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A B S T R A C T

The idea of developing automated tools able to deal with the complexity of

clinical information processing dates back to the late 60s: since then, there has

been scope for improving medical care due to the rapid growth of medical

knowledge, and the need to explore new ways of delivering this due to

the shortage of physicians. Clinical decision support systems (CDSS) are

able to aid in the acquisition of patient data and to suggest appropriate

decisions on the basis of the data thus acquired. Many improvements are

envisaged due to the adoption of such systems including: reduction of costs by

faster diagnosis, reduction of unnecessary examinations, reduction of risk of

adverse events and medication errors, increase in the available time for direct

patient care, improved medications and examination prescriptions, improved

patient satisfaction, and better compliance to gold-standard up-to-date clinical

pathways and guidelines.

Logistic regression is a widely used algorithm which frequently appears

in medical literature for building clinical decision support systems: however,

published studies frequently have not followed commonly recommended

procedures for using logistic regression and substantial shortcomings in the

reporting of logistic regression results have been noted. Published literature

has often accepted conclusions from studies which have not addressed the ap-
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propriateness and accuracy of the statistical analyses and other methodological

issues, leading to design flaws in those models and to possible inconsistencies

in the novel clinical knowledge based on such results.

The main objective of this interdisciplinary work is to design a sound

framework for the development of clinical decision support systems. We

propose a framework that supports the proper development of such systems,

and in particular the underlying predictive models, identifying best practices

for each stage of the model’s development.

This framework is composed of a number of subsequent stages: 1) dataset

preparation insures that appropriate variables are presented to the model in a

consistent format, 2) the model construction stage builds the actual regression (or

logistic regression) model determining its coefficients and selecting statistically

significant variables; this phase is generally preceded by a pre-modelling

stage during which model functional forms are hypothesized based on a

priori knowledge 3) the further model validation stage investigates whether the

model could suffer from overfitting, i.e., the model has a good accuracy on

training data but significantly lower accuracy on unseen data, 4) the evaluation

stage gives a measure of the predictive power of the model (making use of

the ROC curve, which allows to evaluate the predictive power of the model

without any assumptions on error costs, and possibly R2 from regressions), 5)

misclassification analysis could suggest useful insights into determining where

the model could be unreliable, 6) implementation stage.
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The proposed framework has been applied to three applications on different

domains, with a view to improve previous research studies.

The first developed model [1] predicts mortality within 28 days of patients

suffering from acute alcoholic hepatitis. The aim of this application is to

build a new predictive model that can be used in clinical practice to identify

patients at greatest risk of mortality in 28 days as they may benefit from

aggressive intervention, and to monitor their progress while in hospital. A

comparison generated by state of the art tools shows an improved predictive

power, demonstrating how an appropriate variables inclusion may result in

an overall better accuracy of the model, which increased by 25% following an

appropriate variables selection process.

The second proposed predictive model [2] is designed to aid the diagnosis of

dementia, as clinicians often experience difficulties in the diagnosis of dementia

due to the intrinsic complexity of the process and lack of comprehensive

diagnostic tools. The aim of this application is to improve on the performance

of a recent application of Bayesian belief networks using an alternative

approach based on logistic regression. The approach based on statistical

variables selection outperformed the model which used variables selected by

domain experts in previous studies. Obtained results outperform considered

benchmarks by 15%.

The third built model [3] predicts the probability of experiencing a certain

symptom among common side-effects in patients receiving chemotherapy. The

newly developed model includes a pre-modelling stage (which was based

15



on previous research studies) and a subsequent regression. The computed

accuracy of results (computed on a daily basis for each cycle of therapy) shows

that the newly proposed approach has increased its predictive power by 19%

when compared to the previously developed model: this has been obtained

by an appropriate usage of available a priori knowledge to pre-model the

functional forms.

As shown by the proposed applications, different aspects of CDSS develop-

ment are subject to substantial improvements: the application of the proposed

framework to different domains leads to more accurate models than the

existing state-of-the-art proposals. The developed framework is capable of

helping researchers to identify and overcome possible pitfalls in their ongoing

research works, by providing them with best practices for each step of the

development process.

An impact on the development of future clinical decision support systems is

envisaged: the usage of an appropriate procedure in model development will

produce more reliable and accurate systems, and will have a positive impact

on the newly produced medical knowledge which may eventually be included

in standard clinical practice.
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1
I N T R O D U C T I O N

This thesis is the result of a PhD research project funded by the Division

of Computing Science and Mathematics (School of Natural Sciences) at the

University of Stirling, carried out under the supervision of Professor Amir

Hussain (principal supervisor) and Dr David Cairns (second supervisor).

1.1 structure of the thesis

The next chapter 2 gives a general introduction to clinical decision support

systems: moving from definitions and motivations for the work, the role of

knowledge in decision support and techniques used are presented. A brief

analysis of key features and benefits of such systems follows. Finally, the

chapter focuses on logistic regression models which have been developed in

the recent past, identifying common pitfalls and suggesting a possible general

framework for developing and evaluating such systems. Further literature

review is presented throughout the thesis for each specific model which has

been developed.

18



1.2 motivation and aims 19

Following chapters are built around the author’s published work. Chapter

3 introduces the proposed framework and the following chapters describe

the development of three predictive models used to validate the proposed

framework: specifically, chapter 4 presents a model developed to predict

mortality within 28 days of patients suffering from acute alcoholic hepatitis [1],

chapter 5 describes the development of a predictive model to aid the diagnosis

of dementia [2], and chapter 6 presents the development of a model for

predicting and monitoring the side-effects in patients receiving chemotherapy

[3]. The development of such models also includes the implementation of web-

based CDSSs built on developed models and different attempts to improve

their performance.

Concluding remarks and ideas for future work are presented in chapter 7.

Appendix A presents an investigation on information and communication

technology usage in patients [4] (the author’s contribution is the statistical

data elaboration and the subsequent interpretation of results) and appendix B

describes the mathematical formulation of linear regression, logistic regression

and gradient descent.

1.2 motivation and aims

The increased demand for medical care (also due to the increase in average

life expectancy) and the need to keep health costs under control, makes the

exploration of new ways of delivering healthcare crucial.



1.3 original contributions 20

Clinical decision support systems (CDSSs) are able to aid in the acquisition of

patient data and to suggest appropriate decisions on the basis of the acquired

data. Literature has identified many improvements which are envisaged from

the adoption of such systems, including improved patient safety, better quality

of care and enhanced efficiency in healthcare delivery.

However, published studies have frequently not followed commonly recom-

mended procedures for model development and substantial shortcomings in

reporting results have been ascertained.

The first objective of this interdisciplinary work is to design a sound

framework for the development of clinical decision support systems. We

propose a framework supporting the proper development of such systems,

and in particular the underlying predictive models, identifying best practices

for each stage of the model’s development. Another main aim of this thesis is to

build some applications based on the proposed framework, able to outperform

state of the art models. As a peripheral objective, we also want to investigate

possible barriers to the delivery of CDSS to patients using information and

communication technologies (ICT).

1.3 original contributions

A schematic view of the original contributions of this thesis is hereby reported.



1.4 publications 21

1. Chapter 3: a framework supporting the proper development of clinical

decision support systems, and in particular the underlying predictive

models, is proposed.

2. Chapter 4: a new mortality risk model to identify patients suffering from

acute alcoholic hepatitis is developed, outperforming by 25% available

state of the art tools. [1]

3. Chapter 5: a predictive model to aid the early diagnosis of dementia

is developed, outperforming the considered benchmark by 15% and

providing an analysis of the variables significance. [2]

4. Chapter 6: a side-effect model for cancer patients receiving chemotherapy

is developed, showing the enhanced predictive power compared to the

previous models. [3]

1.4 publications

The following papers have resulted from the research presented in this thesis.

• T. Mazzocco and A. Hussain, "A side-effects mapping model in patients

with lung, colorectal and breast cancer receiving chemotherapy," in

13th IEEE International Conference on e-Health Networking Applications and

Services (Healthcom), pp. 34-39, IEEE, 2011.



1.4 publications 22

• T. Mazzocco and A. Hussain, "Novel logistic regression models to aid

the diagnosis of dementia," Expert Systems with Applications, vol. 39, no.

3, pp. 3356-3361, 2012.

• T. Gandiya, A. Dua, G. King, T. Mazzocco, A. Hussain, and S. J. Leslie,

"Self-reported ’communication technology’ usage in patients attending a

cardiology outpatient clinic in a remote regional hospital," Telemedicine

and e-Health, vol. 18, no. 3, pp. 219-224, 2012.

• T. Mazzocco, A. Hussain, S. Hussain, and A. A. Shah, "A novel mortality

model for acute alcoholic hepatitis including variables recorded after

admission to hospital," Computers in biology and medicine, vol. 44, pp.

132-135, 2014.



2
S TAT E O F T H E A RT

This chapter introduces a general definition of a clinical decision support

system and an analysis of the motivations for the present work. The role

of existing medical knowledge in such systems and the way to extract new

knowledge using data mining techniques are then presented. Finally a review

of the features of effective clinical decision support systems and their envisaged

benefits in delivered clinical practice concludes the chapter.

2.1 clinical decision support systems

The idea of developing automated tools able to deal with the complexity of

clinical information processing dates back to at least 1969: a work by Goertzel

[5] highlighted the increasing need for better medical care due to the rapid

growth of medical knowledge and the shortage of physicians. This work

gave the definition of clinical decision support system (CDSS) as a "computer

program to aid in the acquisition of patient data and to suggest appropriate

decisions on the basis of the data thus acquired". So two main functions are

identified for a CDSS:

23



2.1 clinical decision support systems 24

• to help with data acquisition processes (clinical variables may include

boolean variables, numeric values and free text descriptions);

• to assist health professionals with decision making tasks (e.g. diagnosis,

suggested treatments, further examinations).

Almost 50 years later, the ideas behind clinical decision support systems are

still the same: the increased demand for medical care, also due to the increase

in average life expectancy, and the need to keep control of health costs make

the adoption of new ways to deliver healthcare crucial.

Many improvements are envisaged from the use of such systems including:

reduction of costs by faster diagnosis, reduction in unnecessary examinations,

reduction of the risk of adverse events and medication errors, increase in

available time for direct patient care, improved medication and examination

ordering, improved patient satisfaction, and application of gold-standard up-

to-date clinical pathways and guidelines. Potential benefits from CDSSs may

then be summarized in three areas [6]:

• improved patient safety;

• improved quality of care;

• improved efficiency in health care delivery.

CDSSs have the potential to meet these needs, and the huge amount of clinical

data which is collected and recorded nowadays seems to pave the way for a

radical change in medical practice.



2.1 clinical decision support systems 25

Nowadays a huge amount of information is collected in the healthcare

environment, which could still be defined as ‘information rich’ yet ‘knowledge

poor’. This is due to a lack of effective tools able to analyze and discover

underlying relationships and patterns in clinical data, while data mining and

knowledge discovery have found many applications in other scientific domains

[7].

Different studies have shown that, for different reasons, health care is

suboptimal. From a very general point of view it has been noted [8] that

while healthcare sectors require person-to-person interaction for treatment

assessment, diagnosis, planning and decision making, the delivered decision

support does not need such interaction. Information services in healthcare, and

specifically decision support systems, should consider the need for a much

greater degree of interpersonal communication compared to other sectors.

Also, healthcare information services should be modelled on a national scale,

in order to integrate data from different providers, while generally attempts

are made to build solutions for smaller units (e.g. hospital, surgery, clinic).

Another study [9] has shown that while overall differences between primary

care quality indicators in deprived and prosperous communities were small,

both clinical and non-clinical indicators suggested that there is scope for

focused interventions on healthcare delivery with a view to improving the

quality of primary care in deprived areas.

Evidence [10] has shown that practitioners do not always adhere to re-

commended clinical practice. However, compliance improves following a



2.1 clinical decision support systems 26

structured intervention, even if research studies do not indicate for how long

the intervention affects practitioner compliance: appropriate decision support

tools may help to increase practitioners’ compliance to recommended practice.

In fact, to improve the chance that a decision support system has a positive

influence, it has been found [11] that providing personalized feedback to

practitioners was effective in order to improve adherence to recommendations.

Also, requiring practitioners to acknowledge received reminders improved

their adherence to recommendations [12].

Due to the discrepancy between clinical care actually being delivered and

optimal patient care, alternative care models in traditional primary care are

being actively explored. Published studies of clinical decision support systems

(CDSSs) are increasing and their quality is also improving [13]: such systems

can enhance clinical performance for drug dosing and prescribing, preventative

care, diagnosis, disease management and other aspects of medical care.

Another research study [14] on the effects of computerized CDSSs on

practitioner performance concluded that such systems may improve prac-

titioner performance and identified few barriers to its implemetation in clinical

practice including: failure of physicians to use the system, poor integration into

practitioner workflow, poor usability of the tools, non-acceptance of computer

recommendations.
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2.2 the role of knowledge

An important categorization among clinical decision support systems can be

based on the "reasoning" engine of the system [15]: a knowledge-based CDSS is

a CDSS with a knowledge base that consists of compiled information (often

presented as a number of if-then rules) used to associate the input received

from the user with the output provided to the user.

Examples of such CDSS can be found online based on the well-known Fram-

ingham study dating back to 1976 for general cardiovascular risk prediction

[16]: this risk model used four boolean variables (sex, smoker, treatment for

hypertension, diabetes) and three numerical variables (age, blood pressure,

body mass index) to calculate a risk score of cardiovascular events.

Online tools collect necessary information from the user (and needed

explanations) and are able to provide an immediate answer; this could be

directed to healthcare professionals, who may consider the risk score as one

of the preliminary indicators of patient’s health condition, but also to the user

of the system who may be then guided to appropriate actions to improve their

health condition (e.g. modifying lifestyle) or redirected to general practitioners.

On the contrary, a non-knowledge-based CDSS do not rely on previous

knowledge and uses a number of data points to provide predictions on new

unseen cases. These rely on standard statistical and/or more sophisticated

machine learning algorithms in order to make the system learn from available
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clinical data, recognize patterns and improve predictions based on new

annotated data.

For example, a recent PhD thesis [17] from Computer Science and Artificial

Intelligence Laboratory (CSAIL) of Massachusetts Institute of Technology (MIT)

developed some logistic regression models to detect hazardous episodes for

patients in intensive care units. A number of real-time mortality models have

been developed exploiting data coming from the Multi-parameter Intelligent

Monitoring for Intensive Care (MIMIC) database, which was created to

facilitate the development and evaluation of intensive care units (ICU) decision-

support systems. Data have been pre-processed before developing predictive

models which have been subsequently validated.

At this point, it can be useful to note that non-knowledge-based CDSSs

can also be exploited to generate new clinical knowledge: the analysis of

the models obtained from clinical data suggests which factors may influence

positively or negatively the provided output (e.g. a diagnosis, an expected

side-effect, the necessity for further treatment).

It is then possible to identify a third role of a CDSS in the context of

scientific research (along with tasks related to helping in data acquisition

and decision making): in fact, to some extent, non-knowledge-based decision

support systems have the capacity to learn from available data, leading to the

identification of new relationships between provided input and desired output

and, ultimately, facilitating the creation of new clinical knowledge [18].
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Another recent example [19] of non-knowledge-based CDSS was developed

by collecting data from an integrated sensor network which was installed

in apartments for volunteer residents at a retirement community that allows

residents to remain in their apartments even if their health deteriorates. The

sensor networks supplement registered nurse care coordination by alerting

them of changes in the normal sensor patterns. The analysis of data collected

from such sensors (bed restlessness sensor, living room motion sensor, and

bathroom visits for each resident) led to the discovery of anomalous behaviors

which were strongly correlated to urinary tract infections. In this case, the

sensor network was able to detect signs of illness earlier than traditional

health care assessment. This example shows how heterogeneous and diverse

information collected in the healthcare environment may lead to discovering

hidden relationships with clinical conditions.

We can then design a CDSS which analyses a large amount of data, with a

view to discovering hidden (and possibly complex) patterns. Also, we can use

existing knowledge to design a CDSS, and then use a new set of observations

to show how to refine gold standard practice or to identify possible conflicts

with the existing knowledge base.

For the scope of this work, moving from available medical knowledge, we

focus on building new CDSSs with a view to improving gold standard practice

when possible, extracting also new information from available data.
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2.3 features of an effective system

Despite the huge number of developed CDSSs, only a few of them are then

integrated into clinical workflows. A recent study [20] has estimated that such

systems have improved clinical practice in about 68% of the considered cases.

It also identified features of computer based decision support systems which

significantly correlated with a positive impact on clinical practice:

• automatic provision of decision support as part of clinician workflow;

• provision of recommendations rather than just assessments;

• provision of decision support at the time and location of decision making.

Moreover, direct experimental evidence supported the importance of three

further system characteristics:

• providing periodic performance feedback;

• sharing recommendations with patients;

• requesting documentation of reasons for not following recommendations.

Another recent study [21] confirmed that systems that required practitioners

to provide reasons when overriding advice and, even more importantly,

systems that provided advice concurrently to patients and practitioners were

more likely to be effective in clinical practice.

Multiple studies have emphasized the importance of transparency in clinical

decision support systems: it has been highlighted that such systems must
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be implemented ensuring transparency so that the source and strength of

evidence are fully disclosed to clinicians and other decisionmakers [22].

An effective clinical decision support system should be able to evaluate

available patient data in real time, and to provide decision support (e.g.

prompts, reminders, and suggestions for management, patient-specific recom-

mendations) in a transparent way, so that suggestions can be easily linked to

the source of evidence [23].

There is a strong requirement that the decision support in key areas of

medication management and clinical care is provided in a way that allows

healthcare professional to determine its credibility and validity by means of a

transparent decision making process [24].

2.4 an overview of data mining

As previously discussed, the large growth of available medical databases has

motivated the use of data with a view to discovering new medical knowledge

from such databases. Data mining techniques could be employed to extract

new clinical knowledge and then to provide better diagnostic capabilities

and more effective patient care; potential uses of data mining techniques for

medical diagnostics have been ascertained [25]. Knowledge management in

the healthcare system is nowadays crucial in order to achieve high-quality

cost-effective services and data mining techniques may help to exploit the full

potential of collected data within an organization [26].
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A group of heterogeneous algorithms are described as data mining tech-

niques; they are used for different purposes but all with a view to discovering

the hidden knowledge in the data. Generally, the algorithms try to fit a model

which is the closest to the characteristics of the considered dataset, in order

to build predictive or descriptive models, where predictive models are used

to make predictions (e.g. to make a diagnosis for a specific disease) while

descriptive models are used to identify patterns in data. For the scope of this

thesis, we will focus on building predictive models.

The main data mining tasks were enumerated and described [27] as follow:

• Classification which classifies each data item into one of several predefined

classes. It is possible to derive a set of classification rules from the

classification model (based on the training dataset); this set of rules

represents the knowledge extracted from the used dataset and can be

used to classify unseen data items. This is probably the most important

data mining technique, as medical diagnosis is an important application

of classification.

• Regression is a method to map target data with a known type of function,

with the aim of estimating an output value given unseen input values.

• Time series analysis concerns the study of an attribute value examined

over a time period (generally at evenly spaced time intervals), with a

view to predicting future values of the attribute.
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• Visualization techniques are useful in order to discover hidden patterns

in the considered dataset. Through the analysis of scatter diagrams (in

a Cartesian plane) it is possible to identify interesting subsets of the

initial dataset: other data mining techniques can then be applied on these

subsets in order to discover further knowledge.

• Association rules is the discovery of rules which create associations among

objects.

• Clustering is a set of techniques of multivariate data analysis aimed

at the selecting and grouping of homogeneous elements in a dataset,

based on measures of similarity between the elements within a multi-

dimensional space. Common features of the objects in each cluster are

then summarized to extract the class description used to classify unseen

data points.

2.5 logistic regression models

Logistic regression is a widely used algorithm which frequently appears in

medical literature. It is a well established technique which is usable without

any specific machine learning skill; also, many software tools are readily

available to develop logistic regression models. It is a multivariable method

which tries to establish a functional relationship between two or more predictor

(independent) variables and one categorical outcome (dependent) variable in
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a transparent way: which leads to an easy interpretation of developed models

and may explain the broad diffusion of such technique. In logistic regression

the probability of Y occurring is predicted given known values of X (vector

containing predictors). The general form of the functional dependence given

by the regression could be expressed as per formula 2.1:

P(Y) = (1+ e−(b0+b1x1+·+bnxn))−1 (2.1)

where P(Y) is the probability of Y occurring (or, in other words, of Y

belonging to a certain class), xn are predictor variables and bn are coefficients

to be determined by the logistic regression algorithm. The coefficients are

estimated by fitting models, based on the available predictors to the observed

data. The chosen model will be the one that, when values of the predictor

variables are placed in it, results in values of Y being the closest to the observed

values.

Further details about logistic regression models and techniques used to

estimate coefficients will be provided in the following appendix B. Two

applications presented in this thesis will use logistic regression which is

one of the most used model for developing CDSSs.

2.6 pitfalls in published predictive models

A recent study [28] identified 10 criteria used to examine the quality of

published logistic regression models; specifically:
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• selection of independent variables: studies should explain how variables

were selected for inclusion in the model. They may be chosen based

on earlier research or in the presence of significant correlation with the

dependant variable

• coding of variables: studies should provide a complete description of the

coding scheme for independent variables (i.e. how they are recorded and

coded). The coefficient for an independent variable and the subsequent

interpretation strongly depend on such scheme which is crucial to the

future usability of the model

• sufficient events per independent variable: the ratio between the number

of events of the less frequent outcome and the number of model inde-

pendent variables should be at least 10 to 1. If the number of events per

independent variable is lower, the estimates of the regression coefficients

may be unreliable and the related sample variance, as well as confidence

intervals, may also be affected

• collinearity: studies should report results of undertaken tests for collin-

earity, i.e. should investigate whether two or more explanatory variables

have an approximate linear relationship between them: such conditions

may increase the variance of the coefficient estimates making them very

sensitive to minor changes in the model

• conformity with linear gradient for continuous variables: models with con-

tinuous or ranked independent variables should assure conformity with
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the linear gradient or check on the log-odds scale (this is not applicable

to boolean predictor variables), i.e. any given change in a continuous

predictor variable should have an effect on the log-odds of a positive

outcome that is the same magnitude, regardless of the value of the

predictor variable [29]

• statistical significance: statistical significance of each coefficient should be

investigated and results reported

• fitting procedure: the procedure for entering variables (e.g. forward or

backward selection) into the model should be explicitly stated

• tests for interactions: studies should include a discussion of reasons for

including or not interaction terms, i.e. variables obtained as functions of

two or more original predictors (e.g x1x2)

• validation: models should present used validation procedures (e.g. cross

validation, split-sample methods, bootstrapping) and discuss results: this

step is crucial in order to correctly estimate the accuracy of a classifier

• goodness-of-fit and discrimination measures: goodness-of-fit measures an-

d/or discrimination statistics (ROC curves) should be reported along

with a description on how well the developed model matches the

observed values

The study in [28] also provided an analysis which assessed a number of

published papers on two medical journals: they concluded that published
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Criterion % studies

Selection of independent variables 81%

Coding of variables 10%

Sufficient events per independent variable 40%

Collinearity 17%

Conformity with linear gradient for continuous variables 19%

Statistical significance 100%

Fitting procedure 65%

Tests for interactions 39%

Validation 9%

Goodness-of-fit and discrimination measures 19%

Table 2.1: Studies which satisfy criteria for quality of logistic regression models

studies frequently did not follow commonly recommended procedures for

using multivariable logistic regression. The results from this study is reported

in the table 2.1, which shows the percentage of considered studies which

satisfied the abovementioned criteria.

Another study [30] considered logistic regression models (which often find

privileged positions in literature reviews) in a specific medical domain, i.e.

genetic testing for cancer susceptibility. They found substantial shortcomings

in the use and reporting of logistic regression results. Notable results were

that no study reported any regression diagnostics or goodness-of-fit measures;
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none of the studies reported validation analysis; most of the considered

models had a ratio between events and independent variable near or below 10,

suggesting that those models may be unreliable. Also, in the genetic testing

for cancer susceptibility domain, published literature reviews have accepted

conclusions from analyzed studies, which did not address the appropriateness

and accuracy of the statistical analyses and other discussed methodological

issues. This could lead to possible design flaws in these models and, while the

conclusions of these studies may still be valid, once they are considered for

inclusion into counseling guidelines and testing protocols, they may produce

new clinical knowledge based on results that had not been rigorously tested

following recommended statistical guidelines.

2.7 towards a general framework

The analysis presented in this chapter shows the potential of CDSSs and, at the

same time, the criticalities found in the published literature highlighting the

need for a general framework able to exploit such potentials avoiding common

pitfalls. The idea developed within this thesis is then to design a flexible

framework able to cope with different kinds of healthcare data - depending

on application and performance requirements, required models can range

from simple to complex - and to build effective models to be implemented as

CDSSs.
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In the following chapters of this thesis, a general framework will be de-

veloped: some applications will be proposed, developing predictive models

and implementing at the same time (most of the) recommended practices

previously discussed. The main objective is to design a general framework

based on clinical and technological best practices, able to help researchers

in this multidisciplinary domain develop effective clinical decision support

systems.



3
F R A M E W O R K D E S C R I P T I O N

In the previous chapter, a number of pitfalls recurring in the published

literature for developing CDSSs have been highlighted. There is then a need

for a general framework able to exploit the potential of medical data avoiding

common pitfalls which have been discussed in the previous section 2.6.

In this chapter, a framework for developing CDSSs, and in particular the

underlying predictive models, is proposed: this will be able to deal with some

of the most widely used kind of healthcare data and will help researchers to

develop effective CDSSs.

Section 3.1 describes how to prepare the dataset which will be used for the

model construction, which is detailed in section 3.2. A methodology to evaluate

model performance is defined in section 3.3 and appropriate performance

metrics for two-class classification problems are described in section 3.4.

Then, section 3.5 illustrates how to analyze model misclassifications, i.e.

cases in which the classification proposed by the system differs from the real

classification, and section 3.6 closes the chapter suggesting how to implement

the model into an actual CDSS software application.

40



3.1 dataset preparation 41

3.1 dataset preparation

As previously mentioned, a non-knowledge-based CDSS uses a known dataset

to provide predictions on new unseen cases. The dataset is composed of a

number of data points: each of them has a number of inputs expressed as

independent variables (i.e. variables used to make predictions) and one output as

the dependent variable (i.e. the associated outcome). This section examines how

to pre-process the dataset in order to properly feed the learning algorithm

used for model development.

3.1.1 Variables pre-processing

When developing a new model, a number of candidate variables are available:

their collection is generally driven by previous research and/or by the expertise

of domain specialists. Also, in the absence of such indications, the presence of

a significant correlation with the dependent variable could be investigated by

means of appropriate statistical tests.

Variables can be categorized into:

• continuous variables, which can assume any real value within given

intervals;

• categorical variables, which can assume a finite number of values.

Categorical variables can be further classified into:
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• binary variables, which can assume only two values;

• nominal variables, which can assume a finite number of values without an

intrinsic order;

• ordinal variables, which can assume a finite number of values with an

intrinsic order or ranking.

Continuous variables are normally used “as is” or after a normalization

process, which consists in a transformation R → [0, 1] or R → [−1, 1] of the

variable domain. Different methods are available for such transformations

(e.g. min-max normalization, z-score normalization) and many artificial neural

networks and classifiers based on distances require a normalization step

in order to give consistent results [31]. While not necessary, this process is

sometimes applied to regression and logistic regression as well (e.g. when

the same dataset is also used with other techniques requiring normalization).

In this case, it is crucial that the function used for normalization is explicitly

reported when the model is described in order to consistently apply input

normalization when the model is used.

Categorical variables cannot be used “as is”. They need to be coded into

a series of n− 1 binary variables where n is the number of categories to be

represented: it has to be noted that n− 1 binary variables are able to define

exactly n categories, while using n binary variables would lead to a n-th

variable which could be expressed as function of the other n− 1 ones causing

problems to learning algorithms (i.e. making impossible the matrix inversion in

the estimation algorithm), making the regression problem unsolvable [32]. This
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coding is necessary to avoid the well known “dummy variable trap” which

is special case of exact multicollinearity: if there is no omitted category, there

is an exact linear relationship between the model constant and the dummy

(binary) variables [33].

Generally speaking, model specifications should always explain how vari-

ables are collected (including units of measure), calculated and used in order

to guarantee that the model will always be applied to datasets which are

consistent with the one used for developing such models, i.e. variables are of

the same kind and measured in the same unit.

3.1.2 Collinearity among independent variables

A preliminary test of collinearity should investigate whether two or more

independent variables have a strong correlation: if there is perfect collinearity

between independent variables it becomes impossible to obtain unique estim-

ates of the model coefficients [34]. However, also high levels of collinearity

present a problem for any regression analysis [35], increasing the probability

that a good predictor (i.e. an independent variable which has good explanatory

power) is considered not significant and then rejected by the model.

As already discussed, it is estimated that less than 20% of published

literature on medical logistic regression models reported appropriate tests for

detecting collinearity problems. The methodology proposed in this framework

requires that an appropriate test is carried out to detect collinearity situations.
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Various collinearity diagnostics are available: for example, the variance infla-

tion factor (VIF) or the tolerance statistics (defined as 1/VIF). VIF provides an

estimate of how much the variance of an estimated coefficient is increased by

the effect of collinearity [36]. Common criteria to determine if a collinearity

problem is present are a tolerance value less than 0.1 [37] or, equivalently, a

VIF value greater than 10 [38].

3.1.3 Variables selection

Stepwise regression is a procedure to select which variables should be included

in a regression model. The idea is to build a model with a specified number

of variables and then add (or remove) them one by one, according to a

specified ranking, and then check whether the model significantly improved

(or deteriorated) its performance. Such an iterative procedure terminates when

adding (or removing) variables does not improve (or does deteriorate) the

model accuracy.

Two approaches may be followed: backward stepwise elimination, which

starts with all candidate variables and at each step one variable is removed

evaluating if performance deteriorates, and forward stepwise selection, which

starts with no candidate variables and at each step one variable is added

evaluating if performance improves [39].

For the framework proposed in this thesis, the backward method is preferred

because forward selection is more likely than backward elimination to exclude
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independent variables involved in suppressor effects [34] (i.e. variables which

increase the predictive power of other independent variables by their inclusion

in a regression equation [40]). Forward selection may be used in an attempt to

reduce computational time, if techniques involved in model construction are

computationally heavy and/or the used dataset is big enough.

The implementation of variables selection strategies can lead to increased

model performance, as will be shown in sections 4.5 and 5.5.

Stepwise regression suggests the best set of variables to fit points in a

specified dataset according to a certain functional form. However, the number

of variables which can be used in a model is limited by the size of the dataset

used to estimate coefficients: introducing more variables will generally produce

a better fit to the data but an excessive number of variables may overfit the

dataset, leading the model to lose its generalisation power.

In order to create a model able to show similar accuracy on an unseen

dataset, a dataset of adequate size, which could provide reasonably accurate

estimates of the regression coefficients, is necessary.

If too many degrees of freedom are used, i.e. if too many coefficients are

estimated with respect to the number of data points contained in the dataset,

the resulting model will overfit the considered sample: it will include predictor

variables and identify complex relations between input and output of the

model that exist in the considered sample (leading to an overestimation of

model accuracy) but not in the population, and this is detrimental to the real

accuracy of the model. In the case of regression models, if the number of
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the coefficients to be estimated is equal to the number of data points on the

considered sample, the model may perfectly fit the sample data, even if all the

predictors are totally unrelated to the response variable (i.e. they are noise)

[41].

Summing up, although it is important that the model includes all relevant

variables, it is also important that the model does not start with more variables

than those that are justified for the given number of observations [29, 42, 43].

Given a specific dataset, for logistic regression it is recommended that the

ratio between the minimum number of data points belonging to a class and

the number of independent variables used for the model should be at least 10

[44]: if such criterion is not met, results should be taken with care and a larger

dataset should be used to strengthen findings. This rule will help selecting the

appropriate set of independent variables as in the first case study described in

paragraph 4.4.2.

3.2 model construction

After dataset preparation, a number of data points are available for the model

construction phase.

The vector of selected candidate independent variables is called X and B is

a vector of coefficients. The aims of the step described in this section are 1)

to find a function ŷ = f(B,X) able to approximate the real relationship y(X)

between X and the dependent variable y and 2) to determine vector B.
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The first element of the vector X is set to x0 = 1, in order to include in the

developed models a possible constant term while keeping a compact notation.

The form of function f is based on the available knowledge about the

relationship between the model input and output. Also, continuous variables

can be used stand-alone or as arguments in functions of one (e.g. sin x1) or

more variables (e.g. x1x2), again based on the available knowledge about the

problem. An appropriate usage of a priori knowledge will result in more

accurate models as highlighted in paragraph 6.4.1.

3.2.1 Regression

Depending on desired output y, in most cases, linear and logistic regression are

able to provide models with a reasonable level of accuracy. These techniques

will be used in the following chapter 4 and 5 (logistic regression), and 6 (linear

regression).

In particular, if y ∈ R, linear regression could be used. Otherwise, con-

sidering classification problems (i.e. y ∈ {0, 1}), logistic regression should be

selected; in this case, the model output ŷ = f(B,X) is the probability of an

input data point belonging to a certain class. A threshold is generally applied

to the probability calculated from the model in order to predict the class

to which the data point is expected to belong. Besides being needed in the

practical usage of the model, the threshold is also commonly used to quickly

evaluate the accuracy of the model (i.e. once a threshold has been chosen, the
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accuracy is easily evaluated as described in the following section 3.4). However,

the predictive power should be evaluated regardless of an arbitrarily chosen

threshold using receiver-operating characteristic (ROC) curves, as detailed

hereinafter.

A linear regression model will assume the form:

f(B,X) = b0 + b1x1 + b2x2 · · ·+ bnxn = BTX (3.1)

A logistic regression model will instead assume the form:

f(B,X) =
1

1+ e−(b0+b1x1+b2x2···+bnxn)
=

1

1+ e−B
TX

(3.2)

After having defined the functional form of the model, an algorithm is

necessary to determine the coefficients vector B. Generally, this is estimated in

the training phase of the model minimising an opportune cost function J(B)

defined for the problem.

It is worth noticing that the most commonly used cost functions tend to fit

data points, without weighting differently false positives and false negatives

which could have different costs. For the scope of this thesis, this is acceptable

as an investigation about costs of false positives and false negatives was

not available. However, it is recommended that cost functions are, whenever

possible, modified in order to take care of such cost differences.

Appendix B provides further details of mathematical formulation of linear

and logistic regression, including commonly used cost functions, as well as a

description of a gradient descent algorithm which could generally be applied

to minimise cost functions.
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A statistical p-value is associated to any coefficient of linear and logistic

regression. For each coefficient, the p-value tests the null hypothesis that the

coefficient is equal to zero (i.e. it has no effect on the model).

Importantly, it is required that the p-value should be clearly reported for

every coefficient. A low p-value (e.g. smaller than 0.05) indicates that the null

hypothesis can be rejected (i.e. a predictor with a low p-value is likely to be a

meaningful addition to the model because changes in the predictor’s value are

related to changes in the response variable), while a larger p-value implies that

changes in the independent variable are not associated with changes in the

output. Such p-values are used as ranking criterion in the stepwise regression

procedure described in the previous paragraph 3.1.3.

Also, in a linear regression, the coefficient of determination (or R2) is the

proportion of variability in a data set that is accounted for by the statistical

model and it varies between 0 and 1. So, the higher is the R2, the better is the

goodness of fit. There is not a unique definition of R2 coefficient for logistic

regression models. It is then suggested that coefficients of determination are

reported at least for linear regression models.

The general procedure described in this section could be generalized to some

other techniques, taking care of adapting functional forms, cost functions and

minimisation algorithms as appropriate. Adopted functional form, coefficients

and possibly cost function (if not standard) should always be clearly reported

on research studies detailing developed models.
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3.3 model validation

The aim of a classification task is to associate each element of a dataset to a

class amongst a number of possible ones. Regression and logistic regression

algorithms (as well as other supervised machine learning techniques) infer a

model from labeled training data. The generated model is then evaluated on a

separate testing set, which provides an estimate of the accuracy of the model.

A correct estimation of the accuracy of a classifier (in this context, also

referred to as model validation) is crucial both to predict its future predictive

power and to choose among a number of possible classifiers.

Despite the importance of correctly determining the accuracy of a model,

as previously outlined in section 2.6, it is estimated that more than 90% of

medical logistic regression models among published literature do not use an

appropriate model validation strategy.

In order to correctly assess the accuracy of a classifier, an estimation method

with low bias (i.e. the difference between real and estimated accuracy) and

low variance (i.e. the variability of estimated accuracy when changing the

used dataset) is desirable [45] and required by the framework proposed in

this work. Three methods are recalled to estimate predictive power of a model:

holdout, bootstrap and cross-validation methods.

The holdout method divides the available dataset into two partitions, the

training and the testing set: the first one is used to build the model and the

second one to evaluate its accuracy.
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The bootstrap method [46] creates, given a dataset of size n, a number of

testing sets by sampling n instances uniformly from data with replacements,

i.e. some of the data points will appear in the bootstrap sample multiple times

while other data points will not appear at all. Called p the probability of

any given instance being chosen after n samples, b the number of bootstrap

samples, αi the accuracy computed on the i-th sample, and a the accuracy

computed on the whole training set, the accuracy estimate can be expressed

as 1
b

∑
i p ·αi + (1− p) · a. The variance of the estimate is calculated as the

variance of the accuracy estimates for the samples.

The k-fold cross-validation method divides the available dataset into k parti-

tions of similar sizes. A model is built k times, using each time k-1 partitions as

the training set and the remaining partition as the testing set. The estimation of

the accuracy model is the average of the accuracies computed for the developed

k models. If a dataset is composed of n data points, the n-fold cross-validation

is also know as leave-one-out cross-validation. Cross-validation is defined

as “stratified” if each partition reflects the distribution among classes of the

original dataset.

A largescale experiment on real-world datasets [45] (following experimental

results on artificial data and theoretical results in restricted settings) and a

recent simulation study [47] compared the performance of these validation

methods showing that:

• holdout will generally underestimate the accuracy of the model, hence

inducing a large bias, because only a portion of data is available for the
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learning process (since the accuracy of a model deriving from supervised

learning algorithms increases when more data points are presented

during training); on the other hand, using a test set with fewer data

points will largely increase the variance of the accuracy estimation

• bootstrap has low variance, however, it may present an extremely large

bias problem for both some large and small samples.

• cross-validation provides decreasing bias accuracy estimation while

increasing k, reaching a virtually unbiased estimation with the leave-one-

out cross-validation where almost all data points are used for training

purposes; as k decreases, the accuracy variance increases due to the

instability of the used training sets. When compared to regular cross-

validation, stratification is generally a better scheme, both in terms of

bias and variance

Based on such observations, for the framework hereby developed, stratified

cross-validation is proposed for model selection and accuracy estimation due

to its lower bias when compared to other proposed methods.

3.4 model evaluation

CDSSs are often based on binary classification models, that is their aim is to

classify each entry of a given dataset into two groups, positives and negatives,

according to a classification rule. In the clinical domain, the choice of what to
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define as positives and negatives is normally not arbitrary: a positive generally

indicates an anomalous condition which needs to be addressed, such as the

presence of a disease. As a consequence, the cost of missing a positive is

generally higher than the cost of wrongly classifying a negative as a positive.

When the outcome of a model is the probability of an entry belonging to

a group, such probabilities need to be converted into a boolean value using

an appropriate threshold, in order to carry out the classification task. The

performance of the developed CDSS models can then be evaluated; for such

models, for each element of the dataset there are four possible outcomes with

regard to the classification:

• true positive (TP): when a positive is correctly classified

• true negative (TN): when a negative is correctly classified

• false positive (FP), also known as type I error: when a negative is wrongly

classified as positive

• false negative (FN), also known as type II error: when a positive is

wrongly classified as negative

Different measurements of model performance can be subsequently defined.

Given P = TP+ FN the number of real positives in the considered dataset, and

N = TN+ FP the number of real negatives, it is possible to define [48]:

• sensitivity = true positive rate (TPR) = recall = TP/P

• specificity = true negative rate (TNR) = TN/N
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• positive predictive value (PPV) = precision = TP/(TP+ FP)

• negative predictive value (NPV) = TN/(TN+ FN)

• accuracy = (TP+ TN)/(P+N)

Such performance measurements are often used in literature. However,

they do not properly and satisfactorily characterise the predictive power of a

classifier. Indeed, false positive and false negative could have different kinds

of implications in different domains, clear examples of which are shown in

[49, 50, 51]. As a consequence, the decision threshold used to separate positive

and negative outcomes is dependent on the assumed costs for type I and II

errors, i.e. false positives and false negatives, and may vary depending on the

acceptable trade-off between false positives and false negatives.

However, the predictive power of a model should be evaluated regardless

of the chosen cut-off point. For this reason, receiver-operating characteristic

(ROC) curves have been adopted for the framework proposed in this work

as they provide an index of accuracy by determining the model’s ability to

discriminate between alternative states of health over the complete spectrum

of operating conditions, i.e. different thresholds [52]. A ROC curve can also be

thought as a plot of the probability of correctly classifying the positive cases

against the rate of incorrectly classifying true negative ones: in other words,

for each possible value of the decision threshold, a pair of true-positive and

false-positive performance rates are represented on the ROC curve.

In figure 3.1, the diagonal line represents the ROC curve of a random

classifier, the angular line shows the performance of an ideal classifier, and the
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Figure 3.1: Examples of ROC curves

other line corresponds to an example of the ROC curve for an example model.

The more the ROC curve tends to be near to the upper left corner, the better

the performance is: the area under curve (AUC) is used as a performance

metric and it usually varies from 0.5 for a random classifier to 1.0 for an ideal

classifier (i.e. 100% of true positive and no false negative are detected).

As previously outlined [28], less than 20% among analyzed studies reported

ROC curve analysis (i.e. used area under ROC curve as performance metrics).

Summing up, for classification problems, ROC analysis should always be

reported while further performance metrics could be reported if comparison

with previous work requires so.
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3.5 misclassification analysis

So far, some steps to assist the correct construction of a model have been

identified: firstly, clinical information is used to identify relevant variables and

hypothesize a model functional form; then the available dataset is used to

select variables to be included in the model, to calculate coefficients for the

model and to validate and evaluate the model itself.

Once that the model is developed, an output (e.g. a risk score, a classification,

etc.) can be associated to any previously unseen data point. When using

regression methods, this approach is completely transparent: indeed, it is quite

easy to identify positive/negative correlations, and their magnitude, between

each input of the model and the related output.

However, for classification problems, analyzing how misclassifications are

distributed may suggest some insight into the predictive power of the model:

it is sometimes possible to identify areas of input/output domains where the

model could be unreliable. In this case, different strategies could be adopted:

1) a pre-clustering may be attempted in order to build different models for

different areas of input domain; 2) where the model is not accurate enough,

the transparency constraint could be relaxed in order to apply a “black-box”

model, resulting in a model with improved performance while still reasonably

transparent; 3) leaving the classification of such data points to a domain expert

is also a possible choice, with the idea of using a decision support system only

when it could guarantee reasonable accuracy.
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The schematic representation of the proposed process for the model’s

development is reported in figure 3.2: available data and previous clinical

knowledge are used for selecting variables and for building (regression)

models; the dataset is then used to calculate the accuracy of the model and

to identify areas of low accuracy and different strategies may be used to deal

with such areas as previously described.

Clinical information 

Variables 
selection 

Model 
construction 
(regression) 

Model validation 
and evaluation 

Available data 

Identification of 
areas of low 

accuracy 

Pre-clustering 

Expert evaluation 
Black box models 

 

Figure 3.2: Schematic representation of the model building process

For the applications proposed in the following chapter 4 and 5, misclassific-

ation analysis is carried out. Because of the relatively small dataset sizes, areas

with high misclassification rate will be highlighted, suggesting that such areas

are dealt by domain experts.

The framework proposed in this thesis requires that an analysis of misclas-

sification distribution is always carried out, at least when the output of the

model is categorical: as will be shown in sections 4.6 and 5.6, such analysis

could lead to increased accuracy (not providing predictions for a number of

cases) selecting also cases (patients) where specialist prediction is needed.
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3.6 implementation

As previously highlighted, in order to have a positive impact on clinical

practice, a CDSS should automatically provide decision support as part of

a clinician’s workflow at the time and location of decision making. This

objective is reached implementing the model into a piece of software or a web

application.

The implementation of the model could also be used to collect new data for

further research work and/or to be used with an online training algorithm to

improve performance of existing models.

The applications proposed in the next chapters have been developed as

web-based prototype composed by PHP scripts, able to acquire data input

from users and generate an HTML page containing the related output.



4
C A S E S T U D Y 1 : A 2 8 - D AY M O RTA L I T Y M O D E L F O R

A C U T E A L C O H O L I C H E PAT I T I S

This chapter describes the first developed predictive model: its aim is to predict

mortality within 28 days of patients suffering from acute alcoholic hepatitis.

Severe forms of alcoholic hepatitis in patients with alcoholic liver disease are

in fact associated with high mortality; it is therefore vital to identify those

patients at greatest risk of mortality in 28 days as they may benefit from

aggressive intervention. Applying the previously described framework, we

propose a new predictive model that can be used in clinical practice to identify

such patients and to monitor their progress while in hospital.

A cohort of 82 patients was selected and for each of them, a number of

clinical findings and standard laboratory tests at the time of admission to

hospital were recorded. Variables from currently used scoring systems are

collected and, since studies have shown the usefulness of repeating scoring

systems after one week of admission to predict outcome, some variables were

collected up to 7 days after admission. It is expected that an appropriate

variable selection approach could lead to a better accuracy of the developed

model when compared with existing models, and yield new and potentially

useful clinical insights.

59
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The proposed logistic regression model selected four statistically significant

predictors (namely, the level of creatinine on and after admission, the pres-

ence of encephalopathy and prothrombin time evaluated after admission). A

comparison with the available mortality predictive scores showed an increase

by 25% in predictive power, demonstrating increased accuracy in identifying

these sick patients with alcoholic hepatitis in clinical practice.

4.1 background

Severe forms of alcoholic hepatitis (AH) in patients with alcoholic liver disease

(ALD), characterized by jaundice, hepatocellular damage and fibrosis [53], are

associated with high mortality especially in a younger population, but is also

frequent in older people, who are more susceptible to the effects of excessive

alcohol consumption [54]. It is estimated that severe alcoholic hepatitis has a

death rate of up to 50% [55]: therefore, it is vital to be able to identify patients

at greatest risk of mortality and in whom the therapeutic benefit/risk ratio is

unfavorable as this group of patients may benefit from aggressive intervention.

Multiple prognostic factors have been studied over the last decade and a

variety of scoring systems are used in clinical practice to assess the severity of

acute AH. They include, Maddrey Discriminant Function (mDF) [56], Child-

Pugh Score (CPS) [57, 58], Glasgow Alcoholic Hepatitis Score (GAHS) [59]

and Model for End Stage Liver Disease (MELD) [60]. A recent study [61] has

compared various prognostic scores used to evaluate the short-term mortality
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in patients with acute-on-chronic liver failure. In these scoring systems a

combination of various laboratory and clinical parameters are analyzed to

determine the severity of AH in patients with ALD. The mDF was derived

from observations of 55 patients: a stepwise discriminant analysis revealed a

statistically significant association with death of prolongation of prothrombin

time and height of serum bilirubin on admission to hospital. In the CPS, five

variables (namely: bilirubin, serum albumin, prothrombin time, presence of

encephalopathy and ascites) are used to predict the prognosis of chronic liver

disease.

The GAHS was built using a stepwise logistic regression algorithm and was

derived from few variables which were significant in respect of the patient’s

death risk: namely, age, serum bilirubin, and blood urea to predict 28-day

mortality risk, and serum bilirubin, prothrombin time, and peripheral blood

white blood cell count to predict 84-day mortality risk. Variables for the first

model (28-day mortality) were observed on day 1, while for the second one

(84-day mortality) they were measured on day 6-9.

In addition, various studies have suggested that a few individual parameters

such as elevated serum bilirubin level, international normalized ratio of

prothrombin time, white cell count and hepatic encephalopathy are associated

with increased risk of mortality in patients with AH [62, 63].

Predictive factors of long-term survival in ALD have recently been studied

[64]: only clinical factors were statistically significant prognostic factors while

no histological features correlated with prognosis. Non-invasive methods are
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also increasingly used to predict the prognosis of patients with chronic viral

hepatitis, reducing the need for liver biopsy analysis and facilitating the better

management of such patients [65].

A previous study [66] has shown that an increase of MELD score in the

first week is an independent predictor of mortality. Consequently, the present

study also considers the values of some selected variables evaluated days after

admission to hospital, i.e. bilirubin, urea, creatinine and prothrombin time,

were assessed also on following days up to day 7 after admission or to the

time of death if it occurs within 7 days, and included in the pool of variables

available for the model.

4.2 aims

The aims of this study are to propose a new enhanced predictive model which

could increase the accuracy of the currently available tools, identify individual

parameters that are associated with increased mortality and to assess if changes

in the values of these variables after treatment were associated with bad

prognosis in patients with AH. It is clinically crucial to identify patients with

severe AH by using these individual parameters so that their treatment can

be commenced and possibly adjusted early to reduce mortality. Moreover,

the possible introduction of variables - re-evaluated days after admission to

hospital - provides a way to constantly monitor the efficacy of administered

treatments.
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4.3 dataset preparation

4.3.1 Study sample

Patients with AH admitted to Crosshouse Hospital, Kilmarnock (UK) between

April 2003 and July 2008 were retrospectively analyzed. The diagnosis of

chronic ALD was made on the basis of a history of excessive intake of alcohol

over a period of several years and by the exclusion of other causes of chronic

liver disease either by blood tests or liver biopsy. In addition, the diagnosis

of acute AH in these patients was made by the presence of one or more

complications of chronic liver disease such as sepsis, upper gastro-intestinal

bleeding, encephalopathy, hepato-renal syndrome and serum bilirubin level of

more than 80 µmoles/L on admission.

Patients were excluded if they had evidence of co-existing viral hepatitis,

auto-immune hepatitis, hepatocellular carcinoma or biliary obstruction. In

addition, patients who died within 28 days of admission due to non-hepatic

complications were also excluded from the study. The final dataset has 82

patients: 45 patients were still alive after 28 days of admission, while the

remaining 37 patients succumbed to various complications of chronic liver

disease. The study was approved by Clinical Effectiveness Department of

Crosshouse Hospital, Kilmarnock (UK).
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4.3.2 Candidate variables

For each patient, a number of clinical findings and standard laboratory tests

at the time of admission were recorded, specifically:

• the age at acute diagnosis (expressed in years)

• aspartate aminotransferase (expressed in unit/L)

• alanine aminotransferase (expressed in unit/L)

• alkaline phosphate (expressed in unit/L)

• bilirubin and creatinine (expressed in µmoles/L)

• albumin (expressed in g/L)

• prothrombin time (expressed in seconds)

• white cell count (expressed in billion/L)

• urea (expressed in millimoles/L)

A number of binary variables were also collected:

• gender of patient

• presence of sepsis

• presence of encephalopathy

• presence of upper gastrointestinal bleeding



4.4 model construction 65

In addition, serum bilirubin level, urea, creatinine and prothrombin time were

recorded on day 7 of admission or at the time of death if a patient died within

7 days. Patients were graded according to mDF, CPS, GAHS at the time of

admission.

Collinearity diagnostics have been run by means of the appropriate function

of PASW Statistic (SPSS), returning tolerance and VIF values: criteria described

in paragraph 3.1.2 are satisfied for all variables and then no collinearity issues

are detected.

4.4 model construction

4.4.1 Logistic regression

For the purposes of this study, a logistic regression model was developed

including variables selected with a backward selection algorithm among all

the available ones (as detailed in the next paragraph 4.4.2); the performance

of this model has been compared with the available mDF, CPS and GAHS

models, which were evaluated on admission.

4.4.2 Variables selection and model validation

As discussed in paragraph 3.1.3, including extra variables in a predictive

model should, in principle, increase the accuracy of the model itself (or, at
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least, not decrease it). However, since we are building a predictive model

based on a limited sample, by adding more variables, we face the risk of

overfitting the dataset, posing some serious limitation to the scalability and

the generalization ability of the model (i.e. performance will be sensibly lower

using a bigger/different dataset). To overcome this problem, we have used a

backward stepwise algorithm, as prescribed by the proposed framework.

We have then evaluated the accuracy (based on a threshold of 0.5) of logistic

regression models using a 10-fold cross validation strategy, starting from a

model including all considered variables and ending with a model with a

single predictor. The number of variables to be considered for our final model

corresponds to the case with the best accuracy. Also, should the best accuracy

be reached in models with different number of variables, the one with the

smallest number of variables will be considered, assuming that collecting less

variables provides a more time and cost efficient approach.

4.4.3 Model evaluation

To quantify the performance of the proposed model compared to state-

of-the-art models, such as mDF, CPS and GAHS, the Receiver Operating

Characteristic (ROC) curves were used (evaluating the underlying area), which

compare the specificity and sensitivity of a model without regard to the chosen

threshold used to discriminate predicted outcomes [52].
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Figure 1. Comparison of accuracies with/without validation strategy 
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Figure 4.1: Comparison of accuracies with/without validation strategy

4.5 results

A logistic regression model was developed starting from all available variables,

also including the ones recorded at day 7 (or at death if this occurs before

day 7). We used a backward stepwise logistic regression algorithm to evaluate

the optimal number of variables given the used dataset in order to avoid

overfitting. The performance of each model, comprising a different number

of variables, has been reported in the following figure 4.1, comparing the

accuracy calculated using the whole dataset, and the accuracy implementing a

10-fold cross validation strategy.

From the analysis of the graph, while the best accuracy of the model with no

validation strategy is reached when considering at least 10 variables, the best



4.5 results 68

accuracy of the model using a 10-fold cross validation approach is reached by

including 4 variables in the model (the same accuracy is reached also including

7 and 11 variables, however it is believed that a model with fewer variables is

cheaper to implement).

Then, our final model included four significant variables: namely, the level

of creatinine on admission (CR) as well as after admission (CR7), the presence

of encephalopathy (ENC, dummy variable) and prothrombin time evaluated

after admission (PT7).

The resulting model is reported in the following formula 4.1 where the score,

between 0 and 100, predicts the probability of mortality at day 28.

SCORE = 100 · (1+ e−M)−1 (4.1)

where

M = 0.046 ·CR7 − 0.022 ·CR + 0.159 · PT7 + 1.390 · ENC − 6.303 (4.2)

A detailed analysis of the model coefficients is provided in table 4.1, where

for each significant variable the coefficient, the standard error and the p-value

deriving from logistic regression are tabulated.

A comparison of the different scoring systems based on variables collected

on admission is tabulated on table 4.2: the performance of the three scoring

systems as well as our proposed predictive model in these patients was

individually analyzed using Student’s t-test, to check if a significant difference

exists between the average score for patients who died and patients who

survived (low p-values confirm this hypothesis), and by ROC curve analysis
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variable coefficient std. error p value

CR -0.022 0.010 0.033

CR7 0.046 0.013 <0.001

PT7 0.159 0.070 0.023

ENC 1.390 0.670 0.038

Constant -6.303 1.630 <0.001

Table 4.1: Analysis of coefficients from logistic regression model

to evaluate the global predictive power (measured by area under ROC curve,

indicated as AUC) of each model.
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Alive after Died within

Scoring system 28 days (n=45) 28 days (n=37) p-value AUC

mDF 37.2± 26.2 67.5± 56.9 <0.01 0.705

CPS 10.8± 1.6 11.8± 1.4 <0.01 0.681

GAHS 7.6± 1.6 8.7± 1.6 <0.01 0.687

Proposed model 24.5± 23.7 70.3± 30.7 <0.001 0.873

Table 4.2: Comparison of scoring systems in patients with AH, who died and survived

4.6 misclassification analysis

The objective of this section is to determine whether the model could be

unreliable under certain conditions. We carry out an a posteriori analysis of

how misclassifications are distributed along a specified domain: in our case,

we choose to study the distributions of predictions and misclassification as a

function of the model output. Operatively, the entire range of outputs has been

divided into 10 categories uniformely distributed between the minimum and

maximum values of obtained output values: considering SCORE (as defined

per formula 4.1) as model output, the interval to be divided into 10 categories

is [0, 1]; considering M (as defined per formula 4.2) we focus on the interval

identified by the extreme model output given using the considered dataset.

For this analysis we have chosen a representative threshold of 0.5.
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interval min 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

interval max 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

% misclassifications 3.3 16.7 0.0 0.0 50.0 66.7 0.0 14.3 0.0 5.0

Table 4.3: Distribution of misclassifications (function of SCORE/100)

interval min -11.5 -9.0 -6.5 -3.9 -1.4 1.1 3.7 6.2 8.7 11.3

interval max -9.0 -6.5 -3.9 -1.4 1.1 3.7 6.2 8.7 11.3 13.8

% misclassif. 4.5 0.0 14.3 50.0 9.1 0.0 50.0 0.0 0.0 0.0

Table 4.4: Distribution of misclassifications (function of M)

From the analysis of figure 4.2, it is clear that model predictions are

concentrated in the first (close to 0) and last (close to 1) selected intervals; also,

the proportion of misclassifications in such intervals are quite low as shown

in table 4.3.

On the other hand, we note that there is a region (approximately between

0.4 and 0.6) where the ratio between misclassification and total predictions is

greater than 50% suggesting that the developed model is not reliable at such

an interval of output.

The same results are shown on figure 4.3 and the related table 4.4, where

misclassifications are concentrated mainly at interval [−3.92,−1.39]. Excluding

such interval (where 11% of predictions are concentrated), and assuming a

threshold of 0.5, the accuracy increases from 88.7% to 93.7%.
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Figure 4.2: Distribution of predictions and misclassifications (function of SCORE/100)
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This information may be used to refine the model: for example, it is possible

to design and consider the output of a “second step” model if the output of

our proposed model is in the identified areas. Given the size of our dataset, we

prefer at this stage to simply warn the user that the model could be unrealiable

when the output is in such an interval.

For comparison purposes, the analysis of misclassifications distribution has

been carried out also for mDF model: the entire range of outputs has been

divided into 10 categories distributed between the minimum and maximum

values of obtained output values. Since only 3 data points had an output in the

second half of the selected interval, they have been considered “outliers” and

grouped in the tenth category. For this analysis we have chosen a threshold of

32 (giving an overall accuracy of 63.4%, close to the maximum attainable

accuracy of 64.6% using a different threshold), as suggested by relevant

literature [67]. Results are reported on figure 4.4 and on table 4.5.

Unlike the previous case, from the analysis of misclassifications it is not

possible to isolate a single area in the output space where accuracy is definitely

lower than the overall accuracy: a score between 32.8 and 74.5 (where 34%

of predictions are concentrated) suggests that the model can be unreliable.

Excluding such interval, the accuracy increases to 72.2%.

The comparison between mDF and the proposed model confirms that

misclassification analysis has the potential to increase the performances of

developed models. However, costs and benefits of strategies implemented to
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Figure 4.4: Distribution of predictions and misclassifications for mDF

interval min 5.0 18.9 32.8 46.7 60.6 74.5 88.4 102.3 116.2 130.1

interval max 18.9 32.8 46.7 60.6 74.5 88.4 102.3 116.2 130.1 295.9

% misclassif. 21.4 34.8 46.2 60.0 60.0 20.0 28.6 n/a 50.0 0.0

Table 4.5: Distribution of misclassifications for mDF

reduce misclassifications are dependent on the considered model and possibly

on the used dataset.

4.7 implementation

The developed model has been delivered as web-based prototype. The core

of the developed prototype is a PHP script, which generates an HTML page
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after data is collected from a HTML input form and then POSTed when user

presses the "Calculate score" button.

This prototype, available at http://bit.ly/ald-calc, implements the mor-

tality model for acute alcoholic hepatitis developed in the previous sections of

this chapter, called Stirling ALD mortality predictor (SAMP). It is intended to be

used after 7 days from admission in hospital.

The user is asked to insert the level of creatinine at admission (CR) and on

7th day (CR7) in micromoles per litre, the prothrombin time (PT ) in seconds

and the presence of encephalopathy (ENC). The user interface is reported in

figure 4.5.

The SAMP score is calculated using formula 4.2, and probability of mortality

after 28 days from admission is computed by formula 4.1. An equivalence

between score and probability is reported for specified significant values. An

example of the output is reported in figure 4.6.

As discussed in the previous section 4.6, the user is warned about the

unreliability of the model when the SAMP score is between -3.92 and -1.39.

http://bit.ly/ald-calc
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Stirling ALD Mortality Predictor (SAMP)

Mortality risk model after 28 days from admission in hospital 

for patients suffering from alcoholic liver disease during acute 

hepatitis

Severe form of alcoholic hepatitis in patients with alcoholic liver disease is associated with high 
mortality; it is therefore vital to identify patients at greatest risk of mortality as they may benefit 

from aggressive intervention. This new predictive model, which uses four statistically significant 
predictors, could be used in clinical practice to identify such patients. The comparison with the 

available predictive scores showed an increase of 25% predictive power, demonstrating increased 
accuracy in identifying these sick patients with alcoholic hepatitis.

1. Level of creatinine at admission:  micromoles per litre

2. Level of creatinine on 7th day:  micromoles per litre

3. Prothrombin time:  seconds

4. Is the patient suffering from encephalopathy?

Yes No

 

Developed by Thomas Mazzocco and Amir Hussain, University of Stirling. All rights reserved. 

Pilot prototype provided "as is" without any warranty. 

Calculate score

Figure 4.5: Input screen for ALD mortality predictor
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Stirling ALD Mortality Predictor (SAMP)

Mortality risk model after 28 days from admission in hospital 

for patients suffering from alcoholic liver disease during acute 

hepatitis

SAMP score: -1.149

The probability of death within 28 days from admission is about 24% 

A score of -4.6 or 4.6 corresponds respectively to a probability of death of about 1% or 99%.

A score of -2.9 or 2.9 corresponds respectively to a probability of death of about 5% or 95%.
A score of -2.2 or 2.2 corresponds respectively to a probability of death of about 10% or 90%.

Back 

Developed by Thomas Mazzocco and Amir Hussain, University of Stirling. All rights reserved. 
Pilot prototype provided "as is" without any warranty. 

Figure 4.6: Output example for ALD mortality predictor
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4.8 discussion

In the developed CDSS, we first determined the optimal number of variables,

selecting four relevant variables: after applying a cross-validation strategy, as

recommended in section 3.3, we had evidence that there is no benefit (in terms

of model performance) in including more than 4 variables in the model, so

we chose the smallest number of variables which can guarantee the highest

predictive power. It has to be noted at this stage that, while the selected

variables are definitely significant in predicting the outcome, nothing could

be certainly stated about the excluded variables: the size of the considered

dataset prevented us from including more variables in the model, as this could

have led to an unreliable model. Further studies with datasets including more

patients are now required to investigate if other variables may further improve

the developed model as well as to validate the proposed model.

Previous studies [68, 66] have shown the usefulness of repeating scoring

systems after one week of admission to predict outcome. Some variables

recorded after admission have been included in the model: two variables

(namely, creatinine level and prothrombin time) out of the four selected for

the model were recorded after admission, confirming that a second evaluation

of these parameters provided significant predictors for calculating 28 day

mortality risk. Most of the patients with severe AH died within 7 days of

admission (20 out of 37), as severe AH is associated with early mortality.

The significance of re-evaluating these parameters is to continuously assess
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effectiveness of treatment commenced on admission: the proposed score can

be calculated up to 7 days after admission. If the score is improving then it is

worth continuing treatment, otherwise depending on the general condition and

other co-morbidities of the patients, a decision is taken either to withdraw the

treatment or escalate to other major interventions such as liver transplantation.

In most studies (such as [56, 59]) 28-day survival is used to predict long term

outcome in these patients: the comparison of the proposed score calculated for

patient alive after 28 days and dead within 28 days highlighted a statistically

significant relationship between the output of the proposed model and the

actual mortality (p < 0.001).

While creatinine level and prothrombin time were already known to be

predictors of 28 day mortality in patients with AH, and indeed they were also

included in currently used predictive models, encephalopathy was not used

as its assessment is very subjective especially at an earlier stage. However,

since the presence of this condition has been selected as one of the four most

significant predictors among all collected variables, it is believed that such

variables should be included in the proposed model.

The comparison with the available predictive scores evaluated at admission

showed an increase of 25% in predictive power (evaluated as suggested in

section 3.4), suggesting that the inclusion in the model of variables evaluated

after admission and the subsequent use of an appropriate variables selection

procedure, as detailed in paragraph 3.1.3, may significantly improve the

performance of such models.
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Finally, according to the procedure described in section 3.5, an a posteriori

analysis about misclassifications distribution was carried out: this identified a

region in the output domain where the developed model is unreliable and its

usage is discouraged.

4.9 conclusion

Significant number of patients with AH succumb to early death because of

hepatic inflammation and its complications, therefore early identification of

these patients with the view of intensive intervention and management can

lead to enhanced survival through the use of steroids or intensive treatment

of complication of AH [69].

The proposed model combines for the first time variables collected at

admission and up to 7 days after admission in order to build a more accurate

prediction of mortality for patients during AH episodes. Also, the presence of

encephalopathy has been included for the first time in the number of predictors.

The final model, which includes four variables selected according to the best

practices identified in paragraph 3.1.3, has shown a noticeable improvement in

considered performance metrics outperforming the gold standard benchmark

models.

In conclusion, the capability of employing logistic regression based mortality

prediction model for patients with AH has been ascertained and a potential
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impact is envisaged from this work both for clinical practice and further

research.

A future large-scale study is required to clinically validate the results from

this study and to assess the feasibility of deploying such a model in real clinical

practice, additionally yielding new and potentially useful clinical insights (e.g.

through the analysis of considered and excluded variables).



5
C A S E S T U D Y 2 : A P R E D I C T I V E M O D E L T O A I D T H E

D I A G N O S I S O F D E M E N T I A

This chapter describes the second case study used to validate the proposed

framework. The developed predictive model is designed to aid the diagnosis of

early dementia, as clinicians often experience difficulties in such diagnosis due

to the intrinsic complexity of the process and lack of comprehensive diagnostic

tools.

Different models have been proposed to provide medical decision support in

dementia diagnosis. The aim of this study is to improve on the performance of

a recent application of Bayesian belief networks using an alternative approach

based on logistic regression.

A pool of 14 variables has been evaluated in a sample of 164 patients suspec-

ted of dementia. First, a logistic regression model for dementia prediction is

developed using all variables included in the previous model; then, a second

model is built using a stepwise logistic regression starting with all collected

variables and selecting the pool of the relevant ones. A range of performance

metrics have been used to evaluate the developed models.

The new models have resulted in very good predictive power, demonstrating

general performance improvement compared to a state-of-the-art prediction

82
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model. Interestingly, the approach based on statistical variables selection

outperformed the model which used variables selected by domain experts in

the previous study.

5.1 background

Diagnoses of the common dementias of old age are operationally defined

on the basis of different symptoms and neuropsychological profiles; in this

process, clinicians use various sources of evidence in the reasoning process,

which include evidence-based clinical guidelines, often supplemented by

individual consultations [70].

General practitioners play a pivotal role in establishing diagnosis of de-

mentia and in providing ongoing support and intervention. Nonetheless,

substantial literature [71, 72] shows their difficulties in fulfilling this role,

especially for early detection of dementia.

Since one of the reasons for this is the lack of readily available diagnostic

instruments [73], efforts have been made to explore different screening meas-

urements and methods.

Different models have been proposed to provide decision support for the

diagnosis of dementia. An application of Support Vector Machines (SVMs) has

been studied in a study [74] which compared a fully automated computer-

based diagnosis system for dementia pathologies using neuroimages with

the diagnostic classification made by six radiologists with different levels of
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experience. Three different datasets were considered for comparative analysis

between SVMs and radiologists; in the first two sets, the task was to detect

sporadic Alzheimer’s disease: SVMs correctly classified 95% of the cases versus

the 65% to 95% of radiologists in the first set while in the second set SVMs

showed an accuracy of 93% compared to the 80% to 90% scored by radiologists.

Finally, the SVM was asked to separate patients with sporadic Alzheimer’s

disease from those with frontotemporal lobar degeneration: SVMs scored an

accuracy of 89% versus the 63% to 83% of radiologists. These results are not

directly comparable with the model object of the present study (whose aim is

the diagnosis of generic dementia conditions), but they do demonstrate the

potential of machine learning techniques applied to this medical domain (often

outperforming specialists’ predictions), showing also that no prior knowledge

is required to be included in the model in order to construct a good prediction

tool.

Another study [75] built a computer-based model which could provide a de-

mentia diagnosis according to DSM-IV criteria formulated in 1994 by American

Psychiatric Association and to the 10/66 dementia survey [76] in order to make

a comparison between them. While the DSM-IV criteria are regarded as a gold-

standard and used as a benchmark, the 10/66 dementia diagnostic algorithm

takes into account a structured clinical mental state interview, a cognitive

test battery, different informant interviews, a neurological assessment and a

questionnaire to detect behavioural and psychological symptoms: the results

from this screening tests are then used to make a prediction on dementia
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diagnosis by means of a logistic regression equation previously developed in a

pilot study. The tool has shown a sensitivity of 57.8% and a specificity of 98.3%

using the implementation of the DSM-IV criteria; a sensitivity of 93.2% and a

specificity of 96.8% was recorded using the 10/66 criteria. Although the very

different number and type of collected variables prevent us from a comparison

with the results of the present study (where a limited number of variables

is collected), however, this application shows that a model based on logistic

regression (and so without a prior built-in knowledge) could outperform the

gold-standard guidelines.

A novel application (called DemNet) of Bayesian Belief Networks (BBN) to

provide medical decision support for the diagnosis of dementia in primary

care practice has been recently proposed [77]; this was built as a "hand-crafted"

model, since it relies on domain experts’ knowledge.

A BBN is a representation of complex domains that are characterised by

uncertainty which enables inference of future uncertain events based on prior

related known events. More formally a BBN includes a set of nodes (or vertices)

that represent the domain variables, a set of directed edges which represent

dependency relationships between the variables and a set of local probability

tables, one table per variable, which quantitatively encodes the strength of

each dependency relation [78]. Standard benchmarks have shown that good

results are achieved in the diagnosis of dementia using BBN. The developed

model was implemented in a software system designed to be used by clinical

practice nurses involved in the primary level assessment of patients suspected
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of having dementia; in an attempt to optimise user friendliness and utility

in a busy primary care setting, the model sought to use numerically few

parameters which are consistent with a reasonably high diagnostic accuracy

[79].

The setting of this last application is quite agile (given the small amount

of information required to make a prediction) when compared with the

previously cited studies. However, they required both technical expertise

and domain experts’ knowledge for building the more sophisticated and

complex Bayesian belief network model.

5.2 aims

The present study builds on the abovementioned previous research and its aim

is to design, through an appropriate variables selection, a novel model that can

outperform the considered benchmark hand-crafted model. Consequently, a

performance improvement is expected using the same dataset and a common

set of performance metrics.
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5.3 dataset preparation

5.3.1 Study sample

The collection of data has been carried out as part of a previous research

work [80]: 164 patient records from clinical practice were obtained from the

Community Mental Health Team Elderly (CMHTE), Kildean Hospital, Stirling.

A clinical protocol detailing the data requirements was developed and the

necessary governance process was followed. Local Ethical Research Council

approval was granted. Community Psychiatric Nurses (CPNs) from CMHTE

agreed to collect the data, as it aligned with the diagnostic variables that they

recorded during initial assessment of patients where dementia was suspected.

Each completed record consisted of the CPNs initial assessment, as well as

the actual diagnosis provided by a CMHTE diagnosing physician. It is worth

noting that the data regarding 50 out of 164 patients were not fully provided:

at least one value from collected variables was missing; when possible (i.e.

there are no missing data for selected variables), records with missing data

will be used in this study.

5.3.2 Collected variables

A set of 14 parameters has been evaluated within the considered sample

of patients: specifically, 3 variables from standard tests (Mini-Mental State
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Examination, Hachinski Ischemic Score and Clock Drawing Test), 8 qualitative

variables (investigating the ability to carry out personal and domestic activities

of daily living, the current and subtle functioning, the global severity and

the possible presence of psychosis, memory impairment or tremors) and 3

variables about patients’ clinical condition and history (age of each patient,

duration of symptoms and whether they experienced a clear progression in

symptoms) were collected. Collected variables from standard test are:

• cognitive impairment (CI), which represents the result of the Mini-Mental

State Examination (MMSE), used for detection of dementia in individuals

with suspected cognitive impairment [81], measured as the ratio between

the score of the test and the maximum attainable score

• clock drawing test (CDT ), which is used combined with the result

of MMSE in screening for mild dementia [82]; the result of the test

is mapped as a dummy variable which states if the patient could

successfully complete the test or not

• Hachinski Ischemic Score (HI), which is generally used to discriminate

Alzheimer’s disease from vascular dementia [83]; the result of the test

has been normalized between 0 and 1

Qualitative variables which have been collected are:

• domestic activities of daily living (DADL), which reflects the individual’s

ability to carry out activities such as shopping, housekeeping, finance

management, food preparation and transportation
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• personal activities of daily living (PADL), which reflects the individual’s

ability to carry out activities such as dressing, eating, ambulating and

hygiene

• current functioning (CF), which reflects the individual’s ability to func-

tion in daily life aggregating PADL and DADL

• subtle functioning (SF), which captures evidence of subtle changes in

cognition such as progressive difficulty in balancing a cheque book

• global severity (GS), which represents the global severity of impairment;

aggregates CF, CI and SF

These five categorical variables can represent three levels of impairment:

severe, mild, none. Each of them has been mapped with two dummy variables,

according to the procedure described in paragraph 3.1.1, the first one showing

if at least a mild impairment was present (adding the suffix "m" to the variable

name) and the second one stating if a severe impairment was present (adding

the suffix "s").

The other recorded qualitative variables are:

• psychosis (PS), which captures non-cognitive symptoms associated with

dementia such as impaired connection to reality, auditory or visual

hallucinations and delusions; the variable is mapped with two dummy

variables: the first one showing if symptoms are at least equivocal (PSe)

and the second one stating if they are definitely present (PSp)
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• memory impairment (MI), which records the possible presence of memory

impairment (binary variable)

• tremors (TR), which records the possible presence of tremors (binary

variable)

Finally, some data about history and clinical conditions of patient are

recorded:

• age (AG), which records the age of patient expressed in years

• duration (DR), which records the duration of symptoms mapped with

two dummy variables: the first showing at least a medium duration

(DRm) and the second one a long duration (DRl)

• clear progression (CP), which records a clear progression in symptoms

(binary variable)

5.4 model construction

5.4.1 Logistic regression

A logistic regression has been carried out to determine the vector of coefficients

which in the considered dataset could associate each record (a patient) with

the probability of experiencing dementia. For the purpose of this work, PASW

Statistic (SPSS) has been used for the analyses. As required in paragraph
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3.1.2, preliminary statistical tests were carried out in order to identify possible

collinearity between variables.

5.4.2 Variables selection

Since the previous work - DemNet - initially made an expert-driven variables

selection, logistic regression has been carried out in this study in two stages.

In the first stage, only those variables involved in dementia prediction in

the previous research were employed with the aim of investigating whether

logistic regression could outperform the previous model. In the second stage,

as recommended in paragraph 3.1.3, all available variables are used to carry out

a backward stepwise logistic regression in order to select the most significant

ones: the aim of this second step was to check whether the optimal subset

was selected or if some of them need to be included or removed. This second

model could possibly improve the global model performance and/or select a

restricted pool of variables which could give comparable performance while

requiring collection and elaboration of a smaller number of variables.

5.4.3 Model validation

As required by the proposed framework in section 3.3, the predictive power of

the model has been assessed across different samples (using stratified cross-

validation). The dataset has been split into three parts (evenly distributing
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positive and negative outcomes) and two out of three thirds are cyclically

selected to run the logistic regression and the remaining third is used to test

the results: in this way, the whole dataset is used once to test the model.

5.4.4 Model evaluation

As prescribed by section 3.4, the area under ROC curve is used for this study as

a performance metric. True positive/negative rates as well as positive/negative

predicted values are also reported. Also, accuracy computed using a threshold

of 0.5 is reported in order to allow comparison with previous studies.

5.5 results

In order to verify the presence of any candidate predictor which provides

incomplete information with regard to the outcome, a cross-tabulation of all

categorical variables has been built showing that CFm and GSm present only

0 and 1 cases respectively of patients affected by dementia who have these

two variables equals to zero. For this reason, these two variables could make

the model unreliable and this would be reflected in the abnormal standard

deviation of the computed coefficients. These two variables have been dropped;

however, since in the considered dataset they were combining effects from

other variables, this removal is not expected to significantly decrease the model

performance.
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Collinearity diagnostics have been run by means of the appropriate function

of PASW Statistic (SPSS), returning tolerance and VIF values. Since criteria

mentioned in the previous paragraph 3.1.2 are satisfied for all variables, they

appear not to be collinear.

The used dataset presents an uneven class distribution, since patients with

dementia are 135 out of 164 and only the remaining 29 are not affected by

this pathology. This means that the class distribution is around 1:5 and, in

principle, this does not seem to be a problem for building a reliable classifier

[84]. A check can be carried out in due course to verify that the dataset has a

sufficient number of events per variable: as mentioned in paragraph 3.1.3, a

rule of thumb suggests that the number of the less common of the two possible

outcomes divided by the number of predictor variables should be at least 10;

for a given set of data, introducing more variables will generally produce a

better fit to the data but an excessive number of variables may overfit the

dataset, leading the model to lose its generalisation power.

In the first stage, logistic regression has been carried out using only the

variables employed in the previous model (DemNet) to investigate if this

technique could provide an improvement.

The previous model used PADL, DADL, CF, CI, CDT , SF, GS, AG, DR, CP.

Although variables like CI and AG are continuous and dividing them into

subclasses could cause a consequent loss of information, in order to have the

fairest possible comparison, for the purpose of this first logistic regression

study, these variables have been divided as in the original DemNet model: CI



5.5 results 94

is thus mapped to two dummy variables, namely CI1 and CI2, denoting if

the patient could score at least one or two thirds of the maximum attainable

score of the MMSE test. AG is now mapped to 3 dummy variables, namely

AG1, AG2 and AG3, representing if the patient is more than 64, 74 or 84 years

old respectively. According to the new variable mapping scheme, the used

variables are: PADLm, PADLs, DADLm, DADLs, CFs, CI1, CI2, CDT , SFm,

SFs, GSs, AG1, AG2, AG3, DRm, DRl, CP.

Following cross-tabulation, it is seen that AG1 assumes the value 0 only

three times within all records and never within patients without dementia;

for this reason, this variable has been dropped. The result of the regression

analysis is tabulated in the table 5.1.

The considered dataset has 164 observations, but only 29 of them are cases

of patients without dementia; so the ratio between number of events and

considered variables (16) for this particular dataset is 29/16 = 1.813. Since this

value is quite low the risk of overfitting data could be high: for this reason

and in order to validate and test the new model, an appropriate validation

strategy has been set up as previously discussed.

The accuracy (percentage of correct predicted outcomes, based on a threshold

of 0.5) of the model computed on the unseen data is 86.0%, which outperforms

the 75.0% accuracy score of the previous benchmark model. The AUC of the

model is 0.783 again outperforming the previous model (0.764).

For completeness, it is also reported that the accuracy computed on the

data used for computing the coefficients is 90.7% with an AUC of 0.907,
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variable coefficient std. error Wald p value

DADLm -.495 1.658 .089 .765

DADLs -1.865 1.069 3.041 .081

PADLm 1.957 .857 5.220 .022

PADLs -.482 1.269 .145 .704

CFs 2.523 1.201 4.410 .036

CI1 .092 1.378 .004 .947

CI2 -.838 .873 .922 .337

CDT -1.702 .876 3.773 .052

SFm -1.564 2.201 .505 .477

SFs -1.221 1.188 1.055 .304

GSs -1.015 1.130 .806 .369

AG2 1.598 1.052 2.307 .129

AG3 -1.886 .862 4.784 .029

DRm 3.129 1.687 3.439 .064

DRl .231 .704 .107 .743

CP 3.376 .788 18.347 <.001

Constant -1.954 2.453 .634 .426

Table 5.1: Results from logistic regression using expert driven variables selection
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with evidence of a degree of overfitting. According to Cox and Snell [85] the

averaged R2 for the model computed on the whole dataset is 0.371, while using

the R2 measure proposed by Nagelkerke [86] the model scores 0.602.

In the second stage, stepwise logistic regression starting with all available

variables has been carried out to perform a variables selection; the idea

is to select only the variables which can improve significantly the model

performance, leading to a more efficient and cost-effective model. Removal

probability of the stepwise algorithm is fixed at 0.2 and variablesAG and CI are

included in the model as continuous variables to ensure no loss of information.

The algorithm met the selection criteria after 12 iterations and selected 8

variables which are tabulated in the table 5.2 along with the coefficients and

Wald statistics of the logistic regression executed only with those variables.

Comparing the pool of selected variables with the previously used one, we

note that:

• CI, SF, AG, were included in the previous model but do not improve the

logistic regression model’s performance

• TR, not included in the previous model, significantly improved the model

performance

• DADL, included in the previous model, is relevant only if reflects a

severe impairment

• PADL, included in the previous model, is relevant only if reflects an

impairment judged at least mild



5.5 results 97

variable coefficient std. error Wald p value

DADLs -2.009 1.120 3.218 .073

PADLm 1.390 .745 3.477 .062

CFs 2.233 1.171 3.633 .057

GSs -1.589 .941 2.851 .091

TR -2.517 .942 7.141 .008

DRm 1.806 1.038 3.028 .082

CP 3.875 .800 23.474 <.001

CDT -1.704 .833 4.182 .041

Constant -2.348 1.113 4.449 .035

Table 5.2: Results from logistic regression using statistics driven variables selection
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variable coefficient p value

average std. error average std. error

DADLs -2.315 1.724 .261 .273

PADLm 1.357 .312 .185 .175

CFs 2.494 2.362 .324 .426

GSs -1.905 1.323 .278 .329

TR -2.661 .846 .074 .098

DRm 2.529 1.902 .190 .047

CP 4.334 1.514 <.001 <.001

CDT -2.091 .709 .089 .036

Constant -3.009 1.873 .117 .014

Table 5.3: Summary of regressions with three subsets

• DR, included in the previous model, is relevant only if it reports at least

a medium duration

The ratio between number of events and considered variables is higher than

before (29/8=3.625) since less variables are involved, but it is still quite low.

Again, to evaluate the model performance only with the selected variables, the

above mentioned cross-validation approach has been implemented in order to

avoid overfitting. Results from the different regression models using each of

three datasets are averaged and summarized in the table 5.3.
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Figure 5.1: TPR and TNR values for different thresholds

The accuracy of the model computed on unseen data is 90.2% and the

AUC of the model is 0.879, outperforming the logistic regression model with

expert-driven variables selection. It is also found that the accuracy computed

on the data used for computing the coefficients is 91.5% with an AUC of

0.905, outlining a possible certain degree of overfitting which has been avoided

with cross-validation. The R2 for the model is 0.365 according to Cox and

Snell, while the model scored 0.601 according to Nagelkerke. Figures 5.1 and

5.2 report true positive/negative rates (TPR and TNR) and positive/negative

predictive values (PPV and NPV) while the threshold is varied. The model is

reported to outperform the benchmark model for threshold between 0.91 and

0.94.



5.5 results 100

Figure 5.2: PPV and NPV values for different thresholds

Since in both models the selected variables are all categorical, the model to

determine the probability of dementia conditions becomes

P(Y) =
1

1+ e−SCORE
(5.1)

where

SCORE = constant +
∑

coefficients of positive answers (5.2)

The final model consists then of a number (one per variable) of yes/no

questions regarding the patient suspected of dementia. It is necessary to sum

up all the coefficients associated with the questions where the answer is

positive and add a constant in order to get the final score; this should be finally

inserted in the formula 5.2 to get the probability of patient being affected with

dementia.
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5.6 misclassification analysis

We investigate how predictions and misclassifications are distributed in

order to determine whether the model could be unreliable under certain

conditions. We choose to study such distributions as a function of the model

output. Operatively, the entire range of outputs has been divided into 10

categories uniformely distributed between the minimum and maximum values

of obtained output values: considering SCORE (as defined per formula 5.2) as

model output, the interval to be divided into 10 categories is [0, 1]; considering

P(Y) (as defined per formula 5.1) we focus on the interval identified by the

extreme model output given using the considered dataset. For this analysis

we have chosen representative thresholds τ of 0.5, 0.7 and 0.9.

The distribution of misclassifications is reported in the following tables 5.4

and 5.5.

interval min 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

interval max 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

% misclassif. τ = 0.5 0.0 - 62.5 45.5 - - 20.0 33.3 12.5 3.5

% misclassif. τ = 0.7 0.0 - 62.5 45.5 - - 80.0 33.3 12.5 3.5

% misclassif. τ = 0.9 0.0 - 62.5 45.5 - - 80.0 66.7 87.5 3.5

Table 5.4: Distribution of misclassifications (function of P(Y))
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interval min -4.1 -3.0 -1.9 -0.8 -0.4 1.5 2.6 3.7 4.8 5.9

interval max -3.0 -1.9 -0.8 -0.4 1.5 2.6 3.7 4.8 5.9 7.0

% miscl. τ = 0.5 0.0 0.0 62.5 45.5 27.3 14.3 2.5 5.0 0.0 0.0

% miscl. τ = 0.7 0.0 0.0 62.5 45.5 54.5 14.3 2.5 5.0 0.0 0.0

% miscl. τ = 0.9 0.0 0.0 62.5 45.5 72.7 57.1 2.5 5.0 0.0 0.0

Table 5.5: Distribution of misclassifications (function of SCORE)

The distribution of misclassifications and predictions for the defined inter-

vals are reported (respectively for t equal to 0.5, 0.7, 0.9) on figures 5.3, 5.5 and

5.7 for intervals of P(Y), and on figures 5.4, 5.6 and 5.8 for intervals of SCORE.

From the analysis of the distributions function of P(Y), it is clear that the

first and last intervals has a lower proportion of misclassification than other

intervals. More specifically, the interval of SCORE between -1.85 and 2.55 (or

1.45 depending on the chosen threshold) has a very high misclassification

rate, suggesting that the developed model is not reliable at such an interval

of output. Excluding the interval between -1.85 and 2.55 (where 27% of

predictions are concentrated), and assuming a threshold of 0.5, the accuracy

increases from 89.0% to 97.5%.

This information should be used to refine the model: in the implementation

proposed in the next section 5.7, it is used to suggest the use of alternative

tools to detect early dementia conditions. Further studies should collect more

data, in order to reach a sufficient dataset size to build a possible second
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Figure 5.3: Distribution predictions/misclassifications τ = 0.5 (function of P(Y))
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Figure 5.7: Distribution predictions/misclassifications τ = 0.9 (function of P(Y))
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model to be used downline of the proposed one, with a view to improve the

accuracy of the model.
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5.7 implementation

The model developed within this chapter to aid the diagnosis of dementia has

been implemented into a calculator named Stirling dementia risk calculator. It is

a web-based prototype and its core is a PHP script, which generates an HTML

page after data is collected from a HTML input form and then POSTed when

user presses the "Calculate score" button.

The prototype, available at http://bit.ly/dem-calc, is intended to be used

for patients suspected of having dementia. The user is asked to answer

8 categorical questions, specifically: level of impairment in domestic and

personal activities of daily living, level of impairment in current functioning,

level of global severity of impairment, the presence of tremors, the presence of

a clear progression of symptoms, the ability of completing the clock drawing

tests, the duration of symptoms (short, medium or long period). Levels to

describe impairment are: severe, mild and none.

These variables are then mapped to identify the coefficients to be summed

together as per formula 5.2. Specifically, with regard to figure 5.9 (which

shows the user interface) and table 5.3 (which reports variables included in

the model):

• DADLs coefficient is summed if answer to question 1 is "severe"

• PADLm coefficient is summed if answer to question 2 is "severe" or

"mild"

http://bit.ly/dem-calc
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• CFs coefficient is summed if answer to question 3 is "severe"

• GSs coefficient is summed if answer to question 4 is "severe"

• TR coefficient is summed if answer to question 5 is "yes"

• DRm coefficient is summed if answer to question 6 is "medium" or "long"

• CP coefficient is summed if answer to question 7 is "yes"

• CDT coefficient is summed if answer to question 8 is "yes"

The tool calculate the probability of having dementia using formula 5.1,

reporting it to user in a separate screen as in figure 5.10. As suggested from

the analysis carried out in the previous section 5.6, the user is warned about

model unreliability when the value of SCORE is between -1.85 and 2.55.
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Stirling Dementia Risk Calculator

Risk model for patients suspected of having dementia

1. Is the patient showing impairment in domestic activities of daily living (ability to carry out activities such as 

shopping, housekeeping, finance management, food preparation and transportation)?

Severely Mildly None

2. Is the patient showing impairment in personal activities of daily living (ability to carry out activities such as 
dressing, eating, ambulating and hygiene)?

Severely Mildly None

3. Overall, is the patient showing impairment in current functioning, i.e. in general activities of daily living?

Severely Mildly None

4. Overall, how would you rate the global severity of impairment?

Severe Mild None

5. Is the patient experiencing tremors?

Yes No

6. How long has the patient been showing symptoms for?

Short period Medium period Long period

7. Did the patient show a clear progression in these symptoms?

Yes No

8. Is the patient able to complete the clock drawing test?

Yes No

 

Developed by Thomas Mazzocco and Amir Hussain, University of Stirling. All rights reserved. 

Pilot prototype provided "as is" without any warranty. 

Calculate score

Figure 5.9: Input screen for dementia risk calculator
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Stirling Dementia Risk Calculator

Risk model for patients suspected of having dementia

The probability of suffering from dementia is 3%

The most important factors with respect to the outcome are:

• the presence of tremors (negative correlation)

• the medium/long duration of symptoms (positive correlation)

• the impairment in personal activities of daily living (positive correlation)

Back 

Developed by Thomas Mazzocco and Amir Hussain, University of Stirling. All rights reserved. 

Pilot prototype provided "as is" without any warranty. 

Figure 5.10: Output example for dementia risk calculator
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5.8 discussion

The first fact which appears from the analysis of the results is that logistic

regression clearly outperforms the performance of a Bayesian belief network,

which was regarded as a state-of-the-art model. Unlike other artificial intelli-

gent techniques commonly used for prediction known as “black-box” models

(such as neural networks or support vector machines), logistic regression

provides with a clear picture of which variable is significant (with the corres-

pondent p-value) for the final predicted outcome, giving also a measure of the

magnitude and the direction (reflected by the coefficient with its sign) of such

impact.

The added value of the developed model which led to a performance

increase is determined both by the selected technique and by the variables

selection process, which followed all the indications suggested by the proposed

framework in section 3.1.

The differences between variables selected by domain experts and by a

statistical-driven approach have already been outlined. The most relevant

difference is the inclusion of TR in the group of significant variables, with

an inverse relationship to the probability of a positive diagnosis of dementia.

The statistical-driven approach has shown the best performance in terms of

predictive power and accuracy and a good R2 coefficient. An approach with

fewer variables (like the proposed statistical-driven one) could be cheaper to

implement and employ: in this case, the workflow from the collection of data
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to the provision of a predicted outcome will use fewer resources (in terms of

time and money) than an approach which requires more data.

Comparing p-values provided on table 5.2 with the ones tabulated on table

5.3, it is clear how significance of each variable could be highly influenced

by the size of the considered sample: considering the whole dataset, all the

selected variables could be regarded as significant (when choosing a criterion

of p < 0.1) while considering datasets composed by two thirds of the original

dataset, only few variables could be said to be definitely significant. Again,

looking at table 5.1, only a handful of variables could be regarded as definitely

significant while nothing could be certainly stated about the significance

of most coefficients; possibly, a bigger dataset could give further help in

discrimination between significant and non significant variables. Also, since

the criterion suggested in paragraph 3.1.3 about ratio between number of data

points and number of independent variables is not met, a larger dataset should

be used to strengthen findings.

The size of dataset is probably one of the main limitations of this work, which

should then be regarded as a pilot study for further deeper researches. The

final model (both with experts and with statistical driven variables selection) is

relatively simple and could be easily implemented as a decision support system

for carers as shown in the previous section 5.7. Probably the most important

design decision to be determined will be the threshold used to transform the

probability of a positive diagnosis in the actual predicted diagnosis: this choice
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is highly dependent on the assumed costs for type I and II errors (i.e. false

positives and false negatives).

5.9 conclusion

The main aim of this study was to build an alternative model which could im-

prove the results produced by a state-of-the-art Bayesian belief network model

recently developed for dementia diagnosis. The proposed prediction models

used a logistic regression algorithm to predict the diagnosis of dementia using

variables selected either by domain experts or by a statistical driven procedure

following the best practices identified in paragraph 3.1.3. Results have shown a

noticeable improvement in considered performance metrics with the proposed

models outperforming the benchmark hand-crafted model which required

both technical expertise and domain experts’ knowledge for building the

more sophisticated and complex Bayesian belief network model. Interestingly,

the approach based on statistical variables selection outperformed the model

which used variables selected by domain experts in the previous study.

Some limitations should also be acknowledged: first, the considered sample

of patients was quite small (164 patients) leading to a possible dependence

on a specific dataset, with loss of generalization power; a second limitation

relates to the fact that the available data were collected as part of a previous

research, so the motivations behind collecting these specific variables and not

others as well as the exact mapping procedure for qualitative variables are not
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known in details. These two limitations are sufficient to prevent this model

from being directly used in clinical practice; however, the new model offers

fertile ground for further research and development.

In conclusion, whilst the preliminary results reported in this study should

be taken with care, they do demonstrate the capability of employing relatively

simple logistic regression based prediction models for dementia diagnosis and

a range of contributions and potential impact is envisaged from this work

both for clinical practice and further research.

A future large-scale investigation is required to determine the optimal

approach for variables selection and to overcome the discussed existing

limitations imposed by the size of the considered sample; this should also

assess the feasibility of deploying such models in clinical practice.



6
C A S E S T U D Y 3 : A S I D E - E F F E C T S M A P P I N G M O D E L I N

PAT I E N T S R E C E I V I N G C H E M O T H E R A P Y

This chapter presents the third case study developed following the procedure

described in the proposed framework: it is a predictive model used to predict

the probability of experiencing a certain symptom among common side-

effectes in patients receiving chemotherapy.

Cancer treatments are now more effective than ever and, as a consequence,

cancer is becoming a chronic disease. Chemotherapy is a frequently used

treatment in people with cancer and it can cause a number of side-effects

which if not properly managed could have a negative impact on the patients’

quality of life.

A sample of 56 patients receiving chemotherapy treatment for breast,

colorectal and lung cancer is considered; each experienced side-effect is

recorded during four consecutive treatment cycles (each lasting 14 days).

Previous studies have used the same dataset to build side-effects predictive

models for each symptom.

In this study, five of the most frequent side-effects (fatigue, nausea, mucositis,

hand and foot sore, diarrhoea) are selected to build a comprehensive model

which predicts the probability of experiencing a certain symptom on a specified

115
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day of each cycle of therapy. An overall increase of predictive power is expected

by using an appropriate pre-modelling strategy, i.e. by selecting a proper

functional form of the model.

The computed accuracy of results shows that the newly proposed model

has an enhanced predictive power compared to a state-of-the-art approach.

The information gained from this study will help medical and nursing staff

caring for such patients to more accurately predict the side-effects that patients

will experience and therefore select appropriate help to minimise, whenever

possible, the influence of those symptoms.

6.1 background

It is estimated that in 2007 almost 300,000 individuals in the United Kingdom

were diagnosed with cancer and over the last 25 years, cancer incidents have

considerably increased [87, 88, 89, 90].

Different treatments are available depending on the type and stage of cancer

and the survival rates have been improving over the last 30 years; in particular,

besides surgery an adjuvant chemotherapy treatment is often given: this helps

to reduce the risk of cancer recurrence or death from microscopic spread of

the cancer that is suspected (but cannot be detected) and also it may alleviate

cancer related symptoms with a consequent improvement in patients’ quality

of life [91, 92].
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However, it is to be noted that adjuvant chemotherapy exposes patients to

risk of significant side-effects that could have a negative impact on patients’

quality of life and daily living [93] and also on the maintenance of dose

intensity treatment, which could influence the disease free and overall survival

[94, 95].

A poor assessment and management of symptoms in patients with cancer

have been ascertained [96]. It has also been observed that poorly informed

patients are less likely to comply with treatment and are more likely to

experience anxiety and hence a general reduction in their quality of life

[97, 98]. As a consequence, an effective prediction of side-effects could help

medical staff with better management of patients’ needs, with special regard

to discomfort minimization, unnecessary worry and anxiety reduction.

Different tools have been proposed as clinical decision support system in

many clinical fields: with regard to cancer care, studies tend to focus on

predictors of survival and life threatening toxicities [99, 100, 101].

In relation to the prediction of symptoms, only a few risk models have been

presented [102]. The use of technology to communicate between healthcare

professionals and patients may lead to improvements in quality of life and

symptoms control, reductions in the rate of hospitalizations, emergency depart-

ment visits and cost savings [103]. Patients also appear to have positive views

of using this type of technology, reporting improvements in communication

with healthcare providers [104].
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The Advanced Symptom Management System (ASyMS©) has been de-

veloped and trialled as an example of the use of technology in cancer care

[105, 106, 107, 108]. It has been built as a mobile telephone-based remote

symptom monitoring system which can be used to register, monitor and

predict the side-effects of chemotherapy while the patient is not with a

healthcare professional [109].

First, patients using the system are asked to complete a symptom ques-

tionnaire on a mobile phone twice a day and sent this information directly

to their hospital-based healthcare professional. Self-care advice is then given

on the basis of the reported symptoms. Depending on their seriousness, an

alert is generated to the healthcare professional via a 24 hour dedicated pager

system. The healthcare professional is then informed of the symptoms that the

patient has reported and may contact the patient if necessary. This system also

allows nurses to monitor the symptoms remotely and facilitates the delivery

of relevant and useful advice to the patient based on their current symptoms.

Next, the tool uses the patients’ symptom history as well as a model

developed based on a corpus of patients with similar medical conditions

to predict the likely side effects a patient could expect over the course of

treatment: patients are able to receive predictions concerning the possible

symptoms they are going to experience throughout the course of treatment

along with daily predictions that are updated as they enter data describing

their own symptoms.
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A diary is presented on patients’ mobile phones where, for each day, a

smiley, sad or neutral face is used to depict the overall side-effects situation

predicted for that particular day: patients who wish to plan ahead can see at a

glance which days they are more likely to feel well. Users may select any of

the symptoms to see self-care advice on how to manage this symptom; they

will also be able to see how many more days they are likely to experience each

symptom.

6.2 aims

The aim of this study is to evaluate, improve and generalize the pilot model

proposed by a previous study [110] using an enhanced (including different

cancer conditions) dataset and according to a common set of performance

metrics. In the previous study a number of different simple mathematical

equations were developed to predict the probability of experiencing each

symptom on a specified day of treatment, for patients with breast cancer. The

idea was to build on the previously presented remote monitoring system for

patients.

The objective of the present research is to generalise the previous model to

build a more powerful and comprehensive side-effect risk model for patients

with cancer undergoing adjuvant chemotherapy: this model is not limited

to breast cancer but has been extended to cover colorectal and lung cancer

conditions. A single mathematical model with an appropriate functional form
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developed as recommended in section 3.2, which predicts on a day-by-day

basis the symptoms that patients with cancer receiving chemotherapy are

going to experience, is proposed.

The new model can be used as a tool to provide preparatory information

to patients with cancer receiving chemotherapy and to their carers. An

improvement in the patients’ experience is expected by providing information

on the side-effects that they are likely to experience on each day of treatment;

furthermore, the provision of tailored information and possibly medications

based on their individual needs can also be facilitated in the future by such a

model.

6.3 dataset preparation

The collection of data has been carried out as part of previous research [111],

over a 12-month period from June 2007 to May 2008: 56 patients’ data from

four clinical sites in Scotland were collected, although only 34 patients with

breast cancer were considered within the cited study. Selected patients were

diagnosed with breast, colorectal and lung cancer, starting a course of adjuvant

chemotherapy, aged 18 years or over, able to read and write English and all

deemed by members of the clinical team to be physically and psychologically

fit to participate in the study. Ethical approval was gained from the study sites,

and all patients provided written informed consent before their participation in

the study. The observation of each patient involved treatment over four cycles,
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each lasting 14 days, where treatment was administered at the beginning of

each cycle.

For each patient the following independent variables are used for this study:

• number of the cycle (between 1 and 4), treated as ordinal variable

• number of the day within the cycle (1 to 14), treated as continuous

variable

The dependent variable is the probablity of experiencing symptoms among the

five object of our model. Patients are grouped as follows: patients with breast

cancer (N=34), with colorectal cancer (N=9) and with lung cancer (N=13).

6.4 model construction

6.4.1 Pre-modelling

A previous study [110] has shown that the probability of experiencing a

specific symptom is basically time dependant. In different ways, each of the

five considered symptoms has two main tendencies over time that could be

outlined: a ‘peak effect’, around the day in which the treatment is received

by patients, and an ‘inverted U-shape effect’, rising from a low on the day

after treatment to a peak around mid-cycle before falling again. In this study a

more general model is proposed which combines these two effects. Moreover,

since differences between cycles were outlined, a cycle-dependant coefficient
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was added in order to capture those differences. Following this setting, a

comprehensive model is proposed as per formula (6.1)

P(d) = a · S(d) + b ·H(d) +
4∑
n=1

cn ·Dn (6.1)

where:

- P(d) is the probability of experiencing a specified symptom on day d;

- Dn is a dummy variable which is set to 1 for the n-th cycle and 0 on other

cycles;

- S(d) is a function capturing the ‘inverted U-shape effect’;

- H(d) is a function capturing the ‘peak effect’;

- a, b, cn are coefficients determined for each symptom.

S(d) is built so that S(first day) = S(last day) = 0 and S(middle day) = 1;

in a similar way, H(d) is build so that H(first day) = 1 and H(last day) = 0.

Lots of functions could be adopted to be used as S(d) and H(d). For the

purpose of this study a sinusoid function and a negative hyperbolic function

have been chosen by trial and error.

It is worth noticing that cn is treated as a categorical (ordinal) variable.

As required by the procedure described in paragraph 3.1.1, it should have

been split into 3 binary variables in order to avoid the “dummy variable

trap”. However, since the model does not include an additional constant

and includes only one categorical (ordinal) variable, it is possible to use

the equivalent codification with 4 binary variables without incurring in any

numerical problem. This choice facilitates the analysis of the meaning of model

coefficients.
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Figure 6.1: Chosen functions

Having 14 days within each cycle (and so dmax = 14), the adopted formulas

for these two terms are reported in equations (6.2) and (6.3).

S(d) = sin

(
d− 1

dmax − 1
π

)
= sin

(
d− 1

13
π

)
(6.2)

H(d) =
dmax

dmax − 1

(
1

d
−

1

dmax

)
=
14

13

(
1

d
−
1

14

)
(6.3)

The chosen functions are reported in figure 6.1.

6.4.2 Regression

Raw data collected from different patients about symptoms experienced in

the same day of the same cycle have been grouped after dividing the dataset
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into three subsets for breast, colorectal and lung cancer respectively. If they

experienced a certain symptom on that day the considered output was 1,

otherwise 0. After grouping the outputs, these were averaged for each group,

giving a probability of experiencing that symptom at the corresponding time.

It has to be noted that since the target output is a probability (i.e. a real number

between 0 and 1), logistic regression cannot be used for tackling this problem.

Then, a linear regression (one each for breast, colorectal and lung cancer)

based on functional form determined in the previous paragraph 6.4.1 was

run in order to estimate the coefficients for the variables outlined above. As

recommended in paragraph 3.2.1, p-values for each coefficient have been

computed.

Coefficients for regression models are reported on tables 6.1, 6.2 and 6.3.

6.4.3 Model evaluation and validation

The outcome of the model is the probability of experiencing a specified

symptom on a specified day and cycle.

For each symptom, the receiver operating characteristic (ROC) curve has

been used to estimate the predictive power of the newly developed model, as

prescribed by the proposed framework in section 3.4. Given the size of the

dataset (especially for colorectal and lung cancer conditions), a leave-one-out

cross-validation has been selected for model validation.
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Table 6.1: Regression coefficients for breast cancer regression model

Diarrhoea H&F sore Mucositis Nausea Fatigue

S 0.023 0.048 0.186 0.192 0.135

H -0.025 -0.042 -0.263 0.474 0.085

D1 0.051 0.043 0.262 0.027 0.198

D2 0.065 0.071 0.124 0.051 0.287

D3 0.035 0.080 0.203 0.010 0.369

D4 0.073 0.070 0.311 0.075 0.286

The area under ROC curve has also been used to compare the performance

of the developed models with the previously used ones. It has to be pointed

out that since patients in the same group (i.e. during the same day of the same

cycle) may have experienced different symptoms, the ideal AUC=1.0 cannot

be reached.

Moreover, in order to measure the goodness of fit and to better explain the

predictive power of the model, the standard coefficients of determination (R2)

are also computed for each model.
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Table 6.2: Regression coefficients for colorectal cancer regression model

Diarrhoea H&F sore Mucositis Nausea Fatigue

S 0.070 -0.072 0.010 -0.065 0.136

H -0.098 0.022 0.025 -0.081 0.014

D1 0.117 0.083 0.031 0.089 0.102

D2 0.076 0.145 0.073 0.150 0.052

D3 0.122 0.215 0.116 0.206 0.040

D4 -0.004 0.081 -0.010 0.052 0.009

Table 6.3: Regression coefficients for lung cancer regression model

Diarrhoea H&F sore Mucositis Nausea Fatigue

S 0.032 0.022 0.077 0.015 -0.006

H 0.014 0.031 -0.015 0.024 -0.155

D1 0.007 0.152 0.216 0.203 0.468

D2 0.056 0.139 0.316 0.193 0.588

D3 0.003 0.122 0.281 0.159 0.581

D4 0.027 0.029 0.100 0.193 0.708
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Figure 6.2: Comparison of performance for each symptom

6.5 results

6.5.1 Area under ROC curve

On table 6.4 the AUC for the proposed model and for the previously used

model is reported for each symptom. In order to make a fair comparison with

the available benchmark (which used only patients with breast cancer), the

performance related to breast cancer are also evaluated separately. From the

results tabulated on table 6.4 and also depicted in figure 6.2, it is clear that the

proposed model significantly outperformed the previous model.
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Table 6.4: AUC for current and previous models

# Diarrhoea H&F sore Mucositis Nausea Fatigue

1 0.658 0.638 0.714 0.710 0.690

2 0.596 0.598 0.696 0.710 0.596

3 0.524 0.529 0.565 0.687 0.560

#1: proposed model - breast, colorectal and lung cancer

#2: proposed model - breast cancer only

#3: previous model - breast cancer only [110]

6.5.2 R2 and p-values

Coefficients of determination for each symptom and type of cancer are given

in table 6.5 (in this case, the R2 coefficients measures the proportion of the

variability in the dependent variable about the origin explained by regression -

since the coefficients for identifying the cycle are treated as dummy variables -

and so this coefficient cannot be compared to a similar one for models which

include an intercept).

Each coefficient derived from the linear regression is associated with a p-

value, showing the probability of observing the data if the associated coefficient
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Table 6.5: Comparison of R2

Diarrhoea H&F sore Mucositis Nausea Fatigue

Breast 0.746 0.837 0.900 0.850 0.960

Colorectal 0.595 0.686 0.742 0.721 0.588

Lung 0.469 0.836 0.910 0.796 0.960

Table 6.6: P-values for breast cancer regression model

Diarrhoea H&F sore Mucositis Nausea Fatigue

S 0.227 0.016 0.001 0.001 0.001

H 0.314 0.101 <0.001 <0.001 0.088

D1 0.006 0.022 <0.001 0.588 <0.001

D2 0.001 <0.001 0.012 0.305 <0.001

D3 0.057 <0.001 <0.001 0.836 <0.001

D4 <0.001 <0.001 <0.001 0.132 <0.001

was equal to zero. So, a high p-value indicates that the variable associated to

the coefficient does not improve the global model.

P-values associated with each coefficient are tabulated on tables 6.6, 6.7 and

6.8.
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Table 6.7: P-values for colorectal cancer regression model

Diarrhoea H&F sore Mucositis Nausea Fatigue

S 0.149 0.051 0.655 0.024 0.938

H 0.125 0.639 0.392 0.035 0.671

D1 0.012 0.018 0.147 0.001 <0.001

D2 0.099 <0.001 0.001 <0.001 0.030

D3 0.009 <0.001 <0.001 <0.001 0.090

D4 0.934 0.020 0.626 0.054 0.702

6.5.3 Analysis

Data about cycle and day of treatment seem to have a good (and sometimes

excellent, considering that the maximum attainable AUC is less than 1)

predictive power for all the listed symptoms.

Also, the overall performance of the model seems to confirm that the effects

observed for treatments of breast cancer (inverted U-shape and peak effects)

may be re-usable for other kinds of cancer. However, as reflected by the lower

R2 (especially for colorectal cancer) these effects may be able to explain a

smaller part of the variability of the proposed model.
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Table 6.8: P-values for lung cancer regression model

Diarrhoea H&F sore Mucositis Nausea Fatigue

S 0.209 0.454 0.075 0.760 0.915

H 0.672 0.423 0.795 0.704 0.038

D1 0.784 <0.001 <0.001 <0.001 <0.001

D2 0.024 <0.001 <0.001 <0.001 <0.001

D3 0.891 <0.001 <0.001 0.001 <0.001

D4 0.269 0.293 0.016 <0.001 <0.001

Moreover, p-values associated with coefficients show that the two main

effects, while being statistically significant for many symptoms in patients

with breast cancer, could not be generally seen as definitely relevant during

the treatment of colorectal or lung cancer (assuming a significance level of

5%), except for both effects in determining nausea for patients with colorectal

cancer and for inverted U-shape effect in prediction of fatigue for patients

with lung cancer.

Two examples of the model’s outcome for some symptoms are reported in

figure 6.3 and figure 6.4.
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Figure 6.3: Representation of probability given by the model (nausea for breast cancer)
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Figure 6.4: Representation of probability given by the model (mucositis for lung

cancer)



6.6 implementation 133

6.6 implementation

The improved model developed in this chapter has been turned into a web-

based prototype composed by a PHP script, which generates an HTML page

after data is collected from HTML input form and then POSTed when user

presses the "Calculate score" button.

This prototype, available at http://bit.ly/chemo-calc, implements the

side-effects mapping model in patients receiving chemotherapy discussed

in the previous sections and it is intended to be used within the 4 cycles of

chemotherapy for patients suffering from breast, colorectal and lung cancer.

The user is asked to specify the pathology, the cycle of treatment and the

day from the beginning of cycle. The user interface is shown in figure 6.5.

Probabilities are then calculated using formula 6.1 for the specified day d

(shown as today), and also for day d+ 1 (shown as tomorrow) and d+ 2 (shown

as the day after tomorrow). Expected side-effects are shown if probability is

greater than 20% and are classified as "very likely" if greater than 40% or

"likely" otherwise. An example of the output is reported in figure 6.6.

http://bit.ly/chemo-calc
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Stirling Chemotherapy Side-Effects Model

Side-effects mapping model in patients with lung, colorectal 

and breast cancer receiving chemotherapy

Chemotherapy is a frequently used treatment in people with cancer and it can cause a number of 
side-effects which if not properly managed could have a negative impact on the patients' quality of 

life. Predicting side-effects will help medical and nursing staff caring for such patients and selecting 
appropriate help to minimise, whenever possible, the influence of those symptoms.

1. Select pathology:

Breast cancer

Colorectal cancer

Lung cancer

2. Cycle of chemotherapy:

First

Second

Third

Fourth

3. Day:  

 

Developed by Thomas Mazzocco and Amir Hussain, University of Stirling. All rights reserved. 

Pilot prototype provided "as is" without any warranty. 

1

Calculate

Figure 6.5: Input screen for chemotherapy side-effects model
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Stirling Chemotherapy Side-Effects Model

Side-effects mapping model in patients with lung, colorectal 

and breast cancer receiving chemotherapy

Based on the information provided, expected side effects are reported below.

Today very likely: • nausea (50%)

likely: • fatigue (28%)

 

Tomorrow likely:
• nausea (29%)

• fatigue (26%)

 

The day after tomorrow likely:

• fatigue (28%)

• mucositis (27%)

• nausea (24%)

Very likely side effects have a probability of occurring greater than 40%.
Likely side effects have a probability of occurring greater than 20%.

Side effects with a lower probability of occurring are not reported.

Back 

Developed by Thomas Mazzocco and Amir Hussain, University of Stirling. All rights reserved. 

Pilot prototype provided "as is" without any warranty. 

Figure 6.6: Output example for chemotherapy side-effects model
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6.7 discussion

The main aim of this case study was to improve results produced by previous

state-of-the-art models for prediction of side-effect symptoms experienced by

patients with breast cancer receiving adjuvant chemotherapy, extending the

model also for colorectal and lung cancers.

The model combines, for the first time, the two empirically determined

effects: specifically the peak effect and the inverted U-shape effect, for which

two different functions were chosen by trial and error.

From the analysis of chosen performance metrics, the model seems to have

generally reached the envisaged performance providing an average increase of

19% in comparison with the previous model: this demonstrates the potential

of these kinds of models in the management of chemotherapy related toxicities

within clinical practice. Some limitations should also be noted: first, the

considered sample of patients was not so large and was not equally distributed

between breast, colorectal and lung cancer; a second limitation relates to the

fact that the available data covered just four cycles of chemotherapy, while

most adjuvant breast cancer chemotherapy regimens consist of six to eight

cycles; finally, data about different administered treatments are not available

at present.

The proposed framework in section 3.5 recommended to carry out a mis-

classification analysis only for classification problems, so such analysis has not

been performed for this case study.
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A range of contributions and potential impact is envisaged from this work

both for clinical practice and further research. On clinical practice, patients

could know in advance which symptom they should expect and when, and

health professionals could take appropriate action wherever possible in order

to avoid or, at least, minimize expected discomforts.

From the point of view of future research in this interdisciplinary area, a

comprehensive model has been proposed for time series symptom analysis:

which is expandable with different non-linear basis functions and the applied

framework has also shown how to select possible variables which require to

be considered or excluded to improve the model giving, as a by-product, some

new insights on symptoms’ pattern within each cycle, between different cycles

and between different treatments. This added-value aspect can also be further

researched and new insights correlated with clinical findings.

6.8 conclusion

This work successfully built on a previous state-of-the-art tool for side-

effect modelling on patients with cancer undergoing adjuvant chemotherapy

treatment, following recommendations given in section 3.2. The proposed

model has been both generally improved and may be reusable in different

contexts.
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Whilst the encouraging results reported in this small-scale study should be

taken with care, they do illustrate the potential of this kind of a time series

modelling approach.

For future work, further large-scale investigations using larger datasets

can be carried out and different modelling techniques can be applied (using

different types of basis functions) with a view to providing a reliable model

that could be potentially deployed in clinical practice.



7
C O N C L U S I O N S A N D F U T U R E W O R K

7.1 conclusions

This thesis presented a sound framework for the development of CDSSs, and

in particular of the underlying predictive models, identifying best practices

for each stage of the model’s development.

As outlined throughout the thesis, clinical decision support systems have

a huge potential for leading to better care and appropriate implementations

of such systems will promote a better use of medical knowledge. Three

applications of the proposed framework have been developed.

Every step of the framework addressed specific problems emerging from

relevant literature. Whenever possible, adopted solutions have been validated

within the proposed case studies.

The first developed model predicted mortality within 28 days of patients

suffering from acute alcoholic hepatitis. A comparison generated by state

of the art tools shows an improved predictive power, demonstrating how

the inclusion of suitable variables leads to an overall improved accuracy of

the model. In this case, adopting an appropriate selection of variables, as

139
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suggested by the developed framework, increased the predictive power of

the model by 25% when compared to the widely used mDF, CPS and GAHS

scores.

The second developed predictive model was designed to aid the early

diagnosis of dementia, improving on the performance of a recent application

of Bayesian belief networks [80] by means of a novel approach based on

logistic regression. Our model, which adopts a statistical selection of variables

according to the proposed general framework, outperformed the model which

used variables selected by domain experts in previous studies. The obtained

results outperform considered benchmarks by 15%.

The third built model predicted the probability of experiencing a certain

symptom among common side-effects in patients receiving chemotherapy. The

newly developed model included a pre-modelling stage, which was based on

previous research studies [110], and a subsequent regression. The accuracy

of the predictive results (computed on a daily basis for each cycle of therapy)

shows that the newly proposed approach has enhanced its predictive power by

19% when compared to the previously developed models. Such improvements

have been obtained by an appropriate usage of available a priori knowledge

to pre-model the functional forms, as suggested by the proposed framework.

The results reported in the three case studies above demonstrate the utility

of employing the proposed framework to address different kinds of problems

with the aim of improving existing models and developing new predictive

models. Such improvements are clearly envisaged to have an impact both on
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clinical practice and further research. In particular, in terms of clinical impact,

the proposed applications are expected to 1) help identify patients suffering

from acute episodes of AH who may benefit from aggressive intervention to

improve their survival rate, 2) aid the early diagnosis of dementia conditions,

and 3) deliver better symptom management for patients suffering from breast,

colorectal and lung cancer. Also, these three case studies may also be extended

clinically, to validate the inclusion/exclusion of specific variables and to

improve the predictive power in identified areas with a high presence of

misclassifications.

7.2 future work

In terms of future work, large-scale studies are required to clinically validate

the results from the presented case studies and to assess the feasibility of

deploying such models in real clinical practice.

Also, the adoption of different cost functions may enhance regression based

systems: as discussed, type I and type II errors can have different costs. With

reference to the proposed case studies, it is reasonable to hypothesize that

the cost of not identifying a patient (suffering from AH) who may benefit

from aggressive intervention can be different from the cost of administering

an aggressive treatment to a patient who could be treated with standard

medications: this difference could for example be estimated by the mortality

rate among the two groups of patients receiving the wrong treatments. Also,
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the cost of further investigating possible early dementia conditions could

generally differ from the cost of treating the same conditions at advanced

stages following an incorrect early diagnosis: this difference could for example

be estimated by the monetary costs of different medical examinations and

treatments, as well as by other indicators measuring the patient’s expected

quality of life.

Further investigations may be able to determine such cost differences

and implement an appropriate cost function in order to minimize overall

“costs” of system misclassifications: resulting models will take into account

the costs of false positives and false negatives. It is worth noticing that for

a logistic regression model, the modification of the cost function could be

quite straightforward (e.g. by multiplying each of the two addends of the

summation reported in formula B.4 for the actual misclassification cost).

Also, different strategies for dealing with misclassifications should be invest-

igated: the limited size of the considered datasets did not allow for the design

of ensemble classifiers system, i.e. systems with two or more classification

steps. As shown, misclassifications may not be uniformly distributed and,

when this occurs, it is possible to isolate areas where the developed model

is not accurate: in such areas, the system does not provide the user with any

recommendation. This strategy, while increasing the overall predictive power

of the model by reducing the overall number of misclassifications, also reduces

the number of cases in which the model itself could be used.
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It may be possible to build more complex models (or based on different vari-

ables) in the identified areas with a view to identifying different relationships

between input and output. This could have a locally better predictive power

when compared to the original model: further investigations are required to

study whether this strategy could lead to more powerful systems able to cope

also with areas where regressions fail to give accurate results.

Finally, the work presented in this thesis focused on regression models.

Other machine learning techniques were not covered in this work, as they

have not been used in the applications developed within this thesis essentially

due to limitations imposed by the size of available datasets. Also, some of

these techniques (such as neural networks or support vector machines) may

not be able to clearly justify the relationship between the provided input and

the model output. Some other techniques (e.g. decision trees) may be able to

overcome this limitation, however they require a level of technical expertise

which may prevent clinical researchers from using them. Future research

studies should investigate how to extend and adapt the proposed framework

in order to be used with other machine learning techniques.



A
I N F O R M AT I O N A N D C O M M U N I C AT I O N T E C H N O L O G Y

U S A G E I N PAT I E N T S

Chapter 2 explored few aspects of the development process of models behind

CDSSs: specifically, the chapter presented an investigation of the role of

knowledge in such systems and how new medical knowledge could be

extracted from data mining process. Key features for the successful integration

of CDSSs in the actual clinical workflows were then presented. Finally, the

focus was on how such models have been developed in the recent past,

specifically using logistic regression, identifying common pitfalls in published

works and suggesting a possible general framework for developing and

evaluating such systems.

This appendix investigates the possibility of deployment of CDSSs to

patients in order to improve healthcare, for example leading to a better

symptom management, improving patients’ quality of life, reducing number

of visits and hospitalization, saving money and time resources.

Specifically, this analysis presents the results of a study which assessed

the perceived usage of, and attitudes toward, communication technologies

(i.e. mobile phone and texting, e-mail, and the internet) in patients attending

a cardiology clinic with a view to understanding whether CDSSs may be
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successfully deployed to patients and then guiding future health service

redesign.

This study was performed in a remote regional hospital serving both

urban and rural populations. A questionnaire was completed by a sample

of 221 patients attending a general cardiology clinic. The questions asked

about patients’ access to and use of technology at home. Data collected also

included age, gender, travel time to the clinic, mode of travel, and whether the

respondent was accompanied to the clinic. Appropriate statistical tests were

used with significance taken at the 0.05 level.

As probably expected, it has been ascertained that age was the strongest

predictor of use of communication technologies, with younger patients more

likely to use e-mail, web, mobile phone, and texting. However, frequency of

use of e-mail was not related to age and an encouraging 99% of patients used

at least one communication technology.

a.1 communication technologies for healthcare

Ensuring equal access to good quality healthcare should be a core aim of

each national health system. Effective communication between patients and

healthcare staff is key to the delivery of this aim. Traditionally, communication

occurs by face-to-face contact or written correspondence. However, there

has been increasing interest in the use of simple digital communication

technologies (including mobile phone and texting, e-mail, and the internet).
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These technologies have the potential to be more rapid, responsive, and

cost-effective in improving the quality of healthcare by enhancing the level

of communication across organizational boundaries of healthcare provision,

such as the primary-secondary care interface. Communication problems across

this interface have long been identified as a source of frustration to patients

and clinicians alike [112]. Furthermore, studies have shown that using such

technologies can produce care clinically similar to that from face-to-face

consultations with health professionals, improve patients’ access to care, and

reduce hospital and travel costs [113]. Overcoming geographical barriers to

access is one of the principal challenges for providing health services to remote

and rural areas [114].

However, despite the promise of the "digital age", its full potential in terms

of healthcare and improved access to healthcare is not currently being realized.

This is likely because of a variety of reasons, including technology limitations,

although lack (or perceived lack) of technology skills and confidence in both

patients and healthcare providers remains a major barrier to more widespread

use [115, 116].

There has been a considerable increase in the use of communication technolo-

gies within the general public, and while it might be assumed that general skill

levels are high, there are few published data on patients’ knowledge and skills

in this area. Specific training may overcome skills deficiency, but it remains

likely that the successful widespread implementation of new technologies
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into healthcare services will depend in a large part on the existing abilities of

patients and healthcare providers.

In this appendix, we aim to assess the perceived usage of, and attitudes

toward, communication technologies (mobile phone and texting, e-mail, and

the internet) in patients attending a cardiology clinic with a view to guiding

future health service redesign.

a.2 methodology

Raigmore Hospital is situated in the north of Scotland (Highland Region)

and serves a population of over 300,000 dispersed over a large geographical

area (10,085 square miles). Approximately 70% of patients live within 1-hour

travel time from the major hospital with good roads and public transport, but

much of the rest of the population have considerable geographical hurdles

to attending the clinic, including transport by plane and ferry from island

locations. There are no peripheral specialist cardiology clinics in this area,

and therefore all patients travel to Raigmore Hospital for specialist cardiology

review.

A self-completion questionnaire-based survey was conducted on a con-

venience sample of patients attending a general cardiology clinic between

February and May 2009. All patients attending the clinic were included, and

questionnaires were distributed by the clerical staff at the clinic. These were
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adult patients (>16 years old) with a range of cardiologic conditions. This

included "new" and "return" patients.

In the absence of a validated instrument a questionnaire was developed in

several iterative stages including a pilot study. The results from this pilot study

allowed further questionnaire redesign until the final version was agreed upon.

The questions asked about patients’ access to and use of technology at home.

Most questions required a yes/no response or used a 4-point rating scale.

Respondent data included age, gender, travel time to the clinic, mode of travel,

and whether the respondent was accompanied to the clinic.

Data were transposed from self-completed paper questionnaires into a

spreadsheet. The p-values using an appropriate statistical test were used to

assess the influence of age (unpaired t-test), gender (chi-squared test), and

distance from the hospital (unpaired t-test) on the use of the internet, mobile

phone, text messages, and e-mail. For testing frequencies of usage for each

technology analysis of variance was used. Significance was taken at the 0.05

level.

a.3 results from questionnaire

In total, 221 patient responses were studied: 124 of them (57%) were male. The

average age was 62.1 ± 14.1 years (range: 16-89 years). The self-reported places

of residence were as follows: countryside, 40 (18%); city, 77 (35%); town, 36

(16%); and village, 68 (31%). The median travel time to hospital was 30 min
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(range: 0-1 h). The majority (172, i.e. 78%) of patients used private transport

to attend hospital, 23 (10%) used public transport, and 7 (3%) used hospital

transport or ambulance.

The majority of patients had a CD or DVD player at home: 166 (75%) and

163 (74%), respectively. Many patients (136, i.e. 62%) had a home computer,

and 111 (50%) reported having broadband access. With regard to patients’

overall use of the four means of communication technologies, 14.0% never use

two out of the four, 14.7% never use three out of the four, and only 0.7% never

use any.

Gender and distance from the main urban center were not related to use

of the Internet or mobile phone usage (or mobile texting function) (all p >

0.05). However, age was closely correlated with usage of communication tech-

nologies. On average, participants who used the communication technology

were younger than those who did not for the Internet (56 ± 14 versus 68 ±

10; p < 0.001), mobile phone (59 ± 14 versus 73 ± 12 years; p < 0.001), mobile

texting function (54 ± 13 versus 68 ± 10; p < 0.001), and e-mail (56 ± 14 versus

69 ± 11 years; p < 0.001). Furthermore, age was found to be a key factor in

determining the frequency of use of mobile phones (p < 0.001) and texting (p

< 0.001) but not the frequency of using the internet (p = 0.43) and e-mail (p =

0.76).

Many respondents (80, i.e. 36%) reported a wish to contact a doctor or nurse

between clinic appointments by e-mail, 93 (42%) did not wish to do this, and

the remainder did not respond to this question. Patients who had a computer
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at home were much more likely to wish to use e-mail between appointments

compared with those patients without a computer at home (76/136, i.e. 56%

versus 3/78, i.e. 4%; p < 0.001). Once again, age was a key factor in determining

whether patients desired to use e-mail to contact a doctor or nurse (p < 0.001).

a.4 analysis of results

Increased use of communication technologies has the potential to improve

patient care [117]. Implementation of these can be difficult, and patient skills

and confidence with them will vary. Within the variables investigated in

the present study, age was the strongest predictor of use of communication

technologies (mobile phone and texting, e-mail, and Internet). Age was also a

predictor of frequency of use of mobile phone and texting but not for e-mail

and Internet. Patients who lived in more remote areas were no more likely to

use communication technologies than those who lived in more urban areas.

Successful and widespread implementation of communication technologies in

healthcare is likely to depend on part on the availability within the general

public. In our cohort only 62% of patients had a home computer, and only 50%

had broadband connectivity, and this is likely to limit the immediate ability

to develop web or e-mail based healthcare solutions to the majority of our

population. However, the proportion of younger patients with computers is

much higher, and as this cohort of patient ages there will be an increase in the

proportion of patients with access to computers and mobile phones and the



A.4 analysis of results 151

skills to use them. The potential benefits for the delivery of healthcare services

by greater use of technology are considerable. Traditional face-to-face medical

outpatient clinics are a common way of assessment and monitoring patients

and have been in place for many years, but many patients are seen in the

clinic with little or no positive outcome in terms of treatment decisions, with

some patients being seen as a matter of routine [118]. Alternative methods for

reviewing patients may include telephone consultations, telemedicine, e-mail,

or other web-based communication. These are of particular interest in remotes

areas where long distances can exist between patients and their healthcare

providers.

Access to healthcare professionals is more difficult in remote areas for a

variety of reasons [119]. The most recent Scottish Household Survey highlights

that less than half of people in remote rural areas find access to hospital

outpatient departments "very or fairly convenient"; public transport is also

an issue, with 51% of remote and rural areas stating public transport services

are convenient compared with 88% in large urban areas and 79% in accessible

small towns [114]. Distance from specialists and specialist facilities - for

example, cardiac catheterization facilities - is inversely proportional to the

likelihood of patients receiving specialist investigation [120]. In some cases (e.g.

chronic heart failure) this can result in poorer outcomes for patients in remote

areas [121]. However, there is an increasing awareness that technology may

help overcome barriers to healthcare delivery and equity of access particularly

in remote areas [122].
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Teleclinics and communication technology use may be of most benefit to

rural patients in that they greatly reduce or abolish travel times. Instead of

patients requiring days off work to attend a clinic, they can potentially receive

specialist clinical review via videoconferencing at a local venue. Furthermore,

between formal clinic appointment times, it may be difficult to reach a

physician at a convenient time for both physician and patient. The use

of e-mail or web-based communication may better enable communication

between the patient and the doctor, obviating the necessity of both parties

being available at the same time. This potentially could increase adherence

to treatment plans and thus improve overall health. In one study in patients

with congestive cardiac failure, the introduction of telemedicine increased

medication compliance and improved physical and mental well-being at a

relatively low cost [123]. In cases where individuals do not have Internet

access the nearest healthcare centers may facilitate contact between the patient

and hospital doctors, and where there is a lack of patient skills this could be

facilitated by local healthcare professionals (e.g. community nurses).

Acceptability of new services will be important in their subsequent imple-

mentation. The use of text messages to remind patients for hospital appoint-

ments in pediatric services in Hull resulted in a decrease in nonattendance.

It is important that over 90% of these patients were happy to receive a

text reminder of appointments. With regard to videoconsultations a review

of patients using psychiatric services noted that some patients preferred

videoconferencing compared with traveling to the clinic [124]. Although
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some individuals perceive such appointments as impersonal, they felt that an

adequate doctor-patient relationship was established. This was particularly the

case in patients who were previously known to the doctor where a relationship

had been formed prior to the videoconferencing appointment, suggesting that

videoconferencing may be more appropriate for review patients rather than

new patient consultations. Nevertheless, the benefits of more frequent or

convenient communication with a doctor appeared to be more important than

potential subtle reductions in quality of consultation (i.e. the patients were

less affected by the way in which doctors interacted with them but rather

whether this interaction occurred at all) [125]. However, telecommunication is

obviously less robust in terms of physical examination, and there is a danger

that physical signs will be missed [126]. Furthermore, patients and physicians

share some concerns regarding communication technology [127]. Security and

confidentiality are a particular concern with e-mail and web. Physicians report

concern regarding developing a good rapport with patients and the danger

of missing nonverbal queues, although case selection should reduce these

risks. In some instances physicians feared that the introduction of telemedicine

would increase clinical workload. This concern was surrounding the hours

that would be spent reviewing e-mails and responding to individuals [128].

Good documentation of working practice and appropriately supported service

redesign should address these issues.

This current study has demonstrated that older patients are less likely to use

communication technologies in day-to-day living, and there is a concern that
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older patients will be denied the benefits from using healthcare technologies.

However, studies have shown that if support is given, new technologies

can be successfully used even in very elderly populations [126]. Another

concept is that of "teleassistance" where individuals in the community facilitate

communication between physicians via telemedicine; these individuals could

be community nurses, general practitioners, or others, although using non-

healthcare professionals may be ethically challenging, and confidentiality of

patients should always be protected.

The use of technology in daily life is likely to continue to increase and with it

the proportion of the population with specific communication technology skills.

Already there are many examples of the use of communication technology in

the delivery of healthcare (e.g. mobile phones, online booking, NHS repeat

prescriptions service). However, many of these technologies have been used

in younger patients (e.g. young diabetic patients) and therefore may not be

so easily implemented in a general clinic population: indeed, in our cohort

age was the dominant influence on the use of communication technologies.

Furthermore, high-tech monitoring of patients both in the hospital and in a

non-hospital setting will continue to be developed [129, 130].

This was a single center study, and therefore the results may not be applic-

able to other centers. Nevertheless this was a study of all comers and therefore

represented a breadth of patients in terms of age and geographical locations.

Indeed, although other studies have investigated the use of technologies in
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younger patients, our cohort was unselected and therefore represents a more

general cardiac clinic population.

a.5 conclusion

This study has identified that the use of communication technologies is not

widespread within the cardiology outpatient community. Age is the strongest

predictor of use of communication technology, with younger patients more

likely to use e-mail, the web, mobile phone, and texting. This study has

highlighted that there may be several potential barriers to the widespread

implementation of communication technology to a general cardiology clinic

population. Cognizance should be taken of these findings when attempting

service redesign.



B
M AT H E M AT I C A L F O R M U L AT I O N O F R E G R E S S I O N S

A N D G R A D I E N T D E S C E N T

Regression analysis is a statistical method to determine the relationship

between a dependent variable and a number of independent variables. Details

about functional forms, cost functions and a minimization algorithm are

reported in the following sections.

b.1 linear regression

For linear regression, the relationship between input vector X and output is

determined by the function f defined as follows:

f(B,X) = BTX (B.1)

where X is the vector of predictor variables (with 1 as first element).

Given a training set withM data points
{
(X(1),y(1)), (X(2),y(2)) · · · (X(M),y(M))

}
with X(m) ∈ Rn+1, x(m)

0 = 1 and y(m) ∈ R, the cost function is set as follows:

J(B) = −
1

2M

M∑
m=1

(BTX(m) − y(m))2 (B.2)
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b.2 logistic regression

The model output is the probability f(B,X) of a data point belonging to a

certain class given known values of X (vector containing predictors). The

general form of the functional dependence is expressed by formula 2.1 and

could be rewritten as:

f(B,X) =
1

1+ e−B
TX

(B.3)

where X is the vector of predictor variables (with 1 as first element) and B is

the vector of coefficients to be determined by the logistic regression algorithm.

Given a training set withM data points
{
(X(1),y(1)), (X(2),y(2)) · · · (X(M),y(M))

}
with X(m) ∈ Rn+1, x(m)

0 = 1 and y(m) ∈ {0, 1}, the cost function J(B) to be

minimized in order to find the coefficient vector B is:

J(B) = −
1

M
[

M∑
m=1

y(m) log f(B,X(m)) + (1− y(m)) log (1− f(B,X(m)))] (B.4)

b.3 gradient descent

In order to minimize the cost function an iterative methods is used: for example,

the gradient descent algorithm could be used to carry out such task and few

details are here reported.

Given a first solution guess B[0] and a learning rate α, coefficients at the

k+ 1 iteration are computed as follows:

b
[k+1]
j = b

[k]
j −α

∂

∂bj
J(B[k]) (B.5)
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That is:

B[k+1] = B[k] −α∇J(B[k]) (B.6)

Coefficients vector B for the model will be the one satisfying the following:

J(B) = min
θ
J(θ) (B.7)



B I B L I O G R A P H Y

[1] T. Mazzocco, A. Hussain, S. Hussain, and A. A. Shah, “A novel mortality

model for acute alcoholic hepatitis including variables recorded after

admission to hospital,” Computers in biology and medicine, vol. 44, pp. 132–

135, 2014.

[2] T. Mazzocco and A. Hussain, “Novel logistic regression models to aid

the diagnosis of dementia,” Expert Systems with Applications, vol. 39, no. 3,

pp. 3356–3361, 2012.

[3] T. Mazzocco and A. Hussain, “A side-effects mapping model in patients

with lung, colorectal and breast cancer receiving chemotherapy,” in e-

Health Networking Applications and Services (Healthcom), 2011 13th IEEE

International Conference on, pp. 34–39, IEEE, 2011.

[4] T. Gandiya, A. Dua, G. King, T. Mazzocco, A. Hussain, and S. J. Leslie,

“Self-reported “communication technology” usage in patients attending

a cardiology outpatient clinic in a remote regional hospital,” Telemedicine

and e-Health, vol. 18, no. 3, pp. 219–224, 2012.

[5] G. Goertzel, “Clinical decision support system,” Annals of the New York

Academy of Sciences, vol. 161, no. 2, pp. 689–693, 1969.

159



bibliography 160

[6] V. Sintchenko and H. Garsden, “Clinical decision support: new ap-

proaches to usability study,” HIC 2002: Proceedings: Improving Quality by

Lowering Barriers, p. 32, 2002.

[7] H. Kaur and S. K. Wasan, “Empirical study on applications of data

mining techniques in healthcare,” Journal of Computer Science, vol. 2,

no. 2, p. 194, 2006.

[8] D. Avison and T. Young, “Time to rethink health care and ICT?,”

Communications of the ACM, vol. 50, pp. 69–74, 2007.

[9] M. Ashworth, P. Seed, D. Armstrong, S. Durbaba, and R. Jones, “The

relationship between social deprivation and the quality of primary care:

a national survey using indicators from the UK quality and outcomes

framework,” British Journal of General Practice, vol. 57, pp. 441–448, 2007.

[10] J. Gammon, M. Heulwen, and D. Gould, “A review of the evidence for

suboptimal compliance of healthcare practitioners to standard/universal

infection control precautions,” Journal of Clinical Nursing, vol. 17, pp. 157–

167, 2007.

[11] D. F. Lobach, “Electronically distributed, computer-generated, individu-

alized feedback enhances the use of a computerized practice guideline,”

in Proceedings of the AMIA Annual Fall Symposium, p. 493, American

Medical Informatics Association, 1996.

[12] D. K. Litzelman, R. S. Dittus, M. E. Miller, and W. M. Tierney, “Requir-

ing physicians to respond to computerized reminders improves their



bibliography 161

compliance with preventive care protocols,” Journal of general internal

Medicine, vol. 8, no. 6, pp. 311–317, 1993.

[13] D. Hunt, R. Haynes, S. Hanna, and K. Smith, “Effects of computer-based

clinical decision support systems on physician performance and patient

outcomes: a systematic review,” The Journal of the American Medical

Association, vol. 280, pp. 1339–1346, 1998.

[14] A. X. Garg, N. K. Adhikari, H. McDonald, M. P. Rosas-Arellano, P. Dever-

eaux, J. Beyene, J. Sam, and R. B. Haynes, “Effects of computerized

clinical decision support systems on practitioner performance and

patient outcomes,” JAMA: the journal of the American Medical Association,

vol. 293, no. 10, pp. 1223–1238, 2005.

[15] E. S. Berner, Clinical Decision Support Systems. Springer, 2007.

[16] W. B. Kannel, D. McGee, and T. Gordon, “A general cardiovascular risk

profile: the Framingham study,” The American journal of cardiology, vol. 38,

no. 1, pp. 46–51, 1976.

[17] C. Hug, Detecting hazardous intensive care patient episodes using real-time

mortality models. PhD thesis, Massachusetts Institute of Technology, 2009.

[18] E. Coiera, “Clinical decision support systems,” Guide to health informatics,

vol. 2, no. 1, 2003.

[19] M. J. Rantz, M. Skubic, R. J. Koopman, L. Phillips, G. L. Alexander, S. J.

Miller, and R. D. Guevara, “Using sensor networks to detect urinary tract



bibliography 162

infections in older adults,” in e-Health Networking Applications and Services

(Healthcom), 2011 13th IEEE International Conference on, pp. 142–149, IEEE,

2011.

[20] K. Kawamoto, C. A. Houlihan, E. A. Balas, and D. F. Lobach, “Improving

clinical practice using clinical decision support systems: a systematic

review of trials to identify features critical to success,” Bmj, vol. 330,

no. 7494, p. 765, 2005.

[21] P. S. Roshanov, N. Fernandes, J. M. Wilczynski, B. J. Hemens, J. J. You,

S. M. Handler, R. Nieuwlaat, N. M. Souza, J. Beyene, H. G. C. V. Spall,

A. X. Garg, and R. B. Haynes, “Features of effective computerised clinical

decision support systems: meta-regression of 162 randomised trials,”

BMJ, vol. 346, 2013.

[22] C. M. Clancy and K. Cronin, “Evidence-based decision making: global

evidence, local decisions,” Health affairs, vol. 24, no. 1, pp. 151–162, 2005.

[23] V. Patkar, D. Acosta, T. Davidson, A. Jones, J. Fox, and M. Keshtgar,

“Cancer multidisciplinary team meetings: evidence, challenges, and the

role of clinical decision support technology,” International journal of breast

cancer, vol. 2011, 2011.

[24] A. Wright, D. W. Bates, B. Middleton, T. Hongsermeier, V. Kashyap,

S. M. Thomas, and D. F. Sittig, “Creating and sharing clinical decision

support content with web 2.0: issues and examples,” Journal of biomedical

informatics, vol. 42, no. 2, pp. 334–346, 2009.



bibliography 163

[25] R. Scales and M. Embrechts, “Computational intelligence techniques for

medical diagnostics,” in Proceedings of Walter Lincoln Hawkins, Graduate

Research Conference from the World Wide Web: http://www. cs. rpi. edu/˜

bivenj/MRC/proceedings/papers/researchpaper. pdf, 2002.

[26] K. C. Desouza, “Knowledge management in hospitals: a process oriented

view and staged look at managerial issues,” International journal of

healthcare technology and management, vol. 4, no. 6, pp. 478–497, 2002.

[27] S. K. Wasan, V. Bhatnagar, and H. Kaur, “The impact of data mining

techniques on medical diagnostics,” Data Science Journal, vol. 5, pp. 119–

126, 2006.

[28] K. J. Ottenbacher, H. R. Ottenbacher, L. Tooth, and G. V. Ostir, “A review

of two journals found that articles using multivariable logistic regres-

sion frequently did not report commonly recommended assumptions,”

Journal of clinical epidemiology, vol. 57, no. 11, pp. 1147–1152, 2004.

[29] J. Concato, A. R. Feinstein, and T. R. Holford, “The risk of determining

risk with multivariable models,” Annals of internal medicine, vol. 118,

no. 3, pp. 201–210, 1993.

[30] S. C. Bagley, H. White, and B. A. Golomb, “Logistic regression in the

medical literature: standards for use and reporting, with particular

attention to one medical domain,” Journal of clinical epidemiology, vol. 54,

no. 10, pp. 979–985, 2001.



bibliography 164

[31] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Data preprocessing

for supervised learning,” International Journal of Computer Science, vol. 1,

no. 2, pp. 111–117, 2006.

[32] D. B. Suits, “Use of dummy variables in regression equations,” Journal of

the American Statistical Association, vol. 52, no. 280, pp. 548–551, 1957.

[33] C. Dougherty, Introduction to econometrics, vol. 2. Oxford University Press

Oxford, 2002.

[34] A. Field, Discovering Statistics Using SPSS 3th (third) edition. Sage

Publications Ltd, 2010.

[35] A. R. Feinstein, Multivariable analysis: an introduction. Yale University

Press, 1996.

[36] R. L. Ott, M. Longnecker, and L. Ott, A first course in statistical methods.

Thomson-Brooks/Cole, 2004.

[37] S. Menard, Applied logistic regression analysis. No. 106, Sage, 2002.

[38] R. H. Myers, Classical and modern regression with applications, vol. 2.

Duxbury Press Belmont, CA, 1990.

[39] G. H. John, R. Kohavi, K. Pfleger, et al., “Irrelevant features and the

subset selection problem,” in ICML, vol. 94, pp. 121–129, 1994.

[40] D. P. MacKinnon, J. L. Krull, and C. M. Lockwood, “Equivalence of

the mediation, confounding and suppression effect,” Prevention Science,

vol. 1, no. 4, pp. 173–181, 2000.



bibliography 165

[41] M. A. Babyak, “What you see may not be what you get: a brief,

nontechnical introduction to overfitting in regression-type models,”

Psychosomatic medicine, vol. 66, no. 3, pp. 411–421, 2004.

[42] J. Concato and A. R. Feinstein, “Monte Carlo methods in clinical research:

applications in multivariable analysis,” Journal of investigative medicine:

the official publication of the American Federation for Clinical Research, vol. 45,

no. 6, p. 394, 1997.

[43] F. E. Harrell Jr, K. L. Lee, D. B. Matchar, T. A. Reichert, et al., “Regression

models for prognostic prediction: advantages, problems, and suggested

solutions,” Cancer treatment reports, vol. 69, no. 10, pp. 1071–1077, 1985.

[44] P. Peduzzi, J. Concato, E. Kemper, T. R. Holford, and A. R. Feinstein,

“A simulation study of the number of events per variable in logistic

regression analysis,” Journal of clinical epidemiology, vol. 49, no. 12,

pp. 1373–1379, 1996.

[45] R. Kohavi, “A study of cross-validation and bootstrap for accuracy

estimation and model selection,” in IJCAI, vol. 14, pp. 1137–1145, 1995.

[46] B. Efron, “Bootstrap methods: another look at the jackknife,” The annals

of Statistics, pp. 1–26, 1979.

[47] J.-H. Kim, “Estimating classification error rate: repeated cross-validation,

repeated hold-out and bootstrap,” Computational Statistics & Data Ana-

lysis, vol. 53, no. 11, pp. 3735–3745, 2009.



bibliography 166

[48] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition letters,

vol. 27, no. 8, pp. 861–874, 2006.

[49] E. Lidbrink, J. Elfving, J. Frisell, and E. Jonsson, “Neglected aspects

of false positive findings of mammography in breast cancer screening:

analysis of false positive cases from the Stockholm trial,” BMJ, vol. 312,

pp. 273–276, 1996.

[50] M. Nano, J. Kollias, G. Farshid, P. Gill, and M. Bochner, “Clinical impact

of false-negative sentinel node biopsy in primary breast cancer,” British

Journal of Surgery, vol. 11, pp. 1430–1434, 2002.

[51] I. Gram, E. Lund, and S. Slenker, “Quality of life following a false

positive mammogram,” British Journal of Cancer, vol. 62, pp. 1018–1022,

1990.

[52] M. Zweig and G. Campbell, “Receiver-operating characteristic (ROC)

plots: a fundamental evaluation tool in clinical medicine,” Clinical

Chemistry, vol. 39, pp. 561–577, 1993.

[53] S. Sougioultzis, E. Dalakas, P. C. Hayes, and J. N. Plevris, “Alcoholic

hepatitis: from pathogenesis to treatment,” Current Medical Research and

Opinion, vol. 21, no. 9, pp. 1337–1346, 2005. PMID: 16197651.

[54] M. Fox, J. Fox, and M. Davies, “Diagnosis and management of chronic

liver disease in older people,” Reviews in Clinical Gerontology, vol. 21,

pp. 1–15, 2 2011.



bibliography 167

[55] R. Bruha, K. Dvorak, and J. Petrtyl, “Alcoholic liver disease,” World

journal of hepatology, vol. 4, no. 3, p. 81, 2012.

[56] W. C. Maddrey, J. K. Boitnott, M. S. Bedine, F. L. Weber Jr, E. Mezey,

R. I. White Jr, et al., “Corticosteroid therapy of alcoholic hepatitis,”

Gastroenterology, vol. 75, no. 2, pp. 193–199, 1978.

[57] R. N. H. Pugh, I. M. Murray-Lyon, J. L. Dawson, M. C. Pietroni, and

R. Williams, “Transection of the oesophagus for bleeding oesophageal

varices,” British Journal of Surgery, vol. 60, no. 8, pp. 646–649, 1973.

[58] C. Child, “Ill: The liver and portal hypertension,” Philadelphia, WB

Saunders Co, p. 23, 1964.

[59] E. H. Forrest, C. D. J. Evans, S. Stewart, M. Phillips, Y. H. Oo, N. C.

McAvoy, N. C. Fisher, S. Singhal, A. Brind, G. Haydon, J. O’Grady,

C. P. Day, P. C. Hayes, L. S. Murray, and A. J. Morris, “Analysis of

factors predictive of mortality in alcoholic hepatitis and derivation and

validation of the Glasgow alcoholic hepatitis score,” Gut, vol. 54, no. 8,

pp. 1174–1179, 2005.

[60] W. Dunn, L. H. Jamil, L. S. Brown, R. H. Wiesner, W. R. Kim, K. V. N.

Menon, M. Malinchoc, P. S. Kamath, and V. Shah, “MELD accurately

predicts mortality in patients with alcoholic hepatitis,” Hepatology, vol. 41,

no. 2, pp. 353–358, 2005.

[61] A. Duseja, N. S. Choudhary, S. Gupta, R. K. Dhiman, and Y. Chawla,

“Apache ii score is superior to sofa, ctp and meld in predicting the short-



bibliography 168

term mortality in patients with acute-on-chronic liver failure (ACLF),”

Journal of Digestive Diseases, pp. 484–490, 2013.

[62] M. Sheth, M. Riggs, and T. Patel, “Utility of the Mayo End-Stage Liver

Disease (MELD) score in assessing prognosis of patients with alcoholic

hepatitis,” BMC gastroenterology, vol. 2, no. 1, p. 2, 2002.

[63] A. Chedid, C. Mendenhall, P. Gartside, S. French, T. Chen, and L. Rabin,

“Prognostic factors in alcoholic liver disease. A cooperative study group,”

The American journal of gastroenterology, vol. 86, pp. 210–216, 02 1991.

[64] S. Masson, I. Emmerson, E. Henderson, E. Fletcher, A. Burt, C. Day,

and S. Stewart, “PWE-285 Clinical but not histological factors predict

long-term prognosis in patients with biopsy proven advanced alcoholic

liver disease,” Gut, vol. 61, no. Suppl 2, pp. A413–A414, 2012.

[65] L. Castera, “Noninvasive methods to assess liver disease in patients with

hepatitis B or C,” Gastroenterology, vol. 142, pp. 1293–1302.e4, 05 2012.

[66] W. Srikureja, N. L. Kyulo, B. A. Runyon, and K.-Q. Hu, “MELD score is a

better prognostic model than Child-Turcotte-Pugh score or Discriminant

Function score in patients with alcoholic hepatitis,” Journal of Hepatology,

vol. 42, no. 5, pp. 700 – 706, 2005.

[67] W. Maddrey, “Alcoholic liver disease,” Current hepatology, vol. 1, pp. 71–

85, 1995.



bibliography 169

[68] P. Mathurin, C. L. Mendenhall, R. L. C. Jr, M.-J. Ramond, W. C.

Maddrey, P. Garstide, B. Rueff, S. Naveau, J.-C. Chaput, and T. Poynard,

“Corticosteroids improve short-term survival in patients with severe

alcoholic hepatitis (AH): individual data analysis of the last three

randomized placebo controlled double blind trials of corticosteroids

in severe AH,” Journal of Hepatology, vol. 36, no. 4, pp. 480 – 487, 2002.

[69] T. F. Imperiale and A. J. McCullough, “Do corticosteroids reduce

mortality from alcoholic hepatitis? A meta-analysis of the randomized

trials,” Annals of Internal Medicine, vol. 113, no. 4, pp. 299–307, 1990.

[70] “Management of patients with dementia: a national clinical guideline,”

tech. rep., Scottish Intercollegiate Guidelines Network, 2006.

[71] S. Turner, S. Iliffe, M. Downs, J. Wilcock, M. Bryans, E. Levin, J. Keady,

and R. O’Carroll, “General practitioners’ knowledge, confidence and

attitudes in the diagnosis and management of dementia,” Age and ageing,

vol. 33, no. 5, pp. 461–467, 2004.

[72] S. Cahill, M. Clark, H. O’Connell, B. Lawlor, R. Coen, and C. Walsh,

“The attitudes and practices of general practitioners regarding dementia

diagnosis in Ireland,” International journal of geriatric psychiatry, vol. 23,

no. 7, pp. 663–669, 2008.

[73] E. C. Hansen, C. Hughes, G. Routley, and A. L. Robinson, “General

practitioners’ experiences and understandings of diagnosing dementia:



bibliography 170

factors impacting on early diagnosis,” Social science & medicine, vol. 67,

no. 11, pp. 1776–1783, 2008.

[74] S. Klöppel, C. M. Stonnington, J. Barnes, F. Chen, C. Chu, C. D. Good,

I. Mader, L. A. Mitchell, A. C. Patel, C. C. Roberts, et al., “Accuracy of

dementia diagnosis: a direct comparison between radiologists and a

computerized method,” Brain, vol. 131, no. 11, pp. 2969–2974, 2008.

[75] M. J. Prince, J. L. de Rodriguez, L. Noriega, A. Lopez, D. Acosta,

E. Albanese, R. Arizaga, J. R. Copeland, M. Dewey, C. P. Ferri, et al.,

“The 10/66 dementia research group’s fully operationalised DSM-IV

dementia computerized diagnostic algorithm, compared with the 10/66

dementia algorithm and a clinician diagnosis: a population validation

study,” BMC Public Health, vol. 8, no. 1, p. 219, 2008.

[76] M. Prince, C. P. Ferri, D. Acosta, E. Albanese, R. Arizaga, M. Dewey, S. I.

Gavrilova, M. Guerra, Y. Huang, K. Jacob, et al., “The protocols for the

10/66 dementia research group population-based research programme,”

BMC Public Health, vol. 7, no. 1, p. 165, 2007.

[77] L. Oteniya, R. Coles, and J. Cowie, “DemNet: a clinical decision

support system to aid the diagnosis of dementia,” in Proceedings of

the 22ndHealthCare Computing Conference, pp. 289–297, Citeseer, 2005.

[78] F. V. Jensen and T. D. Nielsen, Bayesian networks and decision graphs.

Springer, 2007.



bibliography 171

[79] J. Cowie, L. Oteniya, and R. Coles, “Diagnosis of dementia and its

pathologies using Bayesian belief networks,” in ICEIS (2), pp. 291–295,

2006.

[80] L. Oteniya, Bayesian belief networks for dementia diagnosis and other

applications: a comparison of hand-crafting and construction using a novel data

driven technique. PhD thesis, University of Stirling, 2008.

[81] R. Petersen, J. Stevens, M. Ganguli, E. Tangalos, J. Cummings, and

S. DeKosky, “Practice parameter: early detection of dementia. Mild

cognitive impairment (an evidence-based review). Report of the quality

standards subcommittee of the American Academy of Neurology,”

Neurology, vol. 56, no. 9, pp. 1133–1142, 2001.

[82] H. Brodaty and C. M. Moore, “The clock drawing test for dementia of the

Alzheimer’s type: a comparison of three scoring methods in a memory

disorders clinic,” International journal of geriatric psychiatry, vol. 12, no. 6,

pp. 619–627, 1997.

[83] J. Moroney, E. Bagiella, D. Desmond, V. C. Hachinski, P. Mölsä, L. Gust-

afson, A. Brun, P. Fischer, T. Erkinjuntti, W. Rosen, et al., “Meta-analysis

of the Hachinski Ischemic Score in pathologically verified dementias,”

Neurology, vol. 49, no. 4, pp. 1096–1105, 1997.

[84] S. Daskalaki, I. Kopanas, and N. Avouris, “Evaluation of classifiers for an

uneven class distribution problem,” Applied artificial intelligence, vol. 20,

no. 5, pp. 381–417, 2006.



bibliography 172

[85] D. D. R. Cox, The analysis of binary data, vol. 32. CRC Press, 1989.

[86] N. J. Nagelkerke, “A note on a general definition of the coefficient of

determination,” Biometrika, vol. 78, no. 3, pp. 691–692, 1991.

[87] Cancer statistics: registrations, England, 2007. Office for National Statistics,

2009.

[88] Cancer Incidence. ISD Scotland (NHS), 2010.

[89] Cancer Incidence in Wales, 2003-2007. Public Health Wales, 2009.

[90] Cancer Incidence and Mortality. Northern Ireland Cancer Registry, 2009.

[91] The Diagnosis and Treatment of Lung Cancer. National Collaborating Centre

for Cancer, Cardiff (Wales), 2005.

[92] Early and locally advanced breast cancer: diagnosis and treatment. National

Collaborating Centre for Cancer, Cardiff (Wales), 2009.

[93] A. Molassiotis, C. Stricker, B. Eaby, L. Velders, and P. Coventry, “Un-

derstanding the concept of chemotherapy-related nausea: the patient

experience,” European Journal of Cancer Care, vol. 17, pp. 444–453, 2008.

[94] N. Kuderer, D. Dale, J. Crawford, L. Coser, and G. Lyman, “Mortality,

morbidity, and cost associated with febrile neutropenia in adult cancer

patients,” Cancer, vol. 106, pp. 2258–2266, 2006.

[95] G. Bonadonna, P. Valaguassa, A. Moliterni, and C. Brambilla, “Adjuvant

cyclophosphamide, methotrexate, and fluorouracil in node positive



bibliography 173

breast cancer patients: the results of 20 years of follow-up,” The New

England Journal of Medicine, vol. 332, pp. 901–906, 1995.

[96] D. Carr, L. Goudas, D. Lawrence, W. Pirl, J. Lau, D. DeVine, B. Kulpelnick,

and K. Miller, “Management of cancer symptoms: pain, depression, and

fatigue,” tech. rep., Agency for Healthcare Research and Quality, 2002.

[97] M. Groenvold, P. Fayers, M. Petersen, M. Sprangers, N. Aaronson, and

H. Mouridsen, “Breast cancer patients on adjuvant chemotherapy report

a wide range of problems not identified by health-care staff,” Breast

Cancer Research and Treatment, vol. 103, pp. 185–195, 2007.

[98] M. Jefford and M. H. Tattersall, “Informing and involving cancer patients

in their own care,” The Lancet Oncology, vol. 3, pp. 629–637, 2002.

[99] E. L. Poleshuck, J. Katz, C. H. Andrus, L. A. Hogan, B. F. Jung, D. I.

Kulick, and R. H. Dworkin, “Risk factors for chronic pain following

breast cancer surgery: a prospective study,” The Journal of Pain, vol. 7,

pp. 626–634, 2006.

[100] J. Armer, M. Radina, D. Porock, and S. Culbertson, “Predicting breast

cancer-related lymphedema using self-reported symptoms,” Nursing

Research, vol. 52, pp. 370–379, 2003.

[101] J. A. Talcott, J. Manola, J. A. Clark, I. Kaplan, C. J. Beard, S. P. Mitchell,

R. C. Chen, M. P. O’Leary, P. W. Kantoff, and A. V. D’Amico, “Time course

and predictors of symptoms after primary prostate cancer therapy,”

Journal of Clinical Oncology, vol. 21, pp. 3979–3986, 2003.



bibliography 174

[102] G. Dranitsaris, D. Rayson, M. Vincent, J. Chang, K. Gelmon, D. Sandor,

and G. Reardon, “The development of a predictive model to estimate

cardiotoxic risk for patients with metastatic breast cancer receiving

anthracyclines,” Breast Cancer Research and Treatment, vol. 107, pp. 443–

450, 2008.

[103] A. Louis, T. Turner, M. Gretton, A. Baksh, and J. Cleland, “A systematic

review of telemonitoring for the management of heart failure,” European

Journal of Heart Failure, vol. 5, pp. 583–590, 2003.

[104] N. Kearney, L. McCann, J. Norrie, L. Taylor, P. Gray, M. McGee-Lennon,

M. Sage, M. Miller, and R. Maguire, “Evaluation of a mobile phone-based,

advanced symptom management system (ASyMS©) in the management

of chemotherapy-related toxicity,” Supportive Care in Cancer, vol. 17,

pp. 437–444, 2009.

[105] N. Kearney, L. Muir, M. Miller, I. Hargan, and P. Gray, “Using handheld

computers to support patients receiving outpatient chemotherapy,”

European Journal of Cancer Supplements, vol. 1, p. S368, 2003.

[106] R. Maguire, L. McCann, M. Miller, and N. Kearney, “Nurse’s perceptions

and experiences of using of a mobile-phone-based Advanced Symptom

Management System (ASyMS©) to monitor and manage chemotherapy-

related toxicity,” European Journal of Oncology Nursing, vol. 12, pp. 380–

386, 2008.



bibliography 175

[107] N. Kearney, L. Kidd, M. Miller, M. Sage, J. Khorrami, M. McGee,

J. Cassidy, K. Niven, and P. Gray, “Utilising handheld computers to

monitor and support patients receiving chemotherapy: results of a UK-

based feasibility study,” Supportive Care in Cancer, vol. 14, pp. 742–752,

2006.

[108] R. Maguire, M. Miller, M. Sage, J. Norrie, L. McCann, L. Taylor, and

N. Kearney, “Results of a UK based pilot study of a mobile phone

based advanced symptom management system (ASyMS©) in the remote

monitoring of chemotherapy related toxicity,” Clinical Effectiveness in

Nursing, vol. 9, pp. 202–210, 2005.

[109] L. Forbat, R. Maguire, L. McCann, N. Illingworth, and N. Kearney, “The

use of technology in cancer care: applying Foucault’s ideas to explore

the changing dynamics of power in health cares ideas to explore the

changing dynamics of power in health care,” Journal of Advanced Nursing,

vol. 65, pp. 306–315, 2009.

[110] R. Maguire, J. Cowie, C. Leadbetter, K. McCall, K. Swingler, L. McCann,

and N. Kearney, “The development of a side effect risk assessment tool

(ASyMS©-SERAT) for use in patients with breast cancer undergoing

adjuvant chemotherapy,” Journal of Research in Nursing, vol. 14, pp. 27–40,

2009.

[111] L. McCann, R. Maguire, M. Miller, and N. Kearney, “Patients’ perceptions

and experiences of using a mobile phone based Advanced Symptom



bibliography 176

Management System (ASyMS©) to monitor and manage chemotherapy

related toxicity,” European Journal of Cancer Care, vol. 18, pp. 156–164,

2009.

[112] R. Harrison, W. Clayton, and P. Wallace, “Can telemedicine be used to

improve communication between primary and secondary care?,” Bmj,

vol. 313, no. 7069, pp. 1377–1380, 1996.

[113] J. L. DelliFraine and K. H. Dansky, “Home-based telehealth: a review

and meta-analysis,” Journal of Telemedicine and Telecare, vol. 14, no. 2,

pp. 62–66, 2008.

[114] J. Deaville, The nature of rural general practice in the UK: preliminary research.

Institute of Rural Health Tregynon, Powys, 2001.

[115] S. J. Katz, N. Nissan, and C. A. Moyer, “Crossing the digital divide:

evaluating online communication between patients and their providers,”

Am J Manag Care, vol. 10, no. 9, pp. 593–598, 2004.

[116] S. J. Leslie, M. Hartswood, C. Meurig, S. P. McKee, R. Slack, R. Procter,

and M. A. Denvir, “Clinical decision support software for management

of chronic heart failure: development and evaluation,” Computers in

biology and medicine, vol. 36, no. 5, pp. 495–506, 2006.

[117] K. D. Mandl, I. S. Kohane, and A. M. Brandt, “Electronic patient-

physician communication: problems and promise,” Annals of internal

Medicine, vol. 129, no. 6, pp. 495–500, 1998.



bibliography 177

[118] M. L. Hughes, S. J. Leslie, G. K. McInnes, K. McCormac, and N. R. Peden,

“Can we see more outpatients without more doctors?,” Journal of the Royal

Society of Medicine, vol. 96, no. 7, pp. 333–337, 2003.

[119] T. Raza, M. Joshi, R. M. Schapira, and Z. Agha, “Pulmonary telemedicine:

a model to access the subspecialist services in underserved rural areas,”

International Journal of Medical Informatics, vol. 78, no. 1, pp. 53–59, 2009.

[120] M. MacLeod, A. Finlayson, J. Pell, and I. Findlay, “Geographic, demo-

graphic, and socioeconomic variations in the investigation and man-

agement of coronary heart disease in Scotland,” Heart, vol. 81, no. 3,

pp. 252–256, 1999.

[121] R. Clark, K. Eckert, S. Stewart, S. Phillips, J. Yallop, A. Tonkin, and

H. Krum, “Rural and urban differentials in primary care management

of chronic heart failure: new data from the CASE study,” Medical Journal

of Australia, vol. 186, no. 9, pp. 441–445, 2007.

[122] E. Rygh and P. Hjortdahl, “Continuous and integrated health care

services in rural areas. A literature study,” Rural and Remote Health,

vol. 7, no. 3, p. 766, 2007.

[123] P. Whitten, A. Bergman, M. A. Meese, K. Bridwell, and K. Jule, “St. Vin-

cent’s home telehealth for congestive heart failure patients,” Telemedicine

and e-Health, vol. 15, no. 2, pp. 148–153, 2009.

[124] S. Simpson, J. Knox, D. Mitchell, J. Ferguson, J. Brebner, and E. Brebner,

“A multidisciplinary approach to the treatment of eating disorders via



bibliography 178

videoconferencing in north-east Scotland,” Journal of telemedicine and

telecare, vol. 9, no. suppl 1, pp. 37–38, 2003.

[125] B. J. Wakefield, J. E. Holman, A. Ray, M. Scherubel, T. L. Burns,

M. G. Kienzle, and G. E. Rosenthal, “Outcomes of a home telehealth

intervention for patients with heart failure,” Journal of telemedicine and

telecare, vol. 15, no. 1, pp. 46–50, 2009.

[126] C. Chandhanayingyong, B. Tangtrakulwanich, and T. Kiriratnikom, “Tele-

consultation for emergency orthopaedic patients using the multimedia

messaging service via mobile phones,” Journal of telemedicine and telecare,

vol. 13, no. 4, pp. 193–196, 2007.

[127] G. King, H. Richards, and D. Godden, “Adoption of telemedicine in

Scottish remote and rural general practices: a qualitative study,” Journal

of telemedicine and telecare, vol. 13, no. 8, pp. 382–386, 2007.

[128] B. Bergeron, “E-mail: a realistic conduit for patient-doctor communica-

tions?,” The Journal of medical practice management: MPM, vol. 15, no. 4,

pp. 208–210, 1999.

[129] M. S. Manikandan and S. Dandapat, “Wavelet-based ECG and PCG

signals compression technique for mobile telemedicine,” in Advanced

Computing and Communications, 2007. ADCOM 2007. International Confer-

ence on, pp. 164–169, IEEE, 2007.

[130] M. F. A. Rasid and B. Woodward, “Bluetooth telemedicine processor

for multichannel biomedical signal transmission via mobile cellular



bibliography 179

networks,” Information Technology in Biomedicine, IEEE Transactions on,

vol. 9, no. 1, pp. 35–43, 2005.


	Contents
	List of Figures
	List of Tables
	Acronyms
	Abstract
	Abstract
	Dedication
	1 Introduction
	1.1 Structure of the thesis
	1.2 Motivation and aims
	1.3 Original contributions
	1.4 Publications

	2 State of the art
	2.1 Clinical decision support systems
	2.2 The role of knowledge
	2.3 Features of an effective system
	2.4 An overview of data mining
	2.5 Logistic regression models
	2.6 Pitfalls in published predictive models
	2.7 Towards a general framework

	3 Framework description
	3.1 Dataset preparation
	3.1.1 Variables pre-processing
	3.1.2 Collinearity among independent variables
	3.1.3 Variables selection

	3.2 Model construction
	3.2.1 Regression

	3.3 Model validation
	3.4 Model evaluation
	3.5 Misclassification analysis
	3.6 Implementation

	4 Case study 1: A 28-day mortality model for acute alcoholic hepatitis
	4.1 Background
	4.2 Aims
	4.3 Dataset preparation
	4.3.1 Study sample
	4.3.2 Candidate variables

	4.4 Model construction
	4.4.1 Logistic regression
	4.4.2 Variables selection and model validation
	4.4.3 Model evaluation

	4.5 Results
	4.6 Misclassification analysis
	4.7 Implementation
	4.8 Discussion
	4.9 Conclusion

	5 Case study 2: A predictive model to aid the diagnosis of dementia
	5.1 Background
	5.2 Aims
	5.3 Dataset preparation
	5.3.1 Study sample
	5.3.2 Collected variables

	5.4 Model construction
	5.4.1 Logistic regression
	5.4.2 Variables selection
	5.4.3 Model validation
	5.4.4 Model evaluation

	5.5 Results
	5.6 Misclassification analysis
	5.7 Implementation
	5.8 Discussion
	5.9 Conclusion

	6 Case study 3: A side-effects mapping model in patients receiving chemotherapy
	6.1 Background
	6.2 Aims
	6.3 Dataset preparation
	6.4 Model construction
	6.4.1 Pre-modelling
	6.4.2 Regression
	6.4.3 Model evaluation and validation

	6.5 Results
	6.5.1 Area under ROC curve
	6.5.2 R2 and p-values
	6.5.3 Analysis

	6.6 Implementation
	6.7 Discussion
	6.8 Conclusion

	7 Conclusions and future work
	7.1 Conclusions
	7.2 Future work

	A Information and communication technology usage in patients
	A.1 Communication technologies for healthcare
	A.2 Methodology
	A.3 Results from questionnaire
	A.4 Analysis of results
	A.5 Conclusion

	B Mathematical formulation of regressions and gradient descent
	B.1 Linear regression
	B.2 Logistic regression
	B.3 Gradient descent

	Bibliography

