when selecting a number

of generations; too few, and there will not be enough time to adequately explore the search

space so finding an optimal solution is unlikely. Choosing too high and the optimal solution

may be found but the lifecycle would continue, wasting time and computational resources.

Estimating the correct number of generations for a particular problem can be difficult; it is

better to have a number too high than too low.

Additional stopping criteria can be used. A fitness target or threshold can be defined that,

once met or achieved, can bring the EPA lifecycle into the Finish step. As discussed in the Score

step, a perfect fitness score of zero is an unobtainable goal, therefore a near-zero threshold is

preferred.

Once the Finish step has been reached, the output information is finalised and result files are

created. Output files include the most fit solution to the proposed problem, a trace produced

4.4 evolving process algebra framework summary 59

from that individual’s simulation, a fitness score trace from generation 0 to see the progression

of the EPA framework in solving the problem and finally a full list of all individuals in each

generation to see which areas of the search space were explored.

If the EPA framework should be aborted for any reason, preliminary versions of all these

files are created at the end of each lifecycle iteration. This allows some attempt at a solution

even if a failure is encountered.

The preliminary and finalised output files are in basic file formats such as text (.txt) or

comma separated value (.csv) files. This is so the EPA framework is compatible with HTCondor

and other high-throughput or multi-node computation techniques. One function of the EPA

Utility Assistant is to collate these files into more detailed output along with appropriate

graphs. Full details of this tool are presented in Appendix A.

4.4 evolving process algebra framework summary

This chapter has presented the implementation details of the Evolving Process Algebra (EPA)

framework and introduces the EPA Utility Assistant which is fully detailed in Appendix A. This

includes the implementation for the EPA meta-individual (the CombinedIndividual), the sub-

individuals (RatesIndividual, PopulationsIndividual, SpeciesIndividual and the KineticsIndividual)

and their associated syntax grammars and available breeding operators.

Additionally, the variable summary which is used as the default set for all coming experi-

ments was presented in this chapter with justification for those variables discussed during the

EPA lifecycle which occupies the majority of this chapter. The difficulties encountered during

experimentation and the implemented solutions were also detailed as they are encountered in

the EPA lifecycle.

5
PA R A M E T E R M AT C H I N G E X P E R I M E N T S

This chapter is the first of the experimental results chapters and details the rate value

Genetic Algorithm (GA) parameter matching problems used to develop the Evolving Process

Algebra (EPA) framework, as well as check the framework’s functionality. All work presented

in this chapter utilises the PEPA language as it was performed before the Bio-PEPA changeover

for Genetic Programming (GP) optimisation work. This switchover was discussed previously

in Section 2.2.3.

All Process Algebra models chosen for this research are complete descriptions of complex

systems accompanied by time series data. By choosing complete models, experiments can

be conducted by selectively removing aspects of the model. The Evolving Process Algebra

(EPA) framework can then be challenged to rebuild the removed aspects using Evolutionary

Computation (EC) techniques: in this chapter it is rate values which are removed to be

rediscovered using GAs.

Evolved solutions can be checked qualitatively by comparing the individual to the original

PA model and quantitively by comparing the evolved simulation trace to the original time

series data and furthermore by comparing the evolved parameter sets to the known target

parameter values.

It could be assumed the final result of an EPA framework execution would be a single value

for each flagged rate which represents the singular best result. As such, it could be assumed

that the final result of an EPA framework execution would be a single value for each flagged

rate. However, this is an incorrect assumption. As mentioned in Section 2.3, EA techniques

often find strong solutions which may not be the singular global optimum. Through multiple

runs of the EPA framework, a range of values can be discovered, each which may provide a

strong fitness.

Each singular best individual is taken from a different independent run of the EPA framework

and collected into a histogram plot. If the spread of this graph for a particular rate is very

wide or inconsistent, this demonstrates the Process Algebra model is not sensitive to the

value of that rate. Conversely, if the spread for that rate is tightly clustered, this shows the

model is particularly sensitive to the value of that rate. This allows qualitative analysis of the

results which may give valuable insight to a domain expert by highlighting critical rates in

the system.

Results for the Genetic Algorithm experiments in this chapter are presented with median

and mean averages. These values are calculated by taking the singular best individuals from

60

parameter matching experiments 61

each independent run then averaging those rates. Both the median and mean values are

presented because both can be of use. If the spread of results follows a normal distribution,

the mean is observed to provide a more accurate experimental output. However, in irregular

or skewed distributions the median value is the more useful output as it is less affected by

outliers.

Combining this knowledge with the histogram spreads; the mean value is the preferred

result for loose clusterings, non-normal or low sensitivity variables, whereas the median value

is the preferred result for sensitive, normal or highly clustered variables.

With the exception of the repressilator system (Section 5.4), all experiments in this chapter

were performed using distance fitness functions, similar to the Euclidean distance fitness

function as described in Section 4.3.4. This type of fitness function allows for an additional

form of quantitative analysis. By discovering the maximum (worst) fitness score possible to a

model, any evolved fitness scores can be calculated as a percentage. This provides insight into

how well a solution performs on an objective scale: where 0% (or near-0%) is the best and

100% is the worst.

Every Process Algebra (PA) model described in this chapter has degrees of organised com-

plexity and some measure of disorganised complexity; as discussed in Section 2.1. In PEPA

models, the majority of the organised complexity exists in the species components and the

system equation.

Specifically, the need for pools from which individuals can be recruited and to which they

are eventually returned: this overcomes the inability of PEPA to create or destroy individuals.

Complexity exists in the system equation because the recruitment pools must have lines of

communication to the main components: i.e. the components which capture the described

system’s behaviour.

PEPA syntax includes a special rate > (or infty as ASCII for the plug-in tool), meaning

infinity; a species defined with this rate is always available near instantaneously. Conversely,

the special rate ⊥ denotes a species which is rarely available.

In the plug-in tool, simulation cannot be accomplished using these special rates. Theoretic-

ally, their use could cause a model to enter a deadlocked state during simulation (specifically

livelock, described with the first experiment in Section 5.1). This is because any action defined

with rate > would dominate the system and prevents other actions from being performed. To

prevent this situation, > becomes defined as a very large rate, such as 1, 000, 000.0, instead of

infinity. Similarly, ⊥ is assigned a very small rate, such as 0.00001.

The remainder of this chapter is divided into sections which each describe a complex

system, the full description of that system, the PEPA model and experiments derived from

that system. Each experiment is presented with the model-specific parameter settings used to

collect results. Unless specified otherwise, the default parameter values presented in Table 4.1

were used to obtain the presented results.

5.1 dining philosophers 62

5.1 dining philosophers

5.1.1 Background & Model

The dining philosophers problem is a resource allocation problem presented by Hoare [41];

it is commonly used to illustrate synchronisation issues such as deadlock and livelock, each

discussed in turn later in this section.

The scenario posits five (but any number greater than one is acceptable) philosophers seated

around a circular table. On the table is a bowl of spaghetti and a fork is placed between

each pair of adjacent philosophers. The spaghetti is assumed to be in infinite supply. Each

philosopher will alternate between thinking and eating. However, a philosopher can only start

eating when in possession of both the forks to their immediate left and right. Each fork can

only be held by one philosopher at a time, therefore a philosopher can only use a fork if their

neighbour is not already using it. Once finished eating, a philosopher will put down both

forks so others may use them. It is assumed that each philosopher does not know or care

when other philosophers will eat or think.

To solve this problem, each philosopher must not starve; so philosophers should alternate

infinitely between eating and thinking. This is achieved by managing the resources in the

scenario: the forks. The spaghetti is not a limiting resource as it is assumed to be in infinite

supply.

n = 5.62 h = 100 e = 1 r = 10 a = 10

P_think
def
= (hungry, h).P_0

P_0
def
= (acquire,>).P_1

P_1
def
= (acquire,>).P_eat + (release, n).P_0

P_eat
def
= (eating, e).P_r2

P_r2
def
= (release, r).P_r1

P_r1
def
= (release, r).P_think

Fork_a
def
= (acquire, a).Fork_u

Fork_u
def
= (release,>).Fork_a

(P_think[20]) BC
acquire,release (Fork_a[15])

Figure 5.1: Dining philosophers model written in PEPA

Figure 5.1 describes the dining philosophers problem using PEPA taken from Benkirane’s

work [9]. The system initially contains 20 thinking philosophers (P_ think) and 15 available

forks (Fork_ a): values chosen to match Benkirane’s experiment and also because the number

of philosophers is greater than the number of required forks to eat, thus risking deadlock.

5.1 dining philosophers 63

Note, the PEPA description of the dinging philosophers problem does not include a notion of

adjacency between philosophers and associated forks; however, this does not impact the

chance of deadlock.

At rate h, a thinking philosopher will become hungry and prepare for eating, entering a

hungry state with no forks (P_ 0). The hungry philosopher will attempt to acquire an available

fork (P_ 1) at rate a, this makes the fork unavailable (Fork_ u). Once a philosopher has one fork

they will attempt to acquire a second available fork and begin eating (P_ eat). A philosopher

will finish eating at rate e and prepare to release both their forks (P_ r2). The philosopher will

then release their forks at rate r, first one fork (P_ r1) then the other fork so they may return to

a thinking state.

By following this transition of states, the system will inevitably end in a deadlock situation

due to resource starvation. Deadlock is defined as a situation where two or more concurrent

actions are waiting for the others to finish, therefore no actions can continue or finish. In the

dining philosophers scenario, deadlock can occur when multiple philosophers each have one

fork; each cannot release their fork until they finish eating, but cannot eat without another

philosopher releasing a fork.

A solution to the deadlock problem could include a timer; after acquiring one fork the

hungry philosopher would wait an arbitrarily defined time for a second fork, otherwise they

would relinquish the one fork they have. This can cause a special case of resource starvation

called livelock. Assuming all philosophers begin their thinking and eating cycle at the same

time, they would all acquire one fork simultaneously and release it the arbitrary time period

later. The cycle would then start over and continue infinitely. In livelock the state of the system

is constantly changing, however no actions are progressing. A commonplace, real-world

example of livelock involves two people meeting in a narrow corridor, each will politely move

aside to let the other pass, thus resulting in both swaying side to side without progressing

along the corridor.

The solution in the PEPA description of the dining philosophers system includes the special

release rate n at which a philosopher with one fork (P_ 1) will relinquish it and return to a

hungry (P_ 0) state thus making that fork available again (Fork_ a). The stochastic nature of

Process Algebras will reduce the risk of the timed livelock scenario described above from

occurring whilst also avoiding a deadlock scenario.

5.1.2 Experiment - n

The first experiment performed with the EPA framework was to rediscover the value for the

special release rate n. When working with a single flagged variable, using an Evolutionary

Computation optimisation technique is not the optimal approach. The search space is small

enough that an empirical, iterative approach would suffice. However, this early stage of work

5.1 dining philosophers 64

focused on the integration of Process Algebra models into the EPA framework and using their

simulated time series trace as input for the GA fitness function.

Figure 5.2 displays an iterative sweep over the dining philosophers search space. Each point

on the graph is the fitness score of a simulation for a value of the special release rate n in

0.01 incremental steps (0, 0.01, 0.02 ... 50). These simulations were each run 10, 000 times to

reduce stochastic noise when generating this search space sweep and then scored against the

behaviour of maximising the number of eating philosophers.

0 10 20 30 40 50
15

20

25

30

35

40

release rate: n

F
it

n
es

s

Figure 5.2: Trace of fitness for each value of n

Benkirane performed an ODE analysis to determine the global optimum of n = 5.62: this

maximises the number of eating philosophers (P_ eat) while avoiding deadlock. This global

optimum is situated on a fitness plateau ranging from n = 5.0 and n = 10.0 of Figure 5.2. Any

value of n in this plateau range is expected to obtain a particularly strong fitness score.

The fitness function used in this model is an unnormalised distance measure, similar to the

Euclidean distance fitness measure discussed in Section 4.3.4. Normalisation is required to

compare multiple time series traces with equal weighting. The dining philosophers model

uses a single column target trace and does not require normalisation. The model contains 15

available forks, which equates to a maximum of 7 philosophers able to eat simultaneously

while 1 fork remains available. If the system enters a deadlock or starvation state, 0 philosoph-

ers will get to eat; the worst possible difference at each time-step is 7 (maximum - minimum

eating) squared, so 49. The fitness function uses a target time series trace with a length of

50; this equates to a maximum fitness value of 2, 450. The iterative trace found that n = 5.62

scores a fitness of 20.535: in the percentage perspective the score is 0.83%.

Simulator Variables

Start time 0

Stop time 49

Data points 50

EPA Override Variables

Mutation rate 20%

Table 5.1: Dining philosophers (n) specific and EPA override parameter values

Table 5.1 illustrates the simulator parameters along with EPA framework overridden values.

The standout override parameter is the mutation rate. With only a single rate flagged for

5.2 internet worm 65

optimisation, recombination operators will have no effect. Instead, crossover will clone one

parent solution; specifically parent 2 due to the EPA implementation. The rate of mutation

is increased to compensate for the lack of exploration and exploitation influences normally

provided by the recombination operator.

The EPA framework found a clustering of optimum solutions around the target of n = 5.62

but failed to match this exactly. This failure could be explained by the increased mutation rate

skewing the balance towards exploration. The fitness scores discovered in the fitness plateau

of the iterative sweep differed by less than 0.35 which is equivalent to 0.01% of the fitness

score. Considering the stochastic nature of simulation combined with the insensitive nature of

rate n these findings are acceptable.

The aim of this introductory experiment was not to match the value of rate n. Instead,

the goal of integrating Process Algebras with the Evolutionary Computation techniques was

attempted. This goal was achieved and the EPA framework was deemed compatible with

applying Evolutionary Computation techniques to Process Algebra models.

5.2 internet worm

5.2.1 Background & Model

A computer worm is a class of standalone computer programs designed to exploit security

weaknesses in operating systems with the intent of propagating themselves across a network.

Similarly, an Internet worm aims to replicate itself across any computer connected via the

Internet with the same goal of self propagation.

Unlike a virus, a worm does not need to execute itself inside an existing program to achieve

this replication. Where viruses normally target computers for corruption or modification of

files, a worm continues to target computers but to influence the network itself, even if only

causing slowed operations by consuming bandwidth.

Many worms are designed only to duplicate themselves, but some include a payload designed

to affect the host computer in some way. The majority of worm payloads have negative impacts

on their host; the actual payload is worm specific. Some examples include erasing files from

its host to disrupt computer operations, or hacking installed e-mail services to send spam

messages and further propagate itself, or to install a backdoor entrance for easier access by

the worm’s creator.

Worms are considered malware because of the many negative variants in existence; however,

some positive worms do exist. The Nachi family of worms exploit security vulnerabilities

in operating systems in order to install patches to seal those same vulnerabilities. While

good-intentioned, this modified the host computer without the owner’s consent and also

generated increased network traffic.

5.2 internet worm 66

Figure 5.3 illustrates the Susceptible-Infected-Recovered (SIR) view of the Internet worm

system as described in the paper by Bradley et al. [16]. This paper is co-authored by Hillston,

the author of PEPA, and written for PEPA making it an ideal model for use with the EPA

framework. Furthermore, the paper focuses on statistically analysing the performance of the

proposed PEPA models; as such, these models are presented with rich data for comparison

during fitness evaluation.

beta = 500 delta = 0.5 gamma = 0.1

S
def
= (infect_S,>).Inf

Inf
def
= (infect_Inf , beta).Inf + (infect_S,>).Inf + (patch, gamma).R

R
def
= (recover,⊥).R

Net_a
def
= (infect_Inf ,>).Net_u

Net_u
def
= (infect_S, beta).Net_a + (fail, delta).Net_a

(S[1000] || Inf [1]) BC
infect_S,infect_Inf (Net_a[200])

Figure 5.3: Internet Worm SIR model written in PEPA

The Internet worm system contain 1, 001 computer nodes and is capable of supporting 200

concurrent and independent network connections between those nodes. 1, 000 nodes start in a

susceptible state (S) and only 1 starts in an infected state (Inf). A susceptible node can enter

an infected state if a connection is available to an existing infected node. Once infected, the

node can cooperate in infecting other susceptible nodes or can be patched at rate gamma to

enter the recovered state (R).

The recovered state can be referred to as a removed state: once entered, the state cannot

change. In the context of the Internet worm model, once a computer node has been patched it

is no longer susceptible to reinfection. To satisfy the PEPA syntax, R is provided a definition; it

will take the recover action at the slow rate ⊥. The recover action requires no cooperation to

complete and will not impact any other part of the model.

The Internet worm model follows a frequency-based spread of infection [8]. The EPA frame-

work is later applied to systems which model the density-based transmission during Bio-PEPA

work, see Section 7.2.

The connections between the computer nodes are modelled via the net resource pools in

two steps. The first step secures an available connection (Net_a) for an infected node. Once an

available connection has been obtained, the connection enters an unavailable state (Net_u).

The obtained network connection attempts to infect a susceptible node at rate beta; this action

can fail at rate delta either due to network contention or because of a lack of susceptible

nodes to infect. Whether an infection attempt is successful or not is unimportant, the network

connection is made available once the action is complete.

5.2 internet worm 67

Bradley et al. noted that large scale worm infections tend not to waste time or resources by

keeping track of which connected hosts are already infected. It is assumed that some attempts

at infection will be made against already infected hosts: when this happens the infected host

is unaffected.

5.2.2 Experiment - all rates

The Internet worms example was not the first Process Algebra model utilised by the EPA

framework. However, it was the first system used with the primary objective of optimising

flagged rates instead of testing the integration of PEPA optimisation code.

The experiment flags all variable rates for optimisation. These three rates are the infectivity

rate beta, the infect timeout rate delta and the patch recovery rate gamma. The values of these

three rates are known and presented in the Bradley et al. paper.

Simulator Variables

Start time 0

Stop time 29

Data points 30

EPA Override Variables

Independent runs 75

Table 5.2: Internet worm SIR specific and EPA override parameter values

A three variable search problem could have the values discovered through empirical,

iterative sweeps. This number of variables is on the lower end of the scale for application of a

Genetic Algorithm and presents a good starting point for the EPA framework. Furthermore, the

Internet worm model has no special considerations and thus uses the default EPA framework

parameters. Table 5.2 presents the simulator variables used for this experiment. Additionally,

the increased number of HTCondor nodes available allowed for an increase in the Independent

runs variable.

Variable Target Value Evolved Median Evolved Mean Std. Dev (σ)

beta (β) 500 548.65 578.01 103.89
delta (δ) 0.5 0.81 2.00 2.59

gamma (γ) 0.10 0.10 0.10 0.01

Table 5.3: Internet worm SIR results

The table of results for this experiment is illustrated in Table 5.3. One row per flagged

rate which includes the target parameter value along with evolved median, evolved mean

and associated standard deviation. As mentioned above, the target values are taken from the

Bradley et al. paper, in addition these values were used to generate the target trace for the

fitness function.

5.3 hiv 68

The results are presented in histogram form in Figure 5.4. Considering the asymmetrical

shape and clustering of each of these histograms, it can be seen that the sensitivity of each of

these three variable rates is very high. For this reason, the median values from Table 5.3 are

considered the preferred results. It can be seen that the median values more closely match the

target values than the mean values. This is particularly true for the infect timeout rate delta,

where the mean result is increased due to the heavy right-side skew.

400 500 600 700 800
0

10

20

30

40

50

infectivity rate: beta

C
o
u
n
t

0 1 2 3 4 5
0

10

20

30

40

50

infect timeout rate: delta

C
o
u
n
t

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0

10

20

30

40

50

patch recovery rate: gamma

C
o
u
n
t

Figure 5.4: Histogram plots for Internet worm SIR: beta, delta and gamma

Considering the infectivity rate beta, the target value is 500 and the evolved median value

is 548.65. The infect timeout rate delta is the weakest solution of the three evolved in this

experiment; a target value of 0.5 and an evolved median value of 0.81. Conversely, the patch

recovery rate gamma has a particularly strong solution; the target value is 0.1 and the evolved

median (and mean) value is 0.1: a slight variation exists after the fifth decimal place.

The delta rate is responsible for causing an infect attempt to timeout and relinquish the

network connection for future infectivity attempts. The insensitivity of the model to this rate

could be caused by the available bandwidth. 200 nodes are available, as modelled by Net_a,

for infected nodes to make connections with. With so many available nodes, the number of

infection attempts and subsequent infections can be made early. If this number were reduced,

the timeout rate would become more critical to achieving the target number of infections.

5.3 hiv

5.3.1 Background & Model

HIV (Human Immunodeficiency Virus) is a retrovirus of the lentivirus genus: a very slow

replicating retrovirus. The virus is transmitted via contaminated bodily fluids, particularly

by unprotected sexual intercourse or through the use of contaminated hypodermic needles.

The HIV infection attacks the immune system directly, particularly vital immune cells such

as helper T cells (specifically CD4+ T cells), macrophages and dendritic cells. As the number of

CD4+ T cells declines, the host will lose their cell-mediated immunity: the immune response

that does not involve antibodies. In time, HIV leads to the AIDS (Acquired Immunodeficiency

Syndrome) disease.

5.3 hiv 69

Early stage HIV infection (also called acute infection) often presents with nonspecific

influenza-like symptoms; such as fever, enlarged and tender lymph nodes, throat inflamma-

tion, rash and/or headaches. However, many hosts experience little to no symptoms in the

early stages. Due to the nonspecific characteristics, HIV infection is often misdiagnosed as a

more common infectious disease with overlapping symptoms: most frequently the common

cold or influenza.

No matter the host’s symptoms in stage one, the disease will progress into a stage of clinical

latency. This period can last many years; between three and twenty, depending on treatment

levels, with the typical duration being eight years. During this time the attack on the host’s

immune system continues to lower the CD4+ T cells. At this stage the viral load of HIV cells

in the host is detectable by blood tests.

A host is considered to have AIDS once the concentration of CD4+ T cells in their blood

falls below 200 cells per µL. While dangerous in itself, AIDS infected hosts are at major risk to

opportunistic infections; infections which take hold because of the host’s impaired immune

responses. These may include bacterial, viral, fungal or parasitic infections, in addition to a

risk of cancerous tumours developing.

HIV (and consequently AIDS) is considered a global pandemic with two distinct strains

having been identified: HIV-1 and HIV-2. HIV-1 is global and more virulent than the HIV-2

strain which is less contagious and endemic to Africa. The pandemic status of the infection

coupled with the difficulty in correct diagnosis during stage one infection has increased the

interest in modelling HIV spread.

The HIV model was selected for use with the EPA framework as it is more complex than

previous experiments in this chapter and presents a greater challenge for the framework. The

HIV Susceptible-Exposed-Infected (SEI) set up also provides a different view of epidemiology

models through lack of a recovered state. Treatments for HIV are focused on stemming the

spread and alleviating the symptoms rather than curing the host. For this reason, there is

no recovery and the model is SEI only. Figure 5.5 describes the spread of HIV through the

United Kingdom. The model can be evaluated against publicly-available data on HIV [39],

though population levels are scaled down for tractability. This example is adapted from the

Weighted Synchronous Calculus of Communicating Systems (WSCCS) model presented by

McCaig et al. [56] translated into a SEI PEPA model.

Classic to epidemiology models, individuals in the system can be susceptible, exposed to

or infected by HIV (S, Exp and Inf states respectively). A susceptible individual can become

exposed in two ways; by direct contact with an infected individual or by a contact external to

the modelled components. Exposed individuals can contribute to the population by producing

infected individuals at rate pInfect or susceptible individuals at that rate’s inverse (1 − pInfect).

Once an individual is infected it will continue to infect other exposed individuals in the

system. As previously stated, individuals cannot enter a recovered state.

5.3 hiv 70

Individuals are able to enter and leave the system by birth and natural death at rates

pBirth and pDeath respectively. Infection induced deaths are not included as the time period

of the data covers the introduction of treatments which greatly reduced deaths due to

HIV/AIDS induced complications. Individuals may also enter the system by immigration at

rate pImmigrate.

pContact = 1 pImmigrate = 0.1 pInfect = 0.138

pBirth = 0.0119 pDeath = 0.01018

S
def
= (contact,>).Exp + (external_exposure,⊥).Exp

Exp
def
= (infect, pInfect).Inf _birth + (no_infect,1− pInfect).S_birth

Inf
def
= (contact,>).Inf _birth

S_birth
def
= (birth, pBirth).S_death + (no_birth,1− pBirth).S_death

Inf _birth
def
= (birth, pBirth).Inf _death + (no_birth,1− pBirth).Inf _death

S_death
def
= (death, pDeath).Pool + (no_death,1− pDeath).Sf

Inf _death
def
= (death_Inf , pDeath).Pool + (no_death,1− pDeath).Inff

Resource
def
= (get_res,>).Resource_NA

Resource_NA
def
= (regenerate,>).Resource

Sf
def
= (get_res,>).S + (no_res_S,1).Pool

Inff
def
= (get_res,>).Inf + (no_res_Inf ,1).Pool

Transmitter
def
= (contact, pContact).Transmitter + (death_Inf ,>).Pool2 + (no_res_Inf ,>).Pool2

Dormant
def
= (infect,>).Transmitter + (death,>).Pool2 + (no_res_S,>).Pool2

Pool
def
= (birth_bis,>).Sf

Pool2
def
= (birth,>).Pool22 + (immigration, pImmigrate).Pool22

Pool22
def
= (birth_bis,>).Dormant

((Sf [5829] || Inff [2] || Pool[100]) BC
get_res (Resource[100]))

BC
no_res_S,no_res_Inf,infect,contact,birth,birth_bis,death,death_Inf

(Dormant[5829] || Transmitter[2] || Pool2[100])

Figure 5.5: UK HIV SEI model written in PEPA

The Resource and Resource_ NA components are used to limit population growth. As previ-

ously discussed in Section 2.2.3, PEPA cannot have individuals being created or destroyed. To

model movements in and out of the system, multiple recruitment pools are used to mirror the

core components: Sf, Inff, Transmitter, Dormant, Pool, Pool2 and Pool22.

The simulation time of PEPA models is the main bottleneck of the EPA framework. For

tractability, the population sizes used during simulations were scaled down by 10, 000 from

the census values [39] to those detailed in the system equation of Figure 5.5. Note: the

5.3 hiv 71

experiment performed with this model was done before the EPA framework was extended to

include ODEs.

5.3.2 Experiment - pInfect & pImmigrate

This system has a large jump in ordered complexity, as described in Section 2.1, therefore

the number of rates to be flagged was reduced to two; the infectivity rate pInfect and the

immigration rate pImmigrate. Also, rates such as pBirth and pDeath can be taken from the

available census data.

By using an iterative sweep, a three-dimensional fitness landscape can be created to discover

the target values for these two rates. This fitness landscape is presented in Figure 5.6; the

x-axis pInfect ranges 0 - 0.5, the y-axis pImmigrate ranges 0 - 1 and the z-axis illustrates the

fitness score for the simulation of the corresponding rate values. Each simulation was run with

100 internal replications to reduce stochastic noise during the iterative sweep. The pInfect rate

range is smaller; by utilising domain knowledge it is known that values >0.5 cause massive

HIV outbreaks in the population. This would be unrealistic and result in particular poor

fitness scores, so is omitted from the search space.

Figure 5.6: Trace of fitness for each value of pInfect and pImmigrate

Using this iterative sweep, the global optimum value can be found at pInfect = 0.12 &

pImmigrate = 0.48with a 4.23% objective fitness. Considering the shape of the fitness landscape,

the system is more sensitive to the pInfect setting as indicated by the long valley along the

y-axis.

McCaig et al. calculated pInfect to be 0.138 which differs from the 0.12 discovered during

the iterative sweep described above. The PEPA model includes an immigration term to avoid

deadlock during simulation. This pImmigrate term did not appear in the McCaig et al. work so

its inclusion in the PEPA model will have affected the pInfect value.

The marked increased in ordered complexity requires additional time for simulation as well

as keeping the number of time-steps to a minimum. The simulator values for the HIV system

5.4 repressilator 72

are illustrated in Table 5.4. Beyond the time considerations, there are no additional aspects

that affect the model parameters.

System Variables

Start time 0

Stop time 10

Data points 11

Table 5.4: HIV SEI specific parameter values

Table 5.5 illustrates the results for the two variable rates being optimised along with the

two targets ascertained previously using the iterative sweep of the landscape. Even before

considering the sensitivity analysis, the results show excellent matches to the targets for both

evolved mean and median values.

Variable Target Value Evolved Median Evolved Mean Std. Dev (σ)

pInfect 0.12 0.116 0.115 0.005
pImmigrate 0.48 0.485 0.487 0.050

Table 5.5: HIV SEI results

The histogram plots for these results are illustrated in Figure 5.7. Despite the range permitted

for each value, both show highly clustered results, particularly in the peak for pInfect.

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

infectivity rate: rInfect

C
o
u
n
t

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

immigration rate: rImmigrate

C
o
u
n
t

Figure 5.7: Histogram plots for HIV SEI: pInfect and pImmigrate

If both evolved results were considered to the second decimal place (like the target values),

the differences become zero and negligible respectively. In either representation, evolved

means and median average values for both rates are close to their targets and very acceptable.

5.4 repressilator

5.4.1 Background & Model

The repressilator network is a genetic regulatory circuit which produces cyclic, oscillatory

behaviour [12]. The repressilator is a stochastic and noisy system. It is a negative feedback

5.4 repressilator 73

loop consisting of three repressor genes in Escherichia coli (E. coli) originally proposed by

Elowitz and Leibler [30]. The first repressor gene causes transcription of the LacI protein

which, in turn, inhibits the second gene responsible for transcription of the TetR protein. This

protein inhibits the third gene responsible for transcription of λ cl which, completing the cycle,

inhibits the first gene.

The PEPA model of the repressilator network employs a more generic approach. Figure 5.8

illustrates the network, note the Gene_AB, Gene_BC and Gene_CA components. These can be

expressed as Gene_XY; meaning this gene is inhibited by protein X and, when expressed,

transcribes protein Y. The inhibition is based on rate con_X and the transcription is at rate

rep_Y. The rates and model structure are discussed later in this section.

rep_B	
 Gene_BC	

Gene_CA	

Gene_AB	

Protein	
 B	

Protein	
 A	

Protein	
 C	

con_A	

rep_C	

con_B	

rep_A	

con_C	

Figure 5.8: The repressilator synthetic genetic regulatory network

To satisfy the PEPA requirements for mirrored components, communication channels and

recruitment pools, the repressilator model presented in Figure 5.9 contains more than the

Gene_XY and Protein_Y components. The repressilator network is made up of three sections

with identical behaviour.

When expressed, Gene_XY cooperates in action rep_Y to replicate Protein_Y at rate t from

the recruitment pool (Pool). Once replicated (i.e. transcribed), Protein_Y will decay at rate d or

produce the connecting component Connect_Y at rate b. The Connect_Y is consumed to inhibit

the next gene in the cycle; for example, Connect_A is consumed to inhibit Gene_AB by moving

it into the Pause_AB state. The inhibition will take precedence over the transcription because

replication of Gene_XY occurs at rate t and inhibition at the faster rate >. On consumption,

the Connect_Y components are returned to the Connect recruitment pool. Once a gene has

become inhibited, it will return to an uninhibited state at rate u.

The system equation of the PEPA models defines the sizes of the recruitment pools Connect

and Pool as 300 and 100 respectively. Components Gene_AB, Gene_BC and Gene_CA are present

in the system equation to define their communication channels but have no starting values, as

such their values start at one. Other components, not defined in the system equation, also

have a starting value of one.

When simulation commences, the repressilator network has no proteins present and no

inhibited genes. All three genes will become active together and commence transcribing their

5.4 repressilator 74

t = 100 d = 4.52576 u = 0.87173 b = 655.40285

Gene_AB
def
= (rep_B, t).Gene_AB + (con_A,>).Pause_AB

Pause_AB
def
= (delay, u).Gene_AB

Gene_BC
def
= (rep_C, t).Gene_BC + (con_B,>).Pause_BC

Pause_BC
def
= (delay, u).Gene_BC

Gene_CA
def
= (rep_A, t).Gene_CA + (con_C,>).Pause_CA

Pause_CA
def
= (delay, u).Gene_CA

Protein_A
def
= (pro_A, b).Protein_A + (decay, d).Pool

Protein_B
def
= (pro_B, b).Protein_B + (decay, d).Pool

Protein_C
def
= (pro_C, b).Protein_C + (decay, d).Pool

Connect_A
def
= (con_A,>).Connect

Connect_B
def
= (con_B,>).Connect

Connect_C
def
= (con_C,>).Connect

Connect
def
= (pro_A,>).Connect_A + (pro_B,>).Connect_B + (pro_C,>).Connect_C

Pool
def
= (rep_A,>).Protein_A + (rep_B,>).Protein_B + (rep_C,>).Protein_C

((Pool[300]) BC
rep_A,rep_B,rep_C (Gene_AB || Gene_BC || Gene_CA)

BC
pro_A,pro_B,pro_C,con_A,con_B,con_C (Connect[100])

Figure 5.9: Repressilator system model written in PEPA

associated proteins. It is stochastically determined which protein will be transcribed first and

in which order the genes will become active from that point forwards. The first gene to be

transcribed is discounted when determining the transcription order. During the race to be the

first active gene, that gene may not be fully expressed before becoming inhibited. The second,

third and fourth active genes determine the order of activation.

200 400 600 800 1000

10

20

30

Protein	

A	

B	

C	

Figure 5.10: The protein expression trace of the repressilator system

Figure 5.10 is an example trace produced from the repressilator system. Consider, if

simulation causes the protein transcription order to be ABAC, discounting the first protein, the

order will be BACBACBAC, etc. until simulation ends. The expression of the second protein

5.4 repressilator 75

onwards also have near-identical periodicity as the genes cycle, this periodicity is not set and

may stochastically differ between simulations.

This noisy, cyclic and stochastic behaviour of the repressilator makes it a challenging system

for parameter matching with the EPA framework. Models presented earlier in this chapter used

a standard Euclidean distance measure as a fitness score, see Section 4.3.4. This method of

scoring fitness could not be applied to the repressilator simulation trace. Due to the stochastic

differences between simulations, before simulation commences the protein transcription order

and periodicity of the inhibition cycle are unknown. Without a preprepared trace to match

against, the Euclidean distance fitness function cannot be utilised.

The normal practice to reduce stochastic noise from a simulation trace is to run the

simulation multiple times with the same GA derived variable set and average the trace (internal

replications, Section 4.3.2.1). However, stochastic transcription order and periodicity would

cause a mean trace to not be indicative of the repressilator behaviour. With more runs being

averaged, the behaviour tends towards all proteins maintaining a similar level over the entire

time series trace. This would hide the behaviours needed to score fitness correctly. A custom

fitness function would be required that dynamically determines transcription order and

periodicity.

In addition to creating a custom fitness function, the EPA framework had to be extended to

reduce stochastic noise without the use of internal replications. During work with the repressil-

ator network the EPA incorporated external replications for this purpose, see Section 4.3.2.2 for

full details on their function and role.

As described above, there cannot be a preprepared target trace associated with the re-

pressilator experiment. Figure 5.11 illustrates the pseudo-code of the repressilator fitness

function.

1. Duration to discard d = proteinOneDuration()

2. Fitness fit = timeSeriesLength - d

3. for: Each time-series datapoint p after d

4. if AdhereExpression(p) and AdherePeriodicity(p)

5. Decrement fit by 1

6. return fit

Figure 5.11: Pseudo-code for the repressilator fitness function

An evolved output trace is still produced which is analysed to match particular behaviour

traits; the more of these traits which are satisfied, the stronger the fitness score. The repressil-

ator fitness function makes a scan of the output time series trace until the first four gene

expressions are completed.

The first expressed gene is disregarded because it is only a partial expression at the start

of simulation and does not affect the final gene expression order. The duration of each gene

expression is checked and should be equivalent to each other, this determines the period

5.4 repressilator 76

at which each subsequent gene should be expressed. The AdhereExpression function ensures

that the protein expressions follows the correct cyclic order. The AdherePeriodicity function

checks that the protein expression duration remains consistent. The fitness score is based on

the adherence to the gene expression order and the duration of each expression.

5.4.2 Experiment - all rates

The repressilator system contains four variable rates, all of which are flagged for optimisation

in this experiment. The protein transcribing rate t, the protein decay rate d, the gene un-

inhibition rate u and the connection binding rate b. The focus of this experiment was creating

a model-specific fitness function and integrating it into the EPA framework.

Custom built, model-specific fitness functions are common when working with Evolutionary

Computation techniques, as discussed later in Section 9.2.

Table 5.6 presents the simulator and EPA override parameter settings. The repressilator

system presented a further challenge to the EPA framework due to its cyclic behaviour. The

framework was extended during this experiment to include the external replication as detailed

in Section 4.3.2.2. It would not be appropriate for this system to utilise internal and external

replications simultaneously, therefore the former is reduced to one.

Simulator Variables

Start 0

Stop 999

Data points 1000

EPA Override Variables

Fitness Repressilator
Internal replications 1

External replications 10

Independent runs 60

Table 5.6: Repressilator specific and EPA override parameter values

Table 5.7 presents the results of the repressilator experiment. At first glance, both the

evolved mean and median results are notably different from their target values. The histogram

distributions are provided later in Figure 5.12.

Variable Target Value Evolved Median Evolved Mean Std. Dev (σ)

t 100 542.453 548.883 273.611
d 4.526 26.560 25.931 15.682
u 0.872 0.077 0.449 1.530
b 655.4 1080.001 1036.268 276.592

Table 5.7: Repressilator results

With the poor evolved solutions, it would be expected for all four histogram spreads to be

inconsistent and loosely distributed. This would indicate the EPA framework had failed to find

an objectively strong fitting individual, for whatever reason. However, notice the clustered

5.4 repressilator 77

peak for the gene un-inhibition rate u; across a range of 0 - 10, all but four best individuals

clustered in the 0 - 1 range.

0 200 400 600 800 1000
0

10

20

30

40

50

protein transcribing rate: t

C
o
u
n
t

0 10 20 30 40 50
0

10

20

30

40

50

60

protein decay rate: d

C
o
u
n
t

0 2 4 6 8 10
0

10

20

30

40

50

gene uninhibition rate: u

C
o
u
n
t

600 800 1000 1200 1400
0

10

20

30

40

50

connection binding rate: b

C
o
u
n
t

Figure 5.12: Histogram plots for repressilator: t, d, u and b

On closer inspection of the EPA framework and the repressilator fitness function class

(RepressilatorEvaluator), discrepancies were found between the specified target behaviour of

the repressilator system and the implemented target behaviour. A check was placed into

the fitness function to ensure that the evolved solution would not cause a constant 0-value

trace for all three expressed proteins; such an output could be caused by a poor combination

of evolved rates and would be scored more poorly than normal. However, this caused an

unexpected outcome in the direction of evolution.

The expected output of the repressilator system is a protein expression with a level of

approximately 20. The evolved protein expression levels hovered at the 90 mark, clearly above

the normal. However, this did not violate the behaviour requirements of the repressilator

fitness function: a minimum protein expression level was defined to ensure the non-0 trace,

but there was no maximum expression level.

As previously mentioned, an Evolutionary Computation technique will take any shortcuts

which are made available to achieve a strong fitness score. As such, the evolved individuals

had high protein expression levels with consistent ordering and good periodicity; the two

desired behaviours and scored appropriately well.

The aspect of integrating custom fitness functions into the EPA framework during this

experiment was a success. While the evolved values did not match the expected target, strong

solutions were found which met the target behavioural criteria. Additionally, insight was

given into the sensitive nature of the fitness function in getting the desired output.

A more accurate fitness function could be developed for the repressilator system, however

the focus of this research is on the application of GP optimisation techniques directly to the

Process Algebra model structure. Through combination of the EPA framework variables, the

5.5 g-protein (pepa) 78

runtime of a PA simulation could range from hours to days. Typically, the runtime of a complex

simulation such as the Repressilator model aimed to be approximately 18 hours: overnight

plus extra time while other work was conducted. Implementation and fine-tuning an upper

cap on the protein expression could have become particularly time consuming because of this

simulation time. Given the time requirements, work moved on towards this overarching goal.

5.5 g-protein (pepa)

5.5.1 Background & Model

G-proteins, also known as guanine nucleotide-binding proteins, are binding proteins through

which extracellular signalling molecules are transduced to intracellular signals as controlled

by G-protein-coupled receptors. Many different stimuli can activate these signals; including

biogenic amines, chemokines, hormones, ligands, lipids, light, neurotransmitters, nucleotides,

and odorants [46].

G-proteins comprise of three subunits: alpha (α), beta (β) and gamma (γ), of which the β and

γ can form the βγ complex. The α subunit can be bound to a GDP (guanosine diphosphate) or

GTP (guanosine triphosphate) molecule; the subunit is ’on’ when bound to GTP and ’off’ when

bound to GDP. When activated by a ligand, a conformational change is triggered in the α

subunit. This subunit will exchange the ’off’ GDP for the ’on’ GTP as well as dissociate from

the βγ complex. The α subunit will act on the target proteins inside the cell, after which the

bound GTP will be hydrolysed to GDP before binding to the βγ complex again. At this stage

the cycle is complete and the receptor is ready for new stimuli [13, 46].

Bao et al. studies different modelling methods for describing the G-protein system [5].

Using their notation, seven components are required to describe the system. The receptor (R),

the ligand (L), the bound receptor-ligand complex (RL), the deactivated α subunit which is

bound to GDP (Gd), the βγ complex (Gbg), the active α subunit which is bound to the βγ

complex (G) and finally the active α subunit which is bound to GTP (Ga).

Modelling methodologies used by Bao et al. include ODEs and Bio-PEPA; the latter being used

by the EPA framework during Genetic Programming species optimisation, see Section 6.4. A

PEPA description was developed from their models and is illustrated in Figure 5.13. The seven

identified components can be found in the PEPA description, along with eighteen additional

components required to encapsulate the G-protein system behaviour whilst still adhering to

PEPA’s requirement for mirrored components and recruitment pools.

Seven rates govern the PEPA model. Rate rl controls the binding of receptor and ligand

components to form receptor-ligand complexes. Once bound, receptor-ligand complexes may

dissociate at rate rlm or degrade at rate rd1. Receptor components alone may also degrade at

rate rd0. Rate ga controls the disassociation of active α and the βγ complex. Once dissociated,

5.5 g-protein (pepa) 79

the active α hydrolyses GTP to GDP and becomes inactive at rate gd1. The final rate g1 controls

the association of α with the βγ complex.

rl = 0.664 rlm = 0.002 rd0 = 0.004 rd1 = 0.004

ga = 0.4 gd1 = 1.1 g1 = 10

R
def
= (bind_L, rl).RL_0 + (deg_R, rd0).Pool

RL_0
def
= (red_R,>).RL

RL
def
= (split_RL, rlm).Make_R + (deg_RL, rd1).Pool + (activate, ga).RL

Make_R
def
= (gen_R,>).L

L
def
= (bind_L-R, rl).Pool

Gd
def
= (bind_bg, g1).Gd_0

Gd_0
def
= (red_Gd,>).G

G
def
= (transform_G,>).Ga

Ga
def
= (deg_Ga, gd1).Gd

Gbg
def
= (bind_Gd-Gbg,>).Pool

Mirror_L
def
= (bind_L, rl).Connect_RL

Connect_RL
def
= (bind_L-RL, rl).Mirror_RL

Mirror_R
def
= (red_R,>).Pool2 + (deg_R, rd0).Pool2

Mirror_RL
def
= (red_RL-R,>).Mirror_R + (deg_RL, rd1).Pool2

Mirror_G
def
= (activate, ga).Connect_RL-G

Connect_RL-G
def
= (diss,>).Make_Gbg

Make_Gbg
def
= (act_Gbg, ga).Mirror_Ga

Mirror_Ga
def
= (deg_Ga, gd1).Mirror_Gd

Mirror_Gd
def
= (red_Gd,>).Mirror_G

Mirror_Gbg
def
= (bind_bg, g1).Connect_Gd

Connect_Gd
def
= (bind_Gd-Gbg,>).Pool2

Pool
def
= (gen_R,>).R + (diss,>).Pool1

Pool1
def
= (transform_G,>).Gbg

Pool2
def
= (split_RL,>).Pool22 + (act_Gbg,>).Mirror_Gbg

Pool22
def
= (red_RL-R,>).Mirror_L

((L[6022] || R[100] || G[70] || Gd[30] || Gbg[30]) BC
gen_R,transform_G (Pool[150])

BC
deg_R,bind_L,bind_L-R,red_R,deg_RL,split_RL,activate,diss,bind_bg,bind_Gd-Gbg,red_Gd,deg_Ga

((Mirror_L[6022] || Mirror_R[100] || Mirror_G[70] || Mirror_Gd[30] || Mirror_Gbg[30]) BC
act_Gbg,red_Rl-R (Pool2[150])))

Figure 5.13: G-protein system model written in PEPA

Due to the more succinct nature of Bio-PEPA, the same G-protein system is more elegantly

expressed in Section 6.4. Also in that section, Figure 6.7 illustrates the system in the simpler

Bio-PEPA representation.

5.5 g-protein (pepa) 80

Many pharmaceuticals are targeted at the G-protein-coupled receptors, making modelling

their mechanisms important. The G-protein system was chosen for use with the EPA framework

as it is larger and more complex than previous systems used, particularly in organised

complexity (Section 2.1). Additionally, the G-protein system offers up to seven rates for GA

optimisation.

More importantly, having the Bio-PEPA and ODE descriptions of the system allowed for

forward preparation. Familiarity gained while working with the PEPA description during GA

optimisation would prove useful when applying GP techniques in later work. Having the same

model in different forms would also allow testing of the EPA framework by verifying results

are consistent across those forms.

The G-protein system was the final PEPA model used to develop the EPA framework. This was

the final GA parameter matching experiment performed. As described above, the G-protein

system comprises of two behavioural cycles, one of which has an excitatory effect on the

other: this adds an additional layer of ordered complexity to the system and poses a suitably

challenging problem to the EPA framework.

5.5.2 Experiment - all rates

All seven of the variable rates in the G-protein system are flagged in this experiment. Four

rates dictate the behaviour of the cycle outside the modelled cell: the receptor-ligand binding

rate rl, the receptor-ligand dissociation rate rlm, the receptor-ligand decay rate rd1 and the

receptor decay rate rd0.

The remaining three rates dictate the behaviour of the cycle inside the cell: the α βγ

disassociation rate ga, the α hydrolysis rate gd1 and the α βγ association rate g1. Table 5.8

presents the simulator parameters for the G-protein PEPA system.

Simulator Variables

Start 0

Stop 20

Data points 80

Table 5.8: G-protein (PEPA) specific parameter values

The results for this G-protein experiment are presented in Table 5.9. The results are split

into the outside cycle rates (rl, rlm, rd0 and rd1) above the dividing line and the inside cycle

rates (ga, gd1 and g1) underneath.

At first glance, the evolved mean and median results are far from the targets, up to orders of

magnitude difference for several rates. The histogram spreads for all seven rates are illustrated

in Figure 5.14: the outside cycle rates are on the top two rows and the inside cycle rates are on

the final row.

5.5 g-protein (pepa) 81

Variable Target Value Evolved Median Evolved Mean Std. Dev (σ)

rl 0.664 0.3887 0.4101 0.2654
rlm 0.002 0.0493 0.0510 0.02539
rd0 0.004 0.0394 0.0435 0.0306
rd1 0.004 0.0500 0.0512 0.0264

ga 0.4 0.442 0.483 0.2811
gd1 1.1 4.976 4.866 2.871
g1 10 8.51 9.11 5.84

Table 5.9: G-protein (PEPA) results

During this experiment, the difference between target and evolved values has increased

markedly. However, the fitness score of this experiment has been particularly strong: the

highest (weakest) fitness score being 0.368%, indicating a near identical match to the target

time series trace.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

receptor-ligand binding rate: rl

C
o
u
n
t

0.00 0.02 0.04 0.06 0.08 0.10
0

2

4

6

8

10

receptor-ligand dissociation rate: rlm

C
o
u
n
t

0.00 0.02 0.04 0.06 0.08 0.10
0

2

4

6

8

10

receptor decay rate: rd0

C
o
u
n
t

0.00 0.02 0.04 0.06 0.08 0.10
0

2

4

6

8

10

receptor-ligand decay rate: rd1

C
o
u
n
t

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Α- ΒΓ disassociation rate: ga

C
o
u
n
t

0 2 4 6 8 10
0

2

4

6

8

10

Α hydrolysis rate: gd1

C
o
u
n
t

0 5 10 15 20
0

2

4

6

8

10

Α- ΒΓ association rate: g1

C
o
u
n
t

Figure 5.14: Histogram plots for G-protein (PEPA): rl, rlm, rd0, rd1, ga, gd1 and g1

These results can be viewed in two ways. Negatively, the Euclidean distance fitness measure

is not sophisticated enough to capture the complex behaviour of the G-protein dual cycle

behaviour. This is likely true, a model-specific fitness function will always be preferred. Using

the more generic Euclidean distance fitness function is a conscious choice to reduce the

complexity during EPA framework experiments. Positively, there are different combinations of

variable rate values which give strong matches to the target time series trace. This attests to

5.6 parameter matching experiments summary 82

the robustness of the system rather than critical sensitivity to one particular parameter value

or set of values. In complex systems with many facets, this is unsurprising. In the creation

of formative models, providing results sets from outside the modeller’s expected target may

provide valuable insight into the model’s operation.

This G-protein experiment provided experience with the described system; this would be

valuable when applying Genetic Programming optimisation to the same system in future

work. This specific problem could be solved to accurately match the target values, possibly

with a custom fitness function, see Section 9.2.

5.6 parameter matching experiments summary

This chapter presented the application Genetic Algorithms (GAs) to models described in

Performance Evaluation Process Algebra (PEPA) with the goal of parameter matching. PEPA

models used during this chapter are complete and had some or all rates removed to be

rediscovered. By using complete models, evolved solutions can be compared to the original

PA model for qualitative and quantitive analysis.

The output of the EPA framework is a single strong solution which may not be the global

optimum of the search space. Through multiple runs of the framework, the GA evolved values

can be collated into a histogram spread to highlight critical rates to the user.

The performance of the EPA framework during the experiments of this chapter was strong

overall. Difficulties became apparent during the latter experiments with the G-protein system

(Section 5.5). When flagging a large number of parameters for optimisation, identifying

critical rates becomes difficult in the histogram sensitivity analysis. Conversely, the number of

different combinations of parameter values which provide strong fitness solutions attests to

the robustness of the system.

Considering the time restraints, the strong fitness scores of solutions found and the experi-

ence gathered during these experiments; the focus moved onto Genetic Programming (GP)

techniques and optimising Process Algebra model structures.

6
S P E C I E S S T R U C T U R E O P T I M I S AT I O N E X P E R I M E N T S

This chapter is the second of the experimental results chapters and details the Genetic

Programming (GP) techniques utilised for direct model structure optimisation of species

definitions. All experiments presented in this chapter utilise the Bio-PEPA language as it was

performed after the Bio-PEPA changeover for Genetic Programming optimisation work, as

discussed in Section 2.2.3.

All Process Algebra (PA) models chosen for this research are complete descriptions of

complex systems accompanied by time series data. By choosing complete models, experiments

can be conducted by selectively removing aspects of the model. The Evolving Process Algebra

(EPA) framework can then be challenged to rebuild the removed aspects using Evolutionary

Computation (EC) techniques: in this chapter it is species definitions which are removed

to be rediscovered using GP techniques. Evolved solutions can be checked qualitatively by

comparing the individual to the original PA model and quantitively by comparing the evolved

simulation trace to the original time series data.

When working with Genetic Algorithm (GA) parameter matching experiments, the final

result of each EPA execution was a numeric value for each rate flagged for optimisation.

However, the results of species optimisation are GP trees and not number values. Due to this,

results cannot be easily compared as a spread in the form of histogram plots. The qualitative

sensitivity analysis is not so easily accomplished as observing the spread of values on such a

plot.

Instead, a Process Algebra model is considered to be sensitive to a definition if that definition,

or parts of it, appear frequently in strong fitness individuals. Conversely, a lack of sensitivity

to a definition is indicated by that definition appearing infrequently in strong individuals

or exclusively in weak individuals. This continues to allow a measure of qualitative analysis

which may give insight to a domain expert by illustrating critical definitions in the described

system.

To assist in this qualitative analysis, the EPA Utility Assistant, described in Appendix A, is

capable of extracting this species component information. Each experiment result is presented

with a bar chart to illustrate the spread of commonly appearing species segments, similar to

the histogram spreads that provide insight into critical rates.

All the experiments performed in this chapter were performed using the tree-size evaluator

fitness function built on top of the Euclidean distance sub-fitness function, as described in

Section 4.3.5. The maximum (worst) fitness is based on the Euclidean distance sub-fitness

83

6.1 biochemical reactant-product 84

augmented by any scoring penalties. The method by which penalties are applied is taken into

account when calculating the maximum fitness range. Once ascertained, the maximum fitness

score can be used to observe how solutions score on the objective, percentage scale.

Model-specific organised complexity is important when choosing a system for GP optimisa-

tion techniques. The impact of changing a component definition in the Process Algebra model

is greater than changing a rate value. For this reason, model complexity did not continue

to increase from GA parameter matching work, instead it started anew with low complexity

models. See Chapter 7 for kinetic definition GP optimisation or Chapter 8 for discussion of

simultaneous Genetic Algorithm and Genetic Programming optimisation work.

6.1 biochemical reactant-product

6.1.1 Background & Model

The biochemical reactant-product system is one of the simplest Bio-PEPA models. It represents

the 2X + Y→ 3Z reaction, meaning two molecules of X and one molecule of Y are consumed

(their levels both lower) to produce three molecules of Z. Figure 6.1 represents the Bio-PEPA

model which describes this reaction: this is the same as Figure 2.4 in Section 2.2.2, copied here

for convenience.

r = 0.001

kineticLawOf alpha : fMA (r)

X
def
= (alpha,2)� X

Y
def
= alpha� Y

Z
def
= (alpha,3)� Z

X[200] <alpha> Y[100] <∗> Z[0]

Figure 6.1: Biochemical Reactant-Product model written in Bio-PEPA

The biochemical reactant-product model consists of only a few segments: one rate (r), one

kinetic action (alpha), three species (X, Y and Z) and the system equation defines commu-

nication across any action. Of those three species, only two Bio-PEPA operators are used: the

reactant (�) and the product (�).

This model was chosen for use with the EPA framework because of the small number of

components to work with. The stoichiometry coefficient is a non-zero, positive integer with

an assumed maximum value of 10. In addition, each operator can be one of five values (�,�,

(+) , (−) or (.)). If all three species are flagged to be rebuilt together, that results in a solution

space consisting of 150 points (max_ coefficient ∗ num_ operators ∗ num_ species). It is worth

6.1 biochemical reactant-product 85

noting that this search space is very small and would not normally warrant an Evolutionary

Computation technique. Experiments derived from the biochemical reactant-product system

were primarily used to test the EPA framework by ensuring GP mechanisms were correctly

being applied to the Bio-PEPA syntax.

6.1.2 Experiment - all species

The first experiment in the GP domain flagged species X, Y and Z to be optimised. At first

glance it seems adventurous to optimise all species components simultaneously; however, as

mentioned above, this equates to a search space of 150 points.

Considering the default EPA parameters includes 100 individuals, it is reasonably likely

the first generation will include the optimum solution. Such a small search space with a

starting population which encompasses two-thirds of it would not normally warrant use of

an EC approach. Similar to the simple dining philosophers experiment at the beginning of the

GA parameter matching work (Section 5.1), this early stage of Genetic Programming work

focused on the integration of the Bio-PEPA plug-in with the EPA framework. The biochemical

reactant-product model was used to test this integration while compatibility with the PEPA

plug-in was maintained.

Table 6.1 illustrates the simulator and EPA override parameter settings for the biochemical

reactant-product model. Notice the use of a Euclidean distance fitness function instead of a

tree-size evaluator; the biochemical reaction model contains only one kinetic action (which

cannot be duplicated due to the Bio-PEPA restraints), therefore species definitions are not

susceptible to bloat. This only applies to the species segments, later biochemical reaction

experiments will utilise tree-size evaluators for the kinetic definitions, see Sections 7.1 and 8.1.

Simulator Variables

Start 0

Stop 99

Data points 100

EPA Override Variables

Fitness Euclidean
Failure timeout 5s

Table 6.1: Biochemical (X, Y and Z) specific and EPA override parameter values

Correct definitions were discovered for this experiment in 50% (32 of 64) of EPA system runs.

These correct definitions were an exact match to the 2X + Y → 3Z structure of the original

biochemical reactant-product model. Their fitness scores were all <0.005%, where 0% is no

deviation from the expected time series trace. This demonstrates that obtaining a perfect 0%

fitness score is infeasible; the slight deviations are attributed to the stochastic noise of Process

Algebra simulations.

The poorer scoring solutions which made up the remaining 50% were only 0.001% higher

in their fitness scores. These system runs contain example solutions of the correct structure,

6.2 measles (frequency-dependent transmission) 86

but with different stoichiometry coefficients. For example, 4X + 2Y→ 6Z is a sensible solution

which scored a good fitness, but a domain expert or human modeller would be able to easily

refine this definition because the more elegant version is obvious. These solutions are likely

because of a premature convergence at a local optimum.

Given more time for evolution or a higher evolutionary stress on lower stoichiometric

coefficients, this could yield the solutions with a more elegant definition. No solutions

resulted in terrible or nonsensical evolved definitions.

These results demonstrated the EPA framework had adequately been extended to incorporate

Bio-PEPA species optimisation. Further experiments in this section aim to challenge the EPA with

more difficult optimisation problems. It is worth noting that the objective fitness scores allow

the user to gain knowledge of how fit a solution really is. Not every evolved solution will be

acceptable, but the aim is that each solution will provide some insight to the framework’s

user.

6.2 measles (frequency-dependent transmission)

6.2.1 Background & Model

Measles is caused by a virus of the same name which belongs to the Morbillivirus genus

within the family Paramyxoviruses, characterised by their negative-sense, single-stranded

RNA structure. A positive-sense RNA can be directly transcribed into viral DNA, whereas a

negative-sense RNA must first be translated into a positive-sense form. The virus is spread

through contact with fluids from an infected host’s mouth or nose, either directly or via

airborne-spread such as sneezing.

The measles virus is highly contagious: greater than 90% of exposures without vaccine-

primed immunity will result in infection. The three-part MMR vaccine was introduced to the

UK in 1988, designed to vaccinate recipients against measles, mumps and rubella. The vaccine

is designed to be administered at the age of 18 months with a booster at age 4 - 5. Despite

the vaccine, many are still vulnerable to the virus, particularly in developing countries. A

confirmed case of measles still warrants booster vaccinations in the immediate area to stem

an outbreak.

Symptoms commonly include cough, fever, coryza, conjunctivitis and a distinctive full-body

rash. There is currently no treatment beyond the preventative vaccine, as mentioned above.

Most infected individuals will recover within fourteen days with bed rest and supportive

treatment of the symptoms. In few cases the measles virus presents with complications.

Complications can range in severity from moderate to serious, including diarrhoea, pneumonia

and bronchitis. In rare cases, the infection can cause subacute sclerosing panencephalitis (SSPE):

an untreatable, chronic swelling of the brain that ultimately results in death.

6.2 measles (frequency-dependent transmission) 87

Benkirane et al. [11] model measles spread for the purposes of outbreak prediction, preven-

tion and response. Their work includes a case study on Measles dynamics in England and

Wales for 20 years between 1944 and 1964, with results focusing on Measles spread in Leeds

during this period. Note, this is before the vaccine was introduced to the UK in 1968: this

is the original vaccination before the MMR vaccine was developed. They do not include the

four years between 1964 and 1968 (end of the study to introduction of the vaccine) due to

administration changes which reduced reliability of the data.

Benkirane et al. present two SEIR models with their study: one PEPA and one Bio-PEPA; it is

the latter which is of interest to this work. The full system includes cyclic, seasonal behaviour

as the number of measles infections spike every few years. To keep the focus on the EPA’s

ability to rebuild removed species and kinetic definitions, models abstracting from the full

feature set were used so the simpler Euclidean distance measure of fitness could be used, see

Section 4.3.4.

This system was chosen for use with the EPA because of the rich wealth of data: 20 years

worth across across 60 cities in England and Wales. Furthermore, measles is an SEIR system

similar to the Internet worm model, as seen in Section 5.2. Though the SEIR behaviour is

similar to the the SIR behaviour the notation is different in Bio-PEPA. Species in Bio-PEPA are

viewed as levels which can increase or decrease through cooperation over actions. The number

of susceptible individuals in the system will decrease as the number of exposed individuals

increases. Note the use of (.) (generic modifier) in defining the infected (Inf) species in

Figure 6.2. This indicates that the infected individuals play a role in the contact action, but their

numbers are not directly influenced by that action. This also increases the model’s robustness

and allows the action definition to satisfy the Bio-PEPA syntax requirement that actions derived

from species must cooperate over that action, see Section 2.2.2.

rContact = 6.015 rInfect = 0.133 rRecover = 0.154

kineticLawOf contact : (rContact ∗ S ∗ Inf)/(S + Inf + R)

kineticLawOf incubation : rInfect ∗ Exp

kineticLawOf recover : rRecover ∗ Inf

S
def
= contact� S

Exp
def
= contact� Exp + incubation� Exp

Inf
def
= contact (.) Inf + incubation� Inf + recover� Inf

R
def
= recover� R + contact (.) R

S[508000] <∗> Inf [5] <∗> Exp[0] <∗> R[0]

Figure 6.2: Frequency-dependent transmission measles SEIR model written in Bio-PEPA

Frequency-based contact [8] assumes that individuals inside an epidemiological system will

contact a fixed number of other individuals in a given time period, regardless of population

6.2 measles (frequency-dependent transmission) 88

density. The chance of infection is dependent on the number of susceptible (S) and infected

(Inf) currently in the system, as well as the total number of individuals in the system. Addi-

tional means of infection based on population density are not modelled; such as secondary

transmission by coughing.

Figure 6.2 presents the frequency-based contact SEIR model derived from the Benkirane et al.

paper. The contact kinetic action is derived from the rate rContact and the number of S and Inf,

as well as the sum of the individuals in the system. This is commonly referred to as βSI / N,

where N is all individuals in the system. The incubation action determines the period between

being exposed (Exp) and becoming infected. Finally, the recover action governs the period it

takes an infected individual to enter a recovered state (R).

6.2.2 Experiment 1 - Inf

In this first experiment, the Inf species in the model was flagged for optimisation. This

component was chosen because it had the most complex behaviour of any species in the

system and cooperates across all available actions. Table 6.2 presents the simulator and EPA

override parameters for this experiment.

Simulator Variables

Start 0

Stop 50

Data points 51

EPA Override Variables

Failure timeout 10s

Table 6.2: Measles SEIR (Inf) specific and EPA override parameter values

Under these conditions, the original species definition for Inf was rediscovered with an

excellent objective fitness score of 0.03%. Alternative evolved species definitions were also

discovered with equally strong fitness scores. These definitions fully omit the contact action

from the Inf species definition.

Inf original
def
= contact (.) Inf + incubation� Inf + recover� Inf

Inf evolved
def
= incubation� Inf + recover� Inf

These alternative definitions with strong fitness scores may be explained by the semantics of

the (.) operator. The generic modifier is included to satisfy the Bio-PEPA syntactic requirement

of a species cooperating over an action to appear in that kinetic action’s definition, see

Section 2.2.2. When simulated these statements are identical because the kinetic definition

which dominates the evolved behaviour, however the lack of a generic operator will cause a

violation (not to be mistaken with an error which prevents simulation) in the Bio-PEPA syntax.

The species analysis for this experiment is presented in Figure 6.3. This provides a strong

example of what is strived for by this form of analysis. The top three most occurring definition

6.2 measles (frequency-dependent transmission) 89

incubation H.L Inf

recover >> Inf

incubation H-L Inf

contact H-L Inf

contact H+L Inf

contact H.L Inf

recover << Inf

incubation >> Inf

0 2 4 6 8 10 12 14

Figure 6.3: Species analysis for Measles SEIR (Frequency Version): Inf

segments (’incubation� Inf ’, ’recover� Inf ’ and ’contact (.) Inf ’) are the three segments of the

target species definition. This highlights the sensitivity of the Inf species to these segments

over any other definitions that are available.

6.2.3 Experiment 2 - Exp & Inf

Given the promising results obtained during the previous experiment while evolving Inf alone,

a second experiment was run that challenged the system further by flagging both the Exp

and Inf species. The Exp and Inf species were chosen because these two species contain the

majority of the complex behaviour in the measles system. The setup for this experiment uses

the same simulator and EPA override parameters as in the previous experiment, illustrated in

Table 6.2.

The first attempt at this experiment did particularly poorly. Less than 10% of the EPA

system runs returned with strong fitness solutions which were biologically valid. The fittest

individual evolved was an exact match to the target Exp species definition. The Inf species

definition omitted the ’contact (.) Inf ’ segment, similar to strong fitness individuals in the

previous experiment.

Exp original
def
= contact� Exp + incubation� Exp

Inf original
def
= contact (.) Inf + incubation� Inf + recover� Inf

Exp evolved
def
= contact� Exp + incubation� Exp

Inf evolved
def
= incubation� Inf + recover� Inf

The generic modifier is used as a semantic reminder that a species participates over a kinetic

action. This allows the species definition to satisfy the Bio-PEPA syntactic requirement that

any kinetic action which includes a species must appear in that species. For this reason, the

evolved definition for Inf will behave identically to the original, barring stochastic differences.

A modeller using the EPA framework would understand the nature of the generic modifier

and add the missing segment.

The remaining evolved solutions all included the recover action in the Exp species definition,

most frequently in a ’recover� Exp’ form. This indicates that exposed individuals are moving

6.2 measles (frequency-dependent transmission) 90

directly into a recovered state without transitioning through an infected state. The measles

SEIR system does not include any vaccine-like effect which would allow this to occur. The

species analysis for both the Exp and the Inf species are both dominated by the recover action,

so are not included here.

Looking at the trace generated from the recover� Exp definition; the numbers of susceptible

and exposed individuals decrease and the number of recovered individuals increases, the

number of infected individuals remains unchanged. This seems to be a local optimum that the

EPA framework prematurely converged into. Through use of the Euclidean distance sub-fitness

function, this provided a reasonable fitness score: i.e. many of the datapoints are a match

using a distance measure. Given more computational time, the EPA framework may have

overcome this local optimum.

6.2.4 Experiment 3 - Exp & Inf (with domain knowledge)

An additional experiment was conducted to utilise known domain knowledge, see Section 4.3.1.

The restricted action list was utilised for the Exp species and includes the recover action,

therefore prohibiting individuals to move directly from an exposed state into a recovered

state without first becoming infected. This experiment uses the same parameter settings as

the original experiment, as detailed in Table 6.2.

Unexpectedly, this experiment evolved individuals with poorer definitions overall compared

to the previous experiment which did not utilise domain knowledge. The solutions discovered

were dominated by the infected definition ’recover� Inf ’. This indicates that recovery increases

the number of infected individuals which does not make biological sense.

The use of the restricted lists feature of the EPA framework did function correctly: the

recover action did not appear in any Exp definitions. However, this feature did not lead to the

improvement of fitness scores as originally expected.

Looking at the evolved solutions, the Exp definitions varied across the permissible actions

whereas the Inf species definition frequently evolved the recover action as described above.

Similar to the outcome of the second experiment, described above, the EPA framework seems

to have converged prematurely. The number of recovered individuals will increase with the

recover action because its definition remains constant, as illustrated in Figure 6.2. By having

infected levels increase alongside recovered individuals, this provided a reasonable fitness

score through the Euclidean distance fitness function: i.e., many of the datapoints are a match

using a distance measure.

The restricted action list did function correctly but improvements could be made to increase

the specificity. In this instance, such restrictions would not be appropriate because of the small

number of actions available to the measles system. However, such a development could be

beneficial to the future of the EPA framework, as discussed in Section 9.3.

6.3 generic genetic network 91

6.3 generic genetic network

6.3.1 Background & Model

A genetic network, also referred to as a gene regulatory network or genetic regulatory network,

is a collection of DNA elements which interact intracellularly. The interaction is indirect via

substances in the cell, particularly RNA and protein expressions which govern the levels of

mRNA (messenger RNA). The mRNA molecules go on to produce specific proteins or sets of

proteins. These proteins can be structural: gathering on the cell membrane or intracellularly

for communication purposes.

Proteins may also be enzymes, which act as highly selective catalysts for many chemical

reactions, such as food digestion or toxin breakdown. Other proteins may have an excitatory

effect on genes, leading to their activation. Once activated these genes become transcription

factors for specific proteins which, in turn, can activate other genes, leading to a cascade

effect. Other proteins may have an inhibitory effect on other genes, preventing their associated

protein transcription.

In single-celled organisms, regulatory genetic networks respond to external environmental

factors, allowing the cell to adapt and survive in that environment. For example, a yeast cell in

a sugar solution will activate genes which transcribe proteins responsible for metabolisation.

This will digest sugars and produce carbon dioxide and ethanol (alcohol) under low-oxygen

or anaerobic conditions; this fermentation process is key to producing alcoholic beverages.

kineticLawOf transcription : 2.19/(356 + P2)

kineticLawOf translation : fMA (0.043)

kineticLawOf degradation_M : fMA (0.0039)

kineticLawOf degradation_P : fMA (0.0007)

kineticLawOf dimerization : fMA (0.025)

kineticLawOf dimerization_Inv : fMA (0.5)

M
def
= transcription�M + translation (+) M + degradation_M�M

P
def
= translation� P + degradation_P� P + (dimerization,2)� P + (dimerization_Inv,2)� P

P2
def
= transcription (−) P2 + dimerization� P2 + dimerization_Inv� P2

M[0] < translation> P[0] <dimerization, dimerization_Inv> P2[0]

Figure 6.4: Generic genetic network model written in Bio-PEPA

Ciocchetta & Hillston [20] present an example Bio-PEPA model of a generic genetic network,

illustrated in Figure 6.4. The generic genetic network system is a negative feedback system

through dimers, such as the biological control circuit in λ repressor protein ci of λ-phage in

Escherichia coli (E. coli). E. coli is a single-celled bacterium commonly found in the intestines

6.3 generic genetic network 92

of endotherms (warm-blooded organisms). It is one of the most widely studied creatures,

particularly in the fields of biology and biochemistry. This is due to the quick, cheap and easy

nature of the bacteria’s growth. The repressilator model (Section 5.4) was also taken from a

system inside the E. coli bacteria.

Consider the Bio-PEPA model and note the lack of rate variables. Experiments focused on

species evolution, so no experiments derived from this model required explicitly separate

rate variables. For conciseness, rate values have been amalgamated into the kinetic action

definitions.

Three species exist in the genetic network; the mRNA (M), the transcribed protein in its

monomer form (P) and the transcribed protein in its dimer form (P2). A single molecule of

a protein is considered to be a monomer molecule of that protein. Two identical monomer

molecules bound together are considered to be a dimer.

Starting with 0 levels of M, P and P2, some external stimuli will trigger the mRNA tran-

scription action. Once transcribed mRNA can either degrade naturally via the degradation_ M

action or take the translation action to create the monomer form of the protein. The monomer

protein may also degrade, via the degradation_ P action. Through the dimerization action, two

monomer proteins can form a dimer; the dimerization_ Inv action is the reverse and returns

the two proteins to their monomer form. As the levels of the dimer protein increase, the

transcription action slows due to an inhibitory affect, denoted by the (−) operator. Figure 6.5

illustrates the behaviour of the genetic network: boxes are states and edges are transitions

caused by the labelled actions.

Dimer	
 Protein	
 (P2)	

dimeriza(on	
 dimeriza(on_Inv	

Protein	
 (P)	

mRNA	
 (M)	

transcrip(on	

degrada(on_M	

degrada(on_P	

transla(on	

Figure 6.5: Processes of a generic genetic network

The genetic network model was initially chosen for use with the EPA framework because it

was written by Ciocchetta & Hillston, the creators of Bio-PEPA, thus ensuring a valid and well

formed model. This model also presents a further rise in complexity. The target model contains

species each with at least three choices, thus challenging the EPA to create and match multiple

GP trees per species. The (−) modifier, which has not been previously used, is also part of the

model. Finally, the system equation of the genetic network model specifies communication

paths: i.e., communication paths are not all ’<∗>’s.

6.3 generic genetic network 93

The mRNA (M) can only communicate with the monomer form protein (P) via the

translation action which in turn can only communicate with the dimer form protein (P2) over

the dimerization or dimerization_ Inv actions. The remaining unspecified actions do not require

cooperation so do not appear in the system equation.

6.3.2 Experiment - P2

Table 6.3 displays the simulator and EPA override parameters. The stop time is notably higher

than other PA models, this is because it takes longer for the system to exhibit behaviours to

compare to in the fitness function. The start time could be increased to lower the number

of data points required for comparison. However, the time required to simulate the genetic

network system is low, so the increased number of data points is acceptable.

Simulator Variables

Start 0

Stop 10, 000
Data points 10, 001

EPA Override Variables

Failure timeout 7s

Table 6.3: Genetic network specific and EPA override parameter values

Of the 50 EPA system runs, the original P2 definition was not rediscovered in its entirety.

The most commonly evolved definition omits the dimerization action:

P2 original
def
= transcription (−) P2 + dimerization� P2 + dimerization_ Inv� P2

P2 evolved
def
= transcription (−) P2 + dimerization_ Inv� P2

Considering the sensitivity analysis in Figure 6.6, the ’dimerization_ Inv� P2’ is the most

frequently occurring definition segment. The dimerization_ Inv action appears multiple times:

this shows the sensitivity of the system to this action despite the accompanying operator

or stoichometry coefficient. The transcription action also appears with unexpected operators,

showing a lower sensitivity.

transcription H.L P2

degradationM << P2

HdimerizationInv, 2L << P2

transcription >> P2

dimerizationInv H.L P2

translation << P2

dimerizationInv H+L P2

dimerizationInv << P2

0 5 10 15 20 25

Figure 6.6: Species analysis for genetic network: P2

The sensitivity analysis is not as clear as the analysis of the measles SEIR experiment,

illustrated previously in Figure 6.3. In noisy complex systems, evolved species definitions will

6.4 g-protein (bio-pepa) 94

bloat and include extraneous segments which can occur frequently enough to appear in the

sensitivity analysis. Combined with a domain expert’s knowledge of a system, this analysis

can provide insight into the critical species definition segments, even if the original definition

is not rediscovered.

6.4 g-protein (bio-pepa)

6.4.1 Background & Model

The G-protein system was visited previously during Genetic Algorithm parameter matching

work of the PEPA model in Section 5.5. To reprise, the G-proteins are controlled by G-protein-

coupled receptors with the purpose to transduce extracellular signalling molecules into

intracellular signals.

The PEPA version of the G-protein model appeared previously in Figure 5.13. The PEPA

version was derived from the Bio-PEPA model presented by the Bao et al. study [5]. Their

Bio-PEPA version of the model is illustrated in Figure 6.8, later in this section.

Using the Bao et al. notation, the G-protein system is comprised of seven species components.

The receptor (R), the ligand (L), the bound receptor-ligand (RL), the deactivated α subunit

which is bound to GDP (Gd), the βγ complex (Gbg), the active α subunit which is bound to

the βγ complex (G) and finally the active α subunit which is bound to GTP (Ga). Unlike the

PEPA model which requires mirror and recruitment pools, the Bio-PEPA description requires no

extra species to accurately describe the system.

G	

Gd	

Gbg	

Ga	

hydro	

bind_AB	

ac/v	
 RL	

L	

R	

+
bind_RL	

dis_RL	

deg_RL	

pro_R	
 deg_R	

(+)	

species	

ac/on	
 excitatory	

(+)	

Figure 6.7: G-protein activation cycles

The G-protein system can be viewed as two separate cycles where one has an excitatory effect

on the other. Figure 6.7 illustrates these cycles. To the left is outside the cell; receptor molecules

can be produced (pro_R) or degrade (deg_R). With available ligands on the cell membrane,

6.4 g-protein (bio-pepa) 95

receptors and ligands can associate (bind_RL) and once bound either become disassociated

(dis_RL) or degrade (deg_RL). To the right of the figure is inside the cell, the α subunit and

the βγ complex begin in a bound state. As the levels of receptor-ligand associations increase,

the α subunit disassociates from the βγ complex because of an excitatory effect on the activ

action. Once disassociated, the active α subunit hydrolyses (hydro) GTP into GDP and becomes

inactive. Finally, the inactive α will re-associate (bind_AB) with the βγ complex to reset the

cycle.

Figure 6.8 illustrates the Bio-PEPA version of the G-protein model. Note, as with the generic

genetic network model in Section 6.3, rate variables are not included because no experiments

were derived involving them. Therefore, rate values have been incorporated into the kinetic

action definitions.

kineticLawOf bind_RL : fMA (3.32e − 6)

kineticLawOf bind_AB : fMA (1.0)

kineticLawOf dis_RL : fMA (0.01)

kineticLawOf activ : fMA (1.0e − 5)

kineticLawOf hydro : fMA (0.11)

kineticLawOf deg_RL : fMA (4.0e − 3)

kineticLawOf deg_R : fMA (4.0e − 4)

kineticLawOf pro_R : 4.0

L
def
= dis_RL� L + bind_RL� L

R
def
= dis_RL� R + bind_RL� R + deg_R� R + pro_R� R

RL
def
= dis_RL� RL + bind_RL� RL + deg_RL� RL + activ (+) RL

G
def
= bind_AB� G + activ� G

Ga
def
= activ� Ga + hydro� Ga

Gd
def
= bind_AB� Gd + hydro� Gd

Gbg
def
= bind_AB� Gbg + activ� Gbg

L[603, 300] <∗> R[10, 000] <∗> RL[0] <∗> G[7, 000]

<∗> Gd[3, 000] <∗> Gbg[3, 000] <∗> Ga[0]

Figure 6.8: G-protein system model written in Bio-PEPA

Note the values in the Bio-PEPA system equation are 100 times larger than those previously

seen in the PEPA model. This is because Bio-PEPA simulation time is much shorter, so the

original Bao et al. values can be used.

It was known that the G-protein Bio-PEPA model would be used with the EPA framework,

this is why the PEPA version of the model was explored previously. This was done so that

experience could be gained with the system during GA parameter matching before moving

onto the application of more complicated Genetic Programming optimisation techniques.

6.4 g-protein (bio-pepa) 96

6.4.2 Experiment 1 - RL

The G-protein system was experimented with previously during Genetic Algorithm parameter

matching work of the PEPA model in Section 5.5. This new experiment focuses on utilising the

Genetic Programming aspect of the EPA framework to rediscover the definition for the receptor-

ligand (RL) species. This species was chosen because it has the most complex behaviour of

any in the system. Additionally, the RL species uniquely exists in the extracellular space and

influences the intracellular system.

Simulator Variables

Start 0

Stop 600

Data points 601

EPA Override Variables

Failure timeout 10s

Table 6.4: G-protein (Bio-PEPA) (RL) specific and EPA override parameter values

Table 6.4 presents the simulator and EPA override parameters for this experiment. The

G-protein system is comparatively slow to simulate, hence the longer failure timeout value.

Beyond this, there are no special circumstances to consider.

Below is the most frequently evolved definition for the RL species. The majority of the

definition has been rediscovered correctly with the exception of the operator associated with

the activ action.

RL original
def
= dis_RL� RL + bind_RL� RL + deg_RL� RL + activ (+) RL

RL evolved
def
= dis_RL� RL + bind_RL� RL + deg_RL� RL + activ (−) RL

The target definition contains an (+) (activator) while the evolved definition contains an (−)

(inhibitor): the opposite operator. The fitness score remains strong which indicates there is

greater emphasis on the action chosen over the operator used. Therefore, the activ operator

appearing with an inhibitory effect scores a better fitness than the action being fully omitted.

bindAB H+L RL

bindAB H.L RL

disRL >> RL

bindAB >> RL

bindAB << RL

activ << RL

proR >> RL

bindRL << RL

0 2 4 6 8 10 12

Figure 6.9: Species analysis for G-protein: RL

Figure 6.9 presents the species analysis for this experiment. Though the strongest solution

was a very close match, the species analysis is less accurate. The ’bind_RL� RL’ appears joint

6.4 g-protein (bio-pepa) 97

frequently with the ’pro_R� RL’ segment. In the G-protein system, the bind_RL action will

bind receptors with ligands to increase the number of bound receptor-ligands. Additionally,

the pro_R action does not play a role in the target RL species behaviour. Finally, the bind_AB

action occupies half of this analysis despite that the RL species plays no role in the association

of the inactive α with the βγ complex.

The EPA framework can utilise domain knowledge as discussed in Section 4.3.1. The

knowledge that the RL species exists in the extracellular space of the G-protein system is

reflected using restricted action lists. The RL species definition is restricted to not include the

bind_AB and hydro actions.

6.4.3 Experiment 2 - RL (with domain knowledge)

A second experiment was run with the parameters of the first G-protein: RL experiment, as

detailed in Table 6.4. Additionally, the restricted action list was utilised for the RL species

and includes the bind_AB and hydro actions. Figure 6.10 presents the species analysis of the

restricted experiment.

HbindRL, 3L >> RL

disRL H.L RL

disRL << RL

disRL H+L RL

HbindRL, 2L >> RL

degRL << RL

bindRL >> RL

activ << RL

0 5 10 15 20 25 30 35

Figure 6.10: Species analysis for G-protein: RL with restrictions

Looking at this analysis, the activ action becomes the most frequently appearing action as a

reactant to the RL species. By investigating the best evolved definitions, a different view of the

system comes to light. The G-protein system allows receptor-ligand bindings to increase via

binding, decrease via disassociation or degradation and finally has an excitatory effect on the

activ action. The evolved view of the system allows receptor-ligand bindings to increase via

binding three at a time, decrease via disassociation or via the activ action.

RL original
def
= dis_RL� RL + bind_RL� RL + deg_RL� RL + activ (+) RL

RL evolved
def
= dis_RL� RL + (bind_RL, 3)� RL + activ� RL

This difference can be explained by the reactant operator for the activ action instead of the

activator operator. To make up for the increased drain on the RL species, the bind_RL species

has an increased stoichometry coefficient and the deg_RL degradation action is no longer

required and is therefore omitted.

6.4 g-protein (bio-pepa) 98

The G-protein system is a known complex system therefore the biological mechanisms are

understood. If used to explore a newly modelled system, this form of alternative insight could

give a fresh perspective to the domain expert into the mechanisms of that system.

6.4.4 Experiment 3 - RL & G

This next experiment extends the RL species only experiment with the additional flag of

the G species. The receptor-ligand (RL) species was chosen again because of the success

with the previous experiment, additionally it has the most complex behaviour of any species

in the system. The RL species uniquely exists in the extracellular space and influences the

intracellular system. The G species (active α subunit bound to the βγ complex) was chosen

because it exists in the intracellular system and the activ action causes its disassociation, as

influenced by the levels of the RL species.

Simulator Variables

Start 0

Stop 600

Data points 601

EPA Override Variables

Internal replications 5

Failure timeout 13s

Table 6.5: G-protein (Bio-PEPA) (RL & G) specific and EPA override parameter values

Table 6.5 presents the simulator and EPA override parameters for this experiment. Notice

the increased failure timeout value and the reduced number of internal replications. Both

factors are to control the increased simulation time required during this experiment.

The first attempt at this experiment was done without the restricted action lists, so the

EPA framework had no knowledge of the separate cycles and which actions could appear

in each. Under these conditions, the G species was correctly rediscovered to be ’bind_AB�

G + activ� G’ in many of the EPA runs.

However, other evolved solutions contained actions which biologically should not be

available in the intracellular space. The RL species definitions were dominated by the bind_AB

action just as in the previous experiment which evolved the RL species alone, as described in

Section 6.4.2.

6.4.5 Experiment 4 - RL & G (with domain knowledge)

The fourth experiment with the G-protein system built upon the previous experiment by

including domain knowledge. The restricted action list was utilised for the RL species and

includes the bind_AB and hydro actions; just as with experiment two in Section 6.4.3. Addition-

ally, the G species had a restricted action list containing the receptor-ligand related actions

6.4 g-protein (bio-pepa) 99

(bind_RL, dis_RL and deg_RL). The experimental settings continue to use the parameters of the

previous experiment, detailed in Table 6.5

Figure 6.11 illustrates the species analysis for G. This analysis shows the optimisation was

weaker than for the RL half of the experiment, described below. The ’bind_AB� G + activ�

G’ target definition for G was not rediscovered in any of the EPA system runs. Also, the target

bind_AB action was rarely used in solution structures, instead the activ and hydro action were

commonly utilised.

Hhydro, 5L >> G

Hhydro, 6L >> G

hydro >> G

Hhydro, 8L >> G

Hhydro, 10L >> G

Hhydro, 9L >> G

activ H.L G

activ H+L G

0 5 10 15

Figure 6.11: Species analysis for G-protein: G with restrictions

The RL target was also never rediscovered in its entirety, but the majority of solutions were

close. This led to the RL species analysis in Figure 6.12 to be more accurate than for G, above.

RL original
def
= dis_RL� RL + bind_RL� RL + deg_RL� RL + activ (+) RL

RL evolved
def
= dis_RL� RL + bind_RL� RL + deg_RL� RL + activ (.) RL

RL evolved
def
= bind_RL� RL + deg_RL� RL + activ (+) RL

RL evolved
def
= dis_RL� RL + bind_RL� RL + deg_RL� RL

The bind_RL and deg_RL actions dominate the analysis which is acceptable because these

actions are core to the behaviour of the receptor-ligand species and appear with the target

operators. The next most frequent appearing definition segments ’activ (+) RL’ and ’dis_RL�

RL’ which also appear in the target RL species definition.

disRL H+L RL

disRL >> RL

activ H.L RL

HdisRL, 5L >> RL

disRL << RL

activ H+L RL

degRL << RL

bindRL >> RL

0 5 10 15 20

Figure 6.12: Species analysis for G-protein: RL with restrictions

Curiously, the activ action appears less frequently than in the species analysis of RL when

evolved alone, see Figure 6.10. This can be explained because the RL and G species are flagged

6.5 species structure optimisation experiments summary 100

together; both species heavily influence the activ behaviour in the original model. Should a G

species definition be evolved to not include the activ action is is less likely for the RL species

definition to retain the activ action.

6.5 species structure optimisation experiments summary

This chapter presented the application of Genetic Programming (GP) optimisation techniques

to Bio-PEPA models with the goal of evolving fitter species definition structures. Bio-PEPA models

used during this chapter are complete and had some or all species definitions removed to

be rediscovered during optimisation. By using complete models, evolved solutions can be

compared to the original Process Algebra model definitions.

During Genetic Algorithm (GA) parameter optimisation work (Chapter 5), analysis could be

performed on histogram spreads of parameter values. Species definitions do not use numeric

values so this same analysis cannot be performed on GP experiments. To overcome this, the EPA

framework was extended to produce bar charts representing the most frequently appearing

species definition components. High sensitivity is indicated by a definition appearing fre-

quently in strong solutions, whereas a lack of sensitivity is indicated by infrequently appearing

definitions or appearing exclusively to weak individuals.

The performance of the Evolving Process Algebra (EPA) framework during the GP experi-

ments of this chapter was strong overall. The frequency-dependent transmission of measles

(Section 6.2) and the G-protein system (Section 6.4) highlighted deficits in the EPA framework’s

performance. The measles system frequently became stuck in a local optimum with biolo-

gically invalid definitions. The ability to utilise domain knowledge (Section 4.3.1) assisted in

improving these results.

The G-protein system included a complex underlying structure that could not easily be

rediscovered using a simple Euclidean distance measure fitness function. The requirement

of custom fitness functions for complex problems is a common concern with Evolutionary

Computation optimisation techniques, this is discussed in Section 9.2.

7
K I N E T I C S S T R U C T U R E O P T I M I S AT I O N E X P E R I M E N T S

This chapter is the third of the experimental results chapters and details the Genetic Program-

ming (GP) techniques utilised for direct model structure optimisation; focusing on kinetics,

though some experiments are extended to include species as well. All work presented in

this chapter utilises the Bio-PEPA language exclusively as it was performed after the Bio-PEPA

changeover for Genetic Programming optimisation work, as discussed previously in Sec-

tion 2.2.3.

All Process Algebra (PA) models chosen for this research are complete descriptions of

complex systems accompanied by time series data. By choosing complete models, experiments

can be conducted by selectively removing aspects of the model. The Evolving Process Algebra

(EPA) framework can then be challenged to rebuild the removed aspects using Evolutionary

Computation (EC) techniques: in this chapter it is kinetic action definitions which are removed

to be rediscovered using GP techniques. Evolved solutions can be checked qualitatively by

comparing the individual to the original PA model and quantitively by comparing the evolved

simulation trace to the original time series data.

The previous two results chapters had additional forms of qualitative analysis: histogram

distributions for Genetic Algorithm (GA) parameter matching and sensitivity analysis for spe-

cies GP definition optimisation work. There is no additional form of analysis for evolved kinetic

definitions. Forms of kinetic qualitative analysis could be included with future development

of the EPA framework, this is discussed later in Section 9.3.

Experiments conducted in this chapter were performed using tree-size or node-weight

evaluator fitness functions, as described in Sections 4.3.5 and 4.3.6 respectively. For either

function, it is built on top of the Euclidean distance sub-fitness function, see Section 4.3.4. The

maximum (worst) fitness is based on the sub-fitness augmented by any scoring penalties. The

method by which penalties are applied is taken into account when calculating the maximum

fitness range. Once ascertained, the maximum fitness score can be used to observe how

solutions score on the objective, percentage scale.

Models used for kinetic definition optimisation were chosen from the repertoire of complex

systems previously utilised with the EPA framework. Without additional forms of qualitative

analysis, this choice allowed for experience gained with those systems to guide the develop-

ment of the framework. This choice also allowed the first simultaneous kinetics and species

experiment to be performed in Section 7.2.3 as a stepping stone towards simultaneous GA and

GP optimisation in the next chapter.

101

7.1 biochemical reactant-product 102

7.1 biochemical reactant-product

7.1.1 Background & Model

The biochemical reactant-product system is one of the simplest Bio-PEPA models, previously

explored during species optimisation work in Section 6.1. It represents the 2X + Y → 3Z

reaction, meaning two molecules of X and one molecule of Y are consumed to produce three

molecules of Z. The model was also presented previously in that section in Figure 6.1 and

with the Bio-PEPA language description in Figure 2.4.

This model was previously chosen for use with the EPA framework because of the small

number of components to work with and the associated limited search space. Starting a

new level of work, this model was revisited as a baseline for comparison. Additionally, the

experience gained with the system during the species optimisation experiment would assist

here.

When working with the species optimisation of X, Y and Z, the search space consisted of

150 data points (max_ coefficient ∗ num_ operators ∗ num_ species). However, when considering

the search space for the kinetic definition tree, the size is considerably larger. By using the

default maximum tree-depth of 5, the maximum size of a kinetics tree is 2 tree_ depth − 1

nodes, which is 31 in this case.

Excluding composite nodes which were implemented after this experiment, each node

may have one of five types which affect their value and number of children, as detailed

in Section 4.1.1.2. Of these five types, the m (math) node may have four values: addition,

subtraction, multiplication or division. Furthermore, the id node may be any rate or species

inside the system: rate r and species X, Y and Z in the biochemical reactant-product system.

Finally, the byte node can have any value ranging from −(27) to (27 − 1) and any non-formula

node may be repeated in a kinetic definition.

Through combination of these facts, the search space becomes approximately 241 points.

The tree-size evaluator, as described in Section 4.3.5, is used to restrain the evolved definitions

and avoid bloat.

7.1.2 Experiment - alpha

The first experiment performed on the kinetic definition of a Bio-PEPA model flagged the alpha

action. The target definition of ’fMA (r)’ is simple and consists of only two nodes. This may

appear simple but, as described above, the search space is large. This experiment focused on

integration of the new code into the EPA framework for kinetics GP definition optimisation.

Unlike the species experiment in Section 6.1, the larger search space of the kinetics op-

timisation offers a challenge for the original alpha definition to be correctly rediscovered.

7.2 measles (density-dependent transmission) 103

Table 7.1 presents the simulator and EPA override parameter settings for the biochemical

reactant-product model.

Simulator Variables

Start 0

Stop 99

Data points 100

EPA Override Variables

Failure timeout 5s

Table 7.1: Biochemical (alpha) specific and EPA override parameter values

The correct definition was discovered for this experiment in 40% (20 of 50) of EPA system

runs. These correct definitions were an exact match to the ’kineticLawOf alpha : fMA (r)’

structure of the original biochemical reactant-product model. The remaining 60% of EPA

system runs all returned the definition as ’kineticLawOf alpha : r ’. The evolved definitions of

all results had a fitness score of <0.048%.

This strong set of fitness scores demonstrates that either definition can offer a strong match

to the target trace and could offer insight to the user about the mass action function in relation

to the biochemical system.

These results demonstrate the EPA framework has adequately been extended to incorporate

Bio-PEPA kinetics optimisation. Additionally, the correct definition was evolved in the large

search space. Further experiments in this section aim to challenge the EPA with more difficult

optimisation problems.

7.2 measles (density-dependent transmission)

7.2.1 Background & Model

The measles virus system has been explored previously in Section 6.2, during which the

frequency-dependent transmission model by Benkirane et al. [11] was introduced. This section

uses the same measles system but with a density-dependent transmission variant model.

Background information on the measles virus can be found with the frequency-dependent

version in the previous chapter: the density-dependent model and important differences shall

be detailed here.

This is not a commentary on the transmission dynamics of the measles virus; by moving

from frequency-dependent to density-dependent transmission the definition of the contact

action becomes simpler (described below) and offers a more suitable lead in to EPA kinetics

optimisation.

Frequency-based contact assumes that individuals inside an epidemiological system will

contact a fixed number of other individuals in a given time period, regardless of population

density or secondary contacts. Conversely, density-dependent contact assumes that the more

7.2 measles (density-dependent transmission) 104

individuals in a system, the more likely a contact will occur. The rate of an infectious contact

occurring is dependent on the number of susceptible (S) and infected (Inf) currently in the

system.

Figure 7.1 illustrates the density-dependent transmission variant of the measles Susceptible-

Exposed-Infected-Recovered (SEIR) model. This differs from the frequency-dependent in two

ways. The first is the definition of the contact action which is derived from the rContact rate

and the number of S and Inf: this is commonly referred to as βSI. The second difference is

in the recovered (R) species definition; since the number of recovered individuals‘a do not

influence the contact action, the action does not appear in the R definition.

rContact = 6.015 rInfect = 0.133 rRecover = 0.154

kineticLawOf contact : rContact ∗ S ∗ Inf

kineticLawOf incubation : rInfect ∗ Exp

kineticLawOf recover : rRecover ∗ Inf

S
def
= contact� S

Exp
def
= contact� Exp + incubation� Exp

Inf
def
= contact (.) Inf + incubation� Inf + recover� Inf

R
def
= recover� R

S[508000] <∗> Inf [5] <∗> Exp[0] <∗> R[0]

Figure 7.1: Density-dependent transmission measles SEIR model written in Bio-PEPA

The density-dependent transmission variant of the measles model was selected for use with

the EPA framework during kinetic definition experiments because of the simpler form of the

contact action:

contact density : rContact ∗ S ∗ Inf

contact frequency : (rContact ∗ S ∗ Inf) / (S + Inf + R)

Without the use of composite nodes, as discussed in Section 4.1.1.2, the density version

contains five GP nodes compared to the frequency version’s eleven GP nodes. Through use of

composite nodes the difference is lessened with two nodes required for the density definition

and five nodes required for the frequency version. However, the composite node was not

introduced to the EPA framework until the full measles experiment in Section 7.3, after this set

of experiments.

The search space of this experiment is slightly larger than that of the biochemical reactant-

product model in the previous section. This is because there is an additional species (four

instead of three) and two additional rates (three instead of one) which may be used to construct

kinetic action definitions. These increases led to the search space of this problem approaching

approximately 242 data points.

7.2 measles (density-dependent transmission) 105

7.2.2 Experiment 1 - contact

The first experiment performed on the density-dependent transmission version of the measles

SEIR model flagged only the contact action for optimisation. The contact action was chosen

because it has the most impact on the measles model as well as having the most complex

definition of the three kinetic actions in the system.

Simulator Variables

Start 0

Stop 50

Data points 51

EPA Override Variables

Failure timeout 10s

Table 7.2: Measles SEIR (contact) specific and EPA override parameter values

Table 7.2 presents the simulator and EPA override parameters for this experiment. This is

the same as the frequency-dependent transmission measles experiments in Section 6.2.

The correct definition was rediscovered in 10% (5 of 50) of EPA system runs. The remaining

90% of runs resulted in definitions which did not match the target but continued to score

strong fitness. The majority of these definitions are illustrated below. Whilst not matching

the target definition they are biologically possible; the rate of transmission in the latter two

evolved solutions would be markedly high but could provide insight to the user. Solutions

are presented in the form they were evolved; the→ indicates a simplification for readability.

contact original : rContact ∗ S ∗ Inf

contact evolved : 7 ∗ S ∗ Inf

contact evolved : rContact

contact evolved : Inf ∗ S ∗ Inf → Inf2S

contact evolved : ((S ∗ S ∗ Inf) ∗ S ∗ Inf) → Inf2S3

The ’kineticLawOf alpha : 7 ∗ S ∗ Inf ’ is particularly close because the actual value of rContact

is 6.015 which is one byte index from the evolved value. A domain expert viewing this output

may notice this similarity and adjust the kinetic definition accordingly.

The EPA framework does not have an equality engine which could equate a value close to a

rate to be that rate automatically. This was not implemented because it could find equalities

where none exist, transforming numbers into rate variables which would not be biologically

valid. Further discussion of the equality engine and other EPA potential developments are in

Section 9.3.

7.2.3 Experiment 2 - contact, S, Exp & Inf

Following the contact only experiment described above, this second experiment flagged the

contact kinetic action in addition to the S, Exp and Inf species. The contact action was chosen for

7.2 measles (density-dependent transmission) 106

the same reasons as in experiment one, described above, along with the additional experience

gained during that experiment. The work done with species optimisation of the frequency-

dependent transmission measles model variant, as described in Section 6.2, culminated with

the Exp and Inf species being flagged. In order to challenge the system, the same species were

flagged for optimisation, with the addition of the S species. Overall, this covers each GP model

segment that influences the contact action.

The focus of this experiment is the rediscovery of the four flagged sections of the measles

model. Additionally, this is the first experiment which combines optimisation of kinetic and

species segments, so there is a measure of integration during this experiment. The simulator

and EPA override parameter set is the same as for the previous experiment, illustrated in

Table 7.2 above.

No singular EPA system run matched the target definitions entirely; however, the returned

individuals held a strong fitness score. During experiments in the previous chapter that

flagged more than one species segment, it was discussed that the evolved definition for one

segment could be reflected in a poorly evolved definition for the other.

Given more time to evolve, the EPA framework could have explored more of the search

space to discover the target definition. The last discussion of time restrictions was for the

Repressilator experiment in Section 5.4. The time for simulations increased from hours to days

as the number of flagged segments increased and the search space becomes larger. Simulations

at this stage tended to be approximately three days long.

Viewed individually, the evolved model segments have a stronger fitness than the overall

fitness of the solution. The contact kinetic action was commonly evolved to be rContact alone.

contact original : rContact ∗ S ∗ Inf

contact evolved : rContact

This is not the target definition but still leads to a strong fitness, particularly as a sub-fitness,

which is why the same evolved definition appeared in the previous experiment. The evolved

definitions of the species segment will influence the evolved solutions for the kinetics segments,

perhaps keeping from the target definition being discovered.

Examining the species segments, the evolved solutions were closer to the target definitions.

Two EPA system runs resulted in an exact match to the definitions of S, Exp and Inf as seen in

Figure 7.1. A further six runs returned exact matches to the S and Exp definitions while the

Inf definition omitted only the ’contact (.) Inf ’ term. The contact definition which accompanied

these species matches were particularly poor. The fitness function weighted kinetic and species

influences equally, therefore this indicates that the species definition has a larger impact on

the resultant fitness of an individual.

To not bias the optimisation route, domain knowledge was not used. This decision was

made because the secondary focus was to test the integration of simultaneous optimisation of

the two different GP segments. However, this caused the recover action to appear prevalently in

7.3 measles (full) 107

the evolved definitions, just as in the first two experiments of Section 6.2. The experiment could

be repeated using domain knowledge, however the results from this experiment were stronger

than in the previous chapter and the integration was a success. The domain knowledge will

be used in the following section when the measles model is built upon.

7.3 measles (full)

7.3.1 Background & Model

The background of the measles virus itself has been described previously in Section 6.2.

The reason it is of interest to modellers is the complex behaviours which involve recurrent

outbreaks in small populations and cyclic outbreaks in larger populations [60], also features

such as transmission, population growth, seasonality and immigration. Furthermore, a large

set of observational data is freely available for the number of reported cases for measles in

England and Wales for over twenty years between 1944 and 1964 inclusive.

1

3

4
5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

32

33

34
35

37

38
39

40

41

42 31

44

45

46

47

50

51

52

53

54

56 59

60
55

2 26

48
58

6

57 49

30 43

36

location # location

1 Bath 31 Newcastle
2 Birkenhead 32 Newport
3 Birmingham 33 Northampton
4 Blackpool 34 Norwich
5 Blackpool 35 Nottingham
6 Bolton 36 Oldham
7 Bournemouth 37 Oxford
8 Bradford 38 Plymouth
9 Brighton 39 Portsmouth
10 Bristol 40 Preston
11 Cambridge 41 Reading
12 Cardiff 42 South Shields
13 Chester 43 Salford
14 Colchester 44 Sheffield
15 Coventry 45 Shrewsbury
16 Derby 46 Southampton
17 Exeter 47 Southend
18 Gateshead 48 St. Helens
19 Great Yarmouth 49 Stockport
20 Huddersfield 50 Stoke
21 Hull 51 Sunderland
22 Ipswich 52 Swansea
23 King’s Lynn 53 Teignmouth
24 Leeds 54 Wakefield
25 Leicester 55 Wallasey
26 Liverpool 56 Walsall
27 London 57 Warrington
28 Luton 58 Wigan
29 Macclesfield 59 Wolverhampton
30 Manchester 60 York

Figure 7.2: The 60 England & Wales cities in the Grenfell et al. study

Figure 7.2 illustrates the cities where this data is recorded from. The data is recorded

fortnightly (once per fourteen days) which also approximates the lifecycle duration of the

7.3 measles (full) 108

measles virus. Fine & Clarkson [31] extensively investigate the measles data; their work

includes a hypothesis that extrapolating daily measles infections could lead to finer granularity

studies. However, they also disprove this hypothesis, demonstrating that daily infections could

be misleading because of complications caused by the weekend-weekday influences of mixing

critical school populations.

This same data was studied by Schenzle in attempts to make alternative representations

of the standard Susceptible-Exposed-Infected-Recovered (SEIR) model [63]. One presented

model included a seasonality based on the school year instead of the calendar year. The

school transport and communal classrooms are likened to effective exposure chambers for

respiratory-borne pathogens.

Schenzle adjusted the contact behaviour to match outbreaks to academic semesters. Spe-

cifically, infectious behaviour is reduced during school holidays and at weekends. Given

additional time, the EPA framework would have been applied to this version of the measles

SEIR model after the following version, see Section 7.3.3 for further discussion.

crs = 3.046 crw = 6.015 ir = 0.133 rr = 0.154

br = 0.000047 dr = 0.000047 imr = 0.0396

start_winter = 9 end_winter = 4 month = floor(time/30)

season_time = H(((month − 12 ∗ floor(month/12))− end_winter) ∗ (start_winter −(month − 12 ∗ floor(month/12))))

kineticLawOf contact : ((crw ∗ S ∗ Inf)/N) ∗ (1− season_time)+ ((crs ∗ S ∗ Inf)/N) ∗ (season_time)

kineticLawOf birth : br ∗N kineticLawOf die_S : dr ∗ S

kineticLawOf immigration : imr kineticLawOf die_Exp : dr ∗ Exp

kineticLawOf incubation : ir ∗ Exp kineticLawOf die_Inf : dr ∗ Inf

kineticLawOf recover : rr ∗ Inf kineticLawOf die_R : dr ∗R

S
def
= contact� S + birth� S + die_S� S

Exp
def
= contact� Exp + incubation� Exp + birth (.) Exp + die_Exp� Exp

Inf
def
= contact (.) Inf + incubation� Inf + recover� Inf + birth (.) Inf + immigration� Inf

R
def
= recover� R + birth (.) R + die_R� R

S[16, 967] <∗> Inf [5] <∗> Exp[28] <∗> R[491, 000]

Figure 7.3: Full measles SEIR model written in Bio-PEPA

Figure 7.3 presents the full Bio-PEPA measles model. The Bio-PEPA model is taken from

Benkirane et al. [11]. Bokler performed extensive mathematical modelling of the measles virus

from an epidemiological and ecological perspective [14]. The seasonality function has been

simplified to assume that each month is 30 days long. Also, winter is assumed to last eight

months rather than a six-six split to roughly represent academic semesters; this is a coarser

representation than Schenzle’s fine-grained study.

7.3 measles (full) 109

This version of the measles model contains two aspects that have not previously been

tested on the EPA framework. Firstly, the use of variables month and season_time are a different

way of representing rates. Bio-PEPA is capable of defining rates algebraically instead of only

numerically (as they are evolved by the EPA framework). Secondly, the H step (Heaviside)

function used in the definition of the season_time variable. This is a form of switch; it allows

the model to behave differently in summer or winter time. The result of H(n) is 1 if n > 0

otherwise H(n) is 0; in this model, 1 is summer (term time) and 0 is winter (holiday time).

The remainder of the model follows familiar Susceptible-Exposed-Infected-Recovered dy-

namics as seen in previous epidemiological examples. Susceptible individuals (S) will enter

an exposed state (Exp) after participating in the contact action. Once exposed to the measles

virus, an individual will become infected (Inf) after an incubation action is completed. Finally

an individual can enter a recovered (R) state after performing the recover action. Individuals

can enter the system through immigration or birth. Also, individuals in all four states can leave

the system through a death action (die_S, die_Exp, die_Inf or die_R).

The measles model starts with 16, 967 susceptible, 5 infected, 28 exposed and 491, 000

recovered individuals. These figures are taken from the historical data for the city of Leeds

(Figure 7.2, Index 24). Leeds was selected because of its midrange size, not being a capital

and not being a port city. Capital cites and port cities have a more constant level of reported

infections due to their higher levels of immigration. Leeds follows the predicted cyclic

behaviour of having a measles outbreak approximately every two years, as illustrated in

Figure 7.4.

1944 1949 1954 1959 1964
0

500

1000

1500

2000

Year

N
u
m

b
er

o
f

In
fe

ct
ed

Figure 7.4: The number of measles incidents in Leeds between 1944 and 1964

Looking at the incidence of infection, though the cyclic nature is clear, the peaks do not reach

a consistent height. For this reason, experiments with this model use external replications, as

described in Section 4.3.2.2. This adds an additional challenge during these experiments; to

build a custom fitness function capable of capturing these measles outbreaks. A target fitness

trace is not used, because acceptable behaviour allows for these measles outbreaks once every

one to three years. Evolved models that cause no outbreaks to occur, too many outbreaks to

occur, or outbreaks to occur with a poor periodicity will all be scored a poor fitness.

7.3 measles (full) 110

Figure 7.5 illustrates the pseudo code for the custom measles fitness function. An outbreak is

detected through measurement of the area underneath the incidence curve. First, the average

area under this curve is calculated. Next, a travelling window scans across the incidence curve

to calculate the local area under the curve. The default window size is seven datapoints; of

the values between three and nine inclusive, seven correctly identified the most peaks in

the Leeds infection data. This window size can be specified by the user. A spike is detected

by: spike = (local_area > last_local_area) and (local_area / 2) > average_area; if true, a spike is

recorded at the time point ((window_size - 1) / 2) datapoints prior to detection (i.e., the centre

of the window).

1. Average a = AverageAreaUnderIncidenceCurve()

2. Window size w = 7 (by default)

3. Spikes s = null

4. for: Each time-series datapoint p after w

5. if SpikeDetected()

6. s = s + Spike(p, w / 2)

7. if s is empty

8. return fit

9. for: Each spike in s

10. Duration between spikes d = Duration(si, si+1)

11. if d < 2 years→ Decrement fit by 0.3

12. else if d < 3 years→ Decrement fit by 1

13. else if d < 4 years→ Decrement fit by 0.5

14. return fit

Figure 7.5: Pseudo-code for the full measles fitness function

Beyond the need for a custom fitness function, the full version of the measles model offers

additional challenges. The number of rate variables and kinetic actions is larger than previous

experiments, the complexity of the species definitions is also increased.

The floor and season_time variables are not included in this list, the EPA framework is not

able to evolve the algebraic structure for rate variables. The framework was not extended to

do so. This is because the season_time definition (and floor inside that definition) for calculating

the time of year is highly complex and utilises domain knowledge, it would not be expected

for this sort of structure to be evolved. Strictly, this sort of structure could be evolved but

would require a complex fitness function to incorporate the cyclic behaviour; this could be a

possible future experiment, see Section 7.3.3.

7.3.2 Experiment - contact

The first experiment performed with the full measles system was to flag the contact action alone

for optimisation. This is a step back from the simultaneous species and kinetics experiment

performed on the abstracted measles system, described in Section 7.2.3. With the sizeable

7.3 measles (full) 111

increase in complexity, this was a prudent step. Both complexity types increase (Section 2.1);

the organised complexity increases due to the model description with the inclusion of seasonal

and cyclic behaviour and also the disorganised complexity increases with the larger sizes of

the starting populations.

Simulator Variables

Start 0

Stop 7665

Data points 7666

EPA Override Variables

Fitness Measles
Internal replications 1

External replications 10

Independent runs 200

Failure timeout 15s

Table 7.3: Measles SEIR (contact) specific and EPA override parameter values

Table 7.3 illustrates the simulator and EPA override parameters for this experiment. As

discussed with the presentation of the full measles model above, the fitness scoring for this

experiment requires a custom fitness function and external replications. The failure timeout is

the highest amongst experiments run with the EPA framework; this is due to the increase in

organised model complexity as well as the increased number of individuals in the system.

Lastly, the number of independent runs is increased because of a larger number of available

computer nodes at the time.

The EPA framework was unable to locate an appropriate match to the target behaviour.

The strongest evolved individual scored an objective fitness of 44.46% which is orders of

magnitude worse than fitness scores discovered in previous experiments. If using a Euclidean

distance fitness function, this would indicate that almost half of the datapoints in this trace of

the evolved individual were unfit.

The measles experiment uses the MeaslesEvaluator which records spikes, the maximum

number of spikes is dependent on the window size, as described above. Under these conditions,

the objective fitness score is better at 40.44%. The actual worst fitness score is positive infinity

which indicates a violation of the evaluator requirements. No EPA system run resulted in such

a failed individual.

The best evolved individual of the 200 EPA runs is illustrated below alongside the original

target contact definition. Even at first glance, these two definitions are markedly different:

contact original : ((crw ∗ S ∗ Inf)/(S + E + I + R)) ∗ (1− season_time)

+ ((crs ∗ S ∗ Inf)/(S + E + I + R)) ∗ (season_time)

contact evolved : SS−2crsExp+Inf(−crw+Inf(Exp+Inf+R+S)+Exp+Inf+R)+Exp+75Inf+R−Srr+S

+
(
crsExp)rr

− ExpExp + 2Exp − 57Inf + 2R − 52Srr

The evolved definition makes extensive use of the Power (x a) math node despite an increased

penalty being applied to it through the node-weight fitness function (Section 4.3.6). The

Power node is scored equivalent to a Composite node: 2.5x normal and 5x other Math nodes,

see Figure 4.3. This increased penalty for Power nodes was implemented because of their

7.3 measles (full) 112

prevalence in previous SEIR experiments, whereas the operator is rarely utilised in target

definitions. This increased penalty reduced the number of Composite nodes in the evolved

solutions, however the Power node is still frequently used.

This experiment is considered a failure because none of the 200 EPA system runs could

correctly evolve a close match to the target definition. A small measure of success can be

taken from zero of these runs resulting in a solution which violated the MeaslesEvaluator

requirements to cause at least one measles outbreak.

Given the time restrictions, no further work was done with the full measles model. This

experiment still yielded important developments to the EPA framework as well as knowledge

in the domain, as discussed in the following section.

7.3.3 Results Discussion

Given more time, the EPA framework would have been challenged with the normal progression

of experimentation. Starting with contact flagged for optimisation alone and then building

towards more segments being optimised together especially from different portions of the

Bio-PEPA model, as with previous experiments to develop the framework.

Beyond this normal progression, original plans for the full measles system included a

series of experiments to utilise more of the expansive data set available for the measles virus.

The model presented in Figure 7.3 is tuned to the Leeds dataset as illustrated in Figure 7.4.

After successfully evolving a definition based on this dataset, the intention was to verify and

validate the evolved model on cities of similar size by predicting their outbreaks.

The comparison of other features of the dataset was also considered, such as cities with

defining characteristics (ports) or distance components. Grenfell et al. studied the ’travelling

wave of infection’: neighbouring cities will suffer an outbreak shortly after a source city suffers

an outbreak due to immigration. Due to difficulties with the contact experiment and imposing

time restraints these planned experiments were not conducted.

Despite this setback, the full measles system was important for developing the EPA frame-

work. The first significant expansion to the framework was the development of the composite

node (c as discussed in Section 4.1.1.2). Consider the definition of the contact action which is

constructed of 33 nodes. This is a representation of the target solution in the EPA framework

GP node structure, with and without composite (c) nodes:

contact original : ((crw ∗ S ∗ Inf)/(S + E + I + R)) ∗ (1− season_time)

+((crs ∗ S ∗ Inf)/(S + E + I + R)) ∗ (season_time)

contact nodes : ((r m s m s)m (s m s m s m s))m (b m r)m ((r m s m s)m (s m s m s m s))m (r)

contact nodes\w c : (c m c)m (b m r)m (c m c)m (r)

Where r is a rate node, m is a math node, s is a species node and b is a byte node. Firstly,

this is over the 32 node limit for a depth five tree (the EPA framework default), increasing the

7.4 kinetics structure optimisation experiments summary 113

depth to six would allow 63 nodes and cause more bloat in solutions. By incorporating the

composite nodes both the complexity and size of the solution is reduced, the target definition

now contains 13 nodes which could be recreated in a depth four tree.

Even through use of the composite nodes, the tree size is still sizeable compared to previous

experiments; biochemical-reactant product ’alpha : fMA (r)’, two nodes; and the density-

dependent measles system ’contact : rContact ∗ S ∗ Inf ’, five nodes. The penalty applied by

the GP tree-size evaluator fitness function would apply a higher bloat penalty because of

the definition size and could pressure the EPA framework into evolving smaller definitions.

Understanding that smaller does not always result in fitter solutions, the GP node-weight

evaluator fitness function was developed, as described in Section 4.3.6. This development

allowed for kinetic action definitions to be scored based on sensible use of nodes instead of

size alone. The individual weights can also be adjusted by the user to guide the course of

evolution.

During this experiment, all existing fitness functions were modified so they could be applied

in serial; i.e. multiple fitness functions could be applied to one solution. This provides further

choice to the user of the EPA framework by allowing any number fitness functions to be

combined. The penalties applied by fitness functions are done so additively, so the order in

which fitness functions are applied is irrelevant to the final fitness score. This serial design of

fitness functions is in keeping with the ECJ toolkit’s design.

7.4 kinetics structure optimisation experiments summary

This chapter presented the application of Genetic Programming (GP) optimisation techniques

to Bio-PEPA models with the goal of evolving fitter kinetic action definition structures. Bio-PEPA

models used during this chapter have been encountered in previous chapters; they are

complete and had some or all kinetic definitions removed to be rediscovered during optimisa-

tion. By using complete models, evolved solutions can be compared to the original Process

Algebra (PA) model definitions. To further test the Evolving Process Algebra (EPA) frame-

work, some kinetics experiments were run with kinetics and species flagged for optimisation

simultaneously.

The performance of the EPA framework during the GP experiments of this chapter was

weaker than in previous experiments. The level of organised complexity (Section 2.1) increases

when working with kinetic actions. This stretched the abilities of the Euclidean distance fitness

measure. The need for custom fitness functions is discussed in Section 9.2.

Original plans for the EPA framework during this chapter included more experiments than

were accomplished in the allotted time. Important developments included the composite

node c (Section 4.1.1.2), the node-weight evaluator fitness function (Section 4.3.6) and the

serialisation of the fitness functions for scoring based on multiple criteria simultaneously.

8
PA R A M E T E R M AT C H I N G & S T R U C T U R E O P T I M I S AT I O N

Work detailed in previous results chapters focused individually on Genetic Algorithm (GA)

parameter matching followed by Genetic Programming (GP) structure optimisation, the focus

then moved to combining the two approaches to function simultaneously. The Bio-PEPA Process

Algebra (PA) continued to be used exclusively during this stage of work, however the EPA

framework remained capable of simulating PEPA models.

Though not mutually exclusive, using Genetic Algorithms and Genetic Programming

techniques simultaneously has inherent difficulties which must be overcome. Consider a

species definition S that can take action A at rate R. If R evolves a zero or near-zero value, A’s

impact on the individual’s resultant fitness will be zero or negligible, despite A’s definition.

In resultant generations, S could have the entire definition of A removed, along with any

latent behaviour associated with A. While not necessarily incorrect, this interaction between

GA parameter matching and GP optimisation techniques could lead to failed individuals or

premature convergence on local optima.

During this transition, it was a simple step to extend the GA parameter matching behaviour

to the system equation values. The EPA framework is able to evolve the starting population

levels (also called initial conditions) of a system. Many systems will have known starting

values, rendering this extension redundant. However, some systems may have a snapshot

state of a system and require working backwards to the starting population levels, allowing

domain experts insight into the system.

Model specific organised complexity is more important than with previous work. The

changes that simultaneous GA parameter matching and GP model optimisation techniques

bring can have a large impact on the resultant model’s behaviour. One must not overpower

the other; in addition to balancing exploration and exploitation, the GA and GP influences

must also be balanced.

8.1 biochemical reactant-product

8.1.1 Background & Model

The biochemical reactant-product system is one of the simplest Bio-PEPA models, previously

explored in Section 6.1 for species optimisation and again in Section 7.1 for kinetic action

optimisation. It represents the 2X + Y→ 3Z reaction, meaning two molecules of X and one

114

8.1 biochemical reactant-product 115

molecule of Y are consumed to produce three molecules of Z. The model was also presented

previously in Figure 6.1.

This model was previously chosen for use with the EPA framework because of the small

number of components to work with and the associated limited search space. Starting a new

level of work, this model was revisited for the same reasons.

When working with species optimisation, the search space consisted of 150 points (Sec-

tion 6.1). Later, when working with kinetics optimisation, the search space consisted of

approximately 241 points (Section 7.1). The size of the search space for rate optimisation is

dependent on the number of rates flagged for optimisation, the permissible range for these

rates and their granularity.

The EPA framework is capable of storing double values to sixteen decimal places. Likewise,

the search space for population optimisation is dependent on the number of population values

flagged for optimisation and their permissible ranges. The size of the search space is larger

when working with simultaneous optimisation as it will combine the search spaces of two or

more of the search spaces described above.

8.1.2 Experiment - all segments

The first experiment performed for the simultaneous GA and GP definition optimisation

flagged all segments of the biochemical reactant-product model: one rate, the release rate

r; one kinetic action, alpha; three species, X, Y and Z; finally, three initial populations for

these species. As noted above, the search space for this experiment is sizeable. In practice,

it would be unlikely that an EPA framework user would flag every evolvable segment of a

model simultaneously. A domain expert would have some knowledge of a system’s function

that could be defined in a model. However, this experiment focused on integration of the

code required to simultaneously utilise the GA and GP aspects of the EPA framework and the

underlying ECJ toolkit.

Unlike the species experiment in Section 6.1, but similar to the experiment in Section 7.1,

the large search space offers a challenge for the original definition segments to be correctly

rediscovered.

Simulator Variables

Start 0

Stop 99

Data points 100

EPA Override Variables

Fitness Euclidean
Failure timeout 7s

Table 8.1: Biochemical (alpha) specific and EPA override parameter values

Table 8.1 presents the simulator and EPA override parameter settings for the biochemical

reactant-product model. The model specific settings are unchanged from previous experi-

8.1 biochemical reactant-product 116

ments. The Euclidean distance fitness function is used, this keeps the focus on integration of

simultaneous optimisation into the EPA framework.

Considering the size of the search space, it is unsurprising that the target definition was not

rediscovered in its entirety. The EPA system runs returned solutions ranging from 0.40% (best)

to 1.21% (worst) objective fitness scores; these scores are not as strong as previous biochemical

experiments but appear to be reasonable matches to the target trace. In actuality, the traces do

not exhibit the expected reduction in X and Y and increase in Z species levels. The Euclidean

distance fitness measure matches enough of the datapoints to consider the results to be a

strong match despite this.

Starting with rate r, there was no consistent answer across the solutions from the 50 EPA

system runs. The solutions were distributed across the available range with a dip in the 2.5 to

3.5 range, as illustrated in Figure 8.1.

0 1 2 3 4 5

0

1

2

3

4

5

6

reaction rate: r

C
o
u
n
t

Figure 8.1: Histogram plots for biochemical reactant-product: r

The lack of consistency in the histogram can be explained by the use of rate r. Normally the

biggest influence on the course of evolution is the fitness function. However, the use of the

rate r in a kinetic action definition will have a bigger influence. Consider a kinetic action being

flagged for optimisation which uses a rate, how that rate is utilised will vary from individual

to individual. This will lead to an inconsistent spread, as observed in Figure 8.1.

The optimisation of the kinetic action alpha was far more successful. The most frequently

evolved definitions used the mass action function on rate r or the rate alone:

alpha original : fMA (r)

alpha evolved : r

alpha evolved : fMA (r)

Curiously, another commonly evolved solution uses the ’r m r ’ structure, where m is a math

node (+, -, / or *). The selected math operator caused the accompanying evolved rate to

approach the original target rate. This could indicate the optimisation was attempting to

recreate the ’r ’ definition as resulted from other EPA system runs.

Continuing on to the evolved species definitions, these are the strongest segment of this

experiment. This could be explained by the comparatively small search space for species

compared to the other segments. However, should the other segments evolved around the

species result in a poor fitness score, the target definition may be evolved but not be selected

8.2 kinetics structure optimisation experiments summary 117

for. The target X definition was rediscovered in 70% (35 of 50) and the target Y definition was

rediscovered in 88% (44 of 50) of EPA system runs, therefore both correct definitions dominate

their respective species analysis.

The target definition for Z was rediscovered only in 18% (9 of 50) of runs, Figure 8.2

illustrates the Z species analysis. It would be expected that the rediscovery rate of species

Z would be higher considering the success with the X and Y species. However, the starting

populations (initial conditions) of the species will influence the definitions evolved. This is

because of the how the Euclidean distance fitness function operates. Instead of X and Y levels

lowering to produce Z, Z levels could start high due to the optimisation of initial conditions.

The aim of the function is to match the species populations at each time step; if the starting

population for Z starts high, the majority of the Euclidean distance score will be strong.

alpha H-L Z

alpha << Z

alpha >> Z

alpha H+L Z

alpha H.L Z

0 2 4 6 8 10 12

Figure 8.2: Species analysis for biochemical reactant-product: Z

The evolved values of the initial conditions was the weakest part of this experiment. Ideally

the original values (X = 200, Y = 100, Z = 0) would have been rediscovered; if not that, then

the ratio of 2:1:0 instead. However, the EPA runs did not return any such consistency. Given

more generations in the system run, it could be possible to evolve this pattern. Commonly, this

sort of desired behaviour would be selected for by the fitness function; however, the Euclidean

distance fitness function was used in this experiment for the focus to remain on integration.

8.2 kinetics structure optimisation experiments summary

This chapter presented the simultaneous application of Genetic Algorithms (GAs) and Genetic

Programming (GP) optimisation techniques to Bio-PEPA models with the goal of evolving

rate and population values in tandem with kinetic action and species definitions. Only a

single experiment was performed during this chapter with the emphases on ensuring correct

operation with all segments flagged.

The integration of simultaneous GA and GP optimisation was a success. It is unlikely that a

domain expert would flag every evolvable segment. However, if done, the framework can still

provide general insight to the user. The more domain knowledge provided, the more specific

the EPA framework’s results will be. Moving forwards with simultaneous optimisation, more

encompassing fitness functions will be required to guide the path of evolution.

9
C O N C L U S I O N

Through the course of this research, the combination of Evolutionary Computation (EC) tech-

niques and Process Algebra (PA) modelling have been combined into the Evolving Process

Algebra (EPA) framework. The framework supports two Process Algebras for model descrip-

tions: Performance Evaluation Process Algebra (PEPA) and the more Biologically-Inspired

PEPA (Bio-PEPA). The EPA implements Genetic Algorithms (GAs) for parameter value fitting

of rate and/or initial population levels. In addition, Genetic Programming (GP) optimisation

techniques are used to evolve the structures of Bio-PEPA models for fitter species and/or kinetic

action definitions.

The EPA framework is built on top of the Evolutionary Computation Java (ECJ) toolkit to

make use of the extensive library of standard EC operators. This includes the framework of a

population of individuals spanning multiple generations, as well as the tournament selection,

one-point crossover and generational replacement operators as described in Chapter 2.

The EPA framework was successfully extended with many additional features; extension

was done in an abstract, modular way in keeping with the ECJ toolkit’s design. Through

abstraction, implemented extensions may be further extended for minor changes. Modularity

allows for entire sections to be swapped as required by the user; for instance, custom fitness

functions.

Further important developments and contributions include the GP tree structures to rep-

resent Bio-PEPA species and kinetic action definitions. Due to the strict nature of species

definitions, the EPA framework had to restrict crossover functionality to identical edges in par-

ents (Section 4.3.10.2). Initially, the kinetic action definition experiments performed poorly in

comparison to previous experiments. The EPA framework was extended with novel methods of

improving kinetic experiments: the point kinetic mutation operator (Section 4.3.10.3), incorpor-

ating domain knowledge through ban lists (Section 4.3.1), adaptive depth bias (Section 4.3.10.5)

and kinetic rebreeding (Section 4.3.10.4).

Pertinent to all EPA experiments, the framework also attempts to reduce the number

of known failures before wasting time on simulation, thus increasing validity of results

(Section 4.3.11). Finally, the EPA framework novelly handles external replications to reduce

stochastic noise in cyclic systems while simultaneously reducing obfuscation of system

behaviours (Section 4.3.2.2).

The remainder of this chapter is split into three sections. Firstly, in Section 9.1, the progress

of the work presented with this research is compared to the original thesis statement proposed

118

9.1 thesis statement 119

at the work’s commencement. Secondly, in Section 9.2, a discussion of the requirements

of custom fitness functions for higher complexity problems while considering the No Free

Lunch (NFL) theorem [69]. Finally, possible improvements and extensions to the EPA framework

and EPA Utility Assistant are detailed in section 9.3.

9.1 thesis statement

The primary aim of this research was the development of a bridging framework to combine

Evolutionary Computation techniques with Process Algebra models with the goal of assist-

ing domain experts. The development of the EPA framework is the result of this and has

successfully applied GA and GP techniques to models written in PEPA and Bio-PEPA.

The EPA framework was to include prebuilt constructs to improve experimental results

in the domains of biological and epidemiology. The composite node (c, as described in

Section 4.1.1.2) successfully fulfils this role by modelling commonly appearing system qualities.

This includes density-dependent transmission, frequency-dependent transmission and the

sum of individuals in a population.

To assist in the use of the EPA framework, a command-line entity, a user interface needed

to be created. The EPA Utility Assistant, as detailed in Appendix A, provides two forms of

support in using the framework. This is a complimentary program that successfully provides

a user interface for the domain expert to use the EPA framework.

9.2 custom fitness functions

Towards the latter experiments conducted in the course of this research, it became apparent

that basic or ’catch-all’ fitness functions would not suffice to accurately capture all of the

target behaviours in an evolved Process Algebra definition. The fitness functions in the EPA

framework are modular in design and can be applied in serial. This serialisation allows for

multiple fitness functions to be applied to one individual to score additively on multiple

criteria. The modularity allows for the simpler fitness functions (such as Euclidean distance

measure fitness function 4.3.4) to be built upon to satisfy model specific requirements.

The No Free Lunch (NFL) theorem was discussed in Section 3.4. To reprise, NFL posits that all

optimisation algorithms that search a problem space have a cost for doing so. When averaged

across all possible optimisation problems, all algorithms of a given cost perform equally well.

For an algorithm to improve its performance to solve a particular problem, it must become

less suited to solving problems in other areas; i.e. the cost must be paid from its performance

to solve other problems.

The Euclidean distance measure fitness function is all-purpose so does not invest cost into

any particular domain. Consider the GP tree-size fitness function (Section 4.3.5) which scores

9.3 potential developments 120

solutions based on their size to reduce bloat. This fitness function specialises by forfeiting

performance in solving non-GP tree problems in order to score individuals based on their

definition size.

It’s impractical to assume one fitness function will be equally successful for all problems it

is applied to. The EPA framework and the included fitness functions do not promise to solve

all problems. The framework has a collection of fitness functions designed to offer a user

strong scoring solutions to a problem which may not necessarily be the global optimum.

Due to the size of search spaces associated with complex problem, finding the global

optimum to a problem becomes intractable. Custom fitness functions can alleviate some of

this difficulty with the associated cost of specialisation. Particularly complex problems in this

research have warranted custom fitness functions: the Repressilator system (Section 5.4) and

the final measles system (Section 7.3).

The fitness function is one of the major influences on the course of evolution. Even a

well-considered and properly implemented custom fitness function can lead to unexpected

outcomes, this is due to EC techniques and their propensity to exploit shortcuts. Care must be

taken when creating a custom fitness function to avoid such shortcuts; for instance, the lack of

a maximum protein expression limit in the Repressilator fitness function.

If creating a fitness function is so tricky, the question could be asked as to why creating

one is worth the effort, such effort could be put into writing Process Algebra models by

hand. By writing a model by hand, the result will entirely be the writer’s intuition. Using

an assistive tool such as the EPA framework allows for the search space to be explored and

provide possible insights to the user. A custom fitness function allows for a middle ground of

searching a problem space and garnering insights whilst also incorporating a domain expert’s

intuition and knowledge.

9.3 potential developments

The EPA framework was developed for this research to apply Evolutionary Computation

techniques to models written in Process Algebras to assist domain experts in modelling. As

discussed with the thesis statement in Section 9.1, this goal has been successfully achieved.

However, through the course of this research possible improvements have arisen. Not all

such improvements could be implemented in the given timescale, the remainder of this section

discusses possible future developments which could improve the EPA framework.

9.3.1 Supported Representations

The first obvious extension to the EPA framework would be to increase the number of supported

representations. Due to the modular design of the framework, one interface class is responsible

9.3 potential developments 121

for interacting with the model representation. This choice attempts to make future extension

easier. GA operators for optimisation rate variables would function immediately, whereas GP

techniques would require a tree structure to be defined.

Beyond Process Algebras, the first choice of representation would be Ordinary Differential

Equations (ODEs). The application of GP techniques to ODE models is discussed with the related

work in Section 3.3.1. From this discussion the approach is feasible, incorporating it into the

EPA would allow greater flexibility for the user.

9.3.2 Smarter Ban List

The action ban list is a function designed to utilise domain knowledge when working with

species GP definition trees (Section 4.3.1). The ban list functions by associating a species

identifier with a list of kinetic actions that it cannot utilise during optimisation.

During the frequency-dependent transmission measles model experiment (Section 6.2), this

version of the ban list revealed a weakness. Due to how the Euclidean distance fitness function

scored individuals in that experiment, the results became saturated with Inf def
= recover� Inf .

This means the recovery action increases the number of infected individual; this is counter-

intuitive and biologically inaccurate. However, the recover action could not be added to the

ban list for the infected species because the action is required but with a different operator:

’recover� Inf ’, so recover reduces the number of infected.

The solution to this problem would be reworking the ban list to increase its flexibility.

Instead of pairing species identifiers with a list of kinetic actions, the species would be paired

with a list of kinetic actions which in turn would be paired with Bio-PEPA operators. Only

the combination of all three would be restricted, therefore other combinations would still be

permissible.

9.3.3 Equality Engine

The equality engine was first mentioned in the density-dependent transmission measles model

which flagged the contact kinetic action (Section 7.2). An equality engine would operate on

kinetic GP definition trees by associating raw numbers (byte nodes) with rate values which

closely match. If the number is within a user-specified tolerance, the byte node would be

altered to a rate node defined as the matched rate.

The benefits of such an engine include assisting the optimisation of definitions which

attempt to recreate a rate variable with a number variable. Additionally, this could also reduce

the size of the kinetic definition tree. The decimal 1.5 (represented as 3/2) consists of three

nodes (byte math byte). If this value was replaced with a rate variable, the tree size would

reduce from three nodes to one, helping to alleviate bloat in kinetic GP definition trees.

9.4 moving forwards 122

A negative side-effect of this could be false equivalencies being discovered and the rate

nodes causing poorer solutions to be created by interrupting the normal course of optimisation.

This problem would be compounded if combined with the algebraic simplification engine,

as described in the following subsection. Despite these negatives, the equality engine could

improve fitness scores in kinetics problems if used with care, similar to the utilising domain

knowledge feature (Section 4.3.1).

9.3.4 Algebraic Simplification Engine

The algebraic simplification engine was contemplated from the beginning of kinetic action

definitions because of their likelihood to bloat. This could be a possible solution to reduce

bloat as well as make the final evolved definition more human readable. Consider an example

kinetic action with a simple but repetitively evolved structure:

contact : S + S + S (5nodes) → 3 ∗ S (3nodes)

The algebraic simplification engine would reduce the number of nodes from five to three. This

is a simplified example but is still useful. The most extreme example would affect a kinetic

action definition with a lot of byte nodes:

contact : <a set of math & byte nodes> ∗ 0 (nnodes) → 0 (1node)

In this example the number of nodes is reduced by n-1. Whilst making kinetic GP definition

trees smaller and more readable, this example illustrates the biggest negative of a algebraic

simplification engine: by refactoring portions of the GP tree, the number of possible nodes

available for breeding operators (Section 4.3.10.3) is reduced. This could cause mutator

operators to have a larger effect than expected and could cause crossover operators to move

smaller but more influential subtrees.

When discussing the equality engine above, it was noted that combining the equality engine

with the algebraic simplification engine a problem could arise. If a byte node (or collection

of byte nodes) is equated to a rate variable, that rate variable could then be regressed into a

simpler form. This change could hide or entirely remove the traits which made the original

individual desirable. Similar to the equality engine, if implemented, care should be taken if

using the algebraic simplification engine.

9.4 moving forwards

During the course of this research, the two main software developments have been the

Evolving Process Algebra (EPA) framework and the EPA Utility Assistant, introduced and

detailed in Chapter 4 and Appendix A respectively. The previous section discussed possible

9.4 moving forwards 123

extensions to both to provide more possible functionality to domain experts; who these experts

are and how they would utilise the EPA framework are important questions.

Through the experiments conducted in this work, particularly in GP optimisation experi-

ments, the focus was on biological and epidemiological domains. The EPA framework remains

generic enough to be applied to many other domains and its modular design would allow for

domain-specific changes to be incorporated. Experiments performed focused on integration

and testing of features and how well the framework was able to rediscover removed segments

of complete models. Interactions and input from domain experts at this point have been low;

work to this point could be considered a preparatory step before focusing on delivering the

EPA framework’s functionality.

The future of this work is in modelling unknown systems to aid domain experts in the

field. This would be done working in tandem with those experts. One avenue considered was

working with local fish farms in modelling parasite spread in and between tanks. Work would

proceed collaboratively to develop the functionality of the EPA framework and the interface of

the EPA Utility Assistant.

The final goal of the EPA framework would be to have its functionality and customisability

entirely accessibly to the domain expert. This would be without any requirement of Java

libraries, knowledge of ECJ or either Process Algebra plug-ins, or the input of a coder.

A
A P P E N D I X A : E PA U T I L I T Y A S S I S TA N T

The EPA Utility Assistant was first described in Chapter 4 with the implementation details

of the EPA framework and its relation to the HTCondor system as used for parallelisation.

HTCondor (called Condor until 2012) is a high throughput computing toolkit maintained by

the University of Wisconsin-Madison and is designed to distribute experiments over multiple

available nodes [66]. HTCondor and the EPA framework are both designed to run at the

command-line level and so have no graphical user interface.

The EPA framework is designed to assist domain experts in modelling complex systems and

as such should require no knowledge of command-line interfaces or HTCondor’s operation.

The EPA Utility Assistant is designed to bridge the gap between the domain expert and the

backend functionality of the EPA framework plus the parallelisation of the HTCondor toolkit.

Since the majority of functionality offered by the framework is for Bio-PEPA models this is what

the assistant program supports.

This assistant program is a simple graphical user interface split into two tabs. The EPA Condor

Assistant is designed to assist with preparing experiments and posting them to HTCondor

nodes. The EPA Results Collator is designed to collate the various results files produced by the

framework from across those nodes. Both tabs are discussed in detail over the following two

sections.

a.1 epa htcondor assistant

The HTCondor toolkit offers the ability to parallelise EPA system runs and thus allowing to

significantly cut down on the time requirements of Process Algebra simulations. The downside

of this approach is the setup required by the HTCondor toolkit by the user. Additionally, the

EPA framework and ECJ toolkit both also require setup. The following files are required for a

typical experiment:

epa framework : EPA archive (.jar), Bio-PEPA model (.biopepa), target trace (.txt)

ecj library: ECJ archive (.jar), Parameters (.params)

htcondor : Submission (.sub)

The HTCondor toolkit does not support a multilayer folder structure, so all files for a

particular experiment must be stored in one folder. The java archive (.jar) files for the EPA

framework and ECJ toolkit must also be included. The EPA framework requires the Bio-PEPA

124

A.1 epa htcondor assistant 125

model: this may be complete or partially complete, as described in Section 4.3. Normally, a

target trace is required which encapsulates the target behaviour. The EPA framework may not

require a target trace file, depending on the fitness function used; for instance, the repressilator

system (Section 5.4) cannot be matched to a trace due to the cyclic and unpredictable properties

of the system, therefore no trace file is required.

The ECJ toolkit accepts user specified variable settings through parameter files. In keeping

with this format, the EPA framework uses parameter files to take in parameter values: the

default parameter set is illustrated in Section 4.2.

Finally, the HTCondor toolkit requires a submission file which lists all files required for

an experiment along with the behaviour of the HTCondor nodes and their outputs. The

behaviour includes the memory allocation, operating system requirements and the number

of nodes to post separate experiments to. How the results are returned and processed is

discussed in Section A.2.

Figure A.1: The EPA Utility Assistant - HTCondor assistant view

Figure A.1 illustrates the EPA Utility Assistant when first launched in the default HTCondor

assistant tab. The first step in using the assistant is to select a complete or partially complete

Bio-PEPA model file (.biopepa). This can be done by manually typing the file location in the

input field or using the search function. Additionally, the input field has an autocomplete

function (triggered by ctrl + space) which acts as a search if utilised when blank. If multiple

Bio-PEPA files are found, they will be listed in the drop-down portion of the input field: this list

persists until the assistant is reset so further experiments can be created after the first without

having to search again.

Once a Bio-PEPA file has been selected, the model will be scanned and the individual

components will be identified. Figure A.2 illustrates the component selector window of the

assistant. The identified components are listed vertically by type and sorted in the order that

they spprst in the Bio-PEPA model. Sorting this way allows for components to be found quickly

by those familiar with the model. In this example, the release rate r and species definitions X,

A.1 epa htcondor assistant 126

Y and Z from the biochemical reactant-product (Section 6.1) example have been flagged for

optimisation.

Figure A.2: The EPA Utility Assistant - component selector view

If a rate or population is flagged for optimisation, the minimum and maximum bounds for

that segment need to be specified: the <R MIN> and <R MAX> fields in this example. The

bounds of kinetic and species definitions can be inferred from the Bio-PEPA model. Note, this

simplified view assumes the permissible range for each rate is the same to not overcomplicate

the interface. If this assumption is not true, the ranges can be specified individually in the

parameter selector.

Once the components to be flagged have been chosen, the experiment parameters need to

be defined; Figure A.3 illustrates the parameter selector interface. By default, the file name

is the same as the Bio-PEPA file from which the model was scanned, the default target name

appends "Target.txt" and the project folder name appends the flagged components. The target

trace is assumed to be required and in the same folder as the Bio-PEPA model; unchecking

the trace box removes this requirement the search feature can be used to find a trace located

elsewhere.

Figure A.3: The EPA Utility Assistant - file parameter selector view

The <Parameter> - <Value> paired input fields allow for the user to specify any parameter,

these will then appear in the table to the right-side. This feature is aimed at users with a

higher knowledge of the EPA framework and/or ECJ library, the format of the parameter names

A.2 epa results collator 127

is highly specific: some examples are given in the example table. This can be done to specify

new parameters or override existing ones; if a parameter is specified multiple times, the most

recent occurrence will take precedence. Inside the EPA Utility Assistant structure there is a file

which contains a list of default parameters and their values. This file can be appended or

changed if the user frequently uses a particular set of parameters.

After the Bio-PEPA model, flagged components and any parameters have been chosen, the

final stage of the HTCondor assistant is the file generation, as illustrated in Figure A.4. Before

generating files any choices made can be amended, the system can go back to the search result

list or the assistant can be reset entirely.

Figure A.4: The EPA Utility Assistant - HTCondor assistant ready view

Once finalised, all files required for an experiment are generated in a new folder. If the

folder name is already taken, an increasing numeral is appended until the name is available.

In addition to the required files, a read-me file is generated with detailed directions in how to

submit the experiment to the HTCondor nodes.

a.2 epa results collator

The second half of the EPA Utility Assistant is designed to assist the user with results collation.

The output from one HTCondor node is four results files: as discussed in Section A.2.1. The

collator extracts the typically most useful aspects of the outputs and creates up to three (four

with species optimisation) final results files, see Section A.2.2.

By default, an optimisation experiment is run independently on 50 HTCondor nodes which

equates to 200 raw results files. The collator was originally developed to reduce the amount of

transfer time required to pull results from a remote server: reducing the number of files from

200 to three. The key usefulness of the collator is in automating the post-experiment result

processing, which is why it was added to the EPA Utility Assistant.

A.2 epa results collator 128

Figure A.5 illustrates the EPA Utility Assistant when first switched to the results collation

tab. The first step is to select a set of results to collate, this is done by choosing a filename

prefix. The standard EPA framework output has each result file prefixed with a specified name,

thus allowing results from a particular experiment to be identified. Similar to the HTCondor

Assistant tab, this input field has an autocomplete feature which functions as a search if

performed on an empty field. If more than one set of results is found, the drop down list will

show them all. The default output prefix is the same as the input prefix and the number of

files found is provided as well.

Figure A.5: The EPA Utility Assistant - results collator view

The amount of result processing can be controlled by the three checkboxes towards the

bottom of the interface. The files created by each option will be detailed in Section A.2.2. First,

the raw results collected for collating will be discussed.

a.2.1 Raw Result Files

Each EPA system run has four files which are created. The detail and number of files can be

controlled by the user through parameter values but the default is for all output to be recorded.

The following sections detail the four output files, the headers are the suffix appended to the

output prefix.

a.2.1.1 -Fitness.csv

The fitness file records the fitness outputs from the best individual of each generation for each

subpopulation. The fitness score is recorded with the trace score and any penalties which are

applied.

Additionally, the number of successful versus failed individuals in the generation is recorded.

This is after any validity increasing action to reduce the number of failed individuals, as

A.2 epa results collator 129

described in Section 4.3.11. In experiments with kinetic actions flagged for optimisation, the

number of kinetic violations (Section 4.3.10.3) is also recorded.

a.2.1.2 -GenerationalOutput.txt

The generational output log records every individual which appears in an EPA system run,

organised by subpopulation then generation. All details about an individual are recorded,

including the fitness score, trace score, any penalties, the individual’s success status, whether

it includes a kinetic violation and the definitions for all flagged segments, sorted by segment

type.

Fitness Trace Bloat Suc? Vio? Kinetics: alpha

2983.19 2983.19 3.97E-05 true false | (X + Y + Z)

0.048534 0.048455 7.94E-05 true false | fMA(r)

infinity ~ ~ false false | (Z - X)

588.8584 588.8582 1.19E-04 true false | ((X + Y + Z) / 5)

1.661178 1.661059 1.19E-04 true false | (r / 24)

In addition to the example output, compiler messages are also recorded in the generational

output. These messages come in three categories of rising severity: info, warning and error. An

info message does not impact the validity or simulation of an individual but may be of interest

to the user: Info: Definition declared but not used. A warning message refers to

the validity of an individual but can still be simulated, these will include Bio-PEPA syntax

violations and other possible impacts to the simulated results: Warning: The rate alpha

does not rely on X. Population could decrease below zero. An error message

indicates the individual contains some fatal error which will prevent simulation, due to

the validity checks (Section 4.3.11) in the EPA framework these are not common: Cannot

evaluate the expression.

The generational log is primarily for debugging purposes but can be used to track the areas

of the search space which have been explored during the course of evolution.

a.2.1.3 -Subpop-x-Solution.txt

The solution file is the best individual of a given experiment; one per subpopulation. The x

in the suffix is the subpopulation to which the individual belonged. If the experiment run

is interrupted (such as by an HTCondor node being required by another user), the solution

file notes which generation had been reached prior to interruption. If the experiment later

resumes, the solution file is amended.

This result file includes the modes utilised during optimisation; i.e. which general segments

of the Bio-PEPA model have been flagged. The fitness score, including a penalty breakdown and

sub-fitness scores if the experiment is multimodal, see Section 4.1. Finally, a list of evolved

segments for each flagged component is included.

A.2 epa results collator 130

a.2.1.4 -Subpop-x-Trace.csv

The trace file is the companion to the solution result file discussed above. Similarly, there is

one file per best individual per subpopulation and the x in the suffix is the subpopulation to

which the individual belonged. Also like the solution file, the trace result file records which

generation has been reached, in case of interruption.

The trace file repeats the fitness score of the individual, along with the fitness penalty

breakdown. The primary use of the trace file is to record the output trace from simulating the

evolved individual. This can be used to debug the fitness function and also provide insight to

the evolved behaviour to the user.

a.2.2 Processed Result Files

The EPA Utility Assistant extracts information from the raw results files created from the EPA

executions on the HTCondor nodes, as discussed in Section A.2.1. This is done to produce the

finalised results files. Which processed results files are to be created is controlled by the user

via the checkboxes, as seen in Figure A.5. By default, all checkboxes are selected. As with the

raw results files described in the previous section, the following section headers are the suffix

appended to the output prefix.

a.2.2.1 -Results.txt

If the Best Individuals checkbox is selected, the results file is created. This file will consist of

the singular best individual from every EPA system run: one individual per line where each

column is a definition for a flagged segment, sorted by segment type. The EPA system run

identifier number is also included, so the raw results files for a particular run can be further

investigated if required.

If a rate or population segment is flagged, the assistant can produce additional output in the

form of mean, median and standard deviation values. Kinetic and species segments cannot be

so easily analysed, for species specific analysis output see Section A.2.2.3.

a.2.2.2 -FitnessTrace.csv & -Chart.png

The fitness trace and fitness chart are related files but controlled separately through the Fitness

Trace and Produce Graph checkboxes respectively. The fitness chart produces the generational

best fitness scores: one EPA system run per row.

The fitness graph is produced based on this trace; an example from the biochemical reactant-

product experiment is illustrated in Figure A.6. The graphical processing behind the fitness

graph is supplied by the JFreeChart open source graphical Java library [51]. The graph displays

the average fitness scores over the number of generations and includes the weakest recorded

A.2 epa results collator 131

best individual, the fittest recorded best individual and the median point with quartiles:

colour coded red, yellow and green respectively.

Figure A.6: The EPA Utility Assistant - fitness graph output

The data for the fitness graph is taken from the fitness trace data. If the fitness graph is

selected for production without the fitness trace file, the EPA Utility Assistant performs the

calculations internally without creating the fitness trace file.

a.2.2.3 -SpeciesAnalysis.txt

The species analysis file is only applicable to experiments where one or more species segments

are flagged for optimisation. This results file is created with the best individuals index, as

detailed in Section A.2.2.1, if the Best Individuals checkbox is selected.

The species analysis file contains the processed data of how many of each definition segment

appears across best individuals from all EPA system runs. The species analysis images which

appear in Chapter 6 have been further processed with the Mathematica 9 library.

B I B L I O G R A P H Y

[1] Ágoston E Eiben and Thomas Bäck. Empirical Investigation of Multiparent Recombina-

tion Operators in Evolution Strategies. Evolutionary Computation, 5(3):347–365, 1997.

[2] Thomas Bäck, David B Fogel, and Zbigniew S Michalewicz. Evolutionary Computation 1:

Basic Algorithms and Operators. Taylor & Francis, 2000.

[3] Thomas Bäck, David B Fogel, and Zbigniew S Michalewicz. Evolutionary Computation 2:

Advanced Algorithms and Operators. Taylor & Francis, 2000.

[4] Jos C M Baeten. A Brief History of Process Algebra. Theoretical Computer Science, 335

(2/3):131–146, 2005.

[5] Yifei Bao, Adriana B Compagnoni, Joseph Glavy, and Tommy White. Computational

Modeling for the Activation Cycle of G-proteins by G-protein-coupled Receptors. In

Proceedings of the 4th Membrane Computing and Biologically Inspired Process Calculi, pages

39–53. Open Publishing Association, 2010.

[6] Chris P Barnes, Daniel Silk, and Michael P Stumpf. Bayesian design strategies for

synthetic biology. Interface Focus, 1(6):895–908, 2011.

[7] Nils Aall Barricelli. Esempi numerici di processi di evoluzione. Methodos, pages 45–68,

1954.

[8] Michael Begon, Malcolm Bennett, Roger G Bowers, Nigel P French, S M Hazel, and

J Turner. A clarification of transmission terms in host-microparasite models: numbers,

densities and areas. Epidemiology and Infection, 129:147–153, 2002.

[9] Soufiene Benkirane. Process algebra for epidemiology: evaluating and enhancing the ability of

PEPA to describe biological systems. PhD thesis, University of Stirling, 2011.

[10] Soufiene Benkirane, Jane Hillston, Chris McCaig, Rachel Norman, and Carron Shank-

land. Improved Continuous Approximation of PEPA Models through Epidemiological

Examples. Electronic Notes in Theoretical Computer Science, 229(1):59–74, 2009.

[11] Soufiene Benkirane, Rachel Norman, Erin Scott, and Carron Shankland. Measles Epidem-

ics and PEPA: An Exploration of Historic Disease Dynamics Using Process Algebra. In

FM 2012: Formal Methods, volume LNCS 7436, pages 101–115. Springer Berlin Heidelberg,

2012.

132

bibliography 133

[12] Ralf Blossey, Luca Cardelli, and Andrew Phillips. A Compositional Approach to the

Stochastic Dynamics of Gene Networks. Transactions on Computational Systems Biology,

3939:99–122, 2006.

[13] Jol Bockaert, Philippe Marin, Aline Dumuis, and Laurent Fagni. The ’magic tail’ of G

protein-coupled receptors: an anchorage for functional protein networks. . FEBS Letters.

Signal Transduction Special Issue, 546(1):65–72, 2003.

[14] Benjamin Bokler. Chaos and complexity in measles models: a comparative numerical

study. Mathematical Medicine and Biology, 10:85–93, 1993.

[15] Jeremy T Bradley and Thomas Thorne. Stochastic Process Algebra Models of a Circadian

Clock. In Simulation and Verification of Dynamic Systems. Internationales Begegnungs und

Forschungszentrum für Informatik (IBFI), 2006.

[16] Jeremy T Bradley, Stephen T Gilmore, and Jane Hillston. Analysing Distributed Internet

Worm Attacks Using Continuous State-Space Approximation of Process Algebra Models.

Journal of Computer and System Sciences, 74(6):1013–1032, 2008.

[17] Hans J Bremermann. Optimization Through Evolution and Recombination. In Self-

Organizing Systems. Spartan Books, 1962.

[18] Hongqing Cao, Lishan Kang, Yuping Chen, and Jingxian Yu. Evolutionary Modeling of

Ordinary Differential Equations for Dynamic Systems. In GECCO 1999: Proceedings of the

Genetic and Evolutionary Computation Conference, pages 959–965, 1999.

[19] Giuliano Casale and Mirco Tribastone. Process Algebraic Modelling of Priority Queueing

Networks. In Proceedings of the 9th Workshop on Process Algebra and Stochastically Timed

Activities. PASTA, 2010.

[20] Federica Ciocchetta and Jane Hillston. Bio-PEPA: a Framework for the Modelling and

Analysis of Biological Systems. Theoretical Computer Science, 410:3065–3084, 2008.

[21] Federica Ciocchetta, Adam Duguid, Stephen Gilmore, Maria Luisa Guerriero, and Jane

Hillston. The Bio-PEPA Tool Suite. http://homepages.inf.ed.ac.uk/jeh/Bio-PEPA/, 2009.

[22] Irun R Cohen and David Harel. Explaining a complex living system: dynamics, multi-

scaling and emergence. Journal of the Royal Society, 4:175–182, 2007.

[23] Jacques Cohen. The Crucial Role of CS in Systems and Synthetic Biology. Communications

of the ACM, 51:15–18, 2008.

[24] Icosystem Corporation. Icosystem. http://www.icosystem.com/demos/thegame.htm,

2001.

bibliography 134

[25] Nichael Lynn Cramer. A Representation for the Adaptive Generation of Simple Sequential

Programs. In Proceedings of the 1st International Conference on Genetic Algorithms, pages

183–187. L. Erlbaum Associates Inc., 1985.

[26] Jack L Crosby. Computer Simulation in Genetics. Jown Wiley & Sons, 1973.

[27] Charles Darwin. The Origin of Species. P. F. Collier & son, 1909.

[28] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B,

26(1):29–41, 1996.

[29] Adam Duguid, Stephen Gilmore, Michael Smith, and Mirco Tribastone. The

PEPA Eclipse Plug-in: A modelling, analysis and verification platform for PEPA.

http://www.dcs.ed.ac.uk/pepa/documentation/, 2010.

[30] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional

regulators. Nature, 403:335–338, 2000.

[31] Paul Fine and Jacqueline Clarkson. Measles in England and Wales – I: An Analysis of

Factors Underlying Seasonal Patterns. International Journal of Epidemiology, 11(1):5–14,

1982.

[32] David B Fogel, editor. Evolutionary Computation: A Fossil Record. Wiley-Blackwell, 1998.

[33] Lawrence J Fogel. On the Organization of Intellect. PhD thesis, University of California,

1964.

[34] Alex S Fraser. Simulation of Genetic Systems by Automatic Digital Computers. I. Intro-

duction. Australian Journal of Biological Sciences, 10:484–491, 1957.

[35] Alex S Fraser and Donald Burnell. Computer Models in Genetics. McGraw-Hill Education,

1970.

[36] Nil Geisweiller. EM-PEPA, A Software to Find the Most Likely Rates Inside a PEPA

Model. http://empepa.sourceforge.net/, sep 2006.

[37] Michael A Gibson and Jehoshua Bruck. Efficient Exact Stochastic Simulation of Chemical

Systems With Many Species and Many Channels. Journal of Physical Chemistry A, 104:

1876–1889, 2000.

[38] David E Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, 1989.

[39] Health Protection Agency. New HIV Diagnoses Surveillance Tables: UK data to the

End of December 2007. www.hpa.org.uk/web/HPAwebFile/HPAweb C/1208763421275,

2008.

bibliography 135

[40] Jane Hillston. A Compositional Approach to Performance Modelling. Cambridge University

Press, 1996.

[41] Charles Antony Richard Hoare. Communicating Sequential Processes. Communications of

the ACM, 21(8):666–677, 1978.

[42] John H Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

[43] Hitoshi Iba and Erina Sakamoto. Inference Of Differential Equation Models by Genetic

Programming. In GECCO 2002: Proceedings of the Genetic and Evolutionary Computation

Conference, pages 788–795, 2002.

[44] Cliff Joslyn and Luis M Rocha. Towards Semiotic Agent-Based Models of Socio-Technical

Organizations. In Proceedings. AI, Simulation and Planning in High Autonomy Systems,

pages 70–79, 2000.

[45] James Kennedy and Russell C Eberhart. Particle Swarm Optimization. In IEEE Interna-

tional Conference on Neural Networks IV, pages 1942–1948. IEEE, 1995.

[46] Brian Kent Kobilka. G protein coupled receptor structure and activation. Biochimica et

Biophysica Acta (BBA) - Biomembranes, 1768(4):794–807, 2007.

[47] John R Koza. Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, 1972.

[48] John R Koza. John R Koza Collection. http://www.johnkoza.com, 2007.

[49] Pedro Larrañaga and Jose A Lozano, editors. Estimation of Distribution Algorithms: A New

Tool for Evolutionary Computation. Kluwer Academic Publishers, 2002.

[50] Juliane Liepe, Chris Barnes, Erika Cule, Kamil Erguler, Paul Kirk, Tina Toni, and Michael

P H Stumpf. ABC-SysBio – approximate Bayesian computation in Python with GPU

support. Bioinformatics, 26(14):1797–1799, 2010.

[51] Object Refinery Limited. JFreeChart. http://www.jfree.org/jfreechart/, 2013.

[52] Laurence Loewe, Stuart Moodie, and Jane Hillston. Quantifying the implicit process flow

abstraction in SBGN-PD diagrams with Bio-PEPA. In CompMod, pages 93–107, 2009.

[53] Sean Luke. ECJ: A Java-based Evolutionary Computation Research System.

http://cs.gmu.edu/ eclab/projects/ecj/, 2013.

[54] Sean Luke. Essentials of Metaheuristics. http://cs.gmu.edu/∼sean/book/metaheuristics/,

2013.

[55] Jean-Michel Marin, Pierre Pudlo, Christian P Robert, and Robin J Ryder. Approximate

Bayesian computational methods. Statistics and Computing, 22(6):1167–1180, 2012.

bibliography 136

[56] Chris McCaig, Rachel Norman, and Carron Shankland. From Individuals to Populations:

A Symbolic Process Algebra Approach to Epidemiology. Mathematics in Computer Science,

2(3):139–155, 2009.

[57] Davide Prandi. Particle Swarm Optimization for Stochastic Process Calculi. In Proceedings

of the 9th Workshop on Process Algebra and Stochastically Timed Activities, pages 77–82.

PASTA, 2010.

[58] Corrado Priami. Algorithmic Systems Biology: An Opportunity for Computer Science.

Communications of the ACM, 52(5):80–88, 2009.

[59] Dean Garner Pruitt and J P Gahagan. Campus Crisis: The Search for Power. In Perspectives

on Social Power, pages 349–392. Aldine Pub. Co [Chicago], 1974.

[60] Ottar N Bjørnstad, Bärbel F Finkenstädt, and Bryan T Grenfell. Dynamics of Measles

Epidemics: Estimating Scaling of Transmission Rates Using a Time Series SIR Model.

Ecological Monographs, 72(2):169–184, 2002.

[61] Brian Ross and Janine Imada. Evolving Stochastic Processes Using Feature Tests and

Genetic Programming. In 11th Annual Conference on Genetic and Evolutionary Computation,

pages 1059–1066. ACM, 2009.

[62] Sauro Lab. Systems Biology Workbench. http://sbw.kgi.edu/sbwWiki/doku.php?id=sysbio:sbw,

2011.

[63] Dieter Schenzle. An age-structured model of pre- and post- vaccination measles trans-

mission. IMA Journal of Mathematics Applied in Medicine and Biology, 1(2):169–191, 1984.

[64] Erin Scott. PEPA or Bio-PEPA: A Comparison. Undergraduate honours thesis, University

of Stirling, 2011.

[65] SynthSys, University of Edinburgh. Systems Biology Software Infrastructure.

http://www.sbsi.ed.ac.uk/, 2012.

[66] The HTCondor Team. HTCondor: High Throughput Computing.

http://research.cs.wisc.edu/htcondor/index.html, 2013.

[67] Kyaw Tun. Nonlinear System Identification using Genetic Programming. Master’s thesis,

National University of Singapore, 2003.

[68] Warren Weaver. Science and Complexity. American Scientist, 36(4):536–544, 1948.

[69] David H Wolpert and William G Macready. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

	Declaration
	Abstract
	Acknowledgments
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Thesis Statement
	1.2 Thesis Structure

	2 State of the Art
	2.1 Complex Systems
	2.2 Process Algebras
	2.2.1 PEPA
	2.2.2 Bio-PEPA
	2.2.3 PEPA or Bio-PEPA

	2.3 Evolutionary Computation
	2.3.1 Evolutionary Computation Concepts
	2.3.2 Evolutionary Computation Representations
	2.3.3 Variation
	2.3.4 Genetic Algorithms
	2.3.5 Genetic Programming

	2.4 State of the Art Summary

	3 Related Work
	3.1 Parameter Optimisation
	3.2 Model Structure Optimisation
	3.3 Neighbouring Fields
	3.3.1 Applying GP to ODEs
	3.3.2 Simulated Annealing
	3.3.3 Bayesian Inference

	3.4 No Free Lunch
	3.5 Related Work Summary

	4 Evolving Process Algebra Framework
	4.1 The Combined Individual
	4.1.1 Representing Solutions

	4.2 Variable Summary
	4.3 The Evolving Process Algebra Lifecycle
	4.3.1 Utilising Domain Knowledge
	4.3.2 Replications
	4.3.3 Failure Timeout
	4.3.4 Euclidean Distance Fitness Scoring
	4.3.5 GP Tree Fitness Scoring
	4.3.6 GP Node Weight Fitness Scoring
	4.3.7 Additional Fitness Scoring
	4.3.8 Tournament Selection
	4.3.9 Elitism
	4.3.10 Variation
	4.3.11 Validity
	4.3.12 Replacement

	4.4 Evolving Process Algebra Framework Summary

	5 Parameter Matching Experiments
	5.1 Dining Philosophers
	5.1.1 Background & Model
	5.1.2 Experiment - n

	5.2 Internet Worm
	5.2.1 Background & Model
	5.2.2 Experiment - all rates

	5.3 HIV
	5.3.1 Background & Model
	5.3.2 Experiment - pInfect & pImmigrate

	5.4 Repressilator
	5.4.1 Background & Model
	5.4.2 Experiment - all rates

	5.5 G-protein (PEPA)
	5.5.1 Background & Model
	5.5.2 Experiment - all rates

	5.6 Parameter Matching Experiments Summary

	6 Species Structure Optimisation Experiments
	6.1 Biochemical Reactant-Product
	6.1.1 Background & Model
	6.1.2 Experiment - all species

	6.2 Measles (Frequency-dependent transmission)
	6.2.1 Background & Model
	6.2.2 Experiment 1 - Inf
	6.2.3 Experiment 2 - Exp & Inf
	6.2.4 Experiment 3 - Exp & Inf (with domain knowledge)

	6.3 Generic Genetic Network
	6.3.1 Background & Model
	6.3.2 Experiment - P2

	6.4 G-Protein (Bio-PEPA)
	6.4.1 Background & Model
	6.4.2 Experiment 1 - RL
	6.4.3 Experiment 2 - RL (with domain knowledge)
	6.4.4 Experiment 3 - RL & G
	6.4.5 Experiment 4 - RL & G (with domain knowledge)

	6.5 Species Structure Optimisation Experiments Summary

	7 Kinetics Structure Optimisation Experiments
	7.1 Biochemical Reactant-Product
	7.1.1 Background & Model
	7.1.2 Experiment - alpha

	7.2 Measles (Density-dependent transmission)
	7.2.1 Background & Model
	7.2.2 Experiment 1 - contact
	7.2.3 Experiment 2 - contact, S, Exp & Inf

	7.3 Measles (Full)
	7.3.1 Background & Model
	7.3.2 Experiment - contact
	7.3.3 Results Discussion

	7.4 Kinetics Structure Optimisation Experiments Summary

	8 Parameter Matching & Structure Optimisation
	8.1 Biochemical Reactant-Product
	8.1.1 Background & Model
	8.1.2 Experiment - all segments

	8.2 Kinetics Structure Optimisation Experiments Summary

	9 Conclusion
	9.1 Thesis Statement
	9.2 Custom Fitness Functions
	9.3 Potential Developments
	9.3.1 Supported Representations
	9.3.2 Smarter Ban List
	9.3.3 Equality Engine
	9.3.4 Algebraic Simplification Engine

	9.4 Moving Forwards

	A Appendix A: EPA Utility Assistant
	A.1 EPA HTCondor Assistant
	A.2 EPA Results Collator
	A.2.1 Raw Result Files
	A.2.2 Processed Result Files

	Bibliography

