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ABSTRACT 

Methods for global and local Sensitivity analysis are 

designed to identify and rank variables importance 

for each design objective and constraint. This paper 

investigates the application of local sensitivity 

analysis to a set of Pareto optimum solutions 

resulting from the multi-objective minimization of 

energy use and capital cost, with occupant thermal 

comfort acting as a constraint. It is concluded that the 

local sensitivities vary along the trade-off and that 

these sensitivities are different to the global 

sensitivities. Different sensitivity behaviour is also 

observed both along the Pareto trade-off and between 

variables. 

INTRODUCTION 

Sensitivity analysis (SA) has been widely applied in 

the performance design of buildings, to identify and 

rank variables importance in the design objectives 

and constraints. For instance, it has been used to 

evaluate the influence of design variables on the 

performance of HVAC (heating cooling and air-

conditioning) systems (Struck et al., 2008), on the 

summer overheating risk in the naturally ventilated 

buildings (De Wit and Augenbroe, 2002; Breesch & 

Janssens, 2005), and on the mould growth risk in the 

real-life buildings (Moon and Augenbroe, 2005). 

The various sensitivity techniques can be grouped 

into global and local forms (Saltelli et al., 2000). A 

global SA is often based on a linear regression model 

of the sampled solution space whereas a local SA is 

conducted in a similar way to numerical differencing, 

where each variable is incremented by a pre-defined 

amount to evaluate its impact on a given problem 

uncertainty (Saltelli et al., 2000; Dominguez-Munoz 

et al., 2010; Breesch and Janssens, 2005). 

Building performance design is an inherently multi-

objective process, which has led to research into the 

applications of model-based multi-objective 

optimization that identifies the Pareto optimum trade-

off between two or more conflicting design 

objectives (e.g. minimized energy demand and 

capital costs, against maximized thermal comfort) 

(Brownlee and Wright, 2012).  

According to previous research in the field of 

building performance design (Evins, 2013), very 

little sensitivity research has been conducted in 

relation to multi-objectives building. Fesanghary et 

al. (2008) use the global SA to reduce the number of 

problem variables for the optimization. Yoshida et al. 

(2007) use the local SA to explore the future trend of 

the energy supply systems for hospitals, based on 

their typical (optimum) condition found from 

optimization. Wright et al. (2012) state that, to 

improve computational efficiency, solutions obtained 

from optimization can be re-used to compute global 

sensitivities of variables.  

This paper extends previous research by 

investigating: 

 The extent to which the local sensitivities 

vary across a Pareto optimum trade-off 

between energy use and capital cost. 

 The extent to which the local sensitivities 

differ from the global sensitivities. 

SENSITIVITY METHODS 

Global sensitivity analysis:  

Quantitative measures of variables global sensitivity 

are usually based on a linear regression model in the 

stepwise manner (Saltelli et al., 2000). Robustness of 

the approach is dependent upon the choice of 

procedure options (e.g. sample size, data form, 

selection approach and selection criterion). 

According to Wang et al. (2013), a stepwise 

regression with the use of bidirectional elimination, 

rank transformation and Bayesian information 

criterion (BIC) can be used to rank the most 

important (sensitive) variables fast and accurately. In 

particular, the use of rank-transformed data can 

mitigate against the problems associated with fitting 

linear models to nonlinear data, e.g. the analysis of 

solution infeasibility. Thus, the stepwise regression 

with the use of bidirectional elimination, rank 

transformation and BIC adopted here to measure the 

global sensitivities of design objectives and 

constraints to changes in the variable values; the 

analysis is performed using the R statistical 

computing software (V2.15.0; 2012). 

The stepwise regression analysis can provide an 

insight into the relative importance of variables in 

several ways (Saltelli et al., 2000). The more 

important the variable is, the earlier the entry into the 

linear regression model; the larger the absolute value 
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of standardized rank regression coefficient (SRRC); 

the larger the contribution to model R2 change (the 

coefficient of determination). If there is no 

correlation between variables, the entry-order of 

variables, the order of variables SRRCs and the order 

of variables contribution to R2 changes are identical, 

indicating the same rank-order of variables 

importance for a certain output. In this study, both 

variables SRRCs and entry-orders are used to 

indicate variables global sensitivities for each of 

design objectives and constraints.  

For a sample size of 100 and above, the difference in 

the results from different sampling methods becomes 

slight. For building simulation applications, it is 

feasible to use a simple random sampling method 

with approximately 100 samples (Macdonald, 2009; 

Lomas and Eppel, 1992). Thus, the global SA is 

performed here using 100 random samples. 

Local sensitivity analysis  

In this study, the local SA is performed on all 

solutions from the Pareto optimum trade-off, this 

indicating the extent to which the sensitivity varies 

across the optimized solutions. The Pareto optimum 

solutions form the base-point solutions against which 

the variable values are incremented by a pre-defined 

step both positively and negatively from its base-

point value. If the base-point value is on the bound of 

a particular variable, there is only one direction in 

which to increment the value (away from the bound 

and towards the defined search space). The total 

number of ‘incremented solutions’ used to perform 

local SA is in the range of (Nvariables × Mbase_point) 

to (2 × Nvariables × Mbase_point), where Nvariables is 

the number of variables; Mbase_point is the number of 

the base-point solutions along the energy-cost trade-

off. Given that the mixed representation and number 

of increments of the variables, some “categorical” 

variables providing an index to a construction type 

(Table 1), the increment used in the local SA is taken 

to be one incremental value (Table 1) for all 

variables. The ensures that the local sensitivities 

represent the smallest possible values for all 

variables.  

The local sensitivity of a design objective (i.e. the 

energy demand and capital costs) to the change in a 

variable value (diffy) is reported here as a percentage 

change in the objective function value (yincrement) in 

comparison to the base-point objective value 

(ybase_point): 

diffy = (
yincrement − ybase_point

ybase_point

) × 100%           (1) 

The local sensitivity (diffy) can be negative, when the 

objective function value is reduced with a positive 

increment in the variable value.  

For solution infeasibility (the design constraint), the 

local sensitivity to the change in a variable value 

(diffInfeasibility) is given as a percentage change in 

the solution’s infeasibility (Infeasibilityincrement −
Infeasibilitybase_point) against the maximum 

infeasibility found from the increments across all 

base point solutions along the trade-off 

(max (Infeasibility)): 

diffInfeasibility

= (
Infeasibilityincrement − Infeasibilitybase_point

max (Infeasibility)
)

× 100%                                                                             (2) 

The local sensitivity of a particular variable for 

solution infeasibility (diffInfeasibility) is normalized 

against the maximum infeasibility from all variables 

increments, rather than that of the base point 

solution, because the infeasibilities of most base 

point solutions are zero.  

The variability of the local sensitivity along the 

objective trade-off is presented graphically using 

box-whisker plots, and for some variables, in more 

detail to illustrate the different kinds of behaviour 

that can occur for the local sensitivities. The local 

sensitivities have been compared to the global 

sensitivities using the mean values of the local 

sensitivities found across the trade-off. 

EXPERIMENTAL APPROACH 

Example building and performance model 

The example building is based on a mid-floor of a 

commercial office building with 5 zones located in 

Birmingham, England (See Figure 1). The size of 

two end zones and three middle zones are 24m x 8m 

and 30m x 8m separately, with floor to ceiling height 

of 2.7m. Each zone has typical design conditions of, 

1 occupant per 10m2 floor area and equipment loads 

of 11.5 W/m2 floor area. Maximum lighting loads are 

set at 11.5 W/m2 floor area, with the lighting output 

controlled to provide an illuminance of 500 lux at 

two reference points located in each of the perimeter 

zones. Infiltration is set at 0.1 air change per hour, 

and ventilation rates at 8 l/s per person. The heating 

and cooling is modelled by an idealised system that 

can provide sufficient energy to offset the zone loads 

and meet the zone temperature setpoints during hours 

of operation (from 9am to 5pm all year around). The 

internal zone is treated as a passive unconditioned 

space. It is simulated through EnergyPlus (V7; 

2011a), with the weather data based on the CIBSE 

reference year (CIBSE, 2002). 

Input Variables, Objective Functions and Design 

Constraints 

16 input variables associated with perimeter zones 

are considered in the sensitivity analysis and are 

optimized (Table 1). The longest facades of the 

building face North (and South), when the 

Orientation is set at 0o. A dead band is used to avoid 

an overlap of the heating and cooling setpoint. The 

window-to-wall ratio refers to the window area of 6 

equal size windows placed in three groups against the 



wall area in each façade (Figure 1), where the names 

of variables reflect their positions in perimeter zones. 

The start and stop times are hours of the day. Three 

construction types are available for external wall and 

ceiling-floor: heavy weight, medium weight and light 

weight. Similarly, there are two internal wall types 

(heavy weight and light weight), and two double-

glazed windows types (plain glass and low-E glass). 

The construction types are index through the use of 

categorical variables, the heavy weight construction 

is corresponds to a value of 0, with the construction 

weight decreasing with increasing variable value. For 

the categorical variable of window type, the values of 

0 and 1 represent the low-E and plain glasses 

separately. 

Table 1  

Input variables  

 

 

 

Figure 1 Example building (Wright et al., 2012) 
 

The design objectives, to be minimised by the 

optimization process, are the building annual energy 

demand (for heating, cooling and artificial lighting), 

and the capital costs (using a model derived from 

cost estimating data). 

The design constraints are that the thermal comfort 

in each of the perimeter zones should not exceed 

20% of predicted percentage dissatisfied (PPD), for 

no more than 150 working hours per annum. The 

constraint functions are configured to return the 

number of hours above 150, or zero if the constraint 

is feasible. The infeasibility of a solution is the sum 

of the squares of each constraint violation (i.e. an 

entirely feasible solution would have an infeasibility 

of zero). 

Optimization algorithm 

The Pareto optimum trade-off between the energy 

use and capital cost has been found using an 

implementation of the NSGA-II algorithm (Deb et al, 

2002), this being used widely to solve bi-objective 

building optimization problems (Brownlee and 

Wright, 2012). The specific implementation of 

NSGA-II is: 

 Gray-coded bit-string encoding of the problem 

variables (163 bits). 

 Uniform crossover (100% probability of 

chromosome crossover with 50% probability of 

gene crossover). 

 Single bit mutation (a probability of 1 bit per 

chromosome). 

 A passive archive of solutions. 

 A population size of 20 with the search stopped 

after 5000 unique simulations. 

The search resulted in 169 optimum solutions along 

the energy-cost trade-off (Figure 2), the 169 being 

taken from the set of all solutions visited by the 

algorithm during the optimization, rather than just 

those in the final population. 

 

 
 

Figure 2 Optimum Trade-off Between Energy Use 

and Capital Cost and Local Sensitivity resulting from 

all Variables 

RESULTS AND ANALYSIS 

The variation in local sensitivity across the trade-

off 

Figure 2 illustrates the Pareto-optimum solutions and 

the local sensitivity of the solutions to perturbations 

in all variables. The blue ‘o’ solutions show the 

Pareto optimum solutions, the green ‘+’ solutions 

perturbations that results in a feasible solution, and 

INDEX INPUT VARIABLES UNITS
LOWER 

BOUND

UPPER 

BOUND
INCREMENT

1 Heating setpoint (
o
C) 18.0 22.0 0.5

2 Heating set-back (K) 0.0 8.0 0.5

3 Dead band (
o
C) 1.0 5.0 0.5

4 Orientation (
o
) -90.0 90.0 5.0

5
North window-wall ratio (-) 0.2 0.9 0.1

6
South window-wall ratio (-) 0.2 0.9 0.1

7
East window-wall ratio (-) 0.2 0.9 0.1

8
West window-wall ratio (-) 0.2 0.9 0.1

9 Winter start time (hrs) 1 8 1

10 Winter stop time (hrs) 17 23 1

11
Summer start time (hrs) 1 8 1

12
Summer stop time (hrs) 17 23 1

13
External wall type (-) 0 2 1

14 Internal wall type (-) 0 1 1

15
Ceiling-floor type (-) 0 2 1

16 Window type (-) 0 1 1



the red ‘x’ solutions, variable perturbations that result 

in infeasible solutions. Since a local sensitivity 

analysis is equivalent to a local search around the 

optimum solutions, Figure 2 also illustrates that the 

Pareto solutions are locally optimal since although 

some perturbations result in solutions having both a 

lower energy use and capital cost, all of these 

solutions are infeasible. 

 

Figures 3 to 5, illustrate the local sensitivity of the 

objectives and infeasibility to each variable (the 

variable index being referenced in Table 1). The box-

whisker plots show the range of variation of 

sensitivity across the Pareto optimum set of 

solutions; the red line is the median value; the box is 

the inter-quartile range; the whiskers are 1.5 the 

inter-quartile range; with other symbols representing 

solutions that lie beyond 1.5 the inter-quartile range.  

 

Figure 3, illustrates the sensitivity of the energy use 

to the variable values. The most important variables 

(variable 1 and 3) are the heating setpoint and 

deadband (the deadband determining the cooling 

setpoint). The floor and ceiling type (variable15) and 

the glazing type (variable 16), are the next two most 

important variables, with glazing type resulting in the 

widest range of sensitivity. 

 

 
Figure 3 Local Sensitivity of Energy Use across the 

Trade-off between Energy Use and Capital Cost 

 

Figure 4, illustrates the range of local sensitivity of 

the capital cost to perturbations in the variable 

values. The range of sensitivity of the capital cost is 

in the order of twice that of the energy use (Figure 3), 

although fewer variables have a significant impact on 

the cost than for energy use. The capital cost is most 

sensitive to the type of floor and ceiling construction 

(variable 15). 

 

 
Figure 4 Local Sensitivity of Capital Cost across the 

Trade-off between Energy Use and Capital Cost 

 

Figure 5, gives the range of sensitivity of the solution 

infeasibility across the Pareto set, infeasibility being 

a function of occupant thermal discomfort. 

Unsurprisingly, the most important variables in 

determining the feasibility of the solutions are the 

heating setpoint and deadband (variables 1 and 3). 

Unexpectedly however, is that the window-wall ratio 

on one façade (variable 5), and the glazing type 

(variable 16), are also important in maintaining 

occupant comfort. 

 

 
Figure 5 Local Sensitivity of Infeasibility across the 

Trade-off between Energy Use and Capital Cost 

 

Figure 6 to 9, illustrate the local sensitivity of 

selected variables along the trade-off between energy 

use and capital cost. A red line indicates that a 

change in variable value results in an infeasible 

solution and a green line a feasible solution. 

 

Figure 6, illustrates the sensitivity due to 

perturbations in the heating setpoint, this variable 

having the highest (local) impact on energy use. This 

“distance variable” (Brownlee and Wright, 2012), 

causes a shift in position of the trade-off, but all 

solutions that result in a lower energy use and capital 



cost are infeasible (red line). The sensitivity is also 

biased in the direction of energy use. 

 

 

Figure 6 Local Sensitivity due to the Heating 

Setpoint (Highest Ranked in Energy Use) 

 

The floor-ceiling type is the most important variable 

in terms of the capital cost. Locally to the Pareto 

solutions, changing the floor-ceiling type always 

results in a feasible solution, but significantly 

increase the capital cost of the building (Figure 7). 

 

Figure 7 Local Sensitivity due to the Floor-Ceiling 

Type (Highest Ranked in Capital Cost) 

 

Unexpectedly, the variable having the (marginally) 

highest impact locally on solution feasibility is the 

“N” window-wall ratio. Note that the label “N” 

(North), relates to a default case in which the 

building is orientated true North-South; the 

optimization however, resulted in an orientation 

between 70o and 90o from North, so that the façade 

tends to face East when optimized. A change in the 

window-wall ratio always results in an infeasible 

solution (Figure 8). 

 

Figure 8 Local Sensitivity due to the “N” Window-

wall Ratio (Highest Ranked in Infeasibility) 

 

Figure 9, illustrates the local sensitivity due to a 

change in the glazing type, this being a variable of 

mid-importance in both objectives. The extent to 

which this variable results in an infeasible solution 

depends on the position along the trade-off. 

 

 
Figure 9 Local Sensitivity due to the Glazing Type 

 

A comparison of local sensitivity and global 

sensitivity 

 

Tables 2 to 4, compare the global sensitivity to the 

local sensitivity. In all cases, the global sensitivity is 

measured using both the relative magnitude of 

variables SRRCs and the order of entry into the linear 

regression models. Even though the random samples 

indicates that there is a small correlation (0.1) 

between is some pairs of variables, the order of 

importance for the variable for all objectives and the 

infeasibility are identical when determined through 

the SRRC and order of entry into the linear-model. 

Tables 2 to 4 also give the rank-order of importance 

of the local sensitivity this being measured by the 

mean of the sensitivity across the trade-off, with both 

the mean and rank being given in the tables.  

 



GLOBAL 

SA

LOCAL 

SA

GLOBAL 

SA

LOCAL 

SA

(SRRC) (Mean, %)
(Entry 

Order)

(Rank 

Order)

1 Heating setpoint 0.439 4.7 2 2

2 Heating set-back 0.1 0.1 10

3 Dead band 0.682 5.5 1 1

4 Orientation 0.1

5 North window-wall ratio 1.6 5

6 South window-wall ratio 1.2 9

7 East window-wall ratio 0.223 1 4 10

8 West window-wall ratio 0.5

9 Winter start time 0.126 0.2 9

10 Winter stop time 0.2

11 Summer start time 0.221 1.6 3 6

12 Summer stop time 0.14 1.4 7 7

13 External wall type 1

14 Internal wall type 0.091 1.3 8 8

15 Ceiling-floor type 0.195 2.8 5 3

16 Window type 0.19 2.6 6 4

R
2 0.851 0.851

INPUT VARIABLES
VARIABLE 

INDEX

It is apparent, particularly for energy use and capital 

cost (Tables 2 and 3), that more variables are 

included in the local sensitivity analysis than the 

global sensitivity analysis. The number of variables 

included in the global linear model can be increased 

by the use of a larger sample size. For instance, for 

the example problem, a sample size of 1000 solutions 

increases the number of variables identified for the 

global sensitivity of the energy use from 10 to 11, for 

capital cost from 8 to 13, and for the infeasibility, 

from 5 to 9. However, in all cases, the number of 

variables identified is less than can be determined 

through the local sensitivity analysis. Note, that for 

clarity in comparing the global and local sensitivities, 

in Tables 2 to 4, the rank-order due to the local 

sensitivity is reported for the same number of 

variables identified through the global sensitivity 

analysis. For instance, in the case of energy use 

(Table 2), only the first 10 highest ranked solutions 

are indicate (whereas the mean sensitivity 

sensitivities associated with all variables is available 

from the local sensitivity analysis). 

 

Table 2 

Global and Local Sensitivity: Energy Use 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2, indicates that the two highest ranked 

variables for energy use are the same for both the 

global and local sensitivity, the heating setpoint and 

the dead-band. However, the order of importance of 

the mid-ranked variables differs between the local 

and global analysis. In particular, the importance of 

the summer system start-time is reduced from the 3rd 

ranked in the global analysis to 6th ranked in the local 

analysis. Conversely, the 5th ranked ceiling-floor type 

in the global analysis is increased to the 3rd ranked in 

the local analysis. The sensitivity of the East 

window-wall ratio has also been downgraded from 

4th ranked to 10th ranked, whereas the North window-

wall ratio has been increased from being unranked in 

the global sensitivity analysis to 5th ranked in the 

local sensitivity analysis. However, since the labels, 

North, South, East and West relate to an orientation 

that is perfectly aligned North-South, and the 

solutions along the trade-off are orientated between 

70o and 90o from North, the “North” façade faces 

towards the East in the optimized solutions. 

Therefore, the rank associated with these most East-

facing windows is similar in both the global and local 

sensitivity analysis. 

Table 3  

Global and Local Sensitivity: Capital Cost  

 
 

The type of ceiling-floor construction is the dominant 

variable that impacts on the capital cost in both the 

global and local sensitivity analysis (Table 3). While 

there are some changes to the order of the mid-

ranked variables, only the change in rank of the type 

of internal-wall construction is of note, this being 

ranked 4th in the local analysis, but unranked in the 

global analysis. 

Table 4 

Global and Local Sensitivity: Infeasibility 

 

 

 

Since the feasibility of the solutions is a function of 

occupant thermal comfort, it is unsurprising that the 

heating setpoint and control deadband are amongst 

the most important variables resulting from the 

GLOBAL 

SA

LOCAL 

SA

GLOBAL 

SA

LOCAL 

SA

(SRRC) (Mean, %)
(Entry 

Order)

(Rank 

Order)

Heating setpoint 0.1

Heating set-back 0

Dead band 0.064 0.1 8

Orientation 0

North window-wall ratio 0.2 0.8 2 5

South window-wall ratio 0.1 0.5 5 6

East window-wall ratio 0.09 0.4 6 8

West window-wall ratio 0.128 0.4 4 7

Winter start time 0.1

Winter stop time 0.1

Summer start time 0.1

Summer stop time 0.1

External wall type 0.094 1.1 7 3

Internal wall type 0.9 4

Ceiling-floor type 0.93 10.1 1 1

Window type 0.187 2.4 3 2

R
2 0.963 0.963

INPUT VARIABLES

GLOBAL 

SA

LOCAL 

SA

GLOBAL 

SA

LOCAL 

SA

(SRRC) (Mean, %)
(Entry 

Order)

(Rank 

Order)

Heating setpoint 0.662 0.2 1 3

Heating set-back 0

Dead band 0.534 0.2 2 2

Orientation 0

North window-wall ratio 0.141 0.2 4 1

South window-wall ratio 0

East window-wall ratio 0.183 0 3

West window-wall ratio 0

Winter start time 0

Winter stop time 0

Summer start time 0.11 0 5

Summer stop time 0

External wall type 0

Internal wall type 0

Ceiling-floor type 0

Window type 0.1 4

R
2

0.832 0.832

INPUT VARIABLES



global and local sensitivity analysis on the solution 

infeasibility (Table 4). The most noticeable 

difference between the variable ranks for the global 

and local analysis is the ranking of glazing (window) 

type in the local analysis; this reason for this requires 

further investigation but can be a result of the impact 

of radiant heat transfer on occupant thermal comfort 

when the solutions lie on the comfort limit. 

CONCLUSIONS 

Both global and local sensitivity analysis has been 

widely applied in the performance design of 

buildings, to identify and rank variables importance 

in the design objectives and constraints. This paper 

extends previous research by investigating the extent 

to which the local sensitivities vary across a Pareto 

optimum trade-off between energy use and capital 

cost and the extent to which the local sensitivities 

differ from the global sensitivities. The sensitivities 

are examined in relation to building energy use, 

capital expenditure, and solution feasibility 

(feasibility being a function of occupant thermal 

comfort). The highest ranked variables for energy use 

and solution infeasibility are the heating setpoint and 

deadband (which determines the cooling setpoint); 

the most important variable for capital cost is the 

type of ceiling-floor construction. 

The global sensitivity analysis is based on a stepwise 

regression analysis with the use of bidirectional 

elimination, rank transformation, BIC, and 100 

random samples. It is concluded that the order of 

importance of the variables was judged to be the 

same when variable importance is assessed through 

the model standardized rank regression coefficient, or 

order of variable entry into the model, this being the 

case for the energy use, capital cost, and solution 

infeasibility. 

The local sensitivity analysis is evaluated on all the 

optimum solutions (base-point solutions) along the 

energy-cost trade-off, obtained from the constrained 

multi-objective optimization process. The analysis is 

conducted by incrementing the value of each variable 

in a pre-defined step positively and negatively from 

its base-point values by an amount equal to the 

minimum increment specified for each variable in the 

optimization. The ordering of variables local 

importance (sensitivity) has been examined using 

box-whisker plots and the mean value of the 

sensitivity across the trade-off. 

It is concluded that the local sensitivities vary across 

the trade-off between energy use and capital cost for 

both criteria, and the solution infeasibility. The 

widest variation in sensitivity for energy use is in the 

order of 6%, this occurring for the type of window 

(glazing) construction. Conversely, the widest range 

of variation of sensitivity of the capital cost across 

the trade-off is in the order of 2%, although the 

maximum median sensitivity for capital cost is 

approximately twice that for energy use 

(approximately 11% for capital cost and 5.5 % for 

energy use). A range of different characteristic 

behaviour is also evident from the local sensitivity 

analysis, with increments in the value of some 

variables always resulting in a feasible solution, 

some always being infeasible, and others resulting in 

both feasible and infeasible solutions. 

It is concluded that differences exist in the variable 

rankings resulting from the global and local 

sensitivity analysis, although the top-ranked solutions 

from each are the same. It is also concluded that the 

sensitivity to all variables is obtainable from the local 

sensitivity analysis, but that the global analysis is 

only likely to identify the most important variables. 

Further research is required to compare the two 

approaches for problems having significantly more 

variables, the comparison including the 

computational load associated with each approach as 

well as the difference in global and local sensitivities 

(the computational load of the local sensitivity 

analysis being high when all solutions in the trade-off 

are considered). The use of the sensitivity 

information in decision-making also requires further 

research. 
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