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Abstract 

The face holds a central role in both human and nonhuman primate social interactions, 

through the communication of feelings and intentions via facial expressions and by acting as a 

means of recognising individuals. Humans, however, also employ their faces in mate 

attraction and assessment, an area that has received little attention in nonhuman primates. 

Many researchers have proposed that human aesthetic judgments of facial attractiveness have 

a biological basis, and these preferences have evolved via sexual selection processes during 

human evolution. The use of the face in attractiveness assessments need not be limited to 

humans. Rather, there is good reason to suggest that this may also apply to other nonhuman 

primates, based on homologies in the way in which primates use their faces, and on evidence 

that the face is a site of sexual selection for many primate species. It was the aim of this thesis 

to explore whether facial traits may also play a role in judgements of attractiveness in a 

nonhuman primate, the rhesus macaque (Macaca mulatta), in an effort to understand whether 

humans are unique in utilising the face as a mechanism of mate assessment. 

Three factors that are reported to influence facial attractiveness in humans are facial 

symmetry, sexual dimorphism, and averageness. To assess whether they also play a role in 

nonhuman primates, a series of experiments were conducted where digital images of adult 

male and female rhesus macaque faces were altered for these features. Opposite-sexed images 

were then displayed to adult males and females in a captive setting. Eye gaze measures were 

utilised to assess visual preference for, and the relative importance of, these traits. These 

experiments yielded mixed results. Increasing facial symmetry of opposite-sexed conspecifics 

positively influenced the dependent gaze measures employed here. Manipulating degree of 

facial sexual dimorphism had little influence on the visual gaze of either sex. Facial 

averageness positively influenced visual preferences for opposite-sexed conspecifics among 

both sexes, although increasing degree of averageness did not. 

The last topic to be explored was facial colouration. Rhesus macaques, like various other 

species of anthropoid primates, possess facial displays of red secondary sexual colouration. 
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As above, animals viewed digitally altered pale and red versions of opposite-sexed 

conspecifics. Although females displayed preferences for red male faces, males displayed no 

clear preferences based on female facial colour. This raises the possibility that male and 

female facial colour may serve different roles in intraspecific signaling. 

While it cannot be concluded that visual preferences are indeed indicative of real-life 

preferences, the results do indicate that animals are not indifferent to variations in conspecific 

facial features. The present findings have important implications regarding the evolution of 

facial attractiveness, as they provide the first experimental evidence suggesting that facial 

features may serve as a mechanism for mate selection across primate taxa and that both 

human and nonhuman primates may employ similar criteria to appraise facial attractiveness. 
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Chapter I 

The Origins of Beauty: Does Facial Attractiveness 
Matter Throughout the Primate Order? 

"We cannot, however, dismiss the possibility that nonhuman primates also have some concept 

of attractiveness, or beauty. In fact, many of the choices made by nonhuman primate females 

that seem unexplainable to human observers might fit into this category. " - Small, 1989 

Among taxa as diverse as guppies, stalk-eyed flies, lions and humans, there is suggestion that 

physical features serve to appraise the overall attractiveness of prospective mates. However, 

as indicated in the above quote by Meredith Small, we have little knowledge as to whether 

our closest relatives, the nonhuman primates, also use measures of physical attractiveness to 

assess the opposite sex. Facial beauty is an important criterion used by humans to appraise the 

attractiveness of potential mates. Yet it is unknown at what point during our evolution that the 

face began to be used as a means to attract and assess mates. It is possible that this could be a 

phylogenetically old trait and that other primate species besides ourselves use facial features 

in mate selection. In fact, a great deal of evidence exists indicating that both human and 

nonhuman primates share a common evolutionary basis for the ways in which they utilise 

their faces. The aim of this thesis is to explore whether facial traits are also employed to 

evaluate potential mates among nonhuman primates, in an effort to understand whether 

humans are unique in this respect. To these ends, this chapter provides an overview of the 

evolutionary basis for the face as a mechanism of mate choice across primate taxa as well as 

to suggest ways in which human attractiveness judgements may have their origins in our 

species' distant evolutionary past. In order to understand how this could arise, we must first 

look at the theories of sexual selection. These theories will be referred to again later in this 

and the following chapters. Next, I provide an account of the biological basis of human facial 

attractiveness assessments and the theories employed to explain these are discussed. I then 



provide a brief overview of how faces are utilised across primate' taxa and discuss how the 

primate face may act as a site of mate assessment. 

1.1 The selection of secondary sexual traits 

When devising the theory of natural selection, Darwin was posed with a problem. This was 

how to explain the evolution of extravagant traits, such as colourful plumage or large antlers, 

which would impede, rather than aid, an animal's survival. Darwin also noted that such 

extreme traits tended to occur in greater abundance among males than females. To explain the 

existence of such traits, he devised his theory of sexual selection (1871, in Andersson, 1994), 

which involves the selection of traits (i. e. sexually selected traits) that act mainly to confer 

greater mating success upon the bearer. There are two main selective processes occurring in 

sexual selection (Andersson, 1994). The first is competition among same-sexed individuals 

for access to mates or to resources that attract mates, known as intrasexual selection. The 

second involves one sex preferentially choosing among individuals of the other sex in mate 

selection, referred to as intersexual selection. These two processes, however, are not mutually 

exclusive, and traits that may be used in intrasexual competition may also be utilised in mate 

selection (Berglund, Bisazza and Pilastro, 1996). 

1.1.1 Female versus male mate choice 

Sexual selection is ultimately based on differential variance in mating success among 

individuals. According to Bateman's Principle, the sex that shows the greatest variance in 

individual reproductive output does so as a result of their reproductive success being limited 

by mate availability (Bateman, 1948, in Wilson, 1975). Therefore the sex with highest 

variance should be selected to express traits that will increase its mating success (Wilson, 

1975). Typically, theories of sexual selection focus on the role that female mate choice plays 

in the selection of male traits, as noted above, males tend to bear more extreme secondary 

sexual traits. Females are generally considered to be choosy, while males compete to be 

117re term ̀primate' is used in this thesis to include both human and nonhuman primates, as this is the 
taxonomically and biologically accurate terminology. When distinctions are to be made between 
human and nonhuman species, the terns' human' and ̀nonhuman' will be employed. 
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chosen, due to the disparity in the relative amount of resources put into reproduction by the 

two sexes. On the most basic level, this is reflected in the relative differences in gamete size 

and number between the sexes. Females produce gametes (eggs) that are larger and more 

energetically costly, and that are also fewer in number. Males on the other hand produce 

smaller, less costly gametes (sperm) in far greater quantities. This results in a basic 

imbalance, making females a scarce resource for males (Trivers, 1972). Also, males are not 

generally constrained by the costs of offspring production and rearing, and therefore have the 

potential to achieve a much higher reproductive output than females. As a result, male 

reproductive success can increase as a function of the number of females mated, while 

females, in contrast, do not usually increase their reproductive output after their first mating2. 

This results in a situation where mating choices are more costly for females, therefore females 

should be choosy in terms of selecting males. Conversely, males should compete to mate with 

as many fertile females as possible (Andersson, 1994). There is a great deal of empirical 

evidence among a wide range of taxe supporting the theory that females are indeed choosy 

and do evaluate potential mates based on variability of expression of male secondary sexual 

characteristics. 

It is not always the case, however, that males should be indiscriminate in their mating choices. 

Evidence for male choosiness has been documented in species where males assume greater 

parental effort in rearing offspring [bluethroats (Luscinia svecica svecica): Amundsen, 

Forsgren, and Hansen, 1997; pipefish (Syngnathus typhle): Berglund, Rosenqvist and 

Svensson, 1986]. Even among species lacking paternal care, male mate choice may occur, as 

mating inflicts other costs upon males such as decreased time spent feeding, lost mating 

opportunities (Andersson, 1994) and sperm depletion (Dewsbury, 1982). Therefore male 

choosiness is predicted to evolve in any species where females vary in fertility and/or parental 

ability (Andersson, 1994; Owens and Thompson, 1994) or if mating is costly for males 

2 Although females generally may not benefit in terms of number of offspring produced, females can 
still benefit from mating with multiple males in other ways, such as increasing offspring viability and 
heterozygosity or by infanticide avoidance (e. g. Hrdy, 1979; Madsen et al., 1992). Additionally in sex- 
role-reversed species, females rather than males may augment their reproductive output to a greater 
degree by mating with multiple males (Jones et al., 2000). 
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(Dewsbury, 1982; Johnstone, Reynolds and Deutsch, 1996). There is evidence of male mate 

choice in a number of species where males exhibit no paternal care [e. g. mealworm beetles 

(Tenebrio molitor): Carazo et al., 1994; sockeye salmon (Oncorhynchus nerka): Foote, Brown 

and Hawryshyn, 2004]. One recent study has provided evidence of male mate choice even 

among a lekking species, where there is extreme male-male competition for females 

[haplochromine cichlid fish (Astatotilapia flaviijosephi): Werner and Lotem, 2003]. 

1.1.2 Evolutionary theories of sexual selection 

A major matter of importance in sexual selection is to determine how mating preferences 

evolved. Four main theories have been put forward to account for these, which are discussed 

below. They include: 

1) Fisherian sexual selection 

2) Sensory exploitation 

3) Indicator mechanism theories 

4) Species recognition 

1) Fisherian Sexual Selection 

Fisherian or `runaway' sexual selection was devised to explain female mate choice for 

extreme male characteristics (although it could conceivably be applied to either sex, as males 

may also develop preferences for extreme female traits). Here, female choice directly selects 

for a given male trait, and preferences for, and occurrences of, a given trait become 

genetically coupled among the offspring of those females exhibiting preferences for and those 

males possessing the preferred trait. As female preferences for a male trait become more 

widespread, this creates selection for increasingly exaggerated adaptations of the trait until the 

reproductive benefit it brings is counter-acted by the opposing pressures of natural selection 

(Fisher, 1930 in Andersson, 1994). 

There has been very little empirical research testing Fishcrian selection, and the majority of 

studies that have tried to test this theory have addressed the existence of genetic correlations 
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between a given trait and female preference (Ryan, 1997). In one study, sticklebacks 

(Gasterosteus aculeatus) with either dull or bright red colouration were crossed and it was 

found that daughters of bright fathers preferred bright versus dull coloured males, while 

daughters of dull males exhibited no colour preferences (Bakker, 1993). Another example of 

traits and preferences being genetically correlated comes from a study on stalk-eyed flies 

(Cyrtodiopsis dalmanni). After many generations of selectively breeding animals for eye-span 

length, it was found that females from long eye-span lines preferred males with long eye- 

spans, while females from short eye-span lines preferred males with short eye-spans 

(Wilkinson and Reillo, 1994). Although these studies do not verify that Fisherian selection 

actually occurs among natural populations, they do at least suggest that there is a possibility 

for genetic correlations of traits and preferences to co-occur. 

2) Sensory exploitation 

Secondary sexual traits are restricted by sensory or neural characteristics, and this can in turn 

influence the selection of a given trait. Sensory exploitation theory proposes that a given trait 

may be favoured due to pre-existing biases within an animal's sensory system, which are 

know as receiver biases. Receiver biases may arise from selection pressures occurring in other 

circumstances or from generalised functional rules of neural and cognitive systems. To 

illustrate, if a receiver displays a bias in responding towards a certain signal, such as bright 

coloration, the selection of brighter signals may arise without the need for any genetic 

coupling of the trait and the preference, in contrast to Fisherian selection (Ryan, 1998). 

There is some empirical support for sensory exploitation occurring in the selection of 

secondary sexual traits. Among the closely related species platyfish (xphophorus maculates) 

and swordtails (X. hellen), only swordtails display swords. However, experiments reveal that 

female platyfish prefer conspecific males who have artificially appended swords in 

comparison to normal males (Basolo, 1990). This bias for males with swords has been 

attributed to a more widespread bias for larger male body size, as video playback experiments 

have demonstrated that female preferences for swords disappear if sworded and swordless 
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males were of equal body length (Rosenthal and Evans, 1998). Thus the evolution of swords 

in male swordfish may have resulted from the exploitation of female preferences for larger 

male body size. Sensory exploitation has also been implicated in the evolution of secondary 

sexual characteristics for other various species [e. g. arctiid moths (Utetheisa ornatrix): 

Conner et al., 1990; tüngara frogs (Physalaemus pustulosus): Ryan and Rand, 1990]. 

3) Indicator mechanism theories 

Unlike Fisherian selection and sensory exploitation processes, `indicator mechanism' theories 

of sexual selection require that there be a fitness related component to the selection of a given 

trait. Generally, indicator mechanism theories maintain that secondary sexual traits act as 

honest markers of an individual's genotypic and/or phenotypic 'quality'. Usually a heritable 

fitness advantage is required to be associated with such traits, however this may not always be 

the case (i. e. direct phenotypic benefits). The main indicator mechanism theories are 

summarised below. 

Zahavi's handicap principle and the "good genes" theory of sexual selection 

Zahavi's (1975, in Andersson, 1994) handicap principle proposes that extreme characteristics 

that impinge on an individual's survival are attractive to mates precisely because of their 

ability to act as handicaps upon their bearer. Here individuals may evaluate potential mates' 

survival abilities based on the degree of secondary sexual trait development, which acts as an 

honest signal of genetic quality. Therefore, only individuals possessing `good genes' are able 

to bear the costs of displaying these traits, and these individuals should be selected 

preferentially as mates. This theory requires that survivability be heritable, as the main 

advantage lies in passing on superior genetic viability to offspring. 

Providing support for this theory is difficult, as it is not sufficient to simply demonstrate that a 

given trait is costly and that it influences attractiveness. Rather it is necessary to demonstrate 

that displays of, and preferences for, a given trait are linked to offspring viability. Studies 

investigating this theory have yielded mixed results. One study reported that black breast 

stripe size in male great tits (Paros major) is linked to female preferences and offspring 
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survivorship (Norris, 1993). Here, experiments involving cross-fostering revealed that stripe 

size was indeed heritable and the size of the paternal stripe was correlated with the proportion 

of surviving male, but not female, offspring. Similarly, positive associations in the number of 

ocelli in male peacock trains were found for both attractiveness to females (Petrie, Halliday 

and Sanders, 1991) and offspring growth rates and survivorship (Petrie, 1994). In contrast, 

studies with red flour beetles (Tribolium castaneum) found that although male pheromonal 

variation was linked to attractiveness, it did not relate to offspring fitness (Boake, 1985, 

1986), suggesting that this theory has a limited capacity to explain female choice. 

Parasite-mediated sexual selection 

One problem posed by "good genes" theories of sexual selection is that of exhausting genetic 

variation; as those of superior genetic quality are selected preferentially as mates over many 

generations, the genetic variation for the given trait will become exhausted and will cease to 

act as a mechanism for improving the genetic quality of offspring (Baker and Parker, 1979). 

Hamilton and Zuk (1982) have proposed a theory that addresses this issue. In their parasite- 

mediated theory of sexual selection, co-evolutionary cycles of hosts and parasites are 

responsible for maintaining genetic variation. They use the term ̀ parasite' in an extremely 

broad sense, referring to viruses, bacterial infections as well as to what might traditionally be 

considered parasites. Here, individuals in a host population evolve resistance to parasites, 

which in turn evolve ways to overcome this resistance, which the hosts then counteract and so 

on, with this cycle continuing indefinitely. Sexually selected traits act as a marker of genetic 

resistance to parasites, which is heritable, therefore individuals with highly developed traits 

should be preferred as partners. 

The data that Hamilton and Zuk originally utilised to bolster this idea were comparative 

analyses of conspicuous male colouration and song complexity and levels of blood borne 

parasites among North American passerines (1982). This study has been heavily criticised for 

various reasons. For example, secondary analyses have found that the trends reported in the 

original study may be better explained by phylogenetic relationships (e. g. Read and Harvey, 

7 



1989; Read and Weary, 1990). Several studies have also reported results that contradict this 

hypothesis, such as Hillgarth's study (1990) reporting that male ring-necked pheasants 

(Phasianus cholchicus) with heavy coccidial loads possessed less colourful wattles and mated 

less frequently than lightly infected males, however sired more robust offspring. Despite the 

criticisms and contradictory evidence, there exists some empirical support for this theory. 

Studies have reported that the expression of male secondary sexual traits which play a role in 

female mate preferences are related to male parasite burden in a variety of species [e. g. grain 

beetles (Tenebrio molitor): Worden, Parker and Pappas, 1999; wild turkeys (Meleagris 

gallopavo): Buchholz, 1995]. But as mentioned above, it is not sufficient to show an 

association between mate selection and health status; evidence for heritable resistance must 

also be provided. There is limited evidence supporting this link in some species [sage grouse 

(Centrocercus urophasianus): Deibert and Boyce, 1997; barn owls (Tyco alba): Roulin et al., 

2000]. 

Immunocompetence handicap 

This idea is another variation on the "good genes" theory. In many male vertebrates, 

testosterone is linked to lowered immunocompetence and a male's ability to display costly 

testosterone-dependent traits might act as an honest indicator of health and genetic quality 

(Folstad and Karter, 1992). Many male secondary sexual traits are indeed testosterone- 

dependent and female preferences for highly developed testosterone-dependent traits have 

been reported among a variety of species [red junglefowl (Gallus gallus): Zuk et al., 1990; 

Gambel's quail (Callipepla gambelii): Hagelin and Ligon, 2001; African lions (Panthera leo): 

West and Packer, 2002]. There also is evidence that males suffer from higher levels of 

parasitic infection in comparison to females across taxa (Zuk and McKean, 1996) and that 

gonadectomised males have superior immunocompetence in comparison to their normal 

counterparts [e. g. rats (Rattus rattus): Kamis, Ahmad and Badrul-Munir, 1992; reindeer 

(Rangifer tarandus tarandus): Folstad et al., 1989]. 
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However, there have been some criticisms of this hypothesis, which mainly have to do with 

the theory being overly simplistic. The precise mechanism by which testosterone 

compromises the immune system is unknown, and some studies have reported that 

testosterone actually enhances immune function (e. g. Evans, Goldsmith and Norris, 2000). 

Braude and colleagues (1999) have suggested that testosterone may influence the activation of 

different parts of the immune system, rather than being universally immunosuppressive. It has 

also been suggested that testosterone may act indirectly through the elevation of 

corticosterone levels, which can have immunosuppressive effects (Evans et al., 2000). 

Additionally, a recent meta-analysis of experimental studies manipulating testosterone levels 

found evidence in support of this hypothesis only among certain taxa and for certain immune 

parameters (Roberts, Buchanan and Evans, 2004). This suggests that this hypothesis may not 

have widespread applicability as originally proposed by Folstad and Karter (1992). Poiani and 

co-workers (2000) suggest modifying the immunocompetence hypothesis by taking into 

account the impact of other hormones apart from testosterone, in order to gauge whether traits 

are true indicators of quality. 

Some authors have made similar arguments for oestrogen-based traits acting as a handicap 

among females, however the evidence for this is less than convincing. Although artificial 

oestrogenic treatment has been associated with suppression of some immune parameters (e. g. 

suppression of lymphocyte production to T-cell mitogens: Luster et al., 1984, cited in Klein, 

2000) and increased tumour formation (Shafie, 1980), overall it appears to have an enhancing 

effect on both cell-mediated and humoural immunocompetence (Klein, 2000). For example, 

wound healing is facilitated and scarring is inhibited by oestrogen treatment in rats (Ashcroft 

et al., 1997). Female mice infected with Paracoccidiodes brasiliensis during the pre-oestrous 

period when oestrogen levels are higher suffer lower infection rates compared to females 

infected at other stages of their cycles and also to males (Sano et al., 1992, cited in Klein, 

2000). Therefore, the role of oestrogen as a handicapping mechanism is questionable at best. 
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Direct phenotypic benefits 

Animals may utilise secondary sexual characteristics as means to gauge potential direct 

benefits they or their offspring may receive from mates (Andersson, 1994). Here there is no 

need for traits to be heritable. Direct phenotypic benefits may come in many forms, such as 

provision of parental care or food sources, male defence, or access to high quality territories. 

This type of selection would be expected to occur particularly among species where mating 

systems are resource based (Ryan, 1997). Evidence for direct phenotypic benefits in resource 

based systems have been reported for a number of species [dragonflies (Plathemis lydia): 

Campanella and Wolf, 1974; moorhens (Gallinula chloropus): Petrie, 1983; pronghorn 

antelope (Antilocapra americana): Kitchen, 1974]. However, even in non-resource based 

systems, there are potential benefits, such as increased fecundity and also pathogen 

avoidance, which is addressed below. Studies on mating preferences in male zebra finches 

(Taeniopygia guttata: Jones, Monaghan and Nager, 2001) and among female frogs (Ololygon 

rubra: Bourne, 1993) show that in some circumstances, individuals select for increased 

fecundity, rather than for heritable fitness. 

Pathogen transmission avoidance hypothesis 

Another version of the direct phenotypic benefits hypothesis is the pathogen transmission 

avoidance hypothesis (Loehle, 1997). Sexual intercourse can result in the transmission of 

sexually transmitted diseases (STDs), ectoparasites, and fungal infections. Some pathogens 

passed via mating can result in sterility or even fatality (e. g. brucellosis: Witter, 1981, in 

Loehle, 1997; myxomatosis: Yuill, 1981, in Loehle, 1997). Females may be at even greater 

risk when pregnant or rearing young and also risk passing infections to their offspring. Here, 

elaborate secondary sexual characteristics are proposed to act as reliable indicators of disease 

status. This avoids some of the problems associated with versions of 'good genes' theories as 

there need not be any heritable component. As mentioned above, there is evidence that 

secondary sexual traits can reflect pathogen load and animals sometimes avoid mating with 

individuals possessing high parasite burdens, although this evidence is usually used to support 

parasite-mediated sexual selection. 
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4) Species recognition and sexual selection 

The idea that secondary sexual traits may also function in species recognition was first 

proposed by Wallace (1889, in Andersson, 1994), but has also been suggested by other 

theoreticians of sexual selection (e. g. Fisher, 1930, in Andersson, 1994; Trivers, 1972). 

Breeding with heterospecifics can potentially result in sterile matings or inviable offspring. 

Additionally, any resulting offspring from hybrid matings may suffer from a reduced to a 

complete loss of fertility and decreased success in mate competition (Andersson, 1994). 

Experimental evidence from neighbouring populations of cichlid fish (Pseudotropheus zebra: 

Kraaijeveld and Pomiankowski, 2004) and western white butterflies (Pieris occidentalis: 

Wiernasz and Kingsolver, 1992) provide evidence for females avoiding closely related 

heterospecific males who possess different secondary sexual traits. 

There are two major hypotheses that are currently used to explain secondary sexual traits in 

relation to species recognition: the allopatric and the sympatric divergence hypotheses. 

According to the allopatric divergence hypothesis, geographically divided lineages randomly 

evolve isolating characteristics as genetic mutations gradually accrue over time, due in part to 

different selective pressures of the different habitats. Mate recognition systems can potentially 

deviate as a by-product of this separation to the point where the two lineages may avoid 

interbreeding if secondary contact occurs (Mayr, 1963, in Andersson 1994; Nei, Maruyama 

and Wu, 1983). Sympatric divergence, however, proposes that isolating traits arise where 

secondary overlapping of distribution occurs between two different forms (Mayr, 1963 in 

Andersson 1994). There has been a great deal of debate over whether allopatric versus 

sympatric forces are responsible for diverging traits among various species (e. g. McCoy, 

2003; Via, 2001), nonetheless species recognition does appear to be an important force in 

sexual selection. 

1.1.3 Interactions of selective forces 

Although the various theories are usually discussed in the context of being mutually 

exclusive, this is not necessarily the case (Ryan, 1997). Rather, mating preferences may be 
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determined though interactions among the different selective forces. For example, avoidance 

of hybridisation may lead to preferences for conspecifics that least resemble heterospecifics, 

without regards to any genetic correlations to viability. As a result, assortative mating could 

occur and over time, this could lead to preferences for, and occurrences of, a given trait 

becoming genetically linked, resulting in Fisherian selection (Ryan and Rand, 1993). Sensory 

biases may lead to preferences for traits that are linked to mate condition (e. g. caratenoid- 

based colour in fish and birds), and it becomes difficult to disentangle the driving selective 

forces as any benefits of superior mate condition could just be fortuitous side-effects of 

sensory biases (Johnstone, 1994). Moreover, in species with multiple secondary sexual traits, 

different selection forces may be responsible for different traits (reviewed in Candolin, 2003). 

To illustrate, it is possible that a preference for a Fisherian sexually selected trait could evolve 

in tandem with a preference for an indicator trait. Therefore, it is important to recognise the 

possibility of multiple selective forces interacting when attempting to ascertain the origin and 

maintenance of sexually selected traits. 

1.2 A biological basis for beauty 

Human aesthetic judgements of facial attractiveness have been traditionally regarded by 

social scientists as arbitrary socio-cultural constructs, which are gradually acquired over the 

course of development. More recently, many researchers have suggested that attractiveness 

assessments have a biological basis, and that human mating preferences have been subjected 

to the same sexual selection processes that have shaped mate choice in other animal species. 

Darwin (1871) was the first to propose that human assessments of facial attractiveness may be 

species-typical, based upon explorers' observations that indigenous populations around the 

world possessed similar criteria for appraising beauty. 

The existence of species-typical appraisals of facial attractiveness has since been supported by 

two strands of empirical research. The first is from research investigating cross-cultural and 

cross-ethnicity appraisals of attractiveness (e. g. Cunningham et al., 1995, Jones and Hill, 

1993; Perrett et al., 1998). A meta-analysis on these studies conducted by Langlois and 
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colleagues (2000) reported a high degree of agreement in facial-attractiveness ratings across 

individuals from different cultures (r = 0.94) and of different ethnicities (r = 0.88). The 

second strand of evidence comes from developmental studies suggesting that preferences for 

attractive faces emerge early in development (reviewed in Rubenstein, Langlois and 

Roggman, 2002). Various studies have reported that infants display preferences for attractive 

faces in line with adult judgements (e. g. Krammer et al., 1995; Langlois et al. 1987; Samuels 

and Ewy, 1985), even among neonates (Slater et al., 1998). Consistent infant-adult 

preferences occur across faces of different ethnicities, ages and sex (Langlois et al., 1991; 

Samuels and Ewy, 1985). Infant preferences are supported by behavioural observations, as 1 

year old infants are reported to preferentially approach and play with facially attractive versus 

unattractive strangers (Langlois, Roggman and Rieser-Danner, 1990). 

One important question is what properties result in a face being deemed as ̀ attractive' by 

adults across and within cultures and among infants? Despite being the topic of a great deal of 

scientific research, exactly what makes a face attractive is still not entirely understood. Three 

factors which have been demonstrated to influence facial attractiveness, and that have been 

the subject of the majority of facial attractiveness research, include symmetry, sexual 

dimorphism and averageness. Facial skin colour and condition has also been reported to be 

influential. Each of these will be examined in greater detail in the relevant following chapters. 

1.2.1 Theories of facial attractiveness 

The most popular theories employed to explain universal preferences are variations of 

indicator mechanism theory. Proponents of these theories maintain that attractive facial 

features may act as honest indicators of health and genetic quality. This is not a new idea, in 

fact Westermarck (1921, in Thornhill and Grammer, 1999) proposed that attractiveness was 

indicative of fecundity and health. Later, this idea was adopted by Symons (1979) who 

attempted to apply sexual selection theory to explain facial preferences, and bizarrely claimed 

that male, rather than female, preferences for facial attractiveness should be strongly selected 

for via sexual selection processes. With the rise of evolutionary psychology in the 1990's 
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came the widespread popularisation of indicator mechanism theory, in particular parasite 

mediated sexual selection, the immunocompetence handicap hypothesis, and the direct 

phenotypic benefits hypothesis. Here attractive facial features are proposed to convey 

messages of parasite resistance, superior immunocompetence, and high levels of fecundity 

and/or parental care (e. g. Penton-Voak et al., 1999; Thornhill and Gangestad, 1993,1999a). 

Many attempts have been made to link facial attractiveness to various aspects of `quality'. 

Some researchers have investigated this by asking observers to rate facial images on 

perceived health and attractiveness and have uniformly reported positive associations between 

these variables (e. g. Cunningham, 1986; Grammer and Thornhill, 1994; Jones et al., 2004). 

However, as noted by Kalick and colleagues (1998), this may simply be ascribed to the ̀ halo' 

effect, whereby individuals display a bias in ascribing positive attributes to attractive 

individuals (e. g. Feingold, 1992). Another group of studies have attempted to avoid this 

problem by relating individual medical history or self-report data on health to facial 

attractiveness. Most of these studies have found the link to be weak or nonexistent (e. g. 

Kalick et al., 1998; Rhodes et al., 2001 c; Shackelford and Larsen, 1997). This lack of 

association does not necessarily negate indicator mechanism explanations, as modern health 

care and cosmetics may reduce any potential relationships between health and attractiveness. 

Studies conducted with individuals from indigenous populations without access to modern 

healthcare and cosmetics could provide a better measure of whether facial attractiveness may 

act as an indicator mechanism. Hill and Hurtado (1996, in Thornhill and Gangestad, 1999) 

report that among Ache hunter-gatherer tribes in Paraguay, women with greater facial 

attractiveness have slightly higher levels of reproduction compared to their less attractive 

counterparts. Again this cannot be taken as firm evidence that facial attractiveness indicates 

superior fecundity, as it could be that more attractive women were simply more frequently 

selected as mates. Also, it should be noted that none of the above studies provide support for 

any of the versions of the ̀ good genes' theories, as none provides any evidence of heritable 

benefits. Only one study to date has provided evidence for a link between facial 

attractiveness, health, and heritability (Roberts et al., in press). This study reported links 
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between attractiveness ratings and individual skin appearance, which is under genetic control 

and may signal heritable resistance to skin disease. 

Alternatively, other researchers have suggested that judgements of facial attractiveness result 

from sensory biases in recognition systems, stemming from basic properties of the nervous 

system (e. g. Enquist et al., 2002; Halberstadt and Rhodes, 2000). Here, preferences may be 

formed through the processes of generalisation and discrimination, based on the faces we see 

rather than from strict genetic control of preferences. The process of generalisation involves a 

behaviour becoming established towards a given stimulus, resulting in similar novel stimuli 

eliciting the same response (Enquist et al., 2002). This allows individuals to respond to 

stimuli in a consistent manner, even though they may be perceived as being different. One 

requirement of generalisation is the discrimination among stimuli, and this can result in 

preferences for extreme features, which can be illustrated as follows. In learning experiments, 

animals may be trained to discriminate between two types of stimuli along a given dimension. 

The generalisation gradient (i. e. the response intensity as a function of stimulus variation) is 

then ascertained by testing responses to various stimuli along the same dimension (Enquist et 

al., 2002; Ryan et al., 2003). Often, animals will display a response bias based on the 

interaction of memories of positive and negative stimuli. For example, if an animal is 

reinforced to respond to high versus low frequency sounds, a generalisation gradient will be 

established. This results in the strongest response not being elicited by the high frequency 

sound that was reinforced; rather, an animal will react the strongest to even higher frequency 

sound, as a result of the interaction of memories of the reinforced and the non-reinforced 

stimuli. This phenomenon has been referred to as ̀ supernormal stimulation' by ethologists, 

`peak shift' by psychologists, and most recently as ̀ response bias' by researchers of sexual 

selection (Enquist et al., 2002; Ryan et al., 2003). 

In terms of faces, there is evidence that human perception is biased in this mariner. For 

instance, the salience of a face can be enhanced by exaggerating the features of the face which 

make it unique, a process which is exploited by caricatures (e. g. Rhodes et al., 1987; Rhodes 

1996). Discriminating among different facial phenotypes may also result in biases of 
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attractiveness judgements. For example, discriminating between male and female faces could 

result in preferences for exaggerated male or female traits (Enquist et al., 2002). This process 

could also account for preferences of average and symmetrical features, which will be 

discussed in greater detail in the relevant chapters. 

One potential criticism of this theory is how to explain infant preferences for attractive faces, 

particularly among newborn infants. Proponents of this theory do not exclude the role of 

genetic guidance entirely, as without this, individuals would not know what features to attend 

to and to learn. Instead they suggest that genetic and learning factors come together through 

complex interactions (Enquist et al., 2002). There is evidence suggesting that infants are born 

with receiver biases towards faces. For example, newborns without any prior exposure to 

faces appear to prefer facial over nonfacial patterns (Goren, Sarty and Wu, 1975). However, 

they need not be born with preferences for attractiveness. As Rubenstein and colleagues 

(2002) point out, the neonatal infants from the study by Slater and colleagues (1998) ranged 

in age from 14 to 151 hours, and it is possible that they had sufficient exposure to faces in that 

short space of time to have established learned preferences through the processes described 

above. Walton and Bower (1994) have reported rapid early learning associated with faces, 

suggesting that newborn infants are able to encode facial information from very brief 

exposures. Therefore it is difficult to rule out the role of learning processes in the 

establishment of universal preferences. 

1.2.2 How and when did human facial preferences arise? 

Two issues that have been little addressed by researchers of human facial attractiveness are 

how the face and attractiveness assessments become coupled in mate choice and when this 

occurred during evolution. The former is not addressed at all in the literature, while mostly 

vague speculation has addressed the latter. Evolutionary psychologists maintain that the use 

of the face in mate assessments evolved in the environment of evolutionary adaptedness 

(EEA: e. g. Symons, 1995; Thornhill and Gangestad, 1999), a time period roughly in the past 

2.5 million years of hominid evolution (Tooby and Cosmides, 1990). During that time, a 
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general reduction in craniofacial robusticity and prognathism occurred with the rise of the 

genus Homo (Aiello and Dean, 1990). These changes have often been attributed to relaxed 

selection pressures, due to dietary changes and the advent of technologies in food processing 

(e. g. Leonard and Robertson, 1992). Reduced sexual selection pressures have also been 

suggested to play a role. Males and females may have formed longer term bonds accompanied 

by increased provision of paternal care; this may have led to reduced intensity of male-male 

competition, which may have in turn led to smaller canine size and thus decreased facial 

prognathism (Lovejoy, 1981). However, it is possible that mate choice may also have acted 

on facial shape. Weston and colleagues (2004) suggest that female mate choice has been a 

driving force in the reduction in male facial prognathism. Chamberlain (2000) has also 

proposed that current human facial preferences are based on a legacy of directional selection 

for traits important to human specific mate recognition systems. 

The choice of this particular period of time in human evolutionary history seems somewhat 

arbitrary, and it is unclear what selection pressures would have been present then that did not 

occur previously with our earlier primate relatives. Assessments for attractive faces need not 

have evolved in our recent hominid evolution, and there is good reason to believe that they 

occurred much earlier. This statement is based on homologies in the way in which primates 

use their faces, and on evidence that the primate face is a site of sexual selection for many 

species. These issues are addressed in the following section. 

1.2.3 The evolution and content of primate faces 

Evolutionary theory maintains that the types of features employed in communication and 

recognition systems depend largely on the biological and ecological constraints of the species 

involved (e. g. Johnstone, 1997; Ryan, 1997). Selective pressures should select for traits 

displayed by actors that are readily detectable to the receiver, based upon the receiver's 

sensory capabilities and the environment it inhabits. Likewise, pressures should be exerted 

upon receivers to correctly recognise and interpret such traits. Among anthropoid primates, 

there has been a general trend towards increased reliance on vision at the expense of olfaction 
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and hearing over the course of evolution. Anatomical features of anthropoid sensory systems 

reflect this (e. g. general reduction in muzzle length; a simplified turbinal nasal system; 

reduced mobility of ears: Napier and Napier, 1994). The elaboration of the visual system is 

thought to have evolved as an adaptation to a diurnal lifestyle, and as a side-effect, the visual 

channel became the dominant channel for transmitting social information to conspecifics. 

Central to primate visual communication is the face, which can convey a great deal of social 

information. Selective pressures accompanying increased social complexity are thought to 

have brought about morphological changes to the anthropoid face, increasing its usefulness as 

an information source (e. g. the elaboration of facial musculature: Andrew, 1963; increased 

visibility of facial features due to loss of facial hair: Preuschoft, 2000). Likewise, pressures 

have been exerted on primate receivers to analyse and interpret the informative content 

provided by the face. Discussed below are types of information transmitted by both human 

and nonhuman primates, which are thought to have resulted from a shared evolutionary 

history. 

Facial expression 

As mentioned above, most anthropoids possess highly developed facial musculature, which is 

lacking in prosimian primates and non-primate species, and is thought to have evolved to 

increase the face's ability to generate a variety of expressions (Andrew, 1963; Emery, 2000). 

Both human and nonhuman anthropoid primates transmit similar messages through facial 

expressions and many human facial expressions are thought to have antecedents in nonhuman 

primate expressions. For example, the human anger face often contains compressed lips, 

which closely resembles the ̀ compressed lip' display seen in chimpanzees (Pan troglodytes) 

and the 'tense mouth' face of macaque and baboon species, both of which occur in aggressive 

contexts (van Hooff, 1967). Additionally, human smiling has been proposed to have evolved 

from the silent bared teeth display occurring in appeasement or affiliative contexts in some 

nonhuman primate species (Preuschok 1995). There is also evidence for homologous 

processing of facial expressions within the brain. Studies involving macaques (Macaca) with 
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selective brain lesioning and humans suffering from head trauma reveal the shared role the 

amygdala plays in interpreting facial expression (reviewed in Tovbe, 1995). 

Categorical discrimination of individuals 

All animals need a mechanism in order to categorically discriminate species, sex and age 

information in order to successfully reproduce (Sherman, Reeve and Pfennig, 1997). For 

humans, the face serves as the primary means for determining these variables. The faces of 

most primate species also show considerable heterogeneity across species, age, and sex 

(Plavcan, 2002). Therefore, facial features would appear to serve as suitable mechanisms for 

actors to inform and receivers to recognise information pertaining to these variables for many 

primates3. 

In terms of species recognition, experimental evidence from macaques indicates that the face 

is the primary means by which these species distinguish con from heterospecifics. In an 

experiment involving pigtail macaques (M. nemestrina), it was found that animals 

discriminated less between their own versus another macaque species (M. fuscata) when the 

head, but not the body, was removed from the image (Fujita, 1993). Dittrich (1994) also 

reported that the face was important for longtail macaques (M. fascicularis) to distinguish 

amongst line drawings of different primate species. 

Although there has been little experimental evidence into whether nonhuman primates use the 

face as a means of distinguishing between the sexes as do humans, it seems highly probable 

that they do so. One study found that two species of macaque (M. mulatta and M. fuscata) 

could easily distinguish between images of males versus females, however it is unclear if the 

images consisted of faces only or included the body (Mizuno, 1997). Many species display 

sexually dimorphic variations in the size or shape of facial anatomy (Plavcan, 2002), and it 

seems probable that such cues are utilised to make categorical distinctions. Among 

3 The use of the face as a means of categorical and individual identification is probably not common to 
all primate species, but rather may be an outcome of diurnal living. Other primates, auch as nocturnal 
prosimiana, likely rely on other factors such as scent (e. g. Aujard, 1997), or vocalisations (e. g. Hafen et 
al., 1998) to make these discriminations. 
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monomorphic primate species that lack variation in facial size or shape between the sexes, 

males and females often display variations in facial pelage colour [e. g. white-faced sakis 

(Pithecia pithecia); red-bellied lemurs (Eulemur rubriventer); many gibbons species 

(Hylobates sp. )], again suggesting that facial traits are an important variable for distinguishing 

between the sexes`. 

Additionally, there is suggestion that nonhuman primates discriminate age based on facial 

features, as do humans. Changes to the face occur amongst many primate species across age 

due to growth and sometimes also to changes in facial pelage. Experimental studies report 

that nonhuman primates show age-graded responses to facial images of conspecifics. For 

example, juvenile rhesus macaques (M. mulatta) show greater reactions to images of same 

versus different aged conspecific images displaying various facial expressions (Redican, 

Kellicut and Mitchell, 1971). Additionally, observational research suggests that in some 

species, males may suppress the development of their secondary sexual facial traits, and by 

maintaining their immature appearance they appear to avoid aggression from more dominant 

males [e. g. uakaris (Cacajao calvus): Fontaine, 1981; orangutans (Pongo pygmaeus): 

Kingsley, 1982]. This supports the idea that facial traits may be important in assessing sexual 

maturity among nonhuman species. 

Individual recognition 

Social animals need a reliable mechanism to identify individual members within their social 

group. As with humans, nonhuman anthropoid primates have the ability to recognise and 

remember individual faces in a highly developed manner (e. g. Hasselmo, Rolls and Baylis, 

1989; Perrett and Mistlin, 1990; Phelps and Roberts, 1994). Experimental studies have 

revealed the ability to discern individual identity based on the face alone in some nonhuman 

primate species [e. g. longtail macaques: Bruce, 1982; rhesus macaques: Parr et al., 2000; 

Rosenfeld and Van Hoesen, 1979; chimpanzees: Boysen and Berntson, 1989; Parr et al., 

2000; squirrel monkeys (Saimiri sciureus): Pineda et al., 1994]. Electrophysiological research 

4 Although full body sexual dichronutism also occurs for some primate species, sexually dimorphic 
facial markings are far more common (reviewed in Gerald, 2003). 
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with macaques have identified face-responsive neurons (i. e. face cells) located in the inferior 

temporal cortex and the banks and walls of the superior temporal sulcus that fire in response 

to viewing particular faces or facial features (reviewed in Perrett et al., 1992; TovLe, 1995)5. 

A recent functional magnetic resonance imaging (fMRI) study revealed that humans and 

macaques utilise homologous structures in the temporal cortex for the processing and 

recognition of faces (Tsao et al., 2003). This suggests a long evolutionary history of the face 

being utilised in this capacity. 

Sexual selection 

As mentioned above, human preferences for various facial characteristics are thought to be 

the outcome of sexual selection processes. There is little doubt that sexual selection has also 

played an important part in shaping the faces of many nonhuman primates. Secondary sexual 

features are commonplace in the anthropoid primate face, particularly among adult males. 

Examples of these include cheek flanges of orangutans, elongated noses of proboscis 

monkeys (Nasalis lavartus), enlarged muzzles of male baboons (Papio sp. ) species and 

colourful paranasal swellings in mandrills (Mandrillus sphinx). 

Explanations as to the significance of these features often relate to intrasexual competition. 

For example, the enlarged cheek flanges of the male orangutan have been proposed to act as. 

reflectors that boost the transmission of territorial long calls (Rodman and Mitani, 1987). The 

large muzzle of male baboons is thought to have evolved as a side-effect of increased male 

body size resulting from intense male-male competition (Harris, 2002). What is less clear is 

the relationship between intersexual selection and primate facial traits. 

If indeed facial features act as ̀honest' indicators of health and genetic status as they have 

been proposed to do so in humans, it is unclear why nonhuman primates would not also 

exploit such cues. As male facial features have been suggested to be indicative of male 

5 Face cells are not unique to primates; they are also reported to occur in temporal cortex of sheep 
(Kendrick and Baldwin, 1987). Sheep are able to use the face as a means to discriminate different 
breeds, between sexes within their own breed, and even between individuals (Kendrick et al., 1996). 
Whether the use of the face in this way is a primitive nb nmi lian trait is currently unknown. 
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competitive ability, it would seem likely that such traits would be exploited, and potentially 

selected for, by females. Although there has been very little research into the existence of 

indicator mechanisms among nonhuman primates, there is a great deal of evidence supporting 

female selectivity in mate choice among various nonhuman primates [e. g. savannah baboons 

(P. cynocephalus): Bercovitch, 1991; orangutans: van Schaik and van Hooff, 1996], which 

suggests that female choice is an important selective force in these species. Reports of male 

mate choice in nonhuman primates are less prevalent, but there is limited support for this in 

some species [e. g. olive baboons (P. anubis): Domb and Pagel, 2001; ring-tailed lemurs 

(Lemur catta): Parga, 2003]. The specific criteria nonhuman primates use to select their mate 

is largely unknown, although there is suggestion that morphological traits may play a role 

(Domb and Pagel, 2001; Rodman and Mitani, 1987; Setchell, 2003). The link between 

preferences, facial traits and any resulting indirect or direct benefits are explored in the 

following chapters. 

Alternatively, it has been suggested that human facial attractiveness assessments are by- 

products of sensory biases in recognition systems (Enquist et al., 2002). All animals need to 

solve the problem of identifying species, age, and sex in the acquisition of mates (Sherman et 

al., 1997). Reliable mechanisms of recognising these individual variables should be favoured 

by evolution, as individuals correctly identifying the correct combination of these factors 

should be selected over those who do not. Extrapolating such information can give rise to 

certain preferences through generalisation and discrimination processes (Enquist et al., 2002). 

As mentioned above, nonhuman primate faces show a great deal of heterogeneity across 

species, sex and individuals. It is therefore possible that nonhuman primates may possess 

facial preferences, based upon such characteristics that are important in mate recognition 

systems. Such selective processes could reinforce the use of the face as a site of sexual 

selection, which will be addressed further in this thesis. 
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1.3 Overview 

One main goal of sexual selection theory is to determine how mating preferences evolved, 

and four main theories (Fisherian sexual selection, sensory exploitation, indicator mechanism 

theory, species recognition) have been used to explain these. Among humans, facial features 

are a major determinant of attractiveness assessments of potential mates. Theories of sexual 

selection, particularly indicator mechanism theory and sensory exploitation, have been 

employed to explain human preferences. However, it is unknown at what point during our 

evolution that the face began to be used as a means to attract and assess mates. It is possible 

that this could be a phylogenetically old trait and that other primate species besides ourselves 

use their faces in mate selection. The face does hold a central role in both human and 

nonhuman primate communication and recognition and there is a great deal of evidence 

suggesting that humans and other primates share a common evolutionary basis for the ways 

they utilise their faces. Although sexual selection has been implicated in the morphology of 

various nonhuman primate species, experimental evidence linking this to intersexual selection 

has yet to have been provided. The aim of this thesis is to explore whether facial traits are also 

utilised to assess mates among nonhuman primates, in an effort to understand whether 

humans are unique in utilising the face as a mechanism of mate assessment. 

23 



Chapter 2 

Methodological Overview 

This chapter aims to review and describe the methods common to each of the experiments 

included within this thesis. It is divided into two sections. The first is an examination of the 

methods employed here, including reviews of the following: the study species' natural history 

and reproductive systems; artificial visual stimuli in animal behaviour research; perception 

and technical aspects of image display; the use of pictorial stimuli in nonhuman primate 

testing; and the interpretation of visual preferences. In the second part, descriptions of the 

methods are provided, which includes details of the study animals, experimental stimuli, and 

procedures and equipment employed here. 

2.1 Methodological review 

Attempting to investigate the topic of facial attractiveness in nonhuman primates raises a 

specific set of challenges. The first of these is how to manipulate facial features, as it is not 

possible to manipulate these in real animals. It was therefore necessary to adapt computer- 

based techniques used to study human facial attractiveness to manipulate nonhuman primate 

faces. This necessitates the use of artificial visual stimuli, which raises a variety of concerns. 

One central concern is how to present artificial visual stimuli to study animals, as this requires 

careful consideration of not only the animals' perceptual systems, but also the practical 

aspects of experimental design. A second issue involves how animals respond to such 

artificial stimuli. Due to their artificiality, these types of stimuli may lack salience to animal 

subjects, which is important to consider in both the experimental design and in the 

interpretation of results. Finally, there is the question of how to assess preferences for 

artificial visual stimuli and how to elucidate their underlying basis (i. e. whether preferences 

are actually related to stimuli attractiveness or may result from other perceived properties of 

the stimuli). But first I will discuss the study species. In order to assess whether facial features 

influence nonhuman primate preferences, I utilised a rhesus macaque model. Because rhesus 
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monkeys have been the subject of a great deal of behavioural and physiological research, they 

provide an excellent model to begin to explore this topic. 

2.1.1 Study species 

After apes, humans' closest genetic relatives are the Old World monkeys who make up the 

superfamily Cercopithecoidea, which includes the rhesus macaque. It is estimated that rhesus 

macaques and humans diverged from a common lineage around 25 million years ago (MYA) 

(Stewart and Disotell, 1998). In comparison, the Old World primate lineage diverged from the 

New World monkey lineage between 35 to 40 MYA (Stewart and Disotell, 1998) and from 

the non-primate mammals at least 65 to 85 MYA (Eizirik, Murphy and O'Brien, 2001; Kumar 

and Hedges, 1998). 

Natural history 

Rhesus macaques are widely dispersed across central to south-eastern Asia, including 

Afghanistan and India to Thailand and southern China (Rowe, 1996) where they live in a 

wide variety of habitats, including semi-deserts, tropical forests, swamps, and even urban 

environments (Seth and Seth, 1986). The most recent account of rhesus macaque taxonomy 

discounts the existence of subspecies (Fooden, 2000), however given the levels of geographic 

variation, it is likely that subspecies do exist (C. Groves, personal communication). 

In terms of physical appearance, they are medium-sized primates with brownish pelage and 

flesh- to red-coloured facial and anogenital skin. Adult females have a body size that is 

approximately two-thirds the size of adult males [males: 11.2kg, females: 8.2, (Southwick, 

Beg and Siddiqi, 1965)], making them only slightly more sexually dimorphic than adult 

humans (Smith and Jungers, 1997). 

In free-ranging situations, rhesus monkeys live in medium to large multimale-multifemale 

social groups, with group size varying from 10 to over 200, depending upon habitat quality 

and human provisioning (Seth and Seth, 1986). Social groups are characterised by strong 

female bonds among maternal kin and male natal emigration (Lindburg, 1971). Rigid 
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dominance hierarchies exist within both sexes (adult males are usually dominant over females 

and immature individuals), with kinship playing an important role. The main determinant of 

female social rank is maternal rank, with daughters assuming positions just below those of 

their mothers (Lindburg, 1971)6. Rank is also maternally inherited among males prior to 

emigration (Lindburg, 1971). However, following natal dispersal, male rank is primarily a 

function of group tenure length, rather than being determined by direct male-male 

competition (Hill, 1986; Manson, 1995). This means that the duration spent in a given social 

group is positively associated with male rank. 

Reproduction 

Female rhesus macaques attain sexual maturity at 2.5 to 3.5 years, while males reach sexual 

maturity at 3 to 4 years, based on viable gamete production (Bercovitch and Goy, 1990; Rose 

et al., 1978, cited in Dixson, 1998). Age at ovulatory onset (Schwartz et al., 1985, in Dixson, 

1998) and spermatogenesis (Dixson and Nevison, 1997) are positively correlated with 

dominance rank. Full adult body size, however, is not achieved until approximately 5.0 years 

for females (Bercovitch et al., 1998) and 6 to 8 years for males (Bercovitch and Goy, 1990). 

The menstrual cycle lasts 25.5 to 29.5 days on average, with ovulation occurring mid-cycle 

(Robinson and Goy, 1986, in Dixson, 1998). Females usually produce their first offspring at 4 

year of age (Bercovitch and Berard, 1993) and give birth to a single offspring annually, 

although fertility becomes more variable around 15 years (Campbell and Gerald, 2004) with 

menopause occurring around 24-26 years (Walker, 1995). 

Breeding occurs during a4 to 6 month annual mating season (Lindburg, 197 1). Outside of 

this time, females undergo anovulatory cycles (Koering, 1986, cited in Dixson, 1998). At the 

onset of the mating season, both sexes undergo changes to sexual skin colouration of the face 

and anogenital areas, related to increased circulating levels of sex hormones (e. g. Rowell, 

1972; Vandenburgh, 1965), which is discussed in greater detail in Chapter 6. Males also 

experience a 10 to 12% increase of body mass at this time (Bernstein et al., 1989), due to 

6 Hill (1999) has suggested that unprovisioned populations of macaques may display greater variability 
in patterns of female rank acquisition. 
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changes in fat levels (Bercovitch, 1992). This ̀ fatted male phenomenon' has been suggested 

to play a role in endurance rivalry among males, by enabling them to forgo feeding, thereby 

spending more time and energy on mating (Bercovitch, 1992). During the period surrounding 

ovulation, females may mate with a number of males (three to four partners on average: 

Manson, 1992). However, mating is not limited to this phase, and can occur across the 

menstrual cycle (Dixson, 1998) and even during early pregnancy (Loy, 1971). Males 

contribute little to no paternal care of offspring (Vessey and Meikle, 1984). 

Rhesus macaque mate choice 

Sexual preferences for specific partners have been reported for both sexes, however female 

mate choice has been researched to a much greater degree. Females exhibit a high degree of 

choice when selecting mates, however the specific criteria that females use to assess male 

attractiveness are unknown. Unlike a number of other primate species [e. g. brown capuchins 

(Cebus apella): Janson, 1984; vervet monkeys (Chlorocebus aethiops): Keddy, 1986], female 

rhesus macaques do not appear to base choice on male dominance rank. Females often solicit 

copulations from and maintain proximity to mid- to low-ranking males (Berard et al., 1994; 

Manson, 1994a), despite the risk of physical attack from high-ranking males (Manson, 

1994b). This may largely be explained by the fact that dominance rank is a function of group 

tenure rather than male-male competition in this species, and therefore is unlikely to be a 

definitive marker of male quality and competitive ability. 

One factor which does seem to play a role in female rhesus macaque mate choice is male 

`novelty'. Females appear to develop sexual aversions to males that have been in their social 

group for 3 to 4 years or longer (Manson, 1992). In both free-ranging and captive settings, 

researchers have reported female attraction to extra-troop or newcomer males (e. g. Lindburg, 

1969; Wilson and Gordon, 1979). Choosing novel males could act as a strategy to increase the 

genetic diversity of offspring and to decreases the risk of inbreeding (Bercovitch, 1997). 

However the trait of novelty alone is unlikely to sufficiently explain female choice, as all 

`novel' males are not equally preferred (personal observation). 
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More recently, studies have reported that MHC (major histocompatibility complex) 

heterozygosity (Sauermann et al., 2001; Widdig et al., 2004) and superior body condition (as 

measured by levels of fat deposition: Bercovitch and Nürnberg, 1996) are positively 

associated with male reproductive success. MHC heterozygosity, in comparison to 

homozygosity, offers a greater resistance to a wide range of pathogens and has been linked to 

female mate choice in other species (reviewed in von Schantz et al., 1996). It is unknown, 

however, whether MHC heterozygosity is linked to female rhesus macaque mate choice or 

whether it is a result of homozygotes out-competing their heterozygote rivals. Associations 

with male body condition have been attributed to intrasexual competition rather than female 

choice, however these need not be mutually exclusive. It is even possible that these variables 

are inter-related, as MCH genotype has been linked to male characteristics in males of other 

species (e. g. ring necked pheasant spur length: von Schantz et al., 1996; human skin 

condition: Roberts et al., in press). MHC genotype could also relate to other male physical 

traits used in mate assessment by females, which have not yet been investigated, such as 

secondary sexual colouration. 

There has been some research into the determinants of female rhesus macaque attractiveness, 

and one factor that appears to be highly influential is levels of ovarian hormones. Oestrogen is 

reported to enhance attractiveness, while progesterone diminishes it. For instance, the 

application of oestrogen creams to the genitalia of ovariectomized females results in a large 

increase in the number of ejaculations by their male partners. The administration of 

progesterone reverses this effect (Dixson, 1998). 

However ovarian hormones alone are not sufficient to explain female attractiveness, as there 

is experimental evidence reporting that males display mate preferences for individual females, 

independent of reproductive status. Herbert (1968) and Everitt and Herbert (1969) (cited in 

Dixson, 1998) carried out experiments with 18 captive rhesus monkeys housed in six groups 

of three, consisting of a single male and two ovariectomised females. They found that in each 

trio, the males formed a close association with one female, while excluding the other female. 

When both females in each trio were treated with oestrodial, males consorted only with their 
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preferred partners. If the oestadiol treatment was withdrawn from preferred partners, but 

continued with the non-preferred females, males directed more attention towards non- 

preferred females, but still continued to mount, groom, and maintain proximity to their 

preferred partners for half of the observation time. Similarly Rowell (1963) reported that 

males exhibited preferences for certain female partners, regardless of the females' menstrual 

cycle stage. The factors determining these preferences are not understood, but could 

potentially involve female appearance (Dixson, 1998). 

2.1.2 Using artificial visual stimuli 

Artificial visual stimuli have long been used in animal behaviour research, beginning with the 

use of models by early ethologists in studies of visual communication (e. g. the investigation 

of stimulus characteristics that release begging behaviour in herring gulls: Tinbergen and 

Perdeck, 1950, cited in D'Eath, 1998). More recently, models have been abandoned for two- 

dimensional images, including photographs, slides, computerised images and video, largely 

due to the greater degree of detail that can be achieved with these mediums. Such images can 

be extremely powerful experimental tools, as they offer many benefits over utilising real 

animals as stimuli, especially in terms of repeatability and control (reviewed by D'Eath, 

1998) and in terms of potential ethical considerations. These include: 

1) The ability to repeatedly present identical stimuli of a number of individuals. 

2) Stimuli presentation timing is controlled by the experimenter. 

3) Physical manipulations of stimuli which may be difficult or impossible to alter in real 

animals or models are possible (e. g. entire regions of the body can be altered for colour or 

size and shape by using computer manipulations). 

4) Specific features may be manipulated independently of other traits, such as behavioural 

and olfactory cues or other physical features, something which is difficult to do with real 

animals. 

29 



5) These techniques are entirely non-invasive, as they avoid physical manipulations to, and 

interactions among, live animals. Some manipulations can have harmful, even fatal 

consequences to real animals (e. g. Pryke, Lawes and Andersson, 2001) and interactions 

between real animals can result in serious aggression and potential injury (e. g. Gerald, 

2001; Moller, 1987; Rowher, 1977), which raises important ethical considerations for 

researchers. These issues are avoided completely when using artificial visual stimuli. 

Despite the many benefits of this approach, there are also some important limitations that 

must be addressed, due to the differences between artificial and real stimuli. These include 

potential perceptual and technical limits in the ability to represent real animals, the level of 

salience of the artificial stimuli to the study animals, and how to interpret and measure 

behavioural responses to such stimuli. Each of these issues is discussed in greater detail 

below. 

2.1.3 Perceptual and technical aspects of image display 

It is essential to take animals' perceptual systems into account and how this can potentially 

interact with the medium of stimuli presentation when utilising artificial visual stimuli. 

Photographs, slides and images displayed on video and computer monitors are all based on 

fundamental features of human visual processing to create a perceptual match between what 

we see in the image and in real-life (e. g. D'Eath, 1998; Fleishman et al., 1998). This is 

problematic as most animals' visual systems significantly differ from that of humans, 

therefore animals may not perceive images as resembling their real-life equivalents. This is 

particularly relevant to colour, depth perception, and visual acuity. I will discuss these issues 

in relation to using computer monitors with nonhuman primates, as this is highly relevant to 

the methods employed in this thesis. As well, I will make a comparison between rhesus 

macaques and human visual systems. 

Colour vision 

Colour vision involves the collection and interpretation of both direct and reflected light. 

Light rays do not inherently possess `colour'; rather light rays are emissions of 
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electromagnetic energy that vary in wavelength. This means that the perception of colour is 

entirely a creation of an animal's visual system. The eyes of most vertebrates contain 

photoreceptor cells (rods and cones) within the retina which are responsible for detecting light 

(Levine and Shefner, 2000). Among mammals, it is the cone photoreceptor cells that are 

responsible for colour vision (Kelber, Vorobyev and Osorio, 2003). Different cone cell 

classes contain different photopigments, which each vary in sensitivity towards different 

wavelengths of light. Although cone classes may be capable of absorbing light at a wide range 

of wavelengths within the visible spectrum, they each differ in their peak wavelength 

sensitivity (>,,,. x), which is the light wavelength that each cone absorbs more readily than any 

other. The perception of colour is a result of the differences of output signals among the 

different photoreceptor classes (Levine and Shefner, 2000). 

Normal trichromatic colour vision in humans relies on the presence of three cone types which 

are maximally sensitive to certain regions of the spectrum (short wavelength cone 435nm, 

medium wavelength cone 534nm, long wavelength cone 560nm) (Boyton, 1979). For the 

perception of realistic colour, all video display devices (e. g. LCD screens, CRT monitors, 

projection systems) as well as slides and photographs require that the viewer possess the same 

three cone types with similar spectral sensitivities as occurs in humans (D'Eath, 1998, 

Fleishman et al., 1997). Therefore, animals whose visual systems differ significantly from that 

of humans will be unlikely to see lifelike colour reproduction, which is the case for most 

nonhuman animals (D'Eath, 1998). Considerations of colour perception abilities must be 

made when using artificial visual stimuli with nonhuman primates, as primate colour vision is 

highly variable. Even with macaque vision, which is highly similar to normal human 

trichromatic vision, some differences in colour perception do exist. Chapter 6 discusses the 

issue of realistic colour representation and primate visual systems as well as the disparities 

between macaque and human colour vision in greater detail. 
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Depth perception 

Another potential problem with artificial visual stimuli is that they are two-dimensional in 

nature, and therefore are lacking in certain depth cues. This could potentially influence an 

animal's response, as many species will likely detect this difference. Zeil (2000) suggests that 

the lack of depth cues is potentially responsible for animals often failing to display a full 

behavioural repertoire in response to video images. Related to this is the problem of image 

distortion. If animals can move a great deal in relation to the images, image shape can become 

distorted (particularly if the animal can get up close and to either side). This needs to be 

carefully considered in experimental design (D'Eath, 1998). 

All primates have stereoscopic binocular vision due in part to their frontally directed eyes and 

the convergence of their visual fields. These features allow for two images to be imposed 

upon each other, providing primates with the ability to accurately judge depth and distance. 

However depth perception is less well-developed in prosimians, as their eyes are more 

laterally directed in comparison to monkeys, apes and humans (Napier and Napier, 1994). 

Given such sophisticated visual systems, many depth cues that primates use in real-life are 

absent in two-dimensional images. However these images are not totally devoid of depth 

cues. For human observers, cues such as overlap and shadow as well as texture gradients (i. e. 

textures of increasing fineness can create depth perception) create powerful illusions of depth 

(Oliveira, et al., 2000). It is likely that these cues create similar illusions for nonhuman 

primates, given the similarities across primate depth perception abilities. 

Additional measures may be taken to help avoid the problems cause by lack of depth cues. 

One suggestion is to ensure that animals appear life-size on the monitor, as smaller images 

that are seen at a distance may be perceived as having a small absolute size (Oliveira et al., 

2000). As well, it is important to control distance from the monitor to avoid image distortion 

issues. 
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Visual acuity 

Finally, the visual acuity of study animals must be taken into consideration. Images displayed 

on video or computer monitors consist of thousands of tiny pixels, the size of which depends 

on screen size and image resolution. Video cameras capture a scene's light and each pixel is 

given a brightness colour value. Such images possess only a set amount of visual information 

which occurs in real life due to spatial and colour averaging (D'Eath, 1998). Therefore, 

animals who have superior visual acuity compared to that of humans could find such images a 

poor replication for the real world, as images will be lacking in detail and may even appear 

pixelated. Even animals without a high degree of visual acuity may perceive images as 

pixelated if they are able to get close enough to the monitor, therefore again, it is important to 

control the distance of the study animals to the monitor. As well, image resolution is 

important to consider, as higher resolution images will contain a greater number of pixels, 

thus maintaining a greater level of detail (IEEE, 2005). On the other end of the extreme, if an 

animal has relatively low visual acuity, requiring the animal to make fine discriminations may 

be problematic (D'Eath, 1998). 

Superior visual acuity in vertebrates is related to the photoreceptor composition of the retina 

and presence of afoveal centralis, or a fovea, on the retinal surface. This is a small, cone-rich 

indentation on the retinal surface that is specialized for diurnal, high acuity functions. Apart 

from possessing a high density of cone photoreceptors, which allows for the fine 

discrimination of detail, foveae are also thought to further increase visual acuity by reducing 

light scatter and possibly by acting as a magnifying device. Foveae are found in many species 

of fish, reptiles and birds, however the only mammals possessing foveae are primates, 

although not uniformly so. Foveal systems are limited to non-prosimian primates, apart from 

tarsiers (Tarsius sp) and owl monkeys (Aoutus sp). However some diurnal prosimians (Lemur 

catta, Varecia variegata, Propithecus sp and Indri indri) are reported to possess an area 

centralis, which is not as cone rich as a fovea and lacks an indentation (reviewed in Provis, 

Diaz and Dreher, 1998). Additionally, both nocturnal and diurnal prosimians possess a 

tapetum, a layer behind the retina which reflects light (i. e. eye-shine), which is absent in 
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monkeys (including owl monkeys), apes, and tarsiers (Norback, 1975). This allows vision to 

be more sensitive under scotopic (low light) conditions, however visual acuity is sacrificed, as 

the reflected light is slightly displaced (i. e. light scatter), causing image degradation (Levine 

and Shefner, 2000). 

When examining the visual acuity among Old World primates, there is some small variation 

among visual acuity. Specifically comparing human and macaque foveae, both have foveae 

which are densely packed with cones (estimates of approximately 100,000 to 322,400 cones 

per mm2 in the central fovea of humans, and between 84,000 and 260,000 per mm2 in the 

central fovea of macaques: reviewed in Provis et al., 1998). Despite having similar levels of 

visual acuity, there are some small differences between human and rhesus macaque vision. At 

high luminance levels, humans have better acuity. In contrast, rhesus macaques have superior 

acuity under scotopic luminance levels (Behar and Bock, 1974; Cavonius and Robbins, 1973). 

This appears to be due at least in part to differences in the L to M cone ratios, which is higher 

in humans (Dobkin, Thiele and Albright, 2000) and to the fact that rhesus macaque pupils 

are more efficient at light capture (Cavonius and Robbins, 1973). 

Considering these differences in terms of utilising artificial visual stimuli with nonhuman 

primates, it seems reasonable that under photopic conditions, image resolution that is 

acceptable to humans should be acceptable to most primates. However, some species with 

poorer visual acuity, such as prosimians, may not be able to discern fine detail. 

2.1.4 Nonhuman primate responses to pictorial stimuli 

We do know a good deal about how nonhuman primates respond to pictorial facial stimuli, as 

these types of stimuli have been widely used in nonhuman primate research investigating 

visual recognition and facial processing over the past 40 years. The underlying assumption of 

such research is that the processing of and responses to these static, two-dimensional images 

are essentially analogous to those which would occur with real-life individuals (Nahm et al, 

1997). Although there have been objections to these assumptions (reviewed by Bovet and 
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Vauclair, 2000), photographic images have been demonstrated to produce meaningful 

behavioural, autonomic and neurophysiological responses (reviewed in Vick, 2001). 

For example, various studies have reported that nonhuman primates display appropriate social 

behaviour towards photographic images. Rosenfeld and Van Hoesen (1979) report that when 

rhesus monkeys were presented with transparencies of unfamiliar conspecific faces, they 

behaved as if they were encountering unfamiliar monkeys. Similar results have been reported 

for a variety of macaque species, with animals exhibiting overt emotional responses to images 

of other macaques, such as lip-smacking and grimacing (e. g. Fujita, 1987; Fujita and 

Wantanabe, 1995). Responses to pictorial stimuli can be modulated by properties of the 

stimulus animal, such as emotional expression, age, or dominance status. Sackett (1965) 

found that when viewing coloured slides of conspecifics with threatening expressions, rhesus 

monkeys responded by retreating from or threatening the images. Images of infants elicit lip- 

smacking and affiliative vocalisations from female rhesus macaques (CW, unpublished data). 

One study on hamadryas baboons (Papio hamadryas) reported that when presented with 

images of familiar conspecifics, animals' viewing preferences were consistent with the 

dominance rank of the stimulus animals (Kyes and Candland, 1984). Individual differences 

among study animals can also determine their responses to images. Kyes and coworkers 

(1992) found that when long-tailed macaques were presented with slides of gorillas and 

humans, dominant individuals threatened the images while subordinates gave submissive 

responses. 

Studies measuring electrophysiological responses (e. g. heart rate, brain waves, neuronal 

activity) also provide evidence for photographic images having a high degree of salience for 

nonhuman primates. In a study by Boysen and Bernston (1989), heart rate was reported to 

vary in a chimpanzee in relation to degree of familiarly and the facial expression (aggressive 

versus affiliative) when viewing conspecific photos. Koda et al. (1998) also found that an 

adult female Japanese macaque displayed different heart rates when presented with images of 

familiar versus unfamiliar humans. Additionally, squirrel monkeys were reported to display 

differential event related potentials (ERPs) in response to photographs of familiar versus 
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unfamiliar conspecifics (Pineda et al., 1994). Results from neurophysiological research also 

suggest that there exists a high degree of functional equivalence between real and two- 

dimensional faces. In rhesus macaques, it has been demonstrated that some neurons in the 

superior temporal sulcus (e. g. the ̀ face cells') discharge in response to two-dimensional and 

real faces in a qualitatively identical way (Perrett et al., 1985). However, it should be noted 

that reduced activity occurs in the majority of these cells when presented with images, 

compared to presentation of real faces. These reductions in cell activity are likely related to 

the lack of depth cues and lack of motion inherent in pictures, therefore the processing of real 

and two-dimensional faces are not wholly analogous (Perrett et al., 1985). 

Although there is a great deal of overlap in responses to two-dimensional and real faces, there 

are some differences that are important to consider when measuring behavioural reactions. 

Over time, behavioural responses to pictorial stimuli can gradually change or fade due to the 

lack of stimuli interactivity. Study animals may become dis-inhibited (e. g. animals may show 

prolonged gaze fixation towards pictures of threatening conspecifics) due to the lack of social 

context (Nahm et al., 1997). Additionally, repeated exposure to images may lead to decreased 

interest in stimuli. For example, Wilson and Goldman-Rakic (1994) report a significant 

decrease in viewing time between the first and second presentation of facial images among 

rhesus macaques. Such possibilities are important to consider when interpreting responses to 

pictorial stimuli. It should be noted, however, that decreased responses to images do not 

necessarily indicate that animals become aware of the representational nature of these stimuli. 

Rather it could be that they simply are aware that the image fails to display contingent and 

congruent behaviour (Vick, 2001). 

2.1.5 Interpreting visual preferences 
Human-based studies of facial attractiveness usually rely on participants self-reporting their 

judgements on the relative attractiveness of facial stimuli. As this would be impossible to do 

with nonhuman primates, it is necessary to devise an observational method of assessing such 

preferences. The use of looking behaviour as a means of measuring stimuli attractiveness has 
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been widely employed with both human infants and nonhuman primates, and is also used in 

the experiments described within this thesis. This preferential looking paradigm holds that eye 

gaze is biased towards the stimuli that attract the interest of the viewer. However, ascertaining 

the underlying basis of these preferences is not so straightforward and cautious interpretation 

is necessary, and the term ̀ preference' itself may be somewhat misleading. 

The best evidence that stimuli attractiveness is linked to looking behaviour comes from 

human studies. Infants have been demonstrated to gaze longer at attractive versus unattractive 

adult facial images (Geldart, Maurer and Carney, 1999; Langlois et al., 1987,1991; Samuels 

et al., 1994; Samuels and Ewy, 1985). Such preferences are reported to occur in infants as 

early as 2 days after birth (Slater et al., 2000). Older children and adults of both sexes also 

exhibit greater visual preferences for those faces judged as attractive in comparison to those 

judged as less attractive (Dion, 1977; Hildebrant and Fitzgerald, 1978; Power, Hildebrant and 

Fitzgerald, 1982). What is more, viewing time is related to levels of sexual interest among 

adult humans. Both Letoumeau (2002) and Quinsey et al. (1993) report that men's looking 

time at female images is significantly correlated with men's ratings of sexual arousal, sexual 

stimulation and sexual attractiveness. Similarly, Quinsey and co-workers (1996) found that 

viewing time was positively correlated with ratings of sexual attractiveness of opposite-sexed 

individuals for both sexes. A recent study using an eye-tracker found that gaze in human 

adults shifts towards faces and objects that they find more attractive in forced choice pair tests 

(Shimojo et al., 2003). 

Although there has been a great deal of research utilising preferential loolting behaviour with 

nonhuman primates, there has been little investigation into the causal factors driving these 

preferences. The only researcher who has attempted to assess this in depth is Humphrey, in a 

series of experiments conducted over 30 years ago. In his research on nonhuman primate 

visual preferences, Humphrey (1972) claims that there are two independent variables that 

drive visual preferences in both nonhuman and human primates. These are interest (i. e. we are 

attracted to the stimulus because of its informative properties) and pleasure (i. e. we are 

attracted to the stimulus' aesthetic properties because it imbues pleasurable feelings). He 
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proposes that of these two variables, interest will consistently override pleasure in 

determining visual preferences, as monkeys attend to stimuli with high information content 

despite its unpleasant properties. 

However, it is not clear that interest and pleasure are necessarily mutually exclusive 

properties, as a stimulus could potentially be simultaneously pleasurable and informative. For 

example, experiments have shown that male chacma baboons (P. ursinus) exhibit preferences 

for female sexual swellings, which they appear to find exciting or pleasurable, based on 

increased levels of sexual arousal (Girolami and Bielert, 1987). However, their interest could 

simultaneously be based on the informative content of the stimulus, in that swelling size is 

indicative of female reproductive condition. Therefore the informative content of the signal 

could be the ultimate driving mechanism of the affective component, which would serve as 

the proximate mechanism. Similarly, we may find viewing attractive faces of the opposite sex 

as pleasurable, however this could be due to the informative content that these faces possess 

(e. g. parasite resistance, reproductive status). It is difficult to separate biological information 

content and attractiveness, as they are not necessarily independent. 

A variety of factors appear to influence nonhuman primate looking behaviour when 

presenting artificial visual stimuli. There is evidence that viewing preferences are linked to 

stimuli attractiveness and biological relevance among nonhuman primates. Demaria and 

Thierry (1988) found that female stumptail macaques (M. arctoides) preferred images of 

conspecific females holding infants versus those without, presumably as infants are attractive 

to females. Although novelty (i. e. the unusualness or newness) of the stimulus can influence 

visual preferences, it tends to do so through newness rather than unusualness. Rather, 

biological relevance appears to be a more important component driving visual preferences 

than unusualness. For example, monkeys display preferences for images of conspecific faces, 

complex scenes and objects not previously seen (Pascalis and Bachevalier, 1998; Wilson and 

Goldman-Rakic, 1994), however they prefer images with a normal organisation of the face to 

jumbled configurations (Lutz et al., 1998). Also, Fujita (1993) reported that pigtail macaques 

display greater levels of lever pressing to view intact images of conspecifics versus those 
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where the head has been removed from the photograph. Various studies examining species 

discrimination among macaques also report that individuals prefer images of their own versus 

novel macaque species. Fujita (1987) measured viewing preference among five macaque 

species [rhesus, Japanese, bonnet (M. radiata), pigtail, and stumptail macaques]. All study 

species, apart from the stumptail macaques, preferred photos of conspecifics. However, 

Demaria and Thierry (1988) report that stumptail macaques do prefer images of their own 

versus other species, and the discrepancies with Fujita's study maybe explained by 

methodological differences (Pascalis et al., 1999). Other studies have reported preferences for 

conspecific images among Sulawesi macaque species (Fujita and Wantanabe, 1995; Fujita et 

al., 1997). It may be the case that heterospecifics are less attractive in comparison to 

conspecifics (Pascalis et al., 1999). Such preferences do have greater biological relevance and 

are in line with mating preferences, as naturally occurring hybrids are rare among sympatric 

macaque species (Bernstein and Gordon, 1980). 

Additionally, threatening stimuli are known to influence looking behaviour, posing another 

potential confound when trying to assess the significance of any visual preference. Humphrey 

and Keeble (1974) report that rhesus macaques selectively attend to fear-inducing stimuli. 

Evidence supporting this is provided by two studies employing eye-trackers. Nahm and co- 

workers (1997) investigated how rhesus macaques looked at conspecific and human facial 

images displaying various facial expressions. It was reported that animals displayed 

prolonged fixations to threatening images. Similarly, macaques' on-face fixations increased 

when a human model was showing a threatening expression compared to a neutral expression 

(Sato and Nakamura, 2001). 

Treue (2003) has proposed a neurobiological model to explain primate attention patterns, 

which he argues are primarily modulated by stimulus saliency. He suggests that primates 

possess an internal saliency map, where visual input is represented by its saliency, rather than 

by the physical strength of an individual stimulus (e. g. stimulus luminance). This saliency 

map consists of a representation of the environment that assesses all input by its local feature 

contrast and its current behavioral relevance. Such a system would provide an efficient 
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mechanism for identifying the potentially most relevant information and could explain greater 

attention given to species relevant and threatening images, as these would be expected to have 

greater salience. 

Finally, it is worth noting that social experience can influence what types of stimuli 

nonhuman primates attend to. For example, human-reared chimpanzees were reported to 

attend to images of humans longer in comparison to images of conspecifics and novel primate 

species (Tanaka, 2003). Cross-fostering studies in Japanese macaques found that when raised 

by rhesus macaque surrogates, these individuals displayed preferences for rhesus macaque 

images versus conspecific images (Fujita, 1990). An early study by Sackett (1965) 

investigated how social experience influenced reactions to social and non-social stimuli. He 

reported that wild caught individuals displayed greater visual exploration of conspecific 

images when compared to lab-reared and isolate-reared individuals. Wild caught monkeys 

also explored slides with sexual content to a greater degree in comparison to animals with 

different rearing histories. Behavioural reactions also differed among the groups; laboratory 

and isolate-reared monkeys displayed a higher level of submission and fear responses, while 

wild caught individuals reacted aggressively to images. Thus, it is important to keep in mind 

how individual histories may explain viewing preferences. 

2.2 Methods 

This section provides details about the methods common to each of the experiments in this 

thesis. Here I discuss details of the study animals, including housing and care as well as how 

experimental stimuli were collected and the computer graphics techniques utilised to 

manipulate these. Finally, I cover the experimental equipment and procedures. 
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2.2.1 Study animals 

Both free-ranging and captive animals were utilised in this investigation 7. Free-ranging 

animals were used to form stimuli and to make facial-metric measurements, allowing for 

facial features to be captured as they occur under natural conditions. Using captive individuals 

allowed for controlled experimental testing of preferences for different variables potentially 

influencing facial attractiveness. It also allowed the relative significance of these variables to 

be assessed independently. 

Free-ranging animals 

Images of 254 adults (130 females, 124 males) animals were collected from the population of 

rhesus macaques on Cayo Santiago, Puerto Rico, a 15.2 ha island located off the coast of 

south-eastern Puerto Rico. This field site is part of the Caribbean Primate Research Center 

(CPRC) and was established in 1938 with a founder population of 409 individuals (Rawlins 

and Kessler, 1986). At the time of stimuli collection, the island contained a population of 

over 1000 rhesus macaques. To maintain the population of an adult sex ratio of one male per 

two females, the removal of randomly selected two-year old monkeys took place annually. 

Study animals came from nine different social groups. Females' ages ranged from 6.15 to 

21.21 years (mean age =12.01 years, SE = . 38), while males ranged from 6.15 to 21.16 (mean 

age = 11.40 years, SE =. 38). 

Maintenance and Care 

All animals on Cayo Santiago are free-ranging and kept under semi-natural conditions. The 

island itself has varied topography, including rocky beaches, cliffs, coconut groves, 

woodlands, and mangrove swaps. There are a number of indigenous and introduced animal 

species living on the island (e. g. lizards, birds, scorpions, rats), however there are none which 

predate on the monkeys. 

All animals, both free-ranging and captive, were of Indian origin. 
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Animals were provisioned daily with commercial primate biscuits, placed into corral feeders 

surrounded by fencing. A variety of naturally occurring tropical vegetation and mineral rich 

soil were also consumed. To provide drinking water, rain was collected into cisterns and was 

then piped to various artificial drinkers around the island, although animals also drank from 

naturally occurring pools of water formed from rainfall. 

Regular censuses were conducted to collect demographic data on the population (e. g. births, 

deaths, emigrations, group fissures). Data on maternal relatedness, group membership, parity 

and transfer history were maintained in a database, dating back to 1957. Veterinary care was 

not provided and there was no provision of disease prevention, apart from tetanus 

vaccinations given to yearlings. However animals with conditions that were deemed as fatal 

were sometimes removed and/or euthanised. Annual trappings took place to remove surplus 

animals in an effort to maintain population density and to mark individuals for identification 

purposes (via ear notching and tattooing the chest and right inner thigh). Some study animals 

were trapped to collect physiological data (e. g. DNA fingerprinting, hormonal and 

immunological analyses) at that time. Monkeys otherwise were not handled or interfered with 

in any way. 

Captive animals 

Experimental study animals were eight female and six male young adult rhesus macaques. 

Ages ranged from 3.1 to 3.4 years among females and 4.4 to 5.4 years among males, with a 

mean age of 3.3 (SE =. 05) and 4.8 (SE =. 19) years respectively. Females were housed at 

Hillcrest Colony, University of Oxford, while the males were kept at Dstl, Porton Down. 

Females were assumed to be experiencing ovulatory cycles, based on cyclical changes in 

anogenital skin colouration and swelling at the time of testing. All females were nulliparous. 

Animals were born and reared within harem groups until weaning age, determined by facility 

policy, when they were moved into mixed-sex peer groups (approximately 1.5 years for 

females and 6 months to 1.0 year for males). These same individuals were used in all 

experiments within this thesis, apart from those in the Appendix A. 
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Maintenance and Care 

The female study animals were housed together in a group of 13 same-sex peers inside an 

indoor enclosure (259H x 375W x 274D cm). The enclosure contained wooden perching and 

the floors were covered in a deep layer of wood shavings. They had visual and auditory 

access to two neighbouring breeding groups. Animals were fed twice daily. In the morning, 

they received a diet of commercial primate pellets and a forage mix, while the afternoon diet 

varied daily, and included fresh fruit, bread, or eggs. Water was provided ad libitum from 

automated drinkers. 

Male study animals were housed in two same-sex groups of four and three individuals 

respectively. Each group had access to six indoor cage units (each measured 168H x 95W x 

95D cm) and they also had access to an outside enclosure, which was alternated between the 

two groups daily. Males were also fed twice daily. Morning diets consisted of primate pellets, 

egg and bread, while afternoon diet consisted of fresh fruit. Diets were also supplemented 

with a forage mix. Water was available ad libitum. 

2.2.2 Stimuli 

A digital video camera (Sony DCR-PCIOOE) was used to capture images of rhesus macaques 

over a1 year period on Cayo Santiago. This allowed for the possibility to capture changes in 

facial colouration that occurred across the year. Images were taken while animals exhibited 

neutral expressions, with mouths closed and faces and eyes pointed directly at the camera 

(Figures 2.1 and 2.2, p. 45). As the images showed direct gaze, it could be suggested that they 

were not expressionally neutral, since prolonged eye contact is associated with aggressive 

intent (Hinde and Rowell, 1962). However, threats are not the only context in which direct 

gaze occurs. Eye contact also occurs in appeasement and affiliative gestures, such as lip- 

smacking (van Hooff, 1967) and is also used to convey sexual interest in a variety of species, 

including rhesus monkeys (reviewed in Dixson, 1998). Animals use different attributes of the 

face, such as mouth configuration and brow position (Perrett and Mistlin, 1990), to interpret 

intent. As the other features of the face were neutral, it was hoped that the in-ages would not 

be perceived as antagonistic by the animals. Additionally, controlling for direction of eye 
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Figure 2.1. Rhesus macaque face delineated with 174 feature points. 

Backgrounds were highly variable among images, therefore it was necessary to standardise 

these across images to prevent confounds which could potentially influence preferences. To 

do this, the background surrounding those feature points around the facial outline was 

replaced with a black mask. Mask edges were smoothed to avoid the image having a polygon- 

like outline, which was accomplished by convolving the mask and a two-dimensional 

Gaussian function. Unmasked and masked versions of faces are shown in Figure 2.2. 

Figure 2.2. Example of unmasked and masked versions of facial stimuli. 
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As it was difficult to control animals' distance from the camera and head positioning, images 

were scaled and rotated to equalise inter-pupillary distance. This assisted in standardising 

facial size and head position among images, as well allowing for computer manipulation of 

facial features. Images were re-sized to approximate real-life and backgrounds were cropped 

closer to the head outline, creating image sizes of 531 x 511 pixels. 

2.2.3 Equipment and procedures 

Apparatus 

Timing and display of stimuli were controlled by a computer (Macintosh PowerPC G3) and 

images appeared on two colour-calibrated monitors (Macintosh Colour Display) in 24-bit 

colour. Monitors were situated 20 cm apart and approximately 50 cm from the testing box. 

Behaviour was monitored remotely and was recorded for later analysis via a digital camera, 

placed between the monitors, and a portable computer (Sony Vaio SR33). 

Monitors can vary in terms of colour display over time, and if not properly calibrated, they 

will not display accurate colour. Additionally monitors can vary in their individual colour 

output, even if they are identical models. To ensure realistic colour depiction and that both 

monitors had equivalent colour display, monitors were calibrated daily with the same colour 

profile before testing with Apple ColorSync® software. 

Procedure 

Due to many perceptual (e. g. image distortion, image pixilation) and practical considerations 

(e. g. animal safety, damage to equipment) of presenting pictorial stimuli on computer 

monitors, it was important to control the animals' distance to the equipment. Although testing 

within the home-cage would have been preferable from a welfare perspective as this has been 

reported to reduce stress levels among animals (reviewed in Reinhardt, Liss and Stevens, 

1995), individuals were separated temporarily from cage-mates. This was done as it was felt 

that it was important to restrict the animals' movement, to prevent them from leaving the 

testing area and to minimize external distractions from other animals. 
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Slightly different procedures were utilised for females and males during testing. Females 

entered a 45 Hx 61 Wx 56 D cm testing box attached to their enclosure, where the 

experiments were conducted. The front of the box was constructed of Plexiglas, allowing a 

clear view of the stimuli, while the rest was constructed of mesh. As testing took place 

adjacent to the home-cage, views of the home-cage were blocked with plastic screens. Views 

of the experimenters were also blocked with screens. Males entered a testing 29 Hx 69 Wx 

66.5 D cm box with Plexiglas sides and top. A hole within the roof of the box allowed the 

animal to place his head out of the box and to look at the screen as desired. After entering the 

box, males were then transported into an adjoining room for testing. Views of the 

experimenters were blocked with a curtain. 

All animals were previously habituated and trained to enter the testing boxes via positive 

reinforcement techniques. Animals were rewarded upon entry into the testing boxes and 

again at the end of the testing, to help ensure animal co-operation. Gaining co-operation is 

highly beneficial, as it reduces the potential side effects of stress arising from experimental 

procedures (e. g. Reinhardt et al., 1995) which could potentially alter the animal's responses to 

and interest in pictorial images. However, as co-operation was necessary, not all animals 

participated in each experiment, as animals sometimes refused to enter the testing area or 

became uninterested in the stimuli. Testing sessions were terminated if the monkeys appeared 

to be restless or stressed. One male was dropped from the study after one experiment, as he 

appeared to be stressed by the procedure, based on his degree of cage-shaking and 

vocalisation. If an animal attended to less than 50% of trials within a session or if equipment 

failure occurred during testing, the session was not included in the analyses. If a testing 

session was unsuccessful, a second attempt to run the session was later conducted, usually on 

the following day depending upon animal co-operation. Details on co-operation and re-testing 

rates for each experiment are available in each of the relevant chapters. 

Prior to participating in the experiments, each animal went through a five minute practice trial 

viewing a series of 30 images of infant and juvenile rhesus macaques. This was done in an 

effort to avoid any potential stress-related responses when encountering the experimental 
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stimuli due to procedural novelty (infants and juveniles were selected as they were deemed to 

be non-threatening). Following the practice trial, animals participated in a series of four 

experiments, which independently manipulated and measured preferences for the following 

variables: symmetry, sexual dimorphism, averageness, and colouration. Experiments differed 

only in the number of stimuli presented and the stimuli that were presented. Task order was 

also counterbalanced between subjects. Males were tested over a period of five days, and 

were taken out once or twice a day for testing in order to fit into the facility's own research 

schedule. Females were tested over a period of four weeks, and were taken out no more than 

once a day for testing. The longer testing interval for the females resulted from the differences 

in procedures to separate animals and cage design, which made it more difficult to get them 

into the testing box. As the basic experimental procedure was consistent across these tasks, it 

is reported below. 

Upon entering the testing chamber, animals were presented with a series of opposite-sexed 

images only. The number of trials within the task varied between 24 to 30 depending on the 

task. For each trial, two versions of the same face manipulated for the variable in question 

(symmetry, sexual dimorphism, averageness, or colouration, based on the task) appeared in 

24-bit colour simultaneously on the two different monitors. A different face was used for each 

trial in order to control for any variation (other than experimental manipulations) within the 

faces that may influence visual preferences and also to keep up interest in the task, as 

exposure to previously seen stimuli can decrease interest levels (e. g. Wilson and Goldman- 

Rakic, 1994). Each pair of stimuli was displayed for 10 seconds, with an inter-trial duration of 

2 seconds. Order of stimuli was randomised between subjects and left-right presentation of 

stimuli was counterbalanced within subjects to control for potential side biases. 

Behavioural data collection 

The Observer software (Noldus, Version 3.0) was used to continuously record study animals' 

looking behaviour. Four different behavioural measures were recorded to assess visual 

preferences for symmetric versus asymmetric facial stimuli, including gaze duration, gaze 

48 



frequency, first gaze and longest gaze. Gaze duration, frequency and longest gaze are all 

measures of visual interest, and previous studies investigating visual preferences have used 

these measures (e. g. Langlois et al., 1987; Rhodes et al., 2001 a). First gaze was included in 

order to assess which face initially captured the interest of the study animals. In addition to 

gaze behaviour, various postural and facial expressions were also recorded (Table 2.1). 

Order and left-right presentation of stimuli were unknown to myself when recording these 

data. Trials where external noise caused distraction (i. e. sounds from conspecifics or 

caretakers caused animals to orientate attention away from monitors), eye gaze was obscured 

(i. e. eyes closed or head directed downward), and where animals were orientated away from 

the monitors (i. e. animals turned their sides or back towards monitor) were excluded from 

analyses. To assist in verifying the validity of the preferential gaze behaviour used here, an 

additional two animals were tested with eye-tracking equipment. Details of this procedure are 

provided in Appendix A. 

Table 2.1 List of gaze, facial and postural behaviours (*adapted from J. Berard, 
unpublished methods). 

Gaze Behaviours Definitions 
Gaze duration: Total time spent looking in each direction 
Gaze frequency: Total number of looks in each direction 
First gaze: Direction of first look of trial 

Longest gaze: Direction of longest look of trial 
Facial & Postural Behaviours* Definitions 
Lip-smack: Rapid opening and closing of the lips, often audible 
Presentation: Animal presents hindquarters 
Facial threat: An aggressive behaviour, involving an intense stare usually 

accompanied by brow and ear retraction; may also be 
accompanied by an opening of the mouth, or a rapid lifting 
and lowering of the head 

Grimace: Retraction of corners of mouth 
Yawn: Opening mouth and exposing teeth, including canines with 

head sometimes thrown back and ears flattened against head 
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Infra-observer reliability assessment 

Intra-observer reliability was assessed throughout data recording to ensure data were being 

collected in a reliable manner. To do this, one session was randomly selected and re-analysed 

after every sixth to eighth individual sessions was recorded, for a total of nine re-analysed 

sessions. Original and re-analysed scores were assessed in two ways. Scores for looking 

duration and frequency were compared trial-by-trial with Pearson correlations, yielding 

correlation coefficients for original and re-analysed scores. An index of concordance was 

utilised to assess first look and longest look, as these data were categorical. This involved 

assessing the proportion of the total number agreements (A) to the total number of 

disagreements (D) between original and re-analysed scores [Al (A + D)], resulting in the 

overall percentage agreement between the two sessions (Martin and Bateson, 1993). See 

Table 2.2 for results. 

Table 2.2. Results of Pearson correlations and index of concordance to assess Intra- 
observer reliability. 

Session Looking duration Looking frequency First Look Longest Look 
(Pearson correlations) (Index of concordance) 

1 . 87 
. 81 . 83 . 83 

2 . 85 
. 87 . 83 . 79 

3 . 91 
. 88 . 87 . 80 

4 . 86 
. 83 . 92 . 83 

5 . 81 
. 72 . 92 . 83 

6 . 92 . 89 . 90 . 87 
7 . 90 . 86 . 88 . 81 
8 . 92 . 91 . 92 . 88 
9 . 90 

. 93 . 96 . 92 

2.3 Overview 

This chapter included a background and review of the methods common to each of the 

experiments included within this thesis. In the first part, I reviewed and assessed the 

ecological and experimental validity of the methods, including the following: the study 

species' natural history and reproductive systems; artificial visual stimuli in animal behaviour 
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research; perception and technical aspects of image display; the use of pictorial stimuli in 

nonhuman primate testing; and the interpretation of visual preferences. In the second part, 

descriptions of the methods were provided, which included details of the study animals, as 

well as experimental stimuli, procedures and equipment. The main approach of the studies 

included in this thesis was experimental in nature, relying on the preferential looking 

paradigm that holds that eye gaze is biased towards the stimuli that attract the interest of the 

viewer. This approach presents various benefits and limitations which were considered here in 

an effort to justify their use. Although this approach allows for manipulations that would not 

be possible to conduct with real animals and for greater control and replication, its major 

limitation lies in its artificiality and how to interpret the significance of preferential looking 

behaviour, as different factors, such as threat potential and individual social history, can 

influence these parameters. Therefore, cautious interpretation is needed when using such an 

approach. 
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Chapter 3 

Measurements of and Visual Preferences for 

Macaque Facial Svmmetrv 

The relative importance of bilateral symmetry in mate selection has been a highly contentious 

issue. Although symmetry has been demonstrated to influence attractiveness to varying 

degrees among many species, the ultimate reason as to why it does so and its overall 

relevance to real-life mating decisions has been greatly disputed. Among humans, facial 

symmetry does influence attractiveness to a degree; therefore I sought to investigate whether 

symmetry might also influence macaque preferences. This chapter has three parts. The first is 

a general review of symmetry research and a critical review of the research that has been 

conducted on humans, with an emphasis on facial studies. Following this, I present an 

investigation into naturally occurring facial asymmetries in macaques and discuss how this 

relates to human based research. Lastly, I include an experimental investigation into how 

conspecific facial symmetry influences macaque visual preferences for opposite-sexed faces. 

3.1 Background 

There are three main forms of bilateral asymmetry that exist among biological organisms, 

which are directional asymmetry, antisymmetry, and fluctuating asymmetry (Van Valen, 

1962, in Thornhill and Moller, 1997). These may be differentiated by the shape of their 

distribution within a population. Directional asymmetry arises when traits on the same side 

are consistently larger than the on other. This results in a population skew to the left or right 

side, with a mean value deviating from zero. Examples of directional asymmetry are found in 

testes size among many vertebrates (i. e. the left testis is consistently larger than the right) and 

in some human brain regions. Antisymmetry occurs when traits on one side are consistently 

larger than the other, but the larger of the bilaterally paired traits can occur on either the right 

or left side at random. This type of asymmetry thus results in a platykurtic distribution across 

the population. Claw size in male fiddler crabs (Uca sp) is a prime example, where the left or 
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right claw is consistently larger. Fluctuating asymmetry (FA) is defined as small, random 

deviations to the left and right sides of otherwise bilaterally symmetrical traits, with a 

population mean of zero. All three types of symmetry are commonplace throughout the 

animal kingdom (Moller and Swaddle, 1997), however it is only FA that will be examined 

here. 

3.1.1 The impact of fluctuating asymmetry on attractiveness 

There is a large body of research reporting that FA has a negative relationship to 

attractiveness in a diverse range of species, including insects, fish and birds. The vast majority 

of studies have focused on associating male FA with female mating preferences. For example, 

Manning and Hartley (1991) report that the FA and number of ocelli in peacock (Pavo 

cristatus) trains are inversely related, and peahens are reported to prefer males with highly 

ornamented trains (Petrie et al., 1991). Other studies have reported similar findings 

associating female preferences with low male FA [e. g. crickets (Acheta domesticus): 

Simmons and Ritchie, 1996; scorpion flies (Panorpajaponica): Thornhill, 1992], however 

female choice may be based on other traits associated with symmetry, rather than by the 

degree of FA per se. Other research has attempted to address this by experimentally 

manipulating male symmetry, and this approach has yielded some positive findings relating 

FA to attractiveness. For example, Swaddle and Cuthill found that female zebra finches 

associated and sexually displayed more to males with symmetrical versus asymmetrical 

artificial leg bands (1994a) and manipulated chest plumage (1994b). Similarly, in 

experimental manipulations to male vertical markings, female swordtails preferred 

symmetrical males (Morris and Casey, 1998). Manipulations to male symmetry have been 

reported to have a similar influence among other various species [e. g. American goldfinches 

(Carduelis tristis): Johnson, Dalton and Burley, 1993; bluethroats: Fiske and Amundsen, 

1997; sailfin mollies (Poecilia latipinna): Schluter, Parzefall and Schlupp, 1998]. 

In comparison, there has been a shortage of studies looking at the role of female FA and male 

assessments of mate attractiveness, as sexual selection is thought to act more strongly on male 
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traits (Moller and Thornhill, 1998). However, according to sexual selection theory, male 

choosiness should occur in species where female quality is highly variable or if mating is 

costly for males (reviewed in Chapter 1). Apart from humans, the only species on which the 

impact of female symmetry has been experimentally investigated is bluethroats (Hansen, 

Amundsen and Forsgren, 1999), who exhibit a high degree of paternal care. The results 

indicate that male bluethroats preferred associating with females with symmetrical leg bands. 

However, not all studies researching FA have reported an impact on mate attractiveness. For 

example, Tomkins and Simmons (1998) found that manipulating male forcep FA in male 

earwigs (Forficula auricularia) had no impact on female mate choice, although manipulations 

to size did. Similarly, female preferences among red jungle fowl were reported to not be 

influenced by naturally-occurring or manipulated asymmetries of bilateral male ornaments 

(Ligon, Kimball and Merola-Zwartjes, 1998). Failure to find relationships between male FA 

and attractiveness have also been reported for several other species, including the butterfly 

Bicyclus anynana (Breuker and Brakefield, 2001) and cricket frogs (Acris crepitans: Ryan et 

al., 1995). In fact among whydah birds (Vidua paradisaea), experimental alterations 

increasing male tail FA were reported to positively influence female mate choice (Oakes and 

Barnard, 1994). 

3.1.2 Theories of symmetry preferences 

There are two main theories employed to explain preferences for symmetry, which are 

discussed below. 

Fluctuating asymmetry as an indicator mechanism 
To explain preferences for low levels of FA, variants of indicator mechanism theory have 

been frequently employed. As the development of both the left and right sides of an 

organism's body are under genetic control, it has been proposed that deviations from perfect 

bilateral symmetry arise when individuals are unable to counteract the effects of 

environmental (e. g. habitat quality, temperature, parasitism) and genetic (e. g. mutations, 

inbreeding, hybridisation) stressors (reviewed in Moller and Swaddle, 1997). As levels of FA 
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are thought to be markers of developmental stability, they are therefore thought to be 

indicative of individual genetic and/or phenotypic quality (Moller, 1990). It has been 

suggested that secondary sexual traits are especially sensitive to the effects of stress during 

development (Moller, 1990). Therefore, individuals with lower FA in sexually selected traits 

should be preferentially selected as mates, as they may bestow both indirect and direct 

benefits upon their mates (Moller, 1990,1993; Thornhill and Gangestad, 1993). 

Attempts to link FA to aspects of quality have yielded ambiguous results. Some studies have 

reported conflicting results within the same or among closely related species. For example, 

one study reported FA in male earwig forceps negatively related to body condition (Radesäter 

and Halld6rd6ttir, 1993), although no relationship was found in a later study (Tomkins and 

Simmons, 1998). Similarly in studies with cervids, one study found that male antler FA, but 

not size, was negatively associated to immunocompetency among male reindeer (Lagesen and 

Folstad, 1998), although another study on fallow deer (Dama lama) found that male antlers 

displayed directional asymmetry and found no relationship between asymmetry and male 

quality (Pelabon and Joly, 2000). Swaddle and colleagues (2004) state that for the only two 

nonhuman species for which there is unequivocal evidence of symmetry influencing 

attractiveness, zebra finches and swordtail fish, there is no evidence for a relationship 

between degree of naturally occurring FA and fitness. Based on such conflicting evidence, the 

generality of the application of FA as a marker of quality remains questionable. 

Symmetry and sensory bias theory 

Alternatively, sensory bias theory has also been employed to explain why symmetry is 

attractive. Proponents of this theory maintain that symmetry preferences have not evolved 

because they relate information about signaller's quality, but rather they are a consequence of 

perceptual biases in biological recognition systems (e. g. Enquist and Arak, 1994; Enquist and 

Johnstone, 1997; Johnstone, 1994; Swaddle and Cuthill, 1994b). Recognition systems require 

receivers to possess a mechanism to be able to respond consistently to a wide range of 

different stimuli, which occurs through the process of generalisation (discussed in Chapter 1). 
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Generalisation may occur both when animals encounter individuals of different phenotypes, 

and also when individuals of a single phenotype are encountered at different orientations, 

which results in changing retinal images. Though individual features and retinal images are 

often asymmetrical, generalising over the range of such variation can give rise to preferences 

for average trait expression, which would be symmetrical in the case of traits showing 

fluctuating asymmetry. This view does not necessarily deny that fluctuating asymmetry may 

be associated with aspects of mate quality, however any benefits of mating with individuals 

possessing symmetrical features would simply be fortuitous side-effects of sensory biases 

(Enquist and Arak, 1994). 

There is some rather compelling evidence supporting the role of generalisation processes in 

the formation of symmetry preferences. Research training artificial neural networks to 

recognise simple visual patterns has resulted in perceptual biases for symmetric versus 

asymmetric patterns (Enquist and Arak, 1994; Johnstone, 1994). Studies training animals 

have resulted in similar findings. For example, chickens (Gallus gallus domesticus) were 

trained in one study to peck at asymmetric crosses that were left or right biased (Jansson, 

Forkman and Enquist, 2002). The chickens displayed preferences for novel symmetric crosses 

that were the arithmetic mean of the training stimuli during non-reinforced probe trials. 

Swaddle and colleagues (2004) have also reported preferences for symmetrical stimuli during 

probe trials among European starlings (Sturnus vulgaris) that were trained with left or right 

biased stimuli, however no preferences occurred among untrained birds. Based on such 

evidence, sensory bias explanations are appealing as they offer a clear mechanism to explain 

symmetry preferences and have the potential to account for the negative results from attempts 

to link FA to various aspects of quality. 

3.1.3 Human based symmetry research 

Although symmetry does relate to attractiveness among humans, its relative significance to 

overall attractiveness is debatable. Some researchers have reported a link between FA and 

human mate choice among both men and women. For example, in their study of American 
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university undergraduate couples, Gangestad and Thornhill (1997) found that males with 

lower bilateral body trait FA (based on width of feet, ankles, elbows, hands, wrists, and ears) 

reported having greater numbers of extrapair copulations. Another study using similar 

methods found that among men living in rural Belize communities, the number of reported 

sexual partners was marginally negatively associated with degree of FA (Waynforth, 1998). 

Manning and colleagues (1997) report that women with lower breast FA were more likely to 

be married than those with higher breast FA. Such results raise the issue of what types of 

phenotypic cues may account for the relationship between FA and mate selection. 

Various studies have looked at the relationship of symmetry to other phenotypic 

characteristics, although mostly among males. Low FA has been reported to be associated 

with male vocal attractiveness (Hughes, Harrison and Gallup, 2002) as well as body odour 

attractiveness (Rikowski and Grammer, 1999; Thornhill and Gangestad, 1999b). Measures of 

body FA also have a negative relationship to facial attractiveness among males (Gangestad, 

Thornhill and Yeo, 1994). However it has also been proposed that degree of FA itself is used 

as a cue in assessing mate attractiveness among humans of both sexes. 

Facial symmetry and attractiveness 

Most of the research on symmetry manipulations and attractiveness has focused on the face, 

due to its central role in attractiveness assessments. Human faces exhibit a combination of 

both fluctuating and directional asymmetry (e. g. right hemi-faces are larger than left hemi- 

faces: Simmons et al., 2004), and all individuals are thought to possess some degree of facial 

asymmetry in both hard and soft tissues to varying degrees (Hershkovitz, Ring, and 

Kobyliansky, 1992; Sackeim, 1985). Some of the earlier experiments of facial symmetry 

revealed preferences for facial asymmetry, rather than symmetry (e. g. Kowner, 1996; 

Swaddle and Cuthill, 1995). These studies have been criticised however based on their 

methods of stimuli generation, which relied on mirror image and original faces, resulting in 

structural and textural abnormalities (Perrett et al., 1999). More recent experiments using 

computer graphics techniques that avoid these problems have reported preferences among 
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both sexes for male and female faces that had been manipulated to increase facial shape 

symmetry (e. g. Little et al., 2001; Perrett et al., 1999; Rhodes et al., 1998; Rhodes et al., 

2001 b). Utilising these techniques, preferences for symmetrical faces have been reported 

across cultures (Rhodes et al., 2001b). 

Facial symmetry and attractiveness are also positively associated in real faces in adults of 

both sexes (e. g. Grammer and Thornhill 1994; Jones et al., 2001; Mealey, Bridgstock and 

Townsend, 1999; Penton-Voak et al., 2001; Rhodes et al., 1999, Rhodes 2001b; Scheib, 

Gangestad andThornhill, 1999). However the relative contribution of symmetry to facial 

attractiveness is questionable. While symmetry has been reported as a predictor of facial 

attractiveness by two studies (Grammer and Thornhill, 1994; Sheib et al., 1999), other studies 

have reported relatively small associations (e. g. Shackelford and Larsen, 1997). Additionally, 

degree of facial FA has been negatively associated with quality of facial skin texture (Jones et 

al., 2001), which may explain in part why facial attractiveness and FA are associated with 

facial attractiveness assessments. More recent research confirms that asymmetry appears to 

account for very little variance in attractiveness (Penton-Voak et al., 2001). Therefore, rather 

than being a prevailing determinant of human attractiveness, increased symmetry appears 

only to slightly enhance this. 

Is symmetry an indicator mechanism among humans? 

Among humans, certain genetic disorders are associated with levels of FA that for exceed the 

population means, such as cleft palate and fragile-X syndrome which are associated with high 

dental and dermatoglyphic FA (reviewed in Moller and Thornhill, 1997). However it has been 

suggested that the comparatively low levels of FA that occur among the population may also 

indicate genetic or phenotypic quality. But like studies on animal populations, human studies 

of FA often yield conflicting results. For example, Hume and Montgomerie (2001) measured 

facial, bodily, and dermatoglyphic asymmetry among 189 adults and did not find many 

significant correlations between levels of asymmetries among the trait families. They also 

found that dematoglyphic FA was related to past health problems only for females, but not 

58 



males. Milne et al. (2003) measured FA and seven health measures in a large (n-965) 

population sample of 26-year old men and women. FA was significantly associated with two 

health measures: body mass index, but only for females, and number of medical conditions. 

As many of these studies attempt to correlate bodily and facial FA with multiple measures of 

health, it seems likely that this raises the possibility of Type I statistical errors. Also, as 

mentioned in Chapter 1, traits which are linked to individual quality but are not involved in 

mate selection cannot be put forward as evidence for indicator mechanism theory. Therefore, 

various attempts to specifically link facial FA to individual quality have been conducted. 

Studies manipulating facial symmetry have found that increasing symmetry has a positive 

effect on perceived health (Grammer and Thornhill, 1994; Jones et al., 2001; Rhodes et al., 

2001c), although such studies are subject to the halo effect (Feingold, 1992). One study by 

Shackelford and Larsen (1997) found that facial asymmetry was negatively correlated with 

health, but these results did not replicate across their two samples. It may be the case that the 

lack of a clear relationship between symmetry and health may be a by-product of the 

minimization of environmental stressors in modern societies. However, Rhodes and co- 

workers (2001 c) found no relationship between facial symmetry and past or future health 

status for facial images of 17 year olds from the 1920's, before the widespread use of 

vaccines and antibiotics. 

The use of indicator mechanism theory to explain preferences for facial symmetry has been 

questioned; rather, it is possible that humans possess sensory biases for symmetry (Enquist et 

al., 2002). Symmetry is a principle of Gestalt perception, and symmetrical patterns are more 

easily perceived versus those that are asymmetrical (Levine and Shefner, 2000). Humans 

possess preferences for symmetry in items that bear no relationship to mate assessment, like 

everyday objects and decorative art (Rensch, 1963 and Gombrich, 1984, in Little and Jones, 

2003). This position has been criticised by Little and Jones (2003), who found preferences for 

facial symmetry in non-inverted, but not inverted facial images. They argue that as they did 

not find evidence of a general preference for symmetry independent of stimuli type, general 

preferences for symmetry cannot account for preferences for facial symmetry. Although 
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humans may have general perceptual biases for symmetry, it is suggested that other 

mechanisms may be in operation, making humans particularly sensitive to the symmetry of 

mate-choice relevant stimuli. They even suggest that general preferences for symmetry could 

arise from a generalisation of an adaptation to prefer symmetric physical traits in potential 

mates. However one important issue remains; if FA is truly an important marker of genetic 

and or phenotypic quality, then it is worth asking why is it only of minimal importance to 

attractiveness. 

3.2 Measuring macaque facial symmetry 

In comparison to humans and animals from other taxonomic groups, there has been very little 

interest in investigating any potential links between FA and sexual selection in the nonhuman 

primates. Only two studies have been published on this topic, looking at FA in primate canine 

teeth (Manning and Chamberlain, 1993,1994). To gauge whether FA may influence 

attractiveness, it is first necessary to establish that FA indeed exists in the trait assessed. As 

mentioned in the previous section, human faces display both fluctuating and directional 

asymmetries. The aim of this section was to examine the statistical properties of asymmetry in 

rhesus macaque facial features. It is important to note that there is no standardised method of 

measuring asymmetry within human faces (Penton-Voak, 1999). Here I have adapted the 

methods established by Grammer and Thornhill (1994). These methods were selected as they 

have been used as a means to assess facial asymmetry in many studies of human facial 

attractiveness (e. g. Hume and Montgomerie, 2001; Jones et al., 2001), can therefore provide a 

comparative perspective on macaque and human facial asymmetry. 

3.2.2 Methods 

Images 

The images used were described in Chapter 2. Images of animals that had facial scarring or 

where feature points could not be clearly distinguished were discarded. Of the remaining 

images, there where 88 females and 74 males with a mean age of 12.42 years (SE = . 47, range 

= 6.40 to 21.21 years) and 10.68 years (SE = . 43, range = 6.15 to 20.03 years) respectively. 
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Figure 3.1. Points measured to assess macaque facial asymmetry. 

Measurements 

Image J software (National Institute of Health, Version 3.0) was used to position 12 feature 

points on the facial images. Facial images were increased in size by 200% to assist in marking 

out feature points on a monitor with a screen resolution of 1024 x 768 pixels. Six pairwise 

distances between the 12 points on opposite sides of the face were measured twice in pixels. 

These feature points are based on those used in human faces, however their positions did have 

to be adapted slightly to accommodate macaque facial shape. The corresponding points were 

positioned on the outside (P 1 and P2) and inside (P3 and P4) corners of the eyes, the widest 

horizontal point of the zygomatic arches below the eyes (P5 and P6), mid-face (P7 and P8), 

the widest points at the apex of the nostrils (P9 and P 10), and the corners of the mouth (P I1 

and P12). These are shown in Figure 3.1. The vertical midline was then calculated for each 

face by averaging the x axis coordinates of the midpoints of each of the six horizontal lines. 

These measures were then used to assess horizontal facial (x axis) asymmetry, which is the 

measured by the deviations between the midpoints of each horizontal line and the vertical 

midline (i. e. the average midpoint calculated across the six lines). In a perfectly symmetrical 

face, all midpoints will fall on the vertical midline. 
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3.2.3 Results 

Here I have adapted the methods used by Simmons et al. (2003) in human facial asymmetry 

research to assess facial symmetry in macaques. The statistical evaluation of measures of 

horizontal asymmetry of facial traits are provided in Table 3.1. Male and female faces were 

assessed separately as face size differed due to sexual dimorphism (all means are given as ± 

SE). All traits were significantly repeatable for male faces, with a mean repeatability estimate 

of . 73 f . 09. This was also the case for female faces (mean repeatability = . 81 ±. 07). 

However, the estimates of repeatability for P11-P 12 were low in comparison to the other 

measurements, likely due to the presence of hair surrounding the face, making these features 

more difficult to mark out reliably. 

To test whether these facial measurements had the statistical properties of FA, Kolmogorov- 

Smirnov tests were used to test whether the values were normally distributed about zero 

(normal distribution would not occur for traits displaying directional asymmetry or 

antisymmetry). Kolmogorov-Smimov tests stipulate that if the p-value is below 0.05, then 

there is a difference between the distribution of the data set and normal distribution. The 

results reveal that for both male and female faces, the six pairwise measures had the statistical 

properties of FA (Table 3.1). 
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Table 3.1. Repeatability and statistical properties of left-right measurements of macaque 
faces. Trait measurements are the deviations between the midpoints (MP) of each 
horizontal line and the vertical midline (VM) calculated across these lines. 

Trait Repeatability Statistical properties of signed left-right 
measures 

rp Mean SE Normality P 
(K-S Z) 

Males (n = 74) 
MP1,2 - VM . 861 . 001 . 57 . 44 . 80 . 539 
MP3,4 - VM . 737 . 001 . 83 . 38 . 65 . 789 
MP5,6 - VM . 939 . 001 1.22 . 60 . 79 . 556 
MP7,8 - VM . 889 

. 001 . 13 . 58 . 63 . 825 
MP9,10 - VM . 609 . 001 -1.47 . 42 . 67 . 761 
MP11, P12 - VM . 356 . 002 . 75 . 39 . 68 . 743 

Females (n = 88) 
MP1,2 - VM . 915 . 001 -. 66 . 38 . 55 . 919 
MP3,4 - VM . 887 . 001 . 04 . 37 . 87 . 413 
MP5,6 - VM . 945 . 001 1.24 . 48 . 55 . 926 
MP7,8 - VM . 878 . 001 -. 91 . 76 . 58 . 892 
MP9,10 - VM . 766 . 001 -. 87 . 42 . 50 . 963 
MP11, P12 - VM . 481 . 001 1.74 . 40 . 51 . 955 

3.2.4 Discussion 

As with human faces, FA appears to be present in rhesus macaque faces. In fact for all the 

measures made here, the type of symmetry present appeared to be fluctuating. This does 

contrast slightly with data from human samples, in which measures of upper (equivalent to 

distance of P5 and 6 on macaque faces) and lower (equivalent to P11 and 12) facial width 

show directional asymmetry, with right facial dominance (Simmons et al., 2003). The 

underlying factors responsible for directional facial asymmetry in humans is presently 

unknown, but conceivably, this could be linked to differences in side biases in musculature 

activity, such as mastication (A. Little, personal communication). Humans do show side 

biases in masticatory muscle activity (McCarroll, Naeije, and Hansson, 1989) which may be 

outcomes of brain hemisphere lateralisation. Humans display population level right-side 

biases for many motor activities which relate to neuroanatomical asymmetries in the primary 

motor cortex (e. g. Amunts et al., 1996). Although there are reports of motor activity laterality 

among macaques, these findings have been variable, with some showing laterality at the level 

of the individual, rather than population wide biases (e. g. Rigamonti et al., 1998; Tanaka, 
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1989). Therefore, this disparity between macaque and human facial measures may reflect a 

lack of population wide biases in laterality of motor functions among rhesus macaques. 

It is still possible that rhesus macaque faces also display directional asymmetry, as the 

measures used here likely only captured a small level of asymmetry. Facial-metric 

measurements such as these are somewhat limited as measures are simplistic and are taken 

from two-dimensional images. Such techniques are relatively poor at capturing overall levels 

of asymmetry in the face compared to the amount which may be perceived by human 

observers (Simmons et al., 2003). More effective techniques are lacking, nonetheless the 

assessment of these simplistic measurements is useful in establishing the existence of FA 

within macaque faces. It should also be noted that in human faces, directional asymmetry 

does not detract from judgements of attractiveness, although FA does (Simmons et al., 2003). 

Therefore it is possible that degree of FA in macaque faces similarly influences preferences 

for conspecific faces, which is addressed in the following section. 

3.3 Manipulating and measuring preferences for facial 
symmetry 
As discussed in the first section of this chapter, artificial manipulations to symmetry 

positively influence mate attractiveness among various taxa, although its overall contribution 

is debatable. Regardless of the selective forces responsible, there has been little investigation 

into the evolutionary history of human preferences for facial symmetry. Recent OARI 

evidence suggests that rhesus macaques possess the neural mechanisms tuned to detect 

symmetry (Sasaki et al., in prep). Therefore, the following study aimed to determine whether 

facial symmetry might also influence preferences of rhesus monkeys for opposite-sexed faces. 

3.3.1 Methods 

The experimental procedure followed here was as described in Chapter 2. Details specific to 

stimuli construction, image display and the study animals are provided below. Images were 

randomly selected out of the subset used to measure facial asymmetry. 
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Symmetry manipulation 

Symmetry in macaque face shape was manipulated using a similar technique to that used by 

Perrett and co-workers (1999) to manipulate symmetry in human faces. We marked 174 

feature points of 30 individual male and 30 individual female images with Psychomorph 

software. A perfectly symmetrical version of each face was created by averaging the height 

and lateral position (relative to a midline, perpendicular to and bisecting the inter-pupillary 

line) of corresponding pairs of feature markers on the left and right sides of the face. Each 

facial image was remapped into the corresponding symmetrical shape (Benson and Perrett, 

1991; Perrett et al, 1994; Rowland and Perrett, 1995). Images were made symmetric in shape 

alone and original textural cues were maintained. This prevented structural and textural 

abnormalities associated with symmetry manipulation techniques that combine mirror images 

and original faces, which can have negative effects of attractiveness (e. g. Swaddle and 

Cuthill, 1995). Asymmetry was increased by utilising the linear difference between feature 

points in the symmetric and the original version, transforming each original image 50% 

towards the asymmetric version. The final images consisted of 1 perfectly symmetrical and 1 

+50% asymmetric version for each original face (Figures 3.2 and 3.3). 
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Figure 3.2. Example of symmetrical (left) and asymmetrical (right) male stimuli. 

Study animals 

Five males and eight females took part in this study. One male (Minor) and one female 

(Hattie) were retested as they did not reach the criterion level in the number of trials attended 

to during the testing due to inattention. Both successfully reached the 50% level of threshold 

during their second testing session. 
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3.3.2 Results 

Trials where external noise caused distraction, eye gaze was obscured, and where animals 

were orientated away from the monitors were excluded (females mean = 21.25 trials included 

per animal, SE = 1.06; male mean = 24.20 trials included per animal, SE = 1.07). For the 

included trials, the means and standard errors for gaze duration and frequency are displayed in 

Table 3.2. Total percentages for direction of first and longest gaze are provided in Table 3.3. 

To test duration and frequency data for normality, the ratio of the kurtosis of the differences 

in scores for symmetrical versus asymmetrical faces was compared to its standard error (if the 

ratio is less than -2 or greater than +2, then the assumption of the normality of the distribution 

can be rejected). Differences of scores for symmetrical and asymmetrical faces were within 

the range of normal distribution for both duration and frequency (duration: kurtosis/SE = -. 57; 

frequency: kurtosis/SE = -1.13). 

Table 3.2. Individual, sex, and overall means ± SE for gaze duration (seconds) and 
frequency (number of looks) for symmetrical versus asymmetrical faces per 10 second 
interval. 

Animal Mean gaze duration 
Symmetrical Asymmetrical 

Mean gaze frequency 
Symmetrical Asymmetrical 

Males 
Vela 2.43 2.28 1.46 1.21 
Minor 1.85 1.73 1.44 1.11 
Polo 1.41 2.07 . 96 1.22 
Major 1.63 1.51 . 85 1.15 
Draco 2.07 1.26 1.38 1.00 

Male mean ±SE = 1.88±. 18 1.77±. 18 1.22±. 13 1.14±. 04 

Females 
Honey 1.91 . 71 1.71 1.00 
Hazel 2.29 1.05 1.63 1.00 
Hen 1.16 1.16 2.00 1.28 
Hebe 2.24 1.01 1.92 . 92 
Hettie . 79 1.00 . 85 1.15 
Hattie 1.53 . 83 1.67 1.07 
Heidi 1.49 1.12 1.48 1.62 
Holly 1.17 . 66 1.67 . 92 

Female mean ±SE= 1.57±. 19 . 94±. 07 1.61 ±. 12 1.12±. 08 

Overall mean ±SE = 1.69 ± . 14 1.26+. 14 1.46: k. 10 1.13: k. 05 
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Table 3.3. Individual, sex, and overall proportion where first and longest gaze were 
directed towards either symmetrical or asymmetrical images. 

Animal Proportion first gaze 
Symmetrical Asymmetrical 

Proportion longest gaze 
Symmetrical Asymmetrical 

Males 
Vela 0.60 0.40 0.60 0.40 
Minor 0.48 0.52 0.59 0.41 
Polo 0.40 0.60 0.52 0.48 
Major 0.52 0.48 0.48 0.52 
Draco 0.67 0.33 0.62 0.38 

Male mean f SE = 0.53 ±. 04 0.47 ±. 04 0.57 +. 03 0.45 ±. 03 

Females 
Honey 0.55 0.45 0.60 0.40 
Hazel 0.82 0.18 0.77 0.23 
Hen 0.58 0.42 0.63 0.38 
Hebe 0.79 0.21 0.68 0.32 
Hettie 0.26 0.74 0.26 0.74 
Hattie 0.71 0.29 0.71 0.29 
Heidi 0.41 0.59 0.59 0.41 
Holly 0.56 0.44 0.89 0.11 

Female mean ± SE = 0.58 ±. 07 0.42 ±. 07 0.64 ±. 06 0.36 ±. 06 

Overall mean ± SE = 0.53 ±. 04 0.47 ±. 04 0.56 ±. 04 0.44 ±. 04 

All statistical results are provided in Table 3.4. Repeated measures ANOVA's were 

performed to assess gaze duration and gaze frequency for symmetric versus asymmetric faces, 

with sex included as a between-subjects factor. Overall, there was a significant main effect of 

face type; animals looked significantly longer and more frequently at symmetrical versus 

asymmetrical versions of faces. A significant main effect of subject sex was found for 

duration, but not frequency, indicating that males were looking longer at the faces. However 

there were no significant interactions between face type and sex. 

Overall, the proportions of trials where the first gaze and longest gaze were directed at 

symmetrical stimuli were slightly higher than for asymmetrical stimuli. To assess if these 

biases for symmetrical stimuli were greater than chance, one tailed t"tests were employed, 

with the test value set at . 50. Whilst the proportions of first gaze directed at symmetrical faces 

did not significantly differ from . 50, the proportion of longest gaze was significantly greater 

(Table 3.4). 
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Table 3.4. Statistical results for gaze duration, gaze frequency, first gaze, and longest 
gaze (p values <. 05 in bold for ANOVA and one sample t-test results). 

Gaze measures Test d. f. P value 
Duration 
Face F =5.48 1,11 . 040 
Sex F =11.45 1,11 . 006 
Sex*Face F=2.74 1,11 . 126 

Frequency 
Face F= 5.73 1,11 . 036 
Sex F= 3.71 1,11 . 080 
Sex*Face F= 3.01 1,11 . 111 

1st gaze 
Symmetrical faces t=1.48 12 . 164 

Longest gaze 
Symmetrical faces t=2.67 12 . 020 

There were some limited occurrences of behavioural reactions among the study animals. One 

female (Heidi) lipsmacked and presented during two trials, however the direction in which 

these behaviours were focussed was unclear. Two males displayed reactions to the stimuli; 

this consisted of one male (Vela) yawning twice during trial presentations and another (Polo) 

lipsmacking to asymmetrical versions of female faces during two trials. Behavioural reactions 

were not analysed due to their infrequency both within and among individuals. 

3.3.3 Discussion 

The results indicate that altering symmetry of facial shape influences macaque visual 

preferences for opposite-sexed conspecifics, introducing the possibility that human facial 

symmetry preferences are more deeply rooted in our evolutionary history that previously 

realised. A preference for facial symmetry among macaques does not necessarily imply that 

symmetry is related to any aspect of phenotypic or genetic quality. Sensory biases could also 

explain the results. As mentioned previously, symmetry preferences may stem from 

recognition processes; if recognition of conspecific versus heterospecific mates is dependent 

upon bilateral traits, this may lead to biases for symmetry (Johnstone, 1994). Species 

discrimination in macaques appears to be largely dependent upon the face (Dittrich, 1994; 

Fujita, 1993), therefore this would seem a plausible explanation. Trying to ascertain the 
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underlying factors responsible would be difficult, although conducting experiments similar to 

those by Swaddle and colleagues (2004) and Jansson and coworkers (2002) (discussed on p. 

56) with macaques might provide evidence of whether generalisation processes lead to 

learned preferences of symmetry. 

The results revealed that males had significantly higher gaze durations for facial stimuli, but 

this is likely a reflection of the experimental set-up rather than unequal levels of interest in 

opposite-sexed facial stimuli. Females were tested adjacent to their home cage, which led to a 

higher level of distraction in comparison to the males who were tested away from their cage- 

mates. Although sex did not appear to have a significant influence on symmetry preferences 

based on ANOVA analyses, preferences appeared to be somewhat stronger among females 

when looking at individual scores (see Table 3.2 and 3.3), as differences of male scores of the 

various gaze measures for symmetrical and asymmetrical female faces are much smaller than 

those of the females. In an additional experiment where one adult male and one adult female 

underwent this same experiment employing eye-tracking equipment (Appendix A), the female 

displayed significant preferences for symmetry based on all the dependent gaze measures 

employed, however the male displayed no significant preferences at all. This contrasts 

somewhat with human-based research reporting the importance of these factors to preferences 

in both sexes (e. g. Grammer and Thornhill, 1994; Perrett et al., 1999; Rhodes et al., 1998). 

One possible explanation for the disparity between the present study and the previous human- 

based research could relate to differences in mating systems. In species such as humans, 

where males often contribute considerable parental investment in offspring, males may be 

highly selective when choosing mates (Trivers, 1972). Indeed, there is evidence that in 

species where males contribute paternal care, males prefer symmetry in female traits (leg 

bands in bluethroats: Hansen et al. 1999; face and breasts in humans: Perrett et al., 1999; 

Singh, 1995). Conversely, in species characterised by high maternal but low paternal 

investment in offspring, such as rhesus macaques, it is generally assumed that females tend to 

be responsible for choosing mates, while males compete to be chosen (Trivers, 1972). Rhesus 

macaque females are reported to exhibit a high degree of choice when selecting mates 
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(Manson, 1994a, 1994b). Their preferences for symmetrical male faces are consistent with 

research in other species reporting that manipulations enhancing male symmetry increases 

male attractiveness. In contrast, there is a potential cost to choosiness for rhesus macaque 

males, as rejecting potential partners could constrain male reproductive success. In such 

situations, males may simply possess a lower optimal threshold for symmetry, thereby 

allowing acceptance of a wider range of female partners. However, there is evidence 

indicating that even among primate species lacking high paternal investment, males may still 

exhibit a degree of choosiness (e. g. Domb and Pagel, 2001; Parga, 2003). Mating does inflict 

costs upon males, such as decreased time spent feeding (Bercovitch, 1997), lost mating 

opportunities (Andersson, 1994; Domb and Pagel, 2001) and sperm depletion (Dewsbury, 

1982). Therefore male preference is predicted to evolve in any species where females vary in 

fertility and/or parental ability (Andersson, 1994; Owens and Thompson, 1994) or if mating is 

costly for males (Dewsbury, 1982; Johnstone et al., 1996). 

One point of methodological importance is the low overall looking times of the trials. Mean 

times for both males and females were under 2 sec per image. This likely has to do with the 

lack of interactivity of the stimuli, which does not allow the stimuli to retain the animals' 

interest for longer durations. Although this is a shortcoming of using such a testing paradigm, 

it is also important to note that visual preferences can still be established even if the stimuli do 

not retain the animals' interest for long. It is necessary though to exert some caution in the 

interpretation of macaque preferences. As real faces are not perfectly symmetrical (Thornhill 

and Gangestad, 1999a), it could be argued that visual preferences for symmetrical faces 

reflect a preference for novelty (i. e. the symmetrical faces appeared unusual) rather than 

greater attractiveness. This seems unlikely as the techniques utilised here to manipulate facial 

symmetry are reported to result in participants rating symmetrical human faces as both less 

unusual and more attractive than their asymmetrical counterparts (Rhodes et at, 2001a, b). 

Additionally, supernormal preferences for opposite-sexed traits can potentially lead to 

preferences for symmetry that exceed levels found in normal populations (Johnstone, 1994), 

which may explain the preferences here for highly symmetrical faces. It is also important to 
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point out that although novelty does influence viewing preferences among nonhuman 

primates, it generally does so in terms of newness, rather than unusualness, as discussed in 

Chapter 2. However facial symmetry's relative significance to human assessments of facial 

attractiveness is comparatively small in relation to other facial traits (Penton-Voak et al., 

2001; Sheib et al., 1999). As with humans, there are likely other features that influence facial 

attractiveness in macaque faces, which are investigated in the following chapters. 
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Chapter 4 

Measuring Visual Preferences in Relation 
to Facial Sexual Dimorahism 

The term ̀ sexual dimorphism' is used to describe differences between males and females 

beyond those of the copulatory organs and gonads (Wilson, 1975). Sexual dimorphism is 

commonly found among a variety of primate traits, depending on the species. For example, 

males and females may differ in pelage and skin colouration, colour vision capabilities, and in 

size and shape of anatomical traits. This chapter will use the term only to refer to differences 

in trait size and shape. Sexual dimorphism has been demonstrated to influence attractiveness 

in both male and female human faces, and the aim of this chapter was to assess whether it 

may also influence preferences among rhesus macaques. The first section discusses facial 

sexual dimorphism among nonhuman primates in an attempt to create a comparative 

perspective. It also critically reviews the research and theories on why human facial sexual 

dimorphism influences attractiveness. This is followed by an experiment investigating 

whether manipulations to facial sexual dimorphism influence macaque visual preferences for 

opposite-sexed faces. 

4.1 Sexual selection and primate faces 

Patterns of facial sexual dimorphism vary greatly among primates; in some species, the sexes 

may be fairly identical, while among others, males and females may be very different in 

overall facial size and/or shape'. Despite this diversity, there are some general trends that 

occur across species. In an interspecific comparison of facial sexual dimorphism, Plavcan 

(2002) reports that not all facial features are affected equally. While bizygomatic breadth 

(width between cheekbones) and maxillary bicanine breadth (muzzle breadth) are the most 

frequent facial locations showing sexual dimorphism, orbital (eye socket) height shows little 

dimorphism. Facial sexual dimorphism is also greater in those species with higher sexual 

$ This is biased on skeletal measurements, as studies of facial sexual dimorphism among nonhuman 
primates are based almost exclusively on this. 

73 



dimorphism in body size and canine length (Plavcan, 2002). Studies of primate sexual 

dimorphism focusing on body size differences have generally attributed sexual dimorphism to 

sexual selection processes! (e. g. Clutton-Brock, Harvey and Rudder, 1977; Lindenfors and 

Tullberg, 1998; Mitani, Gros-Louis and Richards, 1996). Like body size, sexual dimorphism 

of the face has been proposed to relate to sexual selection processes (Harris, 2002; Plavcan 

2002; Weston et al., 2004). 

Evidence linking sexual selection to facial sexual dimorphism is based in large part upon its 

relationship to mating systematics. As with body size, dimorphism of facial size and shape is 

infrequent among monogamous species, but widespread among multimale-multifemale and 

polygynous species (Plavcan, 2002). For example, it has been suggested that the elongated 

faces of baboons, mandrills, and drills (Mandrillus leucophaeus) are related to extreme male- 

male competition for dominance rank and access to females (Hams, 2002). Intrasexual 

selection may have indirectly shaped male faces though male-male competition which has 

selected for larger body and canine size, but it is possible that facial sexual dimorphism itself 

is used as a cue by conspecifics. Among species with higher levels of body size dimorphism, 

variability among male facial size and shape is much greater (Plavcan, 2002). In these cases, 

it could be that facial sexual dimorphism is an accurate cue to individual male competitive 

ability, as larger body size and larger canines among individuals may result in greater 

dimorphism. Not all morphological differences between male and female faces result from 

sex differences in body and canine size; as mentioned in Chapter 1, some male primates 

display facial adornments. Although little is known about the evolution and functions of these 

secondary sexual facial traits, they are linked to sexual selection and occur mainly in species 

where male-male competition is intense (Dixson, 1998). 

While anatomical studies are useful, it is necessary to provide direct observational evidence 

for sexual selection in facial sexual dimorphism (Table 4.1). Among primates with multimale- 

9A variety of theories have been put forward to explain larger male size in multimale-multifemale and 
polygynous species (e. g. male defence against predators, nonadaptive by-products of size increases, 
phylogenetic inertia), however these alternative theories have been heavily criticised (e. g. Ely and 
Kurland, 1989; Lindenfors and Tullberg, 1998). 
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multifemale and polygynous mating systems, there is some limited evidence that facial traits 

are important to male-male competition. The best evidence comes from human based research 

reporting that male faces showing higher levels of sexual dimorphism are associated with 

greater social dominance (e. g. Mueller and Mazur, 1997). Although no direct measurements 

of associations between facial morphology and male rank or competitive ability in nonhuman 

primates have been conducted, there is evidence that they are related in some species. 

Delayed development of male secondary sexual facial traits among young and/or low ranking 

individuals has been documented among species where male-male competition is intense. In 

these cases, it may be that the presence of adult males and/or low rank factor in delayed 

attainment of adult facial features. For example, in the presence of a fully grown adult male, 

young male proboscis monkeys1° and orangutans will experience delayed onset of secondary 

sexual facial features (Hollihn, 1973, in Dixson, 1998; Kingsley, 1982). Similarly, male 

rhesus monkeys who emigrate into a new social group at a young age retain a smaller face 

and body size when compared to matched-aged peers remaining within the natal group (C. W., 

unpublished data). Retaining juvenile-like traits could act as an alternative male strategy, as 

this may result in the decreased likelihood of aggression from fully grown adult males who 

may otherwise see these individuals as potential competitors (Dixson, 1998). 

In addition to male-male competition, female choice has also been implicated in male facial 

sexual dimorphism (Table 4.1). Female orangutans are reported to prefer mating with fully 

grown adult males, while resisting smaller males who possess underdeveloped cheek flanges 

(van Schaik and van Hooff, 1996). Although rhesus macaque males are capable of siring 

offspring from as young as 3.5 years (Bercovitch and Goy, 1990), it is not until after males 

attain full adult size that they are reported to achieve their highest levels of reproductive 

success (Bercovitch et al., 2003; Widdig et al., 2004). Although this may be attributable in 

large part to intrasexual competition, female mate choice also likely factors in determining 

this trend (Widdig et al., 2004). In a comparative anatomical study, Weston and colleagues 

10 Although the male proboscis now is thought to serve as a resonating chamber for territorial calls 
(Ankel-Simons, 2000), it is possible that nose size itself serves as a visual signal used in male-male 
competition and possibly female choice among proboscis monkeys. 
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(2004) reported that among species lacking canine dimorphism, males have proportionally 

broader, shorter faces relative to females, while male primates with high canine dimorphism 

have comparatively longer faces that are not disproportionately broadened relative to females. 

The authors suggest that a lack of canine dimorphism is not a by-product of weak male-male 

competition, but rather may be the product of female selection for broader male facial width. 

Finally, experimental evidence linking male human facial sexual dimorphism and female 

preferences also exists; however these findings are not straightforward and are discussed in 

greater detail below. 

Table 4.1. Primate facial morphology and evidence for intersexual and intrasexual 
selection. 

Species Trait Intrasexual Intersexual Source 
competition Selection 

Cacajao Temporal Delayed growth in Fontaine, 1981 
calvus muscular some adult males 

bulges 

Homo Facial Enhanced sex-typical 
sapiens shape face shape associated 

with dominance 

Female preferences for Little et al., 
enhanced male face 2001,2002; 
shape where paternal Mueller & 
care may be lacking Mazur, 1997; 

Perrett et al., 
1998 

Macaca Facial Delayed attainment of 
mulana shape adult facial features in 

males who emigrate at 
a young age 

Nasalis Nose Reduced nose growth 
lavartus in presence of adult 

male and among males 
in bachelor groups 

Higher rate of Bercovitch et 
reproductive success al., 2003; 
among males having Waitt, 
attained full adult unpublished 
growth data; Widdig et 

al., 2004 

Hollihn 1973; 
Bennett & 
Sebastian, 1988 

Pongo Cheek Suppression of cheek Female preferences for Kingsley, 
pygmaeus flanges flange growth in fully grown males 1982; van 

presence of full grown Schaik & van 
males Hooff, 1996 

76 



4.2 Human facial sexual dimorphism research 
Human-based research has implicated facial sexual dimorphism in both mate assessment and 

intrasexual competition. I will first discuss the evidence for attractiveness, as degree of sexual 

dimorphism is influential in the preferences of both sexes. In female faces, sex-typical facial 

characteristics (small lower face, low facial and brow prominence, full lips, high brows) are 

reported to be universally preferred. This evidence comes from measurements of female facial 

images (Cunningham, 1986; Grammer and Thornhill, 1994; Jones and Hill, 1993) as well as 

from studies using computer graphic techniques altering sex-typical dimorphism by 

exaggerating the differences between male and female facial shape" (Perrett et al., 1994, 

1998; Rhodes, Hickford and Jeffery, 2000). However, how male facial sexual dimorphism 

influences female preferences is more complicated. 

In comparison to adult females, adult male human faces have more prominent brow ridges 

and lower faces, deeper set eyes, wider noses and mouths, and larger jaws (Farkras, 1981 in 

Johnston et al., 2001). Some studies have reported that enhanced male features are associated 

with male attractiveness. One study found a positive relationship between female 

assessments of attractiveness of male photographs and male jaw size and cheek bone 

prominence (Scheib et al, 2001). Similar studies have also reported female preferences for 

large male jaws (Cunningham, Barbee and Pike, 1990; Grammer and Thornhill, 1994). 

However, these results were not replicated in a more recent study (Penton-Voak et al., 2001). 

Research employing computer graphics techniques have also yielded mixed results. Enhanced 

sex-typical traits have been reported to enhance attractiveness in some studies (Johnston et al., 

2001), while negatively impact it in others (Perrett et al., 1994,1998; Rhodes et al., 2000). 

Still other studies have suggested that a combination of reduced and enhanced sex-typical 

dimorphism, varying by trait, is optimally attractive (Cunningham et al., 1990). 

Computer graphics techniques used to alter sexual dimorphism do so based on exaggerating the 
differences between male and female facial shape. Thereby, moving faces towards the male face shape 
(i. e. masculinisation) results in enhancing male sex-typical traits, while reducing female sex-typical 
traits. The reverse is true for altering faces towards female facial shape (i. e. feminisation). 
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As previously mentioned, human facial sexual dimorphism has been reported to be related to 

dominance status and may play an important role in intrasexual competition. Male typical 

features (e. g. large jaw and brow ridge) have been linked to assessments of dominance in 

studies using identikit stimuli and real faces (Berry and Brownlow, 1989, Berry and Wero, 

1993). Enhancing male face shape in facial composites causes judges of both sexes to rate 

male faces as being more dominant, as well being less prosocial and warm (Perrett et al., 

1998). This also results in men rating such faces as being more threatening in scenarios 

involving direct competition over females, particularly among male participants with lower 

facial dimorphism (A. Little, unpublished data). In a study of how facial features relate to 

actual status, Mueller and Mazur (1997) report that perceptions of facial dominance among 

pictures of military cadets correlated with military rank obtained 20 years later. Although 

they did not quantify facial dominance with any facial-metric measurements, the authors did 

characterise dominant male faces as having more prominent brows and chins, as well has 

deeper set eyes, while the less dominant faces had a more rounded facial shape. 

The influence of female facial sexual dimorphism and intrasexual competition has yet to be 

investigated. Interestingly, it has been reported that decreasing female facial sexual 

dimorphism also increases ratings of dominance (Perrett et al., 1998). However one confound 

of such studies is that masculinising male and female faces also results in them appearing 

older, and it could be suggested that maturity cues, rather sexual dimorphism, are driving the 

associations with dominance. In terms of female competition over mates, it could be predicted 

that female faces with enhanced sexual dimorphism would be viewed as more threatening in 

intrasexual competition over mates, as these are reported to be more attractive. Viewing 

attractive female faces results in increasing negative affect (Kenrick et al., 1993) and 

physiological arousal (Hazlett and Hoehn-Saric, 2000) among women. Such responses may 

result from encountering a higher status competitor, which could possibly threaten their 

reproductive success (Hazlett and Hoehn-Saric, 2000). 
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4.2.1 Theories of sexual dimorphism preferences 

Just as for symmetry preferences, indicator mechanism and sensory bias theories are the two 

main theories used to explain preferences for sexual dimorphism. These are discussed below. 

Sexual dimorphism as an indicator mechanism 

For both sexes, variations of indicator mechanism theory have been most frequently used to 

explain the results from human sexual dimorphism studies. 

Age indicator 

It has been proposed that preferences relating to sexually dimorphic facial features occur 

because of their association with age (Meyer and Quong, 1999). Associations between age 

and size of sexually dimorphic features occur among various animals, and thus may be used 

by potential mates in age assessment [e. g. antler size in red deer (Cervus elaphus): Hyvärinen, 

1977 in Andersson, 1994; train size in peacocks: Manning, 1989]. Sexually dimorphic facial 

features arise with sexual maturity and decline in old age. As such, they may also be 

indicative of reproductive viability, competitive ability, social dominance and competency 

(Perrett et al., 1998). Feminising both male and female faces results in them being perceived 

as more youthful by human raters (Perrett et al., 1998). Therefore, preferences for feminised 

faces of both sexes may be by-products of generalised preferences for youth (Meyer and 

Quong, 1999). 

Some researchers have argued that female facial sexual dimorphism provides an honest 

signal of female reproductive potential based on age; as female sex-typical facial features may 

decline with older age, female reproductive capabilities may also be in decline, therefore 

males may have evolved preferences for exaggerated female facial sexual dimorphism based 

on the advantages of selecting younger mates (Symons, 199S). In contrast, it has been 

suggested that females should prefer men who are somewhat older, as male resources and 

status may accrue with age, and fertility is not as strongly age dependent among males (Buss, 

1989; Symons, 1979). Although this trend is more apparent in underdeveloped countries, 

preferred age gaps between partners are markedly less in developed countries, with 
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individuals preferring partners that are more equivalent in age (Buss, 1989). Therefore one 

possible explanation of preferences of feminised male and female faces may relate to the 

demographic parameters of the participants used in these studies. Frequently participants are 

young university undergraduates from developed countries. Therefore preferences for 

feminised faces could be a by-product of preferences for self-similarity in age. Penton-Voak 

and Perrett (2001) report that comparatively older female participants prefer higher levels of 

exaggerated sex-typical dimorphism in male faces, suggesting that age may indeed be 

implicated in sexual dimorphism preferences. As most of the research investigating sexual 

dimorphism relies on young undergraduate populations, attempting to apply these results to 

species level preferences is problematic. Although age is sometimes mentioned as a potential 

confound in such studies, its contribution needs to be investigated. 

Immunocompetence handicap 

The most popular explanation used to explain human preferences for facial sexual 

dimorphism is based on the immunocompetence handicap hypothesis (e. g. Johnston and 

Franklin, 1993; Johnston et al., 2001; Penton-Voak et al., 1999; Thornhill and Gangestad, 

1999a, b). This theory rests on two assumptions: 

1) Sex-typical facial features are regulated by testosterone in males and oestrogen in females. 

2) These hormones entail a cost (i. e. impaired immunocompetence), therefore only high 

quality individuals may bear a high degree of sex-typical dimorphism. 

The evidence for the first assumption is mixed. Clinical research on humans provides some 

evidence that male facial features are partially androgen dependent. For example, genetic 

males (i. e. individuals with XY sex chromosomes) with androgen insensitivity syndrome 

(AIS) lack androgen receptors, and therefore are unable to react to testosterone as well as 

other androgenic metabolites (Dixson, 1998). As a result, these individuals have a female 

appearance, suggesting that androgens are important in creating a male appearance. Also, the 

development of secondary sexual facial features can be induced among boys with delayed 
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puberty via testosterone therapy (Verdonck et al., 1999). Experimental and observational 

research among nonhuman species also suggests that androgens are important for normal 

male facial development. Castration among immature rats (Verdonck et al, 1998) and rhesus 

macaques (Sirianni and Goy, 1987) results in suppression of male facial growth. Among 

orangutans, arrested growth of facial flanges is attributed in part to lower levels of testicular 

steroids (Maggioncalda, Czekala and Sapolsky, 2000). 

In terms of female sex-typical features, female faces with a high degree of sex-typical 

dimorphism are frequently referred to as being "oestrogenised" or as being "oestrogen 

displays" (e. g. Grammer and Thornhill, 1994; Thornhill and Gangestad, 1999b). The use of 

such terminology is highly questionable. Both androgens and oestrogens stimulate skeletal 

growth directly in both males and females, however the relative contributions of these 

hormones to bone growth of male and females is not well understood (reviewed in Riggs, 

Khosla and Melton, 2002). It may be the case that female skeletal tissue lacks androgen 

receptors present in male faces; the evidence from individuals with AIS lends support to this. 

Differences in soft tissues may relate to levels of oestrogen, as it can act to increase fat 

deposition on the face, however, once again the mechanism for sex steroid regulation of fat 

deposition is not clear (reviewed in Mayes and Watson, 2004). 

This lack of knowledge regarding the proximate mechanisms regulating facial sexual 

dimorphism presents several quandaries for this theory. Although sex hormones directly 

influence skeletal growth, they also do so indirectly by interacting with other hormones, such 

as growth hormones and thyroid-stimulating hormone (Riggs et al., 2002); therefore 

attributing sex-typical features simply to testosterone or oestrogen could be criticised as being 

somewhat simplistic. It is also unclear whether absolute levels of testosterone determine trait 

size, or whether individuals differ in their sensitivity to or metabolism of androgens. Male rat 

craniofacial skeletons demonstrate individual sensitivity to the effects of testosterone 

(Verdonck et al, 1998), and it seems possible that this is the case in humans as well. 
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In regards to the second point, the role of testosterone as an immunosuppressant has also been 

criticised, while oestrogens appear to have a beneficial, rather than a handicapping effect 

(reviewed in Chapter 1). Even if one assumes that testosterone is an immunosuppressant and 

is indeed responsible for the development of male facial sexual dimorphism, this may only 

signal levels of testosterone which occurred during trait development, rather than current 

circulating levels (Neave et al., 2003). Testosterone levels reportedly relate to subjective 

ratings of facial dominance among male adolescents aged 13 to 15 years (Mazur, Halpern, 

and Udry, 1994), however the relationships among adult males is less clear. Two studies have 

attempted to link male facial dimorphism to circulating testosterone levels among adult 

males; although a link was found in one study (Penton-Voak and Chen, 2003), it was not 

found in another (Neave et al., 2003). Thus, the use of sexually dimorphic features as markers 

of current health status is somewhat questionable. 

Condition-dependent strategies 

The best evidence that male features relate to some aspect of male quality come from research 

into female condition-dependent strategies, which have also been used to explain the 

inconsistencies in preferences for male facial sexual dimorphism. Such strategies are 

suggested to involve females evaluating the information contained in male faces, such as cues 

to male "quality" based on facial masculinity, or to paternal investment and prosociality based 

on facial femininity, with regard to life history and the context of the relationship desired 

(Penton-Voak, Jacobsen and Trivers, 2004). For example, females have been reported to 

prefer exaggerated male facial traits in relationships and circumstances where paternal 

investment may be lacking (Little et al., 2001,2002; Penton-Voak et al., 2004). Female 

preferences for male faces have also been documented to shift across the menstrual cycle, 

with preferences for male sexual dimorphism increasing during the most fertile phases of the 

cycle (Frost, 1994; Penton-Voak et al., 1999; Penton-Voak and Perrett, 2000; Johnston et al., 

2001). It has been suggested that such evidence may be indicative of a strategy where women 

select men with less dimorphic features in a long-term partner, potentially indicative of future 

investment in offspring, while selecting more dimorphic men to sire offspring, to gain the 

potential benefits for their offspring and/or themselves (Little et al., 2001; Johnston et al., 
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2001; Penton-Voak et al., 1999; Penton-Voak and Perrett, 2000). However what benefits 

these would be remains to be determined, as links between heritability of facial traits and/or 

immunocompetency have not yet been reported. 

Sexual dimorphism and sensory bias theory 

Alternatively, sensory bias theory has also been suggested as a mechanism to explain sexual 

dimorphism preferences. As mentioned in Chapter 1, animals often display a response bias 

based on the interaction of memories of positive and negative stimuli. Just as recognition 

systems are proposed to form preferences for symmetry, they may also form preferences for 

exaggerated sex-typical traits. One study using a neural network demonstrated that species 

recognition systems could potentially result in preferences for exaggerated traits as a side- 

effect of avoiding heterospecifics and selecting conspecifics as mates (Enquist and Arak, 

1993). To explain human preferences, Enquist and colleagues (2003) suggested that 

discriminating between male and female faces could result in preferences for exaggerated 

male or female traits. However, they also note that this idea is difficult to reconcile with 

reports of preferences for feminised male face shape. The evidence relating female condition 

to preferences for sexual dimorphism is also difficult to explain via sensory bias theory. 

In contrast, male preferences for exaggerated female facial features are consistent with 

sensory bias theory. Jones (1995) has put forward an interesting hypothesis regarding female 

faces; he suggests that adult female faces have evolved as supernormal stimuli, exploiting 

male preferences for youth. This comes from evidence that more neotenous female faces (i. e. 

faces that appear to be younger than the actual age of the face based on facial proportions) are 

considered as more attractive by male raters from five populations (Jones, 1995). 

Manipulating female facial features to increase neoteny also resulted in higher ratings (Jones, 

1995). Jones suggests that during human evolution, it was advantageous for adult males to 

prefer youthful facial features because of associations between youth and fertility in adult 

females. Females whose faces displayed supernormal youth cues would have been at an 

advantage in female-female competition for male mates. Although Jones acknowledges that 
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female sexual dimorphism may relate to female phenotypic and/or genetic quality, 

associations between condition and secondary sexual features could just be a fortuitous side- 

effects of male sensory biases towards supernormal youth cues. 

4.2 Manipulating and measuring preferences for facial sexual 
dimorphism 

4.2.1 Introduction 

The aim of this section was to explore how facial sexual dimorphism influences preferences 

for opposite-sexed conspecifics among rhesus macaques. Due to the paucity of evidence, 

there is a need to evaluate how, if at all, facial sexual dimorphism influences nonhuman 

primate mate choice. By investigating how sexual dimorphism influences nonhuman primate 

preferences, this could be informative in relation to how human preferences evolved. 

4.2.2 Methods 

The experimental procedure followed here was as described in Chapter 2. Details specific to 

stimuli construction, image display and the study animals are provided below. 

Study animals 

Five males and eight females took part in this study. No retesting occurred for this experiment 

as all animals reached criterion during their first trials. 

Sexual dimorphism manipulation 

Sexual dimorphism manipulations in macaque face shapes were based on techniques utilised 

by Perrett and colleagues to manipulate human faces (1998). First, 174 feature points were 

delineated on 50 male facts and 50 female faces (Perrett et al., 1994; Rowland and Perrett, 

1995). Average male and female macaque face shapes were then calculated based on these 

points (details on averaging methods are provided in Chapter 5). Average images were then 

made perfectly symmetrical as outlined in Chapter 3. Then 24 male and 24 female images 

were transformed by using the linear difference between corresponding points in the average 
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male and female shape to enhance or reduce sexual dimorphism by 50%, creating two 

versions for each individual face (Figures 4.1 and 4.2). This method of transforming sexual 

dimorphism has high ecological validity, as sexual dimorphism of rhesus macaque faces are 

based on differences in magnitude of size, with males carrying on a common growth pattern 

to a greater extreme (Cheverud and Richtsmeier, 1986). Therefore enhancing or reducing 

sexual dimorphism based on sex differences allows for the construction of stimuli within the 

natural range of intrasexual variation. 
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Figure 4.1. Example of reduced/feminised (left) and enhanced/masculinised 
(right) sex-typical dimorphism in male stimuli. 

Figure 4.2. Example of reduced/masculinised (left) and enhanced/feminised 
(right) sex-typical dimorphism in female stimuli. 



4.2.3 Results 

Trials where external noise caused distraction, eye gaze was obscured, and where animals 

were orientated away from the monitors were excluded (female mean = 18.13 trials included 

per animal, SE = 1.52; male mean = 18.80 trials included per animal, SE = 1.16). For the 

included trials, the means and standard errors for gaze duration and frequency are displayed in 

Table 4.2. Proportions for direction of first and longest gaze are provided in Table 4.3. 

Table 4.2. Individual, sex, and overall means :E SE for gaze duration (seconds) and 
frequency (number of looks) for exaggerated versus reduced sexual-typical dimorphism 
(SD) per 10 second interval. 

Animal Mean gaze duration 
Exaggerated Reduced 

SD SD 

Mean gaze fre 
Exaggerated 

SD 

quency 
Reduced 

SD 
Males 
Vela 2.29 2.25 2.07 2.07 
Minor 1.64 1.50 . 77 1.14 
Polo 2.41 1.78 1.45 1.20 
Major 1.99 1.33 1.33 . 94 
Draco 1.97 2.47 1.42 1.16 

Male mean ±SE = 2.06±. 14 1.87-1.22 1.41±. 21 1.30±. 20 

Females 
Honey 1.86 1.54 1.56 1.44 
Hazel 2.00 1.66 1.53 1.40 
Hen 1.47 1.92 1.17 1.52 
Hebe 1.73 1.53 1.67 1.43 
Hettie 1.74 1.21 1.64 1.36 
Hattie 1.82 1.17 1.79 1.67 
Heidi 2.55 1.05 1.88 1.71 
Holly 1.58 1.33 1.46 1.38 
Female mean ±SE= 1.84±. 12 1.43±. 10 1.59±. 08 1.49±. 05 

Overall mean +SE = 1.93 t . 09 1.60: L. 12 1.52 f . 09 1.42+-. 08 
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Table 4.3. Individual, sex, and overall proportion of total number of trials of first gaze 
and longest gaze for faces with exaggerated versus reduced sexual-typical dimorphism 
(SD). 

Animal Proportion first gaze proportion longest Raze 
Exaggerated Reduced Exaggerated Reduced 

SD SD SD SD 
Males 
Vela 0.40 0.60 0.45 0.55 
Minor 0.53 0.47 0.33 0.67 
Polo 0.50 0.50 0.50 0.50 
Major 0.52 0.48 0.57 0.43 
Draco 0.56 0.44 0.44 0.56 
Male mean = 0.47±. 03 0.53±. 03 0.44±. 04 0.56±. 04 

Females 
Honey 0.50 0.50 0.43 0.57 
Hazel 0.30 0.70 0.61 0.39 
Hen 0.46 0.54 0.77 0.23 
Hebe 0.71 0.33 0.45 0.55 
Hettie 0.73 0.27 0.48 0.52 
Hattie 0.71 0.36 0.53 0.47 
Heidi 0.53 0.35 0.64 - 0.36 
Holly 0.46 0.54 0.38 0.62 

Female mean = 0.54 ±. 05 0.46 ±. 05 0.52 ±. 05 0.48 ±. 05 

Overall mean = 0.50 ± . 03 0.50 ± . 03 0.51 ±. 03 0.49 ±. 03 

Differences of scores for faces with exaggerated and reduced sex-typical features were within 

the range of normal distribution for both duration and frequency (duration: kurtosis/SE _ 

1.03; frequency: kurtosis/SE = . 96). The analyses conducted follow those in Chapter 3. 

Repeated measures ANOVA's were performed comparing gaze duration and frequency for 

exaggerated versus reduced sex-typical dimorphism. Sex was included as a between-subjects 

factor (results are provided in Table 4.4). For both duration and frequency, although males 

and females looked longer and more frequently at faces with exaggerated sexual dimorphism, 

there was no main effect for stimuli type. However, results for duration did approach 

significance (p = . 062). No significant main effects of, or interaction with, subject sex were 

found. Sexual dimorphism did not appear to have an influence on first or longest gaze 

proportions. One-sample t-tests (test value set at. 50) results confirm that enhancing sexual 

dimorphism had no significant influence on either first or longest gaze. 
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Table 4.4. Statistical results for gaze duration, gaze direction, first gaze, and longest 
gaze. 

Gaze measures Test d. f. P value 
Duration 
Face F =4.34 1,11 . 062 
Sex F =. 65 1,11 . 432 
Sex*Face F=. 56 1,11 . 468 

Frequency 
Face F=2.35 1,11 . 153 
Sex F= 

. 
01 1,11 . 955 

Sex*Face F=. 01 1,11 . 958 

1st look 
Enhanced sex typical t =. 911 12 . 380 
dimorphism 

Longest look 
Enhanced sex typical t=. 188 12 . 854 
dimorphism 

Some limited behavioural reactions towards stimuli were observed. There were four instances 

of yawning among three males, Draco, Polo and Vela. The direction of two of the yawns was 

unclear, however Draco yawned in the direction of a female faces with enhanced sex-typical 

dimorphism. Vela yawned in the direction of and threatened a female face with reduced 

sexual dimorphism. There were two instances of presentations by one female (Heidi). 

Direction of presentation was difficult to discern, but she appeared to present once towards a 

male with enhanced sexual dimorphism and once towards a male with reduced sex-typical 

dimorphism. These were not analysed, as occurrences were infrequent and highly variable 

among individuals. 

4.2.4 Discussion 

The results of gaze preferences suggest that if sexual dimorphism has an influence on 

preferences, it appears to be minimal. Although preferences for exaggerated sex-typical facial 

traits appeared to exist to a small degree based on a non-significant trend in gaze duration, no 

preferences were detected using the other gaze measures. It is necessary to consider why 

sexual dimorphism did not have more of an influence on preferences, as this has been 
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reported to be influential among humans of both sexes (e. g. Johnston et al., 2001; Perrett et 

al., 1998; Thornhill and Gangestad, 1999a, b). It may simply be that case that facial sexual 

dimorphism is not of much importance to rhesus macaques in terms of attractiveness. 

However, it is still possible that sexual dimorphism does have an important role, which may 

have not been tapped into due to methods employed here. Animals may use an absolute 

threshold (any individual possessing above X% of sexual dimorphism is suitable) instead of a 

"best-of-n" criterion (the most dimorphic individual is the best) rule in their mating decisions. 

Therefore stronger preferences may not have been formed as the level of preference threshold 

was usually met by both the images in the pair. Alternatively, levels of dimorphism may have 

exceeded or have fallen short of optimum levels. These possibilities could be investigated by 

presenting faces at varying levels of manipulation. Additionally, female macaques, like 

human females (e. g. Penton-Voak et al., 1999; Penton-Voak and Perrett, 2001), may possess 

condition-dependent preferences for enhanced male sexual dimorphism. Although females 

appeared to be undergoing ovulatory cycles, cycle stage was not controlled for in this study. 

Female reproductive condition has been reported to influence preferences for male traits in 

both humans (Penton-Voak et al., 1999; Frost, 1994) and in Asian elephants (Elephas 

maximus: Schulte and Rasmussen, 1999). By assessing female preferences during the peri- 

ovulatory periods, this could reveal a heightened preference for male sex-typical traits. 

If indeed macaques do prefer exaggerated sex typical traits, female preferences would be 

consistent with a large body of research reporting that male attractiveness in various species 

may be increased by manipulations that enhance male secondary sexual characteristics [e. g. 

dark-eyed juncos (Junco hyemalis carolinesis): Enstrom et al., 1997; African lions: West and 

Packer, 2002]. It would also be consistent with research suggesting that human females prefer 

masculinised faces in situations where males do not provide parental care (Little et al., 2001, 

2002; Penton-Voak et al., 2004). If male sexual dimorphism was used as an indicator 

mechanism to male macaque quality, it need not relate to immunocompetency, as is has often 

been proposed to so in humans (e. g. Johnston and Franklin, 1993; Thornhill and Gangestad, 

1999a, b). The slight female preference for enhanced sexual dimorphism is confounded with 
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age, as reducing the level of sexual dimorphism in male macaque faces may cause them to 

appear younger, as happens with images of human male adults (Perrett et al., 1998). Females 

may benefit from preferring males that have attained full adult growth, as survivorship to 

adulthood may be indicative of superior male genotypic and/or phenotypic quality (e. g. 

Manning, 1985; Trivers, 1972). If females do indeed select males based upon age, this could 

be evaluated in part by facial shape. Additionally, exaggerated sex typical facial traits could 

reflect macaque male competitive ability as they are proposed to do in humans (Mueller and 

Mazur 1997; Perrett et al., 1998; Swaddle and Reierson, 2002). In this case, females may 

prefer greater sexual dimorphism in male faces if this is heritable, as females may prefer traits 

that will provide male offspring competitive advantage (Andersson, 1994). Female 

preferences, however, need not relate to indicator mechanism theory. Weak preferences could 

be equally explained by sensory biases, as recognition systems acting to discriminate between 

hetero versus conspecifics (Enquist and Arak, 1993) or males versus females (Enquist et al., 

2003) could also produced biases towards enhanced dimorphism. 

Male preferences may also be influenced by changes to female facial features, but looking at 

the individual means for gaze duration, this is hard to discern based on the small number of 

individuals. Repeating this experiment with a larger male sample size would be helpful. If 

female sexual dimorphism is a cue to female quality, then males may benefit from preferring 

female with high levels of sexual dimorphism, even in species lacking paternal care (e. g. 

Andersson, 1994; Owens and Thompson, 1994; Johnstone, Reynolds, and Deutsch, 1996). 

Primate male mate choice is only beginning to be addressed, however there is some indication 

that males may used female phenotypic cues to make their decisions (bomb and Pagel, 2001). 

As mentioned in the previous section, enhanced female sexual dimorphism has been proposed 

to be both an honest and a supernormal signal of youth. It seems unlikely that male macaques 

would prefer supernormal cues of youth, as female macaque fertility is not as strictly age 

dependent as it is in human females (Caro et al., 1995). Indeed, young females do not achieve 

higher levels of reproductive success, but achieve significantly lower levels of reproductive 

success when compared to their older multiparous counterparts (Small and Rodman 1981; 
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Wilson et al. 1988). However, it is still possible that other sensory bias mechanisms could 

play a role (e. g. biases created by species and sex recognition systems: Enquist and Arak, 

1993; Enquist et al., 2003). 

Other potential variables besides attraction may influence visual gaze, and these must also be 

considered. Evaluations by human participants reveal that enhancing male and reducing 

female sexual dimorphism results in these faces being rated as more dominant and less 

affiliative (e. g. Perrett et al., 1998). The case for rhesus macaques could be similar, and 

animals could associate masculinised features with dominance and/or intraspecific aggression. 

Nonhuman primates responses to two-dimensional images are essentially analogous to those 

which would occur when encountering real-life individuals (reviewed in Chapter 2), therefore 

animals may have simply avoided looking at images with masculinised features as they may 

have found them to be threatening. One male did threaten a masculinised female face, but one 

cannot generalise a single male's reaction to all study animals. It should be noted however, 

that the females did not display any initial fearful reactions to male images, which makes this 

probability seem less likely. 

Based on this evidence, it is difficult to state if, and to what degree, sexual dimorphism 

influences preferences among macaques. Further experiments would be useful to look into the 

possibility of condition dependent effects among females and to investigate if macaques 

possess preferences for some optimum level for sexual dimorphism. It would also be 

interesting to measure reactions to same-sexed images manipulated for sexual dimorphism, 

particularly males, as facial sexual dimorphism could play a more important role in 

intrasexual versus intersexual selection. This study also raises an important issue regarding 

the methods employed here; although the use of artificial visual stimuli is useful in terms of 

the ability to manipulate sexually dimorphic features, it presents certain confounds, which 

make it difficult to determine what factors are driving visual preferences. This highlights the 

need to supplement such experimental research with observational research involving real 

animals to determine the relevance of these factors in mate assessment. 
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Chapter 5 

Measuring Visual Preferences in Relation 
to Facial Averageness 

The third topic to be explored in this thesis is the issue of facial averageness. The term 

`average' is used to refer to the mathematical averaging of faces, rather than to a common 

face (Rubenstein et al., 2002). Rubenstein and colleagues have stated while other variables, 

such as symmetry, may slightly enhance facial attractiveness, "to ensure facial attractiveness, 

a facial configuration close to the average of the population... is fundamental" (2002, p. 21). 

This chapter begins with a critical review of the research and theories on why facial 

averageness influences attractiveness. Like other variables proposed to influence 

attractiveness, there is a considerable debate over why and to what degree facial averageness 

plays a role in attractiveness assessments. I then describe an experiment which investigated 

whether facial averageness affects macaque visual preferences for opposite-sexed faces. 

5.1 Background 

Averageness has long been known to influence attractiveness. During the late 19"' century, 

Francis Dalton attempted to investigate whether groups of individuals possessed shared facial 

characteristics. He created composite images by overlaying multiple facial images of 

criminals and of vegetarians on a single photographic plate to ascertain the prototypical 

"criminal" and "vegetarian" face. Although the resulting faces were not useful in the 

identification of either criminals or vegetarians, Galton noted that the resulting images were 

more attractive than the individual faces that made up the composite (Rubenstein et al., 2002). 

Today, computer graphics techniques are the most frequently used method to investigate 

facial averageness. These methods involve marking out key feature points on the face in order 

to designate facial trait location, size and configuration (discussed in Chapter 2). Facial 

composites are then formed by an overlaying procedure which mathematically averages pixel 

values of individual digitised images (e. g. Benson and Perrett, 1993). These techniques are 
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thought to create faces that have features which are more representative of the population 

(Rubenstein et al., 2002). 

5.1.1 Research into facial averageness and attractiveness 
Studies using computer-generated composites have consistently demonstrated that both male 

and female composite faces are considered to be more attractive than the individual faces that 

formed them by both male and female raters (e. g. Little and Hancock, 2002; Perrett et al., 

1994). Additionally, increasing the number of faces in a composite results in increasing its 

attractiveness (Langlois and Roggman, 1990; Little and Hancock, 2002). These techniques 

have been modified by other researchers to generate different ways to investigate averageness 

preferences. For example, Rhodes and Tremewan (1996) extracted line drawings from 

individual images, which they then used to form composites. The resulting averaged facial 

line drawings were reported to have been rated as more attractive in comparison to the 

individual facial drawings. Other studies have adapted these techniques to transform 

individual faces by either morphing their shape closer to, or further from, the average facial 

shape. Moving individual faces closer to the average facial shape results in an increase in 

perceived attractiveness (e. g. Rhodes et al., 2001b) 

Preferences for facial averageness appear to be universal and to arise early in life. Rhodes and 

co-workers (2001b) found that preferences for averageness also occurred among Chinese and 

Japanese populations for both faces of the same and different ethnicities. Six month old 

infants are reported to display gaze preferences for facial composites of 32 female faces 

versus unattractive individual faces (Rubenstein, Kalakanis and Langlois, 1999). Therefore 

preferences for averageness may be a species typical trait. 

Problems with averageness 

Despite the relatively robust finding that averaged composite faces are more attractive than 

the faces that form them, there has been some question as to the relative contribution of facial 

averageness to attractiveness. It has been suggested that other variables resulting from the 

process of facial composite formation (e. g. increased symmetry and smoother skin texture) 
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may be responsible for their higher perceived attractiveness (Alley and Cunningham, 1991; 

Benson and Perrett, 1992). To address the potential confound of increased symmetry, Rhodes 

and co-workers (1999) independently manipulated facial averageness and symmetry, and 

found that both these factors were autonomously influential. In terms of texture, applying 

colour information from composite images into individual faces improves attractiveness 

ratings (Benson, 1992), however warping individual faces into average face shapes also 

increases attractiveness (e. g. Rhodes, Sumich and Byatt, 1999). 

Others have questioned to what degree averageness influences attractiveness. In a study by 

Perrett and colleagues (1994), it was reported that although female averages may be 

attractive, these can be made even more attractive by forming composites of the IS most 

attractive faces out of subset of 60 individual faces. It may be suggested that the 15 faces 

which were the most attractive were also the most average, meaning the composite of these 

faces could represent the population average better than the group of 60. This explanation 

would not address why creating a caricature (i. e. exaggerating the difference between the 15 

and 60 face averages) of the 15 face average further increased attractiveness. However, it 

should be noted that the results did not replicate when caricaturing methods were applied to 

male faces. Rubenstein and colleagues (2002) have criticised this study, as they claim that the 

differences between the averages and the caricatures were too minimal to discount the role of 

averageness. They replicated the above study, but instead of employing a forced-choice 

procedure as used by Perrett and colleagues, a Likert-scale was utilised. The results revealed 

that there were no significant differences in ratings between the composites and their 

caricatures. Therefore, while it is agreed among researchers that averageness is indeed 

attractive, there is still debate about whether it is optimally attractive. 

5.1.2 Theories of averageness preferences 

As for symmetry and sexual dimorphism preferences, indicator mechanism and sensory bias 

theories are the two main theories used to explain averageness preferences. Although not 

addressed by the evolutionary psychology literature, Chamberlain (2000) has suggested that 
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modern human preferences could be by-products based on directional selection for traits 

which are important to human specific mate recognition systems. Therefore I will also discuss 

how species recognition theory could also relate to averageness preferences. 

Averageness as an indicator mechanism 

To explain preferences for facial averageness, many evolutionary psychologists evoke "good 

genes" and parasite-mediated theories of sexual selection. According to proponents of these 

theories, extreme phenotypes reflect underlying genotypes which are more likely to be 

homozygous for deleterious alleles (Symons, 1979) and/or are less likely to possess alleles 

resistant to environmental pathogens (Thornhill and Gangestad, 1993). Average features on 

the other hand, are thought to be preferable as such features may be indicative of higher levels 

of heterozygosity (Thornhill and Gangestad, 1993). By selecting mates with higher levels of 

heterozygosity, individuals may provide their offspring with greater protection from 

deleterious genetic disorders and protection from disease. Extreme phenodeviancy is 

associated with some chromosomal disorders (e. g. Down's syndrome, cleft palate, Fragile-X 

syndrome: reviewed in Thornhill and Moller, 1997), but evidence linking low levels of 

departures from averageness to physical condition is weak. Although individual images with 

decreased facial averageness are perceived as less healthy (Rhodes et al., 2001c), studies 

using such techniques are subject to halo effect biases (Feingold, 1992). One study addressed 

this by measuring facial averageness of 316 images of male and female 17 year olds taken in 

the 1920's and compared these to health records (Rhodes et al., 2001c). Small negative 

correlations were found between childhood health and male phenodeviancy (r = -. 27) and 

adolescent health and female phenodeviancy (r = -. 15). Despite linking poor health to 

departures from averageness, this does not provide any evidence that this is related to degree 

of heterozygosity. 

In animal populations, there is some evidence that sexually selected traits are related to degree 

of heterozygosity [spotless starlings (Sturnus unicolor): Aparicio, Cordero and Veiga, 2001; 

white-tailed deer (Odocoileus virginianus): Scribner, Smith and Johns, 1989); European 
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minnows (Phoxinus phoxinus): Müller and Ward, 1995]. Heterozygosity has also been 

associated with greater mating success [brine shrimp (Artemisafranciscana): Zapata, 

Gajardo, and Beardmore, 1990; marine snails (Littorina mariae): Rolän-Alvarez, Zapata, and 

Alvarez, 1995], but it is unclear whether these differences result from mate selection or to 

poorer performance among homozygotes. While increased heterozygosity appears to be 

beneficial to reproductive success, the relationship may not be linear. Aparico and colleages 

(2001) found that both extreme homozygosity and heterozygosity were associated with lower 

male mating success in comparison to individuals of intermediate heterozygosity among 

starlings. The researchers suggested that extreme heterozygosity may not always be 

advantageous and suggest that partial homozygosity may sometimes be beneficial to optimal 

outbreeding strategies. 

Among human, there is some evidence of MHC heterozygosity being linked to facial features. 

MHC heterozygosity offers a greater resistance to a wide range of pathogens (reviewed in von 

Schantz et al., 1996). Roberts and colleagues (in press) report that MHC heterozygosity is 

linked to facial attractiveness, but in terms of facial skin appearance. Although the role of 

facial shape has not been addressed, perhaps facial shape phenodeviancy could provide 

another mechanism to assess MHC heterozygosity. 

Averageness and cognitive/sensory biases 

Various researchers have suggested that preferences for averageness can be explained by 

cognitive theories of prototyping (Halberstadt and Rhodes, 2000; Langlois and Roggman, 

1990; Rubenstein et al., 1999) or by perceptual biases in recognition systems (Enquist et al., 

2003). According to cognitive bias arguments, preferences for average, or prototypical, 

stimuli are by-products of cognitive biases that result in preferences for familiar stimuli. 

Prototypes are perceived as being familiar, even if they have not been seen previously. To 

illustrate, in a study by Posner and Keele (1968, in Rubenstein et al., 2002), participants were 

exposed to different patterns of dots. When shown a previously unseen prototype formed by 

averaging distances between dots of the various patterns, participants judged this as familiar. 
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Various studies have demonstrated that people prefer average or prototypical stimuli across a 

wide range of categories, including colour matrices (Martindale and Moore, 1988), music 

(Smith and Melara, 1990), as well as dogs, birds and wristwatches (Halberstadt and Rhodes, 

2000). Similarly in faces, facial composites are perceived as being more familiar than are 

individual faces, which therefore may explain why they are more attractive (Langlois, 

Roggman and Musselman, 1994). Preferences for familiarity may be formed early in 

development. Walter and Bower (1993) report that newborns displayed visual preferences for 

composites of previously viewed faces versus composites made of unfamiliar faces. 

Enquist and colleagues (2003) suggest that preferences for facial averageness arise through 

perceptual biases in recognition systems, which can be explained through stimulus control 

theory. In this process, individuals must generalise across many similar stimuli requiring the 

same response, producing a preference for mean trait expression. They present the example of 

how pigeons, when trained to respond to two different light wavelengths in the same way, 

will give a maximal response when exposed to the mean of these two wavelengths. With 

faces, preferences for average male or female faces may simply arise from exposure to 

individuals with varying features. Like the cognitive bias account, stimulus control theory 

requires an interaction with memory of previous exposure to stimuli (Enquist et al., 2003). 

Both these accounts merge well with sensory exploitation accounts of sexual selection 

discussed in Chapter 1, which propose that a given trait may be favoured due to receiver 

biases arising from generalised functional rules of neural and cognitive systems. They are also 

appealing in that they provide a more parsimonious account for why humans exhibit 

preferences for averageness in faces as well as other categories unrelated to mate choice, 

when compared to indicator mechanism theories. However, as noted in Chapter 1, different 

theories of sexual selection are usually presented as being mutually exclusive, but preferences 

may be determined though interactions among the different selective forces. Sensory biases 

can lead to preferences for traits that are linked to mate condition, and it is difficult to 

disentangle the driving selective forces (Johnstone, 1994). Therefore, even if sensory biases 
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are responsible for preferences for averageness, this does not discount the possibility that it 

may also be indicative of genotypic quality. 

Averageness and species recognition 

As discussed in Chapter 1, mating with heterospecifics can reduce reproductive success and 

animals often avoid mating with closely related heterospecifics possessing different secondary 

sexual traits. Avoidance of hybridisation may lead to preferences for conspecifics that least 

resemble heterospecifics, without regards to any genetic correlations to viability. These 

preferences may arise though allopatric divergence (geographically divided lineages evolve 

isolating characteristics over time and lineages avoid interbreeding upon secondary contact) 

or sympatric divergence (isolating traits arise where secondary overlapping of distribution 

occurs between two different forms) (reviewed in Andersson, 1994). 

Chamberlain (2000) has suggested that human facial preferences could have arisen from 

directional selection for traits important to mate recognition. Fossil evidence demonstrated 

that human evolution was not directly linear, but rather different species of hominids 

branched out at varying points in time (Boyd and Silk, 2000). It is thought that our ancestors 

at times lived sympatrically with other hominid species, even as recently as 30,000 years ago, 

when modern humans are thought to have overlapped geographically with Neanderthals 

(Homo neanderthalensis). Therefore, the opportunity for hybridization was potentially 

available during human evolution. Studies on nonhuman primates reveal that species 

discrimination is largely dependent upon the face (Dittrich, 1994; Fujita, 1993), and it is 

likely that our hominid ancestors used faces in the same capacity. Recognition systems used 

to discriminate between hetero and conspecifics can potentially lead to "supernormal" 

preferences for traits involved in mate selection (Enquist and Arak, 1993). Therefore selection 

against hybridization among developing or closely related species would seem a plausible 

explanation for preferences for average facial characteristics. However this hypothesis has yet 

to be empirically tested. 
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5.2 Measuring visual gaze preferences in relation to facial 
averageness 

5.2.1 Introduction 

As mentioned in the previous section, human preferences for averageness appear to be 

species-typical. However at what point preferences for average facial traits arose during 

evolution remains unknown. The following section attempts to begin to address this by 

investigating how averageness influences preferences for facial images of opposite-sexed 

conspecifics among rhesus macaques. This was done by manipulating levels of averageness 

by forming facial composites, as is done with human studies. 

5.2.2 Methods 

The experimental procedure followed here was as described in Chapter 2. Details specific to 

stimuli construction, image display and the study animals are provided below. 

Averaging facial images 

To average facial images, I utilised the methods used by Perrett and coworkers (1994) to 

create human facial composites. Psychomorph software was used to mark out 174 landmark 

points (Chapter 2) on 40 male and 40 female masked faces. The procedure to construct 

composites consisted of calculating the mean XY coordinates for each of these landmark 

points, thereby allowing the mean male and female facial shapes to be determined. Same- 

sexed images were randomly combined into groups of three and ten to form novel 

combinations of twenty-four 3-image facial composites and eight 10-image facial composite 

images. Examples of male and female macaque composites are provided in Figure S. 1 and 

5.2. 
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Figure 5.1. Example of male stimuli, from left to right: original, 3-facial composite, and 
10-facial composite. 

Figure 5.2. Example of female stimuli, from left to right: original, 3-facial composite, 
and 10-facial composite. 

Study animals 

Six males and seven females took part. One male (Minor) was retested due to an equipment 

failure. One female (Honey) did not participate in this task as she would not enter the testing 

chamber. 

Procedure 

The procedure of this experiment was similar to that of the others within this thesis, in that 

animals viewed pairs of images, but here the pairs varied in level of averageness. During the 

experiment the animals viewed sixteen trials of 3-composite images paired with one randomly 

selected original image (the original was selected from the three images which formed its 

paired composite) and eight trials of different 3-composite faces paired with 10-composites 
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(the faces occurring within the 3-composites were also included in the 10-composite image 

with which it was paired). All other experimental procedures were as described in Chapter 2. 

5.2.3 Results 

Trials where external noise caused distraction, eye gaze was obscured, and where animals 

were orientated away from the monitors were excluded (female mean = 17.83 trials included 

per animal, SE = 1.12; male mean = 18.50 trials included per animal, SE = . 96). Differences 

of duration and frequency scores for original versus 3-composites (duration: kurtosis/SE = 

. 70; frequency: kurtosis/SE = . 52) and for the 3- versus 10-composites (duration: kurtosis/SE 

= . 62, frequency: kurtosis/SE = . 01) were within the range of normal distribution. The 

analyses conducted follow those in Chapter 3. 

The majority of the animals looked longer and more frequently at the 3-facial composites 

versus original faces based on overall means (means and standard errors for included trials are 

displayed in Table 5.1). The repeated measures ANOVA results (Table 5.3) revealed that 

there was a significant main effect of face type, with animals gazing significantly longer and 

more frequently at 3-composites in comparison to original images. There was no significant 

main effect of or interaction with subject sex on gaze duration. For frequency, subject sex did 

have a significant main effect, but did not interact significantly with face type. This indicates 

that males looked more frequently at the stimuli than did the females. 

For the 3- versus 10-composites, the means were highly varied among individuals (see Table 

5.2 for means and standard errors). Repeated measures ANOVA results indicate that there 

were no significant differences for gaze duration or frequency for the 3- versus 10- 

composites, nor were that any significant main effects of or interactions with subject sex 

(Table 5.3). 
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Table 5.1. Individual, sex, and overall means :L SE for gaze duration (seconds) and 
frequency (number of looks) for original and 3-composite faces per 10 second interval. 

Animal Mean 
Original 

gaze duration 
3-Composite 

Mean g 
Original 

aze frequency 
3-Composite 

Males 
Cassie 1.20 2.77 1.18 1.64 
Vela 1.97 2.67 1.46 1.46 
Minor 1.19 1.31 1.21 1.43 
Polo 1.44 1.79 1.21 1.57 
Major 2.53 2.78 1.17 1.75 
Draco 2.31 2.60 1.60 1.40 

Male mean ±SE = 1.77 ±. 24 2.32 ±. 25 1.30 ±. 07 1.54: 1.06 

Females 
Hazel 1.34 3.46 1.13 1.88 
Hen 0.71 1.55 0.81 1.13 
Hebe 2.01 2.37 1.44 1.33 
Hettie 1.69 1.82 1.00 1.50 
Hattie 1.51 1.43 0.71 1.00 
Heidi 0.69 1.96 1.08 1.23 
Holly 1.03 1.21 0.81 1.38 

Female mean ±SE = 1.28 ±. 19 1.97 ±. 29 1.00 ±. 09 1.35 ±. 11 

Overall mean ±SE = 1.51 ±. 16 2.13 ±. 19 1.14 ±. 07 1.44 ±. 07 

Table 5.2. Individual, sex, and overall means ± SE for gaze duration (seconds) and 
frequency (number of looks) for 3- and 10-composite faces per 10 second interval. 

Animal Mean gaze duration 
3-Composite 10-Composite 

Mean gaze frequency 
3-Composite 10-Composite 

Males 
Cassie 2.02 1.77 1.20 1.60 
Vela 4.08 0.37 1.67 0.33 
Minor 2.17 0.88 1.50 0.75 
Polo 0.63 1.84 1.00 1.80 
Major 1.19 3.88 0.88 2.13 
Draco 2.01 1.45 1.14 1.29 

Male mean ±SE = 2.02 ±. 48 1.87 ±. 43 1.23±. 12 1.32 ±. 27 

Females 
Hazel 0.67 2.56 0.71 1.14 
Hen 0.80 1.01 0.93 1.21 
Hebe 1.08 . 91 1.40 1.60 
Hettie 2.44 1.81 1.80 1.00 
Hattie 1.51 1.87 1.33 1.50 
Heidi 1.04 . 42 1.20 1.00 
Holly 1.32 1.90 0.33 1.17 

Female mean ±SE= 1.27±. 22 1.50±. 28 1.10 ±. 18 1.23 ±. 09 

Overall mean ±SE = 1.61±. 26 1.67 ±. 24 1.16 ± . 11 1.21 ±. 13 
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Table 5.3. Statistical results for gaze duration and frequency for original versus 3-facial 
composites and 3- versus 10-facial composites (p values <. 05 in bold for ANOVA 
results). 

Gaze measures Test d. f. P value 
Originals vs. 3-composites 
Duration 
Face F= 10.58 1,11 . 008 
Sex F= 2.09 1,11 . 176 
Sex*face F=. 14 1,11 . 716 

Frequency 
Face F= 13.51 1,11 . 004 
Sex F= 6.66 1,11 . 026 
Sex*face F=. 51 1,11 . 491 

3- vs. 10-composites 
Duration 
Face F=1.03 1,11 . 922 
Sex F=2.02 1,11 . 091 
Sex*face F =. 23 1,11 . 639 

Frequency 
Face F=. 26 1,11 . 617 
Sex F =. 64 1,11 . 443 
Sex*face F =. 01 1,11 . 914 

Level of averageness did not appear to be as influential on first gaze and longest gaze (means 

and standard errors for included trials are displayed in Tables 5.4 and 5.5). Overall means for 

first gaze and longest gaze were almost equivalent for both original versus 3-composites and 

for 3-versus 10-composites. Results from one sample t-tests of 3- and 10-composites (test 

value set at . 50) indicate that increasing averageness had no significant influences on these 

measures (Table 5.6). 
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Table 5.4. Individual, sex, and overall proportion of trials where first and longest gaze 
were directed towards either original or 3-composite images. 

Animal Proportion first gaze 
Original 3-Composite 

Proportion longest gaze 
Original 3-Composite 

Males 
Cassie 0.46 0.54 0.36 0.64 
Vela 0.33 0.67 0.47 0.53 
Minor 0.75 0.25 0.56 0.44 
Polo 0.44 0.56 0.41 0.59 
Major 0.43 0.57 0.53 0.47 
Draco 0.41 0.59 0.65 0.35 

Male mean ± SE = 0.47±. 06 0.53±. 06 0.50±. 04 0.50±. 04 

Females 
Hazel 0.45 0.55 0.18 0.82 
Hen 0.38 0.63 0.50 0.50 
Hebe 0.73 0.27 0.55 0.45 
Hettie 0.65 0.35 0.41 0.59 
Hattie 0.50 0.50 0.57 0.43 
Heidi 0.54 0.46 0.38 0.62 
Holly 0.38 0.63 0.47 0.53 

Female mean ± SE = 0.52 ±. 05 0.48 ±. 05 0.44 ±. 05 0.56 ±. 05 

Overall mean ± SE = 0.50 ±. 04 0.50 ±. 04 0.46 ±. 03 0.54 ±. 03 

Table 5.5. Individual, sex, and overall proportion of trials where first and longest gaze 
were directed towards either 3- or 10-composite images. 

Animal Proportion first gaze 
3-Composite 10-Composite 

Proportion longest laze 
3-Composite 10-Composite 

Males 
Cassie 0.20 0.80 0.40 0.60 
Vela 1.00 0.00 1.00 0.00 
Minor 0.50 0.50 0.75 0.25 
Polo 0.40 0.60 0.40 0.60 
Major 0.13 0.88 0.13 0.88 
Draco 0.57 0.43 0.50 0.50 

Male mean ±SE 0.47±. 13 0.53±13 0.53±. 12 0.57±. 12 

Females 
Hazel 0.29 0.71 0.29 0.71 
Hen 0.40 0.60 0.20 0.80 
Hebe 0.50 0.50 0.25 0.75 
Hettie 0.43 0.57 0.67 0.33 
Hattie 0.45 0.55 0.43 0.57 
Heidi 0.67 0.33 1.00 0.00 
Holly 0.40 0.60 0.40 0.60 

Female mean f SE = 0.45±. 04 0.55 ±. 04 0.46 ±. 11 0.54: k . 11 

Overall mean f SE = 0.46 t . 06 0.54 ±. 06 0.49 t . 08 0.51 f . 08 
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Table 5.6. Statistical results for first gaze and longest gaze for 3-facial composites and 
10- facial composites. 

Gaze measures Test d. f. P value 

3-composites 
1 st gaze t= . 14 12 . 889 

Longest gaze t=1.06 12 . 308 

10-composites 
1 s` gaze t= . 72 12 . 484 

Longest gaze t =. 09 12 . 931 

Some behavioural reactions occurred, however these were limited to the male study animals. 

Cassie lipsmacked to one original face, to two 3-composite faces, and to three 10-composite 

faces. He lipsmacked on one more occasion, but the direction was indiscernible. Polo 

lismacked once towards a 3-composite image. Two males (Draco and Vela) each yawned 

once during testing, however whether these were directed towards or were triggered by 

original or composite faces was unclear. 

5.2.4 Discussion 

The above results indicate that facial averageness influenced visual preferences for opposite- 

sexed conspecifics among macaques. However the results are not straightforward. Both sexes 

appeared to prefer the 3-composite facial images to the original images based on gaze 

duration and frequency. However, there was no overall influence on first and longest gaze 

measures. Preferences for 3- versus 10-facial composites were more variable among 

individuals and there were no overall significant differences for any of the gaze measures 

used. 

Preferences for 3-composites over original images are consistent with human-based research 

reporting that composite images are more attractive than the faces that form them (e. g. Little 

and Hancock, 2002; Langlois and Roggman, 1990; Perrett et al., 1994). As has been proposed 

with humans (e. g. Symons, 1979; Thornhill and Gangestad, 1993), it may be that macaque 

facial averageness acts as an indicator mechanism. If indeed facial averageness is indicative 
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of heterozygosity, it would be beneficial for macaques to pay attention to such a cue. There is 

evidence that heterozygosity is linked to female mate choice in rhesus macaques, as males 

which are heterozygous in MHC type experience higher levels of reproductive success 

(Sauermann et al., 2001; Widdig et al., 2004). Additionally, rhesus macaque females tend to 

mate with different males from year to year, which has been suggested as a strategy to 

increase offspring heterozygosity (Berard et al., 1994). Although there is little published 

evidence on male mate choice in rhesus macaques, they may also benefit from using cues 

indicative of female quality. As previously mentioned, mating can inflict costs upon males 

(e. g. Bercovitch, 1997; Domb and Pagel, 2001; Dewsbury, 1982). Male rhesus macaque 

preferences for facial averageness are consistent with recent evidence of male choosiness in 

other primate species lacking a high degree of paternal investment (Domb and Pagel, 2001; 

Parga, 2003). 

Another possibility is that averageness preferences may arise from directional selection for 

traits which are important to conspecific mate recognition systems. As previously mentioned, 

recognition systems used to discriminate between hetero and conspecifics can potentially lead 

to supernormal preferences for traits involved in mate selection (Enquist and Arak, 1993). As 

macaques rely on faces to discriminate between species (Dittrich, 1994; Fujita, 1993), it is 

possible that preferences for average facial features may result as a by-product. Natural 

hybridisation of sympatric macaque species under undisturbed natural conditions is very rare 

(Bernstein and Gordon, 1980). In captivity, fertile hybrid offspring can be produced among 

many macaque species (Bernstein and Gordon, 1980), however hybrid macaque matings are 

associated with lower levels of viability and fertility (Fooden, 1975). Additionally, Bernstein 

and Gordon (1980) report that pairing male and female heterospecific macaques resulted in 

aggressive interactions, whereas pairing opposite-sexed conspecifics usually did not. It is 

possible that preferences for facial averageness could act as a barrier mechanism preventing 

hybrid matings. 

Alternatively, preferences for averageness may stem from cognitive or perceptual biases (e. g. 

Enquist at al., 2003; Halberstadt and Rhodes, 2000; Langlois and Roggman, 1990) that are 
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shared among human and nonhuman primates. Macaques, like humans, may possess 

preferences for average, or prototypical, stimuli. In this case, preferences for the 3-composites 

may result from these faces being perceived as more familiar to the study animals. It would be 

possible to test whether macaques possess biases towards prototypical stimuli by presenting 

animals with prototypical and non-prototypical stimuli unrelated to mate choice, however it 

would be necessary to get around the issue of salience, as animals display less interest in 

stimuli which are not socially relevant (e. g. Andrews and Rosenblum, 2001; Butler, 1953). 

Stimulus control theory could equally account for averageness preferences arising through 

perceptual biases in recognition systems. Again, it would be possible to experimentally assess 

whether macaques possess perceptual biases in recognition systems. However, as mentioned 

in the previous section, the existence of cognitive or perceptual biases would not preclude 

facial averageness from being linked to condition. Nor would these arguments be mutually 

exclusive from species recognition arguments, as perceptual biases in recognition systems can 

give rise to supernormal preferences for conspecific traits (Enquist and Arak, 1993). 

However, it is still possible that animals preferred these images due to side-effects of the 

composite construction, such as increased symmetry and smoother texture. Although these 

factors cannot explain human preferences for average facial shape, they cannot completely be 

ruled out for macaques based on this study alone. Chapter 3 revealed that symmetry did 

influence visual preferences; however, symmetry appeared to have little effect on male 

preferences in contrast to the present results, where both sexes displayed preferences for 

averageness. This makes it seem less probable that preferences for averageness may be 

explained by symmetry alone. One way this could be controlled for in future investigations 

would be to create symmetrical versions of original images and then to pair these with 

composites. Additionally, one could control for symmetry and texture effects by using the 

techniques of Rhodes and colleagues (1999) to assess the role of averageness in 

attractiveness. In their study, individual faces were warped into the average shape, but the 

faces maintained their original texture and symmetry features, allowing for the independent 

assessment of averageness. 
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It seems inconsistent that animals would prefer the 3-composites over the original images, but 

that there were no consistent preferences for the 10-composite above the 3-composites. This 

could result from two non-mutually exclusive factors relating to the process of composite 

construction. The first is that differences in attractiveness between original and 3-composite 

images may be much greater than that of the 3- versus 10-composites. Results from human- 

based studies suggests that adding more faces to composites results in increased 

attractiveness, however it does not increase exponentially. Little and Hancock (2002) report 

that when participants rated facial composites made up of different numbers of faces, 

disparities in attractiveness scores were much lower for 5-versus 10-composites when 

compared to original versus 3-composites. Similarly for the macaques, it may have been that 

differences in attractiveness of the 3- and 10- composites was not enough to generate 

significant differences in visual preferences. Secondly, visual preferences may have been 

influenced by a novelty effect, in terms of newness of stimuli. Although adding more faces 

increases attractiveness, it also results in composites looking less distinct. As mentioned in 

Chapter 2, repeated exposure to pictorial stimuli can lead to decreased interest. Wilson and 

Goldman-Rakic (1994) report a significant decrease in viewing time between the first and 

second presentation of facial images among rhesus monkeys. Therefore preferences for 

novelty of 3-images could have overridden the higher attractiveness in the 10-composites. 

Returning to the comment by Rubenstein and colleagues who stated that "averageness is 

fundamental" to attractiveness (2002, p. 21), this experiment also raises this possibility that 

humans are not unique in this aspect and that rhesus macaques of both sexes may also possess 

such preferences. However, determining whether these preferences were due primarily to 

increases in facial shape averageness, instead of to by-products of stimuli construction, would 

require further experimentation. Further experiments would also be beneficial to investigate 

the theoretical arguments employed to explain averageness preferences and to determine why 

preferences do not occur between 3- and 10-composites. Despite this, these results may lend 

some insight into the evolution of preferences for facial averageness, which may be deeply 

rooted within our phylogentic history. 

108 



Chapter 6 

Assessing the Information Content of and Visual 
Preferences for Facial Coloration 

One of the most striking features of the primate face is the conspicuous display of secondary 

sexual coloration that occurs among many species. Such displays are generally considered to 

be products of sexual selection and are thought to play an important role in intraspecific 

communication, highlighting again the importance of the face as a site of sexual selection in 

primate evolution. However the selection processes that shaped these signals and the precise 

roles they play in intraspecific communication are largely unknown. This chapter aims to 

understand the potential information content of primate secondary sexual coloration. It is 

necessary to consider perceptual capabilities in relation to the types of coloured signals that 

primates utilise and the way in which we investigate their significance to intraspecific 

communication. Therefore, the first part deals with primate visual systems and the 

implications these have for the replication of naturalistic colour and colour perception when 

using artificial visual stimuli with nonhuman primates. The second section reviews primate 

sexual skin colour and aims to determine its potential information content and how these 

relate to sexual selection processes. Finally, in an effort to test the functional significance of 

facial colour, I examine how manipulating rhesus macaque facial coloration influences 

conspecific preferences and discuss the implications of this in relation to the signal content of 

skin colour. 

6.1 Perceptual considerations in using artificial visual stimuli 
to study nonhuman primate coloration 
The use of photographic and video technology to study the functional significance of colour 

in animal communication has become increasingly popular (reviewed by D'Eath, 1998). 

However, some researchers have raised major reservations about their use due to 

discrepancies in human and nonhuman visual systems (e. g. D'Eath, 1998; Fleishman et al., 

1998; Fleishman and Endler, 2000). As these mediums are constructed for human viewing, 

they may fail to reproduce colour in meaningful and accurate ways for nonhuman viewers. 
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These criticisms are generally made in regards to animals whose visual systems are very 

different from ours (e. g. birds, fish, spiders). But do these criticisms apply to the nonhuman 

primates? As the topic of primate coloration is becoming more widely researched, we may 

expect to see photographic and video stimuli increasingly used to experimentally investigate 

its functional significance. Therefore it is necessary to understand the variability in nonhuman 

primate visual systems in order to discern the suitability of employing these mediums in 

studying coloration. 

6.1.1 Variations in primate colour vision 

It would be a mistake to assume that the type of colour vision that humans experience is 

representative of primate colour vision as a whole. Far from being uniform, an amazing 

diversity in colour perception exists both across and within different primate species. Before 

discussing variations in nonhuman primate colour vision and the impact this has on 

manipulating colour in artificial visual stimuli, it is useful to discuss human colour vision to 

provide a point for comparison. Here, it is necessary to introduce some terminology that will 

aid in the discussion of colour. ̀ Colour' is composed of three components: hue or chroma (the 

colour itself); saturation (the relative amount of colour); and brightness (the relative 

luminance) (Levine and Shefner, 2000). Each of these properties has independent effects on 

colour perception, so each needs to be taken into consideration in the discussion of the use of 

photographic and video stimuli with nonhuman primates. 

Human colour vision 

As discussed in Chapter 2, the perception of colour is a by-product of our visual systems' 

interpretation of electromagnetic energy. The portion of the electromagnetic spectrum that we 

perceive as visible light ranges from 380 to 760 nm (Hurvich, 1981). Differences in light 

wavelength (X) are perceived as differences in hue, for example the shortest visible X's are 

seen as violet and longest as red (see Figure 6.1). Colour theory classifies human vision as 

trichromatic, meaning that any hue we see can be created by combining light from three 
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Figure 6.1. The range of the electromagnetic spectrum visible to humans. 

primary colours in different ratios (usually red, green and blue as they are widely spaced in 

the colour spectrum: Jacobs, 1981; Levine and Shefner, 2000). Physiologically, trichromacy 

is based on a system of three different cone photoreceptor types, each of which is capable of 

absorbing light over a wide range of wavelengths within the visible spectrum. However, the 

three cone types contain distinct photopigments that differ in their peak wavelength 

sensitivity (Amax) (Levine and Shefner, 2000). Short wavelength (S), or "blue" cones, as they 

are sometimes referred to, are most sensitive to blue-violet wavelengths at approximately 

420nm (the actual proposed estimates vary from 410 to 430 nm: discussed in Jacobs, 

1996). Humans are slightly polymorphic in their L values of medium (M) and long (L) 

wavelength photopigments (Neitz, Neitz and Grishok, 1995). Medium wavelength, or 

"green" cones, have a maximal sensitivity to greenish wavelengths at around either 530 or 

535nm while the long wavelength, or "red" cones, are actually most sensitive to greenish- 

yellow wavelengths around 556 or 562 nm. 

Sensations of hue, brightness and saturation are created from differences in the output signals 

of the different cone classes, which are assessed through chromatic opponency processes in 

the cells of the retina, lateral geniculate nucleus, and visual cortex. Excitation and inhibition 

of these cells act to create a `red-green' mechanism that compares L to M cone input, and a 

`blue-yellow' mechanism that compares S to the sum of L and M input, allowing for the 

detection of two chromatic dimensions. Brightness ('black-white' or achromatic) perception 

is primarily determined by the combined L and M cone input. This channel is also responsible 
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for assessing saturation, which is based on the amount of achromatic light mixed with pure 

chromatic light (Levine and Shefher, 2000). 

Variations in human colour vision 

Defects to the genetic mechanisms controlling colour vision are known to result in anomalous 

colour perception in humans. Control of S cone opsin (the protein portion of photopigment 

molecules) is located on autosome 7, while the genes controlling M and L cone opsins are 

contiguously located on the X chromosome (Nathans, Thomas and Hogness, 1986). Most 

cases of defective colour vision are caused by mutations to the genes regulating M and L 

photopigment opsins, affecting the perceptions of green to red regions of the colour 

spectrum'2. ̀Red-green' defects are primarily restricted to males, as only one normal gene is 

needed for normal vision, therefore the likelihood of females having two defective versions 

are much lower. These types of defects occur in approximately 8% of the male population 

(Piantinida, 1988). 

Anomalous trichromacy is a main form of defective colour vision. Here, anomalous 

individuals are able to distinguish two chromatic dimensions (red-green, blue-yellow) like 

normal trichromats, however the wavelengths that produce the perception of colour are 

slightly shifted. The two most common subtypes are protanomaly (i. e. red weakness) and 

deuteranomaly (e. g. green weakness). Individuals who are protanomalous have normal X.. 

values for their S and M cone photopigments. However the )),. x of their L cone is shifted to a 

relatively shorter wavelength in comparison to that of normal trichromats, so that it is only 

approximately l Onm from the M cone >%.. In contrast, deuteranomalous trichromats have 

normal S and L cone A,,, . values, however the M photopigment is displaced towards a 

longer wavelength than usual, resulting in a 6nm separation in the M and L cone values. 

Both these defects result in individuals having a weak red/green chromatic response system 

(DeMarco et al., 1992). 

12 Defects to the S cone (tritanomaly and tritanopia) can occur but are extremely rare (Levine 

and Shefner, 2000). 
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Defective human vision also includes forms of dichromacy, which allows for the 

discrimination of only one dimension of hue (usually blue-yellow) along with brightness. In 

these cases, only two primary colours are needed to match all spectral hues (Jacobs, 1981). 

The most common forms are protanopia, where individuals lack L cone opsins and 

deuteranopia, where M cone opsins are absent. As a result, these individuals have difficulty 

discriminating among medium and long wavelengths (Levine and Shefner, 2000). 

Monochromacy, which involves a complete lack of colour vision, can also occur, although 

this type of defect is rare (Jacobs, 1981). Here, the appearance of any two hues can be 

matched by manipulating their brightness (Jacobs, 1981; Levine and Shefner, 2000). These 

individuals may have only S cones or may be lacking cones entirely, relying on rod 

photoreceptors entirely for light detection (Levine and Shefner, 2000). The topic of defective 

human colour vision will be returned to as it is important in understanding how variations in 

primate colour vision influence their perception of coloured artificial visual stimuli. 

Old World monkey and ape colour vision 

Old World monkeys and apes are thought to systematically possess trichromatic colour vision 

which is highly similar to that occurring in humans. Evidence for this was first provided by 

behavioural experiments on colour matching among different catarrhine species, revealing 

that the ratios of red, green and blue light used to create hue matches were highly similar 

among species and were comparable to human performance (e. g. De Valois et al., 1974; 

Grether, 1939; Oyama et al., 1979 in Jacobs, 1981). More recent studies investigating the 

spectral sensitivity functions of cone photopigments have reported a high degree of similarity 

in spectral sensitivity among a large number of catarrhine primates (e. g. Bowmaker et al., 

1991; Deegan II and Jacobs, 2001; Jacobs and Deegan 11,1999). These studies reveal that the 

values of S, M, and L cone photopigments (430,530,562 nm respectively) are very close 

to those of humans. Additional genetic studies have revealed that the chromosomal 

mechanisms controlling cone opsins in humans appear to be shared by all catarrhine primates 
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(Deeb et al., 1994; Dulai et al., 1994), further highlighting the similarities in colour perceptual 

systems. 

But despite this high degree of similarity, small differences do exist. Several studies 

investigating spectral sensitivity among macaques indicate that they are slightly more 

sensitive to short wavelengths (< 520 nm) and slightly less sensitive to long wavelengths (> 

600 nm) when compared to humans (Dobkins et al., 2000) and other catarrhine primates 

(Jacobs and Deegan II, 1999). Jacobs and Deegan II (1996) report that chimpanzees also 

display similarities to macaques in this respect. These differences in spectral sensitivity are 

usually attributed to interspecies differences in the relative number of L to M cones, as cone 

ratios can influence the amplitude of chromatic signals. Humans are estimated to have a 2: 1 L 

to M cone ratio, while macaques possess a lower 1: 1 L to M ratio (Dobkins et al., 2000; 

Jacobs and Deegan II, 1997,1999). Similarly, Jacobs and Deegan II (1996) estimate 

chimpanzees to possess an approximate 1.5: 2 L: M ratio. In terms of overall colour 

perception, these differences are slight. However such variations in cone ratios could provide 

macaques with superior chromatic sensitivity and humans with better luminance sensitivity, 

which likely contributes to human's superior visual acuity (Dobkins et al., 2000). 

New World monkey and prosimian colour vision 

Outside of catarrhine species, there are some interesting variations in colour perception that 

are related to differences in environmental adaptive needs as well as to genetic and 

physiological constraints. All nocturnal prosimians, tarsiers and owl monkeys are thought to 

possess monochromatic vision. Vision is rod-dominated among these species, although it 

appears that they also possess a single functioning M/L cone photoreceptor (the S opsin gene 

is non-functional: Jacobs, Neitz and Netiz, 1996b; Tan and Li, 1999). This means that 

although these animals are able to perceive differences in brightness, they are unable to 

discern colour as they lack the capability to discriminate among lights of different 

wavelengths with the same energy. Such system allows for the maximisation of visual 

capabilities at decreased light levels. 
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Colour vision among diurnal New World monkeys is highly variable. Many of these animals 

have polymorphic colour vision, with different variations of dichromatism and trichromatism 

occurring among individuals of the same species (reviewed in Jacobs, 1996). Like all Old 

World primates, New World species possess S cones which are controlled by an autosomal 

gene (S = 420 - 435nm). However unlike Old World species, the presence of M and L 

cones are more variable among most New World species, as here the X chromosome contains 

only one opsin gene locus, rather than two. The consequence of this is that all males and all 

homozygous females have dichromatic vision, as they only possess one M/L cone class and 

thus have poor middle to long wavelength discrimination. Heterozygous females therefore are 

the only individuals who have trichromatic vision. Additionally, we see polymorphic 

variation within the X,,,. x values of the M and L cone photopigments occurring in many New 

World species. Three sorts of M/L opsin alleles occur in some members of the family 

Cebidae [squirrel monkeys (Saimiri sp), capuchins (Cebus sp): M/L ). = 535,548,562nm] 

and all species of the family Callitrichidae [tamarins (Saguinus and Leontopithecus sp) and 

marmosets (Callithrix sp) M/L X� x = 545,556,562nm] (Jacobs, 1996; Jacobs and Blakeslee, 

1984; Jacobs and Deegan 11,2003; Jacobs and Neitz, 1987a; Tov6e, Bowmaker and Mollon, 

1992). This allows for six potential phenotypes of colour vision within each species, resulting 

in three varieties of both dichromacy and trichromacy. Other members of Cebidae have been 

estimated to have only two versions of M/L opsin alleles, including spider (Ateles sp; M/L 

A,,,,, = 550,562nm) and woolly (Lagothrix sp; M/L )ý,. x = 548,563nm) monkey species, and 

potentially white-faced said monkeys (Boissinot et al., 1998; Jacobs and Deegan II, 2001, 

2003). This polymorphic system results in a considerable degree of variation in spectral 

sensitivity, resulting in colour perceptual abilities that range from resembling that of normal 

human colour vision to that of anomalous human trichromats and dichromats with `red-green' 

defects, depending on the species, sex and allelic combination of the animal involved. 

Of all the diurnal New World species tested so far, howler monkeys (Alouatta sp) are the only 

genus not to exhibit this type of polymorphic colour vision (Jacobs and Deegan II, 2003). 

Here, both males and females have trichromatic vision, as the X chromosome appears to have 
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secondarily acquired control of both the M and L opsins. The values of the S, M, and L 

cones (430,530 and 562 nm respectively) are very close to those of Old World monkeys, 

apes, and humans; therefore it is likely their colour vision closely resembles that found in 

catarrhines (Jacobs et al., 1996a). 

Variations in colour vision similar to those occurring among New World species have been 

reported among diurnal lemurs. Jacobs and Deegan II (1993) examined colour perception in 

brown (Eulemurfulvus) and ring-tailed lemurs. Their study revealed that these species 

possessed an S and a single M/L cone photopigment (a,,,.,, = 437,545nm). As no 

polymorphisms were found, this suggests that these animals have similar forms of 

dichromatic colour vision. However, a more recent genetic analysis on 20 species of 

prosimians revealed that MIL opsin gene polymorphism occurs in two diurnal species, red 

ruffed lemurs (Varecia variegata rubra) and Coquerel's sifaka (Propithecus verreauxi 

coquereli). This polymorphism results in animals having either or both versions of two 

different M/L pigments. As in platyrrhine primates, all males and homozygous females of 

these species should possess one of two versions of dichromatism, while trichromatic vision 

should occur among heterozygous females (Tan and Li, 1999). Jacobs and co-workers (2002) 

further investigated cone absorption function in the Coquerel's sifaka, and report its A,,, x 

values at 428nm for S and 545 and 558nm for M/L cone photopigments. However it is not 

clear how sensitive trichromatic colour vision is in these two species. As discussed in 

Chapter 2, prosimians lack a fovea, which is required for high acuity colour vision. Rather 

they possess an area centralis, which is linked to a smaller cone number within the retina 

(reviewed in Provis et al., 1998). Therefore the ability to transmit colour information could be 

reduced in comparison to most haplorrhine primates (Jacobs et al., 2002). 

6.1.2 Implications for manipulating colour in studies with 
nonhuman primates 

In research where experimental manipulations of colour are employed in order to study its 

role in animal communication, any alterations made must appear realistic and must be 

perceptible to the species under study. Changes made based on human perceptual abilities 
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may look very different to the animals involved, which calls into the question the suitability 

of using mediums adapted to meet human perceptual needs. Television and computer monitor 

surfaces are covered with pixels that are typically made up of red, green and blue phosphors 

tuned to the absorption spectra of the corresponding photoreceptor (L, M and S cones) within 

the human retina (D'Eath, 1998; Fleishman et al., 1997). Phosphor intensity is tuned so that 

the output from each cone class is equivalent to that stimulated by natural colour. This basic 

principle of manipulating primary colour levels to render the illusion of realistic colour 

applies to all video display device, including LCD screens, CRT monitors and projection 

systems, as well as to all print and photographic colour reproduction (Bennett et al., 1994). 

Due to the nature of these mediums, two main problems in colour perception can arise if 

viewers differ from normal human vision in X,,,, x values for one or more of their cone classes 

or in the number of photoreceptor classes they possess (D'Eath, 1998; Fleishman et al., 1997). 

These include the potential failure to recreate realistic colour scenes and the potential inability 

to perceive colour manipulations that may seem obvious to those with normal trichromatic 

vision. As summarised in the previous section, no nonhuman primate possesses a visual 

system that is exactly identical to that of humans, and some species vary significantly in both 

their X.. x values and number of photoreceptor classes. It is therefore necessary to consider 

what impact these differences may have on nonhuman primates' perception of colour of 

artificial visual stimuli. 

Old World monkeys and apes 

Due to the high degree of similarity between human and Old World monkeys and apes, the 

use of photographic and video stimuli should be acceptable in terms of replicating naturalistic 

coloration and making noticeable colour manipulations. It should be noted that some colour 

matching experiments have revealed that macaques and chimpanzees make slightly different 

matches in the red/green portion of the spectrum (reviewed in Jacobs, 1991). However, this 

does not necessarily pose a problem for studies utilising these mediums to investigate colour 

in animal communication. Zwick and Robbins (1978) found that human and rhesus macaque 

spectral sensitivity was equivalent for coloured stimuli that did not require fine 
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discrimination. In contrast, when making fine acuity discriminations, the macaque performed 

poorer on long wavelength discriminations. These results suggest that differences in colour 

perception are more relevant for tasks requiring a high degree of foveal acuity. If using larger 

stimuli that do not require fine levels of discrimination, differences in hue sensitivity should 

be minimal. Additionally, there is little concern about encountering individuals with 

anomalous colour vision in these species, as occurrences of visual defects among nonhuman 

Old World primates are thought to be much lower in comparison to humans (Jacobs, 1996; 

Onishi et al., 1999). The only clear evidence of dichromatism occurring in a nonhuman 

catarrhine species comes from a study examining colour vision among 19 different macaque 

species, fording only three M. fascicularis individuals with dichromatic vision out of total of 

3153 animals (Onishi et al., 1999). 

New World monkeys and prosimians 

The use of these mediums with New World primates and prosimians is more questionable, 

due to the high degree of both inter and intraspecies variability in spectral sensitivity. In order 

to understand how these species might perceive colour portrayed over these mediums, it is 

helpful to examine how defects in human colour vision influence perception of photographic 

and video stimuli. Such a comparative perspective is highly useful, as behavioural research on 

colour matching (e. g. neutral point tests, Rayleigh match tests) and retinal-based spectral 

measurements [e. g. electroretinogram (ERG) flicker photometry, microspectrophotometry 

(MSP)] indicate that many New World primates and some prosimians have visual systems 

that resemble defective human colour vision. 

Vision similar to that occurring in human anomalous trichromats is reported for some species. 

For example, depending on their allele combination, some trichromatic squirrel monkeys 

resemble protanomalous or deuteranomalous humans (Jacobs, 1981; Mollon, Bowmaker and 

Jacobs, 1984). Some callitrichid individuals also are reported to be slightly to highly 

deuteranomalous (Jacobs, Neitz, and Crognale, 1987; Tovee et al., 1992). As previously 

mentioned, those with anomalous vision differ from normal trichromats in the relative 
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proportions of the three mixture primaries needed to match the appearance of various 

monochromatic lights (Jacobs, 1981). As different levels of the red and green primaries are 

needed to generate normal colour, human anomalous trichromats do not perceive realistic 

colour on monitors and in other display mediums (Okabe and Ito, 2002; Ridgen, 1999). 

Protanomalous trichromats require a greater level of red to see normal output on a monitor (as 

they are less sensitive to long wavelengths), while deuteranomalous individuals need a higher 

level of green (as they as less sensitive to medium wavelengths). Presumably animals with 

similar forms of trichromacy would have similar problems perceiving realistic colour. 

Colour manipulation can also be problematic for anomalous trichromats. Protanomalous 

individuals perceive ̀redness' to be weaker both in terms of saturation and brightness. This 

means that medium to long wavelength hues (green, yellow-green, yellow, orange, and red) 

not only appear displaced towards green, they also appear less saturated than to the normal 

trichromatic observer (Hurvich, 1981; Okabe and Ito, 2002; Ridgen, 1999). Additionally, 

these individuals also have problems perceiving differences in colours with low levels of 

saturation (Okabe and Ito, 2002; Ridgen, 1999). Deuteranomalous individuals are similar, as 

they have poor abilities in discriminating small differences in hues in the red, orange, yellow, 

and green regions of the spectrum, as these appear somewhat shifted towards red (Hurvich, 

1981; Okabe and Ito, 2002; Ridgen, 1999). Unlike protanomalous individuals, those who are 

deuteranomalous do not have the loss of brightness problem, as the long wavelength cones 

compensate (Hurvich, 1981; Ridgen, 1999). These are important considerations, as 

experimental hue manipulations may not be apparent to animals with these types of colour 

perception. Also, manipulating brightness could result in loss of saturation, again creating 

serious perceptual problems for protanomalous individuals. 

As discussed above, forms of `red-green' dichromatism similar to human dichromacy are also 

extremely prevalent among New World monkeys and diurnal prdsimians. Males of all these 

species, with the exception of the howler monkey, have dichromatic vision. Dichromatism 

also occurs among a significant proportion of females in most New World species, and in 

most female prosimian species as well (Jacobs, 1996; Tan and Li, 1999). Variations of 
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protanopic dichromatism have been reported for some prosimians (brown and ring-tailed 

lemurs: Blakeslee and Jacobs, 1985; Jacobs and Deegan II, 1993). Forms of both protanopia 

and deuteranopia are found among most New World species (reviewed in Jacobs, 1991,1996; 

also see Jacobs and Deegan II, 2003). 

In contrast to anomalous trichromats, the use of standard colour primaries in artificial visual 

stimuli has the capacity to reproduce realistic colour perception for human dichromats, as 

output stimulating the three cones should stimulate a subset of two (Brainard, 1995). As those 

with protanopic dichromacy lack the long-wavelength sensitive photopigments, they have 

difficulty distinguishing between green, yellow, orange and red and also among colours that 

differ only in their red or green component (blue versus violet, green or red versus brown) 

(Hurvich, 1981; Okabe and Ito, 2002; Ridgen, 1999). Any ability these individuals possess in 

distinguishing these colours is based on their relative brightness, not on any perceptible hue 

difference. Like protanomalous trichromats, protanopes find it difficult to distinguish colours 

at low saturation colours levels. In addition, reddish hues at end of the spectrum appear 

darker, and may even appear black, therefore manipulating hue or brightness can cause 

perceptual problems. Deuteranopes, who are lacking the medium-wavelength sensitive 

photopigment, have the same hue discrimination problems as protanopes, but without the loss 

of brightness, due to their long wavelength cones compensating (Hurvich, 1981; Okabe and 

Ito, 2002; Ridgen, 1999). It is difficult to say to what degree dichromatic primates would 

have similar difficulties, as dichromatic individuals in these species perform better at hue 

discrimination tasks than their human dichromat counterparts (e. g. capuchins: Pessoa et al., 

1997; ring-tailed lemurs: Blakeslee and Jacobs, 1985; spider monkeys: Blakeslee and Jacobs, 

1982). However, anybody manipulating hue and brightness in studies with these animals 

should be aware of the potential perceptual side-effects that may result. A list of primate taxa 

for which colour vision status is known and perceptual considerations when using coloured 

artificial visual stimuli are summarised in Table 6.1. 
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Table 6.1. Suitability of the use of coloured artificial visual stimuli for nonhuman 
primate species varying in colour perceptual abilities. 

Species Visual Status Methods Suitable for realistic colour 
rendering & manipulation? 

Source 

Old World Monkeys & Apes 

Cercopithecidae Normal MSP measures; ERG Yes, suitable for all species, but Bowmaker et al., 1991; 
trichromacy flicker photometry; different red-green colour perception DeValois et al., 1974; 

Wavelength for high acuity functions in Maraca Dulai et al., 1994; 
discrimination; sp. Grether, 1939; Jacobs, 
Rayleigh matching; 1981,1993; Jacobs & 
DNA analysis Deegan, 1999 

Hominidae Normal ERG flicker Yes, suitable for all species, but Deegan II & Jacobs, 
(Hylobates, trichromacy photometry; Colour different red-green colour perception 2000; Dulai et al., 
Gorilla, Pan, matching & for high acuity functions in Pan sp. 1994; Grether, 1939; 
Pongo sp) discrimination; DNA Jacobs et al., 1996; 

analysis Tigges, 1963 

New World Monkeys 

Alouatinae Normal ERG flicker Yes, should render realistic colour for Jacobs et al., 1996 
trichromacy photometry; DNA all individuals. 

analysis 

Atlelinae Anomalous ERG flicker Limited, potential problems in colour Blakeslee & Jacobs, 
(Ateles & trichromacy/ photometry; rendering for all trichromats. Colour 1985; Jacobs & 
Lagothrix sp) dichromacy Colour matching perceptual problems possible for all Deegan II, 2001 

individuals. 

Callitrichidae Anomalous ERG flicker Limited, potential problems in colour Grether, 1939; Hunt 
trichromacy/ photometry; rendering for all trichromats. Colour at al., 1993; Jacobs & 
dichromacy Wavelength perceptual problems possible for all Deegan II, 2003; 

discrimination; individuals. Jacobs et al., 1987; 
Rayleigh matching; Jacobs et al., 1993; 
DNA analysis Tovee et al., 1992 

Cebinae Anomalous ERG flicker Limited, potential problems in colour Jacobs & Blakeslee, 
(Callicebus, trichromacy/ photometry; rendering for most trichromats. Colour 1984; Jacobs & 
Cebus, Saimiri dichromacy for Colour perceptual problems possible for most Deegan 11,2003; 

sp) most animals discrimination; individuals. Jacobs & Neitz, 
Wavelength I987a, b; Jacobs et al., 
discrimination; 1993; Mollon et al., 
Rayleigh matching; 1984; Pessoa et al., 
DNA analysis 1997 

Prosimians 

Eulemur fulvus Dichromacy ERG flicker Limited, potential problems in colour Blakeslee & Jacobs, 
& Lemur catta photometry; perception for all individuals. 1985; Gosset & 

Colour Roeder, 2000; Jacobs 
discrimination; & Deegan 11,1993; 
Rayleigh matching; Tan & Li, 1999 
DNA analysis 

Propithecus Anomalous ERG flicker Limited, potential problems in colour Jacobs et al., 2002; 

venauxi trichromacy/ photometry, rendering for all trichronmts. Colour Tan & Li, 1999 

coquereli & dichromacy DNA analysis perceptual problems possible for all 
Varecia v. rubra individuals. 
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It is worth mentioning here a recent study that attempted to assess whether male pelage colour 

plays a role in female preferences among brown lemurs (Cooper and Hosey, 2003) to illustrate 

the potential problems of using these types of mediums with species that differ from humans in 

terms of colour perception. Photographs of male lemurs were digitally altered by 

manipulating gamma levels, which mainly controls the overall brightness of an image, but 

does change RGB ratios as well (CGSD, 2000). These images were then presented to female 

lemurs in a captive setting. Apart from the fact that no attempt was made to vary pelage 

colour in a way that corresponded to real-life variation among animals, extreme gamma 

alteration were made, which results in images becoming overly dark or light. As mentioned 

above, this species has protanopic vision, which can result in perceptual difficulties with 

brightness. Considering that images in this study were altered as a whole (including 

backgrounds), therefore animals may have had difficulty in discriminating image 

components, as they may have appeared uniformly very dark or light. Some serious 

methodological criticisms therefore may be launched at this study, as the methods they used 

were both unlikely to render accurate conspecific coloration and may have created perceptual 

difficulties for the animals involved. 

Two major questions remain about the use of these mediums with these species: (1) Are there 

any New World or prosimian species for who these mediums pose no perceptual problems? 

and (2) Is there anything that can be done to solve the problem? Addressing the first question, 

it is likely that colour rendering through these mediums would be suitable for howler 

monkeys, as they have trichromatic vision with )"'. values that are very close to those of Old 

World monkeys and apes. Additionally, one of the trichromatic phenotypic variations 

occurring among some female squirrel monkeys and capuchins monkeys seems to be very 

close to catarrhine values (S = 433nm, M= 535nm, L= 562nm), thus these mediums 

may pose no problems for such individuals. In terms of whether any corrections may be made 

to alter the output to make it appear naturalistic, Fleishman and colleagues (1998) do suggest 

a technique for altering monitor spectra. However, the process is highly complex and would 
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require knowledge of the animals' visual status, which may be impractical when working 

with species that have the capacity to exhibit multiple phenotypes. 

Conclusions 

Based on the discussion above, the following recommendations can be made: 

1) The use of coloured photographic and video based stimuli is suitable for Old World 

monkeys and apes. However, macaques and chimpanzees may have some perceptual 

problems if they are required to make discriminations requiring high foveal acuity, 

which is not the case in the study of conspecific coloured signals. 

2) For many New World and prosimians species who possess trichromatic vision, colour 

rendering on monitors will not appear realistic due to differences in i,,,, X values of 

their M/L photopigments. 

3) Hue and brightness manipulations will also likely appear different to most New 

World primates and prosimians in comparison to normal human trichromats. 

Based on this evidence, the use of artificial visual stimuli to study the functional significance 

of colour in animal communication is problematic for New World and prosimians species and 

should be used with caution. Any conclusions made from experiments using these methods 

without accounting for the animals' perceptual abilities could lead to questionable results. 
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6.2 Secondary Sexual Skin Colour 

Brilliant displays of secondary sexual coloration occur throughout the animal kingdom, and 

examples of these can frequently be seen among birds, reptiles, fish and insects. However 

among mammals, such colourful displays are limited to the primates, who are also unique 

among placental mammals in possessing trichromatic colour vision (Jacobs, 1993), as 

discussed in the previous section. Although pelage-based secondary sexual coloration occurs 

in primates, the most vivid displays involve the skin of the face and anogenital region, which 

are collectively referred to as ̀ sexual' skins. Scientists have been aware of the existence of 

sexual skin for over a century, and have long speculated its functions in intraspecific 

communication and the sexual selection processes involved. In fact, Darwin suggested that 

"monkeys redden from passion" (1897, p. 310) and in his 1876 article published in Nature, 

entitled "Sexual selection in relation to monkeys", he concluded that sexual skin must act "as 

a sexual ornament" in intraspecific signalling. However despite this early interest, our 

understanding as to what types of information sex skin colour may transmit to conspecifics 

and the types of sexual selection processes involved are somewhat limited as there has been 

little research into this area, particularly in relation to male coloration. The aim of this section 

of the chapter is to explore the communicative significance of sexual skins among nonhuman 

primates and how these relate to sexual selection theories. 

6.2.1 Defining sexual skin 

Before exploring the potential signal content of sexual skins and sexual selection processes 

involved, it is first necessary to define precisely what the term ̀ sexual skin' comprises. When 

examining the descriptions of sexual skin in the primate literature, the lack of consistency 

among authors is conspicuous. This becomes problematic and may lead to confusion if we are 

to draw conclusions about the significance of coloured signals, as both the informative 

content and the selection forces responsible may vary with different types of coloration as we 

we in other species (e. g. melanin versus carotenoid coloration in birds: Badyaev and Hill, 

2000). Some authors use the term to encompass the hormonally-sensitive skin of the face and 

anogenital region (e. g. Baulu, 1976; Rhodes et al., 1997), while many others use it to refer 
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solely to the skin of the anogenital region, regardless of its sensitivity to hormonal 

fluctuations (e. g. Dixson, 1998; Hrdy and Whitten, 1987). Here, I use a rigorous definition, 

defining sexual skin as only those areas of hairless skin that undergo changes in colour and/or 

swelling in response to sex hormones, which generally include the skin of the face, rump (e. g. 

anogenital and paracallosal regions) and nipples, depending on the species. 

Sex skin is often divided into two main types, red and blue. Red sexual skin is under the 

control of sex hormones, and as such may be referred to as a ̀ true' sexual skin per the above 

definition. In females, it is ovarian oestrogen that is responsible for skin reddening (reviewed 

in Dixson, 1998). Among males, testicular testosterone induces reddening (reviewed in 

Dixson, 1998), however evidence from rhesus macaques indicates that it does so indirectly 

via aromatization to oestrogen (Rhodes et al., 1997). Sexual skin is qualitatively different 

from regular skin, as it contains a large number of oestrogen receptors which are absent in 

non-sexual skin [based on studies of female pigtail macaques (Carlisle et al., 1981) and 

female chimpanzees (Ozasa and Gould, 1982)]. Increases in oestrogen act to increase vascular 

blood flow under the skin surface, creating the pink to red coloration. Red sexual skin is 

usually found on the face, rump regions, and nipples, although uniquely among gelada 

baboons (Theropithecus gelada), it also occurs in an hourglass shape on the chest. 

Blue skin, in contrast, is not a true sex skin as it is not under the control of sex hormones 

(Bercovitch, 1996). Rather than being controlled by vascular blood flow, it is caused by the 

presence of melanin within the dermis, which reflects light through the process of `Tyndall' 

scattering, generating colours ranging from pale to dark blue to turquoise (Dixson, 1998). The 

proximate mechanism controlling individual variation in blue skin is unknown, however there 

is some suggestion that it is linked to neuroendocrinological factors (Gerald and Raleigh, 

1997). It occurs primarily among male primates, most frequently on the scrotum, and usually 

in conjunction with red skin. 

As red and blue skin are regulated by separate physiological mechanisms, they potentially 

serve different functions in intraspecific communication (Dixson, 1998; Gerald, 2003), and 
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therefore they should be treated independently. The present examination will only address the 

red variety, and I will only use the term ̀ sexual skin' to refer solely to this skin type. 

6.2.2 Variability in the distribution and information content of 
sexual skin colour 

This section contains a review of the distribution of occurrences of sexual skin across sex and 

species as well as the identification of the proximate variables associated with changes in skin 

colour 13. By identifying these, this may provide a better idea of the potential information 

content of sexual skins in intraspecific communication and the sexual selection processes 

involved. It is possible that sexual skin may provide multiple signals to conspecifics, and the 

functions may vary across anatomical region, sex, and species. As systematic studies of 

sexual skin coloration are lacking, the majority of information comes from subjective 

observations, which may still provide some valuable insight. 

Interspecific distribution of sexual skin 

Red sexual skin is not common among all primate taxa, rather we see a strong association 

between occurrences of sexual skin and primate perceptual abilities. Notably, sexual skin is 

absent in all prosimians, most of who as previously mentioned, lack the ability to distinguish 

reddish hues of the spectrum. Sexual skin has been reported to be absent in New World 

monkeys (Dixson, 1983 and 1998), however there is evidence of sexual skin occurring among 

at least four species of the family Cebidae (Table 6.2): mantled howler monkeys (A. palliata), 

uakaris (Cacajao calvus), bearded sakis (Chiropotes satanas) and white-nosed bearded salis 

(Chiropotes albinasus). As previously mentioned, Alouatta is the only New World genus to 

date that has been found to possess uniform trichromacy across both sexes. The visual status 

of Cacajao and Chiropoles have not yet been reported, although considering their close 

phylogenetic relationships to white-faced sakis who possess polymorphic colour vision, 

systematic trichromatic vision in these species seems unlikely. However, it seems somewhat 

13 This review will be addressing sexual skin colour primarily, and not sexual skin swel in& which has 

received the vast majority of attention in sexual skin literature. This is because colour and swelling may 
act as independent signals and convey independent information to conspecifics. 
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puzzling that these animals would evolve red communicative signals if a large portion of 

conspecifics would be unable to make hue distinctions, although discrimination through 

relative brightness may be possible. 

The evolution of uniform trichromatic colour vision among Old World primates, coupled with 

a decreased dependence on olfaction, are proposed to have led to an increased reliance of 

visual signals like sexual skin in intraspecfic communication (Dixson, 1998; Zhang and 

Webb, 2003). Consequently, red sexual skins are widespread in these species, particularly 

among cercopithecine monkeys. Conversely, the absence of visual signals such as sexual skin 

has been proposed to have resulted in reduced evolutionary pressure on the maintenance of 

systematic trichromacy among humans, thus resulting in higher occurrences of colour 

defectiveness among humans in comparison to other Old World species (Zhang and Webb, 

2003). 

Proximate variables associated with sexual skin colour 

The relationships of sexual skin coloration to the following proximate variables are 

considered here: age, reproductive condition, intrasexual aggression and dominance, health, 

and acute stress/excitement. The results are summarised in Table 6.2. 

Age 

For all species with sexual skin, the onset of reddening occurs during or after puberty, due to 

increased production of sex hormones by the gonads in both sexes (Dixson, 1998). However 

for some species, variability in both the degree and anatomical distribution of red sexual skin 

occurs across age. Reddening can both increase over all and decrease in individual variability 

among some females as they age [rhesus macaques: Hill, 1974; guinea baboons (P. papio): 

Gautier, 1999]. A decrease in reddening can occur among elderly individuals of some species, 

as they reach the ends of their reproductive career and levels of sex hormones decline 

(uakaris: Hill, 1962; rhesus macaques: personal observation; stumptail macaques: Trollope 

and Blurton-Jones, 1975). Additionally, the anatomical regions encompassed by rump sexual 

skin may change over time. Among male Japanese macaques, the area of sexual skin covering 
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the rump widens with age (Takahasi, 2002). Similarly, in female rhesus macaques, sexual 

skin may spread to encompass the back of the legs as they age (personal observation). It is 

possible that the degree of distribution of sexual skin may act as an additional signal in 

intraspecific communication. 

Reproductive Condition 

The most frequent factor associated with female sex skin coloration is reproductive condition. 

Female coloration is enhanced by ovarian oestrogen, and removal of the ovaries results in a 

complete cessation of sexual skin reddening (e. g. rhesus macaques: Herbert, 1966 in Dixson, 

1998). For many species [e. g. mangabeys (Cercocebus sp) and some macaques], female 

anogenital skin colour changes across the ovulatory cycle, reddening during follicular phase, 

peaking in colour in the peri-ovulatory period, and then decreasing in luteal phase, however 

the relationship with ovulation is not fixed (Dixson, 1983). Other species exhibit anogenital 

reddening when experiencing ovulatory cycles, but colour varies little across cycle (e. g. 

Japanese macaques: Wallner, 2002). Similarly, female facial reddening may occur while 

females are fertile, but this tends not to vary across the cycle for most species [e. g. Japanese 

macaques: Wallner, 2002; rhesus macaques: Baulu, 1976; toque macaques (M. sinica): Dittus, 

1975]. However it should be noted that subtle colour changes undetected by human observers 

could be more obvious to the nonhuman observers, as some species are slightly more 

sensitive to red-green chromatic changes (Dobkins et al., 2000). Pregnancy and lactation are 

often associated with changes to sexual skin coloration, although these colours are usually 

different from those associated with ovulatory cycling. For example reddening may be 

brighter or deeper in comparison to coloration exhibited when cycling among many species 

(rhesus macaques: Czaja, Eisele and Goy 1975; bearded saki monkeys: van Roosmalen, 

Mittermeier and Milton, 1981). Many baboon species exhibit little or no change in sexual skin 

colour across cycle (but changes to swelling occur), but during pregnancy, paracallosal skin 

can become bright red (without swelling), turning black during lactation (e. g. Dunbar, 1984; 

Gauthier, 1999). In contrast there are instances among mangabeys (Gust, 1994) and 

occasionally among hamadryas baboons (Zinner and Deschner, 2000) of females exhibiting 

sexual skin changes that mimic cyclical changes during the postpartum period. 
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Coloration also relates to male reproductive condition. Reports of castration resulting in an 

absence of sexual skin reddening have been made for some species [e. g. rhesus macaques: 

Vandenbergh, 1965; patas monkeys (Erythrocebus patas): Dixson, 1983; hamadryas baboons: 

Zuckerman and Parkes, 1939 in Dixson, 1998]. Additionally, among those species that breed 

seasonally, increased sexual skin reddening is accompanied by testes enlargement and 

increased spermatogenesis (e. g. Japanese macaques: Nigi et al., 1980; Rostal et al., 1986; 

rhesus macaques: Conoway and Sade, 1965). Therefore sexual skin colour may also provide a 

sign of increased fertility among males. Interestingly, female reproductive state can also 

induce reddening in some male primates. Among male rhesus macaques, associating with 

fertile females results in increased testosterone (Rose, Gordon and Bernstein, 1972) and 

sexual skin reddening (Vandenbergh and Drickamer, 1974). Male colour can also fluctuate 

with female coloration across cycle in some species [Allen's swamp monkey (Allen opithecus 

nigroviridis): personal observation; stumptail macaque: Trollope and Blurton-Jones, 1975], 

and peaks in coloration in both sexes may coincide with sexual activity. 

Intrasexual aggression and dominance 

Sexual skins in male primates have frequently been proposed to function in male-male 

aggressive displays. The most frequently cited example of this occurs among the vervet 

monkeys (Chlorocebus aethiops), who employ their red prepuce, blue scrotum and white 

rump in `red, white and blue' displays during aggressive male interactions (e. g. Durham, 

1969; Gerald, 2001; Henzi, 1985). Among male proboscis monkeys (Nasalis lavartus), red 

penile displays may also play a role in competitive male exchanges, as males exhibit erections 

during aggressive interactions involving other males (Yeager, 1990). There are many species 

that exhibit red male sexual skins, but that do not have overt male-male displays, although 

this does not exclude the possibility of males monitoring intrasexual conspecific coloration. 

Males from some of these species have been reported to adopt postural positions that increase 

the visibility of the prepuce and scrotum [e. g. mandrills (Mandrillus sphinx): Dixson, 1998; 

patas monkeys: Bercovitch, 1996]. Among rhesus monkeys, seasonal differences in tail 

carriage occur, with males positioning tails upright during the breeding season thereby 
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making the anogenital region more visible (personal observation). However adopting such 

postures may also serve to increase visibility to other conspecifics, such as potential mates. 

Social rank and red sexual skin colour have also been reported to be associated in some male 

primates. For example, among male mandrills, peripheral or solitary male mandrills exhibit 

less reddening than group-associated, high-ranking males (Dixson, 1998; Wickings and 

Dixson, 1992). In both mandrills and gelada baboons, increased sexual skin reddening occurs 

among those males who achieve alpha status, and decreases in males who are deposed 

(Dunbar, 1984; Setchell and Dixson, 2001). Associations between rank and sexual skin colour 

however do not occur among all male primates with sexual skin. Although a positive 

relationships between social rank and reddening in captivity has been noticed for rhesus 

macaques (R. J. Francis, personal communication), associations between rank and coloration 

are weak for free-ranging individuals (personal observation). Similarly, associations of rank 

and colour are weak among Japanese macaques (B. Majolo, personal communication) or non- 

existent for captive stumptail macaques, where low ranking animals may show a high degree 

of reddening (A. Cronin, personal communication). 

Although little addressed, sexual skin colour could also play a role in female aggressive 

displays and dominance. Gerald (in press) reports that female sex skin colour was associated 

with degree of intrasexual agonism. No associations of skin colour, facial or otherwise, and 

social rank have been observed for female Japanese macaques (B. Majolo, personal 

communication; Waliner, 2002). 

Health 

There does appear to be a relationship with health and sexual skin colour. Positive 

associations between health and coloration of facial and anogenital skin have been observed 

for both stumptail (A. Cronin, personal communication) and rhesus macaques (personal 

observation), with severely ill or injured animals experiencing a decrease in reddening. 

Nutritional stress may also influence sexual skin, as delays in the onset of sexual skin 

development have been reported for young female Japanese macaques undergoing food 

shortages (Mori et al., 1997b). Among uakaris, it has been reported in the popular media that 
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there is a link between head coloration and malaria resistance, with red individuals being 

resistant and pale individuals being susceptible to infection (Hager, 1993), though an 

academic reference is lacking. However, a negative association for the level of blood borne 

parasite load and degree of facial reddening has been found in female rhesus macaques (M. 

Gerald, unpublished data). 

Acute stress/excitement 

Brief increases in facial coloration in response to acute stress/excitement have been reported 

for stumptail macaques (A. Cronin, personal communication), northern pigtail macaques (M. 

n. leonina: Fooden, 1975), and uakaris (Hill, 1962). This reddening lasts several minutes in 

durations before fading and may be somewhat analogous to human facial flushing during 

anger, which leads to temporary increases in facial blood flow (Drummond and Han Quah, 

2001). Similar reports of temporary reddening have been reported in male gelada baboons 

during aggressive intrasexual interactions (Alvarez, 1973; Dunbar, 1984). Such brief changes 

in colour could potentially act to signal aggressive intent. 
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6.2.3 Sexual selection processes and sex skin coloration 

Debate on the relationship between conspicuous coloration and sexual selection processes has 

existed since the times of Darwin and Wallace (Andersson, 1994). As previously mentioned, 

Darwin suggested that bright coloration among primates was primarily a product of mate 

choice, although the evidence supporting this claim is lacking. It is also possible that 

intrasexual competition has been involved in selecting for sexual skin. Associations with the 

above proximate variables can be used to hypothesise about the potential information content 

of sexual skin signals and on the sexual selection pressures involved. Sexual skin appears to 

provide multiple signals to conspecifics, and the functions may vary across anatomical region, 

sex, and species. Therefore, we might also expect that the selection forces responsible for 

sexual skin may also vary across these factors. 

Intrasexual and intersexual competition 

One of the main proposed functions of conspicuous coloration is to strengthen the efficacy of 

threat signals utilised in same-sex competitions over mates or other resources that impact 

reproductive fitness. It is likely that this applies to at least some cases of coloured sexual 

skins, as they may relay aggressive intent in certain contexts and they are in some cases used 

in intrasexual aggressive displays. This seems particularly relevant to facial, prepuce and 

scrotal colour. Butcher and Rohwer (1989) have suggested two hypotheses to explain how 

coloured traits may be employed in this intrasexual competition. First is the ̀ priority 

hypothesis', which suggests that the owner of a given resource usually wins in contests over 

ownership, as better fighters generally become resource holders. Additionally, the resource is 

likely to be of greater value to the owner, who may be willing to fight to maintain their hold. 

Therefore, conspicuous coloration acts to display at a distance that a resource is occupied and 

that the owner is prepared to aggressively defend their ownership. The second is the 'fighting- 

ability, hypothesis, where colour is related to an individual's phenotypic condition, and thus 

fighting ability. Here, animals make assessments of individual coloration and this may allow 

individuals to decide contests through display, without having to resort to fighting. This latter 
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hypothesis may be particularly relevant to hormonally-based traits, which, according to 

`indicator mechanisms' theories (reviewed in Chapter 1), act as ̀ honest' indicators of an 

individual's physical condition. 

The use of hormonally-mediated coloration in intrasexual competition for resources has been 

reported among males of various species. For example, among side-blotched lizards (Uta 

stansburiana), male colour is linked to plasma testosterone concentration (Sinervo et al., 

2000). Those males with orange throats have the highest testosterone levels and display 

higher endurance and activity compared to males with blue and yellow throats, who have 

comparatively lower testosterone levels. Orange males also possess larger home ranges, and 

thereby have access to a greater number of females living within vicinities under their control. 

Similarly, among male African lions, the physiological mechanisms controlling mane colour 

appears to be linked to testosterone levels, with higher testosterone concentrations being 

linked to darker mane colour (West and Packer, 2002). Dark mane colour also appears to 

relate to male dominance status and to the ability to retain territorial control against usurping 

males. When exposed to life-sized models varying in mane colour, males where more hesitant 

to approach models with dark mane colour, suggesting that male lions use colour to gauge 

conspecific fighting ability (West and Packer, 2002). It seems likely that sexual skin colour 

also serves a similar function in many male primates, as this is a testosterone-dependent trait, 

and therefore may reflect male competitive condition. 

The use of coloured displays in female intrasexual competition has been little researched, but 

there is some evidence from among avian species that it can play a role. Female pinyon jays 

(Gymnorhinus cyanocephalus) have been demonstrated to utilise head coloration to reflect 

dominance status in competitions over access to males (Johnson, 1988). Additionally, 

conspicuous coloration has been linked to female-female aggression and courtship disruption 

in Gulanan cock-of-the-rock birds (Rupicola rupicola: Trail, 1990). Although the impact of 

female hormonally-mediated colour has not received much attention, there is evidence that 

indicator mechanism theory may also be applied to other types of female secondary sexual 

coloration. For example, carotenoid-based coloration has been demonstrated to be indicative 
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of phenotypic quality among female red-winged blackbirds (Agelaius phoeniceus: Johnsen et 

al., 1996), consistent with the ̀ fighting-ability' hypothesis. Females from Cuban populations 

that engage in territorial defence are similarly ornamented to the males, while the 

comparatively duller-coloured females from North American populations do not defend 

territories. Among some primate species, coloured female sex skin could serve a similar 

purpose in contests over limited resources. 

The relationships with certain proximate factors suggest that the `fighting ability' hypothesis 

could indeed apply to coloured sex skins in both sexes. The associations between both aging 

and illness/injury and decreases in colour intensity among both sexes suggest that coloration 

could provide information to conspecifics about phenotypic condition. The idea that sexual 

skin colour may honestly signal competitive ability is also supported by the positive 

associations with male social rank in certain species, such as mandrills and gelada baboons. 

However, sexual skin coloration does not appear to relate to social rank in all species, such as 

rhesus and Japanese macaques. It may seem contradictory that colour is positively associated 

with phenotypic condition and not social rank among macaques, but this may largely be 

explained by differences in social systems. Among rhesus and Japanese macaques, male 

dominance rank is a function of group tenure length, rather than a product of intrasexual 

competition (Manson, 1995; Takahashi, 2002). As these males do not compete to achieve 

high rank, unlike male mandrills and gelada baboons, dominance is unlikely to be a reliable 

marker of male competitive ability. Similarly, female rank in macaque species is determined 

by maternal rank rather than direct female-female competition, therefore rank is not 

necessarily a marker of competitive ability. 

Colour changes occurring during pregnancy and lactation may also relate to both intra and 

intersexual competition. For instance, colour changes during pregnancy are associated with 

increased agonism in rhesus monkeys (personal observation), which could act as a warning 

signal that females are more prepared to react aggressively to avoid harassment from 

conspecifics of either sex. Some reptilian species appear to use hormonally-induced colour to 

indicate lack of receptivity to males while gravid with eggs, which has been proposed to 

138 



reduce male harassment (e. g. Cooper, 1984; Cooper and Greenberg, 1992). Such coloured 

displays have been reported to be accompanied by increased aggression towards males. 

Experimental studies with tropidurid lizards (Microlophus occipitalis) revealed that males 

court females displaying pregnancy coloration less vigorously compared to females without, 

supporting the idea that this signal acts to deflect unwanted male attention (Watkins, 1997). 

Similarly, female primates may utilise coloured sex skins during pregnancy and the 

postpartum period to signal their lack of fertility to males, thereby avoiding the energetic 

costs associated with male harassment. Conversely in those species where females display 

sexual skin changes that mimic those occurring during ovulatory cycling in the postpartum 

period (e. g. mangabeys: Gust, 1994; Kinnaird, 1990; hamadryas baboons: Zinner and 

Deschner, 2000), they may do so to dishonestly signal their condition. Here, intersexual 

competition in these species may have led females to have evolved such signals as infanticide 

avoidance strategies. 

Intersexual selection 

Empirical evidence directly linking sexual skin colour to mate choice is very sparse, as the 

topic has received so little attention. One recent observational study on semi free-ranging 

mandrills found that females preferentially solicited copulations from the males with more 

intense red sexual skin colour (Setchell, 2003). However, colour may have been confounded 

with other influential factors due to the lack of control associated with such studies. Only one 

experimental study has specifically addressed sexual skin colour and attractiveness, which 

was conducted by Bielert and colleagues (1989). They experimentally tested male 

preferences for female rump coloration among chacma baboons (P. Ursinus) by fitting a 

female with artificial sexual swellings of different colours (e. g. yellow, green, black, red). The 

study results revealed that the red-coloured swelling resulted in the greatest increase in sexual 

arousal among males. Therefore, sexual skin colour has been implicated in mate choice of 

both sexes at least in these species. 
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One main theory employed to explain the evolution of colour preferences in mate choice is 

sensory bias theory, which proposes that a given trait may be favoured due to pre-existing 

biases within an animal's sensory system (reviewed in Endler, 1993 and Ryan, 1998). For 

example, female guppies (Poecilia reliculata) may have a pre-existing receiver bias towards 

orange carotenoid-based male markings, due to guppy diets consisting in large part of orange- 

coloured fruits. This sensory bias was experimentally demonstrated in captive and wild 

guppies, who both demonstrated preferences for orange-coloured objects versus objects of 

other colours (Rodd et al., 2001). Similarly, sensory bias theory could potentially be utilised 

to explain any potential preferences for sexual skin colour. Gerald (2003) raises the possibility 

that male primates could be exploiting female preferences for natal coloration. To illustrate, 

any preferences females may display for red male coloration among rhesus monkeys could 

arise from pre-existing biases they have for reddish-pink facial skin of neonates. However, 

Gerald discounts this idea as she reviewed the distribution of male secondary sexual 

coloration and the occurrences of natal coloration, which did not support this hypothesis. 

Additionally, it seems unlikely that male attraction to red female sexual skin colour could 

result from females exploiting neonatal signals. Alternatively it could be suggested that any 

biases primates may exhibit for red coloration may have been shaped by their foraging 

preferences for ripe red fruits. This appears somewhat doubtful as the majority of fruits fed on 

by primates are not red in colour (Dominy, Svennig and Li, 2003). Additionally, experiments 

exposing rhesus macaques to different coloured fields of light suggest that they lack a sensory 

bias for the colour red, as they in fact preferred fields of green and blue light (Humphrey, 

1971). This does not necessarily exclude the possibility of other primate species having such 

sensory biases. 

Another possibility is that colour preferences may have evolved as a means to recognise 

members of one's own species, thereby avoiding hybridisation with other species. This has 

been demonstrated in cichlid fishes, where females prefer males displaying coloration of their 

own subspecies (Kraaijeveld and Pomiankowski, 2004). Species recognition has been utilised 

to explain the diversity of facial masks among guenon species (Kingdon, 1980). It seems 
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unlikely that this argument could apply to explain a dynamic signal like red sexual skin 

coloration that has potentially harmful side-effects on immunocompetence. Instead, it may be 

expected that primates would use more permanent and less costly melanin-based skin or 

pelage coloration for this purpose. Additionally, some sexual skin displays, such as that 

occurring among male mandrills, seem far more elaborate than necessary in order to simply 

function as a species discriminatory mechanism. However, this argument has been utilised to 

explain the variability in female sexual swelling of Sulawesi macaque species, which is an 

interesting possibility (Froehlich, 2003). 

Finally, indicator mechanism theories may also be used to explain the use of colour in 

intersexual selection, suggesting that the degree of expression of such characteristics may be 

indicative of an individual's quality. For example, Hamilton and Zuk (1982) proposed that 

conspicuous male coloration signals heritable resistance to parasites. Condition dependent 

coloration has been demonstrated to have an influence on mate attractiveness in various 

species. As previously mentioned, hormonally-mediated colour, particularly if it is 

testosterone-based, may act as an honest signal of condition due to the impact on 

immunocompetence. There is evidence of this influencing male attractiveness to females in 

some species. For example, among one species of turtle (Callagur boreneoensis), there is 

suggestion that testosterone-mediated male colour relates to female mate choice (Moll, 

Matson and Krehbiel, 198 1). Additionally, when presented with male models varying in mane 

colour, female African lions more frequently approached those males with darker mane 

colour, a trait which is associated with higher testosterone levels (West and Packer, 2002). 

Although this does not necessarily indicate that the females found darker mane colours more 

attractive, it is one possibility. Female primates also might evaluate male condition based on 

sexual skin colour. By preferentially mating with males possessing highly developed displays, 

females might gain indirect benefits by providing offspring with heritable resistance to 

pathogens (Folstad and Karter, 1992). 

Males may also benefit by mating with more colourful females, if colour is related to female 

quality. There is some evidence among nonhuman primates that female secondary sexual 
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traits may be indicative of quality. One recent study found a relationship between sexual 

swelling size in female olive baboons and offspring survivorship, suggesting that female 

primate secondary sexual traits may act as honest indicators of female condition (Domb and 

Pagel, 2(01). The authors of this study also report that males competed more intensely for 

females with larger swellings. This is a very interesting prospect, but should be interpreted 

with caution, as it appears that the authors did not control for number of females with peri- 

ovulatory swellings in relation to male competitive behaviour. However this study does 

provide some preliminary indication that males evaluate female quality on the basis of 

secondary sexual traits. Additionally, among female rhesus macaques, facial colour does 

appear to be an honest signal of blood-borne parasite load (Gerald, unpublished data). Many 

female macaque species exhibit red facial coloration, which may serve as a mechanism for 

male mate choice if it is indeed indicative of female quality. 

However, any benefits that animals receive need not be genetic. Rather animals may receive 

direct phenotypic benefits by selecting mates with more extreme displays. For example, trait 

development may reflect quality of territory (Andersson, 1994), parental ability (Hoelzer, 

1989), or may simply indicate that an individual is free from infectious pathogens which may 

be transmitted through close contact (Loehle, 1997). Female primates could be using male 

coloration to gauge such potential direct phenotypic benefits. For instance, among those 

species where females are at risk of male harassment or infanticide, females may benefit by 

selecting males with redder coloration, as this may reflect male ability to defend against 

unwanted male intrusion. It would be interesting to examine if females assess male coloration 

and whether this is related to harem defence in species like geladas and patas monkeys, where 

instances of infanticide are associated with takeovers (Enstam et al., 2002; Mori, Iwamoto and 

Bekele, 1997a). Pathogen avoidance might be particularly relevant to those species with 

multimale-multifemale mating system (e. g. rhesus macaques, Japanese macaques), where 

females may mate with multiple males and vice versa. Primate species with this sort of mating 

system may incur greater rates of STD infection (Nunn, Gittleman and Antonovics, 2000). 

Naturally occurring STD's are common place in wild primate populations [e. g. simian 
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immunodeficiency virus (SW): Phillips-Conroy et al., 1994; Herpes B virus: Orcutt et al., 

1974] and it is worthwhile to note that many of the species in which males possess red sex 

skins have multimale-multifemale mating systems (Dixson, 1998). 

Another direct benefit that primates may receive by evaluating sexual skin colour would 

simply be choosing a mate that is fertile and sexually receptive. Evidence for this is provided 

by the facts that the same hormones that control sexual skin colour also regulate gamete 

production and sexual behaviour. In addition, the association with age (the onset of reddening 

at maturity and the decline with old age) is consistent with the idea that sexual skin colour 

acts to signal an individual's reproductive viability and sexual receptiveness to conspecifics. 

This is particularly relevant to female sexual skin colour, which often peaks in the peri- 

ovulatory period, thereby providing a signal as to when females are most fertile and most 

sexually receptive. This idea is consistent with Nunn's (1999) graded-signal hypothesis, 

which suggests that rather than being an indicator of female quality, the size and colour of 

exaggerated swellings convey probability of ovulation. Signalling the probability of ovulation 

may allow females to balance the costs and benefits associated with male mate guarding, 

permitting the females to mate with high-ranking males during time of peak fertility and also 

with other males to confuse paternity. Similar to female primates, some female lizard species 

also possess vivid secondary sexual coloration around ovulation and males have been 

observed to court brightly coloured females (Cooper, 1984; Ferguson, 1976). Evidence from 

agamid lizards (Cienophorus ornatus) indicates that males do not use colour to assess female 

quality, but rather to judge female reproductive condition (LeBas and Marshall, 2000). The 

question of whether female primate sexual skin is evaluated by male primates to judge female 

reproductive condition solely, or to assess female quality as well, remains a fascinating topic 

for future research. 

Conclusions 

In this section, I have endeavoured to provide an overview of the distribution of red sexual 

skin among primates, to identify those proximate variables that influence coloration, and to 
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consider how sexual selection processes may relate to sexual skin coloration. Sexual skin 

appears to provide multiple signals to conspecifics, and the sexual selection forces that have 

shaped these traits and their information content may vary across anatomical region, sex, and 

species. Primates of both sexes may use colour in intrasexual competition, however this does 

not mean that they do not also function in intersexual selection, as these processes are not 

mutually exclusive (Berglund et al., 1996). As sex skin colour appears to be an honest signal 

to both physical and reproductive state in many cases, it would appear to provide conspecifics 

with a good short-term signal for assessing conspecific condition. 

6.3 Manipulating and measuring preferences for facial 
coloration 
As discussed in the preceding section, many species of nonhuman primate possess 

conspicuous displays of facial sexual skin, which may have evolved via inter and intrasexual 

selection processes. As the aim of this thesis is to identify features of the face that may 

influence attractiveness among nonhuman primates, this study specifically sought to explore 

whether the dimension of facial coloration might also play a role. The relationship between 

male coloration and attractiveness has not been experimentally addressed at all, although as 

previously mentioned there is some observational research suggesting a link in mandrills 

(Setchell, 2003). Only one study has experimentally looked at the effect of female anogenital 

coloration in relation to attractiveness (Bielert et al., 1989), however there are no published 

studies addressing the role of female facial colour. 

In free-ranging rhesus macaques, adults of both sexes undergo an increased reddening of the 

facial and anogenital skin during the mating season. Facial coloration is highly variable 

among individuals, ranging from surrounding only the outer canthal (eye) region to 

encompassing the entire face (personal observation). Some animals may exhibit little change 

in facial coloration, while others may display a high degree of reddening, which may be 

flecked to solid in appearance. Animals can also vary in degree of coloration annually. 

Therefore facial skin coloration could provide a reliable short-term cue to condition among 

rhesus macaques. Here, I experimentally manipulated facial images for colour and tested 
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whether animals exhibited visual preferences for red facial coloration in opposite-sexed faces. 

If indeed red facial sexual skin plays a role in mate choice, then manipulating facial colour 

should influence animal preferences for opposite-sexed faces. 

6.3.1 Methods 

The experimental procedure followed here was as described in Chapter 2. Details specific to 

stimuli construction, image display and the study animals are provided below. 

Colour manipulation and display 

In order to manipulate colour, I utilised the methods employed by Rowland and Perrett (1995) 

to manipulate human facial coloration. Psychomorph software was used to create four 

composite faces each made of 15 images. These included: red female, pale female, red male 

and pale male composites. The "red" composites consisted of same-sex facial images taken 

during the mating season and the "pale" composite of same-sex images taken outside the 

mating season. Multiple faces were used to form composites to control for individual 

differences in coloration and differences in ambient lighting. 

To construct the composites, I followed the procedure in Chapter 5. The mean RGB (red, 

green, blue) colour values at each pixel were then calculated for the sample and applied to the 

mean shape and these were transformed into hue and saturation values. Hue and saturation 

values were then applied and combined with the individual brightness component of each 

pixel of 24 male faces, producing a red and a pale version of each face (Figure 6.2). The same 

procedure was followed for the female faces, with the two female composite hue and 

saturation values being applied to 24 female faces to create a red and a pale version of each 

(Figure 6.3). As the manipulations were based on actual colour changes that occurred in real 

animals, this increased the ecological validity of the stimuli. Additionally, each pixel value 

was assessed and averaged, therefore both inter and intra-animal variability in facial 

coloration were controlled for by these methods. To ensure realistic and equivalent colour 
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display between the two monitors, both monitors were regularly calibrated as described in 

Chapter 2. 

Figure 6.2. Example of male stimuli (same face colour-transformed to construct red and 
pale versions). 
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Figure 6.3. Example of female stimuli (same face colour-transformed to construct red 
and pale versions). 



Study animals 

Five males and six females took part in this study. Among the males, one animal had to be 

retested (Polo) due to external disturbances created by husbandry procedures during testing, 

resulting in inattention to the experimental stimuli. Similarly for the females, one individual 

(Hazel) had to be retested due to external disturbances. However on her second trial, she 

attended to less than 50% of the trials, and therefore those results were not included within the 

analyses. Another female (Honey) would not enter the testing area, and therefore did not 

participate in this experiment. 

6.3.3 Results 

As trials where external noise caused distraction, eye gaze was obscured, and where animals 

were orientated away from the monitors were excluded, there was a female mean of 17.50 

trials (SE= 1.05) and a male mean of 17.40 trials (SE = 1.02) included per animal. The means 

and standard errors for gaze duration and frequency are displayed in Table 6.3. Total 

proportions for direction of first and longest gaze are provided in Table 6.4. Analyses follow 

those in Chapter 3. 

Differences of scores for red and pale faces were within the range of normal distribution for 

both duration and frequency (duration: kurtosis/SE = . 23; frequency: kurtosis /SE = . 23). 

Repeated measures ANOVAs were again used to assess differences in duration and 

frequency, with sex included as a between-subjects factor (Table 6.5). There was a significant 

main effect of face type for gaze duration, indicating that animals looked significantly longer 

at red versus pale opposite-sexed faces. The interaction between stimuli type and sex of the 

study animals was also significant; post-hoc analyses (paired t-tests, with a Bonferroni 

adjusted probability of 0.05/2 = 0.025) reveal that females, but not males, displayed 

significant preferences for red opposite-sexed faces. No significant main effect of face type 

was found for gaze frequency. There was only a significant main effect of subject sex, with 

females looking significantly more fi-equently at opposite-sexed faces (Table 6.5). 
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Table 6.3. Individual, sex, and overall means f SE for gaze duration (seconds) and 
frequency (number of looks) for red versus pale faces per 10 second interval. 

Animal Mean gaze duration Mean gaze frequency 
Red Pale Red Pale 

Males 
Vela 
Minor 
Polo 
Major 
Draco 

Male mean ±SE = 

Females 
Hen 
Hebe 
Hettie 
Hattie 
Heidi 
Holly 

Female mean ±SE = 

1.92 1.33 1.13 1.13 
1.94 2.15 1.43 1.21 
2.19 1.47 1.38 1.19 
1.90 2.29 . 82 1.18 
1.94 2.09 1.40 1.50 

1.98±. 05 1.87±. 19 1.23±. 12 1.24±. 07 

1.99 1.49 1.83 1.67 
2.13 1.41 1.76 1.38 
2.10 1.76 1.91 2.00 
3.03 1.69 2.39 1.62 
2.87 1.81 2.06 1.56 
2.33 1.80 2.00 1.75 

2.41 ±. 18 1.66±. 07 1.99±. 09 1.66±. 08 

Overall mean : LSE = 2.12±. 12 1.75±. 10 1.65±. 14 1.47±. 08 

Table 6.4. Individual, sex, and proportions of total number of trials for first gaze and 
longest gaze for red and pale face. 

Animal Prop 
Red 

ortion first gaze 
Pale 

Proportion longest gaze 
Red Pale 

Males 
Vela 0.53 0.47 0.67 0.33 
Minor 0.50 0.50 0.47 0.53 
Polo 0.52 0.48 0.57 0.43 
Major 0.35 0.65 0.56 0.44 
Draco 0.40 0.60 0.45 0.55 

Male mean = 

Females 

0.46±. 03 0.54±. 03 0.53 ±. 04 0.47 ±. 04 

Hen 0.76 0.24 0.33 0.67 
Hebe 0.69 0.31 0.77 0.23 
Hettie 0.38 0.62 0.56 0.44 
Hattie 0.69 0.31 0.63 0.37 
Heidi 0.44 0.56 0.44 0.56 
Holly 0.67 0.33 0.57 0.43 

Female mean = 0.611 . 06 0.391 . 06 0.601.06 0.401.06 

Overall mean = 0.53 ±. 04 0.46 ±. 04 0.57 ±. 04 0.43 ±. 04 
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Overall, proportions of first and longest looks were higher for red versions of opposite-sexed 

faces. One sample t-tests (value set at . 50) were utilised to analyse whether first gaze and the 

longest gaze were directed significantly more frequently at red faces than would be expected 

by chance, however there were no significant differences for first and longest gaze (Table 

6.5). 

Table 6.5. Statistical results for gaze duration, gaze direction, first gaze, and longest gaze 
for red and pale faces (p values < . 05 in bold for ANOVA tests, < . 025 for paired t-tests 
of duration with Bonferroni adjustments). 

Gaze measures Test d. f. P value 
Duration 
Face F =10.40 1,9 . 002 
Sex F=3.10 1,9 . 112 
Sex*Face F=5.69 1,11 . 041 
Males t =. 49 4 . 646 
Females t=4.82 5 . 005 

Frequency 
Face F= 3.81 1,9 . 083 
Sex F= 34.96 1,9 . 001 
Sex*Face F=4.29 1,9 . 068 

1 a` look 
Red faces t =. 91 10 . 385 

Longest look 
Red faces t=1.29 10 . 225 

In terms of stimuli-directed behaviour, this consisted entirely of lipsmacking and yawning 

among males and lipsmacking and hindquarter presentation among females. There were five 

instances of lipsmacking and one instance of yawning among two males, Polo and Major. The 

direction of Major's lipsmacking was indiscernible, while Polo lipsmacked once in the 

direction of a pale female face, twice towards red female faces and yawned in the direction of 

a red face. Two instances of presentations occurred by two females, Hen and Heidi, and one 

instance of lipsmacking by Heidi, but direction of these behaviours was unclear. These were 

not analysed, as occurrences were infrequent and highly variable among individuals. 
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6.3.4 Discussion 

Darwin was the first to postulate male primate coloration functioned in attracting females 

(1876). The results from this study suggest that male coloration might indeed mediate male 

attractiveness in rhesus macaques, as females demonstrated clear visual preferences for red 

male faces over pale versions based on gaze duration, although there was a degree of 

variability in preference strength among individuals. As stated previously, by preferentially 

mating with males possessing highly developed displays, females might gain indirect benefits 

by providing offspring with heritable resistance to pathogens (Folstad and Karter, 1992), or 

direct benefits by reducing pathogen transmission to themselves from infected males (Loehle, 

1997). Pathogen avoidance might be particularly relevant as rhesus macaques of both sexes 

may copulate with many partners and therefore may be at greater risk of STD infection. It 

would be interesting to research whether rhesus macaque skin colour is linked to MHC 

heterozygosity, which has been associated with reproductive success in males (Widdig et al., 

2004). MHC heterozygosity has been reported to be associated with skin appearance and 

judgements of attractiveness in human males, and has been proposed to signal resistance to 

infectious diseases (Roberts et al., in press). If this were the case among rhesus macaques, 

skin colour could provide an honest indicator of an individual's immunocompetence status. 

Facial colour however, was not equally influential in determining gaze preferences of both 

sexes. Females displayed significant preferences for red male faces; however male visual 

preferences did not appear to be influenced by female facial colour, suggesting that facial 

colour has a minimal impact on male preferences. Female facial colour may be less important 

to males in comparison to the colouration of anogenital sexual skins, which have been linked 

to female attractiveness (Bielert et al., 1989). This may be related to the fact that female facial 

sexual skin does not fluctuate over the cycle for rhesus macaques (Baulu, 1976), and therefore 

seems a less reliable signal to pinpoint cyclical fertility. Even though female facial colour 

may be indicative of resistance to blood-borne pathogens (Gerald, unpublished data), males 

may be less concerned with female signals of quality in comparison to signals of fertility. This 

would be consistent with Nunn's (1999) graded-signal hypothesis, which suggests that female 
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sexual skin conveys the probability of ovulation rather than being an indicator of female 

quality to males. 

The disparity between male and female results raises the issue as to whether female facial 

coloration may serve a different purpose, other than to attract males. It is important to note 

that even though male and female faces may overlap in coloration, this does not necessarily 

indicate that coloration has the same functional significance for both sexes (Gerald, 2003). 

Gerald (in press) found that degree of female facial reddening was not associated with degree 

of anogenital reddening. However it did positively relate to rates of intrasexual affiliation, 

suggesting that it may play a role in female-female interactions. Whether male facial colour 

also functions in intrasexual interactions is unknown, which remains a promising prospect for 

future research. 

It is necessary though to exert some caution in the interpretation of these results and to 

consider other potential variables besides attraction that may determine visual preferences. 

Although nonhuman primates' behavioural, neural and autonomic responses to two- 

dimensional images are essentially analogous to those which would occur when encountering 

real-life individuals, over time behavioural responses to pictorial stimuli can gradually change 

or fade due to the lack of interactivity of the stimuli (see Chapter 2). For example, study 

animals may become dis-inhibited and show prolonged gaze fixation towards pictures of 

threatening conspecifics, due to the lack of social context (Nahm et al., 1997). Females do 

suffer from serious male aggression during the mating season (Manson, 1994a), and it would 

be interesting to know if male facial coloration is associated with higher levels of aggression 

towards females. Additionally, captivity may act as a potential confound, as variables 

associated with colour in captive settings may not apply to animals in feral settings. Red facial 

coloration is anecdotally associated with male dominance in captivity among rhesus 

macaques (R. J. Francis, personal communication). It is possible that females could associate 

red male coloration with dominance and/or intraspecific aggression, which may have been 

responsible for female gaze behaviour. It should be noted however, that the females did not 

display any initial submissive or fearful reactions to red male images, which makes this seem 
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less likely. The only behaviours displayed by females consisted of limited sexual interest, 

indicated by occurrences of lipsmacking and hindquarter presentation. Although these 

behaviours can occur in other contexts, both function as sexual invitation (Dixson, 1998), and 

in the absence of agonistic responses, could be so interpreted. 

Alternatively, it could be suggested that females' visual preference for red faces does not 

relate to either of these factors, but rather is an artefact of the experimental procedure, tapping 

into preferences for unusual or novel stimuli. Captive animals do not always express natural 

colour patterns (Fleishman and Endler, 2001), and in some captive environments, nonhuman 

primates exhibit less sexual skin reddening than occurs in natural settings (Waitt, 2004). 

Facial reddening was observed in the colony where the females where reared and housed, 

however the degree was less than that observed among free-ranging animals. Such differences 

could relate to a lack of natural environmental cues, including lighting or weather conditions, 

which have both been suggested to influence sex skin colour (Baulu, 1976). A lack of social 

cues could also play a role. Most macaques live in multi-male social groups, but are 

frequently kept in unimale groups in captivity. The presence of same sexed conspecifics is 

known to influence sex hormone levels (Dixson, 1998) and therefore could be important in 

regulating sex skin colour, particularly if it plays a role in intrasexual competition. 

However, as mentioned in Chapter 2, macaques do not generally show visual preferences for 

unusual stimuli. Thus, one might predict that they would direct their gaze less towards red 

faces if they perceived them in this manner. Conversely, this could potentially explain the 

males' comparatively lower level of interest in red opposite-sexed faces. If males had not 

been exposed to conspecific facial reddening as a result of their captive environment, the red 

versions of female faces may have appeared abnormal, although again we might expect to see 

a significant preference for pale female faces in this case. It should also be noted that an 

additional breeding adult male and female underwent this same experiment employing eye- 

tracking equipment (Appendix A), and neither exhibited a preference for red nor pale faces. 

Facial reddening had not been observed in the facility, suggesting that prior exposure to 

reddening may be important in influencing preferences. The female however was not 
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undergoing ovulatory cycles, which could act as a potential confound as female reproductive 

condition has been reported to influence preferences for testosterone-based male traits [e. g. 

humans: Penton-Voak et al., 1999; Frost, 1994; Asian elephants: Schulte and Rasmussen, 

1999]. 

Finally, it may be suggested that the macaques who preferred red faces may have had a 

perceptual bias towards the colour ̀ red'. As mentioned above, previous experimental research 

has found that rhesus macaques do not appear to display any sensory biases for red hues 

(Humphrey, 1971). Even if a perceptual bias for red coloured objects was found, this would 

not preclude the possibility that red facial colour could influence attractiveness; rather it could 

be used as evidence to support the sensory bias hypothesis of sexual selection. 

These results are significant in that they are the first to provide experimental evidence that 

male coloration may influence male attractiveness to females among nonhuman primates. 

However, whether visual preferences are indicative of sexual preferences is open to debate, 

and the link between male coloration, health status and female mating preferences requires 

further study. Observational or experimental studies involving real animals as opposed to 

artificial visual stimuli are needed to determine if colour truly plays a role in mate choice. 

Additionally, as the functional significance and occurrences of coloured signals may vary 

with housing conditions, caution is needed when drawing conclusions from this type of 

research. One way around this would be to utilise animals from natural populations or who 

are housed in naturally composed social groups in outdoor enclosures. Male coloration, 

nonetheless, would appear to provide a suitable dynamic mechanism for females to assess 

male condition in rhesus macaques. 
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Chapter 7 
Summary, Conclusions and Future Directions 

7.1 Summary and general discussion 

Animals do not indiscriminately select their mates, rather there is ample evidence that 

individuals of both sexes exhibit varying degrees of choosiness in mate selection, which are 

often based on physical traits displayed by the opposite sex. Humans are no exception; 

amongst our species, facial features are a major determinant of attractiveness assessments of 

potential mates. Many researchers have proposed that human aesthetic judgements of facial 

attractiveness have a biological basis, and these preferences have evolved via sexual selection 

processes. Evolutionary psychologists maintain that the use of the face in mate assessments 

evolved in the EEA (e. g. Symons, 1995; Thornhill and Gangestad, 1999), a time period 

roughly in the past 2.5 million years of hominid evolution (Tooby and Cosmides, 2000). The 

selection of this particular period of time in human evolutionary history seems somewhat 

arbitrary, and it is unclear what selection pressures would have been present then that did not 

occur previously with our earlier primate relatives. Assessments for attractive faces need not 

have evolved during recent hominid evolution, and there is good reason to believe that they 

occurred much earlier, based on homologies in the way in which primates use their faces, and 

on evidence that the face is a site of sexual selection for many primate species. It was the aim 

of this thesis to explore whether facial traits may also play a role in judgements of 

attractiveness among nonhuman primates, in an effort to understand whether humans are 

unique in utilising the face as a mechanism of mate assessment. 

To this end, computer graphics techniques utilised in the study of human facial attractiveness 

were applied to rhesus macaque faces. Assessing preferences among nonhuman primates 

presents a challenge, as unlike their human counterparts, they are unable to verbalise what 

they do and do not prefer. The main approach of the studies included in this thesis was 

experimental in nature, relying on the preferential looking paradigm that holds that eye gaze 

is biased towards stimuli that attract the interest of the viewer (reviewed in Chapter 2). Such 
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an approach allows for manipulations that would not be possible to conduct with real animals 

and for greater control and replication. However its major limitations lie in its artificiality and 

how to interpret the significance of preferential looking behaviour, as other confounding 

variables can influence gaze measures. These include stimuli novelty, potential variability in 

signal content (e. g. stimuli manipulations may signal dominance or aggressive intent rather 

than increased attractiveness) and individual factors (e. g. study animal social history, housing 

conditions). Therefore, cautious interpretation was employed. 

Three factors that are reported to influence facial attractiveness in humans of both sexes are 

facial symmetry, averageness, and sexual dimorphism. These factors were assessed in 

experiments presented in Chapters 3,4, and 5, which yielded mixed results (summarised in 

Table 7.1). Although increasing facial symmetry can increase attractiveness, the reasons why 

it does so have been heavily debated. Fluctuating asymmetry has been proposed to be 

indicative of genotypic and phenotypic quality (e. g. Gangestad and Thornhill, 1997; Grammer 

and Thornhill 1994; Moller and Thornhill, 1997), however sensory biases have also been 

suggested to be responsible for symmetry preferences (e. g. Enquist and Arak, 1994; Enquist 

and Johnstone, 1997; Johnstone, 1994; Swaddle and Cuthill, 1994b). By employing facial- 

metric measurements used to measure asymmetry in human faces, it was found that macaque 

faces, like human faces, exhibit a degree of fluctuating asymmetry. Based on experimental 

results from Chapter 3, increasing facial symmetry of opposite-sexed conspecifics positively 

influenced all the dependent gaze measures employed here. However there appeared to be a 

disparity in levels of preference between males and females (albeit non-significant), with the 

female displaying greater preferences for facial symmetry. These results do not provide direct 

evidence for either indicator mechanism or sensory bias theories, as greater female 

preferences for symmetry are consistent with both. 

Chapter 4 examined whether manipulating degree of facial sexual dimorphism influenced 

visual preferences for opposite-sexed individuals. Overall, altering sexual dimorphism did not 

significantly influence any of the measures, however there was a trend towards significance 

for gaze duration. It may simply be the case that facial sexual dimorphism is not as influential 
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to attractiveness in comparison to the other factors measured. If sexual dimorphism is not 

very influential in determining macaque preferences, then there are some implications for 

theories relating to human preferences. The lack of strong preference for sexual dimorphism 

among macaques, particularly the females, is inconsistent with indicator mechanism theory. 

However, the lack of strong preferences among male macaques for enhanced female sexual 

dimorphism is consistent with the theory that exaggerated sexual dimorphism in human 

female faces may be a supernormal signal of youth among humans (Jones, 1995). It seems 

unlikely that male macaques would prefer cues of youth, as young female macaques achieve 

significantly lower levels of reproductive success when compared to their older multiparous 

counterparts (Small and Rodman, 1981; Wilson et al., 1988). However, it is still possible that 

the lack of a significant result may be a by-product of the methods employed here. For 

example, animals may use an absolute threshold (any individual possessing above X% of 

sexual dimorphism is suitable) instead of a "best-of-n" criterion (the most dimorphic 

individual is the best) rule in their mating decisions. Additionally, levels of dimorphism may 

have exceeded or have fallen short of optimum levels. It is also possible that female 

macaques, like human females (e. g. Penton-Voak et al., 1999,2001), may possess condition- 

dependent preferences for enhanced male sexual dimorphism. Although females appeared to 

be undergoing ovulatory cycles, cycle stage was not controlled for in this study. Based on the 

trend towards significance for gaze duration, it would be worthwhile to conduct these sorts of 

experiments to gauge to what extent sexual dimorphism is indeed influential. 

Facial averageness influenced visual preferences for opposite-sexed conspecifics among both 

sexes to a degree. Males and females preferred the 3-composite facial images to the original; 

however, there were no overall significant preferences across trials where 3- versus 10-facial 

composites were presented. Preferences for averaged versus original faces are consistent with 

human preferences, and with the three theories put forward to explain preferences for facial 

averageness (indicator mechanism theory, cognitivelsensory bias theory, species recognition 

theory). However, it is possible that animals preferred these images due to side-effects of the 

composite construction, such as increased symmetry and even-ness of texture, although 
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averageness of facial shape has been demonstrated to independently influence attractiveness 

in human faces (Rhodes et al., 1999). The lack of preference at the 3- versus 10-composite 

level may relate to the process of composite construction. Human-based research suggests 

that adding more faces to composites results in increased attractiveness, however it does not 

increase exponentially (Little and Hancock, 2002). Therefore, it may have been that the 

difference in attractiveness of the 3- and 10- composites was not enough to generate 

significant differences in visual preferences. Visual gaze may also have been influenced by a 

novelty effect, in terms of newness of the stimuli. Adding more faces increases attractiveness, 

but it also results in composites looking less distinct. As repeated exposure to pictorial stimuli 

can lead to decreased interest (Wilson and Goldman-Rakic, 1994), preferences for novelty of 

3-composite images could have overridden the potentially higher attractiveness in the 10- 

composites. 

The last topic to be explored was facial colouration. Rhesus macaques, like other species of 

anthropoid primates, possess facial displays of red secondary sexual colouration. Primate 

secondary sexual coloration is generally thought to be a product of sexual selection and to 

play an important role in intraspecific communication, although there has been little 

experimental research investigating this. Chapter 6 reviewed the proximate variables 

associated with variability in red sexual skin colour, which suggested that it may provide a 

signal of reproductive and physical condition, and thus may play a role in mate attractiveness. 

This was tested by experimentally manipulating sexual skin colour of opposite-sexed faces 

and testing for visual preferences. It was found that skin colour influenced preferences based 

on visual gaze duration, however this appeared to influence female, rather than male, 

preferences. 

It seems somewhat contradictory that both sexes would exhibit preference for averageness, 

but that facial coloration and potentially symmetry were less influential on male versus 

female preferences. In terms of symmetry, one possible explanation is that differences in 

averageness were more salient to male macaques in comparison to differences to symmetry. 

Such a lack of salience could relate to mating systematics; in species characterised by high 
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maternal but low paternal investment in offspring, such as rhesus macaques, it is generally 

assumed that females tend to be the choosier of the sexes (Trivers, 1972). It could be that the 

selection pressures leading to averageness preferences are greater than those for symmetry 

preferences among male macaques. For example, if preferences for facial averageness are 

borne out of pressures selecting for species recognition, selecting the correct species would 

have a greater impact on male reproductive success than would individual variation in 

phenotypic or genotypic quality that might be signalled by facial symmetry, as hybrid 

macaque matings are associated with low levels of viability and fertility (Fooden, 1975). In 

contrast, females should attend to both signals relating to species and to individual quality due 

to the disparity in the relative amount of resources put into reproduction. 

In terms of facial coloration, although facial reddening may be associated with fertility, 

fluctuations of facial colour, unlike anogenital colour, do not fluctuate over the ovulatory 

cycle (Baulu, 1976). Even though female facial colour may be indicative of resistance to 

blood-borne pathogens (Gerald, unpublished data), males may be less concerned with female 

signals of quality in comparison to signals of fertility. This raises the possibility that male and 

female facial colour may serve different roles in intraspecific signaling. 

When examining results across all experiments within this thesis (Table 7.1), there appeared 

to be a difference in how the gaze measures were influenced by the factors manipulated. Gaze 

duration, frequency and longest gaze are all measures of visual interest, and previous studies 

investigating visual preferences have used these measures (e. g. Langlois et al., 1987; Rhodes 

et al., 2002). Duration appeared to be the most influenced, followed by fitiquency, while 

longest gaze was only influenced by symmetry manipulations. First gaze was included in 

order to assess which face initially captured the interest of the study animals, but was not 

significant for any of the studies here. These suggest that longest and first gaze may not be as 

sensitive measures of visual preferences, in comparison to gaze duration and fiequency. 
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Table 7.1. Summary of experimental results from Chapters 3,4,5 and 6. 

Was the gaze measure significantly influenced? 
Independent Duration Frequency First Longest 
variables 

Yes, for Yes, for Yes, for 
Symmetry symmetrical symmetrical No symmetrical 

faces faces faces 

Sexual dimorphism No No No No 

Averageness 

Original vs. 3- Yes, for 3- Yes, for 3- No No 
composites composites composites 

3- vs. 10-composites No No No No 

Colour 
9's only, for red No No No faces 

Primate faces show a great deal of heterogeneity across species, sex and individuals. It is 

interesting to note that much of the variation we see between and within species appears to be 

non-functional, and as such could be the result of sexual selection processes. As previously 

mentioned, the results in this thesis do not provide evidence as to selection mechanisms 

responsible for the preferences reported here; in fact, the results are consistent with both the 

indicator mechanism theory and sensory bias theory, which are the two main theories put 

forward to explain human preferences. However, as they do indicate that altering facial 

features influences preferences for opposite-sexed faces, thereby suggesting that the face may 

be involved in mate choice, one can hypothesise as to how the face became involved in mate 

selection. Evolutionary theory maintains that the types of features employed in 

communication and recognition systems depend largely on the biological and ecological 

constraints of the species involved (e. g. Johnstone, 1997; Ryan, 1997). Selective pressures 
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should select for traits displayed by actors that are readily detectable to receivers, based upon 

the receivers' sensory capabilities and the environment inhabited. As discussed in Chapter 1, 

it is thought that as early primates adapted from a nocturnal to a diurnal lifestyle, the visual 

channel became the dominant channel for transmitting social information to conspecifics. 

Central to primate visual communication is the face, which has evolved as a means of 

transmitting social messages and recognising individuals. Due to its abilities to attract the 

attention of conspecifics, the face could have evolved as means of mate attraction by 

exploiting receivers' existing cognitive and communicative responsiveness to faces. 

Preferences for certain facial features may have then been reinforced based on their use as 

`honest' indicators of health and genetic status or due to sensory biases in recognition 

systems. 

Whatever the mechanisms of selection, it is likely that these are shared across primate species. 

Just as with human faces, non-human primate faces vary with respect to degree of symmetry, 

sexual dimorphism and averageness. If these factors are indeed indicative of individual 

quality, as has been proposed by so many researchers (e. g. Barber, 1995; Penton-Voak et al., 

1999; Thornhill and Gangestad, 1993 and 1999), it would seem likely that such traits would 

be exploited in mate selection by non-human primates, females in particular. Likewise, if 

human facial preferences stem from sensory biases in mate recognition systems (Enquist et 

al., 2003), it is likely that other primate species would also possess these biases, as we and 

other primate use the face in a homologous fashion to identify categories of individuals (e. g. 

species, age and sex class), and among individuals themselves. Regardless of the mechanism, 

there is good reason to suggest that the face has a deep evolutionary legacy in primate mate 

selection, based on the present results. 

7.2 Conclusions and future directions 

While it cannot be concluded that visual preferences are indeed indicative of real-life 

Preferences, the results do indicate that animals are not indifferent to variations in conspecific 

facial features. These findings have important implications regarding the evolution of facial 
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attractiveness, as they provide the first experimental evidence, that facial features may serve 

as a mechanism for mate selection across primate taxa and that human and nonhuman 

primates may employ similar criteria to appraise facial attractiveness. Testing one nonhuman 

primate species alone does not provide conclusive evidence for homologous evolution of the 

face being used in attractiveness assessments. However, given that rhesus macaques and 

humans do demonstrate homologies in other ways in which they utilise their faces, this would 

seem the most parsimonious explanation. If this was indeed a case of homologous evolution, 

then this would push the estimated date of the face evolving as a mechanism of mate choice 

far beyond the 2.5 MYA boundary previously suggested, as it is estimated that rhesus 

macaques and humans diverged around 25 MYA (Stewart and Disotell, 1998). 

As this thesis is an initial attempt to investigate the significance of facial features among 

nonhuman primates, there remain many interesting questions for further research. As 

mentioned above, one of the most important questions that remains is whether gaze measures 

are predictive of real-life assessments of attractiveness and mating decisions. In order to 

assess this, it would be necessary to employ a combined field and experimental approach. 

Such a combined approach would offer two major benefits, as it would allow one to specify 

the relative importance of the different variables in a captive setting and to see these 

mechanisms at work in the field. By utilising a primate model, one could also explore 

important questions regarding facial attractiveness that cannot be feasibly answered in studies 

involving humans. One of the major challenges facing researchers of human facial 

attractiveness is the difficulty of investigating the selective forces responsible for facial 

preferences, as some of the selective forces that shaped current human preferences may no 

longer be possible to observe in human societies today. Through studying natural populations 

of nonhuman primates, it would be possible to investigate whether specific facial 

characteristics are associated with an individual's genotypic and/or phenotypic quality, as 

they have been proposed to do in humans. Additionally, by comparing behavioural data from 

the field and individuals' facial features, this may allow for the assessment of how facial 

attractiveness is involved in mate choice and to investigate the relationship between 
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reproductive success and facial features in a natural setting, something which is impossible to 

do with human beings. Finally, it would be interesting to test other species of nonhuman 

primates in order to assess whether rhesus macaque and human preferences represent a case 

of homologous or analogous evolution. Such studies would begin address an important topic 

which has been traditionally neglected by researchers of human facial attractiveness, that is 

evolutionary history of how the face became to have such an important role in assessments of 

mate attractiveness. 
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Appendix A 

The following are partial replications of the experiments from this thesis examining 

preferential gaze based on symmetry, sexual dimorphism and coloration of opposite-sexed 

faces. Here, I made use of an eye-tracker, which provided subjects' gaze path in relation to 

the stimuli presented. Although the sample size was small (n= 2), the aim of these trials was 

to assist in verifying the validity of the preferential gaze measures used in this thesis. These 

experiments were performed under appropriate UK Home Office Licences and were regulated 

by the University of St Andrews' Animal Code of Practice. 

Methods 

Study animals 

The study animals were a 17 year old female (Lisi) and a7 year old male (Nathan) rhesus 

macaque. Lisi was pair-housed with a vasectomised male in a tiered gang cage, while Nathan 

was housed with 2 breeding females in a gang room with attached gang cages. Lisi was 

menstruating, although she appeared not to be undergoing ovulatory cycles, as there was no 

reddening of her sexual skin. 

Stimuli 

Stimuli consisted of a randomly selected subset of 20 opposite-sexed images from those used 

in the symmetry, sexual dimorphism and coloration experiments in this thesis. Images were 

changed for background colour and size to facilitate the use of the eye-tracker. A grey 

background was applied, replacing the black mask. Images were merged and reduced in size 

so that they could fit on a single monitor, with each final image being 1024 X 768 pixels in 

size (Figure 1). 
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Procedure and Equipment 

Symmetry, sexual dimorphism, and coloration trials were conducted consecutively over a 

period of three days. Animals entered a testing box and were transported into an adjoining 

room for testing. Both animals were trained to enter the testing boxes. Views of observer 

were blocked with a black curtain. Each monkey subject was seated in a primate chair with a 

neck plate but head movements were unrestrained. 

The stimuli were displayed on a 21 inch monitor (Elo Touchsystem, Model ETC2lOC- 

4SWA) placed at a distance of 68-70 cm from monkeys. Stimuli presentation was controlled 

by a second computer. In between each stimuli presentation, a central fixation cross appeared 

on the monitor. The experimenters controlled the timing of stimuli presentation; a trial began 

when the animal's eyes were orientated towards the monitor. Each pair of stimuli was shown 

for 5 seconds. Stimuli were presented in a random order. 

The looking behaviour of the subjects was recorded with a remote eye tracker (ASL 504 / 

5000) which allowed eye tracking with limited head movements. The eye camera (Sony AF 

CCD EVI-D3 1) and infrared illuminating LEDs were positioned immediately below the 

stimulus monitor. A scan converter (TView) producing a video copy of the stimulus display 

was integrated with the subject's gaze path (e. g. Figures 2 to 5) and recorded on a video 

recorder (Panasonic: DVD VR DMR-E20 and VR NV-FJ 760). The subject's behaviour was 

monitored and recorded with a camera (Cohn 6700 Series) mounted above the stimulus 

display. 

Evaluation of eye position 

The eye position of subjects was sampled at 50Hz. The duration and position of fixations after 

the subject had looked at the central cross stimulus was assessed for the 5 second stimulus 

presentations. A fixation was defined as the eye position remaining constant (the standard 

deviations of three consecutive eye position samples being within 0.5,1, and 1.5 degrees) for 

80ms for the monkeys. 
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The gaze path obtained for each trial was superimposed on the corresponding stimulus picture 

which was divided, for the analysis, into two areas: these were left and right stimulus fields 

surrounding the faces. All the other areas on the monitor and beyond were defined as 

"elsewhere" (Figure 1). For each trial, the coordinates of each fixation were compared to 

those of the stimulus areas and elsewhere. 

ýý. 

Figure 1. Example of stimuli used in eye-tracker experiments. Areas outside of left and 
right stimulus fields (designated by red boxes surrounding the faces) were defined as 
"elsewhere". 

Results 

Eye movements were analysed for each trial, which included: gaze duration and frequency 

within the stimulus areas, the first gaze fixation emitted at one of these locations, and the 

longest gaze fixation. If an animal attended to less than 50% of trials within a session, the 

session was not included in the analyses. Nathan failed to reach this criterion for the sexual 

dimorphism trials, therefore his data were not included here. Gaze duration and frequency 

were assessed for each animal with paired t-test. The overall proportions of first and longest 

gaze were assessed with chi square tests. The descriptive statistics and analyses results for 
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gaze in relation to symmetry, sexual dimorphism, and coloration are provided in Tables 1,2 

and 3 respectively. Additionally, figures from each set of trials are provided with their 

corresponding gaze paths mapped onto the images (Figures 2 to 5). Lisi's calibration was set 

slightly too high during the experiments, therefore her gaze path mapped onto the images 

appears somewhat higher than it should (e. g. gaze points should fall mainly around the eyes, 

but appear slightly above this). The analyses revealed that Lisi displayed significant biases for 

symmetrical opposite-sexed faces for all the dependent measures employed. Nathan however, 

showed no significant biases towards asymmetric or symmetric faces. For sexual dimorphism 

and colour, no significant preferences occurred for any of the dependent measures for either 

animal. 

Tablel. Means f SE for gaze duration and frequency, total proportion of first and 
longest gaze fixations, and statistical results for symmetrical and asymmetrical faces (p 
values <. 05 in bold for t-tests and chi square tests). 

Animal Stimuli type 
Symmetrical Asymmetrical 

Statistical results 
Test d. f. P value 

Lisi 
Mean gaze duration 2.56 ± . 30 1.11 ±. 26 t=3.03 19 . 007 
Mean gaze frequency 1.85 ±. 17 1.00 t . 23 t=4.07 19 . 001 
Total proportion of 1°` 

. 85 . 15 X3 = 9.80 1 . 002 
gaze fixations 
Total proportion of 

. 80 . 15 X= 8.89 1 . 003 longest gaze fixations 

Nathan 
Mean gaze duration . 52 ±. 15 . 39 ±. 15 t =. 72 9 . 489 

Mean gaze frequency 1.20 t . 29 1.00+36 t= . 36 9 . 726 

Total proportion of 1 
. 60 . 40 Xý = . 40 1 . 527 

gaze fixations 

2 Total proportion of 
. 50 . 40 X =. 11 1 . 739 longest gaze fixations 
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Figure 2. Example of symmetrical (left) and asymmetrical (right) male stimuli with gaze 
path mapped over image. The numbers designate the order of gaze fixations and the size 
of the blue dots represent length of gaze fixation. 

Figure 3. Example of symmetrical (left) and asymmetrical (right) female stimuli with 
gaze path mapped over image. The numbers designate the order of gaze fixations and 
the size of the blue dots represent length of gaze fixation. 
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Table 2. Means ± SE for gaze duration and frequency, total proportion of first and 
longest gaze fixations, and statistical results for faces with exaggerated versus reduced 
sexual dimorphism. 

Animal Stimuli type Statistical results 
Exaggerated Reduced Test U. P value 

Lisi 

Mean gaze duration 
. 
89 ±. 25 

. 78 ±. 22 t= . 30 19 . 754 

Mean gaze frequency 1.45 ± . 26 1.20 ±. 31 t= . 59 19 
. 561 

Total proportion of 1s` 
. 65 . 35 x= = 1.80 1 180 

gaze fixations . 

Total proportion of 
. 65 . 35 x'=. 18 1 

. 180 longest gaze fixations 

Ä°: ̀ 

AV 

Figure 4. Example of male exaggerated (left) and reduced (right) sexual dimorphism 
stimuli with gaze path mapped over image. The numbers designate the order of gaze 
fixations and the size of the blue dots represent length of gaze fixation. 
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Table 3. Means ± SE for gaze duration and frequency, total proportion of first and 
longest gaze fixations, and statistical results for red versus pale faces. 

Animal Stimuli type Statistical results 
Red Pale Test d. f. P value 

Lisi 
Mean gaze duration 1.59 ±. 24 1.76 ±. 25 t= . 44 19 . 664 

Mean gaze frequency 1.20 f . 16 1.40 ±. 18 t= . 78 19 . 447 
Total proportion of 1" 

. 45 . 55 X =. 53 1 . 819 
gaze fixations 
Total proportion of 

. 60 . 40 X2 =. 80 1 . 371 longest gaze fixations 

Nathan 
Mean gaze duration . 41 ±. 16 . 37 ±. 14 t= . 26 9 . 802 

Mean gaze frequency 1.80 ±. 59 1.60 ±. 65 t= . 29 9 . 775 

Total proportion of 1s` 
. 60 . 40 X2 =. 40 1 . 527 

gaze fixations 
Total proportion of 

. 60 . 40 
2 

X =. 40 1 . 527 longest gaze fixations 
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Figure 5. Example of pale (left) and red (right) male stimuli with gaze path mapped over 
image. The numbers designate the order of gaze fixations and the size of the blue dots 
represent length of gaze fixation. 

, .` 4461ý 

4 

Figure 6. Example of pale (left) and red (right) female stimuli with gaze path mapped 
over image. The numbers designate the order of gaze fixations and the size of the blue 
dots represent length of gaze fixation. 
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Discussion 

The results here do provide a degree of validity for the methods used in the experiments here. 

At the most basic level, the eye-tracker provides evidence that while looking at the screen, 

animals spend most of this time attending to the faces, rather than other parts of the monitor, 

as most of the fixation points fall within the target areas. This can be clearly seen in Figures 2 

to 5. The symmetry and sexual dimorphism results follow those in Chapters 3 and 4. 

Symmetry positively influenced all the dependent measures, but only among the female, 

consistent with the suggestion that females attended more to differences in symmetry in 

Chapter 3. However, the results do show a sex difference in attention to opposite-sexed faces, 

as Nathan attended for a shorter duration than did Lisi. This does raise the question of 

whether his lack of preference was due at least in part to a failure to attend to the stimuli. The 

degree of sexual dimorphism had little influence on Lisi's visual preferences, as was the case 

with the other females tested in Chapter 4. Colour had no influence on Nathan's preferences, 

which is also consistent with the lack of male preferences found in Chapter 6. However, Lisi 

also displayed no preference for either red or pale faces, which contradicts the experimental 

results. There were some potential confounds (e. g. Lisi's reproductive state, housing 

conditions) which may have influenced this, and these were discussed at greater length in 

Chapter 6. 
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