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Part I: A Mathematics Curriculum for General iducation



Chapter 1: Democracy and General Education

My purpose in Part I is to develop a model of general
mathematical education: that is, to identify aims appropriate to
a course of mathematical education which forms part of a programme
of general education. To do so presumes, of course, that it is
possible to justify both the inclusion of mathematics-related aims
and content in the curriculum, and their organisation around a
unit entitled 'mathematics'. I will offer arguments for both these
presuppositions, as well as for my model of general mathematical
education.

I regard it as particularly important that these arguments
should be anchored in a global theory of general education, rather
than an ad hoc theory which professes to deal satisfactorily with
a small part of general education in isolation. For it is only
from the viewpoint of a global theory that it is possible to
evaluate the conflicting and competing claims for the inclusion of
individual curricular units. Nonetheless, my strategy of
exposition anticipates, to a certain extent, my conclusions. Where
appropriate, I will illustrate and discuss global arguments with
particular reference to natﬁenatica. In this way I hope to indicate
both the general criteria underlying my global theory of general
education, and their application to the particular case of

mathematics.

(1) Educational change and the idea of democracy

The long public debate over the democratisation of our school
system has focused predominantly on its selective function, in

particular on the way in which the organisation of schooling helps



to reproduce a stratified and differentiated social and occupa-
tional structure. Discussion of the content and aims of the
education which schools provide has not been proninent.1

The dominant reformist view has sought equality of opportunity,
a shift from ascribed to achieved status, from aristocracy to
meritocracy. This view stems from a conception of democracy which
champions the right of each individual to improve his social and
economic status. It demands not that the school should relinquish
its selective role, but that it should exercise it rationally,
effectively and equitably. There has, of course, been increasing
disagreement over the rationality, effectiveness andequity of
different forms of selection. As a result, there has been a
shift from sponsored to contest mobility, leading to a delayed
ascription of roles, and from overt to hidden selection. 1In
particular, patterns of curriculum have become more diffuse, and
curricular differentiation has become the instrument rather than
the outcome of selection.

A more recent, but less influential view seeks equality of
outcome as the necessary prerequisite of a more even distribution
of wealth and status, either within society as a whole, or
between particular groups within socioty.2 It suggests that the
school should abandon, or at least adapt its selective role as
part of a programme of positive intervention aimed at diminishing
variations in wealth and status within society. The protagonists
of this view welcome the deferment of selection and the diminution
of differentiation, although they believe that these processes have
not yet advanced sufficiently.

Both these views are based on primarily economistic conceptions



of democracy: that is, they define democracy principally in terms
of some ideal principle underlying the just distribution of wealth
and, to a lesser extent, status within society. Their principal

concern is the selective function which the school fulfils, and

which influences the distribution of wealth and status. Their

concern with the educational purpose of the school is subordinate

to their concern with its selective function.

Over the last century these reformers have successfully
challenged first, the restricted availability of education, and
then, differentiation within the educational system. This century
of educational change has led to the comprehensive school, mixed-
ability teaching, proposals for common systems of examinations at
16 plus in both England and Scotland, and a certain measure of
positive discrimination in the allocation of educational resources.

I am not convinced that democracy in its full sense can be
reduced, either in principle or practice, to economic democracy,
admirable as that concept may be in its own right. In principle,
a conception of democracy which asserts people's equal rights in
society has not just an economic, but a political and cultural
dimension as I hope to make clear at a later point. And in
practice these three aspects of democracy are interdependent and
mutually sustaining. Imn a society in which the influence of the
principle of economic democracy, at least in its stronger forms,
is notably absent from other important social institutions, and
in which the principle itself is far from generally accepted, the
effectiveness of educational change in advancing economic democracy
is likely to be limited if that change ignores other aspe;ts of

democracy.



For these reasons I believe that, despite the desirability of
their aims, the predominant influence of economistic conceptions
of democracy on the debate about the democratisation of our school
system, and on the ensuing changes has been unfortunate.

The extension of educational provision and opportunity has been
rationalised and supported, however, not only in terms of economic
democracy, but as instrumental to the maintenance of social order
and to the encouragement of economic growth in a changing and
increasingly complex society. Indeed, this second argument fits
neatly with that of economic democracy, and the resulting economis-
tic view of education has exerted a profound influence on public
debate since the Second World Har.3 For the individual, education
is seen as the instrument of personal economic and social
advancement through the access it offers to more skilled employment:
for the economic manager, education is the instrument of man-
power planning which provides the 'human capital' to sustain
economic growth. Not surprisingly then, many of the proponents of
the extension of educational opportunity have allied themselves
with a technocratic model of vocationally-oriented education, con-
sistent with the economic presuppositions of their arg'nlen'c.‘+

Now, an awareness of the role of education in advancing
economic democracy has long ﬁnd a place in radical thought. We
find, for example, Thelwall, a leading radical of the 1790's,
arguing in his 'The Rights of Nature', that all children should be
educated so that,

"if they have the virtue and taleat [Ehey should
be ab;§7 to improve their condition and mount to
their intellectual level, though it be from the

lowest to the very highest station of aociety."5



But there is another aspect of democracy, and another view of the
role of education in advancing democracy which deserve our
attention. In the first half of the nineteenth century, the self-
education of the working classes through the Corresponding
Societies, Secular Sunday Schools, Hampden Clubs, Owenite Halls of
Science, and Chartist Halls and Schools was seen by the theorists
of the Radical movement as an instrument of self-realisation and
political enancipation.6 This flowering of independent working
class education was strongly influenced by the views of education
advanced by Radical writers such as Paine, Godwin, Owen, Carlile,
Thompson and Lovett.?
The firat characteriatic of the Radical tradition was a reject-
ion of theories which saw man's patterns of behaviour as innate,
and a belief in the formative power of education and the ultimate
perfectibility of man. The second characteristic was an emphasis
on science and scientific education as a means to truth. Paine, in
his widely read and influential 'The Age of Reason', argued for a
secular education based on acience, which would enable man to be
free to realise himself, to understand his place in the universe
and to act accordingly. He attacked the mythology of Christianity
as a barrier to science, and the central place of classical
languages in contemporary education as irrelevant to enlightenment
and understanding. This argument was taken up and developed,
notably by Carlile who argued that scientists should make their
discoveries known to all, im order to drive out superstition and
dogma: scientific truth about the universe was the condition for
human progress and enlightenment. Finally, as their emphasis on

science and attack on religion suggests, the members of this



tradition argued for a secular education, and the development of
a secular morality.

The content and aims of education were of the highest signifi-
cance to the early Radicals. The independent working class
education of the first half of the nineteenth century centred on
the physical, natural, social and political sciences, and encouraged
discussion and argument about the relation of their ideas to
contemporary issues. Its intentions were liberal and general, and
were closely linked to the struggle for political democracy.

The pre-eminent bearer of this tradition in our time is
Hillians.a He argues that we are living through 'a long revolution'

which has three aspects. The democratic revolution by which people

shall come to,

"govern themselves, and make their own decisionms,
without concession of this right to any particular
group, nationality or class"g

is at an early stage. This achievement of political democracy is
made more difficult by the increasingly complex social organisation
created by the continuing industrial revolution. Beside and beyond
these lies the cultural revolution which will extend the active
process of learning and the ability to communicate in varied and
effective ways throughout society.

Williams is particularly concerned that education should
prepare individuals to participate fully in democratic decision
making, and that it should help to develop, and give access to, a
common intellectual culture. He criticises the lack of attention
given by the traditional grammar-school curriculum to social studies,

to non-literary and popular art forms and to the history of

scientific discovery and its social effects. The curricular model



he advances is as follows.

(a)

()

(c)

(d)

(e)

Extensive practice in the fundamental languages of English and
mathematics;
General knowledge of ourselves and our environment, taught at

the secondary stage not as separate academic disciplines but

as general knowledge drawn from the disciplines which clarify

at a higher stage, i.e.

(i) biology, psychology,

(ii) social history, law and political institutioms, sociology,
descriptive economics, geography including actual industry
and trade,

(iii) physics and chemistry;

History and criticism of literature, the visual arts, music,

dramatic performance, landscape and architecture;

Extensive practice in democratic procedures, including meetings,
negotiations, and the selection and conduct of leaders in
democratic organizations. Extensive practice in the use of
libraries, newspapers and magarines, radio and television
programmes, and other sources of information, opinion and

influence;

Introduction to at least one other culture, including its

language, history, geography, institutions and arts, to be

given in part by visiting and oxchange.10

While Williams' curricular model is at a high level of generality

and lacks an articulate rationale, it builds on the Radical

tradition with its concern that pupils shouwld come to see and

understand the world through the eyes of science, and should



develop the ability to participate articulately and effectively in
political decision making. To this Williams adds a concern with the
arts in their widest sense, and with different patterns of life and
culture.

This is the tradition of educatiomal theorising which I wish
to extend in arguing for a democratic model of general education.
While its proponents have often been over-optimistic about the role
which education might play in advancing democracy - attributing to
it a primacy or autonomy which it does not possess - I believe that
they are fundamentally correct in arguing that a certain form of
education is a necessary prerequisite for a fully democratic

society.

(2) The idea of general education

The very vagueness of the terms 'liberal' and 'general'
education which recommends them to the debater, renders them
inadequate for the planner. For the common kernel of the different
formulations of these concepts - beyond which many extend no
further - is essentially negative. General education is not
vocational or specialist education. Many of the positive defini-
tions are very weak, making general education synonymous with
little more than the study of a 'broad' or 'balanced' selection of
subjects. There are three levels for such definitions. Weakest
is that where general education is defined solely in terms of the
number of subjects that pupils study. Next come those which insist
on a certain range of subjects. Finally, there are those which
prescribe the inclusion of certain subjects or areas of experience

in & curriculum for general education.



For example, Hunter11 presents the Scottish Ordinary Arts
degree as an example of general education on the grounds that
students have to study at least five subjects. Drever12 argues from
the second level, observing that a certain range of subjects is
required, thus preventing undue concentration on cognate subjects,
and notes that previously it was obligatory to include in the
curriculum for the degree, a philosophical subject, a foreign or
classical language, and a mathematical or scientific subject (the
third level).

Thus, in these senses, both Scottish and English schools offer
a general education up to age 16, in that current practice is for
pupils to study a large number (first level) and a wide range
(second level) of subjects. The recent Munn Report13 proposes a
slightly stronger definition by prescribing the inclusion of seven
subjects, or subject-types in the Scottish curriculum (third level).

Nonetheless, definitions of general education which focus
solely on the orgmnisation and structure of the curriculum are
relatively weak. For however many subjects a pupil may study, how-
ever exhaustive and wide-ranging they may be, such a definition
ignores the possibility that, within each subject, the perspective
is that of the specialist: that the subject unit is conceived as
part of the formation of the future specialist, and aims to impart
the knowledge, skill and understanding appropriate to this end,
rather than that which will be of value to the non-specialist.

That this is the case with current mathematics curricula will become
more fully apparent at a later point.

In recent years 'general education' has acquired another

connotation. It has become a euphemism for non-certificate
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education. One example is the recently developed 'Mathematics for
General Education': the title is justified by its authors on the
grounds that they believe that it will encourage a more positive
attitude towards the education of non-certificate pupils than the
originally proposed 'Non-certificate Mathemad:ics'.“‘+ Now, while
the sentiments implicit in this justification are entirely laudable,
I doubt the wisdom of arrogating the title 'general' to a form of
mathematical education which is not grounded in any theory of
general education, and which, it transpires, is general neither in
the view of mathematice and mathematical activity which it promotes,
nor in terms of the group of pupils at which it is aimed.

What all these definitions lack is a clear, positive rationale
to act as a guide to the aims, content and organisation of a
curriculum for general education, and of the units which it

comprises.

(3) Democratic general education

It is man's intellectuality which makes human society possible.
Through it man builds systems of ideas which enable him to
interpret and intervene in the world. Medical treatment, economic
planning, the adaptation of physical environment, religious
observance, government and education are examples of human inter-
ventions based on these systems of ideas. This is not to argue
that ideas are autonomous or asocial, nor that man's intellectuality
is the motor of social and historical change. It is eimply to
draw attention to the fact of man's intellectuality, and the
possibility of understanding, and thereby regulating and transform-

ing the world, which it holds out to him, limited as it may be.
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The positive formulation of general education which I wish to
advance starts from the belief that the overriding aim of general
education should be to give access to man's intellectuality, to the
systems of ideas through which he makes sense of, and modifies his
experience. The need for general education arises from the rich-
ness, variety and extent of these systems. Certainly no individual
could expect to master more than a small fraction of them during
his lifetime. The division of labour, and the associated
specialisation of knowledge, skill and understanding is a social
reality which the school cannot ignore.

It is here that questions of political and cultural democracy
arise. For the poasession_;;'an appropriate framework of uhder-
standing is a prerequisite of participation in any activity. Any
educational process equips its subjects to participate in society
in certain ways.

Political decisions are decisions about the kind of society
that we will live in. A political decision is one that can be seen
to influence or effect change - or the absence of change - in the
world in which we live. Of course, the social significance of an
issue, and thus the legitimacy of its inclusion in the political
arena, may itself be a matter of political controversy. Arguments
over the role of 'political' considerations in sport and education,
or over the degree of public scrutiny to which certain planning
decisions should be subject - for example, those relating to the
construction of motorways and industrial complexes, or the develop-
ment of nuclear power - exemplify how political disagreement may
reflect different demarcations of the domain of politics.

Nonetheless, although views may differ over the extent to
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which decisions have political significance, or should be subject
to public control, in all societies, and particularly in an
industrial society such as ours where innovation is in many senses
institutionalised, decisions which clearly have the potential to
change the nature of the society have frequently to be made. Such
decisions are made, not only within the formal institutions of
national and local government, but within the network of institutioms
around which social life is organised; institutions such as
industrial and commercial enterprises, financial institutions,
professional bodies, trade unions, and the mass-communications media.
Effective political democracy - the collective control of the
processes by which the natural and social world is regulated and
transformed - depends on the ability of members of society to
recognise and comprehend the issues involved in making such decisions,
as well as their right to participate in the process of decision-
making.

The role of general education in advancing political democracy
is a modest one. It is clear that in a complex and changing
society not even the specialist can expect to have at his finger-
tips the detailed knowledge and understanding needed to resolve the
many issues which arise in deciding - say - Britain's constitutional
future, or on the development of a nuclear power programme, or on
the ratification of an international trade agreement. It would be
most misguided to expect that general education could anticipate
those issues which were likely to exercise society over the coming
half century, let alone provide the detailed knowledge and
understanding - much of it still undeveloped - needed to make a

satisfactory decision on these issues. What general education can
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offer is an insight into the fundamental principles underlying the
complex systems of ideas which man has developed, and into the
significance of these systems. It provides a foundation on which
pore particular understanding can be built as the occasion arises.

For example, a curriculum for general education is likely to
deal - if not in name in substance - with concepts such as the atomic
structure of matter, radiocactivity, mutation, pollution, renewable
and non-renewable resources, exponential growth and decay, and
extrapolation on which a more specific understanding of the issues
surrounding the development of nuclear power can be built; the
processes by which nuclear power can be produced, the forms of
environmental pollution which may result, the feasibility of using
alternative energy sources, the methods of projecting future power
needs, and so on.

The part which general education plays, them, in advancing and
securing political democracy is to provide a basic understanding
of the ways in which man interprets and intervenes in the world.

The basis of the democratic ideal is the belief that all
people have the same rights in society. Economic democracy asserts
their right to share the wealth that society produces, political
democracy their right to shape the development of society. But
social life cannot be reduced simply to its economic and political
dimensions. Cultural democracy is a more complex phenomenon.
Ultimately it asserts the right to 'belong' in society. Under that
rather vague rubric can be grouped the right to have access to, and
to develop or reject man's systems of ideas in order to examine
and make sense of the world, and the right to develop a sensibility

and to find a form of life within society. These two rights are
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linked to the extent that the choice of a form of life is based on
some view of the world in which that life takes place.

This definition of cultural democracy may appear to be social
rather than personal, to place society before the individual. Such
an interpretation would be mistaken. Certainly this view dismisses
the romantic fiction of the individual as apart from, or above
society: instead it is based on the recognition that personal
fulfilment is fulfilment within society, even if it involves changing
rejecting or distancing oneself from society. This is what
Heidegger means when he talks of the hermit as '"being with others in
a deficient mode". Effective cultural democracy depends on the
accessibility of different world-views and forms of life, not just
to allow individuals or groups to choose a form of life, but to
make possible a common understanding of different world-views and
forms of life, and the political questions which these may raise.

Uhite15 lists a number of forms of life, including those
devoted to the pursuit of truth, to artistic creativity, to others'
good, to physical prowess and adventure, to physical pleasure, to
religious devotion, the acquisition of goods, the acquisition of
power over others, and, of course, the ever-present alternative, the
surrender of choices about one's life to others. These are clearly
'ideal' types. In practice, the life of any individual is likely
to reflect some combination of such ideals. Similarly the view
that individuals or groups choose a form of life is idealised.

Many aspects of a form of life may be traditional - inherited, or
adopted without scrutiny.

Again the role of general education is a modest one. It cannot

conceivably examine all potential world-views and forms of life.
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What it can do is to provide an intellectual framework within which
different kinds of sensibility and forms of life, and the world-
views on which they are based can be understood or investigated,
whether they have been consciously chosen, or simply inherited by
members of society.

Democratic general education, then, attempts to provide a
framework of understanding which opens up human intellectuality,
and through it human endeavour to all, as a prerequisite of cultural
and political democracy. It aims to provide a key to the systems
through which man makes sense of, and modifies his experience.

Clearly, if it is a prerequisite of effective democracy, such
an education should be available to all, regardless of the
specialised and differentiated social roles that they will play.
Considerations of aptitude and ability, or motivation do not provide
legitimate grounds for restricting the availability of such an
education. On the contrary, these considerations, if applicable,
point to the necessity of identifying methods of making the framework
which general education offers intelligible to the less able, and
meaningful to the unmotivated. Given a commitment to democracy,
this is a simple corollary of our common humanity and our social
existence.

There is a further argument of a rather different kind for
such a general education. It points to the uncertainty and unpre-
dictability of the future in a complex and changing society such
as ours, and suggests that an education which focuses on particulars,
or on specialised knowledge and understanding is likely to become
rapidly redundant. An education which deals with broad principles

over a wide area of understanding is more likely to enable the
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members of such a society to adapt effectively to their changing
environment.

These are not simply arguments for general education which can
novw be quietly discarded. They generate criteria against which a
proposed programme of general education must be evaluated. The
arguments from political and cultural democracy suggest that it is
not enough for a curriculum for general education to familiarise
pupils with the basic principles of systems of ideas. It is essential
also, that the nature and significance of these systems of ideas,
and the ways in which they help man to interpret and intervene in
the world should be considered within the curriculum. The argument
from change suggests that general education should aim to convey a
framework of understanding which can accommodate the dynamic of
social and intellectual change.

The view that general education should give access to man's
intellectuality rums, to some extent, counter to currently
fashionable notions such as 'community education' and 'total
education' (which I understand to comprise social, personal, moral,
and leisure education). Certainly it is a reassertion of the
intellectual purpose of the school, from which many of these notions
seem to be a flight, encouraged both by the ossified and largely
academic goals set by traditionmal subject curricula, and the failure
of many schools to achieve these intellectual goals with the
majority of their pupils. There is no reason why schools should
not pursue aims additional to those of general education. There
is certainly a place in curriculum planning for more directly
utilitarian aims related to pupils' everyday needs, and for more

specialised aims which take account of pupils' individual interests.
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What is important is that general educational aims should not be
subordinated to other aims, or entirely driven from the curriculum
by such aims. Further, there is no reason why general education,
as I have described it, should not use the local community as a
resource. Nor is it antagonistic to the aims of social, personal,
moral or leisure education. Indeed, it offers access to the basic
intellectual frameworks within which the more specialised issues
that these topics raise can be understood. The only prescription
implicit in my argument is that general educational aims should be
pursued by the school, and that they should be pursued for all pupils.
The view that general education should give access to man's
intellectuality is one which commands fairly wide support among
curriculum theorists, as does the view that such an education should
be available to all. Theorists such as Phenix16 and Schwab17 in
the United States, and Hirst, Peters'® and White'? in the United
Kingdom all broadly support such a view: where there is less
agreement is over the form and content of a curriculum for general

education.
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Chapter 2: Knowledge and the Disciplines

The argument so far has been rather abstract. While it may be
hard to dissent from the conclusion that all pupils should be
offered a general education which makes human intellectuality
accessible, it would have rather more significance if the form and
content of general education, and their relation to the argument in
favour of such an education could be made more concrete.

But a coherent programme of general education must be based on
an analysis of the systems of ideas which man has developed, an
analysis which will influence the more specific aims, content and
organisation of the curriculum. The path to a more concrete model
of general education is through an analysis of these systems of

ideas.

(1) The disciplines thesis

I have already observed that ideas underpin man's interpreta-
tion of his world and his intervention in it. The distinction
between the two processes is reflected, in some measure, in the way
in which systems of ideas are structured. Some systems of ideas
are organised around issues of interpretation, others centre on
problems of intervention. For example, geometry, as we commonly
understand it, is primarily concerned with interpretation: survey-
ing, by contrast, focuses on intervention. Astronomy, geography
and aesthetics are primarily interpretative, while aerospace
engineering and environmental planning and design are primarily
concerned with intervention.

Most contemporary curriculum theorists restrict their analysis

of aystems to interpretative systems, on the grounds that the
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developed systems of intervention are all based on knowledge
locatable within some interpretative system. This is the approach
of the two analyses which have been particularly influential in
curriculum theory in recent years, those of Phenix and Hirst.1 It
is in the worke of these two theorists that the thesis that
knowledge falls into a limited number of logically distinct cate-
gories - the disciplines thesis - can be found in its most developed
forms.

Hirst argues that there are seven logically distinct forms of
knowledge; mathematics, the physical sciences, the human sciences,
and aesthetic, moral, religious and philosophical knowledge. FPhenix
suggests that knowledge falls into six logically distinct realms of
meaning; synoetics, aesthetics, symbolics, empirics, ethics and
synoptics. However, much of his argument is framed in terms of
disciplines which, he argues, exhibit distinctive logical structures
and patterns of meaning which enable them to be grouped in realms.
Phenix's argument is not entirely clear here. His realms seem to
cut across his disciplines to some extent: parts of the disciplines
of philosophy and religion belong to the realm of synoetics, others
to synoptics; parts of literature to synoetics, others to aesthetics.
Indeed, Hirst has criticised the loose and unconvincing relation
between disciplines and realms in Phenix's argnnent.2

I propose to examine the thesis in relation to mathematics.
There are a number of reasons for this choice of approach. First,
while there are fairly substantial disagreements between Hirst and
Phenix at a more general level, their characterisation of
mathematics, and their arguments for its status as a discipline are

remarkably similar. Second, mathematics is an area in relation to
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which the disciplines thesis has been taken as particularly clear
cut. To test it here is to test it where it is strong. Finally,
I am particularly concerned with the practical implications of the

thesis for curriculum design in mathematics.

(2) Mathematics as a discipline: exposition

Mathematics is one of Hirst's seven 'forms'. He describes a
form as
"a distinct way in which our experience becomes
structured round the use of accepted public aymbols"3
and argues that for an area of knowledge to be a form it must
possess
(1) certain central concepts that are peculiar in character
to it,
(2) a distinctive logical structure ordering its concepts, and
relations between them,
(3) a distinctive way in which propositions are tested against
experience,
(4) distinctive methods of enquiry.

He identifies (3) as the crucial criterion.

" .. the central feature .. (to which these criteria point)
«s is that disciplines can be distinguished by their
dependence on some particular kind of test against

experience for their distinctive expresaions."u

Although Hirst's description of mathematics is fragmentary and
his work lacks a systematic argument for regarding mathematics as
a discipline, it is possible to comstruct the form of such an

argument from his writings. We are told that,
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" .. number, integral and matrix (are distinctive
concepts) .. in lathenatics,"5
and, crucially, in view of his account of the criteria for
demarcating disciplines, that,
" ,. (the validity of mathematics) depends on deductive

demonstrations from certain sets of axions."6

More particularly he states that,
" .. the truth that the lengths of the sides of a right
angled triangle satisfy the equation a2 = b2 + c2 rests
on the truth of a sequence of earlier propositions which,

in turn, depend on the axioms of Euclidean geonetry."7

Mathematics is one of the 'disciplines' that make up Phenix's
‘realm' of symbolics. He argues that a discipline is identifiable
by its representative ideas and their structure (Hirst's (1) and
(2)), the methods of enquiry and testing that it employs (Hirst's
(3) and (4)), and ite subject matter (effectively reducible to
Hirst's (1) at some theoretical level).
Phenix's description of mathematics is more compact and detailed
than that of Hirst. He argues, as Hirst appears to, that,
" .. The method of mathematice is essentially postulational.
This means that certain postulates, or axioms, are
arbitrarily chosen as part of the foundation of a given
mathematical system. These postulates are not "self-
evident truths," as, for example, the axioms of Euclidean
geometry were formerly thought to be. They are assumptions
taken as a starting point for the development of a chain

of deductive inforences."8
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He argues further that:
"The subject matter of mathematics is .. formal (abstract)
symbolic systems within which all propositions are

consistent with each other."9
Phenix identifies certain concepts as central to mathematics.

"These ideas of elements, sets, equality, sum, product,
and difference comprise basic terms from which all other
mathematical concepts can be developed, provided certain

basic logical concepts are also presupposed."1o

(3) Criticism: the nature of a discipline

But throughout the work of Phenix there is ambiguity about
whether the definition of a discipline which is being used is indeed
a logical one, based on distinctions between the truth criteria
used to evaluate propositions and theories, rather than a social
one which identifies a discipline with some historical tradition
of enquiry and activity, or a commonsense one which tacitly
reflects elements of both.

On those occasions when Phenix deals explicitly with the
problem of demarcating disciplines he argues for a logical definition
which makes distinctions between disciplines on the basis of the
truth-criteria, and the associated concepts and methods which
characterise a particular area of knowledge. On other occasions,
however, Phenix appears to use a commonsense definition of a
discipline which is not strictly founded in the logical criterion.
Passages such as the following seem to conflate social and logical

definitions.
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“"The general test for a discipline is that it be the
characteristic activity of an identifiable organized
tradition of men of knowledge, that is, of persons who
are skilled in certain specified functions that they are

able to justify by a set of intelligible standards."'’

While Hirst consistently asserts the priority of the logical
definition, he sees social and logical definitions as coinciding,

at least in the disciplines as they are currently constituted.

"The development of mind has been marked by the progressive
differentiation in human consciousness of some seven or
eight distinguishable cognitive structures, each of which
involves the making of a distinctive form of reasoned
judgement and is, therefore, a unique expression of man's
rationality. This is to say that all knowledge and
understanding is logically locatable within ...
mathematics, the physical sciences, knowledge of persons,
literature and the fine arts, morals, religion and
philosophy. These would seem to me to be the logically

distinct areas."'2

The case of arithmetic points to the weakness of Hirst's
position, and to the seriousness of the confusion in that of Phenix.
Both regard arithmetic as clearly part of mathematics. But in
vhat sense are the arithmetical propositions we learn, comstruct
and use dependent on deductions from axioms? To make statements
about numbers we do not make deductions from axioms in any sense
which preserves the distinctiveness of that conceptual scheme.
Rather we use a number of geometrical and physical analogies (such

as the number line), and rules of calculation, to construct and
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test arithmetical statements.

Of course it might be argued that, while we do not actually
construct and test arithmetical propositions in such a manner, their
truth is in some ultimate sense dependent on their deducibility
from some set of axioms. But, as we shall see in a later section,
this argument can only be sustained at the expense of the meaningful-
ness and applicability of arithmetical propositions. Further, such
an argument would appear to be incompatible with Hirst's claim
that

"It is quite impossible to learn facts, to know them as
facts, without acquiring the basic concepts and criteria

for truth involved."13

Nov‘it is part of our commonsense knowledge that arithmetic is part
of mathematics. But arithmetic does not satisfy the logical
criterion for inclusion in the discipline of mathematicas. Here
logic conflicts with commonsense.

The coanfusion between logical and commonsense definitions of
mathematics is then a serious one. Indeed, I hope to show that
to adopt the logica; definition of mathematics which Hirst and
Phenix advance is to exclude virtually all of what is, and has been,
commonly termed nathematics,—whether we interpret 'deduction from
axioms' as a characterisation of the method of procedure adopted
by mathematicians, the form in which they present their conclusions,

or the epistemological basis of mathematical knowledge.

(4) Criticism: a socio-historical perspective
Interpreted as a characterisation of the concerns, or methods
of procedure of mathematicians, or of the form in which their comn-

clusions are expressed the logical definition of mathematics adopted
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by Hirst and Phenix admits little of what, in the commonsense terms
of mathematician and layman alike, passes as mathematics. The
great mass of it must be excluded as based on d'Alembert's optimis-
tic credo;
Allez de l'avant: la foi vous viendra.

Quite simply the majority of mathematicians spend their time
producing interesting and plausible guesses, supported by informal
reasoning, in order to develop mathematical systems, or to apply
mathematical ideas énd procedures to problems elsewhere. The
methods they employ do not approach the degree of rigour demanded
by Hirst and Phenix. Full-blooded deductive rigour is the goal of
only a small number of mathematicians.

Clearly this view raises even greater problems in relation to
the history of mathematics. Phenix would be compelled to agree with

Russell that the history of mathematics starts in 1854.

"Pure mathematics was discovered by Boole, in a work which
he called the 'Laws of Thought' (1854). This book
abounds in asseverations that it is not mathematical, the
fact being that Boole was too modest to suppose his book
the first ever written on mathematics. ... His book was
concerned with formal logic, and this is the same thing

as lathenatics."1l+

Hirst would be slightly less exclusive. Euclid's geometry and Cauchy's
analysis are on the right lines, but riddled with errors and
omissions.

Enquiry governed by other conceptions of mathematics is dis-
missed, and the knowledge it produces not recognised unless, and

until it has been put into deductive form. This dogmatic viewpoint
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excludes from 'mathematics' the mathematics of ancient Egypt,
India and China, a great deal of Greek mathematics, and Arab
algebra. The mathematices of the 17th and 18th centuries, which
included book-keeping, ballistics, navigation, astronomy and optics,
guided by Descartes' view of mathematics as the science of quantity,
is excluded by this dogmatism, as are the topological and
algebraic enquiry of the 19th century, and the metamathematical
enquiry of the 20th century which have led some mathematicians to
conceive of their work as the study of structure. Dogmatism
conceals diversity, dissent and change in mathematics as we commonly
understand it, by excluding that which is anomalous through its
definition of the discipline.

Lakatos has pointed out the basic weakness of this logical
definition.

"Formalism denies the status of mathematics to most of
vhat has been commonly understood to be mathematics and
can say nothing about its growth. None of the
‘creative' periods and hardly any of the 'critical!’
periods of mathematical theories would be admitted into
the formalist heaven, where mathematical theories
dwell like seraphim, purged of all the impurities of
earthly uncertainty. Formalists, though, usually leave
open a small back door for fallen angels; if it turns
out that for some 'mixtures of mathematics and something
else' we can find formal systems 'which include them in
a certain sense', then they too may be admitted. On
these terms Newton had to wait four centuries until

Peano, Russell, and Quine helped him into heaven by
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formalising the Calculus. ... Perhaps we should mention
here the paradoxical plight of the metamathematician: by
formalist, or even by deductivist standards, he is not
an honest mathematician. Dieudonne talks about 'the
absolute necessity imposed on any mathematician who
cares for intellectual integrity' to present his

reasonings in axiomatic forl."15

(5) Criticism: a philosophical perspective

Having established that an interpretation of Hirst and Phenix's
logical definition of mathematics as a characterisation of the
procedure of mathematicians, or of the form in which they present
their conclusions, excludes much of what we commonly understand as
mathematical activity, I now intend to show that, interpreted in
epistomological terms sufficiently rigorous to preserve its power
of demarcation, their logical definition excludes virtually all of
mathematics as we conventionally understand it. In order to do so
it will be necessary to explain the meaning of some of the technical
terms which mathematicians use to distinguish different kinds of

mathematical theories.

(i) Informal mathematics and truth

In informal mathematics - that is the kind of mathematics that
most of us are familiar with - terms and propositions have specific
meanings. The fundamental question is whether or not a proposition
or a theory is true, what Godel terms 'correct as regards content'.
Axiomatising a theory reduces the problem of the truth of its

theorems to that of its axioms, for if the axiems are true (and
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the rules of inference preserve truth) then the deductive method
transmits truth down to the theorems. By axiomatising a theory
mathematicians hope to reduce the truth of its propositions to
that of a set of axioms. Clearly, then, the deductive method does
not solve the problem of truth, it omnly transfers it. At some
point we still become dependent on some direct test of truth in

terms of, for example, arithmetic, logical or spatial 'intuition',

(ii) Formal derivation and formal systems

There are certain rules of inference which allow us to draw
immediate conclusions from suitable propositional forms. For

example modus ponens

If P then Q

P

Q
and conversio simplex

Some A's are B

Some B's are A

A proposition is formally derivable from a set of axioms if
we can by manipulating the axioms in accordance with certain rules
of inference obtain the proposition. The important aspect of
this process is that the meaning of terms or propositions is
immaterial to the drawing of the conclusion. That is why we call
it a formal derivation. A formal system is defined by a set of
axioms and a set of rules of inference. It is simply an axiomatic

system in which terms and propositions are uninterpreted.
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(1ii) Deduction and Proof

An axiomatised informal theory (a deductive system) shorn of
its meaning is, then, just a formal system. We say that the
informal theory is a model of the formal system. A deduction of a
theorea from the axioms in the deductive system runs parallel to a
formal derivation of the identical propositional form in the
formal systenm.

But in informal mathematics 'proof' is a wider concept than
'deduction from axioms'. The admissible methods of proof include
not just the syntactic (meaning-independent) techniques of
derivation, but semantic (meaning-dependent) techniques such as the
use of counter examples.

(For example we can prove that the proposition, For all

natural numbers n, strictly greater than 1, 2°-1 is a prime is
false, by use of the counterexample, 2“-1 = 15). To show such

results deductively we would have to demonstrate that no formal

derivation yielded the appropriate propositional forms.

It was in the hope of eliminating such semantic techniques and
developing & more rigorous concept of proof that modern mathemati-
cians turned to the axiomatisation of informal mathematics. They
hoped that by axiomatising a mathematical theory they could
conclusively reduce its theorems to a set of self-evident axioms.
But self-evidence is elusive! When Russell deduced a contradiction
from Frege's axioms for set theory, Frege revealingly confessed of
the guilty axiom of abstractionm,

"I have never disguised from myself its lack of the
self-evidence that belongs to the other axioms and that

must be properly demanded of a logical law."16



Such an admission, whether genuine or a manouvre to preserve
the theory, undermines the claims of self-evidence as a guide to
certainty. To avoid these awkward questions at the very start of
their enterprise mathematicians neatly inverted the problem. They
developed a formal theory, and then asked whether it had any models.

Clearly a minimal condition for a formal theory to have some
model is that the theory be consistent (loosely, free from
contradictions). Then it can be argued that the theory characterises
some structural pattern. The mathematicians' hope was still of
course that this structural pattern could be shown to be a familiar
one, essentially that of, say, arithmetic or Euclidean geometry.

The now well-known results of GBde117 (and those that followed)
destroyed such hopes by showing that the axiomatic method has
severe and unavoidable limitations. The area GBdel chose to
demonstrate this was that of the arithmetic of whole numbers, the
foundation of classical mathematics. The axiomatisation he
considered was that of Russell and Whitehead, the lynchpin of the
argument that mathematics can be reduced to logically self-evident
propositions. Although for his main result GBdel chose a particular
axiomatisation of a particular area, he showed how his argument
would apply to other axionatisations'of set-theory and of arithmetic.

First G8del (in a result later strengthened by Rosser) showed
that for any consistent axiomatisation of the arithmetic of whole
numbers there is some true proposition which is not deducible from
the axioms. That is to say that consistent axiomatisations of
arithmetic are necessarily incomplete. Another way to express this
is to say that any formalisation of arithmetic has non-standard

models - that is models essentially different in structure from the



31

intended one. We express this by saying that the axiomatic system

is not categorical. Arithmetic and other similar mathematical
theories cannot be reduced to a consistent set of axioms from which
it is possible to deduce all truths of the system. Any comsistent
axiomatisation misses some truths of the system. Even worse, GBdel
showed that there are certain consistent axiomatisations in which

we can deduce propositions which are false. Another way to express
this is to say that for such axiomatisations none of the models is
the intended one. Finally G8del demonstrated that no system can

be proved consistent by methods formalisable within the system itself.

One way to avoid the force of Gldel's conclusions might seem
to be to attempt to circumvent them by proving the consistency of
axiomatisations, and filling the gaps shown by the incompleteness
theorem, in some meta-theory. But this merely moves the probleas
of proof and consistency back one level and leads to an infinite
hierarchy of increasingly obscure and decreasingly plausible
theories; moreover it still leaves the problem of the truth of the
axioms untouched.

Hirst and Phenix are caught in a logical fork. They must
either abandon the conventional notion of truth entirely and re-
place it with 'deducibility from axioms' - in which case mathemat-
ice 80 redefined becomes meaningless triviality - or they must
admit some combination of deductive and critical methodologies.

Phenix appears at times to take the first course. Certainly
he sees mathematics as concerned with the deductive relations
between propositional forms within arbitrarily chosen axiom
systems. But such a view is inconsistent with his claim that
mathematics is about numbers, points, and lines, or even sets. For

as we have seen no such conceptual system is unambiguously defined,
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either in meaning or structure, by any axiomatic system.
'Mathematics' in this first sense is purely about the deductive
relations between propositional forms which could as justifiably
be interpreted in scientific, moral or aesthetic terms as in
mathematical terms.

To follow the second course is to lose the claimed demarcation
of the disciplines, and thus entails the abandonment of the
disciplines thesis in its present form. It is not clear in what
way 'mathematics' in this sense is either a coherent unit or
epistemologically distinguishable from science.

The definition advanced by Hirst and Phenix fails, then, to
demarcate mathematics as we commonly understand it, either episte-
mologically or methodologically. Certainly mathematics has developed
a concern for logical structure and become popularly associated
with that concern. But it has not been, and is not exclusively
concerned with logical structure. This developing concern is part
of a process of social change, reflected in the continuing
methodological diversity and complexity of mathematics. Indeed, many
would argue that it is the sustained methodological diversity of
mathematics, the counterpoint of criticism and deduction, that

confers its power and interest.

(6) Disciplines as traditions of enguiry

This view can be developed to give an account of the
disciplines which is both more consistent with our common under-
standing of them, and restores to them their social and historical
identity, while acknowledging the role of logical and intellectual

considerations in shaping their development. It sees a discipline
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as a growing and changing system of ideas within a tradition of
enquiry, but recognises that one feature of such traditions is
the attempt to impose a simplifying rationality on the growing
system of ideas, to develop superordinate principles which help to
summarise the results of past enquiry, and to guide future enquiry.

Sometimes a single powerful and economical framework may come
to dominate the field. The conception of mathematics as 'the
science of quantity' is an example of a conceptualisation which
dominated a discipline, and is still not without influence, both
as a summary of mathematical knowledge, as a principle regulating
mathematical enquiry, and as a criterion used to demarcate
mathematics from other disciplines.18

As well as periods of relative stability, however, there are
periods of dissent and change in the development of a discipline.
Several frameworks may coexist or compete within the discipline.
For example, the late eighteenth and early nineteenth centuries saw
a renewed concern with rigour among some mathematicians, and an
attempt to resolve the intellectual problems associated with the
concept of the infinite, in order to give the calculus firmer
foundations. Other mathematicians were attempting to establish
that, in geometry - what we would now call Euclidean geometry -
the parallel postulate could be deduced from the other postulates
and axioms. The persistent problems and paradoxes of the infinite,
and the invention of anomalous 'non-Euclidean' geometries stimu-
lated new conceptions of the nature of mathematics and mathematical
truth, new conceptions of proof and its role in mathematics, and
new programmes for the development of mathematics, among more

philosophically inclined mathematicians.
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The development of geometries radically different from
Euclidean geometry, but still capable of describing the physical
world, seriously undermined existing theories of mathematical
knowledge which accorded Euclid's geometry an absolute status. It
catalysed a reassessment of the relationship of mathematical
knowledge to knowledge of the physical world, and a search for
theories to replace the discredited idealist and empiricist
theoriea of mathematics typified by those of Kant and Mill re-
spectively.

This search led mathematicians to recomsider the relation of
logic to mathematics. Not only did certain mathematicians start to
work in the area of logic in an attempt to illuminate and resolve
problems about the foundations of mathematics, they developed
conceptions of mathematics which included logic, or even tried to
reduce mathematics to logic. Thus an area which had been considered
for centuries to be quite distinct from mathematics, and had lain
stagnant outside the discipline, was assimilated to mathematics and
developed within the discipline, under the influence of these new
conceptionn.19

During the nineteenth century there was a shift from informal
to formal methods of mathematical criticism. Attention moved from
the semantice of mathematical systems to their logical syntax. As
a result many mathematical concepts were 'stretched': so indeed were
some logical concepts. The extension of the applicability of 'all'
from non-empty classes to all classes removed the 'existential
import' of the term and opened up the possibility of vacuous
satisfaction, thus changing the very meaning of truth.zo

The optimism of some mathematicians about the power of formal
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methods gave rise to a number of programmes which aimed to formalise
mathematical knowledge in order to establish that it was reducible
to a small number of axioms which were self-evident, or failing
that consistent and complete. GHdel's results put an end to this
attempt to restore mathematics to its pedestal of absolute truth.

Of course, in the nineteenth century as nowadays most
mathematicians were not in the slightest bit interested in founda-
tional problems. They were interested simply in mathematics for
itself, or as a useful tool, whatever its ontology or epistemology.
Foundational research interested them only to the extent that it
threw up interesting new ideas and methods which they could adapt
to their own concerns and purposes. Similarly, questions about
the foundations of the mathematics which they developed and used
did not inhibit them: they were quite happy to pass these problems
over to their more philosophically-minded fellows, and to proceed
as before.

But here too there were changing frameworks which sought to
summarise knowledge and to guide enquiry. The revolutionary
definition of geometry as the study of the invariant properties of
figures - which underlay Klein's Erlanger programez1 - assimilated
topology to the geometric tradition, and opened both metric and
topological geomeiry to the powerful methods of the structural algebra
developing at that time. This reconceptualisation of algebra as
concerned with structure rather than quantity is another example
of a changing governing franework.22

There are cases of frameworks which have had a profound
influence at both the philosophical and practical levels - the

Greek synthesis of arithmetic and geometry through the theory of
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proportions, ~ and the Cartesian synthesis of algebra and geometryal+
spring readily to mind - and which have dominated mathematics for
considerable periods. By and large, however, mathematice has been
characterised by diversity, dissent and change at this level.
Mathematicians are heirs to a continuing debate, which has a pre-
scriptive as well as a descriptive aspect, about the nature of
mathematical knowledge and enquiry, rather than the passive
inheritors of established conclusions.

By contrast, mathematicians, whatever their philosophical or
aphilosophical persuasion, are broadly agreed about the subject of
the debate. All seek to rationalise, extend or apply the same corpus
of knowledge. As I have already observed, different programmes for
mathematics exist symbiotically. The application and adaptation of
mathematical ideas and procedures to problems outside the diascipline
raises mathematical problems which are pursued for their own sake,
while the continuing enlargement of the corpus enhances the
repertoire of concepts and techniques available to the applied
mathematician.

Theories, originally developed without regard to use, have
found applications - conics in describing planetary motion, non-
Buclidean geometry in relativistic mechanics, Boolean algebra in
circuit design. Conversely theories developed with applications in
mind have been pursued and extended for themselves - calculus has
produced a superstructure of analysis which would have bewildered
Newton: the theory of groups originated with a problem in the theory
of equations and blossomed, via problems in crystallography and
atomic physics. The process of reinterpretation and restructuring,

the assimilation of new ideas and the synthesis of old ones, and
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the interplay between different programmes, all help to create
broad assent in the demarcation of mathematics. At any one time
its extremities may be fluid and controversial, but its interior
commands agreement.

Even the philosophers broadly agree. An intuitionist might
quibble as to whether parts of mathematics had been properly
justified or were justifiable, but he would agree that they were at
least mathematical conjectures. Similarly a formalist might be
reluctant to accord much of mathematics full status in the absence
of adequate formalisation, but he would aspire to give it this status
by formalising it. While characterised in different ways and
subjected to different methodological demands, the content and
boundaries of mathematics are, in general, agreed.

Finally, mathematics possesses a distinctive - if evolving -
methodological repertoire which is generalisable over the different
branches of the discipline. The same notions of thought-experiment
and proof underlie the development, extension and systematisation
of different areas of mathematica, and the common notions of
modelling influence the development of mathematics in its applicable
role. While, during the 17th and 18th centuries, mathematics came
close to assimilation to science, since then it has reaffirmed its
methodological independence.25

This evidence suggests that any conceptualisation which is to
take account of diversity, dissent and change in mathematics must
admit the logical complexity of the discipline, or at least the
controversiality of claims about its logical status. It suggests
that a more plausible and accoi;dating conceptualisation is of

Fa

mathematics as a changing and growing system of knowledge within a
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tradition of enquiry.

This socio-historical conceptualisation of a discipline as a
tradition of enquiry is still more compelling than the logical
alternative proposed by Hirst and Phenix, when we consider those
areas vwhere diversity, dissent and change are more explicitly in
evidence, even central to the coherence of the unit. In the
humanities, for example, disciplines might be better defined in
terms of traditions of disagreement, than by any cumulative agreement.
The disciplines thesis, reformulated in these terms, appears con-
siderably more plausible, if less pleasingly exact, than in its
original logical formulation. In this new version the boundaries
between disciplines are potentially more diffuse: indeed, there
may be several equally plausible demarcations of the organisation
of knowledge and enquiry. From this perspective there is no clear-
cut or enduring map of the disciplines. But, as the example of
mathematics and the topographical analogy suggest, neither is
organisation arbitrary and change anarchic. Change builds on exist-
ing rational structures of knowledge and, in general, proceeds within
established disciplinary boundaries. It is easy to overestimate the

extent of revolution within man's organisation of knowledge and

enquiry.

(7) The relativist critique

There is, however, a currently influential school of thought
which, at least in some of its more extreme versions, argues that,
“"knovledge is not disinterested and that the construction
of a corpus of knowledge is inextricably linked to the
26

interests of those who produce it."
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and that,
"the implications of treating what counts as knowledge
as problematic is inevitably to abandon notions of
formal logic and to offer no explicit epistemology

or truth criteria."27

"Knowledge at all levels, common sense, theoretical
and scientific, thereby becomes thoroughly relativised,

and the possibility of absolute kmowledge is denied."2S

"Knowledge and human thought are reversibly one and
the same thing. ‘'Knowledge' is the external face of

subjective reality."29

From this it is concluded that there are no grounds for claiming
that educational or academic knowledge is superior or preferable to
the everyday commonsense knowledge which people possess.3o The

teacher is compared to the colonist and the missionary.

"Opne group may impose its logic or 'truth' om another
and this is a form of colonization, be it the 'truth'
a missionary imposes on darkest Africa or a middle
class white on an Indian reservation, black-Harlem or

lower vworking-class child."31

Further, it is argued that,
"gubjects are mystifications which arbitrarily differen-
tiate and objectify the physical and symbolic

universea."32

The argument for this position seems to be based on the assumption
that claims to knowledge must be either absolute or arbitrary.

Evidence of changing systems of ideas - in particular from Kuhn's
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accounts of scientific change - is taken to exclude the first
possibility, and it is concluded that systems of ideas are arbitrary
social constructs.

Unfortunately the dichotomy between the absolute and the
arbitrary is implausible. Indeed, Young, Esland and Gorbutt's
selective deployment of Kuhn's arguments ignores those parts which
cast doubt on this view. While they emphasise rupture and paradigm
change, the assimilation of existing knowledge to the new paradigm,
the rarity of paradigm shifts, and the role of reason in paradigm
change are passed over.3}

The members of this relativist school set up an absolutist
straw-man as the representative of objectivism. It is not surprising
then, that both Young and Jenks attribute to Hirst an absolutism
which he has specifically repudiated, rather than countering the
arguments he offers for his position.

Jenks writes,

"Zﬁirq§7 is legislating for the permanent indubitable
status of his 'forms' as the final, inevitable and
indisputable paradigm...It is as if the philosopher
has placed limits upon the perception of mind and

knowledge through the revelation of his objectivist

'forua'."Bh

This certainly runs counter to Hirst's statemeat that,

"Ag distinct from a Kantian approach, it is not my view
that in elucidating the fundamental categories of our
understanding we reach an unchanging structure that is
implicit, indeed a priori in all rational thought in

all times and places. That there exist any elements in
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thought that can be known to be immune to change, making

transcendental demands on us, I do not accept."35
Young makes the same accusation of absolutism,

"The problem with this kind of ZShilosophicq;7 critique
is that it appears to be based on an absolutist
conception of a number of distinct forms of knowledge
which correspond closely to the traditional areas of
the academic curriculum and thus justify, rather than
examine, what are no more than the historical comstructs
of a particular time. It is important to stress that
it is not 'subjects’', which Hirst recognizes as the
socially constructed ways that teachers organize
knowledge, but forms of understanding, that it is
claimed are 'necessarily' distinct. The point I wish
to make here is that unless such necessary distinctions
or intrinsic logics are treated as problematic,
rhilosophical criticism cannot examine the assumptions

of academic curricula.“36

But to treat Hirst's position as problematic, and to observe that
it provides a basis for supporting what are seen as conservative
patterns of curricular organisation, is not to refute it: at least,
not as we conventionally argue. 1t i8 not clear whether here Young
is intentionally following his dictum that,
"it is in the end personal commitments that are the
grounds for action, whether that action is deciding what

to do in the classroom or the 'adequacy' of a researcher's

account. The point is not to ask whether particular
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research methods are, of themselves, 'good' or 'bad',
but to ask for what and for whom are we providing

8 0"37

account

Intentionally or not, Young points to the Achilles heel of this
extreme form of relativism, whose proponents, in Popper's words,
"invite the application of their own methods to

themselves with an almost irresistible hospitality."38

Nonetheless, there are eminently reasonable grounds for rejecting
the attack of this relativist school on rationality. Quite simply,
rationality does not entail an absolutist view of knowledge, nor does
the abandonment of an absolutist view necessitate a refusal to judge
between competing systems of ideas.

To take an extreme, but illuminating example, philosophers such
as Quine and Putnam who adopt a pragmatist perspective on logic
have suggested that there could be reasons for revising the
(classical) logic we enploy.39 That is, unlike the realist
Intuitionists, such as Brouwer, who maintain that classical logic
is mistaken, they argue that a choice of logic is to be made on
grounds of convenience, simplicity and economy. Indeed Putnam has
proposed that the distributive laws of classical logic be abandoned
to enable quantnfn mechanics to be simplified.uo Such philosophers
maintain neither that logic is absolute, nor that it is arbitrary:
their project is summarised in Neurath's analogy of 'rebuilding
our raft while afloat on :lt;.'l'1 The absolutist straw-man bears
little resemblance to current theories defending the rationality of
knowledge, notably Popper's theory of objective lu101vlledge.L"2
Further, even a historical relativist like Kuhn is prepared to

defend rationality.uB
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Moreover, claims about the differences between, or the
incommensurability of ideational systems - for example ‘'academic'
and 'commonsense' - need to be treated with caution. To stay with
the example of logic, to establish that a system of logic is a
genuine rival to classical logic, it is necessary to show that the
difference between the systems is not simply one of notation or
trivial meaning variance. And even if the systems are rivals they
may share a substantial semantic and structural core. The relation-
ship between ideational systems has to be analysed more deeply
before their incommensurability can be accepted. Indeed Keddie
acknowledges this indirectly in observing that Labov's work on
ponstandard English established that such speech,

"can be shown to conform to the strictest principles

Wl

of Aristotelian syllogisms."

The case for 'academic' or 'educational' knowledge is, first,
that in general, it is both more plausible and powerful than
‘commonsense' alternatives - altheugh always open to criticism -
and second, that without accesas to this knowledge one is in no
position to participate effectively in a society in which, for
better or worse, this knowledge provides the grounds for action.
Finally, the boundaries of disciplines, while not absoclute, are
certainly not capricious, but reflect the evolving rationality
through which man makes sense of his world. They are fallible, but
equally they are defensible.

Despite the extravagance of many of its claims, this relativist
school has served a valuable purpose in drawing attention to the
tendency of teachers and schools to differentiate and. stratify

knowledge, and to present it as absolute rather than reakaonaxhle.l’5
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Freed of its extreme epistemology, the work of this school, like
that of Fx'e:lre,l'6 plausibly asserts the importance of relating
learning to the experience of the learner. Keddie, for example,

emphasises this point.

"The learning of any 'logic' is a highly situated
activity which cannot be treated as though it were
context-free if it is to become part of the life

world of the learner."47

The relativists sound a salutary warning against the reification of
human knowledge and enquiry, while illustrating the dangers of an

excessive subjectivism.

(8) Conclusion

Despite the disagreements among philosophers and curriculum
theorists about the nature of the distinctions between disciplines,
there is a considerable degree of congruence between the maps which
they drav. Bellack,' Schwab,"? Hirst and Peters,’® and White>'
all recognise the commonly-made distinctions between mathematics,
the natural sciences, the social sciences and the humanities. Hirst,
Peters and White wish, of course to make more refined distinctions
within the humanities, subdividing that area into aesthetic,
religious, moral, philosophical and possibly historical knowledge.
Similarly, one could argue for subdivisions of the other areas into
upits such as geometry, algebra, analysis and statistics, or physics,
chemistry, astronomy, geology and biology, or economics, sociology,
anthropology and psychology. As far as mathematics goes, the
evidence which has been offered of recurrent, and largely successful

attempts to synthesise and unify the branches of mathematics, and
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of their common methodological repertoire, points to the greater
plausibility of the larger unit in summarising these traditions of
knowledge and enquiry. This is a relatively uncontroversial
judgement: the corresponding judgement in relation to matural
sciences is more contentious, and is very definitely so in the
social sciences and humanities. I make no claims for these areas,
but observe that to acknowledge their meaningfulness, as most
theorists do, at least reduces a global problem to a number of
localised problems. Even the more speculative schemes of Phenix52
and Broudy53 start from commonsensically familiar disciplines,
vwhich are then grouped into their, sometimes idiosyncratic, organ-
ising categories.

This fundamental agreement over a map of man's interpretative
systems is manifested in many millions of words. By comparison,
little attention has been paid to the analysis of systems of inter-
vention. Broudy's curricular scheme, and Tykociner'u54 analysis
of knowledge from which it is derived, are notable in encompassing
systems of intervention as well as interpretation. In Broudy's
scheme this is confined to a component labelled ‘Social Problems'.
This he relates to Tykociner's categories of pronoetics (sciences
providing for the future; agriculture, medicine, technology and
national defence), regulative sciences (social cybernetics;
jurisprudence, economics, management and government) and dissemina-
tive sciences (education, educational psychology, library science,
journalism, and sciences of mass communication).

The absence of any sustained concern with systems of
intervention on the part of curriculum theorists, and the lack of

a developed analysis of them is to be regretted. At first sight
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certainly, there seems little doubt that the socio-historical
conceptualisation of discipline could fruitfully be extended to
cover systems of intervention. While drawing heavily on the inter-
pretative disciplines, areas such as agriculture, engineering,
medicine, law and government could be plausibly interpreted as
evolving traditions of intervention. On the other hand, while
logical conceptions of a discipline, in striving to establish its
purity, tend to turn their backs on its applications, the socio-
historical conception which I have advanced welcomes this aspect of
knowledge, and tends to blur the distinction between interpretation
and intervention, which in the development of a discipline are

often closely related.
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Chapter 3: A Curriculum for General Education

(1) The structure of the curriculum

The practical significance of the disciplines thesis lies in
its use in justifying or criticising patterns of curricular
organisation. While both Hirat and Phenix are cautious about the
implications of the disciplines thesis for curriculum design, it
is clear that both are sympathetic to the argument that it is in
general desirable to base curricular unite on distinct logically

defined disciplines such as mathematics. Hirst writes:

"The logical distinctness of the different forms of
knowledge and the close inter-relation of the various
elements within a form or sub-division of it, would
seem to suggest that the most rational way in which to
develop the modes of understanding, would be by direct
organisation of the curriculum in units corresponding

to the forms."1

Phenix and Hirst are agreed on the basic argument for disci-
pline-based curricular units. It is, in the words of Phenix ,
that,

"The difficulty with cross-disciplinary studies is that
they offer a temptation to shallow, nondisciplined
thinking because of the mixture of methods and concepts
involved. They require more knowledge and skill,
greater care, and better mastery of materials than do
studies within a particular discipline, where the lines
of productive thought may be kept more directly and

continually in view."2
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While I share with Hirst and Phenix the belief that curricular
units which possess a clear and powerful rationale are more likely
to be educationally effective, I am sceptical about the particular
logical rationale that they propose. This argument that a
discipline-based curriculum structure is least likely to lead to
confusion between the concepts and criteria which belong to the
different disciplines loses its force if, as has been argued in the
case of mathematics, any meaningful conceptualisation of the
discipline has to admit logical complexity.

Further this argument sits uneasily with Hirst's claim that

"There is no obvious reason why a form of knowledge
based school subject should not deal with many
practical applications of the knowledge falling under
the form."3

and Phenix's that,

"It should be possible to teach fundamental studies in
such a way as to capture the interest of the student,
particularly if ample use is made of examples of
applications."
For even if we accept uncritically Hirst's and Phenix's claims
about the basis of mathematical knowledge, it is clear that, in
applying this knowledge, our reasoning becomes of necessity logically
complex. To represent a physical situation in mathematical terms,
or to follow a moral argument, requires a synthesis of the con-
ceptual structures that underlie different kinds of judgement.
A further objection to a curriculum organised around discipline-
based units is that such units are likely to be introverted,

focusing on a single system of interpretation and thus ignoring both
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the inter-relation of different systems of interpretation, and
the role of intellectuality in human intervention. This is a
charge which could justly be levelled at some of the discipline-
based curricula developed during the sixties which displayed a
dogmatic commitment to a single, narrow conceptualisation of the
discipline amounting to intellectual imperialism. In propagating
a narrow, often introverted view of the discipline these curricula
reified and decontextualised it. Small wonder that, for imstance,
many mathematicians scarcely recognised their discipline in the
offerings of the new mathematics curricula.5
This is an obJection of which Hirst is certainly aware.
Indeed, in meeting it, he undermines still further his argument for
logically defined curricular units by suggesting that a looser
conceptualisation of discipline-based 'subjects' can resolve such
problems.
"But do such interconnections ... necessitate a new non-
subject type of curriculum unit? Not if the term
'subject' is taken as widely as it has traditionally
been ... What we need are units ... which do not seek to
'integrate' the forms of knowledge, or cut across them
for no real reason, but which are true to the dependence
of some elements of knowledge on knowledge of other
kinda."6
It is apparent, in the light of these observations, that the project
of basing curricular units on logically defined disciplines is ill
founded. Even Hirst abandons a strictly logical definition of

disciplines in favour of a more diffuse commonsense one when it

comes to planning curricular units.
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Criticism of the introversion of discipline-based units has
led to a search for 'relevance'. One recent manifestation of this
approach can be seen in the demands for educational reform advanced
by the New Left-oriented student movement of the late sixties,
although many of their ideas were taken, rather uncritically, from
Neill and the Progressive movement. It is one of history's ironies
that while authority was strenuously opposing these ideas in higher
education, they were being promulgated in official pronouncements
on primary education. If, the student argument went, discipline-
based curricula fragment knowledge and fail to treat society as a
totality, thus acting as instruments of mystification, what is
needed are 'relevant' units which recognise no intellectual boundar-

7

ies and focus on human problems.’ The appeal of 'relevant' units,
however, now extends further than the left. In recent years there
has been widespread discussion, if rather less adoption, of
‘integrated studies' and 'multidisciplinary' courses.

The main kind of alternative unit championed by the critics of
the discipline~based curriculum is the issue or problem-centred
unit, which examines a particular problem, or class of problems
confronting man. This approach seeks to organise the curriculum
around the problems which confront man and demand his intervention.
Certainly, issue~centred units have much to recommend them. They
involve pupils in a direct encounter with the kind of questions
which democratic general education aims to help them to resolve.
Such units give pupils an opportunity to become familiar with, and
to synthesise different systems of ideas, and to relate these ideas
to 'real' problems.

A unit focused on 'the energy crisis', for example, might examine
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the following topics:
(1) Wwhat is energy? What forms does it take?
(2) The generation of energy from:
Coal and the hydrocarbons,
Wind, wave, river, sun, tide, earth,
Nuclear fission and fusion.
(3) The uses of energy in:
Home,
Industry,
Transport and communications.
(4) The environmental impact of the generation and use of energy.
(5) What is the energy crisis?
The growing consumption of energy in a changing world;
Population growth,
Urbanisation and industrialisation.
The projection of future trends;
Prediction,
Renewable and non-renewable resources,
Energy conservation.
The politics of energy resources;
Nuclear power and nuclear weapons,
OPEC and the international econamy.
(6) Alternative futures and emergy policy;
Continued economic growth,
The steady-state economy,

The low-technology society.

Other examples of issue-centred units might be: Industrial democracy,

State subsidy of the arts, Science and religious belief.
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Despite their undoubted strengths such units have a number of
serious weaknesses. First, such units may fail to make clear the
generalisability to other issues of the systems of ideas which have
been used to analyse and resolve the particular issue at the centre
of the unit. Man's understanding of radiation and the structure of
matter has enabled him not just to build bombs and to produce
electricity on a large scale, but to date archeological and geologi-
cal finds, to diagnose and treat various medical complaints, to
detect metal, whether the hijacker's gun or some ancient buried
artefact, and to take photographs by night. Models of exponential
growth and decay can be used not just in predicting population,
energy needs, and the decline of a radiocactive source, but in
describing and predicting phenomena as diverse as the loss of dye
from clothes, the volume of traffic on roads, the cooling of
bathwater, the increase in value of an investment, and the bouncing
of a ball. Similarly, the basic economic and political concepts
used in analysing 'the energy crisis' are equally applicable to
the issues surrounding the exploitation of any natural resource
and the production of any commodity.

Certainly these ideas may recur in other units and thus in
other contexts, but such repetition is likely only to exacerbate
a second weakness, the difficulty of ensuring that the issue-
centred curriculum gives sufficient coverage of the fundamental
general frameworks of interpretation, and the general frameworks of
intervention based on them. We want pupils to understand, for
example, the concepts of cell and molecule, as well as that of
atom, to understand the relation between these concepts, and the

analogies between their analytic functions. We want pupils to be
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aware that the expomential model is not the only possible model of
growth and decay. There are, for example, linear, polynomial,
inverse, and periodic models, each of which has distinctive
characteristics. And, at a more general level, we want pupils to
be familiar not just with the approaches of economics and politics
to the study of social life, but with those of anthropology,
psychology and sociology.

Third, any curriculum must take account of the dependence of
certain ideas upon others, and the grouping of ideas in related
clusters. To understand nuclear fission one must understand some-
thing of atomic structure: to take another example, the ideas of
limit, infinite and asymptote are closely related.

An issue-centred curriculum is at a clear disadvantage when
compared to a discipline-based curriculum, both in ensuring a
satisfactory coverage of the fundamental interpretative systems,
and in taking account of their structure. Indeed, even to attempt
to do so would require a second, tacit structure underpinning the
overt organisation of the issue-centred curriculum. Certainly a
unit focused on 'Mathematical models of growth and decay' or
'‘Radiation' is much more likely to develop a coherent understanding
of these systems of ideas than a number of issue-based units which
deal only obliquely with parts of these topics.

Bellack draws attention to previous experience with issue-
centred curricula during the Progressive era of the 1920's,
1930's and 1940's.

“Difficulties in this approach soon become apparent, not
the least of which was the students' lack of firsthand
acquaintance with the disciplines that were the source

of the concepts and ideas essential to structuring
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problems under study. Without adequate understanding
of the various fields of knowledge, students had no

way of knowing which fields were relevant to problems

of concern to them. Indeed, without knowledge of the
organised fields it was difficult for them to ask the
kinds of questions about their problems that the various

disciplines could help them ansver."s

Issue-centred units, then, are unsatisfactory vehicles for the
development of an understanding of the interpretative systems on
which human intervention and problem solving are founded. They are
unlikely to do justice to the structure of these systems, or to
their general applicability. They are, on the other hand, particu-
larly valuable in showing how these systems are used and combined
in solving problems.

A second possible approach is offered by the activity-centred
unit. Activity-centred units focus on some aspect of man's
intervention in the world: communication, technology, environmental
planning, industry and education are examples of forms of intervention
on which such units might be based. Such units are in many ways
close to issue-centred units. They are ultimately addressed, if
more generally, to the same kind of problem solving, and are equally
eclectic in drawing on the fundamental interpretative systems.

Hence they share the major disadvantages and advantages of issue-
centred units. For this reason they are no substitute for discipline
related units. As an alternative to issue-centred units they offer
a more general approach which inter-relates different problems, but
are open to the criticism that they can deal only in a very

fragmented manner with broad issues such as 'the energy crisis' which
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involve considerations related to several kinds of intervention;
government, envirommental and economic planning, and technology in
this case. Their main advantage err issue-centred units is that
they offer a potentially more coherent and economical account of
problem solving.

Thus, at closer examination it becomes clear that, while they
may be of considerable value in supplementing discipline related
units in a curriculum for general education, issue and activity-
centred units cannot supplant discipline related units. It seems
that, even if the disciplines camnot be distinguished in purely
logical terms, they have, as systems of interpretation and
traditions of enquiry, an intellectual and social coherence which
a curriculum for general education cannot ignore.

Indeed, the shift from the dogmatic, and ultimately implausi-
ble logical conception of a discipline to the more flexible
socio-historical one points the way to a discipline related unit
which is capable of countering the accusations of introversion and
absolutism levelled at the conventional discipline-based unit.

For the socio~historical conception of a discipline enables us

to build an awareness of diversity, dissent and change into
discipline related units, rather than evading or suppressing them.
Similarly, from this perspective it becomes quite appropriate for
a discipline related unit to investigate the relations between
that discipline and other systems and traditions of interpretation
and intervention. It offers a principled, rather than pragmatic
justification for Hirst's strategy of adapting the discipline-
based unit in preference to abandoning it. While we must beware
of reifying the relation between traditions of enquiry and systems

of interpretation and the resulting disciplinary structure, no
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curriculum can afford to ignore the parsimonious but powerful
framework that the disciplines offer for the analysis of the

fundamental interpretative aspect of human intellectuality.

(2) The discipline-centred unit and the Scottieh democratic

tradition

It is against this background that I want to argue for

discipline-centred, rather than discipline-based units in a curriculum

for general education. This terminology is intended to distinguish
between a unit which confines itself to the kinds of knowledge and
understanding falling within some system or tradition of inter-
pretation - discipline-based - and a unit which starts from the
discipline but considers its relation to other systems and
traditions of interpretation and intervention - discipline-centred.
The discipline-centred unit makes possible a coordinated exposition
of the related systems of ideas which make up the interpretative
framework offered by the discipline. At the same time it attends
to the application of these ideas to problems of intervention, and
to problems of interpretation occurring within other disciplines.

Whereas conventional discipline-based units tend to convey a
static and reified view of the nature and methods of the discipline,
the discipline~centred unit aims to develop an understanding of the
discipline within its changing social, intellectual and historical
context. The unit is a reflexive one in which the nature, method
and purpose of the discipline is open to investigation. The
discipline-centred unit adds to the technical perspective of the
discipline-based unit, a cultural perspective.

A precedent for the discipline-centred unit as the basis for
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a curriculum for general education is provided by the curriculum
associated with the 'democratic' intellectual tradition which achieved
its fullest expression in the Scottish universities of the eighteen-

9 At this time it was normal for

th and early nineteenth centuries.
students to enter university directly from the parish schools at

the age of 15 or 16, to spend four years following a general

course in the classics, philosophy and the exact sciences, before
proceeding to specialist or professional training. This course
included classes in Latin (or Humanity). Greek, Mathematics, Natural
Science (or Natural Philosophy). Logic and Metaphysics, and Moral
Philosophy. The perspective of philosophy - a 'philosophy' which
included the fledgling social sciences as well as metaphysice and
ethics - coloured the treatment of the non-philosophical subjects.
Great attention was paid to the first principles and metaphysical
basie of each of the disciplines, and to their social and cultural
context.

In Natural Science, consideration of the principles of
scientific enquiry and the experimental method, and the applications
of scientific understanding to the development of technology and
the analysis of practical problems, was a major element of the
course.

Of the mathematical and classical courses Davie writes,

"The Professors of Mathematice found ... that the best
way to render their task of imparting the elements

of geometry, algebra and arithmetic interesting to
themselves and their youthful pupils was to concentrate
on the philosophy and history of the branches of
mathematics in question, and to treat the mathematics

class as a cultural course, concerned with the relations
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of the subject to social 1life and to the plain man.
So, too, something similar happened in relation to
Greek and Latin, and, in the process of teaching, the
emphasis was much more on the aesthetic value of the
poetry than on its grammatical peculiarities, and
Professors preferred rather to give some understanding
of ancient civilisation than to insist on the business

of textual emendation."1o

Similarly, philosophy, as taught qt this time, was as much
concerned with the application of philosophical principles to
literary, historical, economic, social, legal, mathematical and
scientific questions as with the pure study of ethics and the
theory of knowledge.

In each class, then, the emphasis was not so much on technical
detail as on the philosophical foundations and the 'commonsense'
of the subject - its origins and development, and its relation to
society. Indeed, the contrary tendencies of the ancient English
universities which, in science for example, made,

"“"the facts of nature mere pegs on which to suspend

feastoons of algebraic drapery",11

or where, in classics,
"words are more carefully studied than things",12
and,
"an accurate knowledge of the niceties of ancient
languages is often found accompanied by little study
of enlarged investigations",12

were deplored by the defenders of the Scottish tradition.

For Jardine, the leading ideologue of the Scottish 'democratic'
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tradition in education, the well-educated man was one capable of
making his special or professional concerns publicly comprehen-
sible. The emphasis in the Scottish tradition on the elucidation
of general principles, and their application to theoretical and
practical problems was designed to produce both an intelligent
public, and articulate and readily intelligible specialists.

This Scottish example shows how a curricular unit starting
from the ideas of a discipline can radiate outwards to consider the
social and intellectual context in which the development of these
ideas took place, their intellectual foundation, and their
application to practical and theoretical problems outside the
discipline. The discipline-centred unit is a compromise between
the discipline-based and activity-centred units which can hope to
evade the sterile introversion of the former and the eclectic dis-
order of the latter, while preserving the intellectual structure
of the former and incorporating the awareness of the world displayed
by the latter.

For these reasons 1 believe that the discipline-centred unit
is basic to a satisfactory curriculum for general education.
Discipline~centred units need to be complemented by activity or
problem~-centred units, but they cannot be dispensed with. For they
offer an understanding of the fundamental interpretative systems of
thought on which the resolution of practical and theoretical
prohlems, and an understanding of different forms of life are based,
without isolating these systems of ideas from the very issues and
aspects of the world vwhich give them importance to the common man,
and thus underpin the argument for a general education which aims

to help pupils sustain and advance political and cultural democracy.
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As I argued earlier, it is not sufficient for a curriculum which
espouses this aim merely to familiarise pupils with the basic
principles of these interpretative systems in isolation: it must
actively examine the nature and significance of these ideas, and
the ways in which they help man to interpret and intervene in the
world.

While it offers a precedent for the discipline-centred unit,
the particular form and content of the curriculum of the Scottish
democratic tradition are, in some ways, outdated. Indeed an
examination of this curriculum and the way in which it was subse-
quently modified provides an illustration of changing conceptions
of disciplines. In the humanities, it reflects an age when literary
and aesthetic sensibilities were dominated by the models of Greek
and Roman civilisation, and developed in a course which taught the
rudiments of the classical languages as a means of access to the
classical writers, and to native authors writing in the classical
languages. During this period, however, the dominance of classical
models was increasingly challenged: this challenge is reflected in
the development of the academic study of English literature in the
nineteenth century.1h

While the scope of the humanities was enlarged during this
period, that of philosophy was narrowed. While natural science had
long since become demarcated from philosophy (although still termed
'natural philosophy' in the curriculum) it was the work of the
teachers of this period, Smith, Ferguson, Millar and Robertson
which helped to lay the foundations for the development of an
autonomous social science.

Similarly, leaving aside the distinctive emphasis on first
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principles and applications, the actual discipline-based content of the
mathematics and physics courses, and the rather rigid separation
between them, reflected a classical view of the nature of mathe-
matical and scientific knowledge which was at odds with the
developing algebraic-analytic methods in mathematics and their
application to physics. Eventually both the humanistic perspective
and the classically influenced content disappeared from the
Scottish curriculum under the influence of this new mathematical
movement and increasing pressure for more specialised university
education.

Nonetheless, much of the change which a curriculum plan for the
present must recognise has been within disciplinary boundaries.
With the important addition of social science, the form of the
Scottish democratic curriculum still remains fundamentally true to
the summation of knowledge and the organisation of enquiry in our
present society. As the example of mathematics suggests, knowledge
may have grown immensely, and conceptions of the disciplines
changed markedly, but current patterns of knowing and enquiring

can be seen to be directly related to those of two centuries ago.

(3) A curricular pattern for general education

This argument points to five discipline-centred units,
mathematics, natural science, social science, philosophy, and
arts, as the basis for general education. These represent the
distinctive intellectual traditions which man can bring to bear on
the problems which confront him. The nature and demarcation of the
curricular units beyond mathematics is, however, not essential to

my argument: I am prepared to accept that further units, or
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different demarcations may be needed. The important claim which I
make, and the one which is central to my argument, is that a
satisfactory curriculum for general education should include a
discipline~centred unit focusing on mathematics.

At this point it is appropriate to interject a supplementary
argument to counter the objection that while these traditions may
be distinctive, some of them, and here mathematics or philosophy
might be cited, are far from the immediate problems of the world,
and deserve little or no place in a curriculum for general education.
This argument is, I believe, mistaken. First and most important,
it elevates a largely unexamined principle of 'practicality',
'utility® or 'relevance' to a position of unjustified influence on
the curriculum., Human aspiration and achievement cannot be reduced
to the resolution of immediate or practical problems: indeed there
is even dissent about what kind of problems fall into these
categories. The imposition of such a narrow view of what is valua-
ble on the curriculum would prevent it from offering the insight
into different world-views and forms of life, which, it was argued
in Chapter 1, ought to be one of the principal aims of a democratic
general education.

Secondly, even if we accept the premise that 'relevance',
however defined, ought to be the principal criterion for the
inclusion of content in the curriculum, it is certainly the case
that parts of all the disciplines are apparently remote from
practical concerns. Equally, it is possible to point to parts of
all the disciplines which bear directly even on everyday problems;
concepts of number, shape and size from mathematics, or of truth,

right and responsibility from philosophy, for example.
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Finally, while certain systems of ideas, or forms of enquiry
may appear at present to have little bearing on practical problems,
that does not mean that they will not find such uses in the future.
Mathematicians, for example, have been surprised time and time
again at the way in which seemingly 'pure' parts of abstract
mathematics have found applications and uses. Fifty years ago, few
people can have imagined the role that abstract algebra would play
in the design of computers, or anticipated the development of
operational research, which draws on much of what was then 'pure'
mathematics to resolve a huge variety of planning and managerial
problems. Indeed, the development of the electronic computer has
catalysed an explosion in the application of mathematics which
shows little respect for traditional notions of which parts of
mathematics are, or are not applicable.

This is no argument for abandoning 'utility' altogether as a
criterion: a curriculum for general education which made no
reference to it would be indefensible. But it suggests that the
sovereignty of this criterion may lead to a selection of curriculuar
content which is narrow, and insensitive to social change.

The main deficiencies, however, of popular conceptualisations
of relevance are that they emphasise the particular and the concrete,
to the exclusion of the general and the abstract; and that they
place little or no emphasis on understanding the processes through
which knowledge is produced, structured and applied, and the human
context of these processes.

In applauding relevance, we imply that education should help
pupils to understand and participate in the world, where before it
has seemed to turn its back on that world. I have argued that to

understand the world we eannot escape the abstraction and
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generalisation of the disciplines; and that to understand the
relation of the disciplines to the world, and the relevance of
their abstractions and generalisations to it, we must step back
and reflect on the nature and context of the discipline. The
fundamental criticism is not of the disciplines themselves, but
of their introverted and self-regarding presentation in the
discipline-based curriculum.

For these reasons I would insist that the kind of general
education that I envisage is highly relevant. But a satisfactory
conceptualisation of relevance which is consistent with my argument
from democracy would place a strong emphasis on understanding
intellectual processes, and the structure of individual and social
purpose and consequence within which these processes take place.
Each curricular unit should seek to answer certain fundamental
questions about the relation to the world of the discipline on which
it centres;

What kind of aims does the discipline profess, and how might
these aims be justified and criticised?

How do the practitioners of the discipline go about achieving
these aims, and why do they do it in these ways?

How does what they do affect or reflect a wider society?

It is clearly important, then, that each of the distinctive
intellectual traditions should be represented in the curriculum,
and taught in a way which illustrates their relation, actual or
potential, with the world - this is implicit, in any case, in the
idea of the discipline-~centred unit = but neither the form nor the
content of the curriculum should be restricted to conform to some

narrov and dogmatic view of what is practical or useful.
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The inclusion of discipline-centred units corresponding to the
distinctive intellectual traditions would seem, then, to be a
necessary prerequisite of an effective curriculum for general
education of the type which I have advocated. The question remains
as to whether this is a sufficient condition for democratic general
education, bearing in mind the likely limitations of discipline-
centred units, and the importance of giving pupils experience in
tackling the kind of problems and issues which can only be under-
stood and resolved from a multidisciplinary perspective.

I have already hinted that I do not consider a curriculum
consisting solely of discipline~centred units to be sufficient.

It seems to me that, while the discipline-centred unit is perfectly
adequate to deal with the relations between that discipline and
others, and to show how the particular systems of ideas which the
discipline offers bear on a variety of problems of human intervention,
it does not provide a satisfactory framework within which to
consider the synthesis of ideas from several disciplines in solving
problems. For such a task any single discipline-centred unit is
likely to be a lopesided and ineffective vehicle. There is also

the danger that the strong unifying framework which the concept of
discipline offers may be undermined by the attempt to include this
kind of 'social problem solving' in a discipline-centred umit.

Such considerations support a curriculum plan for general
education in which discipline-centred units are complemented by
activity or problem-centred units. The function of the discipline-
centred units is to give a broad understanding of the disciplines
themselves: their purposes, methods, concepts, rationales, develop-

ment, mutual interaction and interpenetration, and the applicability
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of the systems of ideas that each offers to a variety of problems.
The function of the activity or problem-centred units is to show
how to approach particular problems or issues, drawing on the

intellectual resources which the disciplines make available.

PHILOSOPHY

PROBLENS
AcTiviTieS

A Curricular Model for General Education

The outer ring contains the basic discipline-centred units. The
arrows round the outer ring indicate that the inter-relations
between the disciplines are comsidered within the discipline-
centred units: i.e. the relation of Mathematics with Natural
Science, Social Science, Arts and Philosophy will be considered in

Mathematics, and so on. The inward pointing arrows indicate that



the discipline-centred unite examine the application of their
distinctive intellectual frameworks to problems of intervention,
and provide the ideas and concepts which will be used in the

activity or problem-centred units.
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Chapter 4: Mathematics in the General Curriculum

I want now to relate the curricular theorising of the preceding
chapters more directly to the mathematics curriculum as it is,
and as it might be. The argument for democratic general education
leads to a demand for the inclusion of a particular kind of
mathematical education in the curriculum; one which is concerned to
illuminate the purposes, methods, concepts, rationale and development
of mathematical activity and argument, the interaction of mathe-
matics with other disciplines, and the mutual influence of
mathematics and its social context.

The questions which are central to a general mathematics course
are as follows:

What are mathematicians trying to do?

What is the point in doing it?

How do they go about doing it?

¥Why do they do it that way?

How does what they do affect, or reflect the rest of social

activity?

(1) The current mathematics curriculum

The first weakness of existing mathematics curricula is their
methodological narrowness. This is a criticism which applies
equally as regards the suitability of the curriculum as a training
in technical skille, and has been advanced by many who have very
different views of general education, or who are solely concerned
with the mathematical education of future specialists.

Hirst, for example, may have mathematics curricula in mind

when he sounds a note of caution to those who would use his
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arguments to justify existing curricular units and structures,

"Many well established courses need to be critically
re-examined both philosophically and psychologically
before they can be accepted as suitable for liberal
education. Superficially at least most of them

would seem to be quite inappropriate for the purpose."1

Certainly, little of school mathematics is concerned with proof in
any meaningful sense: none of it approaches the degree of formal
rigour implied by the phrase 'deducibility from axioms'. It is not
until the last years of school, by which time the great majority

of pupils have left school, or abandoned the subject, that proof
comes to play any great role in school mathematics.

The dominant concern of current mathematics curricula is that
pupils should become familiar with a collection of informally and
loosely justified conceptual systems, and an asBociated network of
standard problems and procedures. The overarching aim is that
pupils should become competent users of these conceptual systems,
in particular that they should be capable of matching procedures
to standard problems, or minor variations on them, and executing
the appropriate procedures. So, for example, pupils learn to solve
simul taneous linear equations by the techniques of elimination,
substitution and matrix inversion, and to recognise and solve
*gimul taneous equations problems' such as

"Twelve expensive flower bulbs and eight cheap ones
cost £3.80. Nine of the expensive ones and four of
the cheap ones cost £2.65. Find the price of each

kind of bulb."?
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The mathematical argument and activity which pupils encounter in
school generally takes the form of simple rule~citing and rule-
following. Strictly speaking it may be deductive, but it has
little to do with proof as the mathematician understands it.

Of course, one of the original aims of the 'modern mathe-
matics' movement was to counter the lack of concern for method
and structure in traditional curricula. It was argued that
mathematics ought to be presented to pupils in the same sequence
as that used by constructivist logicians in building up mathematics
from set theory.3 But, in practice, this concern that the
structure of the curriculum should conform to that adopted by
certain of the programmes which aim to give mathematics a unified
foundation has had only a slight ilpact.4 While set theory has
been included as a new topic, it has penetrated the treatment of
the remaining curricular content only at a superficial level.
There has been a rather half-hearted attempt to anticipate structur-
al algebra through ritualistic mention of the commutative,
associative, distributive, identity and inverse laws in the
presentation of the ideas of number, matrix and vector. But the new
curricula - and this may be no bad thing - lack a coherent
deductive thread running through their presentation of material.

The second proposed innovation, a move to 'discovery' or
‘active' learning has been little more successful than the first.
It is interesting to note however, that the inductive model of
discovery-learning which the curriculum planners imported from the
revised natural science curricula ran directly counter to the
deductivist ideology which underpinned the proposed emphasis on
structure in mathematics. So one modern curriculum, for example,

allows pupils to 'discover' Pythagoras' Theorem by asking them to
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find trios of squares which will 'fit' exactly to form right-angled
triangles.5 Indeed, if anything, modern curricula, shorn of the
traditional deductive presentation of Euclidean geometry place even
less emphasis on proof than their predecessors - however debased a
form proof may have taken there.

But, as I have indicated earlier, while proof is a central part
of the mathematician's methodological repertoire, it is doubtful
whether its role can be properly understood without an awareness of
the other parts of this repertoire. This is an argument which has
been developed well by Polya6 and Lakatos;7 by Polya from the
commonsense viewpoinﬁ of the practitioner, by Lakatos from the
viewpoint of the philosopher. Both are concerned to show that there
is more to mathematical method than proof and deduction: in
addition, Lakatos offers a novel and powerful insight into the role
of proof in mathematics, and its relation to other parts of the
mathematician's methodological repertoire.

Polya starts by pointing out that it is not merely the form in
which a mathematician finally presents his argument which is of
methodological interest, but also the process of enquiry through
which the result was formulated and a proof constructed. He

refers to this process as plausible reasoning, and to the formal

canons governing proof as demonstrative reasoning.

"Finished mathematics presented in finished form
appears as purely demonstrative, consisting of proofs
only. Yet mathematics in the making resembles any
other human knowledge in the making. You have to
guess a mathematical theorem before you prove it;

you have to guess the idea of the proof before you
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carry through the details. You have to combine
observations and follow analogies; you have to try
and try again. The result of the mathematician's
creative work is demonstrative reasoning, a proof;
but the proof is discovered by plausible reasoning,

by guessing."8

Polya describes the informal methods which mathematicians use to

extend their knowledge, the mathematical heuristic. His main

concern is with guessing, and with distinguishing a more reasonable
guess from a less reasonable one. He outlines the ways in which
the processes of specialisation, generalisation, analogy and the

examination of consequences can help to generate and criticise
conjectures.
Polya's argument has been developed by Lakatos who argues,
that informal, quasi-empirical, mathematics does not
grow through a monotonous increase of the number of
indubitably established theorems but through the
incessant improvement of guesses by speculation and

criticism, by the logic of proofs and refutations."9

Lakatos considers that, while Polya has done full justice to the

place of guessing, or naive conjecturing in the mathematical

heuristic, he has ignored the important role of proof. Lakatos
observes, following mathematicians such as Hardy, Littlewood and
Wilder, that proofs seldom actually prove. Rather than dismissing
proof entirely, however, he argues that its significance lies in
the way that it forces the improvement of naive conjectures, and

throws up new deductive conjectures. Thus, for Lakatos, the

presentation of a mathematical theory in demonstrative form is
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merely a convenient, if opaque summary of the criticism of previous
conjectures and proofs. The mathematical enquiry of Lakatos, like
Popper's scientific enquiry, "begins and ends with problems".10

Polya and Lakatos allude to the different kinds of judgement
which may enter into mathematical enquiry: profundity, generalisa-
bility, simplicity, economy, applicability and beauty are examples.
Of course, in the kind of enquiry within established conceptual
frameworks with which Polya deals, such criteria are subordinate to
those of validity. On the other hand, Lakatos suggests that at the
leading edge of mathematical enquiry where conceptual frameworks
are in the process of development, such considerations may be
paramount.

Although Polya and Lakatos are predominantly concerned with
‘pure' mathematics, the case of 'applied' mathematics is in many ways
analogous. First note, however, that the name is unfortunate: it
suggests the application of a mathematics that is already there.

Very often, of course, quite the reverse is the case: some elusive
‘real' phenomenon or problem inspires a new piece of mathematics.
Whatever the case, the plausible reasoning surrounding the
development of mathematical models and techniques involves
processes of conjecture and criticism similar to those already
discussed in the 'pure' case. In particular, whether the applied
mathematician draws on existing mathematical structures or develops
new ones to meet a particular problem, he seeks models or
techniques which 'fit' well, and are simple, generalisable, clear
and reliable.

These views lead Polya11 and Lakatos12 to be critical not only

of the deductivist approach to the presentation of mathematics -
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where convoluted axioms and definitions spring from the mathematical
conjuring box to lead inexorably to seemingly unguessable theorems
by means of proofs, full of apparently arbitrary twists and turns,
from which the final result finally, and often unexpectedly

emerges - but of any authoritarian presentation where the reasoning
behind the final edifice is passed over.

Polya argues that pupils ought to learn plausible reasoning in
their mathematics course. Here his main argument is from the needs
of the future mathematician. He suggests, however, that the non-
specialist will find that the strategies of plausible reasoning
in mathematics are applicable in other areas.

Both these arguments need to be treated with caution. I have
already argued that the needs of the future specialist ought not to
shape a curriculum for general education: it may be that the
general curriculum turns out to meet specialist needs, but these
should not be allowed to distort its purpose. And, given the lack
of plausibility of the classical 'transfer of training' theory,
experience does not portend well for the second argument, which
implies a transfer of plausible, rather than demonstrative reasoning
from mathematics.

The work of Polya and Lakatos, in combination with the learning
theories of psychologists such as Bruner and Piaget, has
encouraged, and been used to legitimise, 'active' or 'discovery'
learning approaches to the teaching of mathematics. Again, there
are a number of dangers in this argument.

First, it has helped to encourage a naive conflation of
cognitive theories of learning, heuristic theories of mathematical
enquiry and deductivist theories of mathematical knowledge, which

has led to the phenomenon I have noted already - a pedagogy based
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on a deductivist ordering of content within which new material is
introduced from an inductivist perspective: a pedagogy ultimately
false to all three theories.

Second, for this approach to lead pupils to knowledge of the
conceptual systems and procedures institutionalised in our society,

13

activity or discovery must be guided. Even Dawson -~ who cites
Lakatos at length seems to miss the fundamental point of Lakatos'
argument that ultimately man creates mathematics. If this is indeed
the case, then it is not sufficient, as Dawson suggests, simply that
pupils should possess the skills and attitudes needed to attack
problems in a rational and critical fashion. In order to recreate
our mathematics they must have access to the past judgements
institutionalised in our mathematical systems. Of course, very
little discovery learning is unguided, and even less recreates
mathematical activity authentically. Certainly, to produce
authentic mathematical enquiry it would be necessary to disengage

it completely from the acquisition of mathematical content. The two
aims are incompatible in the same learning activity.

Third, the argument for active learning often runs ahead of
itself. Although primarily an argument about means, it is often
not clear whether active learning is being proposed simply as a
means to existing ends, or whether it encompasses completely new
ends, or a mixture of old and new. The argument would benefit from
a clarification of ends before active learning is considered as a
means to these ends.

The criticisms of the methodological narrowness of the con-

ventional mathematicas curriculum offered by Polya, Lakatos and the

proponents of active learning, although they need to be handled with
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care, offer important insights which can be used in building a
mathematics curriculum for general education. In particular, they
draw attention to certain aspects of the hidden curriculum of
present courses, the tacit framework of assumptions and beliefs
which these courses transmit to pupils.

The lack of attention to the process of mathematical emquiry
and the authoritarian presentation of mathematical knowledge
encourage a view of that knowledge as unquestionable, and fundamen-
tally unchanging -~ the development, reinterpretation and restructuring
of knowledge, and the reasoning which sustains it and gives it
coherence are passed over. The highly structured tasks generally
set for pupils, promote a view of mathematical activity as the
routine application of techniques, and capricious juggling with
conceptual systems. This, and the occasional encounter with proof,
where the outcome is known in advance, and line follows line with
military precision, paints a picture of mathematical enquiry as a
relentless march towards a pre-existent truth. Such a state of
affairs is hardly desirable in any mathematics course; certainly
not in one which aims to open up the discipline to the nonspecialist,
to give him an insight into mathematics as a form of enquiry, a way
of understanding.

Methodological narrowness is not the only weakness of existing
mathematice curricula as instruments of general education. Present
mathematics curricula and the great majority of their critics hold
in common the assumption that the over-riding aim of a mathematics
course should be to teach pupils to 'do maths', to develop mathe-
matical knowledge and expertise. Where they differ is either in their

conception of what counts as 'doing maths', or over the kind and
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extent of knowledge and expertise which pupils require.

It may seem perverse to draw attention to this assumption, let
alone to question it. Certainly such an assumption would be fully
justified in a course with directly utilitarian ends in mind,
equipping pupils with the technical expertise needed in everyday
life, in some vocation, or for further specialist education in
mathematice or mathematically-based subjecta. All these ends re-
quire, primarily, that pupils should, in some sense, be capable of
'doing maths'. Nonetheless, the readiness of our assent to this
assumption is only an index of the extent to which utilitarian and
specialist conceptions of education take priority over generalist
conceptions in mathematical education. Indeed, only a weak con-
ception of general education which identifies it with diluted or
discontinued specialist education is capable of coexisting with the
currently dominant, utilitarian and specialist models of mathematical
education.

This is not to suggest that utilitarian and specialist aims
have no place in the school curriculum, but simply that they are no
substitute for generalist aims, and that the latter should not be
subordinated to them. Nor is it to suggest that a mathematics
course based on a strong conception of general education, such as
the one I have advanced, can, or should not aim to give pupils some
measure of technical knowledge and expertise. For general
education, however, this aim is not paramount, and entails a broad
understanding of central mathematical concepts rather than a
detailed knowledge and a developed manipulative competence. The
development of a measure of technical expertise is, in a general

mathematics course, instrumental to the attainment of a wider
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understanding of mathematics and mathematical activity.

The reason why developing the ability to 'do maths' cannot be
the over-riding aim of a general mathematics course becomes more
apparent if we imagine a course incorporating the changes
recommended by Polya, Lakatos and the proponents of active learning -
one incorporating a heuristic presentation of content, and aiming
to develop the skills of plausible reasoning - and note that it
too has an undesirable aspect to its hidden curriculum, particularly
if it ignores, as the forementioned critics of present curricula
do, applied mathematics. Quite simply, such a course presents
mathematics as socially disembodied, ignoring its past and present
interactions with the society which nurtures it. While such a
course acknowledges the dynamic nature of mathematics, it presents
it as an autonomous area of knowledge and tradition of enquiry,

isolated from a wider society.

(2) Designing a general mathematics curriculum

I am now in a position to outline the kind of mathematics
course which would satisfy the criteria for general education
advanced in previous chapters, and take account of the criticisms

I have made of existing courses and commonly proposed alternatives.

(i) Aims
Briefly, such a course has four interdependent and over-
riding aims:
(a) to familiarise pupils with the central principles and
rationale of the major conceptual systems of mathematics,
(b) to give pupils an insight into the nature of mathematical

enquiry, argument and knowledge,
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(¢) to give pupils an insight into the development of
mathematics and its relationship to a wider society,

(d) to develop the ability of pupils to apply this knowledge
and understanding to their concerns as individuals and as

citizens of a democratic society.

(ii) Technical skills

Before I amplify this brief statement of aims I want to say
something about the relationship of general mathematical education
to the kind of education in mathematics which aims to develop the
technical knowledge and expertise which will be of use to pupils
in their everyday lives, or in work or further study. There is
certainly a core of technical mathematical expertise which is likely
to be of direct use to the majority of pupils, although, inevitably,
there is some disagreement about its precise boundaries. It is
clearly desirable, on these grounds of direct utility, that all
pupils should become familiar with some core of technical mathemati-
cal expertise, as well as pursuing the general mathematical aims
for which I have argued. In general, however, existing curricula
go far beyond any definition of an essential utilitarian core into
areas of technical expertise which will conceivably be of direct
use only to a small minority of pupils. It is material of this
sort which must be revised or excised in planning a common course
in mathematics.

A common course in mathematics should aim to familiarise pupils
with a widely useful core of technical mathematics. This need not
detract from, nor impede its over-riding general aims. Indeed it
is likely to be instrumental to their achievement. And while a

common course is not directly concerned with specialist aims, it
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can be designed so as to provide a firm foundation for subsequent
specialist courses. Other things being equal, material of value to
the intending specialist can be chosen as a vehicle for general
aims. While such a course is unlikely to produce the level of
technical sophistication at which present courses aim, to compensate
for this it has a wider methodological compass, and offers the
potential mathematician a better grasp of the nature of his subject.
And it aims, of course, to familiarise him with the central concepts
of his specialism.

It is important that the material of the 'everyday' technical
core should not be presented in a way which encourages a mistaken
view of mathematics, and thus prejudices the attainment of general
aims. The core, as it is usually and, I believe, correctly
conceived, focuses on the basic conceptual systems of number, shape
and size, and the techniques to which they give rise: the aim is
to develop the ability of pupils to apply these systems to commonly
encountered situations, and to correctly and easily execute the
appropriate mathematical procedures. Here the immediate social
significance of the ideas is something of which pupils are already
likely to be aware: what is not apparent to many pupils, and not
made clear by current approaches is the rationale behind the
mathematical systems and techniques which we all use in everyday

life.

(iii) Rationalisation

For example, in the current curriculum to learn about
percentages is usually simply to learn to use a collection of
procedural rules - changing between percentage, decimal and

fractioral form, and calculating a given percentage of some quantity.
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At best these procedures will be embedded in the conceptual frame-
work of fraction, ratio and proportion. But this 8till leaves
many questions unasked and unanswered;

Why do mathematicians use decimal and vulgar fractions and
percentages to represent parts and relative sizes? Why not have a
single system? And if it is worth having three systems, in what
situations, or for what purposes is each preferable?

Does the common denominator for the percentage-idea have to be
100? Would any denominator do? What numbers might be rivals to
100? What considerations led to the choice of 100? Are any other
systems used in similar or analogous situations - weights and
measures, angle measure?

To answer these questions is to reconstruct the rationale
behind the development and continuing use of percentages.

Often such questions can be built into a heuristic presentation
of a topic. For example, one approach to the exposition of methods
of measuring and calculating area is through what Lakatos would
term the rational recomstruction of their development. Starting
from an intuitive notion of area, and the simple case of comparing
the size of two shapes where one can be fitted inside the other, the
complex superstructure of ideas and techniques which mathematicians
have built on this can be made articulate and rational. A fuller
outline of this example can be found in Appendix 1.

The adoption of a heuristic approach, showing the rationale
behind the development and use of mathematical methods, and locating
them in their historical and social context means that both
utilitarian and general aims can be satisfied within this part of

the common course. It is also possible that an understanding of
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the rationale of techniques will help pupils to use them more

adaptably and intelligently.

(iv) Methodological and cultural elaboration

The greater part of a common course needs, however, to be
designed with general aims directly in mind. Nonetheless, this
part can build on the basic mathematics of number, shape and size.
Number theory, for example, offers a rich and readily accessible
domain in which to illustrate the mode of enquiry of the pure
mathematician. Whereas in traditional Euclidean geometry many of
the results proved at great length seem trivial and intuitively
obvious, surprising, and often deep conjectures abound in number
theory. Furthermore, the familiarity that pupils already have with
pumbers makes this an ideal area in which to encourage them to
formulate, test, and attempt to prove conjectures of their own.
And, at the same time, such activity reinforces and enhances basic
number skills.

Arithmetic is also a good area in which to illustrate the idea
and problems of axiomatisation - although this is likely to be best
dealt with later in the course. Nor need arithmetic be unremittingly
pure. Sequences provide some of the simplest and most elegant
mathematical models which are of very wide applicability. The need
for some kind of convenient notation soon becomes apparent in this
kind of work and can provide a motivation for introducing simple
algebraic notation.

The formal emphasis in traditional geometry may account for
its minimal concern with applications, limited, usually, to

mensuration, simple constructions, and the elements of scale
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drawing and navigation. This state of affairs has only been
confirmed in the modern change to motion or transformational
geometry. Surprisingly, the wide applicability of simple geometric
ideas to the design of engineering structures and mechanisms -
bridges, buildings, playground toys, household gadgets, bicycles
and motor vehicles, drills, cranes and the like - has been ignoredih
Similarly the relation between geometric ideas of pattern and art
and design has been little exploited. The use of tesselation in
Celtic and Islamic art and the graphics of Escher, the symmetries
of common logograms, the development - and limited realism -~ of
perspective, anamorphic art, op art, and the design of containers
and packaging are examples of topices on this interface.15
While elementary geometry may not be & good area in which to
illustrate proof, the study of pattern in geometry, notably in

tilings and tesselations is a valuable precursor to the study of

the concept of area.

(v) The choice and presentation of central concepts

Extension and elaboration in the presentation of basic
mathematics can help to fulfil general aims. But a course which
went little beyond elementary arithmetic and geometry could hardly
convey an impression of contemporary mathematics. The question
then arises as to what material to include beyond this basic
mathematics. There are a number of criteria which can be used.

First, the systems of ideas chosen should be powerful,
significant and versatile, and should be pursued to a point where
these qualities can be illustrated. One serious criticism of
modern mathematics curricula is that pupils spend a great deal of

time on material which is of strictly limited mathematical value,



8l

and often go no further than learning definitions whose signifi-
cance will not become apparent until some subsequent course to
which the majority will never proceed. It is imperative that a
common course be gself-sufficient and self-justifying. The material
which is included must be both central to mathematics, and
developed to a level where its purpose and value can be appreciated.
And, of course, the material chosen must be a suitable vehicle for
illustrating the methodological and cultural dimensions of
mathematics.

The result of applying these criteria is likely to be a more
single-minded pursuit of a smaller number of areas than is
currently the case, and the use, whenever possible, of 'current
interest' material which ia relevant to mathematics. Furthermore,
by concentrating on a core of central mathematical concepts, a
generalist common course can provide a sound foundation for
subsequent specialist study.

If any field is central to mathematics it is analysis. This
is the fundamental tool of the applied mathematician, and in and
around it the pure mathematician has built his most elaborate
theoretical edifice. Through an informal, heuristic development of
the calculus, it is possible to explore both mathematical modelling
and - from Zeno's paradoxes16 to Peano's and Hilbert's space

17

£filling curves, and Von Koch's snowflake curve ' - examples of the
methodological problems which stimulate the development of
mathematical systems, and influence our view of mathematics.

Another field which calls for inclusion in a general mathematics
course is that of probability and statistics, on the grounds both

of its widespread use, and its influence on ideas of mathematics.
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Although originating as an adjunct of gambling it is now widely used
as a modelling device in the natural and social sciences, and in
management and planning.

A third area which no general mathematics course can avoid
is that of computing. First its social impact is potentially
enormous - we are only starting to appreciate its influence on
patterns of employment, and the threat which its unsupervised use
presents to civil liberties. Second, it has immensely extended
the power and potential of applied mathematics, and - on the
evidence of Appel and Haken's recent proof of the four colour
conjecture18 - may have as great an effect on methods in pure
mathematics. Finally, work in the theory of automata raises
important questions about the nature of mathematical thought and
the limitations of mathematical systems, as well as wider questions
about the nature of 'intelligence' and 'creativity'.

Beyond this there is likely to be much more dissent. One area
which I feel has a great deal to contribute to a general course is
that of combinatorial and graph theory: first, it is a readily
Aaccessible and fertile area of mathematics in its own right; second,
its applications are wide and relatively easily understood; third,
many of its ideas are applicable to probability and computing:
finally, it provides elementary examples of non-metric geometries
to contrast with the metric geometry which the pupil has already met.

Although this content would be an excellent foundation for
subsequent specialist training, a common course should present it
in a way very different from that appropriate to specialist courses.
For, in this area beyond basic mathematics, the acquisition of
technical skill is only instrumental to the achievement of the wider

generalist aims of understanding mathematics and mathematical
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activity as a whole, and of relating them to their social, histori-
cal and intellectual context. These aims call for a presentation
which is informal and heuristic, and refers to the development,

use and impact of mathematical ideas to a depth and degree much
greater than present courses, where, if history enters at all, it
consists solely of attaching a name or anecdote to some theorem

or technique. A satisfactory history of mathematics asks why ideas
became important and were pursued, and what effects they had inside
and outside the discipline.

The difference in approach is likely to be particularly
marked in applied mathematics. The aim of the course is not that
pupils should memorise and acquire proficiency in the use of,
say, the Newtonian square root algorithm, or that they should be
capable of solving convoluted problems on confidence limits. It
is that they should understand what an algorithm is, why and where
they are used, and why some algorithms are preferable to others; or
the meaning and importance of confidence limits, and that these
limits depend on certain assumptions about the initial data.
Clearly, then, considerably less time needs to be spent on acquir-
ing detailed technical knowledge and practising technical skill,
and a great deal more on developing an understanding both of the
general processes of mathematical reasoning and the general
structure of mathematical argument, and of the relation of
mathematics to human life as a whole.

It will be apparent from this discussion of content and its
presentation that the aims of general mathematical education
cannot be usefully separated. The presentation of content and the
pupil activity which accompanies it convey, implicitly or explicitly,

a view of mathematics and mathematical activity. Recognising this,
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a general mathematics curriculum uses the presentation of content
and related pupil activity to initiate and illustrate reflection
on mathematical enguiry and argument, and on the wider social

relations of mathematics.

(vi) Pupil activity

While a didactic presentation of mathematics, through rational
reconstruction, is possible in all these areas of content, some lend
themselves particularly well to actual pupil participation in
mathematical activity. Number theory and combinatorial and graph
theory are excellent media for pupils to make and test their own
conjectures, and to construct and criticise proofs for themselves.
Similarly, as their technical expertise in combinatorial and graph
theory, probability and statistics, the theory of functions, and
finally, analysis accumulates they can start to build and evaluate
simple mathematical models. In computing they can quickly start
to design and execute algorithms and problem-solving strategies.

This experience of mathematical activity on the part of pupils
is an important part of a general mathematics course; first and
foremost, because only a very limited understanding of mathematics
is likely to be achieved by someone who has never had this
experience, but second, because pupils ought to have an opportunity

to find out whether they enjoy and value mathematical activity.

(vii) Reflection

On and around this experience of mathematical activity, and
the presentation of content much of the reflective work of the
course can be built. Often, indeed, heuristic presentation or pupil

activity can be built around historical or social themes - 'the
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development of counting systems and calculating devices', 'methods
of presenting information', 'models of growth and decay', or
'paradoxes' - through which the social context and impact of
mathematics, and the nature and limitations of mathematical knowledge
and argument can be explored. Even where this thematic continuity
is not possible, consideration of the development, rationale and
implications of different pieces of mathematics is likely to throw
light on the broad issues with which the reflective part of the
course is concerned. Later such insights can be summarised and
synthesised in a lesson dealing more directly with reflective issues.

For example, the contrasting responses of Greek and Babylonian
mathematicians to the knowledge that certain numbers could not be
expressed in rational form, and the arguments that raged between
mathematicians throughout the eighteenth and early nineteenth
centuries about the value of establishing rigorous foundations for
the calculus, exemplify the persisting coexistence of very different
views about what is important in mathematics, and of the nature and
purpose of mathematical enquiry. Descartes' search for a universal
method, reflected in his synthesis of algebra and geometry, and
contemporary work in metamathematics and artificial intelligence
demonstrate a similar concern to extend, or at least demarcate the
power of mathematical enquiry. And both have significant implica-
tions for our use of concepts such as 'intelligence' and 'imagination'
in relation to mathematical activity.

Examples of the social impact of mathematics abound, from the
role of surveying in the government of Amncient Egypt, through the
influence of ballistics on seventeenth and eighteenth century

warfare, to the effects of the computer on our society.
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The reflective part of a general mathematics course seeks to
illuminate mathematics and mathematical activity as an intellectual
and social phenomenon, to make pupils aware of the nature and
context of mathematical activity, and of its role in resolving -
and creating - intellectual and social problems. In this way the
course provides a cultural perspective to complement the technical
perspective in those parts which deal with central concepts and

mathematical activity.

(3) Summary

I will summarise this chapter in terms of a simple model for
describing the subject matter of mathematics courses. First, this
model distinguishes between, on the one hand, 'doing' or learning
to 'do' mathematics - the perspective of the participant - and,
on the other, stepping back to examine mathematics from some wider
perspective; that is, between the Articulation of the methods and
concepts of mathematics, and Reflection on mathematics.

Within Articulation the model distinguishes between a presenta-
tion of mathematical methods, concepts and activity which is
concerned solely with establishing, or laying down and acting in
conformity with a body of 'correct' or conventional systems, rules
and relations, and a presentation which goes beyond this to examine
other kinds of evaluations and reasons underlying the structure of
mathematical methods, concepts, arguments and activity. The first,
Standard Articulation, takes the framework of mathematical systenms,
rules and relations for granted. While it may be concerned with
relations within the system, it does mot examine the basis of the
system, or the intrusion of considerations logically external to

jt, in its use. Nonstandard Articulation does examine such
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aspects of mathematical systems, arguments and activity. For
example, using a given Newtonian model of motion to resolve a
problem about the path of a projectile is Standard Articulation;
discussing the appropriateness or accuracy of the model, or the
clarity and economy of two alternative methods of solution which
employ the model, is Nonstandard Articulation.

This is an important distinction. A course which emphasises
Standard Articulation to the exclusion of Nonstandard presents
mathematical activity as solely concerned with 'getting the right
answer' within some taken-for-granted framework of rules. Now,
while this describes certain parts and aspects of mathematical
activity, it is, as the arguments of Polya and Lakatos establish,
an inadequate one. Further, as Lakatos is aware, such a course
tends to encourage a view of mathematics as some kind of ultra-
physics - or as an arbitrary and capricious game. Heuristic
presentation, or open-ended mathematical activity which aims to
give an authentic insight into the growth, development and
application of mathematics cannot avoid consideration of Non-
standard evaluations and reasons.

Within Reflection, the model distinguishes between Methodologi-
cal Reflection - discussion of philosophical and psychological
questions about the nature of mathematical knowledge, argument,
enquiry and thought, and the judgements underlying them - and
Cultural Reflection - discussion of social and historical questions
about the development of mathematics, and its interaction with a
wider society, in particular, its impact on man's world and idess.

I have argued for a general mathematics course which concerns
itself, to a substantial degree, with Reflection of both kinds,

and which embeds its Standard Articulation in the Nonstandard
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Articulation which underpins and augments it. I have suggested that
current courses cannot meet these criteria; that they ignore both
kinds of Reflection, and pay little attention to Nonstandard
Articulation. This suggestion provides the starting point for the

empirical study described in Part I1I.



Part II: An Empirical Study Of Mathematics Teaching
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Chapter 5: The Research Problem

In Part I I argued that a strong conception of general
education entailed a commitment to a mathematics curriculum very
different from that which is current in Scotland. I will now
present empirical evidence that my characterisation of the present
Scottish curriculum is justified; that it does indeed differ in
certain crucial respects from my model of a general mathematics
curriculunm.

School attendance in Scotland is compulsory until the age of
16. The great majority of pupils complete at least four years of
secondary education. It is in the years 51 to Sk, then, that we
would particularly hope to detect the influence of general educa-
tional aims on the Scottish mathematics curriculum, and it is here
that the study which I will describe sought evidence of the
influence of such aims.

First, however, one important point must be clarified., In
what sense is it meaningful and justifiable to talk of 'a Scottish

mathematics curriculum'?

(1) The Scottish mathematics curriculum

The Scottish educational system forms a single administrative
structure with the Scottish Education Department (SED), and
latterly the Consultative Committee on the Curriculum (CCC) and
the Scottish Certificate of Education Examination Board (SCEEB)
at its apex. The normal, and officially endorsed organisational
pattern divides S1/Sk into a two year common course in S1 and S2,
followed, at the start of S3, by the allocation of pupils to two

year certificate or noncertificate courses in individual subjects.
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The certificate courses lead to presentation in the SCE '0' Grade
at the end of Sk, Virtually all pupils follow some kind of
mathematics course throughout S1/Sk. In S1/S2 all follow a common
course, although in the many schools where ability setting is
introduced at the end of S1 (or even earlier), the second year of
the course is likely to be common only in name. At the start of
S3 around 60% of pupils embark on a course aimed at presentation in
both Mathematics and Arithmetic at '0' Grade, and a further 25% on
a course aimed at presentation in Arithmetic only. The great
majority are still following the same course at the start of Sk,
although many are not eventually presented, and still fewer are

finally successful, as the following table shovs.1

Career of a cohort of pupils through 83 and Sk (1974-76)

% studying a % presented in ¥ A-C % D-E

certificate the subject at award award
Subject course in the '0' Grade

subject at the

start of S3
Arithmetic 8k 6l ko 14
Mathematics 61 35 21 9

Base for %: total number of pupils at start of S3

There are two SCE syllabuses in Mathematics, A and B, Each
is associated with a set of nationally prepared curriculum
materials specifically designed for that syllabus: the series of
textbooks 'Modern Mathematics for Schools' (MMS) is associated
with Syllabus A, the'Modular Mathematics' workcard/sheet system
with Syllabus B. The two syllabuses run broadly parallel through-

out S1 and S2 before diverging to some extent in the later two
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years. As a result, a number of schools which only present
candidates on Syllabus A make use of Syllabus B materials during
the common course. Perhaps around 10% of Scottish schools make
use of 'Modular Mathematics' materials during the common course.
In the remainder, the common course is almost invariably based on
MMS: indeed, almost all use MMS as the class text.

The great majority of S3 and Sk certificate pupils follow
courses aiming at presentation on Syllabus A: 98% of presentations
are on this syllabus.2 Those following the double course in both
Mathematics and Arithmetic almost invariably use MMS. The more
‘able' of those following the single course, if they have a text-~
book, may use ‘Modern Arithmetic for Schools', a compilation of
the arithmetic chapters from MMS.

This evidence points to a single dominant mathematics
curriculum in S1/Sh which is adapted in various ways to take account
of what are perceived as the differing abilities of pupils. 1In
particular, in S3/Sk some pupils study only the Arithmetic part of
this standard course, while others on noncertificate courses
study a diluted version of this already curtailed course. To this
extent it is appropriate and justifiable to talk of a Scottish

mathematics curriculum.

(2) The empirical study

The first step in planning the study was to decide what kind
of evidence was needed, and how it could be obtained. In fact, this
stage of the research took place in parallel with the development
and clarification of the theoretical concepts which were introduced

in Part I. This first stage combined participant observation in
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schools with reading in areas - the philosophy, history and
sociology of mathematics and science, curriculum theory, and
studies of teachers and teaching - which might illuminate both the
fundamental theoretical issues raised by general mathematical
education, and the ways in which theoretical conjectures could be
empirically tested. From this stage came the outlines of the
study.

This study, described in the following chapters, is in two
parts. The first examines three critical manifestations of the
curriculum - classroom talk, curriculum materials and examination
papers - in order to provide evidence on which to judge the extent
to which the present Scottish mathematics curriculum satisfies the
criteria for general mathematical education which have been
advanced in the preceding chapters.

Classroom talk and curriculum materials are the major direct
influences on the outcomes of pupil learning. National curriculum
materials and examinations represent the 'official' curriculum.
They are likely to exert a powerful influence on teacher behaviour,
and thus indirectly on pupil learning.

The second part of the study examines the views of mathe-
matics teachers on the role of mathematics education in the first
four years of the secondary school, and the ways in which they
approach the teaching of mathematics in these years.

For convenience I shall refer to the firat part as 'the

curriculum study', and the second as 'the teacher study'.
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Chapter 6: The Curriculum Study - Aims and Methods

(1) The aims of the curriculum study

The principal hypothesis which the curriculum study was
designed to test is that the present mathematics curriculum is
almost exclusively concerned with technical expertise in mathe-
matics - how to 'do maths' - rather than with the nature of
mathematical knowledge and enquiry, and the social, cultural and
intellectual context of mathematics.

An auxiliary hypothesis is that the conception of 'doing
maths' current in the curriculum centres on using, or working within
certain given frameworks of rules which define what is 'correct'
or 'appropriate’', ignoring the more fundamental issues of validity
involved in constructing, and justifying the application of these
frameworks, and the use of criteria other tham those of validity

in evaluating mathematical procedures and constructs.

(2) The development of an analytic instrument

The research strategy adopted for the curriculum study was a
systematic content analysis of classroom talk, curriculum materials,
and examination question papers. A search of the literature
revealed that there was no content analysis instrument available
vwhich could be used or suitably adapted to meet the purposes of
this study. A new instrument,the Mathematics Topic Handling System
(MATHS), was developed which embodies the critical distinctions
underlying the hypotheses described above.

The full instrument is described in Appendix 2. In brief it

operationalises the theoretical distinctions introduced in Chapter 4,
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between Methodological Articulation, both Standard (SMA) and
Nonstandard (NMA), and Reflection, both Methodological (MR) and
Cultural (CR). Topics falling into none of these classes are
categorised as Residual (RES).

I will discuss the methodological imsues raised in the
development of MATHS in the context of the classroom version which
is the most complex and difficult to use. The basic rationmale is,
however, the same for all versions.

The central issue in developing a content analysis asystem is
the definition of a unit of content to which the theoretical dis-
tinctions, which the system seeks to operationalise, can be tied.
The 'topic' on which MATHS is based, starts from the work of
Gallagher.1 Gallagher's 'topic' is a more flexible unit for con-
tent analysis than, for example, the 'venture' of Smith and Meux.z
In particular, it serves better as a model of loosely structured
talk. By allowing the interleaving and interpenetration of themes

an
the 'topic' model can accoﬁfdate digression and the parallel
development of themes, whereas the 'venture' model tends to make
sense of such talk by ignoring it, or by absorbing it into some
larger unit.

The 'topic' is also more suitable than units such as the
‘episode' of Smith and Heux.3 the 'incident' of Nuthall and
Lavrencc,h or the 'topical cycle' of Bellack.5 which only model
question-centred dialogue, in view of the likelihood - apparent
from the pilot studies - that a high frequency of teacher momologue
would be found in the observed classrooms.

Nonetheless MATHS differs from Gallagher's Topic Classification

System (1CS) in a number of ways. First MATHS is concerned with a
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different facet of classroom talk. Gallagher's system aims to
describe what he terms the 'cognitive' dimensions of classroom talk.
He developed the 'topic' as a 'natural' unit of content which

could be multiply coded on three 'cognitive' dilensioné;
Instructional Intent, Conceptualization, and Style. The details of
these dimensions need not detain us here. For MATHS the descrip-
tion of the substantive content itself is the end.

The second difference arises from this difference in aims.
Because MATHS is directly concerned with the content of classroom
talk, it subdivides and categbrisos in a single process. Categorical
distinctions are incorporated in the subdivision rules. In
particular, these analytic distinctions take priority over
naturalistic ones.

Third, MATHS codes directly from audiotapes rather than in-
directly from transcripts. Gallagher points out that the
preparation of transcripts is laborious and time consuming, and
that the nuance of spoken language is lost in the process. On the
other hand coding from transcripts is probably rather easier and
more reliable. Gallagher's study suggests, nonetheless, that
satisfactory agreement between observers is likely to be attainable
from the coding of audiotapes. Given its clear advantages in
other respects, this method was preferred. This particular
problem does not arise, of course, in the analysis of textbooks
and examination papers where printed matter can be coded directly.

Fourth, while it is not entirely clear from his description
of TCS, it seems that Gallagher's system codes only whole class
discussion. MATHS codes all substantive talk, including that
between the teacher and individual pupils or groups of pupils. In

particular, it codes talk occurring during what the TCS would code
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solely as Activity. Pilot studies suggested that the great
majority of substantive talk came from the teacher and was addressed
either to the whole class or to individual pupils. In order to
ascertain whether the content of discussion differed between these
two situations, a distinction between Class and Individual
discussion was introduced, with the dividing line set, rather
arbitrarily, at four pupils. Again, this is a problem which does
not arise in the textbook and examination versions.

Fifth, Gallagher's ‘'developed' and 'undeveloped' 'topics' and
'themes' have been dropped. The definitions of, and distinctions
between these units lack a theoretical basis to sanction their use
as indicators of the degree of emphasis or elaboration given to
topics in different categories. Indeed, the lack of uniqueness
of naturalistic divisions at each of, and between these levels -
evident in Gallagher's studies and those of Smith and Meux -
suggests that an adequate theoretical basis is unlikely to be
forthcoming.

Instead, MATHS uses a simple time measure to quantify the
emphasis given to different categories. Such a measure has the
advantages of being easy to use, and producing data which are highly
reliable and easy to interpret. The basic unit of measurement is
a 10 second interval. Given the ambiguity of the opening and
closing of individual utterances and topical units, and variations
in tape speed, to use a smaller unit would be to claim a spurious
accuracy for measurement.

The main function, however, of the developed/undeveloped
distinction in Gallagher's TCS is to set a threshold below which

topics need not be - on the Conceptualization dimension - or are
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not - on the Style dimension - categorised. This device smooths
out ambiguous or insubstantial talk. The threshold that the TCS
sets - 15 lines of typescript, equivalent to around one minute of
talk - seems rather high for the purposes of MATHS. MATHS lowers
the threshold to 15 seconds: that is, no topic has a measured
length of less than two 10 second units. A topic which lasted less
than 15 seconds would be extremely insubstantial. It could consist
of little more than a single statement; there would certainly be

no time for interchange. It seems reasonable to suppose that any
topic to which importance is attached will be dwelt on for longer
than 15 seconds.

This, then, is a rather more sensitive smoothing device than
that of TCS. For consistency, and greater sensitivity of measure-
ment, we rule that periods of silence or chaos within the boundaries
of a segment are deleted if they exceed 15 seconds in length. In
analysing textbooks and examination papers the problems of defining
thresholds and units of measurement are less complex. For text-
books the sentence was chosen as the threshold, and the line or
line equivalent as the unit of measurement, for examinations, the
question and its mark respectively.

Finally, one weakness of Gallagher's system is its lack of
definition of the nature of 'auxiliary' comments grouped under the
headings of 'management' and 'structuring'. In this matter MATHS
aspires to a rather more precise definition by laying down ground

rules for identifying such comments.

(3) The choice of a sample

The other important issue at the planning stage was the choice
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of particular instances of classroom talk, curriculum materials, and
examination papers to be analysed. For this choice might affect
the validity of generality of the findings.

It seemed important to analyse a broad sample of classroom
talk from mathematics classes in the years S1 to Sk, The sampling
plan was in two stages. First, a number of schools were to be
chosen and asked to cooperate in the study. Then similar classes
in each school were to be chosen for observation.

It was decided to sample only from the Central Region of
Scotland. There is no evidence to suggest that curriculum and
teaching practices in secondary school mathematics vary between
regions within Scotland. In addition, because of its geographical
position, teachers in Central Region are drawn from a variety of
sources, both in terms of university and college training, and of
previous teaching experience.

Within each school it was decided to observe classes in S1
andFSB. In S1 classes are furthest from the influence of SCE
examinations and most likely to be following a common course:
here we might expect to find evidence of any atrongly held
interpretations of general mathematical education. By S3 courses
have diverged and differences in their content are likely to be
apperent. (Since the study was to take place in April, May and
June 1977 - a period which straddled the SCE examinations - it
would not have been possible to observe Sk classes. In any case,
the S3 classes observed would be well - about half-way - into the
S3/S4 course at the time of observation).

After consultation with the Central Region Education

Department, and with its approval, eight schools were approached,
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of which four agreed to cooperate in the study. At least one
preliminary visit was paid to each of these schools before observa-
tion started, to determine the way in which the mathematics
department organised its classes, and to make arrangements for
observation.

Two schools were in the same urban, industrial area. Both
were fully developed six-year comprehensive schools, one with
around 1800 pupils, the other with around 700. The third, situated
in a emall industrial town, was a fully developed six-year
comprehensive with around 900 pupils. The fourth, situated in a
small rural, commuter town, was in the process of developing from
a four-year junior secondary into a five-year comprehensive. At
the time when the observation took place, years S1 to S3 were
comprehensive., This school had around 350 pupils.

The organisation of mathematics courses was similar in all
four schools. In 81, mathematics classes were mixed-ability: from
S2 onwards they were set by ability. Around half the S3 pupils
were following a course leading to presentation at SCE '0O' Grade
in both Mathematics and Arithmetic, a further quarter were aiming
at presentation in Arithmetic only, and the remainder were following
noncertificate courses.

As a result it was decided that three classes would be
observed in each school; one mixed-ability from S1, one 'above
average' (double subject) from S3, and one 'below average' from
S3. Note that 'above' and 'below average' are not mere statistical
artefacts: they correspond to real organisational and curricular
distinctions.

So as to view as many different teachers as possible, and to
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inconvenience individual teachers as little as possible, each class
observed was to have a different teacher. The principal teacher
of mathematics in each school was asked to identify those teachers
in his department willing to cooperate in the study, and to

select, in as unbiased a manner as possible (given the constraints
above) the three classes to be observed. The researcher's
impression is, however, that in all cases the choice was arrived at
through a process of discussion and reasoned choice, rather than
one of unguided choice.

The sample is, then, certainly not random. Observation took
place only in the four schools prepared to cooperate in the study,
and, in each school, only in classes approved by both the principal
teacher and the class teacher - in two cases an observed class was
taught by the principal teacher. In one school it became clear at
the last moment that the teacher of the 'below average' S3 class
originally chosen was not prepared to cooperate in the study, and
an additional S1 class had to be substituted. But while this was
not a random sample from the three populations, it is plausible
that the bias was towards those classes and teachers which were seen
as satisfactory if not positively successful. For example, in
each school it was the top S3 class from the 'above average'
population which was chosen to be observed. The schools had 6,

2, M‘and 2 'above average' classes respectively: the probability
of this event happening strictly by chance is just over 1%. Any
bias at the selection stage is likely to be towards teaching

styles and classes that are approved by the teachers themselves.

The second way in which classroom observation data may be

biased is related to the actual fact of observation. Teachers may,
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consciously or unconsciously, alter their behaviour towards models
which they believe will bring approval. Nonetheless they remain in
a 'real' gituation to the extent that the presence of an observer
is a marginal addition to existing constraints and influences on
their behaviour, which will remain long after the observer has gone.
It seems plausible that the largely unknown dispositions of a young
graduate student are not likely to exert a great influence on the
behaviour of teachers, in the face of existing and less transient
influences: furthermore any alterations would have to be sustained
over a number of lessons, and corresponding alterations sustained
throughout the interview and the informal conversation which the
'teacher study' entailed.

All but one of the 12 classes chosen were observed over at
least three 35-40 minute periods. Each observed class was recorded
on a 2-track audio-cassette. On one track was a record of class-
room talk from a radio-microphone attached to the teacher's person,
on the other a commentary on any events or details which might
assist coding, given by the observer who sat at the back of the
classroom throughout the lesson, monitoring the recording equipment.
In the case of one class, equipment failure made it possible only
to record two periods. Im all, thirty-eight periods were recorded
and analysed.

The choice of curriculum materials and examination papers for
analysis was much simpler. Previous discussion has pointed to the
significance of the series of textbooks 'Modern Mathematics for
Schools'. The four schools in the study were no exception to the
pattern vwhich has been described. In three of the four the Sﬁ/SZ

common course was based on MMS and the appropriate volumes issued
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to pupils. The fourth used 'Modular Mathematics' materials but
supplemented these with work from MMS for certain groups of pupils.
In all four schools certificate courses were on Syllabus A and

the S3/S3 double course was based on MMS, which was issued to all
pupils following it.

In all of the schools the work of the department was organised
around the standard curriculum materials: the shared assumption
was that all teachers of S1 and of 'above average' S3 classes
would basically work through these texts. No single text was
favoured for S3 'below average' classes. Indeed, many were not
issued with, and rarely used texts. Those in use, and in stock for
use with such classes, differed little in content from the arith-
metic sections of MMS, The main difference lay in the number and
simplicity of the examples in the exercises.

This evidence pointed to an analysis of the seven volumes
of MMS which cover the full 'O' Grade course.

We have seen how S3/Sk certificate courses in Scottish
secondary schools aim towards presentation at SCE 'O' Grade.
Although 98% of presentations in Mathematics and Arithmetic are
on Syllabus A, it was decided to include Syllabus B examinations
in the study in order to test the hypothesis that, in terms of the
distinctions of MATHS, there is no difference between the two
syllabuses. While the individual items in examinations on a
particular syllabus change from year to year, the broad principles
underlying the construction of the examination are unlikely to do
so without some explicit indication. For these reasons it was
decided that an analysis of the 1975 and 1976 'O' Grade examina-
tions in Mathematics and Arithmetic on both syllabuses would be

sufficient to provide valid evidence.
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(4) The reliability and validity of the data

The MATHS coding system is intended to operationalise a model
of the content of mathematics curricula. When we ask whether the
data it- produces are valid and reliable, we are asking questions
.abeut the adequacy of the model and its operationalisation, and
the way in which the system has been used.

A model fulfils two functions: it generalises and it simplifies.
Strictly, generalisation is a form of simplification; to generalise
is to ignore or discard the unique, but theoretically insignificant
characteristics of individual phenomena. To theorise, or to build
and use models is, then, to commit oneself to simplification of
some kind. This is a point which is often misunderstood. Many
teachers and some researchers claim that no model can adequately
describe individual phenomena. Inasmuch as this observation is
correct it is trivial; for while, in principle, there may be no
limit to the complexity of the discriminations which can be made
about an individual phenomenon, it is clear that, in practice - in
particular, in our use of language - we necessarily use such
simplifying models and theories, if only tacitly.

There are a number of demands that can be made of an instru-
ment, and corresponding grounds on which it can justifiably be
criticised.

First, it should have a sound and articulate theoretical basis.
An instrument based on an inconsistent, unjustifiable, or ambiguous
theory, can only produce data which are, at the best, meaningless
and, at the worst, positively misleading.

Second the instrument itself should be as simple, clear, and

concise as possible, making only those distinctions which have
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theoretical significance, and making these clearly and adequately.

Third, the instrument must be sensitive to the 'ecology' of
the phenomenon under observation. The data it produces should not
be a mere statistical artefact; it should reflect the 'reality' of
the phenomenon.

Fourth, the process of gathering data should not unduly disturb
the 'ecology' of the phenomenon, nor influence the observations
which are made.

A number of factors affecting the validity of the data pro-
duced by MATHS have already been discussed. Arguments have been
advanced for the validity of the conceptual distinctions on which
the system is based, and the adequacy with which these distinctions
are reflected in the system. It has been argued that the use of
the instrument involves no significant distortion of the 'reality'
of mathematics curricula, and the possible bias of samples has been
explored and delimited. None of these potential flaws is amenable
to direct empirical investigation; argument alone can identify and
guard against them.

The one aspect of validity which can be examined empirically
is the extent to which the distinctions made by MATHS are clear
and unambiguous. The purpose of the reliability study which
follows is to conduct such an empirical examination.

If the distinctions made by MATHS are clear and unambiguous
then different observers should agree in their coding of the same
situations. In short, coding should be reliable.

Gallagher, to whose Topic Classification System MATHS is close,
usesg & relatively weak test of reliability; he compares, for a

particular lesson, the final percentage distributions between
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categories which different coders produce.

A stronger test of reliability examines not just the final,
aggregated data, but the pattern of raw codings from which it is
derived.

The first part of the MATHS reliability study examines the
most complex version of the system, the classroom version. If
ambiguity or lack of clarity is present in the system it is in the
use of this version that this is most likely to show.

The method adopted to establish an index of reliability was
as follows. Three single lesson tapes were each analysed independ-
ently by two coders. The two resulting codings of each tape were
then compared to establish an index of agreement. For each tape
the utterances selected by one or both of the coders to mark the
boundaries of segments (or deletions) were recorded in sequence on
a sheet. These markers defined first, a collection of intervals
coded as substantive by at least one of the coders, and a second
collection of intervals - contained within the first - where the
coders were agreed both on the substantiveness and the specific

categorisation of discourse.

CPERA M| ne M3 NS MG Mg
|_sma | l CR | | SMA

Sha [EEChiE e | GaamA | NMA ]

CCDERB M| M2 M4 M5 M6 MT M9

In the hypothetical example above the intervals coded as
substantive by at least one of the coders are M1-M2, M3-M5 and
M6-M9. The intervals over which the coders are entirely agreed

are M1-M2, M4-M5 and M6-M?7.
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Once all the markers and intervals had been determined the
tape was played through and the time at which each marker occurred
was noted. From this information interval lengths were calculated.
Finally, the ratio of the length of the intervals over which there
was complete agreement - the second, and emaller, collection - to
the length of the intervals coded as substantive by at least one
coder - the first collection - was calculated to provide an index
of agreement.

In the example above this index would be given by the expression

L(M1-M2) + L(M4-M5) + LéMG-MZ)
L(M1-M2) + L(M3-M5) + L(M6-M9)
where L(A-B) signifies the length of the interval A-B.

Clearly the value of the index must lie between O and 1, the
first value signifying a complete absence of agreement, the second,
complete agreement.

The three analyses which made up the MATHS reliability study
gave ratios of 0.75, 0.83, and 0.94. In the first two cases
virtually all the disagreement was due to a single difference in
interpretation of the coding instructions. In both lessons there
was a period of talk which consisted of the teacher soliciting the
ansvers to questions in an exercise. One coder had treated this
as substantive, the other as nonsubstantive. When disagreement
due to this difference was removed the coefficients rose to 0,97
and 0.99 respectively. On this index, then, there was an extremely
high level of agreement between the two coders.

Under normal circunstanées this would be impressive and quite
adequate evidence for the reliability of coding using the system.

But the observations coded were unusual in one respect. As was



110

anticipated in the hypothesis, virtually all topics were coded as
belonging to a single category (SMA). Thus, while this first
study provides strong evidence of the ability of the coders to
distinguish between substantive and nonsubstantive talk, it
provides weaker evidence of their ability to distinguish between
the substantive categories of the system.

To remedy this weakness a second study was conducted. The same
coders independently coded 54 passages of varying length, drawn
from a number of printed sources, each of which was taken to
constitute a single topic; these can be found in Appendix 4. One
coder, the researcher, constructed the item bank in such a manner
that, by his judgement, the distribution of topics was different
from that found on the classroom tapes; in particular, all the
substantive categories were represented to some degree.

The coders agreed on the classification of 53 of the 54

topics which were distributed as follows,

SMA NMA MR CR RES

12 13 ? 14 ?

The contested topic was classified as MR by one coder and as
CR by the other.

The second study provides the evidence lacking from the first.
Combined they suggest that the distinctions made by the MATHS
coding system are clear and unambiguous; that coding using the

system is indeed reliable.
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Chapter 7: The Curriculum Study - Evidence and Conclusions

(1) Classroom talk

Thirty-eight periods of classroom talk, consisting of seven
double periods and twenty-four singles,1 were observed. On
average, there was slightly more than 20 minutes of classroom talk
per period. Individual figures ranged from just over 9 minutes
to just under 39.

The distribution of classroom discussion between the two
Group categories, Individual and Class, varied considerably over
the observed periods. There were some where all discussion fell
into one or other of the categories. Overall, around 30% of talk
fell into the Individual category. Theré was no marked difference,
however, in the distribution of topics by Content between the two
Group categories.2 For this reason the Group distinction will be
ignored in presenting results.

The results in Tables 1, 2 and 3 give clear evidence that the
classroom talk fell almost exclusively into the SMA category. Indeed
no MR topics occurred throughout the 38 periods, and in only 2
did CR topics occur, on one occasion only fleetingly. While NMA
topics occurred more frequently, they typically occupied only a
small fraction of discussion time.

Two lessons stood out as exceptional relative to the typical
pattern. In one 81% of the discussion was CR: here the teacher
was explaining the purpose of using statistics to a 'below average'
S3 class. In the other, 35% of the discussion was RES: here the
lesson was on life insurance, and part of the lesson was taken up

with discussing the reasons for taking out life insurance, the



Table 1 % of classroom talk in each Content category by
school, class type, and subject area

School Class Subject Double/ Content Category
type area single SMA NMA MR CR RES
S$1 A S 91 9 0 O O
A D 76 21 0 o 2
S3U c D 98 0 0O ©
S3L A S 12 ? 0 81 o
A S 100 0 ¢ O O
A S 87 10 o 1 1
S1 M S 100 0 0 0O o
A S 95 5 0 0 o
M S 100 0 0 0O 0
S3U0 M D 100 o 0o 0O ©O
M D 98 0 0 o 2
S3L A D 98 2 0 0O 0
A D 100 0 0 0 0
S1 A S 98 2 0 0 0
A S 100 0 o c 0
M S 98 2 0 0 o
S3U M D 91 9 0 0 O
A S 100 0 o 0O 0
M S 100 9] 0 0 0
S3L A S 100 0 0 0O o0
A S 100 0 0 0 O
A S 100 0 0 0O 0
S1 A 5 100 0 0 0 o
M S 100 0 0 0 o
A S 100 0 0 0 o0
51 A s 82 18 0 0 o©
A S 100 o) 0 0O o
A S 100 o) 0 0 0
S30 M ] 100 0 0 0 0
M S 100 0 0 0O o©
A S 65 0 0 0 35




Key to Tables 1, 2 and 3

Class type: 81 = first year mixed-ability
S3U = third year 'above average'
S3L = third year 'below average'

>
n

Arithmetic
M = Mathematics
C = Computer studies

Subject area:

Table 2 Mean ¥ of classroom talk in each Content

Category by class type, and subject area

SMA NMA MR CR RES

81 (n=15) ol 4 5.2 o] 0 0.3
S3U (n=13) 95.3 1.7 0 0 3.0
S3L (n=10) 89.5 2.1 (o] 8.2 0.1
Arithmetic (n=23) 91.2 L,0 0 3.3 1.4
Mathematics (n=13) 98.1 1.6 0 0 0.3
A1l (n=38) 93.4 3.2 o] 2.2 1.2
Table 3 Median % of classroom talk in each Content

Category by classggype, and subject area

SMA NMA MR CR RES

81 (n=15) 100 0 0 0 o]

S3U (n=13) 98 0 0 0 0

S3L (n=10) 100 0 0 0 0

Arithmetic (n=23) 98 0 0 o] 0

Mathematics (n=13) 100 0 0 o} 0

o
o
o
o

A1l (n=38) 100
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regulations surrounding it, and the way in which life insurance
companies operate.

The overall uniformity of the results is striking. The
infrequency with which lessons diverge by more than 2% from the
stereotypical scores for each Content category indicates the

degree of uniformity.

Table & Number of periods outside 2% range (n = 38)
SMA < 98 NMAD 2 MR> 2 CR> 2 RES)> 2
10 9 0 1 1

These results suggest that, as far as MATHS is concerned, there
are no substantial differences between the content of classroom talk
in different types of lesson - maths or arithmetic, S1, S3 'above
average', or 53 'below average'. There is a common pattern running

through all of them.

(2) Textbooks

The results from the textbook analysis are even more clear cut
than those from the classroom observation. Again, virtually all
content falls into the SMA category. Topics in other categories
are infrequent and insubstantial.

Interestingly, the one exception to the overall pattern is
computer studies, the one non-examined subject area covered by
MMS. The high level of CR in this subject area is due to a chapter
in Book 6 which describes uses of computers in business and

industry: here CR constitutes nearly 60% of the content. Over the
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other three computer studies chapters in the series, CR falls to

a typical 0.5%

Table 5 % of textbook content in each Content Category

by subject area

SMA NMA MR CR RES
Algebra 99.6 0.2 0] 0.3 o)
Geometry 99.2 0.1 0 0.7 0
Trigonometry 99.9 0 0 0.1 0
Arithmetic 96.6 0.8 o] 0.9 1.8
Computer studies 85.9 0.1 0 14.0 0
A1l 98.1 0.3 0 1.0 0.6

(3) Examination papers
The results from the analysis of examination papers could
not be more clear cut: in all eight examinations analysed, all the

questions sought answers in the SMA category.

(4) Comclusion

These results provide strong evidence for the principal
hypothesis of the curriculum study: that the present mathematics
curriculum is concerned almost exclusively with technical expertise
in mathematics.

They provide equally strong evidence for the subsidiary
hypothesis that the conception of 'doing maths' implicit in the
curriculum is a limited one which ignores the fundamental methodol-

ogical issues at the heart of mathematical activity.
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Chapter 8: The Teacher Study - Aims and Methods

(1) The aims of the teacher study

The basic purpose of interviewing the class teachers was to
discover what kinds of knowledge, skill and understanding they
aimed to develop through their teaching: in particular, whether they
aimed to develop the kinds of knowledge and understanding which
relate to the conception of general mathematical education
advanced in Part I.

A second purpose was to discover the extent to which the
'official' curriculum determined what pupilas were taught, and to
relate teachers' expressed aims to the aims of this curriculum.

Moreover, if carefully designed, the interview might yield
further valuable information about the way in which mathematics
teachers viewed their subject and the teaching of it. In fact it
became apparent during the course of the pilot studies that, how-
ever the interview was designed, it was likely to elicit a general
discussion of these matters.

The interview schedule was designed to be open with respect to
specific aims and objectives. The teachers were to be encouraged
to talk about their teaching from a number of different starting
points. In this way it was hoped to obtain a full account of the
teacher's aims, while avoiding the possibility of influence involved

in more direct questioning.

(2) The design of an interview schedule

The interview was in three sections, of which the first and

last were common to all teachers. The first dealt with a particular
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lesson which had recently been observed, and provided an opportunity
for the teacher to talk about the way in which an individual lesson
had been planned and taught, and to describe the objectives which

it sought to realise.

The second section asked teachers of S1 and S3 certificate
classes to describe their views on the standard curriculum and any
ways in which they deviated from it. Teachers of S3 non-certificate
classes were asked to talk about the kind of curriculum that the
class followed.

The last section dealt with two background factors which it
was felt might influence the aims of individual teachers. These
factors were; other subjects that the teacher had studied at post-
school level, or taught at school level, and other occupations that
the teacher had had. Here the teacher was given an opportunity to
describe how such factors - if relevant - influenced his or her
teaching of mathematics.

The basic structure of the interview was provided by a number
of key statements and questions. Throughout the interview the
subjects were probed for the reasons behind their reported beliefs
and actions, and for exemplifications of general statements. On
occasion key questions and statements were slightly rephrased in
order to acknowledge the particular context, or statements made
previously by the teacher., It was hoped that this would help to
sustain the informal atmosphere in which the fullest account of the
teacher's views might be forthcoming.

The pilot studies suggested that some teachers were ill at
ease when confronted with questions, phrased in general terms,

about the curriculum, and that an interview conducted solely at



116

this level would elicit little information from them. There was
also evidence that the answers given to general questions might
be a verbal gloss, only loosely related to the actual practices of
the teacher. The opening section, tied to a specific lesson, and
the probing for examples in the second and third sections fulfil a
similar duasl function. First, they provide a specific, and
possibly more congenial introduction to more general questions:
second, they encourage the formulation of generalisations consistent
with teaching practices.

The full interview schedule can be found in Appendix 3. Section
1 was dropped from two of the twelve interviews, in one case
because the teacher had been returning examination papers during
the specified lesson, and in the other because the teacher was
pressed for time. All twelve teachers answered Sections 2 and 3.

All the interviews were recorded on audiotape.

(3) The analysis of interview data

Not surprisingly, given the open structure of the questions in
the interview schedule, responses to individual questions tended to
be discursive, often touching on matters related to previous or
later questions. For this reason a flexible method, deriving from
the work of Becker,1 was used to analyse the interview data.
Becker's method was developed for use in participant observation.
Its value for our purposes is that it makes it possible not only
to analyse the rather unstructured statements of the teachers, but
to assess their veracity and interpret them.

Adapted to the present problem, the method consists of

formulating a hypothesis, then searching the interview tapes for
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evidence that, directly or indirectly, confirms, makes plausible, or
refutes the hypothesis. To exemplify this technique in action I will
describe the way in which it was used to test the general hypothesis
that teachers of S1 and S3 'above average' classes stick very closely
to the set curriculum, against the statements of a particular teacher.
This teacher made a number of statements bearing on the
hypothesis. He answered the question (1.2) about his reasons for
teaching a particular topic that day,
"Well simply again, this is the next part of the course:
according to the book the next section's leading through,"
In answer to question (2.1)(c) on the relation of classwork to the
set curriculum he started,
"What I mainly want to do is teach what is there to
be taught properly",
and went on to explain that he was quite happy to teach what '"those
higher up'" had laid down.
Then talking about the problems of teaching classes of uneven
ability,
"Iikes of this morning I could have went on to the next
part of the lesson or the course without any trouble
with maybe twenty-five out of whoever was there. But
the other half dozen, they would have been in trouble.
And again as far as I'm concerned I've got to get them
through an exam, and if I can get those other six

through the exam I think I'll have succeeded."

In answer to the questions (2.6) and (2.7) about introducing out-

side topics he answered simply 'No", and,
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"No again. I stick very rigidly to the work that's involved."
Here he proceeded to explain,

"Again this may be just because I'm into school., I

don't know. Well I've been in a year and a half and

perhaps I don't feel free enough to do other things. And

again plus the fact that it is the certificate class and,

as I say, at the end of the day, that's what these pupils

want, a certificate, and that's what I want to get them

as well really. And at the moment I don't feel I've got

time maybe to give them something outside of that."

Probed about whether there were any topice he might have liked to
talk about had he had time,
"No again. As I say again I'm perhaps not outward looking
that way myself: it's maybe my personality. As I say I
believe there's a job there, I'm involved with that job,
and I get on with that job. Again this may come back to
my work in industry. You were given a job and that was
it. As far as the curriculum's concerned I stick

rigidly to it."

He felt that the only university subject he had taken which
was of value in teaching mathematics was Education, since it was
the only one which had dealt with the maths that was in the school
curriculum. Indeed, he had complained to one of his mathematics
professors that the university mathematice courses were not
relevant to what he was going to be called on to teach. As he put
it,

"Again it was more or less what I've said about the

curriculum here: it's there and that's what's to be
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done and that's all there is to it."

Finally, everything that this teacher said during the inter-
view was perfectly consistent with the events which took place
while he was under observation in the classroom.

In the example above we have not simply direct evidence that
this teacher seeks to stick close to the set curriculum - in the
form of his statements to that effect - but evidence which ties
these statements into a wider view of his role as a teacher. The
consistency of the teacher's statements, and their embeddedness in
a larger world-view, lends them a plausibility as accurate accounts
of his beliefs and actions which a simple snswer to a direct
question lacks. This is the strength of this method. It uses not
juﬁt direct, but indirect evidence to test hypotheses: in particular,
it tests for comsistency throughout the interview, and within a
more general framework of belief and action.

There are, of course, other factors which must be considered
in assessing the validity of the teachers' accounts. First, the
researcher had already seen several lessons taught by the teacher
by the time of the interview, and discussing one of these lessons
provided a bridge between the classroom observation and the
interview. This places pressure to be consistent on the teacher,
and at the same time provides additional evidence which the
researcher can draw on to test his hypotheses.

Second, the teacher is talking about his beliefs and actions
as & teacher to another individual whom he knows to have been a
teacher - teachers invariably sought this information at a very
early stage in the research encounter - and who, because of his

lack of status and power, poses very little threat to the teacher.
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Indeed some of the teachers seemed to positively welcome this
opportunity to talk about their work, and commented on this fact.
A few were much less enthusiastic, possibly because they disapproved
of educational research and its practitioners in general. At least
one teacher voiced her suspicions,
"] don't want to sound old fashioned but I think

that in some ways the old system of teaching maths

for good pupils had something to commend it in

comparison with what we do now. What has happened

I think is - I have to Bay it you know - theorists -

we're at the mercy of the theorists really - have

said that time should be spent on trying to encourage

children to understand the reasoning for something."

Other teachers talked about their "hobby-horse" or '"bias", or in
similar ways excused their expressing opinions which, it was implied,
might bore, or fail to meet the approval of the researcher.
Nonetheless, such evidence suggests that, whatever they
imagined the researcher's opinions to be, teachers were quite pre-
pared - or possibly determined - to say what they thought on these

professional matters.
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Chapter 9: The Teacher Study - Evidence and Conclusions

(1) The role of the set curriculum

The first hypothesis I will examine is that the curriculum of
S1 and 'above average' S3 classes is strongly influenced by the
nationally standard curriculum. Three of the S1 classes were
following a curriculum based on 'Modern Mathematics for Schools'.
The remaining two used the 'Modular Mathematics' materials with some
additional work in arithmetic drawn from MMS or similar sources.

Four of the five teachers of S1 classes reported themselves as
rarely introducing topics of any kind outside the set curriculum.
This was consistent both with their other statements and with
observations made in their classes. Two of these teachers could
think of only one case; when teaching about statistics they asked
pupils to bring in examples of charts and graphs from newspapers.
Another teacher reported only that she had given her class some
pumber puzzles for entertainment, the fourth only that he mentioned
the use of scale drawing in geography when he taught that topic.
All those teachers gave direct indications that the basic order
and direction in their teaching came from working through the set
curriculum.

One teacher reported himself as straying frequently from the
set curriculum. By this he meant two things. First, that he
occasionally deleted topics which he regarded as unimportant or
too difficult, and anticipated future content when an appropriate
pituation presented itself. Second that he often answered pupils'
questions on outside topics: the examples he gave were explaining

the meaning of a word pupils had found on the board from a previous
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English lesson, and explaining how clouds formed. He also mentioned
that he occasionally used examples from geography and physics: for
example maps and orienteering to introduce mathematical topics
such as angle and gradient.

All four S3 'above average' classes were following a curriculum
based on Syllabus A, and used 'Modern Mathematics for Schools' as
their textbook. In two cases where it was anticipated that the
class would cover the set examination curriculum in a shorter time
than that available, it was department policy that computing should
be studied.

One teacher reported himself as never introducing topics falling
outside the standard curriculum, two as only rarely doing so. In
one case the only example that could be recalled was mentioning the
difference between the definition of gradient used in mathematics
and that used in geography. In the other the teacher gave what he
suggested was an exhaustive list: he had mentioned that examples
of statistical graphs could be found in newspapers, explained that
the angle in a semicircle property could be used in marking a
running track, and mentioned that it is possible to use calculus
to show that the standard shape of a tin can is not the most
economical in use of tin. Again, all these teachers gave evidence
that for them teaching maths was basically a matter of working
through the set curriculum.

Finally, one teacher reported that he frequently introduced
topics not in the set curriculum. These were of two types: first,
extensions of the theory being covered - more rigorous proofs,
generalisations - and second, problem solving - presenting pupils

with non-routine problems in mathematics and logic to solve. In
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all cases there was substantial direct and indirect evidence for
these reports.

There is very strong evidence then, that the majority of
these teachers stuck very close to the set curriculum. In only
two cases is there evidence of any real concern with topice and
approaches lying outside the set curriculum, and in only one of

these cases was this discursion related to mathematics.

(2) The aims of the teachers

This conclusion is given added plausibility when we come to
test the hypothesis that teachers mre not concerned to develop
the broader methodological and cultural understanding which is
central to the conception of general mathematical education
advanced in Part I.

These teachers of S1 and 83 'above average' classes had sur-
prisingly little to say about the purpose of teaching their subject,
even in response to the very general questions in the second
section of the interview. What they did have to say assumed that
the purpose of mathematical education was the transmission of
various types of technical skill and knowledge. There was no
evidence that any of these teachers had ever entertained the
possibility of teaching towards the broader aims which the hypothesis
concerns: there was certainly no mention of anything resembling
them.

This apparent lack of concern with the purpose of teaching
mathematics prompted the formulation of a further hypothesis that
these teachers were not so much concerned with the value of

curricular aims as with their feasibility.
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Two of the teachers did offer evaluations of the aims of the
present curriculum. The S3 teacher who introduced problem-
solving into his lessons felt that a greater emphasis in this area
was desirable as it would give pupile 'more facility to think
practical problems out". Another teacher made no specific
" suggestions, but felt that much of the present curriculum was
irrelevant to the vocational needs of the majority of pupils.

The remaining teachers gave little evidence of any direct
concern with the value of curricular aims: their primary concern was
their attainability. One, for example, while prepared simply to
accept the curriculum laid down by "others who know what should be
taught", considered that the changes of the sixties had improved
the mathematics curriculum because,

"you don't have to be really mathematically minded to
tackle some of these nqj7 problems."
Indeed, the concern that many pupils were unable to master the
content of the curriculum was voiced, in varying degrees, by all
nine of the S1 and S3 'above average' teachers. Seven suggested
that certain psrts of the course should be omitted, or given less
emphasis with less able pupils.

For example, several teachers questioned the set geometry
curriculum on the grounds that many pupils find it difficult,
another questioned the emphasis on algebraic manipulation on the
same grounds. Others suggested that many pupils were not capable
of learning most of mathematics and that for this reason they
should be taught only the minimal core of basic arithmetic and
mathematical skills which they were likely to be capable of

learning and to need after leaving school.
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This last example may seem to contradict the earlier statement
that the teachers were not primarily concerned with aims. This
is only marginally so. The evidence suggests that the purpose of
teaching mathematics was not an important issue for these teachers.
Mathematics was simply there to be taught. What concerned them
was that so many pupils seemed to lack the ability or motivation
to learn mathematics. It was this fact which formed the basis
of their criticisms of the present curriculum, not beliefs about
value or purpose.

While the importance of differences in pupils' ability to
learn mathematics was spontaneously mentioned by all these teachers
as a reason for changed emphasis on content, it was usually
necessary to probe for statements of belief about the purpose or
value of learning specific parts of mathematics, or mathematics in
general. The eight teachers who expressed views all argued that
there were certain arithmetic skills which all pupils would find
useful in everyday and working life after they left school. There
was also agreement that the present curriculum was of value to the
small number of pupils proceeding to study mathematics at
university level.

Beyond this there was little agreement or conviction. Four
teachers expressed doubt and confusion. As one put it,

"I have found very little maths of value to me, I
just think it's an experience, it's a subject which
you study, which some are good at, some are bad at,
and I make no wild claims about it at all,"

Or another;

"You see, I think really for an awful lot of children
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at school what they're doing has probably got very
little value, but maths I don't think is any different
from any other subject in that respect. Perhaps it
gives them a little, it interests them for a while
and it keeps them occupied. And there's nothing else

for them to do."

The remaining four advanced with varying degrees of confidence,
arguments that the study of mathematics disciplines the mind. Two
talked about the subject "stretching the mind": another two about
it developing "logical thinking", defined by one as,

"If you obey the rules you get the correct answer,
if you don't obey the rules you don't get the

correct answer.,"

Only in one of these four cases - that of the teacher who advocated
an emphasis on problem solving - was there evidence that this
justification for mathematics actually influenced teaching behav-
iour, either as observed or reported.

Beyond the recognition of certain basic arithmetic needs, then,
arguments about the value or purpose of mathematics had little
place in the justifications which teachers offered for their views
on the kind of curriculum appropriate to their pupils. The dominant
consideration was what pupils were believed to be capable of
mastering, rather than what they ought to learn. In short, teachers
assumed that pupils should learn simply what they appeared to be
capable of learning.

A similar phenomenon was evident in the views of the teachers
of S3 'below average' classes. Three such classes were observed.

One was aiming at presentation in Arithmetic at 'O' Grade, the
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others were noncertificate. All three teachers acknowledged the
aim of developing basic arithmetic skills. For the teacher of the

certificate class this aim was paramount. Answering question

(2.6) he explained,
"Well with this particular class I keep quiet about

mathematicians and try to keep it all on a very basic
'that world out there' level. It's arithmetic for use
rather than for - well, I have tried to interest them
near the end of term, in things that I've thought
fascinating; little bits of number theory, things like
that. It's like water off a duck's back. So I tend
now to stick to my last of trying to get them to

calculate reasonably accurately."

He did, however, introduce stories about 'that world out there' in
order to motivate the pupils and,
"to get across to them that out there they won't
always have paper and pencil, and that the methods
we teach will not always be applicable, and that they've
got to find some way to use their common sense to get
an answer that's appropriate to the circumstances."
The opening statements of the replies of the two teachers of
pon~-certificate classes to question (2.2NC), asking what kinds

of things they did with their classes, offer a fascinating insight

into their thinking.

"It's mainly general arithmetic. They like nothing
better than adding up a string of figures or
multiplying, so it's mainly that."

"Anything I think they can absorb, that they may use



later on, that they may meet later on, although

a lot of them won't use mathematics again."

Both teachers mentioned what they termed 'interest based'
topics.
"They like something that seems a bit different

to them from maths. Not mathematics, a game."
One of the teachers explained why he taught this way.

"That type of pupil is the kind of pupil that in a
larger school, it's not geared to them, they don't
come to school. So it's got to be something that
they enjoy doing, and that they can do. They'd be
quite happy, and they are quite happy if we do an
exercise and show them how to do something - say
in algebra - and you give them forty examples of
a similar kind. They can do them and they're
happy and théy like doing it, rather than doing

something they can't do. They get very discontented."

These remarks suggest that the primary considerations in planning
the curriculum of these noncertificate classes are ones of
feasibility. The questions 'Will they understand it?' and 'Will
they enjoy it?' seem to take precedence over the questions 'What
are the substantive aims of this curriculum?' and 'How does this
topic help to realise these aims?'.

Again, with these 'below average' S3 classes there was no
evidence of a concern to develop a broader methodological and
cultural understanding of mathematics. The only teacher who came

near such a conception was the teacher of the certificate

128
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Arithmetic class, with his concern to motivate his pupils by
talking about 'the world out there'. He was, incidentally, the

only teacher in whose classes CR topics were observed.

(3) The significance of teachers' backgrounds

Although most of the teachers had studied subjects other than
mathematics they found that this experience was, in general, of
little or no value in teaching mathematics. Indeed a widespread view
seemed to be that,

"Maths goes out Z?o other subjec§g7 rather than them coming

back into maths."

Similarly, the three teachers who had worked in occupations
other than teaching found this experience of little value in
teaching mathematics, other than in making them more 'realistic'
about the standards of arithmetic competence current, and acceptable
outside the school.

In addition, none of the twelve teachers referred to any
involvement with mathematics outside that directly related to
teaching the subject; the preparation of lessons, looking at
curriculum materials, attending inservice courses. Indeed, three
teachers specifically indicated that they avoided anything to do
with mathematics outside their teaching respomsibilities. A fourth
made a point of explicitly communicating his lack of enthusiasm

for mathematics to his pupils.

(4) Conclusion

Both the hypotheses which the teacher study set out to test are

supported by the evidence it provides. First, there is no evidence
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that teachers are concerned to develop the broader methodological
and cultural understanding which is central to the model of general
mathematical education advanced in Part I. Second, there is a
great deal of evidence that these teachers' actions and beliefs

are hardly touched by considerations of the value or purpose of

the subject they teach. Their goals are, in many ways, not subject
goals but organisational goals; to cover the set curriculum, to

get pupils certificate passes, to keep pupils occupied and amused,
to get pupils to attend classes.

These teachers, then, largely saw and taught mathematics as a
static, socially disembodied, taken-for-granted corpus of technical
knowledge and skill. They organised their teaching not so much
around a framework of beliefs about the purpose and value of
including mathematics in the curriculum they taught, as around an
organisational framework common to all subjects, and unrelated to
the particular content of the mathematics curriculum.

It seems, then, that, to advance our understanding of what
goes on in individual classrooms and schools, we must turn to the
larger arena within which change in the organisational framework
around which teachers structure their activity takes place. For
this reason Part III will examine the evolution of the Scottish

school mathematics curriculum.



Part III: The Development of the Scottish Mathematies Curriculum,

1887-1977
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Chapter 10: The Origins and Development of the 'Traditional’

Secondary Mathematics Curriculum, 1887-1962

(1) The Growth of a national system of secondary education

The late 19th century saw radical changes in the structure of
the Scottish educational system. At the heart of these changes lay
a new conception of the relation of school to university, and of
the functions of these institutions.1

In the traditional system the university took up where the
elementary school left off. There were no formal entrance require-
ments and the courses of the first Junior year assumed little or
no previous knowledge so as to neutralise differences of educational
and social background. The four year Arts curriculum of Language,

Philosophy and Science held pride of place, and was the precondition

of specialist or professional study. While the content of the
individual courses was relatively elementary in the specialist

sense, each was treated from the distinctive philosophical
perspective of the Scottish Enlightenment. It was this character-
istic which gave the Arts curriculum its coherence and its
intellectual strength. It provided a humanistically-oriented

common course of general education, prior to specialist or vocational
training.

'Secondary' or 'higher class' education was restricted in
availability and varied in standard. In many rural areas it was
unknown, while at the opposite pole, many of the private and
endowed city schools were in competition with the universities as
providers of post-elementary education for the upper middle clasaes,

aspiring to enter the ancient English universities, or the Civil
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Service at home and abroad. The changes which took place over this
period led to a much sharper differentiation between secondary and
university education. The former became for the first time, a
central and distinctive part of the Scottish educational system,
while the latter changed markedly in character and function. This
process is reflected in the development of a national system of
secondary education, and the growth of specialist study in the
universities.

The 1889 Universities Act, which followed the Reports of
Commissions in 1878 and 1889, instituted stiff compulsory matricula-
tion requirements, restructured the degree regulations in the Arts
faculties to permit early specialisation and introduced science
faculties . in all the Scottish universities. The effect of these
changes, which became effective from 1892, was to raise the age
of university entry by two years from 15 or 16 to 17 or 18, and
to promote the growth of specialist study. In the Arts faculty
the Ordinary curriculum became an alternative to Honours where

before it had been a precondition.

The founding of an independent Scottish Education Department
in 1885 marked the start of an era of vigorous growth in secondary
education in Scotland. The new conception of the relatiomship
and functions of school and university clearly demanded an
extension of secondary education to enable the school to take the
place of the university as the instrument of general education.
The SED encouraged the extension of secondary education in two
ways, with financial assistance from the popularly termed 'Equivalent
Grant', made available under the Education and Local Taxation

Account (Scotland) Act of 1892, and by establishing a national
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system of examinations.

Chrystal, Professor of Mathematics at Edinburgh University
had conducted a feasibility study for a national examination in
mathematics during 1887.2 His tests were deasigned on the
assumption that completion of the secondary curriculum should
equip the pupil to enter the Senior claeses at university. This
assumption did not, of course, reflect current practice, for many
students, even if they had passed through all or part of secondary
education, spent & year in the Junior classes at the university,
before entering the Senior classes and the three year Arts
curriculum proper.

Chrystal's experiment was judged a success. It established
that, at least in mathematics, a common examination was feasible,
and the variation in standards it revealed gave strength to the
argument of the reformers that a national system of examinations
was needed to raise the standard of secondary education. In 1888
the SED introduced a school leaving certificate, modelled on those
offered by the ancient English universities. The main aim behind
the introduction of the certificate was to set standard levels of
achievement for secondary education, in order both to raise the
standard of existing 'higher class' education, and to bring a halt
to the rapid multiplication of examinations set by the universities,
the professions and other such bodies.3

The SED originally planned to set examinations for the Leaving
Certificate at two grades, the First, or Higher, corresponding to
the Senior local examinations, and the qualifying examinations for
entry to the three year Senior Arts course - both already set by

each of the universities - and the Second, or Lower, corresponding
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to the existing Junior Local Examinations, and the preliminary
examinations for entry to the university medical course. But,

as we have seen, in the 1880's some of the large city 'higher class'
schools were still in competition with the universities in pro-
moting advanced tuition, and for their benefit, a more advanced
grade, Honours, corresponding to the entrance examination for the
Indian Civil Service, was added. It was, however, short lived.
The growth and development of the new Honours courses in the
universities and the decision, in 1900, to award the Leaving
Certificate on a group basis, rather than in individual subjects,
led to the Honours grade being discontinued in 1907.

The new certificate was largely successful in achieving the
aims set out for it. After an initial show of reluctance the
Scottish universities agreed to recognise it on the condition that
the papers in Latin, Greek and Mathematics - the subjects of the
university Junior year ~ were approved by the universities before
being administered. The new examination was quickly accepted by
the ancient English universities and the major professioms. Soon
success in the Leaving Certificate became the common aim of pupils
in those institutions offering 'higher grade' education.

In the early years of the certificate, then, the examiners
were university professors and, although in time replaced by
inspectors, the professors left their stamp on the examinatioms, and
through them on the curriculum itself.u By the turn of the century
the shape of the five year academic secondary curriculum had become
clear. In iathenatics it was to remain substantially unchanged for

more tham 60 years.
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(2) The School and University Curricula 1887-1924

The secondary mathematics curriculum was then, initially drawn
up by university professors. The intention behind its design was
that it should prepare a pupil for university study. In the early
years of the certificate a precise syllabus was not officially
laid down, although the questions set in examinations followed a
relatively consistent pattern. It is clear that a process of
adaptation and negotiation between the examiners, on one hand, and
teachers and pupils, on the other, was taking place. By the time
of the 1904 'Note as to Mathematical Papera'.5 however, a stable
and explicit curriculum had been reached which did not change
until 192k,

The curriculum was in four parts, Arithmetic, Geometry,
Algebra and Trigonometry. Arithmetic covered the elementary rules,
prime factors, weights and measures, vulgar and decimal fractionms,
approximate calculation by decimals, and 'practical problems' which
included what we now call 'social arithmetic' - profit and loss,
insurance, foreign exchange, interest and so on. This was the one
part of the curriculum designed with non-university needs in mind.
Indeed, until 1905, when the practice was forbidden, (and after
1932, when it was again permitted) it was common to present certain
pupils in Arithmetic only in the Leaving Certificate. In Geometry,
the emphasis was firmly on Euclid, although some scale drawing
and mensuration were included. Algebra consisted of formulae,
graphical representation of functions, equations, l;poar, quadratic
and simultaneous,indices and logarithms, surds, thev}enainder
Theorem and progressions. Trigonometry covered the elements, and

the solution of triangles.
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Until around 1910 a student who completed the Higher course
in Mathematics at school would find much of the university
Ordinary course in Mathematics faniliar.6 The Ordinary course
served a dual purpose as the first course in the Honours degree
in mathematics and as the mathematics course for the Ordinary
Arts degree, and was pitched mathematically more at the level of
the student who might have passed Mathematics at the Lower Grade
in the Leaving Certificate, than at that of the intending Honours
mathematician with a good pass at the Higher Grade. If he intended
to take Honours the student would proceed to the Intermediate
Honours class where more advanced plane trigonometry, analytic
geometry, conics and the calculus were studied, and finally to
Advanced Honours for a fuller treatment of the integral calculus,
spherical trigonometry, solid geometry, and differential equations.

The generalist cultural spirit of the traditional Ordinary
course in mathematics was at odds with the specialist, technical
spirit of the developing Honours course, modelled on those of
Cambridge and the continental universities. From this latter per-
spective the Honours student was merely marking time for a year
while he took the Ordinary course, time which could be used to
better effect if the Honours course were to be extended and made
more ambitious.

Around 1910, then, the universities started to extend the
Honours curriculum. They were able to accommodate new topics in
the Advanced Honours course by covering the content of the existing
Honours course in the first two years of the new course. This
entailed the introduction of a Second or Higher Ordinary course

which rapidly became the standard first course in mathematics for
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intending Honours students in mathematics, leaving the (First)
Ordinary course for those students taking the Ordinary Arts degree.
(Edinburgh, for example, introduced a Second Ordinary in 1909,
Glasgow a Higher Ordinary in 1910).

By the early 1920's a new university Honours curriculum, which
was to survive, in broad outline, until the fifties, had been

established. The Edinburgh curriculum of this time is typical.

Date of 7

s
Introduction Arts cience

Syllabus

1916 2nd Ordinary Mathematics I Algebra; Interpolation;
Mathematics Differential and
Integral Calculus;
Spherical Trigonometry;
Co-~ordinate Geometry.

1916 Intermediate Mathematics 2 Higher Algebra;
Differential and
Integral Calculus;
Differential Equations;
Solid and Descriptive
Geometry.

1922 Advanced Mathematics 3 Foundations of Analysis:
Honours Mathematics 4 Convergence; Continuity;
Mathematics Uniformity; Integration;

Fundamental Theorem of
the Calculus.

General Analysis:
Contour Integration;
Gamma Function; Fourier's
Theorem; Legendre's and
Bessel's Functions;
Elliptical Functions,
Partial Differential
Equations; Calculus of
Variations.

Higher Algebra and
Geometry: Determinants;
Matrices; Tensors;
Differential Geometry;
Relativity; Non-
Euclidean Geometry.

Mathematical Laboratogl.
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(3) First Reforms in the School Curriculum 1924-1936

Until 1924 there were no notable changes in the school
mathematics curriculum. Between then and 1936 a number of changes
were made, primarily in the geometry course: they can be followed
in detail through (four) issues of the 'Note as to Mathematics'.8
There was a progressive reduction in the number of proofs required
in plane geometry, solid geometry was removed from the course -
first in its formal aspects and then entirely - and the analytical
geometry of the straight line, and later the circle, was introduced
in place of the deleted material.

The 1931 SED memorandum presents the changes as a readjustment
of the balance of the curriculum to take more account of the needs

and abilities of the majority of pupils. The opening paragraph

reads:

"It is no doubt a common experience among teachers of
mathematics that the difficulty of certain parts of the
present course is out of all proportion to their useful-
ness to the average pupil. The schools have to meet the
needs of those who will later proceed to the University
as well as of the much larger number who have no such
intention, and the general tendency is to give

"9

precedence to the claims of the minority.

Now there is no doubt that many pupils found parts of formal
geometry hard, and were forced to resort to the memorisation of a
large number of proofs without understanding them. The change to
a group leaving certificate meant that many pupils who would not

formerly have studied mathematics to certificate level were forced
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to do so. It ias also quite conceivable that the curriculum
planners believed that these pupils would find analytical geometry
easier, or, less plausibly, useful. But we are bound to note that
there were other factors which made these changes likely.

In university mathematics classical formal geometry had long
been in decline. In Edinburgh, for example, Euclid disappeared
from the specialist curriculum in name in 1903, and in spirit in
1916. By contrast the basic ideas of analytic geometry and calculus
were now central to large areas of the contemporary mathematics
curriculum: by the twenties they constituted a major part of the
first year university curriculum in mathematics not just for the
Honours mathematician but for the physical scientist. The
substitution of the elementsof analytic geometry and the calculus
for some of the more recondite aspects of classical formal
geometry in the school curriculum is the curricular change that
one would expect the influence of the universities, direct and
indirect, to be promoting at that time. Only the removal of
informal solid geometry in 1936 is anomalous from this perspective.
But, as we shall see, this was reinstated to the curriculum soon

after the war:

(4) The 1947 Report and its aftermath

In 1947, the Advisory Council on Education presented their
Report 'Secondary Education' which recommended a number of sub-
stantial changes in the mathematics curriculum. It criticised the

existing curriculum for its:

"excessive preoccupation with the inner ordering of

mathematical truth as against the application of it

to the real world"1o
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and recommended that the curriculum should be more concerned with
the practical and applicable aspects of mathematics, and less
concerned with the abstract and theoretical.

Their major recommendations for curriculum change were:
(1) The reintroduction of informal solid geometry,

(2) A ruthless reduction in the number of proofs required

in the geometry course,
(3) The introduction of calculus for the most able pupils,

(4) A substantial reduction in the content of the algebra
course; in particular, for most pupils nothing beyond
the simultaneous equation and a graphical treatment of

quadratics,

(5) A much greater emphasis on practical work in geometry
including a thorough training in mensuration and
technical drawing,

(6) The introduction of nechanics.11

Recommendation (1) was uncontroversial. (2) - in direction,
although perhaps not in scale - and (3) simply confirmed the pre-
war pattern of change, and vwere likely to be broadly acceptable
to university and university-influenced opinion. (%), (5) and
(6) on the contrary represented a dramatic break with the 'pure’
tradition of Scottish academic mathematics.

These proposals would have turned school mathematics into a
'technological' rather than an ‘intellectual' subject. Indeed the
existing curriculum in technical subjects was closer to these

proposals than the existing mathematics curriculum. An academic
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treatment of mechanics might have found some support in university
circles - it was common in English schools - but not the relatively
untheoretical and practical treatment proposed, and certainly not
at the cost of the traditional academic curriculum in algebra and
geometry.

These proposals were perceived as a threat to the preparation
of university mathematics students and the continuation of the pure
mathematical tradition in Scottish education. It is clear from

paragraph 475 of the Report that academic mathematicians had already

expressed strong opposition to them.

"Some of our witnesses whose work has lain within the
more academic tradition of Scottish mathematics urged,
if we may put it so, that real mathematicians must get

busy with real Mathematics before the VIth Forn"12

To placate this opposition the Council suggested that there
should be alternative examination syllabuses, one of which would
require the traditional theoretical and logically rigorous approach
to mathematics. In the event they were unsuccesaful. The SED
continued to offer a single syllabus and modified it in accordance
with proposals (1), (2) and (3). While some of the more elaborate
manipulative work on trigonometry was excised, (4) was largely, and
(5) and (6) entirely, ignored.13

In passing it is worth noting two other important facets of
the 1947 Report. First it firmly repudiated the 'transfer of
training' theory which had exerted a strong influence on educational
theory and practice in the twenties and thirties, and was frequently
used to justify the compulsory study of mathematicas. Second the

Report provided support for the alternative utilitarian argument
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for the study of mathematics by promoting the idea that the
interest of pupils in the subject is related to the 'usefulness'
and 'applicability' of the subject content; this was an idea which
had a considerable influence on junior secondary education and
which continues to inform much current discussion of the curricu-

lum of the noncertificate pupil.

(5) Conclusion

The changes effected in the school curriculum between 192k
and 1952, then, fall into a simple pattern; a gradual diminution in
the coverage of, and emphasis on the formal geometry of Euclid,
in favour of the elements of analytic geometry and an informal
treatment of the calculus. Where it had occurred change in the
school curriculum reflected change in the university curriculum.

The last changes in the 'traditional' curriculum took place
between 1960 and 1962 with the introduction of the 'O' Grade
examination.1u In Mathematice the reduction in emphasis on formal
geometry was carried still further. Statistics was introduced to
the Arithmetic syllabus. This reflected the growing use of
statistical techniques throughout industry, commerce and research.

In the decade between 1963 and 1973 the 'traditional'
mathematics curriculum vanished, swept out by the international
movement commonly known as 'The New Mathematics'. In 1973 the

last 'traditional' examination on the Higher Grade was set.
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Chapter 11: The Origins and Development of the New Mathematics

1952-1968

To fully understand the changes which took place in the
Scottish mathematics curriculum in the sixties, we must digress
from our main theme to examine the history of the 'New

Mathematics'.

(1) The United States

The 1950's saw the institutionalisation of a new mathematics
curriculum in university undergraduate courses, on an interna-
tional scale. This new curriculum incorporated not simply new
topics but a new approach to mathematics, both more formal and
more abstract. Abstract algebra, topology, function theory,
probability and statistics, and numerical analysis, moved into the
curriculum. The ideas of set, relation and function, started to
permeate the treatment of old and new topics.

The growing distance between the content and approach of the
school curriculum and that of the university generated pressure
for change in the school curriculum. Until the school curriculum
was reformed university mathematicians could not fully implement
the changes that they wished to see in the university curriculum.
The United States had taken the lead in curriculum change at
university level. It was here that pressures for reform in the
school curriculum first built up.

The first institutional expression of the curriculum reform
movement in mathematics was the University of Illinois Committee
on School Mathematics (UICSM) founded in 1951. UICSM set the

pattern for the many curriculum development projects which were to



T

follow over the next decade, not only in mathematics but in science.
The Illinois project-workers drew up a new mathematics curriculum,
designed materials for teaching it, tested these in pilot schools
and revised them in the light of this practical experience. They
also trained teachers to use the materials and (unlike a number

of projects) only made the materials available to teachers trained
in their use.1

Throughout the mid-fifties, discussion and small-scale
development of mathematics curricula were taking place in academic
circles. In particular in 1955 the College Entrance Examination
Board (CEEB) appointed a Commission on Mathematics to examine the
high school mathematics curriculum. This period, however, saw
little discussion or change in the schools themselves. It took an
external event, a startling demonstration of the achievements of
Soviet technology in late 1957, to disturb the equilibrium of
American education.

Sputnik was a catalyst rather than a cause. It acted as a
symbol around which a number of previously unrelated or conflicting
social forces could realign to produce effective pressure for
educational change. For those to whom it was a sign of America's
technological backwardness or military weaknesses - in particular
those traditionally unsympathetic to educational and social
expenditure - education became an arm of economic management or
national defence. For the curriculum reformers Sputnik offered a
pretext for change; for the articulate middle class parents of
college-bound pupils, it became a symbol of the failings of the
educational system. In short, Sputnik created a climate of
opinion in which finance and support for change were unusually

forthcoming.2
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Early 1958 saw the founding of a number of curriculum develop-
ment projects, including the government financed School Mathematics
Study Group (SMSG) which was to become the leading mathematics
project in the US. In late 1958 the National Defense Education Act
(NDEA) set the development funds flowing. Funding agencies and
project workers were agreed on the broad aim of the projects, to
redesign the curriculum of the college-bound pupil to produce
mathematicians, scientists, and technologists, both in greater
number, and with a higher level of knowledge and skill.

Although the federal government provided most of the funds for
curriculum development through the NDEA and the National Science
Foundation (NSF), the university-based reformers were careful to
avoid federal control. They argued that, as academics and profess-
ional educators, they alone could provide the authoritative
insights into a éubject necessary to design a satisfactory
curriculum, and that they should be given a free hand in doing so.

The university perspective can, not surprisingly, be seen in
the conclusions of the CEEB Commission on Mathematics which
reported in late 1958. It strongly endorsed the ideas which formed
the basis of the 'modern mathematics' programme for reform -
principally represented by UICSM and SMSG - an emphasis on the role
of deduction, a concern for 'structure' in mathematics, and the use
of the unifying concepts of set, relation and function.3

By 1959 the broad outline of a new school mathematics
curriculum was clear. The central problem was now that of imple-
mentation. College pressure and financial inducement would help.
But the key element, a rationalisation of change, emerged from the

Woods Hole Conference of September 1959.
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The Conference brought together the leading academic figures
associated with the major contemporary curricular development
projects in mathematics and science, and a number of prominent
psychologists and educationalists, to discuss how science education
could be improved in American primary and secondary schools. Here,
attention was focused, for the first time, on the processes of
teaching and learning. While there had been an implicit awareness
of this dimension in the work of many of the projects, until Woods
Hole their overriding and explicit concern had been with curricular
content.

Behind the conclusions drawn in the conference reportu was the
belief that, to adapt to a future increasingly marked by change,
the pupil required not knowledge and skills of particulars, but
an understanding of the basic ideas and structure of a subject, and
a mastery of the high order cognitive skills which would enable
him to apply this understanding to a variety of particular situations.

The report asserted that,

"the curriculum of a subject should be determined by the
most fundamental understanding that can be achieved
of the underlying principles that give structure to

the subject"5

and that,

it is possible to present the fundamental structure of
a discipline in such a way as to preserve some of the
exciting sequences that lead a student to discover for

himself"6

A curriculum based on these principles, the report argued, would
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facilitate learning and increase motivation among pupils.
The role of the university scholar in the design of such a

curriculum was seen as central.

"Designing curricula in a way that reflects the basic
structure of a field of knowledge requires the most
fundamental understanding of that field. It is a
task which cannot be carried out without the active

participation of the ablest scholars and scientists."?

"o decide that the elementary ideas of algebra depend
upon the fundamentals of the commutative, distributive,
and associative laws, one must be a mathematician in a
position to appreciate and understand the fundamentals
of mathematics...only by the use of our beast minds in
devising curricula will we bring the fruits of

scholarship and wisdom to the student."8

Finally, the report argued, in the now famous dictum,

"that any subject can be taught effectively in some
intellectually honest form to any child at any stage

of developnent."9
McClure aptly summarizes the conclusions of Woods Hole as

"a fusion of nineteenth century education emphasis
(academic and solid subject matter elements) with the
currents of the early twentieth century (Progressive

education and the child-centered curriculum)."1o

The significance of Woods Hole was in providing a common

rationale, apparently founded in psychological theory, for what
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had previously been a relatively haphazard collection of innovations
in different subject areas. First, the formulation and endorsement
of this rationale by the authoritative figures who attended the
conference gave an increased legitimacy both to the individual
projects represented here, and to contemporary curriculum reform

in general. Second, it provided a rationalisation of the autonomy
that the university-based projects enjoyed, and of the form taken
by the curricula that they had developed - a form which, at least
superficially, seemed closer to the ideals of the pure mathematician
than to the needs of the technologist. Finally, and most
significantly, this psychologically-based rationale provided re-
assuring answers to the questions which teachers ask about any
innovation, questions about the feasibility of the innovation given
the constraints under which they work, in particular those related

to the abilities and attitudes of pupils,

(2) Europe

The unprecedented concern with curriculum reform, manifest in
the U.S. in the wake of Sputnik, attracted international attention.
The American example was a powerful argument for reformers elsewhere;
it provided a means of capturing the interest of government and
industry. For, in Europe, outside interest stemmed primarily from
economic considerations. Contemporary economic orthodoxy argued
that the level of educational provision was a major - perhaps the
major - factor behind economic growth. Government encouragement of
curriculum reform in mathematice and science was part of a larger
policy aimed at ensuring the availability of an adequate supply of

skilled manpower to sustain and promote economic growth. Whereas,
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before the war, virtually all professional mathematicians were
employed as teachers in educational institutions, the early fifties
saw the start of a steadily growing and unsatisfied demand for
mathematicians and the particular skills and abilities they
possessed, in business and industry. This was a result of the
increasing number of non-military uses which were being found for
techniques such as operational research and computer automation and
simulation, pioneered, mainly in strategic work, during the war
years.11

In the U.K. the insufficient supply of scientifically-trained
manpower had been a consistent concern of government and industry
since the war, a concern reflected in the post-war Percy and
Barlow Reports, a stream of reports from the Advisory Council on
S gientific Policy throughout the fifties, and the Robbins, Swann,
and Dainton Reports of the sixties.12

In England there were three major conferences on curriculum
reform in mathematics between 1957 and 1961, at the universities
of Oxford, Liverpoocl and Southampton. All were financed, at least
in part, by industry. Membership came from schools, universities
and industry.13 Their concerns as assumptions were broadly the
same. For example, the Foreword to the Southampton Conference

Report, by the then Minister of Education, Sir David Eccles, opens,

"The schools and industry are both short of mathematicians.
The fact of the shortage and its gravity has been
recognised in the educational world for some time. We
know that the quality of mathematics teaching could and
should be improved, the curricula brought up to date,

and above all the number of mathematicians with good
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qualifications increased"1#
The introductory chapter starts in similar vein,

""We see little reason to argue the importance of fully
trained professional mathematicians to this country...
There is scarcely any sense in which we as a country
would not be disastrously the poorer were we to neglect
the study of mathematics. Yet it can only be studied
if the teachers are there to teach it, at all levels,
in sufficient quantity and quality. Are we training
enough professional mathematicians and teachers of
mathematics at this time? That a serious, indeed
critical, situation exists in this country is clearly
recognised within the teaching professions of science

w15

and mathematics.

Government support and encouragement for curriculum reform in
the sixties is just one of a number of measures, from expansion of
university provision in science in the late forties and early
fifties16 to current attempts to develop elite engineering courses ang
to encourage industrial sponsorship for students on science-based
courses17 which reflect the continuing policy aim of increasing
the supply of scientific manpower.

This concern about the availability of scientific manpower was
shared by all the major developed countries. In late 1959 the
Organization for European Economic Co-operation (OEEC) (now the
Organization for Economic Co-operation and Development (OECD),
which includes all the large, non-communist developed economies)

held a conference at Royaumount in France which was to play a major
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role in disseminating the 'New Mathematics'. Indeed, in many ways
the conference was little more than a propaganda exercise. The
organisers had, it seems, already decided that reform was necessary

and that it should broadly follow the American example.

"Despite the great amount of discussion and study of the
problems of mathematics teaching, much of it is not
having the desired impact on' schools... This lag between
the new ideas and their effect on the schools is of course
inevitable - and even desirable. Nevertheless, it was
felt that the time had come to arrange a well prepared
exchange of views between those pioneering new ideas in
mathematics teaching, and those with responsibilities
for policy and its implementation in this field in OEEC

. 1
countries"

The conference arose from a coalition of interest between the
economic planners and the largely university-based reformers. At
a rhetorical level both groups sought to 'improve and modernise
mathematics teaching' but beneath this apparent consensus lay differ-
ent conceptualisations of the 'problems' of existing mathematics
teaching.

From the viewpoint of the planners the major 'problem' was that
too few pupils were studying too little mathematics at all levels.
The economy required an increasing volume of more highly mathemati-
cally skilled manpower.

Unfortunately (or for the university pure mathematicians
fortunately), the planners lacked a clear idea of the kinds of

mathematical skills in which pupils were supposedly deficient. They
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wanted change which would facilitate learning, and increase
motivation and interest among pupils. They viewed mathematics as
a ladder, and saw the purpose of change as helping and encouraging
pupils to climb higher than they had in the past. Certainly they
wanted 'modern' rather than 'traditional' mathematics, but this
meant to them simply replacing a rather rusty old ladder with a
longer and shinier new model which was easier to negotiate, and
reached higher. To them both led in the same upwards direction.

The anology is, of course, false. There are different kinds
of mathematics and different kinds of mathematical achievement.
The reformers had, by contrast, a very clear idea of the kind
of mathematics they wished to see in the school curriculum. Indeed
for them the 'problem' was that school mathematics was the wrong
kind of mathematics - change in the school curriculum had not kept
pace with that of the university. The existing school curriculum
was a poor preparation for the reformed university curriculum,
and this was, in turn, holding back further reforms at university
level. The reformers had what the planners thought they wanted,
the prototype of a new, modernised school curriculum. And wishful
thinking and serious theorising - such as that of Bruner - had
already invested the new curriculum with exactly the properties of
clarity and excitement which the planners sought.

Both viewpoints are, however, still apparent in the following
formulation of the Conference's task, which comes from the
official Report of the Conference, 'New Thinking in School

Mathematics'.

"To decide the nature of the mathematics that all capable

youth should learn if they are to go on to further study
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of science, engineering or mathematics in the university.
To find out what mathematical training and competence the
university professor desires in his beginning students.
To discover - in view of the shortage of scientifically
trained personnel in industry, government, research and
teaching - how mathematics can be presented so as to
attract larger numbers and produce more secondary-school

9

graduates with high competence in the subject"1

This view of school mathematics as essentially a preliminary
to university study makes university mathematicians the authoritative

arbiters of curriculum content at school level.

"The nature of mathematics -~ and the designation of the
types of mathematics that are important - are rightfully
the decisions of mathematiciana. What portion of
mathematics can be taught below university level, to
whom it can be taught and the way it can be taught are
then the decisions of educators, teachers and writers

of textbooks"C

It is not surprising, then, that the main speakers, Dieudonné
and Tucker, whose proposals for reform are reproduced in consider-
able detail in the conference report, were both university
professors of mathematics. Nor, in view of its constitution, is
it surprising that the conference was strongly influenced by
American developments. The chairman of the conference was Stone,

a university mathematics professor and prominent American reformer,
and four of the remaining fifteen speakers at the conference were

American. Indeed the programme recommended in outline in the
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conference report is very close to that of the major American
projects and provided the basis for the influential 'Synopses for
Modern Secondary School Mathematics' which the OECD published

in 1961.

(3) Scotland.

By the early sixties, then, there was strong and influential
international support for curriculum change. In Scotland,
characteristically, the initiative came from the centre. The S.E.D.
like the Ministry of Education south of the border, was particularly
concerned about the shortage of mathematics teachers which had
grown increasingly acute during the fifties. The annual reports
on Education of the Secretary of State over this period mention
the gravity of this problem with clockwork regularity.

In 1961 the SED took the initiative and set up a committee
to consider this problem. It seems plausible that two of the main
factors precipitating this new initiative on what was, by then, a
relatively old problem, were the burgeoning international interest
in curriculum reform, and its authoritative endorsement at
conferences such as Woods Hole and Royaumont, and pressure from a
small number of active and influential reformers in the universities
and colleges, and in the ranks of the inspectorate.

This impression is strengthened by the report of the Committee
on Mathematics, entitled 'Recent Changes in Honours courses in
Mathematics' written by several of the University mathematicians
on the conittee.a1 The main body of the report is an exposition
of the 'New Mathematics', which was at that time finding its way

into the university curriculum. The introduction offers two
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arguments for corresponding curriculum reform at school level.
First,

"if mathematics in schools can be made more interesting by
the introduction of some modern ideas, this of itself
might encourage more boys and girls to continue their
study of the subject to a higher 1eve1"22

Second, given the changes taking place in the university curriculum,

"Changes... /in the school curriculum/ ...are even now
23

necessary and... appear to be inevitable"

The quality of these arguments is not impressive. The first,
as its phraseology concedes, is based on optimism rather than
experience, the second is an example of value-based historicism.

Nevertheless, the introduction concludes,

"jt is hoped to encourage the esstablishment in a number
of schools of pilot groups to experiment with the
introduction into school syllabuses of modern aspects
of mathematics. The Committee confidently expects that
the work of these groups will lead in a relatively
short time to considerable developments in the teaching

of mathematics in achools"au

In April 1963, the SED appointed the Mathematics Syllabus

Committees to,

"review the school mathematics syllabuses and to initiate
in a number of schools experimental work on the

introduction of certain aspects of modern nathenatics"25

The Committee consisted of fifteen principal teachers of
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mathematics, the principal mathematics lecturers from two of the
colleges of education, four inspectors of schools, and three
university mathematicians. Robertson describes the work of the

committee as follows:

"The committee noted the trends in the development and
teaching of mathematics in a number of countries as
well as in the Scottish universities and colleges, and
critically examined, assessed and redrafted the school
syllabus against this background, with the aim that the
related courses should be interesting and relevant, and
should form a sound foundation for those pupils who would

26

continue the study of mathematics at a later stage"

A draft '0' Grade syllabus was discussed with representatives
of the universities and other institutions of post-school
education in December 1963, and the resulting syllabus was made
public in April 1964. The committee started to produce a series
of texts to cover the new course. In September 1964, when school
trials started, 60 Scottish schools adopted the course.

As the Scottish Mathematice Group (SMG), the teacher and
lecturer members of the Committee rewrote the trial materials to
produce a series of textbooks, Modern Mathematics for Schools
(MMS).27 which has been by far the most frequently used series of
texts in Scottish Schools, since that time. Indeed, it ie no
exaggeration to say that for many teachers MMS is 'The New
Mathematics'. In particular it is used by most teachers as the
authoritative commentary on the published SCE syllabuses.

The new curriculum which had emerged by 1965 was a compromise,

in many ways a conservative compromise, between traditional and
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modern ideas. In algebra, calculus, trigonometry and arithmetic,
most of the traditional content -~ including, for example, what the
Royaumont conference report had described as the 'detrimental™ and
"deplorable' theory of quadratics, and the "unnecessary burdens"

of long multiplication and division - remained, although it was now
treated in the new language of set, relation and function.

Even in geometry much of the traditional content survived. So,
for example, the new curriculum contained no topology but retained
a suitably rephrased, but still relatively exhaustive study of the
"ijrrelevant'" triangle and circle.

There were, of course, entirely new topics. Sets, functions,
matrices and vectors appeared in their own right as well as in the
modern treatment of familiar traditional topics. There was an
elementary introduction to probability, and the inclusion of a
simple form of linear programming and an iterative algorithm for
finding square roots was a bow in the direction of numerical methods.

While the mew curriculum was undoubtedly the greatest upheaval
in mathematics teaching in Scotland since the establishment of the
Leaving Certificate, by comparison with many other contemporary
curriculum revisions in mathematics it was distinguished by its
caution., The relatively conservative character of the new
curriculum was no doubt attributable to the predominance of class-
room teachers on the committee which designed the new syllabuses and
prepared the related curriculum materials. This caution was not
without its benefits. It meant that much of the new curriculum was
broadly recognisable to teachers as a 'modern' treatment of familiar
material. More generally, the predominance of classroom teachers

in the planning of the innovation ensured that the new material was,
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in general, 'suitable’ for teachers and pupils' - that the majority
of teachers and pupils could cope with it - and recognisably so.

The SCEEB28 circular containing details of the new curricula
is at pains to emphasise the similarities with the traditional

curriculum,

"In general, the new topics do not supplant those in

the traditional syllabus; they aim to give a greater
understanding of the various algebraic techniques and
processes, and consequently to facilitate the appreciation
of a situation and the acquisition of the skill necessary

to carry out the appropriate operations."29

Note the Brunerian conflation of the logical and psychological

senses of 'understanding' in the foregoing extract; the assumption
that the solution to the logical-philosophical problem 'How can we
secure mathematical knowledge?' also answers the psychological-
pedagogical problem 'How can we help pupils acquire mathematical
knowledge?'

The Circular was also anxious to convince teachers that this
new, rather abstract, curriculum would interest pupils, if only
because for at least the last thirty years teachers had been told
that it was practical, useful mathematics that interested pupils.
The attempt to assimilate the new mathematics to the traditional

ideology makes interesting reading.

"While the language of sets links mathematics with the
world around the pupil it also gives meaning to the
idea of a variable and allows a thorough development

of the study of equations and inequations"
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"Probability, statistics and iterative methods are

intrinsically interesting"

"/Transformational geometqz7 should be relevant and

interesting for all pupils"Bo

The SED had made curriculum change feasible by sponsoring
the preparation of textbooks and ensuring the availability of
certificate examinations; now it promoted change through inservice
training and inspectorial exhortation. But ultimately it was the
schools which faced with the choice between the traditional
curriculum and a recognisable new curriculum chose to abandon the
traditional. Even at the pilot stage around 20% of the Scottish
schools offering certificate courses had adopted the new curriculum.
The rapid and universal adoption of the new curriculum certainly
contrasts with the experience of England and the United States.
The Dainton Report, in early 1968, talked admiringly of

"the speed and comprehensiveness of the changeover

to the new syllabuses in Scotland"31

By then almost all first year potential certificate candidates in
mathematics were following the new curriculum.

The cautious design of the new curriculum and the emphasis
placed, at the dissemination stage, on content change, and on the
continuities between the traditional and reformed curricula brought
fast universal take-up of the inmovation by schools. But success
on these terms was in many wpye self-defeating. The price that
had to be paid was counter-reformation in the classroom which,
while it left the new content intact, assimilated it to traditional
approaches to, and strategies of teaching mathematics. This we

shall return to in the following section.
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Chapter 12: The Non-Academic Curriculum and the New Mathematics

(1) The Context

So far we have been exclusively concerned with the academic
certificate curriculum in mathematics. But it does not represent
the only tradition of mathematics teaching which can be found in
secondary schools today.

While there was, from 1900 onwards, a gradual extension of post-
elementary educgtion, academic secondary education remained restricted
to the able and the socially privileged.1 Between 1903 and 1936 the
great majority of pupils entered the two or three year 'supplementary
courses' or 'advanced divisions', generally conducted in the
elementary schools, rather than a 'secondary' course. These courses
had, in general, a vocational bias - commercial, technical, domestic,
agricultural, nautical. The teaching of mathematics as a separate
subject concentrated on revising and extending the arithmetic course
of the elementary school which covered what we nowadays term basic
and social arithmetic.

Similarly, in the secondary school those whose vocational
aspirations lay in the direction of commercial life, or who lacked
ability or interest in the academic mathematics course, were able
to follow a course in Arithmetic or Commercial Arithmetic, examinable
at the Lower Grade of the Leaving Certificate.

Although the 1936 Education Act conferred the name of
‘secondary' on all post-primary education, it was clear that 'junior
secondary' education was to be of a different type from 'senior
secondary'. Andrew, the Senior Chief Inspector, in his 1936 Report,

identifies the nature of the change when he writes that it,
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"admits the right of the individual to the type of post

primary education most suited to his needs, without

involving him in any terminological diacrimination"2

The raising of the school leaving age to 15 in 1947 marks the
start of some form of secondary education for all. In the same year
Circular 108 laid down that virtually all children should transfer
to secondary school between the age of 113 and 124, and certainly
none after 13. This meant that most pupils could now expect to
spend at least three years in a secondary school. From then until
the late sixties the 60-80% of the age group who failed to gain entry
to the traditional academic senior secondary course, received junior
secondary education, either in separate institutioms, or in
separate streams in an omnibus secondary school.

In the senior secondary school there continued to be a signifi-
cant minority of pupils (often girls) who never embarked on, or
rapidly dropped out of, the academic mathematics course, and
followed a course similar to that of junior secondary education.

It was the elementary school tradition of mathematics teaching

which was carried into junior secondary education. The 1947 ACE

Report argues that,

"the evidence is conclusive that very many children,
perhaps even a majority, are incapable of progressing
any distance in.. Z;athenaticg7 .+ Or of extracting

any substantial benefit from ZEQ§7 study"3

The Report concludes that, of the great majority of junior

secondary pupils,

"little mathematics can be required... beyond simple



162

everyday arithmetic, easy mensuration and the veriest
elements of graphical work - with the immediate usefulness
of what is being done evident at all times... Arithmetic

should be treated throughout as a '"tool" subject““

The narrow utilitarian approach to mathematics which character-~
ised junior secondary education can be inferred from the fact that
even an adventurous and idealistic document of the time, the 1955
Memorandum on Junior Secondary Education, spends the first three of
its four paragraphs on the aims of mathematics teaching stressing
the everyday and vocational importance of basic arithmetic and
mathematical skills, and bases its discussion of the content of

courses squarely on the perceived vocational and everyday needs of

pupils.

"The technical subjects in the school course for boys,
and many of the occupations normal for men, demand a
degree of competence in geometry and algebra which is
not asked for either in the other subjects of the
girls' courses or in the posts usually open to women.
Further, it is a common experience of many teachers
that applications of these branches of mathematics
which occur in everyday life tend to do so in circum-
stances whiqp interest boys more than girls. Courses
in geometry and in algebra, therefore, are not regarded

as essential in mathematics courses for girla"5
For the girls,

A large part of the course.,.. must have as its basis

the arithmetic of home and shop"6
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The 1962 Report 'New Ways in Junior Secondary Education'

describes the achievement of junior secondary education as follows,

"Effort has been directed mainly towards ensuring that
work is directly related to the pupils' abilities,
needs and interests, and that it is permeated by a
sense of realism and purpose that makes it a practical
preparation for life... In mathematics...the work
frequently deals largely with the useful application of
mathematics to such matters as timetables and ready
reckoners, budgeting, taxation, hire-purchase, everyday

formulae, statistical graphs, mensuration and surveying"7

For the majority of junior secondary pupils, then, the mathe-
matics course covered little more than 'basic' and 'social’
arithmetic, and occasionally more specialised skills related to
some anticipated social or vocational role. A small number of
junior secondary pupils did study a more complete mathematics course,
particularly after the introduction of the SCE 'O' Grade examinations
in 1962. 1In general such a course was modelled on the academic
Certificate course with which teachers were familiar, but adapted,
where the occasion demanded, to what were seen as the interests and
abilities of junior secondary pupils, and their needs in work and

further education.

(2) The Interaction

The curriculum of the 'junior secondary pupil' was reformed
not by direct design but through the introduction of the comprehen-
sive school and the common course. The process of curriculum reform

in the early sixties did not involve, and scarcely touched, the
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junior secondary schools. It was intended and planned as a reform
or the curriculum of the university bound student in the senior
secondary school.

In October 1965 when Circular 600 was issued the new
curriculum was already well established in senior secondary courses,
where it was being followed by around 70¥ of the first year
entrants in Scotland. Schools and teachers were faced with a
dilemma. The rhetoric of comprehensivisation - 'equality of
opportunity' and 'a grammar school education for all' - pointed to
a common course in mathematics based on the new academic curricu-
lum, whereas the received wisdom of mathematics teachers -
exemplified in the 1947 ACE Report - suggested that neither
teachers nor pupils could cope with such a situation. The
dilemma was only exacerbated by the impending raising of the school
leaving to 16.

The short term response - and one which continues to be
common - was to offer a common course based on the SMG curriculum
for an initial period - sometimes as short as a term, typically
one school year - and then to set pupils by ability. Under such a
plan only the upper sets continue with the full certificate course,
while the remainder pursue diluted versions, which for many of the
lower sets contain little more than traditional 'basic' and
'social' arithmetic.

Many teachers of certificate classes found that a suitably
adapted SMG course which ignored the logical and conceptual
structure of mathematics and placed an increased emphasis on the
acquisition and practice of standard content - specific skills,

was quite adequate for successful presentation for the SCE
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examinations. This was, after all, a familiar, and, in relative
terms, a predictably effective strategy for optimising pupil per-
formance in such examinations.

This adaptation found official sanction, first in the revision
of MMS "to cater more adequately for the wider range of pupils now
taking certificate courses'... in the light of... "experience
gained in the classroom"9 and second in the production for Glasgow
Corporation Education Committee of two rival series of textbooks1o

aimed at non-certificate and certificate pupils, by a group of

teachers concerned,

"“that the 'average pupil'... was finding more difficulty
with the content of Modern Mathematics syllabuses than
was anticipated... [Eue t§7...the oversophisticated
treatment encountered in many Modern Mathematics texts....
Z;q§7..the difficulty in extracting the essential

features of topica."11

In mathematics, as in other subjects, the rhetoric of egalitar-
ianism was translated in practice into the aim of maximising
pupils' chances of gaining the tangible rewards of certification.
In 1972 the SCEEB decided to band awards at 'O' grade from A to E.
Bands A to C were to correspond to the existing pass standard,
while D and E vere intended as a recognition of achievement for
candidates who performed less well in the examination. This change,
of course, acted as a 'multiplier'. Its effect was to increase
still further the range of pupils who could hope to reap some reward
from the SCE examinations. The outcome was a dramatic increase in
the proportion of pupils presented for certificate examinations

which was not accompanied by a commensurate rise in the number
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of passes, as the following figures show.12

Sh '0' Grade presentations and awards in Arithmetic and Mathematics

Arithmetic Mathematics
Year Presentations* Pagses®* Presentations* Passes*
1970 39.7 32.2 25.7 19.2
1971 43.0 34,1 27.1 20.5
1972 Lk .6 35.3 28.6 21.7
1973 L8.7 37.1 3.4 21.6
1974 61.2 38.8 34,9 21.5
1975 62.3 39.1 35.1 20.9
1976 64.5 Lo.7 36.2 21,2

*ag a percentage of the 81 population
three years before

One further innovation points to the institutionalisation of
this response. In 1972 a working party was set up
"(1) To review and, where necessary, adapt the content of the
existing alternative syllabuses for use within a wide range

of abilities in S1 and S2

(2) To devise a course in mathematics which is suitable for the
needs of pupils who do not in the first instance, propose to
continue the study of mathematics beyond the Ordinary grade
of the SCE. The course would be primarily concerned with
providing a general mathematics education but would be
devised in such a way ae to permit pupils who B0 wish to

carry the subject further."13



167

The working party produced the Modular Mathematics Scheme for
51/82 and the 'Syllabus B' curriculum for S3/S4 leading ¢to
presentation at '0' grade. Syllabus B excludes a large amount of
the more formal and theoretical content of Syllabus A in algebra
and geometry. This has been replaced by a much fuller treatment of
statistics along the lines of the existing 'O' grade in Statistics.

Although the main attraction of Syllabus B for teachers, and
its original rationale, is that it is more 'suitable' than Syllabus
A for 'the average pupil' (a euphemism for 'easier'?), such a
curriculum is, in content, considerably more useful for the potential
university biological or social scientist, than Syllabus A.

The progress of Syllabus B has been held back by two factors.
First, the refusal of the Scottish Universities Council on Entrance
(SUCE) to recognise an '0O' grade on Syllabus B as a qualification
for university entry has resulted in the new Syllabus being still
confined, in S3/Sk, to the original pilot schools, and there only
to classes of 'less-able’ pupils.‘”+ Second, while at the 51/S2
stage Modular Mathematics has been adopted by a number of non-
pilot schools which use it as an alternative to the S1/82 course,
based on MMS 1-U4, its higher cost, in a time of financial restrict-
ions, and the uncertainty over the S3/Sk continuation have deterred

schools from adopting it.

(3) The outcome

It is possible to talk of a typical current pattern of
mathematics education in Scottish schools. While the proportion
of pupils in different courses may vary from school to school, the

structure of the course is remarkably stable.
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All pupils will, in S1, embark on a common course based on MMS,
or, less frequently, Modular Mathematics. They will initially be
taught in mixed ability groups but by the start of S2 it is likely,
and by the start of S3 certain, that they will have been set by
ability. Once this setting has taken place the curriculum of
different groups rapidly diverges; the lower the set the greater the
emphasis on arithmetic.

All pupils will be required to study some 'maths' in S3 and
Sk. SCMSTE [?972715 suggests, for example, that around 40% should
embark on a course aimed at presentation in Arithmetic and
Mathematics (or in a smaller number of cases, statistics). It
suggests that a further 30¥% should aim at presentation in Arithmetic
only. Finally 30% will be presented in no examination. In practice,
many schools have allocated even larger proportions of pupils to
certificate courses in recent years, and there has been a consider-
able drop-out prior even to presentation. In certificate classes,
the tendency is, understandably, to concentrate exclusively on the
prescribed content. In noncertificate classes little more than
basic and social arithmetic is generally taught. SCMSTE /1976/
and SCMSTE Z?9ZZ7 can be seen as attempts to widen the curriculum
for the less able 60%, most of whom, as the figures on page 166 show,
fail to achieve any certificate passes in mathematical subjects.

In short comprehensivisation and RSLA have had no notable
effect on the content of school mathematics, only on the range of
pupile following the full academic curriculum. It is the merito-
cratic, rather than the democratic, aspects of the comprehensive
ideology which have influenced schools. Change has been focused

on the selective, not the educative, function of schools. The
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result has been a move away from 'sponsored' towards 'contest'
mobility in the secondary school, which has incidentally, rather
than intentionally, altered the content of the curriculum for some

groups of pupils.
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Chapter 13: The Pattern of Curriculum Change

The foregoing sections have offered a largely sequential
account of individual changes, or proposals for change, in the
certificate curriculum. In this section I will draw on this

account in developing a more general understanding of change.

(1) The Perceived Functions of Mathematical Education

To understand curriculum change in mathematics we must look
at what are perceived as the purposes and problems of teaching
the subject. There is a broad consensus both on the value of
mathematics, and on the reasons for its value. This extract

from the Norwood Report exemplifies both elements of the consensus.

"In the first three years of the secondary Grammar school
Mathematics should in our opinion be taken by all
pupils... first, it is essential that all pupils should
gain at least a knowledge of such mathematics as is
necessary for everyday affairs and some acquaintance with
the most elementary mathematical principles; secondly,
full opportunity must be given for mathematical ability
or disability to declare itself... We contemplate that
for the succeeding two years the majority of pupils
should continue a course of Mathematics which would be
appropriate to those who need Mathematics for their

1
career"

Here the purpose of teaching mathematics is conceived in direct
utilitarian terms as meeting the everyday and vocational needs of

pupils for certain arithmetic and mathematical skills and knowledge.
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The consensual nature of this belief, at least among parents
and pupils, is illustrated clearly in the findings of the 1968
Schools Council Survey,2 which established that English (including
reading, writing and spelling) and mathematics (including
arithmetic) are seen by parents as by far the most important
subjects for their child to learn at school. Around 95% and 90%
of parents rated English and mathematics, respectively, as
'important for their child to learn at echool.'3

Similarly pupils and recent leavers rated mathematics and
English well above other 'nonvocational' subjects in terms of
their 'usefulness to learn at school'. Around 93% of pupils and
89% of recent leavers rated mathematics as 'useful to learn at
school'.h’5

It is clear from the survey that the high valuation accorded
to mathematics by parents and pupils is due to its perceived
everyday and vocational utility. For example if we examine the
reasons given by 15 year old leavers for considering a subject as
'useful to learn at school' the valued characteristics of
mathematics emerge strongly.6

Leavers were asked to name up to three school subjects which
they considered useful. They were then asked to describe the ways
in which each of the subjects they had named was useful. This
gives a rating for each of the different ways in which a subject
was perceived as useful. For example, 70% of the leavers who
named mathematics thought that it was vocationally useful, 1% that
it provided recreational interest and enjoyment, and so on. In
the table below the first three columns indicate the spread of

ratings. The first column gives the higheat rating that any of
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the 14 subjects received on each of the particular ways of being
useful, the second the median rating, and the third the lowest
rating. The fourth column gives the ratings of mathematics on each
count. The final column gives the rank order of mathematics among

all 14 subjects on each particular count.

% RATINGS RANK

Kinds of usefulness highest median lowest maths maths

VOCATIONAL useful in 9k by 4 70 L
job, helps
get a good
job

DOMESTIC useful in 79 2 0 2 7
the home, ‘
when
married

GENERAL generally 29 17 1 22 6
useful ,
important

RECREATIONAL provides 33 10 0] 1 13
recreation~-
al interest/
enjoyment

LIBERAL develops 56 1 0 0 1.5
character,
broadens
outlook

BASIC speaking 31 0 0 12 2
properly,
reading,
writing,
counting

Mathematics is seen as vocationally useful (only technical
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and commercial subjects have higher ratings), and as providing
basic skills (only English has a higher rating). It is not seen
as recreational (only commercial subjects have a lower rating) or
as broadening one's outlook (rated on a par with technical and
domestic subjects, and PE).

As we established in a previous section, government, business
and industry have, since the war, seen mathematics teaching as
important because of the manpower needs of the economy. Attention
has, in the main, been focused on two 'problems'; ensuring the
'numeracy' of school leavers entering employment or vocational
training directly, and increasing the supply of highly trained,
specialist mathematicians, scientists and technologists. This
concern has been consistently reflected in government policy; for
example, the encouragement and financing of inservice training and
curriculum development in mathematics, various measures aimed at
increasing recruitment, and improving the quality of recruits
to mathematics teaching, and the recent institution of the Assess-
ment of Performance Unit (APU) to monitor 'standards' in mathematics
and other vocationally important subjects.7

This utilitarian view of mathematics is also found in the
official SED documents dealing with the mathematics curriculum.
Here the problem of determining the curriculum is seen as one of

satisfying the needs of different groups of pupils within the
constraints imposed by their differing abilities and interests.

The 1931 Memorandum on the mathematics curriculum reflects

this perspective of needs, abilities and interests, when it talks

of »



""the difficulty of certain parts of the present course...
deiqg7 «+ out of all proportion to their usefulness to

the average pupil"8

It also suggests that both the interest and usefulness of the
mathematics course to the average pupil depend on the number of
practical applications it contains.

Similarly the 1947 ACE Report argues that the mathematics
curriculum should,

“"take account of the needs and limitations of the

pupils in queation"9

For example, while the members of the Committee considered the

proposed curriculum,

"suitab£i§7 and sufficieq£:7.. for the average pupil,"1o

they were concerned as to whether,

"the small minority who have it in them to be mathematics
specialists Zzouxg7 manage to cover, in two years of
Vith form work, all the manipulative practice and the
more theoretical, systematic approach to the subject

necessary in preparation for the university"1o

Again they considered that for,

"the girl who combines passable genmeral ability with
undeniable weakness in Mathematics ... the sensible
course is to attempt little beyond 'tool arithmetic",
since anything more ambitious is unlikely to be

required for the career she will elect to followt ')

The Report suggests again that the interest of the 'average' or

174
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'less able' pupil is directly related to the practicality and
utility of the subject matter taught.

We have already seen, in an earlier section, how the emphasis
in the 1955 Memorandum on Junior Secondary Education is on the
everyday and vocational utility of mathematics as both the index
of its value and the basis of interest in it. Similarly the
Brunton Report of 1963,12 whose motivational theory centres on the
idea of the 'vocational impulse', draws attention to the exceptional
vocational importance of English and mathematics among the general
subjects, and sets out a minimum requirement of vocationally relevant
content in these subjects.

The introductory note to the 1965 SCEEB circular on the modern
'0' Grade Syllabuses, describes the aim of the new curricula in

arithmetic and mathematics as,

"to provide a useful and appropriate study for pupils
whose further use of mathematics will be in the home,
in business and in industry and commerce, as well as
to form sound foundations for those who will proceed

to study mathematics at higher 1evels."13

The 1977 Munn Report1“ follows Hirst in identifying a number
of distinctive modes of enquiry, and argues that each of these
should be represented in the school curriculum. The inclusion of
mathematice in the curriculum, along with English, PE, RE, social
studies, science and aesthetics, is justified on these grounds.
But, in the case of each of these areas, the Report devotes rather
more space to specific arguments for the inclusion of each in the
curriculum. Mathematics, the report argues, is Important because

it is a prerequisite for engaging in other important curricular



176

activities, such as science, and because it contains the basic
numerical skills which are essential for life in present day
society; there is more than a hint of the vocational when the Report

writes,

"The scope of this basic social need is not analysed here,
but we believe that is a task to be performed by
mathematics teachers in co-operation with industrialists
and others in identifying what is required in detail.

It is clear that the need exists, and that, for all pupils,
mathematical studies will retain a high priority in S3

and Sh“.15

The purpose of school mathematics is seen, then, as providing

the technical expertise which pupils will need

(1) In everyday life,

(2) 1In studying other subjects at school and post-school
level,

(3) 1In some occupation or differentiated social role,

(4) In studying mathematics at university.

These are, of course, not the only needs which mathematical
education might seek to meet. Mathematical education of another
kind might make a substantial contribution to liberal or humanistic
education, to aesthetic education, or to social education, for
example. Nonetheless, it is these directly utilitarian purposes
which are consistently cited in arguing for the value of mathemati-
cal education and which inform its aims, content and approach.

There is an element of imprecision in this analysis of

'utility'. In one sense 'vocational utility' is all embracing. On
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one hand much of the arithmetic which is of use in everyday life

is essential for many of the occupations that leavers enter
directly from school. Further, if we wanted to, we could certainly,
for any specific skill of everyday arithmetic, find some occupation
in which it was needed. In addition the demand for employees with
mathematically-based higher or further education, and the likelihood
of students with such an education entering an occupation calling
for the use of their specialised skills and knowledge, might lead
us to conceptualise needs (2) and (4) as, in some ultimate sense,
vocational. In this sense, 'vocational utility' subsumes the other
categories. But while the conceptual simplicity which results

from this reduction of 'utility' to a single category may suit the
level of discussion of/ggiitician, it does not provide an adequate
conceptualisation for understanding curriculum change. In any
case, in the official reports we have examined 'vocational utility'
is used in a more precise and restricted sense; that is 'usefulness
in those occupations which school leavers enter directly'. This

is the sense in which we shall use it for the present, although, as

we shall see later, this sense still has its complications.

(2) Change in the Mathematics Curriculum

We shall now examine the extent to which these different areas
of need are reflected in the changing certificate curriculum.

From its inception the curriculum has been 8plit neatly in two,
into Arithmetic and Mathematics; this distinction has, as we have
seen, been consistently maintained. In particular, the content of
the Arithmetic certificate course has traditionally resembled (or

rather perhaps influenced) that of noncertificate courses in
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'mathematics'. The institutionalization of this distinction in
the structure of curriculum and examinations suggests that it is
a significant one of which any analysis ought to take account.

In its origins Arithmetic was 'practical': it concentrated on
skills which were judged useful in 'everyday life' - the elementary
rules, vulgar and decimal fractions, percentages, money, weights

and measures, simple mensuration and the like. Specifically

'vocational' skills were left to courses in commercial or technical
subjects. (For example, there has, since the start of the Leaving
Certificate examinations, been a specialised curriculum in
Commercial Arithmetic, or latterly Accounting, which assumes a
previous knowledge of the contents of the Arithmetic curriculum.)

Mathematice by contrast was 'intellectual'; it was, in content
at least, primarily a preparation for university mathematics. We
shall look first at change in the Mathematics curriculum.

The major official proposals for change in the Mathematics

curriculum since the start of this century are as follows:

A The introduction of elementary analytic geometry to the
curriculum in place of some parts of classical formal

geometry (between 1924 and 1936) »

B The successful recommendation (in the 1948 ACE Report,
implemented in 1950) that calculus should replace some further

parts of classical formal geometry ,

c The unsuccessful recommendation (in the 1947 ACE Report) that
an alternative curriculum, placing much less emphasis on
formal geometry and theoretical algebra, and more on practical
aspects of mathematics such as geometrical drawing, mensuration

and mechanics should be introduced ,
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D The introduction of the 'Alternative Syllabus' (now 'Syllabus
A') (between 1963 and 1968) containing 'modern' topics and

treating 'traditional' topics in 'modern' terms,

E The introduction of 'Syllabus B' placing less emphasis on the
formal and theoretical parts of algebra and geometry, and
more on statistics (between 1971 and 1975).
These changes have been discussed in previous sections. The
table below summarises the ways in which these changes brought,
or would have brought, the curriculum closer to one appropriate to
the different areas of need of which it is commonly argued that the
mathematics curriculum ought to take account; (1) everyday need,
(2) other subject need, (3) vocational need, (4) university
mathematics need. This will also help us to identify those interests

which are able to influence the curriculum.

PROPOSAL UTILITY

successful (v)/ more (+)/less (-) useful than existing curriculum

unsuccessful (x) in area
(1) (2) (3) (4)
y A +(university physical
’ science) +
% B +(university physical
science) +
x c +(school & college +(engineer-

technical studies) ing trades) -

x E +(university
biological &
social sciences) -




180

Undoubtedly, the major change in the Mathematics curriculum
since its inception has been the 'New Maths' (case D). Here, as
with all the other successful proposals, the contemporary Mathematics
curriculum was ~ snd the evidence suggests quite intentionally -
brought closer to the changing university mathematics curriculum.
Both the unsuccessful proposals would have created an alternative
curriculum much further removed from the university curriculum than
the established curriculum of the time. Again this was the inten-
tion of the proposers. This is strong evidence for the influence
of the university mathematics curriculum on the school curriculum.
Indeed, it points to this as the major influence.

It is harder to identify the pattern of influence, if any,
behind the much slighter correlation between change in the curriculum
and the needs of the university physical scientist. One could argue
that cases A and B reflect the contemporary influence of what we
might call the 'Cartesian' view of mathematics as 'the science of
quantity' on the mathematics curriculum of the university and
school, as much as the influence of the interests of physical
scientists. By contrast many physical scientists disagreed strongly
with the 'structural' conception of mathematics underlying the New
Maths and protested vehemently against its introduction to the
schools, although it is not clear that the watered-down structuralism
which found its way into the school curriculum seriously affected
the traditional emphasis or the acquisition of manipulative skills,
or that the main victim of reform, the Euclidean approach to
geometry, was of greater value to the potential student of physical
science than the transformational geometry which replaced it. This

does suggest, however, that the influence of such needs and of the
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interests which represent them has been only of marginal signifi-
cance in determining the pattern of curriculum change.

Case C provides an example of a proposal for change which was
specifically intended to come closer to the mathematical needs of
the engineering and allied trades. Its failure points to the lack
of influence of vocational needs and vocational interests on the
curriculum.

Case E is more complex. Perhaps the major purpose behind its
design was to provide a curriculum which would be more manageable
for the majority of pupils. On the other hand the course itself,
with its emphasis on statistics and its eschewal of the more
recondite aspects of pure mathematics certainly comes closer to
meeting the needs of the potential biological or social scientist
than Syllabus A.

The conclusion that we must draw from an examination of these
five proposals for curriculum change is that the dominant and
consistent influence on the Mathematics curriculum has been the
university mathematics curriculum.

There are a number of ways in which this influence is exerted.
First, the universities, in particular university mathematicians,
have exerted a direct political influence on the content of the
school mathematics curriculum. In the 1880's the conditions under
which the universities agreed to accept the new Leaving Certificate
amounted to direct university control of the course content. Even
today the universities can exert direct pressure at several points
in the development of a new curriculum. First through their
representation on the Consultative Committee on the Curriculum and

on its Central Committee on Mathematics, then through their
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representation on the SCEEB Board and Mathematica Subject Panel,

and finally through SUCE which can refuse to recognise a new
curriculum or examination for university entrance. The Syllabus B
curriculum is an example of an innovation halted at this last ditch.

Second as the origins of both the 'traditional' and 'modern'
curricula illustrate, university mathematicians may play a major
role in initiating and promoting curriculum change, in the past
through informal networks, but now through participation in the
official SED structure of subject committees and curriculum
development panels.

Finally this overt influence of the universities on the school
curriculum is legitimised, and a stronger indirect influence
exerted, by the status and authority of the universities as the
repositories of learning. University mathematicians are the 'subject
experts'. What they choose to teach, or to endorse, is made
legitimate as 'mathematics' or more generally as knowledge. Most
teachers of mathematics receive the 'mathematical' part of their
training in university mathematics departments. Their conception
of mathematics is developed through their school and university
experience; it is influenced by the selection from knowledge that is
transmitted to them, and by the way that this knowledge is made

intelligible.

(3) Change in the Arithmetic Curriculum:

We now turn to the Arithmetic curriculum. Here the major
proposals for change in the certificate curriculum have taken place

since 1960. The changes are as follows:
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F The introduction of statistics (between 1960 and 1962),

G The Alternative Syllabus which introduced the study of
number systems, number bases, permutations and theoretical

probability,

G The change from imperial to metric measures (between 1968

and 1973) s
I The change to decimal currency (between 1969 and 1971) .

J The introduction of the alternative Syllabus B in Arithmetic.
Syllabus B differs principally from Syllabus A in including the
study of flow charts and of simple computer programming, in
assuming the use of the slide rule and calculator (rather than
logarithms) as aids to calculation, and in excluding the more
abstract aspects of arithmetic. Some topics treated as
Arithmetic in Syllabus A, are, in Syllabus B, treated as part

of the Mathematics curriculum.
We now examine these changes, one by one.

F: Since the Thirties the use of statistical methods of analysis
and representation, in industry, commerce and the social and
natural sciences had been growing rapidly. By the early fifties
statistical representation was becoming a relatively common
feature of most people's experience, and statistics was moving
into the mainstream of the university mathematics curriculum.
Thus, while there does not seem to have been strong pressure
for the introduction of an elementary treatment of statistics,
it was a change to which outside interests - parents, employers,
politicians and academics - were unlikely to be unfavourable.

In addition, however, experience had shown this to be a topic
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Which average and less able pupils were capable of tackling,
and enjoyed. It was thus an obvious candidate for filling out

the new '0O' Grade Arithmetic curriculum.

It is significant that at a time when (in relative terms)
cataclysmic changes were taking place in the Mathematics
curriculum, the traditional core of the Arithmetic curriculum
remained untouched. New topics resulted from the use of the
Arithmetic curriculum as a receptacle for the overflow from
the brimming Mathematics curriculum, rather than from a re-
structuring or extension of the approach and content of the
traditional Arithmetic curriculum. A minor, but interesting,
exception was the greater attention paid to tolerances,
approximations, and errors in the new curriculum. By contrast,
this change corresponded to vocational and other-subject needs

rather than those of the new university mathematics.

Here the curriculum planners sought to anticipate, rather than
reflect, change in everyday and vocational needs. In both cases
change in the school curriculum was linked to a government time-
table of change. In case I the timetable was almost universally
followed both inside and outside the schools. In case H however,
industry and commerce have tended to lag far behind the official
programme of change and this has led to a mismatch between the
skills of school leavers and the immediate needs of many

employers.

Like G, J is overshadowed by the Mathematics curriculum
with which it is associated; its future hangs in the balance not

on its own acceptability, but on that of the Syllabus B 'package’
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as a whole. It is worth noting however that it includes the
main part of the traditional core (logarithms being the only

notable exception).

What is striking then, about the Arithmetic curriculum is how little
it has changed. The original curriculum, aimed at the 'everyday
needs' of the Victorian pedagogue's commonsense stereotype of man,
has survived virtually intact. What change there has been has added
peripheral topics rather than restructuring or sweeping away the
old. A simple index of this stability is the absence of significant
change in the curriculum until 1960.

We have already mentioned that there is a substantial common
ground between the arithmetic skills which are judged useful in
everyday life, in studyiné other subjects, and in work or vocational
training. Even in junior secondary education where the emphasis on
vocationalism was extremely high, vocational needs Qere. in general,
seen as being best served by giving pupils a thorough grounding in
basic and social arithmetic, rather than in any more vocationally
specialised skills. This also seems to accord with the desires of
employers then and now. The Brunton Report for example, argues that
while employers expect the school to provide a foundation of broadly-
based skills, they prefer to train their own employees themselves
in the specific techniques which their work requires.

In effect the skills which employers expect the schools to
provide are largely those which are, in any case, part of basic and
social arithmetic. When employers require recruits to have 'O
grade Arithmetic or Mathematics they do so because they believe that
these are relatively reliable indices both of 'general ability' and

of competence in the skills on which vocational training is based.
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In particular, the vocational value of 'O' grade Mathematics for

most school leavers lies not in its content, but in the association
between success in that examination and relatively high facility

in basic arithmetic skills. In the relatively small number of

cases where more specialised skills are required they are provided
and certificated not by the mathematics courses and examinations,

but by the more directly vocationally oriented technical or commercial
courses and examinations.

The stability of the Arithmetic curriculum suggests that it
has in general been able to meet the demands of different interests
(even if it has often gone beyond what is strictly necessary to
meet them) and that these demands have changed little enough to

be capable of accompdation within the traditional curriculum.

i
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Chapter 14: The Politics of Curriculum Change

(1) A General Outline

In the Scottish educational system the traditional pattern of
innovation, of which the mathematics curriculum provides just one
example, is 'centre-periphery'. Until the mid-sixties curriculum
change simply 'emerged' from the SED. Since then the SED has
delegated, rather than devolved, some of its responsibilities to
the SCEEB and the CCC, and their numerous sub-committees.

But, in either form, the centralised process of decision making
has been little documented. For this reason most of the conclusions
which we draw about this process can be no more than tentative. On
the other hand, this very lack of evidence enables us to draw at
least one firm conclusion; it testifies to the absence of public
participation in the process. The development of the SCEEB and the
CCC may have given certain professional groups within the educational
system a greater influence, but it still effectively excludes
outside influences, as the evidence of the Secretary of the SED to
the Commission on the Constitution demonstrates. Asked how the
Department reacted to the public at large, and in what way it was

sensitive to public opinion, the Secretary replied,

"To a considerable extent through Parliament. On the
more specialised issues, through teacher opinion,
reflected either through the teachers' associations
or to an increasing extent through the sort of
advisory apparatus we have, which very largely now
involves teachers, headmasters, principals of

colleges, directly“1
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Whereas most aspects of Scottish life are governed by British
legislation and ultimately administered by Whitehall, the SED is
one of a small number of specifically Scottish agencies which enjoy
a considerable degree of autonomy. Virtually all the legislation
governing education in Scotland is Scottish, and on those issues
defined as ‘'educational', rather than 'political’, the Department
is free to arrive at independent decisions.2

On the other hand, the most widely controversial 'political'
decisions - those, for example, on the school leaving age,
comprehensive education, the price of school meals - are made at a
(British) national level. Here it is the DES - which also adminis-
ters non-university education in England and Wales, and, through
the UGC and the research councils, university education and
research in Britain - which is most closely involved in decision
making. For this reason almost all interest groups outside the
educational system - the CBI, the TUC, the political parties, for
example - and many within - the NUS and CASE for example - are
organised on a (British) national level, to exert pressure at the
centre.

Further, whereas the policy of the DES may be influenced by a
strong education minister who is free to give almost all of his
or her attention to the policy of the Department, an equivalent
situation is most unlikely in relation to the SED. The Scottish
Secretary and his junior ministers all have multiple responsibil-
ities within a range of London and Edinburgh~based departments.

It is also clear that the SED has little formal contact with
the DES other than on the small number of 'political' issues. Kellas

writes,
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"Contact between civil servants of the SED and the DES
rarely concerns substantive matters of policy. It is
assumed that each department has its own educational
system to administer, and that the one should not get
in the other's way ... in fact, most SED trips to
London are to the Treasury, or to Parliament, when

legislation is being pushed through."3

It is clear that the SED welcomes the administrative convenience
which results from its sheltered situation. In a system dominated
by educational specialists it is easier to make and implement
decisions.

In the Scottish educational system, then, the influence of
parents, pupils, politicians and employers is weak. It is the
professional groups within the education system, and the civil
servants who make policy. And in the area of the curriculum, in
particular, professional claims to special expertise strengthen the

forces which exclude public influence.

(2) The Mathematics Curriculum

In the matter of the mathematics curriculum, what evidence there
is suggests that it is the same interests which exerted influence
in the pre-1965 informal system which are represented in the CCC
and SCEEB network; the SED - both the administration and the
Inspectorate, the universities, and, increasingly in recent years,
an atypical group of teachers, experienced, committed to innovation,
and promoted (within the school, or as local authority advisers or
college of education lecturers). These teachers have the same kind

of professional background as the members of the Inspectorate, and
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have shouldered a part of the development burden which fell on the
inspectorate in the early sixties. Similarly the SCEEB has taken
up many of the inspectors' administrative responsibilities, leaving
them free to make, or influence, general policy.5

One interesting example of this important facet of the
politics of curriculum change is provided by the precipitate
abandonment of Imperial measures in the curriculum. Remarkably,
the CCC subcommittee on Decimalisation and Metrication included no
representative of industry and commerce: its membership was
exclusively drawn from 'inside interests'.6 It is hardly surprising,
then, that the recommendations of this subcommittee failed to take
account of the slower pace of change to metric units in industry
and commerce.

Within this small circle of decision makers, however, complex
considerations come into play. For the universities the matter is
relatively simple. They have power but very little responsibility.
The SED on the other hand, in deciding whether to promote an
innovation will be concerned with how it has been, or will be,
received by the teachers and the schools, and by the universities.
Similarly the critical factors governing the acceptability of an
innovation to ordinary teachers and schools are likely to be its
feasibility, and its acceptability, first to the SCEEB (if it relates
to a certificate course, as most innovations do), and then to the
universities.

It is relatively easy to comstruct simple and politically
significant indices of acceptability to the universities, and to

the SED.
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SED: Did the SED or SCEEB offer an examination

reflecting the curriculum innovation:

pniversities: If an exam was offered, was it accepted by the
Scottish Universities Entrance Board (SUEB) or
SUCE? If not, is there evidence of university

opposition?

There is no such simple index of acceptability to schools and
teachers. In practice the factors of feasibility and acceptability
to ordinary classroom teachers are closely linked. A curriculum
innovation may fail because it makes demands on teachers which

they are unable to meet, or because teachers are unconvinced of

its value, and thus do not adopt it, or adopt it without conviction.

An innovation may fail because,

(1) The new content is unfamiliar to teachers,

(2) The innovation requires new teaching methods and/or
assumptions about teaching and learning,

(3) The content/teaching methods appear to be, or prove to be,
unsuitable (too difficult/uninteresting) for pupils,

(4) The innovation makes much greater demands on resources -

teachers' time, materials, space.

On the other hand, all these factors can be manipulated by the SED

and local authorities through,

(5) The provision of inservice-training,
(6) The revision of curriculum materials and content,
(7) The provision of additional resources to schools taking

up the innovation.
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Let us examine the five proposed innovations in the mathematics
curriculum in the light of these considerations.

Case A is straightforward. The university Ordinary curriculum
had included analytic geometry since the end of the nineteenth
century. The new content was therefore familiar to most secondary
teachers in the late twenties. As the 1931 Memorandum, and later
the 1947 ACE Report testify, traditional Euclidean geometry was
generally agreed to be boring and incomprehensible to the majority
of pupils. Teachers were unlikely, therefore, to reject this less
formal alternative on such grounds. Finally there is no evidence
of conflict between the universities and the SED on this matter.

The leaving certificate syllabus was altered by the SED and
accepted by the universities in four stages between 1924 and 1936.

Proposals B and C, although presented as alternatives, were
fundamentally in opposition. While both offered the prospect of a
further reduction in the unpopular Euclidean geometry, B represented
a continuation of the academic tradition; C offered a quite different
practical mathematics. The new material of B, the calculus, had
been part of the university Ordinary mathematics curriculum since
around 1910. By contrast the university trained teacher was unlikely
to have encountered the practical mechanics and geometrical drawing
with which C proposed to replace Euclidean geometry and theoretical
algebra. In addition it raised questions about resources and
teaching styleas. For mathematics teachers, then, C would have been
a leap in the dark. Moreover, C was, as we have seen, strongly
opposed by the universities. Given these conditions its eclipse

is not surprising.

Change between 1924 and 1961 moved the curriculum in a direction
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which was broadly acceptable both to the universities and to teachers,
although for rather different reasons. For the former it brought

the school curriculum closer to the reformed university curriculum.
Of the latter it made few demands, and produced a curriculum which

in prospect appeared, and in practice, proved, at least no more
boring and no less comprehensible to the majority of pupils.

Proposal D, however, presents us with a case which is much less
clear cut. Here change introduced to the curriculum new material,
and a new approach to mathematics, which was only familiar to recent
Honours graduates. Initially, at least, there were alao suggestions
of new teaching methods, notably 'discovery learning'. Purely in
terms of providing textbooks suitable for the new curriculum there
was a clear need for additional resources. All these initial factors,
therefore, were likely to predispose teachers against the change.

On the other hand it is clear that the SED was determined that this
change should be successfully implemented in schools.

The SED funded the preparation and production of textbooks for
pilot schools, and supported in-service training on a massive scale.
By the end of 1967 around 50% of Scottish mathematics teachers had
attended at least one in-service course on 'modern mathematica'.7
Most local authorities were equally unstinting, making generous
funds available to schools who took up the new curriculum. There
can be little doubt that the enthusiastic endorsement of the 'New
Maths'! by the SED and the provision of generous funding for its
development, dissemination and take-up were crucial factors in its
initial success.

We have seen how initial propaganda was at pains to emphasise

both the continuity between the traditional and modern syllabuses,
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and the relevance, interest and lack of difficulty of the new
material and approaches. We have also seen how, as the curriculum
developed, certain elements of the original conception diminished
in prominence - discovery learning, and the emphasis on 'structure’
in particular. Successive versions of the SMG@ texts retreated back
to traditional notions of pedagogy and gave greater emphasis to
traditional content and approaches to the subject. This adaptation
to 'teachers' problems' was the price that was paid to secure the
success of the new curriculum.

As its remit shows the purpose of Syllabus B (case E) was to
carry this process of adapting the 'new maths' a stage further to
meet the changed circumstances of the common course and RSLA. It
was an innovation addressed from the onset to the problem of producing
a modification of the existing Syllabus A to the capabilities and
interests of a larger group of pupils. Unlike the Syllabus A
development committee, the Syllabus B committee, with the exception
of a representative of SCEEB, contained only teachers (including
in that category ex-mathematics teachers who had moved on to be
college curriculum tutors).

Most of the content of their new curriculum was already familiar
to teachers, either from Syllabus A or from the '0' Grade Statistics
curriculum introduced in 1967. The design of the S1/S2 Modular
Mathematics curriculum materials, however, assumed a significant
change in teaching methods away from 'lock-step' class teaching to
group and individualised methods.

As might be expected, the propaganda for Modular Mathematics

concentrated on reassuring teachers about this aspect of the innovation.
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"The introduction of comprehensive education has had a
dramatic effect upon the teaching of mathematics. Mixed
ability classes have presented class teachers with the
problem of interesting pupils of widely varying levels of
ability while presenting useful and challenging work to
the more able pupils. Aiming the lesson at the middle of
the ability range leaves many of the pupils dissatisfied,
and leads to classroom problems. In this situation the
mathematics teacher needs help. The Modular Mathematics
course is designed to provide a core of content for all
pupils with special provision for the less able and
supplementary material for the most able pupils. Because
of the individual nature of the work each pupil can
proceed at a rate which suits his or her own level of
ability. The class teacher is able to attend to the
difficulties of individuals or small groups knowing that
the other pupils are able to work on material which is

8"9

interesting to them and within their capabilitie

Early experience with the new curriculum, however, established that
it was far from 'teacher proof'. Many teachers found ways to adapt
the new materials to existing teaching styles. This flexibility,
no doubt, worked in favour of the innovation. Teachers could, if
they wished, accept it simply as a modification of the content of
the existing S1/S2 course. One important factor which inhibited
schools from adopting Modular Mathematics was the cost of the new
curriculum materials ; in particular the expensive worksheets could
be used only once ., Although certain local authorities were

prepared to offer schools additional funds, the financial cutbacks
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of the mid-seventies hit this innovation when it was made generally
available in 1974.

A second crushing blow, and the one which seems to have halted
Syllabus B (of which Modular Mathematics is the first part), was
the refusal of SUCE to recognise the 'O' Grade in Mathematics on
Syllabus B. Adaptation had gone too far for the universities; they
played their trump card.

These two cases suggest two things: First, that given financial
and political support by the SED (and possibly local authorities)
change in the content of the curriculum which is not immediately
acceptable to teachers can be implemented, although it is likely to
be adapted in the process. They provide little evidence of the

success of attempts to change teaching methods. Second, they show

that the universities retain an effective power of veto over
curriculum change at certificate level.

There is a common pattern to the three major cycles of innova-
tion in the Scottish mathematics curriculum - the establishment of
a national curriculum (1887-1904), the introduction of analytic
methods (1924-1950), and the introduction of 'modern' mathematics
(1963~ ). In the first stage, new mathematical content and views
of mathematics are promoted by the universities; in the second these
are taken up and adapted by the schools (within bounds ultimately
set by the universities).

The role of the SED is harder to assess. Curriculum change is,
formally at least, initiated by the SED; it, and its associated
apparatus (SCEEB, CCC), act as the major formal channels of
communication between the universities and the schools. But there

are times when the SED seems to have a policy of its own on innovation;
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the first and third cycles of innovation in the mathematics
curriculum can be seen as part of a larger SED endorsed and sponsored
programme of change. Given the relative autonomy of the profession-
als in educational decision making in Scotland, it might be argued
that it often takes a purposeful individual or group within the

SED (Craik, Secretary from 1885-1905 or Brunton, HMSCI from 1955-

66, for example) to promote and guide change.

The pattern which emerges is one in which the universities
propose, the SED sponsors, and the schools dispose of change. The
universities exert the major influence on the direction that change
takes, the SED plays the major role in deciding if and when change
is to take place, and the schools control, to a large measure, the

extent and speed of change.



Conclusion
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Chapter 15: The Political Dynamics of Change

Very briefly, the three main parts of this thesis have (I)
argued for a 'democratic general education' in mathematics,
emphasising the social, intellectual and cultural context of
the discipline; (II) established that the existing pattern of
mathematical education fails to meet such generalist aims, and
examined the perspectives of those who currently teach the subject;
and (III) traced the development of this pattern of mathematical
education and the forces influencing it. I intend, in this con-
cluding chapter, to bring together, and build on the arguments of
all three parts, in considering the conditions which are likely to
lead to effective curriculum change towards the generalist model

which I have advocated.

(1) The Politics of Change

It is striking how little the secondary school curriculum has
changed over the last century. This stability contrasts vividly
with the accelerating growth and change in the content, structure
and application of knowledge in the society of which the school is
part. The present day curriculum is still firmly set in the mould
of the late nineteenth century.

This mismatch between curriculum and society has only been
exacerbated by the changing role of the school system. A curriculum
for the Victorian intellectual elite has been uncritically preserved
as the model for popular secondary education a century later. The
only substantial concession to this century of unprecedented

intellectual achievement and social change has been the excision of
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the classical languages from the curriculum.

An examination of this period also displays the limited
ability of the school system to reform itself. While change may
have found its e#rliest, and most articulate exponents within the
system, it has largely depended on external pressure and support
for its realisation. To cite the most prominent example, it has
been the commitment of successive governments (with a variety of
motivations) to expand educational provision and extend educational
opportunity which has led to significant change in the institutional
structure of the school system over the past century.

Within the system a sometimes grudging consensus has upheld
the main outlines of the traditionmal curriculum. No group has had
the strength to sustain a major initiative; all have been capable
of frustrating the intentions of others. The result has been
marginal change, the bare minimum judged necessary to accommodate
the tremendous structural changes: the basic consensus has been
preserved.

It is not unreasonable to suggest that the reluctance of govern-
ments over this period to enter the 'secret garden of the curricu-
lum' has allowed this incipient inertia to predominate, despite
the changing institutional structure of the school system, and the
changing composition of its audience.

This is not so much a Scottish as a British pattern. Kogan,
discussing the education system of England and Wales, writes,

"The British system for the government of education is ..
strong, largely continuous and consensual in its working
and assumptions.. Zﬁost current educational policies have

bee57 inherited from the first of the public education
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systems at the beginning of the twentieth century."1

He describes change in the English system as,
“"Pluralistic, incremental, unsystematic, reactive."2

Indeed, change in both systems has run largely parallel, although
in matters of curriculum and examinations England has tended to
lead. On the other hand, once started, change has been completed
more quickly in Scotland due to the stronger, and more explicitly
centralist role of the SED in the Scottish system.

Not that power in the English system is as devolved as it is
sometimes taken to be. Kogan argues that during the fifties the
then Ministry of Education changed from,

"being the holder of the ring between the 'real' forces
in educational policy making.... to being the enforcer
of positive controls, based increasingly on knowledge

which the Department itself went out to get."3

Reviewing the period 1960-74, the same author concludes that, while
the exercise of power is rarely explicit,
"the only certainty is that the DES wields determinant

authority and great power."u

Certainly, in mattere of curriculum, the supposed autonomy of the
headmaster and head of department within the 'pluralist' English
system can be exaggerated. Choice here is choice within a relative-
ly narrow spectrum of alternatives.

Thus, while the Scottish and English school systems remain
administratively independent, and preserve a number of distinctive
characteristics, the pattern of change within each has been broadly

similar over the past century. In both systems radical change in
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the curriculum has been impeded by a similar conservative consensus,
upheld by similar interests (although, in Scotland, the lack of
pressure from outside groups has subjected the consensus to less
strain, and as a result the gradual change that has oéurred here
has been even less marked). Moreover, common to both éystems is
the wider and overweening British society which imposes common
economic, political and cultural pressures on the two systems. In
particular the assimilation of the Scottish universities to an
emerging British university system during the nineteenth century,
removed the mainspring of the autonomous Scottish cultural and
educational tradition.

In the absence of a Scottish Assembly it is probable that
Scottish education will continue to follow broadly British trends,
although these may be given a distinctively Scottish elaboration.
More specifically, curricular change of the order entailed by my
proposals is likely, as I will argue, to require a degree of politi-
cal sponsorship which makes its isolated emergence in the politically
unfocused Scottish context, most unlikely. For these reasons I
propose to continue my discussion of curriculum change in the wider
British context.

I have argued that a conservative consensus within the school
system both reflects and sustains inertia. The one period when
curricular consensus visibly faltered was during the sixties. As
I have described, the anachronism of the school curriculum, particu-
larly in mathematics and science, had become widely apparent at a
time when doctrines of social and economic planning, and, in
particular, of the expansion of 'human capital' were gaining influence.

It was at this time that Britain saw the first real attempt at
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government intrusion into what the then Minister of Education, Sir
David Eccles, termed 'the secret garden of the curriculum'.

In the early sixties Eccles proposed the creation of an expert
Curriculum Study Group within the Ministry of Education as a
response to the pressures of rapid change and increase in knowledge.
The intention was to ensure that decisions made by the Ministry
would be better informed by educational considerations and would be
more closely related to more general social and economic plans
adopted by the government of the day.5

Arousing the fierce opposition of the teacher unions, and
lacking political support, the CSG was stillborn: the Schools
Council was the compromise which emerged. At much the same time
the SED set up the Consultative Committee on the Curriculum, rather
different from the Schools Council in comstitution, and more limited
in purpose, but sharing the aim of stimulating and coordinating
curriculum renewal.

The constitutions of both the Schools Council and the CCC
originated in a centre-periphery model for the dissemination of
educational policy, which seeks to redirect the largely negative
power of teachers to impede change, into more positive channels.
This concept of teacher-sponsored change was reflected in the pre-
dominance of teachers on the committees of these two bodies. It
has been styled,

"a deliberate resort to democracy.“6

Both bodies, however, have had to operate within the unchanged
constraints of the 'internal' balance of power. They have had to
legitimise policies and innovations not only in the eyes of

university-dominated examination boards, and cost-conscious
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central and local government, but to the mass of teachers who have
little contact with, or knowledge of, these bodies.

The result, particularly in Scotland where most of the
development work has been carried out by serving teachers, is a
tendency to take a fragmented and gradualist view of curriculum
change, a predisposition to work within and preserve consensus.
Where articulate criticism of the consensus surfaces, the structural

pressures within both bodies tend to suppress it. As MacDonald and

Walker put it,

"The 'cooperative machinery' of the /Schools/ Council
represents the system, and therefore lacks a mandate
to criticise it. It is locked within the protocol of

courtesy."7

1970, the start of the Thatcher administration at the DES, is

a turning point in recent educational policy, marking a break with

the educational liberalism common to the Conservative and Labour

administrations of the previous decade, under Eccles, Boyle, and

Crosland. The optimistic commitment of government to innovation

and expansion in education has disappeared, to be replaced by a

hardening scepticism, and an increasing assertion of DES authority.

In particular, the period since 1970 has seen increasing
government interest and intervention in curricular matters; the
setting up of the Assessment of Performance Unit in 1974, the
transfer from the Schools Council to the DES, in 1976, of the task
of reorganising school examinations, and pressure on the Schools

Council to reform itself to reduce the influence of the teachers!

unions, and increase that of the DES and interests outside the

education system, which has borne fruit in the Council's third
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(1978) Constitution. Each of these initiatives testifies to a
growing politicisation of decision-making on curriculum and
examinations. There is little sign that politicians or public have
yet realised either the political significance, or the complexity
of the issues underlying curricular change. Both parties have
consistently represented curricular decision making as a purely
technical matter of finding ways of meeting supposedly uncontentious
national needs.

Nonetheless, inasmuch as it points to an important shift in
the pattern of decision making, this development is to be welcomed.
First, and most important, although the current alignment of
political forces has lent support to the traditiomal curricular
consensus, this in itself has made a significant breach in the
principle that curricular matters should be kept outside 'politics'.
This is an important development, if, as I have argued, thorough-
going curriculum reform depends on government sponsorship for its
success. Certainly, sponsorship for the kind of change which I
have advocated depends on a much stronger, and more overtly
ideological politicisation of educational decision meking. The
value of this breach of principle is that, in placing curricular
matters on the political agenda, it offers the proponents of
democratic curricular change a wider, and potentially more sympath-
etic constituency, which brings with it the real possibility of a
slow realignment of the forces which at present inhibit change.

Second, it is desirable that decisions about change (or its
absence) in the educational system, with their far reaching social
implications, should be made democratically. Certainly those

working within the education system must be party to such decisions,
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but they have no justification for claiming a monopoly on them.
Finally, such a move clearly identifies the issues of value
involved in such decisions as political issues: in doing so it
offers teachers and other educationalists some protection from
unreasonable criticism which originates in the conflict between
the demand that the school embody and transmit values, and our
society's confusion, or pluralism of values.

The natural sponsor, within the wider political system, for
the kind of innovation which I have advocated is a party of pro-
gressive social reform, a tradition represented in Britain by the
Labour Party. The development of democratic general education, as
I have argued for it, continues the process of democratising the
educational system, by enlarging the focus of change from a
primarily economistic concern to diminish inequalities of wealth and
status, by reforming the structure of the school system, to a
concern to reform the curriculum and pedagogy of the school,
motivated by political and cultural considerations.

In Sweden, for example, a succession of Social Democratic
governments have, since the Second World War, sponsored a develop-
ing programme of educational reform, and notably the reform of
curriculum and pedagogy, which has been seen as part of a wider
policy of social reform aimed at democratising Swedish society.

In other countries, however, governing parties have assimilated
the democratisation of education to rather different ideologies.

In France educational reform has arisen partly in response to public
discontent, centred on the universities, culminating in the violent
events of 1968, and partly as an arm of economic management. The

postponement of differentiation until 14 ('promotion collective'),
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and the development of a common curriculum ('tronc commun') in the
early years of the secondary school have been introduced by a
government of the right which has incorporated educational planning
into a broader middle term plan for economic and social development,
and tried to reconcile the conservative respect for tradition with
the growing entrepreneurial demand for an intellectually flexible
and technically sophisticated labour force.
A recent French Secretary of State summarises this view as
follows,
"The radical transformation of social life has upset the
ideas of French education, for it has given rise to two
unprecedented phenomena.

The first has been the continuous acceleration of

economic activity.. the increasingly elaborate industrial

maching7.. is demanding more and more knowledge, and more
and more specialization. The framework of education is
becoming much too narrow for the acquisition of knowledge
which is, at the same time, encyclopaedic yet precise..
The second phenomenon has been the need to make the
comprehension of the whole world surrounding us accessible
to substantially all the population. No longer can we be
content with an initial transmission of knowledge to an
elite: to begin with, the demand for democratisation has
broken down the social barriers in the universities. But
above all, the complex economy of our advanced society calls

for greater knowledge from a greater number of people."9

The particular direction which this government has sought for

curriculum change has been motivated by the consideration that,
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"If culture is, first of all, the understanding of the
world in which one lives, then the pupil's comprehension
of the technological world is an important aim. To
achieve such a comprehension one must allow all children
to discover the links between science, technology and

economic and social problems."1o

In the United States, as in France, governments have seen the
extension of educational opportunity as an instrument of economic
progress, and of social and political stability. Entwhistle com-
pares the viewpoints of British and North American educational
conservatives, taking Bantock and Bestor as examples. He contrasts
the disdain of Bantock and other Black Paperites for the educational
capacity of the majority of people, and their opposition to a
common curriculum, with Bestor's belief in the need to transmit
intellectual culture throughout all sections of the population.11

"American public schools have the responsibility of raising
up a nation of men and women highly literate, accurately
informed, and rigorously trained in the process of
rational and critical thought. If the schools fail in this,
then we may expect to see the collapse or defeat of
democratic self-government through the sheer inability of
its electorate to grapple intelligently with the complex
problems in science, economics, politics and international

relations that constantly come up for public decision."12

The forces for educational change in the United States have not,
of course, been moved solely by such altruistic considerations. As

in France, the sometimes violent expressions of public expectation,
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the demands of an expanding and increasingly technological economy,
and strategic considerations have all helped to produce consensus
about the desirability of extending educational opportunity.

In Sweden, France and the United States, then, as in Britain,
the extension of educational opportunity, and change in the curricu-~
lum have largely depended on government sponsorship. Further, in
each country, whether in or out of government, parties whose ideals
were largely antipathetic to educational expansion and change, have
bowed to prevailing social and economic forces, to tolerate, and on
occasion encourage reform.

This suggests that, to a certain extent, given different
ideological emphases, educational reforms may prove capable of
straddling conventional political boundaries. Educational expansion
can be conceptualised, on one hand as national investment and
private consumption, on the other as extending opportunity and
producing social change. However, the progressive nationalism of
the American and French right, which endorses educational change as
a measured response to social and economic pressure, and appeals in
its management of change primarily to apparently apolitical,
technocratic considerations, is hardly elastic enough to encompass
the kind of change I have advocated.

Moreover, on the British right, this progressive nationalism
is overshadowed by a more rigid conservatism, reflected in the
emphasis in Conservative education policy on the retention of
privilege, and the preservation of traditional values and forms.
Educational liberalism has had its defenders within the Conservative
Party, but they have been few, and, in general, have found them-

selves on the defensive. For example, Boyle's tolerance of
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comprehensive schools, as shadow Education Secretary during the
mid-sixties, came under continuous attack from within the party,
and this policy did not survive his exit from office. Kogan argues
that,
"Zﬁbyle's libera;7 vhilosophy tells us nothing about the
trend of post-war Conservatism, as Mrs Thatcher's decisions
and declared policies since his time have since made

plainer."13

The best that can be expected from the British right is a
pragmatic acceptance that the public is unlikely to favour the re-
versal of successful educational change, which can be seen to
present more worthwhile educational aims, and to offer greater
opportunity to the majority of school students. Any political
sponsorship for democratic educational reform in Britain is likely
to come from the left, and the survival and success of such reform
is likely to depend on the degree of enthusiasm, and the care in
planning which is given to it.

Here, unfortunately, the record is not particularly impressive,
as the short account of the introduction of comprehensive education
which follows will make clear. Labour education policy since the
war has in many ways been no less pragmatic than that of the
Conservatives. It has certainly lacked any strong guiding princi-
plea, partly, of course, in the hope that change, unencumbered with
such principles, would win readier acceptance. In many ways this
attempt to make reform uncontroversial has been a double failure,
producing undirected, unsystematic and ineffective change, while,

at the same time, discrediting, and heightening opposition to the
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very idea of reform.

There can be no doubt that, despite the growing politicisation
of curricular decision making, the proponents of radical reform
start from a difficult position, weakened by the consequences of
the very lack of principle which they seek to remedy in educational
policy. The pragmatic tradition weakens not only their attempt to
gain sponsorship, but the transformation of this sponsorship into
effective educational change. Here is the greatest political
obstacle to radical reform, once the principle of non-intervention

in curricular matters has been breached,

(2) The Management of Change

For successful reform depends on more than simple government
sponsorship. Creating a dynamic of change within the school system
is only the first part of effective innovation. For innovation to
be successful, the new aims and practices which it entails must be
clarified, and their implementation planned. On the one hand,
opposition to change may originate in, and is often articulated as
misrepresentation of aims, or criticism of the plans for implement-
ing these aims. On the other, change directed only by ambiguous
rhetoric, is likely, at best, to preserve traditional aims and
practices under new names, at worst, to undermine the achievement
of even traditional aims. A clear contrast in styles of managing
innovation, which illustrates these points, is provided by the
differing British and Swedish approaches to comprehensivisation.

In Sweden government commitment to a comprehensive school
system emerged from a managed process of informed deciaion-making.ﬁ“

Between 1940 and 1947 a government sponsored committee of enquiry,
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a non-political body of expert educational opinion, made a complete
survey and evaluation of the national education system. In 1946 a
School Commission consisting of representativeas of the five
political parties, and a non-political member to represent parental
interests, was appointed to make policy recommendations for the
development of Swedish education, in the light of the extensive
report of the committee of enquiry.

In doing so the Commission had access to expert advice, through
the assignation of professional educationalists to advise its
specialist subcommittees. The Commission's 1948 Report was a de-
tailed and exhaustive document which clearly located its recommenda-
tions for reform within a wider framework of educational and socio-
political aims. It made recommendations not only about the extent
and structure of compulsory schooling, but also about appropriate
patterns of curriculum and pedagogy. Its central recommendation
was the establishment of a compulsory, nine-year, comprehensive
school. For the first eight years (until the age of 15) pupils were
to follow a common course in unstreamed classes (although a small
optional element in the curriculum was to be permitted in the
seventh and eighth years).

A parliamentary Act of 1950 led to the establishment of a
number of experimental comprehensive schools. Throughout the
succeeding decade, research, development, and evaluation continued,
until, in 1962, an Act was passed making comprehensive reorganisation
compulsory throughout Sweden.

In Britain, although the 1944 Education Act permitted the
establishment of comprehensive schools, there was little support

for them from either party.15 In 1948 a Labour Education Minister
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turned down plans for comprehensive reorganisation in Middlesex on
the grounds that the tripartite system was 'logical and usual'.16
The initial drive towards comprehensive education came at local
government level, on occasion on ideological grounds, but more often
prompted by the problems of providing viable secondary education
in areas of dispersed population.
The early development of comprehensive schools was piecemeal

and largely pragmatic. These were marginal institutions, lacking
a clearly formulated set of alternative values, and under pressure
to succeed within the terms of the normative tripartite system.
By and large, the new schools adopted traditional models of
organisation, curriculum and pedagogy. There were pockets of
significant innovation. London developed a common course for the
first three years of secondary education, but rejected,

"the impracticable assumption that teaching groups

covering the whole range of ability are suitable or

n1?

desirable.

By 1965 only 8.5% of secondary age children attended compre-
hensive schools.18 It was the return, in 1964, of a Labour
government committed to comprehensive reorganisation which gave
impetus to change.

The controversiality of change, and confusion and disagreement
within the party itself, combined to produce a policy which, while
exerting pressure for change, gave it little direction. Before
the 1964 election the Labour leader, Harold Wilson, had assured
teachers that grammar schools would be abolished 'only over his
dead body': as late as 1970 he was representing the comprehensive

school as 'a grammar school for all'.19 This was not mere rhetoric,



213

intended to reassure: it reflects the influence of the arguments
which had led an earlier generation to champion the grammar school
as an agent of social mobility. Conversely, it illustrates the
absence of concern with the nature of the educational process
which characterised Labour policy.

Circular 10/65, the Labour government's instrument of change,
sought the abolition of selection and segregated secondary schooling.
Six distinct schemes were put forward to be considered by individual
local authorities as models for reorganisation. These, however,
were not the result of government sponsored research or policy-

making.

"It was to local authority practice..that the government
and the DES turned when it came to drawing up Circular
10/65. All six of the schemes suggested were either in
operation or proposed through local authority initiatives.
The 'central guidance' that 10/65 claimed to give in
effect amounted to passing around to all authorities what

the DES had found in its suggestion box in 1965."20

On other matters, such as internal organisation, curriculum and
pedagogy, 10/65 was silent.

Government policy, then, perpetuated the pragmatism of the
early years. It gave no clear lead in defining new aims or values
for comprehensive schools. And Circular 10/65 made it clear that
local authorities could expect no special financial assistance with
the change. Both the aims of change, and methods of implementing
them lacked clarity, coherence and completeness.

The first government-sponsored research into comprehensive

schools was the 1966 NFER descriptive survey.21 Not surprisingly,
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the report of the NFER team pointed to an assimilation of change to
existing values and practices. For example, the great majority of
schools continued to group their first year pupils by ability
(almost half using streaming), while at most 10% taught any subject
to mixed ability groups at this level.22

The result of government policy has been to accelerate a process
of drift towards a set of diffuse, and imperfectly defined aims.
By 1971, 38% of pupils attended at least nominally comprehensive
schools:23 of these schools, about 35% used some form of mixed
ability grouping with their first year pupils.au While individual
schools have developed successful models of internal organisation,
curriculum and pedagogy, satisfying strong definitions of comprehen-
sive education, the great majority stick close to traditional models.

In Sweden, by contrast, schools have had the benefit of clearly
defined innovatory aims, and considerable professional support in
implementing them. The result has been substantial change, dissem-
inated throughout the school system. Marklund and Soderberg
summarise the gains of reform as postponed selection, the develop-
ment of a common course, and the individualisation of instruction.25

In both Britain and Sweden the intervention of government was
a critical factor in creating a dynamic of change. But in Sweden,
the active part played by government in initiating and planning
change, produced significant benefits. First, it led to the pro-
duction of a clear and coherent plan for reform, backed by a strong
political mandate, and consistent with the values implicit in that
mandate. 'Professional' judgements did not go unchallenged. As

a result the professional expertise, which originally resisted the

idea of mixed ability grouping, was redirected into developing
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the individualised pedagogy which now makes this form of organisation
feasible.

Second, change was coordinated throughout the system,
lessening the internal tensions of innovation, and ensuring a
relatively uniform development. In parallel with the introduction
of the nine year comprehensive school, the upper school, higher
education and teacher training were all reformed, as part of a
global plan for 'rolling reform' of the educational system.

Finally, the priority assigned to educational reform in
government policy, ensured that adequate resources were made

available for the programme of innovation.

(3) The Development and Implementation of Change

The Swedish example illustrates how a purposeful government
can initiate, guide and promote innovation within its school system.
But there is a point beyond which such sponsorship is of little
value. New aims and practices, however clearly conceived, plausibly
argued, powerfully sponsored, and well financed, cannot simply be
injected into the school system. This is particularly true when
change aims to modify not just the organisational structure within
which schooling takes place, but the rationale and procedures of
teaching itself.

This lesson was learnt by the early protagonists of, what
Havelock has termed,26 the ‘research, development, and diffusion'
model for innovation, in which a central team of experts designs a
new educational package to be distributed to practitioners on the
periphery. It was this highly technocratic model, befitting the

era, which found favour in the rash of curriculum development during
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the sixties.

The standard pattern was for a team of subject specialists,
often drawn from outside the school system, to develop a compre-
hensive set of classroom materials, embodying a new curricular
philosophy. It was assumed that, once this research and develop-
ment phase had been completed, diffusion would be a simple matter
of distributing the package and its accompanying curricular message
to schools.

This assumption proved misconceived. In many cases schools
were reluctant to acquire the new packages, or rapidly consigned
them to the deepest recesses of their storage cupboards. Even the
apparent success of certain projects, measured by their take up and
use by schools, often concealed an assimilation of innovatory
intention to established practice.

A striking example is described in a research study by McIntyre

7 vwhich examined science teaching in the early years of

et al..2
the Scottish secondary school. Within two years of the Consultative
Committee on the Curriculum suggesting that science should be taught
as an integrated subject in S1 and S2, the great majority of S1 and
82 classes were 'integrated'. Within these classes, however,
nearly all the content taught could still be clearly identified as
'physics', 'chemistry', or 'biology'. In addition while centrally
produced worksheets, aimed at promoting 'guided discovery' and
taking account of differences among pupils in 'mixed ability' classes,
had been widely adopted, they were rarely used as intended, more
frequently being adapted to traditional teaching strategies.
Similarly, I have noted how the emphasis on heuristic explana-

tion and discovery learning, which was a strong element in the
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curricular philosophy of the New Maths, failed to take root in the
classroom. In the case of the Scottish Mathematics Group project,
for example, innovatory 'success' was attributable to the weakening
or abandonment of this, and other central glements of the reform
philosophy, in favour of traditional perspectives.

One response to such failures had been the espousal of, to use
Havelock's terminology again, ‘'social interaction' and 'problem
solving' models of innovation. In the former, the central agency
merely becomes a clearing house for small-scale peripheral develop-
ment, without any unifying aims or philosophy. In the latter, the
central agency coordinates small-scale peripheral development, guided
by what practitioners perceive as their needs, and disseminates the
results.

But the available evidence suggests that the adoption of these
models is likely to reinforce a reactive, unsystematic, and
incremental, pattern of change. If, as the teacher study of Part II
concluded, teachers lack an articulate and developed perspective on
their subject, and the value and purpose of teaching it, and, in
practice, their actions are intended to meet often immediate
organisational goals only tenuously related to the subject itself,
then their perception of problems, and the solutions they seek are
unlikely to challenge the tacit values and purposes of the existing
curriculum.

While this response to the failure of the 'research, development,
and diffusion' model, in its early versions, does not offer an
effective alternative, it does point to the reasons underlying the
failure. The real weakness of the curriculum development of the

sixties was the subject-mindedness of its analysis, which failed
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to take account of the complex social ecology of the school and
classroom.

As I have argued in Part II1I, the new curricular aims and
methods were initially derived from theories about the subject,
and only later legitimised, rather than operationalised, in terms
of highly speculative and abstract theories of learning. The
implementation of change in the classroom itself was seen as un-
problematic, as simply a matter of the teacher using the prepared
curriculum materials, and adhering to the new curricular philosophy.

This, of course, reflected the popular view that teaching is
a simple and consciously rational activity, and that the knowledge
and skills which a teacher requires are primarily those of the
subject. The innovators believed that the aims and practices of
teachers are guided by their view of the subject. But the evidence
suggests that the reality of the classroom is very different. The
teacher study of Part II concluded that teachers do not have a
highly developed and articulate view of their subject - indeed, that
they feel ill at ease in this area - and that their aims and
practices are located not in rationalistic theories of knowledge and
learning, but in largely tacit structures of social interaction and
institutional purpose. The failure of much curriculum development
is attributable to an underestimation of the complexity of class-
room life, and a fundamental misapprehension about its dynamics.
A8 a result, curriculum developers have omitted to translate new
curricular aims and methods into feasible teaching strategies, con-
sistent with the realities of classroom life, and to train teachers
to incorporate these strategies into their teaching repertoire.

Any serious attempt to operationalise new curricular aims and
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methods must take account of the fact that the theoretical models

of classroom life which are currently available offer little help

in identifying effective strategies for change. Although adequate

as descriptions of current practice, beyond this familiar equilibrium
they offer little insight into the structure and strength of the
constraints on change. This is a major impediment to sny radical
initiative to reform the curriculum.

How then can the R, D and D model be reformulated to incorporate
these insights? In the absence of ready-made ‘'solutions', in the
form of systematic and holistic models of clasaroom life, the only
feasible innovative strategy ie to build awareness both of the
'problem' and of the 'reality' it concerns, into the development
mechanism.

First, this demands the introduction of social scientific
perspectives into research and development, and the establishment
of channels of communication between the 'idealistic' curriculum
designers and the 'realistic' practitioners, to encourage the
feedback which was missing from the original model.

One realisation of this kind of mechanism is provided by an
'action research' model in which researchers, designers and
practitioners work together to identify the constraints on change,
and to develop structures and strategies which enable agreed
innovatory aims to be achieved, within a particular school. This
kind of experience in a number of schools then provides a basis
for the development of feasible models of organisation and
teaching to attain these aims, and of methods of training practi-
tioners in the use of these models.

This latter point is relevant to the second major change
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which is required to make the R, D and D model effective; the pro-
vision of (and the development of strategies for providing)
extensive professional support, in particular retraining, to guide
the wider diffusion and implementation of change.

For example, the kind of curricular innovation which I have
proposed in mathematics is likely to require not just that teachers
incorporate new strategies into their teaching, but that they
acquire new perspectives on their subject, and develop the ability
to apply these new perspectives to the activities which take place
in their classrooms. Furthermore, it is likely that an important
aim of such innovation would be to counteract the intellectual
isolation and stagnation, the lack of involvement in mathematics,
which many teachers display, and which is reflected in the image of
mathematics conveyed to their pupils.

Behind this approach to innovation lies a revaluation of the
role of the teacher, and of the centrality of the process of
teaching (in its widest sense) to successful learning. One of the
reasons for the resistance of teachers to change based on the
technocratic assumptions of the original R, D and D model, has been
its devaluation of their role, with its emphasis on 'teacher-proof'
packages which cast the teacher as a pedagogical machine minder.
Another has been the experience of many teachers asked to implement
change without adequate resources, experience, or professional
support. Successful change must enhance teachers' self esteem; it
must emphasise the value of the teacher's contribution to learning.
The provision of opportunities for professional development, and in
particular of adequate retraining programmes to meet the demands

of innovation, is an essential part of this revaluation of the
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teacher's role.

(4) The Future

The central problem of effecting the kind of curricular change
I have advocated remains a political one. At present the proposal
that the secondary school curriculum should be democratised towards
a generalist model lacks any powerful constituency. Of course the
current curriculum is widely criticised as anachronistic and over-
academic; by the major teacher unions on both sides of the Border,
by the inspectorate, even, on occasion, by industry. But behind
the felicitous phrases there is little real consensus on what change
is desirable, and a general inclination to let caution take
precedence over commitment.

Furthermore, the main corollary of democratisation, a fundamen-
tal change in the relationship between school and university, is
certain to antagonise those who see the primary role of the school
as the nurture of a future elite. Democratisation of the school
curriculum would require universities, at the least, to adapt their
courses to take account of the quite different pattern of attainment
of their students on entry. Further, the change in values implicit
in the reform of the school curriculum would be likely to encourage
criticism of the role of the university, and, in particular, of its
curriculum, Finally, inasmuch as the majority of secondary school
teachers receive most of their higher education within subject-
specialised university courses, radical reform in the school
curriculum would strengthen demands for change in the university

curriculum,

In some ways this pattern of largely conflicting opinion and
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influence is not dissimilar to that which confronted the early
proponents of comprehensivisation: indeed, in view of my contention
that democratisation of the curriculum can be seen as an extension
of the policy of comprehensivisation, this is unremarkable. Where
the two reforms differ significantly is in the absolute priority
which curricular democratisation places on reforming the rationale,
content, and procedures of classroom teaching, even given the
cautious strategy of preserving, in some measure, existing subject
boundaries within the school curriculum.

Here, because of the particular influence that they wield over
the school examination system, and their more general influence on
public conceptions of legitimate knowledge, the universities are in
a considerably stronger political position. On the issue of school
organisation the universities possessed only indirect influence; in
the matter of the school curriculum and examinations they epjoy, and
have been prepared to exercise, direct and considerable power.

Teachers, on the other hand, may be rather less resistant to
change than they were in the aikties. First, the idea of change is
no longer novel: that, if nothing else, is a significant outcome of
the last two decades. Second, whereas in the early days of compre-
hensive reform the main teacher unions remained uncommitted,
reflecting the division of opinion among their membership, they now
confidently defend the comprehensive system. Teacher opinion has,
at the least, come to terms with change. Indeed it could be said
that teacher opinion, as expressed through the major trade unionms,
is relatively sympathetic to carrying change further. Organised

teacher opposition to curricular change towards the democratic model
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is likely to focus on its feasibility, rather than its desirability,
and to be concerned to defend, and if possible enhance, the teacher's
role and status. That is no bad thing if it helps to ensure the
careful planning of change, the provision of resources and re-
§training: its dangers lie in the arrogation to teachers of
unfettered control of curricular decision making.

But, as I have argued, the critical initiating and mediating
role must be played by government. The evidence on comprehensivi-
sation is not encouraging. Its proponents had to wait at least
twenty years to see it emerge as government policy. Even then it
remains highly contentious, not just between, but within parties.

It is this failure to create consensus which clearly differentiates
the Swedish from the British experience, and points to the danger
either of half-hearted innovation, or of a curriculum bending with
every turn of the political wind. Further, while curricular chenge
remains politically contentious, the universities may be able to
forge effective alliances to impede change. Here a great deal rests
on the pattern on which further and higher education develops in
the future.

The increasing demand for, and the extension of post-school
education must undermine the power and influence of the universities
to some degree. Already they are coming under criticism from
certain groups within government, business and industry for the
highly academic and specialist nature of their courses. They may
either choose to diversify to meet new demands (as the American
university system has done), or they may stand aside and watch the
non-university sector grow. In one case they must, to some extent,

compromise in their curricular values, in the other, they must cede
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some of their influence and power.

At the same time, the inviolability of university entrance
standards is likely to be questioned as more and more students
successfully complete some form of higher education without high
specialist attainments at school. Indeed the success of the Open
University has already started this process.

Both these trends will be accentuated by financial considerations.
The long run cost to the university system of the expansion of
higher education in the sixties has been increased financial
dependence on, and accountability to government. The market
alternative, the American evidence suggests, offers no general defence
against pressure for change in the university curriculum. A
minority of institutions may successfully hold out, but the majority
must give some ground, or perish.

There is only one certain conclusion to this discussion: the
proponents of democratisation of the curriculum cannot expect success
in the short run. For the present they must be content to develop
and disseminate their ideas in two critical arenas; first, within
the educational professions, and second, within those organisations
and parties with a commitment to democratising our society. It is

here that the seeds of any future advance must be sown.



225

References

Chapter 1

Barker (1972) and Hoare (1965) develop this point.

2 The influence of this viewpoint can be seen in the 1977
Green Paper 'Education in Schools', para. 1.13, pp.4-5.

DES (1977).

3 See Musgrave (1968), Ch. 5.

b These arguments are the two identified by the Robbins Report
as calling for a reappraisal of higher education. Ministry
of Education (1963), par.16, pp.4-5.

5 Quoted in Simon (1960), p.137.

6  See Simon (1960), Ch. IV and V.

vi See Simon (1972) for a fuller exposition of this tradition.

8  See Williams (1965).

9  Ibid. p.10.

10 Ibid. pp.174-5.

11 Hunter (1968), p.219.

12 Drever (1969), pp.202-3.

13 SED (1977a).

14  SCMSTE (1976), p.2.

15 White (1973), p.lk.

16 Phenix (1964b).

17 Schwab (1964a) and Schwab (1964b).
18  Hirst and Peters (1970), and Hirst (1974).
19  White (1973).

Chapter 2

1

2

Hirst (1974) and Phenix (1964b) offer the principal authorita-
tive expositions of the thesis.

Hirst (197"”)9 Chol"-



+

O 00 N3 O

10
11
12
13
1
15
16
17

18
19

20
21
22
23
2k
25
26
27
28

226

Ibid. polsh.

Ibid. p.b5.

Ibid. p.lh.

Ibid. p.bW5.

Ibid. p.123.

Phenix (1964b), p.75.
Ibid. p.7k.

Ibid. p.76.

Ibid. p.317.

Hirst (1974), p.25.
Ibid. p.19.

Russell (1917), p.59.
Lakatos (1976), p.2.
Quoted in Haack (1974), p.29.

Godel (1962) contains an English translation of Godel's
original 1931 paper, and a useful introduction by Braithwaite.

See Carruccio (1964), pp.10-12.

For a fuller exposition of the development of modern theories
of mathematics, see Carruccio (1964), Ch.XII, XV, XVIII,
Kline (1953), Ch. XXV, XXVI, and Kline (1972), Ch. 19, 26, 38,
and 43.

Lakatos (1976), p.44, pp.103-4.

Carruccio (1964), Ch. XIV.

Kline (1972), Ch. 49.

Carruccio (1964), Ch. V, and Kline (1953), Ch. III.

Carruccio (1964), Ch. XII, and Kline (1953), Ch. XII.

Kline (1972), Ch. 18 and 26.

Bium (1971), p.118.

Young (1977), p.91.

Gorbutt (1972), p.7.



29
30
31
32
33
3h
35
36
37
38
39

4
b2
L3
Il
L5

k7
48
k9
50
51
52
53
5k

227

Esland (1971), p.99.

Gorbutt (1972) and Keddie (1973), Introduction, for example.
Keddie (1973), Introduction, p.17.
Esland (1971), p.99.

See Kuhn (1970a), (1970b).

Jenks (1977b), p.3h.

Hirst (1974), p.92.

Young (1971b), p.23.

Young (1977), p.9%4.

Popper (1970), p.653.

Haack (1974), p.25-26.

Ibid. Ch. 8.

Ibid. p.37.

Popper (1972).

Kuhn (1970b).

Keddie (1973), Introduction, p.10.
See, in particular, Bernatein (1971) and Keddie (1971).
Freire (1971).

Keddie (1973), Introduction, p.17.
Bellack (1964).

Schwab (196k4a) and (1964b).

Hirst and Peters (1970), Hirst (1974).
white (1973).

Phenix (1964a), (1964b).

Broudy (1962), Broudy et al. (196L4).
Tykociner (1964b),



228

Chapter 3

1 Hirst (1969)’ po1550

2 Phenix (1964b), p.319.

3 Hirst (1974), p.143,

b Phenix (1964b), p.274.

5 See Kline (1958) and (1966), and the letter from Ahlfors
and 64 other distinguished mathematicians criticising the new
mathematics curricula. This was published in both the
American Mathematical Monthly and the Mathematics Teacher;
Ahlfors et al. (1962).

6 Hirst (1974), pp.14k-5.

Vi See Cockburn and Anderson (1969).

8 Bellack (1964), p.27L4-5.

9 The standard account is Davie (1961).

10 Ibid. p.13.

1" Ibid. p.18k4.

12 Ibid. p.212.

13 Author of 'Outlines of a Philosophical Education'.
14 See Davie (1961), p.206.

Chapter 4

1 Hirst (1974), pp.50-51.

2 Scottish Mathematics Group (1971), Vol. &4, p.36.

3 Ormell (1969).

4 This is less true of French and Belgian modern mathematics
projects where the structuralist influence was strong. The
two main British projects, the Schools Mathematics Project
in England, and the Scottish Mathematics Group in Scotland,
have taken a very pragmatic approach.

5 Modular Mathematics, Module 26.

6 Polya (1954).

Lakatos (1976).



229

8 Polya (1954), Vol. 1, p.vi.
9 Lakatos (1976), p.5.

10 Ibid. p.105.

1" Polya (1954), Vol. 1, pp.v-vi.

12 Lakatos (1976), pp.1k2-4,

13 Dawson (1971).

14 The honourable, but little known or used exception being the
Schools Council Mathematice for the Majority project. See
Mathematics for the Majority (1970).

15 See Pedoe (1976) for an example of a liberal approach to
geometry.

16 Kline (1972), pp.34-37.

179  Ibid. pp.1018-21.

18 See Appel and Haken (1977).

Chapter 5

1 Data from SED (1977b), Table A3, p.128.
2 Data for 1976 SCE examinationms.
Chapter 6

1 Gallagher (1970).

2  Smith, Meux et al. (1967). See also Dunkin and Biddle (197L4),
pp.339-48.

3 Smith and Meux (1962). See also Dunkin and Biddle (1974),
pp.323=k.

L See Dunkin and Biddle (1974), pp.324=5.

5  Bellack et al. (1966). See also Dunkin and Biddle (1974),
pp.328-30.

Chapter

1

Where the class was timetabled for a double period, but the



2 The percentage of total time, over all 38 lessons, in each
Content category was as follows:

SMA NMA MR CR RES
Individual 98.5 1.1 (0] 0 O.b
Class 93%.3 3.3 0 2.2 1.3
Overall 9k.9 2.6 0O 1.5 1.0

Chapter 8

1 Becker (1970), Ch. 2, 3 and 5.

Chapter 10

1 A fuller account of these changes can be found in Davie ZT96$7
and Scotland /1969/. Davie is concerned primarily with change
in the universities; Scotland is more informative about the
schools (see in particular vol. 2. pp.273-274).

2  See SED /1887/ pp.119-122, and Dobie /1967/.

3 See SED /1888a/, SED /1888b/.

b Craik, The Secretary of the Board until 1905, explicitly
mentions this each year in his reports on the "Leaving
Certificate and Inspection of Higher Class Schools". Hims
successor, Struthers, is, unfortunately, less detailed.

5  SED [1904/.

6 This and subsequent information about the university mathematics
curricula is drawn from the University Calendars published
annually.

7 The same courses were given under different names in the Arts
and Science Faculties.

8  sED /19247, SED /1927/, SED [1932/, SED /1936/.

9 SED Z?9}j7 par. 1.

10  SED /1947/ par. U457, p.9h.
11 Ivid. par. 451-469, pp.93-97.

230

teacher treated it as two single periods in different
subject areas, the analysis adopted the teacher's distinction.
There were two such cases.




231

12 Ibid. par. 475, p.98.

13 See SED /1950/.

14  See SED /1959/, and SED /1961/.

Chapter 11

1 See Rosenbaum 1?9557, and NCTM 1?9797. The latter gives a
detailed account of the development of the New American
mathematics curricula in Chapter 14,

2 For an account of American curriculum reform in general see
McClure /1971/.

3  See NCTM /1970/ pp.260-261.

4  Bruner 179697.

5 Ibid. p.31.

6 Ibid. p.20.

7?7 Ibid. p.32.

8 1Ibid. p.19.

9 Ibid. p«33.

10  McClure /1971/, pp.54-55.

11 See Fry /1956/, p.71, and Sanderson /1972/. pp.352-3.

12 Ministry of Education 194 Committee on Scientific Manpower
/19467, ACSP /1956/, ACSP ZZ , ACSP /1961/, Ministry of
Education /19 1;5 DES /196 f DES /1968 _%

13 See Griffiths and Howson Z?9?57, pe1l1,

A4  Thwaites /1961/, Foreword.

15 Ibid. Introduction.

16 See Sanderson 179237, Pp.349-352.

19  See THES /9.7.1976/ p.1, THES /10.11.1976/ p.1, THES
[18.2.1977/ p.h.

18  @EcD /196187 par. 4-5, p.11.

19 Ibid. par. 199, p.61.

20 Ivid. par. 198, p.61.



232

21 SED 1?96237. The evidence on the authorship of the Report
comes from a personal communication from Mr A.G. Robertson.

22 Ibid. par. 2.

2% Ibid. par. 4.

24  Ibid. par. 5.

25 Robertsom /1969/, p.75. This is the fullest published account
of the work of the SMG.

26  Ibid. p.75.

27 sMa /1965/.

28 SCEEB /1965/.

29 Ibid. p.>3.

30 Ibid. p.3.

31 DES /1968b/, par. 107, p.60.

Chapter 12

1 See Scotland /1969/, vol.2. ch. 4, 5, for a fuller account of
schools during this period.

2 SED /1937/.

3 SED /1947/ par. 99, p.20.

L  Ibid. par. 445-6, p.93.

5 SED /1955/ par. 356, pp.138-9.

6 Ibid. par. 359, p.139.

7 SED /1962a/ pp.15-16.

8 For example the schools where the 15 teacher members of the
SMG taught in 1965 (according to SMG /1965/ consisted of
8 fee-paying, selective, senior secondaries, 6 selective
senior secondaries, and 1 showpiece comprehensive.

9 SMG ZT9Zj7. Preface.

10 Glasgow Corporation 1?9627, Glasgow Corporation 179297

11 Glasgow Corporation /1970/, Foreword.

12 SCEEB /1977/.



233

13 SED /19727 p.15.

14 See SUCE /1977/, SCEEB /1976/, p.78, SED /1978/.

In 1980 the CCC announced that Syllabus B was to be discontinued.

15  p.h.

Chapter 13

1 Board of Education /1943/ p.106.

2 Government Social Survey /1968/.

3  Ibid. Table II, 3.6, p.77.

4 Ibid. Table II, 3.2, P.73.

5 Only domestic and commercial subjects have higher ratings than
mathematics. This statistic is, of course, biased against
mathematics and English, tending to overestimate the extent
to which pupils as a whole judge a noncompulsory subject
useful, 8Since the sample is drawn only from those pupils
studying the subject (a group which we would expect to rate
the subject unusually high on utility). And whereas virtually
all the pupils in the survey were compelled to study English
and mathematics, only a fraction of pupils took domestic and
commercial subjects - among 16 year old girl leavers, for
example, 67% and 30% respectively - and it is likely that at
least some of these pupils chose those subjects in preference
to others.

6 1Ibid. Table II, 3.7, p.78.

7 See DES 1?9727.

8 sSED /1931/.

9 SED 179&27 par. k2, p.92.

10 Ibid. par. 474, p.98.
11 Ibid. par. 478, p.99.
12 SED /[196%/.

13  SCEEB /1965/.

14 SED /19778/.

15

Ibid. par. 4. 12. p.25.



234

Chapter 14
1 Commission on the Comnstitution 139297 par. 785, p.109.

2 Ibid. par. 746-751, p.103.

%3 Kellas 179727 p.207.

4 Commission on the Constitution ZF9297 par. 769, p.106.
5 Select Committee on Education and Science /1968/.

6 For the Membership of the Sub-Comittee see SED /1968/.
7 DES /1968b/, par. 107, p.60.

8 Modular Mathematics publisher's handout /n.d./ p.5.

9

Ibid. p.1.

Chapter 15
1 Kogan (1975) p.23.

2 Ibid. p.238.

Kogan (1971) p.30.

F W

Kogan (1975) p.238.
5  Ibid. p.142, and Manzer (1970) pp.90-96.

6 Quoted in MacDonald and Walker (1976) p.3k.
7 Ibid. p.W1.

8 OECD (1971).

9 Ibid. p.155.

10 Ibid. p.151.

11  Entwhistle (1978) pp.79-80.

12 Ibid. p.79.

13 Kogan (1971) p.17.

14  See Husen and Boalt (1967), Marklund and Soderberg (1967),
and Paulston (1968) for fuller accounts.

15 See Rubinstein and Simon (1969), Benn and Simon (1972), and
Kogan (1975) Ch. 11, for fuller accounts.



16
17
18
19
20
21
22
23
2k
25
26
27

235

Quoted in Kogan (1975) p.218.

Quoted in Rubinstein and Simon (1969) p.78.
Benn and Simon (1972) p.102.

Kogan (1975) pp.219-20.

Benn and Simon (1972) p.56.

Monks et al. (1968).

Ivid. App. I, Tables 12A and 12B, pp.102-3.
Benn and Simon (1972) p.102.

Ibid. p.219.

Marklund and Soderberg (1967) pp.115-116.
See Becher and Maclure (1978) pp.65-77.

Brown and McIntyre (1978).



236

Bibliography

ACSP (1956) Scientific and Engineering Manpower in Great Britain

(London: HMSO)

ACSP (1959) Scientific and Engineering Manpower in Great Britain

in 1959 (London: HMSO)

ACSP (1961) The Long Term Demand for Scientific Manpower

(London: HMSO)

Ahlfors, L.V. et al. (1962) On the Mathematics Curriculum of the

High School, in Mathematics Teacher, Vol. 55, pp.191-5,
and American Mathematical Monthly, Vol. 69, pp.189-93.

Appel, K. and Haken, W. (1977) The Solution of the Four Colour Map

Problem, in Scientific American Vol. 237, No. 4, October,

pp.108-21.

Barker, R. (1972) Education and Politics 1900-1951
(London: Oxford University Press)

Becher, T. and Maclure, S. (1978) The Politics of Curriculum Change

(London: Hutchinson)

Becker, H.S. (1970) Sociological Work (Chicago: Aldine)

Bellack, A.A. (1964) Knowledge Structure and the Curriculum, in
Elam (1964).

Bellack, A.A. et al. (1966) The Language of the Classroom

(New York: Teachers College)

Benn, C. and Simon, B. (1972) Half Way There (2nd ed.)

(London: Penguin)

Bernstein, B. (1971) On the Classification and Framing of Educational

Knowledge, in Young (1971a).

Blum, A.F. (1971) The Corpus of Knowledge as a Normative Order

in Young (1971a)



237

Board of Education (1943) Curriculum and Examinations in Secondary

Schools (The Norwood Report) (London: HMSO)

Broudy, H.S. (1962) To Regain Educational Leadership, in Studies

in the Philosophy of Education, No. 11.

Broudy, H.S., Smith, B.O. and Burnet, J.R. (1964) Democracy and

Excellence in American Secondary Education

(Chicago: Rand McNally)

Brown, S.A. and McIntyre, D.I. (1978) Factors Influencing Teachers'

Responses to Curriculum Innovations, in Research

Intelligence, Vol. 4, No. 1, pp.19-23

Bruner, J.S. (1960) The Process of Education

(Cambridge, Mass.: Harvard University Press)

Carruccio, E. (1964) Mathematics and Logic in History and in

Contemporary Thought (London: Faber)

Cockburn, A. and Anderson, P. (1969) (eds.) Student Power

(Harmondsworth: Penguin)

Commission on the Constitution (1970) Minutes of Evidence, II.

Scotland (London: HMSO)

Committee on Scientific Manpower (1946) Scientific Manpower
(The Barlow Report) (London: HMSO)

DES (1968a) Committee on Manpower Resources for Science and

Technology, The Flow into Employment of Scientists,
Engineers and Technologists (The Swann Report)

(London: HMSO)

DES (1968b) Council for Scientific Policy, Enquiry into the Flow

of Candidates in Science and Technology into Higher

Education (The Dainton Report) (London: HMSO)

DES (1977) Education in Schools: A Consultative Document

(London: HMSO)



238

Davie, G.E. (1961) The Democratic Intellect, Scotland and Her

Universities in the Nineteenth Century

(Edinburgh: Edinburgh University Press)

Dawson, A.J. (1971) A Fallibilistic Model for Instruction, in

Journal of Structural Learning, Vol. 3, pp.1-19

Dobie, T.B. (1967) The Scottish Leaving Certificate  1888-1908,

in Bone, T. (ed.) Studies in the History of Scottish

Education 1872-1939 (London: University of London Press)

Drever, J. (1969) Universities, in Nisbet (1969)

Dunkin, M.J. and Biddle, B.J. (1974) The Study of Teaching

(New York: Holt, Rinehart and Winston)

Elam, S. (1964) Education and the Structure of Knowledge

(Chicago: Rand McNally)

Entwhistle, H. (1978) Class, Culture and Education (London: Methuen)

Esland, G.M. (1971) Teaching and Learning as the Organization of

Knowledge, in Young (1971a).

Ford, G.W. and Pugno, L. (1964) (eds.) The Structure of Knowledge

and the Curriculum (Chicago: Rand McNally)

Freire, P. (1971) Pedagogy of the Oppressed (Harmondsworth:
Penguin)

Fry, T.C. (1956) Mathematics as a Profession Today, in American

Mathematical Monthly, Vol. 63, pp.71-80.

Gallagher, J.J. (1970) A 'Topic Classification System' for Classroom

Observation, in Stake, R. (ed.) Classroom Observation,

AERA Monograph Series on Curriculum Evaluation, No. 6.
(Chicago: Rand McNally)

Glasgow Corporation (1967) Mathematice for Schools, A Modern Approach

(London: Foulsham)



239

Glasgow Corporation (1970) Mathematics for Schools. A Modern

Certificate Course (London: Foulsham)

Godel, K. (1962) On Formally Undecidable Propositions, trans.

Meltzer, B. (Edinburgh: Oliver and Boyd)

Gorbutt, D. (1972) The New Sociology of Education, in Education

for Teaching, No.89, Autumn 1972.

Government Social Survey (1968) Schools Council, Enquiry 1, Young

School Leavers (London: HMSO)

Griffiths, H.B. and Howson, A.G. (1974) Mathematics: Society and
Curricula (London: Cambridge University Press)

Haack, S. (1974) Deviant Logic (Cambridge: Cambridge University

Press)

Hirst, P.H. (1969) The Logic of the Curriculum, in Journal of

Curriculum Studies, Vol. I, No. 2.

Hirst, P.H. (1974) Knowledge and the Curriculum (London: Routledge

and Kegan Paul)

Hirst, P.H. and Peters, R.S. (1970) The Logic of Education

(London: Routledge and Kegan Paul)

Hoare, Q. (1965) Education: Programmes and Men, in New Left Review,

No. 32, July/August.
Hunter, S.L. (1968) The Scottish Educational System (Oxford:
Pergamon)

Husen, T. and Boalt, G. (1967) Educational Research and Educational

Change (New York: Wiley)

Jenks, C. (1977a) (ed.) Rationality, Education and the Social

Organization of Knowledge (London: Routledge and Kegan

Paul)



2ko

Jenks, C. (1977b) Powers of Knowledge and Forms of the Mind, in

Jenks (1977a).

Keddie, N. (1971) Classroom Knowledge, in Young (1971a).

Keddie, N. (1973) (ed.) Tinker, Tailor: The Myth of Cultural

Deprivation (Harmondsworth: Penguin)

Kellas, J.G. (1973) The Scottish Political System (Cambridge,

Cambridge University Press)

Kline, M. (1953) Mathematics in Western Culture (New York:

Oxford University Press)

Kline, M. (1958) The Ancients versus the Moderns, A New Battle of

the Books, in Mathematics Teacher, Vol. 51, pp.418-27

Kline, M. (1966) Intellectuals and the Schools: A Case History,

in Harvard Educational Review, Vol. 36, Fall, pp.505-11

Kline, M. (1972) Mathematical Thought from Ancient to Modern Times

(New York: Oxford University Press)

Kogan, M. (1971) The Politics of Education (London: Penguin)

Kogan, M. (1975) Educational Policy Making (London: Allen and
Unwin)

Kuhn, T.S. (1970a) The Structure of Scientific Revolutions

(Chicago: Chicago University Press)

Kuhn, T.S. (1970b) Reflections on my Critics, in Lakatos, I. and

Musgrave, A. (eds.) Criticism and the Growth of Knowledge

(London: Cambridge University Press)

Lakatos, I. (1976) Proofs and Refutations (London: Cambridge

University Press)

MacDonald, B. and Walker, R. (1976) Changing the Curriculum

(London: Open Books)



2k

Manzer, R. (1970) Teachers and Politics (Manchester, Manchester

University Press)

Marklund, S. and SBderberg, P. (1967) The Swedish Comprehensive

School (London: Longmans)

Mathematics for the Majority (1970) Machines, Mechanisms and

Mathematics (London, Chatto and Windus)

McClure, R.M. (1971) The Reforms of the Fifties and Sixties: A

Historical Look at the Near Past, in McClure, R.M. (ed.)

The Curriculum: Retrospect and Prospect (Chicago: NSSE)

Ministry of Education (1945) Higher Technological Education (The

Percy Report) (London: HMSO)

Ministry of Education (1963) Committee on Higher Education, Report

(The Robbins Report) (London: HMSO)

Monks, T.G. et al. (1968) Comprehensive Education in England and

Wales (Slough, NFER)

Musgrave, P.W. (1968) Society and Education in England since 1800

(London: Methuen)

NCTM (1970) A History of Mathematical Education in the United

States and Canada (32nd. Yearbook)

Nisbet, J. (1969) (ed.) Scottish Education Looks Ahead

(Edinburgh: Chambers)

OECD (1961a) New Thinking in School Mathematics
OECD (1961b) Synopses for Modern Secondary School Mathematics

OECD (1971) Reviews of National Policies for Education: France

Ormell, C.P. (1969) Ideology and the Reform of School Mathematics,

in Proceedings of the Philosophy of Education Society,
pp.37-54

Paulston, R.G. (1968) Educational Change in Sweden (New York:

Teachers College Press)



LY

Pedoe, D. (1976) Geometry and the Liberal Arts (Harmondsworth;

Penguin)
Phenix, P.H. (1964a) The Architectonice of Knowledge, in Elam

(1964)

Phenix, P.H. (1964b) Realms of Meaning (New York: McGraw-Hill)

Polya, G. (1954) Mathematics and Plausible Reasoning (Princeton:

Princeton University Press)

Popper, K. (1970) The Sociology of Knowledge, in Curtis, J.E. and

Petras, J.W. (eds.) The Sociology of Knowledge: A

Reader (London: Duckworth)

Popper, K. (1972) Objective Knowledge: An Evolutionary Approach

(London: Oxford University Press)

Robertson, A.G. (1969) Mathematics, in Nisbet (1969)

Rosenbaum, E.P. (1958) The Teaching of Elementary Mathematics, in

Scientific American, Vol. 199, May, pp.6i-73

Rubinstein, D. and Simon, B. (1969) The Evolution of the Comprehensive

School, 1926-66 (London: Routledge and Kegan Paul)

Russell, B. (1917) Mysticiem and Logic (London)

SCMSTE (1976) Mathematics for General Education, Occasional Paper
Number 2

SCMSTE (1977) Planning a Mathematics Course for S3 and Sk,
Memorandum Number 30

SCEEB (1965) Alternative Syllabuses: Arithmetic and Mathematics on

the Ordinary Grade (Edinburgh: HMSO)

SCEEB (1976) Conditions and Arrangements 1977 (Edinburgh: HMSO)
SCEEB (1977) Bulletin 9 (Edinburgh: HMSO)

SED (1887) Report of the Committee of Council on Education in

Scotland 1886-1887, General Report by Professor Chrystal
pp.119-122 (London: HMSO)




SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

SED

243

(1888a) Circular 93 (London: HMSO)

(1888b) Circular 94 (London: HMSO)

(1904)
(1924)
(1927)
(1931)
(1932)
(1936)
(1937)

(1947)

(1950)

(1955)

(1959)

(1961)

Note as to Mathematical Papers (London: HMSO)

Note as to Mathematics (London: HMSO)

Note as to Mathematics: Second Issue (London: HMSO)

Memorandum 59 (London: HMSO)

Note as to Mathematics: Third Issue (London: HMSO)

Note as to Mathematics: Fourth Issue (Edinburgh: HMSO)

General Report for the Years 1933-36 by His Majesty's

Chief Inspector of Schools (Edinburgh: HMSO)
Advisofy Council on Education in Scotland, Secondary

Education (Edinburgh: HMSO)

Mathematics in Secondary Schools (Edinburgh: HMSO)

Junior Secondary Education (Edinburgh: HMSO)

Arithmetic, Mathematics and Applied Mathematics in the

Ordinary Grade (Edinburgh: HMSO)

Mathematics on the Higher Grade, Circular 459

(Edinburgh: HMSO)

(1962a) New Ways in Junior Secondary Education (Edinburgh: HMSO)

(1962b) Committee on Mathematics, Recent Changes in Honours

(1963)

(1968)

(1972)

Courses in Mathematics (unpublished)

From School to Further Education (The Brunton Report)

(Edinburgh: HMSO)

CCC, Going Metric, Curriculum Papers 4 and 5

(Edinburgh: HMSO)

CCC, Second Report 1968/71 (Edinburgh: HMSO)

(1977a) CCC, The Structure of the Curriculum in the Third and

Fourth Years of the Scottish Secondary School (The

Munn Report) (Edinburgh: HMSO)



2kl

SED (1977b) Assessment for All (The Dunning Report) (Edinburgh:

HMSO)

SED (1978) CCC, Annual Reports of the Curriculum Development Centres

(unpublished)

SMG (1965) Modern Mathematics for Schools (Glasgow: Blackie,

Edinburgh: Chambers)

SMG (1971) Modern Mathematics for Schools (Second Edition)

(Glasgow: Blackie, Edinburgh: Chambers)

SUCE (1977) Compendium of Information, 1977, for Entrance in

Autumn 1978

Sanderson, M. (1972) The Universities and British Industry 1850-

1970 (London: Routledge and Kegan Paul)

Schwab, J.J. (1964a) Problems, Topics and Issues, in Elam (1964)

Schwab, J.J. (1964b) Structure of the Disciplines: Meanings and

Significances, in Ford and Pugno (1964)

Scotland, J. (1969) The History of Scottish Education (London:

University of London Press)

Select Committee on Education and Science (1968) Report, Part II:

Her Majesty's Inspectorate in Scotland (London: HMSO)

Simon, B. (1960) Studies in the History of Education 1780-1870

(London: Lawrence and Wishart)

Simon, B. (1972) The Radical Tradition in Education in Britain

(London: Lawrence and Wishart)

Smith, B.O. and Meux, M.O. (1962) A Study of the Logic of Teaching

(Urbana, Ill.: University of Illinois)
Smith, B.O., Meux, M.0O., et al. (1967) A Study of the Strategies
of Teaching (Urbana, Ill.: University of Illinois)

Thwaites, B. (1961) On Teaching Mathematics (Oxford: Pergamon)




2h5

Tykociner, J.T. (1964) Zetetics and Areas of Knowledge, in Elam

(1964)

White, J.P. (1973) Towards a Compulsory Curriculum (London:

Routledge and Kegan Paul)

Williams, R. (1965) The Long Revolution (Harmondsworth: Penguin)

Young, M.F.D. (1971a) Knowledge and Control: New Directions for

the Sociology of Education (London: Collier Macmillan)

Younr, M.F.D. (1971b) An Approach to the Study of Curricula as

Socially Organised Knowledge, in Young (1971a)

Young, M.F.D. (1977) Taking Sides against the Probable: Problems of

Relativity and Commitment in Teaching and the Sociology

of Knowledge, in Jenks (1977a)




246

Appendix 1: Lesson-outlines

This Appendix contains four lesson-outlines which
exemplify the approach to mathematics education for which I have
argued. Each contains the skeleton of a lesson: in two cases I

have indicated possible extensions in square brackets.

Rationalisation of Area Measurement

Stage 1: Direct comparison of shapes. This is analogous to the
method used to compare lengths. But here the method does not cover

all cases. It works for some - 1 and 2 - but not for others - 3

and k.
() ve (2) ‘/
(2) X @) x
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Stage 2: Use of dissection to facilitate comparison. Theoreti-

cally tight but complicated in practice

()Y (4)V

-

Stage 3: Use of congruent unit shape - see 4., How many times

does the sole of a shoe fit into each shape? Or how many penny
pieces. Shape must be chosen with care - circles leave gaps,

large shapes miss nooks and crannies, small shapes make heavy work.
Gives approximate answers only for most shapes, but can be used to

compare any number of shapes. We have started to measure.

®)




2h8

(¢)

Stage L: As long as unit shapes are the same size the comparison

can be made. Measurement is independent of shape.

Stage 5: Choice of a generally agreed unit of measure - cm2, for
example - so that measurements made on different occasions and by

different people can be compared. A standard unit.
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Stage 6: A general strategy for finding approximate areas - the

use of a grid. How accurate? Does it always give the same answer?

For what kind of shapes is it of little use?
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Stage %: Special rules for common cases - the rectangle and the
triangle. Most shapes can be reduced to what is close to an
aggregate of these standard shapes. Having these special rules
makes measurement quicker and easier.

At each stage questions about the consistency, accuracy,
reliability, generalisability and convenience of methods arise.
These can, of course, often be related to the particular uses made
of measurement in a society, as well as more abstract questions

about the structure of methods.

Modelling with geometric sequences

Each time a ball bounces it loses some of its energy and rises
to a certain fraction of its previous height.
A tennis ball dropped onto concrete might rise to half its

height. If the tennis ball was dropped from a height of 100
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centimetres, it would rise to 50, 25, and about 13 centimetres after
successive bouhces. Mathematically we can express this by the
equation,
h = 100(0.5)"

where h represents the height to which the ball rises, and n the
number of bounces which have taken place.

A superball might rise to 0.9 of its height. If it was dropped
from a height of 100 cm. it would rise to 90, 81, and about 73 cm.
after successive bounces. Using the same letter conventions,

n = 100(0.9)"

A lump of plasticine would not rise at all. If it was dropped
from 100 cm. it would remain at O cm. on hitting the concrete. By

stretching our concept of 'bounce' we could write,
h = 100(0)"
Now each of these mathematical descriptions takes the form,
h = 100£"

where f is the fraction of its previous height to which the ball
rises.
An even more general description of a bouncing ball would be,

h = hf®
(o]

where ho is the height from which the ball is initially dropped.
Let's take another example.
Each time a pair of jeans is washed it loses a certain
proportion of its dye.
A normal pair of jeans might retain about 0.9 of its dye after

each wash. If initially the jeans contained 20 g. of dye, after
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successive washes they would contain about 18, 16, and 15 g. of dye.
Mathematically,

m = 20(0.9)®

where m is the amount of dye, and n the number of washes.
A pair of colourfast jeans should retain all its dye. So, if
initially the pair of jeans contained 20 g. of dye, after successive

washes it should contain 20, 20 and 20 g. of dye. Mathematically,
mn = 20(1)n
Each of these descriptions takes the form,
m = 20d"

where d is the fraction of the dye retained after each wash.

An even more general description of the loss of dye would be,

where m, is the amount of dye in the jeans initially.
Now, notice that the general descriptions of bouncing balls,
and the loss of dye from jeans have the same structure,

number of times
n ___ . ——the event has

/ v = Vi r\\Qened
current value initial value proportional
of variable of variable constant

A seguence of values which has this structure is called a

geometric sequence. By studying geometric sequences in their

abstract generality we can deduce things about bouncing balls
the loss of dye from jeans, and the many other specific examples

for which this mathematical structure is a model.
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For example, by solving the inequation,

(O.S)vo > v°(0.9)n

that is 0.5 > 0.,9"

we discover that after 7 bounces the superball will rise to less
than half its initial height, and that after 7 washes the jeans
will retain less than half their dye -~ because 0.96:3 0.53 while
0.97 = 0.48.

Again, because when r is a proper fraction r® gets smaller
and smaller as n gets larger and larger [Try 157 we can see that
in the long run the superball will come to rest and that the jeans
will lose all their dye.

So by studying an abstract mathematical structure such as a
geometric sequence we can eventually learn a great deal more about
a huge variety of real situations for which the structure is a
model. And by matching & particular real problem to a mathematical
structure we enable ourselves to use powerful mathematical tools
to try and solve the problem.

Zfind other situations for which a geometric sequence is a

good model: situations where r can be greater than 1, or negative;7

Mathematics in decision-making: an example

This example is directly related to economices and geography,
and thence to planning. It concerns the passenger rail network
linking the major centres of population in Scotland. Loosely, we
are interested in how easy it is to travel in the network, and
how different proposals for extending or cutting back the network

would affect the ease of travel. Of course such decisions cannot
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be made from mathematical considerations alone: the role of
mathematics here is to help to clarify and operationalise concepts
from other disciplines.

The first step is to be more precise about what we mean by

'ease of travel in the network'. We can identify three interlinked

aspects:

(P) the mutual accessibility of any two centres -~ pairwise
accessibility,

(I) the overall accessibility of a particular centre - individual
accessibility,

(G) accessibility within the whole network - gross accessibility.
Our objective, as mathematicians, is to develop indices for these
three aspects. To do so we will need to take into account the non-
mathematical use to which these indices will be put. We will start
with a very simple index system and develop it by criticising its
assumptions.

But first we need a way of representing the network. The
commonest way is by using a graph or network. We construct it by
marking down the centres and drawing in the passenger routes
between them. Here is the current passenger network for the ten

principal centres I have chosen - this choice is, of course, open

to question.
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‘WiCk

Inverness
Aberdeen

Fort William
Dundee

Glasgow ~¢ Edinburgh

Kilmarnock

Pumfries

More precisely, each centre is represented by a node or vertex.

An edge or link is drawn between these two nodes if there is a
passenger service which links the corresponding centres directly;
that is without passing through another of the centres on the way.
For example, since there is a service linking E#inburgh and Glasgow
directly we draw a link between these two céntres. On the other hand,
to travel from Glasgow to Dundee one must either take the through
train which stops at Perth, or travel via Edinburgh and change there.
For this reason we do not join Glasgow and Dundee.

ZWe have established a relation on the set of centres. This is
a symmetric relation - if you can travel directly one way between
two centres, then you can return directly. This is not true for
all networks - one-way traffic systems are a simple counterexample.

We could represent such a relation by using directed edges with

arrows to indicate the direction of travel._7

We can now make our first attempt at an index for (P). Clearly
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all the centres are mutually accessible in the sense that it is
possible to travel between any two of them =~ possibly involving
intermediate stops and changes. In other words the network is

connected. think of an example of a disconnected network$7

So this does not provide a criterion for discriminating among pairs.
At first sight the simplest way to do so is to ask if the pair is

directly linked. This gives us the direct access matrix for the

network. We mark a 1 in the matrix if there is a link between a
pair of nodes, and a O otherwise. Notice that there will be O's on

the leading diagonal since there are no links marked between a node

and itself. this is essentially an arbitrary decision. Check
whether subsequent arguments would be affected if we had elected to

place 1's on the leading diagonal./

W I A F P D G E K Df I
Wick o 19 0 0 O o O 0 o0 o 1
Inverness 1. 0 1 0 192 0 0 O O O 3
Aberdeen o 1 0 0 0 12 0 O 0 O 2
Fort Williem © O O O O O0 1 O O O 1
Perth 0 1 O 0 0 1 1 1 0O o b
Dundee o 0 1 0 1 0 0 1 O O 3
Glasgow c o o1 12 0 0 1 1 O 4
Edinburgh o o 0o 0 1 1 1 0 0 O 3
Kilmarnock O 0 o0 o0 o o 1 0 0 1 2
Dumfries o 0o o o o0 O O O 1 O 1

From this matrix we can find a simple index of individual accessibil-
ity for a particular node by adding the entries in the corresponding

row in the matrix. We are just counting the number of nodes to
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which it is linked. This is called the order of the node. Glasgow,
for example, has order 4., A node with only one link, such as Wick,

is called a terminal or isolated node. We can rank the nodes in

order of accessibility. Clearly Glasgow and Perth are the most

accessible since they have the largest number of links.

ZWhat is the highest index that any node could have in a connected

network with 10 nodes? and with n nodes? What is the lowest27

A common way of measuring (G), accessibility within the whole

network is the P-index.

number of links in the network

p -index =" imber of nodes in the network

In this case the fs-index is 1.2 since there are 12 links and

10 nodes.

/What is the lowest 5 -index that a connected network with 10 nodes

can have? with n nodes?

Another way to calculate the ;s-index is to sum the I column
beside the direct access matrix and divide by double the number of
nodes. th27

Our first try at an index for (P) does not really tell us how
easy it is to travel between two nodes - only whether or not we can
travel directly. We want an index which is more discriminating.
One way to discriminate more precisely would be to find the smallest
number of links that must be traversed in order to travel between
two nodes. For example, the route from Wick to Glasgow via
Inverness contains 3 links, while any other route would contain more.

In other words we are minimising the number of nodes we must pass
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through. These measures can be represented in the shortest route

matrix.
woI A F P D G E K Df i,

w 0 2 " 2 3 3 3 4 5 27
I 1 O 1 3 1 2 2 2 3 4 19
A2 0 " 2 1 3 2 4 5 24
F 4 3 4 0 2 3 1 2 2 3 24
P 2 1 2 2 0 1 1 1 2 3 15
D 3 2 1 3 1 0 2 1 3 4 20
G 3 2 3 1 1 2 0 1 1 2 16
E 3 2 2 2 1 1 1 ) 2 3 17
K 4 3 L 2 2 3 1 2 0 1 22
Df S5 b4 5 3 3 b 2 3 1 0 30

g8, 214

Again we can find an index for (I) by adding up the entries in the
row of each node. We are adding the number of links that must be
traversed in travelling to each of the other centres. This time the

node with the lowest index is the most accessible. Why?

ZWhat are the minimal and maximal values for this index in a 10-node

connected network? an n-node network27

Finally we can construct a gross index g, by summing the individual
index (11) column for the network. Our results have a face validity.
They correspond fairly well with our intuitive ideas. Although we
will criticise this system later we are now going to use it to compare

the effects of two alternative extensions to the rail network.
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Imagine that the government has decided to devote more resources
to rail travel. In Scotland they have proposed the construction
of one major new rail link. Two possible links are in contention,
an Edinburgh-Dumfries link, and an Inverness-Fort William link.

It is our job as mathematicians to evaluate the consequences of
each of these two alternatives as they affect accessibility. We

use our index system.

Case (1): Edinburgh-Dumfries line

w oI A F P D G E K f i,
w o0 1 2 b 2 3 3 3 b 4 26
I 1 o 1 3 1 2 2 2 3 3 18
A 2 1 0 b 2 1 3 2 b 3 22
F & 3 L 0 2 3 1 2 2 3 2k
P 2 1 2 2 0 1 1 1 2 2 1
D 3 2 1 3 1 0 2 1 3 2 18
G 3 2 3 1 1 2 0 1 1 2 16
B 3 2 2 2 1 1 1 0 2 1 15
K & 3 L 2 2 3 1 2 0 1 22
Df L 3 3 3 2 2 2 1 1 0 21

82 196
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Case (2): Fort William-Inverness line

¥ o0 1 2 2 2 3 3 3 5 25
I 1 0 1 1 1 2 2 2 3 4 17
A2 1 o) 2 2 1 3 2 4 5 22
F 2 1 2 0 2 3 1 2 2 3 18
P 2 1 2 2 0 1 1 1 2 3 15
D 3 2 1 3 1 0 2 1 3 L 20
G 3 2 3 1 1 2 0 1 1 2 16
E 3 2 2 2 1 1 1 0 2 3 17
K & 3 4 2 2 3 1 2 0 1 22
Df 5 &4 5 3 3 b 2 3 1 0 30

33 202

The decision we make will depend on our objectives. If we
wish to improve gross accessibility then we will choose the first
alternative. The citizens of Wick, on the other hand, will be
anxious to improve the communications of that particular centre:
it would appear that they should support the second alternative.
Dundee, on the contrary, would benefit most from the first
alternative.

Note also that our first index system could not give us these
results. The orders of the end-nodes of the new links would have
increased, but not those of nodes like Dundee and Wick. Similarly,
in both cases the f&-index increases to 1.3 which does not
enable us to choose between alternatives. This second index system
is a real advance on our first.

But this index system can still be criticised. It takes no



260

account of the travel-time between each centre, the number of
changes of train, the frequency of services, the population of each
centre, or the volume of traffic on each route. Our index can be
refined in a number of ways to take account of such criticisms,
possibly at the expense of simplicity and facility of use. [?or
reasons of space I will not do so here$7

Finally, note that we cannot escape the reality of the
problem. The technical problems and cost of building the two
links we have considered are broadly comparable: that is why our
mathematical refinement of the problem has a value. Topologically,
of course, the optimal link would be Wick-Dumfries: topographically
and economically it would be quire unrealistic to build a direct
link between these two centres. Here the abstraction is not fruit-

ful, and possibly misleading.

Data-banks and civil liberties

This lesson uses the article 'Your life in their Files' as
source material: students should have read it in advance. (A copy
is included in the supplementary folder). The lesson should
start with the clarification of terms or references in the article
with which some of the students may not be familiar - 'main-frame',
the Lindop Committee, the National Council for Civil Liberties, for
example. It can then proceed around the following central questions;

What is a data-base? How does it work?

What other existing or planned data-bases raise issues of civil

liberties?
How has computerisation affected

the amount of information recorded,



261

the extent to which it is used,

the accessibility of information,

the way that information is recorded and interpreted,
the ways in which information is used?

In what ways can automated information retrieval assist the
work of the police?

In what ways may automated information retrieval threaten civil
liberties?

How secure are computerised records? What checks are there on
the validity and relevance of such records, and the use to which
they are put?

Is legislation on data protection necessary? What form should

it take? Is it enforceable?
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Appendix 2

Mathematical Topic Handling System (MATHS): Clasasroom version

1 GENERAL CODING INSTRUCTIONS
1.1 Identifying topics
1.2 Demarcating topics
1.3 Measuring topics

1.4 Recording coding

2 IDENTIFYING SUBSTANTIVE TALK

2.1 Identifying nonsubstantive talk
2.2 Identifying substantive talk
2.3 Ground rules

3 GROUP CLASSIFICATION

3.1 Identifying the group

b CONTENT CLASSIFICATION

4,1 Preliminary definitions
L,2 Categorical definitions

4,3 Ground rules

GENERAL CODING INSTRUCTIONS

1.1(1) The substantive content of the lesson should be divided into

one or more topics each having a single overarching concern - that

is, a central point, a conclusion to which the verbal exchanges

lead, a theme that pervades the exchanges.
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(2) The theoretically significant distinctions which the
topical strncture chosen must respect are those between the content

and group categories described below.

(3) Once these systematic comstraints have been satisfied it
is often convenient to exploit the 'natural' structure of the
lesson in order to subdivide it into topical units. The following
are useful cues to natural structure.

Management and structuring comments,

Markers such as 'Right' and 'Now',

A teacher or pupil question (may mark a shift in focus),

Summarising or concluding comments.

Strictly, however, it is essential only that theoretically

significant distinctions be made.

(4) All topics must be categorised.

a
(5) In general/ topic will consist of a single sustained

period of talk, but it is possible that a topic will be interrup-

ted and returned to later in the course of the lesson. It then

falls into two or more segments.

1.2(1) The first and last utterances of each segment of a topic
should be recorded. Classroom talk is usually quite structured
and it is generally easy to pick out the first and last substantive

utterances of the segment.

(2) Sometimes, however, structuring utterances run into
substantive utterances.
"Now last week we were looking at certain special kinds

of quadrilaterals ... rhombuses .. squares ...."
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In such a case the coder should choose the nearest clean break
(syntactic or auditory) in the discourse to mark the boundary of

the segment.

1.3 (1) The basic unit of measure is the 10 second interval. That

is, all measurements are made to the nearest 10 seconds.

(2) 1Individual measurements smaller than two units (effectively

15 seconds are ignored.

(3) The length of a segment is the time from the opening to
the closing utterance with any nonsubstantive interruptions

(including silence) subtracted.

(4) Note that, as a corollary of 1.3(2), segments, topics and

interruptions lasting less than two units are ignored.

(5) Note that any substantive interruption lasting two units

or longer creates a topic in its own right.

(6) Where there is a choice of topical division within the
same category, a useful guideline is to aim to create topics

lasting between one and five minutes.

1.4 The coding data should be recorded on a chart under the

following headings.
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SEGMENT DELETION
opening closing time ' opening closing time
utterance utterance utterance utterance
TOPIC
label title time group content
category category

IDENTIFYING SUBSTANTIVE TALK

2.1

(1) silence,

The following phenomena are regarded as nonsubstantive talk;

(2) talk which involves someone who is neither a pupil in the

class nor the teacher, nor acting for the teacher,

Examples

(a) The headmaster addresses the school over the Tannoy.

(b) A pupil enters and announces that a football match has

been cancelled.
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(c) A teacher enters the class and converses with the class

teacher.

(3) talk which is not monitored by the teacher,

Example
(a) Whispered talk between two pupils.

(4) talk which functions exclusively to manage and structure

the learning environment.

form.

- talk concerning school and class management.

Examples

(a) The teacher reads out a circular announcement.

(b) A pupil explains his absence.

(¢) A pupil asks when homework is due.

(d) The teacher announces pupils grades.

(e) The teacher explains how the grades were arrived at.
(£f) The teacher hands out rulers.

(g) The teacher shows pupils how to fill in an administrative

- talk which links, structures and comments on the activity

of the class, or manages pupil learning.

take

Examples
(a) The teacher outlines the form that a lesson is going to take.

(b) The teacher signals that a change in activity is about to

place.

(c) The teacher alerts pupils to their previous experience

of some subject matter.

(d) The teacher advises pupils on the topics they should study

for a forthcoming examination.
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(e) The teacher asks a pupil what example he is on, or is
having difficulty with.

(f) The teacher tells pupils to open their books at a certain
page and to do certain examples.

(g) The teacher comments on the performance of the class or

individual pupils.

2.2 Talk, other than that covered by the previous rule, is

substantive.

2.3 Ground rules

(1) Giving or correcting answers in some codified form in which
there is no indication of meaning is nonsubstantive talk.

Example

(a) Giving answers to multiple choice questions.
Teacher: What's the answer to number one?
Pupil: A

Teacher: That's right, A.

(2) Giving a non-content-specific instructions about how work

is to be done is nonsubstantive.

Example
(a) "You must write things down clearly..and remember to divide

your page in two..put your working at the side..then

you'll get on much better."

(3) Imnstructions which simply refer to topics are nonsubstantive.

Example

(a) "We're going on to inequations today."
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GROUP CLASSIFICATION

3.1 Each topic is classified INDIVIDUAL or CLASS depending on
whether the teacher is addressing a group of less than four pupils.
No topic can mix Group segments. Any shift in audience requires

the creation of a new topic.

CONTENT CLASSIFICATION

4.1 Preliminary definitions.

(1) By mathematical methodology we mean the concepts, rules

and procedures of the conventionally recognised branches of
mathematics - Logic, Algebra, Arithmetic, Geometry, Topology,

Mechanics, Probability, Statistics, Actuarial mathematics, and so on.

(2) By a mathematical problem we mean any task or problem

framed in terms of mathematical concepts or solved by means of

mathematical methods.

(3) We distinguish two kinds of judgement about mathematical
methodology or its use. Standard judgements are those made wholly
within some conventional framework of rules, or some conventional
model, which, in principle, determines their form. They are
judgements about whether that framework or model is being used
correctly, conventionally, or appropriately. For example, the
typical problem in dynamics asks for a situation to be analysed in
accordance with a taken-for-granted Newtonian model of motion.
Judging whether a proposed solution to the problem conforms to the
rules of the model, or follows from a conventional use of the model,
is judging in terms of standard criteria. By contrast, to judge

the degree of validity of the Newtonian model, or its convenience,
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or elegance, is to use a nonstandard criterion.

Again, to judge whether a pupil has given a normal definition
of 'prime number', or a definition consistent with or equivalent to
a normal definition, is to use standard criteria. To judge whether
a definition of 'prime number' which classifies 1 as prime is a good
one, is to use nonstandard criteria.

Standard judgements, then, take place within taken-for-granted
systems of rules - rules governing the use of concepts (axioms and
theorems for example) and rules governing procedure (algorithms,
heuristic strategies, and so on). It is the use and manipulation
of these given rules which is problematic. Nonstandard judgements
are open with respect to systems of mathematical rules, concepts and
procedures. Judgements about beauty, simplicity, clarity, and

convenience are instances of this type.

4,2 There are five Content categories defined as follows:

SMA Standard methodological articulation

Topics in this category describe, or discuss in terms of stand-
ard criteria, mathematical methodology or the formulation and
solution of mathematical problems.

Exemplary forms

Conceptual: the description of a set of rules governing the

use of some mathematical concept, term or sign

(or system of concepts, terms or signs).

the exemplification of some mathematical concept

term or sign (or system of concepts, terms or signs).
Relational: the description of some relation (or network of

relations) within a mathematical system.
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The exemplification of some such relation (or
system of relations).

the demonstration of some relation (or network of
relations) within a mathematical system.

Procedural: the description of some mathematical tool (such
as a calculator or pair of compasses) and how to
use it.
the description of (the steps making up) some
mathematical procedure (and the rules governing
its use).
the execution of some mathematical procedure.
the demonstration of the validity of some mathe-
matical procedure.

Problem solving: the description of some mathematical problem
(and the characteristics of the desired outcome).
the solution of some mathematical problem.
the description of general strategies for problem
solving.

Critical: the critical discussion (evaluation, explanation,
justification) of some aspect of methodology or

its use in terms of standard criteria.

Examples

(a) The concept of 'prime number' is defined and examples of prime
numbers sought. A list of numbers is presented and the primes
identified.

(b) A demonstration of the protractor in use is given.

(¢) A quadratic equation is solved.

(d) A proof of Pythagoras Theorem is given.
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(e) An algebraic expression is simplified.
(f) The mistakes in a proposed solution are identified.

(g) The conventional way of solving a problem is demonstrated.

NMA Nonstandard methodological articulation

Topics in this category critically discuss methodology or its

use in terms of nonstandard criteria.

Exemplary forms

Some aspect or feature of methodology is evaluated in terms

of some nonstandard criterion.

Some aspect or feature of methodology is explained or justified

in terms of some nonstandard criterion.

Examples

(a) Two alternative methods of solving quadratic equations are
compared and evaluated in terms of speed, reliability and easiness.

(b) The case for and against one of the assumptions of a model
is discussed weighing accuracy against conciseness and elegance.

(¢) A standard method is justified in terms of its convenience
compared with possible alternatives.

(d) The plausibility of the Newtonian model of motion is
discussed.

(e) Several proofs of Pythagoras Theorem are compared in terms

of their clarity, elegance, brevity and rigour.

MR Methodological reflection

Topics in this category describe and discuss mathematical

methodology from 'philosophical' perspectives.

Exemplary forms

Discussing the nature of the criteria (such as truth, beauty,
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and convenience) which are used to evaluate and justify
mathematical methods.

Discussing the nature of mathematical thought, mathematical
knowledge or mathematical activity.

Describing and discussing standard views on these issues.
Discussing which criteria ought to be used to criticise

methodology.

Examples

(a) Discussing what a number of 'beautiful' theorems and proofs
in common.
(b) Discussing what is meant by a 'good' model of a phenomenon.

(¢) Discussing whether there is such a thing as a 'correct’

model of a physical phenomenon.

(d) Discussing whether we ought to be concerned to produce

elegant proofs.

CR

(e) Describing and evaluating the formalist view of mathematics.

Cultural reflection

Topics in this category treat mathematics and mathematical

activity as a social and human phenomenon: they describe and discuss

mathematics in its social, historical and intellectual context.

Exemplary forms

Describing and discussing the characteristics, actions, beliefs,
and purposes of mathematicians or users of mathematics.
Describing and discussing the social institutions of mathematics;
for example, the IMA or the Royal Society.

Describing and discussing the history and uses of (parts of)

mathematics.
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Describing and discussing the influences on, and causes of

mathematical activity, or some instance of it.

Describing and discussing the comsequences, implications and
influence of mathematical activity, or some instance of it.
Describing and discussing the purposes, beliefs and actions of

mathematicians.

Examples

(a) A biographical account of the life of Descartes.

(b) A historical account of attempts to prove the parallel post-
ulate, and of the influence of the discoveries of Bolyai and
Lobachevsky on mathematics and philosophy.

(c) A discussion of the reasons for developing game theory,
its current and potential uses, and their moral implications.

(d) A discussion of whether mathematics is of social or
personal value.

(e) A brief identification of the inventor of some technique.

(f) A description of the kinds of work that mathematicians do.

(g) A description of the range of mathematics used at different

times or in different societies.

RES Residual
A topic which does not fall into one of the previous categories

is placed in this category.

4,3 Ground rules

(1) It is permissible for NMA, MR and CR topics to contain
sections which, standing independently, would be classified SMA. For
example, one part of an NMA topic concerned with comparing two

mathematical procedures might consist of actually using the
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procedures and then comparing the processes of using them and their
actual outcomes.
Such sections are absorbed only when there are explicit cues

relating them to the larger unit.

(2) A similar rule is applied to mutual absorption between

the categories NMA, MR and CR,

(3) The occasional historical reference woven into an SMA, NMA
or MR topic does not transform it into a CR topic. If an independ-

ent CR topic cannot be created such references are ignored.

(4) It is important to distinguish between the concretisation
of concepts and procedures (classified as SMA) and descriptions of
the social application of concepts and procedures (classified
as CR).

Merely to offer the big wheel as an example of a circle is
SMA: to claim that its designer used geometrical methods is CR.

To pose, and solve the problem of the type "if one lollipop and
two bags of sweets cost 26p and two lollipops and one bag of
sweets cost 22p, what is the price of a lollipop?" is SMA: to
suggest that such a technique is used by someone to determine the

price of lollipops is CR.

(5) Talk involved in playing games or engaging in practical
activities is classified as SMA when it is contextually apparent

that it helps to articulate or rehearse some aspect of methodology.

Example
(a) Playing battleships as part of a lesson on co-ordinates.
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Appendix >

Interview Schedule used in teacher study

The interview was preceded by a description of its structure and

a brief explanation of the function of probing questioning.

The interview is in three parts. The first part is about the

lesson 1've just watched, the second part is about the curriculum in

general that the class is following, and the third part is about

your background as a maths teacher.

Now in the course of the interview I'm likely to say things

like "Is there anything else that you think about this?" or ''Have

you any other reasons?". That doesn't mean that I think you ought

to have other reasons or anything else to say. It's just to give

you as full an opportunity as possible to say what you think.

SECTION 1

wWell first of all 1'd like you to think yourself back to the

start of the lesson, and I1'd like to know what things you intended

or expected to talk about or do during the lesson. Of course, you

know now what actually happened during the lesson but I'd like you

to try and forget that for the moment, and to describe your thoughts

before the lesson started.

1.1 Can you tell me the main points that you wanted the pupils to

take away from the lesson?

Probe for additional points.
For all classes other than Modular Mathematics continue with:

Now in deciding what to teach this class there are probably
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various constraints that you have to take into account, but also

to some extent there will be considerations which are matters of

your personal choice.

1.2 What were your reasons for deciding to teach sessss.. today?

Probe role of set curriculum if mentioned: then any topic which is

not part of set curriculum. For all classes continue:

1.3 Now as you actually taught the lesson did you do or talk about

anything important that you hadn't intended or expected to talk

about during the lesson?

Probe for details and reasons. Then mention any salient topics.

SECTION 2

I'd 1like now to talk more generally about the curriculum that

this class is following.

For 81 and S3 certificate classes only, choosing appropriate options:

2.1(C) The work of this class is based on the SCE Syllabus A/B

curriculum in arithmetic/mathematics and arithmetic?

2.2(C) 1Is there any additional curricular component laid down for

this class at department level?

Probe for details.

What I'd like to know is how this curriculum that is laid down

for the class - that i8 ..esee -~ compares with the kind of curriculum

that you believe is desirable. Now I know that, in practice, there

are all kinds of immediate pressures and conastraints that you have

to take into account in your day to day teaching. But for the moment

I would like you to distance yourself from those everyday pressures

and constraints. I'm interested in what you yourself think is
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important, in your personal opinions about the kind of mathematical

education that is desirable for the pupils in this class.

Now to help structure this section 1've written down a few

guestions.

2.3(C) Looking at the set curriculum as a whole do you feel that

there are any areas or aspects of mathematics, or ways of looking at

or understanding mathematics to which it pays too much attention?

Probe specific details, reasons, how teaching is influenced: then

probe for further aspects.

2.4(C) Do you, on the other hand, feel that there are any important

areas or aspects of mathematics, or ways of looking at or under-

standing mathematics to which the set curriculum pay too little =

and that could mean no - attention?

Again probe specific details, then reasons, how teaching is
influenced: then probe further aspects.

If very little has been said continue with next question.

2.5(C) So basically the set curriculum is the kind of curriculum

that you think is desirable for the pupils in this class?

Probe reasons for answer.
S3 non-certificate classes only:

2.1(NC) 1Is the work of the class based on a curriculum laid down at

the departmental level?

2.2(NC) Could you describe what kind of things you do, in general,

with this class?

Probe for details, reasons, examples. Probe for differences between

this curriculum and that of certificate courses.
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All classes:

2.6 Have you recently read, heard, seen or done anything related

to mathematics in any way - such as a TV programme, or a magazine

article, for example - which you have talked to this class about, or

intend to?

Probe for details and reasons: then probe further cases.
For 81 and S3 certificate classes only:

2.7(C) Have you recently talked about, or done anything with this

class which is not strictly part of the set curriculum?

Probe for details and reasons: then probe further cases,

SECTION 3

I'd like to ask a few gquestions about your background as a maths

teacher now.

3.1 Are you qualified to teach any other subjects?

Probe for details if necessary: then, if relevant:

3.2 Do you currently teach these subjects?

3.3 You've got a degree? ...in? .... What subjects did you study

for this degree?

3.4 Which of these subjects, if any, do you see as being of value

in teaching maths, either actually or potentially? ..... In what ways?

Probe until reasons and examples are exhausted.

3,5 Have you had any occupation other than teaching? ., What was it?

3.6 Do you see the experience you derived from this occupation as

being of value, actually or potentially, in teaching maths?..In what

wals?
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Probe until reasons and examples seem to be exhausted.
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3.18 AREA: Surfaceof a Cone

P e T

' .L-....: .

’

Fig. (ii)

The cone in Fig. (i) has two surfaces, one & flut circular base and onc a curved surface
with dimensions shown. '
Fig. (ii) shows the net for this cone.

For any conc:
If [ is the measure of the slant height, the measure of the arca of the base is nr or ‘nD?

and-the measure of the area of the curved surfuce is arlor L2,
L]

The measure of the totul surfuce arei is: .
' xritnrl or arir+ N or (nDP- inDI

Example. Find the total surfuce area of a conc whose rudius is 6 cm

- and whose height is 8 cm. .
Firstly find /. the measure of the slant height. Y £
= J6P+8 =~ 10 .
x4 el = 31436+ 314 %610

1 . = 11304 ¢ 1854 - 3014 B
" Total surface arca of cone is 301-4 cm?. s

" - - . - -

In the aireraft industry mathematics helps determine the best
shape l‘o:cr an airplane or space ship, and how styong its cor:.
gtruction must ta,  fnether Rind of athomessas mredicts wicther a
plane will shake 1tself (o pleces as it flles th:."ough sto“n;;' a;;
gt high speeds, Gtill different formy of mathematics hel;) 'desi
the redic and radar deviees usod to guld: tix olan;c and to =

.0 -~ ¥ ol 4e -3 - ..
comunicate with cther plenes and with airfisuds
. b *
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We have seen that a linear search (for the maximum valug or.n
function, f(x) say, of a single variable x) plays a central roll,c ';:
rast optimization” techniques. How should such a searc
wonducted ? One method would be to e.valuat: J(x) at'rc.gul:ixr
tatervals, say 0-001, until the maximum is reached, However, :
practice function evaluation is oftena Iengthyibusmcss' nn_d suc
a *brute force' method would be very ineliicicat, even with the
&4 of a computer. We are thus led to scek the best scarch stra-

tegy, where we use the term ‘best” in the sense of cnabli:'\g the
max'imum to be located to a prescribed lovel of accuracy with the
fewest possible evaluations of the function.

*Precision and Error

In the discussion so far it has been assumed that the exact
lengths and widths of the rectangles are known. Actually of
course, we have seen this 1s never the case since no measurement
can be made exactly. Thus if we have measured a rectangle and
found measurenents of 2% inches and 3% inches, we must use the
"approximately equal" symbol and write X 3%, N 2% and
therefore: v - ‘ '

~ ra) 1
A% (33) (23)
AR (3 (B
. oanS

N
A Azeé
Since A is the number of square inches, we find therefore

that the area 1is approximately 8% square inches, .

A statement ccncerning a measured quantity should indicate
that it is only approximate, '

Lo,
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In studies of astronomy and space flight, especially, we
. encounter very large numbers.. The planet Pluto has a mean diste-
from the sun of about 3666 million miles or 3.666 x 107 miles. .
Distances to the stars are usuvally measured in "light years," A
light year is the distance that light travels in one year, This
is a good way to measure such distances, If we expressed them
in miles, the numbers would be so large that it would be difficst
to write them, much less understand what they mean.

P

Por s b v e

"
- ‘;

717 CURRENCY CONVERSION 1l .
Question: Change £25:00 into French francs. . ,
Answer:  297. Mecthod (a) £1 «+ 11-88 francs (from Table 2) N

£25 = 25 1188 - 297 francs
Mecthod (b) Using rate of exchange curd in Table 2. .
£2}-04 ~——» 250 francs
337 —— 40 (rancs
042 »  Sfrancs

016 -—— 2 francs
£2499 - » 297 francs

Note. For £25. 297 francs would be received,
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Scientific Notation

- AS we remarked, we can write 253 billion as 293 x'lo9 or
as 2.93 x 1011. These are compact ways of writing the numbder.
Also, 1t is easy to compare several large numbers written in this
form. TFor example, we can tell at 2 glance that 4,9 x 1013 is
bigger than 9.6 x 1012 without counting decimal places in
49000000000000 and 9500000000000. ‘e shall see later on that it
often simplifies calculations with large numbers to work with thed
in such a standard form. This is especially true of computations
by slide rule or by logarithms, as you will learn in high school.
Faor these reasons it is common practice in scientific and engineer-

ing work to represent numbers in this way, namely in the form

(a number between 1 and 10) x (a power of 10).
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A mathematical model of a situation is normally obtained by simplifying a
description of the situation. For example, in the case of the diving bell, we
treated the platform as a /ine having zero thickness, whereas in the real case the
platform would have a definite non-zero thickness = (Figure 5.1). We also
treated the platform as being weightiess, whercas it thé reai case the platform
would almost certainly be made of rigid. probabiy metailic, materials. Finally
we have assumed that there will be no leakage of water past the ends of the plat-
form. and in the real case this assumption, too. is likely to be mistaken.

A more accurate model of the proposed diving bell wili therefore distinguish
the depth of the platform's upper sqrface d.and its lower surface d+ =, where - is
the thickness of the platform. It will distinguish the weight placed on the plat-
form MW, from the total weight of the concrete blocks, platform, loose water,
and human operator W'+ x4y +w. It will take into account the force (reaction)
R acting between the platform and the sioping sides of the bell.

If we take all these factors into account we obtain & more accurate mathe-
matical model of the weight ¥ needed to produce a platform depth «

W = 9810(d+42)(3—=1(d+{2)} = x =y —w+ 2R sin 0.

It is reasonable to suppose that the quantity of *loose witter' leaking inte the bell
depends on the depth at which the platform is set and the lencth of time it hus
been operating at that depth. Thus the term y may be rppluccd by a term cf the
wind k(d+4+2)r, where k is @ constant and ¢ is the time in hours.

So the cxpression above will bzcome more compiicated. But in estimating
the effect of the ‘loose water’ we have simplified 2gain. We have assumed that
the bell has been operating with the platform at a fixed depth ¢4 = for @ definite
number of hours: whercas a graph §}11~\\'Az1g the depth of the plaiform against
sime will probably look more like Figure 5.2,

The quanuty of loose water found at time 7 (which has lcaked past the seals
tha ends of the platform) will therefore dqpcnd on a summaiion of the water
which has léaked past at each instant of time trom the monient the opesator

AL
steps onto the platform. N 35
Thici e ther ”‘"f‘” RT-E3-V.1 Rik Nlemialogme oo g Voot TR0 Woya t QU TN
Sy S Y TP ST PN FHI T vl P 1 Y e Al 1 % Nt
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There are basically throe aspects involved in any scientific
activity, namely: (o) the formulation of a hypotssis regarding the
relationships between observed data, such as the rate of growth of
the national income and the level of employmest; (#) the collue.
tion of statistics relative to the hypothesis and ths expression of
the hypothesis inconcise or mathematical terms: and (¢) modxﬁca-
tion or improvement of the hypothesis,

Iowever, ¢ven though a particulur mathematical form may be
found to represent the numerical relationship »e:ween observed
quantities, this may be no more than a concise 22séription of the
particular statistical data and use of the form oo:side the range of
the data may lead to erroncous conclusions. Toe point can b
stated explicitly in that a statistical relationship S2iween quanti-
ties is a limited association and is not in any sense a causal
rcl.xlionship. which can only be established by 20 objective analye
sis of the way in which the rcl.monshlp betweea the particular
quantitics arises.

ey . -

. The industridl strength of the USA has t2en built on coal,
steel and oil: and on the readiness of the Americans to experi-
ment and to apply to induslry the results o: their experiments.
In PcnnS) Ivania coal is abundant, and because it lies in thick
scams, it is easily mincd. At the head of Lake Superior is the
Mesabi iron range, an enormous deposit ¢i pure iron ore. In
1856 Bessemer discovered a micans of maxing steel cheaply.
In 1875 Andrew Carncgie, who had gone to the USA as a boy
from Dunfermline, opened his steel works on the Monongahela
River in Pennsylvania. These four things—pientiful coal and

iron ore. the Bessemer process and the Carncgic works—
enabled the USA to produce steel in abundarnce for all indus-
trial purposcs: for the rails and rolling stock of the expanding
railways, for the McCormick reapers which made possible the
huge wheat farms of the prairics. for the rew s22¢l ships, for the

sachinery of the textile mills, for Wil the vza0ied peeds of an

" industrial nation.



The Intuitionists represent themselves as erities of clssical logric, which
holds to be true principles to which there are, they claim, counter-
examples. But it would be a serious mistake to suppose that their
disazrecment with certain classical logical principles is the basic tenet
of Intuitionism. ‘Tl:is dissigreement, on the contracy, is a consequence
of a more fundamental d:m.n.nce, a ditference about the nature and
status of logic irseif.

\Vhile CIassu;.ll' lngxcnans no doubt differ among themselves about
the siatus of Jogic, titere is one point on which they are, 1 think, agreed:
that logic is the most basic, the most general, of thecries. This idea is
crucial to the logicism of Frege and Russell; m.thematics is to be
reduced 1o logic, and the epistemological value of th:2 programme lics
in the presumed jindamental nawre of the lutter. Even pragmmiszs,
while wishing to treat logic as a theory like oxlxu-s, concede that its
extreme gcx.cmlny gives it a special status, But Intvitionists think
otherwise. On their view, mathematics is primary anid logic secondary:
logic is sxmply a collection of those rules which are discovered, a

- posterioriy to be true of mathematical reasoning. (Intuitionists would

therefore regard the logicist programime as hopelea:‘.\ misconceived.)

But this alone would not account for their claim th:at certain of the
classical logical laws wrn out not to be generally true, for the laws of
classical logic do hold true of classical mathematical reasoning. How-
ever, Intuitionists hold, in addition to their unusual views about logic,
an unusual view about mathematics. Their view has elements both of
psychologism and of constructivism. First, numbers are menral enti-
ties. They are constru;.ted accordmg to Brouwer, cut of ‘the sensauon

of time'. This seems to mean, from the idea of distinctness or plurahty
(Brouwer: ‘two-ity") acquired thanks to the tempora! nature of experi-
ence. Mathematics is, thus, a mental activity, and Brouwer stresses that
mathematical formalisms are strictly inessential, useful only for com-
municating the recal, mental mathematics. Second, only constructible
mathcmatical entities are admitted, so that, for instance, it is not allowed
that completed infinite totalities, which are not constructible, exist; and
only constructive proofs of mathematical statements are admitted, so
that, for instance, a statement to the effect that there is a number with
such-and-such 2 property is provable only if a number with that
property is constructible.

This view about the nature of mathematics has a radical con-
sequence: not all of classical mathematics is Intuitionistically ac-
ccptablc. And from this restriction of mathematics there follows a
restriction of logic; some principles of classical logic are found not
to be universally valid. The ‘principle of excluded titird’ (LEM) has,
for example, counter-instances.

So the structure of the Intuitionist critique of classical logic can be
represented as follows:

" (1) A subjectivist, constructivist view of maxhcmat.cs
supports the thesis that

(2) some parts of classical mathematics are unaccepsable,
and with .

(3) a view of logic as a description of the valid forms of mathe-
matical reasoning

supports the thesis that

(4) some parts of classical logic are mistaken.

Tha oy o 1 aravoanists” el e pear weget, (Y.Lt H
The source of the Intuitionists” disooreement wish ¢f - ical logic thus
fies deep.
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10-11. Historical Note

Some of the geometric ideas 1n Chapter 10 were discovered
by the Egyptians and Babylonlans almost 4,000 years ago. For
example, they knew how to find the area of a triangle and uced
this knowledge in surveying and measuring flelds.

Thales, mentioned in Section 2, is credited with the
discovery that the measures of the base angies of an 1isosceles
triangle are equal. There 1s some eviderce that Thales also .
knew that the sum of the measures in degrees-of the angles in
a triangle is 180. ‘

There were many other famous Greek mathematicians. Their
york made ancient Greece famous as the "Crzdle of Knowledge."
¥e will discuss only a few of these men. Pythagoras (569 ? B.C. -
500 B.C.) orgarized schools at Croton in scuthern Italy which

_contridbuted to further progress in the situdy of geometry. You

vi11 learn about some of the discoveries credited to him next

! year. Euclid (365 ? B.C. - 300 ? B.C.) became famous by writing
. one of the first geometry textbooks called the Elements. This
itextbook has been translated lnto many languages. It has been

gsed in teaching gecmetry classes for some 2,000 years without
guch chénge. Its form has been somewhat mcdernized to [it
ppesent nee¢s. All of the properties we have studied in this
chapter may be found in the Elements.

From the 7th century until the 13th century very little .
progress was‘made iq mathematics. From the 13th century, however,
the study of geometry and other mathematics spread rapidly
shroughout Eurdpe. Mathematiclians began to examine new ways of
studying elementary mathematics. You will iearn about the work
of men such as Rene Descartes (1596 - 1650, France); Blaise Pascal
1623 - 1662, France); Pierre Fermat (1601 - 1665, France);
url Friederich Gauss (1776 - 1855, Germany); and others as you
ontinue your studies of mathematics.

3
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. : " The Egyptian
system was an improvement over the qaveman's system because it
used these ideas:

l. A single symbol could be used to represent the number of
objects in a collection. For example, the heel bone represented
the number ten. '

2. Symbols were repeated to show other numbers.”  The group
of symbols PP ? meant 100 + 100 + 100 or 300.

3. This system was based on groups of ten. Ten stfzkes make

~a heelbone, ten heelbones make & scroll, and so on,

What is frustrating and confusing in network probleats is (14 -

. ximplete lack of a uniform terminology. ‘What's in a nama?® is
. Jarary's [2) sarcastic quote from Romeo and Juliet as he come
s about the ‘personalised terminology® of graph theoretie
: ,;.;. Vertex, point, node, jurction, are variously used for the
swrs thing and a long glossary of pscudo-botanical names - tree,
28, blossom, branch, vine and so on - is hardly a pretty sight.
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The decimal system uses the 1idea cof place value to represent
eye Size of 2 groud. The size of the group represented by a symbol
;c,enas upen the position of the symbol or digit in a numeral, The
s7=bol tells us how many of that group we nhave. . In the numeral
}23, the "% pepresents one group of one hundred; the "2" repre-
sants two groups of ten, or tventy; and the -"3" represents three
gnes, OT three. ‘

since we group by tens in the decimal system, we say its base
«s ten. Because of this, each successive (or next) place to the
jeft pepresents a group ten times that of the preceding place.

e rirst place tells us how many groups of one. The secondplace
tells us how many groups of ten, or ten %tires one (10 x 1). The
snird place tells us how many groups of ten times ten (10 x 10),
¢t one hundred; the next, ten times ten times ten (10 x 10 x 10),

¢r one thousand, and so on. By using a base and the ideas of

s1ace value, it is possible to write any nutber in the decimal

sjstem using only the ten basic symbols, There is no limit to the

size of numbers which can be represented by the decinal systen,
7o understand the meaning of the numbex represented by a

»—eral such as 123 we add the numbers represented by each symbol,

mus 123 means (1 x 2100) + (2 x 10) + (3 x 1), or 100 + 20 + 3,

e seme number is represented by 100 + 20 + 3 and by 123. ‘hen

g2 write 2 numeral such as 123 we are using number symbols, the
202 of place value, and base ten.
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In the USSR a special form of Communism has developed.
In practics the State is all-important and individuals exist to
serve the state. The people’s lives, work and ideas must all

. serve the State and men and women are not free as we are.
Sccondly, Mary and Lenin taught that our ‘capitalist’ way of
organizing industry must be overthrown, as it has been over-
thrown in Russia. Communists believe that if everything—
including all industrics—belongs to the State then cveryone
will be richer, and the gulf between rich and poor will dis-
appear. (In fact, what happens is that under communist rule
some people of the ruling class have many privileges, while the
vast majority of the people have few.) Marx and Lenin taught,
too, that capitalist countries could not be changed peacelully;
there would have to be a world revolution first.

——— . . . . . .

Mathematics—Queen of the Possibility-simulating Disciplines

Mathematics has often been described as the ‘Queen of the Sciences'. It has
gradually become clear. however, that mathematics is 2ot a ‘science’ i the
ordinary sense at all. It is about possibilities; whereas the sciences are about .
actualities. '

A .much more apt description of mathematics, at least when seen from the
apphcablc point of view, is that of "Queen of the Possibility-simulating Disci-
plines’. *Queen’ because it is free from the awkwardnesses which invariably
attach themselves to physical simulations, and because it is by far the most
powerful way of simulating possibilities. -

In applicable mathematics we do not rely on the propertics of one real situa-
tion to be used as a substitute for unother. We use symbaois and formulate rules;
then we construct symbolic expressions, the patterns of chaage, in which, will, if
imagined, mimic the real situation. B

. .. . .
A

'
Al
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i The origin of the icea of zero is uncertain,
! put the Hindus were using a symbol for zero 2bout 600 A.D., or

nosSibly earller.

'



1.10 Relations
" . 3 " is greater than 2
PQ is parallel to YZ
L ABC Is the complement of LCDA

In each case the words is greater than. is parallel to and is the complement
of state & relation connecting 3 and 2, PQ and YZ. L 4BC and L CDA

respectively. ,
These relations could be re-written in symbols thus:
- Po| 1z

LABC+ LCDA = 90’

(2) Now consider the following four relations from everyday language:

Jane is taller than Mury
London - is north of the equator
James - owns a motorcycle
Television was invented in the 20th century

In cach of these the relation is expressed in words and not in symbols as

there are no recognised mathematical symbols for these expressions.

Note. The above relations are binary relations beciause in each case two
objects are related in a definite order: “bi™ isa Latin prefix mecaning
“two”, as in bicycle.
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The scientific principles of wircless telegraphy were dis-
covered in 1887 by a German called Hertz, but it was Marconi,
an lalian, who developed it for commercial use. He Jdomon-
strated the possibilitics of wircless telegraphy by sending
messages across the English Channel and in 1901 he sent a
mcessage consisting of three dots of the Morse code—the letter
S—across the Atantic. Radio telegraphy was publicized in
1910 when it was used to arrest a murderer. Dr Cripptn, after
murdering his wife, fled by liner to America. He did not realize
that messages could be sent by wireless to the ship and he was
very surprised when he was arrested. Broadcasting as we know
it today, however, would have been impossible without the
invention of the thermionic valve by Sir Ambrose Fleming.

The 1914-18 war hastened the development of radio, for it
was used by ships and aeroplanes and by artillery. Butit was not
tilL after the war that a wireless set became a common sight in
people’s houses and regular sound broadcasts began. The first
wireless sets would scem very strange to you: you listened
eitherthrough headphones or to a loudspeaker with a large horn,

James Logie Baird, a Scot from Helensburgh, was the
pioneer of television. In the 1930s he perfected an apparatus
for sending both picturcs and sound by radio. It was much
improved by American scientists, and now we use the American
system of television. Aftet he had discovered how to send black
‘and white pictures Baird went on experimenting to find out

-how to send pictures in colour. This is now possible but the

apparatus is so expensive that it is as yet little used.
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14-6. The Role of Mathematies in Scilensific Fxperiment.
Although the experiment using the lever does not use a great
. deal of mathematics, it does suggest how mathematics is used in
scicntific activities., You saw how mathematics was used in
.measuring, counting, and comparing quantities. You noted how
observations of data were recorded in mathematical terms,

- You searched for a pattern by studying the numbers in your
recorded data. By reasoning from a set of specific cases you
developed a general statement to be aprlied in all similar
situations. In Section 14-3 this kind of reasoning is called

. inductive reasoning. It leads from a necessarily restricted
number of cases to a prediction of a general relationship. This
general relationship was stated in mathematical.symbols in an
equation: WD = wd. To establish thils general principle,
further experimentation was performed.

In addition, you drew a graph of WD = 120 and of

WD = 96 to show how these statements tell thé complete story in

each case. The graph is another instance of the use of
mathematics to interpret and to summarize a collection of facts,

The graph also helped to reveal the general pattern which was
fﬁiscovered.

Many scientific facts were undiscovered for thousands of
- years until alert scientists carefully set up experiments much
as you have done and made discoveries on the basis of obser-
vations. Some examples of these are the following:

(a) Until the time of Galileo, people assumed that if a
heavy object and a light object were dropped at the
- same time, the heavy one would fall much faster than
the light one. Look up the story of Galileo and his
experiment with falling objects and see what he
discovered.



(v) From time immemorial, people watched eclipses of the
sun and moon and saw the round shadow of the earth but-
did not discover that the earth was round.
Eratosthenes, in 230 B.C., computed the distance around
the world by his cbServations of the sun in two
locations in Egypt, yet seventeen hundred years later
when Columbus started on his Jjourney, many people still
believed the world was flat. Loox up in a history of
mathematics book or in an encyclcpedia the story of
Eratosthenes anq this experiment.

(¢c) People had watched pendulums for many centuries before
Galileo did some measuring and calculating and
discovered the law which gives the relation between
the length of the pendulun and the time of its swing.
Look up this experiﬁent in a book on the history of
mathematics or of science.

Notice that all these experiments are based on many careful
measurements and observations in order to discover the scientifilc
law. Then the law is stated in mathematical terms. A great deal

~of science depends upon mathematics 1n just this way.

The examples which we have given here describe older funda-
mental discoveries all of which used relatively simple mathe-
matics. The scientists of today are using more advanced

mathematics, and many of the newer kinds of mathematics, in their
‘scientific experiments.



suppose we pow wish to calculate the annual premium for an
ance on a person aged 60 to pay £1000 on death before age
8 and £1000 on survival to that age (this is commonly described
s an endowment assurance policy). It is clear from the life table
(hat the major part of the premiums will be required to provide
(he survival benefit and thus the cormpany will be in a position to
carn interest on the premiums. If it is assumed that moncy earns
interest at i%, per annum then the present value of a unit due §
year benee will be v = 1(1 + i), 2 years hence vie 11 4 i)Y,
- gte. 1t is then a simple matier to calculate the present value of the
expected premiums by combining the probakbility that the person
wili be alive to pay the premiums with the appropriate present
values, i.c., to discount the expected payments. Similarly, the
claims outgo can be discounted. By equating these two expecta-
tions the required premium can be found.
The calculations, based on an intcrest rate / = 4%, are shown
in Tablc 5.4, It is assumecd that premiums are payable at the

-~ YABLE 5.4 _
T A=+ Wouoo Vg

0 1-00000 100 000 1414

] 096154 94 740 1487 .

2 0-92456 89 609 1558
‘3 ~ 0-88900 ’ 84 605 1628

4 0-85480 79723 1696

1 082193 74 961

beginning of the year, and that claims are paid at the end of the
. ".year, Thus the value of expected premiums of P per annum at the
outsct of the policy in respect of 100 000 persons is

{I“ +vlg ...+ V"“} X P = 448 677P
and the value of the expected claims
{rdee 4 vidiy + ... + Vdey + V'ls} X 1000 = 82 744 x 1000.

Hence P = £184:42, -



The view I shall support is the one called, in ch, 1, a ‘pragmatist"t
conception of logic; according to which logic is a theory, a theory on a
par, except for its extreme generality, with other, ‘scientific’ theories;
and according to which choice of lngic, as of other théories, is to he
made on the basis of an assessment of the economy, eoherence and
simplicity of the overall belief set. The very existence of arguments in
favour of Deviant lngics lends some prima facie plausibility to this
view. But, of course, the proponents of such logics could be mistaken
about the nature of their own enterprise. (The inventors of non-
Euclidean geometries, after all, intended to prove the dependence of
the parallel postulate.) More argument is necessary.

The pragmatist conception is radically opposed to ‘absolutist’ views
of logic, according to which logical laws are unalterable, because they
have a special status which guarantees their certainty. A proponent of a
deviant logic could take the view that the principles of 4is logic are
certain and unalterable, but it is, significantly, much commoner for
absolutists to maintain the unalterable certainty of classice! logical laws.
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Disney Needed the Mathematicians'! Helpn

A number of such probabilliy questions were answered for
walt Disney before Disneyland was built. When he considered
setting up Disneyland, Disney wanted to know how big to build it,
where to locate it, what admission to charge, and what special
facilities to provide for holidays, He didn't want to take a
chance on spending $17,000,000_to build Disneyland without knowing
something of the probability of success.

:

What he really wanted answered wes this type of question: If

I build a certain type of facility, at this particular location, '
and charge so much admission, then what is the probability that I

will make a certain amount of money? i

Disney went to the Stanford Research Institute, There he
talked with a group of mathematically trained people who are

specialists in applying mathematical reasoning to business problex

The people at Stanford first collected statistics about people_-
(their income, travel habits, amusement preferences, number of
children, etc.). Combining this information by mathematical
reasoning they predicted the probability that people would come to
g certain location and pay a given price of admission. From
reasoning like this they could predict the probability of having a
successful Disneyland of a certain type at a2 given spot. Knowing
the chance of success under given conditions, Disney was better
able to decide how and where to build Disneyland and how much to
charge for admission.

This example is typical of the way probability is often used
to give an estimate of the degree of uncertainty of an event or
the chance of success of a proposed course of action.



WnaT parts of mathematics are uscful?

First, the bulk of school mathematics,
arithmetic, clementary algebra, clementary
Euclidcan geometry, elementary diflerential
and integral calculus, We must except a cer-
tain amount of what is taught to ‘specialists’,
suchas projectivegeometry. Inapplicd mathe-
matics, the elements of mechanics (clectricity,
as taught in schools, must be classificd as
physics). '

Next, a fair proportion of university mathe-
matics is also useful, that part of it which is
rcally a development of school mathematics
with a more finished technique, and a certain
amount of the morc physical subjects such as .
_electricity and hydromechanics. We must also

rememberthatareserveof knowledgeisalways
an advantage, and that the most practical of
mathematicians may be seriously handicapped

| __if his knowledge is the barc minimum which

is essential to him; and for this reason we must
add a little under every hecading. But our
general conclusion must be that such mathe-
matics is useful as is wanted by a superior

- engineer or a moderate physicist; and that is
‘roughly the same thing as to say, such mathe-

matics as has no particular aesthctic merit.
Euclidean geometry, for example, is useful
in so far as it is dull—we do not want the
axiomatics of parallels, or the theory of pro-
portion, or the construction of the regular
pentagon. :

Onerather curious conclusion cmergcs, that
pure mathematics is on the whole distinctly
more uscful than applied. A pure mathema-
ticlan seems to have the advantage on the
practical as well as on the aesthetic side. For
what is useful above all is technigue, and
mathematical technique is taught mainly
through pure mathematics.

I hope that I nced not say that I am not

OVER



trying to decry mathematical physics, a splen-
did subject with tremendous problems where
the finest imaginations have run riot. But is
not the position of an ordinary applied mathe-
matician in some ways a little pathetic? Ifhe
wants to be useful, he must work in a humdrum
way, and he cannot give full play to his fancy
even when he wishes to rise to the heights.
‘Imaginary’ universes are so much more
beautiful than this stupidly constructed ‘real’
one; and most of the finest products of an
applied mathematician's fancy must be re-
jected, as soon as they have been created, for
the brutal but sufficient rcason that they do
not fit the facts. _ '
The general conclusion, surély, stands out
- plainly enough. Ifuseful knowledge is, as we
agreed provisionally to say, knowledge which
is likely, now or in the comparatively near
future, to contribute to the material comfort
of mankind, so that mere intcllectual satis-
faction is irrelevant, then the great bulk of
higher mathematics is uscless. Modern geo-
metry and algebra, the theory of numbers, the
theory of aggregates and functions, relativity,

i

guantum mechanics—no one of them stands
the test much better than another, and there
is no rcal mathematician whose lifc can be
Justified on this ground. If this be the test,
then Abel, Riemann, and Poincaré wasted
their lives; their contribution to human com-
fort was negligible, and the world would have
been as happy a place without them.
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2 n of numeration was a decimal
plofsent that;tsi:§idt:;i: :Z:ze:dea to ‘have a decimal bas;s
(ase 20 sySt;m easures. In such a system the units of lengt N
e 2er of ten times a basic unit of length., Thennly‘
i e vang io convert from one unit to another., It would :e
N re mates 1°1ng or dividing by a power of 10. We shall s
rqu1::1mui:i§syit very‘muéh simpler to work with quantities
that s

| expressed in'metric units.

The line and the oircle 1n the ..
figure on the right reming us of a
train wheel resting on g track, except
that the flange (op 11p) which guides
the train is not shovn. How many
points are-on the ¢irele and also -
on the line? There 1s only one ) T €
such point, the one labeled T, X

Ve say thgt the ‘1ine is tanzent to the c¢ircle. The single point

of their 1ntersection is the point ef tangencx. In this drawing,

T 4s the point of tangency. Another wvay of describing 2 point

of tangency is to say that 1t is the only point of the circle
which 1s also. on the line. Now—ansmen—iina fotrortrr—rer et
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" 10.10 SAVINGS

A wise budgct ensures that expenditure is less than income, that is it provides for “'saving”,
Savings may be intended for specitic purposes such as holidays. car,a TV set, ... Savings
may also be intended to form a reserve of moncey for use in emergencies such as iliness or
loss of employment. or'to provide a reasonable inconie in oid age. In this section we Jook
at some of-the ways in which savings may be accumulated.

(a) Hoarding Cash. Moncy saved may simply be stored in some place thought to be
secure, but this mcthod has many disadvantages. The money may be stolen, destroyed
by firc or some other disaster or it may simply be lost. Furthermore, cash hoarded
in this way is “idle”. It does not grow by the addition of interest and generally

. decreases in value with the passage of time. This decreusc in the valie of money can
be seen in the tendency of wages and prices to increase.

- (b) Personal Savings Accounts. Trustee Savings Banks look after moncy deposited in
‘hem and pay the depositor interest at a stated rate. Money deposited in these accounts
may be withdrawn at any time without prigr notice and the operation of such accounts
is very simple.

(¢) Deposit Accounts. Banks and Building Socicties may accept deposits under the con-
dition that repayment can only be made after an agreed period of notice. The rate of
interest paid on deposit accounts is generally higher than that given on the ordinary
savings accounts and is generally just below the Bank Rate which is controlled by
the government and-published by the Bank of England.



' 7.10 HOLIDAYS ABROAD

Morc and more people are going abroad for holidays and educational lours Such
holidays may be arranged as follows:

(1) By consulting Travel Apeats. They-are specialists in arranging holidays. They are
paid commission by the hoteliers and transport seevices with whom they do business.
The Agents make arrangements according to your wishes. Such arrangements include
accommodation (where you are going to stay) and travei (route and form of travel).
A.ltcrnmi\‘ely an Agent may propose a Package Holiday.

(2) Package Holidays. In this case the Agent has himself arrunged holidays in units or
packages and you select a unit to suit your choice. Such & package holiday is usually
cheaper than onc specially arranged by the Agents to your own wishes s in (1) above.

(3) Cruises. Shipping companics arrange cruises which allow a visit to more than one
country. The company usually arranges excursions ashore 10 places of interest for
sight-sccing and shopping. A cruise is similar to a package holiday in that the journey
is,decidcd beforehand.

-

7.11 PAYMéNT FOR HOLIDAYS

Mt is important to know before you leave what travel or li'ving expenses have been paid
through the travel agents and what expenses you still have to meet. In the case of a
package holiday or cruise you will alrcady have paid most of the charges before you
Jeave. You will require to take with you only *“spending™ money. In the case of a holiday
arranged in accordance with your own wishes you will require to take with you, in
a:d:xon to spending moncy, enough moncey to cover expenses not alrcady pdld lhrough
the Agent.

712 SOME ADDITIONAL ITEMS

Before visiting another country you require a valid passport. You can obtain this either
from the Passpogt Office or the Department of Sociul Scrvices. You must also know how
much money you can take with you. There may be restrictions on the amount of money
you can take out of the country.

A knowledge of the country being visited, its climate, Custon*s languuge, and so on would
be useful.



j-4, Kinds of Mathematics
Mathematicians reason about all sorts of puzzling questions
end problems. When they solve a problem they usually create a

' 1ittle more mathematics to add to the ever-increasing stockpile of

maf,nematical knowledge. The new mathematics can be used with the,
old to solve even more diffieult problems. This process has becn
going on for centurles and the total accumulation of mathematics
4s far greater than most people can imagina., Arithmetic is

one kind of mathematics, The trigonometry, algebra, and plane
geometry you will study are other kinds.

Today there are more than cighty different kinds of mathe-
patics. No single mathematician can hope to master more than a
small bit of 1t. Indeed the study of any one of these eighty
differ_’en‘l‘; branches would occupy a mathematical genius throughout
his entire life. So don't be surprised if your teacher sometimes

»fails to know all the answers'

Moreover, hundreds of pages of new mathematics are being
created every day of the year -- much nore- than one. person could
possibly read in the same day. 1In fact, in the past 50 years,
more mathematics has been discovered than in all the preceding
thousands of years of man's existence,



Provinz a theorem in mathematics is rather like getting a game of paticnce to
‘come out’ or checkmating vour opponent in chess. But w hy should we want 10
prove theorems? What is the purpose of the activity of proving theorems? There

- arc two different answers to these questions.

(1) Because in brow sing round the immense number of possibilitics in mathe-
matics we stumble across surprising facts. The ancient B.!b\ lonians stumbled
across the fact that if one takes a triangle with sides of 3, 4 and S units, the
largest angle turns out to be a right a‘ngh. What a coincidence! But perhaps it
was not a coiacidence after all; perhaps triangles with sides of 4, 5, 6 and 5, 6, 7
and 6, 7, § units etc. arc right-angled too.

The motive for looking at this kind of thing is curiosity. Can we explain why
a triangle with sides of 3. 4. and 5 units should have a right angle in it? After all,
if we take any other set of three consecutive integers (say, 7, 8.9), we do not find
that a triangle with sides of these unit lengths has a rigi:t angle in it.

The difference between thinking that x> + 32 = =2 p:iekt be true (for 2!l right-
angled triangles) and knowing that it must be true is quite significant. The feeling
we get when we move from the first stage to the second stzge is rather like “tuning
out’ noisy interference on a radio or TV broadcast. To achieve this we have to
prove the result to our own satisfaction.

On the other hand one can still ask: Is there a purpose in it? This leads to thc
second answer.

(2) Proving resuits consists in lookm« very carefully at possibilities; making
sure that one has considered all the cases: checkmg cach step in the argument;
and labelling the results one has taken for granted. Now these are just the mental
operations nceded in handling applicable mathematics too. In applicable
mathematics our aim is mainly looking into possibilitics: the difference being
that here the ‘possibilitics’ are things which might happ2n in the real world.

The kind of question we can tackle in applicable mathematics is:

© It a cable were stretched across the River Mersey from Liverpool to Birkenhead
- (Figure 1.14) how much would it ‘sag’ in midstream? How much extra cable
would be needed to allow for this sag? How high wou!d the towers have to be

on each side of the river? How much force would the cable exert on the towers,
tending to pull them over? . 88

§ e e ——— - —— e

Probably such a cable will never be thrown across tie Rwer Mcrscy in thxs
way. Nevertheless it is a possibility, and by using mathematics we can turn a
spotlight ofeattention onto this possibility. We can. in fact, learn quite definite
things about it, such as how high the towers would have to be.

. Nowthe operauons needed to understand these poss:bilities are very similar
to the operations needed to understand geometrical possibilities. Pro ving results
helps us to become and to stay ‘mathematically fit': it helps us to tune-in to subtle
argumcms and to spot lomholcs in mllacxous reasoning. In the case of Pytha-
goras' thcorem, the result x.sclf thatx* +y° = 3, whercx.s and - are numbers
representing the lengths of the sides of a no,ht-angled triangle, is very useful. Itis
used in finding the encrgy of a spinning satellite, for example.

Mathematics = Looking into Possibilities

To understand a thing. system or situation is to sec its possibilities clearly: to be
able to make a good guess at what will happen aext; to be aware of what might
happen under various conditions.

Mathematics provides us with a sort of microscope bringing into focus the
details of the predictable aspects of possibilities. This enables us to reach
definite conclusions about possibilitics.
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Cne advantage of our decimal system is that it has & symbol
fcr. zero. Zero is used to f£ill places which would otherwise be
ety end might lead to misunderstanding. In writing the numeral
¢cr three hu.dred seven, we write 307, Without a symbol for zero

ye pight find 1t necessary to write 3-7. The meaning of 3-7 or
37 might be confused. . |



. " -\ie have seen that the word "radlus” can Le used in two
‘different ways. Iy vay of review, a radius of a circle is one of
the segnents joining a point of the circle and the center. The
length of one of these segments is the radius of the circle.
The word diameter is closely assoclated with the word radius.
A diarmeter of a circle is a line segment which contains the center
of the circle and whose endpoints lie on the circle. For the
circle representcd by the figure at the
right, three diameters are shown; AB,
N, and V. (A diameter of a circle is
the longest line segment that can be drawn
in the interior of a circle such that its
end-points are on the circle.) How many
" padii are shown -in The figure? '

A set of points which is a diameter may be described in
another way. A diameter of & circle is the union of two
different radii which are segments of the same line. How does
the length of a diameter compare with the length of a radius?

The length of any diameter of a circle is als& spoken of
as the diameter of the circle. The dlameter is a distance, and
the radius is a distance.

. The measure of the diameter is how many times the measure
of the radius? If we choose any unit of length, and if we let
r and d bYe the measures of the radius and the diameter of a
circle respectively, then we have this important relationship:

d.'aro

Y¥hat replacement for the question mark makes the roliowing
nunber sentence a true statement?

‘.

_‘“ !‘B?d.



.~ people work with computers and computer mathematics. Industries
.. of all types are hiring mathematicians to solve complex mathe-

" Before World War II almost all mathematicians were employed 2
teachers in schools and colleges. Since then,. the world of
mathematics and the world of mathematicians have cheriged tremen-
dously. Today there are more teachers of mathematics than ever
before. In junior and senior high school £here are about 50,000
people who teach mathematics. There are about 5,000 more teacher
employed in colleges and universities. But now (1960), in busine:
industry, and government there are more than 20,000 persons workis
as mathematiclans,

The Federal Government hires mathematiclians in numerous
agencies for many different assignments. Literally thousands of

.o e ey ot . _

-

‘v YRV

matical problems, to help other workers with mathematical diffi-
culties and even to teach mathematics to other employees.

These changes have been brought about by the revolutionary |
advances in sclence and technology which we talked about. These ;
changes are still continuing. By the time you are ready for a ch
opbortunities for a career in mathematics will be even more é

numerous and varied. ‘ . 5
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Example 2. If the rateable value of a house is £60 and the local rate is £1.20, what are the
rates payable by the occupier?
Rates = Rate < the measure of the riteable value
= £]1-20 x the mcasure of the rateable value
= £1-20 < 60 == £72-00

Example 3. If the rateable value of a cinema is £956 and the local rate is £1-25, \\h.u are.
the rates payable by the occupier?
Rates = Raté > the measure of the rateable \alue
= £1:25% 956
= £1 195-00
Example 4. Il the rates payable on @ house arc £72 and the Jocal rate is £1-25 what is the
ratcable value of the house?
Rates = Rate < the measure of the rateable value

£72 == £1:25 «*
* where * is the measure of the ratcablc value.
-7 =1 "S>~ *
ll25x72 1—55)“ 25 ( |s the multiplicative inverse of 1:25.)
_.2.2_ 4 -
1425
$0, % = -‘-122—5 = §7- 60 The ratcablc value of the house Is £87-60.

It is not hard to sce that all the mathematical models we have considered in
this book, from the chain curves of Chapter 1 to the patterns of ditTusion of dve
in the River Rhine, arc open (o siswider improvements. The versions of the
models which we have considered have been, in every case, merely *first approxi- -
mations® to the truth. But this docs not mean that it would be pdssib!c finally to
obtain models which were perfectly accurate, if one's mathematics were suf-
ficiently advanced. The contrary cenamly seems to be the case. It scems to be

true that we can never get a *final® version of a mathematical model; there is
always room for mprovement.



This clever idea of place value makes the decimal
i' cgstem the most convenient system in the world.

~ .

We have scen that it is possible to use a numeration system
other than our basc ten system. Although we have used five as a
base, we could have used any other number. A very important
question arises then: “Is therc a numeration base better than base
ten?” To answer this question, we must consider ways in which a
ditferent base could improve upon our present numeration method.

First, it would be practical to selcct a numeration base having
more cven divisors than 10 has, for this-would simplify work with
common fractions. A number like 12 might be a good base, for
. the even divisors, or factors, of 12 are 2, 3, 4, and 6. The only
j § divisors of 10 are 2 and 5 (besides 10 itsclf and 1). ’
Lo ' It would also be convenient to have a base that is related to some

of our common units of measure. Many of our units of measure are
: based on 12 or multiples of 12; for cxamplc 12 months in a year,
" 12 hours on the clock face, 60 minutes in an hour, 360 degrees i m

a circle, 12 epas in a dozen, and 14 units in a gross,
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Soehe people think that all-- or most—-=industrics should
belong to the State. The State should provide the money
needed and should run the business as ciliciently as possible,
Then no meney would have to be paid to sharchoelders or on
unnecessary  advertising-—for in the ‘nationalized” industry
there would be no sharcholders and no competitors. This is the
policy of the Socialist Party. After it came to power in 1945 it
nationalized the coal industry, road transport, the railways,
and the gas and electricity services,

On the other hand. the Conservatives and the Liberals
disagree with these arguments, They point out thatthe amount
of money paid out to the sharcholders in an imdustry is very
tiny compared with the wages and salaries bill and with the
amount of money which is ‘ploughed back” into the industry
to buy more and newer machinery. They feel, too. that com-
petition is a good thing. When you have a competitor, you are
always trying to produce things better and cheaper than he can |
—which is all to the advantage of the customer or ‘consumer’,
The huge sums spent in advertising result in very large sales
and where you are producing large quantities of an article the
.cost of producing each onc is less and so, the selling price can
be less. The result is, say the Conscrvatives and Liberals. that
the customer pays less. They are afraid that the big nationalized
industries which do not have any competitors will bring an
increase in running costs—and, thercfore, higher prices. They
are also afraid that we will sce in Britain government by oflicials
with more power: than the ordinary person would like them

Perhaps the answer lies between what the Socialists say on

one side and the Conservatives on the other. It may be good

for the country to have some. of the largest industries
nationalized and the others left ‘frec” if they are being run
efliciently. Certainly, short of a revolution. it would be difficult
to nationalize everything—and we in this country do not like
revolutions.
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j-7. Mathematics in Cther Vocations

tany people who are not primarily mathematicians need to know
s Jot of mathematics, and use it almost every day. This has long
teen true of engineers and physicists. Now they find it necessary
to use' even more advanced mathematics. Every new project in air-

craft, in space travel, or in electronics cemands greater skills

groa the engineers, scientists, and technicians.

Mathematics 1s now being widely used and required in fields
guch &8s social studies, medical science, psychology, geology, and
susiness administration., Mathematical reascning and many kinds of
sathematics are useful in all these fields. Much of the use of
electronic computers in business and industry is carried on by

people who must learn more about mathematics and computing in order

to carry on their regular jobs. To work in many such jobs you are
required to know a lot about mathematics, lerely to understand
thesé"phases of modern life, and to appreciate them enough to be

g good citizen, you will need to know about mathematics, .



Euclid's theorem tells us that we have a good
supply of material for the construction of a
coherent arithmetic of the integers. Pytha-
goras’s thcorem and its extensions tell us that,
when we have constructed this arithmetic, it
will not prove sufficient for our nceds, since
there will be many magnitudes which: obtrude
thcmselves upon eur attention and which it
will be unable to measure; the diagonal of the
square is merely the most obvious example.

* The profound importance of this discovery
© was recognized at once by the Greek mathe-
- maticians. They had begun by assuming (in

accordance, I suppose, with the ‘natural’

~ dictates of ‘common sense’) that all magni-

tudes of the same kind are commensurable,
that any two lengths, for example, are mul-

~ tiples of some common unit, and they had
~-constructed a theory of proportion based on

this assumption. Pythagoras’s discovery ex-

. poscd the unsoundness of this foundarion, and

' led to the construction of the much more .

profound theory of Eudoxus which is set out
in the fifth book of the Elcments, and which is
regarded by many modern mathematicians as
the finest achievement of Greek mathematics.
This theory is astonishingly modern in spirit,
and may be regarded as the beginning of the
modern theory of irrational number, which
has revolutionized mathematical analysis and
bad much influence on recent philosophy.
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About two hundred ycars ago, Georges Buffon, a French
naturalist, suggested that a base twelve numeration system be
universally adopted. Although the basc twelve system is some-
times called the “dozen system,” we usually call it the drodecimal
system. Duodecimal is another word for twelve, just as decimal is
another word for ten. '

The fight for base twelve was carried into this century, and
duodccimal socicties sprang up all over the world. Some mathema-
ticians have urged the adoption of the duodecimal system which
would replace the present decimal notation,

meembale and fArm
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Ketric Units of Icngth N Po

The French mathematicians began by
calculating the distance n from the North
Pole to the equator on the meridian through .

U
Paris. For the basic unit of length they
1

e of this distance.

took 15550, 000 By R

defining the unit in this way the original | Meter= 10,000,000
distance could be measured again 1f the
sfandard bar of unit length were ever lost,

They named this new standard of length the meter and a
standard meter bar was carcfully preserved to assure uniformity
in future meter units. This definition of the meter was used
until October 15, 1960, when a new standard of the meter was
agreed upon by delegates from 32 nations. This defines the
meter in terms of the orange-red wave-lengths of krypton gas.
Precisely, one meter is now defined as:

1 meter = 1,650,763.73 orange-red wave lengths
in a vacuum of an atom of the gas
krypton 86,

- This new definition has the advantage that the unit is easily

measured on an interferometer anywhere in the world. Also,

‘;,ail°ws an accuracy of one part in one hundred million in
.coar measurements. Using the old standard bar of platinum-
};gdhmxan accuracy of one part in one million was the best

- gieeinable.



These modelling approackes have been subjected to severe
criticismis. First, as with all computable mode!s, there is a tempia-
tion to ignore data and to build on a serics of * what if* questions.

It has been remarked that although most of the 22 relationships
are plausible, not a single one has been tested empiricatly. The
populaticn model is criticized on the grounds that althoush it
might te appropriate for animal popuiations, it is gencrally
rejected by demographers and economists for human populations
living above subsistence level. Also, contrary to.Forrester's
asscrtion that population control of itself will not solve ali our
problems there are population policies, other than those he
studied, which will. A slow decline in population by itself will
relieve all the growth pains in werld dynamics. There are several

similar criticisms of other aspects of the modcl, and the reader is
referred to Nordham's trenchant critique., | :
However, the most clegant criticism is of a mathematical
nature, In such simulations and in the modecls the flow of time is
- arbitrary. Suppose therefore that we start from the ultimate
-steady states adduced by Forrester for the year 2000 and reverse
tbe runs. Will we now rcturn to anything like the conditioss of
_today's starting point? It has been shown by Curnow and Cole
that backtracking as a technique can determine four sources of
_error in dynamic controlling, viz. errors introduced by integration
procedures, crrors introduced by the imprecision of finite digital
. computing, transient disturbances and inconsistent starting con-
ditions. But the main’ criticism of these globx! models does not.
rest on back-tracking alone. If the flow diagrams are cxamined in
detail it can be seen that the fecdback loops all concentrate on the
"assumption of the finiteness of the availability of natural resources.
The models neglect the possibility of the rencwability of natural
resources. Even a minor change of the basic assumptions of the
global model will defer for centurics a predicted ccllapss of the
economic and material system, .

Mathematics began with commonsense and only gradually, over many
centuries, crystallizad into an *exact science’. Now it has become clear that it is
not so much a ‘science’ as an ‘activity' in which we cperate with symbols and

~diagrams in accordance with rules which we impaose ourselves. In other words,

moving from step Lo step in a picce of mathematics is very like making moves ina
bourd game. (The type of moves wall chanye from gime to game; compure, for
instance, mm, chess, po, ludo.) The basie difference in mathematics is that there
are immense numhers of possible movyes,
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6.15 Using Pythagoras’'s Theorem

_Example 1. In atriangle ABC, LACS = 90°, AC = 3mand

BC = 1-6 m. Calculate the length of A 8.
A
a= 16
. b=13
c="?
' Im)
Since £ ACBis 90", ¢ = a* +b?
= (1'6)* +3°
= 256+9 &
. = 11:56
So, ¢ = JT136 = 34
The length of ACIs34m.
Example 2. Ina right-angled triangle the hypotenuse is 5 cm and one of
the other sides is 4-8 cm. Calculute the length of the third
side.

m 8

b=48
. c= 5
aq=?

Since the triangle is right-angled,
a® = c2-b?
= 53-4-82 = 25-23-04
= 1-96
s0, a = J196 = 1-4
The length of the third side is 1-4 cm.

Question: Haow is a ratepayer netified of the rates he Bas to pay?

Answer: A rates demand notice showing the amount to be paid is sent by post. This

demand notice states the amount A
stales of the rates and sets out the meth ' whic
they can be paid: o4 by which

(1) By a single payment,

3 - ;
or (2) By a number of instalments (not moie than four) as fixed by the Council.

or (1) (l:lousc§! only. by monthly instalments by special arrangement with the
ounail,

\ -



I hardly suppose that, up to this point, any
reader is likely to find trouble with my lan-
guage, but now I am ncar to more diflicult
ground. TFor me, and I suppose for most
mathematicians, there is another reality, which
I will call ‘“mathematical reality’; and there
is no sort of agrecment about the nature of
mathematical reality among cither mathema-
ticians or philosophers. Some hold that it is
‘mental’ and that in somc scnse we construct
it, others that it is outside and independent of
us. A man who could give a convincing
account of mathematical reality would have
solved very many of the nost difficult problems
of metaphysics. If he could include physical
reality in his account, he would have solved
them all.

I should not wish to.argue any of these

questions here even if I were competent to do

so, but I will state my own position dogma-
tically in order to avoid minor misapprehen-
sions. I believe that mathematical reality lies
outside us, that our function is to discover or .
observe it, and that the theorems which we
prove, and which we describe grandiloquently

" as our “creations’, are simply our notes of our
observations. This view has been held, in one

form or another, by many philosophers of high
reputation from Plato onwards, and I shall use
the language which is natural to a man who
holds it: A rcader who does not like the
philosophy can alter the language: it will make
very little difference to my conclusions,
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The main spur to the invention of the difTerential calculus came from
the work in astronomy of Kepler (1571
-1630), another fascinating intellect.
Kepler, adopting the Copernican sys-
tem, had discovered that cach planet
moves in'an cllipse with the sun at'a
focus, S, and in such a way that the
line joining it to the sun swccps ‘out
equal arcas in equal times. It is clear mtuxmcly from the diagram that
this implics varying speeds, because the planet must travel faster when
nearer the sun, .

No onc had cxplained any of Kepler's three laws, which involve the
idea of variation as part of the general problem of morion. Newtédn
always rclied on his physical intuition to give him an insight into a
problem, and it was from this point of view of motion that he began
work on variation and variable speed in particular, He was the first
‘applicd’ mathematician, and so successful was he that his law of
gravitation remained unchallenged until Einstein’s work carly this cen-
tury. To discover the law (or rather, to prove it: like Archimedes, he
began with his suspicions) he needed the caleulus, and so he invented it.
Gravitation lcd to traditional applied mathematics, while the calculus
Jed an outstanding French school to ‘analysis’ and traditional ‘pure’
mathematics.



e
st gl AW

"} _j the lire which determines the half-plane.

© . standard Unit for Angles
Lo

X Just as there are standard units for measuring a line seg-
wont (inch, foot, yard, millimeter, centinetcer, meter) 80 are

- .xepe Standard units for measuring an angle. The one we shall

e is determined by a set of one hundred cighty-one rays
soayn from the same point.

e

These rays determine.l180 congruent
-gles vhich, together with their interiors, make a half-plane

The rays are

: _pered in order from O to 180, forming a scale. To each ray

.srrespends 2 number; that 1s, there is a number for each ray,
4 & ray for each number from O to 180. Not all 181 rays
e shown in the sketch below, but the ray corresponding to O

.4 -4 every tenth ray thereafter is drawn. One of these 180 con-
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A ment angles is selected as the standard unit.

The measurement
r:nis angle is called a-degree. The measure of this unit

'Y sgle, in degrees, is 1.

»
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Figure 7-6a.
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You can use a scale like this to measure an angle. Place
‘angle on the scalé with one side of the ansle on the ray
" corresponds to zero and the other side on a ray that corre-

, _.43 to a number less than 180. The vertex of the angle is
«;ed at the intersection of the rays.

‘e
o

Then the number which

co"respondq to that ray is the measure of the angle, in degrees.

The size or measurement of the angle is that number of degrees.

The symbol for "degree" is nOu ' mhipty-five degrees may
be written ng50n ‘ -



Mény attempts have been made to get the United States to
adopt the metric system for general use, Thomas Jefferson in tne
continental Congress worked for a decimal system of money and
measures but succeeded only in securing a decimal system of
coinage. When John Quincy Adans was Secretary of State, he
foresaw world metric standards in his 1821 “"Report on ieights and
leasures." In 1866, Congress authorized the use of the metric
system, making it legal for those who wished to use it. Finally,
in 1893, by act of Congress, the meter was made the standard of
length in the United States. The yard and the pound are now
officially defined in terms of the metric units, the meter and tht
kilogram.

A sudden change from our common units (yards, feet, inches,
ounces, pounds) to metric units would undoubtedly cause confusion
for a time. However, many pecple think that we, will gradually
change over to the metric system. Our scientists élready use the
metric system and people in most foreign countries use it éiso.

. e

t



Newton was the last of the magicians, the last great mind which looked out on
the visible and inteliecticl world with the same eves as those who began to
build our inteliectual inkeritance ten thousend years ago. (J. M., KEYNES, Lssays
in Persuasion) .

THis view of Newton suggests a very different figsure from the wise,
. high-domed, silver-haired (it turned grey at thirty) Newton of the por-
traits, a bulwark of the Age of Reason. But these were painted in the
latter phase of his life, when he was Master of the Royal Mint and
running it with great administrative skiil. Before 1696, in his rooms by
the Great Gate at Trinity, the Newton of the calculus and the theory of
gravitation was a very different person, ‘of the most fearful, cautious,
and suspicious temper that I ever knew' according to his successor in the
Lucasian chair of mathematics at Cambridge.

During this first phase of his life, when he rcad the riddle of the
heavens, he tried continuously to read other riddles; of health, of im-
mortality, even of the Godhead. His alchemy experiments went on, his
. assistant wrote, ‘about six weeks at spring and six at the fall when the
_-fire in the elaboratoryscarccly went out®. After this period came what we
should now call 2 mental breakdown, coinciding with the death of his
" mother, and he never afierwards quite recovered the incisive edge of his
mind. His friends induced him to leave Cambridge for London and his
career as an administrator began. He took with hith a great trunk packed
with records of his alchemical experiments and other mystical specula-
tions. He dicd with his secret heresy undisclosed; for when in the last
century the lid of the trunk was lifted, it appeared that he had aban-
doned belief in the Trinity since his early twenties.
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It is often very helpful to be able to express rational
numbers as decimals. Wnhen it is necessary to compare two
rationals that are véry close together, converting to decimal
form makes the comparison easier. The decimal form is particu-
larly helpful if there are several rational numbers to ‘be arranged
in order. For example, consider the fractions %%, %%, é, and
3 and their corresponding decimals 0.52, 0.5“,' 0.375, and

0.15, It is much easier to order the numbers when they are
yritten in decimal form. |

- T

pi

P



2.12 Muitiplication of Binomials and Trinomials

Question:
Answer:

Question:
Answer:

Remember:

Question:
Answer:

Remember:
$0

Question:
Answer:

Question:
Answer:

What can you write for (u + d)e. using the Distributive Law?
{a+ M = ac+be.
If you replace ¢ by (x+ 1), so that you get (a4 £) (x + ), what
does the answer become?
(a+DYx+1) = alx+3)+Hx+))

1 1 S S |

(u+d)., ¢ =a. ¢ +b. ¢
In the same way, what can you write for (3p 4 2)(2p + 5)?
Gp+2)2p+35) = IpQp+5)+22p+3)
R O G S I S
(@ +6)(x +¥) =a (x +))+Hx +1)
GCp+2(2p+5) = Ip(2p+51+22p+5) . .
N ST = 2 ISpdp 10 = 6p2 4 19p 4 10
What can you write for (3a+ 2b)(2u + 3¢)?
(3a+2h)(2u + 3¢) :

= 3a(2u + 3¢) + 2 2a + 3¢)

= 6u® +9ac + 4ab +6be ]
In the same way, what can you write for (3p+2)(4p* +p+1)?
Gp+2Ept+p+1)

= 3p(4p* +p+ D+2(4p2 +p+ 1)

= 12p*+3p2 +3p+8p2+2p+2

= 1203+ 1p*+5p+2

" Note. When you have expressed the product
(3p+2Ep P +p+ D asasum ol terms 1297 = Hp? + 5p 42,
you have expanded the product. and your answer

is called the expansion of the product.
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Necessity is the plea for every infringement
of human freedom. It is the argument of
tyrants, it is the creed of slaves.

William Pitt, 1788

The British police are world leaders in the
use of c:mputcrs and already rely heavily
on them for day-to-day detective work and
crime prevention. Mest provincial ferces
now have their own main-frame computers,
or, at least, the use of local authority
ones, and, in addition, they are linked by
VDUs (visual displayv units, or computer
terminals) to the big Police National Com-
puter (or PNC) in North London. Not
surprisingly, because of its size. power,
and its network of almost 800 VDUs
throughout the country, the PNC worries
those concerned with civil liberties who
fear its Big Brother implications.

Three smaller force computers have also
caused special forebodings: those of Tauy-
side, Thames Valley and Scotland Yard.
In Tayvside, a wide variety of court and
criminal records are held, togetlier with
SPC(U]aU\C criminal intelligence data, on
a computer shared with other. non-palice
users.

‘At Thumes Valley, an experimental
‘collator project’ invelves the collection
and storage of a vast amount of scemingly
random information, a ‘substantial pro-
portion’ of which, according (o the Pciice
Review, is ‘uncheched bunkum’ about
citizens fewer than half of whom have
criminal convictions. At Scetland Yard, the
Metropolitan Police have a computer of
enormous capacity and with national rami-
fications, about which they have been so
_secretive that a recent Home Office report
on data protection—the Lindop Committee
~specifically excluded it from a genceral

public reassurance about the use to which
police computers are put.

Even so, a great decal of information
about the Metropolitan Police computer
has now teen leaked, and agsistant commis-
sioner Juck Wilson confirmed for the first
time, on Man Alive, that at least some of
those lezks are accurate. As for the PNC,
the Home Office permitted Man Alwe
cameras to take a very rare glimpse at the
hardware and allowed reporter Jenny Cen-
way to extract a number of disclosures
about its use. But the Metropolitan Police
would rot agree to their computer being
filmed. and the Home Office, as is so often
the case nowadays, declined to provide a
spokesman for the studio debate.

The PNC is housed in a heavily guarded,
unmarked building in Hendon, and the
entrance to the computer rooms is safe-
guarded by a most impressive-looking and
elaborute system of security dcn(e‘;. The
idea is to give policemen on the beat any-
where in Britain almost instant access to
central. national files. The computer can
hold up 10 40 million records (equivalent
to one {or every adult in the country) and
handles 10() 000 messages a day.

Just what these messoges and records are
all aboat is still uncertain, According to
stalements made in Parliament by Home
Office ! nisters, the PNC is supposed to
deal onlyv in facts. Philip Knights, president
of the Association of Chief Police Oflicers,
confirin«d that this is indeed the case:

FPHILIF KNIGHTS ! It is not the purpose of the
PNC to contain what is known more cal.
loquizlly as ‘intelligence’. No, it is factls
that we store on the PNC.

JENNY conway: We've talked to people with
fno crivunel record who claim that their
political affiliations and, for cxample, wcm-

Y
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bership of organisations, have been included
in the compuler alongside information about
their cars. Is that true?

1 would say they were 100 per cent
fnaccurate. :

Totally inaccurate?

Totally inaccurate.

And that would be impossible, would it?

Oh, anything's possible, but that is not
what the PNC is for and it does not store
that sort of information.

But that seems to be at variance with the
views of Geoffrey Cole, who is head of
operations for the PNC. He agreed that
data stored on the computer is factual, but
concedes that:

GEOFFREY COLE: Some of the information is
recording suspicion by the police ...

JENNY CONWAY: If the information is gabout
suspicions, it can't be then classified as
Jactual. Do you agree?

Not entirely, no. It is a factual statement
of the suspicion. )

It may be factual that the police hare their
suspicions, but their suspicions may not be
grounded.

By the nature of suspicion, it may not
always be accurateeof course.

There are, thcrefore, some dangers that
information may be stored on the computer
about totally innocent people?

That's true.

TUE LISTENER 8 MARCIt 1879

the most importlant questions have not been
answered, Mr Wilson responded with this:

If you want a police scrvice to do a reason.
ably good job for you then you must trust
the police to do that job with the information
they have at their disposal . , . I've been
kceping secrets in the Metropolitan Police
for 33 years and I don’t think {independent
scrutiny] is necessary,

But Mr Wilson did reveal one secret: the
purpose of the Scotland Yard computer.
He confirmed that it contains five sections
of information, all devoted to police intel-
ligence. They relate 'to the Central Drugs
Intelligence Unit, the National Immigration
Intelligence Unit. the Fraud Squad (C6),
the Criminal Intelligence Squad (C11), and
the Special Branch. Beyond that he would
not go.

But Duncan Campbell, sclence and tech.
nology correspondent of the New States
man, went a great deal farther. It was Mr
Campbell's interest in national intelligence
gathering that earned him prosecution—
and virtual exoneration—in the notorious
ABC official secrets trial at the Old Bailey
last year. The Special Branch section, he
maintained, held 850,000 *nominal’® files,
and 300,000 ‘big dossiers ' on people back
in 1974. These files were said to be growing
at the rate of 2,000 new names a month:

R e s .«-—o-vspr"‘*"“-
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- So the computer does contain sup-
positional, unverified information. It would
be surprising if it did not, since police work
has always involved hunches. What is sur-
prising is that the authorities are so coy
sbout it. Indeed, the Lindop Committee sug-
gested in iis report that it is this
secretiveness about police computers which
has been the cause ‘of alarm rather than

‘In two or three years, the Special Branch
will have something like one and a half
million personal files on record.’

What is still not known publicly are the
criteria used by the Metropolitan Police
for regarding any individual as & criminal
suspect, a criminal assoclate, a political
risk or a prospective terrorist. Nor is it
clear by which criteria information about
the compulers themselves. Charles Read, a people and vehicles is stored on the Police
member of the committee, amplified the National Computer at Hendon. According
point: to Geoffrey Cole, who runs it:

I hate no reason to think that the police
are doing anyihing that I wouldn't want
them to do. I think, commpared with the police
forces in most other countries I've seen -in
action, they adhere to quite extraordinarily
high professional standards. I really don’t
think there is anything they need to hide,
and I think it is a great pity that they
pretend-that there is nothing to hide.

The information about people consists of an
index of all those wanted or who have been
reported as being missing from home, and
the names of all the people wha have a
criminal record, together with their finger.
prints. The vehicle information consists of
‘an index of all the owners of vehicles In
the country ([supplicd by the Drivers and

Vehicles Licensing Centre al Swansea] and
also vchicles stolen and suspected of being
invalved in crimes. . v

But Duncan Campbell says there are
sinister implications. For example, of the
120,000 records contained in the PNC's
Suspect and Stolen Vehicles file in 1976,
only 30,000 related to stolen vehicles. Three
{imes as many were therefore simply
‘suspect ’, and, according to Puncan Camp-
bell, most of them were, for undisclosed
reasons, ‘of long-term interest’ to the
police. These, he pointed out, are therefore:

pot vehicles which are stolen, nor even
nocessarily vehicles which are suspected of
‘use in a crime, which most people would
think a perlectly legitimate eategory for
Adnforpition, These are vehwles which the
valiols police furces sumply want sept under
surveillance and, as usuul. a large proportion
of surveillance applications are pui on by
the national intelligence squads, particuiarly
ihe Special Branch, who have the largest sct
of files of political afliliations and so on
anywhere in the country.,

Once again, Chief Constable Philip Knights

In return, the police point out that they
are worried that independent access to
their records might frighten away. infor-
.. mants (though this has not happened in
Sweden where a data protection authority
-already exists); and that, in any case, com-
puter records are generally more secure
than manual ones, since not evervone will
have access to a VDU, fewer still will know
the appropriate codes, and some computers
make a nole of the time and origin of
information requests.

However, the standard response from the
most heavily criticised force, the Metro-.
politan Police, embodies something of a
contradiction. On the one hand, according
to Jock Wilson, whose johinclwles responsi-
bitity for their computer, ‘ we have nothing
to hide whatsoever,’ and they have co-oper-
* ated ‘in full’ with every official request for
information, including the provision of 19
pages of written evidence anJd two hours
of oral evidence to the Lindop Committee,
On the other hand, when challenged by
Charles Read with the fact that most of
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. I8 emphatic in his denial:

JENNY CONWAY: Would it contain people who

were under surveillance?
PHILIP KNICHTS : No, it wouldn’t.

Would it contain information about people
. who hadn't actuelly committed any crime,
* .but informants heve sungcesied that they
may be about to commit crimes? .

That is'not the purpose of the PNC.

The net result of all these claims and
counter<claims is that the public must draw
its own conclusions. No doubt those who
habituully think of the police as Good Guys
will continue to find no cause for alarm,
while groups like the National Council for
Civil Liberties will continue to believe that
their fears are fully justified.

The police themselves are clearly irked
by the suggestion that they are not to be
trusted, and loathe the idea of what Jock
Wilson calls ‘yet another super-body to

“

i

say, “We're in charge, well run the’

place .’ Nor do they understand the objec-
tions to unfettered Home Office and police
use of their own computers. As West Mid-
lands chief constable, Philip Knights, put
ft: *There is nothing in my cupboard that
I mind anyone looking at. The only people,
it seems to me, who are worried are those
who have something to hide. I haven't, and
they can computerise my records 50 times
3 day if they wish.’
in truth, Man Alive’s researcher, Jill
Marshall, and producer, Paul Hamann,
toiled almost in vain for over six weeks to
find any firm evidence that innocent people
had suffered as a direct result of computer
data. They found one man who angrily com-
plained that he had been misidentified
(though on private, not police, records) as
2 member of the Communist party, but he
declined to appear on the programme
“because * television is reformist and I want
to see the total overthrow of ‘society’.
There was, though, one case which lent
weight to the suspicion that political
affiliations are sometimes tagged to, for
" example, supposedly innocuous information
about vehicles in the PNC. A member of
the NCCL, Roland Jeffery, was waiting for
a routine check on the ownership of his
motorbike after he had been invelved in
a minor accident:

I was waiting in the entrance lobby of the
_ police station, and from there you can't see
! the computer terminal, but you can hear
* conversations fairly ~well, After a brief
pause, somebody said, ‘Yeah, this scems
OK'; then one of the others said, * You want
to watch out here. We've got on¢ of those
civil liberties types.’

It Is an interesting, perhaps even a dis-
_turbing story, but it did not result in Mr
Jeffery suffering in any material way. If
anything, knowledge of this NCCL affilia-
tion scems to have prompied the police
to ‘watch out here’. At any rate, they
returned his driving licence and promptly
Bade him on his way,
Nonetheless, it s arguable thut the mere
. holding of this sort of information by the
police constitutes an invasion of privacy.
Certainly that is the view of Lord Gardiner,
the former lord chancellor: .
It you had on one computer everybody's
financial position according to informafion
© from the Inland Revenue; their health
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record, including the fact that they had
gonorrhoea when they were young, their
sgchoul and umiversity record, their data
credit position and so forth, nobody would
have a private life left, :

Rory Johnston, a journalist with Computer
Weekly. does not agree, In his view, much
of the disquict about computers is based
on ignorance of their uses and their
limitations: .
Records are simply an extension of people’s
minds. If you say, ‘ You can think what you
like but as soon as you write it down I'm
going to start controlling it’ that is illogical
and doesn’t make consistent law. You can't
control telephone numbers written down on
the back of cigarette packets, and so you'd
have to make some arbitrary decisions as to
which pieces of paper or which computer
records you're going to control. In any case,
if the police have got unfounded suspicions
about me on their computer, it doesn’t affect
me because they can't prosecute me without
evidence. The whole idea of our legal system
is that the police can suspect me until they're
blue in the face. The court is impartial; the
court will judge whether or not their suse
picions are founded. : -

It is a logic that does not impress Patricia
Hewitt of the NCCL. In her view, infore
mation about people’s politics, sexual pre-
dilections, or other details of their private
lives, can influence policemen in several
potentially damaging ways. The police can
(maliciously or with the best intentions in
the world) invoke a number of non-judicial
‘ punishments’, such as detaining, tailing
or harassing people. She cites as evidence
the 30,000 pecople who have not been
charged with any offence, but have been
detained, interrogated or expelled under
the ‘so-called anti-terrorist laws’'; or the
fact that the police can press or withhold
charges or, given any ambiguity in the
circumstances surrounding an arrest, can
bring charges of greater or lesser severity,
~—of suspicion under the Vagrancy Acts, or
of assaulting a police officer, perhaps,
rather than of resisting arrest:

We're obviously not opposed to the police
having information; we’re not opposed to
the police using computers—they're often
the most efficient way. What we're saying is

that there needs to be’ public debate and

publicly accountable controls over the kind
of information that is kepl and how i is
used.

Whether or not such controls will be intro-
duced remains t0 be seen. Those who want
them most and who feel most vulnerable
without them tend to be of the political
left and find it hard to generate widespread
public support. It is undoubtedly truc that
those citizens who are politically orthodox,
monogamous, heterosexual and law-abid.
ing have little personal cause for
alarm, at least in the short term. Moreover,
successive  British governments have
resisted the introduction of privacy laws
for many vears (lurzely at the insistence
of the Home «Oflice, according 10 lard
Gardiner). If precedence is anything to go
by, the Lindop Report could well suffer
the fate of the Younger Report on privacy
which preceded it. Like so much else, it
might simply be filed.

Nick Russ reported jor ‘Man Alive’
(BBC?2). ~ ,
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