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Abstract 

This thesis addresses three major issues in data mining regarding feature subset 

selection in large dimensionality domains, plausible reconstruction of incomplete 

data in cross-sectional applications, and forecasting univariate time series. For the 

automated selection of an optimal subset of features in real time, we present an 

improved hybrid algorithm: SAGA. SAGA combines the ability to avoid being 

trapped in local minima of Simulated Annealing with the very high convergence rate 

of the crossover operator of Genetic Algorithms, the strong local search ability of 

greedy algorithms and the high computational efficiency of generalized regression 

neural networks (GRNN). For imputing missing values and forecasting univariate 

time series, we propose a homogeneous neural network ensemble. The proposed 

ensemble consists of a committee of Generalized Regression Neural Networks 

(GRNNs) trained on different subsets of features generated by SAGA and the 

predictions of base classifiers are combined by a fusion rule. This approach makes it 

possible to discover all important interrelations between the values of the target 

variable and the input features.  The proposed ensemble scheme has two innovative 

features which make it stand out amongst ensemble learning algorithms: (1) the 

ensemble makeup is optimized automatically by SAGA; and (2) GRNN is used for 

both base classifiers and the top level combiner classifier. Because of GRNN, the 

proposed ensemble is a dynamic weighting scheme. This is in contrast to the existing 

ensemble approaches which belong to the simple voting and static weighting 

strategy. The basic idea of the dynamic weighting procedure is to give a higher 

reliability weight to those scenarios that are similar to the new ones. The simulation 

results demonstrate the validity of the proposed ensemble model. 
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Chapter 1 

Introduction 

Data mining involves the use of sophisticated machine learning algorithms to 

uncover fundamental patterns in the data. With the unprecedented rate at which data 

is being collected today in almost all fields of human endeavour, there is an emerging 

economic and scientific need to extract useful information from it [1]. Data mining is 

the process of automatic or semi-automatic discovery of patterns from massive 

databases, and is a highly inter-disciplinary field representing the synthesis of 

multiple disciplines, including database systems, data warehousing, machine 

learning, statistics, algorithms, data visualization, and high performance computing.  

It is an emerging field with the potential for breakthroughs in the understanding of 

complex physical and biological systems. Data mining has taken many disciplines, 

from Astronomy to Medicine and Economics, by storm.  

 

Computational Intelligence is a very young discipline [2]. Computational 

Intelligence includes the study of the design of intelligent agents. An intelligent agent 

is a system that perceives its environment, learns from experience, and makes 

appropriate choices given perceptual limitations and finite computation. Finding 

information hidden in data is as theoretically difficult as it is practically important. 

The ultimate goal of applying Computational Intelligence to data mining is to 

discover unknown patterns from data by automatic means without any a priori 

knowledge of what patterns might look like. 
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1.1. Research Problems and Motivations  

We focus on three major areas of data mining: (1) Feature subset selection in large 

dimensionality domains, (2) reconstruction of incomplete datasets in cross-sectional 

studies, and (3) univariate time-series forecasting. In this section, we explain our 

research motivations, and the research questions that we address in this thesis.  In 

preparation for forthcoming chapters, the reader is offered a clear and thorough 

discussion of the research problems.  

 

1.1.1 Feature Subset Selection in Large Dimensionality Domains 

The purpose of data mining is knowledge discovery: that is to generate new 

knowledge about events and phenomena from existing data sets whether for 

classification or for forecasting future events. Data sets usually consist of a number 

of vectors, each corresponding to some occurrence of an event: each vector consists 

of a large number of features (or explanatory variables). In general, which features 

matter for classification (or prediction) is not known. As a result, often all sorts of 

information about events of interest are gathered. Due to improvements in data 

acquisition capacity, falling costs of data storage, and development of database and 

data warehousing technology, more and more high dimensional datasets (with tens or 

hundreds of thousands of features) are emerging [3]. Many of these features are 

irrelevant or redundant. Unnecessary features increase the size of the search space 

and make generalization more difficult. This curse of dimensionality, (each feature 

constitutes a separate dimension to the problem) is a major obstacle in machine 

learning and data mining. Hence feature selection is an active area of research in 

pattern recognition [4], machine learning [5], data mining [6] and statistics [7]. In 
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particular, the prediction performance of a learning algorithm (e.g., a decision tree or 

a neural network learning algorithm) depends on how efficiently the algorithm learns 

patterns in the data. Irrelevant and redundant features increase the search space size, 

making patterns more difficult to detect, resulting in algorithms (whichever are used) 

finding it more difficult to capture rules that are necessary for forecasting or 

classification. This also holds true for people interpreting data with redundant or 

irrelevant features. In addition, the more features there are, the higher is the risk of 

over-fitting. This is because the probability that some features will coincidentally fit 

the data increases, unless the sample size grows exponentially with the number of 

features. Furthermore, in most practical applications, we want to know the collection 

of core variables that are most critical in explaining an event. For example, to reduce 

the risk of cancer we have to avoid risk factors. If we fail to select the core risk 

factors, there may simply be too many risk factors to consider. If people‘s lifestyles 

have too many risk factors—especially if they are irrelevant and misleading—people 

will lose their willingness to change their lifestyle to reduce the risk of cancer. To 

take another example, in medical diagnosis, a disease is diagnosed by various tests. 

Different diagnostic tests might have different costs as well as risks associated with 

them. For instance, an invasive exploratory surgery can be much more expensive and 

risky than say, a blood test. Feature subset selection can help reduce the number of 

costly and risky diagnostic procedures. It also helps speed up the diagnosis process 

by identifying best diagnostic tests.  

 

Feature subset selection entails choosing the subset of the features from the 

original feature space that maximizes the prediction or classification accuracy. In 
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principle, the feature subset selection approach is based on the principle of 

parsimony (also known as Occam‘s razor) [8]. This says that we prefer the model 

with the smallest possible number of parameters that adequately represents the data. 

Albert Einstein is quoted in Parzen (1982, p. 68) as remarking that ―everything 

should be made as simple as possible, but not simpler‖ [9]. However, the principle of 

parsimony is difficult to apply to feature selection problems. Selecting the best 

feature subset is proven to be an NP-complete combinatorial problem [10]. There are 

a number of reasons why this task is so challenging. First, features which do not 

appear relevant when taken singly may become highly relevant when taken with 

others. There can be two-way, three-way or complex multi-way interactions among 

features. As a result a feature that is weakly associated with the particular prediction 

or classification can improve prediction accuracy if it is complementary to other 

features. Second, relevant features may be redundant so that the omission of some of 

them will remove unnecessary complexity and some noise from the forecasting 

problem. There can be many levels of multi-way redundancy in the feature space. 

Third, high feature correlation does not imply absence of feature complementarity. 

Fourth, high levels of multicollinearity increase the probability that a good predictor 

of the output signal will be found to be non-significant and rejected from the model. 

 

An exhaustive search of all possible subsets of features will guarantee that the 

best subset of features is found. Unfortunately this is computationally impractical for 

even a medium sized database since for n features, the number of all possible feature 

subsets is 
n2 which is too large to be evaluated even for modest n. A major thrust of 

current research work is focused on the determination of an optimal subset of 
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features. The choice is a trade-off between the computational time and the quality of 

the generated feature subset solutions. Finding a highly accurate and fast search 

algorithm for the selection of optimal feature subsets is a major open problem that 

we address in chapter 4. 

 

1.1.2 Reconstruction of Incomplete Datasets in Cross-Sectional Studies 

The second problem that we addressed in this thesis is reliable reconstruction of the 

missing data. Missing values occur when values are not recorded for all attributes. 

Missing values can occur for example due to recording problems, instrument 

limitations, and unfavourable observing conditions. The study may be overly 

complex and/or long, or subject may be tired and/or not paying attention and miss the 

question. These types of missing values are called random missing values. 

Alternatively, missing values may be non-random in nature. Non-random missing 

values can happen simply because there are some attributes that are not applicable 

for some instances (e.g. certain medical question may only be meaningful for female 

patients or patients over a certain age). Additionally, some subjects may choose not 

to answer some questions. In these cases, instances with missing values differ 

systematically from instances with no missing values. 

 

Incomplete data is an unavoidable problem when dealing with real world 

datasets. The problem is that these missing values result in less efficient estimates 

because of the sample bias, and the reduced sample size. Further, most data mining 

algorithms cannot work directly with incomplete datasets. To make the matter worse, 

many real world problems suffer from high dimensionality. If missing data are 



                                                

 

6 

randomly distributed across cases, we could even end up with no valid cases in the 

dataset, because each of them will have at least one missing data element. Hence, 

missing value imputation is widely used, by necessity. Imputation refers to the 

replacement of missing data with statistically plausible values. However, a naïve or 

unprincipled imputation may create more problems than it solves. A poor imputation 

strategy may result in distorted created samples that can mislead classification, 

prediction and clustering techniques. The algorithm used to generate imputed values 

must be ―correct‖, that is, it must accommodate the necessary predictor variables and 

their associations. Rubin contends that good imputation methods use all information 

related to missing cases [11].   

 

Missing data imputation is challenging because possible biases exist since the 

subjects with missing values are often systematically different from the subjects 

without missing values [11]. These biases are difficult to eliminate since the precise 

reasons for missing data are usually not known. Hence, imputations should reflect 

the full uncertainty about missing values. The determination of uncertainty is not 

straightforward. If the uncertainty is underestimated, the classifier trained with the 

imputed dataset will overfit the training data and produce erroneous outputs. To fully 

account for all sources of variation, it is essential to allow for sampling variation and 

imputation variation in the imputation. Sampling variation occurs when we sample a 

population and estimate a parameter from the sample rather than from the population 

of interest as a whole. If we have taken a different sample from the population, we 

might have obtained different parameter estimates. Imputation variation is similar. 

Missing values are replaced by the best surrogate values. However, an imputed value 
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is just a guess at the actual value; it is not an actual (observed) value. Imputation 

variation arises from the fact that there is uncertainty regarding the actual value of 

the missing data. Imputation can also lead to an overestimation of the uncertainty of 

the estimate. If the uncertainty is overestimated, the classifier trained with the 

imputed dataset will underfit the training data and exhibit poor prediction capability. 

Procedures for imputation that incorporate appropriate variability among imputations 

within a model are called ―proper‖ [11].  

     

A major focus of research is to develop an imputation algorithm that preserves 

the multivariate joint distribution of input and output variables. Much of the 

information in these joint distributions can be described in terms of means, variances 

and covariances. If the joint distributions of the variables are multivariate normal, 

then the first and second moments completely determine the distributions. On 

average, the imputation should give reasonable predictions for the missing data, and 

variability among them should reflect an appropriate degree of uncertainty. An 

imputation model must preserve all important associations among variables in the 

dataset, including interactions. The design of a robust imputation algorithm is an 

important open issue of research for the mid-term or even long future that we pursue 

in chapter 5. 

 

 

 

1.1.3 Univariate Time Series Forecasting 

Interest in explaining the evolution of variables is centuries old, originating in 

astronomy and meteorology. The father of modern astronomy, Johannes Kepler 
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(1571-1630) is credited for identifying the importance of time series forecasting [12]. 

The modelling of univariate time series is a subject of great importance in a variety 

of fields, in astronomy, meteorology, business, economics, and beyond. Any random 

phenomenon (variable) that can be measured over time is a time series. It is worth 

emphasizing that to speak of a time series implies that there is some form of 

randomness. We usually do not refer the fully predictable phenomenon that changes 

over time (such as the position of a pendulum regularly swinging back and forth) as a 

time series. A time series is a stochastic process that describes the evolution of a 

random variable. Time series data follows one subject‘s changes over the course of 

time. The units of time will vary with the application; they could be years, quarters, 

months, days, or even microseconds, depending on the situation to be modelled. The 

unit of time is not important. What‘s important is that the observations are equally 

spaced in time. In time series studies, we are interested in time delay or time lag (or 

time step), not in actual time. If the observations are not equally spaced, everything 

gets much more complicated. One approach is to use a smoothing technique to 

interpolate points at equally spaced intervals, and then use the interpolated values for 

training instead of original data.  

 

Time series data differs considerably from cross-sectional data. Cross-sectional 

data (also known as spatial data) refers to data collected by observing many subjects 

(such as individuals, firms, or countries/regions) at the same point of time, or without 

regard to differences in time. Analysis of cross-sectional data usually consists of 

comparing the differences among the subjects. In contrast, a univariate time series is 

a sequence of observations of the same random variable at different times. Lagged 
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variables are one of the primary differences between cross-sectional data and time 

series data. Like cross-sectional data, univariate time series data have predictor and 

target variables. In time series analysis, lag values of the target are used as predictor 

variables. In other words, the predictor variables are the values of the given variable 

at selected lags and the output variables are the forecasts for different horizons. The 

concept of lagged variable does not apply to spatial data analysis because the 

observations do not represent a chronological sequence.  

 

The goal of time series (temporal or longitudinal) analysis is to predict future 

values of a given variable based on its past behaviour. In other words, the goal of 

time series analysis is to build a model that represents the time series and then use 

the model to forecast the future values. It is very important that time series forecasts 

present not only the best guess about the future outcome (i.e. conditional mean), but 

also a careful assessment of the degree of uncertainty (i.e. conditional volatility) 

associated with the outcome. For instance, the average temperature (20
o
C) alone is 

not indicative of the temperature of a place, if it varies from 0
o
C to 40

o
C. In the 

context of time series, the estimation of both the expected future outcome and the 

future uncertainty of the outcome are of paramount importance for future planning.  

 

1.1.3.1. Applications of Time Series Analysis 

Time series forecasting is a problem encountered in many fields of applications. 

Astronomy: Astronomers make use of time series analysis techniques for a variety of 

purposes, including studies of asteroid rotation rates, active galactic nuclei, and 



                                                

 

10 

detection of extrasolar planets. Time series forecasting methods are used to predict 

many significant sights in the sky.  

Business and Economics: Many economic time series are regularly recorded by 

government agencies, economic organizations, and others. Time series analysis helps 

directly in business planning. A firm can know the long term trend in the sale of its 

products. Knowledge of time series analysis is indispensible to Economics. It 

provides a guide to movements in the stock exchange, share prices, foreign exchange 

rates and interest rates in the financial system. Today, time series analysis is an 

indispensable element in monitoring and forecasting economic trends (inflation 

/deflation/stagflation/reflation) and labour market trends.  

Demography: Time series are a useful source of information on the status and trends 

of demographic changes including infant mortality, life expectancy, population 

growth, and international migration.  

Ecology: Time series are important for understanding the mechanisms that regulate 

populations of animals and plants. Extinctions and originations are mechanisms used 

by the ecosystem to maintain the dynamical equilibrium that is favourable to life 

itself. The goal of time series analysis is to increase our understanding of the 

ecological dynamics.  

Geology: Time series analysis is used to forecast climate change and predict extreme 

weather conditions. Much data are collected regularly in meteorology, climatology, 

hydrology, oceanography, seismology, volcanology and environmental research, 

including the temperature at noon on successive days at recording station, monthly 

rainfalls, daily precipitation, weekly hours of sunshine, wind patterns, amounts of 
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pollutants in the environment, trends of river discharges, sea temperature, ozone 

depletion, global warming, glacial erosion and seismic signals in volcanoes. 

Physiology: Time series analysis methods are used to quantify physiological data for 

classification and identification of different pathological conditions. Variability of 

electroencephalogram (EEG)—a continuous trace measuring brain activity, 

electrocardiogram (ECG)—measures the electrical activity of the heart, human gait 

dynamics and blood pressure over time are some of the physiological signals that are 

analyzed using time series analysis techniques. Other examples include the weight of 

a particular person measured daily, and the weight of a newborn baby measured at 

successive checkups.  

Social Work Studies: Time series analysis helps researchers bring clarity to the 

bewildering complexity of social situations, including suicide rates in young people, 

the trend of alcohol, tobacco and other drug use, rates of divorce among couples who 

marry at earlier ages, general trend in teen age pregnancy rates, crime rates, alarming 

trend in the obesity epidemic among children and adolescents and popularity ratings 

of politicians. 

Others: Many time series arise in areas other than above areas. Examples include: the 

number of tourists visiting the United Kingdom in successive years, the number of 

swine flu cases over time, the number of deaths from road accidents in a particular 

state in successive months and changes in traffic congestion over time.  

 

1.1.3.2. Time Series Forecasting: Challenges 

The time series have been proven notoriously resistant to prediction by conventional 

machine learning algorithms used in spatial data analysis and modelling since time 
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series violates at least two fundamental assumptions of spatial statistics: assumptions 

of independence and identity of distribution (i.i.d.). Independence implies that the 

training cases are statistically independent. The most common violation of the 

independence assumption occurs when cases are observed in a certain order relating 

to time. The basic idea of stationarity (identity) is that the probability laws (i.e. the 

multivariate joint distribution) governing the process do not change with time or 

space—that is, the process is in statistical equilibrium.  

 

Many techniques have been developed to forecast time series. The key 

limitation of existing time series forecasting algorithms is that these algorithms are 

extremely complicated. A simple and robust time series forecasting algorithm is an 

interesting open question. In chapter 6, we present an improved algorithm for time 

series forecasting. 

 

1.2. Unique Contributions of this Thesis 

Feature selection is a very important step in pattern recognition. We found that 

among existing algorithms there is no single algorithm that satisfies all the desired 

properties. There is a group of conventional search algorithms that easily get stuck in 

local minima but tend to be fast to find a good solution in reasonable time. These 

algorithms fail to determine the optimal solution due to premature convergence to 

some local optimum, even though sufficient time is available for the search. There is 

another group of conventional search algorithms, which are fairly resistant to local 

minima trapping, but are too slow to find reasonable solutions. We propose a novel 
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approach SAGA (=SA+GA) for the problem of optimal feature subset search which 

has both the benefits of elimination of local minima and fast convergence. SAGA is a 

hybrid algorithm that combines the strengths of the simulated annealing algorithm 

(SA), the genetic algorithm (GA), the hill-climbing algorithm (HC), and the 

generalized regression neural network (GRNN), all in one convenient package. The 

properties and computational aspects of the proposed algorithm are discussed in 

detail in chapter 4. We published a journal paper from this work. The bibliographic 

details of the article: 

 Gheyas, I. A., & Smith, L.S. (2010). Feature subset selection in large 

dimensionality domains. Pattern Recognition, 43(1), 5-13. 

 

The next two challenges were (1) multiple imputation of missing values, and 

(2) univariate time series forecasting. While working on these projects, we began to 

realize that the feature selection algorithm is important but this is only a partial 

solution to the curse of dimensionality which is the root cause of most of the data 

mining problems. Feature selection algorithms reduce dimensionality via the 

selection of the smallest feature subset that maximizes prediction performance. The 

obvious problem arises when there are not enough training examples to include all 

the important predictor variables in the model. When learning sample size is much 

below the effective dimensionality (the size of smallest critical subset) of the 

problem, feature selection algorithms are required to balance the trade-off between 

the dimensionality of the resulting feature subset solution and the degrees of freedom 

lost, leading to a suboptimal feature subset solution. The problem is, we can never 

know ―in advance‖ how many features are required to model the problem, in order to 
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obtain a maximum level of predictability. Furthermore, it is often difficult and 

perhaps even dangerous to make generalizations about optimal sample size for a 

given dimension. The best sample size is always case specific because it depends on 

the noise level, population size, complexity and heterogeneity of the target 

population. To overcome these problems, along with the proposed feature subset 

selection algorithm SAGA, we suggest the use of a homogeneous ensemble of simple 

generalized regression neural networks (base GRNN learners), each concentrating on 

a sub-problem of the problem domain. We recommend the use of this method 

regardless of the sample size. In the proposed ensemble method, each base GRNN 

learner is trained to predict the target variable based on a different combination of 

features selected by SAGA. Thus, each base learner concentrates on learning a 

distinct subset of prediction rules, instead of all the rules (infeasible for small 

training sets). Together, base learners can identify most of the good classification 

rules.  

 

The development of an ensemble of learners entails two issues: the selection of 

the base learners that constitute the ensemble and the integration of their outputs to 

construct the ensemble output. In the proposed ensemble method, SAGA is used to 

find an optimal subset of base learners. The base GRNN learners are then combined 

using a single combiner GRNN that is used in the final prediction. Examining the 

variations of outputs of base learners, the combiner GRNN predicts the target values 

of unseen cases. One of the biggest advantages of our ensemble method as compared 

to conventional ensemble methods is that it is a local approximation algorithm. Each 

base GRNN learner (implicitly) assigns a weight to each feature to reflect the relative 
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importance of that feature in a dynamic fashion with respect to the instance to be 

predicted. Similarly, the combiner GRNN (implicitly) assigns a reliability weight to 

each individual base learner‘s output based on its performance on similar cases. 

Consequently, our ensemble approach is capable of understanding and predicting 

heterogeneous patterns. Simulated data and real data show that the method is 

effective and robust against the curse of dimensionality. In addition, our ensemble 

approach has relatively few parameters that need to be set by experimentation and 

analysis, which enhances the appeal of our approach. The proposed ensemble method 

reduces human intervention to a minimum and thereby reduces human errors, 

yielding more accurate results. Furthermore, the ensemble technique we develop is 

completely non-parametric, therefore no distributional assumptions are required. 

This characteristic enlarges the applicability of our scheme. Following the proposed 

ensemble approach, we present two customized algorithms in this thesis: one for 

missing data imputation and one for univariate time series forecasting—the 

conceptual and practical advantages of these algorithms are discussed in chapters 5 

and 6, respectively. Our initial results are extremely encouraging. We produced the 

following papers based on the materials presented in chapter 5 and chapter 6. 

 

a. Book Chapter (resulted from chapter 5) 

Gheyas, I.A, and Smith, L.S. (2009). ‗Reconstruction of Cross-sectional Missing 

Data Using Neural Networks‘. In  Dominic Palmer-Brown et al. (Eds.), Engineering 

Applications of Neural Networks, Communications in Computer and Information 

Science (CCIS) , vol. 43, Springer Berlin Heidelberg, pp. 28-34. 
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b. Refereed Conference Paper (resulted from chapter 5)  

 Gheyas, I. A., & Smith, L.S. (2009). A novel nonparametric Multiple Imputation 

Algorithm for Estimating Missing Data. Paper presented and published in the 

Proceedings of World Congress on Engineering 2009 Vol. II, WCE 2009, July 1-3, 

London, UK.  

c. Journal Publication (resulted from chapter 5)  

Gheyas, I. A., & Smith, L.S., A novel nonparametric repeated imputation algorithm 

for estimating missing data. Neural Networks. (Current status: Revisions being 

processed).  

d. Refereed Conference Paper (resulted from chapter 6)    

Gheyas, I. A., & Smith, L.S. (2009). A neural network approach to time series 

forecasting, Paper presented and published in Proceedings of the World Congress on 

Engineering 2009, vol. II, WCE 2009, July 1-3, London, UK. 

 

 

1.3. Layout 

Feature subset selection, missing data handling and univariate time series forecasting 

are challenging problems for which many algorithms have been developed. Chapter 

2 reviews the merits and demerits of some of the most popular data mining 

algorithms in action.  

In Chapter 3, we discuss the implementation of benchmark algorithms. We also 

describe the datasets, the statistical tests and the different model selection criteria that 

were used in this study for comparing algorithms.  
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Chapter 4 presents our proposed algorithm for selecting an optimal subset of 

features from a large set of possible features and describes the experimental results 

and comparisons between the proposed algorithm and the existing algorithms. 

 

Chapter 5 describes the design of the proposed missing data imputation algorithms, 

explains the comparison methodology employed and provides the experimental 

results obtained with the proposed and conventional imputation algorithms. 

 

Chapter 6 introduces our proposed algorithm for time series forecasting and gives 

performance comparison between the proposed and the conventional algorithms.    

 

The thesis ends with chapter 7, in which the present study is summarized and 

conclusions are drawn. Strategies for improving the proposed algorithms are also 

discussed. 
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Chapter 2 

Review of Previous Work 

In this chapter we present the previous work in the areas selected for research: (a) 

Feature Subset Selection, (b) Handling of cross-sectional missing data, and (c) Time 

Series Forecasting. Accomplishing all these tasks requires a machine learning 

algorithm. Hence before we begin our review of these issues, we give an overview of 

well-known machine learning algorithms. 

 

2.1  Machine Learning Algorithms 

The main task of machine learning algorithms is to extract information out of a set of 

data. Given input variables, machine learning algorithms predict the output variable.  

 

Regression-based techniques are perhaps the most popular modelling methods 

that use least squares or maximum-likelihood estimation approach to obtain the 

estimated function [13]. However, in regression-based techniques, users need to 

specify the form of the function. In reality, it is very difficult to specify an 

appropriate model. Also, these methods have two major inherent drawbacks: over-

fitting and local minima.  

 

Other popular machine learning algorithms include naïve Bayes learning [14], 

decision trees [15] and K-nearest neighbours (KNN) [16]. The naïve Bayes learning 

algorithm, based on Bayes Theorem, is one of the oldest learning algorithms [17]. 

This algorithm assumes that explanatory variables are mutually independent. 
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However, the assumption of independence is often violated in reality which leads to 

poor generalization performance [18].  

 

A decision tree (and a regression tree) generating algorithm represents the 

learned function in the form of a decision tree or a set of ‗if…then‘ rules. Although 

decision trees are easy to understand and interpret, they do have many disadvantages 

[15]. Generating a decision tree is computationally expensive. Decision tree 

generating algorithms are unstable. Slight variations in the training data can result in 

different feature selections at each node within the tree. The effect can be significant 

since attribute choices affect all descendent sub trees. Also, deduced rules can be 

very complex.  Furthermore, the approach to constructing decision trees usually 

involves using greedy heuristics (such as entropy reduction) that over-fit the training 

data and lead to poor accuracy in future predictions. 

 

The K-nearest neighbour (KNN) algorithm is a popular choice for many real 

life applications. In the KNN algorithm, the Euclidean distance is computed between 

the new feature vector and each feature vector from the training set. K-closest 

neighbours (K being the number of neighbours) are then found by analyzing the 

distance matrix. Euclidean distance metric can be used to compute nearness. If the 

output variable is a categorical variable, then the KNN algorithm takes a vote among 

the K-nearest neighbours and chooses the class voted for by the majority of the 

neighbours. If the output variable is a continuous variable, the output value is the 

average of the K-nearest patterns. One disadvantage of this algorithm is that it treats 

all K neighbours in similar way without consideration of the distance differences 
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between the query instance and its neighbours. To overcome this problem, weighted 

KNN was proposed by Dudani (1976) [19]. In WKNN, the votes of each of the K 

nearest neighbours are weighted by the respective proximity to the new example. The 

closer neighbours are weighted far more heavily than those further away. However, 

the primary disadvantage of WKNN and KNN methods is that the value of parameter 

K must be provided by the user. Selecting an appropriate value for the parameter K is 

not trivial. The performance of these algorithms (WKNN and KNN) degrades when 

the neighbourhood size is too small or too large [20]. 

 

From a very large number of relatively simple processing units, the brain 

manages to perform extremely complex tasks. Artificial neural networks (ANN) are 

a programming paradigm that seek to emulate the microstructure of the brain, and are 

extensively used in artificial intelligence problems [21]. A neural network is a 

network of many simple processors (units).  The advantages of ANN lie in their 

ability to learn arbitrary function mappings with little or no prior knowledge about 

the function itself. They are distribution free. Many neural networks have been 

developed, but the most popular neural networks are Multilayer Perceptrons (MLP), 

Radial Basis Function Networks (RBFN), and Generalized Regression Neural 

Networks (GRNN). In GRNN (and traditional regression based techniques), the 

number of predictor variables determines the number of model parameters and, 

therefore, the complexity of the model. In MLP and RBFN, the model complexity is 

governed by the number of hidden nodes and hidden layers in addition to the number 

of predictor variables.  
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There is an eternal tension in model building between model complexity 

(resulting in high accuracy on the training set) and generalization ability to the test 

and validation sets. Increasing the complexity of the model, in order to increase the 

accuracy on the training set, eventually and inevitably leads to degradation in the 

generalization ability to the test and validation sets [22].   In order to relieve the 

overfitting problem for ANNs (and regression based techniques), Vapnik and his 

collaborators introduced Support Vector Machines (SVM) [23].  Conventional ANNs 

(and regression based techniques) are based on Empirical Risk Minimization (ERM) 

where the best network structure is determined by minimizing the mean square error 

(MSE) on training data. In contrast, SVM utilizes the Structural Risk Minimization 

(SRM) principle that minimizes the upper bound of the generalization error to 

determine the structure of the network. This induction principle is based on the fact 

that the generalization error is bounded by the sum of the training error and a 

confidence interval term that depends on the Vapnik-Chervonenkis (VC) dimension. 

The reader is directed to Vapnik‘s reference book [22-24] and an introductory 

reference book Cristianini/Shawe-Taylor [25] for further study. However, Tay and 

Cao [26] showed that the free parameters of the loss function play an important role 

in the performance of SVMs and there is little general guidance to determine the 

parameters of SVM. Improper selection of these parameters is a further root cause of 

overfitting and underfitting.  

  

 During recent years, neural network ensemble is becoming a hot spot in 

machine learning and data mining. Neural network ensemble is a machine learning 

paradigm where multiple neural networks (base learners) are trained to solve the 
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same problem. One of the motivations behind neural network ensembles is the 

divide-and-conquer strategy, where a complex problem is decomposed into different 

components each of which is tackled by an individual neural network. A number of 

recent studies have shown that neural network ensemble forecasting model is an 

effective approach to the development of a high performance forecasting system [27-

28]. Dietterich (1997) gave three motivating reasons for using neural network 

ensembles [29]. The first reason is that, the training data might not provide sufficient 

information for choosing a single best neural network. For example, there may be 

many neural networks performing equally well on the training set. Thus, combining 

these neural networks may be a better choice.  The second reason is that, the search 

processes of the learning algorithms might be imperfect. For example, even if there 

exists a unique best model, it might be difficult to achieve since running the 

algorithms results in sub-optimal models. Thus, ensembles can compensate for such 

imperfect search processes. The third reason is that, the hypothesis space being 

searched might not contain the true target function, while ensembles can give some 

good approximations.    

  

 The ensemble network can be either homogeneous or heterogeneous. The 

heterogeneous ensemble network obtains the overall output from different 

independent network structures, whereas the homogeneous ensemble network 

obtains the overall output from similar independent network structures. Methods of 

homogeneous ensemble model generation basically rely on varying the parameters 

related to the design and the training of neural network. Typically, an ensemble 

(homogeneous and heterogeneous ensembles) is constructed in two steps. In the first 



                                                

 

23 

step, a large set of candidate base classifiers (neural networks) is generated and then 

an optimal subset of base classifiers, from the base classifiers pool, is selected to 

form the ensemble of classifiers. To ensure diversity in the homogeneous ensemble 

set, the random sub-spacing strategy is used [30]. In the random subspace method, 

many different features subsets are randomly chosen for producing candidate 

component classifiers and then base classifiers are iteratively refined using sequential 

hill-climbing or stochastic techniques. On the other hand, for heterogeneous model 

generation, neural network ensemble members are created by using different neural 

network types. After the base classifiers are constructed and refined, an optimal 

subset of ensemble members are selected from the pool of candidate classifiers. An 

effective (homogeneous and heterogeneous) ensemble should consist of high-

accuracy classifiers that disagree on their predictions. Popular methods for selecting 

an optimal subset of ensemble members include PCA (Principal Component 

Analysis) [31], correlation analysis [32], GA (Genetic Algorithm) [33], PSO (Particle 

Swarm Optimization) [34], and Hill-Climbing (HC) [35]. However, these techniques 

are not ideal techniques for constructing base classifiers and selecting a subset of 

ensemble members, since hill-climbing and stochastic algorithms are plagued by 

local minima and premature convergence problems, respectively and filter methods 

like PCA and correlation analysis are not robust against complex interactions among 

the outputs from base classifiers. At the second step of ensemble construction, the 

predictions of the learned models are integrated. The most popular combination 

schemes are majority and weighted voting [36]. The majority voting approach 

involves averaging the predictions of the individual networks. Majority voting rule 

constitutes a very appealing method due to its conceptual and implementational 
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simplicity. The major drawback of majority voting is that this approach treats each 

member equally, i.e., it does not stress ensemble members that can make more 

contribution to the final generalization. The weighted voting approach is an 

improvement over the majority voting approach. In the weighted voting approach, 

the total weight is one and each member of the ensemble is entitled to a portion of 

this total weight according to their performance. The ensemble decision on a new 

instance is obtained by a weighted vote of all ensemble members. Weights are 

adjusted using iterative prediction-error minimization method. The popular weight 

optimization methods include gradient descent algorithm [37], GA [38] and PSO 

[39]. A major limitation of conventional weighted voting approach is that it is a static 

approach. The weights for ensemble members do not depend on the instance to be 

classified. To overcome this problem, Jacobs and Jordan  (1991) proposed a system 

of experts (base level classifiers) and gating networks where the gating network 

makes a stochastic decision about which single expert to use on each occasion [40]. 

Unfortunately, their dynamic selection scheme does not support the fuzzy concept 

which is fundamental to the ensemble approach.  

 

2.2. Feature Subset Selection 

A number of approaches towards optimal feature subset selection have been 

proposed in the literature. They fall into three broad categories: (1) filter, (2) 

wrapper, and (3) hybrids of filter and wrapper approaches. 
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2.2.1 Filter Approach 

Filter methods remove unnecessary features without using a learning algorithm. 

These algorithms select features on the basis of the intrinsic properties of the data. In 

filter approaches, features are first scored and ranked based on certain statistical 

criteria. Then, the features with highest ranking values are selected.  Frequently used 

filter methods include t -test [41], Mann-Whitney U -test [42], chi-square test [43], 

RELIEF algorithm [44], Pearson‘s correlation coefficient [45], mutual information 

[46], symmetric uncertainty (SU) [47], and Principal Component Analysis (PCA) 

[48]. The main advantage of filter methods is that they are extremely fast. However, 

past studies suggest that filter methods are not very accurate for high-dimensional 

data [49]. These methods are not robust against interactions among features and 

feature redundancy. In addition, it is not clear how to determine the cut-off point for 

rankings in order to select only truly important features and to exclude noise. 

Furthermore, filter methods are very diverse and motivated by various theoretical 

arguments. Hence, one method that performs well for some datasets may perform 

badly on other datasets. Thus it is hard to decide which filter method is best fit for a 

particular dataset.  

 

2.2.2 Wrapper Approach 

In the wrapper approach, feature selection is ―wrapped‖ in the learning algorithm. 

The learning algorithm is applied to subsets of features and tested on a hold-out set. 

The wrapper approach uses the prediction accuracy of the learning algorithm to 

determine how good a given set of features is. Generally, wrapper methods are more 

accurate than filter methods [50]. However, wrappers are often criticized as a ―brute 
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force‖ method since they require massive amounts of computation [50]. Wrapper 

methods are computationally more demanding than filter methods because they 

evaluate the candidate feature subsets using a learning algorithm, and most of the 

existing learning paradigms are iterative in the sense that they repeat the same 

procedure until some termination criterion is fulfilled. To accelerate the wrapper 

approach in feature subset search, it is vital to employ a fast learning algorithm.  

 

Since exhaustive search is not computationally feasible, wrapper methods must 

employ a search algorithm to search for an optimal subset of features. Wrapper 

methods can broadly be classified into two categories based on search strategy: (i) 

greedy and    (ii) randomized/stochastic. 

 

2.2.2.1 Greedy Wrapper Approach 

Empirical studies suggest that in practice, the greedy wrapper approach is 

computationally much more advantageous than the stochastic wrapper approach [51]. 

Sequential Backward Selection (SBS) (also known as Backward Stepwise 

Elimination (BSE)) and Sequential Forward Selection (SFS) (also known as Forward 

Stepwise Selection (FSS)) are two most commonly used wrapper methods that use a 

greedy hill climbing search strategy [52-53]. SBS starts with the set of all features 

and progressively eliminates the least promising ones. SBS stops if the performance 

of the learning algorithm drops below a given threshold by removal of any of the 

remaining features. SBS relies heavily on the monotonicity assumption [54]. The 

monotonicity assumption states that the prediction accuracy of a learning algorithm 

never decreases as the number of features increases. This assumption is dubious 



                                                

 

27 

because of the difficulties associated with search space dimensionality and 

overfitting. In reality, the predictive ability of a learning algorithm decreases as the 

dimensionality of the feature subspace increases after the maximum point due to a 

decreasing number of samples for each combination of features. When faced with 

high-dimensional data, SBS often finds it difficult to identify the separate effect of 

each of the explanatory variables on the target variable. Because of this, good 

predictors can be removed early on in the algorithm. In SBS, once a feature is 

removed, it is removed permanently. By contrast, SFS starts with an empty set of 

features and iteratively selects one feature at a time—starting with the most 

promising feature—until no improvement in classification accuracy can be achieved.  

 

SFS is robust to multicollinearity problems but sensitive to feature interaction. 

On the other hand, SBS is robust to interaction problems but sensitive to 

multicollinearity problems. Hence, both SBS and SFS can easily be trapped into 

local minima. The problem with SFS and SBS is their single-track search. Hence, 

Pudil et al (1994) suggest floating search methods (SFFS, SFBS) that perform greedy 

search with provision for backtracking [55]. Starting from an empty feature set, the 

SFFS procedure consists of applying after each forward (feature adding) step a 

number of backward (feature removing) steps as long as the resulting subsets are 

better than previously evaluated ones at that level. SFBS works analogously, but with 

the full feature set. Consequently, there are no backward steps at all if the 

performance cannot be improved. After each backward step, SFBS performs forward 

steps as long as the resulting subsets are better than previously evaluated ones at that 

level. However, recent empirical studies demonstrate that SFFS (Sequential Floating 



                                                

 

28 

Forward Selection) is not superior to SFS [56] and SFBS (Sequential Floating 

Backward Selection) is not feasible for feature sets of more than about 100 features 

[57]. Greedy algorithms (SBS, SFBS, SFFS, and SFS) sequentially add or remove 

features. The obvious problem with this approach is that the utility of an individual 

feature is often not apparent on its own, but only in combinations including just the 

right other features. 

 

2.2.2.2 Randomized/Stochastic Wrapper Approach 

 

Stochastic algorithms developed for solving large scale combinatorial problems such 

as Ant Colony Optimization (ACO) [58], Genetic Algorithm (GA) [55], Particle 

Swarm Optimization (PSO) [59] and Simulated Annealing (SA) [60] are at the 

forefront of research in feature subset selection. These algorithms can efficiently 

capture feature redundancy and interaction and do not require the restrictive 

monotonicity assumption. However, these algorithms are computationally very 

expensive (though far less expensive than exhaustive search).   

 

2.2.2.3 Hybrids of Filter and Wrapper Approaches 

 Recently, several authors proposed hybrid approaches mixing both filter and 

wrapper methods. Examples of hybrid algorithms include Pearson‘s correlation and a 

GA [61], t statistics and a GA [62], RELIEF algorithm and a GA [63], principal 

component analysis (PCA) and an ACO[64], chi-square approach and a multi-

objective optimization algorithm [65]; mutual information concept and a genetic 

algorithm (GA)  [66], and Symmetrical Uncertainty (SU) and a GA [67]. The idea 

behind the hybrid method is that filter methods are first applied to select a feature 
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pool and then the wrapper method is applied to find the optimal subset of features 

from the selected feature pool. This makes feature selection faster since the filter 

method rapidly reduces the effective number of features under consideration. 

Advocates of hybrid methods argue that the risk of eliminating good predictors by 

filter methods is minimized if the filter cut-off point for a ranked list of features is 

low. However, hybrids of filter and wrapper methods may suffer in terms of accuracy 

because a relevant feature in isolation may appear no more discriminating than an 

irrelevant one in the presence of feature interactions.  

 

2.3  Handling of Cross-Sectional Missing Data 

Little and Rubin [68] and Schafer [69] classify cross-sectional missing data into three 

categories: (i) Missing Completely at Random (MCAR), Missing at Random (MAR), 

and Missing Not at Random (MNAR). MCAR occurs when the data which is 

missing does not depend on the values of any variable in the dataset. Possible reasons 

for MCAR include manual data entry procedure, incorrect measurements, equipment 

error, changes in experimental design, accidental skipping of a question or questions 

etc. MAR occurs when the probability of missing data on a particular variable 1x  

(say, smoking status) depends on other observed variables nxxx ,,, 32  (say, age), 

but not on 1x  itself. For example, teenagers are less likely to answer a question on 

smoking habits. MNAR occurs when the probability of missing data on particular 

variable 1x depends on the variable 1x itself. For example, a question regarding 

smoking habits is less likely to be answered when the respondent is a smoker. 

MCAR and MAR data are recoverable, whereas MNAR is not [70]. Hence, 

MCAR and MAR are also called ‗ignorable missing data mechanism‘, whereas 
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MNAR is called ‗Non-ignorable missing data mechanism‘. If missing data are 

MNAR, critical information is lost from the data and, hence there is no universal 

method for predicting this missing data. Therefore, there is increasing need for 

estimates of missing data to represent adequate implicit uncertainty about actual 

values.  Various methods are available for handling missing data [Figure 2.1].  
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Missing data handling methods can be broadly classified into two categories: 

deletion and imputation.  The most popular method of ‘deletion‘ category is listwise 

deletion (also known as complete case analysis) [71].  Listwise deletion is a common 

default method for treating missing data in many widely used commercial statistical 

software packages such as SAS and SPSS. This method drops an entire case (subject) 

if a value of any explanatory variable is missing. This is a straightforward process, 

but cases with missing values should not simply be ignored because it will reduce 

sample size and may induce systematic selection bias.  

 

Imputation methods replace missing values with values estimated from the 

available data.  The major advantage of imputation is that it uses ‗expensive to 

collect‘ data, that would otherwise be discarded. Imputation techniques can be split 

into procedures based on non-model based and model-based approaches. The end 

products of non-model based approach are surrogate values to replace missing data. 

In contrast, the end products of model based methods are the estimated values of 

model parameters, which in turn are used to impute missing values.  

 

The most commonly used non-model based procedures are zero imputation 

[71] and mean substitution [72]. In zero imputation, missing values are always 

replaced by a zero value. This method is simple and provides all cases with complete 

data. However, this method does not utilize any information about the data. The 

integrity and usefulness of the data can be jeopardized as a result. Mean substitution 

is an improvement over zero imputation. This is a popular imputation method. It 
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replaces missing values of a given variable with the mean value (unconditional 

mean) for that variable. Its main advantage is that it produces ―internally consistent‖ 

sets of results. However, this method does not take into account the relationship 

among variables and can distort the multivariate relationships. Mean substitution 

artificially reduces variance. Severe biases can result when the missing data 

characteristic is MAR but not MCAR. 

 

The most sophisticated techniques for the treatment of missing values are 

model-based. A key advantage of these methods is that they consider interrelations 

among variables. The model-based techniques can be classified into two categories: 

explicit model based algorithms and implicit model based algorithms.  

 

Explicit models create a parametric representation of the dataset. These 

explicit model based methods are based on a number of assumptions. A statistical 

model provides accurate estimates only when model assumptions are satisfied. If the 

assumptions are violated, the validity of imputation values derived from applying 

these techniques may be in question. Commonly used explicit model based methods 

include  Least Squares imputation techniques [73], Expectation Maximization 

algorithms (EM) [74], and Data Augmentation (DA) algorithm or Markov Chain 

Monte Carlo (MCMC) [75].  

 

Implicit model based algorithms often have semi-parametric or non-

parametric flavours. These methods make few or no distributional assumptions about 

the underlying phenomenon that produced the data. Deck imputation methods 
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employing best match (donor) values are the most popular implicit model based 

algorithm. Deck imputation algorithms are divided into two categories: cold deck 

imputation and hot deck imputation. 

 

Cold deck imputation methods [76] replace a missing value by a constant 

value from an external source, for example, from a similar research study found in 

the literature or from expert opinion or judgement. However this method is rarely 

used because it cannot be applied when such an external source is unavailable. 

Besides, these methods are also open to experimenter bias. 

 

Hot deck (HD) imputation is a frequently used imputation method. Hot deck 

imputation procedures replace missing values on incomplete records using values 

from similar, but complete records of the same dataset. Past studies suggest that this 

approach is promising [72]. There are two popular variants of hot-deck imputation 

algorithm: K-nearest neighbour (KNN) imputation algorithm [77] and weighted K-

nearest neighbour imputation algorithm (WKNN) [78]. A major limitation of these 

methods is the difficulty in defining what is ‗similar‘.  

 

Recently a number of studies applied Multilayer Perceptrons (MLP) [79], 

Radial Basis Function Networks (RBFNs) [80], and Generalized Regression Neural 

Networks (GRNNs) [81] to impute missing values. However, these techniques 

(except for GRNNs) are quite complicated, with many free parameters that can affect 

the quality of the imputation. Estimating all parameters simultaneously induces 

errors. In contrast to other neural networks, GRNN has only one free parameter, but 
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GRNN exhibits a terrible curse of dimensionality problem [82]. The curse of 

dimensionality is a serious issue, especially when the missing value percentage is 

high. A few studies have explored ensemble learning for missing data imputation 

[83]. The common disadvantage of existing ensemble neural networks is the static 

weighting in classifier fusion. 

 

Both explicit and implicit model based methods are further divided into single 

and multiple imputation methods. In any single imputation model, one would be 

offered a single parameter estimate with no sense of how this parameter estimate 

might vary across equally plausible sets of missing data imputations. Standard single 

imputation produces a single filled-in dataset, where each missing value is replaced 

with a single value. The replaced values are then treated as if they were actual values. 

In general, single imputation offers the advantage of allowing complete data analysis 

methods to be used, and it requires less work to impute each missing value only 

once. Expectation maximization (EM SI), multilayer perceptrons (MLP SI), radial 

basis function networks (RBFN SI) and hot deck imputation algorithms (HD SI) are 

examples of single imputation (SI) algorithms. A major problem with single 

imputation is that this approach cannot reflect sampling and imputation variability 

[84]. Therefore, the estimated variances of the parameters are biased toward zero, 

leading to statistically invalid inferences. Rubin (1978) proposed multiple imputation 

(MI) to solve this problem [85]. A detailed summary of MI is given in Rubin [11], 

Rubin and Schenker [86], Schafer [69], and Schafer and Olsen [87]. In MI, the focus 

is on getting the joint probability density function of model parameters that represent 

sampling and imputation variability. In this approach, model parameters are 
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randomly drawn from the distribution and each missing datum is replaced by 1m  

possible values (usually between 2 to 10 possible values, but commonly 5) to 

accurately reflect uncertainty and to preserve data relationships and aspects of the 

data distribution. Multiple hot deck imputation algorithms (HD MI), MCMC, and 

multiple neural networks (NN MI) are examples of MI algorithms. It requires that the 

analyst specifies an imputation model, imputes several data sets, analyze them 

separately, and then combines the results. MI builds on the advantage of single 

imputation. It allows the use of complete-data analysis methods for the data analysis. 

In addition, it incorporates random error since it requires random variation in the 

imputation process. MI produces improved estimates of standard errors when 

compared with single imputation methods because repeated estimations are used. It 

can accommodate any model and any data and does not require specialized software. 

MI also increases efficiency of parameter estimates because it minimizes standard 

errors and simulates proper inferences from the data. The three disadvantages of MI 

when compared with other imputation methods are: (a) more effort to create the 

multiple imputations, (b) more time to run the analyses, and (c) more computer 

storage space for MI-created datasets [11]. These are hardly issues with current 

development in computer technology. However, several authors have raised 

questions with regard to the validity of MI approach [88-89]. They report that MI 

procedure tends to yield longer confidence intervals. In other words, this approach 

may overestimate standard error or variance (the standard error squared) of missing 

value estimates. 
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2.4. Time Series Forecasting 

Various modelling techniques are available for time series forecasting. Among them, 

ARIMA (Autoregressive Integrated Moving Average) modelling methodology is 

without a doubt the most widely used method for forecasting the future value of time 

series and GARCH (Generalized Autoregressive Conditional Heteroskedasticity) is a 

standard method of forecasting volatility (uncertainty) of the future expected value of 

the output [90]. ARIMA and GARCH are powerful methods. However they have 

many drawbacks. These regression-based techniques use correlograms for selecting 

lagged input variables. The major disadvantage of cross-correlation is that it is only 

able to detect linear dependence between two variables. Since cross-correlation is 

unable to capture nonlinear dependence between variables, it can lead to omission of 

important inputs that are nonlinearly related to the output. Like correlation filter, 

ARIMA model assumes linear dependence between the time series data. As real 

world data or relationships may be inherently nonlinear, the ARIMA methodology 

may suffer from significant biases in data mining. Like ARIMA, GARCH is a 

parametric approach. GARCH performs best when its assumptions are satisfied. 

Although GARCH is explicitly designed to model time-varying conditional 

variances, GARCH models often fail to capture highly irregular phenomena [91]. In 

addition, ARIMA and GARCH are extremely complex techniques, which require a 

great deal of experience to be used effectively [92]. These techniques have many 

parameters that need to be adjusted and there is no simple method for the adjustment 

of parameters. Also, modelling time series with ARIMA and GARCH methodologies 

requires a combined detrending and deseasonalization. Detrending refers to a process 

by which a long term trend is removed from time series data. Deseasonlization refers 
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to removing cyclic variation from the data. In order to detrend and deseasonalize the 

series, seasonal differencing and non-seasonal differencing are applied to the data.  

Determining the appropriate order of differencing in seasonal time series processes is 

particularly difficult. Overdifferencing can lead to inefficient estimates. 

 

Neural networks (NNs) are now the biggest challengers to conventional time 

series forecasting techniques [93]. An advantage of neural network techniques is 

their good ability to map non-linear dependencies between input and output data 

[94]. There is an ongoing controversy regarding whether deseasonalizing data prior 

model estimation improves the performance of neural network time series 

forecasting models [95-106]. This is an open question that requires further research.  

 

There are no specific rules for selecting lag variables of ANN for forecasting 

time series. Feature subset selection approaches explored in the past include PCA 

[107], mutual information [108], RELIEF algorithm [110], SFS (sequential forward 

selection) [110], SBS (sequential backward selection) [111], stochastic algorithms 

[112-114], DFT (Discrete Fourier Transform) [115], and DWT (Discrete Wavelet 

Transform) [115]. In particular, wavelet analysis is gaining popularity as a method 

for selecting features from time series due to its local properties.  However, these 

conventional feature selection methods are not powerful enough. One of the most 

critical issues to be solved in the application of the wavelet analysis (and other filter 

methods like PCA) is to determine the correct threshold value that allows the 

removal of noise-dependent high frequencies, while conserving the signal bearing 

high frequency terms of the signal. However, there is currently no rule for choosing 
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the right threshold value and this threshold is determined arbitrarily.  Moreover, filter 

methods (PCA, mutual information, relief algorithm, DFT, and DWT) and SFS 

cannot capture complex interactions among the lagged input variables in a time 

series. The results of SBS are particularly questionable since SBS is not robust 

against multicollinearity and the lagged inputs are statistically dependent. Stochastic 

algorithms suffer from slow and premature convergence.  

 

A variety of NNs are available. However, multilayer perceptrons (MLPs) with 

backproapagation learning are the most employed NNs in time series studies [116]. 

Two different architectures of MLPs are applied for time series forecasting purposes: 

(i) feed-forward [117] and (ii) feedback (or recurrent) [118].  

 

The feedforward MLPs are those type of models in which the outputs can be 

sent only to the immediate next layers. Strict feedforward architecture does not 

maintain a short-term memory. Recurrent neural networks (RNN) provide this 

facility through a number of feedback loops. A generalized RNN can send input in 

either direction from and to all layers. Thus the output not only depends on the 

external input it receives but also on the state of the network in the previous time 

step. The structure is inherently dynamic, which gives the network powerful 

representation capabilities [119]. Currently, there are three types of recurrent neural 

networks. These are (in increasing order of complexity and capability): 

(1) Tapped delay line models: The network has past inputs explicitly available to 

determine its response at a given point in time.  
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(2) Context models or partial recurrent models: These models retain the past output 

of nodes instead of retaining the past raw inputs. 

(3) Fully recurrent models: These models employ full feedback and interconnections 

between all nodes. 

 

The most popular recurrent neural network underlying connectionist models of 

time series forecasting is the Elman Recurrent Neural Network (ERNN), which is a 

partial recurrent neural network. Empirical studies report that the partially recurrent 

neural networks show better generalization capability compared to complex fully 

recurrent architectures and tapped delay line models [119]. Fully recurrent neural 

networks suffer from a large number of weights and convergence difficulties. In fully 

recurrent neural networks, every unit is connected to every other unit and the 

disadvantage is that components need to have weights associated with them. The 

corresponding extra weights might cause overfitting. Similarly, using tapped delay 

line increases the number of inputs of the network many fold. A consequence of 

networks with many inputs will be over-fitting.   

 

Previously reported comparative studies between ARIMA-GARCH and MLP 

(feedforward and feedback) time series models reveal contradictory or inconclusive 

findings and fail to establish which technique is superior [120-122]. However, the 

key drawback of MLPs limiting their practical application lies in their complex 

structures and multiple parameters. In fact, the design of MLPs is even more 

complicated than the design of ARIMA and GARCH models. The results suggest 
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that there is plenty of scope for going badly wrong with MLP model [122]. Great 

care is needed when fitting a MLP model and using it to produce forecasts.  

 

Several studies investigated Radial Basis Function Networks (RBFN) [123] 

and Generalized regression neural networks (GRNN) [124] in time series forecasting. 

When creating a RBFN, users must find appropriate numbers of units in the input 

and hidden layers and the optimal kernel parameters. It is difficult to give general 

guidelines on how to optimize each parameter in RBFN [125]. GRNN is a relatively 

simple algorithm with only one free parameter, to forecast time series. These studies 

show that GRNN always generates physically plausible forecasts [126]. However, 

GRNN is particularly prone to the curse of dimensionality. When handling univariate 

time series, the curse of dimensionality is a serious problem. 

 

There are a number of studies on time series forecasting that argue that 

forecasting performance improves in hybrid models [127]. In such hybrids, whilst the 

neural network model deals with non-linearity, the ARIMA model deals with the 

non-stationary linear component.  Such models are generally constructed in a 

sequential manner, with the ARIMA model first applied to the original time series. 

Then neural networks are applied to its residuals. In this manner, the hybrid model is 

assumed to exploit the strengths of ARIMA and ANN models in capturing different 

patterns. However, recent studies indicate that hybrid forecasting techniques do not 

necessarily outperform individual algorithms [128]. They demonstrate that the hybrid 

forecasting techniques can underperform significantly compared to its constituents‘ 

performances. The authors of these studies emphasize that there may not be any 
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additive association between the linear and non-linear elements. In addition, one 

cannot guarantee the residuals of the linear component may comprise valid non-

linear patterns.  

 

  A few recent studies propose the neural network ensemble for time series 

forecasting [129-130]. However, constructing ensemble neural networks is obviously 

a formidable task. The basic goal when designing an ensemble is the same as when 

establishing a committee of people: each member of the committee should be as 

competent as possible, but the members should be complementary to one another.  
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Chapter 3 

Methods and Materials  

The goal of this chapter is to brief the reader on some background information of our 

studies. In forthcoming chapters, we will concentrate solely on the unique 

contributions we made in this field. In this thesis, we address three key challenges in 

the field of data mining— i) optimal feature subset selection, ii) missing data 

imputation, and iii) univariate time series forecasting—by presenting novel 

algorithms for solving these problems. Our research methodology involves two steps. 

In the first step, we compare the proposed algorithms with several well-known 

algorithms on synthetic and real world datasets. In the second step, we use statistical 

tests to determine which algorithm is the most accurate and to know if the 

differences between two algorithms are found to be statistically significant. This 

chapter gives an overview of the following topics. Implementation strategies of 

benchmark algorithms are discussed in section 3.1. Section 3.2 deals with benchmark 

datasets, while statistical tests used in this thesis are discussed in section 3.3. Section 

3.4 is designed to illustrate which model selection criteria (such as SRM, k-fold cross 

validation etc.) were applied for determining the architecture of a model for different 

applications.  

 

3.1 Implementation Strategies of Benchmark Algorithms  

Figure 3.1 displays the conventional algorithms that we used in this study—this 

section describes the implementation of all these algorithms. 
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3.1.1. Implementations of Benchmark Feature Selection Algorithms 

We compare our proposed feature subset selection algorithm with four popular stochastic 

search algorithms (Ant colony Optimization, Genetic Algorithm, Particle Swarm 

Optimization, and Simulated Annealing), a hybrid algorithm of filter and wrapper methods 

(FW), and four greedy search algorithms (Sequential Backward Selection, Sequential 

Forward Selection, Sequential Floating Backward Selection, Sequential Floating Forward 

Selection). For each search algorithm, we need a machine learning algorithm that evaluates 

candidate feature subset solutions. We used GRNN (Generalized Regression Neural 

Networks) to evaluate candidate solutions. A fitness score is assigned to each feature subset 

solution based on the accuracy (as a fraction, not a percentage) of the GRNN classifier 

trained by that feature subset solution.   

The fitness score is always between 0 and 1, with 1 the best score possible. The GRNN is 

described in section 3.1.4.1. 

 

Stochastic Search Algorithms 

Population size and stopping criteria are common free parameters for stochastic algorithms. 

There are no hard and fast rules concerning the choice of these parameters. Past studies 

demonstrate that an initial population size of 100 or more has to be chosen in order to get 

satisfactory results [131]. Practically, a population size of around 100 is quite common. The 

size of the initial population affects the algorithm‘s convergence performance. Small 

population size may result in premature convergence, while large size will increase 

computational efforts and may make convergence slow. For this study, we arbitrarily 

choose the initial population size as 100.  
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We used the CPU time as the stopping criterion for fairer comparison.   The time 

required to evaluate a candidate feature subset solution depends on the dimension of feature 

space and the sizes of the training and test sets. With a stopwatch, we observe and record 

the time required to evaluate solutions of every possible dimension. After evaluating each 

solution, the computer retrieves the time expected to be used for the evaluation of a feature 

subset with the same dimension size and subtracts it from the total time available for use. 

 

3.1.1.1 Ant Colony Optimization Algorithm (ACO) 

ACO is inspired by the foraging behaviour of real ant colonies. The worker ants of almost 

all ant species forage away from the colony for food. Once ants have found a food source, 

they leave behind a scent (pheromone) for other ants to follow. Only ants that are carrying 

food leave pheromone trails. In a short time, there is strong chemical trail from marching 

columns of ants transporting food from the food source to the nest. When the source is 

exhausted, no new trails are marked by returning ants and the scent slowly dissipates. ACO 

was first proposed in 1992 by Marco Dorigo in order to solve a difficult combinatorial 

optimization problems [132].   Figure 3.2 presents the block diagram of the ACO. 
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Pseudo Code of ACO 

Step 1: Each particular feature represents a particular region. Initialize the pheromone level 

of each region (feature) to 1.  

Example: Suppose we have a feature space given by the map DCBA ,,,  with a 

dimensionality of 4. The initial pheromone level of each feature (region) is 1 (Example 

Table 3.1.1.1.1). 

Example Table 3.1.1.1.1: Initial Pheromone Distribution 

Region Pheromone level 

A 1 

B 1 

C 1 

D 1 
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Step 2: Set the maximum search time ( m axT ) in seconds that the algorithm can take. 

Example:  Let, 100maxT  

Let us also assume that we have the following information about the given dataset in the 

memory cell: 

Example Table 3.1.1.1.2: Information stored in the memory 

Dimensionality of the solution Time required to evaluate the solution   (in seconds) 

1 2 

2 4 

3 7 

4 12 
 

 Step 3: The initial population consists of 100 ants. An ant (candidate feature subset 

solution) is a binary string with the length of N, where N is the number of features. Bit 

value ‗1‘ stands for the presence of a feature and ‗0‘ stands for its absence so that each ant 

represents a feature subset solution. Initially, each ant is given randomly chosen subset of 

features. 

Example: Let the initial population size of ants be 3. The subsets selected by the ants: 

Ant 1: 1,0,0,1 ; Ant 2: 1,1,1,1 ; and Ant 3: 1,0,0,0  

 Step 4: Evaluate the fitness of each ant using GRNN and update the best-to-date solution. 

 

Example Table 3.1.1.1.3: Fitness values of Ants: 

Ant Solution Accuracy Fitness 

1 [1,0,0,1] 80% 0.80 

2 [1,1,1,1] 59% 0.59 

3 [0,0,0,1] 40% 0.40 

 

Step 5: Retrieve the time spent in fitness evaluation (please see example table 3.1.1.1.4) 

and then estimate the pheromone evaporation rate ( ) using the equation (3.1). 
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)1.3(
maxT

Tspent
 

Where, spentT = Total time spent so far. 

 

Example Table 3.1.1.1.4:  Retrieved information about the time spent in fitness evaluation: 

Ant Solution Dimensionality Evaluation time 

Ant 1 [1,0,0,1] 2 4 

Ant 2 [1,1,1,1] 4 12 

Ant 3 [0,0,0, 1] 1 2 

Overall  time Spent   4+12+2= 18 

 

Therefore, 18.0
100

18
 

Step 6: Update pheromone level in each region as in equation (3.2) (example table 3.1.1.1.5 

provides a numerical example): 

)2.3(1 tttt iiii   where, ktt iki   

1ti  and ti  represent the total amount of pheromone existing at feature ‗i‘ at the 

beginning  of the periods (t+1) and t respectively. is pheromone evaporation rate.  

)(tik  is the sum of fitness scores of the ants that have selected the feature ‗i‘ at time 

t and k represents the number of ants that have selected the feature. ti  indicates the 

increase in the total pheromone at region i  at the period t . 
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Example Table 3.1.1.1.5: The updated pheromone level at each feature (after 1 iteration): 

Feature ti

 

ti  

(p=0.18) 

k  ktt iki
 1ti  

ttt iii

 

A 1 1 0.18=0.18 2 (0.8+0.59)/2 =0.70 [1-0.18]+0.70=1.52 

B 1 1 0.18=0.18 1 0.59/1 =0.59 [1-0.18]+0.59=1.41 

C 1 1 0.18=0.18 1 0.59/1=0.59 [1-0.18]+0.59=1.41 

D 1 1 0.18=0.18 3 (0.8+0.59+0.4)/3=0.60 [1-0.18]+0.60=1.42 

 

 Step 7: Estimate transition probability of each region or feature at 1t  as in equation 

(3.4):  )3.3(111
1

g

j
jii tttP  

Where, 1tPi  is the transition probability of feature ‗i‘ at time 1t . 1ti  is the total 

pheromone at feature ‗i‘ at 1t . g is the number of features in the feature space. 

g

j
j t

1

1  stands for the amount of pheromone present in all features at 1t . 

Example table 3.1.1.1.6 provides a numerical example of transition probability estimation. 

 

Example Table 3.1.1.1.6:  Transition probability of each feature at iteration 1t : 

Feature 1ti  
1tPi

g

j

ji tt
1

11  

A 1.52 1.52/5.76= 0.27=0.3 

B 1.41 1.41/5.76=0.24 

C 1.41 1.41/5.76=0.24 

D 1.42 1.42/5.76=0.25 
g

j

j t
1

1  
1.52+1.41+1.41+1.42=5.76  

 

Step 8: Change the feature subset solutions (ants) as follows: 
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  Generate a random number between 0 and 1 for each element of the feature vector. 

 If the random number is smaller than or equal to the transition probability of the feature, 

set the value of the bit to 1. Otherwise set the value to 0. 

Step 9: Check if the stopping criterion is satisfied; if not, go back to step 4. 

 

3.1.1.2 Genetic Algorithm (GA) 

Genetic Algorithm (GA) was first proposed by Holland in 1975 (Holland, 1975). GA is 

inspired by Darwin‘s theory of evolution [133]. Figure 3.3 presents the block diagram of 

the GA. GA was implemented as follows: 

Step 1: Encode each candidate subset solutions into chromosome-like strings, in order that 

the genetic operators can be applied to them. Each gene in a chromosome is a bit, which 

takes a value of either 1 or 0. Each gene location in a chromosome corresponds to a 

particular feature. 1 stands for presence of a feature and 0 for absence. 
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Step 2: Randomly select a pool of chromosomes from the entire population to form a new 

initial population. The size of the population is one of the most important choices faced by 

any user of genetic algorithms. There are two significant problems associated with a lack of 

robustness in a GA. When the population size is too small or the genetic diversity is too 

small, a GA can converge too quickly on a local optimum. On the other hand, if the 

population size is too large or the genetic diversity is too large an optimal solution may not 

emerge in a reasonable time. In this study, the initial population size was set to 100 

chromosomes.  

Step 3:  Evaluate the fitness value (prediction accuracy) of each chromosome in the pool 

and update the time available for searching.  

Step 4: According to the fitness value, probabilistically pick 50 pairs of couples from the 

available pool. There are two competing factors that need to be balanced in the selection 

process: selective pressure and genetic diversity. Selective pressure, the tendency to select 

only the best members of the current generation to propagate to the next, is required to 

direct the GA to an optimum. Genetic diversity, the maintenance of a diverse solution 

population, is also required to ensure that the solution space is adequately searched. Too 

much selective pressure can lower the genetic diversity and the GA converges prematurely. 

Yet, with too little selective pressure, the GA might not converge to an optimum in a 

reasonable time. A proper balance between the selective pressure and genetic diversity must 

be maintained for the GA to converge in a reasonable time to a global optimum.  

 

Various types of selection strategies have been proposed. The most popular selection 

strategies are elitist selection, roulette-wheel selection, tournament selection, and ranking 

selection [134]. In elitist selection, only the best chromosomes are allowed to survive to the 
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next cycle of reproduction. But selecting only the best chromosomes has one major 

disadvantage; all chromosomes in a population will start to look the same very quickly.  In 

roulette wheel selection, each chromosome in the population is assigned a roulette wheel 

slot (i.e. a probability of being selected) sized in proportion to its fitness. In effect, the 

probability of a chromosome being selected is given by the ratio of its fitness value (its 

roulette wheel slot size) over the total sum of fitness values of all population chromosomes 

(the entire size of the roulette wheel). The main problem of this approach is that if one 

chromosome has a fitness value much better than others, the chromosome will tend to be 

selected much more often than the others. If the super-performer chromosome represents a 

local optimum (rather than a global optimum) in the solution space, there will be a 

premature convergence for that suboptimal solution. In tournament selection, a number of 

chromosomes are chosen randomly from the population and the best chromosome from this 

group is selected as parent. This process is repeated until the required number of 

chromosomes is obtained. One potential problem with tournament selection is that it does 

not guarantee that the best solution in the current generation is passed on to the next. 

Ranking selection consists of two steps. First all chromosomes are ranked according to their 

fitness values. Then a selection procedure conceptually similar to roulette-wheel selection 

is applied based on the rankings, rather than on the original fitness values. The better the 

ranking of a chromosome, the higher its probability of being selected.  We emphasize that 

in this method chromosomes are selected based only on their performance relative to other 

chromosomes. Information about the magnitude of fitness differences between 

chromosomes is intentionally discarded. In this study, we used rank selection strategy for 

picking a chromosome for crossover. We performed the task in the following manner: 
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Calculate cumulative selection probabilities in the following sequence. First, arrange 

chromosomes in descending order of their fitness scores (i.e. prediction accuracies). 

Second, rank the chromosomes on the basis of their fitness. Assign rank 1 to the lowest 

fitness score, 2 to the next and so on. Third, estimate the probability of selection for each 

chromosome using the equation (3.4) and then calculate the cumulative selection 

probability of each chromosome. 

)4.3(
n

c
p i

i   

Where ip =selection probability of the i-th chromosome.  

ic = rank point of the i-th chromosome,  

n = sum of the rank points assigned to the chromosomes in the pool 

 

Generate a random number ‗r‘ between 0 and 1 and pick the chromosome whose 

cumulative selection probability is equal to or just smaller than ‗r‘. Repeat this step until the 

desired number of chromosomes is selected.  

 

Numerical example:  The following is an example of cumulative selection probability 

estimation based on ranking selection strategy. 

 

Example Table 3.1.1.2.1: cumulative selection probability 

Chromosome Fitness Rank Selection Probability Cumulative Selection 

Probability 

Chromosome 4 0.91 4 0.4 0.4 

Chromosome 1 0.84 3 0.3 0.7 

Chromosome 3 0.58 2 0.2 0.9 

Chromosome 2 0.35 1 0.1 1.0 

Total  10 1.0  
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Example Table 3.1.1.2.2: Spin the Roulette Wheel to select the potential mates: 

 Random 

number 

Selected chromosome 

First spin of the wheel 0.2 Chromosome 4 

Second spin of the wheel 0.6 Chromosome 1 

Third spin of the wheel 0.5 Chromosome 1 

Fourth spin of the wheel 0.9 Chromosome 3 

 

Step 5: Each couple creates two offspring by crossover and then the parents die. In this 

study, we used the half uniform crossover scheme (HUX).  In HUX, exactly half of the 

non-matching parents‘ genes are swapped. The crossover is performed in the following 

way. Let us assume that two parents are: 

Parent 1: Chromosome 4: [1, 0, 1, 1, 0] 

Parent 2: Chromosome 1: [1, 1, 1, 0, 1] 

Find the number of genes (or bits) that are different in chromosomes (solutions) of two 

parents (Chromosome 4 and Chromosome 1): Different genes = [2
nd

 bit, 4
th

 bit, 5
th

 bit]. 

Therefore, the total number of genes that are different, n=3. Check if the number n is even 

or odd, If n is even, then both parents will contribute equal number ( 2n ) of corresponding 

bits that are different in two parents. Otherwise, if n is odd, then the offspring will carry 

21n  genes from the unique genes of the better parent and 21n  genes from the 

unique genes of the other parent. In our example, n is 3—an odd number. Hence seed 

solutions will carry 2 genes (that are different in parents) of chromosome 4 (whose fitness 

score is 0.91) and 1 gene of chromosome 1(whose fitness score is 0.84).  

Therefore, two offspring of chromosome 4= [1, 0, 1, 1, 0] and  

chromosome 1=[1,1,1,0,1] are x=[1,0,1,1,1] and y=[1,1,1,1,0]. 
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Step 6: Perform mutation on the offspring. A GA is sensitive to the mutation rate parameter 

value. The mutation rate is usually set to a low value such as 0.001 to avoid losing good 

solutions [135]. If the mutation rate is very high, the GA descends into a random search. 

Conversely, too low a mutation rate implies too little exploration in the search space. We 

set the mutation rate to 0.05 in order to reduce the risk of premature convergence. Generate 

a random number between 0 and 1 for each gene of a child chromosome. If the random 

number is greater than 0.95, mutate the gene. 

Step 7: Repeat steps 3 to 7 until the stopping criterion is satisfied.  

 

3.1.1.3 Binary Particle Swarm Optimization (PSO) 

PSO is a population based stochastic optimization algorithm developed by Eberhart and 

Kennedy in 1995 [136]. PSO simulates the behaviour of bird flocking. The foraging 

strategy of birds is to follow the bird which is nearest to the food. In PSO, each single 

solution, called a particle, is considered as bird in the search space. A block diagram of 

PSO is presented in section 3.4. 
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Pseudo code of binary PSO:  The outline of the algorithm is as follows: 

Step1: We fix the number of particles to be 100. In this study, we represent the particle‘s 

position as binary bit strings of length N, where N is the total number of features. Every bit 

represents a feature, the value ‗1‘ means the corresponding feature is selected while ‗0‘ not 

selected. 

Step 2: Initialize the position and velocity of each particle randomly. The position 

(location) of a particle implies a subset of features. The velocity of a particle implies how 

many of the particle‘s bits or features should be changed, at a particular moment in time or 

in a certain iteration 

Step 3: Evaluate the positions of the particles (i.e. prediction accuracy of the subset of 

features) using a GRNN. Update Pbest (particle‘s personal best) and Gbest (global best-to-

date), if needed. Update total CPU time consumed. On the first iteration, set Pbest fitness 

value equal to the current fitness value and the Pbest location equal to the current location. 

The best fitness value among the Pbest fitness values of particles is assigned to the Gbest  

value and its location is assigned to the Gbest location. 

Step 4: After finding the two best values, the algorithm updates the velocity of each 

particle with following equation (3.5). The velocities of particles have an upper velocity 

limit and a lower velocity limit.  

If velocity<lower velocity limit, then velocity = minimum velocity. 

If velocity>upper velocity limit, then velocity = maximum velocity. 

111 rcwVV tt (Pbest[]-Present[]) 22rc (Gbest[]-Present[])     (3.5) 

max

1,
T

T
wwhere

spent
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Here, 1tV  and tV  are the velocity of the particle at time (t+1) and t respectively. 1c  and 

2c are the acceleration constants, where 1c  moderates the maximum step size toward the 

personal best of that particle, while 2c moderates the maximum step size toward the global 

best particle in just one iteration.  

 

The values of these coefficients range from 0 to 4. Usually, .221 cc  The balance 

between global and local search throughout the course of a run is critical to the success of 

PSO. 1r  and 2r  are two separate random numbers between (0, 1). w  is the linearly 

decreasing inertia weight. m axT  represents the maximum time that the algorithm can take to 

perform a search operation and spentT  represents the total amount of time consumed so far. 

The inertia weight ( w ) is employed to control the effect of the previous velocity on the 

current velocity. It influences the trade-off between the global and local extrapolation 

abilities of the particles. A larger inertia weight facilitates a global search (searching new 

areas) whereas a smaller inertia weight facilitates a local search to fine-tune the current 

search area. The inertia weight w is a decreasing function of time. At the beginning of the 

process, a larger inertia weight is used for global extrapolation. The inertia weight becomes 

smaller and smaller for local search, as the search progresses. Pbest[] is the personal best 

position of the particle. Present[] is the current position of the particle. Gbest[] is the 

global best position. 

 

Weng et al (2007) suggest setting the maximum velocity at one-third of the total 

number of features in the feature space, because this prevents an overly-large velocity 

[137]. A particle can be near to an optimal solution, but a high velocity may make it move 
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far away. By limiting the maximum velocity, particles cannot fly too far away from the 

optimal solution.   

A simple example of estimating the velocity of a particle 

Let, Maximum velocity =4 and Minimum velocity= 1. 

w = inertia weight at time (t+1) =0.8; tV =4; 221 cc ; ;02.01r  82.02r ; 

]0,0,1,0,1[[]Gbest ; 1,0,0,0,1[]Pbest ; Present 1,0,0,0,0  

Pbest[]-Present=[1,0,0,0,1]-[0,0,0,0,1]=1 [since 1 bit is different] 

Gbest[]-Present=[1,0,1,0,0]-[0,0,0,0,1]=3 [since 3 bits are different] 

111 rcwVV tt (Pbest[]-Present[]) 22rc (Gbest[]-Present[])     

16.8382.02102.0248.01tV  

Therefore, 1tV =4 [since maximum velocity=4] 

Step 5: Update positions of every particle by its new velocity based on the following 

position update strategies: 

 If the particle‘s velocity 1tV is less than, or equal to, the position difference between 

the particle and Gbest (i.e. Gbest[]-Present[]) then randomly pick  1tV  bits of the 

particle—that are different from that of Gbest—and change the bits. 

 If the particle‘s velocity 1tV  is greater than the position difference between the particle 

and Gbest, then in addition to changing all the different bits of the particle, randomly 

change 1tV  (Gbest[]-Present[]) bits outside the different bits between the particle 

and Gbest. 

Step 6: If stopping criteria are met, then stop. Otherwise go back to step 3.  
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3.1.1.4 Simulated Annealing (SA): SA, as a mathematical technique, was first formally 

introduced by S. Kirkpatrick, et al in 1983 [138]. SA is inspired by physical annealing of 

solids. Annealing is a heat treatment in which metals, glass or other materials are exposed 

to an elevated temperature for an extended time and then slowly cooled in an attempt to 

make them less brittle and more workable. A block diagram of SA is presented in figure 

3.5. 

 

 

Pseudo Code of SA 

Step 1: Set the initial temperature ( iT ): iT = Total run time for SA; 

Step 2: Set the current temperature ( cT ): ic TT  



                                                

 

60 

Step 3: Initialize population: randomly select 100 individuals I  100:1I  from the pool 

of individuals for initial population.  

Step 4: Evaluate the fitness of each individual: based on each individual I , extract a new 

dataset newD from the (normalized) original dataset D with the features that are present in 

the solution of the individual. Evaluate the fitness scores oE  Eo 1:100 of feature 

subsets using GRNN and store the information (feature subset solutions with fitness 

scores). 

Step 5: Update the effective temperature (T ): Based on the dimensionality of each 

individual evaluated in the previous step, retrieve the time elapsed in evaluating the 

individual. Calculate the total time spent spentT on evaluating individuals of population by 

adding the time spent for each individual. Finally update the effective 

temperature: )6.3(spentcc TTT  

Step 6: For all current feature subset vectors I 100:1I  change the bits of vectors with 

probability mutationp : omutation Ep 1        (3.7) 

Step 7: Evaluate the fitness nE En 1:100  of the new candidate solutions if not already 

evaluated. 

Step 8: Determine if this new solution is kept or rejected and update the database: 

 If  on EE , the new solution is accepted. The new solution replaces the old solution and 

oE  is set to nE . 

 If on EE , calculate the Boltzmann acceptance probability acceptP . If the acceptance 

probability is greater than or equal to a random number between 0 and 1, the new 

solution is accepted and it replaces the old one and oE . On the other hand, if the 
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acceptance probability is less than the random number, the new solution is rejected and 

the old solution stays the same  :   )8.3(exp cnoaccept TEEP  

Step 9: Update the effective temperature.  

Step 10: If the effective temperature is greater than or equal to zero, return to step 6. 

Otherwise, the run is finished.  

 

Hybrid Search Algorithm  

3.1.1.5  FW (Filter + Wrapper):  

This hybrid algorithm consists of a number of popular filter methods and a stochastic 

algorithm. FW is a three stage algorithm. Figure 3.6 shows a schematic block diagram of 

the FW.  
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Stage 1: Relevance Filtering: Since it is hard to decide which filter method is best for a 

dataset because the performance of a filter method varies with different datasets [139], we 

use a number of popular filter methods to filter out irrelevant features. FW eliminates a 

feature when all of these filter methods—a) Statistical hypothesis testing, b) Pearson‘s 

correlation coefficients, c) Relief algorithm, and d) symmetric uncertainty— dismiss the 

feature as irrelevant at the 0.05 level.  

 

a) Statistical Hypothesis Testing: The significance test is a classical feature selection 

approach.  

Pseudo code of hypothesis testing: 

1. Establish hypotheses: 

Null Hypothesis, :oH There is no association between X and Y. 

  Alternative Hypothesis, :aH  There is an association between X and Y. 

2. Calculate test statistic 

3. Assess significance level: We used the significance level of 5% (a commonly used 

level) in all our statistical tests.  

4. Finally, decide whether to accept or reject the null hypothesis. 

The following tests are frequently used to measure how strongly a particular independent 

variable X explains variations in the dependent variable Y.  

 

Student’s t-test and z-test: The student‘s t-test is perhaps the most widely used parametric 

test. This can be used when the following assumptions are met: 

 Data points are independent from each other. 

   T-test should be used when n (the size of each group) is smaller than 30. 
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  The distributions should be normal for the equal and unequal variance t-test.  

 The variances of the samples should be the same for the equal variance t-test. 

 All individuals must be selected at random from the population. 

 All individuals must have equal chance of being selected. 

 Sample sizes should be as equal as possible but some differences are allowed. 

 

The observed values of the feature are separated into two groups based on the target 

variable and then homogeneity of variance is tested for using the F-test. The formula of 

confidence interval (CI) for comparing means of two groups with unequal variances is: 

 

 

 

The formula of confidence interval (CI) for comparing means of two groups with equal 

variances is: 

 

 

 

Where, 
2

11 22
2

BA

BBAA
p

nn

SnSn
S  

Where, Ax  and  Bx  are the sample means of the independent variable X. 
2

As  and 
2

BS  are the 

sample variances. An  and Bn   are the sizes of the two samples. The t-critical value ( dft ,2 ) 

must be found from a table or it will be given by statistical software. To find it, only alpha 

level ( ) and the degrees of freedom (df) are needed. Customarily the alpha level (cut-off 

)9.3(
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point) is set at 0.05. The df is simply the number of data points in both datasets minus 2. If 

the confidence interval contains 0, then the feature X is assumed to be irrelevant to the 

dependent variable of interest. If the confidence interval does not include zero, it is 

concluded that the feature X is relevant. 

z-test is preferable when n is greater than 30. For the z-test degrees of freedom are not 

required since z-scores of 1.96 and 2.58 are used for 5% and 1% respectively. 

)11.3(
11

96.1%95 2

BA
pBA

nn
sXXCI    

)12.3(
11

58.2%99 2

BA
pBA

nn
sXXCI  

 

where, 
2

11 22
2

BA

BBAA
p

nn

SnSn
S  

If the confidence interval includes zero, then the null hypothesis (of no association) cannot 

be rejected at the stated level of significance. 

 

The Mann-Whitney U Test:  is also called the Mann-Whitney-Wilcoxon or Wilcoxon 

rank-sum test or Wilcoxon-Mann-Whitney test. The t-test is a parametric statistical test. It 

is sensitive to departures from normality, and to the difference between the two variances, 

especially when the sample sizes are different. Hence, whenever there exists some doubts 

about the validity of these assumptions, the nonparametric Mann-Whitney test is an 

excellent alternative. However, the Mann-Whitney test is less powerful than the t test when 
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its assumptions are met, because the Mann-Whitney test first converts the values of the 

observations into ranks, and some information is lost in the process.  

 

The observations are divided into two groups according to the response variable Y. 

To perform the Mann-Whitney test, we first rank all the values of a feature X from low to 

high, paying no attention to which group each value belongs. These rankings are then re-

sorted into the two separate samples. We then use the following formula to calculate the 

value of Mann-Whitney U-test: 

)13.3(
2

)1(
2

22
21 R

NN
NNU  

Where = Mann-Whitney U test statistic; Sample Size 1; = Sample Size 2, with 

2N representing the larger of the two samples, if they are different; =the observed sum 

of ranks for sample 2; and 
2

122
21

NN
NN the maximum possible value of 2R  

 

The decision rule is to reject the null hypothesis if the p-value of the test statistic for two-

tailed test at α=0.05 is less than or equal to the significance level.  For more details of the 

test, the reader is referred to Siegel (2d Ed.) [140]. 

 

Chi-Square (
2
) Test of Independence: The 

2
-test is a tool to look at the relationship 

between two categorical variables. To perform chi-square test of independence, first we 

have to calculate expected frequencies for all combinations of categories. A contingency 

table (similar to that displayed in example table 3.1.1.5.1) is created from frequency data. 

Each cell of the contingency table contains observed frequency counts. The first step, then, 
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in calculating the 2  statistic is generating the expected frequency (presented in 

parenthesis in example table 3.1.1.5.1) for each cell of the table as in equation (3.14).  

)14.3(
for tablen  total

alColumn tot   totalRow
Frequency Expected  

 

Example Table 3.1.1.5.1: A simple 22  Contingency Table 

  Y=1 Y=0 Total 

X=1 A(a) B (b) A+B 

X=0  C (c) D (d) C+D 

Total n A+C B+D A+B+C+D 

 

Here, A, B, C, D represent actual frequency and a, b, c, d represent expected frequency. 

The 
2
statistic is calculated as in equation (3.15). 

)15.3(
frequency expected

 frequency expectedfrequency observed
2

2
 

d

dD

c

cC

b

bB

a

aA
2222

2
 

Degrees of freedom: 1)-rows of1)(number -columns of(number  df  

The level of significance (p value) is assessed using the
2
and the degrees of freedom. If 

the 05.0p , we reject the null hypothesis. 

 

b) RELIEF Algorithm: The RELIEF algorithm, originally proposed by Kira and 

Rendell, is a popular filter feature selection [141]. A block diagram of RELIEF algorithm is 

presented in Figure 3.7. 
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The RELIEF algorithm is used to remove irrelevant features. It assigns relevance values to 

features. The basic idea of the RELIEF algorithm is to iteratively estimate the feature 

weights according to their ability to discriminate between neighbouring patterns. The 

algorithm holds a weight vector over all features and updates this vector according to the 

input patterns presented. The initial weights of all features are set to be zero.  In each 

iteration, a pattern x is randomly chosen and then two nearest neighbours of x are found, 

one from the same class (termed the nearest hit or NH) and the other from different class 

(termed the nearest miss or NM).  The weight of the i-th feature is then updated as in 

equation (3.16):  

)16.3()()( xNHxxNMxww iiii
ii  
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c) Pearson’s Correlation Coefficient: measures the strength of the relation between a 

feature (x) and a dependent variable (y). The Pearson correlation coefficient R is 

calculated using the following formula: 

)17.3(
22

i i
ii

i
ii

yyxx

yyxx

R  

The value of correlation coefficient ranges between -1 and +1. The greater the absolute 

value of a correlation coefficient, the stronger the relationship. The Pearson‘s correlation 

coefficient is based on the assumptions of normality, linearity and homoscedasticity.  If 

05.0R , we remove the feature from the feature pool.  

 

d) Relevance Analysis using Symmetric Uncertainty (SU): In information theory, 

entropy is a measure of the amount of uncertainty about a random variable Y. Equations 

(3.18) and (3.20) define the entropy of Y before and after observing values of another 

variable X, respectively. Equation (3.19) defines the entropy of X. 

 

)18.3(log2 i
i

i ypypYH  

)19.3(log2 j
j

j xpxpXH  

)20.3(log2 ji
i

ji
j

j xypxypxpXYH  
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Where, iyp  and jxp  are the prior probabilities for all values of random variable Y and 

X, respectively.  ji xyp  is the conditional probability of  iy given jx .  

 

The amount by which the entropy of Y decreases reflects additional information 

about Y provided by X and is called Information Gain (or mutual information) as shown in 

equation (3.21). Mutual Information, as a nonlinear measure of correlation, is frequently 

used in feature subset selection. It measures how well a given variable X distinguishes 

instances into classes of variable Y.  

)21.3(; XYHYHXYI  

Mutual Information is nonnegative (i.e., 0; XYI ) and symmetric (i.e. 

YXIXYI ;; ).  0; XYI , if and only if X and Y are independent random variables. 

The higher the information gain, the more informative the feature and, thus, the more 

predictive power it has. A drawback of Information Gain is that it favours features with 

many different values.  

 

The symmetric uncertainty (SU) solves the drawback of information gain by dividing 

it by the sum of the entropies of class labels Y and features X ; and can, therefore, be used 

as a criterion for feature selection [180]. 

)22.3(
)()(

;
2;

YHXH

XYI
XYSU  

SU is applied to measure the correlation between features and target variable. It ranges 

between 0 and 1. If a feature has a low symmetric uncertainty to the target variable, it 

implies that the feature has poor prediction ability to the target variable. On the other hand, 
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the feature has strong prediction ability to the target variable if the SU is high. We remove a 

feature if the symmetrical uncertainty between the feature and the target variable is less 

than 0.05.  

 

Stage 2: Redundancy Filtering: FW uses PCA and SU to filter out redundant features 

from the relevant features of the output variable. FW removes only those features that are 

regarded as redundant by both methods (i.e. PCA and SU).      

 

a) Principal Component Analysis (PCA): is often applied to high dimensional data 

with redundancy. PCA transforms a set of p correlated variables ],,[ 321 XXXX T into a 

set of p uncorrelated variables called principal components (PCs). The new variables (PCs) 

are linear combinations of the original variables.  

PCA involves decomposition of the covariance matrix (COV matrix) of the original dataset 

so that the original coordinate system of correlated variables is transformed to a new set of 

uncorrelated variables (PCs). The new rescaled variables (PCs) have unit variance and are 

independent of one another.  

The PCA is represented by 

)23.3(jjj uuCOV  

ju =eigenvector and j =eigenvalue. There are as many eigenvectors as there are input 

variables. 

 

The actual transformation is done through eigenvectors also called loadings or weights. 

Each eigenvector contains loadings for each of the original variables that transform them to 
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the new variables (PCs). The values of the new variables are called scores (or PC scores) 

that are obtained by projecting the original inputs onto the eigenvectors (i.e. multiplying 

original inputs with corresponding loadings). To obtain the transformed variables (PCs), the 

original variables are multiplied by the weights (or loadings).   

Thus, the equation for the value of the first principal component can be written as: 

)24.3(3132121111 xuxuxuPC
 

Where, { 321 ,, xxx } represent normalized original input variables. The first row of the 

eigenvector matrix defines the weights for the first PC ( 1PC ). The first eigenvector is 

given by 131211 ,, uuu . 

Eigenvalues denotes the variance of the new variables (PCs) and they are in descending 

order. Therefore, the first PC represented by the first eigenvector captures the largest 

amount of variation in the original data; each subsequent PC captures the largest amount of 

remaining variance, and so on. The amount of variation captured by each PC is given by 

their corresponding eigenvalues. Theoretically, there are as many PCs as there are input 

variables, but because the first few PCs capture most of the variance, a threshold naximum 

variance can be defined as suitable cutoff point (90 percent, 95 percent, etc) taking into 

account the noise and and variance in the data to select an adequate number of PCs that 

sufficiently represent the original data while discarding the rest. The selected PCs can then 

be used as inputs to a machine learning algorithm as an alternative to using original 

variables.  

 

The algorithm FW retains a PC if it accounts for more than 1% of variance.  The 

selected PCs are then used as features as an alternative to using the original variables.        
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b) Redundancy Analysis using Symmetrical Uncertainty (SU): The symmetrical 

uncertainty (SU) between each pair of features is computed to measure the feature 

redundancy. If the SU between two features is greater than 0.95, we remove the feature that 

has the lower SU with the output variable. 

 

Stage 3: Search for an Optimal Feature Subset Solution: FW uses SA to find an optimal 

feature subset solution from the selected PCs since our empirical results suggests that SA is 

better than other stochastic algorithms. The pseudo code of SA is given in section 3.1.1.4.  

 

Greedy Search Algorithms 

3.1.1.6 Sequential Backward Selection (SBS)  

A block diagram of SBS is presented in figure 3.8. 
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Step 1: Initialize feature set: Let‘s assume that Y is a feature set that contains all the 

features: nxxxY ,,, 21   

Step 2: Evaluate the feature set Y : Train a GRNN with the feature setY . Evaluate the 

network‘s performance on the test set. 

Step 3:  Prune the least important feature from the set Y : Construct new feature sets by 

excluding one feature of root set (Y ) each. Evaluate each new feature set in order to 

estimate the marginal contribution of each feature used in a trained GRNN. Delete the least 

important feature from the set (Y ) if the accuracy of the GRNN does not drop and 

recursively repeat this step for the remaining features.  

 

3.1.1.7 Sequential Forward Selection (SFS)  

A block diagram of SFS is presented in figure 3.9. 
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Step 1: Initialize feature set: Let‘s assume that Y is an empty feature set: Y  

Step 2: Find the best feature and update Y : A GRNN was constructed with one feature at 

a time. The trained networks were evaluated on the test set to identify the best feature. Add 

the best feature into Y . 

Step 3: Find the next best feature and updateY : Add one new feature to the GRNN at a 

time. Evaluate trained networks and identify the next best feature. Add the next best feature 

intoY . Thus, sequentially add the best feature that improves results more than the others 

until there is no more improvement.  

 

3.1.1.8 Sequential Floating Backward Selection (SFBS) 

A block diagram of SFBS is presented in figure 3.10. 
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Step 1:  Initialize feature set: Let‘s assume that Y is a feature set that contains all the 

features: nxxxY ,,, 21   

Step 2: Evaluate the feature set Y : Train a GRNN with the feature setY and measure the 

GRNN‘s performance on the test set.  

Step 3: Exclusion: Find the worst feature using the basic sequential backward selection 

(SBS) and remove the feature from the current feature set Y if the accuracy of GRNN does 

not decrease. 

Step 4: Inclusion:  Use the basic SFS method to find the most important feature among the 

excluded features. Add the most significant feature to the current subset Y if the accuracy 

of GRNN improves. Repeat this step until the performance of GRNN does not improve on 

inclusion of additional features.  

Step 5: Return to step 3. SFBS stops when the last iteration through all events has not led 

to any improvements. 
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3.1.1.9 Sequential Floating Forward Selection (SFFS) 

A block diagram of SFFS is presented in figure 3.11. 

 

Step 1: Initialize feature set: Let‘s assume that Y is an empty feature set: Y  

Step 2: Inclusion: Using the basic SFS method, select the best feature and updateY .  

Step 3: Exclusion: Using the basic SBS method, select the worst feature and remove it 

fromY . Repeat this step until the performance of GRNN does not deteriorate. 

Step 4: Return to step 2. SFFS stops when additional features cannot be added or removed 

from Y . 

 

3.1.2 Implementation of Conventional Missing Data Imputation Algorithms 

We compared the proposed missing data imputation algorithm with a number of single 

imputation algorithms as well as several multiple imputation algorithms.  
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We treat the variable with missing value as target, the remaining variables as predictors. 

We explain how we implemented these algorithms in this section.     

3.1.2.1 Single Imputation (SI) Algorithms:  

3.1.2.1.1. Zero Imputation (ZI) replaces the missing values with zero (Figure 3.12).  

 

 

3.1.2.1.2. Mean Substitution (MS) fills in the missing values by their variable means 

(Figure 3.13). 
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3.1.2.1.3. Hot Deck Imputation (HD) works in the following two stages as shown in 

Figure 3.14. 

Step 1: Find the closest donors for the missing value from complete records using the 

Euclidean distance matching function. 

Step 2: Substitute the most similar case‘s value for the missing value.

 

 

3.1.2.1.4. K-Nearest Neighbours Algorithm (KNN) imputes missing values by the 

average value of the K nearest patterns, as presented in equation (3.25) and Figure 3.15.  

)25.3(1

k

x

x

K

k
kj

ij  

Where ijx  represents a missing value in the j-th variable of the i-th instance. K is the 

number of nearest neighbours and kjx is the value of the j-th variable of the k-th nearest 

neighbour. 
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3.1.2.1.5. Weighted K-Nearest Neighbours (WKNN) algorithm replaces missing 

values with a weighted average of the K-nearest neighbours, as presented in Figure 3.16 

and Equation (3.26). Let‘s assume that the value of the j-th variable of the i-th instance 

( ijx ) is missing.  

Using WKNN algorithm, ijx  is replaced by )26.3(

1

1
K

k
k

K

k
kjk

ij

w

xw

x                   

where   
ik

k
d

w
1

   

Here, kw  is the weight associated to the k-th nearest neighbour. kjx is the value of the j-th 

variable of the k-th nearest neighbour. ikd  is the Euclidean distance between the i-th pattern 



                                                

 

80 

(the instance with the missing value) and the k-th nearest neighbour. K is the number of 

nearest neighbours. In other words, the weight kw of the k-the nearest donor is equal to the 

reciprocal of its Euclidean distance to the instance with missing values.  

 

 

3.1.2.1.6. Expectation Maximization (EM) is a procedure for parameter estimation in 

the presence of missing data. It is an iterative two-step (E-step and M-step) process.  

The E (Expectation) step fills in the missing values using estimated values for the 

model parameters (initially random values are assigned to these parameters). 

Then, the M (Maximization) step re-estimates the parameters by using the observed 

and imputed values to maximize the log-likelihood of the model.  
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The algorithm iterates from E to M steps until the log-likelihood converges to a 

stationary point. The implementation of EM assumes all attributes to be independent and 

normally distributed. 

 

3.1.2.1.7. Single Imputation with Neural Network-based Algorithms 

Three neural network models (MLP, RBFN, and GRNN) were designed for the imputation 

of missing data. Neural networks were trained as described in section 3.1.4. We also tested 

four neural network ensemble models: HES SI (Heterogeneous ensemble with simple 

averaging for Single Imputation), HEW SI (Heterogeneous ensemble with weighted 

averaging for Single Imputation), HOS SI (Homogeneous ensemble with simple averaging 

for Single Imputation), and HOW SI (Homogeneous ensemble with weighted averaging for 

Single Imputation). The members in heterogeneous ensembles (HES SI and HEW SI) are a 

MLP, a RBFN and a GRNN, whereas the members in homogeneous ensembles (HOS SI 

and HOW SI) are GRNNs.  The homogeneous and heterogeneous ensembles are discussed 

in section 3.1.5.  

 

Like EM, neural networks (MLP, RBFN, and GRNN) and neural network ensembles 

(HES SI, HEW SI, HOS SI, and HOW SI) impute missing values by two iterative steps: (1) 

imputing missing values based on initial estimates of model parameter values. (2) Updating 

model parameters. 

 

3.1.2.2 Multiple Imputation 

We implemented the following multiple imputation algorithms: MCMC (Markov Chain 

Monte Carlo—a multiple-imputation version of the EM algorithm), MLP MI (Multilayer 
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Perceptron with multiple imputation), RBFN MI (Radial Basis Function Networks with 

Multiple Imputation), GRNN MI (Generalized Regression Networks with Multiple 

Imputation), HES MI (a multiple-imputation version of the HES SI), HEW MI (a multiple-

imputation version of the HEW SI), HOS MI (a multiple-imputation version of the HOS 

SI), HOW MI (a multiple-imputation version of the HOW SI ), HD MI (Hot Deck Multiple 

Imputation), KNN MI (K-Nearest Neighbours Algorithm with Multiple Imputation) and 

WKNN MI (Weighted K-Nearest Neighbours Algorithm with Multiple Imputation). A 

commonly practiced multiple imputation (MI) analysis consists of three steps: Imputation, 

Analysis and Pooling. The figure 3.17 illustrates these steps: 

 

 

 

Imputation: In this step, each missing value is imputed for several (M) times, which yields 

M (M=3 in the Figure 3.17) complete datasets. In MCMC, MLP MI, and RBFN MI, 

multiple imputations are generated by randomly selecting M sets of initial parameter 

estimates. Starting at different initial parameter guesses will generally lead to different local 
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optimal solutions. In GRNN MI, HOS MI, HOW MI, HES MI, HEW MI, KNN MI and 

WKNN MI, M new training sets are randomly extracted from the original training set, each 

comprising 70% training examples. Different training sets will lead to different imputation 

models. M different models will lead to different complete datasets. In HD MI, M donors 

are randomly chosen for each missing value from the pool of potential donors that will lead 

to M different complete datasets. Like EM, each of the following multiple imputation 

algorithms (MCMC, MLP MI, RBFN MI, GRNN MI, HES MI, HEW MI, HOS MI, and 

HOW MI) is an iterative process that alternatively fills in missing values and makes 

inferences about the unknown parameters. However, these algorithms do this in a stochastic 

or random fashion.  

 

The Imputation I-step: Given an estimated mean vector and covariance matrix of 

parameters, the I-step simulates the missing values for each data point independently by 

randomly drawing parameters from their conditional distribution. 

The posterior P-step: Given a complete dataset obtained in the previous step, the 

mean vector and covariance matrix are recomputed. The new mean vector and covariance 

matrix are then used in the next I-step. 

The above two steps are iterated until the mean vector and covariance matrix stabilize. 

 

Analysis: Each of the M completed datasets are analyzed. This step results in the M 

analysis results. For example, with M imputations, M different sets of mean and variance 

for a parameter Q  can be computed. Let us suppose that 
iQ̂  and 

iÛ  are the mean and 

variance estimates from the i‘th imputed dataset, Mi ,,2,1  . 
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Pooling: The M analysis results are integrated into a final result (i.e. the vector of means 

and the variance-covariance matrix of model parameters). Simple rules exist for combining 

the M analysis results. For example, the combined mean estimate for Q  from multiple 

imputation is the average of the M complete data estimates: 

)27.3(ˆ1

1

M

i
iQ

M
Q  

Let‘s suppose that U  is the within-imputation variance, which is the average of the 

M complete data-estimates: 

)28.3(ˆ1

1

M

i
iU

M
U  

And B  is the between-imputation variance 

)29.3(ˆ
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i
i QQ

M
B  

Then the variance estimate associated with Q  is the total variance (Rubin, 1987) [11] 

)30.3(
1

1 B
M

UT  

 

 

3.1.3 Implementation of Conventional Univariate Time Series Forecasting 

Algorithms 

Time series models use past values of the variable to forecast the future values of the 

considered variable. Generally conventional time series forecasting techniques determine 

the number of steps into the past needed to forecast the current value pursuing a trial and 
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error approach. The primary difference between univariate time series models and other 

types of models is that lag variables of the target variable are used as predictor variables. 

Let‘s assume nZZZ ,...,, 21  is a series of observations of a random variable tZ . We write 

tZ for the observation made at time t. We do assume that in a time series, observations are 

equally spaced in time. In order to forecast the future value of a time series, we assume that 

for each time point t, tZ is a random variable (example table 3.1.3.1). Therefore, the feature 

space of a univariate time series includes a large number of time-lagged input variables.  

 

Example Table 3.1.3.1: An example of Lag Variables (autoregressive terms) 

 Target Variable Lagged Input Variables 

Instances Variable Z0 

(observations at 

lag 0) 

Variable Z1 

(observations 

at lag 1) 

Variable Z2 

(observations 

at lag 2) 

Variable Z3 

(observations 

at lag 3) 

1 Zn Zn-1 Zn-2 Zn-3 

2 Zn-1 Zn-2 Zn-3 Zn-4 

3 Zn-2 Zn-3 Zn-4 Zn-5 

4 Zn-3 Zn-4 Zn-5 Zn-6 

 

We built two models using the time series forecasting algorithms: Net-P for 

forecasting of the stationary conditional mean and Net-Q for forecasting of the stationary 

conditional volatility. We translate the estimated stationary values into non-stationary 

states. Firstly, the Net-P is trained on the stationarized observed time series. Then, the Net-

Q is trained on the squared residuals of the Net-P. In the t-step ahead out-of-sample 

forecasting, we convert the stationary conditional variance to a non-stationary conditional 

variance by multiplying the stationary variance by t  . 

 

Time series forecasts are generated in an incremental manner. In this case, the initial 

forecast is carried out only one time step into the future. Then, this one-step ahead forecast 
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value is treated as an actual value (rather than as a forecast value); it becomes the reference 

point for a new one-step-ahead forecast, and so on. 

When modelling time series, the following steps were followed: 

i. Pre-processing of time series: (a) trend and periodicity removal, and (b) Target 

transformation; and  

ii. Model-building  

These two steps are discussed in detail below. The process stages are also presented in 

Figure 3.18. 

 

 

i. Pre-processing of Time Series 

It is very difficult for any technique to forecast non-stationary time series values 

satisfactorily. Hence, the strategy is to somehow transform a non-stationary series into a 
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stationary one. We train the learning algorithms on the stationary data, instead of the 

original data. The predicted values are then transformed back into the original units.  

 

The first, and most important, step in any time series is to plot the observations 

against time. The plot is vital. In general, we should be able to transform a non-stationary 

time series into a stationary one if the series exhibits certain patterns. Detrending and 

deseasonalizing a time series will make it stationary.  

 

a. Detrending a time series 

In trend stationary time series, the mean and variance functions are constant over time. 

Plotting the time series enables the analyst to determine whether the mean and variance are 

changing over time. If the graph moves upward/downward throughout, then the mean is 

changing over time, due to long term trends (Figure 3.19). The occurrence of oscillations 

with increasing amplitudes indicates unstable variance (Figure 3.20). This happens when 

the periodicity interacts with the trend. If the time series is not trend stationary, we can 

often transform it to trend stationarity with one of the following ways depending on the 

type of nonstationarity:  

 

 Nonstationary data with an unstable mean and stable variance over time: Such processes 

(Figure 3.19) can be reduced to trend stationarity by applying non-seasonal differencing of 

order d .   
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 Unstable mean and unstable variance: If the time series has unstable mean and variance 

with time (Figure 3.20), before differencing, the logarithmic transformation was applied.  

 

The procedures of carrying out non-seasonal and seasonal differencing on a time series are 

briefly described below. 
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Non-seasonal Differencing is a popular and effective way of removing trend from a time 

series. The strategy is to apply successive differencing until the differenced series become 

stationary. If the series has positive autocorrelations out to a high number of lags (figure 

3.21), then it probably needs a higher order of differencing.  The correlation of a variable 

with itself over successive time intervals is called autocorrelation (ACF) or serial 

correlation. 

 

 

First order differencing is usually sufficient to obtain trend stationarity. However, higher-

order differencing was applied when necessary. The new series 121 ,,, NXXX   is 

formed from the original series NZZZ ,,, 21   by first-order differencing:    

)31.3(11 tttt XZZZ  

Occasionally second-order differencing is required using the operator 2 , where 
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)32.3(2 12122
2

tttttt XXXXXX  

 

Differencing tends to introduce negative correlation. If the series initially shows strong 

positive autocorrelation, then a non-seasonal difference will reduce the autocorrelation. A 

detrended time series looks flat (Figure 3.22). 

 

 

b. Deseasonalizing a time series  

If there are recurring patterns in the trend stationary time series (Figure 3.22), some form of 

seasonal differencing was considered to make the data stationary. The autocorrelation of a 

periodic function is itself, periodic with the very same period. We plot the detrended data 

(flat time series) and examine the autocorrelation function of the data to see if there exist 

significant autocorrelations at the seasonal lags s  where, 1s  (for 

example, 48,36,24,12 ands ).  
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If there appear fairly significant autocorrelations at the seasonal lags, we need to 

assume that seasonality is playing a significant role in determining the variation in this data 

(Figure 3.23). In general, when we have ―flat‖ time series data we can simply plot the 

sample ACF of the data and see if there are ―spikes‖ in it and possibly around  the seasonal 

lags of ssss 4,3,2,   etc. If there are, then more likely the data has seasonality in it and 

some form of seasonal differencing was considered to make the data stationary. We 

perform the first order seasonal span differencing operation as follows: 

)33.3(sttts XXX
 

 

 

If the lag-1 autocorrelation is zero or even negative, or the autocorrelations are all small and 

pattern less (Figure 3.24) then the series does not need further differencing.  
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The common wisdom is that ―overdifferencing‖ should be avoided since overdifferencing 

can introduce patterns into the original observations which were not actually in the data 

before the differencing.  If the lag-1 autocorrelation is more negative than -0.5 (and 

theoretically negative lag-1 autocorrelation should never be greater than 0.5 in magnitude) 

this may mean the series has been overdifferenced (Figure 3.25). Another symptom of 

possible overdifferencing is an increase in the standard deviation, rather than a reduction, 

when the order of differencing is increased. The optimal order of differencing is often the 

order of differencing at which the standard deviation is lowest. The time series plot of an 

over-differenced series may look quite random at first glance, but if we look closer we will 

see a pattern of excessive changes in sign.  
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ii. Model Building Method 

It is useful to normalize the time series values to the interval [0, 1]. This helps speed up the 

algorithm convergence. There are three main steps in the model-building procedure. 

 

Step 1: Model Identification: For the identification of ARIMA and GARCH models, we 

look at the time plot of the series, compute many different statistics (e.g. ACF and PACF) 

from the data, and also apply knowledge from the subject area in which the data arise (such 

economics, physics, chemistry or biology) and choose a tentative model. For the ARIMA 

and GARCH models, we considered both autoregressive (lagged values of time series) and 

moving average terms (lagged error terms of time-series) as potential input variables, 

whereas for neural networks, only autoregressive terms were considered as potential input 
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variables. Neural Networks (all ensemble and neural network classifiers) learn two models, 

one for the future values of the time series and one for future volatilities. First, a model is 

fitted to the actual time series data to forecast the future value, and the in-sample squared 

residuals of the model are obtained. Next, a second model is fitted to the squared residuals 

to forecast future volatilities on time series data. For neural network based algorithms, we 

applied our proposed feature subset selection algorithm SAGA (presented in chapter 4 of 

this thesis) for selecting an optimal subset of predictors (i.e. input nodes) from all candidate 

predictors (with at least 10 observations). All the other model parameters (e.g. number of 

nodes in the hidden layer) were initially assigned to the lowest possible values. We then 

gradually increase the values of these parameters until the performance starts to deteriorate 

(please see section 3.1.4).   

 

Step 2: Model Fitting: Model fitting consists of finding the best possible estimates of 

parameter coefficients for tentative ARIMA and GARCH models. On the other hand, the 

training process of neural networks involves adjusting the connection weights of the given 

model.  

 

Step 3: Model Diagnostics: Model diagnostics is concerned with analyzing the quality of 

the model that we have specified and estimated. If no inadequacies are found, the modelling 

is assumed to be complete, and the model is used to forecast future time series values. 

Otherwise, we return to model identification in order to choose another model in light of 

inadequacies found. In this way, we cycle through three steps until, ideally, an acceptable 

model is found.  
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In this study we used the following benchmark time series forecasting algorithms: 

 ARIMA-GARCH methodology: discussed in section 3.1.3.1 

 Elman‘s Recurrent Neural Networks: discussed in section 3.1.3.2 

 A hybrid algorithm of ARIMA-GARCH and ERNN: discussed in section 3.1.3.3. 

 Feedforward Neural Networks (MLP, RBFN, and GRNN): discussed in section 3.1.4. 

 Neural Network Ensembles: We evaluated the following four popular neural 

network ensembles: (1) HES (Heterogeneous ensemble with simple averaging), (2) HEW 

(Heterogeneous ensemble with weighted averaging), (3) HOS (Homogeneous ensemble 

with simple averaging), (4) HOW (Homogeneous ensemble with weighted averaging). 

Among these algorithms, the heterogeneous ensembles (HES and HEW) consist of four 

members (a GRNN, an ERNN, a MLP and a RBF), whereas the homogeneous ensembles 

(HOS, and HOW) consist of several GRNNs. The homogeneous and heterogeneous 

ensembles are discussed in section 3.1.5. 

 

3.1.3.1  ARIMA –GARCH Methodology:  

The ARIMA models are used to the purposes of forecast for time series data. GARCH 

models provide a varying estimate for the volatility of the series for every point.  

 

Box-Jenkins ARIMA model: The ARIMA methodology has been collectively developed 

by many researchers. ARIMA models are commonly called Box-Jenkins models after the 

US mathematicians George Box and Gwilym Jenkins who popularized them in the mid 

1970s [142].  

ARIMA is an acronym for autoregressive integrated moving average. Autoregressive and 

moving average refer to two of the components of the model.  
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A non-stationary time series tZ is said to follow an ARIMA (p, d, q) model if the d’th 

difference is a stationary process. In order to use the ARIMA model, we have to identify 

the values of p (the number of the autoregressive terms), d (the number of differences) and 

q (the number of the lagged forecast errors or moving average terms in the prediction 

equation). A simple ARIMA (p, 1, q) model is defined by: 
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Or, in terms of the observed series 
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Which we may rewrite as 
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Therefore, the output is a regression on a number of the most recent output values and 

several immediately previous error terms. 

tZ = observation at time t 

ta = shock, innovation or error at time t. 

ta , 11 ta , 22 ta ,…., qtqa  are the moving average terms. 
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ttpt WWW ,,..., 1  are the first-order difference series. 

111 tZ , 212 tZ , 322 tt ZZ , …, ptpp Z1 , 1ptpZ  are the autoregressive 

terms. 

 = moving average coefficients 

= autoregressive coefficients 

If 0d , the ARIMA model is an ARMA(p,q). Further derivations can also take into 

account periodicity by considering autoregressive or moving average trends that occur at 

certain point in time. In case of periodicity the ARIMA model is expressed as ARIMA 

(p,d,q)(P,Q) where P is the number of seasonal autoregressive lags and Q is the number of 

seasonal moving average lags. 

 

GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) Models: 

Bollerslev (1986) first proposed GARCH models to generate volatility forecasts [143]. 

GARCH is a variance model. GARCH is used to isolate the predictable components of 

uncertainty (or volatility). GARCH models specify current conditional variance as a 

function of past conditional variances and past squared residuals. GARCH models are used 

to study and forecast the conditional variances. 

The usual approach to GARCH (p, q) models is to model an error term t  in terms of a 

standard white noise )1,0(~ Net  as )37.3(ttt eh  
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Here, p represents the number of lagged squared residuals (autoregressive lags) and q 

denotes the number of considered lagged variance values (moving average lags). 

Maximum likelihood method (MLE) is used to estimate the parameters of the model.  

 

3.1.3.2 Elman’s Recurrent Neural Network (ERNN) 

The Elman‘s recurrent neural network (ERNN) is first proposed by Jeff Elman in 1990 

[144]. This is a variation on the multilayer perceptron. The difference is that an ERNN 

contains recurrent connections from the hidden nodes to a layer of context units consisting 

of unit-time delays. These context units store the outputs of the hidden nodes for one time-

step. The training of the recurrent networks requires the update of recurrent weights (i.e. the 

connection weights between hidden nodes and their corresponding context units). Except 

for this portion, training is similar to MLP networks (described in section 3.1.4.2).    

 

Architecture of Elman Networks 
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The ERNN uses only autoregressive terms without moving average terms. It consists of an 

input layer, one or more hidden layers and an output layer. The network is fully connected. 

Each node in a given layer has a weight connecting it to every node in the next layer. The 

first layer is the input layer. The input layer consists of one or more input nodes that 

distribute the input to the hidden layer nodes. The intermediate (hidden) layer(s) consists of 

a number of hidden nodes each of which computes a non-linear transformation. In our 

study, in order to reduce the risk of overfitting, we fixed the number of hidden layers to 1. 

The third (output) layer contains as many nodes as output variables. Each output node 

contains a linear or nonlinear transfer function. In our study, the logistic sigmoid (logsig) 

was used as activation for the hidden nodes of the network, whereas the hyperbolic tangent 

sigmoid function (tanh) was used for the output node of the network. Both input and hidden 

layers have an additional bias node, with 1 as their output value. The bias nodes are also 

connected to all of the nodes in the subsequent layer. During training, the connection 

weights are iteratively adjusted so as to minimize the error function using the back-

propagation learning algorithm. There is one context unit for each hidden unit, so an Elman 

network includes as many context units as hidden nodes. Each context unit stores the 

previous output value of the corresponding hidden node. This recurrent connection gives 

the network an exponential ―memory‖ of past events. This ―memory‖ makes the Elman 

network very effective in learning temporal patterns.  Each hidden unit receives an input 

signal from the input units and the corresponding context unit.  

Training of the Elman network: consists of the following steps: 

Step 1: Initialize connections with random weights 

Step 2: Present the first instance of the training set to the input layer. 

Step 3: Calculate the network output  
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Step 4: Compare the predicted output with the actual output. 

Step 5: Back-propagate the error by adjusting weights of the hidden and output layer. 

Step 6: Copy the hidden nodes to the context nodes. 

Step 7: Repeat steps 2-6, this time by presenting the next instance in the sequence until the 

end of the sequence is reached. 

Step 7: Repeat steps 2-7 until the training error is sufficiently small.  

 

Steps of the Forecasting Process using Elman networks:  

Step 1: Put inputs for time t  to the input units. 

Step 2: Compute hidden unit outputs at time step t  using net input from input units and 

from context units.  

Step 3: Compute the final output of the network for time t  as usual. 

Step 4: Copy the outputs in the hidden units at time step t   into the context units.  

 

3.1.4.3.1 Hybrid Algorithm of ARIMA-GARCH & ERNN (HA) 

This hybrid algorithm assumes that the residuals of the linear model (such as an ARIMA 

model) will contain non-linear patterns, which a non-linear net (model), such as a neural 

network, should be able to model. First we model the linear part of time series by fitting an 

ARIMA model to the time series. Then the residuals of ARIMA model are modelled using 

ERNN. Thereafter, we model the linear part of the future volatility by fitting a GARCH 

model to the squared residual series from the ERNN model. Finally, the residual series 

from the GARCH model were modelled using ERNN in order to model the nonlinear part 

of future volatility.  

Therefore, the combined forecasts are: 
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The predicted future value tZ


 of time-series at time t  : 

)39.3()()( tNtLtZ


 

And 

 The predicted future volatility of time series at time t : 

)40.3()()( tVtVtV NG


 

 

Where, tZ


= the predicted time series value at time t  forecasted by the hybrid algorithm 

HA; )(tL


= the predicted time series value at time t  forecasted by the ARIMA; )(tN


= the 

predicted time series value at time t forecasted by the ERNN; )(tV


=the predicted future 

volatility at time t  forecasted by the HA, )(tVG


=the predicted future volatility at time t  

forecasted by the GARCH; tVN


=the predicted future volatility at time t  forecasted by the 

ERNN. ARIMA and GARCH models include both autoregressive and moving average 

terms, whereas the ERNN contains only autoregressive parameters. Figure 3.27 shows a 

block diagram of the hybrid model.  
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3.1.4 Single Feed-forward Neural Networks 

The variables are normalized to be within the range [0, 1]. In this section, we describe the 

four popular feed-forward neural networks. 

 

3.1.4.1. Generalized Regression Neural Networks (GRNN) 

GRNN is a simple, yet very powerful instance-based learning algorithm. In GRNN (Specht, 

1991) each observation in the training set forms its own cluster [145].  

 

GRNN is an instance-based algorithm. In GRNN each observation in the training set 

forms its own cluster. When a new input pattern  nxxx ,,1   is presented to the GRNN 

for the prediction of the output value, each training pattern (prototype pattern) 
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inii yyy ,,1   assigns a membership value ih  to x  based on the Euclidean distance d , 

where 

)41.3(,
1

2
n

j
ijji yxyxdd  

and 

)42.3(
2

exp
2

1
2

2

2

d
hi  

n  is the total number of features in the study. jx is the value of the j-th feature of the 

presented pattern (features can be multivalued or not). ijy is the value of the j-th feature of 

the i-th prototype pattern and  is the smoothing function parameter. We found that the 

performance of GRNN is not very sensitive to the exact setting of the parameter ( ). We 

arbitrarily set each centre‘s width to 2 times the average distance to 10 nearest neighbours.  

 

Finally, GRNN calculates the output value z of the pattern x as in equation (3.43). The 

predicted output of the GRNN for the pattern x  is the weighted average of the outputs of 

all prototype patterns. GRNN can handle continuous output variables and categorical output 

variables with two categories: event of interest (coded as ‗1‘) or not (coded as ‗0‘):     

)43.3(

i
i

i
ii

h

h

z

y ofoutput  

  

If the output variable is binary, then GRNN calculates the probability of event of interest. If 

the output variable is continuous, then it estimates the value of the variable.   
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3.1.4.2. Multilayer Perceptrons  (MLP) 

The MLP was developed by David Rumelhart, Geoffrey Hinton and Ronald Williams in 

1986 [146]. The MLP is perhaps the most widely used neural network model.  

 

Architecture of MLP networks 

A typical MLP consists of three or more layers: one input layer, one output layer and one or 

several hidden layers (Figure 3.28).  

 

 

 

Input layer: The input layer includes a set of nodes (units); one for each input variable. 

There is an extra node called a bias node. The output from this node is always 1. The input 
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layer nodes are to only pass the inputs and perform no computation. Each input node 

(including the bias node) is connected to each hidden node by a connection weight. 

 

Hidden layer: A hidden layer includes N hidden nodes plus a bias node. The bias node 

supplies a constant input 1 to the output node. No computation is done by the bias node. 

Each hidden node (including the bias node) is connected to the output node by a connection 

weight w. Every hidden node (except the bias node) contains a nonlinear transfer function 

which computes the node‘s output y based on its input x. The sigmoidal functions such as 

logistic sigmoid (logsig) and hyperbolic tangent sigmoid function (tanh) are the most 

common choices.  

logsig function:  

N

j
jjz

xwzwhere
e

y
0

,)44.3(
1

1
 

tanh function: 

N

j
jjz

z

xwzwhere
e

e
y

0
2

2

,)45.3(
1

1
 

nodestwothesebetweenweightconnectionwandnodetheofinputjthx jj ;  

 

Output layer: The number of nodes in the output layer is equal to the number of output 

variables. Each node contains a transfer function to determine the output. For the output 

units, a transfer function suited to the distribution of target values should be chosen: 

 For binary targets, the logistic function is an excellent choice. 

 For continuous-valued targets with a bounded range, the logsig and tanh functions can be 

used. If it is desirable to constrain the outputs of a network to the range from 0 to 1 then the 
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output layer should use logsig function. On the other hand, if the output variable ought to 

be bounded within [-1, +1], the output layer should use the tanh function. 

   For continuous-valued targets with no known bound, the output layer should use the 

linear transfer function. 

 

Training of the MLP 

The backpropagation learning algorithm (gradient descent algorithm) is applied on MLP to 

find the appropriate connection weights (w). Training MLP with backpropagation learning 

algorithm is described below.  

Step 1: Specify model parameters. 

 Number of input nodes (input variables): The number of nodes in the input layer is 

obtained by feature selection algorithms. 

 Number of hidden layers: Empirical studies suggest that generally for most applications 

one hidden layer is sufficient [120]. The new findings also suggest that the risk of 

overfitting increases with the number of hidden layers. After considering the pros and 

cons, we chose one hidden layer for our MLP models [122].  

  Number of hidden nodes: The hidden layer contains several hidden nodes (i.e. 

processing units) and a bias node. Too few or too many hidden nodes can cause the 

MLP to underfit or overfit during training. In most situations, there is no way to 

determine the best number of hidden nodes except through trial, error and observation. 

We determine the number of hidden nodes with the trial and error procedure.  

 Types of Transfer functions: A transfer function ensures that the values in a network 

remain within a reasonable range. The transfer functions in different layers may or may not 

be identical, but the transfer functions for all nodes in the same layer should be identical, so 
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that all input values for a hidden or output node are within the same range. We scaled data 

in the range of 0 to 1. Hence, the forecasted values are assumed to be bounded in the range 

of 0 to 1. To satisfy this requirement, the logistic-sigmoid function was chosen as the 

activation function for the output node. The main purpose of the hidden node transfer 

functions is to introduce nonlinearity into the network. Common hidden node transfer 

functions are logistic function, tangent hyperbolic function (tanh), and Gaussian function. 

We tried each of these three functions individually during our tests and in all cases the 

performance of the network was pretty much the same. In this study, tanh is selected as the 

activation function of hidden nodes. 

Step 2: Initially, we construct one hundred candidate MLP nets with one hidden node. The 

optimization of parameters (i.e. the connection weights) for MLP is in general a very 

difficult problem since the parameter space may have many local minima and other 

stationary points. In order to skip the local minima, one hundred candidate neural networks 

were built. For each net, the connection weights were randomly initialized in the interval of 

[-1, 1]. 

Step 3: We train all these hundred candidate networks simultaneously. 

Training patterns are passed one at a time through a network. When an input signal is fed 

into a network, the back propagation learning algorithm does training in two passes (i.e. 

forward pass and reverse pass).  

Part 1: Forward Pass 

 In the forward pass, each hidden node j receives an input from every input node plus 

bias. The hidden nodes compute outputs as in equation (3.46):  

N

i
ijiy

y

j xwywhere
e

e
h

0
2

2

)46.3(
1

1
 



                                                

 

108 

Similarly, the output node computes the network output as in equation (3.47) 

N

j
jjz

hWzwhere
e

out
0

)47.3(
1

1
 

Where jh is the output of hidden node j. Each node j receives input from every input node i. 

A weight jiw is associated with each input node ix . 0x and jow are called the bias term 

0.10x  and the bias weights respectively.  jW  represents the weight between the hidden 

node j and the output node. 0h  and 0W are the bias term ( 0h =1) and the bias weights 

respectively. 

 Estimate the prediction error using the equation (3.48). 

out_error=out(1-out)(Target-out)   (3.48) 

The ―out(1-out)‖ term is necessary in the equation because of the sigmoid function –if we 

were only using a linear transfer function it would just be (Target-out). 

Part 2: Reverse Pass 

 Adjust the connection weights between the hidden nodes and the output node using the 

equation (3.49). 

Let jWn be the new (trained) weight and jW be the old weight of the connection between the 

hidden node j and the output node. jh  represents the output of the node j. 

)49.3(_ jjj herroroutWWn  

The constant (called the learning rate, and nominally equal to one) is put in to speed up 

or slow down the learning if required. The new weight replaces the old weight and jW  is 

set to jWn . We update all the weights between the hidden layer and the output layer in this 

way. We fixed the learning rate at 0.001 for all experiments.  
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 Calculate the error for each hidden node as in equation (3.50).  

)50.3(_1 jjjj Werrorouthh  

Where, j denotes the error for the hidden node j and jW  represents the connection weight 

between the hidden node j and the output node. jh is the output of the j-th hidden node. 

Again, the factor ― jj hh 1 ‖ is present because of the sigmoid squashing function. 

 Adjusts the connection weight between the input node i and the hidden node j using 

equation (3.51). 

)51.3(ijjiji xwwn  

Where is the learning rate and we set the learning rate 001.0 . jiwn and jiw  are new 

and old connection weights between the input node i and the hidden node j respectively. 

j denotes the error for the hidden node j. ix  represents the input supplied by the input 

node i. We update all the connection weights between the input layer and the hidden layer. 

Replace the old weight by the new found weight. 

)52.3(jiji wnw  

Each pass through all of the training examples is called one epoch or iteration of training. 

The performance of a network is evaluated on the validation set after each iteration. As 

long as the network continues to improve on the validation set, training is continued. The 

network training is stopped when the error on the validation data set did not decrease for 10 

consecutive epochs. Using the validation data set for the optimization of weights minimizes 

the risk of overfitting. 

Step 4: Record the best performance on the test set.  
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Step 5: Expand the nets by adding an extra hidden node. For each net, the initial weights 

were randomly set within the range [-1, 1]. Keep repeating the whole process (from step 2 

to the end) until the best performance is achieved. Stop the process when the error rate on 

the test set starts to deteriorate.  

 

Prediction Process using MLP 

The calculation of the final output values proceeds layer by layer. First, the input signals are 

applied to the first layer, and each neuron of the first layer calculates its output value. Next, 

these values are propagated to the next layer; and so forth, until the final layer is reached 

where the values produced are actually the output values of the net. 

 

3.1.4.3. Radial Basis Function Neural Networks (RBFN) 

RBFN was introduced into the neural network literature by Broomhead and Lowe in 1988 

[147]. After the MLP networks, the RBFN is one of the most used neural network. Figure 

3.29 illustrates a RBFN with inputs nxx ,,1   and output ŷ . The RBFN consists of a three 

layered neural network with one input layer, one hidden layer with Gaussian Radial Basis 

Function units and one output layer. An RBFN is a fully connected network in which each 

node in one layer is connected in the forward direction to every node in the next layer 

 

Input layer: The input layer is the first layer. The first layer is composed of input nodes 

whose number is equal to the dimension of the input vector. Each node represents an input 

variable. The input layer does nothing but pass on inputs to the next layer. There are no 

connection weights between the input layer and the hidden layer. 
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Hidden layer: is the middle layer. This layer consists of N hidden nodes and a bias node 

with constant output equal to 1.0. Each hidden node (except the bias node) represents a 

prototype vector. The optimum number of hidden nodes is based on a trial-and-error 

approach. When a new input vector is presented to the network, each RBFN node in the 

hidden layer assigns a membership value to the new input pattern as in equation (3.42).     

Each node (including the bias node) in the hidden layer is connected to the output node by a 

weight. In the training step, weights are learned from the training data. 

 

 

 

Output layer: The output layer consists of only one node, called the output node. The 

output node has a linear transfer function. The value of the output node is calculated by the 

following equation: 

)53.3(
0

N

j
jjhwoutput  
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Where jw is the connection weight between the j-th hidden node and the output node. jh is 

the output of the j-th hidden node. 0h and 0w are called the bias term 10h  and the bias 

weights respectively. 

 

Training of the RBFN 

Specify parameters for a RBFN: The  optimum number of hidden nodes: are determined 

using a trial-and-error approach. Each hidden node corresponds to a prototype pattern. 

These prototype patterns are selected using K-means clustering (described in section 

3.1.4.3.1). The widths of the radial basis functions are optimized using the real-valued 

Particle Swarm Optimization (PSO) algorithm (described in section 3.1.4.3.2), since the 

PSO was originally developed for real-valued spaces.  

 

We adjust connection weights of the RBFN following the procedure below:  

Step 1: Initially, we construct one hundred candidate RBFN nets by initializing the network 

weights with small random values. The initial weights range from -1 to +1.  

Step 2: Present input patterns from the training set one at a time to the network and update 

the connection weights. Upon presenting an input pattern to the network, the hidden nodes 

compute their outputs as in equation (3.42). The output from each hidden node is passed to 

the output node. 

Step 3: The output node determines the output of the whole networks using the equation 

(3.53). 

Step 3: Estimate the prediction error using the equation (3.54). 

(3.54)       Output     Predicted -Output   Actualerror  
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Step 4: Adjust the connection nodes between the hidden node j and the output node as in 

equation (3.55). 

)55.3(jh error   Weight Old  Weight Adjusted  

Where jh denotes the output of the hidden node j. denotes the learning rate and is 

constant. We set the learning rate 001.0 . 

The weights are updated on a pattern-by-pattern basis until the entire training data set 

is completed which is called one ―iteration‖ (or epoch). After each epoch, the networks are 

tested using the validation dataset. If the validation error remains the same for more than 10 

successive epochs, it is assumed that the network has converged and the training is 

terminated. When validation error increases—indicating that the network is over fitting the 

training data – the training is stopped. Terminate the algorithm if the stopping criteria are 

satisfied; otherwise continue the iteration. After the training, all 100 trained networks are 

evaluated on test data and the best network is selected.  
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3.1.4.3.1 K-Means Clustering Algorithm 

 

 

Step 1: Begin with a decision on the value of K= number of clusters. 

Step 2: Take the first K training input patterns as cluster centres (centroids).  Assign each 

of the remaining (N-K) training input patterns to cluster with the nearest centroid. After 

each assignment, re-compute the centroid of the gaining cluster. The centroid is the input 

pattern with the minimum average Euclidean distance to all members in the cluster. 

 Step 3: Take each sample in sequence and compute its (Euclidean) distance from the 

centroid of each of the clusters. If a sample is not currently in the cluster with the closest 

centroid, switch this input pattern to that cluster and update the centroid of the cluster 

gaining the new input pattern and the cluster losing the input vector. 

Step 4: Repeat step 3 until convergence is achieved, that is until a pass through all training 

patterns causes no new assignments. 
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3.1.4.3.2 Real-Valued Particle Swarm Optimization  

A real-valued Particle Swarm Optimization (PSO) was applied to optimize the width ( ) 

of radial basis function around centre when using RBFN. Here we will give a short 

description of the real-valued PSO proposed by Kennedy and Eberhart [136]. 

Let us have a dataset of 4-dimensional input vectors (example table 3.1.4.3.2.1).  

 

Example Table: 3.1.4.3.2.1: A hypothetical dataset 

 Input Variables Output variable 

Instance X1 X2 X3 X4 Y 

1 5 4 2 0.1 20 

2 10 13 4 0.7 15 

3 8 17 7 1 16 
 

  

First of all, we normalize each variable to [0, 1] (example table 3.1.4.3.2.2). 

Example Table 3.1.4.3.2.2: Normalized dataset 

 Input Variables Output variable 

Instance X1 X2 X3 X4 Y 

1 0.5 0.2 0.3 0.1 1.0 

2 1.0 0.8 0.6 0.7 0.8 

3 0.8 1.0 1.0 1.0 0.8 

 

 

Pseudo code of real-valued PSO 

Step 1: Specify parameters. 

 Range of width factor ( ): Find the maximum possible distance ( maxd ) between two 

input patterns. The range of width ( ) of radial basis function: 0- maxd  

Example 
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2401010101
2222

maxd  

Therefore, range of width ( ) of radial basis function: 0-2 

 Population size: We fix the number of particles in a swarm to be 10. 

 Position of each particle: Let the RBFN consists of N hidden nodes (radial basis 

functions). Therefore, our search space is N-dimensional, and the i’th particle of the swarm 

at time t can be represented by a N-dimensional position vector 

tXtXtXtX iNiii ,,, 21   where each bit represents the width of a radial 

basis function and each bit is a real value in the interval [0, maxd ]. We then randomly 

initialize the position of each particle. 

Example: Let, number of particle=4, number of hidden nodes =3, and maxd =2. 

Particle 1: [0.3, 0.2, 1.2], Particle 2: [0.5, 0.7, 0.5], Particle 3: [1.4, 0.1, 1.8], and 

Particle 4: [2.0, 1.1, 0.4] 

 

 Maximum and Minimum Velocities:  

We set maximum velocity ( m axV ) of any particle to be 3maxd  and minimum velocity 

( m inV ) to be 0.05. 

 Velocity of each particle: The velocity of the i‘th particle at time t is denoted by 

tVtVtVtV idiii ,,, 21    where each bit ranges from 0.05 to 3maxd . Particle 

velocities are initially randomly determined. 

Example: maximum velocity=2/3=0.7 
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Velocity of Particle 1 at time t: 1.0,4.0,2.01 tV , Velocity of Particle 2 at time t: 

]5.0,2.0,7.0[2V , Velocity of Particle 3 at time t: ]4.0,6.0,3.0[3V , Velocity of Particle 4 

at time t: 5.0,5.0,5.04V . 

Step 2: Evaluate the fitness (prediction performance) F of each particle by training a RBFN 

using the particle‘s current position )(tX i . 

Step 3: Compare the performance of each individual to its best performance so far:  

If bestii PFXF ,  

ibesti XFPF , ,     and    ibesti XP ,         

Step 4: Compare the performance of each particle to the global best particle: if 

gbesti PFXF . 

igbest XFPF ,   and   igbest XP  

Step 5: Change the velocity of each bit of the particle according to equation (3.56). 

)56.3(.1 22.11 ijgbestijbestijijij XPrcXPrctVwtV   

where 
max

1
T

T
w

spent
 

If ,)1( maxVtVij  then  max1 VtVi  

If ,1 minVtVij  then  min1 VtVi  

Where, 1tVij  and tVij  denote velocities of  j’th bit for the i‘th particle at time (t+1) 

and t, respectively. w  is the inertia weight which shows the effect of previous velocity 

vector on the new vector. m axT denotes the total number of iterations and spentT  denotes the 
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number of iterations performed so far. 1r  and 2r are two random numbers between (0, 1). 1c  

and 2c are two positive constants: 221 cc . 

 

Example:  Let, Particle 1: tX1 =[0.3, 0.2, 1.2]; 3.011 tX ; 2.012 tX ; ;2.113 tX  

;55.01 tXF 6.0,3.0,5.0,1 bestP ; ;5.0,11 bestP  3.0,12 bestP ; ;6.0,13 bestP  

63.0,1 bestPF ; 5.1,1.0,9.0gbestP ; 9.0,1 gbestP ; 1.0,2 gbestP ;  5.1,3 gbestP ; 

74.0gbestPF ; 1.0,3.0,4.01 tV ; ;4.011 tV  3.012 tV ;  1.013 tV ; m axT =100, 

spentT =40; 7.0maxV ; 1.0minV ; 221 cc  ;  6.0
100

40
11

maxT

T
w

spent
 

48.108.116.024.03.09.0*9.0*23.05.0*4.0*24.0*6.0

)()(*1 11,12211,11111111 XPrctXPrctVwtV gbestbest
 

Therefore, 7.0111 tV  [ ]1sin max11 VtVce  

1.012.004.018.02.01.0*6.0*22.03.0*2.0*23.0*6.0

)()(*1 12,22212,12111212 tXPrctXPrctVwtV gbestbest
 

054.06.006.02.15.1*9.0*22.16.0*5.0*21.0*6.0

)()(*1 13,32213,13111313 tXPrctXPrctVwtV gbestbest
 

Therefore, 1.0113 tV   [since min13 1 VtV ] 

Therefore, the velocity of particle 2 at time (t+1): 

1.0,1.0,7.01,1,11 1312111 tVtVtVtV  

Step 6: Move each particle to the new position using equation (3.57) 

)57.3(11 tVtXtX ijijij   

If max1 dtX ij ;    then maxdX ij   [Here, maxd  denotes the maximum possible width.] 
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If ,01tX ij   then 01tX ij  [since width cannot be less than 0] 

Example:  Let, Particle 1: tX1  = [ )(11 tX 0.3, )(12 tX 0.2, )(13 tX 1.2]. 

1.01,1.01,7.011 1312111 tVtVtVtV  

4.01.03.011 11111 tVtXtX  

3.01.02.011 121212 tVtXtX  

3.11.02.111 131313 tVtXtX  

Therefore, the final position of the particle 1 at time (t+1):  

3.1,3.0,4.01,1,11 1312111 tXtXtXtX  

Step 7: Go to step 2, and repeat until stopping criterion is met. 

 

3.1.5 Ensemble Neural Networks  

ANN ensemble consists of several individually trained ANN classifiers (base classifiers) 

that are jointly used to solve a problem. In our experiments, two types of ensembles—

homogeneous and heterogeneous ensembles are constructed. A heterogeneous ensemble is 

a collection of different neural networks (ERNN, GRNN, MLP and RBFN) that together 

―vote‖ on a given example. All the individual networks in the heterogeneous ensemble are 

trained on the same training data, with the same predictors. In contrast, a homogeneous 

ensemble is a collection of the same kind of neural networks trained using different feature 

subsets as opposed to only one feature subset used in a heterogeneous ensemble model. For 

generating homogeneous ensemble models, we used multiple GRNNs each trained using 

different feature subsets. Each ensemble member tries to predict the response variable. 

Homogeneous and heterogeneous ensembles of neural networks are presented in Figures 

3.31-3.33. The base classifiers of heterogeneous ensemble models constructed for the 
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substitution of missing values include: GRNN, MLP, and RBFN (Figure 3.32). On the 

other hand, the base classifiers of heterogeneous ensemble models constructed for time 

series forecasting include: ERNN, GRNN, MLP, and RBFN (Figure 3.33). 
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The outputs of ensemble members are fused together to get the final decision. 

Majority and weighted majority voting are common methods for combining the outputs of 

ensemble members. In our study, we evaluated four types (two homogeneous and two 

heterogeneous) of neural network ensembles: (1) Heterogeneous ensemble with majority 

voting, (2) Heterogeneous ensemble with weighted majority voting, (3) Homogeneous 

ensemble with majority voting, and (4) Homogeneous ensemble with weighted majority 

voting.  

 

In majority voting, the final prediction of the ensemble on each test data point is an 

average of the predictions of all ensemble members, as shown in equation (3.58). 

n

y

Y

n

j
ij

i
1



          (3.58) 

Where, iY = Actual output of the i th pattern, ijy


 = output of the i th pattern predicted by the 

j th member, and n total number of base classifiers. 
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In weighted majority voting, each ensemble member votes with its confidence. The final 

output of the ensemble was calculated using the following equation: 

)59.3(

1

1

n

j
j

n

j
ijj

i

w

yw

Y



 

Where, jw =the weight with which the j ‘th ensemble member participates in the final 

output, and ijy


 = output of the i th pattern predicted by the j ‘th member. 

The vote weights of the base classifiers were optimized by a real-valued PSO. The vote 

weights are assigned to base classifiers based on the global best-fitted combination. The 

optimization process is described in detail here. 

We normalize each variable to the range [0, 1]. 

 

Pseudo code of real-valued PSO for optimizing vote weights of ensemble members 

Step 1: Specify parameters 

 Range of weights: Constrain the reliability weights of ensemble members to be within 0 

and 1. 

 Population Size: The swarms were set to 10 particles. 

 Position of each particle: Let the ensemble consist of 4 base classifiers. Therefore, the 

search space is 4-dimensional, and the i ‘th particle of the swarm at time t  can be 

represented by a 4-dimensional position vector. ],,),([)( 4321 iiiii XXXtXtX  , 

where each bit represents the reliability weight of an ensemble member and each bit is a 

real value in the interval [0, 1]. We randomly initialize the position of each particle. 
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 Maximum and Minimum Velocities: We set maximum velocity ( maxV ) of any particle 

to be 31  or 0.33 and minimum velocity ( minV ) to be 0.05.  

 Velocity of each particle: The velocity of the i ‘th particle at time t  is denoted by 

)](),(),(),([)( 4321 tVtVtVtVtV iiiii  where each bit represents the velocity of the 

reliability weight of an ensemble member and each bit is a real value in the interval 

[0.05 to 0.33 ]. Particle velocities are initially randomly determined.  

Step 2: Evaluate the fitness (prediction accuracy) of each particle by training an ensemble 

using the particle‘s current position )(tX i . The prediction accuracy was estimated by 10-

fold cross validation. 

Let )( iXF  be the fitness score of the i‘th particle. 

)( iXF = Prediction accuracy of the i‘th particle as a fraction      (3.60) 

 Where,  1)(0 iXF  

Step 3: The swarm was initialized randomly with each particle‘s personal best position 

( bestiP , ) being the same as its current position. Compare the fitness of each particle 

)( iXF  to its best fitness so far )( ,bestiPF ; and  update each particle‘s best position. If 

),()( ,bestii PFXF  then )()( , ibesti XFPF , and ibesti XP ,  

Step 4: Update the global best particle ( gbestP ) and its fitness ( )( gbestPF ): 

If )()( gbesti PFXF , then )()( igbest XFPF  and igbest XP . 

Step 5: Change the velocity of each bit of the particle according to the equation (3.61): 

)61.3(.1 22.11 ijgbestijbestijijij XPrcXPrctVwtV   
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where 
max

1
T

T
w

spent
 

If ,)1( maxVtVij  then  max1 VtVi  

If ,1 minVtVij  then  min1 VtVi  

Where, 1tVij  and tVij  denote velocities of  j’th bit for the i‘th particle at time (t+1) 

and t, respectively. w  is the inertia weight which shows the effect of previous velocity 

vector on the new vector. m axT denotes the total number of iterations and spentT  denotes the 

number of iterations performed so far. 1r  and 2r are two random numbers between (0, 1). 1c  

and 2c are two positive constants: 221 cc . 

Step 6: Move each particle to the new position using equation (3.62) 

)62.3(11 tVtXtX ijijij   

If 11tX ij ;    then 1ijX   [since the maximum weight cannot be greater than 1] 

If ,01tX ij   then 01tX ij  [since the minimum cannot be less than 0]. 

Step 7: Go to step 2, and repeat until stopping criterion is met.  

 

3.2 Description of Datasets used for Model Evaluation 

In this section, we describe the datasets that we used for the experiments in our three 

studies—(i) feature subset selection in large dimensionality domains, (ii) reconstruction of 

incomplete datasets in cross-sectional studies, and (iii) univariate time series forecasting. In 

each of these studies, three types of datasets were used: (i) synthetic datasets, (ii) easily 

available real world public use datasets from repositories, and (iii) new real-life datasets. 

Synthetic datasets were used to find the best default parameter setting, except in the first 
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study ―Feature subset selection in large dimensionality domains‖ in chapter 4 where 

synthetic datasets were used to compare feature subset selection algorithms. An overview 

of this section is shown in figure 3.34. 

 

 

 

3.2.1 Datasets used in the Study of Feature Subset Selection 

We use 11 synthetic datasets, 18 real-world benchmark datasets and one new real world 

dataset to perform experiments. All of these datasets are high dimensional.  

 

3.2.1.1. Synthetic Datasets: Feature interactions and feature redundancy are two 

major problems often encountered when reducing the dimensionality of feature space. The 
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principal motivation behind generating synthetic datasets was to recreate these problems on 

a large scale and perform experiments on controlled datasets. 

 

  Each dataset includes 10,000 instances each of 10,000 features. Approximately one 

third of these features were completely irrelevant. Among these 10,000 features only ten 

informative features were included in the model. One third of them were actually the exact 

copy of the set of these ten relevant features. The remaining features are correlated to 

varying degrees with the relevant features. All features are continuous-valued. They are 

highly correlated and they interact with one another. The response variable is a binary 

variable. The following steps were taken to generate these datasets. 

Step 1: Specify different mean vectors and different covariance matrices for all the features 

for the eleven different datasets. Since mean vectors and covariance matrices of no two 

datasets are the same, the joint distribution of features is different in each dataset. 

Step 2: Generate ten thousand combinations of feature values for each dataset from its 

unique mean vector and covariance matrix. 

Step 3: The probability of the event of interest for each instance was estimated by the 

following model (we specified different sets of model parameters for different datasets). 

Only ten features among ten thousand features were included in the model. To simulate 

interactions between features, we included three interaction terms. Interaction terms are 

formed by the multiplication of two or more explanatory variables. We included one two-

way interaction term ( 5789665 XX ), one three-way interaction term ( 865211034209 XXX ) 

and one multi-way interaction term ( 7200699961664206 XXXX ). 

)63.3(exp11 ZYP  
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86521103420999958865277200699961664206

57896655789444473110326610

XXXXXXXXX

XXXXXXZ
 

  Where, YP  = Probability of the event of interest; 1000021 ,,, XXX   represent different 

features; 9876543210 ,,,,,,,,,  are the model parameters. 

 

We used equation (3.63) to generate all instances of the synthetic datasets. All the 

features in the model were arranged in the random order in all datasets. The differences 

between the datasets are mainly due to different combinations of feature values and 

different values of model parameters. 

Step 4: Generate a uniformly distributed random number in the range (0, 1) for each 

observation. If the random number is greater than the probability of the event of interest, 

the value of the response variable is 1, otherwise 0.  

 

3.2.1.2. Benchmark datasets (modified): In addition to 11 synthetic datasets, we 

tested feature subset selection algorithms on 18 benchmark datasets. Benchmark datasets 

were taken from UCI machine learning repository. The benchmark datasets are real-world 

datasets. The benchmark datasets on which the algorithms were tested are: (1) Adult 

dataset, (2) Annealing dataset, (3) Breast Cancer Wisconsin (Diagnostic) dataset, (4) Breast 

Cancer Wisconsin (Prognostic) dataset, (5) Chess—King-Rook vs. King-Pawn, (6) 

Congressional Voting Records dataset, (7) Dermatology-Psoriasis, (8) Dermatology-

Seboreic Dermatitis, (9) Dermatology—Lichen Planus,  (10) Dermatology—Pityriasis 

Rosea, (11) Dermatology—Cronic Dermatitis, (12) Dermatitis—Pityriasis Rubra, (13) 

Hepatitis, (14) Mushroom, (15) Spambase, (16) Wine, (17) Yeast, and (18) Zoo.   The 

descriptions of the original benchmark datasets are available in [148]. These datasets 
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contain varying number of features and instances, but have fewer than 10,000 features. 

Hence, we add a series of randomly generated features to each dataset to make a total of 

10,000 features. We added completely irrelevant features because we did not want to 

destroy the original properties of the benchmark datasets. We did not change the number of 

observations of the benchmark datasets. 

 

3.2.1.1. New real world dataset (Smoking dataset): We received a three stage cross 

sectional survey data on the smoking habits of teenagers from the centre for tobacco control 

research at the University of Stirling and Open University. The data were collected from 

Scotland, England, Northern Ireland and Wales in three survey stages: stage1 in 1999, stage 

2 in 2002 and stage 3 in 2004. The response variable is a binary variable (1=smoker, 

0=non-smoker). Explanatory variables include socio-demographic characteristics of 

respondents, their knowledge and attitudes towards tobacco promotion of all sorts and their 

smoking knowledge, attitudes and behaviour. This smoking dataset contains 285 features, 

3,321 instances but has a large number of missing values. This dataset contains about 37% 

missing values. Among the respondents, an overall proportion of 11 percent (355 

respondents) are smokers. We applied our proposed missing data imputation algorithm 

(GEMI) to replace missing values (details are available in chapter 5). We did not add 

artificial features to this dataset. 

 

3.2.2 Datasets used in the Study of Missing Data Imputation 

The two hundred synthetic datasets were used to determine the best default parameter 

setting for our novel algorithms. However, these synthetic datasets were not used for 

comparing imputation algorithms. We tested missing data imputation algorithms on 50 
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public real datasets and one new real world dataset (‗smoking dataset‘). The smoking 

dataset is described above (in section 3.2.1.3). The rest of the datasets are described in 

sections 3.2.2.1 and 3.2.2.2. For controlled experiments, a proportion of known values were 

artificially removed from these dataset. However, we did not artificially remove values 

from ‗Smoking‘ dataset which originally contains a very high percentage (about 37%) of 

missing values. In section 3.2.2.3, we describe how we simulated missing data according to 

three mechanisms: MCAR, MAR and MNAR.  

 

3.2.2.1 Public real-world datasets 

The public real-world datasets are obtained from UCI Machine Learning Repository [148]. 

The UCI datasets on which we tested the algorithms are: (1) Abalone, (2) Adult, (3) 

Annealing, (4) Arcene, (5) Arrhythmia, (6) Automobile, (7) Balance Scale, (8) Blood 

Transfusion Service Center, (9) Breast Cancer Wisconsin (Diagnostic), (10) Breast Cancer 

Wisconsin (Prognostic), (11) Car Evaluation, (12) Census-Income (KDD), (13) Chess 

(King-Rook vs. King), (14) Chess (King-Rook vs. King-Pawn), (15) Congressional Voting 

Records, (16) Contraceptive Method Choice, (17) Credit Approval, (18) Cylinder Bands, 

(19) Dermatology, (20) Dorothea, (21) Echocardiogram, (22) Ecoli, (23) Glass 

Identification, (24) Haberman‘s Survival, (25) Hayes-Roth, (26) Heart Disease, (25) 

Hepatitise, (27) Horse Colic, (28) Housing, (29) Internet Advertisements, (30) Japanese 

Credit Screening, (31) Ionosphere, (32) Iris, (33) Letter Recognition, (34)Low Resolution 

Spectrometer, (35) Lung Cancer, (36) Magic  Gamma Telescope, (37) MONK‘s   

Problems, (38) Mushroom, (39)Nursery, (40) Parkinsons, (41) Pima Indians Diabetes, (42) 

Pittsburgh Bridges, (43) Poker Hand, (44) Post-Operative Patient, (45)Soybean (large), (46) 

Spambase, (47) SPECHT Heart, (48) Thyroid disease, (49) Wine, and (50) Yeast. 
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3.2.2.2 Synthetic Datasets 

We generated 200 synthetic datasets to search for the best default parameter configuration 

in the proposed missing value imputation algorithm. Each dataset includes 10,000 instances 

each of 100 features. All features are continuous-valued. The response variable is a binary 

variable. The following steps were taken to generate these datasets. 

Step 1: Specify different mean vectors and different covariance matrices for 90 features 

9021 ,,, xxx  for the 200 different datasets. Since mean vectors and covariance matrices of 

no two datasets are the same, the joint distribution of features is different in each dataset. 

Step 2: Generate ten thousand combinations of feature values for each dataset from its 

unique mean vector and covariance matrix. 

Step 3: Create 10 new features 10091 ,, xx  from the first 90 features, using the following 

equation:  

)64.3(74663

50272221510

ijjjiji

jijijijiij

Rxx

xxxxx
 

Where, 100,99,,92,91 j ; and 10000,,1i ; and 0  

ijx represents the value of j th feature for the i th instance. 321 ,,  are model 

parameters.  

 

To simulate interactions between features, we included two interaction terms. 

Interaction terms are formed by the multiplication of two or more explanatory variables. 

We included one two-way interaction term ( 7466 xixi xx ), and one three-way interaction 
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term ( 502722 jijiji xxx ). ijR  is a normally distributed random number with mean 0 and 

standard deviation 1, j denotes the standard error of the feature jx . 

Step 4: The probability of the event of interest for each instance was estimated by the 

following model. Only 6 features among 100 features were included in the model. 

)65.3(exp11 ZYP

1009959749539429110 xxxxxxZ
 

  Where, YP  = Probability of the event of interest; 10021 ,,, xxx   represent different 

features; 543210 ,,,,,  are the model parameters. 

 

All the features in the model were arranged in the random order in all datasets. The 

differences between the datasets are mainly due to different combinations of feature values 

and different values of model parameters. We specified different sets of model parameters 

for different datasets 

Step 4: Generate a uniformly distributed random number in the range (0, 1) for each 

observation. If the random number is greater than the probability of the event of interest, 

the value of the response variable is 1, otherwise 0.  

  

We then artificially deleted values from these datasets in order to create missing 

values in complete cases.  

 

3.2.2.3 Simulation of Missing Data 

We deleted values from the complete training data to simulate ignorable and non-ignorable 

missing observations in a dataset. 
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MCAR missing values: were generated in following steps. 

Step 1: Generate uniformly distributed random number in the interval (0, 1) for each 

observation. 

Step 2: Specify a range of values within the interval (0, 1) depending on the percentage of 

data to be removed. 

Step 3: Remove the observation if the corresponding random number lies within the range. 

 

Non-random (MAR & MNAR) missing values: For non-random missing data, we have 

to remove data in such a way so that removed values of variable kx depends on the 

variables mx and nx . 

Step 1: To simulate non-random missing data, we used a model for the non-responsiveness. 

The model estimates the probability of removal values of a variable kx .  We generate MAR 

missing data using equation (3.66) and MNAR missing data using equation (3.67).  

66.3
)...exp(1

1

0 nnmim
ki

xx
xp &  

)67.3(
exp1

1

10 ki
ki

x
xp  

Where, kixp = Probability of removal of kix in the thi  observation, mix = Value of 

variable mx  in the i-th observation, nix = Value of variable nx in the i-th observation 

...,,0 nm  are model parameters. 

Step 2: Generate a uniformly distributed random number ( iR ) in the interval (0, 1) for each 

observation of the variable kx . 
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3.2.3 Datasets used in the Study of Univariate Time-Series Forecasting: We find the 

best default parameter values for our proposed time series forecasting algorithm through 

experiments with 200 synthetic datasets. We compared the time series forecasting 

algorithms on one new real world dataset (‗Pulse Pressure dataset‘) and 35 publicly 

available real life datasets. These datasets are described below. 

 

3.2.3.1 New real-world dataset (‘Pulse Pressure’): The kidneys play a vital role in 

controlling blood pressure. Dialysis patients are often hypertensive and their blood pressure 

rises progressively over time. Hypertension (high blood pressure) is thought to be one of 

the major causes of death in people with chronic kidney disease. There are three measures 

of blood pressure (BP): systolic BP, diastolic BP, and pulse pressure. Pulse pressure (the 

difference between the systolic and diastolic readings) is a more accurate predictor of 

cardiovascular events than systolic and diastolic blood pressure alone. We collected daily 

pulse pressure readings of one particularly long surviving dialysis patient during an 18 year 

period (from 1989 to 2006) from the electronic patient records at Glasgow Royal Infirmary 

with the patient‘s permission. The time plot of pulse pressure measurements is shown in 

figure 3.35.  Autocorrelations for the time series are shown in figures 3.36. 
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A correlogram like that in Figure 3.36, where autocorrelation values do not come down to 

zero reasonably quickly, indicates non-stationarity and so the series needs to be differenced. 

The pattern on the correlogram (Figure 3.36) indicates that there is a long term trend in the 

data. In this case, the non-seasonal differencing should be applied to induce stationarity.  
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We split the pulse pressure series into two equal halves of 18 years. The means and 

standard deviations of these two halves are presented in table 3.1.  

 

Table 3.1: Summary statistics of the pulse pressure series 

Groups Mean Standard deviation 

First half 57 16 

Second half 75 11 

 

The F-test shows that there is no statistically significant difference in the variances of first 

and second halves. However, the independent two sample t test reveals that the difference 

between the means is significant. Therefore, the mean of the series is changing with time, 

but its variance is stable. These test results confirm the conclusions drawn from the 

correlograms (Figure 3.36). Thus, it appears that we should start by taking a single 

nonseasonal difference.  

Figure 3.37 shows a time series plot of first-order difference series.  
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Figure 3.38 shows the ACF of First-order difference pulse pressure series.  

 

 

 

Further differencing is not required, since the lag-1 autocorrelation is negative (-0.5).  

However, this series may be over-differenced. To verify, the p-value measuring 

significance of difference in variances is calculated using a two-tailed F-statistics, since 

another symptom of possible over-differencing is an increase in the standard deviation, 

rather than a reduction, when the order of differencing is increased. In other words, the 

optimal order of differencing is often the order of differencing at which the standard 

deviation is lowest. F-test confirms that the difference in variance before and after the first-

order differencing is not significant. Furthermore, T- and F-tests reveal that means and 

standard deviations of two halves of the first-order difference pulse pressure series are not 

significantly different at the 0.05 level of probability. Both the two checks failed to find 

that it is over-differenced.  
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Summary statistics of the first and second halves of the first-order difference pulse pressure 

series are presented in table 3.2. 

Table 3.2: Summary statistics of the first-order difference pulse pressure series 

Groups Mean Standard deviation 

First half 0.0135 17 

Second half -0.0024 12 

 

 

3.2.3.2 Public real datasets 

In our study, we used following datasets: (1) Airline Data, (2) Bankruptcy Data, (3) Car 

Data, (4) Electricity Data (5) Gas Data, (6) Hog Data, (7) Hongkong Data, (8) Income Data, 

(9) Nile Data, (10) Population 1 Data, (11) Population 2 Data, (12) Public Expenditures 

Data, (13) Share Data, (14) Star Data, (15) Sunspot Data, (16) Temperatures Data, (17) 

Unemployed Feamales Data, (18) Unemployed 1 Data, (19) Unemployed 2 Data, (20) US 

Interest Rates Data, (21) Zurich Data, (22) Consumer Markets, (23) Demographics, (24) 

Flow of Funds, (25) GDP, (26) Government, (27) Income & Earnings, (28) Industry, (29) 

International Trade, (30) Labor Markets, (31) Money, Credit & Interest Rates, (32) Prices, 

(33) Real Estate, (34) Society, (35) Stock Markets & Foreign Currency. The first 21 

datasets are freely accessible through [149] and all remaining public datasets are hosted on 

[150].  
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3.2.3.3 Synthetic datasets 

We generated 200 different datasets for experiments. Synthetic datasets were generated 

using the following steps. We create synthetic time series each of length 1000. Synthetic 

datasets were generated using the following steps.  

Step 1: Estimate the components of time series: The following components of time series 

are estimated using mathematical models 

(i) Base Value: arbitrarily specify the base value ( ) of the time series data.  

(ii) Random noise: Estimate the random noise (using Gaussian distribution) for each time 

point: Rt  where R=Normal Random Number in (0, 1). We assign the parameter 

value . 

(iii) Non-random irregular fluctuation: We define five different sinusoidal models to 

generate non-random noise ( tI ). First we split the time series of size N into fifty equal 

segments of the length T . Then we randomly select a sinusoidal model for each 

segment to determine non-random sequences. 

(iv) Regular cyclical change (Seasonality/Periodicity): This refers to something that 

happens periodically, i.e. on regular basis. We estimate the periodicity ( ts ) at time lag t  

using a sinusoidal model: 

)68.3(
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(v) Where, we set the parameter values ( naaa ,,, 21   ), ( nTTT ,,, 21  ) and n,, 21  . 

(vi) Long term trend: We used linear ( tmt 10 ), exponential ( tmt exp10 ), 

logarithmic ( tmt log10 ), or polynomial functions 
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( 01
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1 ttttm n
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nt  ) to estimate the trend tm at time point t . 

( ),,, 10 n  are model parameters. 

Step 2: Combine the components of time series into one based on the additive 

( ttttt ISmY ), multiplicative ( ttttt ISmY ), or additive-multiplicative 

model ( ttttt ISmY ).  Figures 3.39-3.43 exhibit how synthetic time series looks at 

different stages of development. 

 

 

 

 

 

 



                                                

 

140 
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3.3. Statistical Tests 

We applied the following statistical tests to see if any differences among algorithms were of 

statistical significance. For more details, readers should consult Siegel S, Castellan NJ 

(1988) [140]. 

 

3.3.1 The Friedman Two-Way Analysis of Variance by Ranks 

Null Hypothesis: The performance of k  different algorithms have the same rank totals. 

Alternative Hypothesis: The performances of k  different algorithms have significantly 

different rank totals. 

  

The Friedman test determines whether the rank totals for each algorithm differ 

significantly from the values which would be expected by chance. To do this test, we 

compute the value of the statistic which we shall denote as rF . 

69.313
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Where, N = Number of Datasets 

k = number of search algorithms 

jR = sum of ranks of the j ‘th algorithm. 

k

j

jR
1

2
= sum of the squares of the sums of ranks over all algorithms  

Appendix table M in [401] gives the probabilities associated with values of  rF as large or 

larger than the tabled values for various values of N  and k . If the observed value of rF is 
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larger than the tabled value of  rF at the chosen significance level, then null hypothesis may 

be rejected in favour of alternative hypothesis.  

 

When the obtained value of rF is significant, it indicates that at least one of the 

algorithms differ from at least one other algorithm. It does not tell the researcher which one 

is different, nor does it tell the researcher how many of the algorithms are different from 

each other.  For these answers, we performed the statistical test ―Comparisons of Groups or 

Conditions with a Control‖ for each pair of algorithms. We discuss this test in the following 

section (section 3.3.2).
 

 

3.3.2  Comparisons of Groups or Conditions with a Control 

Null Hypothesis: The performances of two algorithms (algorithm 1 and algorithm 2) are 

the same. 

Alternative Hypothesis: The performances of two algorithms (algorithm 1 and algorithm 2) 

are not the same.  

 

We can test the significance of differences between two algorithms by using the 

following inequality: 

)70.3(
6

1
,21

kNk
cqRR   

Where, 1R =rank total of the algorithm 1; 2R = rank total of the algorithm 2; N = total 

number of datasets, k = total number of search algorithms ranked, ;1kc  05.0 .  
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represents the level of significance in statistical tests. Values of  cq ,  are given in 

Appendix Table IIIA  in [140].  

If the value of 
21 RR  exceeds the value of  

6

1
,

kNk
cq , there is a statistically 

significant difference between the two algorithms.  

 

3.4. Model Selection Procedures 

Model selection criteria are mostly used to decide which model is more appropriate for 

explaining a specific dataset. A central problem to model selection is over-fitting. In order 

to overcome the observed over-fitting in model selection, we applied 10-fold cross 

validation in the experiments described in chapters 4 (―Feature Subset Selection in Large 

Dimensionality Domains‖) and 5 (―Reconstruction of Incomplete Datasets in Cross 

Sectional Studies‖) of this thesis. In 10-fold cross validation, we divide the data into 10 

subsets of approximately equal size. For each model complexity, the learner trains 10 times, 

each time using one of the subsets as the validation set, one of the subsets as the test set, 

and the remaining subsets as the training set. In the training set, we fix the tuning 

parameters and learn the model which is tested using the validation set. We pick the set of 

tuning parameters that gives the best performance in the validation set. Then the algorithm 

learns the model with the chosen tuning parameters, this time using training and validation 

sets. The performance of this final model is assessed using the testing set.  

 

Real world time series datasets frequently contain relatively few observations (less 

than 100 is common). Hence, it is not practicable to split time series datasets into three 

parts (a training set, a validation set and a testing set) for experiments described in chapter 6 



                                                

 

144 

(―Univariate Time Series Forecasting‖) of this thesis. Alternatives to conventional k-fold 

cross validation based model selection approach include: ERM (Expected Risk 

Maximization), AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), 

and SRM (Structural Risk Minimization). All four (ERM, AIC, BIC, SRM) only require us 

to compute the training error and not full cross validation error. Out of the candidate 

models, one with the least mean square error (MSE) is selected in the ERM approach. The 

ERM approach should not be used for model selection since this model selection 

mechanism is exposed to a very high risk of over-fitting the data. AIC, BIC, and SRM have 

a smaller risk of over-fitting than ERM.  

 

The SRM principle was first set out in a 1974 paper by Vapnik and Chervonenkis 

[151].   SRM estimates how well an algorithm will perform on future data solely based on 

its training set error, and a property (VC dimension) of the learning algorithm. The VC 

dimension (Vapnik-Chervonenkis dimension) characterizes the capacity of a trained model. 

The VC dimension is the maximum number of vectors that can be shattered by the trained 

net or model. In SRM, the upper bound on the test error is given by 

   
N

h

N
h

errorTrainingerrortest
4

log1
2

log

__  with probability 1 , 

where h is the VC dimension of the model, and N is the size of the training set. The SRM 

provides a trade-off between the complexity of approximating functions (the VC dimension 

of approximating functions) and the quality of fitting the training data (empirical error). 

SRM selects the model (from a large number of candidate models) whose sum of empirical 
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risk and VC confidence is minimal. Nevertheless, VC dimension is difficult, if not NP-

hard, to compute [152].   

 

Alternatives to VC-dimension-based model selection (SRM or SRMVC) include: (1) 

AIC (Akaike Information Criterion) and (2) BIC (Bayesian Information Criterion). Like 

SRM, AIC and BIC have the advantage that we only need the training error. 

 )71.3(2ln k
n

RSS
nAIC  

)72.3(lnln kn
n

RSS
nBIC  

Where, RSS = residual sum-of-squares on the training data from the estimated model, 

n Number of data points in training set, and k number of free parameters 

Given any two estimated models, the models with the lower value of AIC or BIC is the one 

to be preferred. These approaches resolve over-fitting problem by introducing a penalty 

term for the number of parameters in the model. BIC is more conservative than AIC since 

the penalty of BIC is stronger than that of AIC. SRM is wildly conservative. SRM is 

consistent but difficult to implement in practice. We applied BIC to compare time series 

forecasting models.   
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CHAPTER 4 

Feature Subset Selection in Large Dimensionality Domains 

 

4.1.  Introduction 

Searching for an optimal feature subset from a high dimensional feature space is an NP-

complete problem, as discussed in section 1.1.1. Furthermore, as was pointed out in section 

2.2, existing algorithms usually fail to find an optimal feature subset solution. The process 

of stagnation, excessively slow convergence and premature convergence all inhibit the 

ability of conventional feature selection algorithms to perform successfully.  We present 

and test a novel hybrid algorithm for selection of optimal feature subsets. The proposed 

algorithm consistently generates better feature subsets compared to existing search 

algorithms within a predefined time limit and keeps improving the quality of selected 

subsets as the algorithm runs. The rest of the chapter is organized as follows: the new 

algorithm in section 4.2, comparative performance measurement in section 4.3, results and 

discussion in section 4.4, summary and conclusions in section 4.5, and future work in 

section 4.6. 

 

 

4.2. Proposed algorithm 

A good search algorithm should provide: (1) good global search capability that allows for 

the exploration of new regions of the solution space without getting stuck in local minima, 

(2) rapid convergence to a near optimal solution, (3) good local search ability, and (4) high 

computational efficiency.  
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We present a hybrid algorithm (SAGA), named after two major underlying search 

algorithms (SA and GA), for selecting optimal feature subsets efficiently. This algorithm is 

based on SA (simulated annealing), GA (genetic algorithm), GRNN (Generalized 

Regression Neural Networks) and a greedy search algorithm. SAGA combines the ability to 

avoid being trapped in a local minimum of SA with a very high rate of convergence of the 

crossover operator of GA, the strong local search ability of the greedy algorithm and high 

computational efficiency of GRNN. Our hybrid approach solves the feature selection 

problems without including filter steps. Hence, unlike existing hybrid algorithms, SAGA 

does not compromise accuracy for speed.  

 

The SA algorithm here is a mutation-based search approach. Mutation represents a 

long jump in the search space. The strength of SA is good global search ability. The major 

disadvantage of SA is its slow convergence speed. On the other hand, GA implements both 

crossover and mutation operations. The strength of GA is its rapid convergence, but the 

combination of crossover and a low fixed mutation rate often traps the search in a local 

minimum. In addition, the local search capability of SA and GA is weak. By contrast, 

greedy algorithms have good local search ability, but lack global search ability. 

 

SAGA organizes a search in three stages. We encode possible feature subset 

solutions in ordered, fixed-length binary strings where ‗1‘ indicates the presence of the 

feature and ‗0‘ its absence. 

 

Stage 1: SAGA employs SA to guide the global search in a solution space. As long as the 

temperature is very high, SA accepts every new solution, thus yielding a near random 
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search through the search space. On the other hand, as the temperature becomes close to 

zero, only improvements are accepted.  The SA is run for approximately 50% of the total 

time available. The pseudo code of SA is provided below. How the CPU time was recorded 

is discussed in the last paragraph of this section.  
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//Pseudo code of SA 

Step 1 Initialize Parameters:  

 Set the initial temperature ( iT ): iT = Total run time for SA.  

 Set the current temperature ( cT ): ic TT  

 Randomly select 100 feature subset solution I  100:1I  from the pool of 

possible solutions for initial population. 

Step 2 Evaluate the fitness of each solution: Measure the fitness oE  Eo 1:100  
of 

solutions in the population using GRNN and store the information (feature subset solutions 

with fitness scores) where, oE  is the prediction accuracy as a fraction (not a percentage) 

and 10 oE . 

Step 3 Update the effective temperature ( cT ): )1.4(spentcc TTT               where 

spentT total time spent so far. 

Step 4: For all current feature subset vectors I 100:1I  change the bits of vectors with 

probability 100:1mumu pp :   )2.4(1 omu Ep   

Step 5: Evaluate the fitness nE En 1:100  of the new candidate solutions if not already 

evaluated. 

Step 6 Determine if this new solution is kept or rejected and update the database: 

If  on EE , the new solution is accepted. The new solution replaces the old solution and 

oE  is set to nE : no EE . Else we accept the new solution with a certain probability 

100:1acac pp : )3.4(exp
c

no
ac

T

EE
p . 

Step 7: Update the effective temperature cT . If the effective temperature is greater than 

zero, return to step 4. Otherwise, the run is finished. 
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Stage 2: SAGA applies the GA on the 100 best-to-date solutions found by the SA. A total 

of 50 pairs are picked from the chromosome pool using linear ranking selection. Selection 

is done ―with replacement‖, meaning that the same chromosome can be selected more than 

once to become a parent. Rank selection first ranks the population and then every 

chromosome receives fitness from this ranking. All chromosomes have a chance to be 

selected. However, the better the chromosomes are, the more chances to be selected they 

have. Each pair creates two offspring using the half uniform crossover scheme (HUX) and 

then the parents die. In HUX, exactly half of the non-matching parents‘ genes are swapped. 

The main purpose of crossover in GA is to exchange information between pairs of good 

solutions to form new (and hopefully better) solutions. The mutation operator in GA 

introduces new genes into the population and retains genetic diversity. GA‘s initial 

population already has the good genes found in stage 1. Hence we set a very low mutation 

rate in order to ensure a quick convergence to an optimal solution. If the value of this 

parameter is set higher than this level, many good genes are likely to be lost due to the 

continual emergence of randomness in the genomes. Due to the selection of the fittest 

chromosomes, the crossover and a very low mutation rate (0.0001), GA converges quickly 

to a near optimal solution. The GA runs for about 30% of total time spent by SAGA to find 

the optimal feature subset solution. The pseudo code of the GA is presented below. 



                                                

 

151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stage 3: SAGA applies a hill-climbing feature selection algorithm. The greedy algorithm 

performs a local search on the k-best solutions (elite) given by two global optimization 

algorithms (SA and GA) and selects the best neighbours (in our context neighbours are 

defined in terms of the Euclidean distance between a pair of feature subsets).  The hill 

climbing algorithm is run in the remaining execution time. The pseudo code of hill 

climbing algorithm is given below. 

 

//The pseudo code of GA 

Step 1: Construct a chromosome pool of size 100 with the 100 fittest chromosomes 

from the list of feature subset solutions evaluated so far by the SA. 

Step 2: Select 50 pairs of chromosomes with replacement using rank-based selection 

strategy. 

Step 3: Perform crossover between the chromosomes using the half uniform crossover 

scheme (HUX). In HUX, half of the non-matching parents‘ genes are swapped. 

Step 4: Kill the parent solutions. 

Step 5: Mutate offspring with probability 0.0001. 

Step 6: Evaluate the fitness of the offspring provided if it has not already been 

evaluated and if sufficient time is available. Update the database and estimate the time 

left.  

Step 7: Go back to step 2 if the time is not up. 
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Computational efficiency is essential for exploring a huge search space. To enhance it, the 

following measures were taken. First, SAGA employs a robust and fast learning algorithm 

(GRNN) for assessing candidate solutions. GRNN, based on fuzzy means clustering, is a 

‗one-pass‘ algorithm. GRNN has just one parameter (smoothing factor: ) that needs to be 

chosen. However, we have discovered the best default value for this parameter through 

experiments with 200 synthetic datasets (the process of generating synthetic datasets is 

described in section 3.3.1 of the chapter 3. It is worth noting that these 200 datasets were 

// Pseudo code of Hill-climbing algorithm  

Step 1: Select the best-to-date solution.  

Step 2: Create 10000 new candidate solutions from the selected solution by changing 

only one bit (feature) at a time.  

Step 3: Evaluate the new solutions if they are not evaluated before and update the 

database. Replace the previous solution by the new solution(s) if they are better than 

the previous solution. 

Step 4: Go back to step 2 and perform the hill climbing on each of the accepted new 

solutions. Repeatedly apply the process from steps 2 to 3 on selected solutions as long  

as the process is successful in finding improved solutions in every repetition  

and as long as the time is available. 

Step 5: Update the database and update the time available. 

Step 6: Select the next best-to-date solution from the database and go back to step 2 if 

time is still available. 
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not used in the feature subset selection study. Appendix table 4A shows performance 

impact of different  values. We set the default value for each centre‘s width ( ) to 2 

times the average distance to 20 nearest neighbours. The default value for the smoothing 

parameter  will almost always produce, a good, if not the best, result. In our feature 

subset selection experiments, we specified the default setting. Hence in GRNN we need not 

to develop and validate many predictive models. Another major reason why we choose 

GRNN is that it suffers relatively more from the curse of dimensionality than other 

algorithms [153]. This is an advantage when trying to eliminate unnecessary variables 

because GRNN does not have the luxury of producing good results when there are 

irrelevant and redundant features.  

 

In order to alleviate overfitting, the predictive power (i.e. accuracy or MSE) of the 

candidate feature subsets was assessed on the holdout test set not used for training. We 

perform 10-fold cross validation to estimate the testing accuracy of the GRNN classifier. 

The higher the accuracy, the fitter the solution. If the accuracies of two solutions are the 

same, then the solution using the smaller number of features wins. Before the evaluation of 

feature subsets, each feature was normalized by scaling it between 0 and 1. 

Second, Cooper and Hinde (2003) report that evolutionary algorithms spend approximately 

a third of the time testing already tested candidate solutions [154]. SAGA stores 

information about the candidate solutions evaluated so far in a database and never evaluates 

a possible solution more than once.  

 

As a result, SAGA has all the four qualities mentioned above. 

 



                                                

 

154 

One of the objectives was realizing exactly how time consuming the feature selection 

task can be.  Hence, a predefined time limit instead of the maximum number of total 

iterations was chosen as the stopping criterion which has inevitably made our algorithm 

rather complicated (In any practical application, one should therefore use a standard 

stochastic algorithm with imposing a maximum number of iterations as stopping criterion). 

Our empirical observations suggest that a search algorithm spends almost 99% of its 

running time evaluating the fitness of solutions and the time period required to perform 

other tasks (such as such as solution generation) is almost negligible. The computation time 

required to evaluate a feature subset depends on the number of features present in the subset 

and the number of instances in the dataset. Hence, we empirically find out the time t  

10000:1t  required to estimate the fitness scores of feature subsets with various 

dimensionalities from 1 to 10,000 using GRNN and store the information (dimensionalities 

of subsets and time required to assess their fitness) in a database. After evaluating each 

solution, the amount of CPU time consumed is retrieved from the server and the amount of 

time available for the search is updated. 

 

4.3.  Comparative Performance Analysis 

We compare our algorithms with the following benchmark algorithms: four commonly 

used greedy search algorithms (SBS (sequential Backward Selection, SFS (Sequential 

Forward Selection), SFFS (Sequential Floating Forward Selection), and SFBS (Sequential 

Floating Backward Selection)) and four popular stochastic search algorithms (ACO (Ant 

Colony Optimization), GA (Genetic Algorithm), PSO (Particle Swarm Optimization) and 

SA (Simulated Annealing). We also compare our algorithm against a hybrid of filter and 

wrapper approaches—FW (filter-wrapper).  Many hybrid algorithms have been proposed 
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for feature subset selection with encouraging results. It was not possible to implement all 

the methods and empirically assess them. Instead, based on the experience of other authors, 

we develop a representative hybrid algorithm FW. This consists of a number of popular 

filter methods (standard statistical tests – such as unpaired t-test, Mann-Whitney U test, and 

Chi-Square test; RELIEF algorithm; Pearson‘s Correlation Coefficient; Symmetric 

Uncertainty; and Principal Component Analysis) and a stochastic algorithm (simulated 

annealing). The benchmark algorithms are described in section 3.1.1. The proposed and 

benchmark algorithms were tested on 30 high dimensional datasets (descriptions of datasets 

are provided in section 3.2.1). 

 

There are a number of strategies employed to ensure fair comparison of search 

algorithms. 

 All algorithms were run on a 3.40 GHz Intel® Pentium® D CPU with 2 GB RAM.  

 The values of each feature were normalized in a 0 to 1 range before the experiment.  

 All algorithms use GRNN classifiers to evaluate each of the resulting subsets using 10-

fold cross validation.  

 No algorithm evaluates the same solution more than once. 

 Each algorithm was allocated exactly the same amount of search time. Each stochastic 

search algorithm (ACO, FW, GA, PSO, SA and SAGA) was run 10 times on each 

dataset, each time with different initial populations of 100 individuals. The final 

performance of each algorithm was calculated by averaging over all 10 simulations. 

 Algorithms were ranked based on their performance. Their performance is measured 

in terms of classification accuracy with the best solution found during the entire run. Two 

different solutions having the same accuracy level are assessed in terms of the number of 
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features present in the feature subset solutions. We assign rank 1 to the best algorithm and 

rank m 10m  to the worst algorithm. The Friedman test is used to test the null 

hypothesis that the performance is the same for all algorithms.  After applying the 

Friedman test and noting that it is significant, a pairwise comparison test (Siegel S, 

Castellan NJ (1988)), comparison of groups or conditions with a control, was used in order 

to test the (null) hypothesis that there is no significant difference between any pair of the 

ten algorithms [140]. Section 3.3 briefly describes these statistical tests. 

 

 

4.4.  Results and Discussion 

We compare our proposed algorithms (SAGA) with the conventional search algorithms 

(ACO, FW, GA, PSO, SA, SBS, SFBS, SFFS and SFS) on 30 high-dimensional datasets. 

The best-to-date feature subset solutions for real words datasets are presented in appendix 

table 4B. The algorithms were evaluated based on the fitness of the best feature subset 

solutions generated by the algorithms within the allowed time limits. The Friedman test 

reveals significant differences ( 05.0p ) in the performance of the ten search algorithms at 

all time limits. Table 4.1 shows statistical test results for pairwise comparisons of 

algorithms.  We assign the rank 1 to the best algorithm, the rank 2 to the next best 

algorithm and so on. 
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 Table 4.1: Pairwise Comparisons between Search Algorithms 

 

After 1 hour 

Rank Algorithm(s) Significantly outperformed algorithms 

1 SAGA, SFS 

(1) FW, (2) GA, (3) SFFS, (4)ACO, (5) SBS, (6) SFBS, (7)PSO, (8) 

SA 

2 FW (1) GA, (2) SFFS, (3) ACO, (4) SBS, (5) SFBS, (6)PSO, (7)SA 

3 GA (1) SBS, (2) SFBS, (3) PSO, (4) SA 

4 SFFS, ACO, SBS, SFBS (1) PSO, (2) SA 

5 PSO, SA - 

After 8 hours 

Rank Algorithm(s) Significantly outperformed algorithms 

1 SAGA, SFS (1)SFFS, (2)FW, (3)PSO, (4)GA, (5)SBS, (6)SA, (7)ACO, (8)SFBS 

2 SFFS, FW (1)GA, (2)SBS, (3)SA, (4)ACO, (5)SFBS 

3 PSO (1)SA, (2)ACO, (3)SFBS 

4 GA, SBS (1)ACO, (2)SFBS 

5 SA, ACO (1)SFBS 

6 SFBS - 

After 16 hours 

Rank Algorithm(s) Significantly outperformed algorithms 

1 SAGA 

(1)SFBS, (2)SFFS, (3)FW, (4)SFS, (5)SA, (6)PSO, (7)ACO, (8)GA, 

(9)SBS 

2 SFBS, SFFS (1)SFS, (2)SA, (3)PSO, (4)ACO, (5)GA, (6)SBS 

3 FW (1)SA, (2)PSO, (3)ACO, (4)GA, (5)SBS 

4 SFS, SA (1)PSO, (2) ACO, (3)GA, (4)SBS 

5 PSO (1)GA, (2)SBS 

6 ACO, GA (1)SBS 

7 SBS  

After 24 hours 

Rank Algorithm(s) Significantly outperformed algorithms 

1 SAGA 

(1)FW, (2)SFBS, (3)SFFS, (4)SA, (5)SFS, (6)GA, (7)PSO, (8)ACO, 

(9)SBS 

2 FW (1)SFFS, (2)SA, (3)SFS, (4)GA, (5)PSO, (6)ACO, (7)SBS 

3 SFBS, SFFS (1)SFS,(2)GA, (3)PSO, (4)ACO, (5)SBS 

4 SA, SFS (1)GA, (2)PSO, (3) ACO, (4)SBS 

5 GA, PSO, ACO (1)SBS 

6 SBS - 

After 72 hours 

Rank Algorithm(s) Significantly outperformed algorithms 

1 SAGA 

(1)SA, (2)FW, (3)SFBS,(4)SFFS, (5)SFS, (6)PSO, (7)GA, (8)ACO, 

(9)SBS 

2 SA, FW (1)SFBS, (2)SFFS, (3)SFS, (4)PSO, (5)GA, (6)ACO, (7)SBS 

3 SFBS, SFFS (1)SFS, (2)PSO, (3)GA, (4)ACO, (5)SBS 

4 SFS, PSO (1)ACO, (2)SBS 

5 GA, ACO (1)SBS 

6 SBS - 
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 Table 4.1: Pairwise Comparisons among Search Algorithms (cont.) 

 

After 168 hours 

Rank Algorithm(s) Significantly outperformed algorithms 

1 SAGA 

(1) SA, (2)FW, (3)SFBS, (4)SFFS, (5)PSO, (6)SFS, (7)GA, 

(8)ACO, (9)SBS 

2 SA 

 (1)FW, (2)SFBS, (3)SFFS, (4)PSO, (5)SFS, (6)GA, 

(7)ACO, (8)SBS 

3 FW (1)SFBS, (2)SFFS, (3)PSO, (4)SFS, (5)GA, (6)ACO, (7)SBS 

4 SFBS, SFFS (1)SFS, (2)GA, (3)ACO, (4)SBS 

5 PSO (1)GA, (2)ACO, (3)SBS 

6 SFS, GA (1) ACO, (2)SBS 

7 ACO (1) SBS 

8 SBS - 

After 240 hours 

Rank Algorithm(s) Significantly outperformed algorithms 

1 SAGA 

(1)SA, (2)FW, (3)PSO, (4)SFBS, (5)SFFS, (6)SFS, (7)GA, 

(8)ACO, (9)SBS 

2 SA 

(1)FW, (2)PSO, (3)SFBS, (4)SFFS, (5)SFS, (6)GA, (7)ACO, 

(8)SBS, 

3 FW 

(1)PSO, (2)SFBS, (3)SFFS, (4)SFS, (5)GA, ((6)ACO, 

(7)SBS 

4 PSO, SFBS, SFFS (1)SFS, (2)GA, (3)ACO, (4)SBS 

5 SFS, GA (1) ACO, (2)SBS 

6 ACO (1)SBS 

7 SBS - 

 

 

 

Figure 4.1 displays the results for the mean accuracy of the reduced datasets at run times of 

1, 8, 16, 24, 72, 168 and 240 hours: SAGA outperforms the others at all run times, though 

not always significantly.  
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Table 4.2 summarizes the results in more detail, providing the mean accuracy, average 

number of features selected over all 30 datasets both with standard deviations. The average 

accuracy represents the overall performance. However, if two solutions are equally accurate 

(as is almost the case with SAGA and SA at 168 and 240 hours), then the one with fewer 

features is fitter. We note that SAGA achieves the same accuracy with far fewer features 

than SA at 168 and 240 hours. Table 4.2 also reports the relative performance of search 

algorithms in terms of the number of algorithms that are significantly worse than the 

control (based on pairwise comparison tests).  
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Table 4.2: Summary performance report: A comparison of feature subset selection 

algorithms (The values in parenthesis represents the standard deviation. The lower the 

standard deviation, the more consistent the algorithm.) 

Search 
Method 

Time 
(hrs) 

No of 
significantly 

out-
performed 
algorithms 

Accuracy 
(%) 

Features Search 
Method 

Time 
(hrs) 

Number of 
significantly 

out-
performed 
algorithms 

Accuracy 
(%) 

Features 

ACO 1 2 15 (8) 4241(1231) SAGA 1 8 35 (182) 71 (26) 

 8 1 44 (17) 2375 (1296)  8 8 64 (12) 27 (24) 

 16 2 50 (19) 1595 (4388)   16 9 80 (10) 22 (14) 

 24 1 52 (19) 836 (546)  24 9 91 (6) 10 (6) 

 72 1 54 (18) 599 (808)  72 9 95 (4) 17 (9) 

 168 1 55 (18) 524 (1792)  168 9 96 (3) 17 (7) 

 240 1 55 (18) 442 (617)  240 9 96 (3) 12 (8) 

          

FW 1 7 25 (129) 5797(2487) SBS 1 2 15 (79) 8750 (87) 

 8 5 54 (14) 436 (283)  8 2 50 (5) 35 (38) 

 16 5 67 (11) 218 (129)  16 0 (converged) (converged) 

 24 7 75 (12) 169 (134)  24 0   

 72 7 77 (10) 256 (249)  72 0   

 168 7 77 (10) 226 (107)  168 0   

 240 7 77 (10) 200 (91)  240 0   

          

GA 1 4 18 (93) 6984 (18) SFBS 1 2 14 (75) 9040 (96) 

 8 2 52 (15) 553 (409)  8 0 38 (8) 57 (29) 

 16 1 56 (14) 446 (379)  16 6 68 (6) 45 (27) 

 24 1 58 (14) 553 (2119)  24 5 (converged) (converged) 

 72 1 59 (13) 513 (204)  72 5   

 168 2 61 (11) 388 (320)  168 4   

 240 2 62 (10) 482 (206)  240 4   

          

PSO 1 0 10 (53) 5598 (3046) SFFS 1 2 31 (161) 1 (0.4) 

 8 3 54 (11) 852 (1230)  8 5 57 (9) 41 (10) 

 16 2 55 (11) 242 (166)  16 6 67( 5) 34 (11) 

 24 1 56 (11) 222 (305)  24 5 (converged) (converged) 

 72 2 61 (7) 240 (87)  72 5   

 168 3 65 (5) 307 (100)  168 4   

 240 4 68 (4)  181 (76)  240 4   

          

SA 1 0 8 (42) 6647 (3451) SFS 1 8 31 (162) 3 (2) 

 8 1 49 (12) 708 (745)  8 8 63 (11) 37 (42) 

 16 4 60 (10) 290 (137)  16 5 (converged) (converged) 

 24 4 66 (11) 142 (208)  24 4   

 72 7 81 (6) 229 (153)   72 2   

 168 8 95 (3) 323 (187)  168 2   

 240 8 95 (3) 157 (69)  240 2   
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The key findings of this work are: 

 SAGA holds the first position at all seven durations of running where the best 

performance is significantly better than the next best at the significance level of 0.05.  

  The rate of improvement in search algorithms decreases as the time passes. 

However, as the running time increases, the improvement in the performance of SAGA 

declines slowly, relative to the others, with the exception of SA. Extensive experiments 

illustrate that after eight hours of searching; SAGA had a 64% mean accuracy with a 

12% standard deviation. The mean accuracy rate of SAGA  improved by 32% (from 

64% to 96%) over the last 232 hours of running for which the standard deviation was 

reduced by about 9% (from 12% to 3%), while the overall accuracy rate of SA 

increased from 49% to 95% (46%) and the standard deviation dropped from 12% to 3% 

(a 9% drop). The other algorithms had significantly lower rates of increase in accuracy 

with increasing running time. The accuracy improvements of other algorithms over the 

last 232 hours of running are as follows: using the ACO the mean accuracy increased 

by about 10% and the standard deviation increased by about 1%, using the FW the 

accuracy increased by about 23% while the standard deviation dropped by about 4%, 

using the GA the accuracy increased by about 10% while the standard deviation 

dropped by about 5%, and using the PSO the accuracy increased by about 14% while 

the standard deviation dropped  by about 7%.  

 Throughout the running period, SAGA selected a much smaller number of 

features than other algorithms.  For this reason, the performance of SAGA remained 

significantly better than SA even when the accuracy rates of both algorithms were 

almost the same (at 168 and 240 hours).  
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In addition, we note that if the search space is too large while the time available to 

conduct a search through the search space is very brief, SFS is a good choice among 

other conventional search algorithms. 1 hour and 8 hours later, SFS finished joint first 

with SAGA, outperforming eight algorithms. 

 

Further, if sufficient time is available, then SA should be considered among the 

conventional search algorithms. After the first 1 hour of running, the performance of 

SA was the worst among all search algorithms. After 8 hours, SA outperformed two 

algorithms. After 24 hours, it outperformed four algorithms. After 72 hours of 

searching, it became the second best algorithm, outperforming seven algorithms. After 

168 hours, it outperformed eight algorithms.    

 

We also noted that when a greedy algorithm reaches the local minima it cannot 

climb ‗out‘. Both SBS and SFS rapidly converged within approximately 8 hours. SFFS 

and SFBS offer only slightly more resistance to local minima. They converged within 

16 hours. We found an interesting pattern in the relative performance of the algorithms 

(in terms of the number of significantly outperformed algorithms) over time. The 

relative performance of ACO, GA, SBS and SFS deteriorates, while the relative 

performance of PSO and SA improves as the time elapses. The relative performance of 

SFBS and SFFS roughly follows the Gaussian distribution over time. In addition, FW 

offers the most consistency (after SAGA) over time in terms of relative performance. 

Although FW applies a SA, it did not generate a dramatic performance improvement 

over time, like SA did. We suspect that a number of key features were already removed 

from the feature pool by filter methods, before SA began its search.  
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4.5 Summary and conclusions 

We have presented a hybrid algorithm SAGA that combines the strengths of a number 

of existing algorithms to select the optimal feature subsets from a large feature space. 

SAGA is a hybrid of a number of wrapper methods—a SA, a GA, a GRNN, and a 

greedy search algorithm. We compare our proposed algorithm against the following 

benchmark algorithms: ACO, FW, GA, PSO, SA, SBS, SFBS, SFFS, and SFS on both 

synthetic and real world-datasets. Among these datasets, one dataset (‗Smoking 

dataset‘) has 285 features and the remaining 29 datasets have 10,000 features each. We 

study the performance of these algorithms at different time intervals: after 1, 8, 16, 24, 

72, 168, and 240 hours of running. The performance of our algorithm is highly 

encouraging. SAGA shows the best performance over every interval. We conclude that 

no existing algorithm is entirely satisfactory in isolation, but that a carefully designed 

combination can overcome the weaknesses of each. 

 

4.6 Future Work 

Feature subset selection is important both in supervised and unsupervised data analysis. 

The applicability of the proposed algorithm SAGA is limited to the supervised learning 

domain. In the future, we plan to extend the SAGA in order that it can be applied to 

feature selection in unsupervised learning (data clustering). In an unsupervised 

scenario, in particular the assessment of the quality of a feature subset solution 

becomes more intricate. 
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Appendix  4A: The performance of different smoothing factor parameter 

values 

Rank (based 

on statistical 

significance) 

Each centre's width 
Classification 

Accuracy (%) 

4 (Euclidean distance to  the nearest member)*0.5 79 (12) 

3 Euclidean distance to the  nearest member 85 (8) 

3 (Euclidean distance to the  nearest member)*1.5 87 (7) 

3 (Euclidean distance to the  nearest member)*2 88 (7) 

3 (Euclidean distance to the  nearest member)*2.5 84 (8) 

4 (Euclidean distance to the  nearest member)*3 81 (12) 

1 (Average Euclidean distance to 5 nearest members)*2 95 (4) 

1 
(Average Euclidean distance to 10 nearest 

members)*2 
96 (4) 

1 
(Average Euclidean distance to 20 nearest 

members)*2 
97 (3) 

1 
(Average Euclidean distance to 30 nearest 

members)*2 
96 (5) 

1 
(Average Euclidean distance to 40 nearest 

members)*2 
95 (5) 

2 
(Average Euclidean distance to  50 nearest 

members)*2 
92 (7) 

3 
(Average Euclidean distance to 60 nearest 

members)*2 
88 (10) 

4 
(Average Euclidean distance to 70 nearest 

members)*2 
84 (11) 

5 
(Average Euclidean distance to 80 nearest 

members)*2 
75 (12) 

5 
(Average Euclidean distance to 90 nearest 

members)*2 
72 (14) 

5 
(Average Euclidean distance to 100 nearest 

members)*2 
72 (17) 
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Appendix 4B: Best solution found for each real-world dataset (underlined 

features were selected for inclusion in the optimal set) 
Modified 

Benchmark Dataset 
Original Features 

Adult (total 

observations    = 

48842 and                 

total features=500        

Original features =13     

Artificial 

features=487)                    

Accuracy: 86%              

Features selected: 8 

(1)age, (2)workclass, (3) fnlwgt, (4) education,  (5) marital-

status, (6)occupation, (7) relationship, (8)race, (9)sex, 

(10)capital-gain,  (11) Capital-loss,  (12) hours-per-week, (13) 

native country 

Annealing (total 

observations    =798 

and   total 

features=500        

Original features =38     

Artificial 

features=462)                    

Accuracy: 96%              

Features selected: 13 

(1) family, (2) product-type, (3) steel, (4)carbon, (5)hardness, 

(6)temper-rolling, (7) condition, (8) formability, (9) strength, 

(10) non-ageing, (11)surface-finish, (12) surface-quality, 

(13)enamelability,(14) bc, (15)bf, (16)bt, (17)bw/me, (18)bl, 

(19)m, (20)chrom, (21)phos, (22)cbond, (23)marvi, (24)exptl, 

(25)ferro, (26)corr, (27)blue/bright/vam/clean, (28)lustre, 

(29)jurofm, (30)s, (31)p, (32)shape, (33)thick, (34)idth, (35)len, 

(36)oil, (37)bore, (38) packing 

Breast Cancer 

Wisconsin 

(diagnostic)                

(total 

observations=569   

and                             

total features=500        

Original features =32     

Artificial 

features=462)                    

Accuracy: 94%              

Features selected: 6 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 

Breast Cancer 

Wisconsin 

(Prognostic)              

(total observations 

=198  and                           

total features=500        

Original features =34     

Artificial 

features=466)                    

Accuracy: 82%              

Features selected: 3 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 
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Chess (King-Rook 

vs. King Pawn)              

(total observation=6 

and                 total 

features=500        

Original features =36     

Artificial 

features=464)                    

Accuracy: 99%              

Features selected: 20 

(1) bkblk, (2) bknwy, (3) bkon8, (4) bkona, (5) bkspr, (6) 

bksbq, (7)bkxcr, (8)bkswp, (9)blxwp, (10)bxqsq, (11)cntxt, 

(12)dsopp, (13)dwipd, (14)hdchk, (15)katri, (16)mulch, 

(17)qxmsq, (18)r2ar8, (19)reskd, (20)reskr, (21)rimmx, 

(22)rkxwp, (23)rxmsq, (24)simpl, (25)skach, (26)skewr, 

(27)skrxp, (28)spcop, (29)stlmt, (30)thrsk, (31)wkcti, 

(32)wkna8, (33)wknck, (34)wkovl, (35)wkpos, (36)wtoeg 

 

Congressional 

Voting (total 

observations  =435 

and  total 

features=500        

Original features =16     

Artificial 

features=484)                    

Accuracy: 99%              

Features selected: 7 

 

(1)handicapped-infants, (2)water-project-cost-sharing, 

(3)adoption-of-the-budget-resolution, (4)physician-fee-freeze, 

(5)el-salvador-aid, (6)religious-groups-in-schools, (7)anti-

satelite-test-ban, (8)aid-to-nicaraguan-contras, (9)mx-missile, 

(10)immigration, (11)synfuels-corporation-cutback, 

(12)education-spending, (13)superfund-right-to-sue, (!4)crime, 

(15)duty-free-exports, (16) export-administration-act-south-

africa 

Dermatology: 

Psoriasis (total 

observations=366  

and                           

total features=500        

Original features =33     

Artificial 

features=467)                    

Accuracy: 100%              

Features selected: 3 

(1)Age, (2)erythema, (3)scaling, (4)definite borders, (5)itching, 

(6)koebner phenomenon, (7)polygonal papules, (8)follicular 

papules, (9)oral mucosal involvement, (10)knee and elbow 

involvement, (11)scalp involvement, (12)family history,  

(13)melanin incontinence, (14)eosinophils in the infiltrate, (15) 

PNL infiltrate, (16)fibrosis of papillary dermis, (17)excytosis, 

(18)acanthosis, (19)hyperkeratosis, (20)parakeratosis, 

(21)clubbing of the rete ridges, (22)elongation of the rete 

redges, (23) thinning of the suprapapillary epidermis, (24) 

spongiform pustule, (25)munro microabcess, (26)focal 

hypergranulosis, (27)disappearance of the granular layer, 

(28)vacuolisation and damage of basal layer, spongiosis, 

(29)saw-tooth appearance of retes, (30)follicular horn plug, 

(31)perifollicular parakeratosis, (32)inflammatory monoluclear 

infiltrate, (33) band-like infiltrate 
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Dermatology: 

Sebreic 

Dermatitis(total 

observations=366  

and                           

total features=500        

Original features =33     

Artificial 

features=467)                    

Accuracy: 99%              

Features selected: 7 

(1)Age, (2)erythema,(3)scaling, (4)definite borders, (5)itching, 

(6)koebner phenomenon, (7)polygonal papules, (8)follicular 

papules, (9)oral mucosal involvement, (10)knee and elbow 

involvement, (11)scalp involvement, (12)family history,  

(13)melanin incontinence, (14)eosinophils in the infiltrate, (15) 

PNL infiltrate, (16) fibrosis of papillary dermis, (17) excytosis, 

acanthosis, (18)hyperkeratosis, (19)parakeratosis, (20)clubbing 

of the rete ridges, (21)elongation of the rete redges, 

(22)thinning of the suprapapillary epidermis, (23)spongiform 

pustule, (24)munro microabcess, (25)focal hypergranulosis, 

(26)disappearance of the granular layer, (27)vacuolisation and 

damage of basal layer, ((28)spongiosis, (29)saw-tooth 

appearance of retes,(30) follicular horn plug, (31)perifollicular 

parakeratosis, (32)inflammatory monoluclear infiltrate, 

(33)band-like infiltrate 

Dermatology: Lichen 

Planus (total 

observations=366  

and                           

total features=500        

Original features =33     

Artificial 

features=467)                    

Accuracy: 99%              

Features selected: 2 

 

(1)Age, (2)erythema, (3)scaling, (4)definite borders, (5)itching, 

(6)koebner phenomenon,(7) polygonal papules, (8)follicular 

papules, (9)oral mucosal involvement, (10)knee and elbow 

involvement, (11)scalp involvement, (12)family history,  

(13)melanin incontinence, (14)eosinophils in the infiltrate, 

(15)PNL infiltrate, (16)fibrosis of papillary dermis, 

(17)excytosis, (18)acanthosis, (19)hyperkeratosis, 

(20)parakeratosis, (21)clubbing of the rete ridges, 

(22)elongation of the rete redges, (23)thinning of the 

suprapapillary epidermis, (24)spongiform pustule, (25)munro 

microabcess, (26)focal hypergranulosis, (27)disappearance of 

the granular layer, (28)vacuolisation and damage of basal layer, 

(29)spongiosis, saw-tooth appearance of retes, (30)follicular 

horn plug, (31)perifollicular parakeratosis, (32)inflammatory 

monoluclear infiltrate, (33)band-like infiltrate 

Dermatology: 

Pityriasis Rosea 

(total 

observations=366  

and                           

total features=500        

Original features =33     

Artificial 

features=467)                    

Accuracy: 100%              

Features selected: 12 

(1)Age, (2)erythema, (3)scaling, (4)definite borders, (5)itching, 

(6)koebner phenomenon, (7)polygonal papules, (8)follicular 

papules, (9)oral mucosal involvement, (10)knee and elbow 

involvement, (11)scalp involvement, (12)family history,  

(13)melanin incontinence, (14)eosinophils in the infiltrate, 

(15)PNL infiltrate, (16)fibrosis of papillary dermis, 

(17)excytosis, (18)acanthosis, (19)hyperkeratosis, 

(20)parakeratosis, (21)clubbing of the rete ridges, 

(22)elongation of the rete redges, (23)thinning of the 

suprapapillary epidermis, (24)spongiform pustule, (25)munro 

microabcess, focal hypergranulosis, (26)disappearance of the 

granular layer, (27)vacuolisation and damage of basal layer, 

(28)spongiosis, (29)saw-tooth appearance of retes, 

(30)follicular horn plug, (31)perifollicular parakeratosis, 

(32)inflammatory monoluclear infiltrate, (33)band-like 

infiltrate 
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Dermatology: Cronic 

Dermatitis (total 

observations=366  

and                           

total features=500        

Original features =33     

Artificial 

features=467)                    

Accuracy: 100%              

Features selected: 6 

(1)Age, (2)erythema, (3)scaling, (4)definite borders,(5) itching, 

(6)koebner phenomenon, (7)polygonal papules, (8)follicular 

papules, (9)oral mucosal involvement, (10)knee and elbow 

involvement, (11)scalp involvement,(12) family history,  

(13)melanin incontinence, (14)eosinophils in the infiltrate, 

(15)PNL infiltrate, (16)fibrosis of papillary dermis, 

(17)excytosis, acanthosis, (18)hyperkeratosis, 

(19)parakeratosis, (20)clubbing of the rete ridges, 

(21)elongation of the rete redges, (22)thinning of the 

suprapapillary epidermis, (23)spongiform pustule, (24)munro 

microabcess, (25)focal hypergranulosis, (26)disappearance of 

the granular layer, (27)vacuolisation and damage of basal layer, 

(28)spongiosis, (29)saw-tooth appearance of retes, 

(30)follicular horn plug, (31)perifollicular parakeratosis, 

(32)inflammatory monoluclear infiltrate, (33)band-like 

infiltrate 

Dermatology: 

Pityriasis Rubra 

Pilaris (total 

observations=366  

and                           

total features=500        

Original features =33     

Artificial 

features=467)                    

Accuracy: 100%              

Features selected: 1 

 

(1)Age,(2) erythema, (3)scaling, (4)definite borders, (5)itching, 

(6)koebner phenomenon, (7)polygonal papules, (8)follicular 

papules, (9)oral mucosal involvement, (10)knee and elbow 

involvement, (11)scalp involvement, (12)family history,  

(13)melanin incontinence, (14)eosinophils in the infiltrate, 

(15)PNL infiltrate, (16)fibrosis of papillary dermis, 

(17)excytosis, acanthosis, (18)hyperkeratosis, 

(19)parakeratosis, (20)clubbing of the rete ridges, 

(21)elongation of the rete redges, (22)thinning of the 

suprapapillary epidermis, (23)spongiform pustule, (24)munro 

microabcess, (25)focal hypergranulosis, (26)disappearance of 

the granular layer, (27)vacuolisation and damage of basal layer, 

(28)spongiosis, (29)saw-tooth appearance of retes, 

(30)follicular horn plug, (31)perifollicular parakeratosis, 

(32)inflammatory monoluclear infiltrate, (33)band-like 

infiltrate 

Hepatitis (total 

observations=155  

and                           

total features=500        

Original features =18     

Artificial 

features=482)                    

Accuracy: 90%              

Features selected: 4 

 

 

(1)Age, (2)sex, (3)steroid, (4)antivirals, (5)fatigue, (6)malaise, 

(7)anorexia, liver big, (8)liver firm, (9)spleen palpable, 

(10)spiders, (11)ascites, (12)varices, (13)bilirubin, (14)alk 

phosphate,  (15)sgot, (16)albumin, (17)protime, (18)histology 
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Hepatitis (total 

observations=155  

and                           

total features=500        

Original features =18     

Artificial 

features=482)                    

Accuracy: 90%              

Features selected: 4 

(1)Age, (2)sex, (3)steroid, (4)antivirals, (5)fatigue, (6)malaise, 

(7)anorexia, liver big, (8)liver firm, (9)spleen palpable, 

(10)spiders, (11)ascites, (12)varices, (13)bilirubin, (14)alk 

phosphate,  (15)sgot, (16)albumin, (17)protime, (18)histology 

Mushroom (total 

observations=8124  

and                           

total features=500       

Original features =22     

Artificial 

features=478)                    

Accuracy: 100%              

Features selected: 3 

(1)Cap-shape, (2)cap surface, (3)cap-color, (4)bruises, (5)odor, 

(6)gill-attachment, (7)gill-spacing, (8)gill-size, (9)gill-color, 

(10)stalk-shape, (11)stalk-root, (12)stalk-surface-above-ring, 

(13)stalk-surface-below-ring, (14)stalk-color-above-ring, 

(15)stalk-color-below-ring, (16)veil-type, (17)veil-color, 

(18)ring number, (19)ring-type, (20)spore-print-color, 

(21)population, (22) habitat 

Spambase (total 

observations=4601  

and                           

total features=500        

Original features =57     

Artificial 

features=443)                    

Accuracy: 92%              

Features selected: 31 

(1) word_freq_make, (2) word_freq_address, (3) word_freq_all, 

(4) word_freq_3d, (5) word_freq_our, (6) word_freq_over, (7) 

word_freq_remove, (8) word_freq_internet, (9) 

word_freq_order, (10) word_freq_mail, (11) 

word_freq_receive, (12) word_freq_will, (13) 

word_freq_people, (14) word_freq_report, (15) 

word_freq_addresses, (16) word_freq_free, (17) 

word_freq_business, (18) word_freq_email, (19) 

word_freq_you, (20)word_freq_credit, (21) word_freq_your, 

(22) word_freq_font, (23) word_freq_000, (24) 

word_freq_money, (25) word_freq_hp, (26) word_freq_hp1, 

(27) word_freq_george, (28) word_freq_650, (29) 

word_freq_lab, (30) word_freq_labs, (31) word_freq_telnet, 

(32) word_freq_857, (33) word_freq_data, (34)word_freq_415, 

(35) word_freq_85, (36)word_freq_technology, (37) 

word_freq_1999, (38) word_freq_parts, (39)word_freq_pm, 

(40) word_freq_direct, (41) word_freq_cs, (42) 

word_freq_meeting, (43) word_freq_original, (44) 

word_freq_project, (45) word_freq_re, (46) word_freq_edu, 

(47) word_freq_table, (48) word_freq_conference, (49) 

char_freq_;, (50) char_freq_(:, (51) char_freq_[:, 

(52)char_freq_, (53) char_freq_,  (54) char_freq_,  (55) 

capital_run_length_average, (56) capital_run_length_longest,  

(57)Capital_run_length_total 
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Wine (total 

observations=178  

and                           

total features=500        

Original features =13     

Artificial 

features=487)                    

Accuracy: 94%              

Features selected: 4 

 

(1) alcohol, (2)metalic acid, (3)ash, (4) alcalinity of ash, (5) 

magnesium, (6) total phenols, (7) flavanoids, (8) nonflavanoid 

phenols, (9) proanthocyanins, (10) color intensity, (11) hue, 

(12) OD280/OD315 of diluted wines, (13) Proline 

Yeast (total 

observations=1484  

and                           

total features=500        

Original features =8     

Artificial 

features=492)                    

Accuracy: 69%              

Features selected: 1 

Solution 1: (1)mcg, (2)gvh, (3)alm, (4)mit, (5)erl, 

(6)pox,(7)vac,(8)nuc 

Solution 2: (1)mcg, (2)gvh, (3)alm, (4)mit, (5)erl, 

(6)pox,(7)vac,(8)nuc 

Solution 3: (1)mcg, (2)gvh, (3)alm, (4)mit, (5)erl, 

(6)pox,(7)vac,(8)nuc 

Solution 4: (1)mcg, (2)gvh, (3)alm, (4)mit, (5)erl, 

(6)pox,(7)vac,(8)nuc 

Solution 5: (1)mcg, (2)gvh, (3)alm, (4)mit, (5)erl, 

(6)pox,(7)vac,(8)nuc 

Zoo (total 

observations=101  

and                           

total features=500        

Original features =16     

Artificial 

features=484)                    

Accuracy: 100%              

Features selected: 1 

(1) hair, (2) feathers, (3) eggs, (4) milk, (5) airborne, (6) 

aquatic, (7) predator, (8) toothed, (9) backbone, (10) breathes, 

(11)venoumous, (12) fins, (13) legs, (14) tail, (15) domestic, 

(16) catsize 

Smoking (total 

observations=3321  

and                           

total features=285       

Original features 

=285    Artificial 

features=0)                    

Accuracy: 100%              

Features selected: 12 

Best to date feature subset includes the following features: (1) 

Prompted awareness of brands-Regal, (2) Brand identification 

(masked packs)—B & H, (3) Brand identification (masked 

packs):--Berkeley, (4) Brand identification (masked packs)—

Lambert & Butler, (5) Brand identification (masked packs)—

Marlboro, (6) Brand identification (masked packs)—Regal, (7) 

Correct identification of Richmond, (8) Number of masked 

brands identified, (9) Number of Superkings marketing types 

seen (inc sponsorship), (10) any sibling smoke, (11) parental 

smoking status—both, mum, dad, neither, (12) Any close 

friends smoke 
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Chapter 5       

Reconstruction of Incomplete Datasets in Cross-Sectional 

Studies 

5.1. Introduction 

Missing data is a problem that is ubiquitous to all studies and a source of multiple 

problems from an analytic point of view (reduced statistical power, increased type I 

error, bias), which we discussed in detail section 1.1.2. As we discuss in section 2.3, 

conventional algorithms suffer from many problems including lack of local 

approximation properties, curse of dimensionality, parametric degradation, and having 

too many free parameters. The treatment of incomplete data is an important, if not the 

most important step in the pre-processing of data. We propose a novel nonparametric 

multiple imputation (MI) algorithm GEMI. GEMI is a Generalized Regression Neural 

Network Ensemble (GE) comprising a number of Generalized Regression Neural 

Networks (GRNNs). We also developed a single imputation (SI) version of this 

approach—GESI. We compare our algorithms with well-known imputation algorithms 

on 51 real-world datasets (50 public datasets with artificially introduced missing values 

and a new real-life dataset with 37% missing data) for various percentage of missing 

values. The effectiveness of the algorithms is evaluated in terms of (i) the accuracy of 

output classification, (ii) interval estimation accuracy of missing value estimates and 

(iii) point estimation accuracy of missing value estimates. In terms of the first two 

criteria listed above, GEMI outperformed GESI and all the conventional imputation 

algorithms. The rest of the chapter is organized as follows: novelties of the proposed 
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algorithms in section 5.2, details of novel algorithms in section 5.3, comparative 

performance measurement in section 5.4, results and discussion in section 5.5, 

summary and conclusions in section 5.6, and future work in section 5.7. 

 

5.2. Novelties of Proposed Algorithms: GEMI & GESI 

We developed two novel missing value imputation algorithms—GEMI (GRNN-

Ensemble for Multiple-Imputation) and GESI (GRNN-Ensemble for Single 

Imputation). Both algorithms construct an ensemble model of Generalized Regression 

Neural Networks (GRNN)—a well respected computational intelligence based 

algorithm proposed by Donald Specht in [145]. An ensemble of GRNNs is a set of 

different GRNNs which together solve a problem. GESI is a single imputation version 

of GEMI. The only difference between GEMI and GESI lies in the number of 

imputations that are made for any one missing value. In GESI, one replacement value is 

created and imputed for each missing observation. In GEMI, several missing values are 

independently imputed, creating multiple ( m ) datasets and multiple estimates, one for 

each replication of the imputation process. The multiple estimates are averaged over the 

m  imputations to create a single MI estimate of the statistic of interest. To account for 

the uncertainty of the imputation process, MI variance estimators that incorporate both 

within- and between-imputation components are used to account for imputation-related 

variance in the overall variance of the estimate of interest. The pseudo codes of GEMI 

and GESI are presented in section 5.3. In this section, we discuss the advantages of 

these novel approaches.  
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First, a good imputation algorithm should use as much information as possible. 

The problem is that a variable X may be related both to the missing data mechanisms 

and to the actual outcomes of the covariates. To produce high-quality imputations for a 

particular variable X , the imputation model should include variables that are (a) 

potentially related to X , and (b) potentially related to the missing mechanism of X . A 

general guideline is that the imputer should use a model that is general enough to 

preserve any associations among variables (two-, three-, or even higher-way 

associations) that may be the target of subsequent analysis. Hence, our algorithms 

attempt to use the maximum possible information content available to yield optimal 

performance. Our novel algorithms (GEMI and GESI) that are used to conjointly model 

the data and missing data mechanisms exploit information, not only from observations, 

but also from presence and absence of values in other variables. This is a difficult task 

to accomplish. For each variable iX , we define a corresponding indicator variable iI , to 

indicate whether the value of the variable iX  is missing or not. However, adding all 

those indicator features comes at a price: it increases the dimensionality of the patterns. 

Consequently, the curse of dimensionality problem appears and the prediction 

performance degrades severely.  

 

In order to ensure the inclusion of all the important predictors and interactions in 

the model, our algorithms (GEMI and GESI) follow a novel homogeneous ensemble 

framework that can cope with the curse of dimensionality. GEMI and GESI are 

Generalized Regression Neural Network (GRNN) ensembles where a collection of 

GRNNs is trained for the same task. Ensemble members are trained on different subsets 

of features. These separately trained GRNNs are then combined to form one unified 
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prediction model. There are numerous ensemble approaches available in the literature. 

Compared with existing ensemble learning algorithms, our proposed ensemble 

approach is unique in the following two aspects.  

 

(i) Selection of ensemble members: The selection of an optimal feature subset 

and the selection of an optimal set of ensemble members are similar types of 

combinatorial problems. Hence, the same techniques are used for both of these 

problems. We reviewed these techniques and their advantages and disadvantages in 

sections 2.1 and 2.2 of chapter 2. Our novel algorithms (GEMI and GESI) apply our 

proposed feature subset selection algorithm (SAGA) to select several parsimonious 

feature sets with excellent prediction performances. These subsets are used to train 

separate GRNNs. GEMI and GESI then identify a parsimonious set of trained GRNNs 

(ensemble members) for the ensemble model using the SAGA. We demonstrated in 

chapter 4 that SAGA offers the most parsimonious and best-fitting models. 

 

(ii) Method of combining the outputs of ensemble members: Weighted Voting is 

the most widely used and accepted strategy available for combining the outputs of 

several ensemble members trained independently to perform a prediction task. A 

weighted voting system is one in which the preferences of some voters carry more 

weight than the preferences of other voters. The major disadvantage of traditional static 

weighted voting system is that the weights for each ensemble member‘s vote do not 

depend on patterns to be learned. Recent studies show that when the performance of the 

ensemble members is not uniform for all patterns, the efficiency of this type of voting 

is affected negatively [155]. To overcome this problem, Jacobs and Jordan proposed a 
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dynamically selected ensemble neural network in which the combiner or the gating 

network (an MLP network) selects a single base classifier rather than combining the 

predictions of the classifiers [40]. However, it does not serve our purpose because it 

does not reduce the curse of dimensionality. We discovered an effective means of 

combining such ensemble members. In our proposed ensemble approach, the neural 

network ensemble consists of two layers of GRNNs. Each GRNN in the first layer 

(called base learner) is trained to predict the variable of interest using a distinct feature 

subset identified by the SAGA. The number of GRNNs in the first layer is also 

determined by the SAGA. There is only one GRNN in the second layer (called 

combiner). The second layer GRNN uses the outputs of the first layer as inputs and 

produces the final prediction for the unobserved items. Figure 5.1 illustrates the basic 

framework for the proposed GRNN ensemble. GRNN is a local approximation 

algorithm. To embed this feature into our own algorithms (GEMI & GESI), we used 

GRNN as base learners as well as the ensemble combiner. Consequently, GEMI and 

GESI are dynamic weighted voting methods. These methods adapt weights of base 

learners in a pattern-by-pattern fashion.  For each instance to be classified, they assign 

weights to base learners proportional to their accuracy on similar cases.  
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In addition to the high number of predictor variables, there is another major pitfall to be 

aware of when imputing missing data. Missing values are determined using complete 

case analysis. The sample size decreases as the percentage of missing values increases. 

A small sample size tends to result in a poor model fit. In order to reduce this problem, 

our algorithms (GEMI and GESI) imitate the iterative computation of the MCMC and 

EM algorithms, although these new algorithms do not use the maximum likelihood 

approach. GEMI and GESI repeatedly alternate between two steps, the M 

(Maximization)-step and the E (Expectation)-step. In the first M-step, GEMI and GESI 

fit the imputation model based on the complete cases only. Then, in the first E-step, 

missing values are imputed by the imputation model estimated at the previous M-step. 

Given a complete sample, the next-M step updates the imputation model. This new 

imputation model is then used in the next E-step for re-estimating missing values. This 

process continues until the algorithm finds a stationary repetitive state or the desired 

state. 

  

Second, our proposed algorithm GEMI is that it is a multiple imputation (MI) 

algorithm. MI accounts for data by restoring not only the natural variability in the 

missing data, but also by incorporating the uncertainty caused by estimating missing 

data. GEMI uses Rubin‘s multiple imputation framework [11] that allows us to create 

proper multiple imputations in complex multivariate settings.  To perform multiple 

imputations using GEMI, we create 30 training sets since a larger number of samples 

will give a better estimate of the random error, every time randomly selecting 70% of 

the available data. Each dataset is analyzed. With 30 training sets, 30 separate sets of 

parameter estimates (i.e. conditional mean and conditional variance) are obtained.  
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Individual parameter estimates are combined to get global parameters of the conditional 

target distribution for the missing data. We then create 30 replications of the original 

datasets, resulting in 30 datasets. For imputing missing values, GEMI simulates draws 

from the distribution of interest. The replicas of a record will differ in imputed values 

but not in observed values. Variation in estimates across these multiple datasets permits 

estimation of overall variation, including both sampling and imputation variance. 

 

Third, both novel algorithms (GEMI and GESI) are based on a fuzzy clustering 

scheme. This is a non-parametric algorithm and minimizes distributional assumptions. 

This algorithm can easily handle data from different distributions. The datasets imputed 

by these algorithms will have the same distributional shape as the observed data. 

Another advantage of our methods (GEMI & GESI) is that they are local approximators 

whereas many conventional imputation algorithms such as MCMC, EM, and MLPs are 

global approximators. Global approximators formulate one predictive formula for the 

entire search space. In contrast, local approximators formulate many effective formulas 

in order to address local variations. In addition, since GEMI and GESI are similarity 

based algorithms, they are less sensitive to potential outliers. GEMI and GESI have 

inherited these qualities from their underlying algorithm GRNN. A brief overview of 

the GRNN was given in section 3.1.4.1.  

 

Fourth, there are only a few parameters in GEMI and GESI that need to be 

selected. These parameters include the parameters of GRNN and the parameters of 

SAGA. Apart from the above mentioned parameters, there is one extra parameter 

(number of imputations: m ) in GEMI.  
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GRNN has only one adjustable parameter (the smoothing parameter ). 

Appendix 4A1 shows performance impact of different  values. The choice of SAGA 

parameter values and the total number of imputations ( m ) depends on the 

computational cost one is willing to incur.  Hence, the task of specifying m and SAGA 

parameters is relatively straightforward. We determine default settings through 

experiments with 200 synthetic datasets (these 200 datasets were not used in the 

missing data imputation study). Details about how synthetic datasets were generated 

are described in section 3.2.2.2. Users can accept default parameter values where 

resource constraints permit, since default parameter values will almost always produce 

good results. They can also set much higher values for these parameters (parameter 

mand parameters of SAGA). Usually, the higher parameter values provide better 

results. In our missing data imputation experiments, we used default settings. A 

reasonable number of different parameter values were tried in order to find those values 

for which the code seemed to perform best overall. The relative performance of 

different parameter values were compared using statistical tests (Friedman Two-Way 

Analysis of Variance by Ranks and Comparisons of Groups or Conditions with a 

Control [140]). The list of default values of parameters, stored in the configuration file 

in our novel algorithms, are given in table 5.1. 

 

Based on the resource constraint, we set the value of m to be 30. Ideally, the 

selection of the parameter value m  should depend on the resource (e.g. memory and 

computational cost) availability, which we mentioned earlier. Our research 

demonstrates that precision improves by increasing the number of imputations (m). Our 

aim is to clarify this implication, so that the analyst may make an informed choice of 
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the parameter value. Hence, we reported the performance impacts of different m  

values in Appendix 5A. It appears that the best value for parameter m is 100. 

 

Table 5.1: Default Parameter Settings for GEMI & GESI  

Parameter Default Setting 

Number of imputations m ( a parameter of GEMI) 30 

Smoothing Factor Parameter  (For GEMI & GESI) 

(Each centre‘s width 

is set to average 

Euclidean distance to 

20 nearest members) 

*2 

Parameters of SAGA 

Population size of SA, GA, and hill-climbing (HC) 

algorithm while selecting 100 optimal feature subsets 
100 

Population size of SA, and GA while selecting an 

optimal subset of base learners 
100a 

Population size of  HC while selecting an optimal 

subset of base learners 
10 

Stopping criterion of the SA and GA 

Stop the algorithm if 

the best solution does 

not improve in the last 

200 runs. 
a
 Utilize 100 (or less, if the number of parsimonious diverse feature subset solutions  

generated by SAGA does not reach 100). 

 

 

5.3. Details of Novel Algorithms: GEMI & GESI 

Computational details and the pseudo codes of GEMI and GESI are given in sections 

5.3.1. Both GEMI and GESI apply SAGA (presented in chapter 4 of this thesis) to 

select optimal subsets of features for the imputation of missing values. SAGA 

sequentially employs three different search algorithms (SA, GA and Hill-Climbing 

algorithm) to find the optimal solution. A proper implementation of SA is tricky, since 
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we need to adjust temperature based on the stopping criteria. The pseudo code of SA is 

presented in section 5.3.2.  

 

5.3.1 The Pseudo code of GEMI & GESI 

In the implementation of GESI, we execute only the first two steps of the full procedure 

outlined in this section. GESI fits a single ensemble model (model-P) as shown in 

Figure 5.2. Model-P is a set of models ( nppp ,...,, 21 ) in which each element 

nppp ....,, 21 is a single ―ensemble‖ model that estimates the conditional mean of a 

missing value, where n  is the total number of missing values. 

For the implementation of GEMI, the full process has to be adhered to. GEMI 

fits m sets of (identical in the sense that they consist of the same feature ensembles, but 

non-identical in the sense that they are trained on different sets of training examples) 

replicas of a pair of prototype ensemble models—model-P: ),...,,( 21 mPPP and model-

Q: ),...,,( 21 mQQQ —as shown in Figure 5.3. Both prototype models (P and Q) consist 

of n sub models (one model for each of the n missing values). ),...,,( 21 nppp  and 

),...,,( 21 nqqq  represent the sub models of the prototype models P and Q, 

respectively. The model-P: ),...,,( 21 npppP  predicts the conditional means of 

missing values, whereas the model-Q: ),...,,( 21 nqqqQ  predicts the conditional 

variance of each missing value. 
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Step 1: Normalize each variable to the range [0, 1].  
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Step 2: Design and construction of prototype model-P: As mentioned before, in 

Model-P, there is a set of models ( nppp ,...,, 21 ) in which each element nppp ....,, 21 is 

a single ―ensemble‖ model (SEMm) that estimates the conditional mean of a missing 

value, where n  is the total number of missing values. In other words, in Model-P, there 

is a SEMm for each missing value in the dataset, wherein the variable with the missing 

value is the target variable. We define an indicator variable I for each main variable X  

with ijI =1 if ijX is missing and 0 otherwise. Here, ijX denotes the value of the j‘th 

main variable in the i ‘th pattern. ijI denotes the value of the j‘th indicator variable in 

the i ‘th pattern. The main ( ..., 21 XXX ) and indicator ( ,..., 21 III ) variables are 

considered as candidate input variables. 

 

Step 2.1: The maximization M -step:  

Create a loop to build a SEMm model for each missing value: 

;1k  n total number of missing values 

While nk  

Step 2.1.1: Use SAGA to identify 100 (or less, when the total number of diverse 

solutions found so far is less than 100) of the best feature subsets (FS) for the target 

variable from the pool of candidate input variables (both the main and indicator 

variables) using 10 fold cross validation. The parameters of SAGA are fixed at the 

values shown in table 5.1. 

Step 2.1.2: Train a separate GRNN with each of these 100 feature subsets. This will 

give us 100 trained GRNNs. These GRNNs are trained to predict the output 

variable jd*  
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Step 2.1.3: Use SAGA to select an optimal subset of base GRNN classifiers from 

the pool of 100 trained GRNNs to form the ensemble model ( kp ) using 10-fold 

cross validation. The parameters of SAGA are fixed at the values shown in table 

5.1. 

Step 2.1.4: Complete the construction of the ensemble model ( kp ) by training the 

combiner GRNN to predict the conditional mean of the missing value ijd using the 

outputs of the base learners as inputs. 

      ;1kk  

End (While nk Loop) 

 

Given a complete sample, the next M-step updates the model ),...,,( 21 npppP  and 

then the next E-step re-estimates the missing values based on the updated models. The 

two steps are iterated until the conditional means of missing values become stable. The 

process of developing model P is further illustrated in Figure 5.4. 
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Step 3: Design and construction of prototype model-Q: Model-Q is a set of models 

n
qqqQ ,...,,

21
 in which each element nqqq ....,, 21 is a single ―ensemble‖ model 

(SEMv) that estimates the conditional variance of a missing value. In Models-Q, there 

is a SEMv for each missing value in the dataset. In other words, there is a SEMv model 

associated to each SEMm model.  To construct a SEMv model, the following steps were 

executed. 

K=1; 

n total number of missing values 

While K<=n 

// build the model kq  

Step 3.1: Define input and output variables for the model (
k

q ): The target variable 

of the model kq is defined as the squared residuals of the model kp on the training set. 

All variables, except the variable with missing values (i.e. the target variable of 

model kp ), and the corresponding indicator variables are treated as candidate input 

variable for the model kq . 

Step 3.2: Apply SAGA to select the ensemble of base learners: 

Step 3.2.1: Identify 100 near-optimal but diverse feature subset solutions using 10-fold 

cross validation. The default parameter setting used in the experiment is listed in table 

5.1. 

Step 3.2.2: Train a base GRNN learner using each of the 100 feature subset solutions. 

Step 3.2.3: Apply SAGA to select an optimal subset of GRNNs from the pool of 100 

trained GRNNs, which will be used to form the model kq . Table 5.1 summarizes the 

SAGA parameter setting for the experiments. 
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Step: 3.2.4: To complete the construction of the ensemble model kq , train the combiner 

GRNN to predict the expected squared error of the ensemble model kp based on the 

outputs of the base GRNN learners. 

K=K+1; 

End (While K<=n) loop 

The model-Q construction process is illustrated in Figure 5.5. 

 

 

Step 4: Construct multiple models for estimating parameters of missing 

observations: Generate m exact replicas )),(),...,,(),,(( 2211 mm QPQPQP  of the 

prototype models P and Q. Train the replicas using 70% training data rather than 100%. 

The training set of each replica was selected randomly. While training the different 

replicas, we did not apply SAGA for selecting ensemble members since these ensemble 



                                                

 

188 

models are constructed from the prototype configuration. The replicas were trained 

using the following steps: 

//Use a loop to train replica models 

K =1; 

While K<=m 

Step 4.1: Train each member GRNN of the replica ensemble model kP on the 

training set using input (main and indicator variables) and output (variable with the 

missing value) data. 

Step 4.2: Present the training patterns to kP for the prediction of target variable and 

compute squared residuals.  

Step 4.3: Train each member GRNN of the replica model kQ using inputs (main 

and indicator predictor variables) and output (squared residuals of kP ) data. 

       K=K+1; 

End Loop /* Replica models )),(),...,,(),,(( 2211 mm QPQPQP are now ready for 

use.*/ 

The process of developing a pair of replicas of models P and Q  is summarized in 

Figure 5.6. 
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Step 5: Estimate the parameters of missing data 

L=1; 

n=number of missing values 

m= number of replica models 

While L<=n 

 k =1; 

While mk  

 Present the fully trained model kP  with the missing value Ld  for predicting the 

conditional mean ( LkY


) of missing value ( Ld ).  

 Present the missing value ( Ld ) to the trained model kQ  for predicting the 

conditional variance ( LkU


) of missing value ( Ld ). 
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 End While loop mk  

 The conditional mean of the missing value Ld is the average of the single estimates: 

)1.5(
1

1

m

k
LkL Y

m
Y


 

 Estimate the within-imputation variance )2.5(
1

1

m

k
LkL U

m
U


 

 Estimate the between-imputation variance 

)3.5(
1

1

1

2
m

k
LLkL YY

m
B


 

 The total variance T  of the missing value Ld  is 

)4.5(
1

1 LLL B
m

UT  

//We now know the mean and variance of the missing value Ld . 

L=L+1; 

End (of While Loop L<=n) 

//We now know the conditional means and variances of all missing values.  

 

Step 6: Replace each missing value by m plausible values: Replicate each record of 

the original dataset m times. 

We then impute the missing values setting them to RTY LL  where R is a pseudo 

random number drawn from a normal distribution with mean 0 and standard deviation 

1. 

Steps 5 and 6 are further illustrated graphically in Figure 5.7. 
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5.3.2  Pseudo code of the Simulated Annealing (SA): As we mentioned before, a 

proper implementation of SA is tricky, since we need to adjust temperature based on 

the stopping criteria.  In the experiments of chapter 4, the SA was stopped at pre-fixed 

time intervals. In this study, we use total number of iterations as a stopping criterion. 

Here we will show how to reduce the temperature of SA with each iteration. 

// Initialization Section 

 

Step 1: Encode possible solutions in binary strings, where 1 indicates the presence of 

the feature (or the base classifier) and 0 indicates its absence. 

Step 2: Set the initial temperature ( iT ): 100iT  

Step 3: Set the current temperature cT : ic TT  
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Step 4: Initialize Population: Randomly select 100 feature subset 

100:1II solutions from the solution space for initial population.  

Step 5: Estimate the prediction accuracy of each solution. 

Step 6: Evaluate the fitness (fitness score is the prediction accuracy as a fraction, not a 

percentage) of each solution using 10-fold cross validation: based on binary string of 

each solution I , extract a new dataset newD  from the (normalized) original dataset D . 

Evaluate the fitness scores 100:1oo EE  of feature subsets using GRNN and store 

the information (feature subset solutions with feature score) in database. 

// Iterative Section 

Step 7: For all current feature subset vectors 100:1II  change the bits of vectors 

with probability 100:1mm pp : )5.5(1 oimi Ep   

where mip represents the mutation rate of bits within the ith solution and oiE represents 

the fitness score of the ith solution. 

 Step 8: Evaluate the fitness 100:1nn EE  of the new candidate solutions if not 

already evaluated (check the database for fitness scores). 

Step 9: Determine if this new solution is kept or rejected and update the database:  

 If ,on EE  the new solution is accepted. The new solution replaces the old solution 

and oE  is set to nE . 

 If on EE , calculate the Boltzmann acceptance probability acceptP : 

)6.5(exp cnoaccept TEEP . 

  Generate a random number between 0 and 1. If acceptP is greater than or equal to the 

random number, the new solution is accepted and it replaces the old one: no EE . 
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Step 10: Update the effective temperature cT :  

 If the fitness of the best solution does not improve: )7.5(1cc TT  .  

 If the fitness of the best solution improved: ic TT  

Step 11: If the effective temperature is greater than or equal to zero, return to step 7. 

Otherwise the run is finished. 

 

 

5.4 Comparative Performance Analysis  

We compare our algorithms (GEMI and GESI) with popular single imputation (SI) and 

multiple imputation (MI) algorithms: (1) EM (Expectation Maximization) SI, (2) EM 

MI, (3) GRNN (Generalized Regression Neural Networks) SI, (4) GRNN MI, (5) HD 

(Hot-Deck) SI, (6) HD MI, (7) HES  (Heterogeneous Ensemble of GRNNs with Simple 

Averaging) SI, (8) HES (Heterogeneous Ensemble of GRNNs with Simple Averaging) 

MI, (9) HEW (Heterogeneous Ensemble of GRNNs with Simple Averaging) SI, (10) 

HEW (Heterogeneous Ensemble of GRNNs with Simple Averaging) MI, (11) HOS 

(Homogeneous Ensemble of GRNNs with Simple Averaging) SI, (12) HOS 

(Homogeneous Ensemble of GRNNs with Simple Averaging) MI, (13) HOW 

(Homogeneous Ensemble of GRNNs with Weighted Averaging) SI, (14) HOW 

(Homogeneous Ensemble of GRNNs with Weighted Averaging) MI, (15) KNN (K-

Nearest Neighbour algorithm) SI, (16) KNN MI, (17) MCMC (Markov Chain Monte 

Carlo), (18) MLP (Multilayer Perceptrons) SI, (19) MLP MI, (20) Mean Substitution 

(MS), (21) RBFNN (Radial Basis Function Neural Networks) SI, (22) RBFN MI, (23) 

WKNN (Weighted KNN) SI, (24) WKNN MI, and (25) ZI (Zero Imputation) on 51 

datasets (30 synthetic datasets + 20 public real-world datasets+1 new real-world 
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datasets), using 10 fold cross validation.  Conventional missing data imputation 

algorithms are described in section 3.1.2. Section 3.2.1 presents a brief description of 

datasets. Public real-world datasets are complete with no missing data. These datasets 

were used to conduct controlled experiments. We artificially removed data using 

ignorable and non-ignorable missing value mechanisms at different rates of missing 

values. Section 3.2.2.3 details the methods adopted to simulate random and non-

random missing data mechanisms. Approximately one-third of the total missing values 

were introduced, using each of the three missing data mechanisms (MCAR, MAR and 

MNAR), into each of the dataset.  Then the imputation algorithms were applied 

separately to each incomplete dataset for imputation of missing values. We compare 

performance of algorithms on synthetic and public real-world datasets in three different 

ways: 

 

First, each multiple imputation algorithm‘s performance was evaluated based on 

how accurately the algorithm recovers the nature of the conditional posterior 

distribution of the missing value. Each multiple imputation algorithm constructs a 95% 

confidence interval estimate of the missing value. The formula for the 95% confidence 

interval using the normal approximation is: 

 variancelconditiona1.96mean lConditiona .  

 

We examine the relative performance in the sense of interval estimation accuracy 

of multiple imputation algorithms. In general, an interval forecast is considered to be 

correct if the actual value falls inside the predicted 95% confidence interval. The higher 

the accuracy of interval identification, the better the algorithm.  If the two algorithms 
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have the same interval estimation accuracy on a dataset, the algorithms are ranked 

based on the average length of the estimated confidence interval. A narrow confidence 

interval implies high precision. For example, if we let the confidence interval to 

be ),( , then we may achieve 100% accuracy, but this interval is associated with 

very poor precision. Single imputation algorithms were naturally excluded from this 

study since they only provide a point estimate of the missing value. 

 

Second, we compare the imputation algorithms with respect to the precision in 

terms of the accuracy of the missing value estimates using 10-fold cross validations on 

datasets. In general, the higher the accuracy values, the higher the agreement between 

observed and predicted data. If the variable of interest is continuous, then MAPE 

(Mean Absolute Percentage Error) was used to estimate the predictive accuracy of the 

algorithms. 

N

i i

ii

X

XX

N
MAPEAccuracy

1

)8.5(
100

100(%)100(%)



 

Where N is the number of test patterns, iX is the observed value of the variable of 

interest (X) at the i ‘th point and iX


is the predicted value. 

 

Third, missing data inevitably affect a classifier‘s performance. Hence, the 

relative merits of these imputation algorithms were assessed by measuring the impact 

of imputation on the classification of outcomes. We determine the performance of an 

imputation algorithm based on the classification accuracy of a GRNN classifier in the 

imputed dataset using 10-fold cross-validation.   
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The Friedman test is used to test the null hypothesis that the performance is the 

same for all algorithms. After applying the Friedman test and noting it is significant, 

―Comparison of Groups or Conditions with a Control‖ tests (details are available in 

[140], p. 181) were performed in order to test the (null) hypothesis that there is no 

significant difference between any pair of the imputation algorithms under study.  

 

In addition to experiments on public real world datasets, the performance was 

tested with a new real world dataset ―Smoking Dataset‖. This dataset contains about 

37% missing values. We did not artificially remove values from this dataset. We assess 

each imputation algorithm‘s performance on this dataset in terms of accuracy of output 

estimation by the GRNN classifier trained with the imputed dataset.  Since all the 

missing values in this dataset are actually unknown to us, it was not possible to 

compare imputation algorithms in terms of the estimation error of missing values. 

 

We adopted a set of measures for free and fair competition between imputation 

algorithms, which we discussed below. 

 

Measures for fair comparative evaluations of imputation algorithms 

The following measures were taken to organize fair competition among all imputation 

algorithms: 

 All algorithms use our proposed feature subset selection algorithm SAGA for 

selecting an optimal subset of features. GEMI, GESI, HOS SI, HOS MI, HOW SI 

and HOW MI employ SAGA for the selection of optimal subsets of features, as 



                                                

 

197 

well as an optimal strategy for selecting ensemble members. All imputation 

algorithms use SAGA with the parameter settings reported in table 5.1: 

 Although none of these algorithms (except EM and MCMC) use maximum likelihood 

(ML) estimation of model parameters, all algorithms (except MS, ZI, HD, KNN, 

and WKNN) were implemented as an (EM-style) iterative method to refine 

imputation models.  

 Each multiple imputation (MI) algorithm replaces missing values with a set of 30 

plausible values. 

 

5.5. Results & Discussion 

Figure 5.8 presents the impact of imputation of missing values by different imputation 

algorithms on classification accuracy for smoking dataset. Summary results on 50 

datasets (synthetic and UCI datasets) are presented in Tables 5.2-5.5. These tables 

compare our novel imputation algorithms with well-known imputation procedures in 

terms of (i) the overall mean accuracy of classifying the response variable on imputed 

datasets with different percentage of missing data (table 5.2), (2) the overall mean 

accuracy of interval estimation of the missing value (table 5.3) and average length of 

constructed 95% confidence intervals for missing values (table 5.4), and (3) the overall 

mean accuracy of  point estimation of the missing value (table 5.5).  The Friedman tests 

reveal significant differences ( 05.0p ) in the performance of imputation algorithms at 

10 to 70% missing data. The classification performance of imputation algorithms based 

on pair wise tests is presented in Table 5.6. The pair-wise test results for other 

performance measures are shown in appendix tables (5B-5C).  
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Table 5.2: Output classification accuracy under different levels of missing rates 

 Rate of Missing Values 

Algorithm 5% 10% 20% 30% 40% 50% 60% 70% 75% 

GEMI 97 (4) 96 (4) 92 (6) 85 (7) 76 (9) 69 (17) 59 (17) 55 (12) 44 (15) 

GESI 97 (4) 85 (6) 75 (8) 62 (15) 55 (17) 55 (10) 51 (10) 53 (11) 40 (15) 

EM 97 (4) 75 (10) 61 (13) 60 (12) 52 (20) 53 (16) 49 (9) 43 (13) 43 (13) 

GRNN MI 97 (4) 79 (10) 71 (11) 68 (10) 51(19) 52 (14) 50 (11) 44 (14) 43 (16) 

GRNN SI 97 (4) 80 (11) 64 (13) 57 (19) 55(17) 50 (9) 50 (9) 39 (14) 46 (15) 

HD MI 97 (4) 81 (7) 62 (13) 52 (20) 49 (16) 54 (11) 50 (8) 39 (18) 43 (17) 

HD SI 97 (4) 80 (8) 61 (8) 51 (20) 50(15) 51 (12) 47 (8) 39 (17) 46 (18) 

HES MI 97 (4) 81 (9) 71 (11) 59 (14) 49(23) 59 (17) 50 (10) 39 (19) 38 (17) 

HES SI 97 (4) 79 (10) 62 (15) 54 (15) 48 (20) 50 (18) 52 (8) 43 (15) 43 (13) 

HEW MI 98 (5) 82 (7) 73 (8) 70 (13) 61(17) 50 (10) 49 (12) 41 (16) 41 (14) 

HEW SI 97 (5) 81 (9) 68 (12) 59 (12) 52(16) 49 (9) 50 (10) 42 (17) 42 (18) 

HOS MI 96 (4) 79 (10) 68 (17) 66 (19) 52 (17) 51 (16) 52 (9) 44 (15) 39 (17) 

HOS SI 97 (4) 73 (15) 53 (16) 52 (18) 57 (18) 52 (13) 51 (10) 40 (19) 47 (15) 

HOW MI 97 (5) 86 (8) 80 (9) 75 (12) 67 (13) 58 (12) 50 (11) 43 (15) 41 (17) 

HOW SI 96 (4) 82 (8) 71 (14) 63 (19) 43 (16) 47 (15) 47 (9) 40 (18) 46 (15) 

KNN MI 97 (4) 79 (11) 61 (13) 54 (19) 56 (16) 53 (14) 48 (11) 40 (15) 39 (16) 

KNN SI 97 (4) 73 (15) 56 (18) 51 (22) 55 (18) 48 (10) 48 (8) 44 (15) 43 (15) 

MCMC 97 (4) 87 (7) 80 (7) 73 (11) 62 (15) 48 (16) 50 (9) 39 (16) 42 (16) 

MLP MI 96 (3) 79 (9) 65 (11) 63 (15) 57 (16) 51 (12) 52 (10) 43 (17) 41 (16) 

MLP SI 97 (5) 74 (11) 56 (11) 51 (18) 54(18) 48 (12) 42 (14) 44 (12) 42 (14) 

MS 98 (4) 73 (9) 54 (11) 51 (22) 50(21) 52 (9) 49 (11) 43 (14) 41 (15) 

RBF MI 97 (4) 79 (12) 69 (12) 64 (11) 45 (20) 49 (13) 48 (11) 40 (14) 39 (19) 

RBF SI 97 (4) 78 (11) 60 (11) 49 (17) 51(13) 48 (18) 51 (8) 38 (15) 43 (17) 

WKNN MI 98 (4) 78 (11) 66 (11) 60 (21) 50 (20) 51 (12) 50 (9) 43 (15) 41 (17) 

WKNN SI 97 (4) 75 (13) 59 (13) 52 (22) 55 (18) 51 (12) 52 (9) 46 (16) 39 (17) 

ZI 96 (5) 69 (15) 50 (18) 48 (12) 55 (15) 46 (9) 48 (8) 41 (17) 48 (15) 
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Table 5.3: Interval estimation accuracy of imputation algorithms under different 

levels of missing rates 
 Rate of Missing Values 

Algorithm 5% 10% 20% 30% 40% 50% 60% 70% 75% 

GEMI 94 (5) 97 (2) 96 (4) 90 (9) 82 (11) 79 (14) 71 (15) 64 (16) 49 (15) 

GRNN 
MI 94 (5) 90 (5) 79 (6) 73 (11) 74 (14) 54 (17) 48 (9) 49 (12) 50 (12) 

HD MI 93 (4) 88 (4) 70 (10) 70 (11) 70 (10) 55 (14) 55 (13) 50 (13) 51 (14) 

HES MI 94 (6) 88 (6) 73 (7) 74 (7) 58 (29) 59 (24) 54 (10) 52 (13) 47 (10) 

HEW MI 94 (5) 91 (3) 80 (11) 80 (8) 72 (18) 56 (13) 54 (10) 51 (14) 50 (11) 

HOS MI 93 (5) 83 (7) 67 (6) 68 (17) 60 (11) 52 (7) 50 (8) 47 (12) 50 (14) 

HOW MI 94 (5) 90 (3) 87 (5) 80 (13) 74 (14) 62 (10) 56 (9) 50 (15) 48 (11) 

KNN MI 95 (5) 80 (8) 71 (9) 66 (13) 59 (18) 56 (13) 55 (10) 51 (13) 52 (14) 

MCMC 94 (5) 92 (2) 90 (5) 82 (12) 72 (17) 54 (12) 52 (10) 49 (14) 53 (11) 

MLP MI 93 (4) 83 (7) 70 (11) 67 (15) 61 (16) 50 (14) 48 (8) 51 (13) 49 (13) 

RBF MI 94 (5) 85 (7) 73 (7) 74 (17) 56 (18) 59 (22) 50 (18) 52 (13) 50 (13) 

WKNN 
MI 93 (5) 89 (6) 71 (9) 61 (19) 67 (21) 50 (7) 45 (11) 47 (13) 51 (10) 

 

 

Table 5.4: The overall width of interval estimates of missing values under different 

levels of missing rates 

 

 Rate of Missing Values 

Algorithm 5% 10% 20% 30% 40% 50% 60% 70% 75% 

GEMI 9 (7) 16 (11) 23 (12) 39 (14) 51 (22) 67 (18) 46 (14) 53 (21) 31(28) 

GRNN 
MI 8 (8) 25 (9) 35 (14) 36 (16) 53 (32) 60 (39) 38 (20) 32 (27) 30 (28) 

HD MI 12 (9) 35 (14) 32 (12) 28 (14) 28 (12) 60 (23) 35 (27) 23 (27) 29 (24) 

HES MI 10 (8) 30 (9) 36 (20) 44 (24) 32 (25) 64 (39) 48 (29) 33 (30) 29 (27) 

HEW MI 10 (8) 29 (10) 28 (9) 49 (28) 82 (36) 66 (22) 55 (34) 28 (29) 30 (26) 

HOS MI 9 (9) 27 (15) 47 (24) 57 (32) 60 (19) 53 (19) 40 (30) 24 (30) 32 (25) 

HOW MI 9 (8) 20 (8) 27 (14) 49 (26) 64 (30) 67 (33) 37 (26) 28 (25) 34 (28) 

KNN MI 11 (9) 24 (13) 35 (27) 37 (24) 40 (25) 53 (31) 37 (30) 31 (32) 33 (28) 

MCMC 12 (9) 23 (11) 25 (14) 46 (26) 60 (34) 64 (30) 36 (28) 23 (23) 21(25) 

MLP MI 8 (7) 22 (15) 48 (25) 46 (30) 35 (26) 48 (30) 42 (28) 35 (29) 29 (29) 

RBF MI 12 (10) 25 (11) 35 (23) 37 (23) 47 (29) 77 (36) 42 (30) 29 (28) 29 (28) 

WKNN 
MI 11 (9) 22 (13) 31 (14) 31 (20) 44 (26) 59 (29) 41 (26) 30 (26) 41 (30) 
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Table 5.5: The accuracy of estimating the missing values under different levels of 

missing rates 

 Rate of Missing Values 

Algorithm 5% 10% 20% 30% 40% 50% 60% 70% 75% 

GEMI 89 (11) 81 (10) 79 (14) 76 (12) 70 (15) 62 (14) 62 (14) 55 (13) 50 (28) 

GESI 89 (10) 98 (2) 94 (5) 89 (8) 79 (12) 74 (14) 64 (17) 60 (17) 44 (31) 

EM 89 (11) 88 (9) 84 (9) 77 (10) 72 (12) 64 (7) 54 (8) 41 (30) 59 (31) 

GRNN 
MI 91 (8) 73 (8) 64 (8) 63 (10) 57 (17) 50 (11) 53 (12) 46 (34) 53 (32) 

GRNN SI 88 (11) 89 (9) 89 (9) 77 (11) 70 (10) 60 (13) 57 (12) 50 (29) 51 (30) 

HD MI 89 (10) 66 (19) 58 (13) 61 (11) 54 (12) 50 (6) 43 (10) 53 (29) 43 (32) 

HD SI 89 (12) 90 (9) 86 (10) 72 (11) 58 (14) 50 (7) 54 (15) 55 (32) 48 (29) 

HES MI 86 (11) 68 (14) 63 (9) 61 (16) 62 (16) 51 (21) 44 (22) 45 (29) 50 (23) 

HES SI 89 (9) 80 (16) 69 (13) 74 (15) 55 (22) 58 (13) 52 (12) 53 (31) 47 (34) 

HEW MI 89 (11) 75 (11) 66 (13) 64 (13) 57 (11) 54 (17) 52 (12) 42 (28) 50 (34) 

HEW SI 88 (11) 88 (6) 85 (9) 78 (13) 68 (11) 63 (11) 58 (13) 50 (35) 57 (30) 

HOS MI 90 (11) 70 (13) 60 (14) 55 (14) 57 (13) 53 (8) 49 (13) 56 (33) 45 (29) 

HOS SI 89 (8) 81 (11) 81 (12) 72 (14) 66 (18) 55 (15) 56 (13) 49 (28) 46 (33) 

HOW MI 91 (11) 77 (8) 71 (17) 64 (16) 64 (12) 55 (17) 51 (13) 46 (32) 57 (34) 

HOW  SI 89 (10) 89 (9) 85 (10) 72 (11) 69 (15) 57 (13) 58 (13) 45 (29) 48 (35) 

KNN MI 90 (10) 73 (11) 65 (9) 64 (15) 56 (18) 41 (17) 44 (17) 49 (33) 53 (31) 

KNN SI 92 (10) 87 (7) 81 (13) 80 (13) 62 (14) 55 (18) 45 (15) 53 (29) 45 (32) 

MCMC 86 (10) 77 (13) 70 (14) 64 (15) 58 (14) 55 (15) 53 (19) 56 (31) 51 (33) 

MLP MI 88 (10) 74 (12) 61 (12) 56 (14) 50 (18) 56 (19) 53 (14) 50 (33) 48 (29) 

MLP SI 86 (10) 86 (7) 80 (9) 77 (16) 68 (11) 60 (9) 58 (8) 41 (25) 40 (28) 

MS 90 (11) 84 (13) 80 (13) 75 (18) 63 (18) 58 (21) 50 (13) 47 (30) 50 (33) 

RBF MI 88 (9) 73 (13) 66 (12) 66 (18) 60 (14) 46 (16) 47 (18) 46 (29) 55 (23) 

RBF SI 87 (13) 83 (10) 88 (11) 75 (17) 74 (13) 62 (11) 62 (14) 51 (33) 57 (31) 

WKNN 
MI 87 (10) 75 (14) 64 (10) 67 (12) 54 (14) 48 (12) 47 (15) 57 (30) 50 (30) 

WKNN 
SI 89 (9) 88 (7) 85 (8) 73 (12) 69 (9) 61 (10) 50 (13) 57 (29) 47 (34) 

ZI 85 (11) 79 (15) 67 (17) 56 (22) 53 (21) 54 (19) 57 (19) 52 (29) 53 (30) 
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Table 5.6: Pairwise comparisons among imputation algorithms in terms of output 

classification accuracy 

Rank Algorithm Significantly outperformed algorithms 

With about 10% Missing Values 

1 GEMI 

(1)MCMC, (2)HOW MI, (3)GESI, (4)HOW SI, 

(5)HEW MI , (6)HES SI, (7)GRNN MI, (8) HD 

MI, (9)WKNN_MI, (10)HOS SI, (11)HES MI, 

(12)HEW SI, (13)RBF MI, (14) HD SI, (15)KNN 

MI, (16) RBF SI, (17) EM, (18) WKNN SI, (19) 

GRNN SI, (20) MLP MI, (21) MLP SI, (22) HOS 

MI, (23) KNN SI, (24) MS, (25) ZI 

2 MCMC 

 (1)HEW MI, (2)HES SI, (3)GRNN MI, (4) HD 

MI, (5)WKNN_MI, (6)HOS SI, (7)HES MI, 

(8)HEW SI, (9)RBF MI, (10) HD SI, (11)KNN 

MI, (12) RBF SI, (13) EM, (14) WKNN SI, (15) 

GRNN SI, (16) MLP MI, (17) MLP SI, (18) HOS 

MI, (19) KNN SI, (20) MS, (21) ZI 

3 HOW MI 

(1)RBF MI, (2) HD SI, (3)KNN MI, (4) RBF SI, 

(5) EM, (6) WKNN SI, (7) GRNN SI, (8) MLP 

MI, (9) MLP SI, (10) HOS MI, (11) KNN SI, (12) 

MS, (13) ZI 

4 GESI 

(1)KNN MI, (2) RBF SI, (3) EM, (4) WKNN SI, 

(5) GRNN SI, (6) MLP MI, (7) MLP SI, (8) HOS 

MI, (9) KNN SI, (10) MS, (11) ZI 

5 HOW SI 

(1) GRNN SI, (2) MLP MI, (3) MLP SI, (4) HOS 

MI, (5) KNN SI, (6) MS, (7) ZI 

6 

HEW MI, HES SI, GRNN 

MI, HD MI, WKNN MI, 

HOS SI 

(1) MLP SI, (2) HOM_MI1, (3) KNN SI, (4) MS, 

(5) ZI 

7 

HES MI, HEW SI, RBF 

MI, HD SI, KNN MI, 

RBF SI, EM, WKNN SI (1) HOS MI, (2) KNN SI, (3) MS, (4) ZI 

8 

GRNN SI, MLP MI, MLP 

SI, HOS MI (1) KNN SI, (2) MS, (3) ZI 

9 KNN SI (1) MS, (2) ZI 

10 MS (1) ZI 

11 ZI 0 

With about 20% Missing values 

1 GEMI 

 (1) GESI, (2)HOW SI, (3)HEW MI, (4) GRNN 

MI, (5) HES MI, (6) RBF MI, (7) HEW SI, (8) 

MLP MI, (9) WKNN MI, (10) HES SI, (11) HD 

MI, (12) KNN MI, (13) EM, (14) HOS MI, (15) 

GRNN SI, (16) RBF SI, (17) WKNN SI, (18) HD 

SI, (19) KNN SI, (20) MLP SI, (21) HOS SI, (22) 

MS, (23)ZI 

2 MCMC, HOW MI 

 (1) HES MI, (2)GRNN MI, (3)HEW MI,(4) RBF 

MI, (5) HEW SI, (6) MLP MI, (7) WKNN MI, (8) 
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HES SI, (9) HD MI, (10) KNN MI, (11) EM, (12) 

HOS MI, (13) GRNN SI, (14) RBF SI, (15) 

WKNN SI, (16) HD SI, (17) KNN SI, (18) MLP 

SI, (19) HOS SI, (20) MS, (21)ZI 

3 GESI 

(1) HEW SI, (2) MLP MI, (3) WKNN MI, (4) 

HES SI, (5) HD MI, (6) KNN MI, (7) EM, (8) 

HOS MI, (9) GRNN SI, (10) RBF SI, (11) WKNN 

SI, (12) HD SI, (13) KNN SI, (14) MLP SI, (15) 

HOS SI, (16) MS, (17)ZI 

4 

HOW SI, HEW MI, 

GRNN MI 

(1) WKNN MI, (2) HES SI, (3) HD MI, (4) KNN 

MI, (5) EM, (6) HOS MI, (7) GRNN SI, (8) RBF 

SI, (9) WKNN SI, (10) HD SI, (11) KNN SI, (12) 

MLP SI, (13) HOS SI, (14) MS, (15)ZI 

5 HES MI 

(1) HES SI, (2) HD MI, (3) KNN MI, (4) EM, (5) 

HOS MI, (6) GRNN SI, (7) RBF SI, (8) WKNN 

SI, (9) HD SI, (10) KNN SI, (11) MLP SI, (12) 

HOS SI, (13) MS, (14)ZI 

6 RBF MI  

(1) EM, (2) HOS MI, (3) GRNN SI, (4) RBF SI, 

(5) WKNN SI, (6) HD SI, (7) KNN SI, (8) MLP 

SI, (9) HOS SI, (10) MS, (11)ZI 

7 

HEW SI, MLP MI, 

WKNN MI  

(1) GRNN SI, (2) RBF SI, (3) WKNN SI, (4) HD 

SI, (5) KNN SI, (6) MLP SI, (7) HOS SI, (8) MS, 

(9)ZI 

8 

HES SI, HD MI, KNN 

MI, EM, HOS MI 

(1) RBF SI, (2) WKNN SI, (3) HD SI, (4) KNN 

SI, (5) MLP SI, (6) HOM_SI1, (7) MS, (8)ZI 

9 GRNN SI, RBF SI 

(1) WKNN SI, (2) HD SI, (3) KNN SI, (4) MLP 

SI, (5) HOS SI, (6) MS, (7)ZI 

10 WKNN SI 

 (1) HD SI, (2) KNN SI, (3) MLP SI, (4) HOS SI, 

(5) MS, (6)ZI 

11 HD SI 

(1) KNN SI, (2) MLP SI, (3) HOS SI, (4) MS, 

(5)ZI 

12 KNN SI (1) MLP SI, (2) HOS SI, (3) MS, (4)ZI 

13 MLP SI (1) HOS SI, (2) MS, (3)ZI 

14 HOS SI (1) MS, (2)ZI 

15 MS (1)ZI 

16 ZI 0 

With about 30% Missing Values 

1  GEMI 

(1)HEW MI, (2) GRNN MI, (3) HOS MI, (4) RBF 

MI, (5) GESI, (6) MLP MI, (7) HOW SI, (8) HES 

SI, (9) WKNN SI, (10) MS, (11) KNN MI, (12) 

KNN SI, (13) EM, (14) HES MI, (15) HD MI, (16) 

GRNN SI, (17) WKNN MI, (18) HEW SI, (19) 

HOS SI, (20) HD SI, (21) MLP SI, (22) RBF SI, 

(23) ZI 

2  MCMC, HOW MI 

(1) GESI, (2) MLP MI, (3) HOW SI, (4) HES SI, 

(5) WKNN SI, (6) MS, (7) KNN MI, (8) KNN SI, 

(9) EM, (10) HES MI, (11) HD MI, (12) GRNN SI, 
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(13) WKNN MI, (14) HEW SI, (15) HOS SI, (16) 

HD SI, (17) MLP SI, (18) RBF SI, (19) ZI 

3  HEW MI 

(1) HES SI, (2) WKNN SI, (3) MS, (4) KNN MI, 

(5) KNN SI, (6) EM, (7) HES MI, (8) HD MI, (9) 

GRNN SI, (10) WKNN MI, (11) HEW SI, (12) 

HOS SI, (13) HD SI, (14) MLP SI, (15) RBF SI, 

(16) ZI 

4  GRNN MI 

(1) MS, (2) KNN MI, (3) KNN SI, (4) EM, (5) 

HET_MI1, (6) HD MI, (7) GRNN SI, (8) WKNN 

MI, (9) HET_SI2, (10) HOM_SI1, (11) HD SI, (12) 

MLP SI, (13) RBF SI, (14) ZI 

5  HOS MI 

(1) KNN SI, (2) EM, (3) HES MI, (4) HD MI, (5) 

GRNN SI, (6) WKNN MI, (7) HEW SI, (8) HOS 

SI, (9) HD SI, (10) MLP SI, (11) RBF SI, (12) ZI 

6  RBF MI 

(1) EM, (2) HES MI, (3) HD MI, (4) GRNN SI, (5) 

WKNN MI, (6) HEW SI, (7) HOS SI, (8) HD SI, 

(9) MLP SI, (10) RBF SI, (11) ZI 

7  GESI  

(1) HD MI, (2) GRNN SI, (3) WKNN MI, (4) 

HEW SI, (5) HOS SI, (6) HD SI, (7) MLP SI, (8) 

RBF SI, (9) ZI 

8  MLP MI 

(1) GRNN SI, (2) WKNN MI, (3) HEW SI, (4) 

HOS SI, (5) HD SI, (6) MLP SI, (7) RBF SI, (8) ZI 

9  

HOW SI, HES SI, 

WKNN SI, MS 

(1) WKNN MI, (2) HEW SI, (3) HOS SI, (4) HD 

SI, (5) MLP SI, (6) RBF SI, (7) ZI 

10  KNN MI, KNN SI  

(1) HEW SI, (2) HOS SI, (3) HD SI, (4) MLP SI, 

(5) RBF SI, (6) ZI 

11  

EM, HES MI, HD MI, 

GRNN SI, WKNN MI 

(1) HOS SI, (2) HD SI, (3) MLP SI, (4) RBF SI, (5) 

ZI 

12  HEW SI, HOS SI (1) HD SI, (2) MLP SI, (3) RBF SI, (4) ZI 

  HD SI  (1) MLP SI, (2) RBF SI, (3) ZI 

13  MLP SI  (1) RBF SI, (2) ZI 

14  RBF SI (1) ZI 

15  ZI 0 

 

With about 40% Missing values 

1 GEMI 

(1) HOW MI, (2) MCMC, (3) HEW MI, (4) MLP 

MI, (5) GESI, (6) GRNN SI, (7) KNN MI, (8) MLP 

SI, (9) WKNN SI, (10) KNN SI, (11) HOS SI, (12) 

ZI, (13) HEW SI, (14) RBF SI, (15) HD MI, (16) 

EM, (17) HOS MI, (18) HES MI, (19) HES SI, (20) 

GRNN MI, (21) RBF MI, (22) HD SI, (23) WKNN 

MI, (24) MS, (25) HOW SI 

2 HOW MI 

(1) HOS SI, (2) ZI, (3) HEW SI, (4) RBF SI, (5) 

HD MI, (6) EM, (7) HOS MI, (8) HES MI, (9) HES 

SI, (10) GRNN MI, (11) RBF MI, (12) HD SI, (13) 

WKNN MI, (14) MS, (15) HOW MI 
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3 MCMC 

(1) ZI, (2) HEW SI, (3) RBF SI, (4) HD MI, (5) 

EM, (6) HOS MI, (7) HES MI, (8) HES SI, (9) 

GRNN MI, (10) RBF MI, (11) HD SI, (12) WKNN 

MI, (13) MS, (14) HOW SI 

4 HEW MI 

(1) HEW SI, (2) RBF SI, (3) HD MI, (4) EM, (5) 

HOS MI, (6) HES MI, (7) HES SI, (8) GRNN MI, 

(9) RBF MI, (10) HD SI, (11) WKNN MI, (12) 

MS, (13) HOW SI 

5 MLP MI 

(1) RBF MI, (2) HD SI, (3) WKNN MI, (4) MS, (5) 

HOW SI 

6 

GESI, GRNN SI, KNN 

MI, MLP SI, WKNN SI, 

KNN SI, HOS SI, ZI (1) HD SI, (2) WKNN MI, (3) MS, (4) HOW SI 

7 HEW SI, RBF SI (1) WKNN MI, (2) MS, (3) HOW SI 

8 HD MI, EM, HOS MI (1) MS, (2) HOW SI 

9 

HES MI, HES SI, GRNN 

MI, RBF MI, HD SI, 

WKNN MI, MS (1) HOW SI 

10 HOW SI 0 

 

 

With about 50% Missing values 

1  GEMI 

(1) HES MI, (2) GESI, (3) HEW SI, (4) RBF MI, 

(5) GRNN SI, (6) MLP SI, (7) KNN SI, (8) 

MCMC, (9) RBF SI, (10) HEW MI, (11) HES SI, 

(12) HD MI, (13) KNN MI, (14) EM, (15) HOW 

SI, (16) GRNN MI, (17) HD SI, (18) MLP MI, (19) 

WKNN MI, (20) HOS SI, (21) MS, (22) HOS MI, 

(23) ZI 

2  HOW MI 

 (1) KNN MI, (2) EM, (3) HOW SI, (4) GRNN MI, 

(5) HD SI, (6) MLP MI, (7) WKNN MI, (8) HOS 

SI, (9) MS, (10) HOS MI, (11) ZI 

3  HES MI 

(1) GRNN MI, (2) HD SI, (3) MLP MI, (4) WKNN 

MI, (5) HOS SI, (6) MS, (7) HOS MI, (8) ZI 

4  

GESI, HEW SI, RBF MI, 

GRNN SI, MLP SI, KNN 

SI (1) MS, (2) HOS MI, (3) ZI 

5  

MCMC, RBF SI, HEW 

MI, HES SI, HD MI, 

KNN MI, EM (1) HOS MI, (2) ZI 

6  

HOW SI, GRNN MI, HD 

SI, MLP MI, WKNN MI, 

WKNN SI, HOS SI, MS (1) ZI 

 7 ZI 0 
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With about 60% Missing values 

1 GEMI 

(1) ZI, (2) GESI, (3) HOW MI, (4) HOW SI, (5) 

GRNN MI, (6) GRNN SI, (7) MLP MI, (8) WKNN 

MI, (9) RBF SI, (10) HOS SI, (11) MS, (12) HOS 

MI 

2 

MCMC, HEW MI, HES 

MI, HEW SI, HES SI, 

HD MI, RBF MI, HD SI, 

KNN MI, EM, MLP SI, 

WKNN SI, KNN SI, ZI (1) HOS MI 

3 

GESI, HOW MI, HOW 

SI, GRNN MI, GRNN 

SI, MLP MI, WKNN MI, 

RBF SI, HOS SI, MS, 

HOS MI 0 

 

 

With about 70% Missing values 

1 GEMI 

(1) HOW MI, (2) MCMC, (3) HEW MI, (4) MLP 

MI, (5) GESI, (6) GRNN SI, (7) KNN MI, (8) MLP 

SI, (9) WKNN SI, (10) KNN SI, (11) HOS SI, (12) 

ZI, (13) HEW SI, (14) RBF SI, (15) HD MI, (16) 

EM, (17) HOS MI, (18) HES MI, (19) HES SI, (20) 

GRNN MI, (21) RBF MI, (22) HD SI, (23) WKNN 

MI, (24) MS, (25) HOW SI 

2 

HOW MI, MCMC,  

HEW MI, MLP MI, 

GESI, GRNN SI, KNN 

MI,  MLP SI,  WKNN 

SI, KNN SI,  HOM_SI1,  

ZI,  HEW SI, RBF SI,  

HD MI,  EM,  HOS MI, 

HES MI,  HES SI,  

GRNN MI,  RBF MI,  

HD SI, WKNN MI,  MS,  

HOW SI 0 

 
 
 
 
 

Our results lead to the following insights about the imputation algorithms: 

 The rates of missing values affect the performance of the imputation algorithms. 

There was no significant difference in the performance of algorithms when the 
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percentage of missing values is either very low (not more than 5%) or very high (above 

75%). Thus, it would appear that a difference in the performance of imputation 

algorithms develops when the percentage of missing values is not too high or too low. 

 Our results reveal that GRNN classifier has the highest mean accuracy across 

all levels of missing data when the classifier is trained on the dataset imputed by GEMI 

(figure 5.8, tables 5.2 and 5.6). GEMI offers the best performance when the percentage 

of missing data is between about 10% and 70%. Within this range of missing values, 

GEMI outperformed all imputation algorithms in terms of the two criteria mentioned 

earlier: (i) the accuracy of output classification, and (ii) the interval estimation accuracy 

of missing data.  

 In terms of the third criterion which relates to the accuracy of the missing value 

estimates, GESI has significantly outperformed all imputation algorithms (tables 5.2 

and 5.6). In terms of classification accuracy, GESI significantly outperformed all single 

imputation algorithms (figure 5.8, table 5.2, and table 5.6).  

 The ―high-level‖ primary goals of data mining are output prediction and 

clustering. It is important to bear in mind that the fundamental goal of missing data 

imputation is to improve and facilitate the practice of these tasks. Imputation is 

generally not undertaken for its own sake. Both single imputation (SI) and multiple 

imputation (MI) approaches have been subject to criticisms. According to the critics, SI 

substantially underestimates uncertainty about the missing value, whereas MI 

overestimates the variance. However, our empirical results suggest that the 

performance of imputation algorithms in terms of their classification accuracy is 

relatively better for the MI than for the SI (figure 5.8, tables 5.2, and 5.6). For instance, 

the performance of GEMI is better than that of GESI. Similarly, MCMC, HOW MI, 
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HOS MI, HEW MI, HES MI, GRNN MI, RBF MI , HD MI, KNN MI, WKNN MI, , 

MLP MI, are generally better than EM SI, HOW SI, HOS SI, HEW SI, HES SI, GRNN 

SI, RBF SI, HD SI, KNN SI, WKNN SI, and MLP SI, respectively. 

 In terms of classification accuracy of the response variable on the imputed data, 

GEMI, MCMC and HOW MI are the top three imputation algorithms that achieved the 

first two places across the varying levels of missing data (table 5.2 and 5.6). Similarly, 

in the sense of interval estimation accuracy of the missing data, GEMI, MCMC, and 

HOW MI are the top imputation algorithms (appendix 5B). In the sense of point 

estimation of the missing data (i.e. the accuracy of the missing value estimates), the top 

imputation algorithms include GESI, HOW SI, HD SI, GRNN SI, EM, WKNN SI, 

HEW SI, and RBF SI (appendix 5C). These results indicate a direct relation between 

the classification accuracy of the response variable and the accuracy of constructed 

confidence intervals for missing values, since in both cases the best algorithms are the 

same. The results also demonstrate that the accuracy of the missing value estimates is 

not a good measure for reflecting the goodness of imputations since no top imputation 

algorithm in terms of missing value estimation accuracy achieved good classification 

results. It is also interesting to note that the single imputation algorithms achieved the 

best missing value estimation accuracy, while the multiple imputation algorithms 

achieved the best classification accuracy of the response variable. This is because 

multiple imputation algorithms simulate the entire joint distribution of the unknown 

values. In contrast, single imputation algorithms estimate only the conditional mean of 

the missing value so that the width of the confidence interval is zero at the imputed 

value that leads to over-fitting or over-optimization. For all these reasons, single 

imputation algorithms typically offer higher accuracy in the determination of the 
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missing data, than do any of the multiple imputation algorism; but provides lower 

accuracy in downstream analyses.  

 

5.6. Summary and Conclusions 

We have presented a multiple imputation algorithm GEMI and a single imputation 

algorithm GESI. Both algorithms use the Generalized Regression Neural Network 

Ensemble. We tested new algorithms on 51 real-world datasets. All simulation results 

show the advantages of GEMI as compared with the conventional algorithms.  

However, we note that GEMI has heavy memory storage requirements and is expensive 

computationally. GEMI draws multiple samples from the training set in order to 

calculate the conditional posterior distribution of the missing value and then the initial 

training set is augmented several times. GEMI is an instance-based algorithm that 

stores all instances of the training sample in a memory in order to use them when 

needed. In addition, GEMI employs a relatively expensive feature subset selection 

algorithm SAGA to identify not only the good subsets of features, but also an optimal 

subset of ensemble members. Moreover, GEMI resorts to an EM-style iterative 

procedure to refine the imputation models. Thus, fitting a joint distribution and 

generating multiple imputations using GEMI can greatly increase the computational 

requirements, both in terms of processor speed and storage. 

 

To ensure feasibility with respect to time and resource constraints, one can play 

with parameter values (the parameters of SAGA and the parameter m ) accepting the 

trade-off between precision and cost. It is found that GEMI is better than other multiple 

imputation (and single imputation) algorithms, whereas GESI is better than other single 
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imputation algorithms. Therefore, in a given value of m , GEMI will perform better 

than the existing ones no matter what value the parameter m takes. Similarly, no matter 

how much time we give SAGA, SAGA can help us choose a better ensemble, since  in 

our feature subset selection experiments (chapter 4) , SAGA came up with better 

feature subset solutions compared to conventional search algorithms within all given 

time frames.  

 

Proper handling of missing values is essential in all analyses. Existing fast but 

inaccurate imputation methods can hinder downstream analysis of the dataset as they 

frequently destroy the original distribution of the dataset. Although using GEMI is 

relatively computationally expensive with associated intensive memory requirements, 

the significantly better results justify its use. The generation of high-quality imputations 

always has a greater priority than computational complexity.  Besides, modern 

computers are powerful enough to handle this type of computationally intensive 

application, for all but the largest datasets.  

 

 
5.7 Future Work 

Our proposed algorithm GEMI uses Rubin‘s multiple imputation approach. Although 

Rubin‘s multiple imputation framework is admittedly rather popular approach, there are 

other approaches (e.g. Gibbs sampler, fractal hot deck imputation etc.) which can be 

used to produce the multiple imputes. In the near future, we will specifically examine 

these approaches to determine which are practical and usable and which are less 

practical and best forgotten.  
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The proposed algorithm (GEMI) is designed to be used with cross-sectional data. 

However, we strongly believe that GEMI can also be used to impute stationary time 

series data. In the near future, we will investigate this possibility. 
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Appendix 5A:  Impact of number of imputations (m) on the performance of GEMI 
 

 
With about 5% missing 
values 

 
With about 10% missing 
values With about 20% missing values 

m 

Classification 
Accuracy 
(%) 

Rankings 
(based 
on test 
results) m 

Classification 
Accuracy 
(%) 

Rankings 
(based on 
test 
results) m 

Classification 
Accuracy 
(%) 

Rankings 
(based on 
test results) 

2 96 (4) 3 2 89 (6) 5 2 84 (9) 5 

5 98 (3) 2 5 92 (3) 4 5 87 (8) 4 

10 96 (4) 1 10 96 (3) 3 10 88 (8) 3 

20 96 (2) 1 20 96 (3) 2 20 90 (5) 2 

30 98 (2) 1 30 96 (3) 1 30 94 (5) 1 

50 96 (3) 1 50 96 (3) 1 50 94 (3) 1 

100 99 (3) 1 100 97 (3) 1 100 95 (3) 1 

200 98 (3) 1 200 97 (3) 1 200 95 (3) 1 

 
With about 30% missing 
values 
 

 
With about 40% missing 
values 
 

 
With about 50% missing values 

m 

Classification 
Accuracy 
(%) 

Rankings 
(based 
on test 
results) m 

Classification 
Accuracy 
(%) 

Rankings 
(based on 
test 
results) m 

Classification 
Accuracy 
(%) 

Rankings 
(based on 
test results) 

2 78 (11) 3 2 82 (13) 4 2 68 (14) 5 

5 82 (12) 5 5 82 (12) 3 5 71 (15) 3 

10 82 (13) 4 10 85 (8) 2 10 76 (9) 4 

20 85 (9) 4 20 87 (8) 3 20 75 (7) 3 

30 91 (7) 2 30 91 (6) 2 30 82 (7) 2 

50 90 (6) 2 50 92 (5) 2 50 82 (7) 1 

100 92 (6) 1 100 93 (5) 1 100 83 (6) 1 

200 93 (6) 1 200 93 (5) 1 200 83 (6) 1 

With about 60% missing 
values 

 
With about 70% missing 
values 
 

With about 75% missing values 

m 

Classification 
Accuracy 
(%) 

Rankings 
(based 
on test 
results) m 

Classification 
Accuracy 
(%) 

Rankings 
(based on 
test 
results) m 

Classification 
Accuracy 
(%) 

Rankings 
(based on 
test results) 

2 60 (16) 2 2 55 (20) 2 2 46 (12) 1 

5 67 (12) 3 5 54 (18) 1 5 46 (18) 1 

10 62 (16) 2 10 63 (12) 1 10 50 (16) 1 

20 70 (9) 1 20 66 (12) 1 20 51(14) 1 

30 76 (7) 1 30 68 (11) 1 30 48 (14) 1 

50 80 (8) 1 50 68 (11) 1 50 52 (14) 1 

100 80 (7) 1 100 73 (11) 1 100 52 (14) 1 

200 80 (7) 1 200 73 (11) 1 200 52 (15) 1 
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Appendix 5B: Pairwise comparisons among imputation algorithms in terms of 

interval estimation of missing data 
Rank Algorithm Significantly outperformed algorithms 

With about 10% missing values 

 1 GEMI 

(1)MCMC, (2) HOW MI, (3) HEW MI, (4) GRNN MI, (5) 

HD MI, (6) WKNN MI, (7) HES MI, (8) RBF MI, (9) MLP 

MI, (10) HOS MI, (11) KNN MI 

 2 MCMC 

(1) GRNN MI, (2) HD MI, (3) WKNN MI, (4) HES MI, (5) 

RBF MI, (6) MLP MI, (7) HOS MI, (8) KNN MI 

 3 

HOW MI, HEW 

MI, GRNN MI, 

HD MI, WKNN 

MI 

(1) HES MI, (2) RBF_MI, (3) MLP MI, (4) HOS MI, (5) 

KNN MI 

 4 HES MI (1) RBF MI, (2) MLP MI, (3) HOS MI, (4) KNN MI 

 5 RBF MI (1) MLP MI, (2) HOS MI, (3) KNN MI 

 6 MLP MI (1) HOS MI, (2) KNN MI 

 7 HOS MI (1) KNN MI 

 8 KNN MI 0 

  With about 20% missing values 

 1 GEMI 

(1) HOW MI, (2) HEW MI, (3) GRNN MI, (4) HES MI, (5) 

RBF MI, (6) WKNN MI, (7) HD MI, (8) KNN MI, (9) MLP 

MI, (10) HOS MI 

 2 MCMC, HOW MI 

(1) HEW MI, (2) GRNN MI, (3) HES MI, (4) RBF MI, (5) 

WKNN MI, (6) HD MI, (7) KNN MI, (8) MLP MI, (9) HOS 

MI 

 3 HEW MI 

(1) GRNN MI, (2) HES MI, (3) RBF MI, (4) WKNN MI, (5) 

HD MI, (6) KNN MI, (7) MLP MI, (8) HOS MI 

 4 GRNN MI 

(1) HES MI, (2) RBF MI, (3) WKNN MI, (4) HD MI, (5) 

KNN MI, (6) MLP MI, (7) HOS MI 

 5 HES MI, RBF MI 

(1) WKNN MI, (2) HD MI, (3) KNN MI, (4) MLP MI, (5) 

HOS MI 

 6 WKNN MI (1) HD MI, (2) KNN MI, (3) MLP MI, (4) HOS MI 

 7 HD MI (1) KNN MI, (2) MLP MI, (3) HOS MI 

 8 KNN MI (1) MLP MI, (2) HOS MI 

 9 MLP MI (1) HOS MI 

 10 HOS MI 0 

  With about 30% missing values 

 1 GEMI 

(1) MCMC, (2) HOW MI, (3) HEW MI, (4) HOS MI, 

(5)HES MI, (6) GRNN MI, (7) HD MI, (8) RBF MI, (9) 

MLP MI, (10)KNN MI, (11) WKNN MI 

 2 MCMC 

(1) HOS MI, (2)HES MI, (3) GRNN MI, (4) HD MI, (5) 

RBF MI, (6) MLP MI, (7)KNN MI, (8) WKNN MI 

 3 

HOW MI, HEW 

MI 

(1) GRNN MI, (2) HD MI, (3) RBF MI, (4) MLP MI, 

(5)KNN MI, (6) WKNN MI 
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 4 HOS MI (1) RBF MI, (2) MLP MI, (3)KNN MI, (4) WKNN MI 

 5 

HES MI, GRNN 

MI, HD MI, RBF 

MI (1) MLP MI, (2)KNN MI, (3) WKNN MI 

 6 MLP MI (1)KNN MI, (2) WKNN MI 

 7 KNN MI WKNN MI 

 8 WKNN MI 0 

  

 

With about 40% missing values 

 1 GEMI 

(1) MCMC, (2) HEW MI, (3) HD MI, (4) HES MI, (5) MLP 

MI, (6) KNN MI, (7) WKNN MI, (8) HOS MI, (9) RBF MI 

 2 

HOW MI, GRNN 

MI 

(1) MLP MI, (2) KNN MI, (3) WKNN MI, (4) HOS MI, (5) 

RBF MI 

 3 

MCMC,HEW MI, 

HD MI (1) KNN MI, (2) WKNN MI, (3) HOS MI, (4) RBF MI 

 4 HES MI, MLP MI (1) WKNN MI, (2) HOS MI, (3) RBF MI 

 5 KNN MI  (1) HOS MI, (2) RBF MI 

 6 WKNN MI (1) RBF MI 

 7 RBF MI 0 

   With about 50% missing values 

 1 GEMI 

(1)HOW MI, (2) HES MI, (3) RBF MI, (4) MCMC, (5) 

HEW MI, (6) GRNN MI, (7) HD MI, (8) MLP MI, (9) KNN 

MI, (10) HOS MI, (11) WKNN MI 

 2 HOW MI 

(1) MCMC, (2) HEW MI, (3) GRNN MI, (4) HD MI, (5) 

MLP MI, (6) KNN MI, (7) HOS MI, (8) WKNN MI 

 3 HES MI, RBF MI  (1) MLP MI, (2) KNN MI, (3) HOS MI, (4) WKNN MI 

 4 

MCMC, HEW MI, 

GRNN MI, HD MI (1)HOS MI, (2) WKNN MI 

 5 KNN MI, HOS MI WKNN MI 

 6 WKNN MI 0 

  With about 60% missing values 

 1 GEMI 

(1) HOW MI, (2) HEW MI, (3) HES MI, (4) HD MI, (5) 

KNN MI, (6) GRNN MI, (7) HOS MI, (8) MCMC, (9) RBF 

MI, (10) MLP MI, (11) WKNN MI 

 2 HOW MI 

(1) HOS MI, (2) MCMC, (3) RBF MI, (4) MLP MI, (5) 

WKNN MI 

 3 

HEW MI, HES MI, 

HD MI, KNN MI (1) MCMC, (2) RBF MI, (3) MLP MI, (4) WKNN MI 

 4 

GRNN MI, HOS 

MI (1) MLP MI, (2) WKNN MI 

 5 

MCMC, RBF MI, 

MLP MI (1) WKNN MI 

 6 WKNN MI 0 
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With about 70% missing values 

 1 GEMI 

(1) HOW MI, (2) HEW MI, (3) HES MI, (4) HD MI, (5) 

KNN MI, (6) GRNN MI, (7) HOS MI, (8) MCMC, (9) RBF 

MI, (10) MLP MI, (11) WKNN MI 

 2 

HOW MI,  HEW 

MI, HES MI,  HD 

MI,  KNN MI,  

GRNN MI,  HOS 

MI,  MCMC,  RBF 

MI,  MLP MI,  

WKNN MI 0 
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Appendix 5C: Pairwise comparisons among imputation algorithms in terms of the 

accuracy of estimating missing values 

Rank Algorithm Significantly outperformed algorithms 

With about 10% missing values 

1 GESI 

(1) HOW SI, (2)HD SI, (3) GRNN SI, (4) EM, (5) 

WKNN SI, (6) HEW SI, (7) KNN SI, (8)ZI, (9) 

HES SI, (10)MLP SI, (11) HOS SI, (12) MS, (13) 

GEMI, (14) RBF SI, (15) MCMC, (16) HOW MI, 

(17) WKNN MI, (18)HEW MI, (19)MLP MI, (20) 

KNN MI, (21)GRNN MI, (22) RBF MI, (23) HOS 

MI, (24) HD MI, (25) HES MI 

2 

HOW SI, HD SI, 

GRNN SI, EM, 

WKNN SI 

(1)MLP SI, (2) HOS SI, (3) MS, (4) GEMI, (5) 

RBF SI, (6) MCMC, (7) HOW MI, (8) WKNN 

MI, (9)HEW MI, (10)MLP MI, (11) KNN MI, 

(12)GRNN MI, (13) RBF MI, (14) HOS MI, (15) 

HD MI, (16) HES MI 

3 HEW SI 

(1) HOS SI, (2) MS, (3) GEMI, (4) RBF SI, (5) 

MCMC, (6) HOW MI, (7) WKNN MI, (8)HEW 

MI, (9)MLP MI, (10) KNN MI, (11)GRNN MI, 

(12) RBF MI, (13) HOS MI, (14) HD MI, (15) 

HES MI 

4 KNN SI, ZI 

(1) GEMI, (2) RBF SI, (3) MCMC, (4) HOW MI, 

(5) WKNN MI, (6)HEW MI, (7)MLP MI, (8) 

KNN MI, (9)GRNN MI, (10) RBF MI, (11) HOS 

MI, (12) HD MI, (13) HES MI 

5 

HES SI, MLP SI, 

HOS SI, MS 

(1) RBF SI, (2) MCMC, (3) HOW MI, (4) WKNN 

MI, (5)HEW MI, (6)MLP MI, (7) KNN MI, 

(8)GRNN MI, (9) RBF MI, (10) HOS MI, (11) HD 

MI, (12) HES MI 

6 GEMI, RBF SI 

(1) MCMC, (2) HOW MI, (3) WKNN MI, 

(4)HEW MI, (5)MLP MI, (6) KNN MI, (7)GRNN 

MI, (8) RBF MI, (9) HOS MI, (10) HD MI, (11) 

HES MI 

7 MCMC 

(1) HOW MI, (2) WKNN MI, (3)HEW MI, 

(4)MLP MI, (5) KNN MI, (6)GRNN MI, (7) RBF 

MI, (8) HOS MI, (9) HD MI, (10) HES MI 

8 HOW MI 

(1) WKNN MI, (2)HET_MI2, (3)MLP MI, (4) 

KNN MI, (5)GRNN MI, (6) RBF MI, (7) 

HOM_MI1, (8) HD MI, (9) HET_MI1 

9 WKNN MI 

(1)HEW MI, (2)MLP MI, (3) KNN MI, (4)GRNN 

MI, (5) RBF MI, (6) HOS MI, (7) HD MI, (8) HES 

MI 

10 HEW MI 

(1)MLP MI, (2) KNN MI, (3)GRNN MI, (4) RBF 

MI, (5) HOM_MI1, (6) HD MI, (7) HET_MI1 
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11 MLP MI 

(1) KNN MI, (2)GRNN MI, (3) RBF MI, (4) HOS 

MI, (5) HD MI, (6) HES MI 

12 KNN MI 

(1)GRNN MI, (2) RBF MI, (3) HOS MI, (4) HD 

MI, (5) HES MI 

13 GRNN MI  (1) RBF MI, (2) HOS MI, (3) HD MI, (4) HES MI 

14 RBF MI  (1) HOS MI, (2) HD MI, (3) HES MI 

15 HOS MI (1) HD MI, (2) HES MI 

16 HD MI HES MI 

17 HES MI 0 

  With about 20% missing values 

1 GESI 

(1) EM, (2) MLP SI, (3) KNN SI, (4) HOS SI, (5) 

MS, (6) GEMI, (7) HD SI, (8) WKNN SI, (9) 

HOW MI, (10) MCMC, (11) HES SI, (12) ZI, (13) 

RBF MI, (14) HEW MI, (15) KNN MI, (16) 

GRNN MI, (17) WKNN MI, (18) HES MI, (19) 

MLP MI, (20) HOS MI, (21) HD MI 

2 GRNN SI 

(1) HD SI, (2) WKNN SI, (3) HOW MI, (4) 

MCMC, (5) HES SI, (6) ZI, (7) RBF MI, (8) HEW 

MI, (9) KNN MI, (10) GRNN MI, (11) WKNN 

MI, (12) HES MI, (13) MLP MI, (14) HOS MI, 

(15) HD MI 

3 

HOW SI, HEW SI, 

RBF SI, EM, MLP 

SI, KNN SI, HOS SI, 

MS 

(1) WKNN SI, (2) HOW MI, (3) MCMC, (4) HES 

SI, (5) ZI, (6) RBF MI, (7) HEW MI, (8) KNN MI, 

(9) GRNN MI, (10) WKNN MI, (11) HET_MI1, 

(12) MLP MI, (13) HOS MI, (14) HD MI 

4 

GEMI, HD SI, 

WKNN SI 

(1) HOM_MI2, (2) MCMC, (3) HES SI, (4) ZI, (5) 

RBF MI, (6) HEW MI, (7) KNN MI, (8) GRNN 

MI, (9) WKNN MI, (10) HES MI, (11) MLP MI, 

(12) HOS MI, (13) HD MI 

5 HOW MI 

 (1) MCMC, (2) HES SI, (3) ZI, (4) RBF MI, (5) 

HEW MI, (6) KNN MI, (7) GRNN MI, (8) WKNN 

MI, (9) HES MI, (10) MLP MI, (11) HOS MI, (12) 

HD MI 

6 MCMC 

(1) HES SI, (2) ZI, (3) RBF MI, (4) HEW MI, (5) 

KNN MI, (6) GRNN MI, (7) WKNN MI, (8) HES 

MI, (9) MLP MI, (10) HOS MI, (11) HD MI 
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7 HES SI 

(1) ZI, (2) RBF MI, (3) HEW MI, (4) KNN MI, (5) 

GRNN MI, (6) WKNN MI, (7) HES MI, (8) MLP 

MI, (9) HOS MI, (10) HD MI 

8 ZI 

(1) RBF MI, (2) HEW MI, (3) KNN MI, (4) 

GRNN MI, (5) WKNN MI, (6) HES MI, (7) MLP 

MI, (8) HOS MI, (9) HD MI 

9 RBF MI 

(1) HEW MI, (2) KNN MI, (3) GRNN MI, (4) 

WKNN MI, (5) HES MI, (6) MLP MI, (7) HOS 

MI, (8) HD MI 

10 HEW MI 

 (1) KNN MI, (2) GRNN MI, (3) WKNN MI, (4) 

HES MI, (5) MLP MI, (6) HOS MI, (7) HD MI 

11 KNN MI 

(1) GRNN MI, (2) WKNN MI, (3) HES MI, (4) 

MLP MI, (5) HOS MI, (6) HD MI 

12 GRNN MI 

(1) WKNN MI, (2) HES MI, (3) MLP MI, (4) 

HOS MI1, (5) HD MI 

13 WKNN MI (1) HES MI, (2) MLP MI, (3) HOS MI, (4) HD MI 

14 HES MI (1) MLP MI, (2) HOS MI, (3) HD MI 

15 MLP MI (1) HOS MI, (2) HD MI 

16 HOS MI (1) HD MI 

17 HD MI 0 

  With about 30% missing values 

1 GESI 

(1) HES SI, (2) GRNN SI, (3) EM, (4) MLP SI, (5) 

KNN SI, (6) GEMI, (7) RBF SI, (8) MS, (9) HES 

SI, (10) WKNN SI, (11) HOS SI, (12) RBF MI, 

(13) KNN MI, (14) MCMC, (15) WKNN MI, (16) 

HOW MI, (17) HOW SI, (18) HD SI, (19) HEW 

MI, (20) GRNN MI, (21) HD MI, (22) HES MI, 

(23) ZI, (24) MLP MI, (25) HOS MI 

2 

HEW SI, GRNN SI, 

EM, MLP SI, KNN 

SI,  

(1) KNN MI, (2) MCMC, (3) WKNN MI, (4) 

HOW MI, (5) HOW SI, (6) HD SI, (7) HEW MI, 

(8) GRNN MI, (9) HD MI, (10) HES MI, (11) ZI, 

(12) MLP MI, (13) HOS MI 

3 GEMI, RBF SI, MS 

(1) MCMC, (2) WKNN MI, (3) HOW MI, (4) 

HOW SI, (5) HD SI, (6) HEW MI, (7) GRNN MI, 

(8) HD MI, (9) HES MI, (10) ZI, (11) MLP MI, 

(12) HOS MI 

4 

HES SI, WKNN SI, 

HOS SI 

(1) WKNN MI, (2) HOW MI, (3) HOW SI, (4) 

HD SI, (5) HEW MI, (6) GRNN MI, (7) HD MI, 

(8) HEW MI, (9) ZI, (10) MLP MI, (11) HOS MI 

5 RBF MI 

(1) HOW MI, (2) HOW SI, (3) HD SI, (4) HEW 

MI, (5) GRNN MI, (6) HD MI, (7) HES MI, (8) 

ZI, (9) MLP MI, (10) HOS MI 
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6 KNN MI 

(1) HOW SI, (2) HD SI, (3) HEW MI, (4) GRNN 

MI, (5) HD MI, (6) HES MI, (7) ZI, (8) MLP MI, 

(9) HOS MI 

7 MCMC, WKNN MI 

 (1) HD SI, (2) HEW MI, (3) GRNN MI, (4) HD 

MI, (5) HES MI, (6) ZI, (7) MLP MI, (8) HOS MI 

8 

HOW MI, HOW SI, 

HD SI 

(1) HEW MI, (2) GRNN MI, (3) HD MI, (4) HES 

MI, (5) ZI, (6) MLP MI, (7) HOS MI 

9 HEW MI 

(1) GRNN MI, (2) HD MI, (3) HES MI, (4) ZI, (5) 

MLP MI, (6) HOS MI 

10 GRNN MI 

(1) HD MI, (2) HES MI, (3) ZI, (4) MLP MI, (5) 

HOS MI 

11 HD MI (1) HES MI, (2) ZI, (3) MLP MI, (4) HOS MI 

12 HES MI (1) ZI, (2) MLP MI, (3) HOS MI 

13 ZI (1) MLP MI, (2) HOS MI 

14 MLP MI (1) HOS MI 

15 HOS MI 0 

  With about 40% missing values 

1 GESI 

(1) GRNN SI, (2) MLP SI, (3) WKNN SI, 

(4)MCMC, (5) HD SI, (6) RBF MI, (7) KNN MI, 

(8) HES SI, (9) HOS SI, (10) GRNN MI, (11) 

HOW MI, (12) HEW MI, (13) KNN SI, (14) HES 

MI, (15) MS, (16) ZI, (17) HOS MI, (18) WKNN 

MI, (19) HD MI, (20) MLP MI 

2 RBF SI 

(1) HD SI, (2) RBF MI, (3) KNN MI, (4) HES SI, 

(5) HOS SI, (6) GRNN MI, (7) HOW MI, (8) 

HEW MI, (9) KNN SI, (10) HES MI, (11) MS, 

(12) ZI, (13) HOS MI, (14) WKNN MI, (15) HD 

MI, (16) MLP MI 

3 EM 

(1) KNN MI, (2) HES SI, (3) HOS SI, (4) GRNN 

MI, (5) HOW MI, (6) HEW MI, (7) KNN SI, (8) 

HES MI, (9) MS, (10) ZI, (11) HOS MI, (12) 

WKNN MI, (13) HD MI, (14) MLP MI 

4 GEMI, HEW SI 

(1) HES SI, (2) HOS SI, (3) GRNN MI, (4) HOW 

MI, (5) HEW MI, (6) KNN SI, (7) HES MI, (8) 

MS, (9) ZI, (10) HOS MI, (11) WKNN MI, (12) 

HD MI, (13) MLP MI 

5 

HOW SI, GRNN SI, 

MLP SI,  WKNN SI 

(1) HOS SI, (2) GRNN MI, (3) HOW MI, (4) 

HEW MI, (5) KNN SI, (6) HES MI, (7) MS, (8) 

ZI, (9) HOS MI, (10) WKNN MI, (11) HD MI, 

(12) MLP MI 

6 MCMC, HD SI 

(1) HEW MI, (2) KNN SI, (3) HES MI, (4) MS, 

(5) ZI, (6) HOS MI, (7) WKNN MI, (8) HD MI, 

(9) MLP MI 
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7 RBF MI, KNN MI 

(1) KNN SI, (2) HES MI, (3) MS, (4) ZI, (5) HOS 

MI, (6) WKNN MI, (7) HD MI, (8) MLP MI 

8 HES SI, HOS SI 

(1) HES MI, (2) MS, (3) ZI, (4) HOS MI, (5) 

WKNN MI, (6) HD MI, (7) MLP MI 

9 GRNN MI 

(1) MS, (2) ZI, (3) HOS MI, (4) WKNN MI, (5) 

HD MI, (6) MLP MI 

10 

HOW MI, HEW MI, 

KNN SI 

(1) ZI, (2) HOS MI, (3) WKNN MI, (4) HD MI, 

(5) MLP MI 

11 HES MI, MS, ZI 

(1) HOS MI, (2) WKNN MI, (3) HD MI, (4) MLP 

MI 

12 HOS MI (1) WKNN MI, (2) HD MI, (3) MLP MI 

13 WKNN MI (1) HD MI, (2) MLP MI 

14 HD MI (1) MLP MI 

15 MLP MI 0 

  With about 50% missing values 

1 GESI 

(1) MLP SI, (2) GEMI, (3) GRNN SI, (4) HES SI, 

(5) MS, (6) MCMC, (7) HEW MI, (8) HES MI, (9) 

HOS MI, (10) HOW MI, (11) GRNN MI, (12) ZI, 

(13) HD SI, (14) MLP MI, (15) HOS SI, (16) 

HOW SI, (17)WKNN MI, (18) KNN  

2 EM 

(1) MCMC, (2) HEW MI, (3) HES MI, (4) HOS 

MI, (5) HOW MI, (6) GRNN MI, (7) ZI, (8) HD 

SI, (9) MLP MI, (10) HOS SI, (11) HOW SI, 

(12)WKNN MI, (13) KNN SI, (14) HD MI, (15) 

RBF MI, (16) KNN MI 

3 RBF SI 

(1) HOS MI, (2) HOW MI, (3) GRNN MI, (4) ZI, 

(5) HD SI, (6) MLP MI, (7) HOS SI, (8) HOW SI, 

(9)WKNN MI, (10) KNN SI, (11) HD MI, (12) 

RBF MI, (13) KNN MI 

4 HEW SI 

(1) HOW MI, (2) GRNN MI, (3) ZI, (4) HD SI, (5) 

MLP MI, (6) HOS SI, (7) HOW SI, (8)WKNN MI, 

(9) KNN SI, (10) HD MI, (11) RBF MI, (12) KNN 

MI 

5 WKNN SI 

(1) ZI, (2) HD SI, (3) MLP MI, (4) HOS SI, (5) 

HOW SI, (6)WKNN MI, (7) KNN SI, (8) HD MI, 

(9) RBF MI, (10) KNN MI 

6 MLP SI 

(1) HD SI, (2) MLP MI, (3) HOS SI, (4) HOW SI, 

(5)WKNN MI, (6) KNN SI, (7) HD MI, (8) RBF 

MI, (9) KNN MI 

7 GEMI, GRNN SI 

(1) MLP MI, (2) HOS SI, (3) HOW SI, (4)WKNN 

MI, (5) KNN SI, (6) HD MI, (7) RBF MI, (8) 

KNN MI 

8 HES SI, MS 

(1) HOS SI, (2) HOW SI, (3)WKNN MI, (4) KNN 

SI, (5) HD MI, (6) RBF MI, (7) KNN MI 

9 

MCMC, HEW MI, 

HES MI, HOS MI  

(1) HOW SI, (2)WKNN MI, (3) KNN SI, (4) HD 

MI, (5) RBF MI, (6) KNN MI 
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10 

HOW MI, GRNN 

MI, ZI 

(1)WKNN MI, (2) KNN SI, (3) HD MI, (4) RBF 

MI, (5) KNN MI 

11 

HD SI, MLP MI, 

HOS SI (1) KNN SI, (2) HD MI, (3) RBF MI, (4) KNN MI 

12 

HOW SI, WKNN 

MI, KNN SI (1) HD MI, (2) RBF MI, (3) KNN MI 

13 HD MI (1) RBF MI, (2) KNN MI 

14 RBF MI KNN MI 

15 KNN MI 0 

  With about 60% missing values 

 1 GESI 

(1) HD SI, (2) MLP SI, (3) GEMI, (4) GRNN SI, 

(5)  HES SI, (6) WKNN SI, (7) MS, (8) MCMC, 

(9) HEW MI, (10) HOS MI, (11) HOW MI, (12) 

RBF MI, (13) ZI, (14) MLP MI, (15) WKNN MI, 

(16) HOS SI, (17) HOW SI, (18) KNN SI, (19) 

HES MI, (20) KNN MI, (21) HD MI 

 2 EM 

(1)  WKNN SI, (2) MS, (3) MCMC, (4) HEW MI, 

(5) HOS MI, (6) HOW MI, (7) RBF MI, (8) ZI, (9) 

MLP MI, (10) WKNN MI, (11) HOS SI, (12) 

HOW SI, (13) KNN SI, (14) HES MI, (15) KNN 

MI, (16) HD MI 

 3 RBF SI 

(1) HEW MI, (2) HOS MI, (3) HOW MI, (4) RBF 

MI, (5) ZI, (6) MLP MI, (7) WKNN MI, (8) HOS 

SI, (9) HOW SI, (10) KNN SI, (11) HES MI, (12) 

KNN MI, (13) HD MI 

 4 HEW SI 

(1) HOS MI, (2) HOW MI, (3) RBF MI, (4) ZI, (5) 

MLP MI, (6) WKNN MI, (7) HOS SI, (8) HOW 

SI, (9) KNN SI, (10) HES MI, (11) KNN MI, (12) 

HD MI 

 5 GRNN MI, HD SI 

(1) RBF MI, (2) ZI, (3) MLP MI, (4) WKNN MI, 

(5) HOS SI, (6) HOW SI, (7) KNN SI, (8) HES 

MI, (9) KNN MI, (10) HD MI 

 6 MLP SI 

(1) ZI, (2) MLP MI, (3) WKNN MI, (4) HOS SI, 

(5) HOW SI, (6) KNN SI, (7) HES MI, (8) KNN 

MI, (9) HD MI 

 7 GEMI, GRNN SI 

(1) MLP MI, (2) WKNN MI, (3) HOS SI, (4) 

HOW SI, (5) KNN SI, (6) HES MI, (7) KNN MI, 

(8) HD MI 

 8 

HES SI, WKNN SI, 

MS 

(1) WKNN MI, (2) HOS SI, (3) HOW SI, (4) 

KNN SI, (5) HES MI, (6) KNN MI, (7) HD MI 

 9 

MCMC, HEW MI, 

HOS MI 

(1) HOS SI, (2) HOW SI, (3) KNN SI, (4) HES 

MI, (5) KNN MI, (6) HD MI 

 10 

HOW MI, RBF MI, 

ZI 

(1) HOS SI, (2) KNN SI, (3) HES MI, (4) KNN 

MI, (5) HD MI 

 11 

MLP MI, WKNN 

MI, HOS SI (1) KNN SI, (2) HES MI, (3) KNN MI, (4) HD MI 
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 12 HOW SI, KNN SI (1) HES MI, (2) KNN MI, (3) HD MI 

 13 HES MI (1) KNN MI, (2) HD MI 

 14 KNN MI (1) HD MI 

 15 HD MI 0 

  With about 70% missing values 

 1 GESI, GEMI 

(1) HES SI, (2) GRNN SI, (3) EM, (4) MLP SI, (5) 

KNN SI, (6) RBF SI, (7) MS, (8) HEW SI, (9) 

WKNN SI, (10) HOS SI, (11) RBF MI, (12) KNN 

MI, (13) MCMC, (14) WKNN MI, (15) HOW MI, 

(16) HOW SI, (17) HD SI, (18) HEW MI, (19) 

GRNN MI, (20) HD MI, (21) HES MI, (22) ZI, 

(23) MLP MI, (24) HOS MI 

 2 

HES SI,  GRNN SI, 

EM, MLP SI,  KNN 

SI,  RBF SI, MS, 

HEW SI, WKNN SI, 

HOS SI, RBF MI, 

KNN MI, MCMC, 

WKNN MI, HOW 

MI,  HOS_SI, HD 

SI, HEW MI, GRNN 

MI, HD MI, HES 

MI,  ZI,  MLP MI, 

HOS MI 0 
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CHAPTER 6 

Forecasting of Univariate Time Series 

 

6.1. Introduction 

Forecasting time series is a very important but very complex area (discussed in detail in 

section 1.1.3 of Chapter 1). Conventional time series forecasting algorithms are often 

plagued by parametric resonance effects, many adjustable parameters, the curse of 

dimensionality, and their insensitivity to local variations (discussed in detail in section 

2.4 of Chapter 2). We propose a novel approach with automated feature selection for 

forecasting univariate time series that minimizes user involvement in the process of 

model formulation, and thus minimizes user mistakes. The proposed algorithm GEFTS 

(GRNN Ensemble for Forecasting Time Series) is an ensemble learning technique that 

combines the advice from several Generalized Regression Neural Networks. We 

compare GEFTS with several most used algorithms on 36 real datasets. The proposed 

algorithm appears to be more powerful than existing ones. Although it is an initial 

phase, GEFTS appears to be equally effective in the presence of seasonal patterns. Our 

experiments also provide insight into the following unanswered questions: 

 Is pre-deseasonalization of the data critical in improving forecasting performance of 

neural networks? 

 Does the hybrid of regression-based approaches (e.g. ARIMA and GARCH) and 

neural networks achieve significant performance improvement over both the 

regression based approach and the neural networks? 

 This study reveals which conventional algorithms perform well on time series data.  
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 The rest of the chapter is organized as follows: advantages of the proposed 

algorithms in section 6.2, details of the design and implementation of the new 

algorithm in section 6.3, comparative performance measurement in section 6.4, results 

and discussion in section 6.5, summary and conclusions in section 6.6, and future work 

in section 6.7. 

 

6.2. Advantages of Proposed Algorithm (GEFTS) over Conventional 

Forecasting Techniques 

GEFTS works in two stages. The feature space of a univariate time series includes all 

of the lagged variables. In stage 1, GEFTS identifies several core subsets of features 

using SAGA and each subset is used to train a separate GRNN.  Each GRNN 

individually forecasts future values. In stage 2, we apply SAGA to select an optimal 

subset of GRNNs. The outputs of selected networks are then used to train a new GRNN 

in order to combine the predictions of individual networks. Figure 6.1 shows the basic 

architecture of a typical model of GEFTS. 
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This unique architecture of GEFTS allows for improved performance over standard 

time series forecasting algorithms because of the following reasons: 

First, A key advantage of using our approach for time series forecasting is that it has 

the potential to detect a greater number of important signals than would be detected 

with conventional algorithms. Temporal data mining projects a worst case scenario of 

data mining wherein we have high multi-collinearity, and a small sample size. In time 

series forecasting, lagged variables are included as inputs. Lagged variables are often 

highly serially correlated and there are frequently relatively few observations in 

observed time series since time series data follows one subject‘s changes over the 

course of time. Consequently, the forecasting error appears to proportionally increase 

with an increasing number of input values. This leads to a model with poor precision 

ability. GEFTS provides a mechanism to segment a GRNN network into multiple 

subnets (base learners). Each base GRNN learner independently forecasts the output 

using a distinct subset of lagged values. A combiner GRNN is then trained to predict 

the final output from the outputs of base learners. GEFTS is effective and robust 

against the curse of dimensionality, because each GRNN in the ensemble actually 

depends upon a smaller number of inputs.    

 

Second, the problem with existing homogeneous neural network ensemble methods is 

that they reduce the curse of dimensionality problem, but cannot cope well with feature 

interactions since the outputs of base classifiers are combined via static weighted 

voting approach. By contrast, since GEFTS (our proposed ensemble strategy) applies a 

GRNN (a dynamic weighted voting scheme) to combine the predictions of multiple 
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base GRNN learners to make final forecasting, GEFTS can cope with feature 

interactions.  

 

Third, Most of the conventional time series forecasting algorithms (e.g. ARIMA-

GARCH, feedforward MLP, RNN, and ensemble with weighted average) are global 

approximators, which have a single predictive model holding over the entire data space.  

A global approach describes the average features for the entire regions. Hence, they 

cannot deal with heterogeneous short-run dynamics.  However, the proposed algorithm 

(GEFTS) is a fuzzy clustering algorithm based on local approximation of memberships. 

Hence, GEFTS can deal with heterogeneous signals.  

  

Fourth, GEFTS is a nonparametric algorithm that takes a signal, and divides it into 

multiple overlapping segments. Hence, GEFTS can handle a wide variety of data.  

 

Fifth, Our proposed algorithm (GEFTS) is able to model seasonality directly so that 

prior deseasonalization is not necessary. Data pre-processing—both detrending and 

deseasonalization—is critical for conventional time series forecasting algorithms. As 

the conventional assumption of stationarity may not hold true for time series signals, 

deterending is an essential step for time series forecasting. The problem with long term 

trends is that the exact pattern never recurs when the data include a long term trend. 

Under such circumstances, no machine learning algorithm can learn. By detrending we 

remove long term trends from the data. In a (detrended) seasonal time series, some 

recognizable patterns recur after some regular intervals. In other words, the 

characteristics of joint distributions change cyclically across the seasonal time series. 
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Theoretically, seasonal patterns should be predictable. However, our empirical research 

suggests that most of the conventional time series forecasting algorithms cannot cope 

well with seasonal patterns for the two major reasons. First, seasonal patterns will 

likely aggravate the curse of dimensionality. The model of both detrended and 

deseasonalized data only includes non-seasonal lags, whereas the models of time series 

with seasonal patterns must include both seasonal and non-seasonal lags that give rise 

to an increase of the effective dimensionality (here, ―effective dimensionality‖ refers to 

the smallest number of predictor variables that are necessary to model the time series 

adequately). In time series, the sample size shrinks dramatically when the model needs 

to include long seasonal lags. This leads to a very inefficient model and the forecasting 

of time series becomes less reliable. Second, conventional forecasting algorithms suffer 

from a weak local approximation of the non-linear process it is modelling. Hence the 

large seasonal movements can sometimes obscure smaller movements and 

consequently, produce poor results. Therefore, applying both detrending and 

deseasonalization simultaneously is the most effective data pre-processing approach in 

modelling and forecasting time series with conventional forecasting techniques. There 

are no hard and fast rules for the identification of the seasonal pattern in the data. 

Hence, it can be very difficult to identify periodicities from random patterns (noise), 

which often leads to underdifferencing or overdifferencing. Eggleton (1976) showed 

that subjects were unable to distinguish between alternating sequences and random 

sequences in contrived time series data [156]. The underdifferenced series exhibits 

seasonal variations which results in poor forecasting performance for the above 

discussed reasons. The effects of overdifferencing are even worse. Overdifferencing 

may lead to an efficiency loss, and a possible deterioration of forecasting, since 
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overdifferencing can introduce patterns into the original observations which were not 

actually in the data before the differencing. Our proposed algorithm (GEFTS) can deal 

with seasonal time series problems due to the particular advantage of being robust to 

the curse of dimensionality and being a local approximation algorithm. 

 

Sixth, the goal of model optimization is to search for a compromise between the 

computation time and numerical accuracy of the modelling. Conventional optimization 

algorithms often fail to provide acceptable solutions due to the increased computational 

effort and convergence to local minima. By contrast, GEFTS- model optimization is 

carried out automatically with SAGA (presented in chapter 4). GEFTS employs SAGA 

for selecting optimal subsets of features both for base GRNN learners and the combiner 

GRNN learner. SAGA might not always find the best solution but is guaranteed to find 

a good solution in a reasonable time. 

 

Seventh, in general, conventional forecasting algorithms have many free parameters to 

tune. In real world exercises, too many choices can create difficulties in using these 

techniques, especially for users lacking sufficient knowledge of forecasting. One of the 

key advantages of using the proposed algorithm (GEFTS) is that it requires relatively 

few parameters to be defined. In addition, we discovered the best default values for the 

free parameters of the algorithm. The parameters of proposed algorithms include: the 

parameter of GRNN and the parameters of SAGA. The default parameter setting was 

adopted on 200 synthetic datasets with various data characteristics. These default 

parameter values are almost always a good choice. Consequently, users need not worry 

about which and how to specify parameter values. They can just leave it at default. 
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However, as the optimal choice of parameters of SAGA mainly depends on the 

resource constraints, users can also interactively adjust parameter values in order to 

save computational resources. Since all the information is always digitally saved, 

SAGA allows the user to stop the algorithm periodically, check the status of the search, 

adjust the stopping criterion accordingly and then rerun the algorithm without 

disrupting the process flow. 

 

Table 6.1 presents the default parameter values of SAGA. An overview of the 

methods that we used to generate synthetic datasets for optimizing default parameters 

are presented in section 3.2.3.3 of chapter 3.  
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Table 6.1: Default Parameter Setting of GEFTS 

Parameter Default Value 

Parameters of SAGA for selecting optimal subsets of features 

Population Size of SA 100a 

Population Size of GA 100a 

Population Size of Hill climbing 

algorithm 100
a 

Stopping criteria of SA 

The SA is stopped when the best solution 

does not change for 300 successive 

iterations. 

Stopping criteria of GA 

The GA is stopped when the best solution 

does not change for 100 successive 

iterations. 

Parameters of SAGA for selecting an optimal feature subset ensemble (GRNN 

ensemble) 

Population Size of SA 100a 

Population Size of GA 100a 

Population Size of Hill climbing 

algorithm 100a 

Stopping criteria of SA 

The SA is stopped when the best solution 

does not change for 300 successive 

iterations. 

Stopping criteria of GA 

The GA is stopped when the best solution 

does not change for 100 successive 

iterations. 

Parameter of GRNN 

Smoothing parameter ( ) of GRNN 

model 

The default value for each centre‘s width 

( ) to 2 times of the average distance to 

20 nearest neighbours. 
a  

Set the population size to 100 instead of 100 in cases where the list of alternative 

solutions is less than 100.  

 

 

6.3. Design and Implementation Strategy of GEFTS 

GEFTS forecasts the most likely future values of a time series as well as expected 

future volatility movements. For this, GEFTS constructs two ensemble models—

model-P and model-Q.  Model-P forecasts expected future values, whereas model-Q 
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forecasts expected future volatilities. Model-P is fitted to the time series data and 

model-Q is fitted to the square of residuals obtained from the model-P on the training 

dataset. Hence the model-P is first developed and then the model-Q is developed. Once 

the models are constructed, they forecast future events independently based on 

historical trends. Figure 6.2 shows two ensemble models. 

 

 

 

A GEFTS model (model-P and model-Q) contains only autoregressive parameters (i.e. 

lagged values of the series) and no moving average parameters (i.e. past values of the 

error made by the model). The schematic overview and the pseudo-code of the 

algorithm are presented in section 6.3.1. GEFTS employ our proposed feature subset 

selection algorithm SAGA to optimize the ensemble makeup. In this study, SAGA 

utilizes the BIC (which takes into account model parsimony, providing a distinct rank 

ordering of model fits) to identify the appropriate models. Section 6.3.2 demonstrates 
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how to assign a solution a fitness score based on its BIC value. BIC is discussed in 

section 3.4.  

 

6.3.1. Pseudo code of GEFTS 

Step 1: Detrend the time series: 

i. Eliminate non-stationarity in variance: Ascertain if there is any evidence of non-

stationarity in variance by examining time series plots and by the F-test of variances 

of the first and second halves of the time series with a significance level (α) of 0.05. If 

the variance is not stable through the time, transform the original series into 

logarithms or square roots to stabilize its variance. If the logarithmic transformation 

does not stabilize the series variance, then try transforming the original series into its 

square roots. 

ii. Eliminate non-stationarity in mean: Then examine the series for stability of its mean by 

observing time series plots. This can be confirmed by a t-test of the means of the first 

half of the period and the last half with a significance level (α) of 0.05. If the mean is 

not stable (i.e. the series indicates a trend), resolve this through first or second 

differencing of the series.  

Step 2: Construction of the model ( P ) for forecasting future values in the time 

series : 

 Normalize the values of stationary series in the range of 0 and 1. 

 Select time lags with not less than 10 observations as candidate input variables.  

 Apply SAGA to the chosen feature space to select the 100 best feature subsets (it 

selects less than 100 feature subsets only if 100 parsimonious diverse features 
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subsets are not available). Table 6.1 shows the parameter settings that we used in 

our experiments. The fitness value is assigned to each feature subset solution 

according to the BIC value. The BIC value for each feature subset on the training 

set was used to evaluate the feature subset solution. The lower the BIC value, the 

higher the fitness score. 

 

 

Where, RSS = residual sum-of-squares on the training data from the estimated model, 

n Number of data points in training set, and k number of features in a feature 

subset.  

 Train a GRNN classifier with each selected feature subset. 

 Again apply SAGA to select an optimal set of trained GRNNs (i.e. an optimal 

feature subset ensemble) for the first layer of the ensemble. Table 6.1 presents the 

parameter settings that we used for these simulations. Each GRNN of the GRNN 

ensemble is trained to forecast the future value of the time series independently. The 

outputs of the first layer are the inputs of the second layer. GRNN in the second layer 

predicts the final output. The fitness value is assigned to each candidate GRNN subset 

solution according to its BIC value. BIC values are calculated using data from the 

training dataset using equation 6.1. However, in this context, the k  of Equation (6.1) is 

the number of base GRNN learners in the subset of GRNNs 

 

SAGA selects the GRNN subset (feature subset ensemble) with the minimal BIC 

value. The selected GRNNs are used as base classifiers. Train the combiner GRNN. 

)1.6(lnln kn
n

RSS
nBIC
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Base classifier outputs are considered new features while training the combiner. 

Trained combiner learns the fusion rule from the outputs of base classifiers. We name 

this ensemble model as ‗P‘. Construction process of the model P  is further illustrated 

in figure 6.3. 

 

 

The model ‗P‘ forecasts the future values of time series based upon the lagged (actual 

and predicted) values of time series.  Multistep ahead forecasting was done as iterative 

one-step ahead forecasting (Figure 6.4). Forecasts are then transformed back into the 

original scale.  
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Step 3: Construction of GRNN ensemble model ‘Q’ for the forecasting volatility of 

time-series:  

 Present training patterns to the model ‗P‘ for prediction purposes. Then find the 

squared residual series ta by subtracting the predicted value ˆ Z t from the actual value 

Z t and by taking the square of the residual: 
2

ttt ZZa


 (6.2). 

 The squared residual series is normalized on a 0-1 scale.  

 We fit a GRNN ensemble model to this squared residual series as we did for the 

original time series data in step 2. We name this model as ‗Q‘.  Model ‗Q‘ forecasts 

future volatility (the conditional mean of the squared residuals) based on the lagged 

squared residuals.  
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 Multi-step ahead forecasting of volatility is done by making iterative one-step 

ahead predictions up to desired step whilst feeding back the predicted output.  

 After the forecast of volatility have been calculated on the transformed scale, 

GEFT translates the forecasted volatility back to the original scale of measurement. 

 It is very important to note that during the out-of-sample forecasting, the 

process variance increases linearly with time due to the accumulation of random noise. 

Hence GEFTS calculates conditional variance at t -steps-ahead (where t=1, 2, 3….) 

out-of-sample forecasting, using equation (6.3). 

Variance at time horizon t : 

)ZVar( t


= (Predicted squared residual at time step t) t           (6.3) 

Step 4: We compute a 95% confidence interval (C.I.) for the forecast of the forecast of 

the future value of time series (
tẐ ) as in equation (6.4):     

)4.6(96.1ˆ..%95
tt

ZVarZIC


 

 

 The design and construction of model Q  are summarized in Figure 6.5. Figure 

6.6 displays the multistep-ahead (out-of-sample) forecasting of model- Q .  
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6.3.2 Strategy for Assigning Fitness Scores to Candidate Solutions based on 

Bayesian Information Criterion (BIC) 

It is worth emphasizing that the fitness score should be between 0 and 1. So far, we 

have used the prediction accuracies to obtain fitness scores, where the prediction 

accuracy ranges from 0 to 100%. A fitness score was obtained for each solution by 

dividing the percent accuracy by 100. In contrast, the BIC value can range from 

to . In this section, we demonstrate how we use BIC values to obtain fitness 

scores for solutions.  

Step 1: BIC is calculated for each solution using equation (6.1). The lower the BIC 

value, the better the solution.  

Step 2: Assign rank m,...,1  to the solutions according to their BIC values, where rank 

‗1‘ is the worst-fitness solution.  

Step 3: For each solution, divide its rank value by the rank sum (i.e. the sum of the 

ranks of the solutions evaluated so far) to obtain the fitness score. The example table 

6.3.2.1 illustrates a numerical example for assigning fitness scores to candidate 

solutions based on the BIC. 

Example Table 6.3.2.1: Calculating a fitness score based on the BIC weight 

Solution BIC Weight Rank Fitness 

Solution 2 -1463.8 4 0.4 

Solution 1 -1163.8 3 0.3 

Solution 3 -863.8 2 0.2 

Solution 4 374.9 1 0.1 

Rank sum   10   

 

The fitness scores of all the solutions were updated following the evaluation of each 

new solution. 
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6.4. Comparative Performance Analysis 

We compare our proposed algorithm (GEFTS) with popular time series forecasting 

algorithms: (i) ARIMA-GARCH, (ii) GRNN  (Generalized Regression Neural 

Networks), (iii) MLP (feedforward Multilayer Perceptrons), (iv) ERNN (Elman‘s 

Recurrent Neural Networks), (v) HA (a hybrid algorithm of regression-based methods 

and ERNN), (vi) RBFN (Radial Basis Function Neural Networks), (vi) a homogeneous 

ensemble of GRNNs with simple averaging approach (HOS), (vii) a homogeneous 

ensemble of GRNNs with weighted averaging approach (HOW), (viii)  a heterogeneous 

neural network ensemble with simple averaging approach (HES), and (ix) a 

heterogeneous neural network ensemble with weighted averaging approach (HEW). 

The implementation methods of existing algorithms are described in section 3.1.3 of 

chapter 3. We compare the proposed algorithms (GRFTS) with well-known algorithms 

on 35 publicly available real-world datasets (described in section 3.2.3.2 of chapter 3) 

and one new problem (described in section 3.2.3.1 of chapter 3) of univariate time 

series analysis. In this study, we adopted the following strategies to assess the 

performance of proposed and existing algorithms:   

a. ARIMA and GARCH models include autoregressive and moving average 

parameters. In this study, apart from ARIMA-GARCH, all other algorithms 

including the proposed algorithm GEFTS consider only autoregressive processes.  

b. We determine the parameters of ARIMA and GARCH models by using ACF 

(Autocorrelation Function) and PACF (Partial Autocorrelation Function). Input 

variables for all other algorithms were selected by using the SAGA. SAGA used 

BIC model selection criterion to select an optimal model.  
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c. In ARIMA-GARCH, the fitted ARIMA model forecasts future values of a time 

series and the GARCH model forecasts future volatilities. Other forecasting 

algorithms construct two models—one for the future value and another for the 

future volatility. The first model is fitted to the stationary time series, whereas the 

second model is fitted to the squared residuals of the first model.  

d. The original time series were detrended by standard methods (the most suitable 

transformation of the data and differencing). We compare the forecasting 

performance of single and ensemble neural networks before and after 

deseasonalizing data. On the other hand, the time series are always deseasonalized 

before being used by the ARIMA methodology.  

e. The first two-thirds of a time series were used as the training set, and the remaining 

third as a test set. We compare the out-of-sample forecasting performance of the 

algorithms in terms of their interval and point estimation accuracy.  

f. The one-step-ahead process is iterated to obtain multi-step-ahead forecasts.  

g. We compute the accuracy of algorithms on 1, 
2

N
and N  step-ahead forecasts ( N  

denotes the number of out-of-sample forecasts).  

h. An interval forecast is considered to be correct if the actual value falls inside the 

predicted 95% confidence interval. Point estimation accuracy was evaluated by the 

following equation (6.5).  

)5.6(
N

100
-100accuracy estimationPoint 

1

^

N

i
i

ii

Y

YY

 Where, N =number 

of observation in the test set, 
i

Y =actual output, 
^

i
Y =forecasted output. 
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 In time series forecasting, the magnitude of the forecasting error increases over 

time, since the uncertainty increases with the horizon of the forecast. When 

forecasting time series, interval estimates are more informative than simple point 

estimates. Hence, for each dataset, the algorithms were ranked in terms of their 

accuracy in the interval estimation. If two algorithms have the same interval-

estimation accuracy on a dataset, the algorithms were ranked based on the point 

estimation accuracy. 

 The Friedman test is used to test the null hypothesis that the performance is the 

same for all algorithms. After applying the Friedman test and noting it is significant 

―Comparison of Groups or Conditions with a Control‖ tests (details are available in 

section 3.8 of this thesis and in [140], p. 181) were performed in order to test the 

(null) hypothesis that there is no significant difference between any pair of 

algorithms. 

 

6.5. Results and Discussion 

We evaluate the performance of our proposed algorithm (GEFTS) with several well-

known forecasting algorithms using 36 time-series datasets, both before and after 

seasonal adjustments are made. The one, 2N  and N -step-ahead predictions are 

studied ( N is the number of out-of-sample forecasts). Comparative overall results (test 

accuracies and standard deviations in parenthesis, rounded %) are reported in table 6.2. 

Friedman Test reveals significant differences ( 05.0p ) in the performance of time 

series forecasting algorithms at all three time horizons (1, 2N  and N -step-ahead). The 

results of pairwise comparison tests ( 05.0p ) among time series forecasting 
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algorithms are reported in Table 6.3. Figures 6.7 and 6.8 illustrate the performances of 

algorithm, in terms of interval estimation accuracy and point estimation accuracy 

respectively, on Pulse Pressure dataset.  

 

Table 6.2 Summary performance report: A comparison of time series forecasting 

algorithms (standard deviations in parenthesis) 

  1-step-ahead forecast N/2- step-ahead-forecast N-step-ahead forecast 

Algorithm 

Overall 

mean 

interval 

estimation 

Accuracy 

(rounded %) 

Overall 

mean point 

estimation 

accuracy 

(rounded %) 

Overall 

mean 

interval 

estimation 

Accuracy 

(rounded %) 

Overall 

mean point 

estimation 

accuracy 

(rounded %) 

Overall 

mean 

interval 

estimation 

Accuracy 

(rounded %) 

Overall 

mean point 

estimation 

accuracy 

(rounded %) 

GEFTS (d
a
) 97 (2) 96 (4) 86 (8) 72 (12) 69 (14) 62 (15) 

GEFTS (nd
b
) 97 (2) 96 (3) 86 (10) 72 (11) 68 (13) 68 (15) 

ARIMA-GARCH 95 (6) 87 (9) 80 (11) 61 (22) 61 (17) 55 (22) 

HOS (d
a
) 92 (8) 86 (11) 69 (16) 65 (17) 60 (11) 49 (23) 

HOS (nd
b
) 90 (8) 85 (9) 68 (19) 58 (17) 60 (13) 45 (21) 

HOW (d
a
) 95 (4) 91 (8) 83 (9) 65 (14) 58 (16) 57 (21) 

HOW (nd
b
) 93 (4) 89 (11) 73 (12) 60 (13) 61 (14) 52 (21) 

HES (d
a
) 88 (10) 77 (15) 57 (15) 56 (20) 62 (13) 49 (20) 

HES (nd
b
) 81 (12) 75 (11) 61 (21) 53 (20) 55 (13) 48 (26) 

HEW (d
a
) 92 (7) 88 (11) 70 (11) 64 (14) 64 (10) 53 (19) 

HEW (nd
b
) 80 (14) 78 (11) 68 (15) 55 (12) 57 (11) 53 (18) 

GRNN (d
a
) 87 (10) 71 (15) 69 (12) 62 (13) 52 (20) 53 (24) 

GRNN (nd
b
) 78 (11) 70 (11) 64 (16) 57 (20) 54 (17) 39 (20) 

RBFN (d
a
) 86 (10) 68 (16) 66 (15) 58 (17) 50 (16) 46 (23) 

RBFN (nd
b
) 75 (12) 67 (14) 54 (19) 52 (19) 49 (13) 35 (20) 

MLP (d
a
) 82 (10) 71 (9) 67 (10) 63 (12) 55 (23) 55 (28) 

MLP (nd
b
) 77 (11) 57 (20) 60 (20) 55 (23) 48 (15) 40 (25) 

HA (d
a
) 83 (14) 70 (12) 60 (13) 61 (19) 48 (17) 44 (26) 

HA (nd
b
) 72 (8) 67 (15) 58 (15) 49 (21) 49 (28) 38 (28) 

ERNN (d
a
) 93 (5) 90 (8) 80 (9) 66 (19) 51 (15) 56 (29) 

ERNN (nd
b
) 74 (12) 65 (15) 60 (23) 49 (24) 40 (22) 41 (26) 

 ad represents deseasonalized data   

 bnd repreasents non-deseasonalized data 
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Table 6.3: Pairwise Comparisons between Time Series Forecasting Algorithms (d‘ 

in parenthesis stands for ‗deseasonalized data‘ and ‗nd‘ in parenthesis stands for ‗non-

deseasonalized data‘.)  

  
1-step-ahead-forecast 

 

Rank Algorithm significantly outperformed algorithms 

1 

GEFTS(d), 

GEFTS (nd) 

(1)ARIMA, (2) HOW (nd), (3) ERNN (d), (4) HOS (d), (5) 

HOW (d), (6) HEW (d), (7) HOS (nd), (8) HES (d), (9) GRNN 

(d), (10) RBFN (d), (11) HA (d), (12) MLP (d), (13) HEW 

(nd), (14) HES (nd), (15) GRNN (nd), (16) MLP (nd), (17) 

RBFN (nd), (18) ERNN (nd), (19) HA (nd) 

2 ARIMA 

(1) HOS (d), (2) HOW (d), (3) HEW (d), (4) HOS (nd), (5) 

HES (d), (6) GRNN (d), (7) RBFN (d), (8) HA (d), (9) MLP 

(d), (10) HEW (nd), (11) HES (nd), (12) GRNN (nd), (13) 

MLP (nd), (14) RBFN (nd), (15) ERNN (nd), (16) HA (nd) 

3 

HOW (nd), 

ERNN (d) 

(1) HOW (d), (2) HEW (d), (3) HOS (nd), (4) HES (d), (5) 

GRNN (d), (6) RBFN (d), (7) HA (d), (8) MLP (d), (9) HEW 

(nd), (10) HES (nd), (11) GRNN (nd), (12) MLP (nd), (13) 

RBFN (nd), (14) ERNN (nd), (15) HA (nd) 

4 

HOS(d), 

HOW(d) 

(1) HEW (d), (2) HOS (nd), (3) HES (d), (4) GRNN (d), (5) 

RBFN (d), (6) HA (d), (7) MLP (d), (8) HEW (nd), (9) HES 

(nd), (10) GRNN (nd), (11) MLP (nd), (12) RBFN (nd), (13) 

ERNN (nd), (14) HA (nd) 

5 HEW (d) 

(1) HOS (nd), (2) HES (d), (3) GRNN (d), (4) RBFN (d), (5) 

HA (d), (6) MLP (d), (7) HEW (nd), (8) HES (nd), (9) GRNN 

(nd), (10) MLP (nd), (11) RBFN (nd), (12) ERNN (nd), (13) 

HA (nd) 

6 HOS(nd) 

(1) HES (d), (2) GRNN (d), (3) RBFN (d), (4) HA (d), (5) 

MLP (d), (6) HEW (nd), (7) HES (nd), (8) GRNN (nd), (9) 

MLP (nd), (10) RBFN (nd), (11) ERNN (nd), (12) HA (nd) 

7 HES (d) 

(1) GRNN (d), (2) RBFN (d), (3) HA (d), (4) MLP (d), (5) 

HEW (nd), (6) HES (nd), (7) GRNN (nd), (8) MLP (nd), (9) 

RBFN (nd), (10) ERNN (nd), (11) HA (nd) 

8 GRNN (d) 

(1) RBFN (d), (2) HA (d), (3) MLP (d), (4) HEW (nd), (5) 

HES (nd), (6) GRNN (nd), (7) MLP (nd), (8) RBFN (nd), (9) 

ERNN (nd), (10) HA (nd) 

9 RBFN (d) 

(1) HA (d), (2) MLP (d), (3) HEW (nd), (4) HES (nd), (5) 

GRNN (nd), (6) MLP (nd), (7) RBFN (nd), (8) ERNN (nd), (9) 

HA (nd) 

10 HA (d) 

(1) MLP (d), (2) HEW (nd), (3) HES (nd), (4) GRNN (nd), (5) 

MLP (nd), (6) RBFN (nd), (7) ERNN (nd), (8) HA (nd) 

11 MLP (d) 

(1) HEW (nd), (2) HES (nd), (3) GRNN (nd), (4) MLP (nd), 

(5) RBFN (nd), (6) ERNN (nd), (7) HA (nd) 
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12 HEW(nd) 

(1) HES (nd), (2) GRNN (nd), (3) MLP (nd), (4) RBFN (nd), 

(5) ERNN (nd), (6) HA (nd) 

13 HES(nd) 

(1) GRNN (nd), (2) MLP (nd), (3) RBFN (nd), (4) ERNN (nd), 

(5) HA (nd) 

14 GRNN (nd) (1) MLP (nd), (2) RBFN (nd), (3) ERNN (nd), (4) HA (nd) 

15 MLP (nd) (1) RBFN (nd), (2) ERNN (nd), (3) HA (nd) 

16 RBFN (nd) (1) ERNN (nd), (2) HA (nd) 

17 ERNN (nd) (1) HA (nd) 

18 HA (nd) 0 

 

 

N/2-step-ahead-forecast 

Rank Algorithms Significantly outperformed algorithms 

1 

GEFTS(d), 

GEFTS (nd) 

(1)HOW(d), (2) ERNN (d), (3) HOW (nd), (4) HOS (nd), (5) 

HEW (d), (6) GRNN (d), (7) HOS (d), (8) HEW (nd), (9) MLP 

(d), (10) RBFN (d), (11) GRNN (nd), (12) HES (nd), (13) 

MLP (nd), (14) ERNN (nd), (15) HA (d), (16) HA (nd), (17) 

HES (d), (18) RBFN (nd) 

2 ARIMA 

(1) ERNN (d), (2) HOW (nd), (3) HOS (nd), (4) HEW (d), (5) 

GRNN (d), (6) HOS (d), (7) HEW (nd), (8) MLP (d), (9) 

RBFN (d), (10) GRNN (nd), (11) HES (nd), (12) MLP (nd), 

(13) ERNN (nd), (14) HA (d), (15) HA (nd), (16) HES (d), 

(17) RBFN (nd) 

3 

HOW (d), 

ERNN (d) 

(1) HOW (nd), (2) HOS (nd), (3) HEW (d), (4) GRNN (d), (5) 

HOS (d), (6) HEW (nd), (7) MLP (d), (8) RBFN (d), (9) 

GRNN (nd), (10) HES (nd), (11) MLP (nd), (12) ERNN (nd), 

(13) HA (d), (14) HA (nd), (15) HES (d), (16) RBFN (nd) 

4 HOW (nd) 

(1) HOS (nd), (2) HEW (d), (3) GRNN (d), (4) HOS (d), (5) 

HEW (nd), (6) MLP (d), (7) RBFN (d), (8) GRNN (nd), (9) 

HES (nd), (10) MLP (nd), (11) ERNN (nd), (12) HA (d), (13) 

HA (nd), (14) HES (d), (15) RBFN (nd) 

5 

HOS (nd), 

HEW (d), 

GRNN (d) 

(1) HOS (d), (2) HEW (nd), (3) MLP (d), (4) RBFN (d), (5) 

GRNN (nd), (6) HES (nd), (7) MLP (nd), (8) ERNN (nd), (9) 

HA (d), (10) HA (nd), (11) HES (d), (12) RBFN (nd) 

6 

HOS (d), 

HEW (nd) 

(1) MLP (d), (2) RBFN (d), (3) GRNN (nd), (4) HES (nd), (5) 

MLP (nd), (6) ERNN (nd), (7) HA (d), (8) HA (nd), (9) HES 

(d), (10) RBFN (nd) 

7 MLP (d) 

(1) RBFN (d), (2) GRNN (nd), (3) HES (nd), (4) MLP (nd), 

(5) ERNN (nd), (6) HA (d), (7) HA (nd), (8) HES (d), (9) 

RBFN (nd) 

8 RBFN (d) 

 (1) GRNN (nd), (2) HES (nd), (3) MLP (nd), (4) ERNN (nd), 

(5) HA (d), (6) HA (nd), (7) HES (d), (8) RBFN (nd) 
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9 GRNN (nd) 

(1) HES (nd), (2) MLP (nd), (3) ERNN (nd), (4) HA (d), (5) 

HA (nd), (6) HES (d), (7) RBFN (nd) 

10 HES (nd) 

(1) MLP (nd), (2) ERNN (nd), (3) HA (d), (4) HA (nd), (5) 

HES (d), (6) RBFN (nd) 

11 MLP(nd) 

 (1) ERNN (nd), (2) HA (d), (3) HA (nd), (4) HES (d), (5) 

RBFN (nd) 

12 ERNN (nd) (1) HA (d), (2) HA (nd), (3) HES (d), (4) RBFN (nd) 

13 HA (d) (1) HA (nd), (2) HES (d), (3) RBFN (nd) 

14 HA (nd) (1) HES (d), (2) RBFN (nd) 

15 HES (d) (1) RBFN (nd) 

16 RBFN (nd) 0 

  
 

N-step-ahead forecast 

Rank Algorithm Significantly outperformed algorithms 

1 

GEFTS (d), 

GEFTS (nd) 

(1) HEW (d), (2) HOS (d), (3) ARIMA, (4)HOS (nd), (5) HES 

(d), (6) HOW (d), (7) HEW (nd), (8) HES (nd), (9) MLP (d), 

(10) GRNN (nd), (11) GRNN (d), (12) ERNN (d), (13) HA 

(nd), (14) RBFN (d), (15) HA (d), (16) MLP (nd), (17) RBFN 

(nd), (18) ERNN (nd) 

2 

HOW (nd), 

HEW (d) 

(1) HOW (d), (2) HEW (nd), (3) HES (nd), (4) MLP (d), (5) 

GRNN (nd), (6) GRNN (d), (7) ERNN (d), (8) HA (nd), (9) 

RBFN (d), (10) HA (d), (11) MLP (nd), (12) RBFN (nd), (13) 

ERNN (nd) 

3 HOS (d) 

(1) HEW (nd), (2) HES (nd), (3) MLP (d), (4) GRNN (nd), (5) 

GRNN (d), (6) ERNN (d), (7) HA (nd), (8) RBFN (d), (9) HA 

(d), (10) MLP (nd), (11) RBFN (nd), (12) ERNN (nd) 

4 

ARIMA, HOS 

(nd), HES (d) 

(1) HES (nd), (2) MLP (d), (3) GRNN (nd), (4) GRNN (d), (5) 

ERNN (d), (6) HA (nd), (7) RBFN (d), (8) HA (d), (9) MLP 

(nd), (10) RBFN (nd), (11) ERNN (nd) 

5 

HOW (d), 

HEW (nd) 

(1) MLP (d), (2) GRNN (nd), (3) GRNN (d), (4) ERNN (d), 

(5) HA (nd), (6) RBFN (d), (7) HA (d), (8) MLP (nd), (9) 

RBFN (nd), (10) ERNN (nd) 

6 

HES (nd), 

MLP (d) 

(1) GRNN (nd), (2) GRNN (d), (3) ERNN (d), (4) HA (nd), (5) 

RBFN (d), (6) HA (d), (7) MLP (nd), (8) RBFN (nd), (9) 

ERNN (nd) 

7 GRNN (nd) 

(1) GRNN (d), (2) ERNN (d), (3) HA (nd), (4) RBFN (d), (5) 

HA (d), (6) MLP (nd), (7) RBFN (nd), (8) ERNN (nd) 

8 GRNN (d) 

(1) ERNN (d), (2) HA (nd), (3) RBFN (d), (4) HA (d), (5) 

MLP (nd), (6) RBFN (nd), (7) ERNN (nd) 

9 ERNN (d) 

(1) HA (nd), (2) RBFN (d), (3) HA (d), (4) MLP (nd), (5) 

RBFN (nd), (6) ERNN (nd) 
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10 HA (nd) 

(1) RBFN (d), (2) HA (d), (3) MLP (nd), (4) RBFN (nd), (5) 

ERNN (nd) 

11 RBFN (d) (1) HA (d), (2) MLP (nd), (3) RBFN (nd), (4) ERNN (nd) 

12 HA (d) (1) MLP (nd), (2) RBFN (nd), (3) ERNN (nd) 

13 MLP (nd) (1) RBFN (nd), (2) ERNN (nd) 

14 RBFN (nd) (1) ERNN (nd) 

15 ERNN (nd) 0 
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Key Findings: 

 The proposed algorithm (GEFTS) significantly outperformed conventional 

algorithms both at short horizons (one-step ahead), and at longer horizons ( 2N and 

N -step-ahead) (Figures 6.7-6.8, and Tables 6.2-6.3).  

 For GEFTS, apparently the deseasonalization offers no significant performance 

improvement (no statistically significant differences were found before and after the 

deseasonalization) (Tables 6.2-6.3). All the single neural networks (GRNN, ERNN, 

MLP, and RBFN) and HA achieve improved performance when applied to 

deasonalized data. We found mixed results concerning the effects of deseasonalization 

on the performance of conventional homogeneous ensemble neural networks (HOS, 

and HOW). In 1- and N -step-ahead forecasting, the performance of HOW before 

deseasonalization (HOW(nd)) was significantly better than that of HOW after 

deseasonalization (HOW(d)), whereas in 2N -step-ahead forecasting, the performance 

after deseasonalization (HOW(d)) was significantly better than the performance prior to 
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deasonalization (HOW(nd)). On the other hand, in 2N -step-ahead forecasting, the 

performance of HOS before deseasonalization was significantly better than that of HOS 

after deseaonalization (HOS(d)), whereas, in 1- and N -step-ahead forecasting the 

performance after deseasonalization (HOS(d)) was significantly better than the 

performance before deseasonalization (HOS(nd)). Hence, for conventional 

homogeneous neural network ensemble models (HOS and HOW), our simulation 

results are inconclusive and further study is necessary.  

However, prior deseasonalization step led to improved accuracy for 

conventional heterogeneous ensemble networks (HES and HEW).  

 In general, the performance of neural network ensembles is better than that of 

single neural networks (Figures 6.1-6.2, and Tables 6.2-6.3). The homogeneous neural 

network ensemble with weighted voting (HOW) is the next best time series forecasting 

algorithm to our proposed algorithm GEFTS. It is worthy to note that deseasonalization 

was not performed on ‗Pulse Pressure‘ series (figures 6.7-6.8), since we could not 

recognize seasonal patterns in it.  

 The hybrid algorithm (HA) did not show significant improvements over the 

constituent algorithms (Tables 6.2 and 6.3). Therefore, our simulation results reinforce 

the arguments that ARIMA neural network hybrids are not better than single models. 

 

6.6 Summary and Conclusions                                                                   

We proposed an automatic algorithm (GEFTS) for univariate time series forecasting. 

GEFTS is an ensemble algorithm wherein both the base learners and the combiner are 

GRNN learners. GEFTS can simulate all the seasonal effects and prior 
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deseasonalization is not necessary. GEFTS employs our proposed feature subset 

selection algorithm SAGA for automatic optimization of control parameters. We 

compare our proposed algorithm with the best known algorithms on 36 real datasets.  

The one-step process is iterated to obtain multi-step-ahead forecasts. The results 

obtained from experiments show that GEFTS is superior to conventional algorithms, 

both for short-term and long-term out-of-sample forecasting.  

 

6.7 Future Work: 

Our proposed algorithm GEFTS allows only autoregressive terms without moving 

average terms. In future we will study the effect of moving average terms on the 

performance of GEFTS.      

 

The scope of this study was limited to univariate time series forecasting which is 

focused on attempting to forecast the future values of a random variable based on its 

past values. Although the previous values of the variable of interest are  good predictors 

of its future values, it is not the only predictor. The evolution of time series X may be 

dependent on the evolution of time series Y. Multivariate time series forecasting takes 

into consideration the evolution of time series variable of interest X along with the 

evolutions of other time series variables (e.g. Y) affecting X, to come up with the 

forecasted values of X. To promote the applicability of the proposed algorithm, we 

would like to investigate if there is an elegant way to extend our algorithm so that it can 

handle further complexities of multivariate time series forecasting. 

 



                                                

 

249 

Chapter 7 

Conclusion 

7.1 Research Problems and Proposed Solutions 

This thesis deals with the non-trivial task of dimensionality reduction. Many real world 

applications are confronted with high dimensional data. The curses of high 

dimensionality include difficulty in fully exploring a vast parameter space, the 

difficulty in interpreting patterns, the possibility of overfitting in small samples and 

subsequent validity shrinkage. Thus dimensionality reduction, and hence feature subset 

selection, is critical for data mining applications. Feature subset selection involves 

choosing the smallest subset of features that maximizes the prediction accuracy. An 

exhaustive search of all possible subsets will guarantee finding the best solution, but 

exhaustive search for the best feature subset is prohibitively expensive. A search 

strategy is needed to explore the feature space. A good search algorithm should 

facilitate the exploration of new areas in the search space, the rapid identification of the 

most promising zones, and the highly localized search in promising areas. No existing 

search strategy can attain all three of these purposes. In this thesis, we present an 

improved algorithm (SAGA) for feature subset selection. SAGA is a hybrid scheme 

that combines the strengths of three search algorithms (a simulated annealing (SA), a 

genetic algorithm (GA) and a greedy search algorithm) and one learning algorithm 

(Generalized Regression Neural Networks (GRNN)). Among existing search 

algorithms, SA is a good tool if the goal is to travel a long distance quickly, since it 

travels by making long jumps. SA promotes the exploration of new regions in the 

solution space having several local minima. It has the ability to jump over high peaks 
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and it can go easily up or down. It may fall down and reach a position close to the 

bottom, but it is also very likely that it may jump up ending in a position even higher 

than the initial position. First, our proposed algorithm SAGA employs a SA to quickly 

explore the vast feature space. The SA generates a pool of solutions, some will be 

better than the others and the cross of these solutions could yield a better one still. 

Next, our proposed algorithm SAGA applies a GA exclusively to several best-to-date 

feature subsets of the SA for the exploitation of already sampled regions in the search 

space. Genetic algorithms (GA) evolve new and better solutions through the application 

of genetic operators (crossover, mutation, and selection and survival of the fittest). In 

the final step, SAGA further fine-tunes the search by using a greedy search algorithm. 

SAGA employs a fast learning algorithm (Generalized Regression Neural Networks) as 

a means to ensure computational efficiency. GRNN is a one-pass algorithm. The 

highest computational efficiency is necessary for exploring a vast unknown space of 

possible solutions. 

 

SAGA reduces the dimensionality of the original feature space by removing 

irrelevant and redundant features. However, our research suggests that the problem may 

continue to persist even after we select the most optimally parsimonious subset of 

features. This happens when the sample size is not sufficient to accommodate all our 

independent variables. Determining the necessary sample size is not a simple task. The 

required total sample size depends on many factors. To tackle this problem, we 

introduce a homogeneous ensemble network that combines several GRNN classifiers. It 

trains individual GRNN (ensemble members) independently using different feature 

subsets formed by SAGA and then integrates the outputs from these base GRNN 



                                                

 

251 

classifiers to produce a combined output. The main novelties of our ensemble neural 

networks are:  

 

(1) Our proposed algorithm SAGA is used to achieve automatic optimization of 

ensemble of models that enhances performance by improving the configuration of the 

ensemble network. Unless an optimal subset of base classifiers has been selected, an 

ensemble of classifiers will be no better than a single classifier. Conventional search 

algorithms are plagued with the problems of premature convergence, slow iterations to 

reach the global optimal solution and getting stuck at a local optimum that prevent 

them from being effective search algorithms. In contrast, our proposed search algorithm 

SAGA demonstrates the greater persistence and better performance.  

 

(2) In order for our ensemble network to inherit the qualities of GRNN, we employ the 

GRNN as a base classifier (members of the ensemble). GRNN offers exceptional 

qualities found in no other algorithm. First off, it is nonparametric in the sense it makes 

no assumptions concerning the form of the underlying distributions and requires no 

prior knowledge of the dynamics. Second, due to the construction of a similarity matrix 

and the fuzzy clustering of patterns, it can detect even small alterations in patterns. 

Hence, when confronted with a fresh set of inputs for a new situation, GRNN predicts 

outcomes with increasing reliability over time. Third, since it is a similarity based 

algorithm, it is less sensitive to potential outliers. This enables it to form the most 

―plausible‖ outputs (in relation to the learning that it has undergone) for any inputs. 

Fourth, GRNN has only one free parameter to adjust, which eases the process to set it 
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to give its best performance in a given application. Other algorithms have many free 

parameters to select and estimating them all at once may induce error.  

 

(3) At present, most neural network ensemble approaches use simple majority voting or 

weighted voting of classifiers to combine single classifier votes. Majority voting does 

not consider the performance level of each individual classifier, therefore results may 

deteriorate because of poor performing classifiers. In weighted voting systems, the vote 

of each base classifier is weighted. A single scalar weight is assigned to each base 

classifier, where the weight of each classifier depends on the accuracy of the classifier 

on the training set. However, the true performance of a classifier may vary across 

population subgroups. The conventional weighted voting schemes do not make use of 

information specific to the instance when calculating the weights of the ensemble 

members. This may turn out to be a missed opportunity as this information may help to 

determine which base classifiers are likely to predict correctly. In our proposed 

ensemble network, the outputs from the ensemble of base classifiers are combined to 

produce an overall decision by employing another GRNN classifier. GRNN uses a 

dynamic instance-based weighting scheme based on the combination of fuzzy 

clustering and weighted voting. Thus, instead of assigning a weight to a base classifier 

that is fixed for all instances, our proposed ensemble approach dynamically assigns 

weights to base classifiers based on how well they are expected to predict on the output 

of the test instance.  

 

Two tailor-made algorithms (GEMI and GEFTS), based on our proposed fuzzy 

ensemble approach, are developed to impute missing values and to forecast the 
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univariate time series. Both problems are subject to the curse of dimensionality. 

Imputation models have to take into account the nature of dependencies of the variable 

of interest on the observed variables as well as on missing data mechanisms of samples. 

This substantially increases the effective dimensionality (the dimensionality of the 

smallest feature subset that adequately represents the data) of the problem. On the other 

hand, in the univariate time series forecasting process, the dependent variable tZ  is a 

function of current and lagged values of tZ . Consequently, ‗the curse of 

dimensionality‘ begins to set in very quickly and the accuracy of the algorithm gets 

worse.  

 

Our proposed algorithm GEMI is a multiple imputation algorithm that utilizes an 

iterative method for imputing missing values. By contrast, our proposed univariate 

forecasting algorithm GEFTS is a one-pass algorithm that learns two ensemble models, 

one for forecasting future values of the series and one for future volatilities. We find 

that GEFTS is able to model seasonality directly and prior deseasonalization is not 

necessary.  

 

Manual design of neural network ensembles is a complex task. A great advantage 

of using GEMI and GEFTS is that they can automatically evolve ensembles with the 

help of SAGA. In our proposed algorithms, the designers need to specify just a few 

parameters. The main parameter of GEMI and GEFTS is the width of the Gaussian 

function. Our research suggests that there exists one best default value for the spread 

parameter. This default value is obtained by setting each centre‘s width to two times the 
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average Euclidean distance to 20 nearest members. A decisive factor in the choice of 

remaining parameter values depends on how much storage and computational cost can 

be afforded. However, we have defined default values for all parameters. The empirical 

evidence suggests that default values are almost always a good choice.  

We compare our algorithms (SAGA, GEMI, and GEFTS) with existing best-known 

algorithms. The experimental results highlight the effectiveness of our proposed 

algorithms.  

 

The proposed algorithms (GEMI and GEFTS) are robust against sample size 

effects. Hence, we encourage the use of the proposed framework without regarding the 

size of the sample, because we never know whether the sample size is sufficient for a 

reliable inference.  

 

7.2 Concluding Remarks and Recommendations 

.  We propose new machine learning algorithms to resolve three major challenges 

facing the data mining: (1) feature subset selection in large dimensionality domains, (2) 

reconstruction of incomplete datasets, and (3) univariate time series forecasting.  The 

simulation results show that our proposed algorithms are better than existing 

algorithms. However, these algorithms were tried and evaluated on a small number of 

datasets. Hence, the extensive evaluation of proposed algorithms using data from a 

wide variety of areas of applications would be an interesting topic for future research. 

 

Data Mining is still in its infancy and virtually there is no existing algorithm that 

meets all criteria (accuracy, simplicity, and versatility) of an ideal machine learning 
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algorithm. However, the results of our research demonstrate that these not-so-good 

existing machine learning algorithms can be converted to a near-optimal algorithm 

through careful mixing. For instance, let us take a look at three existing search 

algorithms—SA, GA, and hill-climbing. SA seems to have been lost from the literature 

since it can be painfully slow. But, this search algorithm has a remarkable strength. SA 

exhibits asymptotic convergence (that is, as run time approaches infinity, the 

probability of finding an optimal solution approaches one) because SA search is robust 

against premature convergence. GA is faster than SA, but is highly susceptible to 

premature convergence to local optima. Hill-climbing, on the other hand, is the fastest 

known search algorithm. But this search converges to the nearest local minimum. 

However, SA, GA and hill-climbing algorithm together is a winning combination to 

attain the desired result. 

 

We have rediscovered the potential of the Generalized Regression Neural 

Networks (GRNN) in our work. Generalized Regression Neural Networks (GRNN) 

uniquely possesses most of the desirable characteristics that an ideal machine learning 

algorithm should have. GRNN is a nonparametric algorithm that can be used to quickly 

construct accurate non-linear models. It is a local approximation algorithm. The benefit 

from being a local approximation method is that it accurately predicts heterogeneous 

phenomena. GRNN is arguably the simplest algorithm that contains only one free 

parameter. However, the GRNN has not really taken off as expected. Although GRNN 

is a powerful machine learning algorithm, many of its benefits are often intangible and 

difficult to prove because of its ―downside‖ in terms of its higher sensitivity to the 

negative effects of high-dimensionality. To address this, we propose a two-step 



                                                

 

256 

approach. First, using the proposed feature subset selection algorithm (SAGA), the 

dimension of the working space should be reduced significantly. Second, a GRNN 

ensemble, instead of a single GRNN, is to be used as a machine learning algorithm. We 

have successfully applied the proposed scheme to impute missing values and also to 

forecast univariate time series. We recommend the use of this proposed ensemble 

method in other data mining tasks to test its effectiveness.         

 

7.3 Promising Research Ideas 

We always look for opportunities of advancement. Although the proposed algorithms 

significantly and substantially improve accuracy and robustness, we think there is still 

ample room for further advancement. We discuss briefly in this section a number of 

major improvement opportunities that deserve attention.  

 

7.3.1 Possible Improvements to the Proposed Feature Subset Selection 

Algorithm (SAGA): SAGA sequentially applies three conventional search algorithms 

(simulated annealing, then genetic algorithm, and finally hill climbing algorithm). SA 

allows SAGA to escape local optima. Hence, exploring new regions in the search space 

is number one priority for SA. Currently, the initial population of SAGA, randomly 

distributed throughout the problem space, are allowed to freely explore regions with the 

aid of the SA. SAGA incorporates a genetic algorithm search on the k  best-to-date 

solutions achieved by the SA. A limitation of our scheme is that there might be some 

promising areas in the solution space which have been only minimally explored, or 

have not been explored at all. One way we plan to overcome this limitation in future 

experiments is to partition the search space into k disjoint subspaces. During simulated 
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annealing search, SAGA will randomly pick one individual from each subspace and 

restrict its search to the subspace in order to allow a uniform search across all 

subspaces. Upon the end of the simulated annealing search, the personal best solution 

achieved by each individual will be selected to form the initial population for the GA.  

Finally, SAGA will launch a local search by hill-climbing on a number of global best 

solutions as it currently does. This strategy should offer a uniform global search 

capability in the given search space.  

 

7.3.2 Possible improvements to the Proposed Ensemble Network with GRNN 

(GEMI and GEFTS) Classifiers: The development of an ensemble of classifiers 

entails addressing two issues: the selection of base classifiers that constitute the 

ensemble and the assignment of a vote weight to each base learner. Our proposed 

ensemble neural network consists of two layers of GRNN. In the first layer, there are 

multiple base classifiers (GRNN), each trained on different subsets of features. The 

second layer contains a single GRNN that constructs the ensemble output based on the 

predictions of base classifiers. Since GRNN is a local approximation algorithm, the 

combiner GRNN can adjust the weighting of each GRNN in the first layer according to 

whether there is evidence suggesting that it may predict well for that specific test 

instance. Therefore, our proposed ensemble neural network dynamically assigns 

weights to the individual base learner based on a given input pattern. But still, our 

proposed algorithm is not completely dynamic. A major drawback of our ensemble 

learning scheme is that the selection of base learners (i.e. ensemble feature selection) is 

fixed for all instances. It would be beneficial to have an ensemble method that also 

dynamically selects an optimum mix of base learners across hundreds of trained GRNN 
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based on a given input pattern. In order to do this, we have to partition the instance 

space into regions and then we have to build one ensemble model for each region 

separately. For a given new query, we will assign the closest cluster to the query, and 

then we will apply the ensemble network of GRNN associated to the cluster.  Applying 

dynamic selection of base classifiers as well as using dynamic weights for base 

classifiers to introduce a greater sensitivity to local variations, we could improve the 

performance of the proposed ensemble networks further.    
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