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ABSTRACT 

The present study was undertaken to investigate colour and sex determination 

mechanisms through the application of androgenesis, gynogenesis and controlled breeding 

programme with the objective of producing all red males in 0. niloticus. 

The highest yield of androgenetic haploid to pigmentation stage was 24.6±3.5% 

(relative to controls) with optimal UV irradiation dose of 450Jm"2 for 5 minutes. The 

highest survival rate of diploid androgens was 0.07±0.07% (relative to controls) to yolk 

sac stage using a heat shock of 42.5°C for 3 minutes 30 seconds applied at 25 minutes after 

fertilisation. All paternal inheritance of diploid androgenetic tilapia was verified using 

DNA fingerprinting. 

The mean recombination frequency of the red skin colour gene in meiotic 

gynogens was 0.12±0.04. All maternal inheritance of meiotic gynogens was verified using 

the isozyme locus ADA*. Analyses of sex ratios of meiotic gynogens suggested that male 

progenies were produced by an epistatic sex determining locus (SDL-2 with two alleles 

SR and sr) causing female to male sex reversal in the homozygous phase (srsr) but with 

limited penetrance. A close linkage was found between a sex determining locus (SDL-2) 

and the red gene. 

No significant difference was found between colour genotypes (namely 

homozygous red, heterozygous red and wild type) in terms of total fecundity, ISI (inter 

spawning interval), egg size and survival rate. Overall mean ISI was 26.3±1.0 days. Mean 

total fecundity was 1096 eggs. Fecundity varied over successive spawns but this variation 

did not appear to be related to spawning periodicity. 

Hormonal and thermal feminisation were compared on all YY male progeny of 0. 

niloticus. While similar female percentages of 32.0±5.2 and 33.8±1.5% were produced, 

i 



significantly higher intersex percentages of 18.5±2.5 and 1.6±0.8 were observed in heat 

and DES treated groups, respectively. Heat treatment groups showed the lowest survival 

rate of 62.6±9.8% compared to the survival rates of 97.0±0.9% and 97.3±0.8% in controls 

and DES treated groups, respectively. 

YYRR males and YYRR neofemales were produced by integrating existing YYrr 

males and YYrr neofemales from the Egypt-Swansea-Philippine isolate and YYRR 

androgenetic males from the Stirling isolate with XXRR females and XYRR males of the 

Stirling isolate of Egyptian strain 0. niloticus. 

In summary, this study provides valuable information regarding the colour and sex 

determination mechanisms of 0. niloticus. The research in this thesis also demonstrated 

that both YY genotype and red coloration can be combined in a single strain in order to 

produce all male and stable red coloured 0. niloticus. 
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Chapter 1: 

General introduction 



1. General Introduction 

1.1. Introduction 

Statistics show that the average per capita daily calorie intake of most people who 

live in lesser developed countries comes to about 70% of that in the more developed 

world. Hundreds of millions of people consume quantities of protein each day which are 

below the standard requirement for normal growth and development. Thus, many food 

production programmes have tended to concentrate on any potential source of cheap, 

abundant and palatable protein. Fish is one of the most important sources of animal 

protein. It is preferred in some respect over other animal proteins because of special 

qualities like low fat content and highly unsaturated fatty acids that are beneficial for 

human health. 

1.2. Tilapia 

Tilapia is the common name for over 70 fish species belonging to the Tribe Tilapiini, 

an African group of fish within the Family Cichlidae. Previously regarded as members of 

a single genus, Tilapia. Today, three main genera are now generally recognised based on 

taxonomic revision considering differences in feeding habits, biogeographical distribution 

but principally mode of reproduction (Trewavas, 1983). These are Tilapia, substrate 

spawners and guarders, Sarotherodon, paternal or biparental mouthbrooders, 

Oreochromis, maternal mouthbrooders (Trewavas, 1983). 

Huet (1970) quoted 16 species while Balarin and Hatton (1979) listed 23 species, 

which had been subjected to either experimental or commercial culture. Realistically, 

only eight or nine species of tilapia have significant potential in aquaculture (Schoenen, 



1982; Pullin, 1983). Among them, only Tilapia (T. zillii and T. rendalli) and 

Oreochromis (0. niloticus, O. mossambicus, O. hornorum and O. aureus) species are in 

widespread use (Hepher and Pruginin, 1982). Of these species, the Nile tilapia, O. 

niloticus, is by the far most important in freshwater culture regimes (Table 1.1.; 

Macintosh and Little, 1995). 

Table 1.1. Reproductive characteristics of the tilapiine genera and the main species of 
importance in aquaculture (Source: Macintosh and Little, 1995). 

Genus Mode of reproduction 

Tilapia Substrate-spawners 

(guarded nests) 
Sarotherodon Paternal or bi-parental 

mouthbrooders 

Important species in aquaculture 

T. zillii 

T. rendalli 
S. galilaeus 

Oreochromis maternal mouthbrooders O. niloticus 
0. mossambicus 
0. aureus 
0. urolepis-hornorum 
O. andersoni 
0. macrochir 
0. spilurus 

Over recent years tilapia have steadily grown to become one of the most 

commercially important groups of freshwater fish species in tropical aquaculture. 

Although tilapia are endemic to African countries, interest in tilapia culture potential has 

led to their distribution to over 100 tropical and sub-tropical countries. 

Tilapias are of great importance and represent an ideal warm water food fish, being 

available from wild sources and suitable for a wide range of aquaculture systems from 
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simple small-scale waste-fed fishponds to intensive culture systems. They have been 

labelled as the "aquatic chicken" because of their farmed profitability in a wide range of 

systems (Pullin, 1996). 

Tilapias are widely recognised as the most suitable species for aquaculture due to 

several beneficial physiological attributes. Firstly, tilapias can tolerate a variety of 

environmental conditions including high salinity, low oxygen tension and overcrowding. 

The high growth rate of tilapia, even with the use of natural and cheap artificial food is 

one of the other advantages for aquaculture. Tilapias have relatively short reproductive 

cycles, breed prolifically under culture conditions, are strongly resistant to disease and 

are amenable to handling and captivity (Balarin, 1979). In addition, they posses good 

characteristics as a table fish with a low level of fat in the flesh, no intramuscular bones, a 

fine taste and fillet yield of 32% in fish with an average weight of 0.45 kg. Table 1.2. 

shows the most widely cultured tilapia species and hybrids with their current and 

potential importance in aquaculture. 

1.3. Tilapia aquaculture 
Tilapia culture is believed to have started some 4000 years ago in Africa, 1000 years 

before carp culture was first started in China but the first scientifically orientated culture 

of tilapia was conducted in Kenya in 1924 (Balarin and Hatton, 1979). The proper 

cultivation of this fish began during and after the Second World War in the 1940's. There 

is already a significant tilapia culture in China, Indonesia, Philippines, Sri Lanka, 

Thailand, Vietnam and Bangladesh. Interest in tilapia culture is also increasing elsewhere 

in the Americas, Venezuela, Colombia, and the USA (Pullin, 1983,1996; Eknath et al., 

1991). According to Pullin (1996) tilapia are now being farmed or researched in 71 
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Table 1.2. Tilapias of current or potential importance in aquaculture (Source: Pullin 
1983,1991; Lowe-McConnell, 1988: cited in Pullin, 1991) 

Species Evaluation 

0. niloticus Fast growth, especially in the tropics; versatile feeder. 

0. aureus Fast growth; versatile feeder; tolerant of cold but difficult 

to seine in ponds, so best grown in cages or used as a 

male parental stock for hybridisation. 

Monosex male hybrids: Fast growth, especially on pelleted feeds. 

0. niloticus X 0. aureus 

T. rendalli Macrophyte feeder; potential for polyculture with 

microphagous tilapias; excellent keeping qualities. 

0. spilurus spilurus Fast growth; tolerant of salinity; good grazer on epiphtic 

algae. 

0. andersoni Reasonable growth and tolerance of cold. 

S. melanotheron Tolerant of salinity; good growth in experimental 

separate-sex culture. 

Red tilapias-a group of single species Mixed information, but generally good growth and 

(principally 0. niloticus and 0. sometimes preferred to normal-coloured fish in markets: 

mossambicus) or more often hybrids some hybrids do well in seawater cage culture(e. g. 0. 

of these and/or 0. aureus and/or 0. mossambicuslO. urolepis hornorum hybrids) 

urolepis hornorum 

countries including developed nations where tilapia are becoming popular with 

consumers (Stickney, 1994). Despite the early spread of tilapias to over 100 countries 

(Balarin and Hatton, 1979) and their many suitable qualities, the overall world production 

of tilapia (principally 0. niloticus) is 5.3% (800,823 mt) of the total freshwater fish and 

shellfish production of 15,082,225 mt. Carp (many species) is still dominant with 76.3% 
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or 11,504,352 mt (FAO, 1998). Although they are African fish, China, Philippines, 

Taiwan, and Thailand are the world's leading tilapia producers (Fig. 1.1; Macintosh and 

Little, 1995). Although there are many positive attributes of tilapia as farmed fish, the 

constraints to expansion of tilapia culture are negative attitudes and policies such as poor 

breeds, early maturation, poor growth, colour, poor non-sustainable farming systems and 

possible adverse environmental impacts (Pullin, 1996). 

The rest 
26% 

('hina 

-1 () `j 

ThaiIanc 
10% 

Tai 
6 

Figure 1.1. Tilapia production of the world leading producers and the rest of the World 

(Data from FAO, 1998). 

In many African countries, small-scale tilapia farming is in progress (de Kartzow, 

1992) but intensive tilapia culture in tanks and raceways is also now operating 

commercially in Zimbabwe (Madhu, 1992). 
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In Asia, especially in Thailand and Philippines, 0. niloticus is being reared in small 

ponds on agricultural wastes, under integrated aquaculture systems (Edwards, 1983; 

Guerrero, 1987; Edwards et al., 1988). The use of domestic wastewater to rear carps and 

tilapia in Vietnam and their integration with rice and/or vegetable production has been 

reported by Pham and Vo (1990). 

Intensive pond, raceway, and tank culture systems to produce 0. niloticus or its 

hybrids are operated on a commercial basis globally in Taiwan (Chen, 1990), Florida 

(Sipe, 1992), Zimbabwe (Madhu, 1992), Malaysia and Costa Rica (Macintosh, 1993). 

Table 1.3. shows the problem associated with tilapia farming system. 

Tilapia farming is now a global activity and very different from its status as recently 

as 10 years ago (Pullin et al., 1994). Many countries have renewed interests in culture of 

tilapia e. g. Bangladesh, India, Pakistan and Puerto Rico (Pullin, 1996). 

In recent years, the consumer demand for tilapia has been boosted by emergence of 

red forms of this fish (Pullin, 1983; McAndrew et al., 1988). According to Fitzgerald 

(1979), the red tilapia has had an initial acceptance in Japanese market because of its 

similarity to the popular sea bream, Chysophyrs major, and its colourless mesentery 

which makes it attractive for the preparation of traditional "Sashimi". Red tilapia are 

commercially cultured in Taiwan (Kuo, 1988), the Philippines (Radan, 1979), Israel 

(Banash, 1984; Berger and Rothbard, 1987), USA (Sipe, 1992), Greece (Anon, 1984), 

Malaysia (Macintosh and Little, 1995) and sold in supermarkets such as TESCO in U. K. 

(personal observation). 

Despite their remarkable qualities, tilapias are notorious due to their habit of prolific 

breeding. In the tropics, tilapia can become sexually mature and begin to reproduce at an 
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early stage in their development, when about four to five months of age or even younger 

(Wohlfarth and Hulata, 1983; Tave, 1990; Swift, 1993) and at a size as small as 6 to 15 

cm (Babiker and Ibrahim, 1979; Dadzie and Wangila, 1980; Tave, 1990; Swift, 1993). 

The reproductive cycles of females within a breeding group are not synchronised, 

although each female fish may breed up to 12 times in a year under optimal conditions 

(Macintosh, 1985). This reproductive efficiency of tilapia results in subsequent unwanted 

reproduction leading to overpopulation, stunting, unpredictable size of harvested fish and 

thus the resources (e. g. food, fertilisers, pond, time) will be wasted. One of the simplest 

method to avoid unwanted production of fry in production ponds is the use of single sex 

fry populations. The various techniques used to produce single sex, all male, fry will be 

detailed. 

1.4. Monosex male tilapia approaches in aquaculture 

Various approaches have been developed to overcome the problems of excessive fry 

production which cause overpopulation and stunting of cultured population during culture 

of tilapias which constrains the efficient development and extension of tilapia 

aquaculture. Evidence shows that males grow larger and quicker than females so interest 

in single sex, all male culture, gained more attention. The techniques used have changed 

over time as our understanding of the biology and control of sex in these species has 

improved. There are mainly two approaches for controlling the reproduction of tilapia: 1) 

husbandry approaches e. g. using predators, culture in cages and producing monosex 

populations by manual sexing of fingerlings 2) genetic approaches, e. g. production of 

sterile fish, interspecific hybridisation, hormonal sex reversal and YY male broodstock 
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production (Pruginin et al., 1975; Shelton et at., 1981; Scott et al., 1989; Mair and Little, 

1991, McAndrew, 1993; Mair et al., 1997). Much research in recent years has 

concentrated on methods to produce all male tilapia (Hopkins, 1979; Pandian and 

Varadaraj, 1988,1990; Mair and Little, 1991; Mair et al., 1993, Mair, 1996). 

1.4.1. Manual sexing 

Tilapia are unusual among many commercial fish in that they have sexually 

differentiated genital papillae making it possible to manually sex mixed sex populations 

(Mires, 1977). Differences between males and females can be seen with the unaided eye 

at a size of <10 g but for practical purposes the fish are normally sexed at >_ 30 g 

(McAndrew, 1993). Manual sexing is not only a labour intensive method with a high risk 

of human error (Guerrero, 1982; Popma and Green, 1990; Mair and Little, 1991) but it 

also has the disadvantage of discarding about 50% of the population (i. e. females) 

although in some countries the latter are processed into fish cakes for human 

consumption (Akande, 1989) or used as fish and/or animal feed (Wee et al., 1986). 

Balarin (1982) reported that a skilled worker could sort between 1000-2000 fish per day. 

However, it is very difficult for even the most skilled workers to achieve greater than 

90% accuracy in sexing thus breeding and reproduction is rarely completely controlled. 

1.4.2. Predator control 

A large number of predators such as Clarias gariepinus, Lates niloticus, Bagrus 

docmac, Hemichromis fasciatus, Micropterus salmoides and Dicentrarchus labrax have 

been tried in various part of the world in order to control of tilapia reproduction in ponds. 
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However, the technique is relatively unspecialised and suited to subsistence aquaculture. 

The problems in the use of predators involve the lack of full understanding of predator- 

prey interaction mechanisms, insufficient attention to the selection of an ideal species for 

use, insufficient data on optimal stocking rates and inadequate appraisal of the ecological 

interactions in the culture environment (Mair and Little, 1991). 

1.4.3. Interspecific hybridisation 

The findings by Hickling (1960) of all male fry in crosses between two, of what 

were believed to be 0. mossambicus strains, but subsequently were found to be different 

species 0. mossambicus x 0. hornorum prompted research into finding other interspecific 

hybrids with the same characteristics (All crosses follow the genetic practise of giving the 

female parent first). Various theories were then put forward as to possible underlying sex 

determination mechanisms. These were analogous to the male heterogamety model (XY 

male and XX female) and the female heterogamety model (ZW female and ZZ male). 

Whereby crosses between homogametic sexes resulted in single sex offspring (e. g. XX 

female x ZZ male produces all ZX male). Crosses between 0. mossambicus and 0. 

hornorum consistently producing almost all or all male progeny were also reported by 

Wohlfarth et al. (1983) but slow growth performance and the dark colour of the hybrid 

constrained the utilisation of this hybrid in commercial production (Wohlfarth, 1994). 

Pruginin et al. (1975) reported the first hybridisation between 0. niloticus and 0. 

hornorum generating all male progeny and performance of this hybrid was also 

confirmed by Wohlfarth et al. (1983; 1990). The cross 0. niloticus X 0. hornorum is not 
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used commercially due to low and inconsistent fry production, and their unattractive 

appearance to consumers. 

The original cross between 0. niloticus X 0. aureus generating all male offspring 

is utilised commercially by some fish farmers in Israel and Taiwan (Mires, 1983; Liao 

and Chen, 1983 ; Kissil, 1996). However, this cross gives inconsistent male percentages 

of 59-81 % which is thought to be caused by introgression of hybrid fry back into the pure 

parental gene pools. Wohlfarth (1994) recommended the necessity of purity testing of 

parental stocks and establishing a pilot scheme for hybrid tilapia production on a semi- 

commercial scale as the first step in adoption of the approach. More recently, Marengoni 

et al. (1998) attempted to produce all male progeny in crosses between O. niloticus 

(Local-Egypt and Stirling strains) X 0. aureus and the proportion of males were 91% for 

local-Egypt and 100% for Stirling strain. On the other hand, Hulata et al. (1993) reported 

30% male progeny in crosses of O. niloticus (Ghana-88 strain) X 0. aureus (Mehadrin 

strain) crosses. Mair (1988) suggested that different geographical strains of the same 

species possess genetic variation for various genes involved in sex determination, which 

could contribute significantly to the differences in sex ratios. 

Pruginin et al. (1975) summarised the interspecific crosses in tilapia that produce 

skewed sex ratios. The crosses between O. niloticus X O. variabilis; 0. nigra X 0. 

hornorum; 0. vulcani X 0. hornorum and 0. vulcani X O. aureus produced 97-100% 

male progeny. Majumdar and McAndrew (1983a) produced 100% male hybrids in only 

one cross of 0. mossambicus X 0. macrochir and 97.9% male hybrid in 0. spilurus X 0. 

macrochir. 
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The variable sex ratios in progeny of different crosses is not predicted from the 

crosses of fish having: a simple monofactorial system of a homogametic female (XX) and 

a heterogametic male (XY) as in 0. niloticus and a heterogametic female (WZ) and a 

homogametic male (ZZ) as in 0. aureus (Trombka and Avtalion, 1993). In the cross of 0. 

niloticus X 0. aureus, 100% male progeny can be produced while the reciprocal cross of 

0. aureus X 0. niloticus would be expected to produce 3 male and 1 female sex ratio in 

offspring. The possible explanation for aberrant sex ratios produced from interspecific 

crosses will be given in section 1.4. 

Although hybridisation offers several advantages such as avoiding inbreeding and 

use of sex hormones and combining of desirable characteristics from two species (e. g. 

faster growth rate of 0. niloticus and cold tolerance of 0. aureus), there are a number of 

problems associated with the mass production of all male hybrids. Firstly, the success or 

failure of tilapia hybridisation in producing all male hybrid progeny is initially dependent 

on the choice of species to be hybridised. Secondly, genetic purity of parental stocks is 

essential for successful hybridisation. This is especially difficult in tilapia because of the 

similarity of hybrids and their parental species. There is also an apparent inherent 

instability of all male hybrid production. The proportion of males decreased when mass 

production for commercial culture was attempted (Hulata et al., 1983,1985; McAndrew, 

1993; Wohlfarth, 1994). Thirdly, low hybrid fry production due to incompatibility 

between species is another constraint (Lovshin, 1982; Mires 1982; Hulata et al., 1985). 

There appears to be little or no heterosis associated with interspecific 

hybridisation in tilapia, therefore the optimum performance of a species in a specific 

environment can be lost by crossing it with the other species with poor performance. For 
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example in crosses of 0. niloticus X 0. aureus, although all male and cold tolerant fish 

population could be produced, growth potential of 0. niloticus could be lost. A major 

problem of this technology is the loss of pure strains through intentional and 

unintentional hybridisation and therefore its widespread use would constitute a major loss 

of biodiversity (Mair and Little, 1991). 

1.4.4. Hormonal sex reversal to male 

Because of the difficulties in obtaining pure species for hybridisation, more 

consistent methods were needed to produce all male fish. The first sex reversal achieved 

in a fish, the medaka, Oryzias latipes in both directions i. e. from male to female and from 

female to male was done by incorporating sex steroids into food (Yamamoto, 1969). 

After that, this technique has been widely developed up to commercial-scale applications 

in many species where one of the two sexes has superior culture characteristics. 

Sex reversal from genetic female to phenotypic male using male androgens has been 

successfully carried out in medaka, goldfish (Carassius auratus), tilapia species, zebra 

fish (Danio rerio), rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Salmo salar), 

coho salmon (Oncorhynchus kisutch) and chinook salmon (Oncorhynchus tschawytscha) 

(Yamazaki, 1983). 

The efficacy of an androgen (male hormone) is affected by the mode of 

administration and by its source, whether synthetic or naturally occurring (White et al., 

1973). Among the total of 16 androgens tested (5 natural and 11 synthetic) synthetic 

androgens such as ethynyltestosterone (ethisterone) and methyltestosterone are more 

effective when administered orally than naturally occurring androgens like testosterone, 
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androsterone, andrenosterone and androstenedione which are more potent when injected 

intraperitoneally which is not possible for early life stages of fish (Tayamen and Shelton, 

1978; Pandian and Sheela, 1995). 17a-methyltestosterone has proved to be both effective 

and relatively inexpensive for masculinising tilapia fry and has been preferred by most 

workers (Mair and Little, 1991; Macintosh and Little, 1995; Pandian and Sheela, 1995). 

Yamamoto (1969) established criteria for effective hormonal sex induction of fish, 

which have become the principles for hormonal sex manipulation in many fish species. 

These are, 

1) that steroids should be administrated to sexually undifferentiated fish and treatment 

should be continued until the end of sex differentiation and 

2) that the species-specific optimal dosage of a particular steroids should be used. 

A very high percentage of male fish can be obtained by the administration of 

androgens to sexually undifferentiated tilapia fry. The onset of sexual differentiation in 

tilapia depends on the species and environmental factors, but generally it occurs between 

16-20 days after hatching; thus hormone treatment must cover this sensitive period for 

sex reversal to be effective (Shelton et al., 1978). 

Production of all male or nearly all male tilapia by the oral administration of 

androgens to sexually undifferentiated fry has been achieved by several workers 

(Clemens and Inslee, 1968; Guerrero, 1975,1982; Tayamen and Shelton, 1978; Hopkins, 

1979; Shelton et al., 1981; Mair et al., 1987b; Mair and Little, 1991; Vera Cruz and Mair, 

1994) 

The choice of dosage is critical to treatment efficiency. Several interrelated factors 

influence the optimal dosage level of a particular steroid including its biological activity 
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(which may be related to its origin), the route of administration, the target species and the 

duration of treatment (Hunter and Donaldson, 1983). In Oreochromis, a dosage of 17a- 

methlytestosterone ranging from 30-60 mg/kg diet was reported as an effective level for 

sex reversal to male (Guerrero, 1975; Tayamen and Shelton, 1978; Calhoun and Shelton, 

1983; Macintosh et al., 1988; Macintosh and Little, 1995; Argue and Phelps, 1996). On 

the other hand the optimum dose required to induce sex reversal appears to be species- 

specific. Yamazaki (1983) reported that 30 mg/kg diet is effective for 0. mossambicus 

and 0. niloticus while 30-60 mg/kg diet is appropriate for 0. aureus. Hunter and 

Donaldson (1983) and Yamazaki (1983) concluded that the sensitive period to hormonal 

induction for sex reversal varies not only from species to species but also from family to 

family. Clemens and Inslee (1968) and McAndrew and Majumdar (1989) produced 100% 

male using methyltestosterone at 10-40 mg/kg diet for 60 days and 40 mg/kg diet for 40 

days in 0. mossambicus, respectively. All male production was achieved from 0. 

niloticus fry exposed to 17a-methyltestosterone at a dose of 40,30-60 and 50-100 mg/kg 

for a duration of 60,25-29 and 30 days by Jalabert et al., (1974), Tayamen and Shelton 

(1978) and Nakamura and Iwahashi (1982), respectively. Shelton et al. (1981) concluded 

that the duration of hormonal treatment is more critical to success than factors that affect 

growth. The authors reported that high stocking density of 2600 fry m-2 reduced the 

growth rate but did not reduce the success of sex reversal in 0. aureus. Varadaraj et al. 

(1994) also observed that stocking density did not affect the sex ratio but significantly 

reduced the growth and survival of 17a-methyltestosterone-treated 0. mossambicus fry. 

Successful sex reversal can also be affected by environmental factors e. g. temperature 

and photoperiod (Shelton et al., 1981; Varadaraj et al., 1994). Mair and Little (1991) 
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summarised the related conditions associated with effectiveness of hormonal sex reversal 

production in tilapia species (Fig. 1.2. ) 

Hormonal sex inversion is routinely applied in many countries to first-feeding tilapia 

fry to produce all male populations for restocking into production ponds to overcome the 

problem associated with mixed sex culture (McAndrew and Majumdar, 1989). However, 

there are a number of disadvantages to hormonal sex reversal that constrain its 

application world-wide. These are: 

1) the availability and the cost of hormone with high quality feed ingredients, 

2) varying success with sex reversal using standard techniques, 

3) mass production of sexually undifferentiated fry suitable for sex reversal treatment, 

4) consumer reaction to hormone treated fish, 

5) potential health risk of hormone to pond workers, 

6) ecological impact of using hormone, 

7) growing awareness of environmental impact, 

8) legislative aspects. 

The development of hybrid and sex reversed fish enabled experimentation on the 

nature of the sex determination mechanism in tilapia which eventually enable genetic 

control of sex in 0. niloticus. The development of our understanding of the sex 

determining mechanism in tilapia will now be discussed. 

1.5. Sex determination in tilapia 

Understanding the sex determining mechanism in fish is of very great importance 

for the production of monosex fish populations. There have been four main approaches 

considered to investigate the mechanism of sex determination in tilapia: 1) inter and intra- 
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species crosses (Pruginin et al., 1975; Hulata et al., 1983; Shelton et al., 1983; Majumdar 

and McAndrew, 1983a; Mair, 1988; Tuan, 1997; Mair et al., 1991a, b); 2) sex reversal 

(Hopkins et al., 1979; Mair et al., 1987b; Avtalion and Don, 1990; Mair et al., 1991a, b; 

Baroiller, 1996); 3) chromosomal manipulation (Penman et al., 1987; Shah, 1988; Mair et 

al., 1987a, 1991a, b; Peruzzi et al., 1993, Muller-Belecke and Horstgen-Schwark, 1995) 

and 4) analysis of karyotypes and sex-linked markers (Avtalion et al., 1976; Avtalion, 

1982; Majumdar and McAndrew, 1983b; Nijhar et al., 1983; Carrasco et al., 1999). 

1.5.1. Inter and intra-specific crosses 

The interspecific crosses between some species of tilapia result in all male or 

predominantly male offspring (Hickling, 1960; Chen, 1969; Pruginin et al., 1975; Hulata 

et al., 1983; Majumdar and McAndrew, 1983a; Lahav and Lahav, 1990; Wohlfarth et al., 

1990). Although these interspecific crosses have been aimed to produce all male 

progenies commercially, they also offer a means to understanding the sex determining 

mechanism in tilapia. The results from interspecific crosses between Oreochromis species 

suggest a dual sex determining system in this genus which is homogametic female (XX) 

and heterogametic male (XY) e. g. O. niloticus and O. mossambicus and heterogametic 

female (WZ) and homogametic male (ZZ) e. g. O. hornorum and O. aureus. Chen (1969) 

suggested that all male hybrid broods could be obtained when homogametic males of one 

species are crossed with homogametic females of another species. However, the sex 

ratios in hybrid crosses are variable and the theory of Chen (1969) cannot explain 

satisfactorily all the sex ratios observed by several authors (Pruginin et al., 1975; 
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Wohlfarth and Hulata, 1981; Majumdar and McAndrew, 1983a; Hulata et al., 1983; Mair 

et al., 1991b). 

Several explanations for the deviation of sex ratios from the expected were 

hypothesised such as contamination of parental stock by another species, autosomal 

influence including polygenic sex determination, differential mortality of certain 

genotypes and environmental factors (Yamamoto and Kajishima, 1968: cited in Trombka 

and Avtalion, 1993; Avtalion and Hammerman, 1978; Shelton et al., 1983; Mair et al., 

1990; Wohlfarth and Wedekind, 1991). 

The possible involvement of autosomal and gonosomal influences was suggested 

by Avtalion and Hammerman (1978) and Hammerman and Avtalion (1979). According 

to their theory, the system of sex determination in tilapia has three gonosomes (X, W and 

Y) in any one of the possible combinations (XX, XY, WX, WW, WY and YY) and a pair 

of autosomes (AA, Aa and aa) which are involved in primary sex determination. Under 

this theory, within each pure species the pairs of autosomes are identical and 18 different 

genotypes are predicted (Table 1.4). Thus, the set of chromosomes present in the pure 

species of some commercially important species would be 

Female Male 

Genotype I AAXX AAXY (0. mossambicus, 0. niloticus) 

Genotype II aaWY aaYY (0. hornorum, 0. macrochir, 0. aureus) 

Although this hypothesis was able to explain most of the sex ratios obtained by Chen 

(1969), it still fails to explain the large variation observed in hybrid sex ratios in repeated 

crosses (Pruginin et al., 1975; Hulata et al., 1983; Majumdar and McAndrew, 1983a; 
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Table. 1.4. Influence of autosomal pairs on sex determination in interspecific crosses in 
tilapia species (Source: Avtalion and Hammerman, 1978). m: male, f: female 

Sex chromosomes Autosomal factors 

AA Aa as 

YY m m m 

WY m m f 

XY m m f 

WW m f f 

WX f f f 

XX f f f 

Mair et al., 1991b) and also presence of males among gynogenetic tilapia (Hussain et al., 

1994; Mair et al., 1991a, b; Muller-Belecke and Horstgen-Schwark, 1995). 

Majumdar and McAndrew (1983a) suggested a polygenic system in tilapia based 

on their hybrid sex ratio results using pure species analysed by protein electrophoresis, 

which negate the hypothesis of xenogenic infiltration (introgression of gene pool from 

different species). 

In recent years most researchers have concentrated on intraspecific sex ratios to 

investigate sex determining mechanisms in tilapia (Shelton et al., 1983; Majumdar and 

McAndrew, 1983a; Tuan, 1997; Mair, 1988; Lester et al., 1989; Mair et al., 1991a; 

Wohlfarth and Wedekind, 1991; Marengoni et al., 1998). Shelton et al. (1983) reported 
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that the sex ratios of 0. niloticus from about 5500 offspring ranged from 31-83% males 

with a mean of 54.7%, showing a normal distribution while the sex ratios of 0. aureus 

from about 9000 offspring ranged from 0-100% males with a mean of 49.4% in which 

sex ratios of 20% of the 126 progeny groups were statistically different from the expected 

1: 1 (male: female) ratio. The authors concluded that sex determination in tilapia is more 

complicated than single monofactorial heterogamety. In a similar study involving 59 

single-pair matings of 0. niloticus, sex ratio varied between 2-62% male with a slight 

excess of females (Lester et al., 1989) The hypothesis of multifactorial mechanisms in 

sex determination in tilapia were suggested by Shelton et al. (1983), Majumdar and 

McAndrew (1983a) and Lester et al. (1989). 

Scott (1988) and Mair et al. (1991a) studied the mechanism of sex determination 

in the Egypt-Swansea (Stirling) strain of 0. niloticus from 22 and 59 progeny groups, 

respectively. The overall sex ratios differed significantly from the 1: 1 expected ratio with 

a slight excess of males (55.1 % and 53.12%, respectively). The first author explained the 

aberrant sex ratios by the existence of naturally sex reversed females (XY). 

Mair (1988) attempted to investigate the sex determining mechanism in Egypt- 

Swansea strain of 0. niloticus by complete diallele-type crosses using 5 females and 5 

males. He reported that there was a lack of paternal and maternal effect on sex ratios in 

this strain which shows female homogamety and male heterogamety. 

The sex ratios in 22 intraspecific progeny groups from single-pair mating of local- 

Egypt strain and Stirling strain of 0. niloticus gave a mean male percentage of 50.8% and 

48.6%, respectively, which was not significantly different from the expected sex ratio of 

1: 1 while the sex ratios of 0. aureus from 22 single pair matings were significantly 
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different from the expected sex ratio of 1: 1 (Marengoni et al., 1998). The authors 

explained the disparity in sex ratio in 0. aureus by effects of autosomal modifier alleles. 

1.5.2. Sex reversal 

Sex reversal has been used by several tilapia researchers to elucidate the sex 

determining mechanism in tilapia (Clemens and Inslee, 1968; Guerrero, 1975,1979; 

Hopkins et al., 1979; Mair et al., 1987b, 1991a, b; Baroiller, 1996; Lahav, 1993). The 

basic approach is to analyse sex ratios of offspring from treated parent fish crossed to 

either normal males or females. Clemens and Inslee (1968) obtained all female progeny 

by crossing neomales (XX) to normal females, suggesting female homogamety in 0. 

mossambicus. In similar work, Mair et al. (1991a) crossed neomales 0. niloticus to 

normal females, which resulted in all females. The authors suggested female 

homogamety in this species. 

Sex ratios of progeny from hormonally sex reversed fish were also analysed in 0. 

aureus (Guerrero, 1975; Hopkins et al., 1979; Mair et al., 1987b, 1991b; Lahav, 1993; 

Desprez et al., 1995). Hopkins et al. (1979) reported slight deviations from the expected 

100% male progeny derived from the crosses of neofemales (ZZ) and normal males (ZZ). 

The same observation was also reported by Mair et al. (1991b) who produced large 

proportions of females (18-40.2%) from crosses of neofemales to normal males of 0. 

aureus. These authors claimed the presence of modifying factors altering sex ratios from 

those predicted by a monofactorial model. 
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1.5.3. Environmental sex determination 

Deviation from the expected sex ratio in progeny derived from sex reversed 0. 

niloticus was also claimed to be due to environmental factors in sex determination (Mair 

et al. 1990; 1991a, b). This suggestion was further supported by Baroiller (1996) based on 

sex ratio of progenies from single pair matings of normal females and neomales of 0. 

niloticus 

There are several examples of environmental sex determination (ESD) in the 

animal kingdom (Bull, 1983). Although most of the work has involved turtles and other 

reptile species (Bull et al., 1982; Dournon et al., 1990), ESD has been reported in several 

fish species such as Atlantic silverside, Menidia menidia (Conover and Kynard, 1981), 

the livebearing teleost fish, Poeciliopsis lucida (Sullivan and Schultz, 1986), atherinid 

fishes, Odontesthes bonariensis and Patagonina hatcheri (Striissman et al., 1997) and 

loach, Misgurnus anguillicaudatus (Arai et al., 1997). 

Temperature effects on sex ratios of tilapia species have been reported by several 

authors (Mair et al., 1990; Baroiller et al., 1995a, b; Baroiller, 1996; Desprez and Melard, 

1998; Abucay et al., 1999) and more detail will be given in Section 5.1.2.2. 

1.5.4. Gynogenesis and androgenesis 

Induced gynogenesis and androgenesis are processes of reproduction in which normal 

eggs are fertilised with UV inactivated sperm and UV or gamma inactivated eggs are 

fertilised with normal sperm, respectively. As a result, the embryonic development takes 

place with the inheritance of only the maternal (gynogenesis) or paternal (androgenesis) 

chromosome set. Diploidization of haploid zygotes can be made by suppressing the 
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second meiotic division in case of gynogenesis ("meiotic" gynogenetic fish or 

"meiogynes") or first mitotic division in the case of gynogenesis and androgenesis 

("mitotic" gynogenetic fish or "mitogynes" and "androgenetic" fish, respectively) by 

means of physical shocks such as temperature or pressure. In this respect, both 

gynogenesis and androgenesis are valuable techniques to elucidate sex determination 

mechanisms in fish. Alhough gynogenesis has been used for analysing the sex 

determination mechanisms in tilapia (Penman et al., 1987; Shah, 1988; Mair et al., 1987a, 

1991a, b; Hussain et al., 1994; Sarder et al., in press), low survival of androgenetic tilapia 

has constrained the use of this technique for analysing the sex determination mechanism 

in tilapia species. 

Penman et al. (1987) and Shah (1988) obtained only female meiotic gynogenetic 

progeny in 0. niloticus, suggesting monofactorial sex determination system with female 

homogamety and male heterogamety. However, Mair et al. (1991a) reported 7.5% and 

47.5 % males while Hussain et al. (1994) observed 4.1 % and 20% males in meiotic and 

mitotic gynogenetics, respectively in 0. niloticus. 35.3% mitotic males were also reported 

by Muller-Belecke and Horstgen-Schwark (1995) in 0. niloticus. Hussain et al. (1994) 

proposed an epistatic locus (SDL-2, two alleles, SR and sr) causing sex reversal of female 

to male under homozygous condition. Mair et at. (1991a) explained their unexpected 

males as being due to the "homozygosity of rare autosomal, recessive, sex influencing 

genes" causing some form of natural sex reversal of females. 

Penman et al. (1987) and Mair et al. (1991b) induced gynogenesis in 0. aureus. The 

sex ratios of gynogenetic 0. aureus were significantly different from the expected 1: 1 

ratio with a large excess of females. These results were explained by hypotheses of 
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recombination of sex determining genes during the prophase of the first meiotic division. 

Therefore, a single crossover would produce all female (WZ) progeny and double 

crossover would yield equal number of males and females while recombinant females 

would occur depending on the rate of crossing over between the sex determining gene 

and centromere. 

1.5.5. Karyotyping and sex linked markers 

Sex linked phenotypes such as colour or biochemical markers have not been 

demonstrated in tilapia (Trombka and Avtalion, 1993). Avtalion et al. (1976) identified a 

male sex-specific protein (MSP) in tilapia. However, this protein is found in small 

amounts in female as well and cannot be considered as a sex-linked marker. 

Studies failed to show heteromorphic sex chromosomes in the majority of fish 

species (Yamazaki, 1983). A simple chromosomal classification based on size, 

centromere position and differential staining did not show any obvious evidence for sex 

chromosomes in tilapia (Kornfield, 1984; Majumdar and McAndrew, 1983b). Nijhar et 

al. (1983) reported heterogamety in 0. niloticus based on the differences in the length of 

the two long chromosomes. However, the evidence presented is equivocal since the 

precise stage of mitosis and the degree of DNA condensation can change the 

morphological and banding properties of the samples (Buys et al., 1983). 

The study of the synaptonemal complex in paired chromosomes in the late 

zygotene and pachtene in homogametic and heterogametic males of 0. niloticus showed 

an incompletely paired segment in most samples in the terminal region of the largest 
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bivalent of XY males providing cytological evidence for the chromosomal basis of sex 

determination in this species (Foresti et al., 1993; Carrasco et al., 1999). 

1.6. YY male production 

Development of a technique for commercial production of all male tilapia 

population by production of YY male broodstock is another approach since the direct use 

of hormones on the final product could be avoided. Based on a number of studies on the 

sex determining mechanism in 0. niloticus, a predominantly monofactorial mechanism 

with female homogamety (XX) and male heterogamety was proposed (Jalabert et al., 

1974; Penman et al., 1987; Mair et al., 1987b, 1991a; Mair, 1988; Tuan, 1997). Based on 

that assumption, a model was proposed for production of genetically all male progeny 

through generating of YY male genotypes by incorporating endocrine sex reversal and 

selective breeding technique. A schematic diagram depicting the model for large-scale 

production of YY males is presented in Fig 1.3. 

The first stage of programme involves generation of neofemales (XY) using fry 

produced from normal crosses of females (XX) and males (XY) by using a synthetic 

estrogen, diethylstilbestrol (DES). XY neofemales can be identified by the progeny 

testing with either normal males (XY) or neomales (XX) and the sex ratio of 3: 1 or 1: 1 

(male: female), respectively, would be expected. YY males can easily be distinguished by 

progeny testing with normal females (XX) resulting in all male progeny. The main 

problem is that of generating large numbers of YY males for use as broodstock in a 

commercial system. Mass production of YY males can be achieved by feminisation of 
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Figure 1.3. Schematic diagram depicting the model for large scale production of YY males 
(Source: Mair et al., 1993). 
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progeny of YY males crossed to neofemales (XY) to produce YY neofemales which then 

be crossed to YY males. 

The YY males have been to shown to be as viable and fertile as normal males and 

produce sex ratios ranging from 71.6-100% male with a mean of 97.3% male when 

crossed to normal females (Mair et al., 1993). Mair et al. (1995) reported that genetically 

all male tilapia derived from YY male had faster growth rate and greater survival 

compared to androgen treated phenotypically all male and mixed sex populations. The 

YY male production has only been applied to the Egypt-Swansea (Mair et al., 1997) and 

Thai-Chitralada (Tuan et al., 1999) strains of 0. niloticus and further research is 

necessary to evaluate and improve this technique for other strains of 0. niloticus. 

1.7. Red tilapia 

The term "red tilapia" is used to describe a strain or an individual showing a range 

of various colours either singly or in combination from white through pink, red, orange 

and gold, with or without black blotching. McAndrew and Wohlfarth (in press) review 

the literature and the main red tilapia strains used commercially worldwide. The major 

cultivated red strains are mostly hybrids involving as many as four species in which 

mainly red 0. mossambicus has been hybridised with other faster growing species or their 

various strains and isolates (0. niloticus, 0. aureus and 0. hornorum) and selected for 

colour to improve their culture performance (McAndrew and Wohlfarth, in press). 

Taiwanese red tilapia (TRT) is thought to be a hybrid between red 0. 

mossambicus X 0. niloticus (Liao and Chen, 1983). However, isolates of the TRT have 

also been further hybridised with 0. niloticus 'and 0. aureus in Israel (Wohlfarth et al., 

28 



1990) and with 0. niloticus in Puerto Rico (Verdegrem, 1987: cited in McAndrew and 

Wohlfarth, in press). 

Philippine red tilapia (PRT) was said to originate from the crosses between 0. 

mossambicus and Philippine strain of 0. niloticus. Galman et al. (1988) describes at least 

six different phenotype in this strain; red/gold/orange with black spots, uniform pink, 

pink with black spots, albino with black eyes and grey. 

The Florida red tilapia (FRT) originally developed by Sipe (1979) from an 

original mutant white 0. mossambicus. The white 0. mossambicus was extensively used 

in hybrid crosses with 0. niloticus, 0. aureus and 0. urolepis hornorum. 

Since Stirling red 0. niloticus was used in the present study, more detail will be 

given on this strain. The origin of Stirling red strain of 0. niloticus is described by 

McAndrew et al. (1988). According to the authors, a single red male tilapia was observed 

in a batch of wild type fry of a pure strain of 0. niloticus originating from Lake Manzala, 

Egypt being maintained in the Tilapia Reference Collection at the Institute of 

Aquaculture, University of Stirling. The same authors worked on the red, blond and other 

associated colour variants in this strain. In this study, the structure of skin and distribution 

of chromatophores was analysed by using both light and electron microscope. The 

pigmentation of the skin of the wild type fish shows normal pigmentation in that there is 

a delicate layer of melanophores (black pigments) with some iridophores (silver 

pigments) immediately below the epidermis, in the stratum spongiosum, and a denser 

layer comprising iridophores and melanophores in the hypodermal tissue. Erythrophores 

(red pigments) and xanthophores (yellow pigments) are lightly distributed in both layers. 

Red fish and red areas of black blotched fish contained no melanophores. On the other 
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hand, black areas on the red fish showed normal melanophores. Blond fish are 

characterised by the lack of pigmentation in the fertilised eggs and a pale appearance 

showing an unpigmented body cavity. There are no pigments in the stratum spongiosum, 

the hypodermis having only occasional reduced black pigment cells and a slightly 

thickened layer of iridophores. 

There appear to be a number of different genetic mechanisms controlling skin 

colour in the different strains and sometimes even in the same strain of red tilapia. A 

number of papers are available about the colour inheritance mechanism in red tilapia 

which were recently reviewed by McAndrew and Wohlfarth (in press). 

McAndrew et al. (1988) reported that the red mutation is an autosomal dominant 

with two alleles (RR) over the wild type (rr) in Stirling red 0. niloticus. Crosses between 

red (RR) and wild type (rr) produced heterozygotes individuals exhibiting a range of 

black blotching from 0-24.6% of the skin surface. On the other hand, homozygous red 

fish were reported to be always free of any blotching but sometimes had a few isolated 

black spots especially around eyes. They claimed that selection for blotch free fish 

produced a strain which is free of black pigmentation even in heterozygous fish. They 

also hypothesised that the blotched phenotype is controlled by a single gene with two 

alleles, the dominant being responsible for blotching and the recessive for a lack of 

blotching. Hussain et al. (1994) and Koren et al. (1994) working on same Egyptian red 

tilapia strain also supported the hypotheses that a single autosomal dominant "R" gene 

controls red body colour. Plate 1.1. and 1.2. show the different colour types used in the 

present study. 
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I 

Plaýý I. I. (A) NtýI-Uh I '\ II(I type (upper a Irmale, lower a male) and (B) blond 0. 

IIifi'Iic -us. 

31 



Plate 1 . 2. (A) Red and (B) blotched 0. niloticus. 
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Production related traits such as cold tolerance (Behrends and Smitherman, 1984), 

salinity tolerance (Liao and Chang, 1983), reproductive performance (Galman and 

Avtalion, 1983; Eguia, 1996) and growth performance, (Behrends et al., 1982; Pruginin 

et al., 1988; Galman et al., 1988; Hulata et al., 1995; Siddiqui and Al-Harbi, 1995; 

Deguara and Aguis, 1997) have been extensively examined as the importance of red 

tilapia in global aquaculture has increased over the past years. Although there was found 

to be variability in the performance of different tilapia because of the influence of 

particular strains, red tilapia has a great culture potential (Hulata et al., 1995; Deguara 

and Agius, 1997). 

1.8. Research objectives 

From the foregoing, it can be seen that two main factors are necessary for the 

genetic improvement of red tilapia: good stable colour which were not found in many red 

strains and the ability to produce all male fry. In the red 0. niloticus strain held at 

Institute of Aquaculture, Stirling, it should be possible to combine these traits in a single 

strain using genetic techniques. 

The genetic improvement of any commercially important phenotype in terms of 

production has been attempted for years in agriculture and by livestock breeders. It relies 

mainly on the knowledge of the genetic mechanism which controls the expression of 

these useful phenotypes. Red colouration in tilapia has become an important 

characteristic and utilisation in tilapia improvement has increased worldwide. Red 

colouration and genetically all male populations are currently available in separate strains 

of 0. niloticus. Therefore, the main objectives of the studies in this thesis were to 
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investigate options for the combination of both valuable traits in a single pure 0. niloticus 

strain. However, the knowledge of the mechanism of sex determination and colouration is 

fundamental to the success of production of all red and male 0. niloticus. Therefore, the 

following approaches were taken in these investigations: 

1) Improvement of androgenesis in the Stirling red strain of 0. niloticus for 

production of YYRR males and YYRR neofemales in only one generation. 

2) Generation of YYRR males and YYRR neofemales by introgression of YYrr 

males and YYrr neofemales of the Egypt-Swansea isolate and Stirling red 

isolate of Egyptian strain 0. niloticus. 

3) Generation of pure bred YYRR males and YYRR neofemales using existing 

androgenetic YYRR males in Stirling red isolate of Egyptian strain of 0. 

niloticus. 

4) Further investigations into mechanisms of sex determination and colouration 

in 0. niloticus through androgenesis, gynogenesis and studying sex and colour 

ratios in progenies during the development of YYRR males and YYRR 

neofemales. 

5) Investigation of the effect of the colouration on reproductive traits and 

survival rate in Stirling red and wild type strain of 0. niloticus. 

34 



Chapter 2: 

Production of androgenetic Nile tilapia, 0. niloticus 



2. Production of androgenetic red Nile tilapia, 0. niloticus 

2.1. Introduction 

The external fertilisation of gametes in fish provides a possibility to manipulate 

their chromosome numbers. Chromosome-set manipulation techniques in fish have been 

subjected to extensive study because of their potential for use in sex control, rapid 

production of inbred lines and genetic analyses of important traits. Techniques are 

available which can produce haploid, or polyploid fish and even produce fish whose 

chromosomes come solely from either their mothers (gynogenesis) or from their fathers 

(androgenesis). 

2.1.1. Gynogenesis 

Gynogenesis involves fertilising eggs with inactivated sperm and prevents any 

contribution of the male genome to the embryo. It was first described by Hertwig (1911: 

cited in Thorgaard, 1983) in frog embryos, after spermatozoa had been irradiated with 

radium gamma rays, prior to fertilisation. Hertwig observed that low doses do not totally 

destroy the sperm genome, yet this results in lower apparent larval survival than high 

doses which induce complete inactivation of the genome resulting in an increase in 

haploid embryos and an apparent improvement in larval survival. The chromosome 

fragments in the low dose treatments are thought to be lethal to larva. This dose response 

became known as the Hertwig effect. Two years after Hertwig's experiments, Opperman 
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(1913: cited in Thorgaard, 1983) became the first author to test the effect of increasing 

doses of ionizing rays from radium and thorium on the sperm of brown trout, Salmo 

trutta. He observed a typical "Hertwig effect". Since the work of Hertwig, many authors 

have used ionizing rays, ultraviolet rays and chemical mutagens to produce haploid 

gynogenetic fish (see reviews by Thorgaard, 1983; Chourrout, 1987; Ihssen et al., 1990; 

1996) 

Ionizing radiation (X rays and 60Co gamma rays) has a good penetrating power 

that facilitates treatment of large quantities of sperm and induces chromosome breaks 

without affecting the sperm's ability to activate the eggs. However, residual paternal 

characteristics or chromosome fragments demonstrate the inefficiency of ionizing 

radiation for inducing a clean sperm inactivation (Ijiri, 1980; Chourrout and Quillet, 

1982; Onozato, 1984; Allen, 1987). 

Ultraviolet irradiation has been used extensively recently because it is easy to use 

anywhere, inexpensive and safer to apply. Furthermore, UV irradiation results in no 

residual fragments, in contrast to gamma irradiation (Thorgaard, 1983; Chourrout, 1984, 

1986; Ihssen et al., 1990; Myers et al., 1995a). UV irradiation of spermatozoa acts to 

produce cyclobutane-type dimers between adjacent pyrimidines on the same DNA strand 

resulting in almost total degradation of the DNA (Ijiri and Egami, 1980). However, the 

low penetrating power of UV light makes the treatment of large volumes of sperm more 

difficult compared to gamma radiation sources. Therefore, for UV the intensity of 

irradiation and duration and standardisation of sperm concentration have to be optimised 

for successful production of haploid gynogens. Identification of a saline solution, which 
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can immobilise sperm, may help during the process of counting, diluting, and irradiation 

of sperm. 

Chemical treatments such as dimethylsulphate, DMS, (Chourrout, 1986) toluidine 

blue, and ethyleneurea have also proven effective for the DNA inactivation of 

spermatozoa. However, supernumary chromosome fragments were reported by Chourrout 

(1986) in DMS treatments of rainbow trout sperm. 

Since haploid gynogenetic embryos are grossly abnormal at hatching, some 

treatment is needed to produce diploid gynogenetic animals. Although there is no strong 

evidence for frequent spontaneous diploidization of eggs fertilised with denucleated 

sperm, it has been exceptionally reported in weatherfish, Misgurnusfossilis (Ramashov et 

al., 1960: cited in Ihssen et al., 1990), common carp, Cyprinus carpio (Nagy et al, 1978), 

grass carp, Ctenopharyngodon idella (Stanley, 1976) and rainbow trout (Purdom et al., 

1985). Exclusion of the male genome has been observed in crosses between species in the 

hybrid plaice (Pleuronectes platessa) X halibut (Hippoglossus hippoglossus) (Purdom 

and Lincoln, 1974: cited in Ihssen et al., 1990), common carp X crucian carp, Carassius 

carassius, (Golovinskaya et al., 1963: cited in Ihssen et al., 1990) and grass carp X 

common carp, (Stanley, 1976). 

There are four possible mechanisms by which diploidy could be re-established 

during parthenogenesis: (i) suppression of endomitosis (ii) retention of the first polar 

body from meiosis I, (iii) retention of the second polar body from meiosis II and (iv) 

inhibition of first cleavage. According to Ihssen et al. (1990), all fish egg completes first 

meiotic division before ovulation, therefore only the 2nd meiotic and first mitotic 

divisions can be manipulated. In molluscs, however, the unfertilised egg still has to go 
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through both 1" and 2"d meiotic divisions when it is released providing a wider possibility 

for ploidy manipulation (Beaumont and Fairbrother, 1991). Early shocks prior to the loss 

of the second polar body can cause retention of the second polar body and produce 

meiotic gynogenesis, whereas with late shocks 2"d meiotic division is completed and 

these prevent the first mitotic cleavage and produce mitotic gynogenetic individuals. 

Three types of treatments are used in fishes : (i) long cold shocks, (ii) short heat shocks 

and (iii) short hydrostatic pressure shocks. All treatments have a destructive effect on 

microtubules and thus inhibit chromosome division. Each shock tested may be 

characterised according to three parameters; its temperature or pressure (intensity) level, 

its start time and its duration. Hydrostatic pressure shocks inhibit the anaphase stages of 

cell division by disrupting the metaphase spindle (Onozato, 1984; Hussain, 1996). On the 

other hand, cold and heat shocks alter different cell mechanisms. Heat shocks either 

permit or inhibit the entire disjunction by denaturing the spindle apparatus that plays a 

role in the migration of all chromosomes while the cold shocks inhibit anaphase II. Both 

of these can inhibit the second meiotic division (Valenti 1975; Chourrout, 1986; Diter et 

al., 1993). Heat shock is the easiest to apply requiring facilities for pre-incubation at one 

temperature before shocking at a higher and more critical temperature. This can be 

achieved by using two water baths, which enables precise control of temperature. Cold 

shock is also easy to apply. However, apparatus for cooling water is more expensive than 

that used for heat shocks. The use of hydrostatic pressure shock requires purpose-built 

apparatus so is likely to be the most expensive and more skill may be required. 
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Since 1960 meiotic gynogenesis has been successfully induced in many fish 

species. Table 2.1. shows published studies reporting meiotic gynogenesis on different 

fish species. 

Table 2.1. Published studies reporting meiotic gynogenesis on different fish species. 

Scientific name Common name References 

Cyprinus carpio Common carp Nagy and Csanyi, 1982; 
Ornamental carp Hollebecq et al., 1986; 

Komen et al., 1988; 
Sumantadinata et al., 1990; 
Cherfas et al., 1990 

Ctenopharyngodon idella Grass carp Cassani and Caton, 1985 

Catla catla Indian major carps John et al., 1984,1988 
Labeo rohita 
Cirrhinus mrigala 

Pagrus major Red sea bream Sugama et al., 1990 

Oncorhynchus mykiss Rainbow trout Chourrout and Quillet, 1982; 
Thorgaard et al., 1983; 
Chourrout, 1984 

Oncorhynchus kisutch Coho salmon Refstie et al., 1982 

Danio rerio Zebra fish Streisinger et al., 1981 

Puntus gonionotus Silver barb Pongthana et al., 1995 

Silurus glanis European catfish Krasznai and Marian, 1987 

Clarias gariepienus African catfish Volckaert et al., 1994,1997 

C. macrocephalus Thai walking catfish Na-Nakorn, 1997 

Misgurnus anguillicaudatus Loach Arai et al., 1993 

Plecoglossus altivelis Ayu Tani uchi et al., 1988 
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Table 2.1. continued 

Scientific name Common name References 

Oreochromis species Tilapias Chourrout and Itskovich, 1983; 
Penman et al., 1987; 
Don and Avtalion, 1988; 
Varadaraj, 1990; 
Mair et al., 1991 a, b; 
Hussain et al., 1993 
Perruzzi et al., 1993 

Suppressing the first mitotic division of gynogenetically developing eggs or normal 

developing eggs by applying late heat, cold or pressure shocks can produce completely 

homozygous individuals (mitotic gynogens) or tetraploid individuals, respectively. The 

intensity of temperature or pressure shock required to suppress the first mitotic division is 

the same or close to the level for inhibiting meiotic division. Table 2.2. shows the 

summary of methods used with survival rates in mitotic gynogenesis research. 

2.1.2. Tetraploidy 

Another possible consequence of the disruption of the first mitotic division is 

tetraploidy, if done after normal fertilisation. The potential applications of tetraploids are 

in their increased heterozygosity and growth potential, the possibility to generate large 

numbers of sterile triploid progeny in tetraploid X diploid matings, in the production of 

diploid spermatozoa for cryopreservation and their usage in androgenetic production 
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(Chourrout, 1987). Few reports are available on tetraploid fish compared to meiotic or 

mitotic gynogenesis. Various chemicals that interfere with mitosis, such as colchicine and 

cytochalasin B, have been used to induce polyploidy but with much less success. Refstie 

et al. (1977), Smith and Lemoine (1979) and Refstie (1981) used cytochalasin B at 

concentration of 10 pg/ml and observed polyploid mosaics and some tetraploids in 

rainbow trout. However, they used ploidy identification by nuclear volume measurement 

which is unreliable and does not readily distinguish between triploids and tetraploids, so 

it is uncertain whether tetraploids were actually produced. Thorgaard and Jazwin (1981) 

obtained 10 % tetraploid rainbow trout that survived 20 days after fertilisation using a 

36°C heat shock for 1 min applied 5h after fertilisation. Lou and Purdom (1984) 

attempted to produce tetraploid in rainbow trout by hydrostatic pressure treatment of 562 

kgcm-2 for 10 min with 2% ether pre-treatment or with a heat shock of 28°C for 10 min 

begun 8h after fertilisation without success. On the other hand, Chourrout (1984) 

reported that 100 % tetraploids with a survival rate of 30% to first feeding stage were 

produced by 492 kgcm-2 pressure shocks applied 5h 50 min after fertilisation lasting 4 

min in the same fish. Diter et al. (1993) reported very low survival of tetraploid using a 

heat shock of 31°C for 5 min applied 3h 20 min after fertilisation in rainbow trout. 

Induction of tetraploidy using late hydrostatic pressure of 680 kgcm"2 in chum salmon, 

Oncorhynchus keta, and masu salmon, O. masou, was not successful (Yamazaki and 

Goodier, 1993). In brown trout, production of tetraploidy using late pressure shock of 633 

kgcm-2 for 6 min gave poor survival (Myers et al., 1995b). 
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Tetraploidy induction was attempted by Myers (1986) by using a combination of 

pressure (492 kgcm-2) and cold treatments (7.5°C) applied for 7 min just prior to cleavage 

and survival rates were reported as 2.4±3.5 %, 8.3±11.7 % and 1.2±1.1 %, in 0. niloticus, 

0. mossambicus and their hybrid, respectively to eyed stage. Don and Avtalion (1988) 

obtained low percentage of tetraploidy (12% to yolk sac stage) but not beyond using cold 

shock treatment of 1h at 11°C applied at 60 min after fertilisation in 0. aureus. 

2.1.3. Androgenesis 

Androgenesis is a genome manipulation technique, which is the opposite of 

gynogenesis involving a genetically inactivated egg fertilised with normal sperm. The 

resulting embryo develops with entirely paternal chromosomal inheritance, without any 

contribution from maternal chromosomes. The egg can be inactivated successfully by 

gamma, X rays or UV irradiation. Haploid androgenesis has been induced using 60Co in 

loach (Ihssen et al., 1990), flounder, P. flesus (Purdom, 1969), masu salmon (Arai et al., 

1979), rainbow trout (Parsons and Thorgaard, 1985) and brook trout, Salvelinus fontinalis 

(May et al., 1988). Yamazaki (1983) observed the spontaneous occurrence of haploid 

androgenetic embryos where the oocytes of salmonid species were overripe or in some 

interspecific or intergeneric crosses in which pronuclei did not fuse. Briedis and Elison 

(1982) induced haploid androgenetics in fertilised frog, Rana pipiens, eggs using pressure 

and deuterium oxide (D20) to inhibit male pronucleus movement by the distruptive 

effects of microtubule-specific agents on pronuclear movement. 

Studies with amphibians (Gillespie and Armstrong, 1980,1981) showed that the 

transparency of the amphibian egg and the fact that the egg pronucleus is oriented toward 
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the animal pole after fertilisation facilitated treatments with UV. However, the opacity of 

some fish eggs and the failure of the egg nucleus to demonstrate any particular 

orientation before or after fertilisation may present problems owing to the poor 

penetrance of UV (Thorgaard, 1983; McAndrew et al., 1993). Despite these 

disadvantages, UV light has been successfully used in the irradiation of eggs from white 

sturgeon, Acipenser transmontanus (Kowtal, 1987), common carp (Bongers et al., 1993, 

1994), Nile tilapia (Myers, 1995a), loach (Arai et al., 1992) and African catfish, Clarias 

gariepinus, (Bongers et al., 1995). 

Spontaneous androgenesis has sometimes been observed in crosses of different 

fish species. Stanley (1976) observed androgenetic grass carp at a low frequency, in 

crosses between female common carp with male grass carp. The diploids might have 

been generated from genetic incompatibility between the two genomes resulting in loss of 

the female pronucleus. Spontaneous diploidization of X-ray genetically inactivated 

common carp eggs fertilised with sperm of crucian carp and common carp was reported 

by Cherfas et al. (1994). 

Androgenetic diploidization can be induced by suppression of the first mitotic 

division of the egg by means of physical shocks such as temperature and pressure as in 

mitotic gynogenesis or by fertilisation of inactivated eggs with diploid spermatozoa from 

tetraploid males if the latter can be produced. The first successful production of 

androgenetic diploids was reported by Gillespie and Armstrong (1980,1981) in the 

Mexican axolotl, Ambystoma mexicanum, using heat shock (36-37°C for 10 min) or 

hydrostatic pressure shock (984 kgcm"2 for 8 min) at 5.5 hrs post fertilisation. Table 2.2. 
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(page 41) summarised the methods used with survival rates in androgenetic research in 

fish. 

2.1.4. Application of gynogenesis and androgenesis 

The major rationale for the interest in gynogenesis has been the potential for 

producing inbred lines for breeding programmes and research purposes (Ihssen et al., 

1990; Purdom, 1969). However, meiotic gynogenetic animals are partially heterozygous 

for many generations due to the occurrence of recombination between chromatids during 

the first meiotic division of the egg (Purdom, 1969; Nace et al., 1970; Hussain et al., 

1994). It was thought at first that little crossing-over between genes and the centromere 

occurs in fish chromosomes (Purdom, 1969) therefore low levels of heterozygosity were 

expected. However, subsequent studies showed high levels of heterozygosity at some loci 

in gynogenetic diploids. Gynogenetic diploids that have loci that remain heterozygous 

and have the same genotype as their mothers have had to have undergone recombination. 

This has been noted in common carp (Golovinskaya and Ramashov, 1966: cited in Ihssen 

et al., 1990), rainbow trout (Thorgaard et al., 1983; Guyomard, 1984), brown trout 

(Guyomard, 1986), Nile tilapia (Hussain et at., 1994). Meiotic gynogenesis is a very 

useful tool for estimating gene-centromere recombination rates since the level of 

recombination is expected to be proportional to any genes distance from a centromere 

(Hussain et al., 1994). It is also important to increase the rate of inbreeding and in gene 

mapping studies (Thorgaard and Allen, 1987). On the other hand, mitotic gynogenesis 

and androgenesis can be applied to produce completely homozygous individuals in the 
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first generation and clones in the second generation. Since clones are completely 

homozygous for every gene locus, they have potential for fixing superior genes and thus 

the production of new lines of fish. The inbred lines, which are supposed to be free from 

recessive lethal and major deleterious alleles, may be crossed to obtain a degree of 

heterosis for commercially important traits. Clones have been successfully produced for 

zebra fish (Streisinger et al., 1981), medaka (Naruse et al., 1985; Ijiri, 1987), common 

carp (Komen et al., 1991), ayu (Han et al., 1991) and Nile tilapia (Hussain et al., 1998; 

Sarder, 1998) by mitotic gynogenesis. Production of androgenetic clones have been 

reported in amago salmon, Oncorhynchus rhodurus (Nagoya et al., 1996) and Nile tilapia 

(Jim Myers personal communication of Sarder, 1998). 

Both gynogenesis and androgenesis can be used to analyse the genetic basis of 

complex traits such as red colouration and sex determination in Nile tilapia and these 

techniques or combination of these techniques offer a relatively rapid method to develop 

new lines. 

Another important use of gynogenesis and androgenesis has been in the analysis 

of sex determining mechanisms in fish. Producing a monosex female population by 

gynogenesis in fish with female homogamety was achieved in 0. niloticus and 0. 

mossambicus (Penman et al., 1987,1989; Mair et al., 1991a, b), and in silver barb, 

Puntus gonionotus (Pongthana et al., 1995). Hormonal sex reversal of gynogenetic 

females to males can ensure the production of all female populations by crossing the sex 

reversed neomales to normal females. Sex reversed neofemales have been used for the 

production of YY genotypes for production of all male populations by gynogenesis in 0. 

mossambicus (Varadaraj and Pandian, 1989) and in O. niloticus (Scott et al., 1989). On 
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the other hand, androgenesis should lead to the production of all male monosex 

population in fish with male homogamety or 50 % (YY) male with 50 % female (XX) in 

species with male heterogamety. In the case of the 0. niloticus, the genotype of inbred 

male androgens would be YY and they can be used to produce all male progeny in the 

subsequent crosses with any ordinary XX females (Thorgaard, 1983; Myers et al., 

1995a). Hormonally sex reversed androgenetic tilapia neofemales (YY) can also be used 

to produce all YY male offspring crosses with YY male (Mair, 1993). 

One powerful application of androgenesis is to recover genotypes from 

cryopreserved sperm, particularly for those which are facing extinction and threat of 

contamination by hybridization. Sperm cryopreservation, unlike that of eggs, is becoming 

relatively routine in some species and its combination with androgenesis offers a 

invaluable way to conserve genetic resources (Stoss, 1983; Ihssen et al., 1990; 

McAndrew et al., 1993; Mair, 1993). 

2.1.5. Identification of gynogenetic and androgenetic diploids 

When gynogenetic and androgenetic diploids are produced, it is important to have 

proof that the sperm (in the case of gynogenesis) and or the eggs (in the case of 

androgenesis) did not contribute genetically to the embryo. This proof may be obtained 

by several methods. The simplest method for gynogenesis studies is the use of irradiated 

sperm from a related species to trigger development (Nace et al., 1970; Stanley, 1976). In 

this case any paternal inheritance might be recognised by inviable hybrids, 
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morphologically recognisable hybrids and biochemically recognisable hybrids 

(Thorgaard, 1983). 

Mendelian visible markers particularly colour have been used for confirmation of 

all maternal (Streisinger et al., 1981; Thorgaard et al., 1985; Varadaraj, 1990) and all 

paternal inheritance (Parsons and Thorgaard, 1985; Grunina et al., 1990; 1991; Bongers 

et al., 1994; Myers et al., 1995a) in mitotic gynogenesis and and androgenesis, 

respectively. However, the availability of such visible markers is rare in most species and 

the interference of chromosome fragments which can be generated by ionizing irradiation 

(Chourrout and Quillet, 1982; Parsons and Thorgaard, 1985) might not be detected by 

using colour markers. 

The biochemical markers, screened by. starch gel electrophoresis are more useful 

than morphological or colour markers for detection of maternal (androgenesis) and 

paternal (gynogenesis) transmission or differentiation of meiotic and mitotic gynogens 

which is important if there is an overlap in the induction windows for these two types of 

gynogens due to asynchronous zygote development up to first cleavage (Mair, 1993). 

Allozyme polymorphism have confirmed all maternal inheritance in mitotic gynogenesis 

(Purdom et al., 1985; Mair et al., 1987a; Taniguchi et al., 1988; Hussain et al., 1993; 

Suwa et at., 1994) and all paternal inheritance in androgenesis (Parsons and Thorgaard, 

1985; Scheerer et al., 1986; May et al., 1988; Arai et al., 1995; Myers et al., 1995a; 

Marengoni and Onoue, 1998). 

Nowadays, DNA-level markers provide very accurate parentage assessment. 

Amongst them, microsatallite markers have a great potential since these loci appear to be 

highly abundant and dispersed throughout the genome (O'Connell and Wright, 1997). 
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The drawbacks of DNA-level markers as compared with biochemical or protein-level 

markers are that they are relatively expensive in terms of materials and labour and the 

procedure for visualisation of marker phenotypes are more demanding technically. Since 

the present study aimed to use multilocus DNA fingerprinting technique for confirmation 

of all paternal inheritance, more detail will be given on this subject in the next section. 

2.1.5.1. DNA Fingerprinting 

Most genes in eukaryotes consist of coding sequences (exons), non-coding 

regions (introns) and flanking region (enhancer and promoter). When a gene of a higher 

organism is to be expressed, it is transcribed to yield an RNA copy of the exon and intron 

sequences. This primary RNA transcript is then processed to yield messenger RNA 

(mRNA) which contains only exon sequences. Other non-coding DNA which is not used 

in RNA transcription is present in various numbers of copies called highly repetitive 

DNA, with no known function (Krawczak and Schmidtke, 1994). In total genomic DNA, 

about one-third consists of repetitive sequences. According to the organisation and degree 

of repetition of this type of DNA in the genome, it can be divided into two classes; 

interspersed repeat sequences and tandem repeat sequences. In the interspersed repeats, 

the repetitive DNA sequences are scattered at multiple sites throughout the genome. 

Interspersed repeat sequences can be either short interspersed elements (SINEs), which 

are less than 500 base pairs long and present as many as a million times, or long 

interspersed element (LINEs), which are around 6400 base pairs long and present 

between 3000 and 40000 times. Repetitive sequence elements, which are arranged in 

tandem, are known as satellite, minisatellite and microsatellite sequences. Satellite DNA, 
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which is dispersed over almost the entire genome, is composed of very high copy number 

repetitions of a basic sequence (between 103-107 per locus). The length of the repeat unit 

is usually 100-300 base pairs. Minisatellites consist of shorter repetitive DNA sequence, 

usually 10-60 base pairs and show a lower degree of repetition (between 1 0-103 per 

locus). Microsatellites comprise very short (between 1 and 10 base pairs) repetitive 

sequences with a lowest degree of repetition (between 10-102) and are called "simple 

sequences" (Klug and Cummings, 1996). 

Satellites, minisatellites and microsatellites can be highly variable and thus form 

excellent tools for population genetic, parentage assessment and genome mapping 

studies. Their variability is most often due to particular arrays on a given chromosome 

having different repeat numbers in different individuals. Thus, they form allelic variants 

and for a number of mini and microsatellites almost every individual is heterozygous. 

Polymorphism created by such elements is termed variable number of tandem repeat 

(VNTR) polymorphism. Polymorphism due to variation in the number of elements with 

in a given array is thought to be generated during DNA replication, for example by the 

mutational process of slipped strand mispairing and by unequal crossovers, which means 

that cleavage and reunion of the two strands involved does not occur at allelic sites, 

during meiosis. As a result of unequal crossover, a DNA sequence lying adjacent to the 

non-identical break points will be found in duplicate on one recombinant chromatid but 

will be lacking from the other (Jarman and Wells, 1989; Avise, 1994; Krawczak and 

Schmidtke, 1994). Repetitive DNA sequences have been turned to advantage in terms of 

providing individual specific genetic markers. The term "DNA fingerprinting" was first 

introduced by Jeffreys et al. (1985) using Southern blot analysis of hypervariable DNA 

sequences. The DNA probes namely 33.6 and 33.15 originally employed by Jeffreys et 
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al. (1985) were isolated from a myoglobin intron in human. The DNA profile can be 

generated by cleaving total genomic DNA on either side of the minisatellite, not within 

the repeated sequence, by means of a particular restriction enzyme. 

The length of a restricted fragment will depend on the number of repeats between 

sites and generate restriction fragment length polymorphism (RFLP). The DNA 

fragments are separated by agarose gel electrophoresis, transferred to a nylon membrane 

and finally hybridised to 10-15 base pairs long conserved core sequences of the repeat 

units in the human genome, revealing band profiles distinguishing all individuals except 

monozygotic twins. The complexity of the DNA profiles depends on the number of loci 

recognised by the hypervariable probe. In "multilocus fingerprinting", the probe 

hybridises to several loci scattered among the genomic DNA. Since spontaneous de novo 

mutation is rare (Jeffreys et al., 1987,1988) and bands composing the fingerprinting 

pattern are inherited in a Mendelian fashion, each of the bands in an individual's DNA 

fingerprint profile must originate from either its biological father or mother. In "single 

locus DNA fingerprinting" the hypervariable probe hybridises to only one locus and the 

individual DNA profile shows either one or two bands depending on whether such an 

individual is homozygous or heterozygous. 

Multilocus DNA fingerprinting is a powerful technique for genetic studies. It has 

been successfully applied for paternity and maternity analysis in humans (Jeffreys et al., 

1986), in birds ( Burke and Bruford, 1987; Burke et al., 1989,1991), in forensic studies 

(Bär and Hummel, 1991), genetic variability within and between populations in 

California Channel Island fox (Gilbert et al., 1990), in naked mole-rat (Reeve et al., 

1990) and linkage analysis in human (Jeffreys et al., 1986). In aquaculture, DNA 

fingerprinting can be used for the identification of individuals, construction of pedigree, 
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population analysis (Hallerman and Beckman, 1988), estimation of inbreeding rates in 

commercial broodstocks (Doyle and Talbot, 1986; Eknath and Doyle, 1990) and family 

identification without using tags, especially for small fish. Another advantage of using 

DNA fingerprints has been proposed to monitor the absence of paternal genomic 

contribution in fish produced by meiotic or mitotic gynogenesis, as well as to measure the 

degree of homozygosity after meiotic gynogenesis (Chourrout, 1986). DNA 

fingerprinting has been used to verify succesful gynogenesis and androgenesis in fish 

(Carter et al., 1991; Han et al., 1992; Takagi et al., 1995; Eenennaam et al., 1996; 

Nagoya et al., 1996; Young et al., 1996; Sarder et al., in press). 

2.1.6. Objectives 

The objectives of the present study are: 

1. Optimisation of treatment parameters to induce diploid androgenesis in O. 

niloticus, 

2. Production of homozygous red and blond YY males by androgenesis and thus 

fixing of both traits in a single line of 0. niloticus. 

3. Production of homozygous red and blond YY neofemales by oral 

administration of feminisation hormone (Diethylstilbestrol) to obtain all 

homozygous red and blond YY male population by crossing the androgenetic 

YY neofemales to androgenetic YY males in 0. niloticus. 

4. Further investigation of sex and colour mechanisms of 0. niloticus. 
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2.2. Materials and methods 

2.2.1. Experimental fish stocks 

The tilapia species, Oreochromis nilolicus L. used in the experiments described 

and discussed in this thesis came from the Tilapia Reference Collection at the institute of 

Aquaculture, University of Stirling, Scotland. They were originally obtained from Lake 

Manzala, Egypt in 1979 and have been shown to be a pure species by electrophoresis 

(McAndrew and Majumdar, 1983). Stirling red and blond 0. niloticus from the same fish 

stock of the Institute of Aquaculture also were used. The origin of these red and blond 

fish is described by Scott et al. (1987), McAndrew et al. (1988) and Hussain et al. (1994). 

2.2.1.1. Rearing and stocking facilities 

All fish were reared in recirculating fresh water systems except those which were 

fed with hormone treated food, which were kept in static systems. The systems were 

maintained in the tropical aquarium facilities at the Institute of Aquaculture. Lighting in 

all the systems was adjusted by an automatic timer to 12 hour light and 12 hour dark. The 

water temperature was maintained 28±1°C. All precipitated solid waste in bottom settling 

tanks was siphoned out and biological filter trays cleaned once a week. 

Individual female broodstock were kept in partitioned glass tanks of 120 cm X 44 

cm X 30 cm (Figure 2.1). Each glass tank incorporated two or three vertical dividers 

(depending on fish size), made of translucent Perspex (0.5 cm thick). Therefore, each 

tank created three or four separate "holding spaces" in which a female's maturity state 
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could be easily observed from the outside without handling. All tanks were aerated by 

airstones coupled to a low-pressure blower unit. 

2.2.1.1.1. Early fry rearing system 

Free swimming fry were transferred to different recirculating systems, which 

consisted of header tanks, bottom settling tanks, pump tanks and a large number of 

circular and rectangular plastic tanks. The water came from the header tanks into the 

rearing tanks by gravity and the waste along with excess water discharged into the bottom 

settling tanks through the 20 mm drainage stand pipe. Depending on the fry size, small 

(500 micron) or medium (3 mm) size mesh covered the top of the stand pipe which 

prevented the escape of fry via the overflow. 

2.2.1.1.2. Advanced fry rearing system 

Advanced fry were reared in different recirculating systems having 30 1 circular 

plastic tanks which were connected with header tanks, bottom settling tanks and a pump 

tank. Each tank had a central stand pipe and an inlet having one or two small jets at the 

blind end. Water from the overhead tank came down directly into the tanks by gravity. 

Settling tanks were equipped with rows of long brushes and/or plenty of floating bio- 

rings to assist settling of solid wastes and to act as a surface where bio-filtration can take 

place. After bio-filtration, the water flowed into a pump tank from where it was pumped 

by a 0.25 H. P. pump (Beresford Pump Ltd. ) back to the header tanks. The excess water 
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from the header tank overflowed and passed through trays full of limestone, shell, and a 

series of fine synthetic filters back into the pump tank. 

2.2.1.1.3. Stocking system 

The stocking system consisted of 2x 180 1 header tanks, 2x 180 1 bottom settling 

tanks, a 1801 pump tank and 16 fibre glass tanks (100 cm x 100 cm x 30 cm). These fibre 

glass tanks were equipped with a central stand pipe of 40 mm and arranged in double 

rows of 8 tanks each on a two tier system. 

2.2.1.2. Water quality 

To monitor water quality, ammonia, nitrate, nitrite and pH levels were measured 

with a Dry-tab master test kit once a week. 

2.2.1.3. Feeding 

All sizes of fish were fed with commercial trout feed (Trouw Aquaculture 

Nutrition, Russhive, UK. ) The proximate composition of different feeds is presented in 

Table 2.1. The early and late fry were fed with micronised no. 2 or 3 pellet which was 

sieved to give a 0.25-1.0 mm particle size using a Moulinex coffee grinder and fed 3-4 

times in a day ad libitum. The advanced fry and fingerlings (10-40 g size) received no. 3 

sized food at rate of 3-7.5% body weight, 3 times a day. The feeding ration was reduced 

to 2-3% body weight with an increased pellet size of no. 4 for 40 g up to 80 g and no. 5 

for 80 g fish up to broodstock size. 
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Table 2.3. Proximate composition of different feeds used in rearing of experimental fish 
(% dry matter basis) (Source -Trouw Aquaculture) 

Parameters Feed no. 2 Feed no. 3 Feed no. 4 Feed no. 5 

Protein 54.0 54.0 40.0 40.0 

Oil 15.0 15.0 8.0 8.0 

NFE 12.0 12.0 29.5 29.5 

Fibre 1.0 1.0 4.5 4.5 

Ash 10.0 10.0 10.0 10.0 

Moisture 8.0 8.0 8.0 8.0 

2.2.2. Anaesthesia 

To minimise handling stresses during experimental studies (breeding, sampling, 

tagging, fin clipping and blood collection) the fish were anaesthetised individually with 

benzocaine (ethyl 4- aminobenzoate, Sigma. Chem. Co., Dorset, UK. ) at a concentration 

of 1: 10000. As benzocaine is not water soluble, a stock solution was first prepared by 

dissolving benzocaine powder at 10% w/v in ethanol. The fish were immersed in the 

diluted solution until they lost equilibrium and opercular movement stopped; in this 

condition they could be handled for up to 5 minutes. After anaesthesia, the fish were 

transferred to their tanks with rapid water flow and aeration. Generally, fish recovered 

within 2-3 minutes. 
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2.2.3. Tagging of fish 

To identify each fish, they were tagged at 2-3 months old with Passive Integrated 

Transponder tags (Avid. Inc. California, USA). These have a nine digit code number and 

that can be read by an Avid tag reader (Power tracker II). After anaesthetising the fish, a 

small dorso-ventral incision was made just above the anus with a sharp sterile scalpel 

blade. The tag was inserted into the body cavity and a small amount of Orahesive 

Protective Powder (E. R. Squibb and Sons Ltd., Middlesex, UK) was spread over the 

incision to assist healing and prevent infection.. 

2.2.4. Fish breeding, stripping and fertilisation of eggs 

Selected sexually mature females and males were transferred from broodstock 

tanks to a series of glass aquaria (120 cm x 44 cm x 30 cm) connected to a recirculating 

water system (Fig. 2.1). Generally three tagged females were accommodated in one tank 

and separated by sheets of Perspex. Aeration was provided in each tank by a 15 cm air 

stone connected to a central blower system. 

Under aquarium conditions, mature females of 0. niloticus spawn at 

approximately 2-6 weeks intervals. Females which are ready to spawn have a swollen 

urogenital papilla and show pre-spawning behaviour such as nest building and cleaning. 

After anaesthetising the female, the eggs were collected by applying gentle downward 

pressure with the fingers from below the pectoral fin to the genital opening of the fish. 

The eggs were collected in a clean, sterile Petri dish (100 mm in diameter) and were 

washed carefully with water from the recirculating system several times until ovarian 
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fluid and any blood were removed. After stripping, the eggs were sub-divided into a 

number of batches, as the experimental design required. Milt was also stripped from 

males in a similar way to egg collection using a glass capillary tube to collect the milt 

(BDH). Milt was then put into a clean 1.5 ml microtube and stored at 4°C until use. Milt 

contaminated with water and urine was rejected. 

Eggs were fertilised in vitro by mixing the milt with "dry" eggs and then 10-20 ml 

of aquarium water was added. The fertilised eggs were left in the Petri dish for 2-30 

minutes for water hardening, washed, and transferred to downwelling incubators for 

further development. 

2.2.4.1. Incubation of eggs 

A series of 750 ml round bottomed plastic soft drink bottles were used for egg 

incubation. The jars were connected to warm water (28±1°C) recirculating system (Figure 

2.2). Water in the system passed by gravity from a 125 1 header tank through a 30 W UV 

sterilisation unit (flow rate 20 ml/min, UV dosage 62000tW. sec. cm 2) then through 20 

mm PVC pipe to the incubation jars. Each of these had a1 ml disposable pipette with 1 

mm diameter connected to the main water supply by a small airline tap to control the 

water flow so as to ensure gentle movement of eggs at all times (Rana, 1986). The waste 

water was discharged into a 180 1 bottom settling tank via two filter trays filled with 

crushed cockle shells, positioned just above the settling/pump tank. The shell filters were 

cleaned weekly to ensure good maintenance of the pH of the system. 
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Tilapia Egg Incubation System 
Water Distribution Pipe 

Water Level Scrcxned Water 
Ovcrtlow 

Water Flow Adjusted to 
Provide Gentle Rolling of 
Eggs 

Top View of 48 Incubator Battery 
Flush/Outlet 

Drain Channels 

Inlet Incubators 

Water Distribution Pipe 

Header Tank Dverilow 

Incubators 
-Incubator Drain 

UV-Sterilizer 

Water Purnp 

Sponge Filter 
Limestone 

Sump with Biorings 
and 3x 300 W heaters 

Indicates flow of water through system 
Description of specific item 

Figure 2.2. Diagram of egg incubation bottles and Water recirculating system (From 
McAndrew et al., 1995) 
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2.2.5. UV irradiation of eggs-androgenesis 

UV irradiation of eggs was carried out according to Myers et al. (1995a). A 254 

nm UV lamp (Ultra Violet Products, San Gabriel, California) mounted on a camera copy 

stand was used for irradiation. UV treatments were standardised by placing 4 ml of 

unfertilised eggs in a vial with enough filtered water to bring the total volume of eggs and 

water to 14-15 ml. The eggs in water were then poured into a glass Petri dish (75 mm in 

diameter) which was then placed on a stirrer. The distance between the lamp and Petri 

dish was adjusted to provide a dose of 150 uW/cm"2 using a radiometer (Ultra-Violet 

Products San Gabriel, California). 

2.2.6. Application of heat shock 

A 50 1 adjustable temperature water bath (Jencons Scientific Ltd) with a range of 

-20 to +100±0.1°C was used to give a heat shock to fertilised eggs. The water bath 

equipped with a heater and strirrer was filled previously with clean tap water, heated and 

aerated to the required temperature about 30 minutes before use. For extra accuracy a 

calibrated fine mercury thermometer having 0.1°C divisions was used to check the final 

temperature. Fertilised eggs in a Petri dish were transferred directly to a netting tea 

strainer, placed into the water bath, and left for the required duration as per the design of 

the experiment. After completion of the heat shock, the strainer with eggs was 

immediately placed back into water at a temperature of 28±1°C and transferred to the 

incubator. 

65 



2.2.7. Feminisation 

Application of the optimum feminisation treatment of diploid androgenetic 0. 

niloticus was carried out according to Mair and Santiago (1994) by oral administration of 

diethylstilboestrol (DES). The DES-treated food was prepared by the alcohol evaporation 

method, to give a concentration of 1000 mg. kg"' of finely sieved no 2 or 3 food (Table 

2.1) The required amount of DES hormone was weighed and dissolved in ethanol (50 ml 

of ethanol was used per 100 g of food). The dissolved hormone was poured onto the food 

in a fume cupboard and mixed frequently by a spatula to ensure even distribution of the 

ethanol/DES solution. The food was left in a fume cupboard to dry, then stored in airtight 

containers at 4°C in a refrigerator. 

2.2.8. Fish sexing 

The acetocärmine staining method (Guerrero and Shelton, 1974) was used to 

determine the sex of juvenile fish (<2 g size, about 1.5-2 months old). The stain was 

prepared by adding 0.5 g of acetocarmine into 100 ml of 45% acetic acid and was then 

boiled for about 4 minutes in fume cupboard. After cooling, the mixture was filtered 

using a syringe filter (Nalgene, (Europe) Ltd., Herefordshire, UK. ). Fish were killed by 

using an overdose of benzocaine and dissected to take out the tiny thread-like gonads. 

The gonads were then checked under a microscope by placing them individually on clean 

glass slides with a drop of acetocarmine stain and squashing with a cover slip. 
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Examining the urogenital papilla easily differentiated the gender of the fish larger 

than 20-30 g. Male 0. niloticus have a single common posterior opening whereas females 

have separate urinary and oviduct openings (Chervinski, 1983). 

2.2.9. Incubation of eggs and checking survival rates 

Both treated and untreated eggs (control) for all experiments were separately 

incubated (Section 2.2.4.1). The embryos in each batch were checked and counted at four 

development stages: morula 6-8 hours (hrs) after fertilisation (a. f); pigmentation 45-50 

hrs. a. f; hatching 80-90 hrs. a. f, and yolk sac resorption 9-11 days a. f. Survival was 

calculated as: (Number of embryos surviving at a given development stage / total number 

of eggs) x 100. 

2.2.10. Karyological examination for ploidy determination 

Fish metaphase chromosome spreads were prepared from newly hatched or one 

day old post hatched larvae following some minor modification of the original procedures 

described by Kligerman and Bloom (1977), Chourrout and Itskovich (1993) and 

Chourrout (1986). Embryos were placed in a Petri dish containing 0.002-0-005% 

colchicine solution and left for 5-6 hrs at 25°C. Following that, they were transferred to a 

chilled 0.7% NaCl solution and the head and yolk sac removed under a binocular 

microscope using a pair of surgical needles. The dissected tissues were kept in distilled 

water for 8-12 mins then fixed in 3: 1 methanol: acetic acid. Fixing solution containing 

embryonic tissue can be kept from 30 mins up to 6 weeks at 4°C. Embryonic tissues were 
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removed from the fixative and excessive fixative blotted off with tissue. They were then 

placed in a5 mm diameter and 7 mm deep flat-bottomed hole made in a 10 mm thick 

Perpex block, with 2-3 drops of 50 % acetic acid. A3 mm diameter glass rod was used to 

grind the tissue for 1 min. and the cell suspension was then left for 10 min. It was then 

taken up into a capillary tube and dropped from a height of 30-40 cm onto a slide on a hot 

plate (45°C). To make a fine circle from the drop, most of the remaining fluid was sucked 

back into the capillary tube within 8-10 sec. The process was repeated to produce 2 or 3 

rings per slide. After 1 min, slides were removed from the hot plate and air dried before 

staining with Giemsa (prepared in 0.01 M phosphate buffer, pH : 7.0) for 20 min. The 

slides were then rinsed in distilled water to remove excess stain, air dried and placed in 

xylene for 10 min, dried again and finally mounted with DPX (BDH Ltd. ). Chromosome 

spreads were identified around the edge of the circle under X 40 magnification and the 

number of chromosomes counted under X 100 (oil immersion) magnification using an 

Olympus compound microscope. 

2.2.11. Progeny testing and determination of sex ratio 

The sex of diploid androgenetic fish (>20-30 g) was determined by checking the 

urogenital papilla. Progeny testing of putative androgenetic YY males was carried out by 

crossing with an ordinary female while DES treated androgenetic YY neofemales were 

crossed to XX neomales. The sex ratios of the resultant offspring were determined by 

acetocarmine squash (Section 2.2.8). 
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2.2.12. Experimental design of androgenesis in tilapia 

Androgenesis was carried out according to Myers et al. (1995a). Eggs were 

collected in a clean Petri dish by gently stripping ovulated females. Oocyte denucleation 

was accomplished by UV irradiation with a dose of 150µm. cm"2 (Section 2.2.5). Mitotic 

inhibition to "diploidize" haploid androgenetic zygotes was performed using a heat shock 

treatment (Section 2.2.6). Eggs were poured directly into plastic tea strainers immersed in 

a temperature-controlled water bath at 42.5° C. Following treatment, the eggs were put 

back into the incubation system. Incubation temperature was maintained at 28±1°C 

throughout the experiment. All treated, untreated control and UV treated control groups 

were checked and counted at 4 development stages (Section 2.2.9) (Fig. 2.3). 

2.2.12.1. Experimental design for optimisation of UV duration time 

Optimisation of UV duration time was carried out by irradiating 6 batches of eggs 

with UV light for 2,4,6,8,10 or 12 minutes and fertilising with sperm from blond tilapia 

males. This colour pattern was first reported by Scott et al. (1987) and can be used as a 

visual marker to indicate the successful production of the haploid androgenetic fish 

because of a recessive "blond" skin pigmentation marker. A portion of the eggs was 

retained as a control group and fertilised with sperm from the same blond male. Four 

different females and one blond male were used for this experiment. 
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2.2.12.2. Experimental design for optimisation of heat shock duration time and 

minutes post fertilisation time 

To optimise treatment parameters, namely heat shock duration and its application 

time, UV treated eggs were fertilised with milt from a homozygous red tilapia male. Eggs 

were heat-shocked at 23,24,25,26 and 27 minutes after fertilisation for 3 minutes 30 

seconds (3.30 min. ), 3 minutes 45 seconds (3.45 min. ) and 4 minutes (4 min. ) depending 

on experimental design. 

A portion of the irradiated eggs were retained as UV-treated controls and not 

subjected to the heat shock while another batch of non-irradiated eggs was left as the 

diploid control. The UV-treated controls were fertilised with sperm of the same blond 

male in each experiment. A total of 13 wild type female and 6 homozygous red males 

were used for these experiments. The same female and males were used several times but 

in different experiments. 

Blond males were also used to produce diploid androgenetic tilapia for 

preliminary experiments. DNA fingerprinting was used to confirm the androgenetic 

nature of the fish produced from these experiments. 

2.2.13. Statistical analyses 

Since the egg quality of each spawn varied greatly within and between females, 

the survival of each treatment was always calculated relative to the survival of their 

corresponding diploid control group. When the survival rate of the control group was less 

than 30 %, that particular batch of eggs was not included (Myers et al., 1995a). The data 

from the results of morula stages were transformed to arc-sine for statistical analyses and 
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normality was tested by Anderson-Darling Normality test and a test for homogeneity of 

variance applied (Sokal and Rohlf, 1987). Only the results of morula stages were tested 

by one-way ANOVA since they were normally distributed. The other non-parametric 

data for pigmentation, hatching and yolk sac resorption stages, which included many zero 

values, were transformed to square root and tested by the Kruskal-Wallis Test (Sokal and 

Rohlf, 1987; Gardiner, 1997). The results were presented as mean and standard error of 

mean (±SE). One-way ANOVA test was performed for specific female and male effect 

using female and male tag number as factors. All statistical analyses were performed by 

Minitab 9.2 software. 

The sex ratios of androgenetic males and DES treated androgenetic females were 

analysed by a Chi-square test to see whether the sex ratio was statistically different from 

1: 1 sex ratio or from the respective sex ratios in the normal control for that group of fish. 

2.2.14. Extraction of total genomic DNA for fingerprinting 

2.2.14.1. Sample collection, preparation, and digestion 

For extraction of total genomic DNA, blood samples (fresh or frozen) were used. 

Blood samples were collected from the caudal vein of fish using 21-23 g sterile needles 

and syringes containing approximately 1 volume of Cortland's saline for 2 volumes of 

blood sample. After mixing in the syringe, blood samples were transferred into 

autoclaved 1.5 ml microfuge tubes then centrifuged at 1400 g for 2 mins. The supernatant 

was removed and the pelleted blood cells were stored at -20° C. 10µl of fresh or thawed 

blood cells was added to a mixture of 435 µl of TEN buffer (Appendix 1.1) and l0µ1 of 

DNase-free RNase (10 mg. ml-1) in a 1.5 ml sterile microcentrifuge tube and mixed 
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gently. 50 µl of 10 % (w/v) Sodium dodecyl sulfate (SDS) solution was then added and 

the whole mixed again. After 30-60 min. incubation at 37°C, l0µ1 of proteinase K 

(10mg. m1- ') was added to each sample and they were then incubated overnight at 37°C in 

a water bath. 

In order to extract DNA, 500 pl of buffered phenol was added to the digested 

sample, mixed by gently shaking and inverting the tubes 10-15 times. The emulsion was 

centrifuged at 13000 rpm for 10 min. in a microcentrifuge at room temperature. The 

aqueous supernatant was transferred to another sterile 1.5 ml microtube using a 

micropipette and large bore sterile pipette tip to avoid shearing of long stranded DNA. 

The phenol extraction was repeated until the aqueous phase became clear. The aqueous 

DNA solution was extracted twice with 500µ1 of chloroform / isoamyl alchol (24: 1 v: v) 

following the same procedure as above. The aqueous phase from the last extraction was 

transferred to a new sterile microfuge tube and 0.6 volumes of isopropanol were added to 

the tube which was then shaken vigorously to mix. At this stage the DNA pellet was 

generally visible: if not, the tube was kept at -20°C (Maniatis et al., 1982) for 2h or - 

70°C for 30 min. to ensure complete precipitation. The precipitate was then pelleted at 

13000 rpm for 10 min. The supernatant was removed leaving the pellet untouched and 

then the pellet was washed twice with 70 % ethanol (approximately 30 min. between 

washes). The pellets were dried at room temperature and resuspended in 100 pl of TE 

buffer (10 mM Tris-HCI pH8.0,1 mM EDTA) for 1h at 37°C in a water bath and then 

stored at 4°C until further use. 
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2.2.14.2. Quantitation of DNA 

Two methods were used for measuring the concentration of DNA in the samples, 

spectrophotometry and gel electrophoresis. 

2.2.14.2.1. Spectrophotometric determination of DNA 

The concentration and purity of DNA was measured by comparing its optical 

density at 260 nm and 280 nm. The OD value at 260 nm allows estimation of the 

concentration of nucleic acids (DNA and RNA), while the reading at 280 nm determines 

the amount of protein in the same samples. At 260 nm an OD of 1 corresponds to 

approximately 50 pg. ml-' for double stranded DNA, 40 pg. ml-' for single stranded DNA 

and RNA and 20 pg. ml"1 for single stranded oligonucleotides (Maniatis et al., 1982) The 

ratio between O. D. 2601 O. D. 280 gives an estimate of the purity of the extracted nucleic 

acids. The O. D. ratio less than 1.8 indicates unextracted protein with the DNA, whereas a 

ratio higher than 2 shows the presence of RNA. Therefore, the ratio between the readings 

at 260 nm and 280 nm should be between 1.8-2. In the case of contamination with 

protein, Proteinase K was added to 200 pg. ml-' final concentration while in the presence 

of RNA, DNase free RNase A was added to a final concentration of 100 µg. ml-t. After 

the samples were incubated at 37°C for 1 h, one phenol and one chloroform extraction 

were repeated as above. 

Sample preparation for spectrophotometric reading, was done by mixing 5 µl of 

extracted DNA with 995 pl TE buffer, shaking vigorously and incubating at 37°C for 1 

hour. The diluted sample was transferred to a semimicro-UV cuvette (BDH) and I ml TE 

74 



buffer was placed in another cuvette as a reagent blank. The amount of DNA was 

calculated as below; 

[DNA] = O. D. 260 x Dilution factors x 50 =X ugml-' 

2.2.14.2.2. Gel electrophoresis 

A small agorose gel of 80 ml (0.7 %) along with a known standard marker (? 

Hind III) was also run to estimate the amount of DNA. 0.54 g of ultra pure agarose was 

mixed with 77 ml of 1x TBE (Appendix 1.2. ) in a 250 ml beaker, and then heated over a 

Bunsen burner with continuous stirring. 4 µ1 of ethidium bromide (10 mg. ml-t) was added 

to the cooled gel (50-60°C) which was then poured into the gel mould (15 cm x 10 cm). 1 

pg of marker DNA was loaded in one well and the samples into adjacent wells. The gel 

was run at 3-5 V. cm"1 for 2-2.5 h. A UV transilluminator was used for visualisation of the 

DNA in the gel which was then photographed with a Polaroid camera (Polaroid film type 

665). The DNA concentration was determined by comparing the intensity of sample with 

a marker band with similar intensity. Calculation of the proportion of the selected band to 

the total marker weight gave an estimate of the. DNA concentration of the samples. 

2.2.15. Digestion of DNA with restriction endonuclease Hinf I for DNA 

fingerprinting 

Hinf I (Stratagene) restriction enzyme was used to digest 5 µg of each DNA 

sample in a total volume of 100 pl. The required amount of sterile deionised distilled 

water was mixed with 10 p1 of 10 x universal reaction buffer, 10 p1 of spermidine 

75 



trihydrochoride (400mM), 1 pl of acetylated Bovine serum albumin (BSA) (10 mg. ml-1) 

and 5 Vg of the DNA sample in a sterile 1.5 ml microcentrifuge tube and then mixed 

thoroughly by shaking. The restriction enzyme of Hinf I (4 unit pg 1 of DNA) and one 

drop of mineral oil were added to the mixture. The reaction tube was pulse spun and 

incubated at 37°C for 14-16 h. The mineral oil on the top of the sample prevented 

evaporation during incubation. To speed up the working condition, a premix containing 

sufficient 10 x universal reaction buffer, spermidine trihydrochloride, acetylated BSA and 

partial amounts of sterile deionised water can be prepared as a premix solution. After 

aliquoting the premix solution (e. g 50 pl) to the individual tubes, the required amount of 

DNA and restriction enzyme were added and the total volume raised to 100p1 by adding 

sterile water. 

At the end of the incubation period, the reaction tube was pulse spun to collect 

any condensate and 200p1 of TE buffer was added to each tube. 300 µl of buffer- 

equilibrated phenol was added and mixed to stop restriction enzyme activity. Reaction 

mixture tubes were spun at 10000 rpm for 5 min. After transferring the aqueous phase to 

a new sterile microcentrifuge tube, it was re-extracted with an equal volume of 

chloroform : isoamyl alcohol (24: 1). The final aqueous solution was recovered by mixing 

with 1: 50 volume of 5M NaCl solution and precipiting the restricted DNA by adding 

and mixing of 2.5 volumes of 100 % ethanol and holding at -20°C for 2 h. Restricted 

DNA was recovered by centrifugation at 13000 rpm for 15 min. at room temperature to 

obtain the precipitated DNA at the bottom of the tube. The DNA pellet was washed once 

with 1 ml of 70 % ethanol and spun as above. The supernatant was removed by pipetting 

and the DNA pellet was dried in vacuo. 6µl of TE buffer was added to the dried pellet 

which was then incubated at 37°C for 1 h. and stored at 4°C until further use. 
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2.2.15.1. Agarose gel electrophoresis 

The restricted DNA was run in 0.7 % agarose gel (200 ml) which was prepared by 

mixing 1.4 g of ultra pure agarose (Gibco BRL) with 200 ml of 1x TBE buffer in a 500 

ml Erlenmeyer flask and heating the mixture with a Bunsen burner with occasional 

swirling (to ensure even mixing) until no agarose particles could be seen. When the 

agarose cooled to about 50°C the melted agarose was poured into a gel mould (20 cm x 

20 cm) in which a comb with 30 wells was placed. Any bubbles on the surface were 

removed before the gel set. While the gel was cooling and solidifying, restricted DNA 

samples were prepared for loading by mixing with 2 pl of 10 x tracking dye (0.1 % 

bromophenol blue, 40 % Ficoll) and pulse spun to concentrate the samples at the bottom 

of the tube. The gel was immersed in a maxi-gel (Pharmacia LKB) bath containing 2.1 

litres of 1x TBE buffer, covering the gel to a depth of about 1-2 mm. The comb was 

gently removed and any air bubbles trapped in the wells were removed. The samples 

including tracking dye and a suitable size marker (), Hind III) were loaded into the wells 

slowly by using a 10 p1 adjustable micropipette. The gel was run at 1.5 Vcm' for 14-16 

h. until the bromophenol blue had migrated about three-fourths of the gel distance. After 

the gel run was completed, 0.5pg. m1"' ethidium bromide was added into the gel bath and 

shaken gently for 15-20 min. The gel was washed with deionised H2O for 10-15 min., 

placed on a long wavelength UV transilluminator (UVB), and visualised to ensure that 

complete digestion of the DNA had taken place. The migration distance of the marker 

DNA bands was recorded and the gel was photographed using a Polaroid camera. The gel 

was kept at 4°C. 
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2.2.15.2. Southern Blotting of restricted DNA 

Southern transfer of restricted DNA to a non-charged membrane was carried out 

by means of alkaline vacuum blotting (Vacu GeneTM, Pharmacia LKB). The blotting 

system uses a low vacuum pressure to transfer nucleic acids from an agarose gel to a 

transfer membrane. The blotting tray was prepared by washing with deionised water. A 

20 x 20 cm non-charged nylon membrane (Hybond-N, Sartorius Ltd) was pre-wetted with 

deionised water and placed on the pre-wetted porous screen with the shiny side up by 

means of flattened forceps. A plastic mask with a window 5 mm smaller than the 

membrane was then placed to overlap the membrane on all sides by at least 2 mm. Any 

air bubbles beneath the membrane were removed. Four locking clamps tightened the top 

frame of the blotting unit. 

The vacuum pump was checked by observing the disappearance the 10 ml of 

dionised water added on the membrane when the pump was on. The gel from the fridge 

was then placed onto the centre of the membrane starting with one of its edges and then 

gradually slid onto the membrane. The gel was readjusted if required by smoothing the 

gel using a gloved finger in a gentle stroking fashion. The gel and the mask have to 

overlap by at least 2 mm. When there were no gaps between the mask and gel, the pump 

was turned on and enough 0.2 N HCl solution immediately poured onto the centre of the 

gel to just cover it. Acid-alkaline treatment makes the gel stronger and minimises any 

collapse during transfer. When the bromophenol blue dye in the gel just turned yellow 

(20-25 min. ), the HCl solution was pipetted out from the vacuum unit using a5 ml 

automatic pipette. One litre of 0.4 M NaOH solution was immediately poured onto the 

middle of the gel and left for 65-70 min. This step was employed to produce single 
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stranded DNA that would be able to hybridise with the complementary DNA probe. 

While the pump was on, the NaOH solution was poured off and the pump was turned off. 

The well positions were marked with a blunt pencil and the gel was lifted off. The 

membrane was placed into a tray containing 500 ml 2x Standard saline citrate (SSC) 

solution (Appendix 1.3. ) and washed for 10 min. to neutralise the denaturation transfer 

solution and to remove any agorose particles stuck to the filter. The membrane was then 

air-dried at room temperature for 30 min. and finally placed between two sheets of clean 

3 mm filter paper and incubated at 80°C. At the end of the incubation period, the 

membrane was stored at room temperature until further use. 

2.2.15.3. Hybridisation of Southern blot membrane with non-Isotopic 

Chemiluminescent Enhanced (NICETM) Probe (33.15) 

Four steps (pre-washing, pre-hybridisation, hybridisation and post-hybridisation 

washing) were employed to hybridise the NICETM probe 33.15 (Cellmark Diagnostic) to 

transferred single stranded DNA fragments. 

2.2.15.3.1. Pre-washing 

The membrane was wetted by putting it in a clean tray containing 250 ml of 1x 

SSC solution and placed into a hybridisation canister with the DNA side inwards. Air 

bubbles were squeezed out by rolling a pipette along the canister and 50 ml of pre-wash 

solution (0. IxSSC, 0.5 % SDS) prewarmed to 65°C was added. The canister containing 

the membrane and pre-wash solution was placed in a hybridiser (HB-1, TechNe) and left 
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for 1h at 65°C. Any agarose and/or other particles stuck to the membrane which might 

cause unwanted background during hybridisation would be removed by this stage. 

2.2.15.3.2. Pre-hybridisation 

Following pre-washing the canister was removed from the hybridiser, the pre - 

wash solution poured off and replaced by 50 ml of prewarmed (50°C) pre-hybridisation 

buffer (990 ml. l"' of 0.5 M Na2HPO4,10 ml. l-' of 10 % SDS). The canister was put back 

into the hybridiser and left for 20 min. at 50°C. 

2.2.15.3.3. Hybridisation 

20 ml hybridisation buffer (stock solution: 900 ml. 1-1 of pre-hybridisation buffer 

and 100 ml of 10 % w/v casein solution) were prepared and pre-warmed to 50°C in a 

sterile universal (BDH). Just before replacing the pre-hybridisation buffer, 5 p1 of 

NICETM probe 33.15 was added to the hybridisation buffer and mixed gently. The pre- 

hybridisation solution was discarded and replaced with hybridisation solution containing 

the probe. The hybridisation step was carried out for 20 min at 50°C. 

2.2.15.3.4. Post-hybridisation washing 

The filter was rinsed twice for 10 min. each at 50°C with 50 ml of wash solution 1 

(160 ml-1-1 of 0.5 M Na2HPO4, pH 7.2; 10 ml. 1'' of 10 % SDS) pre-warmed to 50°C. 

Finally, the membrane was washed twice with 50 ml of wash solution 2 (13.8 g. l-' of 
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maleic acid, C4H3O4Na; 8.7 g. 1-' of NaCl, pH 7.2) for 5 min. at room temperature. The 

membrane was then removed from the canister and placed with the DNA side up on a 

clean glass plate. Approximately 3-4 ml of Lumi PhosTM 350 (Cellmark Diagnostics) was 

sprayed evenly over the membrane by means of a spray gun (BDH). The sprayed 

membrane was then sandwiched between two 21 x2 l cm acetate sheets and any excess 

Lumi PhosTM 350 squeezed out by rolling a pipette, avoiding contaminating the outer 

surface of the acetate sheets. 

2.2.15.4. Autoradiography 

The sandwiched membrane was trimmed with a sterile, sharp scalpel to fit the size 

of the 18x24 cm light proof Hypercassette. Each edge of the membrane was secured by 

using small pieces of sticky tape. The membrane was placed in an X-ray cassette and a 

sheet of autoradiography film (Hyperfilm MPTM, Amersham) was then laid on it in a dark 

room. The right-top hand corner of the film was marked with a waterproof pen. The 

cassette was firmly closed and kept in an incubator at 30°C for at least 6 h. and then 

developed. Another sheet of film was then placed on the membrane in the dark room and 

kept in the incubator at 30°C for another 12 h. At the end of exposure time, the film was 

developed with continuous agitation in D 19 developer (Kodak) until the bands were seen. 

The film was then removed from the developer and transferred to X-ray fixer (Kodak) for 

1-2 min. The fixed film was washed in running water for 10-15 min. The autoradigraph 

was then air dried and kept at room temperature. 
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2.3. Results 

2.3.1. Optimisation of UV treatment duration 

The effect of UV exposure for 2,4,6,8,10 and 12 min on the percentage of morula, 

the percentage of pigmented and unpigmented embryo and the percentage of abnormal 

embryos in the presumptive haploid "blond" androgenetic Nile tilapia are presented in Table 

2.4. and Fig. 2.4. All measurements are in relation to untreated controls. 

At morula stage, all the levels of fertilisation of treatment groups and control were 

quite similar and there were no significant differences between them (P>0.05). As can be 

seen in Fig. 2.4 A, the fertilisation levels decreased with increased UV exposure time. 

At pigmentation stage, the survival of averaged pigmented (38.29±1.18 %) and 

unpigmented embryos (39.56±0.97), were not significantly different in the control group 

indicating that the females used in these experiments were heterozygous for the blond locus. 

For 2 and 4 min UV duration time, pigmented embryos were observed at a survival rate of 

5.51±1.93 % and 0.22±0.22 %, respectively. Although the highest survival of unpigmented 

embryos (46.03±13.6 %) was obtained for 2 min UV duration time, these treatments 

contained pigmented embryos showing only partial success with oocyte denucleation. 6 min 

UV exposure time with a survival rate of 18.53±5.3 % provided the best survival amongst 

the treatments giving only blond embryos. The survival rates of the treatment groups 

declined with increasing UV exposure times. 

At hatching stage, there were no significant differences between normal developed 

pigmented and unpigmented embryos with a survival rate of 32.14±1.08 % and 35.48±2.10 

%, respectively, in control group (P>0.05). In the 2 min treatment group, survival rates of 
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Figure 2.4. Percentage of embryos observed at morula (A), pigmentation (B) and hatching 
(C) of presumptive "blond" androgenetic haploid Nile tilapia, 0. niloticus, (% relative 
to the diploid control) subjected to 150 iWcm-`' intensity. 
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1.01±1.01 %, 1.52±1.52 % and 3.24±2.24% were observed in normally developed pigmented 

and unpigmented embryos and abnormal embryos, respectively. Only abnormal embryos 

were produced in 4,6 and 8 min treatments while 10 and 12 min UV duration time did not 

result in any hatched embryos. There were no significant differences between treatments in 

terms of abnormality (P>0.05). None of the UV treated embryos, including pigmented 

embryos, in the 4,6,8,10 and 12 min treatments survived more than a few days post- 

hatching. 

Analysis of some of the embryos by karyological examination (Fig. 3.1) showed a 

typical single set of chromosomes (n=22: Majumdar and McAndrew, 1983b). 

2.3.2. Optimisation of post-fertilisation, heat shock start and duration time using eggs 

subjected to 6 minutes UV exposure 

The results of optimisation of UV exposure time showed that 6 min treatment is the 

most effective in inducing oocyte denucleation. Therefore optimisation of heat shock 

duration time (3.30 min, 3.45 min and 4 min) and application time (25 and 27 m. a. f. ) were 

tested by applying 6 min UV exposure time to eggs to produce diploid androgenetic tilapia. 

Mean (±SE), minimum and maximum survival rates (relative to controls) to pigmentation 

and hatching stages of presumptive androgenetic red tilapia subjected to 6 min UV duration 

time and various thermal shocks applied various times after-fertilisation are depicted in 

Table 2.5. and Fig. 2.5. No significant differences were found between treatment parameters 

of 25 and 27 m. a. f and 3.30 min, 3.45 min and 4 min heat shock duration time at 

pigmentation stage (P>0.05). The highest survival of 2.14±2.14% was obtained in the group 

of 3.45 min heat shock duration time applied 25 m. a. f. at pigmentation. Only the group of 25 
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Table 2.5. Minimum, maximum and mean (±SE) survival (%relative to the diploid controls) 

to pigmentation and hatching stages of presumptive diploid androgenetic Nile tilapia, 

0. niloticus, subjected to 6 minutes prefertilisation UV duration time and thermal 

shock duration at 42.5°C at various times after-fertilisation. Common superscripts in 

the same column indicate means which are not significantly different. n: number of 

replicates. 

Minutes Heat shock n 
after-fertilisation duration time 

25 3 min 30 sec 4 

25 

25 

27 

27 

3 min 45 sec 4 

4min 4 

3min30sec 4 

3 min 45 sec 4 

27 4 min 4 

Pigmentation Hatching 

Mean 1.23±1.23a 0.6110.61 
Min. 0.00 0.00 
Max. 4.92 2.43 

Mean 2.14±2.14a 0.00 
Min. 0.00 0.00 
Max. 8.56 0.00 

Mean 0.85tO. 85a 0.00 
Min. 0.00 0.00 
Max. 3.41 0.00 

Mean 0.52t0.52a 0.00 
Min. 0.00 0.00 
Max. 2.10 0.00 

Mean 1.05±1.05a 0.00 
Min. 0.00 0.00 
Max. 4.20 0.00 

Mean 0.00 0.00 
Min. 0.00 0.00 
Max. 0.00 0.00 
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Figure 2.5. Average survivals (% relative to the diploid controls) of presumptive diploid 

androgenetic Nile tilapia, 0. niloticus, embryos to pigmentation and hatching stage 

subjected to 6 minutes UV irradiation time and various heat shock times after 

fertilisation and durations. 

m. a. f. at pigmentation. Only the group of 25 m. a. f heat shocked for 3.30 min hatched with a 

survival rate of 0.61±0.61 %. No embryos reached yolk sac resorption stage. 
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2.3.3. Optimisation of post-fertilisation heat shock start and duration time, using eggs 

subjected to 5 minutes UV exposure 

As a result of the lack of production of viable diploid androgenetic red tilapia to yolk 

sac stage using 6 min. UV treatment of eggs, 5 min UV duration time was applied in another 

series of trials to optimise heat shock duration time for 3.30 min, 3.45 min and 4 min and 

application time at 23,24,25,26 and 27 m. a. f. Due to the limited number of eggs obtained 

from single spawns only 3.30 min heat shock duration time was conducted at 23,24,25,26 

and 27 m. a. f. for morula stages. Mean fertilisation levels (relative to controls) to morula 

stage of presumptive diploid androgenetic tilapia subjected to 3.30 min shock 23,24,25,26 

and 27 m. a. f. are given in Table 2.6. and averaged results showing the effects of treatment 

parameters on fertilisation levels are presented in Fig. 2.6. All the survivals of treatment 

groups, their respective controls and haploid controls were almost equal and not significantly 

different (P>0.05). The highest fertilisation level of 96.62±2.54 % was obtained in the 

haploid control group while the lowest fertilisation level of 84.14±9.41 % was found when 

the denucleated eggs were subjected to a 3.30 min heat shock at 24 m. a. f. A maximum 

fertilisation level of 99.64 to 100 % was observed in some experiments in all treatment 

groups. 

Before giving the results of optimisation treatments for pigmentation, hatching and 

yolk sac stages, it is convenient to begin by first explaining the experimental design to 

emphasise the reason for the different heat shock durations applied at different times. 

Because of the limited number of eggs not all treatment parameters could be tested on the 

same batch of eggs, only a few treatment parameters could be tested per experiments on UV 

treated eggs. The most effective heat shock duration and application times to induce diploid 
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Table 2.6. Mean (±SE) fertilisation levels (% relative to the diploid controls) to morula stage 

of presumptive diploid androgenetic Nile tilapia, 0. niloticus, subjected to 5 minutes 

UV exposure time and thermal shock duration of 3 min 30 sec at 42.5°C at various 

times after-fertilisation. Common superscripts in the same column indicate means 

which are not significantly different. n: number of replicates. 

Minutes after-fertilisation n Morula 

Control 4 Mean 94.22±1.82a 

Min. 89.89 
Max. 98.29 

Haploid Control 4 Mean 96.62±2.54a 
Min. 90.54 
Max. 100 

23 4 Mean 88.28±6.70a 
Min. 76.04 
Max. 100 

24 4 Mean 84.14±9.41 a 
Min. 63.02 
Max. 100 

25 4 Mean 92.84±4.73a 
Min. 79.63 
Max. 100 

26 4 Mean 90.73±5.40a 
Min. 78.48 
Max. 100 

27 4 Mean 85.58±5.36a 
Min. 73.75 
Max. 99.64 
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Figure 2.6. Average morula (% relative to the diploid controls) of presumptive androgenetic 

Nile tilapia, 0. niloticus, embryos subjected to 5 minutes UV irradiation time and 3 

min 30 sec heat shock duration time at various times after-fertilisation time (H. Con: 

haploid control). 

androgenetic tilapia were reported to be between 3-4 min at 42.5°C and 25-27.5 min by 

Myers et al. (1995a). Therefore, most of the experiments were conducted in these windows. 

The mean (±SE), minimum and maximum survival rates (relative to controls) to 

pigmentation, hatching and yolk sac resorption stages of presumptive red androgenetic 

tilapia subjected to various heat shock duration times at various times after fertilisation are 

given in Table 2.7. and averaged survivals are presented graphically in Fig. 2.7. At 

pigmentation stage, peak survivals of 10.69±2.24 %, 11.14±4.54 % and 7.91±1.90 % were 

obtained in the treatment of 25,26 and 27 m. a. f. for 3.30 min heat shock duration time, 

respectively, and they were significantly differed from the other treatment groups (P<0.05). 
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Table 2.7. Mean (±SE) survival (%relative to the diploid controls) to pigmentation, hatching 
and yolk sac stages of presumptive androgenetic Nile tilapia, 0. niloticus, subjected to 
5 minutes UV irradiation and various thermal shock duration after various times after- 
fertilisation. Common superscripts in the same column indicate means which are not 
significantly different. n: number of replicates. 

Minutes 
after-fertilisation 

Heat shock 
duration time 

n Pigmentation Hatching Yolk sac 
resorption 

Control - 32 Mean 55.47±2.65 46.93±4.53 42.02±4.53 
Min. 31.45 24.71 24.47 
Max. 89.97 78.93 60.47 

Haploid Control - 32 Mean 24.58±3.52 1.67±0.58 0.00 
Min. 0.00 0.00 0.00 
Max. 80.35 10.76 0.00 

23 3 min 30 sec 4 Mean 0.39±0.258 0.00a 0.00a 
Min. 0.00 0.00 0.00 
Max. 1.04 0.00 0.00 

24 3 min 30 sec 4 Mean 0.69±0.51' 0.00 a 0.00 a 
Min. 0.00 0.00 0.00 
Max. 2.17 0.00 0.00 

25 3 min 30 sec 32 Mean 10.69±2.24b 2.03±0.60b 0.07±0.078 
Min. 0.00 0.00 0.00 
Max. 50.63 11.71 2.34 

25 3 min 45 sec 13 Mean 2.53±1.48a 0.50±0.50a 0.00 a 
Min. 0.00 0.00 0.00 
Max. 18.96 6.56 0.00 

25 4 min 9 Mean 0.80±0.438 0.10±0. IOa 0.00 a 
Min. 0.00 0.00 0.00 
Max. 3.82 0.89 0.00 

26 3 min 30 sec 14 Mean 11.14±4.54b 1.17±0.73b 0.03±0.03a 
Min. 0.00 0.00 0.00 
Max. 58.27 10.36 0.35 

27 3 min 30 sec 28 Mean 7.91±1.90bb 1.21±0.53b 0.03±0.03a 
Min. 0.00 0.00 0.00 
Max. 32.88 11.86 0.72 

27 3 min 45 sec 9 Mean 0.81±0.508 0.00 a 0.00 a 
Min. 0.00 0.00 0.00 
Max. 4.17 0.00 0.00 

27 4 min 9 Mean 1.40±0.84' 0.18±0.128 0.00 a 
Min. 0.00 0.00 0.00 
Max. 7.77 2.34 0.00 
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Figure 2.7. Average survivals (%relative to the diploid controls) of presumptive diploid 

androgenetic Nile tilapia, 0. niloticus, embryos to pigmentation, hatching and yolk sac 

stage subjected to 5 minutes UV irradiation and various heat shock durations at various 

times after-fertilisation. 

The survivals to pigmentation stage varied from zero for all treatment parameters to a 

maximum of 58.27% for 26 m. a. f. for 3.30 min heat shock duration time. Although high 

survival rates were obtained at the pigmentation stage, survival rates decreased sharply by 

hatching stage. 

There were significant differences between the treatment of 25,26 and 27 m. a. f for 3. 

30 min heat shock duration time and the other treatment groups (P<0.05) at hatching stages. 

The highest survival of 2.03±0.60 % was observed in the group of 25 m. a. f heat shocked for 
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3.30 min. Late heat shocks of 25,26 and 27 m. a. f. resulted in increased survival rates while 

heat shocks of 23 and 24 m. a. f resulted in no survival. 

At yolk sac resorption stage, low survival rates of 0.07±0.07%, 0.03±0.03% and 

0.03±0.03% were obtained in the group of 25,26 and 27 m. a. f. heat shocked for 3.30 min, 

respectively. The maximum survival of 2.34% was observed for 25 m. a. f. and 3.30 min heat 

shock duration time in only one experiment. There were no significant differences between 

the survival rates of any treatment group (P>0.05). 

The specific female used did have a significant effect on the percentage of 

androgenetic tilapia for all stages (P<0.05) but the male used in each cross did not have a 

significant effect (P>0.05). 

2.3.4. Effect of egg quality 

The survival rates of haploid controls subjected to 5 min UV-irradiation (Fig. 2.8 A) 

and a diploid treatment group subjected to heat shock at 42.5°C for 3.30 min at 25 m. a. f 

(Fig. 2.8 B) were plotted against their respective controls and the trend lines were compared 

to examine the effect of egg quality on the survival rates of androgenetic haploid and diploid 

tilapia. The regression analyses showed that there was no significant relationship between 

control and haploid control survivals (correlation coefficient (r)=0.335, P>0.05) and between 

control and treatment group survivals (r=0.294, P>0.05). 
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Fig. 2.8. Plotted survival rates and fitted trend lines of androgenetic haploid controls 

subjected to 5 min UV irradiation (A) and a diploid androgenetic treatment group 

subjected to a heat shock at 42.5°C for 3 min 30 sec at 25 m. a. f. (B) against their 

respective diploid controls. (H: Haploid). 

2.3.5. Verification of all-paternal inheritance by multilocus DNA fingerprinting 

The multilocus DNA fingerprinting generated by using Jeffrey's 33.15 probe 

confirmed success in the production of diploid androgenetic tilapia. Fig. 2.9 showed that all 
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Figure 2.9. Scanned image of DNA fingerprinting of androgenetic tilapia. Lane 1: unrelated 
control, Lane 2 and 13: mother, Lane 3 and 14: father, Lane 4-12: androgenetic 
offspring, Lane 15 and 18: control. For information on bands labelled a-g see text. 
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putative androgenetic tilapia have only paternal bands and there were no maternal specific 

bands (a and b). The analysis of segregation of some paternal bands among the androgen 

shows that there are some bands which are present in some progeny but not in the others 

(band c in progeny 6,7 and 12; band d in progeny 4,5,8,9,10,11 and 12; band e in 

progeny 11 and 12; band f in progeny 4,5,6,8,9,10,11 and 12 and band g in progeny 11 

and 12). The segregation of these paternal bands presumably results from heterozygosity in 

the male parent. 

2.3.6. Sex and colour segregation of androgenetic tilapia, 0. niloticus 

The sex and colour segregation of all androgenetic red and blond tilapia produced in 

these experiments are presented in Table 2.8. 

Table. 2.8. The sex and colour segregation of all androgenetic tilapia, 0. niloticus, produced 
in these experiments. The progeny testing for coloration was performed by crossing 

each androgenetic tilapia and their respective parents to wild type males or females 

tilapia. (BB and rr: Wild type; bb: Blond; RR: Red). Two DES-treated females were 

not included since their genotype was unclassified (see Table 2.10. ). 

Mother Father Androgenetic offspring 
Tag no. Tag no. Male Female 

006275872(BB) 000362121(bb) 

011020109(BB) 000362121(bb) 

088 849 001(rr) 01 1 007 120(RR) 

014 798 273(rr) 

015 299 071(rr) 

014 300 201(RR) 

013 555 839(RR) 

11(bb) 16(bb) 

1(bb) 0 
2(RR) 1(RR) 

1(RR) 1(RR) 
0 1(RR) 

Total 15 19 
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A total of 29 blond and 7 red androgenetic tilapia were produced and assessed at the 

age of 4 months during these experiments. The pooled sex ratio of 15 male: 19 female from 

all androgenetic tilapia (excluding unclassified DES-treated androgenetic females of 015 314 

792 blond and 015 314 792 red tilapia, see Table. 2.10. ) were not significantly different from 

1: 1 expected ratio (P>0.05). Progeny testing for red or blond genotypes was performed by 

crossing each androgenetic male, female and their respective parents to wild type (rr or BB, 

respectively) male and female tilapia. The progeny of blond androgenetic tilapia were all 

wild type while the progeny of red androgenetic tilapia were all red but with heavy black 

blotching as expected. 

Table 2.9. shows the result of progeny testing of total 14 blond and red androgenetic 

male crossed to ordinary wild type female (XX) tilapia. With the exception of one 

androgenetic male (013 620 833) tilapia which showed 84% male progeny, all of the other 

androgenetic male tilapia produced 100% male progeny. Highly significant differences were 

found in the sex ratios of all androgenetic males tilapia from expected 1: 1 ratio indicating 

that all androgenetic males had the YY genotype. Their respective controls did not show 

significant differences from 1: 1 ratio (P>0.05). 

Feminisation of red and blond androgenetic tilapia to produce YYRR and YYbb 

neofemales was not successful. A total of 30 blond and 3 red androgenetic tilapia were 

treated with DES but the survival rate was very low during and after the feminisation period. 

At the age of 4 months, only 2 blond and 2 red DES-treated androgenetic tilapia survived. 

The result of progeny testing of these fish in crosses to a XX neomale is presented in Table 

2.10. Two of the DES-treated androgenetic tilapia did not produce any viable eggs although 
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Table 2.10. Progeny test results of sex reversed androgenetic red and blond females of 0. 

niloticus and their respective control. Androgenetic females were crossed to an XX 

neomale and sex ratios were compared to a 1: 1 expected ratio. Androgenetic females 

(XX) were denoted as those producing sex ratios significantly different from a 1: 1 

ratio. (M: Male, F: Female, RR: Red, bb: Blond, ***P<0.001; t: No viable eggs were 

obtained) 

DES-treated androgenetic females Number of progeny Proposed genotype 
(Tag no) MF %F x2 

014 312 864 0 15 100.0 15.00*** XX(bb) 

015314792t 

000 610 589 0 18 100.0 18.00*** 

9 

XX(RR) 

015314792t ---- 

they had a female phenotype. The other 2 DES-treated androgenetic tilapia were designated 

as normal females (XX) as these fish yielded all female progeny, significantly different from 

1: 1 ratio (P<0.001). The XX neomale used in these experiments was previously tested by 

crossing to an ordinary female (XX), which produced 90% female progeny, significantly 

different from a1: 1 ratio showing that this male had an XX genotype. 
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2.4. Discussion 

The present studies indicate that UV irradiation was successfully inactivating the 

nuclear DNA in Nile tilapia eggs. The yields of viable denucleated eggs to pigmentation 

stage varied between 0 to 85.35 % (relative to the controls) with a mean of 24.58±3.52 and 

4.76 to 30.52 % (relative to the controls) with a mean of 18.53±5.3 % for 5 and 6 min UV 

duration time total dose of 450-540 Jm"2, respectively. The yield is comparable with that of 

22.9±1.6 % in Nile tilapia (Myers et al., 1995a), 22% in loach (Arai et al., 1995) and 

22.5±2.8 % in muskellungen, Esox masquinongy (Lin and Dabrowski, 1998). In common 

carp, an optimal dose of 2500Jm-2 produced 53.9 % surviving haploids at hatching as well as 

a few biparental diploids (Bongers et al., 1994). Bongers et al. (1995) were able to produce 

higher numbers of androgenetic haploids (81% to hatching, relative to control) in African 

catfish using an optimum UV dose of 1250 Jm 2. Arai et al. (1995) successfully produced 22 

% hatched androgenetic haploids in loach with a dose of 750 Jm"Z. The yield of haploid 

androgenetic muskellunge was 22.5±2.8 % with optimal UV irradiation doses of 620-1320 

im -2 (Lin and Dabrowski, 1998). Marengoni and Onoue (1998) obtained survival rates of 

57.6% & 55.8% and 57.1 %& 56.0% (relative to controls) in androgenetic haploid O. aureus 

and O. niloticus, respectively, at total UV dose of 594 and 693 Jm 2, respectively. 

By using the recessive "blond" skin pigmentation character in spermatozoa, it was 

possible to assess whether oocyte denucleation was successful. All haploid embryos showed 

non-pigmentation under optimal UV irradiation of 5-8 minutes whereas 2 min and 4 min UV 

irradiation produced some pigmented embryos. The blond colour variant was also used 

successfully by Myers et al. (1995a) in the production of androgenetic haploid tilapia and 

they also observed some pigmented embryos in the same UV irradiation treatments as the 
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present study. Pigmented embryos were observed in the 2 and 4 min UV treatments and 

blond embryos showed aberrant development. Therefore, to ensure that host eggs are totally 

denucleated, the UV treatment should be at least 5 min to 8 min at 150 pWcm"2 or a total 

dose of between 450 Jm-2 and 720 Jm 2. Myers et al. (1995a) reported that variable 

sensitivity to UV irradiation from species to species could be explained by differences in the 

thickness, composition and optical qualities of egg chorion, egg size and shape, and the 

relative position of the female pronucleus. 

After establishing the optimal UV irradiation time (5 min at 150 pwcm 2 or 450 Jm 

2), diploid androgenetic red tilapia were obtained using a heat shock at 42.5°C for 3.30 min 

duration to inhibit the first mitotic division. The results of the present study demonstrate that 

androgenetic diploids can be produced in red Nile tilapia, although the percentage was 

extremely low. The survival rate reduced as development progressed (92.8414.73 % to 

morula, 10.69±2.24 % to pigmentation, 2.03±0.6 % to hatching and 0.07±0.07 % to yolk sac 

resorption stage (relative to diploid controls) under optimal treatment parameters. Such poor 

viability was not surprising for androgenetic diploids as it was similar to that of mitotic 

gynogenetic diploids and tetraploid fish obtained by suppression of the first cleavage by 

physical shocks. Summary of survival rates of androgenesis and mitotic gynogenesis 

research is presented in Table 2.2 (page 41). 

The reason for low survivals during the production of androgenetic diploid fish can 

be attributed to several factors. Firstly, radiation can induce structural chromosome 

aberrations which increase the dispersion of cellular DNA in proliferating cell populations 

(George et al., 1991). The proportion of cells containing damaged chromosomes increases as 

embryos grow. Most of the chromosome aberrations arise directly after irradiation and may 
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be transmitted from cell to cell during the subsequent cleavage. Such aberrations exhibit a 

characteristic shape resulting from the breakdown of chromosome bridges, and have become 

known as "bridge fragments" (Pankova, 1965: cited in Egan-ii and Ijiri, 1979). Radiation- 

induced chromosome damage has been suggested as the cause of an increase in intercellular 

variations in DNA content (George et al., 1991). The effects of UV irradiation on eggs has 

been discussed by various authors. Firstly, it was suggested that the inactivation of maternal 

genomes and partial fragmentation of chromosomes did not prevent them from being 

involved in mitotic division (Lin and Dabrowski, 1998). They reported chromosomal 

fragments in some cells of abnormal larvae irradiated at 660 Jm 2 although the nuclear DNA 

content of haploids from groups irradiated at more than 660 Jm 2 did not differ from half the 

DNA content of control fish. DNA fragments, probably of maternal chromosome residues, 

were found in haploid androgenetic loach after UV inactivation of eggs (Arai et al., 1992). 

Gillespie and Armstrong (1980) and Bongers et al. (1994) reported biparental diploids at the 

optimal UV dose to inactivate the female genome. This suggested that genetic contributions 

of the female may not be fully eliminated and possible maternal nuclear DNA fragments may 

be involved up to mitotic division (Carter et al., 1991). Bongers et al. (1995) suggested that 

UV irradiation might damage the maternal RNA in eggs, which is essential for the 

development up to the blastula stage, and thus affect the differentiation process of embryonic 

development by altering cell fates and lineages. On the other hand, Myers et al. (1995a) 

reported that egg mtDNA in tilapia, analysed with ultraviolet endonuclease was not affected 

by doses of UV irradiation high enough to denucleate the eggs and suggested that UV 

irradiation had relatively little impact on the eggs beyond nuclear inactivation. Higher 

survival rates for androgenetic diploids produced using spermatozoa of artificial tetraploids 
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spermatozoa of artificial tetraploids have been reported in rainbow trout (Thorgaard et al., 

1990). They suggested that the radiation treatments to inactivate the maternal DNA in 

androgenesis are not an overwhelming obstacle to good survival. Parsons and Thorgaard 

(1984) found that androgenetic haploid and gynogenetic haploid rainbow trout showed 

similar survival rates, also suggesting that egg irradiation alone may not be responsible for 

excessive mortality. In the present study, in some experiments high survival to pigmentation 

stage (80.35 % for 5 min UV duration time and 30.52 % for 6 min UV duration time) were 

observed and the results agreed with those of Myers et al. (1995a), Thorgaard et al. (1990) 

and Parsons and Thorgaard (1984) suggesting that UV irradiation is not the only cause of 

reduced viability in androgenesis in tilapia. 

Secondly, it was suggested that the low diploid androgenetic yield might be the result 

of deleterious effects of physical shocks to inhibit first mitotic division (Gillespie and 

Armstrong, 1981; Scheerer et al., 1986; Thorgaard et al., 1990; Masaoka et al., 1995). 

Chromosomal changes such as terminal deletion, exchange type aberration, inter- or intra- 

arm exchange or inter-chromosome exchanges through rapid cell cycles caused by 

hydrostatic pressure treatment at the first cleavage were reported in gynogenetic salmon 

(Yamazaki and Goodier, 1993) and in gynogenetic loach (Suwa et al., 1994; Masoka et al., 

1995). These changes are similar to those induced by irradiation (Yamazaki and Goodier, 

1993; Yamazaki et al., 1989), ageing or interspecific hybridization (Yamazaki et al., 1989). 

Deleterious mitotic aberrations, associated with microtubules and centrioles that are affecting 

the structure and orientation of spindle fibres and poles were observed in fertilized eggs 

subjected to optimum heat shock treatments for the induction of mitotic gynogenesis 

(Garcio-Abiado, 1995). Chourrout, (1987) suggested that inhibition of first mitosis may 
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double the initial number of fragments, which may severely reduce survival. In the present 

study low survival rates of diploid androgenetic tilapia sharply decreased from 10.69±2.24 % 

in pigmentation stages to 0.07±0.07 % (relative to the controls) in yolk sac stage under 

optimal conditions (heat shock for 3.30 at 42.5°C at 25 m. a. f), suggesting that low viability 

may be brought about by deleterious effects of heat shock treatment affecting aspects of 

zygote and blastula development rather than karyokinesis. Deleterious effects of heat shock 

treatment may possibly be more harmful at a later stage of development. Additionally, based 

on the hypotheses of Markert (1982), homozygosity of androgenetic progeny may cause 

inviability through disruption of topographic interaction of chromosome of the interphase 

nucleus. According to Markert (1982), the highly ordered sequence of gene programs in cell 

differentiation and embryonic development may require a correspondingly precise 

topographic interaction of chromosomes in the interphase nucleus. The author claimed that 

such topography would be affected by homozygosity, by aneuploidy, by hybridization and 

by structurally rearranged chromosomes such as produced by translocations, inversions or 

duplications and thus interfere with the normal timing and levels of gene transcription during 

embryonic development. 

Thirdly, inbreeding depression arising from homozygosity of deleterious alleles was 

suggested for the low viability of androgenetic progeny (Gillespie and Armstrong, 1981; 

Scheerer et al., 1986,1991; Bongers et al., 1994) as well as mitotic gynogenetic progeny 

(Yamazaki and Goodier, 1993). However studies of gynogenesis and androgenesis with 

inbred parents have given conflicting results. Komen et al. (1992a) reported that 

homozygotic male parents yielded significantly more normal and fewer deformed 

gynogenetic carp fry than heterozygous males. Streisinger et al. (1981) found greatly 
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improved survival among the gynogenetic progeny of homozygous diploid gynogenetic 

zebra fish. Higher survivals of androgenetic carp were reported using homozygous males 

(Bongers et al., 1994). On the other hand, Scheerer et al. (1986,1991) could not improve the 

survivals of androgenetic rainbow trout by using an inbred sperm source. Gillespie and 

Armstrong (1981) also found no significant improvement in survival among the androgenetic 

offspring of an androgenetic diploid male axolotl. 

Finally, specific female effects on variable survival rates of androgenetic and mitotic 

gynogenetic fish were reported by several authors (Lou and Purdom, 1984; Nagy, 1987; May 

et al., 1988; Komen et al., 1991; Diter et al., 1993; Bongers et al. 1994 and 1995; Myers et 

al., 1995a). Quillet et al. (1991) argued that genetic factors specific to females could 

contribute to the viability of their homozygous progenies and thus interfere with the 

determination of the actual efficiency of treatment as far as survival is concerned. In the 

present study, a significant female, but not male effect was found on the survival of 

androgenetic tilapia suggesting that great differences exist between egg batches of certain 

females in their susceptibility to the UV and diploidization treatment. A similar observation 

was reported by Myers et al. (1995a) who claimed that it is necessary to select broodstock 

suitable for producing "host" eggs under a specific UV exposure protocol. 

It is worth mentioning that a constant incubation temperature during the period 

between fertilization and starting the shock is also vital so that each batch of eggs receives 

the shock at the same development stage since a small change in base temperature affects the 

developmental rate and thus the biological timing of the onset of the shock. 

Although very low survival (0.07 % to yolk sac resorption stage, relative to the 

controls) was obtained during the experiment of optimization of treatment parameters to 
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induce diploid androgenetic red tilapia under the optimum UV exposure time of 5 min, in 

one preliminary experiment, a very high survival rate of 22 % (relative to the control, to first 

feeding stage) was obtained for diploid blond androgenetic tilapia using 4.5 min UV 

exposure time and 4 min heat shock applied at 27 m. a. f. It is not easy to give a definite 

explanation but a strong female specific effect could be responsible for this phenomenon. 

Multilocus DNA fingerprinting was successfully used to verify all-paternal 

inheritance. It has been shown that the hypervariable 33.15 DNA probe (Jeffreys et al., 1985) 

can be used to produce individual-specific DNA fingerprints from tilapia. The DNA 

fingerprint result showed relatively low variability. Carter et al. (1991) reported similar 

observations and naturally low levels of variation or inbreeding under laboratory conditions 

were suggested as reasons for low variability. The application of the DNA fingerprinting 

technique for verification of all-paternal inheritance in androgenesis is more clearcut than 

verification of maternal inheritance since it is difficult to distinguish meiotic and mitotic 

gynogenetics (Carter et al. 1991; Sarder, 1998). A number of DNA probes are now available 

and each of them has potential to produce individual specific DNA profiles. DNA 

fingerprinting techniques have been successfully used to confirm all paternal inheritance 

(Nagoya et al., 1996; Sarder, 1998) and all maternal inheritance (Carter et al., 1991; Han et 

al., 1992; Takagi et al., 1995; Eenenaam et al., 1996; Young et al., 1996; Corley-Smith et 

al., 1996; Sarder, 1998). 

The results of progeny testing of androgenetic males supported the viability of "YY" 

male in blond and red tilapia. The viability of "YY" males in fish appears to vary between 

species. The progeny testing of androgenetic rainbow trout males showed the viability of YY 

males as well as the occurrence of XX males which might reflect autosomal genes or 
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environmental influences affecting sex determination (Parsons and Thorgaard, 1985; 

Scheerer et al. 1991). The percentage of male offspring of androgenetic red and blond males 

crossed with wild type females was 100 % (for 13 males) and 84 % (for 1 male) and 

significantly differed from the expected sex ratio (1: 1) (P<0.01-0.001) in the present study. 

The occurrence of 16% females could be explained by other genetic sex-modifying factors 

or/and environmental effects on sex determination. Although female homogamety and male 

heterogamety were proposed by using gynogenetic technique in Nile tilapia (Penman et al., 

1987; Shah, 1988), Mair et al. (1991a) proposed a monofactorial system with rare autosomal 

recessive genes epistatic to the major sex determining gene. The presence of a rare secondary 

sex-determining loci (SDL-2) in tilapia also has been suggested by Hussain et al. (1994) and 

Chapter 3 in this thesis. A secondary sex-determining gene has been described in mitotic 

gynogenetic common carp (Komen et al., 1992b). Furthermore the present study showed that 

sex ratios of androgenetic tilapia did not differ from the expected sex ratio of 50 % female 

and 50 % male (P>0.05) strongly supporting that Nile tilapia has a homogametic female and 

heterogametic male system (Penman et al., 1987; Shah, 1988; Mair, 1991a). 

The attempt to produce androgenetic red and blond YY neofemales using oral 

administration of DES hormone was not successful. Although two of the DES-treated 

females tested with an XX neomale showed XX genotype, no viable eggs were obtained 

from the other DES-treated androgenetic tilapia. Similar observation were reported that 

homozygous androgenetic female rainbow trout showed poor quality eggs (Scheerer et al., 

1991). The reason might be deleterious effects of inbreeding on reproductive system. 

Kincaid (1976: cited in Scheerer et al., 1991) noted reduced hatchability of eggs and 

increased frequencies of crippled fry in crosses involving female trout which were produced 
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from two generations of sib-matings. Another reason could be that the optimum treatment of 

1000 mg. kg-' DES for 10 days in tilapia (Mair and Santiago, 1994) might not be suitable for 

feminization of androgenetic tilapia resulting in intersex fish which were not able to produce 

any gametes. Although there is no report for feminization of androgenetic tilapia, 

feminization using DES hormone successfully produced YY neofemales in tilapia (Mair et 

al., 1997; Tuan, 1997; Chapter 5 in this thesis). A higher dosage of DES might be needed for 

successful feminisation of androgenetic tilapia. 

Androgenesis is a valuable technique to analyse colouration as well as sex 

determination mechanism in fish. Scott et at. (1987) and McAndrew et al. (1988) first 

reported the autosomal recessive blond and autosomal dominant red skin characters, 

respectively. In the present study, blond and red androgenetic tilapia showed paternal 

coloration as expected and this supports the conclusion that blond coloration is autosomal 

recessive whereas red coloration is autosomal dominant to wild type coloration. 

Androgenetic red tilapia produced in this work showed variable black blotching pattern, 

which is unusual for the homozygous state of the red gene. Black blotched tilapia (0-26.6 % 

of the fish's surface) were produced as result of crosses between wild type (rr) and 

homozygous red (RR) tilapia and their inheritance is still not fully understood. According to 

McAndrew et al. (1988), the blotched phenotype is epistatic to the red gene and can only be 

expressed in its presence. On the other hand their results also suggested that blotching might 

be controlled by a single gene with two alleles B and b, where B might be responsible for 

blotching and b for unblotched character. The present study agreed with that theory. Red 

colour patterns from the further generations of androgenetic red tilapia crossed to different 

females will be discussed in Chapter 5. 
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Chapter 3: 

Recombination rates of skin colouration, allozyme and sex determining 

loci in meiotic gynogenetic Nile tilapia, 0. niloticus 



3. Recombination rates of skin colouration, allozyme and sex determining loci in 

meiotic gynogenetic Nile tilapia, 0. nUoticus 

3.1. Introduction 

Gynogenesis is a genome manipulation technique in which eggs are fertilised with 

denucleated sperm so that the resulting embryo shows no paternal inheritance. 

Denucleated sperm only triggers the embryonic development of eggs without any genetic 

contribution. The embryos produced in this way possess a single set of maternal 

chromosomes (haploid syndrome) and thus die before hatching. A variety of physical 

shocks (temperature or hydrostatic pressure) permitting the retention of the second polar 

body or inhibition of the first mitotic division during embryonic development of eggs, 

results in diploid meiotic and mitotic gynogenetics, respectively (see reviews by Purdom, 

1983; Chourrout, 1987, Ihssen et al., 1990 and section 2.1.1. in this thesis). Induced 

meiotic gynogenesis has been successfully applied to several fish species. Table 2.1. 

shows the published reports on meiotic gynogenesis in different fish species. 

One of the major interests for meiotic gynogenesis technique was the rapid 

production of inbred lines. However, production of inbred lines using meiotic 

gynogenesis is not as rapid as was anticipated due to the rate of gene-centromere crossing 

over and chiasmata interference during meiosis I (Thompson, 1983; Allendorf and Leary, 

1984; Nagy and Csanyi, 1982). The application of electrophoretic and morphological 

markers shows that the rate of crossing over in the first meiotic metaphase produces high 

levels of heterozygosity in chromosome regions distant from the centromere (Purdom, 
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1976; Nagy and Csanyi, 1982; Thorgaard et al., 1983; Guyomard, 1984; Gervai and 

Csanyi, 1984; Allendorf et al., 1986; Naruse et al., 1988; Hussain et al., 1994; Guo and 

Allen, 1996). 

On the other hand, isogenic lines (genetically identical but not homozygous at 

every locus) can be produced more rapidly from meiotic gynogenetic individuals than 

conventional sibmating, which requires many generations. Isogenic lines can be used for 

studying genetic versus environmental effects on fish e. g. growth trials (Mair, 1993). Han 

et al. (1991) suggested that using meiotic gynogenesis even if meiotic gynogenesis is 

repeated for several generations would never produce homozygous inbred lines. 

However, meiotic gynogenesis is a very useful technique for estimating gene-centromere 

recombination rates for gene mapping (Nagy and Csanyi, 1982; Thorgaard et al., 1983; 

Hussain et al., 1994). Several estimations of gene-centromere rate have been reported by 

meiotic gynogenesis at several isozyme loci in rainbow trout (Thorgaard et al., 1983; 

Thompson and Scott, 1984; Guyomard, 1984; Allendorf et al., 1986), in brown trout 

(Guyomard, 1986), in Salvelinus species (Arai et al., 1991), in common carp (Taniguchi 

et al., 1986; Linhart et al., 1987), in catfish (Liu et at., 1996), in plaice (Purdom, 1976; 

Thompson, 1983), in paradise fish, Macropodus opercularis (Gervai and Csanyi, 1984), 

Nile tilapia (Mair, 1993; Hussain et al., 1994), in mollusc, Mulinia lateralis (Guo and 

Allen, 1996) and in abolone, Haliotis diversicolor diversicolor and H. discushannai 

(Fujino et al., 1989,1992). Gene-centromere mapping is a useful technique to obtain 

information about the meiotic system, comparative and evolutionary studies, and 

estimation of inbreeding rate in fish species (Thorgaard, 1983; Allendorf et al., 1986). 

Study of the recombination rate between each gene and its centromere can provide better 
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understanding of genetic mechanisms involved in morphological characters such as skin 

colour (Nagy et al., 1978; Guyomard, 1984; Streisinger et al., 1986; Hussain et al., 

1994). 

Another application of diploid gynogenesis is the production of monosex 

populations in fish with female homogamety (XX) (Golovinskaya, 1969; Stanley, 1976; 

Nagy et al., 1978; Refstie et al., 1982; Na-Nakorn, 1995; Pongthana et al., 1999). The 

sex ratio of gynogenetic offspring can also provide information about sex determination 

mechanisms in fish. The induction of gynogenesis has been used to elucidate sex 

determining mechanisms in Oreochromis species (Penman et al., 1987; Shah, 1988; 

Avtalion and Don, 1990; Mair et al., 1991a, b; Hussain et al., 1994), common carp 

(Komen et al., 1992b), salmonids (Chourrout and Quillet, 1982; Refstie et al., 1982), 

zebra fish (Streisinger et al. 1981) and plaice (Purdom, 1976). Hormonal sex reversal of 

gynogenetic females to males and crossing of these neomales to normal females can 

ensure the production of genetically all female populations. When mitotic gynogenesis is 

applied to neofemales (XY), male progeny will be YY males which can be used for all 

male production with normal females (Varadaraj and Pandian, 1989; Mair et al., 1993). 

The direct production of single sex populations of fish does not appear to be a viable 

approach as significant levels of recombination between sex determining loci can result 

in mixed sex progeny groups in tilapia (Avtalion and Don, 1990; Mair et al., 1991a, b; 

Hussain et al., 1994; Muller-Belecke and Horstgen-Schwark, 1995) and in common carp 

(Komen et al., 1992b). 

In the present study, diploid meiotic gynogenesis was used to estimate gene- 

centromere recombination rates for the ADA*, red skin colour and a putative secondary 
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sex-determination locus in red Nile tilapia. Possible linkage between the red colouration 

and putative secondary sex determination loci was analysed. DNA samples were also 

taken from these fish to provide reference families for a collaborative genome-mapping 

programme. 
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3.2. Materials and methods 

3.2.1. Source of broodstock 

The red 0. niloticus brood stock used for this study were descended from an 

electrophoretically tested, pure stock of the Tilapia Reference Collection maintained at 

the Institute of Aquaculture, University of Stirling, Scotland (Section 2.1.1) and attention 

was given to their maintenance (Section 2.2.1.1 and section 2.2.1.2. ) and feeding (Section 

2.2.1.3) as previously described. 

3.2.2. Collection and ultraviolet irradiation of milt 

Collection and UV irradiation of milt were carried out according to Hussain 

(1992) with some minor modification. Fresh milt was collected from sexually mature 

males for every experiment by artificial stripping. Before stripping the urine was first 

ejected and faeces or mucus were cleaned from the genital papilla with a paper towel. 

Milt was drawn into a clean micro-pipette by capillary attraction when it was placed at 

the opening of the uretha, then drained into a clean 1.5 ml microtube and stored at 4°C 

until further use. Milt used for UV treatment in all gynogenetic experiments was first 

checked for motility by adding a drop of water to 1 pl of milt on a glass slide under a 

light microscope. If non-motile sperm were more than 10 % in the sample, it was not 

used and a new batch of milt was collected. Sperm counting was done using a 

haemocytometer (depth of the chamber: 0.1 mm and area of the 16 square groups: 0.04 

mm2) as follows: Firstly, 10 µ1 of milt was added to 490 µl of Modified Fish Ringers 

solution, pH 8.0 (Appendix 2.1. ) in a microtube to make the total volume of 500 pl and 
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mixed. Secondly, 10 p1 of diluted milt from the first tube was added to another microtube 

containing 90 µl of Modified Fish Ringers solution to give a final volume of 100 µl. The 

final dilution of milt was well mixed before 10 µl of diluted milt was placed on the 

haemocytometer under a coverslip. After the sperm had settled, they were counted in 5 

large squares as indicated below on each side of the haemocytometer. An average was 

calculated by counting the sperm on both sides of the haemocytometer to minimise error 

during counting. 

0 Ill. 

C3 
::: --1 

10 

X 

X 

X 

X 

X 

WH 
Assuming that the total number of sperm in 5 large squares on one side was 150 

and the other side was 200, to find the actual number of sperm needed to obtain the 

optimal concentration of 2.5* 107 ml-l, a calculation was done as follows. 
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Average number of sperm in 5 large squares = (150+200)/2=175 

Average number of sperm in a small square = 175/80=2.19 

Total number of sperm = 2.19 x (4000x 1000) x 5(0x 10) = 4.38x 109 ml-' 

chamber volume dilution factor 

Amount of milt needed = (2.5x 107)/(4.38x 109)x 1000 = 5.7 µl of undiluted milt 

Based on the calculated sperm count, 2x5.7 µl of milt were diluted with 1988.6 µl 

of Modified Fish Ringer Solution in a 30 mm Petri dish for irradiation. The Petri dish 

containing milt and Modified Fish Ringer solution was gently stirred and irradiation was 

carried out at 4°C using a 254 nm wave length UV lamp (Ultra-Violet Products, San. 

Gabriel, Calf. ) at a dose of 250-265 µWcm"2 for 2 min. The UV intensity was measured 

by a radiometer (Ultra-Violet Products Inc. ). Irradiated milt was immediately used to 

fertilise eggs. 

3.2.3. Egg collection and fertilisation 

Eggs were collected by gently stripping from an ovulated female (Section 2.2.4) 

After stripping, each batch of eggs was fertilised in vitro either with normal or UV treated 

milt. 

3.2.4. Heat shock 

A temperature controlled water bath (Jencons Scientific Ltd) was used for heat 

shock treatments (Section 2.2.6). The water bath containing overnight aerated clean tap 

water was warmed to 42±0.1 °C before collecting the milt and eggs. Five minutes after 
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fertilisation with UV irradiated milt, eggs were moved to the water bath for 4 min. in a 

nylon mesh tea strainer. One batch of eggs fertilised with UV irradiated milt was not heat 

shocked and retained as a haploid control while another batch of eggs were fertilised with 

normal milt as a diploid control group. 

3.2.5. Experimental design for production of gynogenetic tilapia 

In order to produce meiotic gynogenetic tilapia, several presumably heterozygous 

red female broodstock originally generated from crosses between a female and two males 

(Keith Ranson personal communication) in the same age group were transferred to the 

glass aquarium system (Fig. 2.1) and P. I. T. tagged (Section 2.2.3). The origin of the 

dominant red colour variant and description of the homozygous and heterozygous 

phenotypes are given in McAndrew et al. (1988). 

Induction of meiotic gynogenesis was described in Section 3.2.3 and 3.2.4. A 

single blond or red male was used in a single pair mating to ensure having a high sperm 

motility in each experiment. 

3.2.6. Egg incubation and checking of survival rates 

All treated and untreated batches of eggs were identically incubated (Section 

2.2.4.1. and 2.2.9) and the survival rate of embryos in each group was counted at 

pigmentation (40-42 hours after fertilisation), hatching (80-90 hours after fertilisation) 

and yolk sac resorption stages (9-10 days after fertilisation). The number of normal and 

deformed fry at both hatching and yolk sac stages were recorded. 
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3.2.7. Determination of ploidy 

The ploidy of all treatment and control batches was determined by chromosome 

preparation (Section 2.2.10) from a sub sample of hatched or one day old larvae. Haploid 

and diploid metaphases were composed of one (N=22) or two (N=44) sets of 

chromosomes respectively (Fig. 3.1 ). 

3.2.8. Scoring of progeny phenotypes 

At the hatching stage, it was difficult to differentiate body colour pattern, 

therefore phenotype scoring was carried out at first feeding stage by using a binocular 

dissecting microscope (without harming the fry). The body colour of progeny was 

categorised as "red" and "wild type" and were counted individually at this stage. 

3.2.9. Fry rearing and on-growing 

The gynogenetic fry were transferred to an early rearing system (Section 

2.2.1.1.1) at first feeding stage, and reared further in an advanced fry rearing system 

(Section 2.2.1.1.2) and stocking system (2.2.1.1.3). The fish were fed according to 

methods described early in section 2.2.1.3. The fish were grown to 4-10 months of age. 
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Figure 3. I. Metaphase chromosome spread of gynogenetic A. haploid (N=22) and B. 
diploid (N=44) embryos of 0. niloiicus. 

119 



3.2.10. Determination of sex ratio 

The gynogenetic fish (at the age of 4-10 months) were killed by administration of 

an overdose of benzocaine, and gonads were dissected and examined macroscopically to 

determine their sex. 

3.2.11. Electrophoretic analysis 

Starch gel electropheresis was used to determine the ADA* (Adenosine 

deaminase, ADA. EC No: 3.5.4.4) genotypes of broodstock and gynogenetics, following 

the methods described by Majumdar and McAndrew (1983a). The procedures were as 

follows: 

i) Sample collection and preparation 

ii) Preparation of starch gels 

iii) Running, slicing and staining gels. 

3.2.11.1. Sample collection and preparation 

Fin and blood samples were collected from anaesthetised fish using a pair of scissors 

and 21 to 23 g sterile needles and syringes, respectively. Cortland's saline solution with 

10mM EDTA (Appendix 2.2. ) (1 volume of Cortland's saline to 2 volume of blood) was first 

drawn into the syringe in order to inhibit coagulation of blood during sampling for ADA* 

and DNA. Blood samples were immediately mixed well with the anti-coagulant in the 

syringe and transferred to 1.5 ml sterile micro tubes, which were then centrifuged at 1400 g 

for 2 mins and the supernatant removed. The pelleted blood and fin samples then were stored 

at -20°C until further use. 
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Samples were thawed for a few minutes and cytoplasm from the thawed tissue was 

then absorbed onto 3-4 x 12 mm pieces of Whatman No. I filter paper placed onto the sample 

in the tubes for electrophoresis. 

3.2.11.2. Preparation of starch gel 

12% starch gel was prepared using 22 g starch (Sigma Ltd. ) mixed with 220 ml of 

diluted Tris-EDTA-Borate (TBE) buffer (see Appendix 2.3. ) in a Buchner flask. The mixture 

was heated with constant rotation of the flask to an almost translucent jelly state, quickly 

degassed using a vacuum water pump and then poured into 6 mm thick gel frames. The gel, 

covered with a glass plate, was allowed to set and cool overnight at room temperature. 

3.2.11.3. Running, slicing and staining gels 

The gel was taken out of the frame and a parallel cut was made 3 cm from the edge to 

create a point of origin. The samples (filter paper) were placed along this cut with about 25- 

30 samples per gel and one tracking dye (0.1 % bromophenol blue) at each end of the gel to 

indicate mobility through the gel. When all samples were correctly arranged, the frame was 

placed back on the gel and a perspex spacer positioned between the gel and frame to keep the 

sample slot closed (to keep the sample tight). 

The gel was then placed in an electrophoretic bath with lx TBE buffer. A gauze wick 

soaked in the buffer was applied to either end of the gel to connect the gel and buffer. The 

gel was then covered with a polythene sheet to reduce evaporation and ice in a plastic bag 

was placed onto the polythene sheet to prevent warming of the gel. The bath tray was 

covered with a transparent lid and the gel was allowed to run for 15 mins with an electrical 
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current of 150-200 V, at 4°C in a refrigerator. Following the initial running, the filter papers 

were removed and the gel was run again for 3-4 hrs at same current. The gel was taken from 

the refrigerator and removed from the bath. It was then sliced horizontally into three slices, 

each of which could be stained for a different enzyme system but in the present study only 

Adenosine deaminase (ADA*) was examined. The appropriate stains (Appendix 2.4. ) for the 

ADA* were weighed and mixed with staining buffer solution and 2% agar (at approximately 

50-60 °C). This mixture was poured over the slice, allowed to set and then incubated at 37°C 

until the banding patterns became visible. The electropherograms were then analyzed and 

scored for the respective genotypes and when necessary they were preserved in gel fixative 

solution (Appendix 2.5. ). Finally, they were dried onto filter paper for storage. 

3.2.12. Statistical analyses 

The survival rates of meiotic gynogens, their respective diploid and haploid 

controls were tested by the non-parametric Kruskal Wallis test. All data were transformed 

to arc-sine for statistical analyses. The results were presented as mean and standard error 

of mean (±SE). All statistical analyses were performed by Minitab 9.2 software. 

Recombination frequencies for the red colour and ADA* loci were estimated 

using the equation described by Nace et al. (1970). Recombination frequency between a 

locus and its centromere can be estimated from the proportion of heterozygotes (y) in the 

diploid gynogenetic progeny obtained from a heterozygous female. However, it is 

difficult or impossible to distinguish the heterozygotes red (Rr) individuals from the 

homozygotes red (RR) individuals. Therefore assuming that the proportions of the 
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homozygotes for RR and wild type alleles (rr) are identical. Therefore proportions of 

heterozygotes (Rr) can be calculated from the following equation; 

Proportion of heterozygotes (y)= (No of red - No of wild type)/Total No of meiogynes 

The proportion of heterozygotes for ADA* locus can be obtained from the following 

formula since the heterozygotes can be directly visualised on the gel. 

y= (No of recombinants at ADA* locus) / (Total no of meiogynes) 

Heterogeneity of colour and sex distribution of offspring between females and 

within the experiments from each female was performed using 2xc contingency test 

(significant level P<0.05) (Bailey, 1981). 

The analyses for joint segregation or linkage of red and sex determination locus 

were made by using aG test of independence (two-way tables) (Sokal and Rohlf, 1987). 

The G test is recommended in preference to X2 whenever the observed frequency minus 

the expected frequency is less than the expected frequency for any cell. Both methods 

commonly result in the same conclusion. When they do not, many statisticians prefer G 

and recommend its routine use. 

The sex ratios of diploid controls were analysed by Chi-square test, comparing 

with 1: 1 sex ratio. 
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3.3. Results 

3.3.1. Survival rates of meiotic gynogenetics 

Mean survival rates at pigmentation, hatching and yolk sac resorption stages of 

diploid controls, haploid controls and meiotic gynogenetics are presented in Table 3.1. All 

haploid control batches showed a reduction in embryonic survival from the pigmentation 

stage and they were usually dead at hatching or before yolk-sac resorption. The fry in the 

haploid control group showed a typical haploid syndrome with a twisted body and enlarged 

pericardium. The mean survival rates of the haploid control groups at pigmentation and 

hatching stages were 33.36±5.48% and 4.47±1.65% (relative to the diploid controls), 

respectively, significantly lower than the diploid controls for both developmental stages 

(P<0.05). The chromosome study showed a single set (N=22) of chromosome in haploid 

groups and double set (N=44) of chromosomes in diploid gynogens and diploid control 

groups (Fig. 3.1). 

The use of heat shock to induce meiotic gynogenesis by suppression of the second 

meiotic division was successful. Meiotic gynogenesis produced normal diploid individuals 

with higher survival rates at hatching and yolk sac resorption stage than haploid gynogenesis. 

The survival rates of diploid controls and diploid meiotic gynogens varied between females 

and even experiments using the same females. At pigmentation, hatching and yolk sac stages 

the mean survival rates of diploid controls were 55.00±2.66%, 47.77±2.98% and 

39.09±3.08% while the mean survival rates of diploid meiotic gynogens were 44.00±5.19%, 

28.70±4.51% and 19.59±3.58% (relative to the diploid controls), respectively. The mean 

survival rates of diploid controls and diploid meiogynes were significantly different at all 
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developmental stages (P<0.05). A significant drop in survival between pigmentation, hatching 

and yolk-sac stages were found in all groups with an overall survival pattern of diploid 

control>diploid meiogyne>haploid control. 

The survival rates of diploid control, haploid control and meiotic gynogenetics at each 

developmental stage were also grouped according to the sire of females used in these 

experiments. There were no significant differences between the survival rates of diploid and 

haploid controls derived from sire 1 and sire 2 at any developmental stages (P>0.05). 

Although no significant differences were found between the survival rates of meiotic 

gynogens derived from sire I and sire 2 at yolk sac resorption stage (P>0.05), there was a 

significant differences between the survival rates of meiotic gynogens from sire I. and sire 2 at 

pigmentation and hatching stages (P<0.05). 

3.3.2. Recombination rates in meiotic gynogens for red skin coloration 

The meiotic gynogenetics were produced from 10 heterozygous (Rr) female 

broodstock. The colour genotype of each female was determined by crossing with a wild type 

male. The resulting offspring's colour segregated into 1 red: I wild type indicating that the 

mother was heterozygous (Rr). 

The original cross producing the heterozygous red female broodstock used in this 

study was between a female and two males. The banding patterns of the individuals used for 

producing meiotic gynogens were prepared using multilocus DNA fingerprints and analysed 

using the Geldoc ID advanced system (UVP version 3.01,1997). A dendogram was produced 

using the neighbour joining algorithm of Saitou and Nei (1987) based on the percentage of 
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Sire 7 

884 

094 

779 

011 620 585 

014 523 892 

ODJ31661L 

Figure 3.2. Dendogram showing the relationship between the females based on multilocus 

DNA fingerprinting using Jeffrey's 33.15 probe. 

bands shared. This result showed that the females 002 040 779,015 316 612,011 554 623 and 

014 523 892 might belong to one of the sires (1) while the females 012 526 884,011 113 094, 

011 895 051,013 559 035 and 010 602 500 might be the offspring of the other sire (2) (Fig. 

3.2). 

The distribution of body colour pattern and the calculated frequency of recombinant 

heterozygotes in a total of 46 gynogenetic trials involving 10 different heterozygous (Rr) red 
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females are presented in Table 3.2. Contingency test analysis was practised to test differences 

within experiments of each female and between pooled progeny of all females for the 

distribution of red and wild type phenotypes. The only significant deviation was among the 

progenies of female 015 316 612 while the pooled progenies of the other 9 females showed 

homogeneity for the distribution of red and wild type. The contingency test analysis of each 

experiment (total 4 experiments) derived from the female 015 316 612 showed heterogeneity. 

The contingency test analysis showed homogeneity when the experiment no: 2 from the 

female 015 316 612 was excluded indicating that heterogeneity occurred in the experiment no: 

2. Therefore, it can be assumed that 1 out of 46 experiment may not reflect any real 

heterogeneity. When the number of wild type meiotic progeny exceeded the number of red 

meiotic progeny in a given experiment, recombination rate (y) value was assumed to be zero 

i. e. no recombination between the gene and its centromere. 

The proportion of heterozygous red (y) ranged between 0.000-0.447 when the 

recombination frequency of experiment no: 2 showing heterogeneity from the female 015 316 

612 was included. However, when this recombination frequency was excluded the proportion 

of heterozygous red (y) ranged between 0.000-0.275. The y value of 0 suggests that in such 

cases there was no crossover between the gene and its centromere, therefore all red meiogynes 

were presumably homozygous for the "R" allele while all wild type meiogynes were 

homozygous for the "r" allele. 

The mean recombination frequencies of sire group 1 and 2 were 0.154±0.076 and 

0.082±0.047, respectively. However, when the recombination frequency of experiment no: 2 

from the female 015 316 612 was excluded, the recombination frequency of sire 1 group was 

0.120±0.044. One-way ANOVA result showed that there was no significant differences 
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Table. 3.2. Distribution of body colour pattern and frequency of red heterozygotes in meiotic 
gynogenetic tilapia, 0. niloticus, progeny derived from 10 red heterozygous females 
(Rr) at first feeding stage (10-11 days after fertilisation). 

Sire no. Female tag no. Experiment Progeny phenotypes 2Proportion of Mean(±SE) 
no. Red Wild type heterozygotes(y) 

1 002 040 779 (n. s. ) 1 12 3 
2 52 53 
3 88 75 
4 37 28 

Total 189 159 0.086 

'015 316 612`"` 1 3 12 
2 51 9 
3 45 21 
4 10 0 

Total 110 42 0.447 

'011 554 623 (n. s. ) 1 3 2 
2 3 6 
3 7 10 
4 46 49 
5 10 10 
6 18 14 

Total 87 91 0.000 

'01 1 620 585 (n. s. ) 1 2 0 
2 2 1 
3 144 103 
4 58 57 
5 58 57 
6 92 74 
7 48 18 
8 45 40 
9 21 18 
10 79 56 

Total 549 424 0.129 
0.15410.076 

1014 523 892 (n. s. ) 1 4 3 
2 20 17 
3 16 12 

Total 40 32 0.111 

2 '013 559 035 (n. s. ) 1 2 2 
2 1 2 
3 9 6 
4 6 3 
5 6 1 

Total 24 14 0.263 
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Table 3.2. continued 

Sire no. Female tag no. Experiment Progeny phenotypes `Proportion of Mean(±SE) 
no. Red Wild type heterozygotes(y) 

2 '01 1 895 051(n. s. ) 1 1 1 
2 2 2 
3 7 9 

Total 10 12 0.000 

2 '010 602 500 (n. s. ) 1 15 16 
2 6 3 
3 2 2 
4 4 5 

Total 27 26 0.019 

2 1012 526 884 (n. s. ) 1 6 6 
2 32 27 
3 15 15 

Total 53 48 0.050 

'011 113 094 (n. s. ) 1 3 3 
2 27 22 
3 4 6 

Total 42 36 0.077 
0.08210.047 

0.118±0.04 

'Contingency test results of red and wild type phenotype distribution between offspring from 

each brood were shown as n. s. (not significant) and'*' (significant at P<0.001). 

2Proportion of heterozygotes (y): (No. of reds- No. of wild type)/Total 
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between the mean recombination frequencies derived from the sire group 1 with or without 

the recombination frequency of experiment no: 2 and sire group 2. 

The mean recombination frequency including all heterozygous red females was 

0.118±0.04 and 0.101±0.031 including and excluding the recombination frequency of 

experiment no: 2 from the female 015 316 612, respectively. One-way ANOVA result showed 

that there was no significant differences between the mean recombination frequencies 

calculated whether the data from 015 316 612 were included or excluded from the 

recombination frequency data of this experiment. 

3.3.2. Sex ratios of meiotic gynogens and linkage analysis between colour and sex 

determining locus 

The observed sex ratio in pooled diploid control and meiotic gynogens derived from 9 

red heterozygous (Rr) females were presented in Table 3.3a and b. The sex ratio of pooled 

progenies from control crosses was not significantly different from expected 1: 1 

(Male: Female) ratio from these crosses. However, males were observed among the meiotic 

gynogens derived from the females 002 040 779,011 620 585,012 526 884,011 113 094 and 

015 316 612. The meiotic gynogenetic males showed red phenotype except one male having 

the wild type phenotype derived from the female 011 620 585. 

The analysis of red colouration and sex in these meiogynes showed that there was a 

strong indication of a linkage between them in progenies derived from the females 002 040 

779, Oll 620 585 and 012 316 612. Since only red meiogynes observed in the progenies from 

the female 015 316 612, linkage analyses could not be performed for this female. Although 

this female had produced wild type meiogynes at the first feeding stage (Table 3.2), all the 
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Table. 3.3a. Linkage analyses between red and sex determining locus in meiotic gynogenetic 

red tilapia, 0. niloticus (4-10 months old). Non random associations of genotypes were 

tested using aG test. (RF: Red female, WTF: Wild type female, RM: Red male, WTM: 

Wild type male, **P<0.01, "'P<0.001) 

Female tag no. Total experiment Progeny phenotype G 
no RF WTF RM WTM 

002040 779 3 59 66 9 0 12.16*** 

011 620 585 5 124 119 35 1 34.89*** 

012 526 612 1 13 13 5 0 5.53** 

011 113 094 3 7 15 1 0 1.27 

015316612 2 32 0 3 0 - 

011 895 051 1 9 0 0 0 - 

013 559 035 2 10 8 0 0 - 

011 554 623 2 8 6 0 0 - 

014 523 892 1 1 3 0 0 - 

Table 3.3b. The sex ratio of pooled progenies from control crosses. The sex ratio was 

2 compared to 1: 1 ratio using a x. n. s.: not significant. 

Female Male X, 
Pooled progenies 

from control crosses 32 44 1.89 n. s. 
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wild type meiogynes died during the rearing period probably due to poor management. It 

should be noted that males were only observed when the pooled number of progenies 

exceeded 23. Contingency tests of male and female distribution between pooled progenies 

from each female showed homogeneity (x2= 11.637, d. f=8). 

3.3.3. Gene-centromere recombination rate at ADA* locus in red meiotic gynogenetic 

progeny 

The distribution of genotypes in meiotic gynogenetic progeny derived from 5 females 

heterozygous at ADA* locus are presented in Table 3.4. The high recombination value (y=1) 

observed for the ADA* locus in a total of 366 meiotic gynogenetic progeny from 5 

heterozygous females suggests that a single crossover occurs between this gene and the 

centromere in all cases. The result also supports success in the production of meiotic 

gynogenetics. Fig. 3.3. A shows the ADA* banding pattern of meiotic gynogenetic progeny 

derived from a heterozygous female and a homozygous male for the ADA* locus. All control 

progeny have one of two paternal alleles from their heterozygous father but the other allele 

came from either of the two maternal alleles from their heterozygous mother making them 

homozygous or heterozygous at the ADA* locus (Fig 3.3. B ). 
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Table 3.4. Distribution of genotypes and proportion of heterozygous (Y) at ADA* loci in 

meiotic gynogenetic progeny derived from heterozygous (at same loci) female parent 

of red tilapia, 0. niloticus. 

Female tag no. Female parent 
genotype 

01 1 620 585 

015316612 

012 526 884 

011 554 623 

014 523 892 

Progeny phenot ype 

F/F F/S S/S 

0 279 0 

0 35 0 

0 31 0 

0 17 0 

0 4 0 

Proportion of heterozygous 

(Y) 

1 

1 

1 

1 

1 

113/135 

113/135 

113/135 

113/135 

113/135 
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Meiogynes MF Allele 

A 

Control M*F 

B 

Fig. 3.3. Starch gel showing the ADA* banding pattern of A) diploid meiotic gynogenetic B) 
control progeny groups derived from a heterozygous red female and male of 0. 
nilnticus (*: unrelated fish). 

113 

135 
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3.4. Discussion 

The UV dose of 250-265 NWcm-2 for 2 min successfully inactivated the paternal 

DNA in the present study, although a UV dose of 300-310 pWcm-2 was recommended for 

tilapia sperm irradiation (Hussain et al., 1993). Sarder (1998) reported that the higher UV 

dose of 300-310 pWcm-2 produced low survival of gynogenetic Nile tilapia, probably 

because of UV damage to sperm. The successful inactivation of sperm using UV light of 

250-265 µWcm-2 indicated that tilapia sperm can be inactivated at this UV dose more 

effectively than at a higher dose of 300-310 MWcm-2. 

Early heat shock applied in the production of meiotic gynogens by retention of 

second polar body was successful in the present study. The second meiotic division of eggs 

fertilized by irradiated sperm was suppressed at 5 min post fertilization using 41.5-42°C heat 

shock for 4 min, which was similar to 41°C for 3.5 min at 5 min after fertilization (Hussain et 

al., 1993). Myers et al. (1995a) used similar heat shock treatment of 42.5°C for 3-4 min at 

22.5-30 min after fertilisation to induce mitotic gynogenesis by suppression of first mitotic 

division. In the present study, the mean survival rate of meiotic gynogens (relative to control) 

to yolk-sac stage was 19.59±3.58 % while a survival rate of 48±7.35 % meiotic gynogens 

(relative to control) was reported by Sarder (1998) using the same induction parameters in 

Nile tilapia. It seems likely that high survival of meiotic gynogens depends on the survival 

rate of the respective control group. In this respect, the mean survival rate of 33.09±3.08% in 

the control group in the present study is much lower than the mean survival rate of 

63.11±6.41 % to yolk-sac stage reported by Sarder (1998). 

According to Nace et al. (1970), Thorgaard et al. (1983) and Streisinger et al. (1986), 

the frequency of heterozygotes is expected to vary depending on the frequency of crossing 
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over between the gene and its centromere. No heterozygotes are expected if no crossing over 

takes place. All heterozygotes are expected if only one crossover always takes place and 

about 67 % heterozygotes are expected if the gene is assorting independently in relation to 

the centromere. The recombination frequencies of the red skin colour gene in meiotic 

gynogens produced from heterozygous red females (Rr) ranged between 0-0.447 with a 

mean of 0.118±0.04. Hussain et al. (1994) reported recombination rate varying between 0.2- 

1 with a mean of 0.45 at the same locus in meiotic gynogens derived from sibling 

heterozygous red female Nile tilapia and suggested that this gene could be situated near a 

recombination hotspot. It should be noted that the wide range of recombination frequencies 

obtained by Hussain et al. (1994) was derived from 6 gynogenetic experiment involving 6 

sibling heterozygous red females and the distribution of red and wild type meiogynes 

produced showed significant heterogeneity (x2 = 16.54, degree of freedom 5, P<0.01) 

compared to the present study. No such heterogeneity was shown in the present larger study. 

In this respect, the present study finds no evidence for the recombination hotspot proposed 

by Hussain et al. (1994). 

The results for the ADA * locus suggest that exactly one crossover takes place 

between this gene and its centromere under complete interference where the occurrence of 

one crossover completely suppressed the occurrence of another. Therefore, the ADA* locus 

should be placed distally from the centromere on its respective chromosome. High 

frequencies of gene-centromere recombinants have been observed in plaice (Thompson et 

al., 1981; Thompson, 1983), rainbow trout (Thorgaard et al., 1983; Guyomard, 1984; 

Thompson and Scott, 1984; Allendorf et al., 1986), medaka (Naruse et al., 1988), Nile tilapia 

(Hussain et al. 1994) and a mollusc (Guo and Allen, 1996). More recently, Kocher et al. 
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(1998) constructed a genetic map for Nile tilapia using DNA markers (62 microsatellite and 

112 anonymous fragment length polymorphism) and observed high levels of interference 

over relatively large map distances. The authors suggested that high levels of interference 

suppressing a random recombination event on a chromosome increases the proportion of 

pairs that appear to be closely linked and thus reduces the estimate of genome size derived 

from closely spaced markers, and also high levels of interference reduces the proportion of 

pairs linked at longer distances, thus resulting in an increased genome size estimation. 

The presence of a relatively high number of males (11 %) in meiotic gynogens of 

tilapia in the present study was not very surprising, although it is not predicted by the 

homozygous female and heterozygous male system of sex determination in 0. niloticus 

suggested by Penman et al. (1987), Mair et al. (1991a) and Carrasco et al. (1999). The 

occurrence of males among meiotic gynogenetic progeny could have arisen from an epistatic 

locus with a recessive allele causing female to male sex-reversal in the homozygous phase. It 

can be assumed that a female heterozygous for this locus (XXSRsr) could produce non- 

recombinant homozygous male (XXsrsr) and female (XXSRSR) and recombinant 

heterozygous female (XXSRsr). Mair et al. (1991 a) observed 4.1 % males in meiogynes and 

20% male in mitogynes of 0. niloticus and proposed rare recessive alleles at autosomal 

genes, inducing natural sex reversal from homozygosity of these alleles. Muller-Belecke and 

Hörstgen-Schwark (1995) reported 35.5 % male mitotic gynogens in 0. niloticus. Hussain et 

al. (1994) obtained 7.5 % males in meiogynes and 47.5 % males in mitogynes in 0. niloticus 

from the same batch of eggs and they also suggested an epistatic sex determining locus 

(SDL-2) with two alleles (SR and sr) which induce sex reversal from female to male in the 

homozygous recessive state as in the present study. More recently Sarder et al. (in press) 
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reported 25 % of males in the production of a clonal inbred line from a mitotic gynogenetic 

female and >60% males during further propagation of this line in 0. niloticus. The authors 

suggested that the mitotic gynogenetic female might be homozygous for a recessive allele at 

an autosomal sex determining locus and fixation of some alleles or combination of alleles at 

different loci may cause sex reversal from female to male, but with partial penetrance since 

only a low percentage of males (25 %) was obtained instead of the expected 100 % males. In 

common carp, similar sex reversal from female to male was reported by Komen et al. 

(1992b) in production of clonal inbred lines by gynogenesis. They proposed an autosomal 

recessive sex determining gene, masculinization (mas-1), which produces males in the 

homozygous state (XX mas-1/mas-1) and females and intersexes in the heterozygous state 

(XX mas-1lmas+l). 

A close linkage was found between a sex determining locus (called SDL-2 with two 

alleles SR and sr) and the red locus in this study. A female which is heterozygous for a 

particular locus produces two types of meiotic tetrad: the sister chromatids are homozygous 

for the recessive allele or homozygous for the dominant allele or the sister chromatids are 

heterozygous because of recombination between gene and centromere. In the case of linked 

genes, the sister chromatids are either homozygous or heterozygous for dominant and 

recessive alleles. The possible half tetrad configuration of the females, heterozygous and 

linked for red (Rr) and sex determining locus (SRsr) is presented in Fig. 3.4. According to 

the half tetrad configuration in Fig. 3.4 A., the females would be expected to produce equal 

number of non-recombinant homozygous red females (RRSRSR) and homozygous wild type 

males (rrsrsr) while recombinant phenotype would be heterozygous red female (RrSRsr). 

However, all the meiogyne males produced in the present study were red except one wild 

139 



t a 

c9 Im-- 

a y 
V y 

cJ Gn 
iY+ 

V) 
Aý R 

E= E 
Ci ý 
äE 

o 
I 

0 0 
za z 

VJ Vf 
&A 

H H 

a 6.1 a x 

O O Dý 

W 6 it W W I l 

O O C.:: > <:: D 

wl 

b 
9 
10 U 

aý 

on 

rr 

03 

bQ 

cd 

O 

bA 

0 
'C 
cd 

N 

w 
cý 

.O 
N 

CO) 
O 
a 
w O 

00 
cý 
'b 
U 
cC 
E C) 

. C. 

X 

vi 

O 

bA 

b 
K 
N 

C) v 



type male derived from the female 011 620 585 suggesting that this half tetrad 

configuration of the females is not valid for explanation of the occurrence of red males in 

gynogenetic experiments. On the other hand, according to the alternative half tetrad 

configuration of females shown in Fig. 3.4. B., the females would be expected to produce 

equal number of non-recombinant homozygous red males (RRsrsr) and homozygous wild 

type females (rrSRSR) and recombinant heterozygous red females (RrSRsr). In this case, 

the number of pooled non-recombinant homozygous wild type meiotic female progenies 

(n=230, rr SRSR) should be equal to the number of pooled non-recombinant homozygous 

red meiotic male progenies (n=230, RRSRSR) whereas the remaining heterozygous red 

meiotic females (n=86, RrSRsr) should be the recombinant for red and wild type alleles 

of both linked genes. Wild type meiotic progeny were 100 % female with an exception of 

one wild type meiotic male from the female 011 620 585. On the other hand, the 

estimated frequency of males in the non-recombinant red progeny was 23.04 %. The 

result of the present study cannot be explained with the suggested model above unless 

partial penetrance of this recessive sex determining allele in the homozygous condition 

(srsr) which causes female to male sex reversal considered. In this respect, the present 

study agreed with Sarder et al. (in press) with a 23.04 % penetrance frequency, which is 

quite similar to 25 % maleness in their inbred clone. 

The occurrence of the single unexpected wild type gynogenetic male was not 

predicted from the suggested model above. The occurrence of this wild type gynogenetic 

male could have been arisen from rare natural sex reversal event. Rare spontaneous sex 

reversal was also reported by Scott et al. (1989) and Mair et al. (1991a) in O. niloticus. 

Occurrence of intersex O. niloticus during sex reversal treatment (Rothbard et al., 1981; 
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Mair et al., 1987b) and crosses between fish of normal (Mair et al., 1991a) could be 

indicative of spontaneous sex reversal. The wild type male may also result from the 

normal fertilisation of the sperm which escape from the irradiation. 
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Chapter 4: 

The effect of colouration on reproductive traits of strip-spawned 0. 

niloticus over consecutive spawns 



4. The effect of colouration on reproductive traits of strip-spawned 0. niloticus 

over consecutive spawns 

4.1. Introduction 

The low fecundity and asynchronous spawning patterns of female tilapia lead to 

the need for extensive holding facilities and the management of relatively large numbers 

of broodstock compared to most other commercial fish species. Therefore, broodfish 

productivity of any tilapia species is one of the most significant constraints on 

commercial production costs, and knowledge of the factors affecting seed production are 

crucial. These include broodstock nutrition, husbandry conditions, genotype of the 

broodfish and pleiotropic effects of any gene that might influence seed production in 

tilapia culture. 

4.1.1. Reproductive biology of tilapias: Reproduction modes and traits 

Members of the genus Oreochromis adopt a maternal mouthbrooding mode of 

reproduction. Male fish build and defend the territories within a defined spawning area, 

called a "lek". A female ready to spawn visits the lek to have the eggs fertilized by one or 

more of the nest-holding males (Wootton, 1990). Courtship is relatively short, lasting just 

a few hours (Rana, 1988) and results in batches of eggs being spawned into shallow 

nests. Fertilized eggs are picked up by the female and incubated in her mouth until the fry 

are free-swimming (Rana, 1988). 

Fecundity in tilapias has been defined in various ways. Lowe-McConnell (1955: 

cited in Rana, 1988) defined fecundity as the numbers of fry produced in the lifetime of 
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an individual fish. However, broodstock would normally only be used during their 

optimum reproductive period under culture conditions (Rana, 1988). As a result, Mires 

(1982) and Macintosh (1985) suggested that the definition should be restricted to the 

number of fry produced over a 12 month period. The number of maturing oocytes present 

in the ovaries of females prior to spawning is also accepted as another measure of 

fecundity in fish (Bagenal, 1978). 

In multiple spawners like tilapias, however, the recruitment of oocytes for 

maturation appears to be more complex since very ripe ovaries show a bimodal oocyte 

size distribution (Peters, 1983; Srisakultiew, 1993; Coward, 1997). This is less marked at 

other stages of the ovarian cycle. Considering the uncertainty of which oocytes will 

contribute to the next spawning (Jalabert and Zohar, 1982) and the presence of atretic 

eggs in the ovary which shows not all are spawned (Peters, 1983; Rana, 1986), this might 

lead to an overestimation of total fecundity and its relationship with body size. Therefore, 

the fecundity of tilapias is best defined as the number of eggs in a freshly spawned clutch 

(Rana, 1988) and the present study adopts this definition. 

In tilapias, the evolution of parental care has led to a resultant increase in egg size 

and a corresponding reduction in the number eggs per clutch (Fryer and Iles, 1972, 

Peters, 1983; Trewavas, 1983). 0. niloticus females produce relatively few large eggs in 

each spawning. Although their egg numbers are small, hatching rates of eggs and survival 

of fry are high (Peters, 1983; Rana, 1988). In tilapia species, egg size is reported to be 

species-specific (Lowe-McConnel, 1955: cited in Rana, 1988; Trewavas, 1983), larger 

eggs generally produced by bigger individuals within a species. It is generally accepted in 

teleost fish that total fecundity increases and relative fecundity (number of eggs/unit body 
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weight) decreases in accordance with increasing female age, length and weight (Wootton, 

1990). This relationship has also been reported for tilapia in which larger eggs are 

produced from larger females (Siraj et al., 1983; Trewavas, 1983; Rana, 1986). Rana 

(1986), however, reported that, in 0. niloticus total fecundity is more closely related to 

maternal size than age and fecundity of similar aged fish increased with body size. 

Spawning frequencies of multiple-spawning individual tilapia broodstock exhibit 

great variability according to several factors such as fish size, temperature, latitude, 

degree of paternal care, stocking density, sex ratio, food ration and dietary protein level 

(Wootton, 1990). Peters (1983) reported that wild tilapias spawned at least twice a year. 

At high altitudes, tilapia have only a 3-4 month spawning period during which only three 

spawning cycles can be expected (Mires, 1982). Phillipart and Ruwet (1982) reported that 

spawning cycles of tilapias might occur monthly in the tropics. On the other hand 

Fishelson (1966) using captive tilapias maintained under controlled environmental 

conditions found no evidence of seasonality and obtained 11 clutches of eggs in a year 

from a single female robbed of her clutch after spawning. Mires (1982) reported that 0. 

niloticus females spawned only 2-7 times/year at average breeding cycles of 23-50 days 

under controlled spawning conditions. Hughes and Behrends (1983) suggested that 

stocking density and sex ratio of broodfish might alter the spawning frequencies. The 

selected sex ratio should be sufficient for a female to easily find a male with which to 

spawn (Little, 1989). 

Little is known about the effect of successive spawning pattern on reproductive 

biology of tilapia species. Studies on 0. esculentus suggested that the gonads may be 

larger and produce more eggs per spawn towards to the end of the spawning period 
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(Lowe-McConnell, 1955: cited in Rana, 1988). Siraj et al. (1983), studying three year 

classes of 0. niloticus over 3 spawning periods length found that relative fecundity 

decreased with successive spawning periods. Srisakultiew (1993) found that fecundity of 

a single 0. niloticus female was higher at the second and third spawning than first 

spawning cycle. 

Several methods have been used in attempting to enhance the egg and fry 

production in various tilapiine fishes, hypophysation and temperature manipulation 

(Srisakultiew and Wee, 1988), removal of eggs from the buccal cavity (egg/fry robbing) 

of mouthbrooding species, stocking broodstock at optimal sex ratio, density (Siddiqui and 

Al-Harbi, 1995a; Bautista et al., 1988) and age (Ridha and Cruz, 1989) and varying 

nutrient supply (Cisse, 1988). 

4.1.2. Pleiotropy 

Pleiotropy was defined as: the production of additional or secondary phenotypes 

that occur because a gene influences two or more phenotypes by Tave (1993). Although 

pleitropic effects seems insignificant if no economically important characteristics are 

altered, it can become important if any economically important characteristics such as 

viability, productivity and market value are positively or negatively affected (Tave, 

1993). 

Negative pleitropic effects of both blue (bb) and gold (gg) common carp on 

growth rates were reported by Wohlfarth and Moav (1970: cited in Tave, 1993). On the 

other hand Wlodek (1968: cited in Tave, 1993) reported that Polish blue common carp 

grew better than normally pigmented common carp. 
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Pleiotropic effects of scale patterns (mirror, line and leather) on common carp 

have been extensively studied and 17 pleiotropic effects on traits such as weight, mean 

number of soft rays in dorsal, anal and pelvic fin, ability to regenerate fins and survival 

have been detected (Tave, 1993). 

The S allele producing saddlebacks in heterozygous state (S+) caused vertebral 

anomalities in several vertebrae, decreased disease resistance and reduced viability in 0. 

aureus (Tave, 1993). 

The negative pleiotropic effects of "a" allele in channel catfish causing albinism 

in the homozygous state (aa) on egg size, egg quality, hatching rate, viability and growth 

rate have been reported by Bondari (1984). On the other hand, Kincaid (1975: cited in 

Tave, 1993) reported that "b" allele producing iridescent metallic blue body colour in 

rainbow trout improved growth rate. 

Negative pleiotropic effect of the red phenotype in 0. aureus X 0. niloticus 

hybrid on survival rate during early stages of development and pond culture due to 

differential predation by birds and fish was reported by Behrend et al. (1982) and El- 

Gamal et al. (1988). 

4.1.3. Objectives 

The evidence from other fish species shows that the viability and reproductive traits 

of 0. niloticus could be affected by its colour. Thus the present study was aimed to 

investigate and compare several reproductive traits in three colour genotypes namely 

homozygous red (RR), heterozygous red (Rr) and homozygous wild type (rr) in 

laboratory held stocks of 0. niloticus in order to examine potential pleiotropic effects. 
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The colour variants were studied over successive reproductive cycles using highly 

reproducible techniques standardized for the all year round breeding conditions for 0. 

niloticus used in the Institute of Aquaculture. The pleiotropic effects of red genotype on 

the survival rates of 0. niloticus at different developmental stages were also taken into 

consideration. 
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4.2. Materials and Methods 

4.2.1. Experimental fish, stocking facilities and fish maintenance 

The three colour genotypes of 0. niloticus namely homozygous red (RR), 

heterozygous red (Rr) and homozygous wild type (rr), showing three distinct colour 

morphs of pure red, red with black blotching and wild type (Plate 1.1. and 1.2. ) were 

obtained from genetically pure broodstock held at the Institute of Aquaculture, University 

of Stirling, Scotland (McAndrew and Majumdar, 1983a; McAndrew et al., 1988). 

All the fish used in this study were maintained according to Section 2.2.1. The 

fish were fed ad libitum twice daily with a commercial pelleted trout feed (Trouw 

Aquaculture Nutrition, Russhive, U. K. ). All procedures requiring fish handling e. g. 

stripping, tagging and weighing were performed under anaesthesia (Section 2.2.2). All 

broodstock were individually PIT-tagged (Section 2.2.3). 

4.2.2. Stripping, fertilising and incubating of eggs 

Stripping of eggs was performed according to Section 2.2.4. After stripping, fish 

were blot dried on absorbent tissue paper and weighed (to the nearest 0.1 g) on a Mettler 

400 balance (Fisons Scientific Equipment, U. K. ) and the standard length determined (to 

the nearest 0.1 mm) using a scaled ruler fitted to a wooden frame. 

After egg collection, fertilisation was carried out in vitro using "dry milt" (Section 

2.2.4). Fertilised eggs were incubated according to Section 2.2.4.1. Survival rates were 

checked at pigmentation, hatching and yolk sac stages (Section 2.2.9). 
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4.2.3. Determination of total fecundity, reproductive parameters and estimation of 

spawning frequency 

4.2.3.1. Determination of total fecundity 

As discussed in Section 4.2, there is a considerable debate in the literature over 

the precise definition of fecundity in the multiple spawning tilapiine family of fish. In this 

present study, the definition of Rana (1986) who stated that total fecundity of tilapias 

should only be defined as the number of discrete eggs found in a freshly spawned egg 

clutch was used. All measurements of fecundity and egg size in this study were made on 

water hardened eggs from individually held female fish artificially stripped under 

anaesthesia. The eggs were counted manually using a fine paintbrush. An egg clutch 

containing approximately 1000 eggs could be counted within 10 minutes. 

4.2.3.2. Reproductive parameters 

Since the eggs of mouth brooding tilapia are ovoid-shaped, two parameters were 

measured in calculating mean egg diameter and mean egg volume, egg long axis referring 

to the length of the longest axis of the egg, and egg short axis referring to longest width at 

right angle the long axis. 

A sub-sample of each batch of eggs was placed in a Petri dish with water and then 

photocopied (Model 5053, Xerox Ltd. UK). The images were scanned by using a scanner 

(Epson GT-9500) and long and short axes of 40 randomly chosen eggs from 5 females of 

homozygous red (RR), heterozygous red (Rr) and homozygous wild type (rr) 0. niloticus 

were measured using a computer software package (Image Pro Plus Version 3.0). Mean 
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egg diameter and mean egg volume were calculated using equations described by Coward 

and Bromage (1999). 

Determination of mean egg diameter 

The mean egg diameter was calculated using the following equation from 

individual eggs; 

D= (1+s)/2 

where: 

D= egg diameter (mm) 

1= length of egg long axis (mm) 

s= length of egg short axis (mm) 

Determination of mean individual egg volume 

The mean volume of individual eggs was calculated using the following equation; 

V=(II/6)*1*h2 

where: 

V= volume of egg (mm3) 

1= length of egg long axis (mm) 

h= length of egg short axis (mm) 

Determination of mean individual egg weight 

A sub-sample of 500 eggs were placed in a small net and excess water was 

removed by blotting with a tissue. The eggs then placed in a pre-weighed Petri dish and 

weighed to the nearest ? 0.1 ga on an electronic balance (Mettler AA 100). 
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Determination of relative fecundity 

Relative fecundity (expressed as eggs/g body weight) was calculated using the 

following equation; 

RF=TF/W 

where: 

RF= relative fecundity (eggs/g) 

TF= total fecundity (no of eggs in clutch) 

W= weight of fish (g) 

Determination of total egg volume 

Total egg volume (expressed as mm3) was calculated using the following equation; 

TEV =TF*MEV 

Where: 

TEV= total egg volume (mm) 

TF= total fecundity (no of eggs in clutch) 

MEV= mean egg volume (mm3) 

Determination of EW: BW ratio 

Egg weight to body weight ratio (EW: BW, expressed as %) was calculated using 

the following equation; 

EW: BW = (EWW*TF/W)*100 

Where: 

EW: BW= egg weight to body weight ratio (%) 

EWW= egg wet weight (mg) 
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TF= total fecundity (no of eggs in clutch) 

W= weight of the fish 

Estimates inter-spawning-interval (ISI) 

ISI (inter-spawn-interval) is based on completed reproductive cycles of repeat 

spawning fish, i. e. the time elapsed from one spawn to the next. 

4.2.4. Experimental design 

In total 10 homozygous red (RR), 14 heterozygous red (Rr) and 10 homozygous 

wild type (rr) randomly chosen 0. niloticus brood fish were observed and strip-spawned 

in this study. Although the spawning history of these brood fish was unknown, they were 

all 2+ years old at the beginning of the study and had been kept under standard 

conditions. 

Each female was checked daily for ovulation (at approximately 1 p. m. ) and 

ovulated females were artificially stripped (between 2-4 p. m. ), weighed, measured 

(Section 4.2.2) and the eggs were counted (Section 4.2.3.1) for determination of 

fecundity and ISI. This was continued for 11 months starting from April, 1997 to March, 

1998 except July, 1997. 

For determination of egg size and weight, the eggs of 5 randomly selected females 

from each colour genotype were used once according to Section 4.2.3.2. 

Several crosses were performed between different colour genotypes of 0. 

niloticus in order to determine the effect of colour genotype on the survival of 0. 

niloticus. For this purpose, several homozygous red and wild type female tilapia were 

artificially stripped and the eggs were divided into two groups. One of the groups was 
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fertilized with "dry" milt from a homozygous red male and the other with milt from a 

wild type male tilapia. The survival rate of each group was determined according to 

Section 4.2.2. 

4.2.5. Statistical analyses 

The normality of the data was tested by the Anderson-Darling Normality test. 

Monthly comparisons of reproductive traits in terms of length, weight, total fecundity and 

relative fecundity of each colour genotype were tested by one-way ANOVA followed by 

a Tukey test in normally distributed data. Non-normally distributed data were analysed 

by the Kruskal-Wallis Test (Sokal and Rohlf, 1987; Gardiner, 1997). 

Comparisons of reproductive traits in terms of total fecundity, ISI, egg weight, 

egg diameter, egg volume, EW: BW ratio and total egg volume were tested by analyses of 

covariance (ANCOVA) using the general linear model (GLM) (Ryan and Joiner, 1994). 

This techniques combines the statistical techniques of regression and ANOVA and tests a 

dependent variable "y" for homogeneity among colour genotype means similar to 

ANOVA. Before means are tested, they are adjusted for differences between colour 

genotypes in the independent variable "x" (the covariate). Since the same females were 

used for investigations of fecundity and ISI during the experimental period, female tag 

number was used as nested factors within each colour genotype for comparison of total 

fecundity and ISI between different colour genotypes. The main significance test 

involved in GLM is a test of homogeneity of residual variances. Therefore, the 

homogeneity of residuals was tested by the Anderson-Darling Normality test. Normally 

distributed raw data of reproductive parameters (total fecundity, ISI, egg weight, egg 
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diameter, egg volume, EW: BW ratio and total egg volume) were used individually as 

dependent "y" variables and were tested against post-spawned fish weight and length as 

the independent "x" variables. Only the data of ISI as dependent "y" variable and total 

fecundity as independent variable "x" were login transformed for normality. The data for 

relative fecundity were not subjected to ANCOVA for comparison of colour genotypes 

because the number of eggs produced for each unit increase in weight shows considerable 

linear variation and attempts to correlate weight with relative fecundity are also subject to 

autocorrelation (Bromage et al., 1990). However, relative fecundities are used by fish 

farmers to assess stock productivity (Bromage et al., 1990). Therefore, these data were 

included in most cases. 

After arcsine transformation of survival rates (%) of crosses involving different 

colour genotypes, one-way ANOVA and Tukey tests were performed to compare each 

developmental stage. The results were presented as mean and standard error of mean 

(±SE) without aresine transformation. Female effect, male effect and female *male 

interaction were tested using general linear model since the experimental design was 

unbalanced (Ryan and Joiner, 1994). 

Relationships between fish weight and length with total fecundity, relative 

fecundity, egg wet weight, egg diameter, egg volume, total egg volume and EW: BW 

were investigated using correlation and regression analyses on untransformed and login 

transformed data. All statistical analyses were performed using Minitab 9.2 software. 

The coefficient of variation (C. V. ) forms a measure of variability and was used to 

compare variation in terms of ISI, weight, length, total fecundity and relative fecundity of 

155 



individual fish from each colour genotype of 0. niloticus over consecutive spawnings. 

The coefficient of variation is derived as follows; 

%C. V. = (s*100) /x 

where; 

s= standard deviation of the data being tested 

x= sample mean of the data being tested 
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4.3. Results 

In total 10 homozygous red (RR), 14 heterozygous red (Rr) and 10 homozygous 

wild type (rr) tilapia of similar age were observed and strip-spawned over 11 months. 

Although there were no mortalities, several fish became injured due to fighting after the 

collapse of Perspex-partitions used to separate the glass aquaria. This allowed 2 

previously segregated fish access to one another and usually led to the more dominant of 

the two fish injuring the other. 

The initial weights of females of each colour genotype were not significantly 

different (P>0.05). Strip spawning was always performed between 2-6 p. m. depending on 

the condition of the urogenital papilla of females. All parameters (weight, length, total 

fecundity, etc) were measured on freshly stripped females. However, several natural 

spawnings also occurred in some females, which did not show any physical appearance 

of readiness. In this case only the date of spawning was recorded. Although counting of 

eggs was performed easily using a fine paintbrush on good eggs, in some clutches, the 

eggs were soft and burst easily making it impossible to count them. Therefore, in such 

cases, only weight, length and date of spawning could be recorded. 

4.3.1. Monthly changes in reproductive traits of homozygous red (RR) 0. niloticus 

over consecutive spawns 

Monthly values of weight, length, spawning frequency and fecundity of 10 

homozygous red (RR) 0. niloticus are depicted in Table 4.1 and graphically presented in 

Fig. 4.1. At the beginning of the experiment the weight and length of fish ranged between 

178.6-234.0 g (mean 205.9±16.0 g) and 18.2-19.6 cm (mean 18.8±0.4 cm), respectively. 
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The mean weight and length of fish had significantly increased by the end of the 

experimental period (P<0.05). All the fish spawned in month 4. (August), 5. (September) 

and 6. (October) while only 4 and 6 fish spawned in month 1. (April) and 11. (March) of 

the experimental period, respectively. 

There were no significant differences in mean total fecundity and relative 

fecundity between months (P>0.05). 

4.3.2. Monthly changes in reproductive traits of heterozygous red (Rr) 0. niloticus 

over consecutive spawns 

Monthly values of weight, length, spawning frequency and fecundity of 14 

heterozygous red (Rr) 0. niloticus are presented in Table 4.2. and Fig. 4.1. The mean 

weight of 214.2±11.3 g and length of 19.4±0.4 cm in first month were significantly 

different from the last month values of 310±11.8 g and 22.1±0.3 cm, respectively, 

showing the fish had grown over this period. 

All fish spawned during month 4. (August) and 5. (September) while only 9 fish 

spawned in the last month (March) of experimental period. 

Although, there were no significant differences between the months in total 

fecundity (P>0.05), significant differences were found between month 2. (May), 8. 

(December) and 9. (January) in relative fecundity (P<0.05). 
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4.3.3. Monthly changes in reproductive traits of homozygous wild type (rr) O. 

nUoticus over consecutive spawns 

Monthly values of fish weight, length, spawning frequency and fecundity of 10 

homozygous wild type (n) O. niloticus are shown in Table 4.3 and graphically presented 

in Fig 4.1. The mean fish weight of 248.3±16.1 and length of 20.0±0.4 cm increased 

significantly from the beginning of the experiment period to the last month (March) of 

the experiment period (P<0.05) and reached to maximum weight of 349.3±12.8 g and 

length of 22.7±0.3 cm. 

Although there were no significant differences between months in terms of 

relative fecundity (P>0.05), the total fecundity was significantly (P<0.05) different 

between month 3. (June) (884.5±116.6) and month 5. (September) (1293.6±106.1). 

4.3.4. Comparison and linear regression analysis of reproductive traits of 

homozygous red (RR), heterozygous red (Rr) and homozygous wild type (rr) 

0. niloticus 

Table 4.4 shows the comparison between the three different genotypes of 0. niloticus 

in terms of total fecundity, ISI, egg weight, mean egg diameter, mean egg volume, 

EW: BW ratio and total egg volume using analyses of covariance (ANCOVA). No 

significant differences were found between different colour genotypes of O. niloticus in 

terms of the reproductive traits mentioned above (P>0.05). However, the ANCOVA may 

not have been robust for mean egg diameter and ISI using fish weight and length as 

covariates since the residuals of variances were found to be heterogeneous for these traits. 
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Figure 4.1. Mean monthly values of fish weight (A), length (B), fecundity (C) and 

relative fecundity (D) for homozygous red, heterozygous red and homozygous 

wild type 0. niloticus (based on spawned fishes). 
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Table 4.4. Analyses of covariance (ANCOVA) of several reproductive traits (total 

fecundity, egg weight, egg diameter, egg volume, EW: BW ratio, total egg volume 

and ISI) and post-spawned fish weight (g) and length (cm) for homozygous red 

(RR), heterozygous red (Rr) and homozygous wild type (rr) of 0. niloticus. 

Reproductive traits 

(dependent variable) 

Covariates 

(independent variable) 

Homogeneity of residuals Results 

Total fecundity Weight (g) P>0.05 (homogenous) P>0.05 
Length (cm) P>0.05 (homogenous) P>0.05 

Egg weight (mg) Weight (g) P>0.05 (homogenous) P>0.05 
Length (cm) P>0.05 (homogenous) P>0.05 

Egg diameter (mm) Wei ht (g) P<0.05 (heterogeneous) P>0.05 
Length (cm) P<0.05 hetero eneous) P>0.05 

Egg volume (mm) Weight (g) P>0.05 (homogenous) P>0.05 
Length (cm) P>0.05 (homogenous) P>0.05 

EW: BW ratio Weight (g) P>0.05 (homogenous) P>0.05 
Length (cm) P>0.05 (homogenous) P>0.05 

Total egg volume (mm-) Weight (g) P>0.05 (homogenous) P>0.05 
Length (cm) P>0.05 (homogenous) P>0.05 

Login ISI Lo ioWei ht () P<0.05 (heterogeneous) P>0.05 
Lo ioLen th (cm) P<0.05 (heterogeneous) P>0.05 

ISI Total fecundity P>0.05 (homogenous) P>0.05 

Linear regression analysis between fish size (length and weight) and several 

reproductive traits (total fecundity, relative fecundity, egg weight, egg diameter, egg 

volume and total egg volume) are presented for homozygous red, heterozygous red and 

homozygous wild type of 0. niloticus and pooled data from all colour genotypes (since 

there was no significant differences between colour genotypes) in Tables 4.5,4.6,4.7 and 

4.8, respectively. Linear regression analysis was performed using both untransformed 

data and transformed (log 10) data. While untransformed data are more immediately 

comprehensible, the recommended procedure for this type of data analysis involves 

logarithmic transformation (Sokal and Rohlf, 1987). Therefore, only the results of those 

analyses involving transformed data are described here. 
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1) Total fecundity (Fig. 4.2. ): Significant positive relationships were found between total 

fecundity and length in heterozygous red females (P<0.05), homozygous wild type 

(P<0.01) and pooled data from all colour genotypes (P<0.01) while no relationship 

between fish size and total fecundity was observed in homozygous red 0. niloticus. 

The relationship between total fecundity and weight were much weaker than the 

relationship between total fecundity and length in homozygous wild type (P<0.05) 

and pooled data from all colour genotypes of 0. niloticus (P<0.05). 

2) Relative fecundity (Fig. 4.3. ): Very significant negative relationships were found 

between relative fecundity and both fish weight and length in homozygous red 

(P<0.001), heterozygous red (P<0.001) and pooled data from all colour genotypes of 

0. niloticus (P<0.001) while homozygous wild type tilapia showed a weaker negative 

relationship between relative fecundity and both fish weight and length (P<0.05). 

3) EW: BW ratio (Fig. 4.5. ): Significant negative relationships were detected between 

EW: BW ratio and fish weight in pooled data from all colour genotypes (P<0.001), 

homozygous red (P<0.05) and heterozygous (P<0.01) and between EW: BW and fish 

length in homozygous red (P<0.05) and pooled data from all colour genotypes of 0. 

niloticus (P<0.01). No relationships were observed between EW: BW and fish weight 

in homozygous wild type and between EW: BW and fish length in homozygous wild 

type and heterozygous red 0. niloticus. 
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Figure 4.2. Relationships between (A) total fecundity and fish weight (g), (B) total fecundity and fish 
length (cm). in three colour genotypes (RR, rr, and Rr) of 0. niloticus (based on spawned fish). 
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niloticus (based on spawned fish). 
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4) Egg weight, diameter, volume, total fecundity and total egg volume (Fig 4.4. ): There 

was no relationship found between egg weight, egg diameter, egg volume, egg total 

volume for both fish weight and fish length nor between total fecundity and egg 

volume. 

5) Relationships between ISI and total fecundity: No relationships were found between 

ISI and total fecundity in any colour genotypes or in pooled data from all colour 

genotypes. 

Linear regression analyses were also performed between total fecundity-fish size, 

total fecundity-ISI and relative fecundity-fish size for individual fish from all colour 

genotypes (For individual fish number see Table 4.9). No relationship was found between 

total fecundity and fish size in any individual female of red homozygous genotype while 

significant positive relationships were observed between total fecundity and both fish 

weight and length in heterozygous red females no. 3 and 4, between total fecundity and 

length in heterozygous red female no. 12 and homozygous wild type female no. 7 and 

between total fecundity and weight in homozygous wild type female no. 4. 

The relationships between relative fecundity and fish size for individual fish were 

stronger than total fecundity and fish size. Significant negative relationships were found 

between relative fecundity and both fish weight and length for homozygous red female 

no. 2, homozygous wild type females no's 1,2,3 and 5 and for heterozygous red females 

of no's 3,4,6,9,10,12 and 13. Homozygous red females no's 3 and 9, homozygous 

wild type females no's 6,8 and 10 and heterozygous red female of no. 1 showed 

significant negative relationship between relative fecundity and fish weight while 
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homozygous red female of no. 4 and heterozygous red females no's 1 and 2 showed 

significant negative relationship between relative fecundity and fish length. 

Regression analysis between ISI and total fecundity showed significant negative 

relationships only for homozygous red female no. 9 and heterozygous red female no. 10. 

4.3.5. Variation of fecundity and inter-spawning-interval (ISI) over consecutive 

spawns in serial spawning of homozygous red (RR), heterozygous red (Rr) 

and homozygous wild type (rr) 0. niloticus 

This investigation analyzed data from several serial-spawning females of different 

colour genotypes of 0. niloticus. The variation in terms of ISI, weight, length, total 

fecundity and relative fecundity of three colour genotypes over consecutive spawns in 

serial spawning is depicted in Table 4.9. Definite trends over successive spawns were 

only observed in terms of body weight and length of all colour genotypes. Body weight 

and length were found to increase steadily with each successive spawn in each fish of all 

colour genotypes. ISI exhibited quite marked variation with successive spawns in each 

fish (CV ranged 14.3-77.3% for homozygous red in RR female no's 8 and 10, 

respectively, 7.5-61.9% for heterozygous red in Rr female no's 1 and 6, respectively and 

10.5-78.1 % for homozygous wild type in rr female no's 3 and 8, respectively). 

Relative fecundity was also found to exhibit variation with successive spawns but 

to a lesser extent than ISI (CV ranged 11.5-29.2% for homozygous red in RR female no. 

8 and 1, respectively, 7.5-26.6% for heterozygous red in Rr female no's 3 and 13, 

respectively and 1.1-52.5% for homozygous wild type in female no's 9 and 1, 

respectively. ). 
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The variation in terms of total fecundity exhibited lower variation in homozygous 

wild type tilapia (CV range 0.3-14.2% in rr female no. 9 and 7, respectively) than both 

homozygous red (CV 9.8-28.1 % in RR female no. 6 and 1, respectively) and 

heterozygous red tilapia (CV 4.1-30.9% in Rr female no's 2 and 5, respectively). 

4.3.6. Survival rates in crosses involving different colour genotypes of 0. niloticus 

Mean survival rates in crosses of homozygous red females and homozygous red 

males (RR x RR), homozygous red and homozygous wild type (RR x rr), homozygous 

wild type and homozygous red (rr x RR) 0. niloticus at pigmentation, hatching and yolk 

sac stages are shown in Table 4.10. and are graphically presented in Fig. 4.6. 

There were no significant differences between colour genotypes at any 

developmental stages. General linear model (GLM) found no female, male or 

female*male interaction effects on the survival rates of any developmental stages within 

colour genotypes. Significant differences were found between stages when all the data 

from all crosses were pooled. This showed the best pigmentation > hatching > yolk sac 

indicating that mortality increased with time. 
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Table 4.10. Mean survival rates in crosses of homozygous red (RR) x homozygous red 
(RR), homozygous red (RR) x homozygous wild type (rr), homozygous wild type 

(rr) x homozygous wild type (rr) and homozygous wild type (rr) x homozygous 

red (RR) 0. niloticus at pigmentation, hatching and yolk sac stages. Same 

superscripts in the same column are not significantly different (P<0.05). 

PARENTS MEAN SURVIVAL RATE (%±SE) 
Female 

genotype 
Male 

genotype 
No. of 
crosses 

Pigmentation 
stage 

Hatching stage Yolk sac stage 

RR RR 9 51.79±7.19' 32.63±16.11 a 23.94±4.49 a 
RR rr 6 62.17+-6.47' 33.07±8.37 a 24.68±7.08 a 

rr rr 8 42.16±9.06 a 34.99±8.03 a 32.46±7.58 a 

rr RR 6 44.06±11.12' 37.46±10.15 32.84±8.66a 
OVERALL 49.80±4.28 34.37±3.67 28.28±3.32 

80 
70 
60 
50 ca 
40 
30 
20 
10 
0 

o Pigmentation 
  Hatching 
  Yolk sac 

RRxRR RRxrr rrxrr rrxRR 

Figure 4.6. Mean survival rates in crosses of homozygous red (RR) x homozygous red 

(RR), homozygous red (RR) x homozygous wild type (rr), homozygous wild type 

(rr) x homozygous wild type (rr) and homozygous wild type (rr) x homozygous 

red (RR) 0. niloticus at pigmentation, hatching and yolk sac stages. 
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4.4. Discussion 

According to Bromage and Cumaranatunga (1988) the primary objective of 

hatcheries is to produce the maximum number of the highest quality eggs from the 

broodstock available. In this respect, intensive tilapia hatcheries are constrained through 

variation in fecundity and inter-spawning interval between individuals. The asynchronous 

nature of spawning in tilapia leads to a need for extensive facilities and time consuming 

management of large numbers of fish in order to supply the market demand for fry. 

Increasing interest for culturing red morphs of tilapia stimulated research into of 

fingerling production. As in most cultured fish, nutrition (Chang et al., 1988), 

crossbreeding (El-Gamal et al., 1988), salinity (Watanabe et al., 1989), season (Galman 

et al., 1988), strain (Eguia, 1996; Romana-Eguia and Eguia, 1999) sex ratio and 

broodstock age affect reproduction in red tilapias (Smith et al., 1991). The production of 

tilapia fry depends on three main factors: the spawning frequency of each female, the 

number of eggs produced in each spawn and the survival of the fry (Mires, 1980). Any 

pleiotropic effects caused by colour on these reproductive traits could have a great 

importance in terms of hatchery management (Tave, 1993). In this respect, the present 

study aimed to investigate and compare several reproductive traits such as fecundity, 

spawning periodicity, egg size and survival rate of three colour genotypes of 0. niloticus. 

All the broodstock were held in the same environmentally controlled recirculating 

systems, minimizing variation in food availability, photoperiod and water temperature 

and quality. Although, almost all existing publications on reproductive traits of tilapia 

species originate from natural spawning of broodstocks in isolated ponds and lakes, the 

present study successfully used strip-spawning methods under laboratory conditions. 
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The present study showed no significant differences between colour genotypes of 

0. niloticus in terms of total fecundity, ISI, egg size and survival rate indicating no 

positive or negative pleiotropic effects of any colour morphs on these reproductive traits 

under these conditions. Therefore this discussion will be generally based on the pooled 

results from the three colour genotypes (homozygous red, heterozygous red and 

homozygous wild type) of 0. niloticus. 

Since tilapias are multiple spawners, fecundity alone does not represent the best 

estimate of reproductive output, therefore spawning periodicity should also be 

considered. Overall mean ISI of O. niloticus was found to be 26.2910.69 days similar to 

that reported for O. niloticus by Mires (1982), Rana (1986), for O. mossambicus by Rana 

(1986), for 0. aureus by Lee (1979: cited in Rana, 1988) and for T. zillii by Coward and 

Bromage (1999). All the studies mentioned above used a similar method for estimating 

ISI i. e. by removing egg or fry. Although considerable variation in ISI was observed in 

all colour genotypes, the shortest spawning cycles observed were just 7 days and 6 days 

in homozygous red tilapia of no. 7 and homozygous wild type tilapia of no. 2, 

respectively, on one occasion. Siraj et al., (1983) reported a7 day spawning interval for 

0. niloticus while Coward (1997) observed 7 days and 6 days for two different strains of 

T. zillii. 

Little is known of the factors governing spawning periodicity in tilapiines. The 

length of the ISI can be influenced by several factors. Water temperature has been 

suggested to play a crucial role for governing spawning periodicity (El-Zarka, 1962: cited 

in Coward, 1997). Since water temperature was controlled in the present study, it is 

unlikely that the observed variability in spawning periodicity of all colour genotypes of 

0. niloticus was caused by this. Lowe-McConnell (1982) reported that spawning capacity 

decreased with age in 0. macrocephalus. Since fish used in this study were 
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approximately the same age, the variation in ISI was unlikely to be due to age 

differences. The number of spawnings per breeding season in the three-spined stickleback 

(Gasterosteus aculeatus) and the convict cichlid (Cichlasoma nigrofasciatum) is related 

to food ration (Wootton, 1990). This is unlikely to be the case in the present study since 

feeding was ad libitum. ISI can also be influenced by different types of social interactions 

especially visual, audible and chemical stimulation from conspecifics (Jalabert and 

Zohar, 1982). Although the females in the present study were not subject to direct 

conspecific male contact, possible chemical stimuli from males which were kept in 

settling tanks of the same systems where females were kept might have caused the shorter 

ISI. However, Marshall (1972), Silverman (1978 a, b), Coward (1997) reported that 

tilapias are able to spawn regularly even when isolated. Srisakultiew (1993) found that 

male O. niloticus separated from females by clear plastic partitions were capable of 

stimulating adjacent females via both chemical and visual stimuli. On the other hand, 

visual and chemical stimulus from adjacent males did not significantly alter spawning 

rates of T. zillii females in the same water body separated by plastic partitions (Coward, 

1997). Coward and Bromage (1999) suggested that the variability of ISI in aquaria-held 

T. zillii might be influenced by visual and pheromonal stimuli from females showing 

asynchronous spawning cycles since the females were not subjected to conspecific male 

contact. The present study agreed with Tacon et al. (1996) suggesting that observed 

variability in ISI in aquaria-held O. niloticus was probably due to the individual's 

physiological responses to a variety of factors. Tacon et al. (1996) suggested that the 

history of the previous cycle might explain a part of the observed variability in ISI. They 

observed that a new batch of small early vitellogenic oocytes were present in the ovary 

before spawning in O. niloticus. Therefore some relationship are exist between the 

number of oocytes in developing batches and the time taken to complete vitellogenesis . 
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While there were a significant differences between the first month and last month 

of the experiment in terms of weight and length as expected, total fecundity and relative 

fecundity did not differ significantly over the II month period in the three colour 

genotypes of 0. niloticus in the present study. Since the present study was based on the 

consecutive spawning of several females, not all the females contributed to all monthly 

variables (weight, length and fecundity), resulting in some of the variation in weight, 

length, total fecundity and relative fecundity in some months. 

Total fecundity ranged between a minimum of 265 for heterozygous red female of 

no. 5 (198.4 g) and maximum of 1647 for the homozygous red wild type female of no. 3 

(278.4 g) with a mean of 1096. Although fish size ranged widely over the time period, 

these figures generally compare with earlier studies which used hatchery reared 0. 

niloticus, particularly with that of Rana (1986). who reported 1158 eggs per clutch for 0. 

niloticus at the age of 2+ with a female weight range of 180-498 g. However the mean 

total fecundity of 1096 was lower than the mean total fecundity of 1546 given for 

hatchery reared 0. niloticus with a size range of 190-397 g by Siraj et al. (1983) for the 

same age class. Myers and Hershberger (1991) reported that the mean total fecundity of 

strip-spawned 0. niloticus (224.1 g) was 951. The mean total fecundity of 1096 is 

comparable with Philippine red tilapia (150-200 g) having 400-1200 eggs/spawn in the 

study of Galman and Avtalion (1983). 

Significant relationships between total fecundity and fish size (weight and length) 

in homozygous wild type and in pooled data from all colour genotypes and between total 

fecundity and fish length in heterozygous red tilapia were also observed by Dadzie and 

Wangila (1980) in T. zillii, Blay (1981) in S. galilaeus, Siraj et al. (1983) and Rana 

(1986) in 0. niloticus indicating that total fecundity was significantly related to fish size 

in teleosts. Rana (1988) reported that total fecundity is more closely associated with 
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maternal size than age in O. niloticus. On the other hand, no relationship was found 

between total fecundity and fish size in homozygous red tilapia. Although it is unclear as 

to why this so, higher sample size may have been needed to find stronger relationships 

between total fecundity and fish size in homozygous red O. niloticus. Similar findings 

were also observed in two strains of T. zillii namely strain "A" and "B" in that no 

relationship was found between fecundity and fish weight in strain "B" while significant 

relationships were observed between fecundity and fish size in strain "A" (Coward, 

1997). 

The mean relative fecundity of 4.44 is similar to that of 4.24 (Myers and 

Hershberger, 1991) but lower than 6.11 (Siraj et al., 1983) and higher than 3.3 (Rana, 

1986) in other studies on O. niloticus. Relative fecundity was found to be negatively 

related to fish size in all three colour genotypes and pooled data. This was also observed 

in 0. niloticus and O. mossambicus (Rana, 1986) and in rainbow trout (Bromage et al., 

1992). This was attributed to an increase in egg size and the gradually diminishing rate of 

increase in fecundity with increasing fish size. 

In the present study, egg size was investigated on 5 different females from each 

colour genotypes only once during experimental period in order to examine any 

differences between colour genotypes of 0. niloticus in terms of egg size. Therefore, the 

sample size was very low for a good comparison to previous studies. The regression 

analysis found no relationship between egg weight, egg diameter, egg volume and fish 

size. Wootton (1973) found no evidence of a relationship between fish size and egg size 

in the three-spined stickleback. In tilapia species, no correlation between fish size and egg 

size in T. zillii varying from 20-120 g, in T. tholloni and T. zillii varying from 10-80 g, in 

O. niloticus and O. mossambicus within a narrow age class was found by Dadzie and 

Wangila (1980), Peters (1983) and Rana (1988), respectively. 
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Egg size in tilapias is generally species-specific (Lowe-McConnel, 1955: cited in 

Rana, 1986). Within each species however, egg size is generally larger in larger fish 

(Rana, 1988). Peters (1983) reported that in 0. niloticus and S. galilaeus, that egg size 

increased with body size in smaller fish but plateaued long before fish reached their 

maximum size. 

In tilapias, it is unclear as to whether maternal age or size is the predominant 

factor influencing egg size, though Rana (1988) reported that maternal age might be an 

important contributory factor. There is conflicting evidence on the influence of nutritional 

status of the female on egg size. For rainbow trout (Scott, 1962) and common carp 

(Hulata et al., 1974), a reduced food intake lowered fecundity but did not significantly 

reduce egg or fry size, whereas Bagenal (1969) produced larger but fewer eggs under 

poor nutritional status in brown trout. On the other hand Townshend and Wootton (1984) 

reported that a low ration significantly reduced the egg diameter of the convict cichlid. 

The effect of bigger egg size on the growth or survival of tilapia is unclear due to 

varying experimental conditions (Rana, 1988). Cridland (1962: cited in Rana, 1988) 

reported that egg size advances continued up to the end of the 90 days trial in 0. spilurus. 

Siraj et al (1983) noted that the initial advantages of egg size on fry length were 

obscured. In 0. niloticus and 0. mossambicus, mean body length and dry body weight of 

emergent fry were not significantly related to egg size (Rana, 1988). No effect of egg size 

on growth and survival was reported for rainbow trout (Bromage et al., 1990), Indian 

major carp, Labeo rohita (Sehgal and Toor, 1991) and pike, Esox lucius (Wright and 

Shoesmith, 1988). 

Most studies of reproduction tend to consider fecundity and egg size as separate 

indicators of reproductive performance. It is generally accepted however, that there is an 

inverse relationship between fecundity and egg size; fish produce either more eggs of a 
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smaller size or fewer eggs of a larger size (Bromage et al., 1992). Bromage et al. (1992) 

reported that 1000-3000 eggs/kg were produced in rainbow trout with a egg size of 4.5 

mm in diameter. On the other hand, in multiple spawners such as O. niloticus, the total 

fecundity is greater than that of salmonid species. For example mean relative fecundity 

of O. niloticus in the present study is 4436 eggs/kg. Marine species such as cod, Gadus 

marhua and Atlantic halibut, Hippoglossus hippoglossus produce small pelagic eggs but 

tend to exhibit very high fecundities: several million eggs can be produced per season 

(Norberg, et al., 1991). As a result of this "trade-off' it was suggested that total egg 

volume was a more appropriate index of egg production (Bromage et al., 1992), since it 

considers the aggregate of both egg number and size. In this sense, no differences were 

found between the three colour genotypes of O. niloticus in terms of total egg volume and 

no relationship was observed between total egg volume and fish size. On the other hand, 

egg weight to body weight ratio was negatively correlated to fish size in pooled data from 

all colour genotypes (P<0.001). A similar correlation was reported for T. zillii (Coward, 

1997) and for O. niloticus (Rana, 1986). 

Little is known of how and why reproductive traits such as fecundity vary with 

consecutive spawns in tilapias. In the present study, the total fecundity, relative fecundity 

and ISI varied widely over consecutive spawns in all colour genotypes of O. niloticus. No 

relationships were found between ISI and fecundity in any single colour genotype or the 

pooled data. Only one homozygous red and one heterozygous red female showed a 

significant negative relationship between ISI and fecundity out of 34 tests. Lowe- 

McConnell (1982) reported that the number of eggs from an individual tilapia in 

equatorial lakes or ponds diminishes with each spawning. On the other hand, in 

laboratory-held fish, Lee (1979) found that there was a tendency for clutch size to 

increase with successive spawns in some individual O. aureus, O. urolepis hornorum and 
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O. niloticus. Siraj et al. (1983) and Mires (1982) also observed a trend for the number of 

eggs/clutch to increase with successive spawns for some individual O. niloticus. 

However, variability in fecundity of individual O. niloticus females during consecutive 

spawns was reported by Rana (1986), Mires (1983) and in T. zillii by Coward (1997). 

In the present study, variation in ISI was also observed in all colour genotypes of 

tilapia. Overall C. V. in ISI ranged from 7.5% for a heterozygous female (no. 1) to 78.1% 

for a homozygous wild type female (no. 8. ). Mires (1982) and Lee (1979) also reported 

significant variation in ISI for 0. niloticus. Rana (1988) reported that ISI can be reduced 

by removing eggs from females after spawning. However, the same author indicated that 

in crowded aquarium conditions, ISI might be as long as those of natural breeding cycles 

in ponds even though eggs were removed from females. 

The fecundity of partial or serial spawners may be modified by environmental 

factors (Wootton, 1982). Under natural conditions food supply played a critical role in 

egg size and fecundity observed over successive spawns in tilapia species (Lowe- 

McConnell, 1982). However, it is unlikely that variations in food supply were responsible 

for the observed variation in fecundity in laboratory-held tilapias. Pollution or abrupt 

changes in water quality and social environment effect the fecundity (Gerking, 1980). 

Although it is not clear why fecundity and ISI varied with successive spawns, the present 

study agreed with Coward and Bromage (1999) who suggested that fecundity and 

spawning interval may be controlled by complex inter-related mechanisms involving 

oocyte recruitment, growth and reproductive endocrinology. 

In the present study, no pleitropic effects of red gene on survival rate of 0. 

niloticus was found. Negative pleiotropic effects of body colour were reported for several 

fish species (see Tave, 1993). Wohlfarth and Moav (1970) found that both blue and gold 

common carp had lower growth rates than normal coloured common carp. Bondari 
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(1984) was also reported that albino channel catfish produced eggs that lower hatchability 

and poorer growth rate than normally pigmented channel catfish. A negative pleiotropic 

effect of red genotype on viabilities of red 0. aureus and 0. niloticus hybrid was reported 

by El-Gamal et al. (1988). Pruginin et al. (1988) observed that red hybrid fry of 0. 

mossambicus X 0. niloticus (known as Philippine red tilapia) were vigorously preyed 

upon by their parents and grey siblings and birds due to their conspicuous colouration. 

The evidence from the present study shows that red colour phenotype does not 

appear to have any significant effect in the overall fecundity or viability of red tilapia 

compared to wild type fish from the same genetic background. 
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Chapter 5: 

Production of YYRR neofemales and YYRR males in Nile tilapia, 0. 

niloticus 



5. Production of YYRR males and YYRR neofemales in Nile tilapia, Oreochromis 

nUoticus 

5.1. Introduction 

5.1.1. Approaches to YY male production 

Sexual dimorphism for commercial traits of aquacultural species is one of the 

primary reasons for interest in producing monosex populations. Although several 

methods have been proposed to control sex ratios, recent research has concentrated on the 

production of YY males in fish species with male heterogamety (e. g. 0. niloticus) and ZZ 

females in fish species with female heterogamety (e. g. 0. aureus) to produce genetically 

male fish populations by crossing YY males with homogametic XX females and 

homogametic ZZ males with ZZ neofemales, respectively, where the males has an 

advantage over the female. In fish species with male heterogamety where the females has 

an advantage over the male (e. g. Rainbow trout), genetically female fish populations can 

be produced by crossing XX neomales with homogametic XX females. 

Yamamoto (1955) produced YY medaka for the first time using the technique of 

hormonal sex reversal and selective breeding. Yamamoto (1975) also succeeded in 

producing YY male goldfish which sired all male goldfish in the Fl generation when 

bred with normal XX females. 

Production of YY supermale in the guppy, Poecilia reticulata was achieved with 

similar approaches described above by Kavumpurath and Pandian (1993). Embryos in 

gravid guppies were feminised by oral administration of estrogen and XY neofemales 

were identified by progeny testing. Crossing of XY neofemales with normal XY males 
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resulted in YY supermales which sired all-male offspring when crossed to normal XX 

females. 

The first report of YY males in tilapia was reported by Varadaraj and Pandian 

(1989) and Scott et al. (1989). The supermale 0. mossambicus were produced by 

combining the endocrine sex-reversal technique with crossing and gynogenesis. In their 

work, F1 generation was feminised by oral administration of DES (diethylstilbestrol) and 

XY neofemales were identified by progeny testing. The eggs from XY neofemales were 

fertilised with UV-irradiated sperm (254 nm for 10 minutes) and suppression of the 

second meiotic division was inhibited by heat shock at 41.1-42°C for 3-3.5 minutes 

commencing 2-5 min. after fertilisation. This produced diploid XX females and YY 

supermales. 

The production of YY supermales and their potential for aquaculture in the Nile 

tilapia are described in the studies of Scott et al. (1989) and Mair et al. (1993,1997, 

1999). A supermale O. niloticus which consistently sired 100% male progeny when 

crossed to normal females was obtained by inducing meiotic gynogenesis in eggs of a 

natural sex-reversed XY female (Scott et al., 1989). More recently, Mair et al. (1997) 

reported the results of a developed programme incorporating endocrine sex-reversal and 

controlled breeding techniques to produce YY supermale O. niloticus. In this breeding 

programme, XY neofemales were crossed to normal XY males to generate YY males in 

which YY males can be distinguished from normal males by progeny testing (Scott et al., 

1989; Mair and Little, 1991; Pandian and Varadaraj, 1990; Mair et al., 1993,1997). 

Details of this programme are described in Section 1.6. and illustrated in Figure 1.3. 
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YY male genotypes can also be produced by androgenesis (Thorgaard et al., 

1990; Parsons and Thorgaard, 1985; Scheerer et al., 1991; Bongers et al., 1994; Myers et 

al., 1995a; Chapter 2 in this thesis). In different colour morphs of 0. niloticus namely 

red, blond (Chapter 2 in this thesis) and wild type YY males (Myers et al., 1995a) were 

obtained by crossing UV-irradiated eggs with normal sperm (XY). Diploidy was restored 

by suppression of the first mitotic division. The resulting male offspring were raised 

individually and sired all-male populations when crossed to normal XX females (Chapter 

2 in this thesis). 

Although gynogenesis and androgenesis can reduce the time-consuming 

procedure of progeny rearing and pedigree analysis of treated fish at sexual maturity for 

production of YY males, low survival rates with the potentially undesirable effects of 

inbreeding are major drawbacks to the use of these techniques. However, a few 

androgenetic or gynogenetic YY supermales may be sufficient for initiating large-scale 

YY male broodstock production by introgressive approaches. 

5.1.2. Sex reversal 

5.1.2.1. Hormonal sex-reversal of males to females 

Large-scale production of YY male broodstock requires the efficient feminisation 

of sexually undifferentiated fry. The application of estrogens to feminisation of 

genotypic males to phenotypic females has been conducted on several fish species such 

as medaka (Yamamoto, 1955), rainbow trout (Goryczko et al., 1991), channel catfish 

(Goudie et al., 1983), coho salmon (Hunter et al., 1982), guppy (Kavumpurath and 
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Pandian, 1992), fighting fish, Berta splendens (George et al., 1994), zebra cichlid, 

Cichlasoma nigrofasciatum (George and Pandian, 1996), 0. mossambicus (Varadaraj, 

1989), 0. aureus (Jensen and Shelton, 1979; Lahav, 1993; Melard, 1995) and 0. niloticus 

(Mair et al., 1993; Gilling et al., 1993; Vera Cruz and Mair, 1994). Comparison of 

hormonal treatment protocols using estrogens for sex-reversal in tilapias are presented in 

Table 5.1. 

5.1.2.2. Sex-reversal by temperature treatment 

Studies have shown that the phenotypic sex in fish can be altered by 

environmental factors such as temperature (Conover and Kynard, 1981), pH (Beamish, 

1993) and pollutants (Torblaa and Westman, 1980). The most commonly identified 

environmental variable inducing sex-change is temperature (Bull, 1983) which is known 

to be capable of overriding the genotypic sex determination in a small but increasing 

number of teleost fishes (Striissmann and Patino, 1995). 

In fishes, thermal alteration of sex ratio (Temperature Sex Determination, TSD) 

has been reported especially among the atherinids. The most comprehensive study of 

TSD was in the Atlantic silverside (Conover and Kynard, 1981) in that low temperature 

favours the formation of females whereas high temperatures yield more males. Recently, 

thermolability of sex determination has been established under controlled thermal 

conditions using normal and putative monosex progeny of various fish species 

(Strüssman and Patino, 1995). Sullivan and Schultz (1986) found that in the livebearing 

teleost fish, Poeciliopsis lucida, one strain produced almost all-male offspring at 30°C 

and female-biased sex ratios at 24°C while the other strain produced a 1: 1 sex 
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ratio at both temperatures. These authors suggested that in P. lucida populations sex ratio 

is influenced by both genetic and environmental factors. Strüssman et al. (1997) assessed 

the effect of temperature on progeny sex ratios in two other atherinid fish. In Odontesthes 

bonariensis all female progeny were produced at 17°C whereas fish exposed to about 

25°C become male-biased. In contrast, in Patagonina hatcheri sex ratios are balanced 

(1: 1) within the same range of temperature showing strong genotypic control. In channel 

catfish, the sex ratio was significantly skewed towards females in fish treated at 34°C 

whereas exposure to low and ambient temperatures did not effect the sex ratios (Patino et 

al., 1996). The effect of temperature on sex ratios of loach was reported by Arai et al. 

(1997). High temperature rearing with 25°C and 30°C for about 250 days after beginning 

of feeding gave significantly higher percentages of males compared to the sex ratios of 

fry reared at 20°C in normal crosses of XX females with XY males loach. Male progeny 

were observed at 25 and 30°C in gynogenetic all-female progenies of loach. 

There have been several reports of temperature sex determination in tilapia 

(Desprez and Melard, 1998; Mair et al. 1990; Baroiller et al., 1995a, b; Baroiller, 1996). 

The sex ratio of O. aureus was reported to be skewed towards females by elevating 

rearing temperature (Yu and Lay, 1982: cited in Mair et al., 1990) in mixed sex fry. On 

the contrary, Desprez and Melard (1998) reported high male ratios at 34°C in O. aureus. 

In one out of seven experiment, 20% females were observed in putative all-male broods 

of O. auresus derived from neomales and subjected to 32°C (Mair et al., 1990). In O. 

mossambicus, two cold temperature experiments at 19°C, yielded a significant excess of 

males (89% and 78% ) compared to the control (Mair et al., 1990). 
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The effect of temperature on sex ratios of 0. niloticus was extensively studied by 

Baroiller et al. (1995 a, b). Treatments at 36°C in mixed sex fry of 0. niloticus resulted in 

increased proportion of males (33-81 %) (Baroiller et al., 1995a). Baroiller et al. (1995b) 

reported that high temperatures (34-36°C) significantly increased the proportion of males 

in mixed sex families of 0. niloticus (69-91%) and red tilapia (Florida strain) (98.3%). 

All female 0. niloticus derived from the crosses of XX neomales with normal XX 

females were exposed to temperatures >_32°C and the proportion of males increased from 

0 to 91 % as compared to the control (Baroiller, 1996). The author suggested that in 0. 

niloticus sex was determined by genetic factors, temperature level and genotype- 

temperature interaction. 

Abucay et al. (1999) exposed progeny of different genotypes (XX, XY and YY) 

of 0. niloticus to high temperature (36.7±5°C) resulting in higher percentages of males 

being obtained in the putative all-female progeny whereas lower percentage of males 

were observed in all male (YY) progeny. The authors hypothesised that sex 

differentiation in YY males appears to be more labile than in normal males (XY). 

Manipulation of water temperature may be a promising alternative option to 

hormones for control of sex in fishes because of consumer reaction to hormone-treated or 

chromosome-manipulated fish needed for the maintenance and periodical replenishment 

of sex-reversed broodstock (Patino, 1997; Strüssmann and Patiflo, 1995; Melard, 1998). 

Although hormone sensitive periods of sex determination appear to have a timing and 

duration that is similar to the temperature sensitive period in M. menida (Conover and 

Fleisher, 1986), O. bonariensis (Strüssman et al., 1996) and in O. niloticus (Baroiller et 

al., 1995a, b), appropriate combinations of temperature and duration of thermal 

201 



manipulation will have to be established for reliable production of specific sex ratios (all- 

female or all-male) (Strüssmann and Patino, 1995). 

5.1.3. Viability of YY genotype 

There are several published reports on the production of YY genotypes in fish. 

However, the viability of YY genotypes has been shown to be very low in some species. 

Yamamoto (1955) reported that the progeny sex ratios of some crosses of normal males 

with neofemales were 1: 2.4 and 1: 2.2 (Female: Male) instead of the theoretical 1: 3 ratio 

and suggested reduced viability of YY males in medaka while other crosses gave a sex 

ratio of 1: 3 indicating that in some progeny, YY males were viable (Yamamoto, 1963: 

cited in George et al., 1994). 

Further work by Yamamoto (1964: cited in Yamamoto, 1969) showed that 

crossing of orange-red X`YR neofemale 0. latipes with normal orange-red X`YR or white 

X`Y` males resulted in viable orange-red YRY` and inviable yRyR genotypes (R stands for 

xanthic pigmentation). A recessive lethal gene (ma) was also demonstrated in guppy 

located in the Y chromosome (Winge and Ditlevsen, 1938: cited in George et al., 1994). 

YY males are viable only in the heterozygous (Y`"a YP) condition. 

Inviability of the YY genotype has been demonstrated in fighting fish (George et 

A, 1994), zebra cichlid (George and Pandian, 1996), coho salmon (Hunter et al., 1982) 

and rainbow trout (Parsons and Thorgaard, 1985). Kavumpurath and Pandian (1992) 

produced a very low number of YYmales in guppy (2 out of 21 males) and suggested that 

the viability of the YY genotype is a major problem for mass production of YY male 
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based broodstock. Evidently the survival of YY males is rare and that of YY neofemales 

is even rarer. 

Viability of YY neofemales and YY males were demonstrated in 0. mossambicus 

(Pandian and Varadaj, 1988 and 1990) and in 0. niloticus (Scott et al., 1989; Mair et al., 

1993,1997; Tuan et al., 1999). Several authors reported proportions of YY males not 

different from expected (25%) in progeny derived from XY neofemales and normal 

males and suggested that YY males have equal viability and fertility as normal males 

(Mair et al., 1993). 

5.1.4. Approaches to production of homozygous red YYRR males and YYRR 

neofemales 

The combined use of hybridization and backcrossing, known as introgressive 

hybridization (Manwell and Baker, 1970: cited in Behrends and Smitherman, 1984) or 

the introductory cross (Kirpichnikov, 1981) is used to combine several valuable traits of 

closely related strains, species or even genera by plant and animal breeders. Therefore, it 

is theoretically possible to transfer any important traits from one strain of tilapia to 

another. 

In Stirling red tilapia genetic analysis showed that red phenotype was caused by a 

dominant allele of an is an autosomal gene (RR or Rr): wild type is rr (McAndrew et al., 

1988). Crosses between homozygous red and wild type resulted in heterozygous red 

individuals exhibiting a range of black blotching from 0-24.6% of the skin surface. 

Although homozygous red individuals showed no blotching, a few isolated melanistic 
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spots were observed especially around the eyes and head region by McAndrew et al. 

(1988). 

Both red colouration and YY genotype are valuable traits but the combination of 

both traits in pure 0. niloticus lines would be of great interest to aquaculture. Production 

of homozygous red YYRR males and YYRR neofemales could be achieved by: (i) a 

breeding programme integrating genetic manipulation of sex determining mechanism 

suggested by Scott et al. (1989). Mair and Little (1991), Mair et al. (1993 and 1997) in a 

red 0. niloticus strain. (The major drawback of this approach is the requirement of 

performing all the time consuming and the labour intensive steps. ); (ii) introgressive 

hybridization approaches to combine red coloration and YY genotype by crossing 

existing wild type YYrr males and females from one strain or an isolate of a strain with a 

red strain. (iii) utilising existing homozygous red YYRR genotype by using both 

approaches described above for mass production. Details of these approaches are 

illustrated schematically in Fig. 5.1., 5.2., 5.3. and 5.4. 

Production of genetically male tilapia (GMT) population by crossing of YY males 

from one strain with females of other strains of 0. niloticus was reported by Capili 

(1995). Crosses of YY males of Egypt-Swansea strain with females of the Egypt- 

ICLARM, Ghana-ICLARM, Ghana-BFAR and FAC red tilapia strains produced variable 

sex ratios in the interstrain GMT produced, reported by Capili (1995). Tuan (1997) 

produced interstrain hybrid YY males by integrating YY males of the Egypt-Swansea 

strain into the Egypt-AlT strain. Both authors suggested that strain differences in sex 

determination in 0. niloticus exist based on variation in sex ratios of the offspring. 
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5.1.5. Objectives 

The present study was carried out to investigate the possibility of combining red 

coloration and YY genotype in 0. niloticus by using several breeding techniques. The 

breeding schemes used in this study are presented in Fig. 5.1. (same as Fig 5.8. ), Fig. 5.2. 

(same as Fig 5.9. ) , Fig . 5.3. (same as Fig 5.11. ) and Fig. 5.4. (same as Fig. 5.14). The 

following approaches were investigated. 

1- Evaluation of feminisation success by comparing hormonal and thermal feminisation 

on all YY male progeny of 0. niloticus. 

2- Production of YYRR males and YYRR neofemales by integrating YYrr males and 

YYrr neofemales from Egypt-Swansea-Philippines (ESP) isolate and red morph of 

Stirling (SR) isolate of Egyptian strain of 0. niloticus. 

3- Utilisation of existing androgenetic YYRR males of SR of 0. niloticus to produce 

YYRR males and YYRR neofemales. 

4- Further elucidation of the genetic bases of sex determination mechanism and 

colouration in 0. niloticus. 
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Figure 5.1. Schematic diagram of breeding scheme 1 for the production of pure-bred 
YYRR neofemales by using androgenetic YYRR male (Stirling red) of 0. niloticus 
(same as Fig. 5.8. ). 
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Figure 5.2. Schematic diagram of breeding scheme 2 for the production of YYRR males 
and YYRR neofemales by introgression of YYrr neofemales (Egypt-Swansea- 
Philippine) and androgenetic YYRR male (Stirling red) of 0. niloticus (same as 
Fig. 5.9. ). 
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Figure 5.3. Schematic diagram of breeding scheme 3 for the production of YYRR males 
and YYRR neofemales by introgression of YYrr males (Egypt-Swansea-Philippine) 
and normal XXRR females (Stirling red) of 0. niloticus (same as Fig. 5.11. ). 
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M Homozygous red (RR) 

M Wild type (ff) 

® Heterozygous red (Rr) 

209 

Generation I 
(G1) 

Generation 2 
(G2) 



5.2. Materials and methods 

5.2.1. Experimental strains of 0. niloticus 

The Egypt-Swansea-Philippine isolate (called ESP in this study) of Egyptian 

strain of O. niloticus used in this study originally came from Lake Manzala, Egypt and 

was transferred to the Institute of Aquaculture, University of Stirling in the late 1970's. 

Some fish from this stock were given to the University of Wales (UW), Swansea, in 

1982. These were sent to Freshwater Aquaculture Center (FAC) of the Central Luzon 

State University (CLSU) in the Philippines in 1989 and 1990 (Tuan, 1997) and some 

were returned to UW in 1995. The experimental ESP wild type YYrr males and YYrr 

neofemales used in the present study were transferred to Institute of Aquaculture, 

Scotland via UW in 1995. According to Tuan (1997) ESP isolate of Egyptian strain of O. 

niloticus has low genetic diversity because (i) it was a small initial introduction from the 

Institute of Aquaculture (ii) a limited number of fish were spawned regularly to maintain 

stocks in Swansea; and (iii) the fish were subjected to genetic bottlenecks during transfers 

between Swansea and the Philippine. Plate 5.1. shows one of each the wild type YYrr 

males (A) and YYrr neofemales used in this study. 

The origin of the red morph of Stirling isolate of Egyptian strain (called Stirling 

red, SR, in this study) O. niloticus is described by McAndrew et al. (1988). Two 

androgenetic SR YYRR males were also used in the present study (Plate 5.2. ). One of 

them was produced by Myers et al. (1995a) and the other was generated from the 

experimental study described in Chapter 2. 
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Plak" 1 \) 1 male (A) and YY nrufeniale (ß) of(). ni/olicus 

Plate >. '. Andrugenctie humoi. yýgoiis red YYRR male (013 ? 96 291) (A) and 013 630 
048 (B) of 0. nilotirri. c. 
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5.2.2. Fish maintenance and breeding 

All the fish used in this study were maintained, fed and tagged according to 

Section 2.2.1,2.2.1.3 and 2.2.3, respectively. Fish breeding, stripping and fertilisation 

were carried out as described in Section 2.2.4. Eggs were incubated in a recirculating 

system (Section 2.2.4.1) 

5.2.3. Feminisation 

Application of the feminisation was carried out according to Mair and Santiago 

(1994) by oral administration of diethylstilbestrol (DES) and described in section 2.2.7. 

The experimental system used for DES treatment was described in section 5.2.7. 

5.2.4. Fish sexing 

Generally, fish sexing was carried out as described in Section 2.2.8. Examination 

of the urogenital papilla morphology was performed on mature fish at the age of 4-6 

months. However, when undeveloped urogenital papillae were observed, the fish were 

killed and gonads were removed for accurate examination since the morphology of the 

urogenital papilla may not be clear in hormone treated fish. Plate 5.3 shows the structure 

of a testis (A), an ovary (B) and intersex gonad (C) of 0. niloticus. 
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5.2.5. Identification of colour 

The colour genotype of a red fish can be determined by crossing it with a wild 

type fish. The ratios of 1: 0 (Red: Wild type) or 1: 1 (Red: Wild type) are expected from this 

cross if the red parent is homozygous (RR) or heterozygous (Rr), respectively. 

5.2.6. Identification of YY males and YY neofemales 

YY males and YY neofemales were identified from two groups of fish (control 

and DES-treated, respectively) from different crosses which are schematically described 

in Fig. 5.2., 5.5., 5.8. and 5.9. 

YY males were identified from the control crosses through progeny testing with 

normal XX females. YY neofemales were identified by crossing them with a XX 

neomale. 

5.2.7. Experimental system used for diethylstilbestrol (DES) and heat treatment on 

0. niloticus 

A schematic diagram of the experimental static system used for DES and heat 

treatment on 0. niloticus is presented in Fig. 5.1. The system consisted of three main 

units namely heat treatment unit (A), DES treatment unit (B) and header tanks (C). 

In the heat treatment unit (A), four plastic holding tanks with a dimension of 30 

cm X 19 cm X 17 cm (Al), supported by bricks from underneath were placed into a glass 

aquarium with a dimension of 120 cm X 40 cm X 40 cm (A3). The whole system was 
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filled with clean and aerated tap water before the experiment started. The desired 

temperature was maintained using a 0-100°C range thermostatic heater with a stirrer 

pump (A2) (Gallenkamp, Thermo stirrer 85,220-240V, EEC) placed in the glass holding 

tank (A3). The stirrer pump provided the circulation of water around the plastic holding 

tanks (A 1). 

The DES treatment unit (B) contained six plastic holding tanks with a dimension 

of 30 cm X 19 cm X 17 cm (B 1). A thermostatic heater (Visi-Therm, UK. ) having a 

range of 18-32°C was placed in each tank. Three of them were used for control group and 

three for DES treatment. The water temperature was maintained at 28±1°C during the 

experimental period. 

Two header tanks formed the header tanks unit (C). A plastic header tank with a 

dimension of 60 cm X 44 cm X 41 cm (C2) used for topping up the DES treatment tanks 

(B) and a thermostatic heater (Visi-Therm, UK. ) having a range of 18-32°C was placed in 

it to maintain the water temperature at 28±1°C. The water temperature in the glass header 

tank with a dimension of 62 cm X 30 cm X 30 cm (Cl) was maintained at 32°C with a 

thermostatic heater (Visi-Therm, UK. ) having a range of 18-32°C and adjusted to 36°C by 

adding boiled tap water before filling the plastic holding tanks (Al) in the heat treatment 

unit (A) 

Aeration was provided to each plastic holding and header tank through an air 

pump during the experimental period. All plastic holding tanks were cleaned by 

siphoning the excess food and water and water were then topped up with clean aerated 
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tap water at the desired temperature from the respective header tanks. The equipment 

used for cleaning the DES treatment tanks was kept separately and care was taken not to 

use this equipment for cleaning heat treatment units and control tanks. The water 

temperature in each plastic holding tank was checked three times a day with a mercury 

thermometer having 0.1°C division. 

5.2.8. Experimental design for comparison of DES and heat treatment on sex ratio 

and survival rate in all YY male of 0. niloticus 

Two YY neofemales (ESP) were crossed to two YY males (ESP) to generate two 

single pair matings. The progeny from each family was equally divided into six batches 

after yolk sac resorption stage (10 days after fertilisation). Three batches of fry were 

treated by oral application of DES (Section 5.2.3) for 11 days at 28±1°C, while the other 

three batches of fry were exposed to 36°C for 21 days (Abucay, 1999) in a static tank 

system (Section 5.2.7. and Fig. 5.1). In the next spawning cycle, production of fry from 

the same families was repeated since insufficient fry were obtained from the first 

spawning to obtain nine replicates at the same time. Three replicates from the second 

crossing served as control groups and were reared at 28±1°C in the same static system 

(Fig. 5.1. ). The food for control and heat-treated groups were prepared in a similar 

manner as hormone treated food for DES-treated groups but without the addition of 

hormone. All groups were fed 3 times a day ad libitum. After 11 days treatment with 

DES-treated food, DES-treated groups were fed with control food as other groups for 

further 10 days. Following completion of the 21 days experimental period, all groups 
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were transferred to the early fry rearing system (Section 2.2.1.1.1) and reared for sexing 

by gonad squash method as described by Guerrero and Shelton (1974) (Section 5.2.4. ). 

5.2.9. Statistical analysis 

For comparison of DES and heat treatment on sex ratio and survival rate in all YY 

male 0. niloticus, heterogeneity chi-square tests were used between replicates of 

experimental groups. Intersex individuals were not used in calculating x2 for sex ratios. 

Since there was no heterogeneity detected between experimental groups in terms of 

survival rate and/or sex ratio data from each replicate of experimental group, analyses of 

variance or non-parametric Kruskal-Wallis test were applied on arcsine transformed 

percentages of survival rate and sex ratio according to the distribution of data to test for 

differences between experimental groups. 

In the experiments on production of YYRR males and YYRR neofemales by 

different breeding programmes, the success of feminisation was assessed by comparing 

the sex ratios of DES-treatment groups to their respective control using a 2x2 chi-squared 

contingency test. The sex ratios of all control groups were tested against 1 male: l female 

(or 1 male: 3 female in the cross of XY x XY) sex ratio using a chi-squared test or Fisher 

exact test where the expected frequency is less than 5. The sex and colour genotype of 

YY males and YY neofemales were identified through progeny testing with normal wild 

type female (XXrr) and neomale (XXrr), respectively (Section 5.2.5 and 5.2.6). 
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A statistical criterion used for the designation of YY males and YY neofemales 

was adopted from Mair et al., (1997). Sex ratios produced by crosses of YY genotypes 

with XX genotypes were tested against 1: 1 ratio using a chi-squared test. YY males and 

YY neofemales were denoted as those producing almost or completely all-male progeny 

at a probability level of 0.1 % (P<0.001) in respective progeny testing. When progeny sex 

ratio of a genotype was different from 1: 1 at P<0.01 but not at P<0.00 1, no classification 

of genotype was assigned. Chi-squared heterogeneity values were calculated to assess the 

homogeneity of progeny sex ratios obtained from the same crosses of genotypes. 

For comparison of feminisation rates between different crosses of different 

genotypes, the Kruskal-Wallis test was applied on arc-sine transformed data since data 

were not normally distributed. Results were presented as not-transformed data on the 

figure. 
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5.3. Results 

5.3.1. Comparison of DES and heat treatment on sex ratio and survival rate in all 

YY male 0. ndoticus 

Results obtained from control, DES and heat treated all YY male 0. niloticus are 

shown in Table 5.2. and mean percentage values of survival rate, female, male and 

intersex are graphically presented in Fig. 5.6. A, B, C and D, respectively. The highest 

mean survival rates of 97.5±0.85% and 97.3±0.82% were obtained in control and DES 

treated groups which were significantly higher than the mean survival rate of 62.9±9.82% 

in heat treated groups (P<0.05). 

Only males were observed in the control groups, while mean percentages of 

33.8±1.50% and 32.0±5.21% female were produced in DES and heat-treated groups, 

respectively, indicating that feminization had taken place. The mean female percentages 

in the DES and heat treatment groups were not significantly different (P>0.05). Although 

no intersex gonads were observed in any control groups, mean values of 1.6±0.8% and 

18.5±2.45% intersex progenies were produced in DES and heat-treated groups, 

respectively. The mean intersex percentages in heat treatment groups were significantly 

higher than the mean intersex percentages in DES treatment groups (P<0.05). 

5.3.2. Production of pure-bred YYRR neofemales by using androgenetic YYRR 

male (Stirling red) in 0. niloticus 

The experimental design used to produce pure-bred YYRR neofemales by using 

an androgenetic YYRR male (SR) is schematically presented in Fig. 5.8, page 229). 
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Figure 5.6. Mean values (%) of survival rate (A), females (B), males (C) and intersexes 

(D) in control, DES and heat-treated YY male 0. niloticus. 

The sex ratios in control and DES-treated groups of (Generation 1) G1 progenies 

derived from a pure-bred single pair mating of normal XXRR female (SR) with an 

androgenetic YYRR (SR) to produce pure strain XYRR neofemales are presented in 

Table 5.3. In the control group (C 1-1 D), 100% male progenies were produced as 

expected in this cross and these were significantly different from 1: 1 (P<0.001). The sex 

ratio of the DES-treated group (F 1-1 D) was significantly different from that of the 
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Table 5.3. Sex ratios in control (C1-1D) and DES-treated (Fl-1D) G1 progeny derived 

from a single pair mating of XXRR female (Stirling red) with an androgenetic 

YYRR male (Stirling red) 0. niloticus, In control, X2 values are for comparison 

against a 1: 1 (F: M) sex ratio; in DES treatment, X2 values are for comparison to 

the sex ratio in the control. (F: Female, M: Male, ***: P<0.001). 

Family Codes Number Phenotypic %o % x2 
Tag no. of colour female male 

F: M 
Dam: 000 621 331 (XXRR) CI-ID 0: 93 Blotched 0.0 100.0 93.00*** 

and 
Sire: 013 296 291 (YYRR) unblotched 

Fl-ID 94: 55 Blotched 63.1 36.9 93.29 
and 
unblotched 

control group (P<0.001) and 63.1% females were produced in this treatment. The 

phenotypic body coloration of progenies in both control and DES-treatment was either 

pure red or black blotched (from slight to heavy). 

The sex ratios of (Generation 2) G2 progenies (control and DES-treatments) 

derived from crossing of two XYRR neofemales (SR) with either the original 

androgenetic father or another androgenetic YYRR male are presented in Table 5.4. In 

the control groups, 100% male progenies were produced and the sex ratios were 

significantly different from a 1: 1 ratio (at P<0.001 for C2-1D and C2-2D). The 

proportion of females in the DES-treated groups ranged between 92.2%-93.2%, which 

was significantly different from their respective controls (P<0.001). The progenies of all 

groups showed pure red colouration or blotching on their body surface. 
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Table 5.4. Sex ratios in control (C2-1 D and C2-2D) and DES-treated (F2-1D and F2-2D) 
G2 progeny derived from two single pair matings between G1 XYRR neofemales 

and androgenetic YYRR 0. niloticus males (Stirling red). In controls, x2 values 

are for comparison against a 1: 1 (F: M) sex ratio; in DES treatments, X2 values are 
for comparisons to the sex ratio in the respective controls. (F: Female, M: Male, 

**: P<0.01, ***: P<0.001) 

Families 
Tag no. 

Codes No. of 
blotched 

red 
F: M 

No. of 
unblotched 

red 
F: M 

% 
female 

% 
male 

x2 

Dam: 012 622 881 (XYRR) C2-1D 0: 26 0: 2 0.0 100.0 28.00*** 

Sire: 013 296 291 (YYRR) F2-1D 27: 0 41: 5 93.2 6.8 75.65 

Dam: 008 823 263 (XYRR) C2-2D 0: 0 0: 13 0.0 100.0 13.00*** 

Sire: 013 630 048 (YYRR) F2-2D 30: 1 29: 4 92.2 7.8 46.25` "" 

Eight neofemales from G2 crosses (between XYRR neofemales with androgenetic 

YYRR males) were tested and four were identified as XYRR (Table 5.5. ). The 

percentages of males in progeny of these XYRR neofemales ranged between 35.0-55.0% 

with a mean of 46.8%. Two neofemales from this group were classified as YYRR (Table 

5.5. ) which was not significantly lower than the expected number of YYRR genotypes 

from these crosses (see Table 5.6. ). Of the eight neofemales tested, two were not 

classified because their progeny sex ratios were different from 1: 1 ratio at P<0.01 but not 

at P<0.001 (Table 5.5. ). The progeny test results of these G2 neofemales are summarised 

in Table 5.6. 
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Table 5.5. Results of progeny testing to identify YYRR 0. niloticus neofemales from 

DES-treated G2 progeny (from G1 XYRR neofemale x androgenetic YYRR male 

crossses, see Fig. 5.8. ). (F: Female, M: Male, ??: Unclassified, *: P<0.05, **: 

P<0.01, ***: P<0.001, for original family of fish see Table 5.4. ) 

XY/YY RR females 

tag no. 

(Original family) 

No. of fry 

sexed 

No. of 
M: F 

% male x2 (1) 

(1: 1) 

Predicted 

genotypes 

00-013C-B 170 (F2-1 D) 36 16: 20 44.4 0.44 XY 

00-013D-F70B (F2-1 D) 36 29: 7 81.0 13.44*** YY 

00-013E-1 OFE (F2-1 D) 37 27: 10 73.0 7.81 ?? 

00-013C-B44D (F2-1 D) 40 1426 35.0 3.60 XY 

00-013E-135E (F2-1 D) 36 19: 17 52.8 0.11 XY 

00-013E-4986 (F2-2D) 61 53: 8 86.9 33.20 YY 

00-013E-58C9 (F2-2D) 30 23: 7 76.7 8.53 ?? 

00-013E-3EE6 (F2-2D) 20 11: 9 55.0 0.20 XY 
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Table 5.6. Summary of results of progeny testing to identify YYRR 0. niloticus 
neofemales from DES-treated G2 progeny (from G1 XYRR neofemale x 

androgenetic YYRR male crossses, see Fig. 5.8. ). 

Description Females 

No. of families from which fish tested 2 

No. of fish tested 8 

No. of fry sexed 296 

Average family size 37 

No. of genotypes classified as XYRR 4 

No. of genotypes classified as YYRR 2 

Expected no. of YYRR genotypes (50%) 4 

Exact probability for binomial test 0.3 

No. of fish not classified 2 

Male percentage in progeny from XYRR genotype 35.0-55.0 

Mean male percentage in progeny from XYRR genotype 46.8 

Male percentage in progeny from YYRR genotype 81.0-86.9 

Mean male percentage in progeny from YYRR genotype 84.0 
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Unexpected colour segregation was obtained from the crosses of G2 neofemales 

with the XXrr neomale. These results are presented in Table 5.7. The phenotypic 

colouration of progenies derived from crosses of six XYRR or YYRR neofemales with 

an XXrr neomale segregated into red and wild type. Comparison of the observed 

colouration ratios of progenies with a 1: 1 (Red: Wild type) ratio showed no significant 

differences (P>0.05). 

Fig 5.7. shows the frequency distribution of sex ratios in progeny testing of DES- 

treated G2 0. niloticus neofemales (from G1 XYRR neofemale x androgenetic YYRR 

male crosses). 

Table 5.7. Colour segregation in offspring of G2 females in breeding scheme 1 (see Fig. 

5.8. ). Females were crossed to an XXrr neomale. x2 values are for comparison 

against a 1: 1 ratio. (Red: Wild type). (n. s.: not significant, for original family see 
Table 5.4. ) 

Females no. Presumed Offspring 

(Original 
genotype Observed number 2 x family) Red Wild type 

c 
1 (F2-2D) RR 41 51 1.09 n. s. 

2 (F2-2D) RR 105 107 0.02 n. s. 

3 (F2-2D) RR 62 63 0.01 n. s. 

4 (F2-2D) RR 66 84 2.16 n. s. 

5 (F2-2D) RR 135 161 2.28 n. s. 

1 (F2-1 D) RR 26 24 0.08 n. s. 
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Figure 5.7. Frequency distribution of sex ratios in progeny testing of DES-treated G2 0. 

niloticus neofemales (from G1 XYRR neofemale x androgenetic YYRR male 

cross). All females were crossed to an XXrr neomale. 
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Figure 5.8. Schematic diagram of breeding scheme 1 for the production of pure-bred 
YYRR neofemales by using androgenetic YYRR male (Stirling red) of 0. 
niloticus. 

YYRR neofemales were produced using the breeding scheme 1 described above. 

Progenies from G1 and G2 crosses derived from XXRR x YYRR and XYRR x YYRR, 

respectively, were successfully feminized using DES treatment. This breeding scheme 

took 2 ys generations and low numbers of pure-bred YYRR neofemales (only 2) were 

produced. The colour segregation of 1: 1 (red: wild type) was obtained from the crosses 

between XYRR or YYRR neofemales with an XXrr neomale which was not predicted 

from these crosses. 
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5.3.3. Production of YYRR males and YYRR neofemales by introgression of YYrr 

neofemales (Egypt-Swansea-Philippine) and androgenetic YYRR males 

(Stirling red) in 0. niloticus 

The experimental design used to produce YYRR males and YYRR neofemales by 

introgression of a YYrr neofemale (ESP) and an androgenetic YYRR (SR) is 

schematically presented in Fig. 5.9. (page 233). The sex ratios of G1 progenies in control 

and DES-treatment groups derived from a single pair mating between a YYrr neofemale 

(ESP) and an androgenetic YYRR male (SR) are shown in Table 5.8. In the control 

group, the sex ratio was 100% male and significantly different from 1: 1 (P<0.001). A 

female percentage of 44.8% was achieved in the DES-treated group, which significantly 

differed from the control group (P<0.001). The phenotype of progenies in both control 

and DES-treated groups was red as expected from this cross. 

In G2 crosses, one of the YYRr neofemale offspring was backcrossed to its father 

(SR) while the other one was crossed to another different androgenetic YYRR male (SR). 

The results of G2 crosses to produce YYRR males and YYRR neofemales are shown in 

Table 5.9. In the control groups, male percentages of 100% were obtained, both of which 

were significantly different from 1: 1 (P<0.01). No feminisation was achieved in the DES- 

treated groups. All red phenotypes were produced from these crosses as expected. 

The consistency of sex ratios in progeny from crosses of three G2 YYRR males 

with three different normal XXrr females (SR) was investigated and the results are shown 

in Table 5.10. The proportion of males in progeny derived from the male of 00-13C- 

A8BS varied between 51.2-57.9% with a mean of 54.0%. These were not heterogeneous 

(x2(2 =0.39) and not significantly different from 1: 1. On the other hand, the sex ratios of 
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Table 5.8. Sex ratios in control (C1-1C) and DES-treated (F1-1C) G1 progeny derived 

from a single pair mating of YYrr 0. niloticus neofemale (Egypt-Swansea- 

Philippine) with an androgenetic YYRR male (Stirling red). In control, x2 values 

are for comparison against a 1: 1 (F: M) sex ratio; in DES treatment, X2 values are 

for comparison to the sex ratio in the controls. (F: Female, M: Male, ***: 

P<0.001). 

Families Codes Numbe r % % x2 (1) 
Tag no. of female male 

F: M 
Dam: 014 575 564 (YYrr) Cl-1C 0: 27 0.0 100.0 27.00 

Sire: 013 296 291 (YYRR) F1-1C 78: 28 44.8 55.21 45.06 

Table 5.9. Sex ratios in control (C2-1C and C2-2C) and DES-treated (F2-1C and F2-2C) 

G2 progeny derived from two single pair matings between GI YYRr 0. niloticus 

neofemales and androgenetic YYRR males (Stirling red). In controls, X2 values 

are for comparison against a 1: 1 (F: M) sex ratio; in DES treatments, x2 values are 

for comparisons to the sex ratio in the respective controls. (F: Female, M: Male, 

***: P<0.001). 

Families 
Tag no. 

Codes No. of 
F: M 

% 
female 

% 
male 

x2 

Dam: 011 574 336 (YYRr) 

Sire: 013 296 291 (YYRR) 

C24 C 

F2-1C 

0: 21 

0: 37 

0.0 

0.0 

100.0 

100.0 

21.00 

- 

Dam: 005 557 370 (YYRr) C2-2C 0: 18 0.0 100.0 18.00 

Sire: 013 630 048 (YYRR) F2-2C 0: 66 0.0 100.0 - 
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Table 5.10. Sex ratios of progeny of three G2 YYRR males (from control group of C2- 

1C, see Table 5.9. ) in breeding scheme 2 (see Fig. 5.9. ). Males were crossed to 

three different normal XXrr females. Females were tested with a same normal 

XYrr male as control groups. Sex ratios of males were tested against a 1: 1 ratio. 

(M: Male, F: female, a: Fisher exact test result, n. s.: not significant, *: P<0.05, **: 

P<0.01, ***: P<0.001) 

Females (XXrr) YYRR males Control male 
(XYrr) 

tag no. 00-013C-A8138 00-013C-ABF7 00-013E-OCD2 015 302 791 
(M: F) (M: F) (M: F) (M: F) 
2 (1: 1) 2 (1: 1) X2 (1: 1) X2 (1: 1) 

00-013E-3362 (22: 21) (37: 0) (32: 0) (6: 8) 
0.02 n. s. 37.00*#* 32.00 0.29 n. s. 

00-013E-3245 (19: 17) (35: 0) (28: 0) (14: 11) 
0.11 n. s. 35.00`** 28.00*"`* 0.24 n. s. 

00-013E-12E 1 (22: 16) (30: 0) (30: 2) 17: 19 
0.94 n. s. 30.00'** 24.50*** 0.11 n. s. 

x2 0.39 ns. - 0.12 n. s. 8 0.79 n. s. 
heterogeneity 

other two males were highly significantly different from a 1: 1 sex ratio (P<0.001). The 

male percentages of offspring from 00-013C-ABF7 were 100% in all crosses with normal 

females whereas the male percentages of offspring from 00-013E-OCD2 varied between 

93.8-100% with a mean of 97.9%. The x2 heterogeneity of the sex ratios produced by 015 

302 791 control male was not significant (X2(2)=0.79). 
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Figure 5.9. Schematic diagram of breeding scheme 2 for the production of YYRR males 

and YYRR neofemales by introgression of YYrr neofemales (Egypt-Swansea- 

Philippine) and androgenetic YYRR male (Stirling red) of 0. niloticus. 

No YYRR neofemales were produced using the breeding scheme 2 described 

above (2 1/2 generations) since feminisation of progenies from G2 crosses derived from 

GI YYRr x YYRR were unsuccessful. On the other hand, GI crosses (from YYrr x 

YYRR crosses) and G2 crosses resulted in YYRr neofemales and YYRR males, 

respectively. 
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5.3.4. Production of YYRR males and YYRR neofemales by introgression of YYrr 

males (Egypt-Swansea-Philippine) and XXRR females (Stirling Red) in 0. 

niloticus 

The experimental design used to produce YYRR males and YYRR neofemales by 

introgression of YYrr males (ESP) and XXRR females (SR) in 0. niloticus is 

schematically presented in Fig. 5.11. The sex ratios in control and DES-treated groups of 

G1 progeny derived from three single pair matings between XXRR females (SR) and 

YYrr males (ESP) are summarized in Table 5.11. In three DES-treated groups, the female 

proportions were 47.7-100 % with a mean of 82.6 %. The calculated values of 

contingency x2 showed that proportions of females in all DES-treated groups were 

significantly different from their respective controls (P<0.001). Male percentages of 

100% were obtained in all control crosses were significantly different from 1: 1 sex ratio 

(P<0.001). The phenotype of fish was all red as expected from these crosses. 

The proportions of males and females in control and DES-treated G2 progenies 

derived from five single pair matings between G1 XYRr neofemales with normal XYRR 

males (SR) are shown in Table 5.12. The sex ratios were significantly different from the 

expected sex ratio of 1: 3 (F: M) in the control groups C2-1A (P<0.05) and C2-3A 

(P<0.001). However, the sex ratios in the control groups C2-2A, C2-4A and C2-5A were 

not significantly different from the expected sex ratio of 1: 3 (P>0.05). 

The proportions of females in the DES-treated group of F2-1A and F2-2A were 

highly significantly different from their respective groups (P<0.001) whereas, the DES- 

treated groups of F2-3A, F2-4A and F2-5A did not differ significantly from their control 

groups in terms of female percentages (P>0.05). However, fish numbers in the control 
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Table 5.11. Sex ratios in control (C 1-1 A, CI-2A and CI-3A) and DES-treated (F 1-1 A, 

F 1-2A and F 1-3A) G1 progeny derived from three single pair matings of normal 
XXRR 0. niloticus females (Stirling red) with YYrr males (Egypt-Swansea- 

Philippines). In controls, X2 values are for comparison against a 1: 1 (F: M) sex 

ratio; in DES treatments X2 values are for comparisons to the sex ratio in the 

respective controls. (F: Female, M: Male, ***: P<0.001) 

Families Codes Number % % x2 
Tag no. of female male 

F: M 
Dam: 000 621 331 (XXRR) C 1-1 A 0: 72 0.0 100.0 72.00 
Sire: 013 313 104 (YYrr) 

F1-lA 21: 23 47.7 52.3 38.80*** 

Dam: 014 303 075 (XXRR) CI-2A 0: 29 0.0 100.0 29.00 
Sire: 014 571 512 (YYrr) 

F1-2A 49: 0 100.0 0.0 73.78*** 

Dam: 014 106 788 (XXRR) C1-3A 0: 43 0.0 100.0 43.00 
Sire: 013 891 091 (YYrr) F1-3A 13: 0 100.0 0.0 50.53 
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Table 5.12. Sex ratios in control (C2-1 A, C2-2A, C2-3A, C2-4A and C2-5A) and DES- 

treated (F2-1 A, F2-2A, F2-3A, F2-4A and F2-5A) G2 progeny derived from five 

single pair matings between G1 XYRr 0. niloticus neofemales and normal XYRR 

males (Stirling red). In controls, X2 values are for comparison against expected 1: 3 

(F: M) sex ratio; in DES treatments x2 values are for comparisons to the sex ratio 
in the respective controls. (F: Female, M: Male, a: Original family of dam (see 

Table 5.11. ), b: Fisher Exact test result since the expected number was less than 5, 

*: P<0.05, **: P<0.01, ***: P<0.001, n. s.: not significant). 

Families 
Tag no. 

Codes Number of 
F: M 

% 
female 

% 
male 

x2(1) 

Dam: 01 1 105 002 (XYRr) 
(F 1-2A)a 

C24 A 6: 42 16.0 84.0 4.00* 

Sire: 014 300 264 (XYRR) F2-1A 46: 4 92.0 8.0 58.99 

Dam: 002 046 351 (XYRr) 
(F1-2A) a 

C2-2A 7: 43 14.0 86.0 3.23 n. s. 

Sire: 015 296 120 (XYRR) F2-2A 33: 13 71.7 28.3 30.53 

Dam: 01 1 587 004 (XYRr) 
(Fl-2A) a 

C2-3A 27: 31 46.5 53.5 14.37 

Sire: 014 300 261 (XYRR) F2-3A 27: 14 65.9 34.1 2.87 n. s 

Dam: 001 094 829 (XYRr) 
(F1-3A) 

C2-4A 2: 6 25.0 75.0 0.43 n. s. 

Sire: 013 110 524 (XYRR) F2-4A 5: 5 50.0 50.0 0.22 n. s 

Dam: 002 374 516 (XYRr) 
(F1-3A) a 

C2-5A 0: 3 0.0 100.0 0.50 n. s. 

Sire: 013 555 839 (XYRR) F2-5A 32: 1 96.9 3.1 0.00 n. s 
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groups of C2-4A and C2-5A was very low for a good comparison to the DES-treated 

groups of F2-4A and F2-5A, respectively. The all red phenotype was obtained in all 

crosses as expected. 

No YY males from G2 control crosses were obtained from the fourteen males 

tested (Table 5.13. ) which is significantly different from the 50% of YYRR genotypes 

expected from these crosses (based on testing of only RR males, see Table 5.15. ). One 

out of these fourteen control males gave all female progenies designated as XXRR 

neomale. 

A total of fifteen DES-treated homozygous red females were progeny tested from 

G2 crosses and only one was identified as a YYRR neofemale (Table 5.14. ). This was 

significantly different from the expected 33.3% YYRR genotypes in these crosses 

(P<0.05) (Based on only RR neofemales, see Table 5.15. ). Eight of the fifteen DES- 

treated females were identified as XYRR neofemales (Table 5.14. ) which was not 

significantly different from the expected 33.3% XY genotypes (P>0.05, see Table 5.15. ). 

Six of the fifteen DES-treated females were designated as XXRR (Table 5.14. ) which 

was not significantly different from the expected 33.3% XXRR genotype from these 

crosses (see Table 5.15. ). The result of progeny testing of control males and DES-treated 

females are summarized in Table 5.15. (Based on testing of only RR fish). 

Fig 5.10. shows the frequency distribution of sex ratios in progeny testing of G2 

YYRR 0. niloticus males (A) and G2 YYRR neofemales (B) from control and DES- 

treated G2 crosses, respectively, (between GI XYRr neofemale with normal XYRR male 

crosses). 
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Table 5.13. Results of progeny testing to identify YYRR 0. niloticus males from G2 

control crosses (from G1 XYRr neofemale x normal XYRR male crosses, see Fig. 

5.11. ). Progeny testing was based on only RR males. (F: Female, M: Male, a: x2 

contingency test since the sex ratio of the respective control was significantly 
different from a 1: 1 ratio *: P<0.05, **: P<0.01, ***: P<0.001, for original family 

of fish see Table 5.12. ) 

XY/YY RR males 

tag no. 

(original family) 

No. of 
fry 

sexed 

No. of 
M: F 

% 

male 

x2 (1) 

(1: 1) 

Predicted 

genotypes 

Sex ratio of 

respective control 
M: F 

00-013E-14CD (C2-2A) 6 4: 2 66.7 0.66 XY 13: 17 

00-0136-05A2 (C2-2A) 40 0: 40 0.0 40.00 XX 13: 17 

00-013E-3365 (C2-2A) 14 6: 8 42.9 1.25a XY 9: 31 

00-013E-3FF5 (C2-2A) 40 26: 12 65.0 5.16* XY 1: 5 

00-013C-8835 (C2-2A) 13 6: 7 46.2 0.08 XY 16: 14 

00-013E-4344 (C2-3A) 4 2: 2 50.0 0.00 XY 22: 14 

00-013C-B3A 1 (C2-3A) 29 20: 9 69.0 4.17* XY 22: 14 

00-013E-48E3 (C2-3A) 50 34: 16 68.0 6.48 XY 22: 14 

00-013E-3BB8 (C2-3A) 36 21: 15 58.3 1.00 XY 22: 14 

00-013D-F544 (C2-3A) 38 16: 22 42.1 0.95 XY 13: 17 

00-013E-4344 (C2-3A) 40 13: 27 32.5 4.9 XY 13: 17 

00-013E-58C8 (C2-4A) 14 8: 6 57.1 0.29 XY 22: 14 

00-0136-0272 (C2-4A) 36 17: 19 47.2 0.11 XY 22: 14 

00-013E-083B (C2-4A) 42 22: 20 52.4 0.4 XY 17: 19 
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Table 5.14. Results of progeny testing to identify YYRR 0. niloticus neofemales from 

DES-treated G2 progeny (from GI XYRr neofemale x normal XYRR male 

crosses, see Fig. 5.11. ). Progeny testing based on only RR neofemales. (F: 

Female, M: Male, *: P<0.05, **: P<0.01, ***: P<0.001, for original family of fish 

see Table 5.12. ) 

XY/YY RR females 

tag no. 
(Original family) 

No. of fry 

sexed 

No. of 

M: F 

% male x2 (1) 

(1: 1) 

Predicted 

genotypes 

00-013C-A34F (F2-1 A) 36 0: 36 0.0 36.00 XX 

00-013E-3F 1E (F2-1 A) 14 10: 4 71.4 2.57 XY 

00-0136-0868 (F2-2A) 32 11: 21 34.4 3.13 XY 

00-013E-3706 (F2-2A) 25 0: 25 0.0 25.00*** XX 

00-013C-AB38 (F2-3A) 50 43: 7 86.0 25.92*** YY 

00-013E-09B5 (F2-3A) 32 16: 16 50.0 0.00 XY 

00-013D-EECD (F2-3A) 36 1: 35 2.8 32.11 XX 

00-013E-3EE8 (F2-3A) 38 24: 14 63.2 3.41 XY 

00-013E-0F53 (F2-3A) 39 17: 22 43.6 0.64 XY 

00-013D-FA3C (F2-3A) 38 20: 18 52.6 0.11 XY 

00-0137-9D78 (F2-3A) 30 1: 29 3.3 26.13 XX 

00-0F7-76ED (F2-3A) 38 23: 15 60.5 1.68 XY 

00-013D-F53A (F2-3A) 32 3: 29 9.4 21.13 XX 

00-013C-BOOD (F2-4A) 24 0: 24 0.0 24.00 XX 

00-013D-ED8F (F2-4A) 34 12: 22 35.3 2.94 XY 
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Table 5.15. Summary of results of progeny testing to identify G2 YYRR D. niloticus 

males and YYRR neofemales from control and DES-treated G2 progeny, 

respectively, (from XYRr neofemale x normal XYRR male crosses, see 
Fig. 5.11. ). Progeny testing was based on only RR males and RR females. 

Description Males Females 

No. of families from which fish tested 4 4 

No. of fish tested 14 15 

No. of fry sexed 402 498 

Average family size 29 33.2 

No. of genotypes classified as XXRR 1 6 

No. of genotypes classified as XYRR 13 8 

No. of genotypes classified as YYRR 0 1 

Expected no. of YYRR genotypes 7 (50%) 5 (33.3%) 

x2 for observed versus expected no. of YYRR 14.00*** 5.97* 

No. of fish not classified 0 0 

Male percentage in progeny from XYRR genotype 32.5-66.7 34.4-71.4 

Mean male percentage in progeny from XYRR genotype 53.6 51.4 

Male percentage in progeny from YYRR genotype - 86.0 

Mean male percentage in progeny from YYRR genotype - - 
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Figure 5.10. Frequency distribution of sex ratios in progeny testing of G2 YYRR 0. 

niloticus males (A) and G2 YYRR neofemales (B) from control and DES-treated 

G2 crosses, respectively, (between G1 XYRr neofemale with normal XYRR male 

crosses). All males and neofemales were crossed to normal XXrr females and an 
XXrr neomale, respectively. 
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Figure 5.11. Schematic diagram of breeding scheme 3 for the production of YYRR males 
and YYRR neofemales by introgression of YYrr males (Egypt-Swansea- 
Philippine) and normal XXRR females (Stirling red) of 0. niloticus. 

No YYRR males were produced while only one YYRR neofemales was obtained 

in this breeding scheme (2 1/2 generations) which aimed to integrate the YY genotype 

with RR genotype in order to produce YYRR males and YYRR neofemales. The 

feminisation of progenies from G1 crosses between XXRR x YYrr and from G2 crosses 

between XYRr x XYRR were successful. 

Founders 

Generation 
(G1) 

Generation 2 
(G2) 
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5.3.5. Production of YYRR males and YYRR neofemales by introgression of YYrr 

neofemales (Egypt-Swansea-Philippine) and XYRR males (Stirling Red) in 

0. niloticus 

The experimental design used to produce YYRR males and YYRR neofemales by 

introgression of YYrr neofemales (ESP) and XYRR males (SR) in 0. niloticus is 

schematically presented in Fig. 5.14. (page 255). The sex ratios in control and DES- 

treated groups of GI progenies derived from four single pair matings between YYrr 

neofemales (ESP) and XYRR males (SR) are depicted in Table 5.16. In all control 

groups, sex ratios were 100% male and significantly different from 1: 1 sex ratio 

(P<0.001), as expected. The female proportion in DES-treated groups ranged between 

56.8-91.6% with a mean of 79.1%. The proportion of females in all DES-treated groups 

was significantly different from the respective controls (at P<0.001 in the group of Fl- 

1B, F1-3B and Fl-4B and at P<0.01 in the group of F1-2B). The expected red phenotype 

was obtained in all crosses. 

Of twelve control males tested from G1 crosses, four males were identified as 

YYRr males (Table 5.17. ), which was not significantly different from the 50% expected 

YYRr genotypes in these crosses (P>0.05, see Table 5.19. ). Percentages of males in 

progeny from individuals classified as YYRr males significantly differed from 1: 1 ratio 

(P<0.001) ranged between 76.9-84.6% with a mean of 80.9%. Seven remaining males 

were designated as normal XYRr males since these males produced progeny with 

proportions of males ranging from 32.3-73.1% with a mean of 62.1%, not significantly 

different from a 1: 1 ratio. 
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Table 5.16. Sex ratios in controls (C1-1B, C1-2B, C1-3B and C1-4B) and DES-treated 

(F 1-1 B, F1-2B, Fl-3B and F 1-4B) G1 progeny derived from four single pair 
matings of YYrr 0. niloticus neofemales (Egypt-Swansea-Philippines) with 

normal XYRR males (Stirling red). In controls, X2 values are for comparison 

against a 1: 1 (F: M) sex ratio; in DES treatments x2 values are for comparisons to 

the sex ratio in the respective controls. (F: Female, M: Male, *: P<0.05, **: 

P<0.01, ***: P<0.001) 

Families Codes Number % % xz (1) Tag no. of female male 
F: M 

Dam: 012 618 313 (YYrr) C 1-1 B 0: 47 0.0 100.0 47.00 
Sire: 013 555 839 (XYRR) 

F1-1B 11: 5 91.6 8.4 34.52 

Dam: 014 312 864 (YYrr) C1-2B 0: 11 0.0 100.0 11.00 
Sire: 013 110 524 (XYRR) 

F1-2B 46: 35 56.8 43.2 10.32w'r 

Dam: 014 575 564 (YYrr) C1-3B 0: 28 0.0 100.0 28.00 
Si 0 6 re: 014 3 02 1 (XYRR) F1-3B 63: 12 84.0 16.0 57.08 T, 7, 

Dam: 007 336 335 (YYrr) C1-4B 0: 24 0.0 100.0 24.00 
Si 00 2 XYR re: 014 3 61 ( R) F1-4B 17: 5 84.0 16.0 26.19 
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Table 5.17. Results of progeny testing to identify G1 YYRr 0. niloticus males from 

control groups of G1 crosses (between YYrr neofemales x normal XYRR males, 

see Fig. 5.14. ). YY males are denoted as those producing a sex ratio significantly 

different from a 1: 1 ratio at P<0.001. (*: P<0.05, **: P<0.01, ***: P<0.001, for 

original family of fish (see Table 5.16. ) 

XY/YY Rr males 

tag no. 

(Original family) 

No. of fry 

sexed 

No. of 
M: F 

% male x2 (1) 

(1: 1) 

Predicted 

genotypes 

007009888(C1-1B) 21 10: 11 32.3 0.04 XY 

000 880 579 (CI-1B) 27 19: 9. 70.3 3.74 XY 

000 290 054 (CI-1B) 30 21: 9 70.0 4.80* XY 

000 261 083 (C 1-1 B) 19 10: 9 52.6 0.05 XY 

010 114 791 (C1-2B) 26 19: 7 73.1 5.53 XY 

001 030 326 (C1-2B) 52 42: 10 80.8 19.70*** YY 

000 520 805 (C 1-2B) 52 44: 8 84.6 25.00 YY 

000 807 096 (C 1-2B) 35 25: 10 71.4 6.40* XY 

000 885 523 (C 1-2B) 52 40: 12 76.9 15.07*** YY 

005 610 566 (C1-3B) 32 26: 6 81.3 12.50 YY 

014 319 328 (C1-3B) 20 13: 7 65.0 1.80 XY 

010 317 095 (C 1-3B) 32 25: 7 78.1 10.12** 
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Two of the nineteen DES-treated females from GI crosses were identified as YYRr 

neofemales (Table 5.18) which was significantly different from the 50% expected YYRr 

genotype in these crosses (see Table 5.19. ). The male percentages of offspring from two 

YYRr neofemales were 74.5% and 76.8%. Significantly higher numbers XYRr 

neofemales were produced (n=16) than the expected number of 9.5 XYRr neofemales in 

these crosses (P<0.01) (see Table 5.19. ). The male percentages of offspring from XYRr 

neofemales ranged between 34.0-77.7% with a mean of 75.65%. Progeny testing results 

of untreated males and neofemales from G1 crosses derived from between YYrr 

neofemales (ESP) with normal XYRR males (SR) are summarised in Table 5.19. 

Fig 5.12. shows the frequency distribution of sex ratios in progeny testing of GI 

YYRr 0. niloticus males (A) and G1 YYRr neofemales (B) from control and DES-treated 

G1 progeny, respectively, (between YYrr neofemale x normal XYRR male crosses). No 

clear distribution was observed for male percentages of G1 YYRr males (A), probably 

resulted from low number of fish used with sample. 

Two identified YYRr neofemale (013 284 559) and YYRr male (005 610 565) 

originating from the G1 progeny were crossed to generate G2 cross and only red fish 

were used for feminisation. The sex ratios in the control and DES-treatment of G2 cross 

are presented in Table 5.20. The male percentage in the control cross was 97.2% and this 

sex ratio was significantly different from a 1: 1 ratio (P<0.00 1). A female percentage of 

51.0% was obtained in the DES-treated group. The x2 contingency value calculated for 

comparison of the DES-treated group with the control was highly significant (P<0.001), 

indicating a significant level of feminisation. Since only red fish were used for 

feminisation, only the colour ratio of control group was given in Table 5.20. The colour 
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Table 5.18. Results of progeny testing to identify G1 YYRr 0. niloticus neofemales from 

DES-treated G1 progeny (between YYrr neofemale x normal XYRR male crosses, 

see Fig. 5.14). YY females are denoted as those producing sex ratio significantly 

different from expected 1: 1 ratio at P<0.001. (*: P<0.05, **: P<0.01, ***: P<0.001, 

for original family of fish see Table 5.16. ) 

XY/YY Rr females 

tag no. 

(Original family) 

No. of fry 

sexed 

No. of 

M: F 

% male x2 (1) 

(1: 1) 

Predicted 

genotypes 

013 284 559 (F1-1B) 56 43: 13 76.8 16.06*** YY 

013 317 300 (F1-113) 31 15: 11 48.4 0.62 XY 

014 572 600 (F1-1B) 25 11: 14 44.0 0.36 XY 

013 107 104 (F1-113) 17 5: 12 47.0 1.44 XY 

009 592 335 (F 1-1 B) 69 44: 25 63.8 5.23** ?? 

01 1 797 381 (F 1-2B) 20 8: 12 40.0 0.62 XY 

008 565 364 (Fl-2B) 55 41: 14 74.5 13.25*** YY 

000 000 001 (F 1-2B) 48 23: 25 48.0 0.08 XY 

013 278 044 (F1-2B) 9 7: 2 77.7 2.76 XY 

009 283 829 (F1-3B) 11 4: 7 36.0 0.81 XY 

010 054 015 (F1-3B) 52 34: 18 65.4 4.92 XY 

001 258 549 (F 1-4B) 26 12: 14 46.2 0.15 XY 

000 616 814 (F1-4B) 31 20: 11 64.5 1.31 XY 

014 296 107(F 1-4B) 44 15: 29 34.0 4.44 XY 

013 622 301 (F1-4B) 52 36: 16 69.2 3.85 XY 

011 559 059 (F1-4B) 22 134 59.0 0.72 XY 

005 100 858 (F1-4B) 23 9: 14 39.0 1.08 XY 

000 000 002 (F1-4B)8 43 23: 20 53.5 0.2 Xy 

012 554 075 (F1-4B) 28 15: 13 53.6 0.15 XY 
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Table 5.19. Summary of results of progeny testing to identify G1 YYRr 0. niloticus 

males and GI YYRr neofemales from control and DES-treated G1 progeny, 

respectively, (from YYrr neofemale x normal XYRR male, crosses, see Fig. 

5.14. ) 

Description Males Females 

No. of families from which fish tested 3 4 

No. of fish tested 12 19 

No. of fry sexed 398 662 

Average family size 33.2 34.8 

No. of genotypes classified as XYRr 7 16 

No. of genotypes classified as YYRr 4 2 

Expected no. of YYRR genotypes (50%) 6 9.5 

x2 for observed versus expected no. of YYRr 1.33 11.8 

No. of fish not classified 1 1 

Male percentage in progeny from XYRr genotype 32.3-73.1 34.0-77.7 

Mean male percentage in progeny from XYRr genotype 62.1 51.6 

Male percentage in progeny from YYRr genotype 76.9-84.6 74.5-76.8 

Mean male percentage in progeny from YYRr genotype 80.9 75.7 
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Figure 5.12. Frequency distribution of sex ratios in progeny testing of GI YYRr 0. 

niloticus males (A) and YYRr neofemales (B) from control and DES-treated G1 

progeny, respectively, (from YYrr neofemale x normal XYRR male crosses). All 

males and females were crossed to normal XXrr females and an XXrr neomale, 

respectively. 
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Table 5.20. Sex ratios in control (C2-1B) and DES treated (F2-1B) G2 progeny derived 

from a single pair mating of G1 YYRr 0. niloticus neofemale (013 284 559) with 
YYRr male (005 610 565). Feminisation was based on only red phenotype. In 

control, x2 values (for sex ratio) are for comparison against a 1: 1 (F: M) sex ratio; 

in DES treatment X2 values are for comparisons to the sex ratio in the control. In 

control, x2 values (for colour ratio) are for comparison against expected 3: 1 (R: 

W) colour ratio; (F: Female, M: Male, ***: P<0.001, R: Red, W: Wild type, for 

original family see Table 5.16. ). 

Family Codes Number Number % % xT 2 
cn Tag no. of of female male for sex for colour 

(Original family) F: M R: W ratio ratio 
Dam: 013 284 559 YYRr C2-113 5: 175 125: 55 2.8 97.2 160.56*** 2.96 n. s. 
(F1-1B) 
Sire: 005 610 565 YYRr 
(F1-3B) F2-1B 50: 48 98: 0 51.0 49.0 90.04*** - 

ratio in control group was not significantly different from the expected 3: 1 (Red: Wild 

type). 

Of seven control males from G2 cross, five males were designated as YYRR 

males (Table 5.21. ). Although this was not significantly different from the expected 

100% YYRR genotype, considering that all YYRR genotype was expected, the number 

(five YYRR) was much lower than expected seven YYRR genotype in this crosses (see 

Table 5.23). Male percentages in progeny from these YYRR males were ranged between 

77.5-100 % with a mean of 95.5%. 

A total of five DES sex reversed females from G2 cross were tested and three of 

them were classified as YYRR neofemales (Table 5.22. ) which was not significantly 

different but much lower than the expected 100% YYRR genotype in this cross (P<0.05, 
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Table 5.21. Results of progeny testing to identify G2 YYRR 0. niloticus males from G2 

control cross (between G1 YYRr neofemale (013 284 559) with G1 YYRr male 
(005 610 565) cross, see Fig. 5.14. ). Progeny testing was based on only RR males. 
YY males are denoted as those producing sex ratios significantly different from 

1: 1 ratio at P<0.001. (M; male, F; female, *: P<0.05, **: P<0.01, ***: P<0.001, 

for original family of fish see Table 5.20. ) 

XY/YY RR males 

tag no. 

(Original family) 

No. of 
fry 

sexed 

No. of 

M: F 

% 

male 

X2 (1) 

(1: 1) 

Predicted 

genotypes 

Sex ratio of 

respective control 

M: F 

00-012C-12DD (C2-1B) 32 32: 0 100.0 32.00 YY 22: 16 

00-013E-1045 (C2-1 B) 40 31: 9 77.5 12.10 YY 22: 16 

00-013E-ODAY (C2-1B) 30 30: 0 100.0 30.00 YY 22: 16 

00-013C-AD8C (C2-1 B) 36 19: 17 52.7 0.11 ?? 22: 16 

00-013E-34AB (C2-1B) 34 34: 0 100.0 34.00 YY 9: 31 

00-013E-3246 (C2-1B) 30 30: 0 100.0 300-0007wr YY 22: 16 

00-012C-OEEC (C 1-1 B) 44 20: 24 45.5 0.36 ?? 22: 16 
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Table 5.22 . Results of progeny testing to identify G2 YYRR 0. niloticus neofemales 
from DES-treated G2 progeny (between G1 YYRr neofemale (013 284 559) x 
G1 YYRr male (005 610 565) cross, see Fig. 5.14. ). Progeny testing was based on 

only RR neofemales. YY females were denoted as those producing sex ratios 

significantly different from expected 1: 1 ratio at P<0.001. (M; male, F; female, *: 

P<0.05, **: P<0.01, ***: P<0.001, for original family of fish see Table 5.20. ). 

XY/YY RR females 

tag no. 

(Original family) 

No. of fry 

sexed 

No. of 

M: F 

% male x2 (1) 

(1: 1) 

Predicted 

genotypes 

00-013E-0F66 (F2-113) 24 24: 0 100.0 24.00 YY 

00-013E-DD73 (F2-1B) 34 1123 32.4 4.24 ?? 

00-013E-49D2 (F2-1B) 32 32: 0 100.0 32.00*** YY 

00-012F-39D7 (F2-1B) 15 11: 4 73.3 3.26 ?? 

00-013E-0F66 (F2-1B) 30 30: 0 100.0 30.00 YY 

5.23. ). The male percentage of progeny of YYRR neofemales was 100%. Progeny testing 

results of control G2 YYRR males and YYRR neofemales are summarised in Table 5.23. 

(Based on testing of only RR fish). 

Fig 5.13. shows the frequency distribution of sex ratios in progeny testing of G2 

YYRR 0. niloticus males (A) and G2 YYRR neofemales from control and DES-treated G2 

progeny, respectively, (from GI YYRr neofemale x GI YYRr male cross). 
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Table 5.23. Summary results of progeny testing to identify G2 YYRR 0. niloticus males 

and YYRR neofemales from control and DES-treated G2 progeny, respectively, 
(from GI YYRr neofemale (013 284 559 YYRr) x YYRr male (005 610 565) 

cross, see Fig. 5.14. ). Progeny testing was based on only RR males and RR 

neofemales. 

Description Males Females 

No. of families from which fish tested 1 1 

No. of fish tested 7 5 

No. of fry sexed 246 135 

Average family size 35.1 27 

No. of genotypes classified as YYRR 5 3 

Expected no. of YYRR genotypes (100%) 7 5 

Exact probabilty for binomial test 0.2 0.2 

No. of fish not classified 2 2 

Male percentage in progeny from YYRR genotype 77.5-100.0 100.0 

Mean male percentage in progeny from YYRR genotype 95.5 100.0 --7 
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Figure 5.13. Frequency distribution of sex ratios in progeny testing of G2 YYRR 0. 

niloticus males (A) and G2 YYRR neofemales (B) from control and DES- 

treated G2 progeny, respectively, (from GI YYRr neofemale x GI YYRr 

male cross). All males and neofemales were crossed to normal XXrr females 

and an XXrr neomale, respectively. 
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Figure 5.14. Schematic diagram of breeding scheme 4 for the production of YYRR males 
and YYRR neofemales by introgression of YYrr neofemales (Egypt-Swansea- 
Philippine) and normal XYRR male (Stirling red) of 0. niloticus. 

Although the breeding scheme described above took longer (3 generations) 

compared to other breeding schemes in order to combine YY genotype and RR genotype 

in a single strain, the number and male percentages of YYRR males and YYRR neo 

females were higher. A total of 5 YYRR males and 3 YYRR neofemales with an average 

male percentages of 95.5% and 100.0% were produced, respectively. YY genotype were 

successfully feminised. 

I XYRr neofemale 
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5.3.6. Summary of sex ratios produced by XY and YY genotypes in male and 

female of 0. niloticus 

The male percentages in the progeny testing of XY and YY genotypes in male and 

female O. niloticus were pooled and the results are presented as a frequency distribution 

in Fig. 5.11. The frequency distribution of family sex ratio from XY males and XY 

neofemales was normally distributed. On the other hand, the sex ratio frequency 

distribution for the progeny testing of YY males was bimodal with two peaks at 80.0% 

and 100%. The family sex ratio frequency distribution of YY neofemales showed a single 

mode. 

The progeny testing of XY males with normal XX females produced sex ratios 

slightly skewed to male. The male percentage from all twenty XY males varied between 

32.5-73.1 % with a mean of 56.612.62%, significantly greater than the predicted 1: 1 ratio 

(x2(, )=13.40; P<0.001). Overall progeny testing of XY neofemales produced a mean male 

percentage of 50.9±2.29% which was not significantly different from the expected 1: 1 

ratio (X2 (1)--0.17). 

Progeny testing of YY males and YY neofemales, excluding those males and 

females from YY x YY crosses, produced sex ratios ranging from 76.9-84.6% with a 

mean of 80.9% and 74.5-86.9% with a mean of 80.0%, respectively. YY males and YY 

neofemales from the YY x YY crosses gave a higher mean male percentage of 96.4% and 

100%, respectively. Mean male percentages of YY males and YY neofemales from all 

crosses were 91.2±2.80% and 88.2±3.76%, respectively. 
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Figure 5.15. Frequency distribution of pooled male percentages in the progeny testing for 

XY and YY genotypes in male and female 0. niloticus. Males and females were 

crossed to normal XX females and an XX neomale, respectively. 
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5.4. Discussion 

5.4.1. Temperature effect on sex ratio of Nile tilapia, 0. niloticus and its potential 

use for sex reversal 

The present study provides evidence of a significant effect of high temperature on 

sex ratio and a potential use of high temperature treatment for sex reversal as an 

alternative to estrogen treatment in all YY progeny of Nile tilapia. Temperature effects on 

sex differentiation of tilapia species were reported in previous studies (Mair et al., 1990; 

Baroiller et al., 1995 a, b; Baroiller et al., 1996; Abucay et al., 1999; Desprez and Melard, 

1998). Sex reversal effects of high temperature treatment were also demonstrated on 

putative all-females (Baroiller et al., 1996; Abucay, 1999) and YY males (Abucay et al., 

1999) progeny of 0. niloticus in the direction of male and female, respectively. 

In the present study, a significantly lower mean survival rate of 62.9±9.82% was 

observed in the heat treated groups compared to the survival rate of 97.0±0.85% in the 

controls and 97.3±0.82% in the DES treatment groups. These results suggest that YY 

male progeny of 0. niloticus are more susceptible to high temperature. A similar 

observation on the sensitivity of YY males to high temperature treatment was reported by 

Abucay et al. (1999) in same strain of 0. niloticus. In their work, a significantly lower 

mean survival rate of 53.0% was obtained in heat treated group (36°C) compared with 

mean survival rate of 90.67% in the control. 

No female progeny were observed in any control group in crosses between YY x 

YY genotypes. This is predicted from the sex-determination mechanism, of a 

predominantly monofactorial genotypic system with male heterogamety and female 

258 



homogamety suggested by several authors (Penman et al., 1987; Shah, 1988; Mair et at., 

1991a; Muller-Belecke and Horstgen-Schwark, 1995; Mair et at., 1997 and Chapter 2 in 

this thesis). On the other hand, a mean female percentage of 32.0±5.21% produced in 

heat treated groups of all YY male progeny indicated that high temperature does change 

the sex of some YY male 0. niloticus in the direction to female. Mean female 

percentages of 32.0±5.21% in this study were comparable to the mean female 

percentages of 49.22% (ranging from 0-94.44%) obtained by Abucay et al. (1999) in heat 

treated all YY male progenies from the same strain (ESP) of O. niloticus derived from 

thirteen families. On the other hand, in the same study, lower female percentages ranging 

from 0-11.54% with a mean of 1.42% were observed in progenies subjected to heat 

treatment at 36°C from the crosses of YY neofemales from ESP with YY males from 

Egypt-ICLARM strains of D. niloticus. The authors attributed the different sensitivity of 

pure-bred (ESP x ESP) and crossbred (ESP x Egypt-ICLARM) YY males reared at high 

temperature to the level of inbreeding of the Egypt-Swansea strain which is affecting 

their fitness and developmental stability and making them more sensitive to 

environmental extremes. 

A mean female percentage of 33.8±1.5% was produced in DES-treated groups of 

all YY male progeny of 0. niloticus in the present study. This female percentage was 

lower than the 78% female in mixed sex progenies of several strains of 0. niloticus 

reported by Mair and Santiago (1994) using the same dosages of DES (1000 mg/kg) and 

similar treatment period (10 days) starting after yolk sac resorption stage (10 days after 

fertilisation). Low female percentages of 0% (Table 5.9. ), 44.8% (Table 5.8. ) and 51% 

(Table 5.20. ) were also produced in progeny derived from the crosses of YY females with 
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YY males in DES treatment experiments for the production YY neofemales in the present 

study. These results imply that feminisation of the YY genotype by oral administration of 

DES may be more difficult compared to other genotypes. More detailed discussion about 

this will be given in the next section based on the results of feminisation rates of different 

genotypes presented in this chapter. 

Similar female percentages of 33.8±1.5% and 32.0±5.2% (a total effect of 35.4% 

and 50.5% with intersexes produced by DES treatment and heat treatment, respectively) 

were produced in DES and heat treatment groups, respectively, suggesting that heat 

treatment at 36°C for 21 days during the sexual differentiation can be used as successfully 

as hormonal sex reversal for feminisation of all YY male 0. niloticus. 

Although functional feminisation of sex-reversed YY females by heat treatment 

was not investigated through progeny testing in this study, Abucay et al. (1999) reported 

that heat treated sex reversed YY females are reproductively viable. Baroiller et al. 

(1995a) demonstrated that sex reversed XX males (derived from crosses of XX females 

with XX neomales) by heat treatment at >_32°C sire high percentages of females when 

crossed the normal XX females suggesting the functional masculinisation of genetic 

females. 

It is interesting that similar feminisation rates were obtained by DES and heat 

treatment on all YY male O. niloticus. Although a shorter estrogen treatment period of 11 

days was used in the present study compared to the heat treatment period of 21 days, the 

temperature sensitive period appears to have a timing and duration that is similar to the 

hormonal sensitive period in O. niloticus. Similar observation was also reported in M. 

menidia (Conover and Fleisher, 1986), O. bonairensis (Strussman et al., 1997) and O. 
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niloticus (Baroiller et al., 1995a). The coincidental timing of temperature and hormonal 

sensitive period might result from the effect of high temperature on the action of a 

hormone or related enzyme during sex differentiation (Hunter and Donaldson, 1983). 

Direct or indirect temperature effect on the regulation of the expression of steroidogenic 

enzyme genes controlling the production of aromatase (the catalyst for the breakdown of 

androgens to estrogen) was reported by Pieau (1994), Wibbels et al. (1994), Crews 

(1996) and Crews et al. (1996) in thermosensitive reptiles. 

A significantly higher mean intersex percentage of 18.5±2.45 was observed in heat 

treatment group compared 1.6±0.80 in the DES treated group and no intersex progenies 

were produced in any control replicates in the present study. The occurrence of intersexes 

in hormone treatment of fish indicates incomplete sex reversal and was also reported by 

Rothbard et al. (1981) and Mair et al. (1987b). However, intersex fish seem to be rare or 

not produced in heat manipulation experiments generally. Mair et al. (1990) reported 

9.34%, 0.1 % and 4.9% intersex in only one cross of 0. aureus, 0. niloticus and 0. 

mossambicus, respectively, reared at low temperature (20°C). No intersex fish were 

observed in high temperature treatment of all YY male and putative all female progenies 

of 0. niloticus by Abucay et al. (1999) and Baroiller (1995a, b), respectively. 

From the present study, it can be concluded that high temperature treatment, which 

is more environmentally friendly and less harmful to human health compared to 

hormones, can be used for sex-reversal of all YY male progenies of 0. niloticus. 

However, the low survival rate with occurrence of high numbers of intersexes may limit 

the use of this technique commercially. 
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5.4.2. Sex determination in O. nUoticus 

In the present study, YYRR and YYrr neofemales and males of 0. niloticus were 

produced using both introgressive and purebred crossing approaches. The viability and 

fertility of the YY genotype in male and neofemale 0. niloticus was also confirmed. 

Viable YY genotypes in tilapia species have been reported by Scott et al. (1989), 

Varadaraj and Pandian (1989), Mair et al. (1997) and Tuan et al. (1999). The results in 

this study only provide equivocal evidence for monofactorial sex determination 

mechanism with male heterogamety and female homogamety as suggested by previous 

studies (Penman, 1987; Shah, 1988; Mair et al., 1991; Muller-Belecke and Horstgen- 

Schwark, 1995; Chapter 2 in this thesis). Although 100% male progenies were produced 

from the crosses involving YY broodstock from this study and androgenetic YY males 

from the previous study in Chapter 2 which suggests a monofactorial mode of sex 

determination, the inconsistent and heterogeneous sex ratios observed in progeny testing 

of many identified YY and XY neofemales and males suggesting that other factors may 

be operating. 

Unexpected female percentages ranged between 0-23.1% with a mean of 9.5% 

and between 0-25.5% with a mean of 11.85% from the progeny testing of eleven putative 

YY males and eight YY neofemales, respectively. Much lower unexpected female 

percentages ranging between 0-20.5% with a mean of 1.1 % and no female were produced 

in progeny testing of sixty-one YY males and twelve YY neofemales, respectively, in 0. 

niloticus by Mair et al. (1997). Mean female percentages of 6.8% (ranging between 1.4- 

14.1%) and 1.9% (ranging between 0-1.5%) were reported from progeny testing of 
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seventeen YY males and six YY neofemales of O. niloticus, respectively, by Tuan 

(1997). 

Unexpected sex ratios are not unique to crosses involving the YY genotype. For 

example, in single pair mating of normal females with sibling XX neomales, all female 

progeny were obtained in only five crosses out of the thirty-five crosses tested and the 

sex ratios of the others ranged between 65-99% female progeny in O. niloticus (Baroiller, 

1996). Calhoun and Shelton (1983) observed that the sex ratio of progeny of XX 

neomales varied depending on the source of the females used. In this work, the 

proportion of female progeny from mothers that were halfsib or sibs of the XX neomales 

were significantly higher (99.9%) compared with the female progeny proportion (94.7%) 

of randomly selected females. The percentage of unexpected sex ratios could be an 

indication of the involvement of autosomal factor or factors other then the major sex 

determining genes or sex chromosome which may influence the sex differentiation in this 

species. This hypothesis was also supported by several authors based on sex ratios in this 

species (Mair et al., 1991a, 1997; Wohlfarth and Wedekind, 1991; Abucay, 1999). 

The presence of a single autosomal sex-modifying locus (SDL-2, two alleles, SR 

and sr) in gynogenetic 0. niloticus, causing sex reversal from female to male in the 

homozygous condition (srsr), was postulated by Hussain et al. (1994) and Chapter 3 in 

this thesis. The existence of an autosomal recessive gene, epistatic to the major sex 

determining locus, was also reported in 0. aureus by Mair et al. (199lb). Sarder et al. (in 

press) working on fully inbred clonal lines of 0. niloticus, produced through gynogenesis 

and hormonal sex reversal, observed in one clonal line a high percentage of males was 

produced from the crosses of XX neomales from this line with their mitotic mother and a 
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control female. The authors suggested that some allele or combination of alleles at 

different loci fixed in this clonal line may cause sex reversal from female to male but 

with limited penetrance. A linkage between a single autosomal sex modifying locus 

(SDL-2, with SR and sr alleles) which causes sex reversal from female to male in the 

homozygous condition (srsr) with partial penetrance and red locus in gynogenetic 0. 

niloticus was demonstrated in Chapter 3. Therefore, it is possible that there could be 

another sex modifying locus causing sex reversal from male to female direction. Thus, 

the presence of autosomal loci could be an explanation to unexpected sex ratios obtained 

in this study. 

Both sex ratios produced by all males (XY and YY) and only XY males were 

heterogeneous (X2(31)=255.9; p<0.001 and x2(19 =33.9; p<0.05, respectively). Progeny sex 

ratios of normal XY varied from 32.5-73.1% (mean of 56.612.62) with a small but 

significant overall excess of males. This distribution is similar to but more homogeneous 

than that observed for Egypt-Swansea strain by Mair et al. (1991 a and 1997), for Egypt- 

AIT-strain by Tuan (1997) and for Ivory coast strain of 0. niloticus by Shelton et al. 

(1983). Mean male percentages of 56.6%, 51.8%, 52.4%, 54.7% and 50.95% were 

observed by this study, Mair et al. (1991a), Mair et al. (1997), Shelton et al. (1983) and 

Tuan (1997), respectively. The occurrence of slightly higher male percentages might 

have resulted from: i) testing of low family numbers (20); ii) strain differences; and iii) 

differential mortality. The observed variation in sex ratios from the present and previous 

studies may reflect the involvement of autosomal influences in sex determination in 0. 

niloticus as suggested by Shelton et al. (1983), Mair et al. (1997) and Tuan (1997). 
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In the present study, progeny testing of YY males and YY neofemales from YY x 

YY crosses gave higher mean sex ratio of 95.5 and 100% male, respectively. A similar 

observation was reported by Mair et al. (1997). They obtained a mean sex ratio of 

98.8±3.1 % male in the progeny testing of YY males from crosses of YY x YY genotypes 

compared with a mean of 95.6±7.9 male in the progeny testing of YY male from the 

other crosses (XY x XY and XY x YY). The authors recommended that selection of YY 

males which produced progeny with sex ratios >94% male in initial progeny testing could 

improve the proportion of males in progeny from the crosses with normal females. The 

authors further claimed that the influence of autosomal sex modifying genes, operating as 

a threshold trait, may be the reason for the occurrence of unexpected females and 

selection might be a way to increase the proportion of males in the progeny of YY males. 

This claim was based on the influences of paternal and maternal effects on sex ratio of 

YY males in 0. niloticus reported by Capili (1995), and Tuan (1997). 

The effect of temperature on sex differentiation, demonstrated by several authors 

(See Section 5.1.2.2. ) should also be considered as a further possibility in variable sex 

ratios in 0. niloticus. However, it is unlikely in the present study since all the 

experiments were carried out under controlled experimental conditions and temperature 

was monitored and maintained at 28±1°C with minimal fluctuation. Differential 

fertilisation rates between parental genotypes and differential viability of sexual 

genotypes may also be possible causes of unusual sex ratios. 

In the present study, the number of observed YY genotypes was lower than 

expected from the respective crosses in most cases. The reason for fewer YY males and 

YY neofemales could be differential mortality of different genotypes or differential 

265 



feminisation of the different genotypes. Although the present study was not designed to 

compare the feminisation rate of different genotypes, the result implies that differential 

feminisation of XY and YY cannot be discounted. If the female percentages from DES- 

treated crosses of different genotype are pooled, it can be seen that significantly lower 

percentages (P<0.05) of females (ranging between 0-51% with a mean of 24.0%) 

obtained in DES-treated crosses of YY x YY genotypes comparing with the female 

percentages of other DES-treated crosses (Fig. 5.16. ): XX x YY (47.7-100% with a mean 

of 77.7%) XY x XY (50-96.9% with a mean of 75.3%) and XY x YY (56.8-93.2 with a 

mean of 83.6%). 

No feminisation was achieved in DES-treated groups derived from the crosses of 

YYRr neofemales with androgenetic YYRR males (Table 5.17. ) in the present study. 

According to Kirpichnikov (1981) and Yamamoto (1969) male and female genes may be 

located in many chromosomes and sex determination depends on a balanced effect of 

these genes. Therefore, male modifying genes may have been accumulated in 

androgenetic YYRR males due to inbreeding. The loading of autosomal male modifying 

genes would tend to increase in the next generation to produce YYRR neofemales by 

crossing YYRr neofemales with androgenetic YYRR males. It is possible that in YY 

progeny that carry extremely high loads of male sex modifying genes along with higher 

levels of endogenous androgens, feminisation could be more difficult than in other 

genotypes or even never takes place. The hypothesis of differential feminisation of XY 
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Figure 5.16. Comparison of female percentages obtained from DES-treatment of different 
crossing (XX x YY, n=4; XY x XY, n=5; XY x YY, n=6; YY x YY, n=4). Same 
superscript the bars are not significantly different. 

and YY genotypes was also supported by Abucay and Mair (1997 cited in Mair et al., 

1997). The authors investigated the sex ratios of feminised females and nonfeminized 

males from DES-treated progeny of XY x YY crosses and evidence was presented for 

this hypothesis in one of three families. 

A naturally sex reversed XX male was observed in the cross between a XY 

neofemale and a normal XY male which was not predicted (Table 5.13. ). Occurrence of 

sex reversed XX male in gynogenetic 0. niloticus resulted from an autosomal sex- 

modifying locus causing sex reversal from female to male was reported by Mair et al. 

(1991a), Hussain et al. (1994), Sarder et al. (in press) and Chapter 2 in this thesis. In 

gynogenetic common carp, similar sex reversal from female to male resulted from an 

autosomal recessive sex determining gene was reported by Komen et al. (1992). 
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Natural sex reversal from male to female direction was also reported by Scott et 

al. (1989) in O. niloticus and initiated the production of YY supermale by subjecting the 

spontaneous sex reversed XY female to gynogenesis. Occurrence of intersex O. niloticus 

resulting from incomplete sex reversal (Yamamota, 1969) could be indicative of natural 

sex reversal. Although, the occurrence of intersex is believed to be common in hormone 

treated fish (Rothbord et al., 1981; Mair et al., 1987b), several intersex progenies were 

observed in crosses between fish of normal genotype in O. niloticus by Scott (1988) and 

Mair et al. (1991 a). 

5.4.3. Colouration in 0. niloticus 

In the present study several homozygous (RR) and heterozygous (Rr) red Nile 

tilapia with different sexual genotypes were produced. Generally, the red gene acted as an 

autosomal locus with the red allele (R) dominant to the wild type (r) as suggested by 

McAndrew et al. (1988) and Hussain (1992). Testing of homozygous (RR) and 

heterozygous (Rr) individuals by crossing with wild type (rr) segregated into 1: 0 

(Red: wild type) and 1: 1 (Red: wild type) colour ratio, respectively, according to 

Mendelian inheritance. 

The occurrence of black blotched individuals from the cross of a XXRR female 

with an androgenetic YYRR male (Table 5.3. ) was not predicted since homozygous red 

individuals normally shows no blotching or a few isolated melanistic spots around the 

eyes and head region (McAndrew et al., 1988; Hussain, 1992). This result provides 

further evidence for the existence of blotching gene or genes as suggested by McAndrew 

et al. (1988). According to their hypothesis, blotching could be controlled by a single 
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gene with two alleles: B and b, where B is responsible for blotching and b for lack of 

blotching. This gene is epistatic to the red locus. If it is assumed that blotching gene is in 

the heterozygous state (Bb) in RR males (since two androgenetic YYRR males used in this 

study showed black blotching on their body surface, Plate 5.2. ) and RR females , it is 

possible to obtain blotched and unblotched individuals from this cross. However, analysis 

of blotching patterns is very difficult because this trait shows a continuous nature without 

any obvious discrete classes. McAndrew et al. (1988) working on analysis of different 

colour genotypes of 0. niloticus observed that the degree of blotching is reduced or 

increased as the amount of dominant R allele and the recessive r allele increases, 

respectively. However, RR individuals also show a low level of blotching whereas Rr fish 

display a wide range of blotching (0-24.6% of body surface). Therefore, it is possible to 

observe an Rr fish showing no obvious blotching, bringing difficulties for the selection of 

none-blotched RR homozygotes as suggested by McAndrew et al. (1988). 

Unexpected colour segregation of 1 red: 1 wild type ratio from the crosses of RR 

females (RR females were originally derived from the crosses of XYRR neofemales with 

androgenetic YYRR males, see Table 5.7. ) with rr males was produced and not predicted. 

This unexpected colour segregation may be the result of the involvement of an Rr female 

in the original cross by mistake. However, the female (000 621 331) involved in the 

original cross with the androgenetic YYRR male (013 296 291) was tested for colour 

genotype before any further crosses and was also used for production of XYRr neofemales 

(Table 5.11. ) by crossing with a YYrr male. These results indicated that female ( 000 621 

331) is indeed a homozygous red female. Although no plausible explanation is available 

for this phenomenon, it limits the use of androgenetic YYRR males for more rapid 

production of pure bred YYRR neofemales and YYRR males by integrating the colour and 

sex genotype of this males into a breeding programme before further investigation. 
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Chapter 6: 

Summary and conclusion 



6. Summary and conclusions 

Research into sex determination in 0. niloticus revealed that in this species it is 

predominantly monofactorial, where the female has a homogametic genotype (XX) and 

the male heterogametic (XY) (Penman, 1987; Shah, 1988; Mair et al., 1991; Muller- 

Belecke and Horstgen-Schwark, 1995; Chapter 2 in this thesis). Based on the hypothesis 

of a single monofactorial sex determining mechanism, a model for large scale production 

of monosex male tilapia through the generation of the YY genotypes was proposed by 

Scott et al. (1989) and Mair et al. (1993). This technique has been adopted in this work in 

order to produce all red male 0. niloticus. Therefore, this thesis deals mainly in the 

improvement in genetic control of sex ratio and colouration in 0. niloticus through the 

use of genetic manipulation and controlled breeding techniques in order to produce 

YYRR males and YYRR neofemales. Thus, it is possible to combine red colouration and 

all male production in a single strain by crossing these novel YYRR males with normal 

XXRR females to produce genetically all red male population for tilapia growers. YYRR 

males and YYRR neofemales could be distributed to hatchery operators to make the 

production self-sustained. 

Basically two options were aimed for production of YYRR males and YYRR 

neofemales in the present study. These were; 

a) Production of YYRR males and YYRR neofemales by combining androgenesis 

and hormonal feminisation: Although androgenesis can be used to produce YYRR 

genotypes in only one generation and therefore reduces effectively the time 

consuming procedure of progeny testing, the result from the present study showed 

that the low viability of androgenetic tilapia with the potentially undesirable 
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efffects of inbreeding and unsuccessful feminisation of these fish were limitations 

to use of this technique in commercial production of YYRR genotypes. 

b) Production of YYRR males and YYRR neofemales by integrating existing YYrr, 

YYRR and XYRR males and YYrr neofemales: Although YYRR males and 

YYRR neofemales can be produced starting from scratch in a strain, it will take a 

long time to complete such a breeding programme. In this regard, the principal 

question is how to combine both YY and RR genotypes in a single strain without 

undergoing 5 1/2 generations of breeding and progeny testing which is the essential 

procedure to identify different sexual genotypes (Mair et al., 1993) since no 

visible sex-linked markers or sex-specific DNA probes are available currently in 

this species. Therefore four breeding programmes were proposed, by integrating 

existing YY genotypes into RR genotypes. These were: 

i) Introgression of androgenetic YYRR males and normal XXRR females (2 1/2 

generations): In this breeding scheme (Fig. 5.2. ) YYRR neofemales were 

successfully produced. However, unexpected colour segregation produced by 

crossing these females with an XX neomale constrained the use of this 

programme before further research. 

ii) Introgression of androgenetic YYRR males and YYrr neofemales (2 1/2 

generations): Although no feminisation was achieved in order to produce 

YYRR neofemales in second generation of this breeding scheme (Fig. 5.3. ), 

the YYRR males produced gave high and consistent red male percentages in 

progeny. 
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iii) Introgression of YYrr males and normal XXRR females (2 1/2 generations): In 

this breeding scheme (Fig. 5.4. ) no YYRR males were produced while only 

one YYRR neofemale was produced. However, large numbers of YYRR 

males and YYRR neofemales could be produced by crossing this YYRR 

neofemale with normal XYRR males and feminisation of some of these fry, 

respectively. 

iv) Introgression of YYrr neofemales and normal XYRR males (3 generations): 

Although this breeding scheme (Fig. 5.5. ) took longer than the other breeding 

programme described above, higher numbers of YYRR males and YYRR 

neofemales with more consistent and higher male percentages in progeny 

testing were produced compared to the YY genotypes produced from other 

breeding programmes. Therefore this breeding programme which is the best 

can be recommended for the production of YYRR males and YYRR 

neofemales in 0. niloticus. 

The results obtained from different experiments in this thesis should be able to 

offer some directions for the improvement of O. niloticus in terms of sex ratio and 

coloration. The results obtained from this thesis were summarised as follows: 

1. The yield of androgenetic haploid 0. niloticus to pigmentation stage was 24.6±3.5% 

(relative to controls) with optimal UV irradiation dose of 450 Jm 2 (at 150 MWcm"2) 

for 5 min. The success of oocyte denuclation was assessed by using the recessive 

"blond" skin pigmentation character. 
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2. The survival rates of diploid androgenetic red 0. niloticus was 92.8414.30%, 

10.69±2.24%, 2.03±0.60% and 0.07±0.07% (relative to controls) to morula, 

pigmentation, hatching and yolk sac resorption stages, respectively, using 5 min UV 

irradiation time at 150 µ Wcm 2 and a heat shock at 42.5°C for 3.30 min. applied at 25 

minutes post fertilisation time. The survival rates reduced as development progressed. 

Although higher survival rates were obtained in previous studies (Myers et al., 1995a; 

Marengoni and Onoue, 1998; see Table 2.2. ) in this species, low survival rates 

produced in this study limit the use of this technique in the rapid production of YY 

males, production of clonal lines for breeding and research purposes and recovering 

genotypes from cryopreserved sperm. 

3. A significant female but not male effect was confirmed on the survival of 

androgenetic 0. niloticus, (Myers et al., 1995a) suggesting that egg batches from a 

certain female shows different susceptibility to the UV and diploidization treatment. 

4. Multilocus DNA fingerprinting produced by the hypervariable 33.15 DNA probe 

verified all-paternal inheritance in androgenetic 0. niloticus. DNA fingerprinting 

technique can be successfully used to verify all-maternal or all-paternal inheritance in 

gynogenesis and androgenesis, respectively. 

5. It was confirmed in this study that the YY genotype is viable and fertile in 0. 

niloticus as suggested by Scott et al. (1989), Varadaraj and Pandian (1989), Mair et 

al. (1997) and Tuan (1999). The sex ratios of androgenetic tilapia were not 

significantly different from the expected sex ratio of 1: 1 (Male : Female) indicating 

that 0. niloticus has a monofactorial sex determining mechanism with female 
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homogamety and male heterogamety. The sex ratios produced by androgenetic males 

crossed to normal XX females was significantly different from a1: 1 sex ratio 

suggesting that the androgenetic male has YY genotype. 

6. The mean survival rate of 19.59±3.58% meiotic gynogens (relative to controls) to 

yolk sac stage was produced by using UV irradiation at 250-265 µWcm-2 for 2 min 

and a heat shock at 41.5-42°C for 4 min applied at 5 minutes after fertilisation while 

the mean survival rate in the control groups was 33.09±3.08% in red 0. niloticus. It 

can be concluded that the survival of meiotic gynogens is correlated to the survival 

rate of the respective control groups and is therefore probably dependent on egg 

quality. 

7. The recombination frequencies of the red skin colour gene in meiotic gynogen 0. 

niloticus produced from heterozygous red females (Rr) ranged between 0.00-0.45 

with a mean of 0.12±0.04. No evidence was found for heterogeneous recombination 

rates or location of the red gene near a recombination hotspot suggested by Hussain et 

al. (1994). 

8. All heterozygotes at the ADA*locus were produced in meiotic gynogen 0. niloticus 

indicating that exactly one crossover takes place between this gene and its centromere 

under complete interference (where the occurrence of one crossover completely 

suppressed the occurrence of another). This result of this study and the previously 

reported results show that complete interference is common in fish species. 

9. A high proportion of red but not wild type males 01 %) was produced in meiotic 

gynogen 0. niloticus from heterozygous red females indicating a close linkage 
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between a sex determining locus (SDL-2) and the red locus in this study. It appears 

that a recessive allele at this locus causes female to male sex reversal in the 

homozygous phase (srsr) but with limited penetrance. This finding could be useful for 

chromosome mapping of 0. niloticus 

10. There were no significant differences between colour genotypes of 0. niloticus 

(namely homozygous red, heterozygous red and wild type) in terms of total fecundity, 

ISI (inter spawning interval), egg size and survival rate using strip-spawning methods 

under laboratory conditions indicating that no positive or negative pleiotropic effects 

of any colour morph on these reproductive traits. These results suggest that the red 

morph of 0. niloticus could be used as efficiently as the wild type morph in hatchery 

conditions. 

11. The overall mean ISI was 26.069±0.69 days and the overall mean total fecundity was 

1096. A significant relationship was found between total fecundity and fish size 

(weight and length) in pooled data from all colour genotypes of O. niloticus 

indicating that egg number increased with increased fish size. No relationship was 

found between egg size and fish size. The total fecundity, relative fecundity and ISI 

varied widely over consecutive spawns in all colour genotypes. Overall C. V. 

(coefficient of variation) ranged between 7.5-78.1%, 0.3-30.9% and 1.1-52.5% in ISI, 

total fecundity and relative fecundity, respectively. No relationship was found 

between total fecundity and ISI in any colour genotype or pooled data. The results 

suggest that fecundity and spawning interval may be controlled by complex inter- 

related mechanisms involving oocyte recruitment, growth, reproductive 

endocrinology and individual's physiological responses to a variety of factors. 
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12. Similar female percentages of 33.8±1.5% and 32.0±5.2% were produced in DES and 

heat treated (36°C) in all YY male fry of 0. niloticus. 

13. A significantly higher intersex percentage (18.5±2.5%) was observed in heat 

treatment groups compared with 1.6±0.8% and 0.0% in DES treated and control 

groups, respectively. 

14. Significantly lower survival rate of 62.9±9.8% was obtained in the heat treated groups 

compared to the survival rate of 97.0±0.9% in the control groups and 97.3±0.8% in 

the DES treatment groups. These results demonstrate that high temperature treatment 

could be used as an alternative option to hormones for sex reversal of all YY male 

progenies of 0. niloticus because of potential risk and consumer reaction to hormone 

treated fish. However the low survival rate with occurrence of high intersex 

percentages compared to DES treatment could limit the use of this technique 

commercially. 

15. YYRR males and YYRR neofemales were produced by integrating existing YYrr 

males and YYrr neofemales from Egypt-Swansea-Philippine isolate and YYRR 

androgenetic males from Stirling isolate with XXRR females and XYRR males 

Stirling isolate of Egyptian strain 0. niloticus. These results suggest that both YY 

genotype and red coloration could be combined in a single strain using controlled 

breeding program in order to produce all homozygous red males in this strain. 

16. Inconsistent progeny sex ratios were observed in progeny testing of several YY and 

XY males and neofemales providing unequivocal evidence for monofactorial sex 

determination mechanism with female homogamety and male heterogamety 
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suggested by previous studies. The results demonstrate that there is a strong 

involvement of autosomal and / or enviromental factor / factors in sex determination 

mechanisms in this species. 

17. The low male percentages of 91.2±2.8% and 88.2±3.76% in progeny sired by YY 

males and YY neofemales, respectively, suggest that these fishes could not be simply 

used for mass production of genetically male tilapia without further refinement. 

18. Progeny testing of YY males and YY neofemales from YY x YY crosses gave higher 

mean sex ratios of 95.5% and 100% male, respectively. The results may suggest a 

dosage effect of YY genotype over XY genotype resulting higher male percentages. 

The results also support the hypotheses that the influence of autosomal sex modifying 

genes, acting as a threshold trait, may be the reason for the occurrence of unexpected 

sex ratios in this species. 

19. Significantly lower percentages of females {ranging between 0-51.0% with a mean of 

24.0%) were obtained in DES treated crosses of YY x YY genotypes comparing with 

the female percentages of other DES-treated crosses: XX x YY (47.7-100% with a 

mean of 77.7%) XY x XY (50-96.9% with a mean of 75.3%) and XY x YY (56.8- 

93.2 with a mean of 83.6%). In addition no feminisation was achieved to produce 

androgenetic YYRR neofemales in 0. niloticus in the present study. These results 

may suggest that feminisation of YY genotype could be difficult compared to XY 

genotype. Differential feminisation of different genotypes were also reported by Mair 

et al. (1997). 
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20. Unexpected blotched individuals were produced from the cross of an XXRR female 

with an androgenetic YYRR male. This result provides further evidence for the 

existence of a blotching gene or genes. 

21. Unexpected colour segregation of 1 red :1 wild type were obtained from the crosses 

of XYRR or YYRR neofemales with a XXrr neomale. 

6.1. Future recommendations 

Androgenesis is an important chromosome manipulation technique in terms of 

rapid production of YYRR genotype aimed in this present study. However low survival 

rate is the main limitation of this technique. A significant female effect was also 

confirmed on the survival of androgenetic 0. niloticus. Therefore, selection of female 

parents to be used for androgenesis may improve to survival rates in this technique. 

In the present study, no pleiotropic effects of colour genotypes on several 

reproductive traits of 0. niloticus were found. However further research is necessary for 

comparison of growth performance of colour genotypes in order to assess the effects of 

coloration. 

Several breeding programmes were applied in order to produce YYRR males and 

YYRR neofemales for mass production of all red males 0. niloticus. Introgression of 

YYrr neofemales and normal XYRR males was found to be the most effective controlled 

breeding programme in terms of consistent and high male percentages. Therefore, this 

breeding programme could be recommended for further improvement of 0. niloticus in 

terms of obtaining all red male O. niloticus populations over a shorter period than the 5 'h 
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generations required to complete the breeding programme from beginning as suggested 

by Mair et a!., 1993. 

In order to consistently produce all red male tilapia, selection of YYRR males and 

YYRR neofemales which produce all or nearly all male progeny in initial progeny testing 

would be a logical step in developing the commercial YYRR male production in 0. 

niloticus. To produce good stable red coloured 0. niloticus, selection of fish showing no 

blotching should be carried out. 

Evidence for differential feminisation of different genotypes presented in this study 

and previous studies should be investigated by controlled experimental conditions. 

The unexpected colour segregation produced by XYRR and YYRR neofemales 

(originally produced from the crosses involving only RR genotypes) needs to be 

investigated. 

It is clear that new methods must be developed in order to gain more information into 

the mechanism of sex determination in tilapia. Most importantly, the work on sex specific 

DNA probes should be carried out in order to use in time consuming progeny testing 

procedure. 

It can be concluded that there is still work to be done in order to improve sex ratios 

and colouration to produce consistent results which will enhance the widespread use of 

all red male 0. niloticus. 
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Appendices 



Appendix 1. 

I. I. Tris-EDTA-NaCI (TEN) buffer for extraction of DNA 

Ingredients Amount 

Tris(100mM) 12.11g 

EDTA(10mM) 3.72g 

NaCl (250 mM) 14.62 g 

Dissolved in deionized distilled water to make the total volume 1000 ml and pH 

adjusted to 8.0. Buffer sterilized by autoclaving. 

1.2. TBE buffer for agarose gel electrophoresis 

Ingredients Amount 

Tris 108 g 

Boric acid 55 g 

EDTA 9.3 g 

Dissolved in deionized distilled water to make the total volume 1000 ml and pH 

adjusted to 8.3. Buffer sterilized by autoclaving. 

1.3. Saline-sodium-citrate (SSC) buffer 

Ingredients Amount 

NaCl 175.3 g 

Sodium citrate 88.2 g 

Dissolved in deionized distilled water to make the total volume 1000 ml and pH 

adjusted to 7.0. Buffer sterilized by autoclaving. 
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Appendix 2. 

2.1. Modified Fish Ringers solution (MFR) 

Ingredients Amount Remodified chemical 

composition 

NaCI 3.25 g 3.25 g 

KCi 1.50 g 2.50 g 

NaHCO3 0.10 g 0.10 g 

CaC12.6H20 0.15 g 0.15 g 

Dissolved in distilled water to make the total volume 500 ml and pH adjusted to 

8.0. Buffer stored at 4°C. 

2.2. Cortland's saline 

Ingredients Amount 

NaCl 1.81 g 

CaC12.2H20 0.04 g 

NaH2PO4 0.09 g 

NaHCO3 0.25 g 

MgSO4 0.06 g 

Glucose 0.25 g 

EDTA 0.25 g 

Dissolved in 250 ml distilled water and kept at 4°C. 

2.3. Tris-Borate-EDTA (TBE) buffer for starch gel electrophoresis 

Ingredients Amount 

Tris (0.5 M) 60.57 g 
Boric acid (0.24 M) 15.00 g 
EDTA (0.016 M) 5.99 g 

Dissolved in distilled water to make the total volume 1000 ml and pH adjusted to 

8.5. For electrode undiluted buffer was used, for gel preparation it was diluted 1 

10 with distilled water. 
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Appendix 2. (continued) 

2.4. Stain (ADA*, Adenosine deaminase) 

Ingredients Amount 

ADA 15 mg 
MTT 5 mg 

PMS 1 mg 

XOD (0.025 U) 4µl 

NP (0.625 U) 10 gl 

Mixed with 25 ml 0.05 M P04 buffer (pH 7.8) and then 25 ml 2% boiled agar (50- 

60°C) was added. 
2.5. Fixing solution for starch gel stain 

Ingredients Amount 

Acetic acid (glacial) 200 ml 

Methanol 800 ml 

Distilled water 1000 ml 

Mixed the ingredients throughly. 
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