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ABSTRACT

By definition, parasites are expected to have fitness consequences for their hosts by

reducing survival and fecundity. If such events are density dependent they may playa

regulatory role in their host's dynamics. However, there are few studies in the wild that

provide empirical evidence to support these suppositions. To understand the impact of

parasites it is necessary to explore the interactions between parasite and host and the

mechanisms that regulate nematode populations. The aims of this work are to: 1) identify

the species specific patterns of infection; 2) investigate the interactions between and within

nematode species and 3) examine the regulatory mechanisms that control nematode

fecundity. The distribution of parasites between hosts and the variation between years,

seasons, reindeer age and location are also examined. Nematode infections of Svalbard

reindeer are dominated by two species: Ostertagia gruehneri and Marshallagia marshalli

and their contrasting life-histories and population dynamics highlights the importance of

investigating at the level of individual species. For 0. gruehneri, there is significant annual

variation but no strong seasonal pattern in abundance. Susceptible calves do not acquire

infection until their second summer. Egg output is highly seasonal with a peak in July and

controlled through density dependent effects on worm development. In contrast M

marshalli, shows a strong seasonal cycle which does not vary between years and the peak

occurs in late winter suggesting winter transmission. Egg output is low and also confined

to the winter months. The quantification of these traits is important in allowing

parameterisation of models with data from the study system. In many studies parameters

are estimated from studies of domestic host parasite systems and these may be

inappropriate in this natural system. The role of immunity and arrested development and

the relationship between transmission and environmental heterogeneity are discussed.
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THE IMPORTANCE OF PARASITE POPULATION DYNAMICS IN

THE CONTEXT OF HOST POPULATION DYNAMICS

Gastrointestinal helminths tend to cause morbidity rather than mortality in their hosts so

tend to reduce body condition, even when food is not limiting (Symons, 1985, Arneberg et

al., 1996). However, nematodes may have fitness consequences for their hosts through

reductions in survival and fecundity (Anderson & May, 1991). Theoretical models that

consider parasites as a functional predator suggest that gastrointestinal nematodes, can

have a regulatory effect on their vertebrate hosts because of parasite mediated density

dependent effects on host feeundity and survival. (Anderson & May, 1978, May &

Anderson, 1978). Also it is clear that parasite virulence can have contrasting effects on the

dynamics of hosts depending on whether the impact of infection is mostly on increased

host mortality (stabilising) or on a reduction in host reproductive rate (de-stabilising)

depending on the pattern of parasite distribution in the host (Anderson & May, 1978, May

& Anderson, 1978). However, despite the potential significance of parasite-host

interactions in explaining the dynamics of natural populations, there are very few studies

that provide empirical evidence to support these models, in part, because of the logistical

difficulties in collecting the necessary long-term demographic data from wild populations.

The best example is the study of Trichostrongylis tenuis infections in red grouse (Lagopus

lagopus scoticus) which has shown that parasites can drive cycles through their time

delayed impact on fecundity (Hudson et al., 1985, Hudson, 1986, Dobson & Hudson, 1992

and Hudson, Dobson & Newborn, 1998). Results from other systems suggest that parasites

can have an impact on the host survival or reproduction in natural host populations

(Boonstra et al., 1980, Haukisalmi et al., 1988, Keith & Cary, 1990, Gulland, 1995).
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Whether this is sufficient to regulate these populations has not been demonstrated because

of the

complications of interactions with other potentially regulating mechanisms such as

predation and competition with other herbivores. Furthermore, the necessary long term

900

800-c 700::J
0
0
"- 600ID
ID
"0
C 500'Q)
c::

400

300
1975

Data from Tyler 1999

1990 1995 20001980 1985
Year

Fig 1.1. Two-fold fluctuations in
the annual count (1979-1999) of
reindeer in Adventdalen on
Nordenskioldland, Svalbard.
(Tyler & Oritsland 1999).

..--.-"- 0.8ca
Q) • • • •>---Q) 0.6 • Fig 1.2. The probability ofca • calving depends on theE
~ 0.4 • population density of
"- reindeer the previousQ)
a. 0.2 • summer (t-l)
t/)
Q) •>ca 0o 350 500 650 800

Reindeer count (year t-1)

..-.. 4 o Host densityN
E

.. Parasite abundance~ 3->-...
'00 2c
ID
"0... 1t/)
0
J:

8000 ID
oc

6000~c
::J

4000 .g
ID...2000.~
"-caa..

Fig 1.3. The abundance of
abomasal nematodes and
density of reindeer in 3
locations from mainland
Norway and from Svalbard
(Bye & Halvorsen, 1983
Halvorsen & Bye 1987) ,

10



individually based data is difficult to acquire. Ideally, the best way to determine the impact

of parasites is to explore a system where other complicating and competing mechanisms

can be either accounted for or are largely absent. With its absence of predators or

competitors, the Svalbard reindeer-abomasal nematode system is an ideal model to test

theories about parasite mediated regulation of host population dynamics for three reasons.

First, the reindeer population fluctuates two-fold (Fig 1.1). Second, this is mainly due to

host density dependent calving rate (Fig 1.2) exacerbated by stochastic weather events.

Third, the reindeer harbour comparatively high burdens of parasites that vary between

years at a population level (Fig 1.3, Bye, 1983) and at an individual level high parasite

burdens depress host body condition (Halvorsen & Bye, 1986; Langvatn et al., 1999)
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Since in manycervid species, including caribou (Fig 1.4 and Thomas, 1982), the age at

first reproduction and the probability of ovulation is closely related to autumn fat levels

(Albon et al., 1986), we can expect that parasites may influence the reproductive rate of

reindeer on Svalbard (see also Thomas & Killian, 1990) and this, in tum, may be an

important regulatory factor (Anderson, 1980). Recent work on the Svalbard reindeer-

abomasal nematode system has identified two nematode species that dominate the parasite

fauna of reindeer (Irvine et al., 2000: Chapter 5). The first, Marshallagia marshalli appears

not to be correlated with any fitness trait and seems to focus its transmission and fecundity
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in the winter. The second and most abundant, Ostertagia gruehneri, is negatively related to

body condition (Langvatn, 1999) and through anthelmintic experiments, it has been
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Fig 1.5. The difference in the calving rate (estimated regression line: difference = II( I+exp(8.13-
0.00366*Ostertagia gruehneri abundance)) ) of reindeer treated with anthelmintics the previous
April-May and controls, in relation to the estimated 0. gruehneri abundance in October. Error bars
are 95% confidence limit. The magnitude of the treatment effect was significantly positively
related to the abundance of adult 0. gruehneri worms in animals sampled in the previous October
(Fl,3 = 143.92, P = 0.001 (Albon et aI., submitted).

possible to quantify the effect of parasites on reindeer fitness. Treated animals have a

higher probability of reproduction than controls but there is little effect of treatment on

survival (Albon et al., submitted). The impact on calving rates varies with the intensity of

infection (Fig 1.5) in a density dependent manner. Furthermore, theory suggests (May &

Anderson, 1978, Dobson & Hudson, 1992) that in this case parasites should produce a

destabilising effect on the host population. In support of the role parasites might play is the

positive relationship between the annual variation in abundance of the pathogenic 0.

gruehneri and the annual variation in reindeer density (Fig. 1.6).
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While the overall project on Svalbard reindeer has been geared to examining the impact

gastro-intestinal parasites have on their hosts and, in particular, the extent to which they

may regulate their numbers, the overall aim of my thesis is to quantify the population

dynamics of the individual species in this naturally infected reindeer population.

THE COST OF PARASITES IN DOMESTIC ANIMALS: PRODUCTION LOSSES,

LIFE CYCLE AND PHYSIOLOGICAL IMPACT.

Gastrointestinal trichostrongylid nematode infections of domestic ruminants have been the

subject of much research because of the financial losses associated with parasite reduced

growth rates, wool production, increased length of time to reach market weights and the

cost of anthelmintic treatment (Armour, 1980). Evidence from experiments comparing

worm-free and infected animals has shown differences in survival and weight gain in both

domestic and feral sheep (Armour, 1980, Grenfell, 1988). The most important

gastrointestinal parasites of domestic livestock are the abomasal nematodes such as

Teladorsagia circumcincta and Haemonchus contortus in sheep and Ostertagia ostertagi in

cattle (Soulsby, 1986). These are directly transmitted parasites. Eggs passed in the faeces,

develop when temperature and humidity are favourable, through to infective larvae and
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migrate onto the pasture and are subsequently ingested by the grazing herbivore. Once

inside the host the infective larvae lose their protective second stage larval sheath and

migrate into the abomasal mucosa before developing to 4th stage, eventually emerging back

into the abomasal lumen and mucous layers as adults. It is the damage done to the mucosa

which is responsible for the pathogenic effects including disruption of the acid producing

parietal cell and the proteolytic efficacy of pepsinogen. (Holmes, 1987). Associated

inflammation of the mucosa can be detected as elevated levels of pepsinogen in the plasma

through leakage across the mucosa wall. Anorexia may also occur (reviewed in Kyriazakis

et al., 1999) due to the stimulation of circulating gastrin levels (Fox, 1997) and the result is

reduced digestive efficiency and food intake. Therefore, body condition and growth rates

can be affected. The essential assumption about host-parasite relationships is that the

impact of parasites is related to the intensity of infection in an individual host and the

impact of parasites on the host population depends on the distribution of the parasites

between hosts (Hudson & Dobson, 1995). Therefore it is important to understand the

epidemiological factors that are responsible for the intensity of infection within and

between hosts.

THE USE OF EPIDEMIQLOGICAL TECHNIQUES IN UNDERSTANDING THE

PATTERNS OF INFECTION

The aggregated distribution of parasite numbers among hosts. Parasite infections are

typically characterised by large variation in parasite abundance between individuals and as

such, it is important to consider the frequency distribution of parasite burdens in the host

population (Crofton, 1971, Anderson & May, 1978, 1991). Typically only a few hosts

harbour the majority of the parasites and the variance in parasite numbers exceeds the

mean. This type of distribution can be described by the negative binomial which is
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governed by two parameters; the mean and k which is an inverse measure of the

aggregation (Hudson & Dobson, 1995, Wilson. Grenfell & Shaw, 1996, Shaw, Grenfell &

Dobson 1998). These distributions come about for a number of reasons. First, hosts are not

distributed randomly in the environment so that exposure to infection even with randomly

distributed larvae may produce aggregated parasite distributions in the host population

(Keymer & Anderson, 1979). However, it is unlikely that the larvae will be distributed

evenly if the hosts are non-randomly distributed and eggs are passed in faeces deposited in

pulses. Second, the biological processes (nutritional status and immunity) affecting parasite

fecundity, mortality and transmission will vary between hosts. Third, genetic

predisposition varies so that some animals will repeatedly be more likely to have high

infections than others. Fourth, as the sampling and counting techniques may well produce

distorted variation in the estimates of parasite abundance. For example, if the sample size

is too small then there is a possibility that the observed distribution does not reflect the

population because sampling may not have detected the few individuals with high burdens,

or vice versa (Gregory ~ Woolhouse, 1993). Again, as in age-intensity profiles, care must

be exercised when combining data from classes of animals that may have different

distributions such as sex differences. For example male mammals tend to carry more

nematodes than females (Poulin, 1999) because exposure or susceptibility is higher

(Grenfell, 1992). One implication of an aggregated parasite distribution is that if intensity

of infection is related to virulence then the impact of the parasites will only affect a small

number of the hosts because only a few individuals harbour many of the parasites.

Conversely the impact of parasite density-dependent host factors such as immunity will

affect large number of the parasites. Therefore the effect of increased aggregation will be

to stabilise the interaction between the dynamics of the hosts and parasites, unless
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aggregation is extremely high in which case the host escapes the regulatory role of the

parasite.

Season and Parasite Burden. The population dynamics of these gastrointestinal nematodes

have been studied extensively (Smith & Grenfell, 1985; Smith, 1994; Grenfell, 1992) and

important aspects of their population dynamics include the seasonality in transmission,

development and establishment, and host development of acquired immunity. In temperate

climates nematode transmission rates are commonly low in the late autumn/winter period

due to reduced survival and development rates of the free-living stages of the nematodes,

and the practice of housing domestic animals during cold periods (Smith & Grenfell,

1985). Typically, there is a spring rise in parasite burdens and faecal egg counts that may

be associated with relaxation of immunity in peri-parturient animals (Crofton, 1958;

Salisbury & Arundel, 1970) but still occurs in non-breeders. In domestic animals worm

burdens tend to increase over the summer and decline in autumn and over the winter

(Michel, 1969). The decline is due in part to the death rate of the adult nematodes

exceeding the ingestion of larvae that will develop into adults because of phenomena such

as arrested development of ingested larvae. High numbers of arrested larvae may re-

emerge in the end of the harsh climatic period and cause disease in the beginning of the

grazing season coinciding with host reproduction (Armour, 1970; Armour & Duncan,

1989). This seasonal pattern is particularly relevant in temperate and polar regions and has

been interpreted as an adaption to withstand periods when development, survival and

transmission of free living stages in the external environment is low. Parasites, therefore,

adopt a life cycle that varies with season so that transmission is focussed on the summer

months and production of new infective stages is timed to coincide with favourable

environmental conditions. The seasonal pattern may also be a product of acquired

immunity which is known to occur in domestic livestock. Sheep and cattle develop high
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worm burdens during the first months of the animals' life. Thereafter acquired immunity is

considered to reduce the rate of nematode establishment and cause a reduction in the adult

worm burden with increasing host age (Smith, 1994). This is thought to be the main reason

for the low levels of infection commonly observed in adult animals compared to calves and

lambs (Armour, 1980). Trichostrongyle nematodes show strongly seasonal dynamics in

ruminants in temperate environments with transmission and peak burdens occurring in the

main summer grazing period (Smith & Grenfell, 1985, Armour, 1980).

Weather and parasite burdens; variation among years. There are a number of processes

that may produce variation in the annual abundance of parasites in the host. First, factors

affecting the availability of infective larvae to the host. For example, the degree of pasture

contamination with nematode egg laden faeces, the environmental conditions affecting egg

and larval development on the pasture, the survival of infective larvae and the migration of

larvae onto herbage that will be grazed (Armour, 1980; Stromberg, 1997). Second, the

presence of susceptible hosts on the infected pasture when infective larvae are present. In

the first case, the source of larvae on the pasture are either from over-wintering larvae

(Smith & Archibald, 1969) or from larvae developing from eggs deposited in the same

season (Young, 1980). This will be dependent on a) the combination of the density of hosts

grazing the pasture and the size of the egg population that is deposited in the current

summer as these will set the size of the over wintering larval population. And b) The

resulting number of infective larvae will also be weather dependent. The development of

the free-living stages are strongly correlated with temperature and humidity. For example,

high infection rates may be experienced on spring pastures, especially in years with mild

and wet weather favourable for the nematode free-living stages (Smith & Grenfell, 1985;

Armour, 1970; Armour, 19~0). Transmission may occur over six months or more and
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provides the opportunity for nematode species with different life-history strategies to occur

with successional changes in abundance of species with different developmental rates

(Crofton, 1957, 1963, Boag & Thomas 1977). Thus annual variation in parasite burdens

and seasonal infection cycles are likely to be closely linked to temperature either directly

through its effect on the larval populations on the pasture or indirectly through its effect on

host activity such as food (and therefore larval) intake rates and the seasonal availability of

susceptible hosts.

Studies of domestic hosts-parasite systems usually take place over a short time span which

in some cases is long enough to capture the seasonal dynamics but there are very few

studies that have produced data suitable for an analysis of annual variation. There are

however some examples from wild host-parasite systems such as the Red grouse-

Trichostrongylis tenuis work (Hudson & Dobson, 1995; Moss et al., 1993) and the Soay

sheep-gastrointestinal nematode system (Gulland & Fox, 1992)

Host age and parasite burden. One of the most instructive and fundamental

epidemiological tools available is the analysis of the intensity of infection in relation to

host age, which can yield information on parasite transmission and longevity and the basic

reproductive rate, Ra (Halvorsen, et al., 1986, Anderson & May 1991). Typically parasite

intensity increases with host age due to ingestion of parasites over the given time period. In

fact, the rate of increase and the shape of the curve is a balance between parasite infection

rates (immigration) and parasite mortality due to death of parasites and animals containing

the parasite. If both rates are constant, the curve will rise to an asymptote, the level of

which will be determined by the balance between the two rates (Fig 1.7a); for example, the

brain worm Elaphostrongylis rangiferi in reindeer (Halvorsen, 1986b).
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If immigration is greater than the death rate (Fig 1.7b.) as seen in the red grouse-T. tenuis

system (Hudson & Dobson, 1996), the intensity of infection can carryon increasing with

age. If mortality is greater than immigration after initial infection, the relationship can

initially rise but then decline in a convex manner (Fig 1.7c). This pattern is observed in

systems where acquired immunity is thought to occur such as the domestic sheep-T.

circumcincta system (Barger et al., 1985). However, other processes could produce this

convex functional form such as parasite-induced host mortality, age-dependent

(behavioural) changes in infection rate and age-related changes in exposure (Rousset,

1996). The limitations of age intensity curves are firstly that all these factors may be

working together and therefore it is not possible to determine which mechanism is

responsible without more direct measures or through experimentation (Hudson & Dobson,

1995). And secondly, that variations in sample size can make it appear that convexity

occurs while in fact this is a consequence of sampling from an aggregated distribution

(Pacala & Dodson, 1988). Ideally age-intensity curves should be constructed from

longitudinal data by repeated, serial sampling of the same individuals. However, estimating

gastrointestinal parasite burdens is difficult without killing the animal. Therefore, when

constructing age-intensity curves using culled animal the effects of age, sex, social status,

sample size, parasite aggregation and season must be considered. One should also consider
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that the culling policy may affect the future sampling through impacts on the sex and age

structure of the host population.

An alternative to age-intensity relationship is age prevalence. These can be determined for

gastrointestinal helminths from non destructive measures such as faecal egg counts

(Grenfell et aI., 1995) or nematode specific levels of circulating plasma antibodies (Lloyd,

1995). However, the relationship between these measures and the intensity of infection is

not simple and they are of limited use in an examination of the parasite population

dynamics (Hudson & Dobson, 1995).

Density-dependent processes and parasite burden. Long term studies of host-parasite

systems feature various dynamics from stability to cycles (Kennedy & Rumpus, 1977,

Hudson et aI., 1985). Although these systems can display various dynamics, they are often

characterised by regular patterns or at least a low degree of aggregation, suggesting that

regulation of either the density of the parasites or the hosts occurs. If the host is viewed as

presenting a closed population of parasites then it is theoretically possible to determine

density dependent effects on the parasite population but because the host usually has to be

killed in order to estimate densities then the mechanism governing the process may be

difficult to elucidate. Parasite dynamics such as establishment, development, fecundity,

survival and arrested development may all be density-dependent. It follows that if the

parasite population is concentrated into few hosts with high worm burdens then any of

these density dependent processes may be large enough to constrain the parasite population

(Keymer, 1982). The impact of density-dependent processes may affect the observed

parasite distribution by reducing the degree of aggregation. For example, density-

dependent acquired immunity will reduce worm burdens and therefore animals that have

been exposed for longer, i.e. older animals may have lower worm burdens and

consequently k will be affected (Pacala & Dobson, 1988) However, estimates for
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aggregation in the older age classes may be unreliable because sample sizes are typically

smaller in this group.

GAPS IN THE KNOWLEDGE

Although coupling knowledge of age-intensity relationships and the factors responsible for

parasite distributions should help in understanding parasite dynamics, there are three

factors, crucial to parasite population dynamics, for which there is a paucity of empirical

data. First, there is a need to understand the mechanisms that govern nematode fecundity.

This typically varies with season and species. Combined with development and survival

rates on the pasture this governs the availability of new infections to susceptible hosts

(Hudson & Dobson, 1995). Second the pattern of arrested development determines the

degree of damage due to arresting and de-arresting worms and introduces a time lag in the

impact of parasitism and may also vary with species. Third the dynamics of immunity

(Tompkins & Hudson, 1999) and the heterogeneity in immune response of individual hosts

to parasites (Grenfell et aI., 1995).

Parasite Fecundity. This is usually defined as the number of eggs per female worm that are

passed out in the faeces per day. In experimentally infected calves 0. ostertagi egg output

rises to a peak 2-3 weeks following initial egg production and then declines exponentially

(Michel, 1969). During this latter phase there is little evidence for a correlation between

egg output and the population size of adult female worms. This contrasts with H contortus

where there is a good relationship between egg output and worm burden (Coyne et al.,

1991). This suggests that 0. ostertagi is strongly regulated but H contortus is not.

Domestic livestock systems. are characterised by seasonal patterns of egg output (Anderson
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et aI., 1979). Usually susceptible young animals on pasture will develop an infection in the

spring and egg output will rise as the infection develops to reach a seasonal peak. Also, the

phenomenon of the peri-parturient rise in lambing ewes produces a spring rise in egg

output. This evidence has suggested that egg output is at least partly regulated through an

immune response and is likely to be exposure dependent (Quinnel et al., 1990). However,

egg output also rises in non-pregnant ewes and males as well indicating other factors are

also partly responsible (Gulland, 1992). Further evidence comes from observed high egg

output in immuno-suppressed ewes or naive animals (Gulland, 1992). There is some

evidence that fecundity in T circumcincta of sheep is related to the length of the female

worms with the interpretation that shorter worms are less well developed and therefore

have reduced fecundity. In this latter study the level of circulating antibody IgA was

related to worm length (Stear et aI., 1995) and this suggests that immunity may indeed play

a role in nematode fecundity. However, Michel (1970) has shown that egg output rises

with worm burden until the rate of egg output per worm starts to drop with increasing

worm burden and an asymptotic relationship is observed. Therefore fecundity may be

regulated through density-dependent competition for space and resources. Furthermore, in

a natural infection of a wild host population there may be a number of species present and

there is the possibility that one species may affect the fecundity of the other through inter-

specific competition. However, to date, this has not been determined in natural

gastrointestinal infections of wild host populations.

Arrested development. Gastrointestinal parasites show varying degrees of arrested

development between species and within species from different host localities (Gibbs,

1987). Arrestment. or hypobiosis is defined as a pause in the development of 4th stage

larvae when they are in the gastric glands of the mucosa (Michel, 1974). The mechanisms
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that stimulate larvae to arrest and then to de-arrest or resume development are not

completely resolved (for a review see Gibbs, 1987). However, arrestment seems to be

partly stimulated by environmental conditions on the pasture including low temperatures

(Armour & Bruce, 1974) or periods of drought (Smith & Grenfell, 1985). This suggests

that arrestment is a strategy to survive periods when transmission and survival on the

pasture is limited by adverse conditions. Another potential mechanism is within-host

responses such as density dependence such that incoming larvae have an increasing

probability of arresting as the resident burden of adults increases (Michel 1974). This may

be due to immune stimulation triggering arrestment until the immune system is

compromised by an event such as parturition in spring when larvae de-arrest (Michel,

1974) or, may be due to density-dependent competition for space and resources (Hong, et

al., 1986). However, the latter is also confounded by time so that over the course of a

trickle challenge experiment, more larvae arrest and this may be due to the age of the

larvae with older larvae ingested towards the end of the experiment arresting more readily

than larvae ingested early on.

The mechanisms controlling de-arrestment are even less well resolved. There is some

evidence that the spring or peri-parturient rise is due to relaxation of immunity (Lloyd,

1995) but the fact that non-lambing ewes exhibit a seasonal rise at this time of year

suggests that other mechanisms may also be responsible such as intrinsic length of the

arrestment phase; i.e. larvae will arrest for a more or less fixed period corresponding to the

length of the adverse conditions. In Britain, this also corresponds with the period animals

are housed over-winter and this may be the selection pressure that the nematodes have

responded to in developing this strategy (Halvorsen & Bye, 1999). There is evidence that

nematodes of Svalbard reindeer do not have the expected degree of arrestment in the

23



parasite population and that it is possible for transmission to continue even in the arctic

winter, albeit at lower levels (Halvorsen & Bye, 1999). If there are differences within a

nematode species in the propensity to arrest (AI Khalid, 1989, El Azazy 1995) then there

are likely to be differences between species. In a mixed natural infection one species may

be more virulent and through density dependence or immune stimulation may have a direct

or indirect impact on the propensity of the other species to arrest. However, whilst

taxonomy based on morphology of adult nematodes is possible, determining the species of

4th stage larvae is more difficult and requires molecular techniques. The advent of species

specific PCR probes will make this easier and it will then be possible to quantify which

species is responsible for the observed levels of arrested development. These data can then

be used to take into account the time delays in the impact of a pathogenic species

correcting for the different life-history of a coexisting species.

Host immunity. The observed variation between hosts in the size of an infection is also

likely to be the result of heterogeneity in the immune response between different animals.

There may be variation in the genetic predisposition to infection so that some hosts are

more resistant than others. Furthermore there is evidence for a large degree of variation

between animals in the major histo-compatability complex (MHC) which manifests as

differences in the potential an animal has to mount an immune response (Paterson, 1998).

However, the degree of immune response is also dependent on the nutritional status of the

animal since we may expect that an animal has to partition resources to the immune system

(Van Houtert & Sykes, 1997). Therefore, there is a body of evidence that animals in poor

nutrition, particularly if protein is limited are somewhat immune compromised (Coop &

Kyriazakis, 1999). However, measuring immunity directly is difficult in a free ranging

ungulate such as the Svalbard reindeer. Experiments that manipulated nutritional status,
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parasite burden and measuring antibody titres would be most informative. Preliminary

studies indicate that assays developed to measure sheep immunoglobulin isotypes work on

reindeer sera and 0. gruehneri antigen (Irvine and Huntley, unpublished data). However,

in this thesis, some insight into the role of immunity in the reindeer-parasite dynamics has

been attempted through the inclusion of body condition as a surrogate for immuno-

competence in models that explain variation in intensity of infection.

SPECIFIC AIMS OF THE STUDY

This study alms to describe the population dynamics of the abomasal nematodes of

Svalbard reindeer (Rangifer tarandus platyrhynchus) and, from this, identify the

contrasting life histories and population dynamics of the two major abomasal nematodes.

The specific objectives were first, to identify the pattern of infection with respect to

seasonal abundance, arrested development and acquired immunity. Second, by resolving

the adult nematodes to their component species, to determine the contrasting seasonal and

annual patterns of abundance and look for evidence of interactions between the species.

Third, to examine the potential regulatory mechanisms that control nematode fecundity.

Fourth, to determine the contrasting pattern of arrested development between the two

species. As such this work will provide, a valuable understanding of the epidemiology, life

history and population dynamics of a mixed natural nematode infection of a wild host.

The theoretical models often rely on assumptions about the parasite population

which are based on demographic rates derived from single species, experimental nematode

infections of domestic livestock (Hudson & Dobson 1995, Kao et al., 2000). However,

natural infections usually comprise more than one species. Even in domestic livestock,

25



such as sheep, the abomasum will tend to harbour multiple species that infect the host in a

natural succession of species (Crofton, 1957). This may be due to species differences in

over-winter survival of infective larvae of the development of free living stages (Boag &

Thomas, 1977). Depending on the species concerned there are a number of studies that find

either positive, negative or no effect of one co-existing species on the abundance of the

other (Holmstad & Skorping, 1998; Nilssen et al., 1998). These different effects maybe

due in part to interactions with the hosts immune response and how specific this is to

alternative species. There is some evidence that protective immunity to one species may

cross over to affect the establishment of a second species (see Christensen, 1987). Another

interaction may be due to physiological effects whereby one species affects the

environment such that it either favours or reduces the establishment of a second species.

For example, it has been suggested that in the case of T circumcincta, infection disrupt the

structure of the abomasum which makes it difficult for Haemonchus contortus to establish

(Dobson & Barnes, 1995). However, our knowledge of the life histories and population

dynamics of mixed infections of gastrointestinal nematodes in wild ruminant populations

points to substantial differences from domestic systems (see above and Halvorsen & Bye,

1999) and this thesis aims to provide the detailed epidemiological knowledge on which to

base realistic models of host-parasite dynamics.
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Svalbard reindeer and their parasites.
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CHAPTER 2. Svalbard reindeer and their parasites:

A REVIEW OF THE STUDY SYSTEM
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THE STUDY AREA ON SVALBARD.

Svalbard is a high arctic archipelago situated between 76° and 81° North roughly half way

between the North Cape of Norway and the North Pole. It is a highly seasonal enviromnent

with periods of 24 hour darkness (Polar night) from 28thOctober until 14thFebruary and 24

hour daylight from 21st April to 21st August. The ground is frozen and largely snow

covered from October until June, therefore plant growth is restricted to a short period of

about 8 weeks from mid June onwards. The mean annual precipitation (1975-1985) is

around 195 mm and mean annual temperature is -6.50C (Forland Hanssen-Bauer & Nordli,

1997). In summer the permafrost may thaw to a depth of 2-3 m in some places. The snow

free period lasts for only three months and mean summer temperature (June to August) is

3.60 C and rainfall averages 53 mm (Forland, et al., 1997). However, because of oceanic

influences, temperatures are highly variable and can rise above zero even in mid-winter.

Within Svalbard much of the reindeer ecology has been studied on the Nordenskiold

peninsula. Relatively, this is one of the more vegetated areas on Svalbard

Nordenski61d Peninsula
N

i

Colesdalen

o 10 20 30 40 50 km
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Coastal areas and valleys are vegetated up to about 200m above sea level and little grows

above this altitude except on some higher plateaux. Higher up glaciers dominate and

mountains rise to about 1000m above sea level (Brattbakk, 1985). Yearly primary

production has been estimated at between 20 and 80g dry matter/m' (van der Wal, pers.

comm.) The main valleys are wide and U-shaped and dominated by braided river beds.

There are only 4 resident mammals on Svalbard; the polar bear (Ursus maritimus), the

arctic fox, (Alopex lagopus), the Svalbard reindeer (Rangifer tarandus platyrhynchus) and

voles (Microtus arvalis). The latter are restricted solely to bird cliff areas. The reindeer

represent the major herbivore but there are localised populations of Pink Foot (Anser

brachyrynchus) and Barnacle (Branta leucopsis) geese that use the range for part of the

year. Ptarmigan (Lagopus mutus hypoboreus) represent the only resident bird species.

Some domestic livestock have been kept at mining settlements and an introduced muskox

(Ovibos moschatus) herd numbering between 10 and 60 survived between 1929 and 1984

(see Halvorsen & Bye 1999).

SVALBARD REINDEER

Svalbard reindeer are a distinct subspecies and, genetically, its closest relative is the Peary

Caribou (R. t. pearyi) of the Canadian arctic islands. (Roed & Witten, 1986). Svalbard
,

reindeer differ from their nearest neighbour, the Eurasian tundra reindeer (R. t. tarandus).

Like the Peary caribou, they are comparatively small and stocky with short legs ears and

face and the extremely thick winter coat emphasises these features. However, inconsistent

with other reindeer/caribou species, Svalbard reindeer do not migrate (Tyler & 0ritsland,

1989) but may emigrate in years when there is an acute shortage of food in winter (Aanes

et al., 2000). The lack of migration is thought to be due to the lack of competitors,
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predators and/or harassing insects. Possibly because of this reindeer on Svalbard exist at

local densities of up to 8km-2 which is 2-3 times higher than that found on the Norwegian

mainland ( Fig 1.3 and Reimers, 1977).

Rates of reproduction are low in young animals reaching up to 75%when animal reach the

age of 3. (Langvatn, 1999). 90% of calving occurs between 2nd and 9th June (Tyler, 1987).

Males and females grow antlers up to August when the velvet is cleaned and antlers. are

hardened off. The breeding season occurs in mid October and ovulation rates are invariably

high at around 85-100% (Langvatn, 1999). All animals lay down fat through summer and

by October back fat depth on the rump is around 20mm in an adult female. Mothers with a

calf at foot may still be suckling calves by October but some will have been weaned by this

time. Body weight for females in October is 67.3kg (+-6.0) for a non-lactating female and

61.7kg (+-2.8) for a lactating female (Tyler, 1987) but this varies between years. It is well

established in reindeer that pregnancy rates is positively related to body weight (Fig 1.4

and Thomas, 1982). By April, towards the end of winter, adult females will weigh round

50kg and calf weight will have dropped from around 30kg to about 22kg. Most mortality is

due to starvation and occurs in the late winter when ice prevents access to forage. Calves

and old animals show the highest rates of mortality. Females will live to around 12 years of

age and males to around 6. Two aspects of the reindeer population dynamics are notable.

First, annual calving rates are very variable with calving commonly up around 70 % but

can be as low as 10% and that there is a non-linear relationship between this and

population density such that calving rates are disproportionately lower at high reindeer

densities (Fig 1.3 and Tyler & 0ritsland, 1999). Second the reindeer population exhibits a

two-fold fluctuation which is largely accounted for by changes in recruitment to the

population (Fig 1.2 and Tyler & 0ritsland, 1999). The years with low calving rates are

often associated with icing events during the winter which reduces access to winter forage.

32



PARASITES OF SVALBARD REINDEER

Svalbard reindeer harbour relatively few species of parasites (reviewed in Halvorsen &

Bye, 1999). There are reports of Sarcocystis species in various muscles (Bye, 1985 - in

Halvorsen & Bye, 1999). The tapeworm Monezia benedini has been found occasionally in

calves and cysticerci of Taenia ovis krabbei have been found in adult reindeer (Bye,

1985b, 1985c - in Halvorsen & Bye 1999).

Research has focused more on the gastrointestinal nematodes. Bye & Halvorsen (1983)

described six nematode specie~ or species complexes in the Svalbard reindeer abomasa.

These have subsequently been reclassified and are dominated by Ostertagia gruehneri (and

its morph 0. g. arctica, Dallas et aI., 2000a, Chapter 3.4) and M marshalli (and its morph

M m. occidentalis, Dallas et al., 2001, Chapter 3.5) (Irvine et al., 2000). T circumcincta

occurs at less than 5% of total nematode abundance. Halvorsen & Bye (1986) also found

no nematodes in the rest of the gastrointestinal tract of 24 reindeer although Nematodirus

spp. eggs have also been identified in faecal egg counts. 0. gruehneri is mainly a reindeer

parasite but the others have all been reported in reindeer (reviewed in Bye & Halvorsen,

1983). M marshalli has been mainly reported in domestic livestock but has been reported

in muskox which were present on Svalbard be~ween 1929 and 1984 (see Bye et al., 1987).

Both 0. gruehneri and M marshalli have a direct life cycle and infection is principally

transmitted with food. The classic trichostrongyle life cycle is assumed and has the

following pattern: Eggs are passed out in the faeces, develop to 1st and then 2nd stage larvae

in the faeces and then the 3rd stage larvae inside the 2nd stage sheath. It is thought that these

larvae migrate onto the vegetation in the moisture film on the leaf surface and then

ingested with the vegetation, ex-sheathe in the rumen pass into the abomasum where they
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migrate into the mucosa and either develop into 4th stage larvae and return to the

abomasum lumen to develop into adults or remain in the mucosa as arrested larvae.
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CHAPTER3.1

DATA COLLECTION AND DEVELOPMENT OF METHODS.

HOST SAMPLING.

Culled animals. Culling was carried out by experienced hunters under licence from the

Governor of Svalbard. Animals were approached on foot in the field and shot in the neck

or thorax. The stratification of the cull animals by sex, age and location was designed to

fulfil the objectives of the greater Svalbard reindeer project with particular emphasis on

sampling adult females and calves. Sampling mainly took place towards the end of winter

(April) and the end of summer (October) in two valleys; Colesdalen and Sassendalen (see

Chapter 2 Fig 2.1) (although some animals were culled in mid-summer, July, and Autumn,

September). In 1998 and 1999 some individuals were caught and treated with an

anthelmintic (see below). A sub-set of these were culled either 14 days, 12 weeks or 24

weeks post treatment (Irvine, 2000, Chapter 2.2) and analyses of parasite population

dynamics took this experiment into account. Body condition measures included total body

weight, subcutaneous back fat depth, kidney fat index (percentage that peri-nephric fat

represents of kidney plus fat weight), hind leg length (skeletal size) and dressed carcass

weight. Reproductive status was based on ovulation or pregnancy status, and lactational

status was recorded as milk or yeld. Ovaries were stored for analysis of retrospective

reproductive status. Animals were aged by extracting an incisor and counting the annuli in

the cementum of microtome histological sections (Reimers & Nordby, 1968). Abomasum

samples for gastrointestinal parasitology were extracted as outlined below.
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Live animal sampling. This study utilised a marked population of known age animals to

provide faecal egg counts from known individuals from April to September by locating

animals with telescopes and binoculars and collecting freshly excreted faeces. The marked

population was captured and marked individually using a net trawled between two snow-

mobiles. Each reindeer was fitted with ear tags and a modified plastic cattle collar (Dalton

Ltd, Nettlebed, UK). Blood and skin samples were collected, body weight was recorded

and pregnancy diagnosis and back fat depth was measured using an ultrasound machine.

An anthelmintic experiment was carried out by either injecting individuals with 4mg/kg

live weight moxidectin or administering an ivermectin slow release bolus. Analyses of egg

output from treated animals was corrected for treatment group. The efficacy of the

moxidectin treatment was assessed from monitoring faecal egg output in control versus

treated individually marked females. Furthermore the efficacy against adult and larval

stages was determined from a selective cull of treated and control animals 2, 12 and 24

weeks post-treatment (Irvine 2000, Chapter 2.2).

PARASITOLOGY.

Parasitology techniques are adapted from MAFFIADAS (1986) and laboratory manuals of

the Parasitology Division at the Moredun Research Institute (Frank Jackson pers. comm.)

and are described below:

Faecal egg counts. Faeces were collected from each the rectum or immediately after

excretion from each reindeer and an egg count was carried out within 48 hours on the fresh

material. No frozen faeces were used for egg counts. 3g of faeces were ground through a

nylon mesh tea sieve suspended in 42 ml of saturated salt (NaCl) solution using a pestle.

One third of the resulting suspension was put into a centrifuge tube using a syringe fitted
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with 5cm of silicon tubing. The 15ml tube was filled to the top and a cover-slip was placed

on the positive meniscus. The tubes were spun at 1000 rpm for 3 minutes. The cover slip

was removed using a decided positive upward motion and placed on a microscope slide.

The eggs adhering to the underside of the cover slip were assumed to represent the number

of eggs per gramme and the whole of the cover-slip was examined at 100xmagnification.

Extraction and enumeration of adult and larval nematodes from the abomasal lumen.

Immediately after animals were culled the gastrointestinal tract was removed from the

abdomen and the abomasum was ligated at the omasum-abomasum junction and at the

duodenum close to the pyloric sphincter. The abomasum was frozen within 2 hours of

removal. On thawing, the abomasum was weighed and then opened along the distal

curvature. The content was tipped into a 5 litre beaker and the pH was taken using a

standard meter and freshly prepared standards were prepared every few days for

calibration. The mucosa surface was rinsed under cold running water and care was taken to

ensure all debris was removed by washing under all the mucosa folds. The washed mucosa

was weighed, labelled and refrozen. The content in the beaker was diluted to 4 litres and

under constant agitation sub-sampled using a tap mounted pump to draw of 6 by 200ml

(5%) aliquots in conical flasks. The content of each flask was examined under a stereo

microscope with sub-stage lighting using a ,modified perspex pollen counting tray 6

channels wide each channel within one field of view wide at 16x magnification (objective)

and 16cm long. 100males and 100 females were collected in 70% ethanol. If less than 100

were available in the first 5% then another 5% was counted up to a maximum of 20% of

the abomasum content. Juvenile worms (lumen larvae) were also counted and collected up

to a maximum of 100 but if 100 of each of the adults was achieved in the 1st 5% but not
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100 lumen larvae then the number of larvae reached was the final number collected. A

back up sample of 20% of the content was stored in formalin.

Extraction of larvae in the abomasum mucosa larvae. The mucosa larvae which may

represent the arrested 4th stage larvae were extracted from the empty abomasum using the

standard acid-pepsin digest fluid. Briefly, the abomasum was chopped up into 2cm squares

and put into the digest fluid 500ml per 250g of mucosa. The fluid was prepared daily and

made from 8g of pepsinogen, 8.5g salt (NaCI) and 10ml of hydrochloric acid (HCI) per

litre of water. The chopped abomasum and fluid was incubated for 12 hours and then

poured through a 381...im sieve. The residue was washed with hand-hot water to reduce the

amount of fat. The resulting washings were diluted to 1 litre and four 100ml sub-samples

were extracted using a tap mounted filter pump. These were examined as above and a

minimum of 100 4th stage larvae (mucosa larvae) were picked out and stored in 70%

ethanol. The technique was subsequently adapted to improve the quality of larval DNA so

that species-specific PCR probes could be used on each larvae (see Irvine & Dallas,

submitted, Chapter 2.3). Essentially, the larvae released after 2 hours were recovered for

PCR analysis and the abomasum plus fluid was returned to the incubator for a further 10

hours to maximise the numerical return.

Taxonomy: morphology and peR probes. The adult nematode population was classified to

species using the morphological characteristics of the males and the taxonomy key of

Drodz (1965) and Lichtenfells et al., (1993). A PCR probe was developed to identify

males, females and larvae and the accuracy of this was tested on a number of adult males

and females (50 females identified on morphology by Lynda Gibbons, Royal Veterinary

College). The PCR probes identified that 0. gruehneri and its morph 0. g. arctica were
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genetically indistinguishable when using the ITS-II region and this was the same for M

marshalli and its morph M m. occidentalis. The probes was then able to tell whether an

individual worm was either 0. gruehneri, M marshalli or T circumcincta (Dallas et al.,

2000a (Chapter 2.4), Dallas et al., 2000b (Chapter 2.5) & Dallas et al., 2001 (Chapter 2.6))

This probe then allowed relatively quick identification of the species of individual lumen

larvae and mucosa larvae and this allowed analysis of the contrasting species specific

patterns of arrested development.
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CHAPTER3.2

Use of moxidectin treatment in the investigation of abomasal

nematodiasis in wild reindeer (Rangifer tarandus platyrhynchus).

R. J. Irvine

2000

Centre for Ecology and Hydrology, Hill of Brathens, Glassel, Banchory AB31 4BY

Verterinary Record 147,570-573

43



44



USE OF MOXIDECTIN TREATMENT IN THE INVESTIGATION OF

ABOMASAL NEMATODIASIS IN WILD REINDEER (RANGIFER

TARANDUS PLATYRHYNCHUS).

R. J. Irvine

ABSTRACT

Gastro-intestinal parasitism is endemic in many wild ruminant populations. An experiment

was conducted to evaluate the role of anthelmintics as a tool for understanding the impact

of parasitism using wild Svalbard reindeer (Rangifer tarandus platyrhynchus) and

moxidectin. Adult females were injected sub-cutaneously with moxidectin at a dose rate of

O.4mg/kg body weight. Groups of animals were culled within the expected period of

efficacy (around 14 days post-treatment) or around 12 weeks or 24 weeks post-treatment.

Moxidectin was effective in eliminating the abomasal worm burdens. Although reindeer

became re-infected, worm burdens were significantly lower in treated animals up to 24

weeks after treatment compared to untreated controls. Nematode egg output did not

reappear until 5 weeks, a similar period to that claimed by the manufacturer for sheep and

cattle. Animals culled 12 and 24 weeks post-treatment had been re-infected and harboured

a wide range in abomasal worm burdens which contributed to the understanding of the

seasonal variation in the faecal egg count - worm burden relationship and underlines the

value of experimentation in wild life diseases.
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INTRODUCTION.

It is well documented that parasitic gastro-enteritis in livestock has a substantial financial

and welfare impact. However, much of our understanding of gastrointestinal nematodes in

wild ruminants is derived from domestic livestock. Parasitism has traditionally been

associated with mortality and morbidity with the study of it in wild animals limited to the

pathology of carcasses, a somewhat extreme case (see Gulland, 1995 for a review). The

lack of studies on wild life is partly due the difficulties of collecting data in the field.

Observational data frequently shows negative effects of parasites on host fitness but this

does not discount the possibility that a third unknown factor is causing these observed

patterns. Unfortunately, evidence from controlled experiments that indicate the impact of

parasitism on wildlife is even more scarce because manipulating the parasite burden in a

wild population is often constrained by logistical problems such as limited opportunities

for handling. Alternatively faecal egg counts can be collected from wild animals but these

may be unreliable because the relationship with actual worm burden is not clear.

Svalbard Reindeer (Rangifer tarandus platyrhynchus) are a wild reindeer population on the

Svalbard Archipelago, Norway (76-81~) in which it has proved possible to study the

impact of parasites on growth, reproduction and survival. They have no predators, do not

migrate and have no competitors. These reindeer occur at relatively high population

densities (Tyler, 1987, Skogland, 1984) and harbour high parasite burdens (Halvorsen &

Bye, 1999) dominated by Ostertagia gruehneri and Marshallagia marshalli (Irvine and

others, 2000). There is evidence that body condition is negatively related to the abundance

of 0. gruehneri (Langvatn and others, 1999). Mortality is low except in winters when early

rainfall followed by sub-zero temperatures causes extensive icing over of the vegetation

and severely limits feeding access. Calving rates are high, approximately 75%, but can
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drop to around 10% (Tyler & 0ritsland, 1999). The snow free period lasts from mid June

to mid September and this provides the only opportunity for females to regain on condition

after calving in June for lactation, ovulation and subsequent pregnancy.

This study investigates the efficacy of moxidectin in reducing egg counts and removal of

adult, immature and arrested stages of abomasal nematodes. Furthermore, the degree of re-
•

infection with abomasal nematodes in moxidectin treated Svalbard reindeer within the

same summer was measured. Moxidectin is a member of the milbemycin group, with a

similar mode of action to ivermectin (Shoop and others, 1995). Research in ovine and

bovine trichostrongylosis, suggests that its persistence of activity is at least as great as

ivermectin against some abomasal nematode species such as Teladorsagia circumcincta

(Grimshaw and Hong, 1997) and Ostertagi ostertagi (Deroover and others, 1997). The

value of using the new generation macrocyclic anthelmintics in wild animal populations is

discussed.

MATERIALS AND METHODS

Animal population. 298 female reindeer were caught by netting from snow-scooters in late

winter (April/May, 1997, 1998 and 1999), aged using categories of calf, yearling and adult.

In 1997 and 1998, every second animal within each age group was treated. In 1999 to

ensure sufficient treated animals were re-sighted for culling a batch of 35 adult females

were treated in addition to the usual treatment protocol. All animals were marked with

individually numbered plastic ear tags and a modified cattle collar.

At the relevant sampling intervals animals were culled and sampled according to the

protocols outlined in Halvorsen and others (1999) and Irvine and others (2000). Lactational

status was recorded as lactating or not lactating.
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Anthelmintic treatment. The treated groups (42 in both 1997 and 1998, 76 in 1999) were

injected sub-cutaneously at the shoulder with O.4mg moxidectin (Cydectin; Fort Dodge)

per kg body weight to an accuracy of2.5kg (Salter 100 x 0.5 kg clock face spring balance)

between 14thApril and 9th May. The dose rate was twice that recommended for sheep and

cattle but within levels used in other methods of drug delivery and tested on red deer,

another cervid species (Mackingtosh and others, 1993). This dose rate was chosen to

maximise efficacy of the drug on the nematodes when the pharmacokinetics of moxidectin

in reindeer losing weight may have a negative impact on the drugs performance (Oksanen

& Nieminen, 1998).

In 1998, five adult animals treated on 1th or 18thApril were located and culled between 12

and 14 days post-treatment. Five adult controls were also culled at the same time. During

1999, 8 treated adult animals were culled together with eight adult controls in late July (12

weeks post-treatment) and again in late October (24 weeks post-treatment). This allowed

assessment firstly of the efficacy of the drug shortly after treatment and within the effective

period and secondly to examine the extent of re-infection in treated animals compared to

control groups.

Parasite population. Abomasal worm burdens and faecal strongyle egg counts were

estimated using standard methods (MAFF/ADAS 1986) with modifications as outlined in

Halvorsen and others (1999). No Nematodirus eggs were detected in the study animals. In

Svalbard reindeer, gastrointestinal nematodiasis is limited to the abomasum (Halvorsen &

Bye, 1986) so it was assumed that the strongyle egg output was derived from the abomasal

nematodes. Strongyle egg counts did not include tapeworm or fluke eggs. Data were not

available for the abundance of mucosa larvae in July and October 1999. Individual
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strongyle faecal egg counts were recorded for all marked animals in the study area during

all three summers.

Statistical Analysis. Abomasal worm and larvae burdens are presented as geometric means

with 95% confidence limits. Egg counts are presented using natural log transformation

(count+ 1) to allow use of zero counts in the analysis. Solid lies to guide the eye were fitted

using the spline function in Genstat (Lawes Agricultural Trust). Prevalence was estimated

as the proportion of animals having detectable strongyle egg output and standard errors

about this proportion were calculated accordingly. Egg count and worm burden data was

analysed using generalised linear regression analysis (SAS version 6.12, 1996,SAS

Institute, USA). Parasite data was assumed to be poisson distributed. Statistical

significance was taken at the 5% probability level and calculated using the F test.

RESULTS.

Abomasal worm burdens during treatment. All five animals culled between 12 and 14 days

post treatment in 1998 (Fig 3.2.1), had zero adult worm burdens compared with a mean of

12750 for the control group. The mean abundance of lumen larvae (the larval fraction

found in the abomasal contents) in the treated group was 44 compared to 2572 in controls

(Fig 3.2.lc, F1,8=35.82, P<O.OOOl).The abundance of mucosal larvae (the larval fraction

found in the abomasal mucosa (L4s)) was 115 in the treated group compared to a mean of

6500 in the controls (Fl,8=65.92, P<O.OOOl).

49



I
I

r-:-
I

I
I

....-

.0

I
I

oooo
"'"""

ooo00

o
oo
CD

o
oo-e-

ooo
N

r
I

1
I
I

I
I

ooo
CD

ooo
N

ooo
00

o.
oov

sunpe JO raqumu

o

.._
Q)
_c
o
1:5o

o
!...
+-I
Co
o
D D

0000000
v 0 CD N 00 V
N N "'""" "'"""

Sa8aeJ aunuaif red s66a

.._
Q)
_c

~o

r
I

r
I

r
I

o oo
o

o
o
o

""
ooo
C'0

o
o
o
N

l81\J81 uaum] JO rsqumu

I

o

.._
Q)
_c
o
1:5o

l-
Q)
.0

~o



Abomasal worm burdens 12 and 24 weeks post-treatment. Even though treated animals had

become re-infected by July (Fig 3.2.1) they had significantly lower adult worm burdens

(F1,27= 8.38, P<O.OI data for July and October combined, Fig 3.2.la) than untreated

controls. The same was true for the adult female worm burdens (Fig 3.2.1b); treated

animals had significantly lower female worm burdens than controls (F 1,27=6.35,P<O.02).

In contrast, the burdens of abomasal lumen larvae did not differ between treatment groups

(Fig 3.2.1c) but was significantly lower in July than in October (F1,27=19.17, P<O.OI).

There was no significant relationship between worm burden and the lactational status of

the host.

Faecal egg output. The intensity and prevalence of faecal egg counts for all marked

animals sampled in the study area were similar between 1997 and 1998 in control animals

(see Figs. 3.2.2 & 3.2.3). In the majority of treated animals faecal egg counts dropped to

zero after treatment and remained low in both years until late June/early July (Figs 3.2.2a

& b). Prevalence of infection (proportion of animals with eggs in faeces) also remained

low for up to 8 weeks after treatment (Figs 3.2.3a & b). The pattern of faecal egg counts in

treated animals over the season suggests that the period of efficacy is at least as long as

that claimed by the manufactures for domestic livestock and it may be as long as 8 weeks

before reindeer are depositing eggs on the pasture. When culled 12 and 24 weeks post-

treatment egg output was not significantly different between the two treatment groups (Fig

3.2.1d).
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FIG 3.2.2: The intensity of strongyle faecal egg counts (eggs per gramme +1, on the Loge
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FIG 3.2.3: The prevalence of infection (proportion of adult female reindeer producing eggs
in faeces) in treated animals (grey bars) and controls (open bars)' for a) 1997 and b) 1998.
Data are shown for weekly samples from April to September. Weeks after the vertical
arrow indicate prevalence after treatment Time of capture and range of treatment
administration dates indicated by the double-ended horizontal arrow. Prevalence within the
capture period (hatched bars) indicate the presence or absence of eggs in the faeces at time
capture before the effects of the anthelmintic. Standard errors are not plotted for prevalence
of zero and one.

Relationship between egg output and worm burden. In May 1998 when 10 reindeer were

culled 12-14 days post-treatment, there was no relationship between egg output and worm

burden in the five control animals (F1,3=0.47,P>0.49) and the treated animals had zero eggs

per gramme faeces.

In July/August 1999, 12 weeks post treatment, there was a significant positive relationship

between faecal egg count and worm burden when both groups were combined (r=0.554;

F1,14=6.71 , P=0.021). There was a tendency for a significantly positive relationship in



treated animals and for no significant relationship in controls (interaction: F1,12=3.41,

P=0.090). This relationship was unaffected when total adult burden was substituted by

using only the adult female component of the population in the analysis. Within the adult

worm population, the numbers of adult females were also related to egg output (F1,146.29,

P=0.025). In October there was no relationship between worm burden and faecal egg

output because faecal egg output was close to zero (Fig 3.2.1d)

DISCUSSION.

Moxidectin is effective in removing abomasal nematodes from reindeer and the use of this

or other anthelmintics may provide a useful tool in the study of parasitism in wild

populations rather than resorting to the opportunistic analysis of carcasses. Other studies

on this drug and the related drug ivermectin have shown them to be effective and safe in

semi-domestic reindeer (Dietrich & Craigmill, 1990, Oksanen and others, 1992) and in red

deer (Mackingtosh and others, 1993). The period of efficacy for moxidectin appears to

vary between species and may be longer in reindeer than cattle and sheep (Dietrich &

Craigmill, 1990). Also, the efficacy of moxidectin may be more persistent than for

ivermectin (Deroover and others, 1997, Taylor, 1993, Barth and others, 1997). Although

the efficacy injectable moxidectin is much shorter than a long acting bolus (e.g. Ivomec

Maximizer, MSD Agvet), administration of the drug is much more certain, particularly

when animals have to be released into the wild immediately.

Although animals were re-infected in July and October, the worm burdens in the treated

group were still significantly lower than in the controls. This longer-term impact of using

anthelmintics such as moxidectin needs further investigation for two reasons. First, this
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may have implications for the impact of reinfection and the associated pathogenesis and

cost of parasitism on the host. Second, experiments such as this can give valuable data on

re-infection, survival and development of abomasal parasitism in wild animals. The

observation that treated animals had become re-infected 12 weeks post-treatment is not

surprising. However, the range in the observed burdens needs some explanation. It is

possible that this illustrates individual differences in susceptibility to infection or local

variation in infection risk because of heterogeneity in pasture contamination. However, it

may also reflect differences in the length of the effective period of the drug between

individuals. The drug is known to be lipophilic and reindeer carry large amounts of back

fat. For instance, an animal that is pregnant and/or has a calf may have a more dynamic fat

reserve due to lactation than a yeld animal and this may lead to faster metabolism of the

drug and a shorter effective period. However, the activity of the drug may be reduced in

animals with high back-fat reserves because the release rate may be sub-lethal to the

nematodes. Whether body condition interferes with the pharmacokinetics and alters the

effective dosing rate is unknown but may have implications for the route of drug

administration in animals such as Svalbard reindeer that accumulate large amounts of sub-

cutaneous back fat.

The absence of other nematodes in the small and large intestine in these reindeer

(Halvorsen & Bye, 1986) makes this system an ideal candidate to study the relationship

between abomasal worm burdens and faecal strongyle egg output. The egg count/worm

burden relationship in treated adult animals in July was significant and positive. Egg output

increased in a linear fashion with worm burden until worm burden reaches a point where

egg output per female worm is reduced so that although worm burden increases, faecal egg

output remains stable. This pattern has been described before and is briefly reviewed in

Coyne and Smith (1991). The experiment allowed re-infection over the summer and
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generated a wide variation in worm burdens with some low burdens that also had low

faecal egg counts. Therefore, the effect of treatment could be viewed as artificially creating

the situation found in young animals in that treated animals had low worm burdens and egg

counts. This suggests that egg counts in the summer may have potential for predicting the

degree of infection in young Svalbard reindeer up to 3 years of age because in this host

species, unlike sheep and cattle, worm burdens carryon increasing up to this age.

However, in older animals, there is no evidence of immunity; worm burdens remain high

and egg counts are highly variable (Halvorsen and others, 1999). Being able to monitor

worm burdens via egg output in young animals may be helpful in assessing the role of

parasites in determining the age at first reproduction and hence have implications for the

population dynamics of the reindeer. The lack of relationship in winter is to be expected

and highlights the importance of timing in determining when to sample and monitor

gastro-intestinal parasitism in wild and domestic ruminants.

Environmental considerations may also be important in deciding which drug to use against

nematodes in wild host populations. Oksanen & Nieminen (1998) found that moxidectin

and ivermectin were equally effective against nematodes in an experimental reindeer herd

but ivermectin had higher insecticidal efficacy. However, it is claimed that moxidectin

residues in the dung may be less harmful to dung dwelling insects than ivermectin. Timing

of anthelmintic may also have implications for the insect fauna. Treatment in winter results

in high ivermectin residues in the concentrated, pelleted faeces but at this time of year

faeces from untreated animals tends not to be populated with these detrivores (Nilssen and

others, 1999). Furthermore, faecal output may be lower at this time of year than in summer

so that a relatively small proportion of the annual faecal production will be contaminated

with ivermectin residues (Nilssen and others, 1999). The persistency and simplicity of an
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anthelmintic treatment in wild animals and the impact on the wider ecosystem are

important considerations for management decisions and requires further investigation.
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RESEARCH NOTE

OPTIMISING THE RECOVERY AND SUCCESS OF POLYMERASE CHAIN

REACTION (PCR) ANALYSIS OF ARRESTED ABOMASAL NEMATODE

LARVAE OF NATURALLY INFECTED SHEEP AND REINDEER ..

R.J. Irvine, J.F. Dallas

ABSTRACT

The relationship between recovery and success rates of polymerase chain reaction (peR)

analysis was studied in arrested L4 larvae of gastrointestinal nematodes extracted from

abomasa of four naturally infected lambs and two reindeer. Recovery and peR success

were unaffected by whether material was fresh or freeze-thawed. Recovery increased and

peR success remained constant (60-80%) with duration of neutral N-acetyl cistiene

digestion. Recovery increased and peR success declined to zero with duration of acid-

pepsin digestion. Studies requiring both optimised peR analysis and data on intensity of

infection of mucosa larvae should combine 2-4 hour and 16 hour digests.
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A common feature of the life cycles of gastrointestinal nematodes of ruminants is the

presence of arrested larval stages within the mucosa of the intestinal tract (Eysker, 1997).

Theoretical (Smith & Grenfell, 1985) and empirical (Coyne & Smith 1994) studies

involving communities of gastrointestinal nematodes suggest that species differences in the

propensity to undergo arrest can influence species-specific pathogenic effects and

transmission rates. Few studies, however, have succeeded in detailed parameterisation or

testing of theoretical models in wild hosts. This is largely because estimating species

composition in arrested larvae is presently hindered by the difficulty of species

identification using morphological traits in adult worms (Drodz, 1965; Suarez & Cabaret,

1991). Live larvae extracted into saline solution from the mucosa can be allowed to

develop into identifiable adult stages [Jackson, F. pers. comm.]. Such development is,

however, time-consuming and inapplicable to field-based studies in which the only feasible

method for storage of mucosa is freezing.

Species-diagnostic tests using the polymerase chain reaction (PCR), which provide an

alternative means of species identification, have been developed for a wide range of

gastrointestinal nematodes (Roos & Grant, 1993; Schneider et al., 1999; Gasser et al.,

1999; Hung et al., 1999, Dallas et al., 2000a). The majority of such tests involve detection

of the second internal transcribed spacer (ITS2) of nuclear ribosomal genes. The success of

such tests in arrested larvae obtained by digestion of frozen mucosa has, however, yet to be

demonstrated. The most commonly used digestion fluid contains 0.25 M HCI, which

cleaves DNA by depurination (Wahl et al., 1979). Extended digestion of mucosa in this

fluid could therefore lead to degradation of larval genomic DNA, especially when freeze-

thawing has killed the larvae. In addition, few studies have attempted to estimate the
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influence of extraction methods on numbers of larvae recovered (but see Hung et al.,

1999),which are essential data for obtaining estimates of infection intensity.

The present study investigates the effects of (a) fresh versus freeze-thawed mucosa, (b)

digestion in acidic versus neutral fluid, and (c) duration of digestion period on numbers of

larval nematodes recovered and success rates of peR detection of the ITS2 of individual

nematodes. Experimental material consisted of abomasa from naturally-infected sheep

Ovis aries and Svalbard reindeer Rangifer tarandus.

The first experiment involved nematode larvae from abomasa of four freshly-killed sheep

reared in an agricultural environment in northeast Scotland. Sheep were chosen because

their natural infections of abomasal nematodes are well described (Soulsby, 1982). The

pyloric half of the mucosa was cut into 3cm squares and each piece was randomly

allocated to one of the following treatments. Material was either digested fresh or

following one or two freeze-thaw cycles. Digest fluid was either using acid-pepsin

(MAFFIADAS, 1986) or neutral 60mM N-acetyl cystiene (Darwin-Murrell et al., 1997).

Digest periods were lhr, 4hr or 16 hr. Not all possible' combinations of treatments were

carried out. Recovery of larvae was estimated by washing the resulting digest fluid through

a 3811 mesh sieve, then diluting the material collected to one litre and counting the larvae

from 10% aliquots in perspex counting chambers until at least 100 had been extracted for

peR purposes. Recovered larvae were stored in 70% ethanol.

Total cellular DNA was isolated from individual larvae by incubation in 10 mM Tris.Hf'l,

0.1 mM EDTA, pH 8.0, containing 20 ug/ml proteinase K. Incubation was carried out in

microtitre plate wells containing 20 IIIof this fluid overlaid with 30 IIImineral oil (Sigma)

63



for 6 h at 55°e, followed by heating at 95°e for 10 min. DNA samples were stored at4°e.

The ITS2 was detected by Pf.R using the conserved primers Ne1 and Ne2, which detect

ITS2 in all species of nematodes known to infect sheep in agricultural environments

(Gasser et al., 1993). peR conditions were as described (Dallas et al., 2000a), except that

reaction volume was 10 Ill, containing 5 III of undiluted larval DNA, and the peR program

was continued for 40 cycles. peR products were visualised by electrophoresis for 2 hours

at 5 V/cm in 2% (w/v) agarose, 0.5 x Tris-borate EDTA gels containing 0.25 ug/ml

ethidium bromide. The presence of a single fragment of the expected size (ca. 320 bp)

indicated successful reaction of ITS2.
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Fig 3.3.1. Success rates of peR detection of the 320 bp ITS2 fragment in larvae extracted
from lamb abomasa digested with either acid-pepsin or N-acetyl cysteine. Mucosa was
digested for 1 hour, 4 hours or 16 hours. The numbers at the foot of the columns indicate
sample sizes.

Using logistic regression or generalised linear models, neither peR success rates nor

numbers of larvae recovered differed significantly between fresh and freeze-thaw

treatments (p>O.1.). Data were therefore pooled across pre-treatments. Further analysis

detected a significant interaction between type of digestion fluid and duration of digest on
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peR success rate (F4,24=5.84,p<0.01). peR success rates for the acid-pepsin fluid declined

sharply from around 80% after one hour to zero after 16 hours digestion (Fig. 3.3.1). In

contrast, peR success rates for the reduction fluid were. 65-85% independent of digest

period. Numbers of larvae recovered were similar between the two fluids (F1,40=0.04,

p>0.5), and over the four digest periods (F2,39=0.39,p>0.5). The latter result is probably

due to the small mucosa samples used being rapidly digested.

We also investigated the relationship between recovery and peR success rate for acid-

pepsin digestion of abomasa of Svalbard reindeer. This choice was motivated by the need

to ensure continuity with protocols previously used to estimate intensities of arrested larvae

(MAFFIADAS, 1986). Briefly, two male reindeer were culled on Svalbard in October

1998 and two females in October 1999. Abomasa were ligated, removed by dissection,

transported frozen to Britain and stored at -20oe. In May 2000, abomasa were thawed to

allow complete removal of adult nematodes destined for other studies. Empty abomasa

were refrozen, re-thawed two days later and digested in acid-pepsin for 16 hours. Larvae

were removed from digests after 1,2,4, and 16 hours. For each period, the digest fluid was

poured through a 150f.lm sieve placed over a 38f.lm sieve. After each extraction, the

material retained on the lower sieve was diluted to 1 litre and at least 100 larvae were

collected. The remaining abomasal material retained on the upper sieve was returned to the

incubator with fresh fluid to continue digestion. The mucosa larvae from the four digest

periods were identified as either Marshallagia marshalli or Ostertagia gruehneri by peR

as described (Dallas et al., 2000). However, larvae from the 16 hour digest of the October

1998 animals were not analysed by peR owing to the low or zero peR success rates

observed in 4 and 16 hour acid-pepsin digests of larvae from lamb mucosa (this study) and
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the zero peR success rates observed in earlier analyses of larvae from 16 hr acid-pepsin

digests of five reindeer abomasa (Dallas, unpublished observations).
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Fig 3.3.2
a) Mean success rates (and standard error bars) for peR identification of larvae extracted

from four adult reindeer abomasa digested using acid-pepsin. The material was
digested for 1 hour, 2 hours, 4 hours and 16hours (analysed using Logistic regression).

b) The mean cumulative number of larvae recovered (and confidence limits) of four adult
reindeer abomasa digested using acid-pepsin. The digest periods were 1 hour, 2 hours,
4 hours and 16 hours (analysed using generalised linear models).

A trade-off between recovery and peR success rate was evident in this experiment. peR

success rates were initially similar to those of the one hour digest of the lamb abomasa and
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declined to zero with increasing digest period. (Fig 3.3.2.a&b). Significantly higher PCR

success was achieved from one hour digests over 4 hour (t=2.51, p=0.03) and 16 hour

(t=3.28, p=0.008). However, the success of PCR after one hour, although greater, was not

significantly different from 2 hour digests (p>0.2, logistic regression). Numbers of larvae

recovered increased from one to two hours digest although the trend was not significant

(x,2=3.4, df=l, p=0.065). However, significantly more larvae were recovered after 4 hours

(x,2=5.29, df=l, p=0.02). Although there were more larvae recovered after 16 hours this

was not significantly greater than the number recovered after 4 hours (p>0.4, Fig. 3.3.2.b).

Therefore, one ideal combination would be to digest for two hours for in order top

maximise PCR success rate and continue the digest for longer, (up to 16hours) to maximise

numerical recovery of larvae.

The present study found evidence for a trade-off between recovery and PCR success rate in

larvae extracted using acid-pepsin digestion from fresh and freeze-thawed abomasa from

sheep and reindeer. Although the larvae from the sheep were not identified, their external

appearance is accepted in the literature as indicating the presence of nematode larvae and

data obtained by counting such larvae are commonly used to estimate infection rates

(Coyne & Smith, 1994). We have merely added a PCR stage to this type of analysis. The

increase in recovery with digestion period might be influenced by the size of the pieces

into with the mucosa were cut up prior to digestion. The decline in PCR success rate with

digestion period might be even steeper than found here for target DNA sequences of lower

copy number than the nuclear ribosomal genes (200-500 copies in most eukaryotes). In

conclusion, for studies which require both PCR analysis of arrested larvae and data on their

intensity of infection, we suggest that the sample is subjected to a maximum of two hour

acid-pepsin digest in the first instance. Resulting larvae will be suitable for PCR.
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Subsequently, the remaining material can be digested for up to 16 hours to maximise

recovery. The reduction method also appears suitable as an alternative but comparing

results from samples subject to different digest methods may be flawed because of the

interaction between length of digest and digest method in yielding larvae.

ACKNOWLEDGEMENTS

We thank Sysselmannen, Svalbard for permission to carry out fieldwork, Telenor A/S for

field accommodation, the Norwegian Polar Institute, the University Courses on Svalbard

and staff at the Longyearbyen Power Station for logistic support, Rolf Langvatn and

members of the Longyearbyen Hunting and Fishing Association for field assistance, and S.

D. Albon and A. Stien from comments and criticisms on previous versions of this paper.

This work was supported by the Arktisk Lys and Terrek programmes of the Research

Council of Norway, Reindriftens Utviklingsfond, The Directorate of Nature Management,

Norway, and the Natural Environment Research Council, UK (GR3 10811).

68



CHAPTER3.4

Research Note: Identification by polymerase chain reaction

(peR) of Marshallagia marshalli and Ostertagia gruehneri from

Svalbard reindeer

J.F. Dallasa, R.J. Irvine'", o. Halvorsen", S.D. Albon" 2000

~ERC Molecular Genetics in Ecology Initiative, Department of Zoology, University of

Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ.

bCentre for Ecology and Hydrology, Banchory Research Station, Glassel, Hill of Brathens,

Banchory, Aberdeenshire, AB31 4BY,

"Department of Biological and Molecular Sciences, University of Stirling

dZoological Museum, University of Oslo, Sars Gt. 1,0562 Oslo, Norway.

International Journal for Parasitology 30: 863-866

69



70



RESEARCH NOTE:IDENTIFICATION BY PCR OF Marshallagia

marshalli AND Ostertagia gruehneri FROM SVALBARD REINDEER*

J.P. Dallas, R.J. Irvine, O. Halvorsen, S.D. Albon

ABSTRACT

A PCR assay to identify two common abomasal nematodes Marshallagia marshalli and

Ostertagia gruehneri of Svalbard reindeer was developed. Species-specific PCR primers

were designed from ITS-2 sequences of rDNA and validated using morphologically

identified adult male and female nematodes. Using the species-specific primers, a 110 bp

fragment was amplified from M marshalli and its minor morph M occidentalis and a 149

bp fragment was amplified from O. gruehneri and its minor morph 0. arctica. No PCR

products were amplified from the third rare species, Teladorsagia circumcincta, or DNA

from the reindeer host. The assay provides a useful tool to estimate species composition for

both sexes in this nematode community .

•• Note: Nucleotide sequence data reported in this paper are available in the EMBL and

Genbank™ databases (accession numbers AJ250655, AJ250656, AJ400715 and

AJ400716).
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The abomasal nematode community of Svalbard reindeer, Rangifer tarandus

platyrhynchus, consists of three polymorphic species of the order Strongylida. Over 99%

of the community consists of Marshallagia marshalli (major morph)IM occidentalis

(minor morph) and Ostertagia gruehneri (major morph)/o. arctica (minor morph), and

less than 1% consists of Teladorsagia circumcincta (major morph)IT trifurcata (minor

morph)IT davtiani (minor morph) (Halvorsen & Bye, 1999). The minor morphs exist only

in males. A recent study suggested that the first two species have different life histories, as

shown by the annual and seasonal abundance of adult males and seasonal egg output

(Irvine et al., 2000a). Such contrasts, however, assume that the species compositions of the

adult male and female fractions of the community are equal. If this assumption is

unwarranted, the life histories of M marshalli and 0. gruehneri may be more similar than

previously recognised. Unfortunately, species composition of adult females cannot easily

be estimated because they cannot readily be identified to species using morphological traits

(Lichtenfells et aI., 1997). To overcome this obstacle, we have developed a PCR assay to

identify M marshallilM occidentalis and 0. gruehneriiO. arctica from Svalbard reindeer.

The primers were designed from sequences of the second internal transcribed spacer (ITS-

2) of rDNA because this region shows high levels of intraspecific homogeneity and

interspecific divergence in sequence for several species of strongylid nematodes (Hoste et

al., 1995; Heise et al., 1999). The primers were validated for detection of species-specific

DNA fragments using morphologically identified nematodes.

Nematodes were obtained during 1997 from wild reindeer from three sites in

Nordenskjioldland, Svalbard: Colesdalen (78°05'N, 15°20'E), Reindalen (77°57'N,

15°40'E) and Sassendalen (78°15'N, 17°30'E). Abomasa were removed from culled female
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reindeer and stored frozen at -20°C for 3-25 weeks. Abomasa were thawed and nematodes

collected immediately by washing the abomasal lumen with water. Adult male nematodes

were identified as M marshalli, M occidentalis, 0. gruehneri, 0. arctica or T

circumcincta according to the key of Dr6zdz (Dr6zdz, 1965). Adult female nematodes

were identified as M marshalli or 0. gruehneri according to the key of Lichtenfels and

Hoberg (Lichtenfels & Hoberg, 1993). Nematodes were stored in 70% ethanol at 4°C.

Total cellular DNA was isolated from individual nematodes by incubation in 100 !J.Iof 10

mM Tris.HCI, 0.1 mM EDTA, pH 8.0, containing 20 ug/ml proteinase K for 18 h at 55°C

followed by heating at 95°C for 10min. DNA samples were stored at -20°C.

ITS-2 sequences were determined for 16 adult males each of M marshalli and 0.

gruehneri from six reindeer from Colesdalen, six from Sassendalen, and one from

Reindalen. The ITS-2 of individual nematodes was amplified by PCR using the primers

NCI and NC2 (Gasser et al., 1993). PCR volume was 50 !J.I,containing 1 x NH4buffer, 0.5

u Taq DNA polymerase (BioLine), 2.5 mM MgCb, 200 !J.MdATP, dCTP, dGTP, dTTP,

0.5 !J.Mof each primer, and 5 !J.Iof DNA solution. The latter consisted either of 100x

diluted stock DNA when PCR yields were high or of undiluted stock DNA when PCR

yields were low. The PCR program was 92°C /2 min. 15 s, [90°C /15 s, 55°C /15 s] x 35

cycles, 72°C / 1 min. Single fragments of.the expected size (ca. 320 bp) were purified

using Qiaquick spin columns (Qiagen), and both strands sequenced on an ABI 377

automated DNA sequencer using NCI and NC2. The sequences obtained were aligned

using Clustal X (Thompson et al., 1997). All differences between sequences and all

variable bases were checked against the raw data from the sequencer.
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Two sequences containing the complete ITS-2 and part of the 28S gene were detected in

M marshalli (Fig. 3.4.1). These differed at one position (28), at which five individuals

Mm21 AATGAAACTA ATACAGTGTG GCTAACATAT AACACTGTTT GTCGAATGGT

ATTTATCACT 60
Mm33
Og33
Og36

••..•.••••••••••• Y ••
C •............••• C ..
C •.............•. C ..

pg-ITS2-F>1
Mm21 TCATTGTGAT AACTCCCATT TCAGTTCAAG AATAACACAT GCAACATGAC GTTAAC--GA
120
Mm33 .

1···· AT. ·1
. R AT ..

Og33 .A........ ..T .
Og36 .A........ ..T .

&!l-ITS2-F>!
Mm21 TGTTAACGTIT CCTGAATGAT ATGAATGTAT uTACclGCTA TTTGAATGTA CTCAATGGAT
180
Mm33
Og33
Og36

A. ........ . A AT ..T .A .
A A AT ..T.A .

....... A ..

....... A ..

Mm21 ATGAGATCGA TTTAAATAGA GACATGTATG GT~CTGTATG TTCAATATAT CATTTGTATtl
240
Mm33 .

!<Mm-ITS2-~ I<Og-ITS2-~

Og33 T C G
Og36 T C G

.• •A.A ·IG 1

•.. A.A G ..•..........

Mm21 ~caacctgag ctcaggcgtg attacccgct gaacttaagc atatcattt 289
Mm33
Og33 I· ·1·
Og36 ..,..

Fig. 3.4.1. Alignment of four sequences containing the complete ITS-2 and part of the 28S
rRNA gene detected in 16 adult males each of Marshallagia marshalli (Mm) and
Ostertagia gruehneri (Og) from 13 Svalbard reindeer. The numbered sequences refer to
individual reindeer. Bases identical to those of Mm21 are indicated by a dot. Positions 28
and 109, at which polymorphic bases were detected, are indicated by IUPAC codes, The
four oligonucleotide primers designed for species identification by PCR are shown as
boxed sequences. Positions 1 and 239 correspond to the 5' and 3' ends, respectively, of
ITS-2, and positions 240 to 289 (lower case) correspond to the end of the 26S gene of
Caenorhabditis elegans (GenBank accession number X03680).

possessed T and 11 individuals possessed CIT. Two sequences were detected in 0.

gruehneri. These differed at one position (109) at which five individuals possessed A and
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11 individuals possessed A/G. The numbering of the positions differed slightly from that

given in a parallel study (Dallas et al., 2000b) owing to the gaps in the present alignment.

Both of the variable bases detected within species occurred in all three study sites on

Svalbard. The differences between the ITS-2 sequences of M marshalli and 0. gruehneri

consisted of 14 substitutions (3% divergence), three indels, and the two variable bases

described. These ITS-2 sequences thus showed intra- and interspecific differences similar

to those of several other strongylid nematodes (Hoste et al., 1995; Heise et al., 1999).

Species-specific peR primers were designed to detect one ITS-2 fragment in M marshalli

(110 bp) and another in 0. gruehneri (149 bp, Fig.3.4.1) using OLIGO 4.0 (National

Biosciences, Inc.). The primers were: Mm-ITS2-F 5' TCCTGAATGATATGAATGTATTACC 3',

Mm-ITS2-R 5' CAATACAAATGATATATTGAACATACAG 3', Og-ITS2-F 5'

GCAACATGACGTTAACATGA 3' and Og-ITS2-R 5' TCAGGTTGCAATACAAATGATAC 3'. The

ability of these primers to detect the expected fragments was tested using morphologically

identified adult males of all the taxa present in the abomasal community of Svalbard

reindeer, except the two minor morphs of T. circumcincta, T. trifurcata and T. davtiani,

and adult females of M marshalli and 0. gruehneri. peR conditions were as above, except

that the annealing temperature was 50oe, reactions contained four primers (Mm-ITS2-F/R

at 1.0 f.lM and Og-ITS2-F/R at 0.5 f.lM), and 2 ul of DNA was used in a total reaction

volume of 10 ul, peR products were separated by electrophoresis for 1.5 hours at 200 volts

in 2% (w/v) agarose, 0.5 x Tris-borate EDTA gels containing 0.25 ug/ml ethidium

bromide. A single fragment of ~ 110 bp was amplified from 32 males and 16 females of M

marshalli, and from 8 males of its minor morph M occidentalis from Svalbard. A single

fragment of ~ 149 bp was amplified from 32 males and 16 females of 0. gruehneri, and

from 16 males of its minor morph 0. arctica from Svalbard and Norway. No fragments
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were amplified from 16 males of T. circumcincta or from Svalbard reindeer DNA.

Examples of the two species-specific fragments are shown in Fig. 3.4.2. In a parallel study

containing details of the Norwegian study sites, we showed that O. gruehneri and its minor

morph 0. arctica have virtually identical ITS-1 and ITS-2 sequences (Dallas et al., 2000b).

The species-specificity of both fragments was verified by direct DNA sequencing using

Mm-ITS2-F/R and Og-ITS2-F/R as sequencing primers. The 57 bp sequences determined

for four adult male M marshalli and the 106 bp sequences determined for four adult male

0. gruehneri from Colesdalen and Sassendalen were identical to those shown between the

primers Mm -ITS2-F/R and Og-ITS2-F/R, respectively (Fig. 3.4.1).

The peR assay described here correctly identified adult males and females of M

marshalli, and adult males of its minor morph, M occidentalis, from Svalbard. The assay

also correctly identified adult males and females of 0. gruehneri, and adult males of its

minor morph, 0. arctica, from Svalbard and Norway. No products were amplified from T.

circumcincta and the reindeer host. The presence of T. circumcincta can be distinguished

from a negative peR result by using primers Ne1 and Ne2 (see Stevenson et al., 1996))

(J. Dallas, unpublished data). This assay therefore provides a means of positively

identifying the two species comprising over 99% of the abomasal nematode community of

Svalbard reindeer, and is almost certainly applicable to all life cycle stages (Gasser et aI.,

1993)
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This study expands the range of PCR assays available to identify gastrointestinal

nematodes of animals (Roos & Grant, 1993; Schneider et al., 1999; Gasser et ai., 1999;

Hung et al., 1999). The ITS-2 sequences on which the PCR primers are based were

virtually identical for M marshalli from Svalbard (this study) and for 0. gruehneri and 0.

arctica from Norway and Svalbard (Dallas et al., 2000b) implying that this assay will be

useful in both geographical locations. Nevertheless, both M marshalli and 0. gruehneri

have much wider distributions. M marshalli is widespread, having 142 occurrences

recorded for 13 groups of wild and domesticated ungulates. 0. gruehneri is more

restricted, having 21 occurrences recorded for six groups of wild ungulates (Suarez &

Cabaret, 1991). The analysis of isolates representing broader geographical scales and host

ranges of both M marshalli and 0. gruehneri will be required to assess the global

applicability of the present PCR assay.
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RESEARCH NOTE: DNA EVIDENCE THAT Ostertagia gruehneri AND

Ostertagia arctica (Nematoda: Ostertagiinae) IN REINDEER FROM

NORWAY AND SVALBARD ARE CONSPECIFIC·

J.F. Dallas, RJ. Irvine, O. Halvorsen

ABSTRACT

DNA sequences of ITS-l and ITS-2 of rDNA were determined for 16 individual adult

males each of Ostertagia gruehneri and Ostertagia arctica from Svalbard reindeer

(Rangifer tarandus platyrhynchus) and Eurasian tundra reindeer (R. t. tarandus). Each ITS

was virtually identical in 0. gruehneri and 0. arctica and the three mixed bases detected

were shared by both species. Our results strongly suggest that 0. gruehneri and 0. arctica

are dimorphic males of the same species.

• Note; Nucleotide sequence data reported in this article are available in the EMBL,

GenBank™ and DDJB data bases under the accession numbers AJ250656 - AJ250659.
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Ostertagia gruehneri Skrjabin, 1929 and Ostertagia arctica Mitskevich, 1929 (Nematoda:

Ostertagiinae) are intestinal parasites of reindeer and caribou, Rangifer tarandus, and their

distribution extends throughout the range of the host species (Lichtenfels et al., 1990).

These nematodes are suspected to represent polymorphic males of the same species on the

basis of their co-occurrence and synlophe (cuticular ridges) structure (Lichtenfels et al.,

1990; Dr6zdz, 1995; Suarez & Cabaret, 1991). However, there have been no studies of

crosses or genetic similarity between 0. gruehneri and 0. arctica to our knowledge. As a

test of the polymorphism hypothesis (Daskalov, 1974) and to clarify their taxonomic status

Lichtenfels et al., 1997) we compared DNA sequences obtained by PCR between isolates

of 0. gruehneri and 0. arctica from four locations: two on the Svalbard archipelago and

two in Norway. We also used these data to compare the relative levels of DNA sequence

divergence in ITS-1 and ITS-2 and to assess the monophyly of Ostertagia. The host on

Svalbard is the endemic Svalbard reindeer (Rangifer tarandus platyrhynchus) and the host

in Norway is the Eurasian tundra reindeer (R. t. tarandus). The study animals from

Svalbard and south Norway were wild reindeer and those from north Norway were from

semi-domesticated herds. We have recently described several aspects of the biology and

ecology of the abomasal nematode community of reindeer on Svalbard (Halvorsen et al.,

1999; Halvorsen & Bye, -1999; Irvine et al., 2000a).

Abomasa were removed from culled reindeer from four locations, Reindalen (77°57'N,

15°40'E) and Sassendalen (78°15'N, 17°30'E) on Svalbard, Hardangarvidda in southern

Norway (60015'N, 7°30'E), and Malselv in northern Norway (69°45'N, 19°30'E). The

Malselv samples were collected during 1986, and the Hardangarvidda and Svalbard

samples were collected during 1997. 0. gruehneri comprised up to 94 per cent of the

abomasal nematodes in adult Svalbard reindeer, 99 per cent in adult reindeer at
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Hardangarvidda, and was the dominant species In reindeer in Malselv, 0. arctica

comprised from one to five per cent at Svalbard and less than one per cent at

Hardangarvidda (Halvorsen & Bye, 1999; Bye et aI., 1987; Bye, 1987). Abomasa were

stored frozen at -20°C before processing. Abomasa were thawed and nematodes were

collected immediately by washing the abomasal lumen with water. Adult male nematodes

were classified as 0. gruehneri or 0. arctica according to the key of Dr6zdz (Dr6zdz,

1965) and stored in 70% ethanol. One pair of individual adult male 0. gruehneri and 0.

arctica was chosen from 16 reindeer: one from Reindalen, six from Sassendalen, five from

Hardangarvidda and four from Malselv, Total cellular DNA was isolated from individual

worms by incubation in 100 III of 10 mM Tris.HCI, 0.1 mM EDTA, pH 8.0, containing 20

ug/ml proteinase K, for 18 h at 55°C in microtitre plate wells overlaid with paraffin oil.

After incubation, the digests were heated at 95°C for 10 min then stored at -20°C.

The ITS-l of individual nematodes was amplified by PCR using the primers NC5 (5'

GTAGGTGAACCTGCGGAAGGATCAIT 3') and NCIR (5' AACAACCCTGAACCAGACGT 3'),

and the ITS-2 was amplified using NCI (5' ACGTCTGGTICAGGGITGIT 3') and NC2 (5'

IT AGTTICITITCCTCCGCT 3'). These primers had been designed from conserved

sequences of the 5.8S 18S and 26S genes of Caenorhabditis elegans (Gasser et al., 1993,

Gasser & Hoste, 1995). The PCR reaction _volume was 50 Ill, containing Ix NRt buffer,

0.5 units Taq DNA polymerase (BioLine), 2.5 mM MgCh, 200 IlM dATP, dCTP, dGTP,

dTTP, 0.5 IlM of each primer, and 10 III of DNA solution. The latter consisted either of

100x diluted stock DNA for samples giving high PCR yields or of undiluted stock DNA

for samples giving low PCR yields. The PCR program used was: 90°C I 2 min 15 s, [90°C

115 s, 55°C 115 s] x 35 or 40 cycles, 72°C 11 min. The PCR products detected were single

fragments of the expected lengths (ca. 570 bp for ITS-l and ca. 320 bp for ITS-2). PCR
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products were purified using Qiaquick spin columns (Qiagen), then sequenced on an ABI

377 automated DNA sequencer using the PCR primers. Both strands of each fragment

were sequenced. Sequences were aligned using Clustal X (Thompson et aI., 1997). All

differences between sequences and all mixed bases detected by alignment were checked

against the ABI electropherograms. Published ITS-l sequences of two pairs of

polymorphic species 0. ostertagi (AF044933) I 0. lyrata (AF044930), and 0 .. mossi

(AF044932) I 0. dikmansi (AF044928), and of four other trichostrongylid species, 0.

leptospicularis (AF044931), Teladorsagia circumcincta (AF044934), Haemonchus

contortus (AF044927) and H placei (AF044929), and published ITS-2 sequences of 0.

leptospicularis (X86025) and 0. ostertagi (X86027), were obtained from the Genbank ™

database. Levels of divergence in ITS-l and ITS-2 among three species, 0. gruehneri, 0.

leptospicularis and 0. ostertagi were quantified as the number of observed pairwise

differences expressed as a percentage of the total aligned length of ITS-l (404 bp) and

ITS-2 (241 bp). Numbers of pairwise base substitutions were obtained using MEGA [So

Kumar, K. Tamura and M. Nei 1993, The Pennsylvania State University, University Park,

PA 16802], and numbers of pairwise indels were counted by eye. A bootstrapped

neighbour-joining tree of ITS-l sequences was obtained using Clustal X. Alignment gaps

were not counted, no correction was made for multiple mutations at the same position and

1000 bootstrap replicates were performed.

In 0. gruehneri and 0. arctica, all 32 ITS-l sequences were 400 bp and all 32 ITS-2

sequences were 238 bp in length. The four ITS-l variants detected were virtually identical,

differing only by the presence of CIT mixed bases at two positions, 46 and 89. The two

ITS-2 variants detected were also virtually identical, differing only by the presence of AlG

mixed bases at position 108. Thus, 0. gruehneri and 0. arctica from four geographically
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diverse locations possessed virtually identical ITS-l and ITS-2 sequences. Furthermore, all

the mixed bases detected were shared between 0. gruehneri and 0. arctica. The CIT at

position 46 of ITS-l was shared by both species at Hardangarvidda and Sassendalen, and

the A/G at position 108 of ITS-2 was shared by both species in all four sites. The CIT at

position 89 of ITS-l was shared by both species at both locations on Svalbard and

appeared to be absent from both Norwegian locations.

These results strongly suggest that 0. gruehneri and 0. arctica are dimorphic males of the

same species. The virtual identity of ITS-l and ITS-2 sequences in species previously

suspected to be morphs has also been shown in Teladorsagia, Cooperia and Ostertagia

Stevenson et al., 1996; Newton et al., 1998; Zarlenga et al., 1998). Both ITS regions are

known to evolve rapidly among closely related species of nematodes that include several

members of the Trichostrongylidae (Hoste et al., 1999, Hoste et al., 1995). Therefore, it is

unlikely that these regions are so conserved as not to detect a genuine species difference

between 0. gruehneri and 0. arctica. The biological significance of male dimorphism in

the Ostertagiinae remains unresolved, but it may relate to longevity of infective larvae and

variable susceptibility in the host (Suarez et al., 1995).

Table 3.5.1. Levels of sequence divergence of ITS-l and ITS-2 among three Ostertagia
s ecies

0. gruehneri 0. leptospicularis 0. ostertagi

0. gruehneri 3.7 -4.0 7.7 - 10.1

0. leptospicularis 2.5 -2.9 7.7 - 10.1

0. ostertagi 7.1-8.7 8.3 - 10.0

Values for ITS-l and ITS-2 are shown above and below the diagonal, respectively. Values
are the number of observed pairwise differences expressed as a percentage of the total
aligned length oflTS-l (404 bp) and ITS-2 (241 bp). The first value in each comparison is
for base substitutions only and the second value is for base substitutions and indels
combined.
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The relative levels of sequence divergence in ITS-I versus ITS-2 in Ostertagia were

compared using sequences obtained for 0 gruehneri in this study and those of 0

leptospicularis and 0 ostertagi referred to above. Both ITS regions show similar levels of

divergence among the three species, and base substitutions contribute more than indels to

divergence (Table 3.5.1). These results imply that both regions would be equally useful for

species discrimination using peR (Gasser&Monti, 1997).

r-H

100 ---
T. circumcincta

96

O. ostertagi

100
.... O.lyrata

O. leptospicularis96

O. dikmansi

99 100
O. mossi

88 O. arctica HV 68
._

- O. arctica SR W2
100

O. gruehneri SS 46

1.0 O. gruehnerl ME 98

. contortus

H. placei

Fig. 3.5.1. Neighbour-joining tree of ITS-I sequences of Ostertagia gruehneri and 0
arctica together with those of other trichostrongylid species obtained from Genbank™.
The latter include the two polymorphic species, 0 ostertagi /0 lyrata and 0 mossi /0
dikmansi. The two Haemonchus species were defined as outgroups. The designations
following the O. gruehneri and 0 arctica sequences refer to the four collection sites (HV,
Hardangarvidda; SR, Reindalen; SS, Sassendalen; ME, Malselv) and to codes for
individual reindeer. The numbers on the nodes of the tree are the percentage bootstrap
values out of 1000 replicates. The scale indicates one-percent sequence divergence along
the horizontal branches of the tree.
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Fig 3.5.l shows a neighbour-joining tree of the relationship of the four ITS-1 sequences

detected in 0. gruehneri and 0. arctica with those of other trichostrongylid species

previously subjected to phylogenetic analysis of the ITS-1 sequences by Zarlenga and co-

authors (Zarlenga et al., 1998). The single root of the ITS-1 tree of the seven nominal

Ostertagia species shown here strengthens these authors proposals that Ostertagia is a

monophylletic group.

The conspecificity we have inferred from our results implies that 0. gruehneri and 0.

arctica are synonyms. The consequences of this for nomenclature will be dealt with

separately.
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RESEARCH NOTE: DNA EVIDENCE THAT Marshallagia marshall;

Ransom 1907 AND M. occidentalis Ransom 1907 (Nematoda:

Ostertagiinae) FROM SVALBARD REINDEER ARE CONSPECIFIC·

John F. Dallas, R. Justin Irvine & Odd Halvorsen

ABSTRACT

The gastrointestinal parasitic nematodes of ruminants Marshallagia marshalli and

Marshallagia occidentalis are morphs of a single species according to indirect evidence. In

this study, their taxonomic status and molecular identification were assessed in isolates

from the abomasal nematode community of Svalbard reindeer (Rangifer tarandus

platyrhynchus) more directly using genetic data. DNA sequences of the first and second

internal transcribed spacers of nuclear ribosomal RNA genes were obtained from

individual nematodes by the polymerase chain reaction (PCR). Both taxa contained

virtually identical sequences of each ITS and shared most of the polymorphisms detected.

A PCR assay based on ITS-2 sequences previously developed to identify M marshalli and

Ostertagia gruehneri, the second common species in this community, gave

indistinguishable results for M marshalli and M occidentalis. Genetic data thus confirmed

that M marshalli and M occidentalis are conspecific .

•Note; Nucleotide sequence data reported in this article are available in the EMBL,

GenBank™ and DDJB data bases under accession numbers AJ250655, AJ400715, and

AY013242-4.
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The proposal that many species of the trichostrongylid subfamily Ostertagiinae Lopez-

Neyra, 1947 have polymorphic adult males (Daskalov, 1974) is presently accepted

(Dr6zdz, 1995; Lichtenfels et al., 1997). Nonetheless, supporting evidence is generally

indirect, consisting of the occurrence of morphs in males only, the consistency of the

relative abundance of morphs within hosts, and the co-occurrence of pairs of morphs in the

same areas and under similar climatic conditions (Suarez & Cabaret, 1991).DNA sequence

data can yield direct evidence for assessing taxonomic status. Furthermore, the detection of

species-specific DNA sequences by the polymerase chain reaction (PCR) is increasingly

being used to identify nematode species (McKeand, 1998). One such assay is intended for

quantifying species abundance in mixed infections containing suspected morphs (Dallas et

al., 2000a). It is therefore important to confirm the taxonomic status of suspected morphs

using the DNA sequences on which the assay is based, and to compare assay results in the

morphs present.

In this study, the taxonomic status of the suspected morphs Marshallagia marshalli

Ransom, 1907 and Marshallagia occidentalis Ransom, 1907 was assessed using DNA

sequence data in samples from the abomasal nematode community of Svalbard reindeer

Rangifer tarandus platyrhynchus. M marshalli is one of two common species in this

community (Halvorsen & Bye, 1999) and, according to ecological and morphological

criteria (Dr6zdz, 1995),M occidentalis is its rare morph. Sequences of the first and second

internal transcribed spacers of nuclear ribosomal RNA genes (ITS-l and ITS-2) of M

marshalli and M occidentalis were obtained by PCR and compared. The other common

species in this community is Ostertagia gruehneri, whose rare morph is 0. arctica

according to ecological, morphological (Drozdz, 1995) and ITS-1 and ITS-2 sequence

(Dallas et al., 2000b) criteria. In addition, the performance of a PCR assay based on ITS-2
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sequences developed to identify M marshalli and 0. gruehneri in isolates from Svalbard

reindeer (Dallas et aI., 2000a) was tested in M occidentalis. Most of the ITS-2 sequences

of M marshalli were reported in the latter study.

Samples of abomasal nematodes were obtained from adult reindeer culled during 1997 at

Colesdalen (78°05'N, 15°20'E), Nordenskjioldland, Svalbard. Adult male nematodes were

identified according to external morphology as M marshalli or M occidentalis as

previously described (Irvine et aI., 2000). The mean dominance of M marshalli in

individual hosts was 23-46% and that of M occidentalis was up to 0.2%. Seven adult male

M marshalli and eight adult male M occidentalis from the same seven reindeer were

analysed. Total cellular DNA was isolated, and DNA fragments containing ITS-l and ITS-

2 were amplified by PCR from individual nematodes, sequenced and aligned as previously

described (Dallas et aI., 2000b).

The 15 ITS-l sequences determined were all 384 bp and the 15 ITS-2 sequences were all

235 bp in length. Both spacer sequences were virtually identical in M marshalli and M

occidentalis, and sequences differed only by a total of 12 polymorphic sites. Five of the

eight substitution polymorphisms found in ITS-l were shared between M marshalli and

M occidentalis: A,C or M at site 21, A or W at site 102, A or R at site 124, K or T at site

211 and C,T or Y at site 344. Letters other than A, C, G, or T indicate IUPAC codes for

polymorphic bases. The remaining three substitution polymorphisms were detected once in

either M marshalli or M occidentalis. In addition, four M marshalli and three M

occidentalis individuals showed within-individual polymorphism for the same 1 bp indel at

site 101. Two of the three substitution polymorphisms found in ITS-2 were shared between

M marshalli and M occidentalis: Tor Y at site 28 and C or T at site 53. The remaining
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substitution polymorphism was detected once in M marshalli. In addition, one M

marshalli and one M occidentalis individual showed within-individual polymorphism for

the same 1 bp indel at site 107, and four M marshalli and four M occidentalis individuals

showed within-individual polymorphism for the same 2 bp indel at sites 112/113. No

individual possessed both indel polymorphisms. Thus, the samples of M marshalli and M

occidentalis analysed possessed virtually identical ITS-l and ITS-2 sequences, and they

shared all sequence polymorphisms detected in two or more individuals.

A peR assay based on diagnostic ITS-2 primers developed to identify M marshalli and 0.

gruehneri in isolates from Svalbard reindeer was tested using 16 M marshalli and eight M

occidentalis individuals. peR and electrophoresis conditions were as previously described

(Dallas et al., 2000a). The 110 bp DNA fragment previously shown to be diagnostic for M

marshalli was detected in all 16M marshalli and all eight M occidentalis individuals.

The sequences of ITS-l and ITS-2 of 0. gruehneri and 0. arctica, which were obtained in

parallel using the same peR primers (Dallas et al., 2000b), differed from those determined

here at several positions. This finding and the detection of sequence polymorphisms make

it most unlikely that the virtual identity of M marshalli and M occidentalis ITS sequences

found here is an artefact of peR carry-over contamination.

The present study confirmed that M marshalli and M occidentalis are conspecific using

DNA sequence data, and that a peR assay to identify M marshalli gave identical results

for both morphs. Both ITS-l and ITS-2 have evolved rapidly among closely related

trichostrongylid nematodes (Hoste et al., 1995; 1998), making it unlikely that a genuine

species difference between M marshalli and M occidentalis would have gone undetected.

94



Genetic data likewise confirm the existence of morphs in the genera Teladorsagia

(Stevenson et al., 1996) and Ostertagia (Gasnier et al., 1993; Zarlenga et al., 1998; Dallas

et al., 2000b) in the trichostrongylid subfamily Ostertagiinae, and in the genus Cooperia in

the trichostrongylid subfamily Cooperiinae (Newton et al., 1998). The present study

completed an ITS sequence dataset that confirms the con specific status of all seven

suspected morphs in the abomasal nematode community in Svalbard reindeer. According

to both morphological and ITS sequence data, this community consists of three species: M

marshallilM occidentalis (this study), 0. gruehnerilt). arctica (Dallas et al., 2000b) and

Teladorsagia circumcinctal'I. trifurcatal'I. davtiani (Stevenson et al., 1995).

Our results, based on samples from one host species from one site on Svalbard, implied

that M marshalli and M occidentalis are synonyms. Nonetheless, these taxa are among the

most widespread of gastrointestinal parasitic nematodes, having 142 and 100 records,

respectively, in many domesticated and wild ruminants (Suarez & Cabaret, 1991). Analysis

of ITS sequences representing global geographical scales and host ranges should therefore

be carried out before nomenclature is changed.
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EVIDENCE FOR CONTINUED TRANSMISSION OF PARASITIC

NEMATODES IN REINDEER DURING THE ARCTIC WINTER.

O. Halvorsen *, A. Stien t, J. Irvine t, R. Langvatn t and S. Albon t

ABSTRACT

Living in the high Arctic the Svalbard reindeer (Rangifer tarandus platyrhynchus) and its

trichostrongyle nematodes experience a long cold winter from October to late May / early

June. Over this period, transmission would be expected to be low. However, in culled

reindeer the abundance of infection increased from autumn to late winter providing

evidence for continued transmission within this period. To our knowledge this is the first

time this has been demonstrated in a climate with temperatures consistently below 0° C. In

one winter (1996-97) the average fraction of nematodes found as larvae in the abomasum

mucosa increased from around 10 % to 50% between October and March. This suggests

that arrested development took place throughout the winter. We found no evidence for an

efficient acquired immune response towards the nematodes. The abundance of infection

did not tend to decrease with increasing host age after an earlier peak but levelled off

instead, as predicted by a simple immigration - death model. In the late winter when the

nutritional plane is low both adult reindeer and calves had high worm burdens at intensities

that may affect their condition and fitness.
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INTRODUCTION

Nematodes of the family Trichostrongylidae cause significant losses in domestic livestock

through negative effects on host survival and growth (Soulsby et al, 1982). The population

dynamics of these gastrointestinal nematodes have been studied extensively (Smith &

Grenfell, 1985; Smith, 1994; Grenfell, 1992) and important aspects of their population

dynamics include the seasonality in transmission, development and establishment, and host

development of acquired immunity. In temperate climates nematode transmission rates are

commonly low in the late autumn - winter period due to reduced survival and development

rates of the free-living stages of the nematodes, and the practice of housing domestic

animals during cold periods (Smith & Grenfell, 1985). High infection rates are

experienced on spring - summer pasture and may cause disease in late summer - autumn,

especially in years with mild and wet weather favorable for the nematode free-living stages

(Smith & Grenfell, 1985; Armour, 1970; Armour, 1980). In late summer and autumn after

transmission to the host, the larvae enter a state of arrested development and high numbers

may accumulate in the host abomasum and intestinal mucosa. Arrested larvae have high

survival rates (Smith & Grenfell, 1985) and the arrestment is thought to be an adaptation

by the parasite to survive periods of unfavourable climate for the development, survival

and transmission of free-living stages (Armour & Duncan, 1989). High numbers of

arrested larvae may re-emerge in the end of the harsh climatic period and cause disease in

the beginning of the grazing season coinciding with host reproduction (Armour, 1970;

Armour & Duncan, 1989). Sheep and cattle develop high worm burdens during the first

months of the animals' life. Thereafter acquired immunity is considered to reduce the rate

of nematode establishment and cause a reduction in the adult worm burden with increasing

host age (Smith, 1994). This is thought to be the main reason for the low levels of
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infection commonly observed in adult animals compared to calves and lambs (Armour,

1980).

The Svalbard reindeer (Rangifer tarandus platyrhynehus) inhabits the archipelago of
,

Svalbard in the high arctic (76 - 81°N, 9 - 33°E). It is the only free-living large herbivore

on the islands and the total population size estimated to be approximately 8500 animals

(Hindrum et al, 1995), consists of a set of relatively isolated sub-populations separated by

sea, large areas of glaciers and sparsely vegetated mountains. Bye, Halvorsen and Nilssen

1987 reported seven species of trichostrongyle nematodes from the abomasum of the

Svalbard reindeer (Ostertagia gruehneri, Marshallagia marshalli, Grosspieulagia

oeeidentalis, Skrajabinagia aretiea, Teladorsagia eireumeineta, Teladorsagia davtiani and

Teladorsagia trifureata) and found that worm burdens were relatively high compared to

those found in wild reindeer on the Norwegian mainland (Bye, 1986). Today, four of the

species reported by Bye, Halvorsen and Nilssen [9] are recognised as morphs of a total of

three species (Gasnier et al, 1993;Drozdz, 1995).

At Svalbard the monthly average air temperature is normally above 0° C only between

June and September, and the maximum temperature is seldom above 1°C through the

winter (Fig. 4.1).

The upper meter of ground may thaw in the summer, but typically this part is frozen and

covered by snow from October to the end of May/early June. The low temperatures

together with snow covered ground are thought to be an unfavourable environment for the

free-living stages of trichostrongyle nematodes. Since the reindeers' food intake is also

lower in winter than in summer (Staaland, 1986) we would expect parasite transmission

rates to be very low through the winter. This should promote selection for larval

arrestment and lead to a drop in the abundance of infection, especially the abundance of

adult nematodes, due to nematode mortality over the winter. Larval arrestment in autumn
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and winter should cause an increase in the proportion of arrested larvae over the same

period as adults die. However, Halvorsen, 1986 found that mature worms and larvae were

abundant all year round in Svalbard reindeer. He interpreted this to suggest that

transmission occurred throughout the winter and that arrested development was not an

important strategy in this harsh environment.
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Fig. 4.1. Monthly mean number of days with maximum temperature above 1 "C (shaded
bars), maximum temperature above 6 "C (open bars) and monthly mean temperature (line)
at Svalbard Airport. The _bars are based on data from 1994-1998 and the line on data from
the years 1912-1996.

This paper has three objectives answered by performing quantitative analyses of worm

abundance in the abomasums of Svalbard reindeer sampled in autumn and winter months.

First, to test the hypothesis that transmission of trichostrongyle nematodes occurs through

the arctic winter. Second, to investigate the seasonal occurrence of arrested larvae in

abomasum mucosa. Third, to look for evidence of reindeer developing acquired immunity

to their trichostrongyle parasites. In the abomasum we distinguished between mucosa

(harbouring larval stages) and lumen (containing both larval and adult stages). The larvae

in the lumen are individuals that have recently entered the host and individuals that have
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emerged from the mucosa (arrested from previous infection), ready to develop into adults.

One would predict strong selection in favour of arrested development due to freezing

temperatures in autumn and concomitantly reduced transmission rates. As a result one

would expect a decrease in the abundance of lumen nematodes, accompanied by an

increase in mucosal larvae until the late winter, when these trends reverse due to mucosal

larvae beginning to emerge and develop. If transmission rates are actually reduced, a

decrease in total worm abundance may also occur during the winter period. The reindeer

are exposed to the infectious stages of the nematodes throughout their lives and protective

immunity may be acquired as the reindeer increase in age. We look for evidence of

acquired immunity by exploring the relationship between intensity of infection and host

age.

MATERIALS AND METHODS

Reindeer and sample sites. Abomasums were collected from adult female reindeer and

calves of both sexes culled in Sassendalen, Colesdalen and the lower part of Reindalen

valleys in Nordenskjoldland, Spitsbergen (770 50'-780 20'N, 150 00'-170 30'E). The

reindeer were sexed from a distance and then shot with a rifle by experienced hunters.

Female reindeer were selected for the cull to enable us to investigate the relationship
,

between parasite burden and reindeer fecundity, results that will be published elsewhere.

Colesdalen and Reindalen are connected by a 15 km valley system and reindeer are known

to move between these two valleys (pers. obs.). Sassendalen is approximately 40 km East-

North-East of the area where animals were culled in Colesdalen and Reindalen, and

movements of reindeer are believed to be rare between these valleys and Sassendalen

(0ritsland et aI., 1986; Tyler & 0ritsland, 1987). Reindeer were culled in August,
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September, October, February, March and April in the years 1994-1997, but not from all

these months each year (Table 4.1). The ages of reindeer were determined from the

number of annuli in sections of the incisor teeth (Reimers & Norby, 1968).

Table 4.1. Sample sizes from the different months and years in the two areas Sassendalen
and Colesdalen-Reindalen.

Sassendalen Colesdalen-Reindalen

Year Month nadult ncalve nadult ncalves

females s females

1994 August 2 1 2 4

1994 October 21 10 7 2

1995 April 3 6

1995 October 16 4 10 5

1996 March 7 2

1996 April 4 2

1996 September 11 5 5 1

1996 October 15 1 5 2

1997 February 5

1997 March 10 5

1997 April 6 3

1997 October 15 3

Total 106 32 46 16

nadult females = the number of females reindeer 1 year and older sampled
ncalves = the number of calves sampled

Nematode samples. Abomasums were removed and frozen within 3 h of culling. After

thawing for examination the abomasum was opened along the greater curvature and the

lumen content was washed out in 4 I of water. Six 5% sub-samples were extracted using a

vacuum pump during thorough agitation of the suspension. Each 5% aliquot was put

through a 150 urn sieve and the retained part examined for nematodes. Subsequent 5 %

sub-samples were. investigated until at least 100 adult female and 100 adult male

nematodes were found, or until 20 % of the abomasum content had been examined.

Nematodes in the abomasum lumen were classified as adults if they had clearly defined
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genital structures, otherwise they were classified as larvae. In the sample from August

1994 larvae in the abomasum lumen were not counted. The empty, washed abomasum was

digested for 12 h at room temperature in 1 1of acid/pepsin digestion fluid (20 ml cone HCI,

8 g pepsin and 8.5 g NaCI per I water) per 500 g of abomasum. The subsequent digest was

poured through a tier of two sieves: a 150 urn on top and a 38 urn at the bottom. The

content held in the 38 urn sieve was washed into a beaker and diluted to 1 1. As described

previously 5% sub-samples were extracted and examined until at least 100 larvae were

counted or 20% of the digest fluid had been examined. The intensity of infection due to

the different parasite stages was estimated from the number of nematodes found in the

fraction of mucosa or lumen content examined. Parasites were not identified to species, so

indices such as prevalence, intensity and abundance refer to overall trichostrongyle

infection.

Meteorological data. Data on temperatures and summer precipitation were obtained from

the Norwegian Institute of Meteorology, Oslo. The measurements were taken between

Sassendalen and Colesdalen at Longyearbyen Airport, Spitsbergen (78° I5'N, 15° 28'E).

Statistical analyses. The terms prevalence, intensity and abundance of infection are used

following the definition of Margolis et al., 1982. The prefix total is used for the sum of

adult and larval nematodes. The parasite population in an individual host is called

infrapopulation (Margolis et al, 1982).

Both the total abundance of nematodes and the abundance of adult nematodes in adult

reindeer tended to approach an asymptote with increasing host age. The main determinant

of this pattern is thought to be the immigration-death process fundamental in governing the
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growth of nematode infrapopulations. Assuming a constant net immigration rate (A) and

per capita death rate (f.1) of nematodes in the hosts the change in parasite abundance with

time or host age can be described by the simple expression

dA(t) = A - pACt)
dt

(1)

where A(t) is the abundance of infection at time t [19]. If the host is uninfected at t = 0 the

solution to this differential equation is

ACt) = A· (1- exp(-f.1l» (2)

where A· = A and gives the asymptotic equilibrium abundance of infection as t ~ 00. We
f.1

modelled the relationship between host age (Age) and expected abundance of infection

statistically using this model (A(Age) = E[i(Age)] = A· (l-expt-zz Age»), where the

expected value of the individual intensities of infection at each host age (E[i(Age)]) is the

abundance, A(Age), as before, and we now consider changes in parasite abundance with

respect to age (i.e. parasite populations would be in equilibrium with respect to time).

Parameters A· and f.1 were estimated from the data. The reciprocal of the mortality rate,

11u, can be interpreted as a crude estimate of the nematodes average life expectancy and

A· f.1 as a crude estimate of the average net transmission rate of parasites. To test the

hypothesis that the worm populations were in equilibrium with respect to time and space,

month, year, and locality of sampling were fitted as additive effects on the asymptotic

abundance of infection giving A· =a+px where a is the intercept, f3 a vector of regression

coefficients and X the matrix of predictor variables. The data did not support models with

f.1 varying with month, year and locality (P>O.5). When analysing the data on the

abundance of larvae in abomasum lumen and mucosa we used ordinary linear models with

no age effect and identity link function. For all these analyses the error was assumed to

106



follow a negative binomial distribution (Wilson et al, 1996). The models were fitted using

maximum likelihood. The likelihood ratio statistic was used to test for significant effects

of the predictor variables and likelihood ratio based confidence intervals (C.l.) as measure

of the precision of parameter estimates (McCullagh & Nelder, 1989). The proportion (P)

of larvae in the abomasum mucosa to the total worm burden was modelled using the logit

link function and a quasi-likelihood approach assuming the variance being proportional to

JZ"(I-JZ"), where JZ" is the expected value of p. Tests of significant effects of month, year

and locality of sampling were done using analysis of deviance (McCullagh, Nelder, 1989).

RESULTS

Age - intensity relationships. All calves and adult females examined were infected with

abomasal nematodes (prevalence=100%). The abundance of total infection increased

rapidly during the first two years of life, after which the increase decelerated and appeared

to approach an asymptotic level at about 5 years of age (Fig. 4.2 A).

This pattern was also evident in the abundance of adult nematodes (Fig. 4.2 B). In

contrast, the abundance of larvae in abomasum lumen and mucosa were low during the

reindeers' first year and showed no evidence of a continued increase thereafter (Fig. 4.2C

and D). Residual plots showed that a model of the form A(Age) = A' (l-exp(-,u Age)),

with A' and ,u being parameters for the relationship between host age (Age) and

abundance of infection (A(Age)) adequately fitted the data on total abundance of infection

and abundance of adult nematodes in adult reindeer. There was no evidence that these

measures of abundance of infection decreased with increasing host age after an earlier peak

(Fig. 4.2A and B).
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FIG. 4.2. The intensity of different stages of trichostrongyle nematodes plotted against the
age of their Svalbard reindeer host. Age is measured on a continuous scale assuming all
hosts born on l " June. A) The total abundance of infection in abomasum lumen and
mucosa. The regression line is the best fit line of the form A(Age)= A· (l-exp(-,u Age»
with parameter estimates A· =18867 worms/host (95% C.I. = [16659,22045]), ,u=0.50 per
yr (95% c.1. = [0.34, 0.77]), k=5.60 (95% CL = [4.3, 7.1]). B) The abundance of adult
nematodes in abomasum. The regression model is the same as above with parameter
estimates A· =12356 worms/host (95% C.1. = [11026, 14193]), ,u=0.53 per yr (95% CL :::=

[0.37, 0.79]), k=6.19 (95% C.1. = [4.8, 7.3]). C) The abundance of larval nematodes in
abomasum mucosa. D) The abundance of larval nematodes in abomasum lumen.

The parameter estimates from the model for total abundance of infection suggested a crude

measure of the parasites life expectancy to be 1I,u = 2 years and a crude estimate of the

average transmission rate to be A*,u /365 = 26 larvae per reindeer per day (Fig 4.2A). The

estimate for the adult life expectancy was 1.9 years (Fig. 4.2B). The model did not capture

well the increase in total and adult abundance of infection in the youngest calves, which
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tended to have lower intensities of infection than predicted. Due to these generally low

levels of infection in calves we have analysed their worm burden separately.
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FIG. 4.3. Estimates of the abundance of different stages of abomasum nematodes in adult
female Svalbard reindeer with 95% confidence limits, for samples from different months
from September 1996 to April 1997. A) The asymptotic abundance of nematodes in the
abomasum mucosa and lumen (Other parameter estimates: JF 1.05 per yr, 95% C.1. =
[0.53, (0), k=8.52, 95% C.1. = [6.0, 11.7]). The bars are split up according to the
contribution from the different parasite stages. B) The asymptotic abundance of adult
nematodes in abomasum lumen (Other parameter estimates: JFO.95 per yr, 95% C.1. =
[0.53, (0), k= 9.0, 95% C.1. = [6.3, 12.4]). C) The abundance of larvae in abomasum
mucosa for each of the two sample areas (k= 1.6,95% C.1. = [1.1, 2.2]). D) The abundance
of larvae in abomasum lumen for each of the two sample areas (k= 1.8, 95% C.1. = [1.3,
2.4]). The asymptotic estimates of worm burden in A) and B) are estimated as the
parameter A' in A(Age)= A' (l-exp(-,ll Age», where A(Age) is the abundance of
nematodes, Age is the age of the sampled Svalbard reindeer and ,ll a parameter that was
estimated from data.
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Adult reindeer - total worm burden. The estimated asymptotic total abundance of

nematodes in October differed significantly between years (X2 = 23.71, d.f.=3, P<O.OOOI)

and localities (X2 = 11.09, d.f=I, P=0.0009), but there was no significant interaction

(P=0.99). The total abundance of infection was higher in Colesdalen-Reindalen than in

Sassendalen (mean difference = 5419, 95% C.1. = [2101, 9560]). When correcting for

additive year and locality effects the asymptotic abundance of infection differed

significantly between months in the autumn - winter period (X2 =27.05, d.f.=4, P<O.OOOI).

Sampling in this period was performed most regularly from September 1996 to April 1997

(Fig. 4.3A) during which there was a significant increase in the abundance of total

nematodes from September-October to February-April (Fig. 4.4, X2 = 18.94, d.f'=l ,

P<O.OOOI), but no significant difference between the localities (X2 = 0.43, d.f=l , P=0.51),

any additional month effect (X2 = 3.88, d.f.=3, P=0.27), nor any locality-month interaction

(X2= 8.25, d.f.=6, P=0.22).

There was also a significant increase in the abundance of nematodes from October 1995 to

March - April 1996 (Fig. 4.4, X2 = 20.57, d.f'=L, P<O.OOOI). However, during the previous

winter there was a non - significant drop from the October 1994 sample to the three

samples collected in April 1995 (Fig. 4.4, X2 = 3.20, d.f=l , P=0.07). Within years in

Sassendalen, the asymptotic abundances of infection were similar in March-April and

September-October in 1995 and 1997, while it decreased from March-April to September-

October in 1996 (Fig. 4.4). Also the asymptotic abundance of infection tended to decline

from April to September-October 1996 in Colesdalen-Reindalen (difference = 5886, 95%

C.1. = [-1495, 14888]).
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Adult reindeer - adult nematodes. The total abundance of infection increased over the

winter period partly because of changes in the abundance of adult nematodes. The

asymptotic abundance of adult nematodes differed between months from September 1996

to April 1997 (Fig. 4.3B, X2 = 13.48, d.f.=4, P=0.009), with no significant effects of

locality (X2 = 0.44, d.f.= 1, P= 0.50) nor any month - locality interaction (X2 = 0.87, d.f.=3,

P=0.83). As for the total abundance of infection, the abundance of adults was higher in

March and April than in September and October (Fig. 4.3B). The estimate for February

was lower than the estimate for March-April (X2 = 5.81, d.f'=L, P=0.02), but not

significantly different from the September-October estimate (X2 = 2.02, d.f=l , P=O.l5).

Also in Sassendalen from October 1995 to March 1996 the asymptotic abundance of adult

nematodes increased significantly (difference=9089, 95% C.l. = [4791, 14623]). Over the

same winter there was a non-significant increase in adult nematode abundance in
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Colesdalen-Reindalen (difference=3584, 95% C.1. = [-813, 8872]). While in the 1994-95

winter there was no evidence of an increase (October-April difference = -774, 95% C.1. =

[-5114,5702]).

Adult reindeer - larval stages. The abundance of larvae in both the abomasum mucosa and

lumen not only differed between months but also localities in the 1996-97 winter (Table

4.2).

Table 4.2. Analysis of likelihood ratio table for the effect of month and locality of
sampling and their interaction on the abundance of A) larvae in abomasum mucosa and B)
larvae in abomasum lumen in Svalbard reindeer culled in the autumn-winter 1996-97.

A)

Model -2Loglik Residual d.f.

Intercept 1137.07 63

Month 1108.76 59

Locality 1067.07 58

Month: locality 1050.73 55

B)

Model -2Loglik Residual d.f.

Intercept 1153.22 63

Month 1129.18 59

Locality 1108.79 58

Month: locality 1105.36 55

28.3 <0.0001

41.7 <0.0001

16.3 0.001

24.0 <0.0001

24.4 <0.0001

3.43 0.33

-2Loglik = the -2 log likelihood value for the model. The data were assumed to be
distributed following the negative binomial distribution where the index of dispersion (k)
was estimated from the data.
X2 = the difference in -2 log likelihood between the model with the factor and the simpler
model on the row above follow approximately a chi-square distribution with d.f. equal to
the difference between those of the models under comparison.

In addition there was a significant interaction between these two predictors of the

abundance of larvae in mucosa (Table 4.2A). In both Colesdalen-Reindalen and

Sassendalen the abundance of larvae in abomasum mucosa showed a peak in March (Fig.

4.3C) while the abundance of larvae in the abomasum lumen showed a peak in April (Fig.

112



3D). Thus it appeared that, as the abundance of larvae in the mucosa dropped, there was

an increase in the lumen (Fig. 4.3C and D). The high abundance of larvae in abomasum

mucosa in February and March accounted for a high proportion of the total worm burden

(Fig. 4.5), and caused a significant between month variation in the mean proportion

mucosa larvae when the locality effect was taken into account (F = 17.42, d.f.=4, 59,

P<O.OOOl).
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FIG. 4.5. The mean proportion of mucosa larvae to total intensity of infection in adult
female Svalbard reindeer with 95% confidence limits, for samples from different months
and locations from September 1996 to April 1997. .

These patterns in the abundance of the larval stages were not as clear in the patchy samples

from the other years. The abundance of larvae in mucosa was higher and the abundance of

lumen larvae lower in Colesdalen-Reindalen in April 1996 than in the previous October

(Table 4.3). The net result was an increase in the mean proportion of mucosal larvae in the

infrapopulation from October 1995 to April 1996 (Table 4.3). However, in Sassendalen the
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mean proportion of mucosal larvae tended to decrease from October 1995 to March

1996 and from October 1994 to April 1995 (Table 4.3).

Calves. In both valleys the total worm abundance in calves differed significantly

between months (Fig. 4.6A, X2 = 48.6, d.f.=4, P<O.OOOI) and is clearly an over

winter increase (from August-September to March-April).
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Fig. 4.6. Estimates of the abundance of different stages of abomasum nematodes in
Svalbard reindeer calves with S.E.M. bars, for samples from different months in the
years 1994-97 in each of the two sample areas Sassendalen and Colesdalen-
Reindalen. Columns with no error bars represent samples of only one individual. A)
The total abundance of nematodes in the abomasum. B) The abundance of adult
nematodes in abomasum. C) The abundance of larvae in abomasum mucosa. D) The
abundance of larvae in abomasum lumen.

Despite the fact that adults in Colesdalen had significantly higher adult worm

burdens than in Sassendalen, calf worm burdens increased more slowly in

Colesdalen-Reindalen than in Sassendalen (Fig. 4.6A). Although the data was partly
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confounded in time and space with few observations from each year-month-locality

combination, the total worm burden tended to increase from October to March-April

within all years and localities. The pooled sample was dominated by data from

Sassendalen from October 1994 (n=10) and the following April (n=6), and the same

pattern as found in the pooled samples was evident in these with a marked increase in

the total abundance of infection from October to April (difference=5979, 95% C.L =

[3208, 10199]). In calves the increase in worm burden over the winter reflected an

increase in the abundance of adult nematodes (Fig. 4.6B). The abundance of larvae

in both the lumen and mucosa did not show a tendency towards higher levels in

March and April (Fig. 4.6C and D). Rather, the abundance of larvae in abomasum

mucosa decreased from October to April (X} = 10.71, d.f.=l, P=O.OOI) and the

abundance of larvae in abomasum lumen showed a tendency to decline over the same

period (?e =3.27, d.f.=l, P=0.07). It was 21 female and 27 male calves in the

sample, but no strong effect of sex on any of our measures of worm burden (P>0.15).

DISCUSSION

The increase in total abundance of infection over the winter was surprising. This

result implies that the reindeer continue to ingest infective larvae from snow-covered

pasture during the long arctic winter as suggested previously by Halvorsen, 1986. In

temperate areas research on the free-living stages of Ostertagia ostertagi suggests

that this species experiences low development rates at temperatures approaching

freezing (Smith et al, 1986). However, in New Zealand, considerable development

of free-living eggs and larvae may occur, and sheep are found to pick up high

numbers of trichostrongyle nematodes from pasture at close to freezing temperatures
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(Familton & McAnulty, 1994). This suggests that the temperature-dependent

development of trichostrongyle nematodes may be a highly adaptable trait permitting

transmission through cold winters if hosts are available. Larval development at

temperatures consistently below zero is still unlikely, but unfortunately, little work

has been done on trichostrongyle nematode transmission under such conditions

because, livestock generally will be housed and therefore do not pick up infection

from pasture. However, the infective stages of trichostrongyle nematodes can have a

relatively high survival rate at sub-zero temperatures (Crofton, 1971; Tharaldsen,

1976; Slocombe, 1974; Grenfell et al, 1986) so the reindeer possibly pick up larvae

through the winter which have already developed to the infective stage during the

summer and autumn.

The total abundance of infection did not decline with increasing host age after

peaking when juvenile as in the case of many temperate ruminants. Instead, worm

abundance increased at a decelerating rate until it levelled off at 5 years old and

onwards. This confirms the earlier findings by Halvorsen and Bye, 1986 of high

gastro-intestinal worm burdens in adult reindeer and Elaphostrongylus rangiferi in

the brain/lungs of semi-domesticated reindeer (Halvorsen, 1986). The high intensity

of infection often found in adult reindeer suggests that they do not develop as an

efficient immune response towards their nematode infections as found in sheep and

cattle. However, nutrition is known to be important in both the ability of ruminants

to withstand the effects of gastrointestinal infections and their ability to resist

infection (van Houtert & Sykes, 1996). Our samples were collected immediately

before and at the end of the arctic winter, a period of starvation over which female

reindeer lose on average 30 % of their body weight (Tyler, 1987). This stress may
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reduce their ability to mount an efficient immune response to their worm burden over

the winter. Interestingly, the abundance of nematodes did not increase from March-

April to September-October, which includes the spring, a period believed to be most

important for parasite transmission. Future studies should focus on the summer

period and the possibility that immune responses may be detected at that time.

The crude estimates of parasite mortality rates were relatively low, grvmg an

estimated parasite life expectancy of 2 years. Published estimates of trichostrongyle

life expectancies from domestic livestock systems are much lower, with maximum

values of 0.14 years for Ostertagia ostertagi and Haemonchus contortus (Smith &

Grenfell, 1985; Smith, 1988) and 0.4 years for Trichostrongylus colubriformis

(Dobson et al, 1990). However, a longer life expectancy (1 yr [33]) has been

estimated for Trichostrongylus tenuis in red grouse. This suggests that

trichostrongyle life expectancies may be higher in natural host populations than in

livestock with the shorter life expectancies possibly reflecting adaptations to the use

of anthelmintics in livestock host populations (pers. com. Peter J. Hudson). With

such a high life expectancy the reindeer have to ingest, on average, only 26 infective

larvae per day for the high abundance of infection observed in adult reindeer to

develop and persist. It should be acknowledged that our estimates are crude. The

effect of host mortality, density dependent processes, seasonal, annual and parasite

species specific transmission and survival are not specified when estimating parasite

mortality and transmission rates. More information on the parasite population

dynamics is needed, or preferably experiments have to be conducted, to get better

estimates of these components. One interesting indication from our estimates is that

the reindeer do not necessarily have to ingest a high number of larvae per day to
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obtain observed levels of infection, and that pasture contamination therefore may be

very low. Indeed preliminary work suggests this is the case (pers. obs.).

In calves, the total abundance of infection was low in the autumn and peaked in the

late winter. This differs from the seasonal pattern observed in domestic livestock in

temperate areas where newborn get infected by high numbers of nematodes through

their first summer and autumn but then have declining intensities of infection over

winter (e.g. Crofton, 1955; Anderson et aI, 1969; Waller et aI, 1981). The small

increase in total abundance of infection over their first summer again suggests the

nematode transmission rate to be relatively low compared with that experienced by

livestock on densely populated pastures. This is probably due to low densities of

infective larvae on the pasture and reduced intake of larvae due to suckling in the

first of the three available summer-autumn months (Skogland, 1990). The intensities

of infection at the end of winter were higher than those observed in an experimental

study of semi-domesticated reindeer calves, in which parasite burdens were found to

have a significant negative effect on host food intake and weight gain (Arneberg et

aI, 1996). The observed levels of infection may therefore have a significant effect on

calf nutrition and growth through their first year and thereby affect their survival and

future reproductive success.

In adult reindeer the abundance of larvae in abomasal mucosa tended to be higher in

February-April than in the previous October, causing a marked peak in the mean

proportion of mucosa larvae to total infection in 1997. This suggests that arrested

development may take place, but may be affected by factors that vary between years.

For example, the climatic conditions in autumn and winter (Armour & Bruce, 1974)
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or perhaps between-year variability in host immunocompetence (Michel et al, 1979).

In contrast, the abundance of larvae in the abomasum lumen did not show any clear

trend over the winter. This may be because this group of nematodes consists of both

emerged larvae from abomasum mucosa developing into the adult stage and new

larvae from recent infections. Therefore, both the timing of larval emergence from

abomasal mucosa and transmission from pasture affect their abundance. Between-

year and locality variation in both or one of these processes may therefore remove a

general seasonal trend. The abundance of adult nematodes also increased from

September-October to March-April, so development to the adult stage appears to

take place through the winter. This suggests that arrested development is not such an

important strategy as is the case of some trichostrongyle nematodes of livestock, and

may support Halvorsen's (Halvorsen, 1986) hypothesis that housing is a stronger

selective force for arrested development in livestock systems in cold climates than

the winter temperature per se. The peak abundance of larvae in the abomasum

lumen in April 1997 may anyway have been due to a relatively synchronised

emergence of larvae from abomasum mucosa. If so, disease may be induced in the

late winter when the reindeer are also stressed by limited food availability. In calves

we found no evidence of larval arrestment but more data is needed to clarify this

point.

Bye et al. 1987 found differences in parasite load and taxonomic composition

between samples collected from different areas at Spitzbergen. We found that worm

burden also differed between localities within one of their sample areas. This

supports the idea that the reindeer at Nordenskjoldland are structured as relatively

isolated sub-populations, and also suggests that important physical and biological
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factors for trichostrongyle nematodes vary significantly within the spatial scale of

these studies.
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LIFE-HISTORY STRATEGIES AND POPULATION DYNAMICS OF

ABOMASAL NEMATODES IN SVALBARD REINDEER (Rangifer

tarandus platyrhynchust.

R. J. IRVINE1, A. STIEN1, O. HALVORSEN2, R. LANGVATN3,4 and S. D. ALBON1

SUMMARY

The observation that the total abundance of adult nematodes in the abomasum of

Svalbard reindeer increases between October and April suggests adaptation to cope

with the Arctic winter. Here we investigate the extent to which selection has led to

similar life history strategies in the three most numerous trichostrongyle species. The

life histories are found to differ markedly. This is done using flexible statistical

models for the abundance and dispersion of parasites in the host population. One of

the taxa, Marshallagia marshalli, was most abundant and had its highest egg output

in the winter. In contrast, the abundance of the most common taxon, 0. gruehneri, m.

gruehneri was stable or declined from autumn to late winter, and the closely related

taxa, 0. gruehneri, m. arcticus, showed a similar over-winter drop. The faecal egg

output of these two taxa was highest in summer, as found in temperate

trichostrongyle species. Despite the apparent contamination of summer pastures with

0. gruehneri, calves showed negligible burdens until their second summer and the

abundance of infection reached an asymptote within their third year. In contrast, the

abundance of M marshalli in calves showed a rapid increase over the first summer

and by late winter was similar to peak levels found in adults (8000 worms). This

increase could not be accounted for by the developing abomasum larvae population

and is therefore evidence for transmission over the winter for this taxa. While M
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marshalli showed little between year variation, 0. gruehneri showed two-fold

fluctuation in the abundance of infection. 0. gruehneri may therefore play a role in

the fluctuating population dynamics of the host. Since there was no apparent decline

in abundance with host age in any of the three species there was no evidence of

reindeer mounting an immune response.

INTRODUCTION

Trichostrongyle nematodes show strongly seasonal dynamics in ruminants m

temperate environments with transmission and peak burdens occurring in the main

summer grazing period (Smith & Grenfell, 1985, Armour, 1980). Both primary

production and development of the free-living stages of the nematode life cycle are

strongly correlated with temperature and humidity. Transmission may occur over six

months or more and provides the opportunity for nematode species with different

life-history strategies to occur with successional changes in abundance of species

with different developmental rates (Crofton, 1957, 1963, Boag & Thomas 1977). In

contrast, during the winter period low temperature limits egg and larval development

and as a result reduces transmission (Familton & McAnulty, 1995, Smeal, Fraser &

Robinson, 1981). In order to survive this unfavourable period trichostrongyle

infections have developed two main strategies: some species survive in the host (e.g.

Teladorsagia circumcincta), while others survive on the pasture (e.g. Nematodirus

battus) (Soulsby, 1982). Over wintering in the host provides the opportunity to

resume development and start reproduction as soon as the ambient conditions are

favourable for the development of free-living stages and may be less risky than being

on pasture.
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The extreme environmental conditions prevailing in the arctic would be expected to

focus nematode transmission and reproduction in the short arctic summer. In the

Svalbard archipelago the snow-free period lasts for only three months and mean

summer temperature (June to August) is 3.60 C and rainfall averages 53 mm

(Ferland, Hanssen-Bauer & Nordli, 1997). Compared to mainland Norwegian

reindeer herds, Svalbard reindeer (Rangifer tarandus platyrhynchus) are non-

migratory (Tyler & Oritsland, 1987), occur at locally high population densities

(Alendal & Byrkjedal, 1976, Reimers, 1977) and experience high levels of parasitic

infection (Bye & Halvorsen, 1983), sufficient to depress fecundity (unpublished

data). Previous studies of the abomasal nematodes of Svalbard reindeer (Halvorsen

1986, Halvorsen & Bye 1999, Halvorsen et al. 1999) have revealed dynamics in the

infections indicative of life-history traits at variance with those found in related

species studied in sheep and cattle. These include continued transmission of

nematodes in the arctic winter, reduced role of arrested development and extended

life expectancy of the parasitic phase. Earlier work has dealt mainly with the

infection as infra-communities without separating the different taxa. Seven nominal

taxa of abomasal nematodes representing two dimorphic and one trimorphic species

have been found in the Svalbard reindeer (Halvorsen & Bye 1999). Here we report

the abundance of these taxa in two reindeer populations in Svalbard. Two taxa

dominate: the major morph of Ostertagia gruehneri and the major morph

Marshallagia marshalli, which together account for more than 95% of the adult worm

burden. The minor morph of 0. gruehneri, i.e. morph arcticus, accounts for about 4%

of the total worm population. We compare and contrast the life-cycle strategies and

population dynamics of these taxa.
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The variation in adult abundance of the nematode taxa are analysed in relation to

host age, season, year and reindeer population and variation in egg output in relation

to season, to investigate whether taxa have evolved different life histories. The

relationship between the abundance and distribution of infection and host age can

also provide evidence for density dependent processes in the parasite population

dynamics such as parasite induced host mortality or immunity (Anderson & Gordon

1982, Pacala & Dobson 1988, Grenfell, Dietz & Roberts 1995a, Rousset et al. 1996,

but see Fulford et al. 1992) and heterogeneities in host responses to infection (e.g.

host survival and immunity, Grenfell et al. 1995b). With no density dependence or

heterogeneities in host response to infection the aggregation of parasites in the host

population, measured by the dispersion parameter (k) of the negative binomial

distribution, is expected to track the abundance of infection (Grenfell, et al. 1995).

However, density dependent processes combined with heterogeneities in host

exposure may cause k to increase and the abundance of infection to decrease at

increasing host age (Pacala & Dobson 1988, Grenfell et al. 1995a), but

heterogeneities in host immune responses may cause k to decrease at increasing host

age (Grenfell et al. 1995b). To evaluate this aspect we incorporate an analysis of how

k varies with both abundance of infection and host age.

MATERIALS AND METHODS

Reindeer hosts. Animals were culled every year in the autumn, October (1994-1997)

and again in late winter, either February (1997 - 1998), March (1996 - 1998) or April

(1995-1998). An additional 25 in late August 1994 and 23 in early September 1996

provided material in late summer. The focus of the culling was on female reindeer,

because the relationship between fecundity and worm burden was of primary interest

for the overall research project, but also males and calves were culled, especially in
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1994-1995. Accurate ages of culled animals were derived from annuli m the

cementum of extracted (II) incisors (Reimers and Nordby, 1968).

Culling took place in two different valley systems in Nordenskjioldland,

Spitsbergen (770 50' - 780 20'N and 15000' - 170 30'E). Approximately two thirds

of the animals (120 adult females, 17 adult males and 33 calves) were culled in

Sassendalen about 40km East of Longyearbyen and the rest (64 adult females, 9

adult males and 18 calves) in Colesdalen 20 km South West of Longyearbyen.

Movement of reindeer between these valleys is thought to be unlikely (0ritsland and

Arendal, 1996, Tyler and 0ritsland, 1987) and we refer to these two locations as

separate populations. On Svalbard, reindeer grazing density is estimated at 3.21km2

(Tyler, 1987) and is higher than what commonly found at the Norwegian mainland

(range 0.6-2.5 reindeer/km", Skogland, 1984).

Parasitology - abomasum worm burdens. The species composition and abundance of

trichostrongyle nematodes in the abomasa of 261 culled reindeer were analysed

(Table 4.1). The abomasum was ligated and extracted from the shot animal and

frozen within 3 hours of death. After thawing the abomasum was opened along the

greater curvature and the contents washed out into 4 litres of water. Six 5%

subsamples were extracted using a vacuum p~p during thorough agitation of the

suspension. Each 5% was washed through a ISO-micron sieve and the retained

proportion examined for adult nematodes and larvae. Nematodes were counted until

at least 100 of both male and female worms were extracted or until 20% of the

content had been examined. Any worm with clearly defined genital structures was

regarded as an adult. Species profiles of the individual host worm burdens were

based on the taxonomy of the extracted adult male worms (Drodz, 1965) and the

proportions were assumed to be the same in the adult female fraction. References to
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Marshal/agia marshalli in the text will refer to the major morph marshalli unless

otherwise stated and Ostertagia gruehneri will refer to major morph gruehneri unless

morph arcticus is appended. Grosspicularis occidentalis was reclassified as

Marshal/agia marshalli, morph occidentalis (Drozdz, 1995).

Parasitology - faecal egg counts. Faecal egg count data was obtained from

individually marked reindeer from April to October in 1994 to 1998 in the

Colesdalen reindeer population. Faeces from individually marked animals were

collected immediately after excretion, stored at around 4°C and processed within 48

hours to avoid complications of larval development. Three grammes of faeces were

suspended in 42ml of saturated salt solution and one third of this was put in a glass

centrifuge tube with a ground rim. The tube was filled until there was a positive

meniscus and a cover slip was placed on the top. Tubes were centrifuged at 1000 rpm

for two minutes. The cover slip was removed and placed on a microscope slide. The

whole area was counted at 100x magnification and the number of eggs was recorded

as eggs per gramme of faeces. Eggs of the M marshalli taxa are larger (100x70 um)

than other strongyle eggs and have more developed morulla than nematodirus eggs,

and can therefore be readily distinguished from other trichostrongyle eggs

(MAFFIADAS, 1986). Given that the nematode fauna is dominated by 0. gruehneri,

m. gruehneri and M marshalli, it seems reasonable to assume that the other

trichostrongylid fraction is largely from the 0. gruehneri m. gruehneri and 0.

gruehneri m. arcticus taxa and we will call this Ostertagia eggs.

Anthelmintic treatment. The hypothesis that these abomasal parasites influence the

hosts' fecundity is the subject of ongoing work. However treated animals were
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utilised here to determine if animals became re-infected. Reindeer caught in

April/May 1998 were randomly allocated to anthelmintic treatment groups. The

treated group was injected sub-cutaneously with 0.2mg Moxidectin per kg live

weight. The control group received nothing. Faecal egg output was estimated as

above.

Statistical analysis. Because of the few males available in the data set we have

focused our analysis of worm burdens on female reindeer, but included male calves.

Adult worm burdens were analysed assuming the nematode counts came from a

negative binomial distribution "(Wilson, Grenfell & Shaw 1996, Wilson & Grenfell

1997) and the models were fitted by maximum likelihood method. Neglecting

constant terms in the log likelihood function for the negative binomial distribution

this is equivalent to minimising logl given by

logl = In(r(y + k» -In(r(y + I» -In(r(k)) + y In(y I(y + k» - k ln(l + y I k), (1)

"
where y is the observed nematode intensity, y is the predicted abundance of

nematodes, k is the negative binomial dispersion parameter and r the gamma

function. Recent studies (Grenfell et al. 1995a, and Shaw, Grenfell & Dobson, 1998)

have suggested that the dispersion parameter k ,is likely to be positively related to the

abundance of infection. Figure 4 in Shaw et al., (1998) suggests that linear or log-

linear models are candidates for this relationship. To investigate this we tried three

simple models for k: I) k constant (k = constant), 2) k a linear function of Y (k = kl

+ k2 Y 10-3 with constraints kl >0 and k2 >0 to ensure k to be positive for all Y),

and 3) k an exponential function of Y (k = exp(kl + k2 Y 10-3». When fitting these

models for k we used an over-parameterised model for Y , with the parameter a in

the Gompertz function described below varying with reindeer population and y
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varying with population, month and year of sampling and the interactions between

these predictor variables. Additional patterns of variation in k at increasing host age

were investigated by 1) estimating k for each age class of reindeer and 2) using an

extended version of the above models for k, while modelling the abundance of

infection using the best-fit model from the analysis with no age effect on k. In the

second approach, we constrained our model of the effect of age on k to the data for

animals older than the age at which the abundance of infection had reached its early

maximum (c) using the models:

k = {eXP(kl + k2 * Y * 10-3) for age ~ c
exp(kl + k2 * Y * 10-3 + k3 * age) for age> c

for the species with a log linear relationship between k and the abundance of

infection, and

{k k * A * 10-3 fi <k = I + 2 Y or age - c
k, + k2 * Y * 10-3 + k3 * age for age> c

for species with a linear relationship between k and the abundance of infection. This

"'

was to investigate the possibility of a change in k with increasing host age after the

initial age related increase in y , but independent of the effects on k of seasonal and

between year variation in y .

For the systematic component of the models (i.e. modelling y ), we used both

linear and non-linear models. The age-intensity relationship were assumed to follow

a Gompertz function given by

y = a + (y- a)exp(-exp(-K(Age-¢»), (2)
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where y is as above, a is the lower asymptotic abundance of infection for Age ~ -

00, r is the upper asymptotic abundance of infection for Age ~ 00, Age = t/J is the

inflection point and K determines the rate at which the curve approaches the

asymptote. Seasonal variation, locality and year effects on worm burden were

modelled as additive effects on a, y, K and t/J through a log link function, giving for

example a =exp (xf3), where f3 is a vector of regression coefficients and X a matrix

of predictor variables. To investigate the structure of seasonal effects we also fitted a

sine function for r:

}(season) =a+A(sin(27t(§eason - 6))) (3)

where season is a continuous measure of time of year between 0 and 1, a is the

abundance of infection at the inflection point, A the amplitude of the wave, and 8

determines the time of year the curve passes the seasonal inflection point. Also in

this model the parameters a and A were allowed to vary with predictor variables

through a log link function. Models were compared using likelihood ratio tests

(McCullagh & Nelder, 1989) where the difference in -2 log likelihood of two nested

models were assumed to be distributed as X2 with degrees of freedom equal to the

difference in residual degrees of freedom between the two models. Likelihood ratio

based confidence intervals (C.I.) were used as measure of the precision of parameter

estimates (McCullagh & Nelder, 1989). Nematode egg count data from faeces were

loge (X+1) transformed and the seasonal pattern in mean egg counts was described

using a smoothing spline (Hastie & Tibshirani, 1990).
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RESULTS

Species composition, prevalence and profiles. Taxonomic analysis of Svalbard

reindeer abomasum helminths confirmed the existence of six taxa found in an earlier

study (Bye & Halvorsen, 1983). 0. gruehneri and M marshalli accounted for more

than 95% of the abomasum parasite population found in adult reindeer of both sexes

and all adult reindeer were infected with both (Table 4.1). However, the relative

proportions of these two species appeared to differ between late summer/autumn

(August/September/October) and late winter (February/March/ April). The proportion

of M marshalli was higher, relative to 0. gruehneri in the late winter because of an

apparent increase in the abundance of M marshalli (Table 4.1). Male and female

reindeer had similar species profiles and abundances in late summer/autumn but in

late winter the small sample of males appeared to have a disproportionately high

proportion of M marshalli relative to 0. gruehneri.

0. gruehneri, m. arcticus, the third most abundant abomasum nematode, accounted

for no more then 5 % of the total worm burden but infected more than 90% of the

adult reindeer (females=93%, males 100%). In late summer the abundance in adult

female and male reindeer were similar at 385 (SD=319) and 438 (SD=307) worms

per host. In calves prevalence was around 5% in late summer but abundance was on

average less than one worm per abomasum. In late winter abundance tended to be

higher (41 nematodes per host) but prevalence was still low (9%). The other three

species occurred erratically at low prevalence and abundance (Table 5.1).
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Modelling k. For both M marshalli and 0. gruehneri models with k varying with y

were found to fit the data significantly better than models with a constant k (Table

4.2). For M marshalli the log-linear model gave a marginally lower -2 log

likelihood value than the linear model for k. The linear model for k had a much lower

-2 log likelihood value for 0. gruehneri than the log-linear model, while the opposite

was true for 0. gruehneri, m. arcticus. We used the best-fit dispersion models in the

subsequent formal analyses of worm burdens of M marshalli, 0. gruehneri and 0.

gruehneri, m. arcticus, respectively. Analyses of residuals showed that these gave a

good descriptions of the variance structure in the data.

Table 2. Analysis of likelihood ratio table for the fit of different functions for the
negative binomial dispersion parameter k to the data on the intensity of M marshalli,
0. gruehneri and 0. gruehneri, m. arcticus in calves and adult female Svalbard
reindeer. -210g1 gives the -2 log likelihood of the model, np the number of
parameters fitted, and P, the P-value, for the test for a significantly better fit using the
linear and log-linear functions when compared to the model with a constant k. The
predicted abundance of infection (y ) was estimated using an over-parameterised
model including a non-linear age - intensity relationship, and asymptotic values with
age depending on year, month and reindeer population sampled (see main text).

M marshalli, 0. gruehneri, 0. gruehneri,
M marshalli m. gruehneri m. arcticus

Function -210g1 np P -210g1 np P -210g1 np P

k= constant 3938.08 30 3884.81 30 2459.35 30

k = kJ + k2 y 10-3 3932.00 31 0.0] 3684.27 31 <0.0001 2398.84 31 <0.0001

k = exp(kJ + k2 y 10-3) 3930.77 31 O.O( 3703.24 31 <0.0001 2387.98 31 <0.0001

Age intensity relationships. At the end of their first summer (October), calves were

infected with on average 2100 adult M marshalli and 22 0. gruehneri in

Sassendalen (Fig. 5.1). By April of their first winter the abundance of M marshalli

had increased to around 9000 (Fig. 5.1), similar to that found in yearlings of 22

months (Fig. 5.1) and not significantly different from adults in late winter (X2=0.22,
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df=I, P=0.63, see Fig 5.2a). Thus after the first winter there was no evidence of the

abundance of M marshalli infection changing with age (Fig 5.2a & b). The

abundance of M marshalli in Sassendalen was about twice as high as in Colesdalen

and this was significant for both calves and yearlings (X2=58.76, df=l , P<O.OOI) and

adult reindeer (X2=25.77, df=l , P<O.OOI, see Fig. 5.2a & b).

Fig 5.1. The estimated abundance (with 95 % confidence intervals) of adult M
marshalli, 0. gruehneri and 0. gruehneri, m. arctic us in reindeer from Sassendalen
in calves and yearling females. The abundances were estimated using a linear model
with log link function and assuming a negative binomial error distribution with k

14000
OM. m. morph marshalli

12000 o 0. g. morph gruhneri

~ 0. g. morph arcticus
(/)
Q.l 10000"0
0--C1l
E

8000Q.l
c
'+-
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6000o
c
C1l
"0
c
:::J 4000..c«

2000

3 (Sep) 4 (Oct) 10 (Apr) 16 (Oct) 22 (Apr)

Age (month)

fitted as a linear function of the estimated abundance of infection for 0. gruehneri
and a log linear function for M marshalli and 0. gruehneri, m. arcticus. For
Colesdalen the estimates are a multiplicative factor a of the plotted ones, with
estimates: aM marshalli =0.30, ao. gruehneri =3, ao. gruehneri, m. arcticus =0.77. Estimates of
parameters in the model for the negative binomial parameter k: k, M marshalli = 0.91, k2
M marshalli = 0.25, k/ 0. gruehneri = 0.016, k20. gruehneri = 2.59, k, 0. gruehneri, m. arcticus = -4.66,
k20. gruehneri, m. arcticus = 23.97.

2 (Aug)

In contrast to M marshalli, the abundance of 0. gruehneri did not increase

significantly from October to late winter in the reindeer's first year (Fig. 5.1, X

2=1.81, df=l , P=0.18). However, during the second summer of life the abundance
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increased by a factor of 40 (from less than 50 to more than 2000, Fig. 5.1). The

pattern of the age intensity relationship differed between the two populations (X

2=12.72, df=l, P=O.OOOI,Table 4.3: Model 9 versus 7). In Colesdalen the increase in

abundance was relatively fast, reaching an asymptote of about 11000 in their second

year, whereas in Sassendalen, the rate of increase was slower reaching the asymptote

in their third year (Fig 5.2c &d). The asymptotic levels of infection differed

significantly between our two study populations (X2=4.49, df=l, P<0.05).

Interestingly the population differences in 0. gruehneri, m. gruehneri abundance

were reversed compared to M marshalli with 0. gruehneri abundance in adult

reindeer lower in Sassendalen and on average 0.73 of that in Colesdalen (Figure 5.2c

&d).

Age intensity patterns in 0. gruehneri m. arcticus were similar to those

observed for 0. gruehneri. The abundance of 0. gruehneri, m. arcticus was very low

through the reindeers' first year but by the end of their second summer burdens had

increased to the asymptotic value at around 400 (Fig. 5.2e & f). Although relatively

low, significantly higher abundances were found in Sassendalen (X2=3.89, df=l ,

P<0.05).

There was no evidence for acquired immunity since there was no decrease in the

abundance of infection in any of the species with increasing age (Fig. 5.2). The

dispersion parameter k also increased from calves to older animals, but showed no

evidence for a continuing increase at higher ages (Fig. 5.2). The estimates for k in

adult reindeer where in the range of 1.1-5.9 for M marshalli, 2.7-16.9 for 0.

gruehneri, m. gruehneri and 0.1-2.6 for 0. gruehneri, m. arcticus and showed little

evidence for a change with age except for a decrease for 0. gruehneri, m. arcticus in

the samples from Sassendalen (Fig. 5.2i)
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Fig 5.2. Gompertz age-intensity curves and' estimates of k (crosses) with 95%
confidence intervals for adult M marshalli (a, b), 0. gruehneri (c, d) and 0.
gruehneri, m. arcticus (e, f) sampled from the calves and adult female reindeer in
Colesdalen (a, c, e) and the Sassendalen (b, d, f). Observed values for the nematode
taxa corrected for seasonal and between year variation in nematode abundances are
plotted around the curves. The seasonal components of the model are shown in Fig.
5.3. For M marshalli there were no significant between year variation in the
asymptotic abundance of infection (Table 3). The fitted curves and adjusted residuals
for 0. gruehneri and 0. gruehneri, m. arcticus are standardised for the 1997-98
winter. Estimates of k are given for each age class of reindeer with animals older
than 8 years combined. The 95% confidence interval for 0. gruehneri, m. arcticus in
calves in Sassendalen was [0, (0) and only the parameter estimate is plotted (*).
(Estimates of the negative binomial parameter k in the overall model: k, M marshalli =
0.67, k2 M marshalli = 0.12, kJ 0. gruehneri = 0.043, k20. gruehneri = 0.69, k, 0. gruehneri, m. arcticus

= -3.18, k20. gruehneri, m. arcticus = 8.55).
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When modelling the change in k as a continuous function of increasing age while

controlling for the effect of the abundance of infection on k, the cut off points (c)

were chosen as c=l year for M marshalli, c =2 years for 0. gruehneri, m. arcticus

and c =3 years for 0. gruehneri on the basis of the age intensity profiles (Fig. 5.2).

The analysis suggested that k decreased with increasing age for M marshalli (X

2=8.40, df=l , P=0.004, k3 M. marshalli = -0.075) even though there was no such pattern

in k when estimated for each age class separately (Fig. 5.2a,b). The difference in

outcome of these two analyses is likely to be due to the confounding effect on k of

the strong seasonal variation in abundance of M marshalli which was not controlled

for when the age specific estimates of k were calculated. The slopes for k against age

were also negative for 0. gruehneri, m. gruehneri and 0. gruehneri, m. arcticus but

not significantly different from zero (respectively: X2=0.63, df=l, P=0.43, k3 0.

gruehneri, m. gruehneri = -0.14, and X2=2.87, df=l, P=0.09, k3 0. gruehneri, m. arcticus = -0.072).

Seasonality of infection

Worm burdens. The abundance of adult M marshalli showed a significant seasonal

cycle captured by fitting the annual sine curve (Table 5.3 and Fig 5.3a). In all four

years there were consistently higher abundances at the end of winter than in late

summer. The two populations differed significantly in the mean and amplitude of the

cycle in abundance of adult M marshalli (Table 4.3, modei 5 versus 4 & 4 versus 3)

However there was no significant variation in this pattern between years (Table 4.3,

models 6,7,8 versus 5, P>O.4). Female reindeer in Sassendalen had a seasonal mean

abundance of 547,3 and amplitude of 2983, compared to a mean abundance of 2826

and amplitude of 1725 in Colesdalen. Although the amplitude of the fluctuation was
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Fig 5.3. Sine curves describing the seasonal component of the variation in the
abundance of adult abomasal nematodes from calves and adult female Svalbard
reindeer. a) M marshalli (all years), b) 0. gruehneri, m. arcticus (all years) and c-f)
0. gruehneri. Observed values in nematode abundances are plotted around the curves
for the nematode taxa correcting for reindeer age and between year variation from
the best-fit models. In Fig 5.3 a) and b) the curve for M marshalli and 0. gruehneri,
m. arcticus is standardised to the Sassendalen reindeer population and for 0.
gruehneri, m. arcticus the asymptotic abundance with reindeer age is for the 1997-98
winter. The curves for 0. gruehneri are given for samples from the Colesdalen
reindeer population and the winters c) 1994-95, d) 1995-96, e) 1996-97 and f) 1997-
98.

142



higher in Sassendalen than in Colesdalen it was a similar proportion of the mean in

each population (0.55 and 0.61 respectively). The seasonal fluctuations were

significant in both populations (P<O.OOOI)and did not differ significantly in phase

(governed by 8, X2=0.45, df=l, P=0.50).

There was also a significant seasonal component in the abundance 0.

gruehneri (Table 4.3), but in contrast to M marshalli infections, this seasonality was

not consistent between years and giving a significant interaction with year (X2=27.41,

6df, P<O.OOOI,Table 4.3, Model 7 vs 5). In two out of four years, 1995-96 and 1996-

97, the abundance of 0. gruehneri did not change significantly from the late summer

to the late winter period (P>O.l, Fig 5.3b, e). However, in 1994-95 and 1997-98,

there was a drop in abundance from late summer to late winter (P<0.005, Fig 5.3c, f).

Also for 0. gruehneri, m. arcticus there was a seasonal drop in abundance over the

winter period as indicated in some years for 0. gruehneri (X2=49.14, Idf, P<O.OOOI,

Figure 5.3b).

Faecal egg output. Unfortunately to date we have no abomasum nematode

abundance data from animals between May and mid-August because no reindeer

were culled in this period. However, we do have substantial faecal egg count data

collected from live animals in one of the study populations (ColesdaleniReindalen)

between April and September. In April output of both the M marshalli taxa eggs and

Ostertagia eggs was low and very similar at about 5 (SD=3.9) and 8 (SD=6.2) eggs

per gramme (Fig 5.4a), but prevalence was high at 91% and 98%, respectively. As

expected, as snow melt accelerated in June, the output of the Ostertagia eggs

increased dramatically and continued to rise to a peak in July with a mean of 235

(SD=124) eggs per gramme of faeces. This peak level did not differ significantly

between summers (F4,67s=0.688, P=0.601). From August onwards, Ostertagia egg
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output declined. although Ostertagia eggs were still 100% prevalent in September.

By October the Ostertagia egg prevalence had fallen to 65% and mean egg output

had dropped to 2.5 (SD=2.8) eggs per gramme faeces. In contrast, in June the M

marshalli taxa egg output declined so that by July eggs were found in very few

(1.3%) of the faecal samples (Fig. 5.4a).

In the autumn M marshalli taxa prevalence increased to 41% but the mean eggs per

gramme in the faeces was still less than one (0.82, SD=1.01).

Adult reindeer treated with anthelmintics in late April/early May were infected with

Ostertagia eggs by mid-July (Figure 5.5b), and although egg output was lower in

treated than in untreated animals, the decline from July to September paralleled that

found in the untreated adults. Despite low abundance of adult 0. gruehneri in naive

calves the prevalence of Ostertagia eggs in July was 25% (n=20). By August this had

increased to 55% (n=51, mean=14) and by September prevalence had declined again

to 17% (n=24, SD=46.3). The decline in calves of Ostertagia egg output was parallel

but lower than that of the treated adult reindeer group (Fig 5.4b). By this time

prevalence of the M marshalli taxa eggs in calves was 46% although mean egg

output was less than one in both groups.
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Fig 5.4 a) Faecal egg count data collected from adult females between April and
September 1997plotted against Julian day (days after 1st January) for trichostrongyle
eggs. Filled circles: M marshalli taxa, open circles: Ostertagia eggs (largely 0.
gruehneri, m. gruehneri and 0. gruehneri, m. arcticus). A smoothing spline was
fitted to both data sets to guide the eye.
b) Seasonal pattern in Ostertagia egg output for adult reindeer either treated with an
anthelmintic (filled circles) or untreated (open circles) and untreated calves (open
triangles) with fitted smoothing splines. This figure demonstrates that treated adult
animals produce patent infections after the treatment wears off and that the autumn
decline is similar in all cases. .
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Fig 5.5. The abundance with 95% confidence intervals of M marshalli, 0. gruehneri
and 0. gruehneri, m. arcticus in October in adult female Svalbard reindeer from
Sassendalen (1994-1998).

Annual variation in abundance. The abundance of adult M marshalli did not differ

significantly between the four years from 1994 to 1997 (Table 4.3, models 6,7,8

versus 5). In contrast, the abundance of both 0. gruehneri and 0. gruehneri, m.

arcticus varied significantly between years (Table 4.3, Model 7 versus 5). In October,

the abundance of 0. gruehneri varied significantly between years from around 5000

in 1995 to 11000 worms per host in 1997 (Fig 5.5). The between year pattern in 0.

gruehneri, m. arcticus was similar to that found for 0. gruehneri in October, with

highest abundance in 1997.

Correlations in the intensity of nematode species. In adult reindeer, there was no

correlation between 0. gruehneri and M marshalli in either late winter (r=-0.045,

P=0.71, n=96) or in late summer (r=-0.042, P=0.69, n=93) and within each season

there was no relationship within each reindeer population (P>0.2). As could be

expected, there was a strong positive relationship between the closely related taxa 0.
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gruehneri and 0. gruehneri, m. arcticus (r=0.588, P=O.OOI, n=261), This was true for

adult reindeer from both reindeer populations (r=0.496, P<O.OOI, n=129 and r=0.528,

P<O.OOI, n=55 for Sassendalen and Colesdalen respectively). There was no

relationship between 0. gruehneri, m. arcticus taxa and M marshalli (r=-0.058,

P=0.407, n=207).

DISCUSSION

Our study of gastrointestinal nematodes in Svalbard reindeer hosts provides

compelling evidence of differences in the life histories and population dynamics of

the two most abundant nematode species.

Aetiology of infection. Although worm burdens remain elevated throughout the adult

age range, there are species differences in the rate of infection of hosts. Infection

with M marshalli increased rapidly in the host's first year of life, whereas very low

levels of infection with 0. gruehneri and 0. gruehneri, m .. arcticus were found in

animals during their first summer and winter and increased mainly over their second

summer. This is late compared with sheep and cattle where peak infection is reached

during the first summer grazing (Anderson et al., 1979, Armour, 1989). From the

anthelmintic experiment we know that treated adult reindeer become re-infected

within the same summer as treatment, therefore it is possible for transmission and

development of a patent infection to occur within the host within one summer. We

therefore suspect the low intensities of 0. gruehneri in calves to be due to either 1)

transfer of protective antibodies from the mother to the calf. 2) The gut morphology

of immature ruminants differs from adults (McDonald Edwards & Greenhalgh, 1984)

it may be unsuitable for 0. gruehneri in calves. Or, 3) A difference between
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nematode taxa in their distribution across vegetation communities the calf grazing

strategy and feeding preferences may cause low contact rates with the infective

larvae of 0. gruehneri while they still pick up M marshal/i.

Contrasting seasonal patterns in the dominant taxa. M marshalli had significantly

higher adult worm abundance in late winter than in late autumn. Our previous

observation of an increase in total abundance of nematodes over winter (Halvorsen

et. al., 1999) was mainly due to the change in the abundance of adult M marshal/i.

In calves, M marshalli increased from around 2000 in October to around 9500 in

April in Sassendalen. This increase could not be accounted for solely by the

development of larvae present in the animals at the end of summer because the

abundance of larvae was only 895 (range=186 to 4800, Halvorsen et al., 1999).

Therefore a large proportion of the increase in calves must be due to transmission

from the pasture during the winter, and is also likely to cause the increase in M

marshalli in adult reindeer. Faecal egg output in this species also occurred mainly in

the winter months.

The evidence for over winter transmission and egg production by M

marshalli suggests that this species has adapted to long winters. Still, preliminary

work indicates that eggs deposited in the winter have high survival but no

development at sub-zero temperatures (unpublished observations). Our working

hypothesis is that the transmission strategy adopted by M marshalli is one of

remaining as eggs in the faeces through the winter and developing to the infective

stage in the summer. If infective larvae stays in faeces, there is the possibility that

coprophagy is of major importance for transmission in the winter when the

availability of grazing for the reindeer is very sparse. M marshalli has a wide
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geographic distribution and host range (Urquhart et al., 1996), but comparable data

are lacking from other climatic zones. Whether the observed life-history pattern is an

adaption to High Arctic conditions or a general trait of M marshalli is therefore

unclear.

In contrast to M marshalli, the output of Ostertagia eggs showed a seasonal

pattern similar to that found in temperate trichostrongylosis with very low levels in

the winter but a peak in mid summer (Anderson et al., 1979). In addition the

abundance of 0. gruehneri in adult reindeer did not increase from late autumn to late

winter. In fact, in two years, 0. gruehneri declined over the winter months

suggesting a rate of transmission and larval development that do not compensate for

adult worm mortality. 0. gruehneri, m. arcticus behaved in a similar way to 0.

gruehneri.

In models of the population dynamics of trichostrongyle nematodes, the

seasonality in egg output is generally assumed to be due to changes in adult

nematode population size sometimes modified by density dependent effects on

nematode fecundity (e.g. Smith & Grenfell 1985, Leathwick Barlow & Vlassoff

1992). We found that in the late summer, Ostertagia egg output showed a similar

decline between groups of animals with different worm burdens (calves, treated and

untreated adults), suggesting that the drop in egg output in late summer is not purely

due to density dependent effects on nematode fecundity. Also, egg output approaches

zero in animals that have on average 10000 adult abomasal nematodes. This suggests

that external environmental factors may have a strong influence on the seasonality in

Ostertagia egg production in this system. Data on worm burdens from animals culled

during the summer period will allow a more detailed analysis of this phenomenon.
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Contrasting annual patterns between the dominant taxa. The pattern of increase in

M marshalli over the winter did not vary between years. This suggests that M

marshalli population dynamics is not strongly influenced by external environmental

factors such as climate or host density. For example, M marshalli burdens in

Sassendalen did not vary with a two-fold change in reindeer population size (range =

400 - 1000 in the period 1994-98. Sysselmannen unpublished helicopter counts).

This pattern suggests that the nematode population dynamics may be governed by

intrinsic density dependent mechanisms within the host. Compared to M marshalli,

the between year variation in abundance of 0. gruehneri suggests that its population

dynamics are sensitive to external factors and that it may play a role in the

fluctuating population dynamics of its host.

Population differences in species profile. At the reindeer population level the

abundance of M marshalli and 0. gruehneri were inversely related. M marshalli

burdens were higher in Sassendalen, the population with the lower 0. gruehneri

levels. This could suggest the existence of competitive interactions between species

as has been found for other trichostrongyle systems (Diez-Baiios, Cabaret & Diez-

Baiios, 1992). However, this interpretation was not supported at the level of

individual reindeer since we found no evidence for a negative correlation between

the intensity of 0. gruehneri and M marshalli. The lack of any significant

correlation between these two species is consistent though with the idea that they

have different dynamics in time and space. This is likely since grazing in winter,

when M marshalli appears to concentrate it's transmission effort, is confined to

relatively small wind blown ridges and areas where snow cover is thin. In contrast, in
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the summer, when 0. gruehneri appears to have its transmission window, reindeer

forage over wide areas in the valley floors.

Immunity. The age intensity profiles of M marshalli, 0. gruehneri and 0. gruehneri,

m. arcticus do not provide evidence for any strongly acquired immune response

affecting the abundance of these nematode taxa. While in domestic livestock, the

abundance of abomasal nematodes is high in calves and lambs and lower in adults

due to acquired immunity, in Svalbard reindeer, once the asymptote of infection is

reached it remains high with increasing age.

It has been suggested that the dispersion parameter, k, may increase with age

in the host population due to the density dependent effect of acquired immunity

(Pacala & Dobson, 1988, Grenfell et. al., 1995a,b). In this study we find no evidence

for an increase in k with host age. After correcting for the effect of the abundance of

infection on k, k was found to decrease with increasing age for M marshalli. The

crude age specific estimates of k also indicated a drop in k with age for 0. gruehneri,

m. arcticus in Sassendalen. This pattern has previously been found for

trichostrongyle nematodes in sheep (Bames & Dobson 1990). A drop in k with age

may be the outcome of acquired immunity in combination with heterogeneities in the

hosts' immune response with some hosts responding more efficiently than others

(Grenfell et. al. 1995b). However, the effect of different possible population

processes on the distribution of parasites has not been fully investigated (Fulford et

at. 1992, Smith et al. 1995). Evidence for acquired immunity based on patterns in k

will therefore be weak. We therefore find it unreasonable to interpret the inconsistent

patterns in the k estimates as evidence for acquired immunity when this conflicts

with the evidence from the age intensity relationship.
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The probability of reindeer being pregnant in late winter is negatively related

to the abundance of 0. gruehneri (unpublished observations). One would expect this

pathogenic effect to cause selection for immunity. Since the nutritional status or

general condition of hosts may influence their ability to mount an immune response

(Lloyd, 1995), the absence of evidence for acquired immunity in Svalbard reindeer

may indicate the cost associated with an immune response is relatively high for these

animals. Alternatively, direct measures of immune competence may be necessary to

uncover its importance in this host-parasite interaction.

Statistical modelling of variation in k. Our analysis supported the suggestion that the

dispersion parameter k of the negative binomial distribution varies with abundance

(Grenfell et aI., 1995a,b). The best fit functional relationship between k and mean

worm burden varied between the nematode taxa. We therefore suspect that if a

common functional form for the relationship between k and the abundance of

infection exists, it will be a more complex function than those we adopted. Still,

analyses of residuals suggested that our models for k gave a good description of the

variance structure in the data. It was also our experience that modelling these data

using a constant k affected our conclusions significantly. The assumption of a

constant k should therefore be checked when analysing complex data sets. Shaw et

al. (1998) have recently suggested methods for analyses of grouped data on

macroparasites with separate estimation of k's within groups. Our suggestion of

modelling k as a simple continuous function of the mean may be an alternative to

their approach when analysing data with respect to continuous predictor variables or

when sample sizes in different groups are small. Even though our simple models for

k may not capture the true relationship between k and the mean, the method is likely

to be robust to relatively substantial errors in the functional form of this relationship
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as found for models for overdispersion in log-linear models (McCullagh & Nelder

1989). Simulated studies are needed to evaluate this claim.
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CONTRASTING REGULATION OF FECUNDITY IN TWO

ABOMASAL NEMATODES OF SVALBARD REINDEER

(Rangifer tarandus p/atyrhynchus).

R. J. Irvinel,2,#, A. Stien', J.F. Dallas', o. Halvorsen", R. Langvatnv" & S. D. Alben'

SUMMARY

Stability of trichostrogylid populations indicates that some form of density dependent

regulation occurs which could act through fecundity. We present evidence for intra-

specific density dependent effects in one of two, dominant, abomasal nematodes

species (Ostertagia gruehneri) of Svalbard reindeer (Rangifer tarandus

platyrhynchus). We found evidence in 0. gruehneri, for density dependent regulation

of female worm length in April, July and October 1999. However, it is only in July

that female worm length explains the variation in the number of eggs in utero which

is also related to egg production per female worm only in this month and not at other

times of the year. The seasonal pattern in faecal egg output in this species focuses

egg production in the summer months when conditions are favourable to

transmission. In contrast, we found no evidence in the other common species (M

marshalli) for density dependent regulation of female worm length during or the

number of eggs in utero. Faecal egg output in M marshalli was positively related to

worm burden but not to the mean number of eggs in utero. Neither inter-specific

interactions nor host body condition appeared to influence worm fecundity. The

contrasting pattern of density dependent regulation of fecundity provides further

evidence for divergent life-histories in this nematode community.
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INTRODUCTION

The long-term stability or cyclic behaviour found in many gastrointestinal parasite

populations suggests that they are regulated by density dependent processes (Hudson

& Dobson, 1995). One possible candidate is female worm fecundity which is often

strongly affected by nematode abundance (Barger, 1985; Scott & Lewis, 1987) and is

therefore an important parameter in the understanding of the dynamics of nematode

populations (Anderson & Michel, 1977, Anderson & May 1991).

There are at least three possible density dependent mechanisms that may

affect nematode fecundity and all involve retarded worm development. First, trickle

challenge experiments with gastrointestinal nematode infections of sheep and cattle

have shown that the faecal egg output is related to the size of the adult worm

population in a density dependent manner (Michel, 1969; Boag & Thomas, 1977).

This suggests direct intra-specific competition for space and/or resources that may

reduce worm development and maturation (Tompkins & Hudson, 1999). Second,

increasing burdens of nematodes are likely to stimulate a greater immune response

that may contribute to the density dependent reduction in fecundity (Quinnell,

Medley & Keymer, 1990). Specifically, the impact of the immune response in sheep

has been found to reduce female worm development (Stear et al., 1995) giving

shorter, less well developed, worms that have fewer eggs in utero. However a

complicating factor is that the size of the immune response is likely to be determined

by the nutritional status of the host (reviewed in Van Houtert and Sykes 1996) so that

animals in poor condition may allow larger worm burdens to establish. Third, inter-

specific competition may also limit the fecundity and ultimately the population size

of a cohabiting species (Dobson, 1985; Adamson & Noble, 1993). There is, however,
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no evidence for inter-specific density dependent fecundity in gastrointestinal

nematodes of ruminants. These three mechanisms may combine to generate the

characteristic seasonal pattern of fecundity in gastrointestinal nematodes in which

faecal egg output increases in spring in parallel with rising nematode burdens due to

high transmission then declines again because density dependence reduces per capita

egg production (Michel 1974).Worm burden and egg output may be reduced through

a density dependent immune response (Quinnel et al., 1990) but the drop in egg

output in the autumn may also be due to senescence rather than changes in worm

density (Shaw & Moss, 1989) and this may generate the illusion of density

dependence. Nevertheless, previous studies have not been able to determine which of

these mechanisms is the more important in the regulation of nematode fecundity. It is

only recently that analysis of the inter-specific density dependent effects has been

possible through the use of peR techniques to aid in the often difficult identification

of adult female worms (Dallas, 2000).

The aim of this study was to determine which of these mechanisms could

explain the contrasting patterns of fecundity observed in the two, dominant,

abomasal nematodes species (Ostertagia gruehneri and Marshallagia marshalli) of

Svalbard reindeer (Rangifer tarandus platyrhynchus). Both species show strong,

seasonality in faecal egg output which in 0. gruehneri, is confined to the summer but

in M marshalli appears to be in winter (Irvine et al. 2000). Here we investigate

whether: 1) Nematode fecundity is regulated through density dependent effects on

female worm length, number eggs in utero or faecal egg output. 2) Seasonality in

faecal egg output is due to changes in the abundance of infection, nematode fitness

measured as worm length, or density dependent effects on reproduction. 3)

Nematode fecundity is affected by seasonality in host condition suggesting the
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possibility of an immune response that, combined with contrasting seasonality in the

observed dynamics, may affect the two species differently. 4) Female fecundity is

limited by inter-specific competition.

MATERIAL AND METHODS.

Reindeer hosts. Fifty adult female reindeer were culled during 1999 (lOin late April,

16 at the end of July and 24 in late October). Total body weight was recorded using a

clock face spring balance (100 x 0.5kg). Body condition was assessed using a

measure of back fat depth over the rump (10 cm in and at 45° from the base of the

tail). Abomasa and faecal samples were recovered for the parasitology protocol

outlined below. For the female worm measures we randomly selectediO reindeer

from April and July and 11 from October. Faecal egg counts and worm burdens from

a larger data set of 128 adult female reindeer culled during the same months in 1995

to 1999 were also obtained.

Parasite populations. Adult abomasal worm burdens and faecal egg counts were

collected and counted as described by Halvorsen et al. (1999) using methods

modified from MAFFIADAS (1986). Adult male worms were identified to species

based on morphology as described in Irvine et al. (2000). For each of the 31 reindeer

selected for the female worm measurements, 25 adult female worms were chosen 'at

random and examined microscopically. In two hosts, fewer than 25 female worms

were available. The number of eggs in utero in each female was counted using a

compound microscope. (lOx ocular and 40x objective). The image of each worm was

captured using a camera mounted on a stereoscope at 6.25x magnification. The
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length of each worm was measured using a segmented line drawn on screen and

calibrated for the magnification used. Each female worm was then identified to

species using a species-diagnostic DNA assay based on a polymerase chain reaction

(Pf.R; Dallas et al. 2000).

Table 6.1. The proportion of each abomasal nematode species expressed as a
percentage of the total number of adult female nematodes that were identified from
31 reindeer culled in April (10), July (10) and October (11). Numbers in brackets
indicate the number of nematodes that were identified to species. (Note the low
numbers of M marshalli found in July and that these were distributed in only 5
reindeer hosts.)

S~ecies April July October

O. gruehneri 59% 94.6% 53.7%
(n";;147) (n=209) (n=144)

M marshalli 41% 5.4% 42.3%
(n=102) (n=12) (n=124)

Measures of adult female worm fecundity. Mean number of eggs in utero and mean

female worm length was calculated for each nematode species in each reindeer host

and, when analysed, weighted for the number of worms on which the mean was

based. These means were assumed to be normally distributed. Few M marshalli

females were found in July (Table 6.1) and when less than three worms of a species

were present per host, the data point was excluded from the analysis. The analysis

tested whether a non-linear power function (y=a.(x)/) provided a better fit than a

linear relationship (y=a.+fJxl +fJx2+... ) using linear and non-linear regression.

Season was added as month (April, July or October) and both the slope and the

intercept were allowed to vary. The abundance of the cohabiting species was fitted

additively to determine the inter-specific density dependent effects. Total body mass

or back fat thickness was added to the best-fit models to determine the effect of body

condition as an indirect method of detecting the effects of an immune response. The

analysis consisted of three stages. First, factors responsible for the variation in
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female worm length were determined, second the number of eggs in utero was

analysed. Third, the relationship between faecal egg output (a measure of fecundity)

and the number of eggs in utero (standing crop) was then established. The number of

eggs in utero can vary between individuals and is only an instantaneous measure but

can give individual based information in support of analyses of faecal egg output.

Individual reindeer faecal egg count data by species was divided by the number of

females of that species in each host to give a measure of eggs per gramme faeces per

female worm (epgt) for 0. gruehneri and, because of the low egg output, eggs per

kilogramme faeces per female (epkgt) for M marshalli.

Analysis of faecal egg counts. Faecal egg counts and adult worm burden estimates

from 128 adult and yearling female reindeer including the 31 deer used in the

analysis of female worms were collected. In all samples the two species were

identified and recorded separately (Irvine et al., 2000). The relationship between

faecal egg counts and worm burdens was analysed using generalised non-linear

models with a negative binomial error distribution (Wilson & Grenfell, 1997).

Curves were fitted by the maximum likelihood method. The negative binomial factor

k was allowed to vary linearly with the mean or was held constant (Irvine et aI.,

2000). Following other studies (Croll et al., 1982, Anderson & Schad, 1985 and

Michael & Bundy 1989) a power function was fitted to the faecal egg count data and

in the absence of compelling biological rationale this was chosen in preference to the

more complex Ricker or Gompertz functions (Lebreton, 1989). Preliminary

examination of the data indicated that the gamma-type function (Bishop & Stear,

2000) was not appropriate for this data because no decline in egg output was

observed at higher worm burdens. Intra-specific density dependence of 0. gruehneri

faecal egg output with the number of adult 0. gruehneri was determined. Inter-
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specific competition was analysed by additively fitting the abundance of adult M

marshalli to the model and we allowed the impact of M marshalli to differ from that

of 0. gruehneri by fitting a separate parameter for each species. The M marshalli

faecal egg output was analysed the same way. The above models were re-run using

the smaller data set (n=31) to confirm that these animals were representative and that

the best-fit models were the same in both the larger and the sub-data set.

RESULTS

Factors affecting female worm .!ength. Female worm length and worm burden in 0.

gruehneri showed a clear, negative density dependent relationship (Fig 6.1a) which

did not vary with season. This was best described by a power function which

explained more of the total variance (68%) than a linear function (62%) and used the

same number of degrees of freedom (Table 6.2). There was no significant

improvement in the model by allowing either the elevation term (a) or the power
.

term (fJ) to vary with month. Variation in 0. gruehneri worm length was unrelated to

either M marshalli burden (P>O.3) or host body condition (back fat depth or dressed

carcass weight, P>O.4). The rest of the female worm fecundity analyses follows the

structure given in Table 1, but only the statistics from the best fit models are quoted

in the text. All other relevant models can be assumed to be non-significant.

In contrast to 0. gruehneri, there was no linear or non-linear relationship

between M marshalli worm length and worm burden in any of the three months

sampled (Fig 1b). In practice the analysis was based on 19 hosts from April and

October because insufficient data were available from July for analysis. The two data

points plotted for July refer to hosts where more than two M marshalli females were

measured.
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Fig 6.1. Data and predicted values for the best-fit models from the analysis of the
relationships between the fecundity variables. plots a), c) & e) refer to 0. gruehneri and
plots b), d) & f) refer to M marshalli. Data for April is represented by open circles, for
July by filled circles and October by crosses.

a) The relationship between 0. gruehneri female worm length (Oglength) and the
number of adults (Og). The fitted line represents the best-fit model where worm
length is predicted by a power function Oglength=cqOgj''. (Parameter estimates
for the fitted line are: 0.=17.3,95% Cl = [14.91 to 16.98] and ~=-0.064, 95% Cl of -0.08 to-
0.05. (F1.29=60.57, P<O.Ol).

b) M marshalli female worm length (Mmlength) plotted on the abundance of M
marshalli in the same host. There was no significant relationship between the two
variables.

c) The relationship between mean number of 0. gruehneri eggs in utero in females
(eiu) and mean female Oglength (mm). The fitted lines represent the best fit from
a model where eiu is predicted by month, Oglength and the interaction between
month and Oglength. There is a positive relationship in July and no significant
relationship in April and October. (Parameter estimates (± standard errors) for
July are: Ogeggs=-54.17 (±9.23)+ 7.68 (±O.92)Oglength)

d) The relationship between mean number of M marshalli eggs in utero (eiu) in
females and the mean Mmlength (mm) in April and October. The fitted lines
represent the best fit from a model where eiu is predicted by month and
Mmlength. In July no line was fitted because the abundance and prevalence of M
marshalli was very low. (Parameter estimates(± standard errors) for the fitted
lines are: M marshalli eiuApril=-20.81(±l3.68) + 2.32(±O.96)Mm 1engthAprii and .M marshalli
eiuOctober=-l0.09(±14.S7) + 2.32(±O.96)Mm lengthoctober)

e) The relationship between 0. gruehneri eggs per gramme faeces per female worm
(epgf) and the mean number of eggs in utero (eiu) per adult female 0. gruehneri.
The fitted lines indicate the best-fit model where epgf was predicted by month
with a month by eiu interaction. There was a significant positive relationship in
July but not in April and October. (Parameter estimates (± standard errors) for the
fitted line in July are 0. gruehneri epgf=-0.11(±O.oI7) + 0.007(±O.0007)Og eiu)

f) M marshalli eggs per kilogramme faeces per female worm (epkgf) plotted on the
mean number of eggs in utero per adult female M marshalli for April, July and
October. No significant relationship was detected even if the highest April epkgf
is excluded.

Factors affecting the number of eggs in utero. The number of eggs in utero was

significantly related to female worm length in 0. gruehneri (Fig 6.1c). The model

including the interaction of worm length and month explained 90% of the variation

(F5,25=49.81, P<0.001). The relationship was only significantly positive in July (Fig

6.1c). In April and October the numbers of eggs in utero were similar and low

independent of worm length.
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In contrast, the number of eggs in utero was significantly related to female

worm length in M marshalli in both April and October (Fig 6.1d). The relationships

had similar slopes but different elevations because the number of M marshalli eggs

in utero was significantly higher in October than in April (Fl,I7=53.05, P<O.OI). The

model explained 77% of the variation (F2,17=29.46,P<O.OI, Fig 6.1d).

Table 6.2 Comparison of models for the mean female length of adult female 0.
gruehneri (Oglength). Table shows analysis of sums of squares (Res SS) for the
model of Oglength predicted by month, and worm burdens of 0. gruehneri (Og) and
M marshalli (Mm) separately or in combination. A power function of the form
u(Ogi' (model 3) provided a better fit than a linear relationship (model 2). The mean
female worm length for each reindeer host was weighted for the number of females
of that species used in calculating that mean. MS=mean squares, df = extra degrees
of freedom used in that model. The best fit model, 3, is in bold

Model Resid df ResSS MS Com~arison F p

I=a(intercept) 30 384.41 12.81

2=a+b(Og) 29 219.12 7.55 2vl 19.4 <0.01
8

3=a(Ogt 29 121.52 4.34 3v2 (better)

4=a(month)(Ogt 27 117.83 4.53 4v3 0.41 Ns

5=a (Ogt(month) 27 118.91 4.57 5v3 0.29 Ns

6=a(month)(Og/(month) 25 99.31 4.14 6v3 1.34 Ns

7=a{Og+Mmt 28 194.80 6.98 7v3 Ns

Eggs per gramme faeces per female and the number of eggs in utero relationships.

A strong positive relationship between eggs per gramme faeces per female and the

mean number of eggs in utero was found for 0. gruehneri in July but not in April or

October. The best fit model included eggs in utero, month and the eggs in utero by

month interaction (FS,21=26.27, P<O.OI, Fig 6.le). The values of egg output per

gramme faeces per female were very low and similar in April and October (Fig 6.le).

In contrast variation in M marshalli eggs per kilogramme faeces per female

was not related to any of the variables tested (Fig 6.1 f) even if the outliers are

excluded.
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Fig 6.2. The relationship between faecal egg counts and adult worm burdens. Plots a)
& c) refer to 0. gruehneri, b) & d) refer to M marshalli. The larger data set is
displayed in a) & b) and the sub-set used in the analysis of individual female worms
is shown in c) & d)..'
a) The relationship between faecal egg output (epg) and adult worm burden (Og) in

April, July, and October for 128 reindeer sampled between 1995 and 1999. The
fitted lines for each month are derived from a model where epg was predicted
from adult worm burden using a power function (epg=e+Og+Og''). (Parameter
estimates for fitted lines: aApril=0.034, 95% Cl = [0.00023, 7.59], ~April=-0.34,95% Cl = [-
0.95,0.28]; aJuly=5.02, 95% Cl = [0.22, 63.57], ~July=-0.65, 95% Cl = [-0.94, -0.30];
aOctober=0.0000121, 95% Cl = [0.000000007, 0.0093], ~October=-0.65,95% Cl = [-0.94, -0.30])

b) The relationship between faecal egg output (epg) and Mm worm burden in April,
July, and October for 122 reindeer sampled between 1995 and 1999. The best-fit
model provides a linear fit that does not vary with month (R2=0.48, P<O.OI).

c) The mean and standard error for 0. gruehneri adult worm burden (columns) and
0. gruehneri faecal egg counts (line) for April July and October 1999 (n=31).

d) The mean and standard error for M marshalli adult worm burden (columns) and
M marshalli faecal egg counts (line) for April July and October 1999 (n=31).
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Faecal egg counts and worm burden relationships. In the larger data set representing

128 adult females animals for which we had data on faecal egg output and worm

burdens,o. gruehneri faecal egg output was higher in July than in April and October

consistent with the seasonal peak for this species (Irvine et al., 2000). A power

function that allowed eggs per gramme faeces to vary with month provided a

significantly better fit for the relationship between faecal egg output and worm

burden than the equivalent linear model (X2=9.9, df=l, P<O.OOI). Both the slope (a:

X2=147.3, df=2, P<O.OI) and the power parameter (~: X2=7.3, df=2, P<O.Ol) varied

significantly with month (Fig 6.2a). ~ was negative and less than unity in July

suggesting egg output during this month was density dependent (Fig 6.2a). In

contrast, ~ was not significantly different from zero in April or October (Fig 6.2a).

The pattern in 0. gruehneri abundance and faecal egg output was the same in the

smaller subset (n=31) of animals sampled in 1999 and the analysis confirmed that the

same model provided the best fit. As found in an earlier study (Irvine et al., 2000),

the abundance of 0. gruehneri for the sub-set of data remains high in all seasons yet

the faecal egg output varies considerably (Fig 6.2c).

There was a simple linear relationship between faecal egg output and worm

burden in M marshalli. (R2=0.48, P<O.OI, n=123, Fig 6.2b) for the larger sample of

animals. The percentage of the total variance explained was similar for both linear

(8.2%) and power functions (8.8%). There were no significant differences between

months or interactions between worm burden and month. The pattern on M.

marshalli abundance and faecal egg output was the same in the smaller sub-set of

animals sampled in 1999 and the analysis confirmed that the linear model also

provided the"best fit in this case The abundance of M marshalli exhibits a strong

seasonal pattern with peak intensities in April and almost negligible levels in July
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and faecal egg output mirrors this pattern confirming that worm burden is the main

predictor of faecal egg counts in this species (Fig 6.2d).

In both these species, no additional variation in egg output could be explained

by adding the rival cohabiting species and fitting a parameter that allows the impact

of one worm species to differ from that of the other (P>O.l).

DISCUSSION

This is the first study to demonstrate contrasting patterns of density dependence in

fecundity of two cohabiting gastrointestinal nematode species in the wild. We found

evidence in 0. gruehneri for density dependent effects on worm length irrespective

of season. Nonetheless, the effect of worm length on the number of eggs in utero was

significant only in July, when peak egg production occurs. Furthermore, it appears

that the observed seasonal changes in the number of eggs in utero in female 0.

gruehneri is matched by the seasonal pattern of 0. gruehneri faecal egg output. In

contrast, we found no evidence to support the hypothesis that M marshalli worm

length is related to the density of adult M marshalli. However, there was evidence of

a positive relationship between M marshalli worm length and the number of eggs in

utero but the latter was not strongly ,related to faecal egg output. Evidence for

contrasting life histories in these two species has been described before (Irvine et al.,

2000) and it is notable that the pathogenic 0. gruehneri (Langvatn et al., 1999) is

where we find strong evidence for density dependent fecundity.

Analysis of nematode fecundity is prone to Type I errors (Keymer & Slater,

1987) because of the highly skewed distributions commonly found for both the

number of nematodes in the hosts and the estimates of their fecundity. In our analysis
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of worm length and eggs in utero this problem was avoided since the worm burdens

in the host sample set were relatively evenly distributed across the worm burden

range (Fig 6.1a &b), and since the sample size (number of females), on which the

estimates of worm length and eggs in utero were based, showed no increase with

increasing worm burdens. The statistical problems associated with analysing faecal

egg output is more difficult to solve, but can be partly overcome by using an

appropriate error structure in the statistical analysis (negative binomial). The results

from our analysis of faecal egg output are also corroborated by the worm length and

eggs in utero analysis, and this is in agreement with the observed density dependent

relationship suggesting the result may not be a statistical artefact.

For 0. gruehneri, the intra specific density dependent relationship between

adult worm burden and female length is notable in that there were no significant

differences between months in either the elevation (a) or the degree of density

dependence measured by the negative exponent (P) of the power function (Fig 6.la).

This is consistent with studies of Teladorsagia circumcincta in blackface sheep

(Stear et al 1995) and Heterakis gallinarum in ring necked pheasants (Tompkins &

Hudson, 1999). In both these studies, fecundity was strongly related to female worm

length and in the case of H gallinarum female worm length alone explained the

variation in the number of eggs in utero. Nonetheless, our study is the first to show

seasonal variation in the number of eggs in utero, which cannot be fully explained by

density dependent regulation in female worm length. Worm length was only a good

predictor of the number of eggs in utero in July. In both April and October when the

mean temperature is below zero and the ground is snow covered, the number of eggs

in utero was low. The seasonal pattern in eggs in utero is reflected in the low faecal

egg output in winter (April and October) and high output in summer (July) and it is
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this intrinsic seasonal pattern in eggs in utero that may be responsible for the

observed seasonality in faecal egg output while density dependence is only important

in the summer. However, because the egg output is markedly high in the summer, a

large proportion of the annual egg output is probably under density dependent

regulation. We suggest that these results provide empirical evidence that the seasonal

pattern of faecal egg output may be an adaptive strategy to focus transmission efforts

in the summer, months when the ground is snow free and the temperature is above

zero and therefore infective stages of these nematode parasites can develop and

successfully transmit to naive hosts (Halvorsen et al., 1999).

Although this study is the first to demonstrate density dependence in

nematode fecundity in the wild, and confirms similar findings in sheep and pheasants

(Gulland, 1992; Stear, Park & Bishop 1996; Tomkins & Hudson 1999), other studies

have failed to detect this form of regulation (Shaw & Moss, 1989; Coyne & Smith,

1991; Hudson & Dobson 1997) and have implicated worm senescence or density

dependent survival as the regulatory mechanisms. For example, in the red

grouse/Trichostrongylus tenuis system where there is 'also no evidence for immunity

(Hudson & Dobson 1997), it has been suggested that, rather than density dependent

regulation of fecundity, egg output decreases due to the decrease in fecundity in

older worms (Shaw & Moss, 1989). The seasonal fecundity in the present study
,

might be explained by worm age. If worms were young and immature in April, of

prime age and fecund in July and, in October, senescent, we might predict the

observed pattern. However, we do not have any data on demography that may

indicate worm age, other than worm length and there are no differences in length,

possibly because worm burdens are consistently high across seasons and length is

strongly governed by ~ensity dependence. Although it lies outside the scope of this
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study, the role of worm demography in nematode population dynamics may be worth

exploring to fully understand the pattern of fecundity in naturally infected wild and

domestic ruminant systems.

Density dependent effects of immunity on fecundity have been described

(Smith & Grenfell, 1985; Quinnel et al., 1990). In the blackface sheep study (Stear et

al., 1995) there was evidence that worm length was governed by a density dependent

immune response in the form of plasma immunoglobulin (IgA) which appeared to

retard worm development and, consequently, reduce the numbers of eggs in utero.

Without discounting the potential effects of immunity on fecundity, there are three

lines of evidence that point to its limited involvement in the present study. First,

there is no observed decline in total egg output at high worm burdens (Fig 6.2a).

Second, analysis of the relationship between host age and worm intensity provides no

strong evidence for acquired immunity (Irvine et al., 2000). Third, using body

condition as surrogate for nutritional status and assuming poor nutrition

compromises the ability to mount an immune response (Van Houtert & Sykes, 1996)

then the lack of a relationship between body condition and female worm length and

the number of eggs in utero may also suggest that immunity is not important.

In the analysis of the M marshalli population, we found no evidence for

density dependent female worm length. However, as found in 0. gruehneri, worm

length was the best predictor of the number of eggs in utero and although worms had

more eggs in utero in October than April, the slope of the relationship was similar in

both months (Fig 6.1d). There was no relationship between faecal egg output per

female worm and eggs in utero and this may be due to the very low level of faecal

egg output observed in this species and raises questions about the value of the linear
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relationship between faecal egg output and the density of adult M marshalli (Fig

6.2c) when only 8% of the variation is explained. Regulation of fecundity in M

marshalli is difficult to explain using the density dependent hypothesis but the

relationship between worm length and the number of eggs in utero may also reflect

changes in nematode demography such as worm senescence. It is interesting, to note

that when worm burden is low in October, mean eggs in utero is highest while the

converse is true in April (Fig 6.2d). We also know that in July hosts have very few

adult M marshalli and that by October they have a resident M marshalli population

with high numbers of eggs in utero. The drop in the number of eggs in utero by April

may be due to the age of. the worms. However, relevant worm age data is difficult to

obtain for a natural infection but would provide a valuable addition to our

understanding of natural systems.

Earlier work has again not provided any indirect evidence for immunity to

this species in reindeer (Halvorsen et al., 1999; Irvine et al., 2000) and, we found no

relationship between body condition (surrogate for immunity) and either nematode

worm length, or eggs in utero. M marshalli shows very stable within year cycles in

the adult population that do not vary between years or host age classes (Irvine et al.,

2000) indicating that regulation of this population occurs. It is unlikely that factors

such as host grazing patterns coupled with the fluctuating host density (Langvatn et

al., 1999) are important because of this observed stability. The cycles may suggest a

short lived adult population and the potential role of immunity can only be elucidated

through developing direct measures of immune response such as ELISAs to

circulating nematode specific antibodies.
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The lack of evidence for inter-specific competition is consistent with a

previous study (Adamson & Noble, 1993). These two species may also avoid

competition by adopting seasonally polarised periods of reproduction. Certainly, the

lack of adult M marshalli in July eliminates any possibility of inter-specific

interactions but we also found no effects in winter when 0. gruehneri abundance

remains high and M marshalli burden is increasing (Irvine et al., 2000).. This

conclusion potentially simplify studies of fecundity traits in communities of parasitic

nematodes. However, in the case of M marshalli, sample sizes for the number of

female worms measured are small, therefore, it might be profitable to investigate the

density dependent effects of 0. gruehneri on M marshalli development and standing

crop of eggs in a larger data set.

This study provides clear evidence that one mechanism governing fecundity in 0.

gruehneri is density dependent affects of the adult 0. gruehneri population on female

worm development. The role of immunity in the regulation of nematode fecundity is

not clear and the development of direct measures of immune response are needed to

explore this candidate mechanism. However, we also highlight the importance of

seasonality in the pattern of fecundity and caution against studies that fail to take into

account this possibility when analysing nematode dynamics. Whether the degree of

density dependent fecundity found in 0. gruehneri is sufficient to regulate the

nematode population and thereby affect the host-parasite dynamics (Anderson &

May, 1978) has not been investigated but there may be other density dependent

mechanisms acting on other stages of the life cycle that are important. However, it is

clear that the fecundity of nematode species in mixed natural infections can be
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strikingly different and therefore resolution of data to the species level will be

important in any analysis of natural populations.
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GENERAL DISCUSSION.

Traditionally ecological research has focussed on understanding the processes that

lead to population regulation with many studies investigating mammalian herbivores

and game birds (Grenfell et al., 1998, Hudson & Dobson 1998). Much research has

focussed on candidate mechanisms that include direct density dependence (for

resources), competition (intra- and inter-specific) (Van der Wal et al., 1998) and the

role of predators (Rettie & Messier, 2000). The impact of parasites has also been

suggested as a potential regulatory mechanism (Anderson & May 1978, May &

Anderson, 1978). However, although parasites can undoubtedly have an impact on

an individual animal (Gulland, 1995) it has been much harder to demonstrate that

these impacts are responsible for the patterns of host dynamics at the population

level. Parasites are intimately associated with their host species and the degree to

which they interact, which depends on the species involved, has implications for the

host population dynamics. Because of the diversity in parasite life-history strategies,

investigations into the potential mechanisms that may regulate a natural host

population need to determine the parasite population dynamics at the species level.

This will increase the resolution of the data over studies that aggregate all the

component species as one.

There is a very large literature dealing with parasites such as gastrointestinal

nematodes in domestic animals. However, there are very few studies that have

included parasites in an analysis of wild host population dynamics because data for

parameterising the necessary models is often not available and theory generally

advances faster than the availability of supporting empirical evidence. The only

options may be to parameterise models by extrapolating from domestic literature
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(e.g. nematode fecundity in Smith & Grenfell, 1985; Grenfell et aI., 1995).

Otherwise, aspects of the host parasite relationship have been treated as a

phenomenon because the mechanisms have not been determined (e.g. the role of

arrested development). This thesis therefore represents an attempt to understand the

dynamics of a mixed natural parasite infection using reindeer as a model system and

thereby support models (not presented here) of the host-parasite dynamics with the

relevant parameter estimates. Ultimately, the best test of the effect of parasites is

through experimental manipulation of parasite burdens. This has been successfully

carried out on the Svalbard reindeer through the use of anthelmintics (Irvine, 2000,

Chapter 3.2) that are routinely used in domestic livestock husbandry. The use of the

molecular tools (Dallas et aI., 2000a,b, & 2001; Chapter 3.3,3.4 & 3.5), the ability to

manipulate the parasite burdens, and advances in statistical analyses (in Irvine et aI.,

2000, Chapter 5) have facilitated an understanding of the parasite dynamics that has

not been reached in any other natural system with the possible exception of the red

grouse- Trichostrongylus tenuis system (Hudson & Dobson, 1995) and this approach

may be of use in other studies.

Epidemiolgy of nematode infection in Svalbard reindeer. Earlier work from the

1970s and 1980s revealed patterns in parasite abundance observed in the Svalbard

reindeer that differed from that found in sheep and cattle systems (Halvorsen & Bye

1999). Early analysis of the abomasal worm population data in this thesis revealed

two main findings. First, there was no evidence for acquired immunity (Halvorsen et

aI., 1999, Chapter 4, Fig. 4.2.) based on an analysis of the relationship between the

abundance of infection and the age of the host. In fact, adult animals harboured high

burdens of parasites throughout the age range. Interpreting the role of immunity from
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age-intensity curves is not straightforward and immunity is likely to reduce variation.

There was a large amount of between individual variation that could be due to host

factors such as genetic predisposition or to the interaction between nutritional status

and grazing pattern;. for example animals with high food intake requirements may

graze for longer in graminoid areas that have higher infective larval populations (Van

der Wal et al., 1999 & see "Future Directions" section below). The analysis also

suggests that these nematodes are long lived (up to two years). Second, there was

evidence that the intensity of infection increased over the winter even taking into

account the developing larvae (Halvorsen et al., 1999, Chapter 4, Fig. 4.3).

Species comparisons within the nematode population. Because it was known that the

abomasal nematode populations were made up of a number of species the natural

next question was to determine whether these species had similar or contrasting

seasonal and annual patterns of abundance. Traditional morphologically based

taxonomy enabled identification of the adult male nematodes (Irvine et aI., 2000,

Chapter 5) and molecular techniques involving the PCR confirmed that the rarer

types were morphs of the two main species (Dallas et al., 2000a & 2001, Chapter 3.5

& 3.6). Furthermore, using the same techniques, it is possible to determine the

species composition of the female and larval stages including the arrested component

(Chapter 3.3). Therefore, the dynamics of each species can be fully investigated and

the effects these stages have on the host can be quantified. We took advantage of

these methodological advances to analyse the seasonal and annual dynamics of these

two species, allowing for the aggregated distribution in a dynamic way by allowing

k, the measure of aggregation to vary with the mean (Irvine et al., 2000, Chapter 5).
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There were three main findings from this. First, M marshalli is responsible for the

increase over winter and shows a strong seasonal pattern with a low level in summer

but, no annual variation (Chapter 5, Fig 5.3). M marshalli fecundity is largely

limited to the winter months. Second, 0. gruehneri shows little consistent seasonality

but varies significantly between years (Chapter 5. Fig 5.5). 0. gruehneri egg output

is mainly focussed on the summer months (Chapter 5 Fig 5.4a.). Third, calves don't

pick up 0. gruehneri in their first summer despite the summer egg output by this

species yet, they do pick up significant levels of M marshalli (Chapter 5, Fig 5.1).

Evidence for the two species competing is weak. Despite the population level

differences in abundance of the two species, there was no relationship between the

two species within and individual reindeer. The rate of infection with 0. gruehneri in

calves may be related to the abundance of the primary M marshalli infection, but the

data is not strong enough for this analysis. Furthermore it is known that 0. gruehneri

is virulent because body condition in animals culled in October declines with

increasing intensity of 0. gruehneri (Langvatn, 1999). These findings highlight the

benefits of analysing the parasites at the individual species level and show that 0.

gruehneri rather than M marshalli is a good candidate to investigate in the impact of

parasitism on the host because both the parasite and the reindeer host densities vary

between years (Fig 1.6). The hypothesis that the reindeer population is regulated

through density dependent relationship with 0. gruehneri is explored in Albon et al.,

(submitted) and the main findings are presented in Fig 7.3.

Transmission dynamics and nematode fecundity. Another important unknown in the

host parasite relationship is the regulation of transmission. Measuring transmission

directly in the wild is difficult as is measuring the size of the challenge on the

pasture. However, on-going work has shown that development rates of eggs and
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larvae on the pasture are quite quick and that infective larvae can survive for long

periods (up to 100 days, unpublished data). Combining these data with defecation

rates supplied in the literature and the seasonal pattern of faecal egg output (Chapter

5; Fig 5.4a; Irvine et al., 2000) we can parameterise a model to simulate the seasonal

risk of infection from the pasture (Fig 7.1).

Developmental rates Life expectancy

minimum time 45 days
summer 0.01 day'
winter no development

100 days

Infective larvae 100 days

f3LHHost

Parasitic larvae 0.5 years

summer 0.033 day"
winter 0.0055 day"

Parasitic adults 0.5 years

Fig 7.1. Model and parameter estimate for transmission dynamics based on data is
from the Svalbard reindeer-o.gruehneri system.

The regulation of nematode fecundity and understanding what generates the seasonal

pattern of egg output is an important, component in this process. This will affect

transmission and may help explain annual variation in abundance of parasites in

hosts and is essential in modelling the host-parasite dynamics. A direct analysis of

the number of eggs in-utero and female worm length for both main species across

three seasons indicates that there is a strong seasonal egg production in 0. gruehneri

and that this is negatively related to the length of the worms which is in tum reduced

as 0. gruehneri intensity increases (Fig 6.1, Chapter 6; Irvine et al., 2001). Whereas



M marshalli fecundity is very low and seems to be more directly related to the

number of worms present and not related at all to female worm length (Fig 6.1,

Chapter 6; Irvine et al., 2001). Therefore, whilst 0. gruehneri behaves in a similar

way to nematodes of domestic livestock (see Smith & Grenfell, 1985, Armour 1980),
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Fig 7.2. Simulated abundance of eggs and larvae on the pasture. The equation system for the
model for the number of eggs and non-infective larvae on pasture (EL2), infective larvae on
pasture (L3), parasitic larvae in the host (PL) and mature parasites in the host (M):

d~~2 = J.(t,M, H) - PE'L2EL2 - CTEL2EL2(t - TEL2)eJiEL2TEL2

dL3--;Jt = CTEL2EL2(t - TEI,2)eJiEL2TEL2 - (PL3 + f3H)L3

dPLTt = f3HL3 - (PPL + CTpL + PH )PL

dM
- = CTPLPL - (PM + PH)M
dt-

where Jli is the stage specific mortality rate, cri is the development rate, ti is the minimum
developmental time, 13 is the transmission coefficient, H is the number of hosts. The function
A(t,M,H) describes the egg output rate on pasture and is a nonlinear function that describes
the density dependence and the strong seasonality observed in the nematode egg production.

the relationship it has with the reindeer host is quite different, particularly in respect

of the slow accumulation of nematodes in young animals and the maintenance of

high burdens in adults. Whereas M marshalli, primarily a nematode of sheep (see
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Bye et al., 1987), and usually occurring in arid areas, has adopted an unexpected

strategy of focussing transmission over winter.

Understanding the relationship between worm burden and nematode fecundity in this

system and how this varies seasonally and annually is important in parameterising a

model to determine the transmission dynamics of this system (Fig 7.1). In

combination with experiments determining the development and survival rates of the

free living stages, this may lead to an understanding of the potential challenge on the

pasture resulting from the annual variation in the abundance of infection with 0.

gruehneri (Fig 7.2).

Fine scale resolution at the individual species level has clearly demonstrated the

contrasting life-history traits for the two main gastrointestinal nematode parasites and

highlights the importance of working at the individual species scale.

FUTURE DIRECTIONS

Arrested development and the time-lag in the host parasite relationship.

One major aspect of the life-history of gastrointestinal nematodes that is potentially

important but I have not yet studied in detail is the propensity to undergo arrested
.,

development. This can introduce a time delay into the parasite dynamics so that the

abundance of adult nematodes in the hosts is related to the transmission some time

previously. Arrested development is thought to be an adaption to survive adverse

conditions and may be triggered by environmental conditioning, the intensity of the

current infection or through the effect of an immune response. The propensity to

arrest can vary between species and it is thought that the degree of synchrony of

arrestment and de-arrestment may be one of the more pathogenic effects of these
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The estimated proportion (and standard error bars) of mucosa larvae that is 0.
gruehneri. b) The estimated proportion (and standard error bars) of lumen larvae that is
M marshalli.

parasites as they burrow in and out of the abomasal mucosa and therefore may affect

measures of host fitness such as body condition, reproduction and as such, host

fitness. Techniques to extract the mucosa (arrested) larvae so that they can be

identified using PCR methods have been developed (Chapter 3.2). Using these
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techniques we have resolved the abundances of the larval stages to the species level.

On going work has indicated that the two main species have contrasting patterns of

arrestment. Nearly all the larvae found in the mucosa wall are 0. gruehneri whereas

nearly all the larvae found in the abomasal lumen are M marshalli (Fig 7.3a & b)

Further work will use population growth models using the abundances of the

different stages of each species to investigate how the contrasting seasonal and

annual variation between these two species can be accounted for. Interestingly, it

appears that the pathogenic 0. gruehneri does arrest and therefore introduces a time

lag into the system.

This could be considered as a partial explanation for the two year time lag we

observe between the abundance of parasites and the reindeer counts (Fig 1.6).

Further explanation of this time lag may lie in the fact that calves don't tend to pick

up infection in their first summer (Fig 5.1, Chapter 5; Irvine et al., 2000). This

suggests that the main window for transmission may be early in the season before

calves have a significant herbage intake.

Further evidence for this comes from anthelmintic experiments. Treated animals,

clear of infection until June become re-infected with high numbers of nematodes by

late July (although the abundances were lower than in controls (Irvine, 2000).

Analysis of the species present in both controls and treated animals show that M
,

marshalli is virtually absent indicating that the main challenge to the animals in June

and July is from 0. gruehneri (Stein, unpublished manuscript). Indeed the effect of

treatment on subsequent pregnancy is significant and because of this seasonal low in

M marshalli, the treatment effect must only have operated on O. gruehneri. This

rationale has been the basis for the development of a simulation model. It is now

possible to model the challenge on the pasture through our understanding of
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nematode fecundity regulation and survival of free living stages (Fig 7.2). Now,

combining our data on the host population with the experimental data on parasite

manipulation, a simulation model was parameterised using calf survival estimates

from the literature of 0.75 (Solberg et aI., in press) and 0.82 (Tyler & 0ritsland

1999) and a mean adult survival of 0.88 (Albon et al., submitted) and reindeer

densities of 1.0-2.5 reindeer/km". Without the parasite effect on calving rate in the

model there is no population regulation even though random walk close to the

extinction boundary may cause the population to persist at low numbers for extended
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Fig 7.3. a) Simulated population growth trajectory for a model including the stochastic effects
of weather. b) population trajectory for the same population but including the density
dependent effects of 0. gruehneri on female reindeer fecundity (compare with Fig 1.1). Using
survival parameter values of 0.82 and 0.88 for calves and adults, respectively and host
populations densities of 1.0-2.5 reindeer/km", the model predicted a population growth rate of
1.4 % year" in the absence of the parasite, but with a parasite-mediated reduction in calving
rate greater than 0.065 (Albon et al., submitted), the population growth rate would become
negative. Simulations with constant winter precipitation also show that the effect of the
parasite is stabilising with no evidence for cyclic dynamics in the regulated range of host
population dynamics.

periods of time. But with a parasite-mediated reduction in calving rate greater than

0.065 (Albon et aI., submitted), the population growth rate would become negative.

Simulations with constant winter precipitation also show that the effect of the

parasite is stabilising with no evidence for cyclic dynamics in the regulated range of
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host population dynamics. Also the model predictions appeared to be insensitive to

the scale of the time delay in parasite abundance in response to host densities.

demonstrating that without nematodes in the system the population is unstable.

However, the inclusion of the effect of nematode parasites on host fecundity is

sufficient to stabilise the population trajectory so that it fluctuates about 2-fold and is

within the range that we observe in the field (Fig 7.3. a,b & Albon et al., submitted to

PRSB).

The role of host heterogeneity in the observed parasite distribution.

This thesis has determined that the two main nematode species have contrasting life-

histories and population dynamics and that any pathogenic effect is likely to be

caused by 0. gruehneri. However, the causes of the between host variation in 0.

gruehneri abundance have not been fully identified. Abundance of parasites in hosts

is not normally distributed as outlined in the general introduction. Understanding the

mechanisms that generate this heterogeneity in the abundance between hosts is

fundamental to understanding the impact parasites have on hosts.

Immunity.

One area of host heterogeneity that has received some attention is host immune

response. This can be either due to ge~etic variability (Paterson, 1996) or the

interaction of the immune response with host nutrition (Van Houtert & Sykes, (1997;

Coop & Kyriazakis, 1999). Whilst it is difficult to experimentally investigate the

immune function in the wild, it is possible to measure nematode specific

immunoglobulin levels in Svalbard reindeer. Preliminary work looking at the

relationship between circulating antibodies (IgA) and the abundance of mucosa

larvae suggests that there are elevated IgA levels in response to higher abundances of
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mucosa larvae (X2=6.77, P<O.Ol) after accounting for variation ill abundance of

mucosa larvae due to year month and host valley location. (unpublished data).

Although there is no evidence of immunity from the age-intensity analysis, this does

not preclude any immune system involvement. Individuals may harbour high worm

burdens but the fecundity of these nematodes may be still be regulated by immunity.

Although an immune response would tend to reduce worm burdens, differences

between hosts in the immune response might also increase heterogeneities in

observed parasite burdens.

Grazing.

A second area of host heterogeneity is in the pattern of grazing. In farmed systems

grazing animals can be assumed to graze in a homogenous environment. Whereas in

a natural system such as on Svalbard, the grazing range is made up of a mosaic of

habitats which, because of differing plant phenological dynamics, are used in a

sequential or non random manner by the reindeer herbivore (Fig 7.4).
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Fig 7.6. The seasonal grazing pattern (use of different habitat types) of Svalbard
reindeer of habitat (Van der Wal, unpublished data).
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This has two implications for transmission, First, free-living stages will have

different development and survival rates on different habitats Second, hosts will

utilise different habitats to a lesser or greater extent depending on the season.

Therefore different habitats pose a different risk of infection (Van der Wal et al.,

1999) which will be modified by heterogeneities in the host immune response.

Quantifying this will lead to a better understanding of the host parasite dynamics and

allow the production of models based on mechanisms. A study of the effect of

environmental heterogeneity in habitats and grazing on parasite dynamics lend itself

to close co-operation with ideas from the optimal foraging theory where, besides

decisions based on plant quality and quantity, and plant defences, parasites can be

included not only from the perspective of decision based on the risk of infection

(Hutchings et al., 1998a) but also the decisions that parasitised animals may make in

being more selective (Hutchings et al 1998b) and even actively selecting chemically

well defended plants for their medicinal qualities.

Wider implications.

The results from this thesis, the anthelmintic experiment and from ongoing work on

the arrested larvae, free-living nematode stages combined with data about the host

fecundity and survival form the basis for a simulation model that demonstrates for

the first time that parasites are sufficient to regulate their host population (Albon et

al., submitted to PRSB). Fig 7.3a shows the simulated population trajectory using

density dependent calving data and including the stochastic effect of weather on

mortality. Fig 7.3b shows the trajectory for the same model but including the effect

of parasites on reindeer fecundity (parameter estimates based on data from

experimental manipulation of the parasite burdens). Interestingly, not only is the
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population in this simulation regulated but it fluctuates about two-fold at levels very

similar to the reindeer population in Fig 1.1, Chapter 1).

This study is the first to deal with a mixed natural infection of nematode parasites by

treating the two species as independent populations in the sense that they have

different dynamics. One option that has been touched upon in chapters 5 & 6 is inter-

specific competition. Although the data so far do not point to any evidence for this in

the adult stages, the observed dynamics may yet prove to be partly caused by

competition at the larval stages. Whilst there are similarities between the life-

histories of these nematodes and those of domestic livestock, this study also

highlights the need for caution in extrapolating from the domestic literature. Because

Svalbard reindeer harbour relatively high burdens across the age range, the

temptation is to interpret this as demonstrating a benign host-parasite relationship.

However, the value of experimentation in this case has demonstrated that there are

subtle costs to nematode parasitism in terms of reduced reproductive success and that

this appears mainly due to 0. gruehneri. The analysis at the species level has

therefore permitted a species-specific model of parasite transmission to be developed

which might not have been possible if the abomasal parasite community had been

treated as one. Therefore, there is now a justification for increasing the effort to

understand individual parasites species dynamics when investigating wild host

population dynamics.
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