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Abstract

This thesis is concerned with the use of neural networks for motor control tasks. The main

goal of the thesis is to investigate ways in which the biological notions of motor programs

and Central Pattern Generators (CPGs) may be implemented in a neural network frame-

work. Biological CPGs can be seen as components within a larger control scheme, which

is basically modular in design. In this thesis, these ideas are investigated through the use

of modular recurrent networks, which are used in a variety of control tasks

The first experimental chapter deals with learning in recurrent networks, and it is

shown that CPGs may be easily implemented using the machinery of backpropagation.

The use of these CPGs can aid the learning of pattern generation tasks; they can also

mean that the other components in the system can be reduced in complexity, say, to a

purely feedforward network. It is also shown that incremental learning, or 'shaping' is

an effective method for building CPGs. Genetic algorithms are also used to build CPGs;

although computational effort prevents this from being a practical method, it does show

that GAs are capable of optimising systems that operate in the context of a larger scheme.

One interesting result from the GA is that optimal CPGs tend to have unstable dynamics,

which may have implications for building modular neural controllers.

The next chapter applies these ideas to some simple control tasks involving a highly

redundant simulated robot arm. It was shown that it is relatively straightforward to build

CPGs that represent elements of pattern generation, constraint satisfaction. and local

feedback. This is indirect control, in which errors are backpropagated through a plant

model, as well as the ePG itself, to give errors for the controller.

Finally, the third experimental chapter takes an alternative approach, and uses direct
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control methods, such as reinforcement learning. In reinforcement learning, controller

outputs have unmodelled effects; this allows us to build complex control systems, where

outputs modulate the couplings between sets of dynamic systems. This was shown for

a simple case, involving a system of coupled oscillators. A second set of experiments

investigates the use of simplified models of behaviour; this is a reduced form of supervised

learning, and the use of such models in control is discussed.



1 Neural Networks and Control

1.1 Introduction

This thesis in concerned with the use of neural networks for motor control tasks. Research

in this area typically draws from two bodies of work: studies of the control strategies used

in biological systems, and nonlinear control theory. The first of these is the subject of the

next chapter; this chapter attempts to survey the field of nonlinear motor control, and

neural networks. Biological systems are of interest to robotics and motor control theorists,

for the simple reason that animals are the only existence proof that difficult motor control

tasks can be solved at all. Understanding the functioning of biological systems may be

essential in building a computational theory of motor tasks, and is certainly a rich source

of information about possible architectures for control problems.

In contrast to most research in neural networks, biological systems are often highly

structured, with sets of components performing different roles, and interconnections co-

ordinating their behaviour. The main goal of this thesis is to investigate the design and

use of such structured systems in neural networks and motor control. The goal is not to

model the fine-scale detail of individual systems, but rather to capture the broad structure

seen across a wide range of species. These structured controllers are implemented using

existing neural net methods for learning control, and applied to some simple, simulated

motor control tasks.

The use of neural nets III control draws from several fields - Artificial Intelligence,

Statistics, Linear and Optimal Control Theory. Each of these areas has their own history

and literature, and a full treatment of the combined field would encompass a vast amount

of literature. Consequently, this literature review attempts to give a conceptual overview
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of the area.

A control system acts by sending control signals to an object, referred to as the 'plant',

which then acts on its environment. The control signals are generally a function of some

inputs, which may represent the current state ofthe plant, as well as information specifying

the desired plant behaviour. The field of control systems has a rich theoretical history,

which begins with the study of linear dynamic systems, and feedback controllers.

1.2 Linear Control and Adaptive Methods

Linear control refers to the use of linear feedback elements to control a system, itself

assumed to be linear. The plant is a dynamic system, i.e. a system described by a set of

linear differential equations (or difference equations for systems that are discrete in time).

Linear control theory is an area with an enormous amount of literature, which reflects the

advanced state of development of linear systems theory in general.

If the plant is linear, then it may be compactly described by a matrix operation:

iJ = Au(t) + By(t) ( 1.1)

or its equivalent in discrete time. y is the plant state, u is the control input, and the matrix

A is the transfer function of the plant, and B relates the control inputs the changes in

plant state (Barnett and Cameron, 1985).

The dots are taken to mean the derivative with respect to time. 'Plant state' refers

to all the variables which make up the plant; knowledge of their values allows the future

behaviour to be predicted. The transfer function describes how the plant's rate of state

change depends on its current state.

One of the interesting results from this formulation is that the entire behaviour of the

system is given by the eigenvectors of A and B; these are called the 'modes' of the system.

A linear feedback system is achieved by making the control inputs u a linear function

of the output y. This can only produce another linear system :i: Cx(t), and the

eigenvectors of this new system are given entirely by the eigenvectors of the plant itself,

and the linear mapping of the controller. These two facts are related - if the characteristics

of the plant are known (i.e. its eigenvectors), then a controller may be designed to prod nee
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the desired behaviour, assuming such a controller exists. As linear differential equations

may be analytically solved, the behaviour of the coupled controller-plant system may be

determined analytically. This is only true if the feedback loop remains constant, but most

of the interest in control lies in the ability of the controller to adapt its parameters so as

to improve performance. This may be because the characteristics of the plant change in

time, and it is desired that the controller is able to track those changes. It may also be

seen as an attempt to automate the design of the controller. More significantly, the use of

adaptive methods corresponds to the desire to control plants that are only partly specified,

implying that a controller cannot be designed with analytic methods. This clearly becomes

more important as the complexity of the plant increases.

If the parameters of the controller are allowed to vary in time, then the combined

controller-plant system will in general be nonlinear. Most of the research effort in adap-

tive control has been directed towards building systems that are known to be convergent,

as instability is always a key issue in nonlinear dynamic systems. Instability corresponds

to nonconvergence; this may mean the system wanders away from its desired state; more

seriously, it may refer to the system making larger and larger oscillations. Historically,

much of the work on adaptive control was conducted in the area of autopilots, and regu-

lators for industrial plants. In such cases, instability is a real danger to the system. This

is also true, to a lesser extent, to the control of robots - instability and oscillations always

cause excessive wear and poor performance on the control task.

There are a wide variety of methods for adapting the controller's parameters, some

making use of models of the plant, and others using direct methods - see (Widrow and

Stearns, 1985) for an excellent introduction. One important idea to come out of adaptive

methods is the notion of intelligent control. Intelligent control may be understood by

considering the simple example of a human learning to drive an unfamiliar car. Part of

this problem lies in the fact that the 'weight' of the controls are unknown - the car may

have power steering, in which case small turning forces should be used, or the brakes may

be power assisted. Learning to drive the car is a process of adaptive control, as the control

actions have to be matched against the weights of the steering and brakes. Now imagine

the driver switches to a different vehicle - for example, a truck. The weights of the controls
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are likely to be completely different, so an adaptive process is again involved. The key

point about intelligent control concerns what happens if the driver now returns to the

car. In adaptive control, the driver now has to re-adapt to the car, as the first process

of adaptation has been undone by learning to drive the truck. Intelligent Control refers

to the (desired) ability to recognise different situations, and select the best control policy

for the current circumstances. This involves such problems as pattern recognition and

intelligent decision making, and so starts to approach the notion of intelligent behaviour

in humans.

The use of adaptive and intelligent methods find their greatest utility when the as-

sumptions of linearity break down - Le. in the control of nonlinear systems.

1.3 Nonlinear Systems: Feedforward and Feedback Control

Control of nonlinear systems is substantially more difficult than linear control. This

reflects the fact that generally, nonlinear differential equations cannot be analytically

solved, but have to be treated on a case- by-case basis. The methods for building nonlinear

controllers are correspondingly more complex. One obvious strategy is to approximate

the full nonlinear plant with a linear system, and then proceed as before. The success

of this approach clearly depends on the quality of the approximation. For example, it

may be known that the plant is convergent, so that its dynamics are such that it always

converges to a fixed point. In that case, its behaviour in the immediate region surrounding

the equilibrium point may be nearly linear. This corresponds to taking a Taylor series

expansion of the system's transfer function, and neglecting all but the first term. TIH'

magnitude of the discarded terms gives a measure of the accuracy of the approximation.

Clearly, this approach is only going to be applicable in some cases, and it may be necessary

to have more than one model to approximate the behaviour of the plant in different parts

of its state space.

A general nonlinear system is described by the generalisation of 1.1:

y F( u(t), y(t))

where F is some nonlinear function, II is again the control inputs, and y is the state
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Inputs at time t
Control
inputs u(t)

> ~-->" Observed

outputs y(t)

FIGURE 1.1. A general control task

of the plant. This is a completely general framework for describing dynamic systems.

Different forms of the transfer function F give rise to plants with widely varying dynamics,

from systems that converge onto fixed points, those that show oscillatory behaviour, even

chaotic systems. This lack of a priori knowledge of the plants dynamics makes the control

task a very difficult one.

1.4 Learning Control

Fig 1.1 shows a generic situation for learning control. As before, the plant is the system

to be controlled, and the learning system plays the part of the controller. The controller

gives an output drawn from set of allowed control actions. The state of the plant goes into

some measurement process, which then gives the available information about the plant's

behaviour. This measurement process may be noisy; it may also be lossy ill the more

general sense that some aspects of the plant state may not be able to be measured at all.

In the case of feedback control, the inputs to the controller will include some information

about the time-varying plant state. Feedforward (open-loop) control implies that control

is made without reference to the plant state. The task is usually defined by a desired state

for the plant ( time series of desired states); these are called setpoints.

As with linear systems, feedback control may be used with nonlinear plants. A feedback

controller takes as its input the discrepancy between the desired and actual plant state,

and maps this onto the controls. This makes the system behave somewhat as a spring, with

the desired state acting as the spring's equilibrium position. As springs are notorious for

exhibiting oscillations, it is usual to include a damping term. There is often an additional

integrative term that is designed to compensate for steady-state offsets in the plant state,
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for example, the effect of gravity on a robot arm. These three terms correspond to the

PID controller (Proportional, Integrative, Damped).

The main attraction of purely feedback techniques is their simplicity - the controller

continuously seeks to remove the discrepancy between the current and desired state, with-

out detailed knowledge of the dynamics of the plant. The main disadvantage of purely

feedback control is that this is an error-driven strategy, so the plant needs to measurably

deviate from the desired state in order for the controller to do anything at all. The speed

at which corrections are made is given by the gain of the controller, i.e. the ratio of its

outputs to its inputs. A high gain is necessary to quickly eliminate errors, but a high

gain will also result in instability if there are measurement delays. This fact is particu-

larly relevant for biological control systems, where most sensory inputs are subject to a

transmission delay.

By contrast, a purely feed forward controller produces outputs without reference to the

current state of the plant. How does the controller know which outputs to produce? One

way is to define the controller as an inverse plant model. The plant has been described as

a nonlinear mapping, from control inputs to changes in state (or equivalently, to the state

at the next time step). Ideally, the controller would take some coding of the desired state

of the system, and output the controls that cause the plant to move into the desired state:

u = G(y(t), y*(t))

so the controller takes the current state y, and the desired state y*, and outputs the

corresponding control. In effect, this requires inverting the transfer function of the plant:

G(.) = F-1(.). Finding the inverse dynamics is not straightforward, and usually involves

the use of a forward plant model, i.e. an approximation of the transfer function F.

Nevertheless, this framework gives a way of understanding the role of the controller as

that of undoing the effects of the plant dynamics.

The way in which the controller is actually used depends on the control task. In the

case of regulation, the controller is required to move the plant to a set point. In the more

general case of tracking, the controller's task is to move the plant through a series of

target states. As the controller does not receive feedback about the ongoing plant state,
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the controller produces a time series of controls from the initial plant state, and a time

series of desired states.

There are several reasons why purely feedforward control could prove to be unsatis-

factory:

• It may be impossible to get a sufficiently accurate inverse model of the system, and

the deviation of the produced path from the target may be a rapidly increasingly

function of time ( due to non-linearities in the dynamics of the system ).

• Even assuming that our model is perfectly accurate, there may be error 1Il the

measurement of the initial state of the system, i.e. at t = to.

• Any external objects that cause the system to deviate from its path will not be

corrected; a robot arm brushing against a surface will introduce errors that cannot

be eliminated.

It would seem that a combination of feedforward and feedback strategies is the most

promising approach, as the weaknesses of one method are often matched by the strengths

of the other. A great deal of current research effort is devoted to this problem.

Learning control implies a kind of optimisation process, so there is some index of

performance to be maximised (or some cost function to be minimised). The controller itself

is a mapping from inputs to outputs, possibly with dynamic elements, and as such there

will be a set of parameters that define the actual mapping produced. In linear feed hack

control, these parameters are simply the feedback gains; in the case of a neural network,

these would be the weights (and possibly time constants - more about this later). The goal

of learning control is to adjust the controller parameters so as to improve the performance

on the control task. This perspective makes apparent the connection with other learning

problems, particularly neural net problems. However, learning control is not the same as

fitting curves to data. This is due to the fact that a dynamic system is involved, and wo. will

generally be concerned with the stability of the combined controller Iplant system. Such

stability issues are seen to be paramount in the linear control literature, and are no less

important in the general case of nonlinear control, although the powerful mathematical

framework of linear systems theory is no longer available.
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Possibly the most important issue when designing a learning controller concerns the

nature of the training information. Although the problem has been formulated as optimis-

ing some index of performance, the value of this performance measure is not immediately

informative about how to change the parameters. This is the credit assignment problem:

given the index of performance, in what way should the control actions be modified so as

to improve performance? There are generally two approaches to adapting the parameters.

Supervised Learning assumes the existence of target, or desired control actions, and these

are used to decide how to change the parameters so as to improve performance. In this

case, the performance index is some measure of how close the actual and desired outputs

are. However, the gradient of this performance with respect to the parameters is assumed

to be known, or can be estimated. The other approach is that of Reinforcement Learning,

in which no gradient information is available.

1.4.1 Distal Learning

One extremely common variant of supervised learning is that of Distal Learning problems.

Here target information is available, but in a different co-ordinate system to that of the

controller outputs. The most common situation is for the targets to be defined in the

space of the plant, and not the controller's outputs. An obvious example of this situation,

one to be examined in more depth later, would be the task of controlling a robotic arm.

In this case, the task is likely to be defined as time series of target values, or 'set points ' for

the endpoint of the arm. Given that the controller's output will be defined in the space of

the joint angles of the arm (or possibly a set of torques), there is a change of co-ordinates

involved. This problem is typically approached by the use of models, which approximate

the mapping between controller output and the space of the target values, and the model

is used to transform the targets back to the controller outputs.

In Reinforcement Learning, the only information available is the performance index

itself. This gives some measure of the appropriateness of the control outputs, but no

information about how to change the parameters. This situation is rather similar to

marking a students work with just a grade - e.g. giving a grade B- does not tell the

student which were the strengths and weaknesses of the essay, or how to improve the
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grade in future. Also note that even this case is made slightly easier than will generally

be the case, as the student can guess that a B- is roughly in the middle of the range of

possible grades. In general, the performance index is just a number on an unknown scale.

and so it will not be known advance whether a rating of 0.2 is good or bad. In this case,

optimising the controller will usually involve some element of random exploration in order

to determine how the performance varies with control actions.

1.4.2 Adapting the Controller

Controller optimisation is simplest in the supervised learning case, in which the desired

outputs are directly available. This information would come from a teacher in the form

of a expert, or operator, usually human. The operator is observed while performing the

control task, and supplies a set of training data for the controller. It now remains to adapt

the controller in such a way that the learned system shows good generalisation, in the sense

of interpolating and extrapolating to novel inputs. Obviously, the main limitation of this

approach is its dependency on an existing expert, which will not be available for most

difficult control tasks. In that case, the learning task will inevitably involve distal or

reinforcement learning. In both cases, there is a gap between the training data and the

optimal control actions.

In distal learning, this gap is bridged through the use of models. Consider again the

case of the robot arm, in which the controller's outputs map to the joint angles of the

arm, but the targets are defined in the space of the Cartesian position of the endpoint. A

forwards model approximates the mapping from the joint angles to the endpoint position;

an inverse model maps endpoints to angles. As an inverse function, this may not be well-

defined, in the sense that there could be many sets of joint angles that produce the same

endpoint position. Whether the model is forwards or inverse, this model may be used to

optimise the controller. In conventional control theory, a plant model usually specifies the

parameters of the controller directly, in the sense that the controller parameters may be

analytically obtained from the parameters of the plant model. This design approach is

only possible in some cases, and a learning approach has to be taken for marl' complex

cases.
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In contrast, learning control uses the model to obtain training data for the controller,

which is optimised with some learning process, such as gradient descent. The gradient of

the performance with respect to the plant output is related to its gradient with respect

to the controller output; the relation between the two is just the gradient of the plant

output with respect to the controller output. This may be easily seen if the behaviour of

the plant can be described by a static function, which is approximated with a feedforward

net net1 :

netl: y = F( u; 0)

where y is the estimated plant response, u is the control input, and 0 are the parameters

of the model. In general y and u are vectors. The plant model is optimised by the

procedure of system identification (Chen and Billings, 1992; Yamada and Yabuta, 1993;

Pham and Lin, 1993; Qin et al., 1992). This refers to the choice of a set of control inputs,

chosen to be representative of the kind of inputs the plant is expected to receive in use,

and also chosen to be informative about all the plants modes of behaviour. Observation

of the plant response gives a set of training data for the plant model, which is trained

with supervised learning. This is offline learning, so the plant model is trained to some

criterion of accuracy, and then its weights are frozen.

System identification is a research area in its own right, and an in-depth discussion is

beyond the scope of this thesis. However, there are a few points that should be made.

Firstly, the structure of the model often reflects the degree of knowledge of the functioning

of the plant. The use of neural networks is often described as a 'black box' method. in

that there is no explicit representation of prior knowledge of the plant. In contrast. many

engineering applications make use of knowledge of the physics of the plant in deciding

the model structure. For example, some of the mathematical relations that describe the

system can be derived from physical laws or known systems of equations (conservation

of mass, energy, momentum; equations describing fluid flows, for instance), or can be

obtained by empirical studies (relating, for instance, a power law relation between the

frictional force and the speed of flow in a pipe). Black box methods are most useful when

the structure of the plant is difficult to define or measure, and the aim is to model the

input-output relation without accounting for the process.
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The other main caveat concerns the collection of training data. The goal of the training

set is to represent data about the behaviour of the plant in such a way that all the modes

of the plant are explored, or at least those that are likely to be seen in real use. Such a

set is called persistently exciting. The problem is that building a persistently exciting set

is a highly non-trivial task in itself.

If we assume that training information is available in the space of the plant output,

then an error function may be defined:

E = ~(y_ y*)T(y_ y*)
2

where y is again the plant output, and y* denotes the targets. Suppose the controller

IS implemented as another network, net2, and the plant and controller are arranged in

series, so that the output of net2 forms the input to netl:

nct2 netl
Z _. U _. Y

net2: u = G(z,1»

The targets at the model output give rise to the usual error derivatives familiar in

su pervised learning:

oyT
\l() = -(y* - y)ow .

which is used to adapt the model weights during system identification. In order to

adapt the controller, the following error derivatives are used:

so the simple chain rule is all that is required to get training information for the

controller. The term ~ is just the vector extension of a first derivative; it is matrix of

partial derivatives called a Jacobian, where the element Jij = ~.

This means that the plant model has to be in a form that can be differentiated; neural

networks are an obvious example. In fact, neural nets make use of the chain rule as a

way of solving the credit assignment problem for the hidden units. This fact was used

by (Jordan and Rumelhart, 1992) to show how distal learning may be implemented using
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just the machinery of backpropagation (Rumelhart et al., 1986), as the backpropagation

procedure calculates a particular factorisation of the transpose of the Jacobian. Rumelhart

et el also show that this is a general method for finding inverses of functions, even if such

inverses are not well-defined, and this is used to develop controllers for systems with excess

degrees of freedom.

It is worth spending a little time to understand exactly how this works. The controller

IS placed in series with the plant model, so that the outputs of the controller form the

input to the model. In effect there is now one network, in which some of the weights

have a learning rate of 0: these are the weights that comprise the plant model. If this

combined net is now trained on the identity function, then the controller will converge on

the inverse of the plant model. In general, this is just what is required of a feedforward

controller. Although the weights of the plant model are not adapted in this process, we

still have to backpropagate through the model to instantiate a particular Jacobian. One

interesting property of this approach is that it is able to find an inverse, although the

inverse may not be well-defined. To see how this happens, consider a simple case in which

the forwards model is the mapping y = sin( x), in the range [0 : 7r /2J. This function is 2
to 1, so the inverse has two possible branches. Now consider the use of distal learning to

approximate the inverse, starting at two different places on the curve. The direction in

which learning proceeds is given by the error derivatives, which are simply the errors at

the output multiplied by the state-dependent Jacobian. The sign of the Jacobian is just

given by the slope of the forwards function, which is positive in one half of y = $in( x), and

negative on the other half. This difference in sign ensures that solutions which start on

one half of the curve stay there, as do solutions on the other half. Incidentally, it is worth

noting that the process of multiplying the error derivatives by the Jacobian has the effect

of distorting their values - for example, they will go to zero as the two solution branches

approach each other (i.e. as the slope of the forwards function approaches 0).

Distal Learning chooses one inverse over the other in a way that is dependent on the

initial state of the net. It is not too difficult to see how the learning could be biased

towards one inverse through the use of additional terms in the error function, or the use

of regularisers (Poggio et al., 1985). The important point to note is that the choice of
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inverse is stable, in that the learning does not switch between different inverses.

This has been described as an offline procedure, in which all the learning for the

plant model is performed before the controller is adapted. In general, offline learning

means training the plant model until some accuracy criterion is reached. The setting of

this criterion is left to the experimenter, and there is no easy way to decide what this

value should be. Some control tasks require a more accurate model than others, and the

relationship between the complexity of the control task and the required model accuracy

is unknown in general.

An alternative is to use online learning, in which the plant model is adapted at the

same time as the controller. This approach is not without problems however; in the early

stages of learning, the controller will be trained with uninformative information, as the

plant model will be inaccurate. Some kind of compromise between these approaches is

probably best, with the plant model being trained to at least some degree of accuracy

before the controller is optimised. The plant model would then learn at the same time as

the controller, although probably with a lower learning rate. This was the approach taken

in (Jordan and Rumelhart, 1992).

There are several ways in which this scheme may be extended, and an exploration of

this will be used in much of the experimental work in this thesis. Firstly, the general idea

of backpropagating through networks is well-defined in the case of recurrent, or dynamic

networks. Backpropagation for recurrent nets is discussed below; the main difference is

that the error derivatives are now time-dependent quantities that have to be integrated.

Secondly, the network does not have to be a model at all, and it was shown in (Jordan,

1988) how to use distal learning to implement forms of constraint satisfaction. The basic

idea is that a constraint can often be represented as a many-to-one mapping, and inverting

that mapping is a way of finding an output which satisfies the constraint.

A simpler approach to learning inverses is Direct Inverse Learning. Again, observation

of the behaviour of the plant in response to a set of control inputs gives a set of training

data, consisting of pairs of input/output values. Direct inverse learning proceeds by simply

reversing the pairs of data points, so that the observed plant output is given as input,

and the corresponding control inputs as the desired controller output. Kuperstein has
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suggested this method as a way of learning simple hand-eye co-ordination (Kuperstein ,

1988; Kuperstein, 1992). The effectiveness of this method is strongly dependent on the

characteristics of the plant - if the transfer function of the plant is many to one, then the

inverse is not well defined, and this method may not work. This is due to the fact that

one input to the controller will be trained to associate with more than one target output,

and the actual output produced after learning will be in the convex closure of the training

actions. If the inverse of the desired plant state is not a convex set, the controller output

may not be in the inverse image.

One final approach is Feedback-error learning (Kawato et al., 1987; Gomi and Kawato,

1993), which is closely related to distal learning. In this formulation, there are two con-

trollers: a fixed linear feedback element, and an adaptive nonlinear feedforward controller.

If the feedforward controller was an inverse of the plant dynamics, the feedback controller

would be redundant, and so would remain silent, as the plant would perfectly track the

target trajectory. The goal of learning is to reduce the output of the feedback element to

zero. This is achieved in the simplest way, by using the feedback output as an error term

for the feedforward controller. It turns out that this algorithm has interesting convergence

properties that make it a practical method for inverting the plant dynamics; the actual

gradient that the learning follows is closely related to that used in Distal Learning.

1.4.3 Direct Control and Reinforcement Learning

In contrast to the model-based approaches outlined above, direct control techniques use

the performance index itself as the training data. There are two main approaches in

the reinforcement learning literature. Temporal Difference methods are based 011 the

dynamic programming approaches to learning control in Markovian domains. Control in

such situations is discrete, in that time proceeds in steps, and the controller has a finite

number of actions available. Reinforcement learning in continuous domains is usually

approached through the use of stochastic automata. Both these approaches have their

benefits and drawbacks. TD methods are more suitable to finite problems with delayed

rewards, such as game-playing, and stochastic automata more useful for control of dynamic

systems.
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THE REINFORCEMENT AGENT

We may define a reinforcement agent in the same way as a nonlinear controller, ie as a

mapping from sensory input to control actions. The only information available for training

the agent is the performance index itself. As there is no gradient information available, the

controller has to experiment with different actions, and compare their effectiveness. This

means that the controller has to have some source of variability in its output, ie it has to be

able to perform different actions in identical situations. This is usually achieved by having

a stochastic element in the controller. Reinforcement learning is thus seen as a process of

selection, which operates on the variability in outputs. The reinforcement received is given

by an element called the critic. This is some function of the current state of the plant,

just as the index of performance described above, with the important qualification that

reinforcement problems usually imply that the reinforcement function itself is a random

function. If the reinforcement function is deterministic, the whole learning task becomes

greatly simplified.

Setting the degree of variability in the controller output involves resolving a conflict

between two opposing goals - exploration and exploitation. Exploration refers to the need

for the controller to tryout different actions to gain information about their utility. Ex-

ploitation refers to the use of existing knowledge to maximise performance. These goals

conflict, because exploration naturally drives the controller into states about which it has

little knowledge, while exploitation naturally moves the controller into states which are

known to lead to high reinforcement. This usually results in choosing a level of explo-

ration which is some kind of compromise, although some researchers have used controllers

which switch between exploration and exploitation phases (Thrun and Moller, 1992). The

exploration itelf is most easily implemented as choosing random actions. However, this is

highly inefficient, and not practical for many control tasks in which random controls could

damage the plant. This has lead some researchers to use more directed forms of explo-

ration, that are based on the intuitively sensible idea of trying to maximise information

gain (Thrun, 1992)

Consider a simple case in which the agent takes a linear combination of inputs. and

uses that value to generate an output. The output is often a random variable, in contrast
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to the controllers discussed above; this is the simplest way of producing variability. The

actual action may be one of a discrete set of allowed actions, or it may be a continuous

variable. The TD-based methods are derived from the field of dynamic programming, in

which the plant and the agent are described as discrete random Markov processes (Barto

et al., 1989; Barto et al., 1983; Ross, 1983). This formulation has consequences for the

derivation of the TD learning rules, such as restricting the controller to producing one of

a set of allowed actions, rather than allowing continuous actions. This also restricts the

architecture of the controller to a look-up table, in which the action for one input may

be changed independently of all the other inputs. Given these restrictions, convergence

of learning can be proven (Dayan and Sejnowski, 1993). In practice, these restrictions

are often relaxed; for example, controllers with distributed representations are commonly

used.

One important class of reinforcement problems is that in which the reinforcement is

delayed with respect to the corresponding actions. A classic case of this occurs in game

playing, where the reinforcement could simply be an indication of whether the system won

or lost. The problem is that this reinforcement is only available at the end of the game,

but in a game like chess, the moves actually responsible for the outcome may have occured

much earlier in the game. The can be seen as another version of the credit assignment

problem, in this case a temporal version. The TD class of algorithms attempt to solve

this problem by making predictions about the future values of reinforcement that will be

received. In the chess example, the utility of a particular board position is defined to

be the expected value of all the future reinforcements that will be received as a result

of starting in this position, and using the current control policy. This sum is usually

made convergent by an exponential weighting of the future reinforcements. The measure

of 'utility' incorporates future reinforcements, so its effect is to smooth the reinforcement

function into neighbouring states.

TD learning is a particularly elegant method for learning this type of utility functions,

by making use of the fact that the utility of the state at t is related to the utility at t - 1.

TD methods are examined in detail in (Barto et al., 1989), using an example problem of

a mobile robot trying to find a goal state. This is a good example of learning a delayed
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reward task, as the robot only receives reinforcement when it finds the goal. The utility of

all the other states simply reflects their distance from the goal. TD learning involves two

components - learning the utility of each state, and using that utility to produce actions.

In a slightly different formulation, Q-Iearning (Watkins, 1989) combines the operation of

these two components into one system, by considering the transition between states rather

than the states themselves.

STOCHASTIC AUTOMATA

One major limitation of the TD methods is that the controller output has to be drawn

from a finite set; this is clearly more suitable for game-playing than control of a dynamic

system. Stochastic Learning Automata were developed from a different theoretical per-

spective, which is less concerned with delayed reward problems. Such an agent produces

a real-valued output, and essentially measures correlations between changes in its out-

put with changes in the reinforcement received. This information is used to change the

parameters of the distribution that generates the control action. In one of the earliest ap-

plications of these ideas, a reinforcement agent was used to balance an inverted pendulum

(Barto et al., 1983) - a task that has become a benchmark for reinforcement algorithms.

A more recent algorithm is that of the SRV unit (Gullapalli, 1992). The actions are drawn

from a Gaussian distribution, with the mean and variance under the control of learning.

In (Gullapalli et al., 1992) this system was used to solve a peg-in-hole insertion task for

an industrial robot.

In all these cases, it is possible to have more than one agent. For a plant which takes

multidimensional inputs, the control system could be a network of agents, in which each

agent provides the controls for one of the plant's inputs. There are several ways in which

the network may be trained. Each agent may be trained in isolation, so the reinforcement

is broadcast to each of the agents, and each agent tries to independently optimise the

performance. Alternatively, the agent may form the output layer of a neural net, with

back propagation used to train the hidden layers. This enables the agents to use shared

representations, rather than acting independently of each other.

Athough reinforcement was originally conceived as a model-free approach, models of

one form or another have found widespread utility. One kind of model might be to
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approximate the reinforcement function itself; this treats the reinforcement task as a

distal learning problem. Once this model is sufficiently accurate, we may apply targets

that correspond to the maximum possible reinforcement, and backpropagate to optimise

the control actions. Another kind of model would be to approximate the behaviour of

the plant. One reason for doing this would be to enable planning methods to be used,

in which the utility of whole action sequences is evaluated by trying them out on the

model. In (Thrun et al., 1991), a differentiable plant model was used to simulate the

effects of a sequence of N actions, and the fact that the model is differentiable was used

to backpropagate and optimise the action sequence.

1.5 Training Neural Networks for Control Tasks

In the methods discussed above, the controller may be implemented using a variety of

methods, from look-up tables to rule-based systems. However, neural networks have found

widespread application in the control and robotics fields, mostly due to their ability to

approximate arbitrary nonlinear functions, and to generalise well from sparse data (White

and Sofge, 1992; Miller et al., 1990, give an excellent review). These factors make neural

nets an attractive method for building nonlinear motor control systems.

Learning control is not curve fitting. This can be obscured when neural net methods

are used, as it seems that we are always performing gradient descent, or some other

optimisation procedure, just as we would in nonlinear regression. The difference in control

tasks is that a dynamic system is involved: the plant. Consider the situation of a feedback

controller implemented as a neural net. At each time step, the net receives some coding

of the task, together with the plant state, and emits a control action. The control action

changes the state of the plant, possibly in a way that will not be detected until much later.

This means that the future inputs are partly a function of the current controller output. To

perform true gradient descent of an error function, this dependency has to be taken account

of, usually with some form of recurrent backpropagation (Narendra and Parthasarathy,

1991). Recurrent backpropagation is an extension of the standard algorithm to deal with

nets that have feedback connections between units, so that the current state of the net

forms part of the future inputs. The algorithms themselves are discussed in more detail
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in chapter 4. The point to be made is that neurocontrol generally involves changing the

parameters of a nonlinear dynamic system, which implies that problems of stability and

convergence are a major concern, and calculation of gradient information is more involved

than in the static case.

1.6 Conclusions

We have outlined the most common ways in which nonlinear motor control tasks are

typically approached, drawing the important distinction between indirect, or model-based

approaches, and direct approaches. These two methods represent two different ways of

solving the credit assignment problem. The credit assignment problem is a key part of

learning control: solving this problem allows the search for optimal actions to become

more directed.

The framework of Distal Learning is of particular relevance in this thesis. The basic

idea is to model the plant as a differentiable system, and to account for the plant behaviour

by differentiating the model. This is a general method for accounting for the presence

of any dynamic system in the control problem. This will become relevant when the

structured nature of biological systems has been discussed. If the control system consists

of a set of modules, each performing its own optimisation, the training of each module has

to take into account the presence of all other modules. Distal Learning is a straightforward

way for each of the modules to solve their own credit assignment problem.

Reinforcement learning attempts to learn control without a plant model, and will be

expected to proceed more slowly than model-based control for many cases. One way to

enhance the power of a reinforcement controller is to provide it with a repertoire of more

complex actions. This will generally mean a decomposition of the control problem into

more simple subproblems, and taking an incremental approach to the complete control

task. The details of such an approach are left until chapter 6. This kind of hierarchical

system is clearly related to the structures seen in biological control systems, the topic of

the next chapter.



2 Biological Control Systems

2.1 Introduction

The concept of an animal is partly defined by movement; what separates animals from

plants is primarily the ability to move around their environments. The nervous systems

of animals have to solve difficult control problems to produce adaptive behaviour. The

complexities of the control problem are partly due to design of animal's bodies, as well as

the dynamics of their environments. These complexities become apparent when attempts

are made to build robots to solve the same problems. A good example of this is the

control of walking systems, a problem which has eluded solution except in simple cases.

As with many other biological control problems, walking involves the co-ordination of

many moving parts, each with their own nonlinear dynamics. The degree of nonlinearity,

and the number of degrees of freedom both serve to increase the complexity of the problem.

Despite this, insects are able to walk in a variety of different conditions, including uneven

surfaces with with widely varying characteristics, and able to cope with damage, such as

the loss of a leg.

One of the puzzling aspects of biological control systems is that they are often composed

of rather few neurons - circuits containing tens of neurons can generate entire, complex be-

haviours (e.g. the stomatogastric ganglia in lobster (Marder, 1988)). Although biological

neurons are far more complex than the units of most connectionist models, it does seem

that evolution has found very simple solutions to very difficult problems. The main goal

of this chapter is to describe the key architectures used throughout biological systems; in

other words, to discuss what is common across species.

Most biological control tasks correspond to oscillatory motion: flying, swimming, and
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walking all consist of repetitive, periodic actions. The environments in which animals

have to survive are often unpredictable and noisy, and adaptive behaviour often means

producing a variety of different motor outputs in different circumstances.

2.2 Forming the basic pattern: Central Pattern Generators

Given that most biological motor tasks consist of producing oscillatory control signals, a

great deal of research effort has focused on finding the source of these oscillations. Much of

this work concentrated on the debate between central and peripheral sources (Delcomyn,

1980). Ultimately, a compromise has been reached, where central mechanisms are seen

to be responsible for the basic pattern, but external influences (such as reflexes and sen-

sory inputs) have a large influence on the final behaviour. One powerful concept to arise

from this research is that of the Central Pattern Generator. Central Pattern Generators

(CPGs) are typically small neural circuits that are capable of producing temporally struc-

tured outputs (usually oscillations). It is now well established that, in many species, these

circuits produce well-coordinated outputs even when completely isolated from external

inputs (Getting and Dekin, 1985; Grillner and Wallen, 1984; Selverston, 1985). For ex-

ample, the spinal cord of the lamprey can be isolated and dissected from the animal, and

the basic oscillatory behaviour evoked ( so-called fictive swimming) by stimulating the

appropriate neurons ( in this case stimulating the trigeminal nerve is sufficient to produce

fictive swimming ).

One well-studied example is the sea slug Tritonia, whose CPG is responsible for pro-

ducing swimming movements as an escape behaviour. Initiation of CPG activity is often

caused by the activation of command neurons ( in the case of Tritonia these are called the

Dorsal Swim Interneurons (DSI cells)); these cells are interesting because their activation

results in a complex, temporally structured behaviour, but the input to DSI cells is of a

simple, non-structured nature. This general design clearly has implications for a decision-

making module located at a higher level, as complex behaviours can now be treated as

individual units, in much the same manner as the subsumptive architectures of Brooks

(Brooks, 1991)

Other examples have also been extensively studied, III particular the swimmeret III
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lamprey, the gastric mill in lobster, and the circuit controlling locomotion in the locust

(Grillner and Wallen, 1984; Tsung et al., 1990; Heinzel and Selverston, 1988; Williams and

Sigvardt, 1992). The lamprey swimmeret consists of a chain of coupled oscillators running

down the animals body, with co-ordination between the oscillators achieved by a set of

couplings. The neural activity produces a wave of curvature passing down the body that

pushes the animal forwards. The frequency of this wave is such that there is always roughly

one complete period between the head and the tail. This remains constant despite changes

in swimming speed, so the delay between neighbouring segments is adapted to maintain

a constant relative phase. The mechanical properties of the muscles, and the water itself

playa part in the evoked behaviour, and some researchers have produced sophisticated

simulations of the entire fish/water system (Ekeberg, 1993). One result from this work is

to show that the forces from the water help the fish maintain a constant frequency. In a

similar study, the mechanical properties of the lobster gastric mill were simulated, along

with the known neural dynamics, to give reasonably plausible chewing behaviours (Doya

et al., 1993).

In all these cases, the general control scheme can be pictured as in 2.1. This scheme

should not be taken too literally, as individual neurons may participate in more than

one motor circuit, and command neurons may be part of the pattern generating circuit.

There may also be feedback between the other parts of the system. The main point is

that all these systems contain Cf'Gs that can independently produce complex, temporally

structured outputs.

BASIC PHYSIOLOGY OF THE CIRCUITS

Cf'Gs reside in the segmental ganglia of invertebrates, and in the spinal cord of verte-

brates. They range in complexity from single neurons with intrinsically oscillatory dynam-

ics, to coupled oscillators comprising many neurons. Reciprocal inhibition is a common

mechanism for producing oscillations. ePGs in invertebrates are particularly amenable to

analysis; this is due to the fact that the ganglia usually contain relatively few neurons, and

the neurons themselves are often very large, making recording of their activity particularly

simple.

In contrast, motor circuits in vertebrates usually contain very large numbers of rather
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small neurons, making it much harder to understand how the circuits work (Cohen et al.,

1988). The basic action of spinal circuits seems to be very similar to those of invertebrates:

basic oscillatory motion can be produced entirely by spinal circuits, without any input from

the brain or the senses. (Grillner, 1985, shows this for spinal cats). The patterns produced

by these circuits are rather complex: as discussed below, incoming sensory information to

the spinal circuits has a very large effect on the movement.

2.3 Modifying the behaviour to the demands of the task

Central mechanisms for producing structured outputs are clearly useful: their presence

enables higher-level structures to plan at the level of complete behaviours, they ensure

that the animal is not completely pushed around by its environment (which would be

the case if sensory inputs were solely responsible for the behaviour), and they provide a

degree of robustness in the face of external disturbances (due to the limit cycle properties

of the oscillations). However, a system that relies completely on central control would

be insensitive to environmental changes, and a control system that can only produce one

pattern places limits on the behavioural repertoire of the animal. The biology seems to

have adopted the strategy of building CPG circuits that can be modified in a variety of

ways: by sensory inputs, by descending information from the brain, and by circulating

neurotransmitters.

SENSORY INPUTS:

Animals are faced with the problem of controlling their actions in the face of uncer-

tainties about the environment. In the previous chapter, the use of explicit planning and

reactive strategies for learning control in an environment was examined. Parallels may

be drawn between the use of CPGs, and the planning methods described earlier. On the

other hand, reactive strategies correspond to the use of sensory information to modify

the behaviour. For example, flight in the locust requires alternating activation of elevator

and depressor muscles, which is basically produced by central mechanisms. However, the

animal is subject to unpredictable disturbances such as gusts of wind, and so some form of

feedback is necessary to maintain the appropriate behaviour ( Le. keep the animal head-

ing in the same direction ). The locust is equipped with wind-sensitive hairs on its head,
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and stretch receptors that measure the position of the wings. Both these sensory inputs

are capable of influencing the phase of the ePG oscillations responsible for flight, which

is a simple mechanism for coping with disturbances in the environment. The optomotor

response uses optic flow to maintain a constant heading.

The CPG for locomotion in the cat receives several sources of sensory information,

from proprioceptors in the muscles, angle sensors in the joints, and stretch receptors in

tendons. Again, it has been shown that coordinated locomotion is possible in a spinal

animal. The usual experimental set-up is to place the spinal cat on a treadmill that is

run at a variety of speeds. If the dorsal roots carrying sensory feedback information are

left intact, the locomotion is seen to be matched to the treadmill speed. As the treadmill

is made to go faster and faster, the gait changes from walking to trotting to galloping.

However, if these dorsal roots are cut, the speed of locomotion no longer matches that

of the treadmill (Grillner, 1985); so this sensory feedback is clearly necessary to adjust

the behaviour to the demands of the task. In the intact animal, information from these

sensors, and from the ePG itself is fed back to higher centres, although the exact role of

this feedback is much less well understood. (Oku et al., 1993; Pearson, 1993).

DESCENDING SIGNALS FROM BRAIN:

Descending inputs from the brain to motor circuits often represent some kind of be-

havioural choice. For example, in the dogfish, stimulation of the left mesencephalon pro-

duces left turns, and stimulation of the right mesencephalon produces right turns: these

areas have a clear behavioural interpretation. In the case of the dogfish, the situation is

particularly simple, as steering can be achieved by superimposing a bending motion on the

basic oscillations. Obviously, this is an advantage for the control system, as the activity

of the ePG remains unchanged. However, this is not true for many other animals, and

the most common situation is that timing relations between the ePG neurons have to be

changed to modify the behaviour.

NEU ROTRA NSM ITTERS:

Finally, the biology makes widespread use of various neuromodulatory substances to

change the activity of the motor circuits. In some cases, the effects are a gradual modifica-

tion of the basic pattern; in other cases the neurotransmitters can dramatically reconfigure
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the circuit. A well-studied example of this is the lobster gastric mill. The pyloric part of

the lobster is controlled by a small circuit of 14 neurons: this circuit controls the action

of a set of teeth that are used to chew food particles to aid digestion. The circuit is

capable of producing two distinct modes of chewing: squeeze, and cut-and-grind. Both

these patterns involve the teeth describing complex three-dimensional trajectories. Levels

of proctolin appears to be used to switch between these two modes of behaviour. Other

circulating compounds have effects on the frequency and amplitude of the pacemaker cell,

but the effects of these compounds on other neurons in the circuit are dependent on the

mode the circuit is in. In this way, proctolin may be thought of as reconfiguring the circuit

(Marder, 1988).

UNDERSTANDING THE FUNCTIONING OF MOTOR CIRCUITS

These points have implications for understanding the functioning of motor circuits.

The CPG in Tritonia has the same number of neurons in all animals of the species;

moreover, the neurons can be individually identified and classified. Despite this, it has

proved difficult to assign computational roles to each neuron, mainly because the whole

circuit is capable of organising itself into several different configurations, depending on the

behavioural context. We may call such a system strongly coupled, in that the activity of

one neuron is strongly dependent on the activity of all the others. Weakly coupled systems

are those in which the contribution of the other neurons may be 'averaged out' in some

sense. For example, the mean field theories used to prove convergence for Hopfield-type

nets (Hertz et al., 1991) relies on replacing the contribution of all the other neurons by

their mean activity. Analysis of strongly coupled systems is clearly more difficult, and

models quickly become swamped by large numbers of parameters and variables.

2.4 Pattern Generating Systems and Motor Programs

The concept of a motor program, in one form or another has been central to our under-

standing of human motor behaviour for a long time. Motor programs are usually conceived

as an abstract representation of a behaviour, which is used to generate a sequence of motor

commands in an open-loop fashion. Originally, these were thought of as a literal analogy

to computer programs - an entire sequence of actions that would be selected, and run.



2 Biological Control Systems 27

There are storage problems with such a system, as it seems that a new motor program

would be needed for every new movement. There have been subsequent attempts to gen-

eralise the notion of a motor program to a scheme-like entity, that uses a set of parameters

to generate a whole family of movements. Motor programs are also now seen as including

feedback terms.

There is a close relation between motor programs and ePGs, and the two terms are

used interchangeably in the experimental part of this thesis. ePGs take incomplete spec-

ification of a motor act, and generate the actual motor commands. The evoked behaviour

is a function of the abstract representation of the task (the motor program), the interac-

tion between the Cl'Gs, and the dynamics of the plant and environment. A particular

pattern of activity over the ePGs may be thought of as implementing a particular motor

program, and so a set of ePGs supports a class of motor programs. It is a matter of

controversial debate whether the motor programs should be thought of as distinct entities

from the ePGs themselves.

2.5 Self-organising systems and models of psychophysical data

By comparison to invertebrate motor systems, the circuits in vertebrates are much more

difficult to analyse. There is a body of work that attempts to take a much more abstract,

and mathematical approach to understanding motor behaviour in these systems, and one

that borrows very heavily from the language of dynamic systems: SVNERGETICS (Haken,

1983).

It has been well understood for a number of years that nonlinear dynamic systems

are capable of very complex behaviours, which can be dependent on the settings of their

parameters (Tabor, 1989). In addition to the literature on chaos, there is a body of work

that considers the phenomena of pattern formation in open, non-equilibrium dynamic sys-

tems. A classic example of pattern formation is given by a fluid heated from below. Most

of the time, this will result in convective vortices forming in the fluid, but in an apparently

random manner, reflecting the large number of degrees of freedom in the system. How-

ever, particular values of the heat input result in the spontaneous formation of hexagonal

patterns in the convection. When this happens, it is found that relatively few variables
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are needed to describe the behaviour of the system (these are called the order parameters

of the system), and so it is said that the system has self-organised onto a low-dimensional

attractor. This phenomenon is of particular interest in motor control, because biologi-

cal motor systems usually have to control high-dimensional plants (Bernstein's 'degrees

of freedom problem' (Bernstein, 1967)). Self-organising systems appear to give a way of

reducing the effective number of degrees of freedom of a system, and in a way that is

extremely sensitive to the particular state of the system, unlike other methods, such as

introducing regularisers. The other feature of attractor systems is that they are usually

capable of a high degree of behavioural complexity, as parameter changes can produce

phase transitions, and so switch easily between different behaviours. This approach is in

contrast with the idea of representing motor programs as schemas, or any other static

representation. This implies that the eNS not only represents individual patterns (the

at tractors of the dynamic system), but the entire dynamic environment of those patterns,

in particular, the stability of the patterns as control parameters are varied.

Perhaps the most interesting point is that these analytic tools have had a great deal of

success in modelling biological systems. For example, locomotion in quadrupeds (Schoner

et al., 1990) is characterised by a set of distinct behaviours (gaits), where each behaviour

consists of coordinating the motion of many degrees of freedom. Switching between gaits is

caused by a change in one parameter, the speed of locomotion. The two characteristics of

attractor systems mentioned above - reduction of effective number of degrees of freedom,

and pattern change - seem to correspond very well with the observed behaviour.

MODELLING PSYCHOPHYSICAL DATA WITH SYNERGETIC SYSTEMS

In a classic series of experiments, Scott Kelso and his colleagues used concepts from

synergetic theory to model biological movement data, ranging from gaits in quadrupeds,

to timing measurements in human tapping tasks (Kelso et al., 1988; Schoner and Kelso,

1988a; Schoner and Kelso, 1988b; Kelso and Schoner, 1988; G and Kelso, 1990; Schoner

and Kelso, 1992). The modelling was performed at the level of organisational principles

of behaviour, in contrast to the work on invertebrates. Part of the reason for this is that

the systems involved are typically large and complex, and it is far from clear that a useful

understanding of function could be made from such a low-level approach. The biological
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systems studied are capable of producing highly patterned outputs, but in a way that is

very dependent on the environmental demands (i.e. the same mechanisms are responsible

for a whole variety of patterns). The patterns do not appear to be hard-wired; rather,

they seem to self-organise to suit each behavioural situation. This means that a particular

neural structure underdetermines the behaviour that it produces. On the other hand, the

organisational structures underdetermine the biological implementation, as very similar

organisational principles can be implemented in a variety of ways. For these reasons, it

would seem that an analysis at the level of behavioural organisation might be profitable.

Most of the experiments involved subjects performing a tapping task with the fore-

finger of each hand, the frequency and relative phase between the fingers being specified

externally.

To model this kind of data using concepts from synergetics, a link has to be made from

experiment to theory:

• The order parameters have to be identified. This may not always be straightforward,

but in the case of the tapping experiments, the relative phase between the two hands

is an obvious choice; in the case of quadrupedal gaits the relative phase between the

limbs is chosen.

• Stable patterns observed in experiment need to correspond to attractors of the order

parameters: in other words, the equations describing the behaviour of the order

parameters have to have solutions at points that correspond to the stable patterns

observed.

• Control parameters need to be identified; the values of these parameters determine

which patterns will be observed (in the gait example above, the speed of locomotion

is an obvious choice, as changing the speed moves the system through the possible

gaits. In the tapping example, the frequency turns out to be the appropriate choice).

• The stability of the observed patterns needs to be determined, and the way in which

this depends on the values of the control parameters. It is by studying the manner in

which this stability varies with the control parameters that the form of the underlying
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equations is discovered (Le. the equations describing the behaviour of the order

parameters) .

• Identifying the order parameters for a system corresponds to identifying one level of

description: a key goal is to understand the relationship between this level, and the

implementation, in terms of neural hardware. In most of the work by Kelso et aI, the

neural implementation is modelled as a collection of coupled nonlinear oscillators.

One key finding is that the stability of the observed patterns can depend in a critical

manner on the value of the control parameter, in the same way that dynamic systems

can go through bifurcations as their parameters are changed. In the tapping experiments,

subjects can only reliably produce in-phase and anti-phase oscillations; moreover, the

anti-phase condition loses stability above a critical frequency. Bifurcation points can be

identified by critical loss of stability, which corresponds to critical slowing down, i.e. a

system which is perturbed away from the pattern takes longer and longer to return to the

pattern. As the system is modelled as operating in a constant level of noise, the variance

of order parameters gives another measure of their stability as the control parameters

are varied. Variances are easily measured from the raw movement data; critical slowing

down (an increase in relaxation time) is measured by adding small torques to the subject's

fingers. Loss of stability is suggested as a mechanism for changing patterns.

This model corresponds to a set of equations describing the behaviour of the order

parameter, which, in this case, is relative phase between the fingers. In the tapping

case, the model is a differential equation describing the dynamics of the relative phase

between the fingers. This equation has two terms, corresponding to intrinsic and extrinsic

dynamics. Intrinsic dynamics describe the behaviour of the system in the absence of any

sensory inputs, and extrinsic dynamic describe the way in which any sensory inputs modify

the behaviour. The equations are able to explain many details of the experimental data,

such as the number of stable patterns, and the way in which the stability of the patterns

changes with the control parameter. The fact that the equations have so few terms is an

indication that the biological system is indeed well-described by a low-dimensional system,

and suggests that we have a minimal model of the phenomenon.

Finally, learning of coordination patterns has been analysed within the same framework
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(Schoner and Kelso, 1992). As above, the coordination dynamics are modelled as a sum of

the intrinsic dynamics, and those imposed by the demands of the task. In addition, a third

term represents currently memorised information, where the strength of contribution of

this term is given by a memory coefficient. This coefficient controls how much the dynamics

are dominated by memory, and the value of the coefficient is defined to be some simple

function of the degree of match between the memorised and required pattern, so that the

memorised information becomes more dominant as the task is learned.

The other component of learning is to have the memorised pattern become matched

to the task constraints, ie have the memorised relative phase become matched to the re-

quired relative phase. In absence of any other information about the dynamics of learning,

the simplest model would have the memorised patterns gradually approach the required

pattern, with the motion being some simple function of the degree of mismatch between

the two. In (Schoner and Kelso, 1992), the motion was modelled with a linear differential

equation. This causes the memorised pattern to exponentially approach that required by

the task constraints (learning rates for skill acquisition usually closely follow an exponen-

tial time course) , and the strength of contribution of memory is simply dependent on

the degree of match between memorised information and task requirements. All of this

can easily be expressed in another dynamic system, so the whole of the subject's perfor-

mance, including the learning process is now captured in one dynamic system. What is

so interesting about this work is that the model is able to account extremely well for the

experimental data, despite the apparent simplicity of the model. This strongly suggests

that biological control systems are amenable to analysis at an abstract level, despite being

composed of many complex parts.

2.6 The role of the Environment in Control

One factor that is often ignored in control theory and robotics is the role of the environ-

ment; in contrast, the dynamics of the environment appear to be very important factor

in biological control. Some researchers have taken an extreme position about the possible

benefit of embedding agents in complex environments, claiming that this coupling effec-

tively does away with the need for internal representations at all (Brooks, 1991; Husbands
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et al., 1993; Parisi et al., 1990) (Clark, 1994, argues in favour of moderating this view). In

any case, it seems more likely that a complex, dynamic environment might be partly re-

sponsible for complex behaviour, and this will change our view of internal representations,

as internal states no longer enjoy a simple mapping to behaviour.

In the context of locomotion, the environment may well be partly responsible for the

stability of movement. For example, in lamprey swimming, mechanical interactions with

the water produce a phase-locking effect; the fact that the coupled fish-water system

is phase-locked provides a basic stability against perturbations. In the case of flight in

the locust, the isolated CPG seems to be rather poor at producing stable oscillations

with a reliable frequency; sensory inputs have the effect of entraining the flight with the

environment. Although the view that oscillatory motion is peripheral in origin has been

shown to be incorrect, the dynamics of the environment, as mediated through the senses,

and through purely mechanical interactions, are now known to be partly responsible for

the stability of the motion.

2.7 Discrete Voluntary Movements in Primates

Humans and other primates make great use of their hands. One important part of ma-

nipulation is reaching behaviour: to use a representation of the location of an object (say,

from vision), a representation of the initial position of the hand (say, from proprioception),

and produce the motor commands that result in the hand being positioned close enough

to the object for grasping. This is a task that is frequently addressed in robotics, and so

it provides an interesting case for comparing engineering efforts and biological strategies.

A typical engineering approach to this problem would follow very closely the methods

outlined in the previous chapter.

ROBOTICS ApPROACHES

A classic robotics approach to reaching would involve a representation of the workspace

of the robot, which is just a map, in the configuration space of the robot, which locates all

the obstacles, and the initial and goal state. Trajectories are usually formed by a combi-

nation of planning and reactive techniques. A planned trajectory can be considered to be

a collection of set points, and the role of the controller is to drive the system through those
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points. It is very common in robotics to have explicit forward and inverse kinematics and

dynamics models; most robot manipulators are designed with a minimal number of degrees

of freedom, so that redundancies are reduced to a minimum, and explicit regularisers that

are based on controllability measures are often used to remove remaining excess degrees

of freedom.

BIOLOGICAL ApPROACHES

Because most feedback loops in biological reaching systems are relatively slow and

inaccurate, it seems that reaching is largely pre-planned, and operates in open-loop mode,

which implies the same centrality that was seen in ePG circuits. In which species,

these central representations have been extensively studied by single cell recordings. In

rhesus monkeys, the representation involves a set of motor maps, in which the direction

of movement is coded by activity over a population of neurons (Georgopoulos et aI.,

1986). The individual cells are broadly tuned to a particular movement direction, with

activity falling off roughly as cos«(J), where (J is the difference between the unit's preferred

direction and the actual movement direction. The vector sum of all the units (their

preferred direction weighted by their activation) is highly correlated with the direction of

movement, with the length of this population vector representing the initial movement

velocity.

The population vector has some interesting properties, particularly concerning what

happens if the representation of the movement changes. In an especially illuminating

set of experiments (Georgopoulos et al., 1993), monkey subjects were given a delayed

reaching task, in which a target position was displayed, then removed, and a trigger

signal then given which prompted the movement. The key in this experiment was that

the trigger signal itself was a vector, and specified that the movement direction be at an

angle from the original stimulus vector. The direction of this rotation was not known

to the subject in advance. The subjects reaction time increased with the size of the

rotation, which leads to the hypothesis that the population vector is smoothly moved

to the new movement direction. In the second half of (Georgopoulos et al., 1993), this

was experimentally observed: the population vector is seen to rotate smoothly to the

new direction. In some related computational work, it was shown that a motor map with
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simple local interactions could explain these results, through the use of simple mechanisms

for changing the population vector (Massone, 1994)

USE OF INTERNAL MODELS

It has been widely hypothesised that skilled reaching requires the use of a plant model,

and the considerations of the previous chapter lead us to see such a model as a natural

candidate for a central mechanism for reaching (Le. an inverse model is a natural feed-

forward controller). The presence of a forwards model enables several computations to be

performed. In a system in which feedback is delayed, the model may be used to generate

artificial feedback data before the real data arrives. The forwards model may also be used

to give training data for a feedforward controller. Finally, a model is needed to combine

information from motor commands and sensory feedback to give an estimation of the state

of the plant. A related version of this state estimation problem is that of 'efference copy'

(Gallistel, 1980), in which knowledge of the current control actions are used to cancel their

sensory effects. This is a key ingredient for a system which uses optic flow to estimate

motion: the effects of eye movements within the head cause their own optic flow, which

has to be 'subtracted' to leave the component which is due to movement of the body.

Despite all this, the internal model has been an elusive system.

One study providing strong support for a forward model involved human subjects

making reaching movements in the dark, and trying to estimate the final position of their

hands (Wolpert et al., 1995). In this case, there are two possible sources of information

about the plant state: the motor commands (dead reckoning), and sensory inputs from

proprioception. In this situation, the position of the hand is considered to describe the

state of the plant, and the motor commands are the control inputs to the plant. The

information from proprioception is the plant output, but note that the plant outputs are

not immediately informative about the plant state. As discussed in Chapter 1, a plant

model is required to transform one into the other.

The estimation process was modelled as a Kalman filter, which is a linear dynamic

system, designed to form optimal estimates of the internal state of a system given the

control inputs and observations of the output. This is a 'hidden variable' problem, because

the plant state cannot be directly measured, so the estimate of the plant state at time t is
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used to make predictions of the sensory inputs at time t+. The discrepancy between the

predicted and actual sensory inputs is used to update the estimated plant state.

This system was 'tuneable' in the sense that the relative contributions of motor com-

mands and sensory inputs could be changed. The system was able to account for the data

only if it received both motor commands and sensory inputs; it was the trade-off between

the accumulating errors in simulating the arm dynamics, and the feedback from sensory

inputs, that produced the pattern of the data. This trade-off is not observed in a system

which relies just on dead reckoning, or sensory feedback. As discussed earlier, the use of

sensory information in such a state estimation task requires a plant model in some form,

so this work provides good evidence for the existence of an internal plant model.

In a related paper (Shadmehr et al., 1995; Shadmehr and Mussa-Ivaldi, 1994), the

characteristics of the hypothesised model were investigated, by presenting subjects with

a reaching task in which the dynamics of the environment were changed. This involved

subjects making reaching movements while holding the end of a planar robot arm. The

robot can produce torques at the end effector, and so novel dynamic environments may

be simulated. Subjects typically make straight reaching movements towards a target; the

novel environment was a force field that disrupted the subjects performance. After a few

hundred movements, the subjects had learned to remove the effect of the force field. This

learning was persistent, in the sense that they were much better at the task after a gap

of 24 hours than naive subjects. They were also much worse on a task where the force

field was the negation of the one used in training, and this interference is suggestive of an

internal model of the environment that uses the same representation in both cases.

THE ROLE OF PLANT PROPERTIES

Unlike actuators used in robotics, which often control directly for joint torques, bio-

logical muscles show interesting dynamic behaviour of their own. Although this makes

muscles unattractive from the control theory point of view, it seems that the dynamics

of muscles make a significant contribution to biological control. A simple way of mod-

elling these dynamics is the virtual equilibrium hypothesis (van Soest and Bobbert, 1993;

Bizzi and Mussa-Invaldi, 1990; Bizzi et al., 1992; Massone and Myers, 1996). According

to this view, muscles are arranged in pairs, one flexor and one extensor for each joint
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(this is a slight simplification as primates have more muscles than this). Each muscle

acts somewhat as damped spring, where the equilibrium position and spring constant are

given by control inputs. An equilibrium position for a pair of muscles gives an equilibrium

position for the limb; the spring constants give the stiffness. If the equilibrium position is

varied in time, the limb will describe a trajectory (we now speak of a 'virtual equilibrium'

trajectory, as the limb does not actually settle to equilibrium, except at the end of the

movement). One important result of these springlike properties is that they provide a

simple form of error feedback, and one that operates much more quickly than those that

rely on sensory feedback. Muscle properties have been shown to be able to account for

many features of reaching movements, implying that planning a reaching movement may

consist of specifying a set of virtual equilibrium points.

PLANNING THE MOVEMENT

The simplest way to plan a path is simply to draw a straight line between the initial and

goal states. This will produce very different path shapes, depending on whether the states

are described in Cartesian co-ordinates, or in terms of joint angles. If planning is performed

in Cartesian co-ordinates, then the equivalent joint angles have to be calculated for every

point on the path. I.e. the inverse kinematics mapping has to be found. Alternatively,

planning could occur in joint angles, and then the inverse kinematics would only have to be

solved for the endpoints of the path. Unfortunately, this also causes a loss of control over

the precise shape of the path. A straight line in joint space will correspond to a curved path

in Cartesian co-ordinates, and the precise shape of the curve depends on the configuration

of the arm. This can become important in cases where there are constraints on the

motion, e.g. obstacles, because these constraints will usually be described in Cartesian co-

ordinates. Considerable psychophysical evidence exists supporting the claim that primates

plan in terms of joint angles (Bizzi and Mussa-Invaldi, 1990), which implies that humans

are capable of at least approximating a solution to inverse kinematics.

2.8 Modelling of Biological Systems

Most modelling of biological circuits occurs at a fairly low level (Selverston, 1994), with

the models having dedicated variables for the properties of gap junctions and membrane
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currents. This is in contrast to a lot of neural network modelling studies, in which the

system is treated as a completely black box. However, there is an increasing emphasis on

more abstract models. Part of the reason for this is that the enormous amount of detail

can easily obscure the overall properties of even the smallest of networks. Additionally,

it is very hard to decide which aspects of neural functioning are 'mere implementation

details', and which are essential to the functioning of a particular network. It is useful to

think of these issues in terms of Marr's levels of modelling, and types of theories (Marr,

1977). Marr distinguishes types of theories by their complexity: a type III theory is one

in which the theory is of the same complexity as the data itself. This arises when the

phenomena are very complex. Type I and type II theories are those in which it is possible

to find general principles which apply to other data.

The detailed data at the physiological level corresponds to type III theory, but the

relationship between this level and higher ones is not particularly straightforward. This

is because data at the type III level is only a weak constraint on higher levels: detailed

knowledge of the functioning of the individual parts of a system is not necessarily very

informative about the functioning of the system as a whole, as has been learned from

nonlinear dynamic systems theory (Verhulst, 1989). This seems to be particularly true in

the case of neural circuits. On the other hand, knowledge of the task constraints (a type

I theory) does not specify the implementation at all tightly, as a wide variety of schemes

are seen in biology to solve (apparently) related problems.

To take a simpler example, imagine that we are faced with the task of explaining flight

in animals: how are we to understand the mechanisms that underlie winged flight? A

computational theory is concerned with the demands of the task itself, and so is not just

attempting to model experimental data. Rather, the goal is to develop a theory of flight,

in which the data is explained; the theory tells us why the data appears the way it does,

and makes predictions about the way in which other systems would behave. Presum-

ably, the theory would contain such concepts as aerodynamic lift, drag, and turbulence.

However, there is an obvious problem - such a body of theory already exists, yet flight in

animals is not well understood at all, mainly because the theory deals very well with static

structures, but animals use flexible, flapping wings to generate lift. Obviously, there is no
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evolutionary pressure to generate structures that are easily explained by existing theory.

The implication is that a theory of the computational demands of a task is not completely

synonymous with understanding the functioning of biological systems; this is reflected in

the separate, but connected fields of robotics and biological motor control.

From the point of view of dynamic systems theory, all ePGs appear very similar,

whether they occur in vertebrate or invertebrates. The basic form is that of a nonlinear

oscillator; the oscillatory behaviour is realised as a limit cycle attractor of the system, thus

giving a basic stability against perturbations. Any sensory inputs present have the effect

of resetting the phase, and descending inputs effectively change the parameters of the

system, often resulting in a bifurcation. The first mechanism provides a way of ensuring

the system is sensitive to changes in the environment; the second facilitates control by a

higher level structure.

2.9 Implications for Neural Network Approaches to Control

Some researchers have taken the design concepts in biological control systems, and at-

tempted to apply them to solving difficult control problems. In some cases, the biology

has been quite faithfully reproduced (ref for Ermentrout); in others, the similarities are

more abstract (Beer et al., 1992; Berthier et al., 1993; Berthier et al., 1992). One goal

of this kind of Computational Neuroethology is to understand exactly what computational

complexity is necessary to perform certain tasks. A similar issue has been introduced

above; i.e. how detailed do models of biological systems have to be? Biological systems

have other constraints that partly determine their form, for example, previous evolution-

ary history, and the fact that some of the biological hardware is there to keep the animal

alive. Studying artificial agents in simulated environments gives a way to perform a kind

of Comparative Biology. As these constraints will not be operating for the simulated

agents, their structure should be more informative about the demands of the task.

Insect locomotion is a particularly well-studied example. As has been discussed, a

great deal is known about the physiology of animals such as the cockroach, as well as

the behavioural patterns produced in locomotion. It has already been suggested, here and

elsewhere, that there are problems in understanding the functioning of such motor circuits
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from detailed, low-level data.

In the early work of Brooks et al it was shown that a collection of finite-state automata

(FSA) was capable of reproducing the gaits and gait transitions observed in the cockroach.

In subsequent studies, Beer et al showed that a wide range of architectures could produce

the same behaviour, none of which demanding the precise timing imposed in FSA (Beer

et al., 1992; Beer and Gallagher, 1992). These results have been generalised further, by

showing that a wide range of connectivity patterns could generate similar data (Buchanan,

), and that the form of the underlying oscillations can be varied without changing the

global behaviour (Collins and Richmond, 1994)

In (Taga et al., 1991), a computational model of bipedal locomotion was built. The

model included oscillators that showed the same basic function as those known to exist in

human spinal cord, together with plausible reflex loops. The locomotion was controlled by

one descending parameter which determined the speed of locomotion. Simple equations of

motion were used for the limbs, which meant that they had their own oscillatory dynamics.

Several interesting points came out of this study. Firstly, stable locomotion was realised

by entrainment between the neural system, the plant dynamics, and the environment.

The combined controller, plant and environment formed a global limit cycle, which meant

the system was resistant to perturbations in the position of the limbs. The locomotion

was also shown to be able to cope with changes in the parameters of the environment:

small uphill gradients and smaller downhill ones were successfully negotiated. Finally, the

control parameter smoothly varied the speed of locomotion, but the system went through

a phase transition - a change to a running gait - at a critical value.

This work is in contrast to robotics approaches to legged locomotion. Firstly, no there

is no explicit planning of the motion, and hence no desired states. Rather, the task is

represented as a limit cycle of the entire system. Secondly, there is no explicit plant

model. Despite this, there is a simple relationship between the control parameter, and the

behaviour. These points are related, as can be seen in a simple minded use of standard

control techniques. The task of walking can be represented as a desired trajectory in

the configuration space of the limbs, although finding the trajectory that corresponds to

the desired walking patterns may not be a straightforward problem in itself. In purely
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FIGURE 2.2.

feedforward control, the presence of an inverse dynamics model makes it possible to plan

in terms of the state of the plant; Le. it gives the control inputs to drive the plant through

any sequence of states, assuming such controls exist. Obtaining an inverse model can be

very difficult, particularly for high-dimensional, nonlinear plants. The desired trajectory

would be an oscillation in configuration space. The scheme is shown in Fig 2.2.

As the plant has oscillatory dynamics anyway, it makes little sense to invert the plant

dynamics, plan an oscillatory path, and find that a very large set of control inputs would

produce the desired output trajectory. The rationale behind using a full inverse dynamics

model is that the plant can be driven to any of its possible states, but tasks such as loco-

motion probably requires the plant to move through a very small fraction of its available

state space.

2.10 Conclusions

The structure of biological control systems are the result of many interacting constraints,

of which the control task is just one. Despite the variety seen in animals, and the evo-

lutionary niches they occupy, there is a large degree of convergence in their basic design.

Central Pattern Generators and motor programs are powerful concepts in understanding

the function of these system. Modelling of such systems occurs at a variety of scales,

depending on the particular animal, although it seems possible that an abstract compu-

tational theory may emerge.

Convergence in evolution is suggestive of strong design principles, as in the case of

evolution independently producing flight from different routes. One way to investigate

these hierarchical designs is to use them in learning control tasks. The main goal of the

rest of this thesis is to implement Pattern Generators in a neural network framework,
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and examine the effects on learning motor control tasks. The control tasks will be fairly

simple, and generally involve the use of a simulated robot arm. A variety of methods for

building ePGs is discussed, and the way in which they may be used in direct and indirect

control.



3 Motivation

Work

for Experimental

3.1 Introduction

One of the striking features of biological control systems is their similarity across species.

The control systems are hierarchical in design, with a careful balance between central and

peripheral components used to produce adaptive behaviour. The central components in-

clude the powerful concept of the Central Pattern Generator. These have been described

as dynamic systems, that take as input relatively simple signals, and produce complex,

temporally structured outputs. For plants with many degrees of freedom, they are ex-

pansive systems that take low-dimensional inputs and co-ordinate the many individual

actuators. Consequently, their presence reduces the dimensionality of the control task for

a higher system, and may simplify the problem in other ways, such as reducing nonlinear-

ity, or restricting the plant to tractable parts of its state space. It was also seen that much

of the data on gaits and gait transitions may be succinctly explained by the interactions

between sets of CPGs.

The obvious question is whether these ideas have any utility in robotics and motor

control tasks. The main goal of this thesis is to investigate the use of such modular

systems for neural net learning of control tasks. In the field of neural networks, there has

recently been a good deal of interest in modular architectures, and incremental learning

methods (Elman, 1993). For motor control tasks, it seems natural to draw a close analogy

between these methods for improving learning, and the modular architectures seen in

biology.

In adaptive control, the central and peripheral components usually correspond to in-

verse dynamics and feedback loops. In such a system, the controller outputs have direct
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effects on the plant: for a robotic arm, the controller directly specifies the torques at each

of the joints. Perhaps the most obvious way to implement modularity is at the level of

the controller. In its simplest form, a pattern generator would be conceived as a system

placed between the controller's outputs, and the plant itself. The pattern generator takes

the outputs from the controller, performs some transformation, and gives the input to the

plant. In this thesis, the controller and the pattern generator are implemented as fully

recurrent nets. This makes it straightforward to consider different connection schemes be-

tween the two components, such as including feedback from the pattern generator to the

controller's inputs. The use of recurrent networks also implies that the pattern generator

will have its own dynamics, and so there can be a variable division of labour between the

controller and the CPG.

3.2 Structure of Experimental Work

Chapter 4 is concerned with learning in recurrent nets, and the use of recurrent nets for

abstract pattern generation tasks. Training recurrent nets involves changing the parame-

ters of nonlinear dynamic systems, and this causes the instabilities that are seen during the

course of learning. At least some of this instability arises from the existence of bifurcations

in the learning process. In the neural network literature, incremental learning techniques

have been used to improve the performance of recurrent network learning (Giles et al.,

1992; Elman, 1993) These generally involve training a single network on a series of tasks,

gradually increasing in complexity.

The goal of this chapter is to investigate a slightly different approach, in which parts of

the learning system are trained on simpler tasks, and then fixed during later learning. The

fixed parts are called Central Pattern Generators, by analogy to the pattern generation

systems seen in biology. The remaining parts of the learning system are trained with Distal

Learning, which accounts for the presence of the CPGs by backpropagating errors through

them. In section 1.4.2, distal learning was seen as a way of accounting for the behaviour of

a plant, assuming the existence of a sufficiently accurate plant model. Chapter 4 represents

an extension of that work, and considers distal learning to be a mechanism for performing

credit assignment in a system with a number of components, fixed or adaptable, and where
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the components may differ in their type (e.g. recurrent or feedforward).

It is shown that the use of artificial CPG nets are a powerful way of representing prior

knowledge for a task, and so constraining the behaviour of the system. This is reflected in

an improvement in learning, both in terms of error and stability. The CPGs themselves are

built with two methods: learning on a simpler task, and a Genetic Algorithm. Both are

shown to be effective at building CPGs that help later learning. One interesting finding

is that the optimal CPGs found by the GA are unstable dynamic systems, which implies

that some bifurcations do not disrupt learning. Other schemes are also considered, In

which part of the system is reduced in complexity to a feedforward net.

Chapter 5 applies these ideas to motor learning tasks, involving a simulated redun-

dant robot arm. This chapter is concerned with supervised learning tasks in which a plant

model is available, and distal learning is used to account for the presence of the CPGs.

The learning tasks are simple reaching-type movements, in which the control system is

to generate a family of movements parameterised by sensory inputs. The CPGs are used

to represent a kind of task decomposition, and it is shown that it is relatively easy to

build CPGs to represent elements of pattern generation, constraint satisfaction and local

feedback. This work is related to other research on the use of motor programs in learning

families of movements. The work of Lipitkas et al (Lipitkas et al., 1992; Lipitkas et al.,

1993; Back et al., 1993; Bock et al., 1996) implements motor programs as waveform gen-

erators, which take as input a set of parameters specifying the movement, and produce a

time series of torques as output. The main difference in the work presented here is that

the motor programs are also learned, rather than being hard-wired.

Finally, chapter 6 investigates the use of direct methods, including reinforcement learn-

ing. The reinforcement literature has concentrated mainly on the derivation of new algo-

rithms, and analysing the convergence properties of these algorithms. As a results, many

of the problems used have been little more than toy examples. As reinforcement techniques

typically involve very long training times, learning difficult control tasks with reinforce-

ment learning is often impractical. A popular approach to more demanding problems is

the use of shaping, where the complexity of the problem is gradually increased (Gullapalli,

1992, chapter 4). The work presented in Chapter 6 takes a slightly different approach,
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and considers an agent which has limited control over a complex motor program.

In direct control, the effects of control actions are unmodelled, and this fact may

be used to build controllers whose outputs have complex consequences. In one set of

experiments, the controller outputs are used to set the strengths of couplings between sets

of oscillators, and it is shown that this is an effective way to generate different gaits. The

final set of experiments consider the use of models that operate on simple measures of

the plant's behaviour. The learning and use of such models is discussed in the context of

learning phase relations between a set of coupled oscillators.



4 Recurrent Networks and Motor

Pattern Generation

This chapter considers the use of recurrent neural networks for pattern generation tasks.

Firstly, the issues involved in training recurrent networks are discussed, and the recurrent

backpropagation algorithm is introduced. The first experiments are concerned with learn-

ing a single temporal pattern: an oscillation of a fixed frequency. Learning of oscillatory

behaviour is shown to suffer from instability, and methods for controlling learning rates

for individual weights are shown to improve performance.

The remaining experiments consider the learning of variable oscillations, either varia-

tions of frequency, or relative phase. In section 4.8, a modular architecture is discussed,

in which one network (called a ePG) is trained on a simpler version of the task, and then

used as a subnet in a larger network. It is shown that this improves learning performance,

in terms on convergence rate, and stability of learning.

Section 4.8 investigates the use of Genetic Algorithms to build the ePGs, and it is

shown that the GA can find ePGs which outperform those built by learning a simpler task.

Finally, section 4.9 discussed the use of static networks in feedback loops with recurrent

networks.

4.1 Introduction

This chapter is concerned with temporal pattern generation, and dynamic systems that

generate temporal patterns. The motivation for studying dynamic systems of this type

lies partly in the desire to understand biological systems, such as the neural mechanisms

that generate the complex motor controls seen in locomotion. In invertebrate systems,

measurements can be made at the level of individual neurons, and so much of the exper-
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imental data is at an extremely fine scale. Nevertheless, it is now clear that there are

general organising principles, and so more abstract studies may be useful. In any case,

such fine-scale analysis is less useful in vertebrate systems. It is also desirable to under-

stand how these pattern generation systems fit into a wider control scheme, which includes

sensory feedback, the dynamics of the plant, and descending command signals.

However, there is also research interest in pattern generation as a subject in its own

right, particularly in the context of robotics. Much recent work in the control of walking

systems has concentrated on building controllers that are clearly inspired by biological

pattern generators (Beer et al., 1992; Brooks, 1991) and show much the same overall

structure as biological systems. This approach may turn out to be much more successful

than a traditional engineering strategy; nevertheless, it is essential to understand why

particular architectures are more successful than others, and that implies that pattern

generation needs to be understood in itself.

As general purpose dynamic systems, recurrent neural nets are clearly of interest in

pattern generation, and optimisation methods such as recurrent backpropagation are a

powerful technique for synthesising dynamic systems. In the context of understanding

biological systems, recurrent nets can provide a way of modelling experimental time series

data, and in a way that can be tied closely to the known physiology. For example,

the learning algorithm of Selverston (Rowat and Selverston, 1991) is capable of modelling

nonlinear time series. More importantly, it has explicit terms to account for the parameters

of invertebrate circuits. This provides a way to include detailed knowledge we may have

about a particular circuit; it also provides a way to generate testable hypotheses about

unknown parameters. These ideas have found particularly usefulness in attempting to

understand the functioning of invertebrate motor circuits (Tsung et al., 1990; Selverston,

1994). More generally, recurrent networks can be considered as performing a mapping from

a time series of inputs to a time series of outputs, and so they have found applications

in tasks with a temporal component, such as constraint satisfaction problems in vision,

speech processing and financial forecasting. (Grossberg, 1986; Elman and Zipser, 1988)

In context of robotics, recurrent nets are attractive as a way of implementing complex

controllers, and recurrent nets represent very little in the way of designer bias. Some
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researchers have found that general optimisation methods such as Genetic Algorithms are

able to build recurrent controllers that can solve difficult control and navigation prob-

lems; other research has concentrated on the use of supervised learning (Eckmiller, 1989;

Floreano and Mondada, 1995).

4.2 Training Recurrent Nets for Pattern Generation

Recurrent neural nets represent a very general class of dynamic system. The Stone-

Weierstrass theorem was originally used in neural networks to show that a sufficiently large

feedforward net is capable of approximating any smooth function to the desired degree

of accuracy. In (Doya, 1993), the Stone-Weierstrass theorem was extended to recurrent

nets, showing that a sufficiently large net could approximate any dynamic system to the

desired degree of accuracy. However, as with feedforward nets, a more interesting question

is whether a particular problem can be learned. There are several learning algorithms for

these types of nets, each making slightly different assumptions.

LEARNING FIXED POINTS

Fixed points are those points in the state space where a system is stationary. Learning

fixed point generally involves making the points stable as well as stationary; this makes

the point an at tractor. The general approach here is to assume that the net does show

convergent dynamics. Under that condition, the equations for the error derivatives show

the same convergent behaviour as those governing the dynamics, and they are relaxed

until a fixed point is reached. The units have dynamics that will be used widely in this

thesis:

(4.1 )

or

if Yi is used as shorthand for the weighted inputs L::j WijX i : Wij is the weight from unit j

to unit i; I, is an external input to unit Xi, and er is the activation function of the unit. It
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was discovered by Pineda (Pineda, 1987) that the backpropagation rule is a special case

of a general error correction rule, one that applies to recurrent nets. In backpropagation,

the equations governing the activity and error derivatives are given by

Zi (1' (yd LWijZj + ei
j

(4.2)

(4.3)

8E
(4.4 )

8Wij

Zj is the partial derivative of E with respect to Xi, ordered in time; E is the error

defined on x( too) (i.e. the final state of the unit), and e, is the simple derivative of E with

respect to the unit's final state (i.e. e, = x(too) - x·(too». Of course, a feedforward net

has no dynamics, so a fixed point is reached immediately. The interesting point is that

these equations still hold when there are recurrent connections, as long as a fixed point is

reached. This can be seen by considering what happens when the net is stationary: the

RHS of equation 4.1 becomes zero. In that case, equations 4.2, 4.3 and 4.4 are satisfied.

Fixed points for equation 4.1 are found by relaxing to a solution; the same may be done

for the Z values, using the equation:

dz; 'Tt = -Zj + (1 (yd ~ WjjZj + e,

This scheme assumes that the net will relax to a fixed point, and not, for example, produce

oscillations. There are many ways to guarantee such convergent behaviour, such as using

zero-diagonal symmetrical weights (so that Wij = Wji; Wjj = 0). One peculiar property of

fixed point algorithms is that these restrictions don't seem to be necessary; applying fixed

point algorithms to unrestricted weight matrices seems to produce stable networks.

Learning fixed point behaviour often correponds to building a pattern completion

device, in which initial patterns corresponding to a noisy or incomplete pattern are trans-

formed into some prototypical pattern. The most obvious use of such a system is as

a content addressable memory (Hopfield and Tank, 1985): the attractors of the system

correspond to the memorised patterns.

LEARNING NON-FIXED POINT BEHAVIOUR
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Fixed point dynamics define a class of behaviours for the system, which correspond

to the system always converging to a stationary state. Recurrent networks are capable

of producing a larger set of behaviours, which includes oscillatory and chaotic dynamics.

Learning such non-fixed point behaviours requires the use of more complex optimisation

techniques.

Some researchers have used networks with reduced forms of recurrency, in which there

are feedback connections between some parts of the network and the input layer, but

these connections are fixed. The fact that the recurrent connections are fixed means that

standard backpropagation may be used (Elman, 1990).

In a fully recurrent network, there may be modifiable connections between any pair

of units. There are two main approaches here: the first is to unroll a feedforward net for

every point in time. This is discrete-time algorithm, in which the dynamics of the network

are considered to be an iterated function system. An iterated function system is defined

by a static mapping. This mapping takes the state at time t, and maps it onto t + 1. The

new state is then fed in as the new input. This suggests that we may consider the state of

the system at t + n to be the result of n functions, cascaded in sequence. When the system

is a neural network, training for n time steps results in training one large static network,

which is basically n copies of the one network, with output of the network i forming the

input to network i+ 1. The drawback to this method is that the storage requirements

grow very quickly; the advantage is that standard backprogation may be used.

Williams and Zipser (Williams and Zipser, 1989) showed how to perform backpropa-

gation without storing n separate networks. This procedure still makes use of the discrete

time dynamics, but now differentiates the dynamics with respect to the weights at each

time step, to get a relation with the derivative at the previous time step.

An alternative approach considers the network to be a continuous-time system, and a

learning rule may be derived by the calculus of variations, or by making a finite-time ap-

proximation. One example of this is Time-Dependent Recurrent Backpropagation (Pearl-

mutter, 1990); this algorithm is discussed in more detail below.



" Recurrent Networks and Motor Pattern Generation 51

4.2.1 Issues in Training Recurrent Nets

Training recurrent nets is considerably more difficult than feed forward nets, as this involves

adapting the parameters of a nonlinear dynamical system. The early stages of learning are

particularly difficult, when the dynamics of the net are likely to be very different from the

target dynamics. Learning algorithms for recurrent nets implicitly assume that the net is

on, or near the desired trajectory; the error derivatives are not informative when the net is

far away from the target. One way around this is to use teacher forcing, where the outputs

of the net are literally placed on the target trajectory after the error derivatives have been

calculated, thus ensuring that the net never wanders too far away from the target. Teacher

forcing was found to be necessary to learn limit cycles with the Williams and Zipser rule,

and can drastically speed up learning of other tasks. Teacher forcing is usually used with

discrete time networks, so that the outputs are forced to the target values at each time

step, after the error derivatives have been calculated. It is also possible to perform teacher

forcing with continuous time nets; the teacher is implemented as a forcing term added to

the net's dynamics, where the magnitude of this term is reduced as learning converges.

The main problem with teacher forcing is that there is no guarantee that the net will

perform as required once the teacher forcing has been removed. Also, forcing tells us how

to set the value of the output units, but not the values of the hidden units. Nevertheless,

teacher forcing is widely used in the learning of difficult temporal tasks, and can turn

completely unlearn able problems into tractable ones.

A rather elegant alternative to teacher forcing is phase-space learning (Tsung and

Cottrell, 1995). This only really applies to modelling autonomous systems (Le. those that

take no inputs). The plant is modelled as lying on an attractor. The attractor not only

specifies the long term behaviour of the plant (the trajectory of the attractor itself), but

also the vector field surrounding the attractor. The vector field specifies the velocity of the

system at all point in the state space: it is basically the value of the RHS of the equations

of motion for the system. If the equations of the plant were actually known, then the vector

field would be known for all points in the state space. This is rather unlikely, hut some

simple assumptions can enable us to reconstruct the vector field for an unknown system.

Basically, an attractor is so called because trajectories nearby will be attracted towards it,
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usually in a simple (Le. exponential) fashion. Given this assumption, the vector field can

be generated away from the target trajectory. So, as the net wanders away from the desired

trajectory, new training data is generated that will still be informative. Additionally, the

stability of the attractor has been explicitly represented during learning, which is not the

case if the net is merely trained on one trajectory. Finally, knowing (or approximating)

the vector field means that feedforward structures may be used for the approximation, in

which case learning trials can be randomised. When learning is complete, the feedforward

net is converted into a dynamic system by considering it to be an iterated map. The only

real problem with this is that there is no clear relation between the magnitude of errors

in learning the vector field, and errors of the dynamic system, simply because iterating an

inaccurate mapping can mean that the errors will become amplified.

INCREMENTAL METHODS

As with other difficult learning problems, incremental methods have been widely used

m training recurrent nets (Giles et al., 1992). On the whole, this means that a net is

initially trained on a much simpler version of the task. Once the performance is judged to

be sufficiently good, the complexity of the task is increased. This is essentially a temporal

method, as the same net is used throughout. An alternative strategy, used widely in this

thesis, is to take a structural approach. This means that a network will be trained on a

simpler task, and then used as a component in a larger system. This is clearly related

to the 'chunking' methods seen in AI (Iba, 1989), and may also give insights into the

hierarchical structures seen in biological control systems.

4.3 Introduction to the Experiments

Most biological motion is characterised by oscillatory motor activity; this includes such

diverse behaviours as legged locomotion, swimming, flying and chewing. Underlying all

of these behaviours are neural circuits called Central Pattern Generators. The main

components of this behaviour are the initiation and termination of oscillations, and the

modulation of the basic pattern to suit the demands of the task at hand. In the ex-

periments reported here, recurrent nets were trained on abstract oscillatory motor tasks,

using recurrent backpropagation. The actual patterns to be learned are fairly arbitrary,
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and consist of sine waves at various frequencies and relative phases. The use of recur-

rent back propagation for these simple tasks is a case of computational overkill, as simpler

methods exist for co-ordinating oscillators (Doya and Yoshizawa, 1990). However, the goal

of this chapter is to investigate the performance of more general methods, which make no

assumptions about the nature of the patterns.

Architect ure:

The nets considered are fully connected, recurrent, real-time nets. The dynamics of

each unit evolve according to :

where Ii( t) is an external input, T; is a time constant for unit Xi. The activation function

a is taken to be the usual sigmoid function:

1
a(y) = 1 + e-Y

Each unit is connected to every unit, including itself. Unlike Hopfield nets, the weight

matrix is not constrained to be symmetrical, as this restricts the dynamics to fixed point

behaviour. Networks with continuous dynamics were chosen, instead of discrete time nets.

There are several advantages to using continuous time net. Firstly, a variety of methods

may be used to integrate the equations, not necessarily the simple Euler method that is

implicit in discrete time systems. It is not yet clear how much of the instability found in

training recurrent nets is due to the choice of integration method. Even if such a simple

method is used, the size of the time step may be varied, for example, if the dynamics are

known to be particularly nonlinear. Also, if recurrent nets are used in conjunction with

other dynamic systems, say in the control of a simulated plant, then the equations of the

combined system may be integrated together; it is common to use higher order methods

when simulating physical systems. Finally, the use of continuous dynamics automatically

gives a degree of temporal smoothness to the network's behaviour, smoothness that may

otherwise require the use a regulariser. In these experiments, a simple Euler method was

used, with a fixed step size of O.Ols.

Learning Algorithm
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Time-Dependent Recurrent backpropagation is a supervised method for adapting the

parameters of the net. This assumes the existence of target values for some set of units

i E T to be considered the net's outputs, although these targets need not appear at every

time step. Gradient descent is used to minimise a cost functional:

where x* is the target value for unit i. T is just the set of units for which there is a target

value; this may change during the time period, with targets appearing for some units at

some points in time, and others for other points. In this sense, recurrent nets do not have

such a fixed notion of input and output units.

There are several algorithms for performing gradient descent on these kinds of cost

functionals; Real Time Recurrent Backpropagation was used for all the experiments in this

chapter. This estimates error derivatives by solving another set of differential equations.

If we denote by Zi(t) the time-varying error derivative g~(t) for unit i, then the dynamics

of Zi( t) are given by the following equation:

where Yj has been used as shorthand for the weighted inputs Lj WijXj

The boundary condition z(td = 0 is used, so these equations are integrated backwards

in time. The error derivatives for the weights are given by

BE 1 ltl I-- = - XiO' (Yj )Zj
BWij Tj to

and for the time constants

This gives error derivatives for the weights and the time constants, and simple gradient

descent was then used to minimise the error. The term 'parameters' is used to refer to the

modifiable parameters of the network, i.e. the weights and time constants. All the code

for the network dynamics and learning was written in 'C', and the simulations ran on an

HP 700 series Unix workstation.
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As with forward modelling, error derivatives g~(t) for the unit's activations are also

calculated; these may be used to backpropagate through a recurrent net, in order to

optimise the inputs to the net.

4.4 Learning stable oscillations

It is easy to show that a two unit net is capable of producing oscillations. To investigate

learning of oscillations, small networks, consisting of 6 units, were trained to approximate

a sine wave y = 0.5 + 0.45sin(wt). The target trajectory was applied to one unit, and the

others were left unconstrained. The weights were randomised from a normal distribution

with mean zero and standard deviation of 1.0; the time constants chosen from normal

distribution with mean 1.0 and s.d. 0.1. During learning, the weights were unconstrained,

but the time constants were not allowed to become lower than 0.1, as this usually leads to

instability. The learning rate for the weights was 0.2; that for the time constants was 0.1.

20 networks were initialised with random weights and time constants, and trained on

the target trajectory. Each training epoch consists of three steps. Firstly, the network

dynamics are integrated across a fixed size time window. The time window was 3 sees long,

corresponding to 3000 samples in time. The equations for the error derivatives were then

integrated backwards in time. Finally, the derivatives for the weights and time constants

were found by a third integration, forwards in time. This whole process gives one error

derivative for each modifiable parameter of the network, and these parameters were then

adapted with standard gradient descent.

Each network was trained for 10 000 epochs. The performance of the networks is just

given by the RMS error for the unit at which the targets appear.

4.4.1 Results

The learning curves for this experiment are shown in Fig 4.1. The form of the curves

suggests that learning suffers from instability, as there are many uphill jumps in error.

This is also reflected in the long training times.

The actual fit to the target trajectory is not perfect, despite convergence of learning.

The output of a typical net is shown in Fig4.2; the residual error is mainly at the extremal
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FIGURE 4.1. Learning curves for 20 networks on the single oscillation
task. Learning is rather unstable, as can be seen by long periods when
error is not decreased, and spikes in the learning curves

points in the oscillations. This is really a weakness of RMS errol' as a distance metric for

trajectories: a low value of RMS error can be obtained without fitting the 'tricky' parts of

the target trajectory, and so once the basic oscillation is established, con vergence becomes

very slow. Other methods have been investigated elsewhere (Tsung and Cottrell, 1995),

which are more sensitive to the actual direction of motion of the outputs, but the main

concern here is the qualitative nature of the dynamics, rather than the detail.

4.4.2 Using The Delta-Bar-Delta Rule to improve Learning

Instability in learning is often due to the solution between continuously overshot; this can

be caused by steep surfaces in weight space. It is quite reasonable to expect steep error

surfaces with recurrent nets, as learning involves changing the parameters of a nonlinear

dynamic system, so in some regions of paramter space small weight changes may lead to

large changes in beha.viour (Doya, 1992). In other pa.rts, the surface may be relatively flat,

causing slow convergence. The problem is that instability seriously limits what can be

done with the learning procedure, and also limits the range of applications for recurrent

networks.

One way to approach this problem is to use adaptive learning rates for each parameter,

and this is the basis of methods such as the delta bar deit» rule (Fang and Sejnowski, 1990).

The basic idea is to try to detect if learning has overshot the solution, for a particular



4 Recurrent Networks and Motor Pattern Generation 57

OUTPUT -
TARGET .....

0.8

0.6

0.4

0.2

0
0 200 400 600

FIGURE 4.2. Performance of a typica.l trained network on the single
oscillation ta.sk. The dotted line shows the target trajectory; the actual
output of the network is shown with a solid line

parameter. This is done in a very simple way, by comparing the signs of successi ve

parameter changes. If the sign stays constant with every step, then the learning is heading

in the right direction (for this parameter), and so the learning rate can be gently in creased

(usually by a constant amount scaled by the current RMS error). If the error c1erivati ve

ever changes sign, then this indicates that the solution has been overshot, and the learning

rate is greatly reduced, usually by a fractional amount (e.g. 90 percent). The cost of using

this method is that three additional parameters have been introduced (the two above, plus

a momentum term for the current error derivative), and have to be set by hand. So the

update rule for the learning rate 17ij is

o otherwise

(4.5)

(4.6)

(4.7)

ifOij(t - l)Oij(t) > 0

-<P% if8ij(t - 1)8ij(t) < 0

where K, is an additive increment to the learning rate, and -¢1]i,i is a multiplicative

decrement. K, usually related to the current RMS error, so that fine control becomes

possible a.s learning approa.ches the solution:

K, = >.E(t)
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c5jj(t) is the current estimate of the error derivative for weight ij:

c5jj(t) = oE(t)
OWij

This estimate is stabilised with a momentum term:

where et is a momentum parameter.

The previous experiment was repeated, with the delta- bar-delta rule used to set the

learning rates. This procedure introduces 3 additional parameters that have to be set by

hand, and some experimentation was necessary to find combinations of values that worked.

This method is really only applicable to learning one pattern, as learning input-dependent

patterns will involve the error derivatives constantly changing sign even if learning is

proceeding in the correct direction. 20 networks were trained on the single oscillation

task, with parameter values ofA= 0.01; et = 0.1; <p = 0.8.

4.4.3 Results

The learning curves for the delta-bar-delta rule are shown in Fig4.3. The time to conver-

gence is much shorter, although the large spike in one of the runs suggests that it is still

possible for learning to lose stability.

4.5 Learning variations of the basic patterns.

In this section, networks were trained to produce variable oscillations. Two variations

were considered: varying the frequency of the oscillations(Task 1), or varying the relative

phase (Task 2). In both conditions, there were two output units, each receiving target

trajectories. Larger networks were used for this experiment, consisting of 9 units. 20

networks were trained for each of the two tasks, with training times limited to 20 000

epochs. The weights and time constants were initialised from the same distributions as

before, and the networks simulated for the same size time window. A learning rate of 0.2

was used for the weights, 0.1 for the time constants.

Task l:Variable Frequency
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FIGURE 4.3. Learning curves for 20 networks on the single oscilla-
tion task, using the Delta-Bar-Delta rule to control the learning rates.
Learning is seen to converge much more rapid ly a.nd stably, although
the large spike suggests that some instability remains

There were two target trajectories for this condition: y = 0.5 + O.45sin((1 + 1) wt) for

one unit and y = 0.5+0.45cos((1+I) wi) for another. The two target units were required

to oscillate at a frequency given by the external input, and to maintain a phase difference

of i. The variable I controls the frequency of the desired oscilla.tion, and this value was

given as input to one unit. I was varied over the range 0 to 1, and was either chosen

from the continuous interval [0: 1], or from the discrete set {O,1}. This was simply to see

whether different kinds of genera.lisation would be produced. Given the range of J, the

highest frequency was twice the lowest.

Task 2:Variable phase

In this condition, the target trajectories were y = 0.5 + 0.45sin(wt) for one unit and

y = 0.5 + 0.45sin(711 + wt) for the other. Again, I wa.s varied over the range 0 to 1,

either continuously or discretely. This meant that the required relative phase between the

two units varied from 0 to 71.

4.5.1 Results

The learning curves for the variable frequency task are shown in Fig 4.4; those for

the variable phase are shown in Fig4.5. In both the phase and the frequency condition,

learning proceeds more slowly than learning a single trajectory.
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FIGURE 4.4. Learning curves for 20 networks trained on the variable
frequency task
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FIGURE 4.5. Learning curves for 20 networks trained on the variable
phase task
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FIGURE 4.6. Performance of a typical trained network on the variable
frequency task. The target appears as the dotted line, the out.put as
the solid line. This plot shows a low frequency pattern

Figs 4.6 - 4.8 show the output of one network after learning had converged; the net

IS tested on three different target frequencies. This test output was obtained by running

the network dynamics for a much larger time window than that which was used during

learning. It can be seen that the output drifts slowly away from the target trajectory, and

the fit to the shape of the target is similar to the single trajectory case.

Figs 4.9 - 4.11 shows the corresponding curves for the variable phase condition. The

phase condition seems to be more difficult than the frequency task, as reflected by the

time to convergence of the learning. Again, the output drifts away from the target, and

the fit to the target is slightly inaccurate.

In both Task 1 and Task2, training with inputs from a discrete set 0,1. produced

networks which showed poor generalisation: testing with inputs other than those used

in training produced mixtures of the two learned patterns. Consequently, all subsequent

experiments used continuous training inputs.
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FIGURE 4.7. Performance ofa typical trained network on the variable
frequency task. The target appears as the dotted line, the output as
the solid line. This plot shows a medium frequency pattern
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FIGURE 4.8. Performance of a typical trained network on the variable
frequency task. The target appears as the dotted line, the output as
the solid line. This plot shows a high frequency pattern

Output -
Target ----.

0.4

2 4 6 8 10
Time - arbitrary units

12 14 16

0.8

0.6

0.2

FIGURE 4.9. Performance of a typical trained network on the variable
phase task. The target appears as the dotted line, the output as the
solid line. This plot shows a small relative phase pattern
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FIGURE 4.10. Performa.nce of a typica.l trained network on the van-
able frequency task. The target appears as the dotted line, the output
as the solid line. This plot shows a medium relative phase pattern

Output
Target

0.8

2 4 6 8 10
Time - arbitrary units

12 14 16

0.6

0.4

0.2

FIGURE 4.1l. Performance of a typical trained network on the vari-
able frequency t.ask. The target appears as the dotted line, the output
as the solid line. This plot shows a high relative phase pa.ttern
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4.6 Issues in Training Recurrent Nets: Motivation for using CPGs

It has been shown elsewhere (Tsung and Cottrell, 1995) that bifurcations can occur in

training recurrent nets - qualitative changes in the network dynamics that produce large

changes in error. This is obviously a problem for a gradient descent procedure; gradient

descent assumes the error surface is smooth and continuous. It is precisely because re-

current nets are such powerful systems that these problems arise. Even relatively small

nets can show complex behaviours, and there are often quite small regions of weight space

that contain a wide variety of behaviours. If the dynamics could be constrained to being

qualitatively correct, then these bifurcations should disappear, with an increase in learn-

ing performance. For the current learning task, this would mean constraining the network

dynamics to being oscillatory - a system with non-oscillatory dynamics has to go through

a bifurcation in order to oscillate.

One way to constrain the network dynamics is suggested by the basic architecture

of biological control systems, particularly the existence of CPGs. CPGs were described

as complex dynamic systems capable of producing temporally structured outputs in the

absence of external inputs, but any inputs present served to modify the outputs to suit

the task at hand. The descending inputs only have a limited amount of control over the

CPG outputs, usually limited to modifying the frequency or phase of oscillations. This

means that they are unlikely to be able to destroy the oscillations, or make other large

changes to the behaviour.

As this general architecture is so common in biological control systems, it might be

suspected that this represents a strong design principle, one that may be of use in control

and robotics. There are several reasons why introducing CPGs might be beneficial in

pattern generation:

• As in biological systems, CPGs can be used to introduce constraints between the

various degrees of freedom of the plant. This can be achieved by other methods,

such as using regularisers; the constraints implicit in a CPG will be state-dependent,

and so sensitive to the behavioural context. This gives a very powerful framework

for introducing dynamic constraints, one that may turn out to be more relevant for
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motor control task than the use of regularisers .

• An important issue in adaptive control is exploration; in learning a plant model, for

example, the plant should be exposed to a sufficiently rich set of inputs, so that the

learner observes all the modes of behaviour of the plant. On the other hand, the

plants inputs during learning should be representative of the sort of inputs that the

plant will see during operation. These issues are particularly important during the

early phases of learning. Using a ePG may be an effective way of addressing this

issue, as this would effectively mean that the controller has a repertoire of complex

actions.

• Stability is a major concern in nonlinear adaptive control. It is shown here that

the presence of ePGs can improve the stability of procedures such as recurrent

backpropagation. This is mainly because the ePG ensures that the output of the

control system is qualitatively correct; adaptation is then a process of fine-tuning

those controls.

4.6.1 Introducing CPGs into the Control System

In section 1.4.2, it was seen that a plant model may be used to transform error in the space

of the plant output into the output of the controller. It was also seen the transforming

system need not be a plant model, and that adding other mappings provides a mechanism

for introducing constraints. These ideas can be extended further: the transforming system

can be an arbitrary dynamic system, and backpropagating through this system will have

very different effects, depending on the dynamics of the system. This provides an easy

way to introduce ePGs. The basic set up is shown in Fig4.12.

Both the ePG and the controller are recurrent networks. The main difference with

the previous experiment is that the ePG is a fixed system: its weights are not changing

during the learning task. The learning task for the controller is identical to that for the

networks in the previous task, except that it is separated from the outputs by the ePG.

The simplest way to connect the two nets is to have full connectivity between the

controller and the ePG, and vice versa. This means that every unit in the controller
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Coding of Task Targets

State of
CPG

FIGURE 4.12. Adding a CPG to the control scheme. The controller
is again a recurrent network, trained with recurrent backpropagation.
The CPG is a dynamic system placed between the outputs of the
controller, and the inputs to the plant. The CPG is implemented as
another recurrent network, so error derivatives may be backpropagated
through the CPG into the controller. At each time step, the controller
receives as input the current state of the CPG, and sends outputs to
every unit in the CPG. In effect, this is one large recurrent network,
in which some of the weights are fixed

will have modifiable connections with every unit in the CPG, and vice versa. In this

case, there is effectively one large recurrent net, in which a subset of the weights are held

fixed. Otherwise, the learning will proceed as normal, so no changes are made to the

backpropagation procedure.

It is also quite easy to implement other connection schemes, and other types of con-

troller. For example, the system labelled the controller does not have to be of the same

type as the CPGj it could simply be a feed forward net. This is just because the back-

propagation procedure calculates the derivative of the error with respect to the activation

of all the units in the CPG, including the inputs, without making any assumptions about

the source of those inputs. The error derivative with respect to the inputs is used to

give training information for controller, regardless of the form the controller takes. How-

ever, recurrent backpropagation is still required in such a setup, despite the fact that the

controller is a static, rather than a dynamic system. This is because the controller is in

a feedback loop with a dynamic system, so future inputs are a function of the current

controller outputs, and this dynamic interaction has to be taken account of.
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Once these error derivatives have been calculated, it is straightforward to get the

derivatives for the controller itself. For some problems, the weights from the ePG back

to the controller may be unnecessary, and in other cases, it may make sense to have the

controller just set the initial conditions for the ePG, and let the Cf'G's dynamics generate

the rest of the behaviour. Which scheme is appropriate really depends on the task, and

on how much of the behaviour is going to be centralised in the ePG, and how much is left

to the controller. In extreme cases, almost all the behaviour comes from the ePG, and

the role of the controller is reduced to acting in similar way to the 'command neurons'

discussed in 2.2. All these cases fit quite easily into a backpropagation framework.

4.7 Using CPGs from simpler task

The main problem is designing the ePG, as it is not immediately obvious what character-

istics would be desirable. One possible method for building ePGs is 'shaping'; this refers

to decomposing a difficult task into subproblems, and combining the individual solutions

to give a solution to the original task. There are generally two main approaches to using

shaping. The first approach, which could be called incremental learning, corresponds to

learning a series of tasks, beginning with a simple problem, and increasing in complexity,

until the final task is the original problem. This usually requires monitoring the perfor-

mance of the controller, so that simpler tasks are learned to a sufficient degree before more

complex versions are introduced.

The other main approach could be called structural shaping. This involves decom-

posing the control task into a set of simpler problems, and training low-level controllers

on those individual subproblems (e.g. navigation could be described in terms of simpler

behaviours, such as turn left, turn right). These elemental behaviours are then available

to a high-level controller as primitives for more complex problems. This is very much in

the spirit of the use of ePGs in pattern generation and control, as the presence of the

ePG means that simple outputs from the controller may produce complex behaviours.

One reason why structural shaping may be more effective than incremental learning for

recurrent nets lies in the fact that the weights of the low-level controllers are kept fixed
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as the higher level controller is adapted. This makes it harder for the combined system

to unlearn the elemental behaviours as the more complex task is learned. These issues of

unlearning are particularly important in training recurrent nets, where learning consists of

setting the attractors of a multidimensional system, and unlearning can force the system

to go through bifurcations to re-learn the task.

4.7.1 Learning the Variable Oscillation Tasks with CPGs

The approach taken here is to train a small network (6 units) on a simple fixed oscillation

task, and use the optimised net as a CPG for the more complex task. The controller ( a

3 unit network) and CPG for the complex task are arranged as in Fig4.12; the outputs of

the controller are fully connected to the units of the CPG, and vice versa. The combined

system has the same number of units and weights as the networks in section 4.5; the only

difference is that some of the weights are held constant. The path back from the CPG

to the controller is not strictly necessary; however, if the controller outputs need to be

oscillatory, then it does not make sense for the controller to learn oscillations from scratch,

when these can be given as inputs from the CPG.

The performance of the controller depends on how well the CPG has learned the fixed

oscillation task. However, it is also likely to depend on the way in which the simple task

has been solved. This is because different CPGs are likely to have learned different hidden

unit representations, which implies that they will respond to external inputs in a different

way. In some cases, this will help the learning of the controller; in other cases, it will make

it more difficult to learn the required variations. Consequently, each controller trained on

the full problem used a 'fresh' CPG trained on the reduced problem; this was an attempt

to average out the effect of different hidden unit representations.

The tasks used are exactly the same as the variable frequency (Task1) and variable

phase (Task2) problems from the previous section. For all these cases, the CPG was built

by training a network on a simpler version of the task: y = 0.5 + 0.45sin( 1.5 wt) for one

output, and y = 0.5 + 0.45cos(I + 1.5 wt) for the other. This pattern is the 'mean'

of both the variable frequency and the variable phase patterns. The weights of the CPG

were then frozen. The remaining weights and time constants for the controller network
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were chosen from the same distributions as before (N(O,l) and N(l.O,O.l) respectively),

and the learning rates for the weights and time constants set to 0.2 and 0.1 respectively.

The combined net was trained on the same patterns as before. In the frequency case

this is y = 0.5 + 0.45sin( (1 + I) wt) for one unit and y = 0.5 + 0.45cos( (1 + I) wt) for

the other. For the phase condition, the patterns are y = 0.5 + 0.45sin(wt) for one unit

and y = 0.5 + 0.45sin(1I'l + wt) for the other. 20 networks were trained on the variable

frequency task, and 20 on the phase task.

4.7.2 Results

The learning curves for the frequency condition are shown in Fig4.13; those for the phase

condition are in Fig4.14. The results show a dramatic improvement in learning compared

to training a single net (4.5.1); the learning is seen to proceed much faster, with conver-

gence occurring in 1500 epochs. This is one effect that was to be expected, and it was

also expected that the stability of learning would improve. Stability of high-dimensional

systems is hard to measure, but a rough idea of stability improvement can be gained

by using different learning rates. This experiment initially used a fixed learning rate of

0.2; however, the learning rate may be increased to around 0.7, with convergence still ob-

tained. Using such a high learning rate for the single net architecture used above generally

prevented learning.

STATISTICAL ANALYSIS:

To compare learning curves, the curves have to be parameterised in some way. The

problem with the learning curves presented here is that there is no obvious function that

describes their shape (as would be the case in some learning situations, where learning

curves are well-described by exponential decay). There are two obvious ways of giving each

curve a measure - the final error, averaged over some number of trials, or the time taken

to reach an error threshold. In this case, the learning curves all asymptote to roughly the

same value, so the final error is not particularly informative. Instead, the performance was

measured by the time taken to reach an error threshold, in this case 5.0. As the learning

curves are quite noisy, they were first smoothed over 300 epochs.

To compare the ePG method with training a single net, the cost of training the
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FIGURE 4.13. Learning curves for 20 controllers on the variable fre-
quency condition, with a ePG from 'shaping'. Note the values on the
x-axis; learning converges within 2000 epochs
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FIGURE 4.14. Learning curves for 20 controllers on the variable ph ase
condition, with a. ePG from 'shaping'. As with the frequency condi-
tion, learning is now convergent within 2000 epochs
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CPG has to be taken into account. This was done by using the same 'time-convergence'

measure. Each run in the transfer experiments required the training of a new ePG net,

so the time to convergence for that ePG was added to that on the variable oscillation

task. In the frequency condition, the ePG method was significantly better: average time

to convergence of 4328 epochs compared with an average of 6265 for a single network. (t

test: t = 4.761;p < O.OOOl;df = 19). The ePG system for variable phase showed a less

significant improvement: the ePG method took an average of 4283 epochs to convergence;

a single network took an average of 4440. (t test: t = 0.253; p > 0.25; df = 19).

4.8 Using a Genetic Algorithm to build the CPGs

Although it seems obvious to use shaping to build the ePGs, this may not provide systems

that have the most benefit on learning. To examine this, a Genetic Algorithm (GA) was

used to construct ePGs. The ePGs were used in exactly the same way as in the transfer

tasks; the ePG was placed in series with the controller, and the controller and ePG were

fully connected with each other. There were two GA experiments, one for the variable

frequency, and one for the phase. Each experiment consisted of 5 separate GA runs.

The GA built an initial population of binary strings, which coded for a 6-unit recurrent

net. Each member of the population was evaluated, and a new population produced by

selecting individuals on the basis of their evaluation, and using the genetic operators of

mutation and crossover to build a new generation. The weights and time constants were

gray-encoded, with 10 bits allocated to each parameter, and the ranges for the parameters

were fairly large - [-16, 16] for the weights, and [0.5,5.5] for the time constants. There is

a tradeoff involved in selecting the range of these parameters, as recurrent backpropaga-

tion tends to work best with small initial weights, but the weights at the solution of an

oscillatory task are often quite large. A 6-unit network has 42 parameters (the weights

plus the time constants), so the string contained 420 bits. Each population consisted of

100 networks.

The evaluation consisted of the following operations. The string wa.s de-coded to

produce a ePG net. This was then connected to a controller, in exactly the same way as

the shaping experiments above. The controllers weights, as well as the interconnections
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between controller and CPG, were randomised from the same distribution as above. The

combined system was then trained for 800 epochs on the same variable oscillation tasks as

before. The MSE on the task, averaged over the final 50 epochs, was taken to be the cost

evaluation for the CPG (this is a cost function; the GA performs hill-descending rather

than hill-climbing). The evaluation function reflects the end of a learning process rather

than the whole learning curve; this was to avoid punishing CPGs where the controllers

initial weights are poor. 800 epochs is not a very long time to learn the task, but longer

learning trials would have made the experiment prohibitively slow. It was hoped that this

would be long enough to separate the better CPGs from the others.

The learning rates were all set to be rather high (0.7 for all the weights; 0.2 for

the time constants). The reasoning here is to bias the GA into finding structures that

produce stable learning, rather than those that only work with small learning rates. The

evaluation function for anyone CPG will be rather noisy, as it is dependent on the initial

weights of the controller. However, GAs have been shown to be effective at optimising

noisy, nonlinear functions, so the performance is expected to be reasonable. Also, this is

a rather small GA for the string length, in the sense that a larger population and more

generations would be better. However, the fact that there is learning within the evaluation

cycle should help matters; it has been shown that such learning within the evaluation can

greatly improve the performance of GAs (Hinton and Nowlan, 1987)

More seriously, as the string codes directly for the values of the weights, a genetic

algorithm would be expected to have problems in using crossover effectively. This is

because crossover is only an effective operator when the closeness of parameters on the

string is related to their degree of coupling, with nearby string elements coding for highly

coupled parameters. In the present case, the problem is that the 'goodness' of the value

of a particular weight is dependent on the values of the other weights, so the degree of

coupling does not fall off with separation on the genetic string. There are other problems

too, such as the fact that all the units in a net can be re-labelled, and the behaviour of

the net will be unchanged, but the genetic representation will be radically different. This

is called the 'permutation problem'. Despite all the theoretical problems, crossover has

been found to be an effective operator in these problems (Beer and Gallagher, 1992), and
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FIGURE 4.15. Mean evaluation of the whole population on the vari-
able frequency task. Plot shows 5 curves, one for each of the separate
GA runs

a reasonable crossover rate of 0.6 per string was used in these experiments.

4.8.1 Results

Figure 4.16 shows the average evaluation of the whole population on the variable fre-

quency task, for each of the five runs. Figure 4.15 shows the same performance measure

for the variable phase task. In both the variable frequency and the variable phase exper-

iments, the GA converged within 100 generations, suggesting that the reasoning about

population sizes was correct.

The goal of the GA is to build ePGs which are optimal, in the sense of helping the

learning for a randomly initialised controller. The ePGs are dynamic systems in their

own right, which may be investigated by observing their behaviour without any external

connections from the controller. The dynamics of the evolved ePGs are broadly divided

between oscillators, and damped oscillators. A damped oscillator is a system which is a

'near-oscillator'; it shows oscillations which decay over time, and the system eventually

converges to a fixed point. The dynamics of one such ePG are shown in figure 4.17.

The ePGs which are stable oscillators are evolved rather quickly - usually within 30-40

generations. Evolution of oscillators typically takes 100-200 generations for nets of this

size, so the presence of learning with the evaluation cycle is speeding evolution. This is an

example of the Baldwin effect (Baldwin, 1896); learning in the evaluation informs the GA
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FIGURE 4.16. Mean evaluation of the whole population on the va.ri-
able phase ta.sk. Plot shows 5 curves, aile for each of the separate GA
runs
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FIGURE 4.17. Output of one evolved ePG. This behaviour is gener-
ated by the ePG in isolation, i.e. all the connections between the erG
and the controller have been removed. The y-axis shows the activity
of each of the erGs units; the x-axis is time. The dynamics of the
erG are that of a da.mped oscillator; the activity spirals in to a fixed
point
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FIGURE 4.18. Learning curves for 20 controllers on the variable [re-
quency condition, using a ePG from the variable frequency GA. The
GA has found ePGs which perform better than those from shaping

about a region in weight space, rather than just the point that corresponds to theinitiaJ

weights.

The learning curves in figure 4.18 were obta.ined by selecting 20 random ePGs from

the variable frequency GA, and training a controller with those ePGs on the variable

frequency ta.sk. Figure 4.19 shows the same procedure for 20 ePGs from the variable

phase GA, trained on the variable phase task. The learning rates and distributions for

the initial weights were as in the transfer experiments.

Statistical Analysis

The same time-to-convergence measure was used to compare these erGs with those

from the transfer experiments. Unlike the transfer experiments, there is no easy way

to take into account the computational cost of building the Cf'Os with the GA, so this

comparison is purely concerned with the training time for the controllers, and not for the

effort required to build the C'PCs.

The ePGs from the GA were significantly better than those from the transfer ex-

periment in both cases. In the frequency condition, the ePGs from the GA took an

average of 440 epochs to converge; those from shaping took an average of 795. (t test:

t = 8.557; P < 0.0001; df = 19). In the phase condition, the evolved ePGs took an

average of 693 epochs; those from shaping took an average of 775 epochs. (t test:
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FIGURE 4.19. Learning curves for 20 controllers on the varia.ble fre-
quency condition, using a ePG from the variable phase CA. The CA
has found Cf'Gs which perform better than those from shaping

t = 2.461; P < 0.05; df = 19). The entire set of evolved Cf'Cs, for both the frequency

and the phase GA, was then divided into stable and unstable oscillators. A comparison

between these two types of dynamics was performed by selecting 20 stable oscillators (10

from the frequency GA, 10 from the phase), and 20 unstable oscillators. Each ePG was

evaluated on its corresponding task, and the difference between the two groups (unstable

vs. stable) measured. The results are that the unstable ePGs showed a significantly

better performance than the stable oscillators, when averaged over the two tasks. (mean

of 494.5 vs 591.8: t test: t = 2.214;]J < 0.05; df = 19).

One consequence of using such a high learning rate in the GA is that ePGs which give

stable learning are selected over others. This improved stability is demonstrated by train-

ing controllers on the same tasks, but using a longer time window. The variable frequency

and variable phase task were used as above, but the time window for the simulations was

increased from 3 s to 6 s.

Figure 4.20 shows learning curves for 20 controllers on the variable frequency task,

using a ePG from the GA, and using the increased time window. Figure 4.21 shows the

same for the phase task.

Increasing the time window has had a. detrimental effect on learning, with two con-

trollers in both tasks fa.iling to learn at all. However, the performance of controllers
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FIGURE 4.20. Learning curves for 20 controllers on the variable fre-
quency condition, using a ePG from the variable freq uency GA. Learn-
ing is performed on a longer time window of 6 sees, wh ich is seen to
cause learning performance to deteriorate.
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FIGURE 4.21. Learning curves for 20 controllers on the variable phase
condition, using a ePG from the variable phase GA. Lea.rIling is per-
formed on a longer time window of 6 sees. As with the frequency con-
dition, learning performance has deteriorated by using a larger time
window, but the performance of the learned controllers is improved
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FIGURE 4.22. Performance of a controller trained with a larger time
window. Target trajectory is the dotted line; actual output the solid
line. Plot shows low frequency output

Output -
Target ----.

0.8

2 4 6 8 10
Time - arbitrary units

12 14 16

0.6

0.4

0.2

FIGURE 4.23. Performance of a controller trained with a larger time
window. Target trajectory is the dotted line; actual output the solid
line. Plot shows medium frequency output

which successfully learned the tasks showed an improved fit to the targets. Figures 4.22 -

4.24 show output from one controller which was successful in learning the frequency task.

Figures 4.25 - 4.27 show the same for the phase task.
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FIGURE 4.24. Performance of a controller trained with a larger time
window. Target trajectory is the clotted line; actual output the solid
line. Plot shows high frequency output
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FIGURE 4.25. Performance of a controlJer trained with alarger time
winclow. Target trajectory is the clotted line; actual output the solid
line. Plot shows small relative phase output
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FIGURE 4.26. Performance of a controller trained with a. larger time
window. Target trajectory is the clotted line; actual output the solid
line. Plot shows a medium relative phase output
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FIGURE 4.27. Performance of a controller trained wit h a. larger time
window. Target trajectory is the dotted line; actual 01.1 tpu t the solid
line. Plot shows a large relative phase output

4.8.2 Discussion

It has already been mentioned that CPGs with unstable dynamics outperform those that

are stable oscillators. This fact is rather puzzling: part of the motivation for using stable

oscillators in the transfer tasks was to remove the likelihood of bifurcations in learning,

as bifurcations have been shown to inhibit learning. The optimal CPGs from the GA are

unstable systems, which means that learning must go through a bifurcation to produce

the target oscillations. This is simply because a system that moves from a point attractor

to limit cycle behaviour has to go through a Hopf bifurcation - this refers to an attracti ng

point changing into a repeller, surrounded by a limit cycle at tractor. Somehow, these

bifurcations must be such that they do not have a detrimental effect all learning - the

learning curves clearly show that there are no sharp jumps in error.

There are at least two possible reasons why damped oscillators are optimal for this

task. The simplest reason is that the GA is trying to optimise a complex function of

the CPGs' weights - the weights not only define the output behaviour of the CPG, they

also define what happens to error derivatives when they are backpropagatecl through the

CPG. It is conceivable that the CPGs are optimal in the sense that error derivatives, when

backpropagated through the CPG, are most informative for the training of the controller,

and that other CPGs would distort these derivatives too much.

The other possible reason has to do with the work of Kelso et al discussed in chapter

2; in that work, pattern generation was seen as stability of dynamics, but pattern change

as a loss of stability. As the higher controller has to alter the frequency or phase of the
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FIGURE 4.28. Using a feedforward net as the controller. As before,
the controller receives the entire CPG state as input at each time step,
and gives outputs to every unit in the CPG. The controller now has
no dynamics of its own; it merely implements a static mapping

CPGs, instability in the CPG's dynamics might make the controller's task easier than a

stably oscillating system.

4.9 Variations of the Basic Scheme

The connection scheme used above represents a particular decomposition of the prob-

lem - the CPG deals with so much of the problem, the rest is left to the controller. Other

decompositions are possible, which make different demands on the two components, and

can be easily dealt with within this framework. Consider the case of a simpler controller,

implemented as a feedforward net (figure 4.28). At each time step, the feedforward net

would take as input the current state of the CPG, together with a coding of the task (

say, the required frequency). The output of the controller goes to the CPG.

To see how this affects the calculation of error derivatives, consider the simplest case of

a feedforward net consisting of just one unit (Fig4.29). Unit imakes a weighted connection

to unit j; unit i is a part of the recurrent net, and has dynamics governed by the recurrent

equation, unit j is in the feedforward net, and outputs a static function of its input. The

output of unit j makes a weighted contribution to the input to recurrent unit k in just the

same way as all the other recurrent units - note that unit k makes no assumptions about

the dynamics of the units that contribute to its input. Unit j has no dynamics of its own;
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FIGURE 4.29. Connecting a feedforward unit to the CPG. Units i and
k are within the CPG (Le. they are both recurrent units). Unit j takes
as input the activation of unit i, and the output of j goes to unitk.
A form of recurrent backpropagation is used to learn the weights Wi]

and W)k

its value at each time step is merely a static function of unit i's: Xj(t) = O'(WijXj(t))

As far as unit i is concerned, the feedforward unit provides an additional way in which

its activity will influence unit Xk, which means that the equations for the error derivatives

have to be augmented:

Zi
1s= - ej - L Wli 0" (yJ) Z/· /
1 I I

- Tk Wij 0' (Yj) Wjk 0' (Yk) Zk (4.8)

The final term takes into account the pathway through the feedforward net. This term

can be decomposed, so that error derivatives are given for unit j itself; this is necessary

when unit j is replaced with a net with hidden units. The error derivative for unit j is

given by:

which means that equation 4.8 can be re-written as
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1
Ti Zj - e, - L Wli (1' (Yl) zi

I

- Wij (1'(Xj) Zj (4.9)

Given that we now have the error derivatives for all the unit's activations, the deriva-

tives for the weights are calculated in exactly the same way as before. The extension to a

feedforward net with hidden layers is straightforward. Finally, note that this situation is

identical to the use of a feedback controller with a nonlinear plant, where the controller is

implemented as a nonlinear, static function of its inputs. The only difference is that the

recurrent net is not a model of the plant; rather it is the system to be controlled.

4.9.1 Learning with a Static Controller

In this experiment, a simple feedforward net was used as the controller for the variable

frequency task. The ePG was the same ePG as that used in the transfer experiments

with the recurrent controllers; it is a recurrent network trained on a single oscillation. The

net's input at time t consisted of the entire state of the ePG, and the output went to all

the units in the ePG. One additional input was given, specifying the desired behaviour.

Logistic units with outputs in [0,1] were used, except in the output layer, in which a [-1,+1]

sigmoid was used. This was so that the output units could drive the ePG activity down

as well as up. Before each learning trial, the feedforward weights were randomised from a

normal distribution with mean 0.0 and s.d. of 1.0. A learning rate of 0.1 and momentum

of 0.9 was used throughout.

4.9.2 Results

The learning curves for 20 controllers are shown in Fig4.30. The performance on this

task is relatively poor, with some networks not converging at all, and the convergent ones

having a high residual error. Examination of the networks that failed altogether shows

that they were initialised with sufficiently high weights that their outputs destroyed the

oscillations of the ePG. In these cases, the learning seems to be unable to reduce the

magnitude of the weights in order to restore the oscillations.
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FIGURE 4.30. Learning curves for 20 Ieedforward nets on the vari-
able frequency task. The learning performance is relatively poor, with
many controllers failing to learn at all. Examination of controllers
which completely failed to learn reveals that they gave sufficiently
large outputs to destroy the oscillations of the ePG altogether, and
learning is unable to reduce the controllers ou tpu ts so as to restore the
oscillations

To examine the effects of disrupting the ePGss behaviour, a 'toy' problem was con-

sidered, in which the controller received just one input coding for the task, and produced

one output. For the ePG, we now used the combined ePG-controller system from the

previous experiment. This combined system is a network which has successfully learned

the variable frequency task. The ePG now has one input, which codes for the desired

frequency, and two outputs, which oscillate at the target frequency. As this is a system

which has learned the variable frequency task, setting the value of the one input unit

controls the frequency of oscillations at the outputs, so learning to control this system is

simply the problem of setting the value of the input. The weights of this variable frequency

system were frozen, and the entire system used as the ePG for the current experiment.

The controller for this experiment is very simple; there is one input correspond ing

to the desired frequency, and one output that goes directly to the ePG's input unit.

The task for the controller is extremely simple; it merely has to copy its input to its

output. The only complication is that the outputs are fed through the ePG, and the

error backpropagated through the ePG, which may distort their values. The controller

was initialised with weights from a Gaussian distribution with zero mean and unit s.d.
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Again, some of the networks failed to learn the task, despite the fact that the controller's

task in this toy problem is just to learn the identity function.

The reason for the failures can be seen if the training information for the controller is

examined. The error derivatives for the controller's output unit are given directly from

the ePG's input unit (remember that the z value for the controller output is identical at

each time step to that for the ePG's input unit, save for a constant scaling factor given by

the recurrent unit's time constant). We may reconstruct a target value for the controller's

output unit (as the error derivative g~ = x - z"; so z" = g~ - x). Figure 4.31

shows the targets for a controller which failed to learn the task. There are three plots

here, corresponding to a low, medium and high frequency target. The 'actual' targets -

the values which cause the ePG to produce the correct oscillation - are shown as dotted

lines at three constant values. The target values are not expected to lie precisely on their

correct values, as they are the result of a integrating a complex set of differential equations.

Nevertheless, the targets have to be informative, in the sense of causing learning to proceed

in the correct direction.

As can be seen, the targets are not only distant from their optimal values; they are

also going to lead learning in the wrong direction. Even the ordering among the three

conditions has been reversed. Recall that these targets are the result of solving a set of

differential equations backwards in time, starting at the end of the time window. It seems

as though the early values, around t = 20 are quite reasonable (they roughly preserve

the ordering between the conditions), but they become more and more distorted with

time, and are completely uninformative for about half of the time window. The cause of

this behaviour is that the output of the controller with randomly initialised weights was

sufficiently large to destroy the oscillations. In this situation, the error derivatives are

no longer informative, and the oscillations cannot be recovered, despite the fact that this

only requires the controller output to be made smaller.

By contrast, consider the reconstructed target values when the controller is initialised

with smaller weights (Fig4.32). These controllers gave small inputs to the ePG, and so

the oscillatory activity of the ePG was left intact. The target values are roughly aligned

with the 'correct' input value - the input value that produces the correct oscillations.
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FIGURE 4.31. Reconstructed target values for a controller which
failed to learn the variable frequency task. The y-axis shows the val-
ues of the targets; the x-axis is time. The target values are given by
the error derivatives, which are in turn given by the solution of a set
of differential equations, backwards in time. There are three plots,
corresponding to three different patterns - low frequency, medium
frequency and high frequency. At around t= 20 the targets are
seen to be informative - the target for the high frequency pattern is
the highest, followed by that for the medium frequency, and then
the target for the low frequency pattern. These targets are informa-
tive because the ordering among the patterns is correct. However, the
targets become more and more distorted as they evolve in time, and
the final values are completely uninformative
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FIGURE 4.32. Reconstructed target va.lues controller initialised with
small weights. The targets values are seen to remain rough ly aligned
with their correct values - the values which produce the correct o utput
from the ePG
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The conclusion to be drawn here is that the error derivatives given by recurrent back-

propagation are only likely to be informative if the behaviour of the net is close to the

target behaviour. This is not unreasonable, given that backpropagation essentially con-

siders the first term in an expansion of the system's equations. If the higher terms are

significant, then learning may not proceed in the desired direction.

This highlights one particular difficulty of using backpropagation to estimate deriva-

tives with complex recurrent nets: backpropagation is not an effective approach to credit

assignment when the dynamics of the system are far away from the target dynamics. This

has two implications. Firstly, if this type of supervised learning is to be used with CPGs,

the dynamics of the CPGs may have to be constrained in some way to ensure that error

derivatives, as they are backpropagated through the CPG, still point in the correct direc-

tion. This seems like a hard task, although we would expect weakly coupled systems to

perform better than those that are strongly coupled. CPGs in which the activity is more

localised, such as the motor maps seen in cortex, would be expected to perform better

than the systems of coupled oscillators seen in spinal circuits. Note that even in the case

of oscillatory spinal circuits, it is still not clear whether there are sets of essentially inde-

pendent oscillatory systems, or whether the whole system is strongly coupled; this could

make a large difference to the learning of complex motor acts that recruit these circuits.

Secondly, as this learning situation is identical in structure to learning with a distal

teacher, we might expect distal learning to perform poorly when the plant (and so the

plant model) shows very complex behaviour, even if the plant model is perfectly accurate.

Finally, learning control in the presence of complex dynamic systems might sometimes

be better approached with direct methods, which do not rely on gradient information.

A good example of this would be the systems of coupled oscillators that are found in

invertebrate motor circuits. We would not expect gradient descent methods to work well

with such multistable systems, and yet there are often simple relations between external

inputs and, say, frequency of oscillation. This is investigated in chapter 6.

Bearing this in mind, a feedforward net was used as a controller for a the original

variable frequency task. The initial weights were initialised from a distribution with a

smaller s.d of 0.2, and the learning is now seen to converge reliably to a good solution.
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FIG URE 4.33. Learning curves for 20 Ieedforward networks on the
variable frequency task. The initial weights of the controller were
drawn from a distribution with s.d 0.2; these initial values were suffi-
ciently small to leave the ePG oscillations intact

4.10 Using Biological Pattern Generators

One of the advantages of using CPGs instead of say, incremental learning, is that the CPG

may be built with a variety of methods, not necessarily the current learning task. This

includes any knowledge we may have about the structure of biological control systems;

CPGs provide a way of including that structure in a control scheme. A good example of

this arises in the control of legged robots - controllers for such systems have been widely

based on pattern generating systems in animals. Such artificial CPGs might be the result

of modelling of fictive locomotion in a specific animal; alternati vely, it migh t represent

quite general knowledge about the dynamics of biological systems. In any case, the CPG

is treated as a functional unit that may be added to a control scheme.

There is widespread support for the idea that the gaits, and gait transitions seen

m quadrupeds are produced by a set of coupled oscillators (SchoneI' and Kelso, 1988b;

Yuasa and Ito, 1990; Collins and Richmond, 1994). There is much work yet to be clone

in understanding these systems: for example, it is still not known whether the couplings

between oscillators change in switching between gaits, or whether the gait changes arise

just from the network dynamics. Nevertheless, the broad structure is well-accepted. Such

a system might be used as part of a controller, say for a legged robot. So far ill this
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chapter, distal learning has been used to account for the effects of a CPG, without making

any assumptions about the dynamics of the CPG. This is attractive, as it provides an

integrated way to implement a wide variety of motor programs. A CPG that consists of

coupled oscillators has very complex dynamics of its own, and the role of descending signals

from a controller is reduced, often to a simple scalar. However, using backpropagation to

account for the dynamics of such a complex system can cause problems, and the problem

of controlling coupled oscillators is left until chapter 6.

4.11 Discussion

The goal of this chapter was to investigate the use of recurrent networks for pattern

generation tasks. A set of simple oscillatory tasks was used as a testbed, where the

target outputs were defined by the frequency or relative phases of two sinusoids. All

the networks studied were trained with supervised learning, using a variant of recurrent

backpropagation.

In section 4.4, networks were trained to produce a single oscillation. Learning of

oscillatory behaviour shows some degree of instability, and it was shown that the use of

the Delta-Bar-Delta rule improves learning, by adaptively setting learning rates for each

weight and time constant in the network.

Section 4.5 considered the training of networks on two separate tasks: producing vari-

able frequency, or variable phase oscillations. The networks used were slightly larger (9

units), and the training times rather longer. Section 4.6 introduced the idea of a Central

Pattern Generator in training recurrent networks, which corresponds to imposing a hier-

archical structure on the learning system. In section 4.7, a structural shaping approach

was used, in which CPGs were built by training smaller networks on simpler versions of

the pattern generation task. It was shown that the subsequent training of the rest of

the system was greatly improved, and that the stability of the learning process had been

increased.

Section 4.8 took a different approach, and used a Genetic Algorithm to build ePGs.

It was shown that the GA is able to find CPGs which outperform those from the shaping

experiments, and that the optimal CPGs tend to show unstable dynamics. Finally, section
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4.9 considered the use of different types of network for the controller and the CPG, and it

was shown that it is straightforward to train feedforward nets as controllers, with the CPG

still implemented as a recurrent network. It was also shown that there are potential prob-

lems in backpropagating through CPGs with complex dynamics, in that error derivatives

may become uninformative when the behaviour is far away from the target trajectory.

The optimal CPGs from the GA experiments showed unstable dynamics, implying

that learning variable oscillations still required the combined controller-CPG system to

go through a bifurcation. The fact that these bifurcations do not disrupt learning is

surprising, and deserves further attention. A more detailed study of the changing system

dynamics as learning occurs would seem to be an obvious direction for further research.

The controllers used in section 4.9 were implemented as static mappings, which is a

very straightforward variation of the recurrent backpropagation procedure. However, this

does show how it is possible to build systems in which there is a variable division of labour

between the fixed components and the learning controller.

The idea of using CPGs in training networks was inspired by the hierarchical designs

seen in biological control systems. The main conclusions from this chapter are that such

hierarchies may be seen as a kind of task decomposition, and that the presence of a CPG

with the appropriate dynamics can greatly ease the task of a higher level controller. This

kind of modular architecture is most obviously related to another approach in learning

control: distal learning (Jordan and Rumelhart, 1992; Jordan, 1988). In distal learning,

the plant model is a fixed (or slowly changing) component in the control system. The

role of the plant model is to transform error derivatives into the space of the controllers

output, but the model does not change the way in which the control actions affect the

plant. Distal learning may be seen as a way of accounting for the presence of the plant,

as long as the model is a sufficiently accurate approximation to the plant. Jordan (1988)

also shows how distal learning may be used to solve ill-posed control tasks, by finding the

control inputs which maximise satisfy some constraint function.

This chapter has taken a different approach, and considered distal learning to be a tool

for accounting for the presence of other components in the control system, in particular,

components which are added in order to solve part of the control task. This provides a.
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natural way to impose structure on a controller, breaking it up into subparts, and providing

each subpart with meaningful training information.

This is also related to incremental methods in training recurrent networks (Giles et al.,

1992; Elman, 1993), where networks are also trained on a series of tasks, increasing in

complexity. The main difference with that work is that the ePGs used here are fixed

during later learning. The effect of having a fixed ePG rather than a single network

is hard to assess, as it would be difficult to ensure that both methods had the same

number of variable parameters. However, the ePG method does allow the experimenter

to represent different types of prior knowledge - for example, it could represent a model

of an invertebrate motor circuit.

In the next chapter, these ideas will be investigated in a control setting, involving the

use of a simulated robotic arm.
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Recurrent neural networks offer a powerful way of constructing complex controllers for

motor control and robotics tasks. This chapter considers the use of recurrent backprop-

agation for training controllers for a series of motor control tasks, involving the use of a

simulated redundant robot arm.

Firstly, the use of motor programs in robotics problems is discussed, and recurrent

networks are introduced as a very general method for implementing motor programs.

Section 5.4 introduces a set of simple motor control experiments, involving the robot arm

making a series of reaching movements. CPGs are added to the control scheme; the CPGs

are built by incremental learning, and from a Genetic Algorithm. The presence of the

CPGs is shown to improve learning.

In section 5.9, a robot with two arms is introduced, and it is shown that modular

control architectures give a way of de-coupling parts of the control problem. Finally,

section 5.12 considers the use of a feedback controller for a robot arm with dynamics.

5.1 Introduction

This chapter is concerned with the use of recurrent neural networks for robot control and

skill learning tasks. There are several reasons why neural networks may be attractive

for these types of problems. Neural networks are powerful learning systems, capable of

approximating arbitrary functions, and so capable of implementing arbitrary dynamic

systems. In contrast to linear control, nonlinear control is really still in its infancy, and

much of the rigorous framework of linear systems theory has to be abandoned in the

full nonlinear case. It seems likely that neural networks will find widespread use in the
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developing field of nonlinear control. The main attractive features of neural networks are

their ability to generalise from sparse data, and to capture complex relations between

variables. In the case of recurrent nets, they offer a powerful way of synthesising complex

control systems. Recurrent nets have been investigated as a way of implementing complex

controllers by a number of researchers (Meeden, 1984; Kumaresan and Sharkey, 1993).

Another, quite different source of interest in neural networks lies in their apparent

relation to biological neural systems. In robotics, as in vision, biological systems are

always of interest because they constitute the only existence proof that the really hard

problems can be solved at all. This interaction works in both directions - researchers in

biological motor control have much to learn from robotics, and it seems likely that many

of the concepts in robotics will find a place in a computational theory of motor control

tasks. Neural networks offer a way of tightening the parallels between these two fields,

sometimes at the level of modelling the fine detail of motor circuits, and sometimes by

implementing more abstract models.

This chapter will be concerned with the use of motor programs - a concept that has

found use both in robotics and the experimental literature. As in the previous chapter,

these motor programs are implemented as recurrent nets, with the machinery of distal

learning used to perform credit assignment. This approach gives the experimenter a great

deal of freedom in the design of the control system, as the motor programs are complex

dynamic systems in their own right, and have the potential to solve difficult subparts of

the control problem. Different motor programs may serve different purposes, and this

chapter considers the use of motor programs to represent three different subparts of a

control task - pattern generation, redundancy reduction, and feedback control.

These ideas are developed in the context of controlling a simulated robotic arm. All

of the architectures considered here require the use of a plant model, so this is essentially

supervised learning. In the following chapter, the ideas will be developed in a direct

control setting, using both reinforcement and supervised learning methods.
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5.2 Robotic Control

As an archetypal robotics task, consider the pick and place problem. This usually involves

a robot arm, and an object, and the goal is to cause the arm to reach towards the object,

and pick it up. A huge amount of research effort has been spent on this problem, mostly

due to its ubiquity in industrial applications. A significant part of this problem is the

reaching task - to take some coding of the target position for the robot, and its initial

position, and generate a series of control actions to move the arm to the target. The task

is usually ill-defined, as the target information only applies to the endpoint of the arm

(the gripper), and there are usually nonlinearities that arise from the couplings between

the dynamics of the individual links, and fictitious torques arising from the rotating co-

ordinate systems. These factors make it difficult to design a controller using traditional

methods from linear systems theory.

The other main source of difficulty is planning a path from the initial to the goal state.

This is usually dealt with by a separate path planning module, which uses geometric

reasoning about the kinematics of the plant, and the configuration of any objects, to

generate a path that is optimal is some sense (robots often have to work in quite cramped

conditions, and it is usually desirable to minimise energy expenditure and wear on the

robot). The demands of the task often underspecify the trajectory, so it is common to

use regularisers, or some other method for introducing constraints. These constraints may

have a utility of their own, such as trying to minimise energy spent, or they may be rather

arbitrary, and just serve to reduce the effective number of degrees of freedom. It is common

for robots to have excess degrees offreedom (e.g. to have 4 joints, when the endpoint is a

point in 3 dimensional space); such systems are called redundant robots. The difficulty of

path planning is dependent on two conflicting effects. On the one hand, the complexity of

path planning scales very badly with the number of degrees of freedom in the plant, as well

as the number of objects. This is simply because a search process is necessarily involved,

and would lead us to favour plants that have a low level of redundancy. On the other

hand, many difficult path planning problems, such as reaching in cluttered environments,

are often made trivial by allowing the robot to move in more ways. These considerations

might lead us to suggest the use of more flexible ways of reducing the degrees of freedom.



5 Learning Control with Motor Programs 95

Again, this is the kind of behaviour that is seen in biological systems: animals are able to

make flexible and intelligent use of their many degrees of freedom.

Having found a path to the goal, the problem remains of actually finding the controls

to follow the path. The most common approach is to use a plant model, which, when

sufficiently accurate will map the relation between controls and states. This model will

have a component to deal with the kinematics of the robot (the mapping from joint angles

to positions), and a component for the dynamics. A forward model maps from controls to

states; an inverse model maps (desired) states onto the controls that achieve those states.

In either case, the plant model is used to find the time series of controls that achieve the

desired reaching to the goal.

The combination of these processes makes the whole procedure rather computationally

demanding, even in simple cases. Implicit in this scheme is a kind of task decomposition, in

which the problem of control (in the sense of driving a system to a set point ) is considered

as separate to the problem of planning. However, some recent work on the use of motor

programs has questioned whether this is the best way to divide up the control task.

5.2.1 Motor Programs in Robotics and Motor Control

The concept of a motor program has changed radically since its inception in the 1950's.

Originally conceived as something resembling a computer program, motor programs have

taken on board much of the terminology and concepts of cognitive science over the years,

and so reflect the changes that have occurred in the field. These changes have prompted

an intense debate over the nature of representations involved, with some researchers tak-

ing the extreme position that the whole idea of a motor program is now so contentious

that the concept should be abandoned (Alexander et al., 1992, and peer commentary).

Nevertheless, there is a general consensus of opinion that motor programs, in one form or

another, will find a place in a complete account of motor behaviour.

In robotics, the concept of a motor program is increasingly receiving attention. This

is partly because motor programs seem to be such an important part of biological motor

systems, and biological systems show exactly the sort of flexibility and intelligence that

is desired in modern robots. A lot of recent research in robotics borrows heavily from
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our understanding of biological motor systems, from the use of actuators that behave in

a similar way to muscles, to the use of behaviour-based strategies.

Also, the use of motor programs corresponds to a type of task decomposition, and

is related to incremental methods for training a controller. Such methods are likely to

become essential as robotics tasks increase in complexity. Finally, the introduction of

motor programs often means that the complexity of the adaptive part of the control

system may be reduced - for example, a linear controller may produce quite complex

trajectories if the motor programs show complex dynamics.

The work of Lipitkas etal (Lipitkas et al., 1992; Lipitkas et al., 1993; Bock et al., 1993;

Bock et al., 1996) is concerned with the representation of motor programs for reaching

movements with a real robot. In that work, the motor programs are represented as a

waveform generator that produces a prototypical time function for the torques supplied to

the joints. These time functions are modelled as a combination of sine waves of length 211',

Le. consisting of one positive lobe and one negative lobe. This function has six parameters

that smoothly change its shape. The controller takes as input the specification of the

task ( the initial configuration in joint space, and the target in Cartesian space), and

supplies as output the parameters to the torque generators. The controller implements

a static mapping from task specification to torque parameters, once for every reaching

movement. The torque generator takes the controller's output and generates the entire

reaching movement in an open-loop fashion. The attraction of this method is that a

dynamic problem has been converted into a static one, which greatly simplifies the role

of the controller. The price (and attraction) of using such a simple system is that the

control system is restricted to producing a small set of possible behaviours, and it is not

clear how to extend this to more complex tasks - for example, there is no way to include

feedback in this scheme.

The waveform generators themselves have to be built, and this process is rather com-

plicated, involving the use of an operator to generate smooth reaching movements, and

an inverse dynamics model to approximate the real torque profiles. These torque profiles

are then approximated by sine waves, so that they correspond to the output of the torque

generator. Feeding this time series into the arm, and observing the final position, gives
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a way to build a training set for the controller. This is now a version of direct inverse

learning.

Although building the motor programs is rather involved, the advantage of this system

is that the optimisation of the controller is very simple, both in the sense that this is a

static learning problem, and also in the sense that the credit assignment problem for the

controller is of a simple form. This is because the relation between the controller outputs

and the final endpoint position is a simple, smooth mapping. Other unpublished work by

the same authors has shown that reinforcement learning is also effective at training the

controller.

The studies of Berthier eta] (Berthier et al., 1992; Berthier et al., 1993; Houk et al.,

1990) are also concerned with the generation of reaching movements, but the control sys-

tems studied are more inspired by known physiology than considerations from adaptive

control. In that model, reaching movements are produced by the activity across a set of

Pattern Generators, corresponding to known circuits in cerebellar cortex. All the pattern

generators contribute to the movement to some degree, so the motor program is distributed

across a set of pattern generating circuits. The main result of this work is to show how

gradient-descent type learning may be implemented with some rather simple ideas about

known connectivity. The motor programs are essentially feedforward, although proprio-

ceptive feedback is used to decide when to extinguish the movement, and is also used in

later learning.

Motor programs of a similar type were also used in (Lane et al., 1993). At the lowest

level, control was achieved by a set of servoreflexes, which were also used to train an

inverse dynamics model with Feedback-Error Learning (Kawato et al., 1987, see section

1.4.2). Given a set of these reflexes, movement is achieved by the distribution of activity

over the reflexes. At first, the movement is produced by selecting a weighted sum of

the reflexes, where the weights are constant throughout each movement. Reinforcement

learning is used to train ePG networks that modulate the values of the weights throughout

the course of the movement, so as to minimise various cost functions. The key point is

that the presence of the inverse dynamics model transforms the reinforcement problem

from a nonlinear to a linear optimisation problem.
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One approach to modelling fast movements is that of (Gorinevsky, 1993), in which

the control system consists of a feedforward controller, muscles and reflex loops. The

muscles were an approximation to the dynamics of biological muscles, and there were

physiologically plausible delays on the feedback signals, and so the feedback control that

arises from the reflexes was too slow to generate movements of the required speed. The

feedforward controller is a general function generator, trained by some simple ideas from

multivariate approximation theory. The appeal of this scheme is that the controller does

not need a plant model to learn the task: it is optimised directly from the observed result

of the current movement. The feedforward controller is restricted to producing piecewise

constant outputs, and this restriction make the use of search techniques a viable method.

The work of Brooks et al (Brooks, 1991) on subsumption architectures takes a slightly

different approach. Subsumption is a behaviour-based approach to control. The basic idea

is to build individual modules to handle each of the elemental behaviours in a task; the

role of the control system is to co-ordinate the activity of the modules. For example, a

navigation task could be broken down into simple movement behaviours - walk forward,

turn left, turn right. In (Brooks, 1991), these ideas were used to control the locomotion of

an artificial insect. The elemental behavioural modules were implemented as finite state

machines, with co-ordination achieved by careful control of the timing relations between

the modules. Although this is not very biologically plausible, this control system was

able to generate tripod and metachronal gaits, depending on the speed of locomotion.

The tripod is a very common gait produced by biological hexapods when walking at low

speed; the metachronal gait is generally produced at higher speeds. The attraction of such

an incremental approach is that more complex behaviours may be built up from simpler

behaviours; the motor programs act like debugged systems that can be relied on to perform

a simple task. Unfortunately, Brooks has taken a somewhat idiosyncratic approach, which

bears little relation to other work in the field, and these ideas have not been tested in more

complex problems. These factors make the work rather hard to assess.

However, a key contribution of Brooks' work is that subsumption architectures give a

natural way to think about the hierarchical structures used in biological systems. The idea

of a system of behaviour-based modules is practically a definition of a pattern generator,
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and all the studies mentioned above may be thought of as subsumptive architectures.

5.2.2 Representing Motor Programs as Recurrent Nets

In this chapter, motor programs are represented as fully recurrent neural networks. There

were several reasons behind this decision. Firstly, as recurrent nets are very general

dynamic systems, this gives a powerful way of constructing motor systems that vary

widely in their behaviours. Another way of saying this is that very little designer bias has

been introduced - so far. A second reason has to do with the work of Kelso et al, where

motor systems are seen as specifying the entire dynamic environment of the behaviour,

rather than just the stable patterns. As dynamic systems, recurrent nets also give a way

of specifying the whole dynamic environment. This means that the way that the system

loses stability, and changes patterns, is defined by the motor system, and so is potentially

under the control of any learning processes used. This leads into the next point, which is

that the motor programs considered here are learned, rather than hand-designed.

Finally, this design choice allows the use of similar learning methods throughout the

control system, and so this shows how motor programs can be implemented using just

the backpropagation procedure. A similar approach was taken in (Jordan, 1988), where it

was shown that indirect control may be implemented using nothing more than the existing

machinery of back propagation.

TYPES OF MOTOR PROGRAMS

It is useful to consider individual behaviours as being either temporally discrete or

continuous. Continuous behaviours are those that correspond to action that is ongoing;

a good example would be locomotion. Discrete behaviours are those that have a. definite

beginning and end; a good example would be reaching towards a target. Motor systems

that produce these behaviours would be very different from each other. A motor program

for locomotion would almost always be some kind of oscillator, with the control task framed

as specifying the frequency, amplitude and relative timing of the individual oscillations.

Motor programs for reaching movements will almost always be fixpoint systems, in the

sense that the system will always converge to a stable state under fixed inputs. In this

case, the control ta.sk is seen as specifying the location and stability of the fixed points,
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Plant Model I
State ofCPG

FIGURE 5.1. The full control connection scheme. This is basically the
same as the implementation of CPGs from the previous chapter. The
only difference is the presence of the plant, and plant model. Targets
are now defined at the outputs of the plant, and the plant model is
used to transform error derivatives back into the space of the CPOs
outputs

and the transient behaviour of the system as it converges to stability.

POSSIBLE CONNECTION SCHEMES

This chapter will take a similar approach to chapter 4, and use a two-stage control

system consisting of a motor program, and a higher controller (or equivalently, a CPG

and a higher controller). Given this hierarchical design, there is some freedom in the way

the components may be connected.

In the simplest case, both the motor program and the higher controller are fully re-

current nets, and there is full connectivity between the two. In effect, there is one single

recurrent net, where some of the units are labelled as being in the motor program, and

the others as being part of the controller. This is shown in Fig 5.1; we could call this the

full-control case.

One obvious alternative is to use a simpler system to implement the controller, say a

feedforward net; the backpropagation procedure for this case was discussed in section 4.9.

In this case, the controller is still in a feedback loop with the motor program, so a form

of recurrent backpropagation is required. A further simplification would be to remove

the feedback connections from the motor program to the controller, so the output of the

controller is given just by the task specification, and so remains constant throughout each
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individual behaviour. The controller output could then be continuously presented to the

motor program throughout the behaviour, in which case they act as a constant external

force on the dynamics, or they may be briefly applied, in which case they are similar to

setting the initial conditions for the motor program. An extreme case would be to have

the controller output a non-specific signal that simply turned the motor program on; in

that case, the whole behaviour is represented in the motor program, and the role of the

controller is reduced to simply deciding when to use that behaviour.

Finally, the motor programs used here have their weights frozen once they have been

built, so their place in a backpropagation scheme is purely to provide error derivatives for

the controller. This has several implications. As the motor program remains unchanged

while the controller is optimised, the behaviour of the control scheme is restricted by the

behaviour of the motor program. This can be beneficial, as the learning represented by the

motor program cannot be unlearned by the controller. However, this also means that if

the motor program is not capable of generating the required range of behaviours, then the

controller will not be able to compensate. This issues are very similar to those involved in

learning a plant model, and using a fixed model in later learning (i.e. offline learning). In

offline learning, the learning is stopped when the model reaches some accuracy criterion,

but this accuracy has to be decided. A related issue concerns the range of inputs that

the plant model 'sees' during learning; these should be as close as possible to the kinds

of inputs the plant will receive in control (if they are sufficiently diverse to reveal all the

modes of behaviour of the plant they are said to be 'persistently exciting'). In practice, it

is not known what accuracy of plant model is required for a particular control task, and

it is not straightforward to choose a training set that is persistently exciting.

These same issues apply to the learning of motor programs. The motor program may

not show sufficiently rich behaviour, in which case the performance of the control system

will be limited by this one fixed component. This could arise from picking too Iowa.

criterion for the training of the motor program, and again, there is no way of knowing in

advance what criterion to use. Also, the task used to train the motor program may not be

appropriate for the full control task. As with learning a plant model, online methods may

be used to overcome these difficulties, but the consequence is often a loss of stability. In
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this chapter, only offline methods are considered, but it should be borne in mind that the

motor programs may also be allowed to adapt at the same time as the controller, although

a smaller learning rate is probably best.

CO-ORDINATING THE BEHAVIOUR OF THE CONTROLLERS

For continuous movements, a hierarchical control system may be treated as if it were

a single network. This assumes that the higher controllers continuously supply control

inputs to the motor program. When the behaviours are discrete, this may no longer be

true, in which case some effort has to be made to control the timing of the two levels.

For example, consider a system that takes as input the initial and desired state of a.

robot arm, and produces a reaching movement towards the target. In the case that the

controller supplies brief signals that the motor program converts into extended sequences,

the controller is expected to be silent during the rest of the movement. If the higher

controller receives a coding of a new task before the movement is complete, there needs

to be some mechanism to deal with the controller's output. This might mean storing

the output in a stack until the current movement is complete, or the controllers output

might just be given to the motor program regardless of whether the current movement is

finished, in which case there will be some interference between the two movements. These

issues become more apparent as the representations in the output of the higher controller

become more discretised, e.g. "perform action A, then B, wait until signal S and then do

C".

This hierarchical control system is very similar to the use of structural shaping, men-

tioned in section 4.7. In structural shaping, controllers are built to solve subparts of the

task, so that a higher controller is able to select the behaviour of these controllers as

single actions, so the lower controllers function very much like the debugged behaviours in

subsumption architectures. The current control scheme is a kind of subsumption system,

but one important point is that the lower controller( s) can have a variety of sources - for

example, they might be the results of modelling of the known physiology of invertebrate

motor circuits. This is potentially a powerful source of information about the functioning

of specific circuits, in that models of these circuits may be used in larger systems that are

trained to actually produce a behaviour. This gives a way to take the data from 'fictive'
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motor experiments, and make predictions for in vivo studies.

5.3 Motor learning for a multijoint arm: Feedforward Control

In contrast to most robots, biological systems are characterised by large numbers of de-

grees of freedom, strong nonlinearities, and delays in signal transmission. These factors

would make it very difficult to use traditional feedback control methods for these sorts

of systems. Consequently, if we are interested in building robots that are inspired by

biological systems, it seems likely that we will need different approaches to their control.

The control strategies seen in biology are likely to have been optimised for exactly these

problems, so it would seem wise to study the use of CPGs in plants that share these

characteristics. Consequently, a highly redundant simulated robot arm was chosen as the

plant in this chapter.

5.4 Introduction to the Experiments

The arm operates in a plane, and has 6 degrees of freedom: two positional, and 4 joints.

As the targets are defined as points in the plane, there are 4 excess degrees of freedom For

some tasks, the arm is a purely kinematic system; the output of the control system directly

specify the joint angles, and the position of the shoulder. In other experiments, dynamics

are added to the system, and the outputs of the controller specify the torques that act

on the arm. As all the experiments reported here correspond to supervised learning, a

plant model is required, whether the plant is kinematic or dynamic. In both the kinematic

and dynamic case, the plant model was learned to a reasonable degree of accuracy before

the controller was adapted. This is offline learning; the alternative is to train the model

and the controller simultaneously (online learning). Which method is best depends on the

problem, but it should be noted that there are difficulties associated with both methods.

With online learning, the main problem is that the controller is initially trained with an

inaccurate plant model, which will serve to hinder learning. In offline learning, an arbitrary

criteria for model accuracy has to be chosen to decide when the model may be used to

train the controller. Unfortunately, there is no clear relation between the complexity of the
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control task, and necessary model accuracy. This issue was not addressed in the present

thesis.

These experiments use feedforward control, so the only external inputs to the controller

are those coding the desired behaviour. The inputs themselves were given to the net for

the duration of the movement. This tends to make the input units' activity saturate,

particularly during the early stages of learning, but shorter durations generally prevented

learning. The arm was left unconstrained for a short period before the targets were applied,

to give the controller enough time to move the arm from its initial position to the first

target.

5.4.1 Learning Sequential Reaching Tasks

In the first experiments, the controller is required to cause the endpoint of the arm to be

at certain places at certain times. The targets correspond to a set of buttons in the plane,

to be touched in the correct order. With a few exceptions, the tasks are variants of those

used in Jordan (1988). 1

The four buttons are shown in Fig 5.2. We may call this a zero-dimensional task, in

that the controller is required to follow the same trajectory every time. A skill learning

task generally involves producing a family of trajectories, parameterised by some input

variables; the dimensionality of the task refers to the number of inputs, or the number

of ways in which the patterns may vary. A 2-dimensional skill task was used where the

position of the buttons were varied in the plane. Fig 5.3 shows the extreme positions of

the buttons; the actual positions was varied continuously within this square. As the arm

is purely kinematic, the outputs of the control system directly specify the angles of the

joints, and the xy position. Each joint was allowed to vary over a range of +/ - 7r /2, and

the translational units could move the arm over a range of [0 : 2] units. The links were

of length 0.16 units. These ranges specify the workspace of the arm, i.e. the set of points

which can be reached. One point worth making is that the workspace is large compared to

the variation in the position of the targets, which means that the arm is never operating

at the edge of the workspace. The reason for this is that control becomes difficult ill those

ISome of this material appears in (Miller, 1997)
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o 2

FIGURE 5.2. One set of targets. The figure shows four buttons,
which are targets for the arm endpoints, together with the robot arm
itself. The rectangle at one end of the robot arm represents the robot's
shoulder, the other end is the endpoint (i.e. the hand). The numbers
specify the order in which the buttons are to be touched

0 0

0 ¢;) 0

0

0 0

0 0 0 0

0 0

FIGURE 5.3. Varying the positions of the targets. The target's posi-
tion was continuously varied in the plane; the figure shows the extremal
positions
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extreme regions, as the Jacobian of the kinematics mapping approaches singularity (i.e.

some of the eigenvalues approach zero, which effectively means that the number of degrees

of freedom goes down). Of course, real robots often have more limited workspaces ( e.g.

they are not usually able to translate ), and so these issues have to be dealt with.

Given that the targets are only specified for the endpoint, the controller's task is ill-

defined. There are two components to this redundancy: firstly, fixing the endpoint of

the arm only partly specifies the state of the arm, secondly, targets are only specified

at certain points in the trajectory, with the arm unconstrained at all other times. This

redundancy usually requires some kind of regularisation to produce a well-defined problem.

Jordan uses a cost function which penalises large movements from one time step to the

next; the implicit smoothness of the recurrent net used here achieves the same effect.

The reason for this is that the differential equations governing the evolution of the error

derivatives are closely related to those governing the actual dynamics, and smoothness

in the dynamics produces smoothness in the error derivatives. The result of this is to

smear target information across time; the four spikes which correspond to the targets are

converted to four temporally extended peaks in the error derivatives.

This is one advantage of using continuous-time recurrent nets with individual time

constants, and the degree of temporal smoothness that the net displays is partly under

the control of the experimenter, as it is always possible to define a prior distribution on

the initial distribution of time constant values.

Task 1:

In the first task, the controller is required to press four buttons in the correct order,

but at a specific speed chosen randomly from a continuous range, which is specified by

one input to the controller.

Task 2:

In this task, the controller is required to press the same buttons as before, but the

position of the buttons is continuously varied, and coded by two external inputs, one for

each co-ordinate.

These tasks are essentially the same as the variable oscillations used in the previous

chapter, with two differences. Firstly, there is a redundant nonlinear plant, and secondly,
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FIGURE 5.4. Learning curves for 20 controllers on the variable posi-
tion task. Learning is seen to converge within 20 000 epochs

the targets only appear at 4 points in the sequence.

Recurrent networks with 12 units were initialised with random weights (N(O,] .0)) and

random time constants (N(l.O,O.l)). The weights had a learning rate of 0.2; I;II.etime

constants a learning rate of 0.1. As the targets are defined in the space of the arrn 's

endpoint, the error derivatives are backpropagated through the plantmodel, to give error

derivatives for the output of the controller. The plant model itself is just a static rnappi ng,

from the set of joint angles, and the position of the shoulder, to the position of the anu's

endpoint. The model was implemented as a feedforward network,mapping from 6 degrees

of freedom to 2. The network had 40 hidden units, and was trained on a set of random arm

configurations until the error converged. The weights of the model were fixed throughou t

the rest of the experiments.

5.4.2 Results

The learning curves for 20 controllers on the variable position task are shown in figure 5.4;

those for 20 controllers on the speed task are in figure 5.5.

The learning is seen to be unstable in just the same way as in the pattern generatiou

tasks in the previous chapter. One interesting result of using such a. strongly coupled

system is that the oscillatory beha.viour is spread across the whole of the network - even the

input units show oscillations, an observation which holds for a.1lthe later systems trained
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FIGURE 5.5. Learning curves for 20 controllers on the variable speed
task. Learning is seen to converge more rapidly than the variable
position task.

on this task. This fact may have implications for those researchers invoJveciin trying

to deduce computational function from the behaviour of physiological motor circuits. III

invertebrates, these circuits are known to be strongly coupled systems, and the notion or

a multifunctional circuit is becoming increasingly important. This implies that deducing

the computational role of a neuron from its activity is likely to be very difficult, as this

activity is also a strong function of all the other units in the network.

The performance of a typical trained controller is shown in figures 5.6 - 5.9. The

controller is seen to be able to make flexible use of the degrees of freedom in the plant,

and the movement seems to be well-coordinated.

The results of the previous chapter would suggest that much of the Instability or

learning corresponds to bifurcations in the controller's dynamics, and that constraining

the behaviour of the controller would help learning. For a task that involves oscillatory

behaviour, this would mea.n constraining the controller to be an oscillator. It is precisely

because a recurrent net is such a general purpose system that these bifurcations arise:

if the network was restricted to producing qualitatively correct behaviour, l.he Jearn ing

should improve. This is the a possible role for the ePGs described earlier, for both pattern

generation and feedforward control. In general, the ePGs may tale on a more general

role, such as implementing local feedback loops, or performing constraint satisfaction.
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FIGURE 5.6. Performance of one controller on the variable position
task. The plot shows the target buttons (in this case, those on the
bottom-left), together with the robot. The robot is shown at four
points in time; these correspond to the required times for the buttons
to be touched.
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FIGURE 5.7. Performance of one controller on the variable position
task. The target buttons are those on the bottom-right
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FIGURE 5.8. Performance of one controller on the variable position
task. The target buttons are those on the top-left
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FIGURE 5.9. Performance of one controller on the variable position
task. The target buttons are those on the top-right
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5.5 Using CPGs in Control

Two methods are for building motor programs are considered; transfer from a simpler

task, and a Genetic Algorithm.

5.6 Building CPGs from a simpler task

As in the previous chapter, a simpler version of the task was used to train a low-level

controller, which would subsequently be used as a ePG. One obvious choice for a transfer

task would be to touch the buttons at constant speed, and with constant position. Note

that in general, deciding how to decompose a difficult learning task into subproblems is

not at all straightforward, and the performance of learning may depend on getting this

right. For the simple experiments considered here, this was not really an issue. ePGs

were constructed by training networks on this task for 5000 epochs. The ePGs received

no inputs during training; their task was to oscillate autonomously. For each task, the

controller was a randomly initialised recurrent net coupled to the ePG as described, and

the weights of the ePG were fixed during learning. The size of the controller and the ePG

net were chosen so that the combined system had the same number of units (and weights)

as the randomly initialised controllers used before (Le. the controller had four units; the

ePG eight). This architecture corresponds to full control design outlined above, where

the controller continuously sends signals to the ePG, and where the entire state of the

ePG is supplied as input.

5.6.1 Results

Learning curves for 20 networks on the fixed position task are shown in figure 5.10;

as with the single oscillation tasks from chapter 4, the learning is slightly unstable, but

converges within 5000 epochs.

The trained networks were then used as ePGs on the two tasks, variable position, and

variable speed. 20 randomly initialised controllers were trained on Task 1 and Task2,

using ePGs from the fixed position task. The learning curves for these are shown in

figures 5.11 and 5.12
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FIGURE 5.10. Learning curves {or a network on the fixed position
task. The resulting networks are then used as ePG on the full task
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FIGURE 5.11. Learning the variable speed task with a erG [rom
shaping. Plot shows learning curves [or 20 controllers. Note the values
on the x-axis; learning tria.ls were limited to 10 000 epochs



5 Learning Control with Motor Programs 113

8

6

e
UJ
(f)

4:::;;:
Cl:

2

0
0

TRANSFER on variable position -

5000 10000

FIGURE 5.12. Learning the variable position ta.sk with a GPG Irorn
shaping. Plot shows learning curves for 20 controllers; again, learning
trials were bruited to 10 000 epochs

STATISTICAL ANALYSIS

The same method as in 4.7.2 was used to compare learning with and without Cf Gs.

The error curves were measured by taking the time at which they first cross a t hreshold , in

this case, the value 3.0 was chosen. The performance of learning with a. ePG was assessed

by adding the time-to-convergence for the ePG to that of the controller. All learning

curves were smoothed with a window of 10 samples prior to analysis. In the variable

speed task, the ePG method took an average of 2862.5 epochs to con verge, compared

with an average of 8695.0 for a single network (t test: t = 21.408; df = 19; ]J < 0.0(1). In

the variable position task, the ePG method took an average of 4440.0 epochs to converge;

single networks took an average of 14670.0. (t test: t = 7.350; df = 19; p < 0.001).
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FIGURE 5.13. Performance of the GA on the variable speed task.
Plot shows the mean evaluation of the whole population, for each of
the 5 runs

5.7 Using a Genetic Algorithm to build the CPGs

As before, a Genetic Algorithm was used to build the ePGs. There were two GA ex-

periments, one for Taskl and one for Task2, with each experiment consisting 5 separate

runs. The experiments were basically the same as those in section 4.8, with the difference

that the genetic strings were slightly longer, as the ePGs are larger in this case. With

10 bits per parameter, the ePGs (8 units) were encoded with a string of 720 bits. The

evaluation consisted of training the controller on the appropriate task for 800 epochs, and

returning the mean error over the final 50 epochs. The learning rates for the con troller

were again set to high values: 0.7 for all the weights; 0.2 for the time constants.

5.7.1 Results

Figures 5.13 and 5.14 show the progression of the mean population evaluation of the

two GA experiments. The evolved ePGs are again divided between stable oscillators,

and unstable (damped) oscillators. The behaviour of two isolated ePGs from the CA are

shown in Figs 5.15 and 5.16; one shows stable oscillations, the other has the form of Cl.

damped oscillator.

The evolved ePGs were assessed in a the same way as those in section 4.8.1. Figu res

5.18 and 5.17 show learning curves for the two tasks, each using 20 controller: coupled to

a randomly selected Cf'C from the GA,



5 Learning Control with Motor Programs 115

20r--------r-------,--------,--------,--------

14

12

10

8

6

4

2

OL-------_L------~--------~------~ ~
o

18

16

GA on variable position --

20 40 60 80 100

FIGURE 5.14. Performance of the GA on the variable position task.
Plot shows the mean evaluation of the whole population, for each of
the 5 runs
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FIGURE 5.15. Behaviour of one isolated CPG. Thengure shows the
trajectory of the arm's endpoint, with just the CPG (i.e. there was 110

controller connected). The dynamics are that of aIirnit cycle
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FIGURE 5.16. Behaviour of one isolated CPG. The figure again shows
the trajectory of the endpoint of the arm. The dyna.mics spiral in to
a fixed point, i.e. the CPG is a damped oscillator
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FIGURE 5.17. Learning curves for 20 controllers on the variable speed
task, with a CPG from the GA

STATISTICA L ANALYSIS

The evolved ePGs were compared with those from the shaping experiment using the

same time-ta-convergence threshold of 3.0, and averaging the learning curves over 10 sam-

ples. In the variable position task, the ePGs from the GA took an average of 435.5 epochs,

compared with an average of llOO.O for those from shaping. (t test: t = 2.599; rl:f =
19; p < 0.02). In the variable speed task, the evolved ePGs took an avera.ge of 380.5

epochs; those from shaping took an average of 815.0 (t test: t = 3.065; d] = 19; p < 0.0.1)
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FIGURE S.lS. Learning curves for 20 controllers on the variable po-
sition task, with a ePG from the GA

5.8 Discussion

One interesting result from these button-pressing experiments is that the task has been

set up in such a way that a trivial solution is possible - given the range over which the arm

is allowed to translate, there is no need to use any of the joints, and so the nonlinearity

may be removed. In fact, this trivial solution was never observed, and the learning always

seemed to use a.ll the available degrees of freedom. This is presumably because recu rren I,

networks are strongly coupled systems, and it would be more difficult for the learni ug to

remove those couplings than to cope with the nonlinearities, This mea.ns that a. degree of

co-articulation emerges directly from the choice of controller.

So far, we ha.ve discussed the use of Cf'Gs for simple open-loop control tasks. Two

methods for building ePGs ha.ve been used: using a controller trained on a. simpler version

of the task ('shaping'), and blind optimisation by a GA. The shaping method is the more

straightforward of the two, although the GA is potentially a more powcrfu I approach.

GAs have been used by some researchers to build controllers from scratch, with some

successes (Beer and Gallagher, 1992; Floreano and Mondada, 1995; Parisi et al., J 990;

Nolfi et al., 1994). However, as the present approach uses a computationally demanding

form of learning within the evaluation function, the whole procedure would be expected

to scale very badly with the size of the problem, and so this is not really suitable as a.
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practical method for building controllers. Nevertheless, there are several points to note

about this use of learning and evolution. Firstly, due to the computationally intensive

nature of this approach, the training times within the evaluation were necessarily kept

short. It is hoped that the training times are sufficiently long to be informative, so that

CPGs are selected that would perform best if the training times were much longer. Given

the opportunistic nature of GAs, it is at least possible that the 'best' CPGs would be

precisely those sets of weights that would perform best over this training time, but may

actually perform worse when the training times are increased. This does not seem to be

the case for the experiments reported here, but, in general, this is hard to test. One reason

for the difficulty is that the training runs used within the GA may only be long enough

to reach a partial solution to the learning task that defines the evaluation function, and

so the GA would be expected to then optimise with respect to that partial solution.

The other point concerns the nature of the evaluation procedure itself. Recall that the

GA builds a set of weights which are then used as a component within a larger system.

In fact, the weights from the GA are the only parts in this system that are not changed

during learning. Given this, and the fact that the weights for the other components are

randomised for each individual, the evaluation function is a complex function of the ePG's

weights, and it is of interest that this procedure works as well as it does. Clearly, this

procedure could not be used every time a controller was to be optimised, but it does raise

the question of whether it is possible to find sets of rather general purpose ePGs that

facilitate the learning of a variety of tasks. The notion of 'basis' sets has found widespread

utility in such areas as function approximation and vision, and it seems reasonable to ask

whether it would be possible to build sets of basis controllers; this is beyond the scope of

this thesis, but will be investigated in future work.

5.9 Learning with a multiarm manipulator

In this set of experiments, a different robot arm was used; this is shown in Fig 5.19.

This manipulator has two arms, each with 2 joints, so again there are 4 excess degrees of

freedom. The redundancy for this arm is slightly different, as the targets may bp assigned

to either of the arms. Which arm receives the targets may decided in several ways; in this



5 Learning Control with Motor Programs 119

FIGURE 5.19. The second robot. This robot has two arms, each
with 2 joints, and is able to translate, so again there are six degrees of
freedom. The length of the links was the same as the previous robot

work, the arm is chosen simply by using whichever one is nearest the target at the time

that the target appears. This means that the other arm is unconstrained; this also means

that different arms may be used for different parts of the movement. As will be seen, this

enables a hierarchical controller to de-couple the subproblem of choosing which arm to

use, from the pattern generation problem.

5.10 Learning a fixed sequence

A single controller was trained on the fixed position version of the button-touching task.

A plant model was trained on a set of random arm configurations, and its weights were

frozen. The model was used to convert target information into the space of the controllers

output.

5.10.1 Results

The learning curves for 20 controllers are shown in figure 5.20. Figure 5.21 shows

the behaviour of one trained controller on this task; the controller is seen to be able to

assign each of the button positions to the appropriate endpoint. In this example, each arm
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FIGURE 5.20. Learning curves for 20 controllers 011 the fixed position
task, using the 2-arm system

receives just 2 targets per sequence, and is unconstrained the rest of the time. The err-cl
of temporal smoothness in the network dynamics is to smooth this target information over

time. This enables the system to show a degree of co-articulation - as one arm reaches

towards its target, the other anticipates its own upcoming target.

5.11 Learning variable Patterns

In this section, the position of the buttons was continuously varied in the plane. The

main question addressed here is: to what extent can the subproblems of choosing the

appropriate arm, and generating the actual pattern be separated? As before, a two-stage

controller was constructed. Unlike the previous experiment, the lower controller cannot

be trained by using a fixed position pattern. This is because we want the final control

system to be flexible in the way it assigns arms to targets, and this would involve complex

transformations on the activity of a ePG trained on one pattern. Instead, the lower

controller was built by training a system to generate reaching movements towards random

points in the workspace. For each learning trial, the arm was randomly positioned in its

workspace, and the targets appeared as four random points, equally spaced in time. This

randomisation meant that, on average, each arm was selected the same number 0(" times,

and so received the same amount of training information. The inputs for each target were

continuously applied until the point at which the target appeared. Applying the inputs
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FIGURE 5.21. Behaviour of the 2-arm system on the fix.ed position
task. The robots task is to touch the buttons in the correct order;
top-right, bottom-right, bottom-left, top-left. The robot is shown for
4 points in time, corresponding to the times at which the targets appear

briefly seemed to prevent learning, as the information from the inpu t had decayed away

by the time the target arrived.

Once trained, such a network may be used as a CPG for the button-pressing task. The

role of the CPG is to coordinate the a.ctivity of the two arms; the CPG has been trained

to take two inputs, and generate reaching movements towards points in the plane. The

role of the controller is to supply the CPG with a time series of such inputs, in oreler to

touch the buttons at the correct times. The higher controller is now trained to press the

buttons in the plane, where the position of the buttons were continuously varied.

5.11.1 Results

Learning curves for 20 controllers on the variable position task are presented in figure

5.22. Learning is seen to proceed rather slowly, as the controller has to learn oscillatory

activity from scratch. The behaviour of one trained controller is shown in figures 5.23 to

5.26.

The final behaviour is seen to be flexible, in that the appropriate arm is chosen for each
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FIGURE 5.22. Learning curves for 20 controllers on the variable po-
sition task, using the 2-arm system

target. This means that different arms are used to reach for the same target, depending

on the sequence in which the target is embedded.

What is interesting about this experiment is that it shows how the subparts of a

control task may be decoupled. In this case, the assignment of each armis handled by the

lower controller, which means that the higher controller is now functioning in all effector-

independent manner. Although the control system is a simple two-level hierarchy, Lhe

lower controller is the kind of component that could find use in a variety of disparate

systems, each adapted for a different task. Of course, the notion of effector-independent

motor programs has been extensively discussed in the experimental literature - the concept

of a motor program was introduced partly to account for effector-independent behaviour.

Perha.ps the best-known example of this is handwriting - people produce approxi rnately

the same shape handwriting when they use their other hand, and also if they hold a. pen in

their mouths, or toes. This argues very strongly for a representation that is independent

of the actual muscles that a.re used to perform the behaviour. The nat ural conseq Liencc of

this is that there is a system that takes such an abstract entity, and produces a detailed

motor command for the particular muscles chosen. The use of modular control systems

to reproduce this kind of behaviour seems worthwhile, and deserves further investigation.

Fina.lly, as the higher controller is producing outputs that are effector-independent,

those same outputs could be given to a similar motor program for a. different set of effectors.
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FIGURE 5.23. Performance of the controller with the 2-a,rm system
on the variable position task. Again, the robot is shown for 4 points
in time, the times at which the targets appear. The target pattern is
at the bottom-left
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FIGURE 5.24. Performance of the controller with the 2-arm system
on the variable position task; the target pattern is at bottom-right
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FIGURE 5.25. Performance of the controller with t.he 2-arm system
on the variable position task; the target pa.t.tern in at the top-left
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FIGURE 5.26. Performance of the controller with the 2-arlTl system
on the variable position task; the target pattern is at the top-right
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Ultimately, there would be a whole set of motor programs whose responsibility it was

to flexibly assign outputs to actuators, so a single representation of an action could be

given to anyone of the set of motor programs, and similar behaviour would be shown

with different actuators. These motor programs may just correspond to different sets of

actuators, or different couplings of the same actuators. The separation of this kind of

redundancy reduction enables patterns to be defined and learned at a more abstract level.

5.12 Introducing Dynamics in the Control Problem

To consider the effects of plant dynamics, a simulated arm with two joints was considered.

The dynamics of the arm are governed by the following equation (from (Jordan and

Rumelhart, 1992)):

M(q)q + C(q,q)q + G(q) = T

where q is the vector of joint angles, M(q) is an inertia matrix, C(q,q) represents the

Coriolis and centripetal terms, and G(q) is the effect of gravity. The control inputs specify

T, a vector of torques applied to the joints. This may be re-written as

ij = M-1(q+ - C(q,<i)tj - G(q)]

The arm state now includes terms for the positions and velocities of the limbs, and the

acceleration plays the part of the next-state. The dynamic equations are exactly analogous

to those in the kinematic example - they map current state and input onto the new state.

As supervised learning is used throughout in this chapter, a plant model is necessary

to obtain the error derivatives. In the case of a dynamic system, there are several different

approaches to modelling, depending on the kind of measurements that are available. The

method adopted here is the simplest, which assumes that the state of the arm is able to

be directly measured (which is not usually the case for terms such as the instantaneous

velocity and acceleration). As the new state is just a function of the current state and the

current inputs, a purely feedforward net may be used as a plant model. If this were not

the case, some method would have to be used to estimate the plant state from observation
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of the time series of control inputs and plant outputs. Note also that the use of a recurrent

net to model this kind of data implicitly performs the same kind of state estimation, where

the hidden units form features that represent information about the state variables which

cannot be directly measured.

The model was implemented as a feedforward network, which maps from the current

state of the arm, and the control inputs, to the next state - in this case, the next state

is represented by the acceleration of the arm. The model had 50 hidden units, and was

trained until learning was convergent, and then used throughout these experiments. The

dynamic model was then used in exactly the same way as the plant model of the kinematic

arm: it transforms error derivatives in the space of the plant outputs to that of the plant

inputs. The dynamics equations govern the behaviour of the arm in joint space, and so a

kinematic model is still needed to account for the mapping from joints to position. These

two models were cascaded in sequence.

5.12.1 Learning Simple Reaching Movements

To generate reaching movements, consider the use of an adaptive feedback cont.roller. This

controller takes as input the state of the arm, as well as inputs specifying a target position.

The goal of the feedback controller is to augment the plant dynamics in such a way that

the target position is an attractor, so that the arm converges on the target from any initial

state. Applying the desired position to such a system should cause the arm to relax onto

the goal state. This controller is trained in the simplest way, by randomising the initial

and goal state of the arm, and applying the desired position as a target. The target. only

appears at the end of the movement, so the arm is unconstrained the rest of the time. 20

such controllers were implemented as recurrent networks, and trained for 5000 epochs.

The trained controllers were then used as CPGs for another reaching experiment. In

this case, a combined system is trained on a reaching movement, and the outputs of the

controller specify a time series of target positions for the CPG. The controller is trained

with more detailed target information; a target trajectory from the initial state to the goal

was constructed by planning a sequence of states for the arm. The sequence was such that

the velocity of the joints was described by a bell-shaped function, which is characteristic
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FIGURE 5.27. Learning curves for 20 controllers on the reaching task,

of primate hand movements. This plan corresponds to drawing a straight line between the

initial and goal states (in joint space), and having the distance to the goal a cummulative

Gaussian function of time.

The higher controller for this task was another recurrent network, fully connected to

the ePG network. This meant that the controller was able to produce a movement by

supplying the ePG with a time series of inputs. For a reaching movement of the same

speed as that used to train the ePG, simple step inputs (to the ePG) are all that is

required of the controller. For faster movements, there are several strategies available to

the controller. The inputs to the ePG can be considered as virtual equilibrium positions

for the system, so a fast movement could be produced by modifying the value of this

attractor , moving it beyond the target to accelerate the arm, then back again to slow the

arm down. Alternatively, as the controller also has connections to the plant inputs, fast

movements could be produced by adding a transient input to the plant,in addition to

that from the ePG.

This higher controller is trained with Distal Learning, as before. 20 con trollers were

implemented as recurrent networks, and trained for 2000 epochs.

5.12.2 Results

Learning curves for 20 controllers on this task are shown in fig 5.27.
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The behaviour of the learned system is interesting, particularly in relation to the data

on the effect of biological muscles in control. Recall that biological muscles, together wi th

reflex loops are known to behave somewhat like tuneable springs, and that this has been

used to argue that much of the shape of reaching movements is due to the dynamics of the

muscles, rather than being explicitly represented in a movement plan. One implication of

this is that rather simple control signals, such as step functions, can be used to gonorato

plausible reaches. The ePG is a system of this nature; step inputs are converted into

smooth reaches towards the target. The higher controller is performing a similar role

to that hypothesised for supraspinal centres in reaching. The role of these centres is

seen as specifying a time series of targets for the low-level feedback controller. For slow

movements, the task for the higher centre is very simple - simply moving the target to tile

goal will cause the arm to converge onto the goal state, by virtue of feedback controller.

Fast movements are more difficult to produce with this scheme - they generally req uire

the stiffness of the arm to be modulated, or the position of the virtual target to be moved

beyond the actual target.

In producing reaching movements of the same speed as those used to train the ePG, the

outputs of the trained controller broadly resemble step functions. Perhaps more interesting

is the situation where the reaching movements used to train the controller are different from

those used for the motor program. For this case, the controller was trained on movements

of varying speeds, ranging from 1.5 to 3 times those used for the motor programs. The

faster movements are difficult for this system, as the motor program is a feedback system

with a certain response time; this response time is too slow for the fast movements.

The consequence is that the controller tries to compensate for the slow response time

by supplying the motor programs with more complex inputs than the near-step functions

used in the slower movements. As can be seen in Fig 5.28, the controller supplies inputs

that correspond to a 'virtual' target; this target is moved beyond the actual target to

cause the arm to accelerate quickly, and then moved back to the target position.

This is not a very effective method for generating fast movements, as the 'virtual'

target has to be accurately moved through a. large range during a small time period, and

the actual movement produced will depend quite critically on the timing of the virtual
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FIGURE 5.28. A fast reaching movement. The 'virtual trajectory'
shows the time-series of inputs to the ePG; the actual trajectory is
the time series of positions of the arm's endpoint .. The fast movement
is produced by moving the virtual point beyond the target to rapidly
accelerate the arm, and then back towards the initial state to 'brake'
the system

trajectory. A better approach would be to dynamically modulate the gain of the feedback

in the motor program, or to include a feedforward element. Note that .in the case of'

fast movements in humans, it is not clear what strategy is being used. This cxperiruont

considered learning in the absence of noise; it is possible that noise would bias the learning

towards a different solution.

5.13 Limitations and Future Work

Perhaps the major limitation of this chapter lies in the use of simulated rather than real

robots, and simple simulations at that. The effects of noise, measurement errors and

signal delays have not been considered. Nevertheless, these abstract studies are of use

in making clear certain ideas about improving the learning of complex controllers, and

the systems discussed have a relevance for understanding the nature of motor programs,

Future work will consider the learning of more complex tasks, particularly those that

involve producing sets of behaviours. It is also planned to apply these ideas to robots that

locomote, particularly walking systems.

5.14 Discussion

In this chapter, the use of recurrent neural networks in motor contra] has been considered,

in the context of some simplified robotics tasks. The control structures used in these
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experiments correspond to indirect control, in which target values at the plant output are

transformed, through the use of differentiable models, into the space of the controllers

parameters.

In section 5.4, controllers were trained on simple reaching tasks, which require the

endpoint of the arm to touch a set of buttons at the correct times. The use of hierarchical

methods was investigated, and it was shown that incremental learning can build CPGs

in which learning is improved, in terms of time to convergence, and stability. A Genetic

Algorithm was also used to build CPGs, and the learning is improved again. Although

not practical as a method for building controllers in general, this combination of GAs and

learning does offer a way of investigating motor circuits that are able to operate in many

different environments and problems.

In section 5.9 a robot with two arms was used, which introduces a different kind of

redundancy. It was shown that the use of modular architectures allows the different parts

of the control problem to be de-coupled, and that the presence of a CPG can mean that

the controller produces outputs which are independent of the particular arm used at each

time step.

Finally, a dynamic robot arm was investigated. The CPGs were trained as feedback

systems, and the controller was subsequently trained to drive the CPGs in an open-loop

fashion to solve the task. This is a similar strategy to that seen in biological systems,

where the dynamics of the muscles and reflex loops provide a simple feedback system. It

has been hypothesised elsewhere that the role of motor cortex is to drive the equilibrium

points of the lower feedback system.

These methods offer a powerful way of approaching difficult control tasks. The main

difference with the usual use of shaping methods is that a variety of methods may be used

to build the motor programs, not necessarily the current learning problem. This use of

motor programs offers a way of de-coupling the various aspects of the control task, a fact

that may have greater importance in more complex problems. This is partly because such

incremental approaches are known to be desirable for difficult learning problems, and also

because the notion of re-usable motor programs is attractive when a robot is required to

carry out a range of different tasks. This is particularly clear in the GA experiments, where
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the CPGs are optimised by increasing the learning performance for randomly initialised

controllers. It is interesting that the GA experiments worked as well as they did, as the

GA optimises a very complex function of the CPG weights. It would be interesting to

see if these ideas could be extended, by building CPGs for sets of tasks; the hypothesis

would be that it may be possible to build rather general-purpose CPGs, which improved

learning for classes of controllers, and classes of tasks.

This work is related to other studies using motor programs in robotics, where those

motor programs are often implemented as basis functions (Lipitkas et al., 1992; Lipitkas

et al., 1993; Bock et al., 1993; Bock et al., 1996). The main difference in this work lies

in the use of recurrent networks. This representation of motor programs means that the

whole dynamic environment ofthe system is specified, and it was shown that the particular

form of the learning task has a direct effect on the nature of the motor program dynamics.

This also makes the addition of feedback a straightforward matter, which would not be

the case if torque profiles were used. The price for this is an increase in complexity: this

is manifested in the use of complex training algorithms for building the motor programs,

and in the use of the same algorithms for performing credit assignment for the higher

controller. In fact, the existence of such motor programs can often mean that simpler

methods may be used to optimise the higher controller, as the controller's outputs have a

simple relation with the behaviour of the plant. This is the subject of the next chapter.
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This chapter considers the use of reinforcement learning for motor control tasks. The

specific problem addressed is the production of gait patterns with a system of coupled

nonlinear oscillators. The use of motor programs for reinforcement agents is discussed,

and a learning agent is introduced, whose actions control the parameters of the coupled

oscillator system.

In section 6.6, this agent is trained to produce a set of gait patterns. The use of plant

models is also discussed, and a model of the oscillator dynamics is learned concurrently

with the reinforcement task.

In section 6.8, the learning agent is given control over the couplings between the

oscillators; this is seen to have a mixed effect on performance.

6.1 Introduction

Many learning situations are best described as reinforcement learning problems. Rein-

forcement learning is characterised by a lack of target values for the system's response;

rather, there is some performance measure that is to be maximised. Often, this feedback

is delayed: for example the effectiveness of a reaching movement can only be evaluated

once the whole of the movement has been performed. This introduces a significant credit

assignment problem: in the light of the reinforcement received, how should the control

actions be modified to increase the reinforcement? There are several components to this

credit assignment problem. Firstly, structural credit assignment refers to understanding

the differing contributions to the current reinforcement made by the various elements of

the controller. An obvious case of this would be a controller with multiple outputs - a
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simple scalar signal gives no information about which of the outputs was responsible for

that reinforcement, and by how much. Other cases would include controllers that have

internal components, for example, the hidden units in neural networks.

Temporal credit assignment refers to problems in which the reinforcement is delayed

with respect to the relevant actions. This arises in problems such as game-playing, when

the only evaluation occurs at the end of the game. A problem with a similar structure

would be the navigation of a mobile robot towards a goal - the evaluation only changes in

the goal state.

Note that one way of thinking about these credit assignment problems is that they

constitute a distal learning problem, in that the training data is distal to the controller's

outputs. The function which maps from controller outputs to reinforcement may be many-

to-one, in which case the situation is similar to that of learning to invert the system dy-

namics (see 1.4.2). The temporal credit assignment problem arises when the reinforcement

function is some time integral of the controller's output. In this case, the training data is

still distal, not in terms of a different co-ordinate system, but distal in time.

This perspective implies that one way of solving credit assignment is to build models

of the relevant mappings, and to use backpropagation to transform error derivatives in

one space to the other. This is the approach taken in (Jordan and Jacobs, 1990), in which

a model is learned of expected reinforcement as a function of controller output. If the

maximum possible reinforcement is known, then this may be used as a target value, and

distal learning used to generate targets for the controller. In contrast, most of the work

in reinforcement learning takes a direct approach, in which the controller is optimised

without learning such mappings (Barto et al., 1989; Barto et al., 1983; Gullapalli et al.,

1992).

Reinforcement agents typically have to work with quite impoverished learning infor-

mation. As a result, training times are often very high, even for relatively simple tasks.

Learning of complex tasks from scratch is often impossible, as this usually requires that

the controller has a significant probability of finding the solution by chance. With com-

plex problems. this probability can be so low that no informative reinforcement is ever

received. As a result, some researchers have taken an incremental approach, in much the
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same way as that used in training recurrent nets. In reinforcement learning, this is usually

called 'shaping', by analogy to incremental methods used in animal training. There are

two basic approaches.

Temporal shaping refers to the incremental training of one controller over time. This

usually means that the controller is trained on a series of approximations to the control

task, each one more complex than the previous. The final task is the original control prob-

lem. During learning, the controller is trained to some predefined degree of competence

before moving on to the next task. It is the role of the experimenter to decide on this

criterion, and also to design the series of tasks.

In structural shaping, the architecture of the controller is decomposed into a hierarchy,

with controllers at the lower level that are responsible for elemental behaviours, and

controllers at higher levels that learn to co-ordinate the activity of the lower controllers.

The lower controllers are trained on subparts of the control problem. Once trained, they

may be thought of as providing a mapping from a static variable (their triggering signal)

to a series of actions. The higher controller is now able to select these action sequences

as single actions. If the low level controllers have learned subparts of the task, then the

learning time for the higher controller should be greatly reduced. The experimenter is

again faced with a design problem, in this case, the problem of how best to decompose

the control task into elemental behaviours.

Clearly the timing of the controllers at different levels is crucial. The low-level con-

trollers must be able to finish their action sequences before a new action sequence is

selected, and any output of the higher controller in the meantime has to be dealt with,

possibly by placing it on a stack. This implies a degree of co-ordination between the

different levels. There are several ways of achieving this co-ordination, depending on the

assumptions that are made. Perhaps the simplest method would be to assume (or ensure)

that the low-level controllers would produce action sequences that would always be below

a fixed number of steps. The higher controller could then simply wait for that number of

steps before issuing a new command signal. This is obviously a rather inflexible system. A

more sophisticated system would be to have each low level controller send a special 'finish'

signal back to the higher controller when its action sequence had terminated. Alterna-
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tively, it could be the responsibility of the higher controller to detect when the low level

system had finished: this has to be achieved by detecting features in the sensory inputs

that signal the end of the action sequence. This is probably the most general, and the

most difficult method.

The experimenter has a considerable amount of freedom in the manner in which the

control task is decomposed; this also provides an opportunity to represent any prior knowl-

edge that may be available. This is also true in temporal shaping, although in a less

obvious way. With a hierarchical system, modules that represent elemental behaviours

may be treated as functional units, and provide a way to represent what is similar across

different, but related tasks. Some tasks have an obvious relation to biological systems, and

it may be desirable to include knowledge of the functioning of these biological systems in

the design of the controller. This knowledge can occur at a variety of levels, ranging from

detailed models of physiology, to general understanding about the functioning of systems.

The hierarchical nature of structural shaping methods means that all these types of knowl-

edge may be included. In the previous chapter, hierarchical controllers were built that

use modules that were clearly related to pattern generation systems. The co-ordination

between the various levels was performed with the machinery of backpropagation. One

interesting consequence of this is that a strict hierarchy is not necessary, as the backprop-

agation makes no assumptions about the particular pattern of connectivity, nor about the

place at which inputs and targets appear. In this chapter, direct methods are used to

optimise the controller.

In some cases, particularly discrete movements, the situation is simplified, and the

higher level controller can be considered to be a 'command system' for the CPG. There

are generally two ways to implement this. In the first case, the controller continuously

supplies a signal to the CPG, although this signal may in fact be constant. The other

possibility is that the controller supplies a brief 'go' signal to the CPG, which is somewhat

similar to setting the initial conditions of the CPG. In this case, the controller is required

to be silent during the operation of the CPG.

In the systems used in this thesis, the situation is slightly different. This is because

the higher controllers will usually be continuously sending control signals to the CPGs,
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rather than simple on-off signals. Also, the CPG is a largely distributed system, so there

are no separate modules for individual behaviours. It is possible to enforce modularity on

the CPG, by dividing it into subnetworks, and assigning a different behavioural role to

each of the subnets. However, this chapter considers CPGs which do not have separate

systems for each behaviour; the individual behaviours emerge from the CPG dynamics.

6.2 Direct vs. Indirect methods

It is commonly assumed that indirect control methods are superior to direct techniques,

and that direct learning will always proceed more slowly that indirect learning. In fact,

there are several trade-offs involved in both methods, and this means that reinforcement

techniques will outperform supervised learning on some tasks (Gullapalli, 1991). The main

trade-off with indirect control is that it requires an accurate plant model, and learning

such a model increases training time. These issues were mentioned in section 5.3. There

are other reasons why reinforcement learning may be attractive. Part of the difficulty

of training large networks with supervised learning is that the hidden units often receive

quite distorted training information, as the error derivatives are backpropagated through

the network. This is particularly true for those units which are distant from the output. In

such a situation, a reinforcement signal, broadcast to all the units, may be used to ensure

that all units receive some useful training information, independently of the distorting

effects of backpropagation.

A separate issue concerns the availability of training information. Indirect control

assumes the presence of a plant model; it also assumes that training data is available in

the space of that model. or in a form that can be easily transformed into that space. For

example, a forward model of a robot arm has its outputs in the space of the positions of the

arm's joints. For this model to be useful, there has to be training data defined in that same

space, or in a form which may be readily transformed into that space. In the case of the

robot arm, there is a natural co-ordinate system to describe the requirements of a reaching

behaviour, but this is not always the case. Consider the case of a walking robot with many

legs. The state space of this system will have to have terms for each of the degrees of

freedom. Le. the individual joints, of which there are many. We might call this the fine-
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scale state of the system. The desired behaviour of the system might be defined at a quite

abstract level, including terms for the direction and speed of locomotion, and the stability

of the robot. These measures are some function of the fine-scale state of the system, but

that function might be very complex, and its inverse even more so, particularly if the

system is highly redundant. However, redundancy is prevalent in walking systems, and

so control of the fine-scale state of the plant is likely to involve learning highly complex

mappings. To use a fine-scale model in control, the desired behaviour, coded in the

abstract space, would first have to be transformed into the fine-scale state space, and then

transformed via the model itself to the space of the controller's outputs.

This is all possible in principle, but it is far from obvious that this is always the best

approach. The attraction of reinforcement learning is that no attempt is made to model

any of these mappings; the controller is adapted directly from the reinforcement signal.

This removes two kinds of models: the model of the behaviour of the plant, and the model

that maps the task demands into the plant's state space.

6.3 Motor Programs for Reinforcement Agents

There is one further distinction between indirect and direct methods, concerning the use

of motor programs in control. Motor programs have been described as essentially fixed

dynamic systems that are used as components in a control scheme. Part of the attraction of

using recurrent nets to implement these systems is that the same methods for performing

distal learning may still be used - the error derivatives now get backpropagated through

an additional system before they reach the controller. In fact, using distal learning, this

is necessarily the case: any component that is added to the control scheme has to have its

behaviour accounted for, in this case by recurrent backpropagation,

In contrast, the outputs of a reinforcement learning agent have completely unmodelled

effects. This gives the designer an enormous amount of freedom in the way the control

system is constructed. To see this, consider an architecture prevalent in biology, where

the motor program is a set of coupled oscillators. Coupled oscillators have been discussed

previously in the context of animal walking, and it was seen that these circuits perform

the task of generating fine-scale control signals on the basis of quite general inputs, and
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that they co-ordinate the behaviour of the legs. One of the interesting properties of

these circuits it that they are usua.lly capable of generating several discrete gaits, or sets

of relative phases. It is not clear in general whether the various gaits are generated

by essentia.lly the same circuit, or whether there are sets of circuits, each responsible for

different gaits. A related issue concerns which parameters of the system have to be altered

to change the current gait, in particular, whether the couplings between oscillators have

to be altered, or whether a simple driving signal can switch between different gaits.

This may seem a rather moot point, but it would be very important for any artificial

control system which used coupled oscillators as one of its components. Again, consider

the case of a legged robot, in which a motor program is constructed from a system of

coupled oscillators. If production of the required gaits involved changing the strengths

of the couplings between oscillators, then it would be desirable to have a controller that

could select these couplings as a control action. Now, this might be problematic for a

controller trained with supervised learning, as the effect of control actions have to be

modelled explicitly. The actions of the controller are to set the values of the weights in

another network. As a result, obtaining error derivatives for the controller's output is now

more complicated.

The point is that a reinforcement agent produces outputs whose effects are completely

unmodelled, and so it is straightforward to build a controller whose actions control the

strength of connections in other networks. The reason reinforcement agents have this

freedom is that they use a different method for solving the credit assignment problem. It

may be the case that having such complex actions makes credit assignment more difficult;

alternatively, it is not too difficult to think of cases where this approach might actually help

credit assignment. For this to happen, the mapping from control actions to reinforcement

received would have to have been simplified as a consequence of the motor program.

In this chapter. we consider reinforcement agents whose actions select the couplings

between dynamic systems: in the present case, the individual systems are nonlinear oscil-

lators. This is a rather general approach; it is possible to see how a set of motor programs

could be built, each showing different types of dynamical behaviour, and a controller,

selecting the couplings between the systems, could generate a very complex repertoire of
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behaviours.

There are other possibilities - for example, the work on neuromodulators in invertebrate

circuits suggests the use of controllers that set global properties of a motor circuit (M ardor,

1988). These might correspond to the time constants in a subpart of the motor program.

or scale the magnitude of all the weights in a particular subnet. The ability of a controller

to re-configure motor circuits by control actions is a powerful way for a system with

few outputs to show a large degree of variability. There is a tradeoff here however: if

the effects of the controller outputs are to radically change the dynamics of the motor

circuit, then small changes in output may correspond to large changes in behaviour. Such

strong nonlinearity makes the credit assignment problem correspondingly harder, as tho

performance index will have a complex relation with the output of the controller. Perhaps

the most interesting cases are those in which the mapping from controls to performance

index is relatively simple, although the controls have highly nonlinear effects on the plant

output. In these cases, the complexity of the control-to-plant state mapping is partly

undone by the control-to-evaluation function. Many motor behaviours are like this: gait

transitions correspond to large changes in the limb trajectories, but to a description at the

level of 'speed and direction of locomotion', the behaviour changes smoothly with controls.

One final possibility is to remove the neural element from the motor program alto-

gether. This was seen to be useful in the work of Lipitkas etal, where the motor program

was a simple waveform generator. In general, the motor program could be described by

any set of differential equations, with parameters set by the controller. In principle, this is

no more general than using a recurrent net, but it may give a more natural way to build in

the kind of dynamics we wish, without having to model those dynamics with a recurrent

net.

6.4 Coupled Oscillators as CPGs

This chapter will consider the use of coupled oscillators as a motor program. {:OU plod

oscillators are widespread in biology, and are the central mechanisms for the production

of diverse forms of locomotion, from swimming in the lamprey to flying in insects. 011('

particularly interesting body of work is concerned with the generation of gaits and gait
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1 4

2 3

FIGURE 6.1. Locomotor CPG consisting of coupled oscillators. The
solid lines are inhibitory couplings, with the filled circle next to the
inhibited oscillator. The arrangement of the oscillators corresponds to
the positions of the legs; oscillators 1 and 4 are the front-left and front-
right respectively; 2 and 3 are the back-left and back-right respectively

transitions in legged animals, and the oscillatory mechanisms that are responsible for

the behaviour. Gaits are considered to be stable relative phase relations between the

limbs; these occur when the limbs are entrained at a common frequency. Quadrupeds

are capable of producing a number of gaits, most notably the walk, trot and gallop. The

architectures responsible are still largely unknown, so most of the modelling in this area

is at an abstract level. A typical model would be a system which has one oscillator for

each limb, and a set of interconnections to co-ordinate the behaviour of each oscillator.

Some researchers use systems in which the couplings between the oscillators are changed

to produce the various gaits (Yuasa and Ito, 1990), while others have shown that some

systems can produce different gaits by changing a driving signal comprising a constant

and a periodic component (Collins and Richmond, 1994).

A typical oscillator network is shown in Fig 6.1. In the context of the present thesis,

a coupled oscillator system is a particularly powerful kind of CPG net, which has its own

complex dynamics, but can use external signals to modify its behaviour. As far as a

higher controller is concerned, its presence should make gait-related tasks much easier.

The previous chapters have used Distal Learning to train the controller, where the effect
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of adding the CPG was accounted for by backpropagation. However, this procedure is

problematic in the present case, for two reasons. Firstly, it was seen in section 4.9.1 that

backpropagation is generally uninformative when the system is distant from the desired

behaviour. A system which produces a number of distinct gaits has a number of modes

of behaviour, corresponding to a set of limit cycle attractors. In order for the system to

switch from one gait to another, the learning has to know in which direction to change

each of the inputs to jump out of the current attractor and into another. In other words,

the desired situation is that the system is in one gait, another gait is applied as target,

and the learning procedure is informative about which way to change the inputs to cause

the system to move closer to the target gait.

This is precisely the circumstances in which backpropagation would he expected to

perform poorly, as the learning procedure essentially calculates a linear approximation of

the system dynamics, around the current trajectory. Suppose that the system is in the

walk gait, and the target corresponds to a running gait. The flow of a system which is on or

near an attractor is a vector field which pulls the system towards the attractor, so a. linear

approximation of the dynamics around the attractor will simply give a, system which

contracts uniformly onto the attractor. There is no information in this approximation

about the presence of any of the other attractors, nor about the behaviour of the system

as it loses stability (i.e. at the boundaries between the attractors' basins). In that case,

the error derivatives are unlikely to lead the system towards the target gait. If gradient

information is only informative in a small region, direct methods might be expected to

perform best.

The other reason has to do with the training data. Supervised learning requires a set

of input/target pairs for the system. For the coupled oscillator system, the inputs are the

descending controls that select the various gaits, and the targets are the outputs of tIl<'

individual oscillators in each of the gaits. Essentially, this requires knowing ill advance

what the outputs of the oscillators would be in the different gaits. However, the task is

more likely to be specified as a set of relative phase relations hetween the oscillators. It

is possible to perform supervised learning with such target information, hut this is 11101'('

naturally represented as a reinforcement problem. In a later section, forms of supervised
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learning will be considered which deal with more abstract measures of the system output,

such as relative phase and frequency of oscillation.

The particular form of the oscillator system is chosen from one of the setups used in

(Collins and Richmond, 1994). The individual oscillators are described by the Stein model

for an oscillatory neuron. The neuron dynamics are given by

. [ 1 1Xi = a -Xi +
1 + exp( - fei - bYi + bZi)

(0.1 )

where

Yi = Xi - PYi

and the index i refers to the four oscillators. The term fei is a forcing term, consisting

of a constant component, and a periodic component:

(6.2)

The coupling between the oscillators appears in the term AjiXj, with Aji representing

the strength of oscillator j's effect on oscillator i. This coupling term is set to -0.2 if

there is a connection between the oscillators, and 0.0 otherwise. The other parameters,

Le. a, b, p, q, I,kl and k2 were set to be identical in each of the oscillators. As the

system dynamics are rather complex, a more sophisticated method was chosen to integrate

the plant equations. All the simulations in this chapter used a 4th order Runge-Kuu.a

integration method, with a fixed step size of 0.005 s, which corresponds exactly to the

method used in the Collins and Richmond study.

The usefulness of a particular coupled oscillator system for gait production depends

on both the number and stability of the different gaits it supports, as well as the ability

to switch between the various gaits. The production of a gait consists of either starting

the system with random initial conditions, and converging onto the gait, or switching

from one gait to another. The switching task may be considered to be a subset of the
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FIGURE 6.2. Phase relations for three common quadruped gaits: (a)
walk, (b) trot and (c) bound. The numbers are fractions of whole
cycles, so the bound gait corresponds to the front legs being 11' radians
out of phase with the back legs

converging task. The gaits themselves correspond to attractors in the system dynamics,

and switching between them corresponds to phase transitions of the system. The gaits

are described by a set of relative phase relations between the outputs; these are shown for

three common gaits in figure 6.2. The Stein model is described in the Collins study as

supporting 3 gaits, the walk, trot and bound, and four possible transitions: walk-to-trot,

walk-to-bound, trot-to-walk, and trot-to-bound. These gaits, and the gait transitions are

produced by setting the values of four parameters: a, f, kl and k2; the couplings Aji

between the oscillators are kept constant. The values of the parameters were chosen by

hand in Collins and Richmond; this chapter considers the use of reinforcement techniques

to set the same parameters.

6.5 Gait Patterns and Coupled Oscillators

The experiments in this chapter are only concerned with the task of reliably producing a

gait from random initial conditions; the switching task was not considered. This is partly

because switching is a subset of the gait production task, and also because switching

from gait 1 to gait 2 requires that gait 1 can be reliably produced. If gait 1 can only

be produced some of the time, the simulation times increase dramatically, and tho whole

procedure becomes impractical. As will be seen, some of the gaits are of this nature.



6 Direct Motor Control and Reinforcement Learning 144

6.5.1 Methodology: Stochastic Automata and Reinforcement Learning

Consider an agent that takes a set of sensory inputs, and produces an action which IS

drawn from a distribution with a certain mean and variance. The output of the agent

would be stochastic, and real-valued, and this is the basis for the Stochastic Real-Valued

(SRV) learning rule (Gul1apalli, 1992; Gullapalli, 1990). The agent receives reinforcement

from the environment, and modifies the distribution that generates the outputs so as to

try to increase its future expected reinforcement. The reinforcement value is assumed to

lie in [0,1]; if this is not the case, then the agent will have to estimate the possible range

of rewards, which complicates the situation significantly. There are only two parameters

for this distribution, the mean J.l and the variance (1, and they are both functions of the

inputs.

The learning algorithm adjusts the two sets of parameters, thus adjusting the input-

dependent distribution. The ideal behaviour of the SRV unit has the following properties:

• It should learn to associate with each sensory input an output which has the highest

expected reinforcement.

• It should use exploratory behaviour to improve its performance when it is receiving

low reinforcement

• It should discriminate between cases when its performance is poor, and cases when

it is near to optimal, so that exploratory behaviour is reduced in cases where the

performance is good.

In the simplest case of a single linear output unit, the mean is calculated as a lineal'

combination of the inputs:

n

J.l(t) = L OJ(t)Xi(t) + Obias(t) (6.:l)
i=l

where the Xi are the sensory inputs, and the Oi are the weights. According t.o t ho

desired behaviour of the agent, the variance of the output should depend on the exported

reinforcement. If the expected reinforcement is high, then the performance is closer to

being optimal, and so the variance should be low. Conversely, when the performanro is
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relatively low, the variance should be greater, so that alternative outputs may be explored.

This requires an estimate of the current expected reinforcement. In the simplest case, this

will be another linear function of the inputs:

n

f(t) = L <l>i(t)Xi(t) + <l>bias(t)
i=l

(6.4)

The variance of the output is calculated as a function of the expected reinforcement

for the current input, i.e. (1 = s( f). The function used is a monotonically decreasing,

nonnegative function that also has the property that s(1.0) = 0.0. This means that when

maximum reinforcement is expected, the output will be deterministic, so exploration is

turned off. In this chapter, s is defined to be

Note that one problem with this function is that exploration is never turned off if

it is not possible to achieve an average reinforcement of 1.0; in other words, if perfect

performance can never be achieved for the control task, exploration is never turned off.

The activation of the unit is now given as a random variable, drawn from a Normal

distribution with mean J1, and variance (1: aCt) = N(J1" (1). Finally, the activation of the

unit is passed through a squashing function to generate the output; the usual sigmoid f
was chosen here, where

fez) 1
1 + e-Z

THE SRV LEARNING RULE

Conceptually, the SRV learning rule is very simple. There are two sets of parameters

to be adjusted: the <l>i that are used to estimate the expected reinforcement, and the OJ

that generate the output. The learning rule for the <l>i is straightforward. For a given

input, we want to estimate the expected reinforcement. As the current reinforcement is

an unbiased estimate of the expected reinforcement, we can just use the usual supervised

learning with the current reinforcement as a target value:
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where (3 is a learning rate, and

~.p(t) = r(t) - f(t)

The learning for the agents output is a little more involved. Basically, the principle

behind the algorithm is simple. If the output of the unit is higher than its mean value

(as calculated by the weighted sum of inputs), and the reinforcement received is higher

than expected, then the mean output should be increased. Conversely, if the reinforce-

ment is lower than the expected value, then the output should be reduced. Essentially,

the algorithm forms an estimate of the correlation between perturbations in output and

perturbations in reinforcement. Here is the weight change rule:

where a is the learning rate, and

dw(t) = (r(t) - f(t)) [a(t) U(tt<t) 1
In practice, the denominator in 6.5 has a small constant added to prevent the weight

change diverging as the variance of the unit approaches O. So far, a simple linear net has

(6.5)

been assumed with one output unit. For a network of SRV units, the same reinforcement

signal may be used to update the weights for all the units. Alternatively, we may use SOITH'

form of credit assignment to attempt to separate out the differing contributions made by

the different units.

It is a straightforward matter to extend this linear controller to a feedforward net , and

this setup was used in (Gullapalli et al., 1992) to learn a peg-in-hole insertion task for an

industrial robot. The controller was a multilayer feedforward net, with SRV units forming

the output layer. The SRV learning rule specifies how to change the top layer of weights,

and the procedure may be thought of as calculating error derivatives for the output units

(with a change of sign: the gradient of expected reinforcement is in the opposite direction

to the gradient of expected error). Standard backpropagation is then used to obtain error

derivatives for the other layers in the controller.
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Under certain circumstances, it can be shown that the SRV rule does in fact form

an unbiased estimate of the gradient of the expected reinforcement, in which case the

formulation is exactly that used to derive the backpropagation procedure. The only dif-

ference is that the algorithm performs gradient ascent of expected reinforcement, rather

than gradient descent of a cost function.

In the basic SRV scheme described above, there is no modelling of the plant at all. In

that case, the introduction of motor programs is completely straightforward, as the goal of

the reinforcement learning is still to control an unmodelled, nonlinear system. All that has

changed is that the system is now the coupled motor program-plant system. Of course, the

motor programs may have a large effect on the difficulty of this control problem; whether

or not the control problem is made easier depends on the dynamics of the plant, the motor

programs, and the reinforcement task itself.

6.5.2 The evaluation function

Reinforcement learning involves the optimisation of an index of performance, or evaluation

function. Most of the problems considered in the reinforcement learning literature have

been relatively simple, and so the problem of designing an evaluation function does not

usually arise. In the present experiment, the reinforcement function measures how close

the relative phases are to the target relations. In practice, this means that the ePG is

started from random initial conditions, and simulated for a fixed amount of time. This

time period allows the system to settle down, and then the relative phases are measured

over the last complete oscillation in the integration period. The measurement of relative

phase was performed in a very simple way, by noting the times at which the oscillators'

outputs crossed a threshold; the dynamic range of the oscillators was relatively consistent,

so choosing such a threshold was straightforward. Taking oscillator 1 as being the origin,

and assuming that all oscillators show the same frequency of oscillation, the output of the

system is just the phase of oscillators 2, 3 and 4 relative to 1.

In all these experiments, the integration period was fixed at 3.0 .5, which corresponds

to 3000 integration steps. The random initial conditions were produced by setting each of

the 12 state variables ( there are 3 per oscillator) to a random number in the rangc [0 : 1].
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Evaluation is the process of assigning a score to a particular set of values for a, f, k} and

k2• The relative phase of the last complete oscillation is taken to be the output of the

system. The target gait is described as a set of ideal relative phases, and so the evaluation

function is just given by 1 - dist, where dist is the unsigned distance from the actual

to the target phase, summed over oscillators 2, 3 and 4. The evaluation function is then

scaled to lie in [0: 1]. Some settings of the parameters are able to completely destroy the

oscillations altogether; this is given an evaluation of 0.0.

Where the parameters a, f, k} and k2 are set by a reinforcement agent, this evaluation

comprises the training data. This whole process, involving the integration of 12 equations

over a few thousand steps, corresponds to one learning epoch. This makes the learning

procedure very computationally demanding; a training run of 50 000 iterations takes

approximately a day on a 700 series HP workstation.

The evaluation is a function of the parameter settings used, i.e. the outputs of the

reinforcement agent. This function is inherently noisy, and is also rather complex. The

noise arises from the fact that the particular parameter settings do not uniquely specify

the actual gait that will be produced, as there is a dependency on other variables. In

the case of converging from random initial conditions to the target gait, the initial con-

ditions themselves partly determine which gait is actually produced, so one combination

of parameter values maps onto a set of gaits. The characteristics of this set differ from

gait to gait, with some gaits being produced more reliably than others. There is also a

dependency on the relative phase of k1sin(k2t), the periodic component of the driving

signal. All of these state-dependent effects are unmodelled by the reinforcement agent.,

and so they appear as noise added to the evaluation function.

Reinforcement learning is able to optimise noisy evaluation functions, but the evalua-

tion function still needs to be informative. We may call an evaluation function informative

if it supplies a gradient that informs the controller about how far it is from the solution. An

example of a non-informative function would be one in which the goal state corresponded

to an evaluation of 1.0, and all other states received 0.0. This kind of optimisation prob-

lem is a 'needle in a haystack', as the controller receives no information about the relative

worth of any of the states until it reaches the goal, which it must do by a random walk.
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Perhaps a worse case would be one in which non-goal states were assigned a variety of

evaluations, but not in a way that supplied a gradient towards the goal. This case would

be worse because it is likely to produce local minima, which would make the learning

performance worse than a random walk.

In the present case, it is not clear whether the evaluation function will be informative

or not. Consider the case in which the optimal parameters for a desired gait actually

produce a set of gaits, with the target appearing so much of the time, and the others the

rest of the time. The evaluation of that parameter set is just the expected reinforcement,

averaged over the set of produced gaits. One way in which evaluation could be informative

is if the frequency of occurrence of the target gait falls off as the parameters move away

from their optimal values. This will provide a gradient in the evaluation function, at

least in some region around the goal. One possible source of deception for learning would

be if the incorrect gaits received very low evaluation, but there was some other gait,

also incorrect, which would receive a higher evaluation, and could be produced more

reliably. This would mean that the parameters that produced this incorrect gait would

receive a higher evaluation than that which produces the correct gait. One simple way to

reduce this effect is to treat all incorrect gaits equally; this is approximated in the current

experiments by raising the evaluation to some positive power; the value 2 was used ill

these experiments. As this function is bounded by 0,1, it's square is a function which

gives more discrimination to the high values, while low values are compressed together.

Using larger values would tend to introduce the 'needle in a haystack' problem discussed

above.

These problems arise because there is no natural distance metric for gaits, and the

relative phase relations that are used to measure the gaits may have a very complex

relationship with the parameters. One final problem is that coupled oscillators typically

take a certain amount of time to settle into a stable phase relation, and this relaxation

time also varies between the gaits. All of these factors serve to make this a very hard

reinforcement learning problem. On the other hand, the theory describing the behaviour

of these systems is very complex, and is generally not informative about which parameters

produce which gaits. In this case, some kind of optimisation method is required, and it
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I Walk I Trot I Bound I

0.29 0.10 0.91 Mean Evaluation

0.33 0.13 0.16 Evaluation s.d.

0.07 0.0 0.82 Percent Correct

FIGURE 6.3. Performance of the parameters from the Collins study
on the Walk, the Trot and the Bound. The percent correct scores
are given by applying a threshold of 0.9 to the actual relative phase
relations; if the relative phases were within 90 percent of those for the
ideal gait, the output was counted as being correct

seems reasonable to assume that biological systems are also using optimisation to set

parameters. Some of the parameters of biological oscillator systems are hard-wired by

evolution, but others are likely to be optimised during the animal's lifetime, to cope with

body growth and damage.

6.6 Reinforcement Learning of Gait Production

The performance ofthe parameters from Collins (1994) on three gaits is shown in table 6.3.

These results represent the evaluation of the system as it is started with random initial

conditions (each state variable randomised in [0:1]), and run for 3 sees. This process is

repeated 1000 times. The percent correct scores are given by an accuracy criterion of 90

percent; if the evaluation is above 0.9, the gait is counted as being correct.

It is immediately clear that there is a large difference between the gaits, with the bound

being by far the most reliable, followed by the walk, and then the trot. These performance

measures serve to give a baseline against which a reinforcement agent may be judged.

An SRV controller was trained on same task. There are two ways to set up this task,

either as an associative learning problem, or a non-associative one. Associative learning

tasks are those in which the optimal outputs of the learning system are a function of the

inputs. Non-associative tasks are those in which the ideal output is given without reference

to any input. Most of the work in the reinforcement learning literature is concerned with
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associative problems, as the actual reinforcement task is usually quite simple. This means

that most of the difficulty of the task arises from elements of pattern recognition on the

inputs. If the control problem is very complex, non-associative tasks can be very difficult

in their own right.

A non-associative version of the gait production task entails training a controller on

just one gait. The controller is a set of SRV units that take no inputs (other than a bias

term of 1.0), and give 4 outputs, which are used to set the values of a, f, kl and k2• Three

such controllers were initialised with random weights (i.e. random values for both the 4>

and the () parameters from equations 6.3 and 6.4). The learning rates for these weights

were fixed at 0.1, with momentum terms of 0.2 for all the weights. Each controller was

trained for 50 000 epochs.

6.6.1 Results

Learning curves for three controllers on the bound, trot and walk are shown in figures

6.4(a), 6.4(b) and 6.4(c) As with the hand-picked parameters, the bound gait is seen to

be far easier to learn than the other two. The actual performance of the ePG parameters

found by learning is shown in table 6.5. The performance of a controller is given by setting

the variance of the output to 0.0, i.e. removing exploration altogether. The mean outputs

are then used to set the parameter values in the ePG system, and the parameters are

assessed in the same way as the hand-picked values; this involves simulating the CPG

system with those parameters for 1000 samples.

6.6.2 Discussion

The poor performance on the walk and trot gaits suggests this is a difficult learning task;

only the bound shows any kind of convergence. The difficulty of the control task has

several sources; probably the most significant is the complexity of the CPG dynamics.

If the ePG output depends sensitively on the values of the parameters, then the learn-

ing task for the controller becomes very hard. This is particularly true for this kind of

reinforcement agent, where the control outputs are random variables. Such a controller

estimates the way expected reinforcement varies with control actions, but the resolution of
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FIGURE 6.4. Learning performance of three SRV controllers 011 the
a) bound, b) trot and c) walk. The axes of all the plots are identical:
the y-axis represents reinforcement received, with :1.0 corresponding to
perfect performance, and the x-axis denotes learning iteration
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I Walk I Trot I Bound

0.04 0.13 0.05 0.16 0.09 0.14 0.95 1.0 1.0 Mean Evaluation

0.06 0.14 0.08 0.19 0.06 0.17 0.05 0.01 0.01 Evaluation s.d ,

0.0 0.0 0.0 0.0 0.0 0.0 0.86 0.99 0.99 Percent Correct

FIGURE 6.5. Performance of the parameters from reinforcement
learning on the Walk, the Trot and the Bound. Each column shows
three numbers, one for each of the controllers. The percent correct
scores were given by applying the same criterion of 0.9 to the a.ctual
relative phases; relative phases within 90 percent of those for the idea.l
gait were counted as correct

this estimate is limited by the variance of the output, and so an evaluation which changes

rapidly with controls will be difficult for the controller to deal with. As was noted earlier,

the reinforcement agent is also attempting to learn a control problem with incomplete

information, in that the initial state of the CPG is not given as input.

One way to estimate the complexity of these dynamics is to explicitly model them with

a plant model. The learning performance of this model gives some idea of how sensitively

the plant behaviour depends on its previous state; an accurate model may also be used to

supply more informative training information to the controller (see section 1.4.2).

6.7 Modelling the plant behaviour

A key issue with plant models concerns their scale of analysis. In control theory, systems

are usually described at the level of the state equations, i.e. at a fine level of detail.

However, in motor control problems, modelling may be performed at a variety of scales.

Consider again the walking system in (Taga et al., 1991). The dynamics of the combined

controller /plant are such that there is a simple relation between the descending control

signal (one dimensional) and the speed of movement. This is despite a large variation in

the co-ordination patterns of the legs, including a gait transition. In such a case, thoro

seems little point in building a model which deals with the fine scale behaviour of tho

plant. Modelling at this more abstract level is simpler, but it is also more behaviourally
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relevant, since the desired behaviour is more likely to be defined at this level.

This kind of abstract modelling approach is likely to be useful for a range of motor

control tasks. However, there are problems with this approach that do not arise in more

fine-scale models. The main problem is that the mapping captured by the model may only

be well-defined in some parts of the state space. In the walking example above, very large

values of the descending control could well destroy the oscillatory activity of the CPGs, in

which case the behaviour is stopped completely. In this example, where the control signal

is one-dimensional, it is probably straightforward to limit the range of inputs so that this

does not happen. In multidimensional cases, this may not be so easy, as there could be

sets of values which disrupt the behaviour, and the set of inputs which produce the correct

behaviour may have a complex shape. In fact, walking is probably the most difficult of

locomotion techniques, because it is relatively easy for the system to lose stability, whereas

in flying and swimming supporting the body is more straightforward.

For the coupled oscillator system, a model is built which predicts the relative phases

of the outputs. There is a choice to be made about the inputs to the model; the discussion

above suggests that a useful set of inputs would be the outputs of the controller, i.e. the

parameters a, f, kl and k2• Again, the effects ofthe initial conditions are treated as noise.

However, a baseline performance for such a model has to be a more complete model, which

takes all variables into account. Building a simplified model only really makes sense if this

more complete mapping is able to be approximated; to put this another way, it only makes

sense to ignore independent variables in a regression if the regression can be performed

with all the independent variables. Consequently, the first plant model considered took as

input all the information required to predict the behaviour of the plant: the parameters

a, j, kl and k2' the initial conditions, and the relative phase of kl sin( k2t).

The model is trained at the same time as the reinforcement agent, so the data used

to train the model is a function of the behaviour of the controller. This means that the

controller and the model are tightly coupled in their operation. An accurate model is able

to supply more informative training information to the controller, but the controller is

(potentially) able to restrict the training data for the model to those areas in which the

mapping is relatively simple. This last point arises from the fact that the mapping approx-
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imated by the model is closely related to the evaluation function itself. It seems reasonable

to assume that maximum reinforcement is received in those areas which reliably give high

reinforcement, which are likely to be the areas in which the mapping approximated by the

model is simpler.

The model itself is implemented as a feedforward network, with 32 hidden units. The

weights were initialised from a normal distribution with mean 1.0 and s.d 0.5. A learning

rate of 0.2 was used, with a momentum value of 0.5. The model has a total of 17 inputs:

the initial conditions (12 variables), the 4 parameters set by the controller, and the relative

phase of ktsin{k2t). The outputs are just the predicted relative phase of the CPG system,

at the end of the integration period.

6.7.1 Results

Learning curves for the model are shown in figs 6.6{a), 6.6{b) and 6.6(c). Somewhat

surprisingly, the model is unable to learn the CPG dynamics in the trot and walk gaits.

The learning curves for the model seem to show the same instabilities as those for

the reinforcement agent, with positive and negative periods of learning for both systems

occurring at the same points. The mapping approximated by the model is deterministic

_ given the parameters set by the controller, and the set of initial conditions, the relative

phases are completely determined. However, the complexity of this mapping varies hugely

in different regions of the CPGs parameter space. For some parameter settings, the

dependence of relative phase on the initial conditions is quite critical; in other parameter

regions, the dependence is relatively insensitive. These factors mean that learning problem

for the model is extremely hard, as is the reinforcement task itself.

The fact that the plant model is unable to learn the CPG dynamics (except in the

bound) suggests that the poor performance of the controller is due to the complexity of

the dynamics, rather than the use of reinforcement learning. It could be the case that

other settings of the oscillator's couplings Aij could be found which gave more tractable

dynamics. To investigate this, the controller was given four additional outputs which set

the values of the four Aij.
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FIGURE 6.6. Learning curves for three plant models on the a) bound,
b) trot and c) walk. The y-axis represents RMS error of the model,
so perfect prediction now corresponds to a value of 0.0; the x-axis
denotes learning iteration. The models are trained concurrently with
the reinforcement agents; each model takes as input, the initial state or
the oscillator system, together with any patarn.ete rs set by the agent
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6.8 Increasing the Power of the Controller

Consider again the equations describing the CPG dynamics, equations 6.2 and 6.1. The

CPG system is basically symmetric: if the individual oscillators are started with identical

initial conditions, they will track each other exactly. Gait production is a symmetry-

breaking phenomena, in which small differences in the oscillators states are exaggerated,

until the system falls into a stable pattern. Part of the symmetry in the system comes

from the couplings Aji. One obvious way to enhance the power of the controller is to let

the controller set these couplings. Varying the values of the weights breaks the symmetry

of the CPG system, and may lead to improvements in learning. It could be the case

that quite small differences between the values of the couplings are enough to change

the behaviour of the system, and that it is only when the values become identical that

symmetry breaking becomes such a problem. In this case, asymmetric weights are probably

a better approximation to the biological reality, as it would seem unlikely that evolution

is able to exactly specify the values of synapses.

On the other hand, giving the learning agent control over the couplings increases the

dimensionality of the outputs, and each of those outputs has to be optimised with the

single reinforcement value. In general, optimisation from a single evaluative signal is

expected to become harder as the output size increases, as estimation of the gradients for

all the outputs requires estimating the parameters of a multidimensional distribution.

The 3 gaits were learned again, using an SRV controller with 8 outputs. Again, a plant

model was learned simultaneously; this model had four additional inputs, corresponding

to the four couplings now under the control of the SRV agent.

6.B.1 Results

The learning curves for these controllers are shown in figures 6.7(a), 6.7(b) and G.7(c).

Table 6.8 gives the performance measures for the final sets of learned parameters. The

mean evaluation of the walk has improved, but the correct gait is still never prod uced. ThC'

performance of the bound has actually decreased; having control over the couplings has

increased the dimensionality of task without reducing the complexity of the problem, For
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the trot gait, the performance has improved greatly. In all three runs, learning converges

on values of the couplings that are nearly identical. These consist of two positive values,

and two negative.

The learning curves for the plant models are shown in figures 6.9(a), 6.9(b) and 6.9(c}.

As with the fixed couplings, the model and the controller seem to show related perfor-

mance; there do not seem to be regions in which the model is able to learn when the

controller is not.

These considerations lead us to the following conclusion. Control of this system of

coupled oscillators is a difficult task, due to the complexity of the system dynamics. This

complexity seems to vary a great deal in parameter space (i.e. the parameters of the

CPG); in some regions, the dynamics are relatively simple. These are the regions in which

the plant model is able to learn; they are also the regions in which the controller is able>

to optimise its reinforcement function. In other regions, the dynamics are very complex,

and both the controller and the model fail to learn. The reason this is surprising is that

the model has access to the entire state of the plant, so it would be expected that its

learning could proceed when the controller's could not. That this is not the case suggests

that the ePG dynamics are of an all-or-nothing nature; either they are simple, or they

are extremely complex.
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FIGURE 6.7. Learning performance of three SRV controllers on the a]
bound, b) trot and c) walk. The y-axis represents reinforcement; the
x-axis shows learning iteration. In this case, the reinforcement a.gent
had control over the four couplings in the oscillator system, in addition
to the four parameters a, j, kl and k2
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Walk I Trot Bound

0.33 0.30 0.30 0.98 0.93 0.92 0.86 0.92 1.0 Mean Evaluation

0.02 0.03 0.02 0.04 0.03 0.04 0.08 0.03 0.0 Evaluation s.d.

0.0 0.0 0.0 0.95 0.90 0.86 0.18 0.83 1.0 Percent Correct

FIGURE 6.8. Performance of the parameters from reinforcement
learning on the Walk, the Trot and the Bound. In this case, the
controller also sets the values of the couplings between the oscillators.
Each column shows three numbers, one for each of the controllers
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FIGURE 6.9. Learning curves for three plant models on the a) bound,
b) trot and c) walk. Plots show RMS error of the model on the .Y-
axis; the x-axis represents learning iteration. The models a.re trained
concurrently with the reinforcement agents; each model takes as input
the initial state of the oscillator system, together with any pararneters
set by the agent. In this ca.se, the controller also set the va..lue or the
couplings between oscillators



6 Direct Motor Control and Reinforcement Learning 162

6.9 Conclusions

In this chapter, reinforcement agents have been considered as controllers. In contrast to

indirect methods, the outputs of reinforcement learning agents can have arbitrary effects,

as these effects are unmodelled. One particular kind of control action is to set the param-

eters in another system, and this gives a very flexible way to build control architectures

containing CPGs.

The experiments reported here consider the use of a system of coupled nonlinear os-

cillators as the CPG, with parameters set by the outputs of a reinforcement agent. This

agent was trained to produce a set of gaits, or relative phase patterns, from random initial

conditions. For comparison, a feedforward net was trained as a model of the CPG dynam-

ics; this model took as input all the information required to completely predict the CPG

behaviour. The role of the model is to approximate a well-defined mapping, whereas tho

controller had no access to state information, and so the effects of the randomised initial

conditions appeared as noise in the evaluation function.

A baseline measure of performance is given by a set of hand-picked parameters from

Collins and Richmond (1994). The reinforcement agent is unable to learn the walk OJ' tho

trot gait, but finds a set of parameters which produce the bound more reliably than tho

parameters from the Collins study. The results also show that the model is unable to learn

the CPG dynamics much of the time. The learning performance of the model was also

seen to coincide with that of the controller - either they both learned, or neither of them.

A more powerful controller was also used, which was able to modify the values of the

couplings between the oscillators. In walk gait, there was a modest increase in performance

over the simpler controller. In the case of the bound, performance with the simpler

controller was close to optimal, and allowing control over the couplings was seen to red \ICC

performance. In the trot, the performance was greatly improved, and learning conv<'fgf'(1

in all three runs to a set of couplings with two positive values, and two negative.

The fact that the model and controller showed related performance is int.er('sting,

particularly in light of the fact that the model had access to complete information about

the plant state, and so was approximating a well-defined mapping. The dynamics of tho

oscillator system seem to vary enormously in complexity over its parameter span', with
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some regions showing a simple dependence on the parameters, and the dependency in

other regions being critical.

This chapter has considered the use of systems of coupled oscillators as a complex kind

of CPG. The particular system chosen is probably not ideal, as the dynamics have been

shown to be particularly complex, and other systems may exist which may be driven more

easily to the various gaits. Nevertheless, it has been shown that reinforcement learning can

be an effective method for setting parameters in complex systems. As a result, a rather

simple learning agent may show very complex behaviour, by virtue of the complexity of

the CPG dynamics.



7 Conclusions and Discussion

This thesis has been concerned with the use of recurrent neural networks for motor control

tasks. Throughout this work, modular networks have been considered, which bear a

resemblance to the hierarchical structures seen in biological control systems. The current

chapter reviews the results of the experimental studies, and discusses where this work

might be taken further.

7.1 Results of Experimental Studies

7.1.1 Recurrent Networks and Motor Pattern Generation

Chapter 4 considered training recurrent networks for generating temporal patterns. Net-

works were trained on fixed and variable oscillations, and it was seen that learning suffers

from instabilities. Learning of a single pattern can be improved through the use of simple

methods for setting learning rates for the network parameters. Learning input-dependent

patterns is more difficult, and the use of modular architectures was considered. This in-

volved the design of a smaller network, called a CPG by analogy with biological systems,

which was subsequently used as a fixed component in a larger network (the other part

is called the controller). Related work in the field has typically taken the approach of

training a single network on a series of tasks, gradually increasing the task complexity

during learning (Giles et al., 1992; Elman, 1993). The work reported here is a different

method for achieving the same goal of improving trainability of recurrent nets.

Two methods for building CPGs were discussed: training the CPG on a related, but

simpler task, and using a Genetic Algorithm. Both methods were shown to improve

learning performance compared to training a single network, with the GA giving the best
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performance of all. The goal of the GA was to find networks which maximally improved

the learning of another network, so the GA is seen as optimising a complex function of the

CPG's weights. It is of interest that this experiment works as well as it does, because it

shows how it is possible to optimise networks which function as a part of a larger system.

GAs have been used by other researchers to build neural networks, including recur-

rent nets (Beer and Gallagher, 1992; Floreano and Mondada, 1995). The work reported

here considered the use of GAs to build networks which operate as components within a

larger system. This is an interesting optimisation problem, because the GA is required

to optimise a network without having the other parts of the system specified. The fact

that this experiment worked as well as it did is of interest, because it suggests that GAs

are capable of optimising complex functions of a network's weights, and thus able to find

structures with rather general properties.

Finally, chapter 4 discussed the use of feedforward networks in feedback loops with

recurrent networks. This offers one way of decreasing the complexity of the controller,

and changing the relative contributions of the controller and the CPG. The backpropa-

gat ion procedure for this case was discussed, and this procedure shown to be effective at

training the simplified controller on a variable oscillation task. It was also demonstrated

that backpropagating through systems with complex dynamics can lead to difficulties in

learning, when the system output is far from the target trajectory.

The main conclusion from this chapter is it is straightforward to impose structure on

the network architecture, and that this offers a powerful way of constraining the network

dynamics. Such constraints can serve to improve the stability and performance of learning.

7.1.2 Learning Control with Motor Programs

In chapter 5, recurrent networks were used as control systems for a simple simulated

robot arm. The first set of experiments involved the network making sequential reaching

movements, in which the endpoint of the arm was to touch a series of buttons. Modular

architectures were again used, with the ePG component built by learning on a simpler

task, and by a GA. Recurrent networks are strongly coupled systems, in which the activity

on one unit is usually strongly dependent on the activity of the others. One consequence of
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this is that the system shows a degree of co-articulation by default, which serves to make

movements smooth and well coordinated. The use of CPG systems is shown to improve

learning performance, at least for these simple tasks.

A further set of experiments used a robot with two arms, which introduces a different

kind of redundancy. It was shown that modular architectures enable the different parts

of the control task to be de-coupled, so that the controller is able give outputs which are

independent of the particular arm to be used. Finally, control of a dynamic robot arm

was considered, and it was seen that a low-level feedback controller may be driven with a

higher open-loop system, much as biological muscles implement simple feedback loops.

Other reseachers have investigated the use of motor programs for motor control prob-

lems, but these have usually been static structures, which have been hard-wired in advance.

For example, the work of Lipitkas et al (Lipitkaa et al., 1992; Lipitkas et al., 1993; Bock

et al., 1993; Bock et al., 1996) implements the motor programs as waveform generators,

which map a static representation of the movement into a time series of torques for the

arm. The approach taken here is more general, in that the controller may modify the

activity of the motor program during the movement, and it is also straightforward to

implement feedback control in this scheme. The cost of this increase in power is that

recurrent backpropagation is used, a more complex form of learning than the feedforward

learning rules used in the work of Lipitkas et al.

7.1.3 Direct Motor Control and Reinforcement Learning

Chapter 6 considered the use of reinforcement learning agents for motor control tasks.

Reinforcement learning often requires very long training times, due to the lack of gradient

information. One way to approach the learning of difficult control problems is to enhance

the complexity of the controller's actions; this is the general role of the ePG systems dis-

cussed throughout the thesis. One benefit of using reinforcement learning over supervised

techniques is that the controller's outputs can have arbitrary effects, as these effects are

never modelled. In chapter 6, controllers are used whose actions set the parameters of a

system of coupled oscillators; the controller is then trained to drive the oscillator system

to a set of gait patterns.
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The paricular system studied is a set of coupled oscillators proposed by other re-

searchers as a possible mechanism for the generation of quadrupedal gaits (Collins and

Richmond, 1994; Yuasa and Ito, 1990). In (Collins and Richmond, 1994), the free pa-

rameters of the model were chosen by hand, and the resultant system seen to be able to

generate plausible gaits and gait transitions. Chapter 6 considers a learning agent which

sets the values of these free parameters, and uses a measure of the correctness of the re-

sulting gait to improve its performance. On the one hand, this can be seen as an attempt

to automate part of the modelling procedure, when there is no clear way to use a regres-

sion technique. However, this work is also an investigation into learning in reinforcement

agents with motor programs, which is closely related to structural shaping methods, and

'chunking' in A.1. architectures (Iba, 1989).

The learning performance on this task is shown to be rather poor, with only one gait

being produced reliably. The reinforcement agent is attempting to control a system with

complex dynamics, and the complexity of those dynamics was investigated through the

use of a plant model. This model was trained with complete information about the state

of the oscillator system, so the learning task is to approximate a well-defined function.

Despite this fact, the model also shows poor performance, and learns successfully only in

those situations that the controller also learns.

A second set of experiments involved increasing the power of the controller, setting

the values of the couplings between the oscillators by the controller's outputs. This is

seen to have a mixed effect on the performance: the trot gait, which was not learned at

all in the first experiment, was seen to be produced reliably. However, in the case of the

bound, which was produced nearly perfectly in the previous experiment, the performance

deteriorated.

As with the first experiment, a plant model was trained concurrently with the con-

troller, and again, the model and controller showed related performance. The fact that

the model is only able to learn at the same points as the controller is interesting, and

suggests that the complexity of the plant dynamics varies widely in parameter space. The

dynamics are relatively simple in some regions, and both the controller and the plant are

able to optimise their behaviour. In other regions, the dynamics are complex, and neither
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system is able to learn.

The main conclusion from this chapter is that the concept of a motor program, or

a CPG system may have particular utility for reinforcement learning, in which difficult

control problems may result in unacceptably long training times. CPGs have the effect

of increasing the complexity of the controller's actions, and the model-free nature of re-

inforcement learning means that those actions may have arbitrary effects. This makes it

possible to design simple controllers which produce complex behaviours, a fact which has

particular significance for the learning of motor control.

7.2 Suggestion for FUtureResearch

There are a number of directions in which this research might be extended. The CPGs

used in the present thesis have a variety of sources, from learning, Genetic Algorithms,

and mathematical models of gaits. A fruitful line of research might be to use data from

physiological studies of invertebrate circuits to build these systems. These ePGs could

then be used as components in a larger system, which is tested on complete motor tasks.

The attraction of such an approach is that it gives an alternative way to try to understand

the computational role of different motor circuits. There is a wealth of data on invertebrate

motor circuits, but its interpretation is problematic because there is no clear relation to

the computational demands of the tasks which animals have to solve.

Computational studies offer a different approach to this problem, and ePGs give a

way of including knowledge of the physiology in an artificial system, and may help us

understand the interaction between the motor circuits, and the rest of the animal's nervous

system and body. In other words, this gives a way of moving from 'fictive' motor patterns,

to systems producing adaptive behaviour.

The experiments in chapter 5 were concerned with very simple tasks, and used a

simple simulated robot. It would be very interesting to see if these ideas are useful for

the control of real robots, which would involve dealing with many difficult problems not

addressed here. Perhaps the most interesting problem would be the control of walking

systems, which seems to involve very delicate co-ordination of pattern generating elements

and sensory feedback. The use of modular architectures seems a promising approach for
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such problems, and gives a way of incorporating varying amounts of prior knowledge, and

having learning occurring at selected points in a system.
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