
E • /' 

r , 

~, .:) ,..-: :' 

INVESTIGATING RADIONUCLIDE BEARING SUSPENDED 

SEDIMENT TRANSPORT MECHANISMS IN THE RIBBLE ESTUARY 

USING AIRBORNE REMOTE SENSING 

By 

Paula Ann Atkin 

Submitted to 

The Faculty of Natural Sciences, University of Stirling, October 2000. 

For the degree of 

Doctor of Philosophy 

This research was undertaken at the Department of Environmental Science, 

University of Stirling. 



ABSTRACT 

BNFL Sellafield has been authorised to discharge radionuclides to the Irish Sea since 
1952. In the aquatic environment the radionuclides are adsorbed by sediments and are 
thus redistributed by sediment transport mechanisms. This sediment is known to 
accumulate in the estuaries of the Irish Sea. BNFL Springfields is also licensed to 
discharge isotopically different radionuclides directly to the Ribble estuary. Thus there 
is a need to understand the sediment dynamics of the Ribble estuary in order to 
understand the fate of these radionuclides within the Ribble estuary. Estuaries are 
highly dynamic environments that are difficult to monitor using the conventional 
sampling techniques. However, remote sensing provides a potentially powerful tool for 
monitoring the hydrodynamics of the estuarine environment by providing data that are 
both spatially and temporally representative. 

This research develops a methodology for mapping suspended sediment concentration 
(SSC) in the Ribble estuary using airborne remote sensing. The first hypothesis, that 
there is a relationship between SSC and l37Cs concentration is proven in-situ (R2=O.94), 
thus remotely sensed SSC can act as a surrogate for \37Cs concentration. Initial in-situ 
characterisation of the suspended sediments was investigated to identify spatial and 
temporal variability in grain size distributions and reflectance characteristics for the 
Ribble estuary. Laboratory experiments were then perfonned to clearly define the SSC 
reflectance relationship, identify the optimum CASI wavelengths for quantifying SSC 
and to demonstrate the effects on reflectance of the environmental variables of salinity 
and clay content. Images were corrected for variation in solar elevation and angle to 
give a ground truth calibration for SSC, with an R2=O.76. The remaining scatter in this 
relationship was attributed to the differences in spatial and temporal representation 
between sampling techniques and remote sensing. 

The second hypothesis assumes that a series of images over a flood tide can be animated 
to provide infonnation on the hydrodynamic regime, erosion, and deposition. Spatial 
and temporal data demonstrated the complex controls on sediment transport. The data 
also showed the importance of microphytobenthos in the stabilisation of intertidal 
sediments, highlighting their importance in defining sources and sinks of radionuclides 
in intertidal areas. Water volume data from the VERSE model were combined with 
SSC from the imagery to calculate the total sediment in suspension for each flight line. 
This provided the figures used to detennine total erosion and deposition, which were 
then used to derive net suspended sediment and l37Cs influxes of 2.01xl06kg and 
604MBq per flood tide. 
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CHAPTER 1: INTRODUCTION 

1.1 PROJECT OVERVIEW 

Estuaries are important natural environments that are often nucleii for human leisure 

activity, such as water-sports, fishing, bird watching and walking. As such, the impact 

of industrial discharges into estuaries has been a problem in the past and is still a 

concern for scientific research and coastal zone management. Radionuclide 

concentrations in the marine and estuarine environments are one such case. To date, 

detailed scientific understanding of radionuclides in estuarine environments has been 

hampered by the inability to gain high spatial resolution data with regard to the 

transport of the sediment and the adsorbed radionuc1ides. This research addresses the 

feasibility of using airborne remote sensing to examine the suspended sediment 

dynamics of estuaries and radionuc1ide erosion, transport and deposition within 

estuarine environments. The work is undertaken using the Ribble estuary as a case 

study 

The Ribble estuary is located 85km south of BNFL Sellafield, a nuclear fuel 

reprocessing plant located on the Cumbrian coast. The radionuc1ides discharged under 

license from BNFL Sellafield since 1952 have adsorbed on to the fine sediments of the 

Irish Sea, where their fate is controlled by the hydrodynamic regime. The tidal 

asymmetry of estuarine environments results in a net inland transportation of sediment 

and the accumulation of radionuclides in the intertidal areas. In addition to the BNFL 

Sellafie1d discharge, the Ribble estuary is subject to a second authorised discharge of 

isotopically different radionuc1ides from the uranium fuel fabrication plant of BNFL 

Springfields. These are discharged directly into the estuary near Savick Brook. Whilst 



levels of the accumulated radionuclides are far below those that would raise health 

concerns, there is a necessary requirement to check the possible levels of radiation 

exposure to the general pUblic. For this reason BNFL regularly monitor the Ribble 

estuary for radionuclide concentrations with respect to the anthropogenic radiation dose 

to the public (BNFL, 1998). Thus it is of primary importance to BNFL, and other 

organisations such as the Environment Agency, that spatial and temporally accurate 

data can be obtained for the estuarine environment. 

Estuarine monitoring usually consists of the removal of sediment or water for laboratory 

analysis. This collection of spot sample data is a well-established technique, but it is 

also labour intensive, time consuming and expensive. Replicate samples are used to 

assess the magnitude of sampling errors but also increase the cost of sample collection 

and analysis. In addition to this, the data from sparsely spaced samples require spatial 

interpolation, which can introduce many errors, especially when the environment is 

spatially heterogeneous, such as an estuary. Spot sample data also take time to collect, 

which is unsuitable for use in highly dynamic environments such as an estuary. The 

result is data that can only provide limited information, as it is a time-averaged data set. 

Another method of investigating the estuarine environment is to use mathematical 

modelling. This is primarily a predictive technique and is often used in studies 

predicting the fate of chemicals in the environment. There are two problems particular 

to modelling. Firstly, the models are often over-simplified in order to reduce the 

computing time and secondly, the models are usually built, calibrated and validated 

using spot sample data. Thus, the potential for errors is even greater than for spot 

samples as there are the additional errors introduced by the assumptions of the model. 
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These problems illustrate a definite need for a tool that can provide spatially and 

temporally representative data in a dynamic environment at a comparatively low cost. 

One method that has the potential to meet the need for accurate spatial and temporal 

representation of the estuary is remote sensing. The technique uses digital images of the 

estuary obtained from sensors detecting reflected electromagnetic radiation. The data 

produced are gathered rapidly giving temporally representative data and, because the 

images are collected from above, either by aircraft or satellite, they provide a 

continuous spatial overview of the target. An image is composed of picture elements, 

or pixels, each one being equivalent to a single spot sample. This size of the pixel, or 

spatial resolution, is dependent on the type of sensor and/or altitude, however, even an 

image with a relatively coarse spatial resolution image, (10m), will provide far superior 

data to spot samples and interpolation. 

1.2 AIMs AND HYPOTHESES 

This investigation aims to develop a method to use airborne remote sensing to quantify 

suspended sediment concentration (SSe) and to use the image data to assess sediment 

transport mechanisms in the Ribble estuary. 

There are many previous studies indicating the existence of a relationship between sse 

and the reflectance of the water, and these are discussed in detail in section 2.5.2. 

However, the relationships are site specific and thus will need to be developed from first 

principles for the Ribble estuary. It is also known that there is a systematic relationship 

between the grain size of sediment and the associated radionuclide concentration, 

derived from deposited intertidal sediment. Therefore, this study hypothesises that there 

3 



is a systematic relationship between SSC and the adsorbed radionuclide concentration. 

This has not yet been shown to be true for suspended sediment and needs to be defined 

and characterised. Assuming this first hypothesis is true, the SSC predicted from 

reflectance can then be used as a surrogate for radionuclide concentration and SSC 

images can be calibrated to suspended radionuclide images. 

The second hypothesis states that a series of sequential remote sensing images can be 

used to derive information behaviour of the estuary over a flood tide. Images calibrated 

for SSC can be used to: 

1. Identify sources of sediment and radionuclide resuspension. 

2. Calculate budgets of sediment and radionuclides estuary wide for the flood tide. 

This should provide useful information to a sector of users to whom remote sensing data 

are generally considered inaccessible or too technical to be of use. 

1.3 THESIS STRUCTURE 

The thesis is structured to guide the reader through the development of the method used 

to define the relationships between SSC, reflectance and radionuc1ides, after which a 

general assessment of the imagery results and the potential uses of the data will follow. 

The thesis provides an introduction to the study area, an overview of previous studies 

and some background information on subjects relevant to this study. Chapter three 

follows this, containing a detailed description of all the instrumentation and laboratory 

methods used throughout the study. This infonnation is provided within a single 

chapter so the flow of subsequent chapters is not impeded by excessive technical 

infonnation. Prior to the remote sensing image acquisition it is fundamental that SSC 
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reflectance characteristics are established. In-situ characterisation of the sse was 

performed and the results of this are presented in chapter four. Subsequent laboratory 

work, investigating the possible variables of the sse reflectance relationship, follows 

the in-situ work. 

The rationale behind the collection of the image data and the details of the image 

processing techniques used are presented in chapter five, which ends with the final 

image calibration used to produce calibrated sse images. The actual sse images are 

introduced in a descriptive format in chapter six. This aims to introduce the reader to 

image interpretation and to highlight the main features of the estuarine flood tide. 

Chapter seven will then bring the image data into the realm of estuarine management by 

using the results to identify the sediment sources and the controls on erosion and 

hydrodynamics. The image data are also compared to the latest model of the Ribble 

estuary, VERSE, in an attempt to assess the potential of using image data to validate or 

enhance the model data. The two data sources are combined to produce figures for the 

total sse for each flight line and subsequent sediment budgets. The final discussion 

chapter brings together all aspects of the project to assess the potential contributions and 

problems of the data in context with other people's work. The potential for the use of 

this technique in future studies is then considered. The final conclusions are presented 

in a bullet point format as a final summary to the findings of the investigation. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

The following chapter aims to give an over view of published literature relevant to this 

project. The subjects reviewed are split into three broad areas, the Ribble estuary and 

estuarine characteristics, the sources and behaviour of radionuclides in the environment 

and remote sensing platforms and their application to estuarine systems. The key points 

resulting from this literature review are summarised at the end ofthis chapter. 

2.2 THE STUDY AREA 

2.2.1 The River Ribble 

The river Ribble rises at Newby Head Moss (422m) in North Yorkshire, from where it 

flows South before turning West through Preston and out into the Irish Sea. The solid 

geology around Newby Head Moss is mainly Carboniferous limestones (Mudge et al., 

1994) which provide alkaline headwaters with a pH of approximately eight (EA, 1997). 

As the river approaches the coast Permian sandstones (Mudge et al., 1994) over-lie the 

limestone geology. The river Ribble is one of the largest in Northwest England 

covering a distance of 110 km through a catchment area of 2182 km2 (EA, 1997). The 

average annual rainfall varies from 1775 mm at Newby Head Moss to 890 mm at the 

coast (EA, 1997). There are four tributaries of the river Ribble: 

1. The river Calder, which having run through industrial areas reduces the water 

quality of the Ribble. 

2. The river Hodder, which has an exceptionally high water quality. 

3. The river Darwen, which flows into the estuary at Penwortham. 

4. The river Douglas, which flows into the estuary west of Longton Marsh. 
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2.2.2 The Ribble Estuary 

The estuary (Figure 2.1) is approximately 30krn in length, from Lytham to the tidal limit 

at the M6 motorway bridge and 15krn wide at the mouth at Lytham and lies in 

approximately an East-West orientation. The tidal range can be up to 10m at Lytham 

(Mudge et al., 1994) and the average influx of water on an incoming tide is estimated to 

be 12,000 m3s·1 (Brown, 1996). The estuary is known to exhibit an asymmetrical tidal 

regime, which leads to a net landward transportation of sediment, and the position of the 

turbidity maximum in the estuary is known to depend primarily on freshwater flow 

rather than tidal magnitude (Burton et al., 1995). Salinity data obtained by Burton et al. 

(1995) also suggest that the estuary is well mixed on a flood tide but stratified on the 

ebb. The dominant mechanisms controlling the flux of sediment in the estuary vary 

both spatially and temporally, however, on a spring flood tide the landward 

transportation of sediment is controlled predominantly by tidal pumping (Lyons, 1997). 
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The History 

Around the tum of the century training walls were constructed to ease navigation to 

Preston Docks, at the time an important port for the Lancashire cotton and woollen 

industries. The walls were completed in 1913 (McDowell and O'Connor, 1977). These 

walls were constructed on the North side of the estuary mouth and led to increased 

sedimentation on the Southern side of the estuary and outside the training walls. This 

silting up of trained estuaries is to be expected as the flow per unit width in trained areas 

is increased and thus carries a higher sediment load than would be the case if the estuary 

was untrained. As flow decreases this sediment is then deposited. This occurs at the 

head of the estuary, outside the training walls, or beyond the end of the training walls as 

a sand bar formed during slack high water. In the case of the Ribble estuary extensive 

sedimentation has occurred outside the walls forming saltmarshes and outside the mouth 

as a sand bar (McDowell and O'Connor, 1977). Dredging of the trained channel ceased 

in the 1980s as trade declined at the docks. This has lead to further sedimentation 

within the main channel itself (Mudge et al' J 1994). Saltmarshes are continuing to form 

with 5.5 km2 known to have formed along the length of the estuary since 1949 (Brown, 

1996) and emergent saltmarsh currently visible at Lytham. 

The Sediment 

The nature of the sediment which has accumulated forming the saltmarshes and the 

inter-tidal mudflats is relatively homogenous in composition, that is 50-70% quartz and 

10-15% clay minerals. The composition of the clays are 50-60% illite with 20-30% 

smectite and kaolinite being only a minor component (Brown, 1996 Bryant et al' J 1996). 

This sediment is similar in composition to that sampled from a marine location but 
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markedly different from that of an alluvial source which was higher in quartz and the 

clay component was much higher in kaolinite. This indicates that the sediment 

accumulating in the Ribble estuary is almost purely of a marine origin (Brown, 1996). 

Sedimentation rates in the estuary have been estimated at between 15-120 mm yr-l, 

varying both spatially and temporally. These values are considered well within the 

normal range for a UK estuary (Mamas et al., 1995). Some areas of sediment in the 

Ribble are known to be more dynamic than other areas. A study by Mudge et al. (1997) 

found that the Freckleton, Savick Brook and Penwortham areas acted as a sink for fine­

grained sediments carried up on spring tides. At high river-flow these fine sediments 

are remobilised and deposited at Lytham. However, there tends to be no net loss of 

sediment from the estuary as a whole. The results of the study split the estuary into 

three sections: 

1. The upper estuary where fine sediment is stored during low river flows. 

2. The middle estuary where sediment is deposited and removed on a regular tidal 

basis. 

3. The lower estuary where fine sediment accumulates during high river flows. 

One of the key consequences of the accumulation of the sediment in the Ribble estuary 

is in the associated radionuclide originating from both BNFL Sellafield via the Irish Sea 

and BNFL Springfields which discharges directly to the estuary. This is discussed more 

fully in section 2.3.l. However, in a general context the Ribble estuary has other key 

environmental characteristics that make it a Site of Special Scientific Interest, (SSSij. 

The accumulated saltmarsh has undergone extensive reclamation to provide agricultural 

land, approximately 152 km2 in total (Mudge et al., 1994). The saltmarshes on the 

south of the estuary form England's largest National Nature Reserve which is 
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internationally significant for species such as whooper swan, wigeon, and the knot- and 

black tailed godwits. The lower Ribble and Hodder are important salmon rivers. 

Commercial fisheries for mullet, bass, elvers and shellfish are also active in the area 

however, the estuary itself has been over-fished of shellfish, which are now absent from 

this part of the Ribble (EA, 1997). 

2.2.3 Modelling the Ribble Estuary' 

Thus far, attempts to model the Ribble have tended to be unsuccessful and there maybe 

many reasons for this. One reason is likely to be the difficulty in collecting precise and 

accurate data in such a dynamic environment with which to build and validate the 

model, an example of this can be seen in the 2-D model produced by Burton et al. 

(1995). Data were collected from just three ground stations and the presence of the river 

Douglas was omitted completely. Other reasons may lie in the fact that the models are 

over simplified as in the one-dimensional MIKEll model (Atkins, 1993). 

The latest attempt to model the Ribble estuary, by Westlakes Scientific Consulting Ltd 

for BNFL, is nearing completion. The model is a two-dimensional model with a 

longitudinal resolution of 250m and a depth resolution of O.2m, comprising 

computational modules for non-cohesive sediment transport, cohesive sediment 

transport and hydrodynamics (elevation and velocities) (Gleison 1999). This model will 

be unable to reproduce the physical phenomena of axial convergence and lateral 

variations in sediment supply. 
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2.2.4 The Irish Sea 

The source of sediment accumulating in the Ribble estuary is the Irish Sea. The Irish 

Sea consists of several sedimentary basins resulting from the faulting of the 

Carboniferous, and Permo-Triassic rocks (Brown, 1996). These rocks have been 

glacially eroded and are overlain with tills. The changes in composition of the sea bed 

sediment are much more abrupt than in the North Sea. The muds in the Irish Sea are 

confined to two distinct areas, a belt parallel to the Cumbrian coast and in the deeper 

channel between the Isle of Man and Ireland. It is the mud banks off the Cumbrian 

coast that are thought to store a large proportion of the radionuclides discharged from 

Sellafield over the last forty five years (Cook et ai., 1997). Atlantic waters enter the 

Irish Sea mainly via St. George's Channel in the south with only a small amount 

entering via the Northern channel. The circulation is tidally driven and the water leaves 

through the North Channel via the south or north of the Isle of Man (Kershaw et ai., 

1992). The Eastern Irish Sea is markedly affected by freshwater input and this may lead 

to a weak stratification whereas the Western side is generally well mixed but contains a 

summer density driven gyre (Hill et al., 1997). 

2.3 ESTUARINE CHARACTERISTICS 

This section gives a brief review of the basic characteristics of estuaries, which have a 

direct relevance to the Ribble. Further information on these subjects can be found in 

most textbooks relating to the estuarine environment, such as Dyer (1979) and Olausson 

and Cato (1980). 
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The estuary is difficult to define in a global context, as there are limitless variations in 

external parameters such as geographical location, climate, river flow and tidal range. 

The common perception of an estuary is where a river flows into the sea but an estuary 

could also be considered as a river valley drowned by a sea level rise. The problem is 

complicated further depending on the temporal framework in which an estuary is 

considered, for example in geological terms an estuary is merely an ephemeral feature 

that develops, silts up and disappears in a very short geological time span. However, 

when considered on a short time scale, for example when modelling an estuary, it is 

generally considered as a steady state system that changes very little. For this reason the 

definition given by Fairbridge (1980) is somewhat convoluted. "An estuary is an inlet 

of the sea reaching into a river valley as far as the upper limit of tidal rise, usually being 

divisible into three sectors: 

1. A marine or lower estuary, in free connection with the open sea; 

2. A middle estuary, subject to strong salt and freshwater mixing; and 

3. An upper or fluvial estuary, characterised by fresh water but subject to daily tidal 

action." 

For the purpose of this project, which uses one rising tide as its temporal framework, we 

will define the estuary as the area of the River Ribble where fresh water/saltwater 

mixing takes place and tidal influence is apparent. This distance will actually depend on 

fresh water flow and tidal range, but with regard to the aerial data, will cover the stretch 

from Preston to Lytham St Annes. 
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2.3.1 Estuary Classification 

The classification of an estuary is as ambiguous as its definition and for all the same 

reasons. However, there are two methods that have come into common use. The choice 

of classification method depends whether one is describing an estuary as a physical 

geographical feature by physiographic classification or with regard to the circulation 

patterns and water body structures by hydrodynamic classification. 

The simplest method of estuarine classification is by physiographical description, that is 

a description of the shape of the estuary and its surrounding landscape. Although the 

physiographic classification method is very simple, it provides little information about 

the hydrodynamic behaviour of the estuary. The hydrodynamic method of classification 

of an estuary is more specific and requires field data for salinity. Details of the 

classifications are found in most estuarine textbooks, for example Dyer (1979). This 

classification technique has three main classes, 1-3, in addition to two further classes, 4-

5, representing the more exceptional circumstances, these are; 

1. The Salt Wedge Estuary 

2. The Partially Mixed Estuary 

3. The Well Mixed Estuary 

4. The Fjord 

5. The Negative Estuary 

Table 2.1 summarises the characteristics of the three key classes of estuary. 
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The Salt Wedge Partially Mixed Well Mixed 

River flow 2: Tidal flow River flow == Tidal flow River flow ~ Tidal flow 

Minimal mixing: by Some mixing: at interface Free mixing 

saline entrainment and bed 

Large variation in salinity Some variation in salinity No variation in salinity 

with depth. with depth. with depth. 

(-30 %0 in O.5m) (large lateral variation) 

[Pronounced halocline] [Halocline] [No halocline] 

e.g. e.g. e.g. 

Mediterranean Sea: Nile NWEurope: Thames and Wide shallow estuaries: 

Black Sea: Po, Danube Mersey Exe 

Table 2.1 A summary of features of hydrodynamic estuarine classification. (Open 
University 1991). 

This classification is purely qualitative and no estuary class is discrete. There is a 

continuous progression of estuarine features producing ambiguous estuaries that are 

difficult to classify. A common example of this ambiguity is where one estuary will 

exhibit different behaviour in flood and ebb or spring and neap conditions. 

A useful discussion on whether this method of qualitative classification is actually 

useful can be found in Pritchard (1989) which concludes that there is still some value to 

be gained from using these very simplistic approaches to classification, provided that 

caution is exercised. 

The Ribble can be physiographically classified as a coastal plain estuary. This is an 

estuary that is situated in a low relief landscape. It is shallow with a wide mouth and 
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generally funnel shaped. However, using the hydrodynamic classification, the 

classification of the Ribble estuary is more ambiguous. It is known to be well mixed on 

the flood tide and partially mixed, showing some stratification on the ebb tide (Burton et 

al., 1995). Throughout this study the Ribble estuary will be considered a well-mixed 

coastal plain estuary, as data are collected over a spring flood tide when no partially 

mixed characteristics are seen. 

2.3.2 Estuary Circulation and Controls on Sediment Transport 

Estuary circulation is a complex process governed predominantly by the tides, but 

freshwater-saltwater mixing also creates secondary density driven circulation patterns 

called residual currents (Dyer, 1973). These circulation patterns control the sediment 

transport within the estuary. The following sections provide an overview of some of the 

main influences on sediment transport that are of importance in an estuary such as the 

Ribble. 

Tides 

In an estuarine environment the symmetrical sinusoidal wave of the high and low tide is 

distorted to form an asymmetrical tide. This is evident as a short fast flood tide and 

longer, gentler ebb tide. This distortion appears because the speed of a shallow water 

wave is directly related to the square root of the depth of the water, thus the crest of the 

progressive tide wave (high water) travels faster than the trough (low water). The tides 

are further distorted by the shallowing of an estuary towards the tidal limit, hence the 

asymmetry is more pronounced in the upper reaches of an estuary than at an estuary 

mouth (Uncles, 1981). 
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This tidal asymmetry is particularly evident in the Ribble estuary where the flood tide is 

especially rapid, lasting less than three hours, followed by much longer periods of slack 

and ebbing water. 

Mixing 

Turbulence is the main mechanism by which heat, salt and momentum are transferred, 

heat and salt being transferred to a far lesser extent than momentum. Turbulence is 

produced when the flow interacts with either the bed or another flow. Where there is 

minimal turbulence, mixing can occur by the process of entrainment, a process found in 

salt wedge type estuaries. Shear stress between adjacent water bodies moving in 

opposite directions cause small internal waves. When these waves break, small 

quantities of salt are ejected into the overlying freshwater. Other forms of mixing 

processes include convection and advection, where buoyancy forces drive vertical and 

horizontal circulations, (Bowden, 1980). Mixing can also occur due to molecular 

diffusion and dispersion which are both much more applicable to point source pollution 

modelling and monitoring. 

Tidal Intrusion Fronts. 

Despite the numerous mixing processes within an estuary, there are distinct areas of 

unmixed water with a definite boundary between water bodies, this boundary is known 

as a front (Largier, 1992). In a stricter sense, a front can be defined as the positions 

where the ha10cline (or thermocline) of stratified water touches the surface (Open 

University, 1991). This frontal zone is a region where turbulent mixing is present and 

yet the distinct identity of each water mass is maintained, for example a river plume 

spreading out over saline water. The velocity of propagation of the front is 
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approximately proportional to the square root of the depth of the freshwater layer. 

However, the actual propagation velocity is generally less than that given by theoretical 

calculations due to partial mixing at the freshwater/saline interface. On a fast flood tide 

an outward spreading freshwater front is swept back into the estuary forming the 

characteristic V-shape of the tidal intrusion front, this V-shape being subject to 

deformation by estuary bottom topography. 

Axial Section 

Convergence 

j 
Tidal flow 

r + Dr ~iver~e fl.:= ........... ~ ...... 
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Figure 2.2 The mechanism oftidal intrusion. (Simpson and Turrell, 1986) 

Figure 2.2 demonstrates why the shape of the tidal intrusion takes the form of a V. At 

the front, the density current outflow is in equilibrium with tidal inflow, that is fresh 

water outflow (Ug) is balanced by the local component of the tidal flow (Ut) 

perpendicular to the front. 

U g = Ut(y) cas8 [2.1J 

Thus, the angle between the front and a line across the estuary, 8 is given as 
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[2.2) 

IfUgis assumed to be constant e is proportional to Ut(y). Thus, where Ut(y) = Ug, e will 

be zero degrees. This is the situation at the banks of the estuary and as the front 

approaches the centre, e approaches 90°. Density currents produced by stratification 

maintain the tidal intrusion front. As the flood currents increase the angle of the V of 

the intrusion becomes increasingly acute and the transverse component of the density 

circulation increases. This continues up to the point that there is an abrupt transition to 

axial convergence, which is caused by the breakdown of stratification due to vertical 

mIX mg. 

Axial Convergence 

The axial convergence front is often visible as a line of foam running up the axis of the 

estuary. This is a result of detritus and by-products of algal decay that are being pushed 

together by residual currents. However, the foam line can be dispersed under severe 

wind stresses and is not always well defined. West and Cotton (1981) observed the first 

direct evidence of this convergence in mid-channel by releasing rhodamine dye into 

mid-channel surface waters. Traces of the dye were found in upstream bottom water 

samples but not upstream surface water samples. Nunes and Simpson (1985) 

hypothesised that the axial convergence was caused by the distortion of vertical 

isohalines, by incoming saline flow allowing denser water to overly less dense water. 

This would lead to plunging at the centre of the v-shape intrusion and the subsequent 

establishment of a density driven, two cell transverse circulation. Evidence to support 

this hypothesis was observed directly during a study of the estuary of the river Conwy in 

North Wales. Measurements made using an inter-calibrated bridge of salinity probes 
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showed that salinity was consistently higher at the centre of the channel and small 

drogues released from a transect across the estuary ended up in a line along the centre of 

the estuary demonstrating the existence transverse currents. The data from the drogues 

implied that the transverse current velocities were only 20% of the axial current 

velocities. Further evidence of the details of the two-cell circulation was provided by 

Acoustic Doppler Current Pro filer (ADCP) data (Robinson-Swift et al., 1996) which 

were subsequently reproduced by modelling. Aerial survey of spring flood tides in 26 

UK. estuaries (Brown et al., 1991) revealed that in 15 cases axial convergence was found 

to be present with a further 6 cases identified through field observation. Thus axial 

convergence was considered to be typical of well-mixed shallow macrotidal estuaries 

and far more widespread than previously thought. 

Other sources of convergence include flow separation by obstacles where a boundary 

forms between the uninterrupted flow and a stationary horizontal eddy but axial 

convergence is distinctly along the axis of the estuary. The axial convergence front 

foam line is modified by shear stresses often producing a sinusoidal distortion and by 

bottom topography and bends (Nunes and Simpson, 1985). On an ebb tide in the 

Conwy estuary a weak divergence is observed (Turrell et al., 1996) where axial 

gradients are only a quarter of those on the flood. 

2.3.3 Estuarine Sediments 

The circulation patterns of water In an estuary are the governing factor in the 

distribution of sediment and associated pollutants but the properties of the sediment are 

also very important. It is essential to understand both the sediment behaviour and the 
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complex circulation patterns if the environment is to be managed effectively as a 

recreational resource or as a means for the disposal of effluent. 

Sediment Erosion 

Erosion of non-cohesive and cohesive sediment occurs differently. The flow required to 

transport sediment, the critical shear velocity, is related to the mass of the grains and the 

interacting forces with other grains, such as cohesion. Non cohesive sediments are 

transported individually by the flow. At lower flows they will slide and bounce along as 

bed load but as the flow increases they are lifted into suspension. 

Cohesion is an electrostatic attraction between individual grains that binds them 

together very strongly. This electrostatic attraction causes cohesive particles to form 

clumps when in solution, a process known as flocculation. Clay minerals present in 

only a small amount (5% -10% w/w) mixed in non-cohesive sand will alter the sediment 

properties significantly (Open University, 1991). The presence of biogenic films also 

increases cohesive properties of sediment by the production of extracellular polymeric 

substances that bind the sediment grains together (Paterson et al., 1998, Paterson, 1999). 

Thus, rather than transport of individual grains, the sediment forms floes. If the 

sediment has been compacted in any way, for example by exposure of mud flats at low 

tide, then the flocs can no longer just lift away at the appropriate shear velocity. Instead 

erosion tends to take the form of mass failure where large chunks of sediment are tom 

away. This requires very high shear velocities, therefore once deposited cohesive 

sediments are more difficult to erode, despite their small grain sizes. In an estuary, it is 

the cohesive muds that are particularly plentiful and the abundance of ions in the saline 

water, further increase cohesive strength and flocculation. 
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Deposition 

Deposition starts to occur when the velocity of flow decreases enough for the sediment 

to start to settle, with the heavier grains settling first. The suspended grains will start to 

settle once the shear stresses fall below the critical level, however it then takes time for 

each grain to reach the bed, the settling lag, which is larger for smaller grain sizes (Dyer, 

1979). Water in an estuary is very rarely static. As this is the case it is surprising that 

deposition of the smaller grains occurs at all. The smallest grains can only settle at the 

lowest flow velocities but the ability of clays to flocculate decreases the settling time, 

aiding deposition. There is also evidence that the presence of bio-films on the 

underlying mud increase the rate of deposition by sequestering clay minerals, (Black et 

al., 1998, Paterson, 1999). 

Temporally, deposition is also aided by the long-term variations in the tidal system. As 

the tides decrease in size from springs to neaps, deposition will occur at the tidal limits 

of the channel and tributaries. The position of the tidal limit will change with each tide, 

allowing substantial deposition and compaction to occur until the situation reverses and 

the magnitude of the tides increase, becoming an erosive environment. In flood 

conditions deposition also occurs on a saltmarsh environment where the vegetation 

substantially aids deposition by trapping sediment. 

2.3.4 The Ribble Estuary: A Summary 

It can be concluded that the Ribble estuary can be physiographically classified as a 

coastal plain estuary. Hydrodynamically, salinity and flow data (Burton et al., 1995) 

show that the estuary is well mixed on a flood tide and stratified and thus partially 
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mixed on an ebb tide. However, this variation between well mixed and partially mixed 

is also due to the asymmetry between flood and ebb tide flows, in addition to other 

factors such as tidal range and river-flow. It is known that the Ribble does exhibit a 

turbidity maximum (Burton et a/., 1995). This is a feature common to partially mixed 

estuaries, therefore it is possible that this is an occasional feature dependent on the 

magnitude of the tide and river flow. Lateral circulations due to Coriolis force, 

particularly the use of separate flood and ebb channels characteristic of well-mixed 

estuaries, are restricted in the Ribble by the construction of the training wall. For the 

purpose of this study, where the estuary is studied over the course of a single spring 

flood tide, it is assumed to be a well-mixed estuary. Sedimentation rates in the Ribble 

are estimated to be between 15 and 120 mm yr-! (Mamas et a/., 1995) which are typical 

of a UK estuary. Accretion rates for the Freckleton Brook area have been quoted to be 

>600mm yr-! (Beresford-Hartwell et a/., 1995) but this information was based on the 

lack of a maximum in the caesium profile at this location. Thus, the maximum caesium 

concentration from the peak Sellafield discharge was assumed to be at a greater depth. 

No consideration was given to the possible disturbance of the profile by sediment 

reworking. 

2.4 RADIONUCLIDES IN THE ENVIRONMENT 

2.4.1 Radioactivity and Environmental Sources 

Radioactivity 

The radioactive decay of an atomic nucleus is the result of the atom trying to achieve a 

more stable energetic state, this emission of energy can take three forms, alpha (a), beta 

(~) and gamma (y). 
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Alpha decay is the emission of a helium nucleus from the nucleus of the atom and is 

sometimes known as heavy charged particle emission, however, heavy charged particle 

emission also includes fission products. Examples of typical alpha emitters in the 

Ribble environment are 230Th, 232Th, 238U, 239+240pU and 241Am (Brown, 1996). Beta 

decay is the emission of a fast electron, negative or positive from the nucleus of the 

atom. Gamma radiation is the emission of a photon of electromagnetic radiation from 

the nucleus of the atom. This is necessary for the atom to stabilise itself after the 

ejection of an a particle or 13 electron. An ejection of gamma radiation will always be 

proceeded by either an a or 13 decay, however, an a or 13 decay is not always followed 

by gamma emission if no further energy stabilisation is necessary. Gamma radiation is 

emitted at distinct energies specific to the atom from which it is emitted, (Knoll, 1989). 

It is this property which gamma spectroscopy uses to identify which radionuclides are 

present in a given sample. For example, gamma rays with energy of 0.622 MeV would 

. d' h f l37C In lcate t e presence 0 s. 

Sources of Radioactivity in the Environment 

Radioactive decay is common to many naturally occurring elements, both in bio-systems 

and minerals, such as 14C, 4°K and 238U. Anthropogenic additions to the natural 

background radioactivity can occur via some industrial processes or as the release of 

anthropogenic isotopes from the nuclear power industry or atomic weapons testing. 

With respect to the Ribble estuary the focus of interest is the authorised discharge of 

radionuclides originating from BNFL Sellafield, 85 km North of the Ribble estuary and 

BNFL Springfields, which discharges directly to the estuary. 
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2.4.2 Geochemistry of radionuclides 

To assess the behaviour of a radionuclide once it is discharged to the marine 

environment one must understand the reactions and interactions that are likely to take 

place and any external factors causing variation in the reactions and interactions. For 

example, we need to know whether a radionuclide will remain in solution or adhere to 

suspended particulates and what the controlling factors are, such as sediment 

composition or solution composition. The following discussion examines the basics of 

these environmental interactions and the known geochemistry of some of the important 

radionuclides in the Irish Sea. 

The solid-water interface 

Small electronic charges on the surface of suspended particles leads to an accumulation 

of oppositely charged ions in a bid to conserve electrical neutrality. The interactions of 

these ions at the solid-water interface are a complex function of charged surface sites on 

the particle and the composition and pH of the surrounding solution. The chemical 

interactions are termed sorption of which there are three types (Krauskopf and Bird, 

1995). 

1. Surface precipitation, where the sorbed ions form a surface precipitate with a 

structure and composition different to that ofthe host mineral particle. 

2. Absorption, or co-precipitation, where solute species are incorporated into the 

mineral structure by diffusion or dissolution and re-precipitation. 

3. Adsorption, where there is an accumulation of aqueous ions on the mineral surface 

without a 3D molecular structure typical of a mineral. 
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Adsorption depends on the absolute and relative concentrations of both adsorbate 

(mineral) and adsorbant (aqueous ions) in addition to the ionic strength of the solution. 

Elements of the different chemical groups exhibit different adsorption behaviour. For 

the alkali metals, sorbility decreases from caesium to lithium, probably because lithium, 

although it is smaller in size, is such a strongly hydrated ion it is effectively larger than 

caesIum. 

Clay minerals 

The tenn clay can be used in two contexts: 

1. To describe the grain size fraction of a sediment, <4f.lm on the Wentworth scale 

(Open University, 1991), or <2J.1m in some older scales 

2. To describe a range of aluminosilicate minerals of specific composition and crystal 

structure. 

The two uses effectively overlap, as the clay mineral structures do tend to form the 

smaller particles of sediment. The structure of clay minerals are generally 

phyllosilicates which are sheets made up of silicate tetra- and octa-hedra with 

combinations of other ions. There are a few exceptions but these are rare. Examples of 

the various clay mineral structures can be found in most geochemistry textbooks, for 

example, Ellis and Mellor (1995). 
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2.4.3 Radionuclides in the Coastal Environment 

This project focuses on the behaviour of caesium due to its abundance and ease of 

detection. However, a summary of the geochemical behaviour of caesium in addition to 

some of the other key radionuc1ides found in the Ribble estuary is given below. 

Caesium 

Caesium is found in the environment in two isotopic forms, 134CS and 137CS with the 

latter form predominating. The following information relates to the 137CS isotope on 

which this project will focus. 137CS is a fission product, it is a normal trace element 

found in low-level waste from commercial reactors and is also released from weapons 

testing (Eisenbud and Gesell, 1997). The half-life of l37Cs is 30.17 years and radioactive 

decay is via a beta and gamma route as shown in Figure 2.3, showing 93.5% of caesium 

decay results in the emission of a gamma ray. 

J37es 

_____ --..,l.I:w.-22 MeV 

Y; 

Figure 2.3 Decay of 137 Cs, (Knoll 1989). 

In an aquatic environment caesium exists in a single oxidation state, Cs + and exhibits 

conservative behaviour, i.e. it is soluble and transport is controlled by water flow. 

Concentrations within the water tend to parallel salinity (Assinder et at., 1985), another 

indication of conservative behaviour. Caesium has a higher solubility in saline water 

than in fresh water (Eisenbud and Gesell, 1997). However, there is also evidence that 
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once bound to a particle, caesmm is effectively fixed (Hird et al., 1995) and 

consequently exhibits a less conservative behaviour. 137 Cs distribution within the Irish 

Sea has been determined annually since 1979 (Kershaw et al., 1992) and samples of 

deposited sediment from the Ribble estuary are analysed quarterly by BNFL (BNFL, 

1993). Details of these values for 137CS and other radionuclides found in the Ribble 

estuary and discussed later are given below in table 2.2. 

Concentrations of 137 Cs in filtered seawater from the Irish Sea were found to be 0.62-

0.66 Bq rl and the concentration of caesium on associated suspended sediments was 

approximately 0.12 Bq rl (BNFL, 1993). Another survey (Cook et al., 1997) found that 

caesium concentrations in filtered seawater from the Irish Sea were 0.2-0.343 Bq rl with 

the higher values being located along the coast in close proximity to BNFL Sellafield. 

The same survey found that all values for the associated suspended sediments were 

below the limit of detection and estimated that the loss of caesium from the Irish Sea via 

the North Channel was 86TBq yr-I. 

On discharge from Sellafield it is estimated that 10% of the J37CS becomes immediately 

associated with the sediments. Many studies have utilised sequential extraction 

techniques to establish the phase associations of 137 Cs within various sediments and 

soils. There is overall agreement that 137 Cs becomes irreversibly associated with the 

residual phase (Livens and Baxter, 1988a), which contains the clay minerals. The 

percentage of 137 Cs in the residual phase has been found to range from 81-86% in 

Solway Firth cores (McDonald and Jones, 1995) and up to 100% in Ribble intertidal 

sediment, (Brown, 1996). The Solway Firth core data showed little variation in 

association of caesium with depth. 
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Location 137CS l41Am l34mpa 228Th* l3UTh 232Th 

Lytham Boatyard 795 299 16475 52.5 175 46 
BNFL Outfall 373 198 14402 37 110 35 
Pen wortham Bridge 445 171 30215 37 110 33.5 
River Douglas 464 180 17390 42.5 114 37.5 
Hesketh Outmarsh (3/4) 585 279 78477 44.6 82 34.7 
Savick Brook 548 240 95030 60 256 49.5 
Warton Bank Msh. (114) 940 342 5000 60 200 60 
Freckleton 735 286 31650 54 212 40 
Pen wortham Park 703 336 116726 66 237 47 
Table 2.2 The concentrations of radlOnuchdes in the deposited sediments of the Ribble 
estuary, given in Bq kg- l

, dry weight. Average value of samples taken at quarterly 
intervals in 1992. Sample site switched from Hesketh Outmarsh to Warton Bank in last 
quarter (* = naturally occurring), (BNFL, 1993). 

In addition to sequential extraction, the association of l37Cs with respect to sediment 

grain size has also been thoroughly investigated. Livens and Baxter (1988b) found over 

47% of caesium was associated with the sediment fraction <2~m in Cumbrian intertidal 

sediments. In the Ribble estuary a good correlation was found between caesium 

concentration and the percentage of sediment less than 63~m over the whole length of 

the estuary (Mudge et al., 1994, Assinder et a/., 1997 and Rainey et al., 1999). 

The above studies are consistent with the fixation of caesium on clays. Laboratory 

experiments have shown that minerals other than kaolinite are responsible for this 

caesium fixation concluding that fixation must be due to illite or micas (Francis and 

Brinkley, 1976). It is worth noting that in Europe illite is the dominant clay mineral 

(Tyler, 1994) and as the release of caesium from kaolinite is eight times greater than that 

for illite, therefore, illite must be the fixing mineral. In the intertidal sediments of the 

Ribble estuary the main clay mineral is also illite with some smectite and only minor 

proportions of kaolinite and chlorite (Brown, 1996). This suggests a high potential for 

29 



caesium fixation in the Ribble estuary. A suggested mechanism for caesium fixing can 

be found in Hird et ai., (1995), and is briefly summarised here. 

On external or internal expanded sites, strongly hydrated, di- and tri-valent ions are 

sorbed in preference to caesium, which has a small hydrated radius. However, the larger 

hydrated ions are physically prevented from sorbing onto the internal sites due to their 

size leaving wedge sites specifically for caesium. Once caesium has sorbed onto an 

internal site the repUlsive forces between the layers are neutralised and, as the internal 

solution is more dilute than the bulk solution, water is osmotically expelled. The 

combination of these effects causes interlayer collapse. This collapse creates new 

wedge zones and the process is repeated. If enough caesium is present there can be total 

interlayer collapse, which prevents diffusion of the larger hydrated ions, effectively 

fixing the caesium. Davis and Shaw (1993) used Langmuir isotherms to infer that there 

were in fact two distinct sorption mechanisms, one for general non-specific sorption 

sites and one for the internal caesium specific sites discussed by Hird et ai., (1995). 

The behaviour of a radionuc1ide in an aquatic environment is often described in terms of 

~, the distribution coefficient. There are in fact two different expressions of .Ki, 

~(mass) and ~(volume) the volume distribution coefficient. ~(mass) is the ratio of "the 

activity of the radionuc1ide per unit mass of particulate fraction" to "the activity of the 

radionuc1ide per unit mass of dissolved fraction". ~(vol) is the ratio of "the activity of 

the radionuclide per unit volume of particulate fraction" to "the activity of the 

radionuc1ide per unit volume of dissolved fraction". Both will give different values but 

are related as ~(volume) equals approximately two and a half times the ~(mass) (Assinder 

et ai., 1985). To ease the calculation from field data, a hybrid form tends to be used 
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which uses the mass of the particulate fraction but the volume of the dissolved fraction, 

a far more practical approach giving units of litres per kilogram. The higher the .K! of a 

radionuclide the less conservative the behaviour. 

A range of values has been quoted for the .K! of 137 Cs. The International Atomic Energy 

Agency (IAEA, 1985) quote a .K! of 3x I 03 for 137 Cs in coastal waters. Turner et al. 

(1994) gives a ~ of 2.5xl02 for the Dee estuary, running along the South coast of the 

Wirral. In the Ribble the K<t of caesium was proportional to pH, indicating negatively 

charged adsorption sites and was also inversely proportional to sediment grain size. 

However, Gillham et al., (1980) performed laboratory experiments on a range of 

unconsolidated geological materials and found that .K!, whose values ranged over three 

orders of magnitude, does not correlate to sediment properties such as cation exchange 

capacity (CEC), cation concentrations, clay composition, organic content and pH. They 

concluded that the caesium K<t is influenced by the chemistry of the solution and not the 

solid phase. It is competition from other ions in solution that determine the K<t value. 

The main competitors for Cs + adsorption sites are NIL + and K+. In other laboratory 

studies, solutions of these ions were shaken with sediment and were found to remobilise 

up to 80% of the caesium adsorbed onto the sediment (Schulz, 1965). In the Esk estuary 

in Cumbria, ammonium and potassium ions were found to remobilise 50% of the 

caesium bound to the residual phase. Other ions that are less likely to compete for the 

same adsorption sites are Na+, Ca2+, Mg2+, and Ba2+. These ions were found to 

remobilise less than 10% of adsorbed caesium (Schulz 1965). 
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Thorium 

There are six naturally occurring isotopes of thorium, 227Th, 232Th, 228Th, 230Th, 231 Th 

and 234Th of which the latter four are the most abundant in the environment. The 

isotopes have half-lives ranging from 18.2 days e27Th) to 1.4x10lo years e32Th). In the 

environment all thorium isotopes exist in an oxidation state of Th4
+ and form relatively 

insoluble compounds (Bowie and Plant, 1983). Concentrations for some of the thorium 

isotopes in the Ribble estuary are shown in table 2.2, (BNFL, 1993). Due to the low 

solubility and non-conservative behaviour, the I«J is high at 2x 1 06 (IAEA, 1985). 

Sequential extractions performed on Ribble sediments (Brown, 1996) show that thorium 

is mainly associated with the organic phase of the sediment. For most of the thorium 

isotopes discharged from BNFL Spring fields the correlated association with grain size 

was found only in the upper Ribble estuary (Mudge et a/., 1994), above the Springfields 

discharge point. However, for 234Th no correlation with grain size was found. It was 

suggested that this was due to there being two sources, discharge and ingrowth from the 

decay of 234U. 

Protactinium 

Protactinium exists in two isotopic forms, 231Pa, daughter of 231 Th in the actinium decay 

series with a half life of 3.4x 1 04 years and 234Pa daughter of 234Th in the uranium decay 

series with a half life of 1.18 minutes (Ivanovich and Harman, 1982). Like thorium, 

protactinium exists only in a single oxidation state, Pas
+ and is insoluble (Scott, 1982). 

Concentrations of 234mpa for the Ribble estuary are given in table 2.2. Although the 

concentrations may seem large the short half-life must be taken into account. This short 

half-life and the local nature of the discharge are the reasons for a poor correlation with 

grain size in the Ribble estuary (Mudge et a/., 1994) and that accumulation within the 
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sediment is spatially and temporally unstable (Sanderson et al., 1993a). K<J for 

protactinium in coastal waters is lx106
, indicating non-conservative behaviour (IAEA, 

1985). 

Neptunium 

In a study on West Cumbrian soils and sediments, 237Np exists as Np 5+ in oxidising 

conditions, usually as Np02+ but reduces to Np4+ (Hursthouse et al., 1991). 

Concentrations of 237Np in the Irish Sea are generally in the range 0.01 - 4.5 Bqkg- I
, 

however, in the Ribble estuary concentrations of upto 13.3 Bq kg- I have been recorded 

(Assinder et al., 1991). This was believed to be the highest recorded environmental 

levels. Further work in the tidal limit region recorded concentrations of 5-8 Bq kg- I 

suggesting the 237Np had a non-marine source. 237Np is far more soluble than 

radionuc1ides such as plutonium and americium and it behaves much more like caesium 

than other transuranic elements (Hursthouse et al., 1991). The Kt for coastal water is 

given as 5x 1 03 (IAEA, 1985), much more comparable to the ~ of caesium as suggested 

by Hursthouse et al. (1991). 

Plutonium 

Plutonium is an anthropogenic radionuclide. The four isotopes with environmental 

significance are, 238pU, 239pU, 240pU and 241 Pu, with halflives of 87.7 years, 24130 years, 

6570 years and 14 years respectively (Eisenbud and Gesell, 1997). Of the four isotopes 

239pU and 240pu are the most abundant. These cannot be separated by alpha 

spectrometry and are usually combined as 239, 240pU. It is these isotopes which are 

generally being referred to when publications refer to "plutonium". In the environment 

I . . bl P 3+ P 4+ 5+ 6+ . th p utoruurn IS sta e as u , u , Pu and Pu (Kershaw et al., 1992), but In e 

33 



sediments of the aquatic environment exists mainly as Pu3+ and Pu4+ (Hamilton-Taylor 

et al., 1987). 239, 240pU concentrations associated with suspended sediment in the 

Irish Sea has been found to be in the range 7.2-62.3 Bq kg-1 (Cook et al., 1997). 

Sequential extraction studies have revealed that plutonium associates with the insoluble 

organic phase of soils and sediments (Cook et a/1984a and Cook et al., 1984b). This is 

in agreement with the good spatial correlation of plutonium with percentage total 

organic carbon found in the Wyre estuary (Aston et al., 1981). If the organic content of 

the sediment is low, as is often the case with marine sediments, plutonium will be 

mainly associated with the iron and manganese sesquioxide phase (McDonald and 

Jones, 1995). The grain size associations of plutonium are as for other radionuclides 

and in the Ribble, good correlations with percentage of the sediment less than 63 

microns was obtained over the whole estuary (Mudge et al., 1994). The solubility of 

plutonium is low, the International Atomic Energy Agency quote a ~ for coastal waters 

of lxl05 (IAEA 1985). However, this value does vary depending on the oxidation state 

of the plutonium. Pu3+ and Pu4+ both have a I«J of around 1 x 1 06 and Pu5
+ and Pu

6
+ both 

have a I«J of around lxl04 (Kershaw et al., 1992) thus the IAEA is an average I«J. At 

low salinities plutonium has a slightly higher solubility and therefore a lower I«J 

(McDonald and Jones, 1995, Sholkovitz, 1983). 

Americium 

241 Am concentrations in the Ribble estuary sediments can be seen in table 2.2. In the 

environment americium is of the form Am3
+ (McDonald and Jones, 1995) and forms 

stable organic complexes (Bondietti, 1981) and oxy-hydroxides (Turner et al., 1994). 

On discharge from Sellafield it is estimated the 95% of the 241 Am binds to sediments 

(McDonald and Jones, 1995) as it is highly particle reactive. This is indicated by the 
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excellent correlations between 241 Am concentrations and small grain sizes in the Ribble 

estuary (Mudge et al., 1994, Rainey, 1999). The KJ for 241Am in coastal waters is 2x106 

(IAEA, 1985) but has also been found as 5xl05 in the Dee estuary (Turner et aI., 1994). 

Both values are relatively high due to the non-conservative behaviour of 241Am. A 

particularly interesting feature of 241Am is that as a decay product of the more mobile 

241pu (MacKenzie et al., 1994), the inventory of americium in the Irish Sea sediments is 

increasing by 12 TBq yr-1 due to ingrowth (McDonald and Jones, 1995). 

2.4.4 BNFL Sellafield 

Sellafield is located on the Cumbrian coast approximately 85km North of the Ribble 

estuary. BNFL are authorised to discharge from Sellafield low level radioactive liquid 

waste by pipeline to the Irish Sea in addition to radioactivity in the form of dust, gases 

and mists via stacks to the atmosphere. There is also authorisation to discharge 

potentially contaminated liquid effluent via the factory sewer (Seaburn sewer) such as 

surface water run-off. Sellafield is a reprocessing plant for spent nuclear fuel but also 

contained on the site is the Calder Hall nuclear power station with four magnox reactors 

and the Windscale laboratories of the Atomic Energy Authority (AEA) Technology. 

The thermal oxide reprocessing plant (THORP) was completed in 1992 and meets very 

stringent discharge limits. Waste treatment plants on site are the site ion exchange 

effluent plant (SIXEP), which consists of an array of sand filters and clinoptilolite ion 

exchangers and came on-line in 1985. The enhanced actinide removal plant (EARP) 

came on-line in 1993. Both have substantially reduced waste inputs to the Irish Sea. 

Current radioactive discharges are less than one percent of the peak levels of the mid­

seventies. The handling of the liquid waste streams is dependent on the radioactivity 

levels. High level liquid waste is placed in interim storage and the vitrification plant 
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converts the waste into solid glass blocks that are stored on site. Medium level waste 

streams are routed to a salt evaporator and then treated by EARP prior to discharge. The 

low-level waste is discharged direct to the Irish Sea via pipeline from the following 

sources. 

1. Storage pond water from magnox decanning, principally contaminated with caesium 

and strontium. The pond water is continually replaced and passed through SIXEP, 

before being analysed for radionuc1ide content and discharged. 

2. Storage pond water from THORP has very low contamination levels and this is 

determined prior to discharge. 

3. Other liquors are held in tanks for determination of radioactivity levels and 

composition before discharge. 

4. Minor streams such as laundry effluent and surface drainage are monitored and 

discharged but contain little contamination. 

Daily monitoring of effluents consists of measurements on the THORP receipt and 

storage tanks and SIXEP waste and laundry and run-off for total alpha and beta activity. 

More detailed analyses of bulked samples are carried out fortnightly or monthly. 

Consumption of local produce, such as seafood and milk are continually monitored and 

consumption habits are kept under review. There is also regular monitoring of external 

radiation exposure from mudflats. BNFL routinely collect samples of seawater from 

shore locations near Sellafield and from a line parallel to the coast 1.5 miles offshore. 

Beta and gamma surveys are carried out on tide lines of the local beaches with extra 

surveillance after exceptionally high tides and severe storms. No solid waste has been 

disposed of at sea since 1982, however the option of sea disposal has been retained 

should it be required for disposal of large items as a result of decommissioning. 
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2.4.5 BNFL SpringfieJds 

BNFL Springfields is situated close to the North shore of the Ribble estuary and 

discharges liquid waste to the estuary via an outfall near Savick Brook (Figure 2.1). The 

main function of BNFL Spring fields is to produce uranium fuel and intermediate fuel 

products for the nuclear industry in the UK and abroad. Uranium is processed to 

uranium metal for use in magnox reactors or to UF6' which is then enriched at BNFL's 

Capenhurst site. The enriched UF6 is received back at Springfields for processing to 

oxide fuel for advanced gas cooled reactors (AGR) or light water reactors (L WR). 

Depleted uranium tri-oxide from the reprocessing at Sellafield is also received at 

Springfields for processing into UF6 for enrichment and tri-oxide fuel. Liquid waste 

from these processes is discharged to the Ribble estuary. Prior to discharge the effluent 

is sampled to check compliance and acidity adjusted. Although 234mpa can reach 

elevated levels in the estuary muds (Mudge et al., 1994) the majority of the dose is a 

result of J37CS originating from Sellafield. Indeed, only ten percent of the dose received 

from Ribble muds is due to BNFL Springfields discharges (BNFL, 1993). 

The group of people most at risk of receiving an elevated dose of radiation from 

anthropogenic sources is referred to as the critical group. The critical group will change 

over the years as consumer and leisure habits vary and the abundance of radioisotopes in 

the environment change. For example the critical groups for BNFL Sellafield derived 

radiation are shown in table 2.3. It can be seen that the dose to the current critical group 

is an order of magnitUde lower than the average annual dose from natural sources as 

given in table 2.4. For the Ribble estuary the most significant pathways for radiation 

exposure to the general public is via external exposure to the intertidal mudflats with the 
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critical group being houseboat dwellers on the River Douglas as shown in table 2.3. It is 

calculated that 137CS dominates this external dose, (Tyler, 1999). 

Dates Critical Group Approximate Dose 
1952-1970 Laverbread Consumers - (Porphyra Seaweed) 1 mSv yr-! 

1970-1985 Fish/Shellfish Consumers - (From Irish Sea) 2 mSv yr-l (Peak dose) 

1985- Houseboat Dwellers - (Ribble) 0.3 mSv yr:f 

Table 2.3 Variation in Sellafield critical groups and approximate peak dose, (BNFL 
1993). 

Radiation Source Dose Equivalent for 1992 (J,1Sv) 
Cosmic 260 
Earth Gamma Rays 350 
Radon Decay 1300 

Other Internal Radiation 300 

Total 2210 (=2.2mSvyr-T) 

Table 2.4 Natural background radiation sources and levels, (BNFL 1993). 

2.4.6 Current environmental monitoring 

Traditional monitoring techniques for radioactivity in the environment involve either 

collecting a sample for removal to a laboratory for processing and analysis or 

occasionally, in-situ measurement with a portable detector. The choice of method will 

depend on what is required, a complete inventory of the concentrations of individual 

radionuclides present or a general alpha, beta or gamma count rate. As with most 

ground based environmental surveys, the main concern is gaining a result that is 

spatially representative of the area studied. This requires mUltiple samples to be taken, 

increasing the workload and cost. Samples are regularly taken of soil, vegetation, water 

and sediments, all of which are spatially heterogeneous. Thus environmental 

monitoring programs must be both spatially representative and consistent in location 

and methodology, thus being temporally comparable. 
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A relatively recent environmental monitoring technique is airborne gamma 

spectrometry, which has been successfully applied by the Scottish Universities Research 

and Reactor Centre (SURRC), (Sanderson et a/., 1993a, Sanderson et a/., 1993b, 

Sanderson et aI., 1993c). This technique is relatively rapid and spatially representative 

with a ground resolution of between 200m and 500m approximately, depending on the 

flying altitude. This technique is ideal for purposes such as incident response. 

However, gamma rays within the water column are rapidly attenuated. This attenuation, 

coupled with the large spatial resolution of airborne gamma spectroscopy and the time 

taken to collect the data, make the technique less suitable for use in an aquatic area that 

is highly dynamic, such as the Ribble estuary. 

Further innovative research has shown the capability of remote sensing to successfully 

map the grain size of the intertidal sediment of the Ribble estuary at high spatial 

resolution using airborne Daedalus ATM (Rainey 1999, Rainey et a/., 1999). This 

technique has been extended to radionuc1ide mapping by using the well-established 

relationship between sediment grain size and the associated radionuc1ide concentration 

of the sediment. As a means of monitoring radionuc1ide distribution this technique is 

unsurpassed in spatial detail as no interpolation between spot samples is necessary. The 

general trends of radionuclide activities in the intertidal sediments of the Ribble estuary 

show a west to east increase in radionuclide activity in addition to the activity being 

inversely related to the proximity of the sediment to the main channel. 
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Figure 2.4. I37CS distribution of the intertidal sediment of Warton Bank, (Rainey 1999). 
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The results ofthe intertidal mapping of the outer estuary are shown in Figure 2.4. 

Statutory Monitoring of the Ribble Estuary 

BNFL, MAFF and the Environment Agency each implement environmental monitoring 

programs in addition to other university based studies which may be carried out 

sporadically. Details of the sampling programs can be obtained from the organisations 

concerned but a brief overview of the BNFL statutory monitoring program for the 

Ribble estuary is given here. The sample sites used by BNFL are listed below. 

1. Lytham 

2. Freckleton 

3. BNFL Springfields outfall 

4. 460m upstream ofBNFL Springfields outfall 

5. Savick Brook (old vehicle crossing point) 

6. Penwortham Bridge (boat mooring area) 

7. River Douglas (Becconsall boat yard) 

8. Hesketh Outmarsh 

Gamma dose is measured quarterly at sites 1-8. The measurement is taken 1m above 

the surface of the intertidal silt, halfway between the waterline and the high water mark 

at low water. At the same sites the beta dose is measured in contact with the silt. 

Gamma and beta contact monitoring is also carried out quarterly, between the high 

water mark and the waterline at low water, where flotsam and jetsam are monitored 

100m either side of the BNFL Springfields outfall and the confluence of Savick Brook 

and the river Ribble. Any item with a count greater than 1000 counts per second on a 
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1828B probe is removed for further investigation, any item with a count greater than 

500 cps is recorded. Fishing nets used in the Ribble are also monitored bi-annually 

using the same method. 

Sediment samples are taken quarterly from sites 1, 3, 6 and 7. These are analysed for 

134C 125Sb II0mA \06R 103R 95Z 60C d 40 . . S, , g, U, u, r, 0 an K. Any other gamma emIttmg 

radionuclide is noted. After a six month period the sample is re-analysed for 241 Am as 

234Th will have decayed thus reducing interference. 

Twice a year cockles from the Ribble are sampled to yield 1 kg of flesh. These are 

cooked and shucked but not cleaned and analysed for the radionuclides mentioned 

above in addition to 228 Ac. An annual bulked cockle sample is analysed for 237Np and 

other gamma emitting radionuclides present are noted. In addition to the monitoring of 

the estuary other analyses are performed inland on foodstuffs, grass, soil, ovine and 

bovine faeces, water and air quality. 

2.5 REMOTE SENSING 

Remote sensing is the technique of retrieving information about an object without 

contact. Generally, remote sensing is the acquisition of information from the 

electromagnetic radiation reflected or emitted from a surface. The theory on which 

remote sensing is based is that a resulting reflectance spectrum will contain information 

on all the interactions between the incident radiation, the surface from which it is 

reflected and the atmosphere through which it has passed. As many of these interactions 

are wavelength specific, the required information can be isolated or unmixed by careful 

42 



selection of wavelengths, or the combinations of wavelengths being measured. This 

optimisation to a particular application is often gained through laboratory based spectral 

studies. 

The advantage of remote sensing is the ability to obtain information over at large area 

instantaneously, this is beneficial with regard to both cost and data quality. For 

example, an image consisting of pixels with a ground resolution of 10m x 10m will have 

data equivalent to a sample taken every 10m on a grid. If the study area is tidal the 

temporal aspect becomes far more important. An image whose collection takes five 

minutes to cover an entire estuary will give spatial information on features that cannot 

be detected from a grid of water samples, which may take hours to collect and thus be 

temporally incompatible. 

2.5.1 Platforms and Sensors 

Remotely sensed data are obtained from a variety of platforms and sensors, each with 

associated advantages and disadvantages. The most familiar platform on which to 

mount a sensor would be the satellite. Details of the most commonly used satellites are 

given in table 2.5. By browsing table 2.5, the development of the satellite sensor is 

evident. Over time the availability of bands, the spatial and spectral resolutions have 

improved. The latest generation of satellite sensors has a greater flexibility by either 

having a large number of bands (e.g. MODIS) or full user programmability (e.g. 

MERIS). The advantage of satellite remote sensing is the large spatial coverage 

obtained for relatively little cost and a large archive of data. However, two main 

disadvantages of satellite imagery are the fixed and often poor spatial resolution and the 

temporal coverage. Satellite overpasses range from every six hours (A VHRR) to every 
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26 days (SPOT) with no flexibility regarding time or weather conditions. This is 

probably the most limiting factor for satellite data, especially in a temperate climate 

with a high probability of cloud cover such as in the UK. 

Table 2.6 shows the general specifications of the two most commonly used airborne 

spectrometers in the UK, both of which are flown by NERC Airborne Remote Sensing. 

The Environment Agency also regularly uses the CAS!. More detailed descriptions of 

the technical specifications will be given in chapter three, however the advantages of 

airborne remote sensing over satellite remote sensing are in the total flexibility offered 

by the airborne technique, both in spatial, spectral and temporal resolution. 
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Sensor Res. (m) Handset (nm) Repeat Notes 
Landsat 80m 500-600 (g) 16 Days Launched 1972 
MSS 600-700 (r) Scene Size = 185km x 

700-800 (r-nir) 185km 
800-1100 (nir) 

CZCS 825m 430-450 Launched 1978 
510-530 Swath width = 1566km 
540-560 Bands 1,2 & 4 = chlorophyll 
660-680 Band3=DOM 
700-800 Band 5 = vegetation 
1O.5-12.5~m Band 6 = Sea surface temp. 

Landsat 30m 450-520 (b) 16 Days Launched 1982 
TM 520-600 (g) Scene Size = 185km x 

630-690 (r) 185km 
760-900 (nir) 114 Scene = 98km x 98km 
1.55-1.75~m (ir) 
2.08-2.35~m (ir) 

120m 1 0.4-12.5gm (t) 
SPOT 20m 500-590 (g) 26 Launched 1986. 
1-3 610-680 (r) Days Scene = 60km x 60km 

790-890 (nir) Repeat frequency can be 
10m 510-730 (PAN) programmed for change. 

Stereoscopic capabilities. 
SPOT 20m 500-590 (g) 26 Launched 1997. 
4 610-680 (r) Days Scene = 60km x 60km 

790-890 (nir) Repeat frequency can be 
10m 510-730 (PAN) programmed 
1.15km 1.58-1.75~m (ir) Stereoscopic capabilities. 

Veg. sensor (ir) swath 
2200km wide. 

AVHRR local = 580-680 (r) 4 Per Launched 1970. 
1.1km 725-1100 (nir) Day Local scene =3000 x 

3.55-3.93~m (2 Sat.) 3000km 
Global = 10.3-11.3~m Global scene =25000 x 
4km 1O.3-12.5~m 6000km 

Network of 14 US weather 
satellites - NOAA. 

SeaWiFS Low = 402-422 1 Day Launched late 1997. 
4km 433-453 

480-500 
High = 500-520 
1.1km 545-565 

660-680 
745-785 
845-885 

Table 2.S Summary of Earth Observation Satellites. 
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Sensor 
Name 
Daedalus 
AADS 1268 
ATM 

CAS! (spatial 
mode) 

Spatial 
Resolution 
1.3m at 
1000m 
altitude 

Dependent 
on speed, 
focal length, 
integration 
time and 
altitude. 

Bands 
(nm) 
420-450 
450-520 
520-600 
605-625 
630-690 
695-750 
760-900 
910-1050 
1.55-1.75J.lm 
2.08-2.35J.lm 
8.5-13.0J.lm 
400-915 
Upto 18 bands, 
position and width 
programmable at 
1.8nm intervals 

Table 2.6 Summary of Airborne Sensors. 

Notes 

Swath at 1000m = l.4km 
716 pixel swath 
IFOV = 0.14° 
FOV = 85.92° 
3 scan rates 
Bands 1-8 on 1 detector array. 
Bands 9-11 on three separate 
detectors (N2 cooled). 

FOV=42° 
Swath dependent on altitude, 
512 pixels. 
Variable integration times and 
auto-adjusted iris. 

Spatially, satellite data are often inadequate when the study area is relatively small or 

very heterogeneous because the finer details are lost in the coarse resolution. Airborne 

remote sensing offers the ability to map an area with a much smaller pixel size. The 

larger file sizes generated by finer ground resolution can be offset by targeting data 

collection so there is no coverage of areas outside the immediate study site and data are 

not collected under cloudy conditions, as is often the case with large satellite images. 

Spectrally, the Daedalus ATM is comparable to Landsat TM with relatively broad 

bandwidths but has the advantage of a thermal infrared channel. However, the CAS! is 

far more flexible with four modes of operation and user programmable bandwidths and 

position. This allows the user to select the optimum wavelengths for the application and 

use pre-defined narrow bands, which enable the finer spectral details to be seen without 

losing the feature through averaging out across many wavelengths. This is possible with 
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the CASI as the internal optical mechanism is not a scanning detector coupled with a 

prism and diffraction grating as in many other spectrometers hut an array of charge 

coupled devices (CCDs) each one sensitive to a particular wavelength at 1.8nm 

intervals. The instrument is then programmed by selection of the individual CCDs to 

form a band-width. Temporally, the timing of data collection is of particular 

importance in tidal areas and the flexibility of the repeat frequency allows studies of 

changes over the short term such as tides in addition to other aspects such as spring/neap 

cycles and seasonal variability. 

The Choice for This Study 

The factors affecting choice of data source for this project are: 

1. The need for a handset that is suitable for the remote sensing of water quality 

parameters such as suspended sediment, chlorophyll and dissolved organic matter, 

sometimes referred to as Gelbstoff. 

2. The flexibility of specifying the data collection times to coincide with the start of the 

incoming tide with the high water shortly after noon in as near perfect weather 

conditions as possible 

3. The need for a rapid repeat sequence to allow the study of sediment transport and the 

development and movement of tidal fronts. 

4. A high signal to noise ratio due to the low reflectance of water. 

Airborne remote sensing was chosen for the temporal flexibility offered with respect to 

flight timing and location. NERC airborne remote sensing facility offers both CASI and 

ATM sensors and it was decided to combine the advantages of these sensors, the fully 

programmable bandset of the CASI and digital thermal channel of the ATM. 
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2.5.2 The Remote Sensing of Suspended Sediment 

Prior to the design of the laboratory and fieldwork a thorough literature search was 

necessary to assess the previous work regarding remote sensing of suspended sediment 

in coastal and estuarine waters. 

Suspended Sediment Concentration 

The one feature of the suspended sediment reflectance relationship on which all studies 

agree is the observation that reflectance always increases as suspended sediment 

concentration (SSC) increases (Bhargava and Mariam, 1991a, Chen et a/. J 1991), 

however, this appears to be the only area of agreement. 

The nature of the relationship used for the retrieval of SSC from reflectance varies. The 

most common relationship type appears to be the linear relationship (Novo et a/. J 1991, 

Choubey and Subramanian, 1992 and Han, 1997) but some studies required the data for 

SSC to be logarithmically transformed prior to linear regression (Chen et a/. J 1991). 

Multiple linear regression techniques gave better results than single band linear 

regression in a Severn estuary study using ATM data (Collins and Pattiaratchi, 1984). 

However, other studies have found using ratios of near infra-red reflectances (Hudson et 

a/., 1994) or combining pairs of ratios (Topliss et a/., 1990) reduces retrieval errors. 

Differentiation of spectra has also been used to quantify suspended sediment as there 

has been shown to be a strong negative correlation between the derivative spectra and 

SSC (Chen et a/. J 1992). Goodin et a/. J (1993) stated that the first differential removes 

the reflectance due to water, the second removes reflectance due to sediment leaving the 
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reflectance due to chlorophyll and thus used the derivative spectra as part of a three­

component model. 

There are many reasons why so few of the studies agree, as each study uses a different 

range of suspended sediment concentration, sediment type and wavelengths to correlate 

to SSC. Each of these factors affects the shape of the suspended sediment reflectance 

relationship. In general, the studies that use a low SSC range find the relationship to be 

linear such as Aranuvachapun and Le Bond, (1981) who used a 0-25 mg r1 range and 

Choubeyand Subramanian (1992) who used 11-45 mg r1 but, as with all generalities 

there is the exception. Bhargava and Mariam (1991a and 199b) used linear correlations 

with a concentration range of 0-1280 mg rl. Most studies find that the best wavelengths 

for retrieval of SSC data are those in the red and near infra-red for example, Harrington 

et a/. J (1992) used Landsat MSS band 3 (700-80Onm) and Topliss (1986) found the best 

correlations with Landsat MSS band 4 (800-1100mn). The laboratory-based studies 

have been able to select optimum wavelengths in more narrow bands than the studies 

using satellite data. However, the majority of the wavelengths chosen were still in the 

red near infrared region. For example 720-740mn and 820-830mn (Chen et al. J 1992), 

anywhere between 700mn and 900nm (Bhargava and Mariam, 1991a), 675nm (Topliss 

et a/. J 1990) and either 827, 830 or 847nm for clear water or 767, 769 or 770nm for 

algal laden water (Han, 1997). The reason most of the wavelengths chosen are greater 

than 700nm is because at 700nm interference from dissolved constituents such as 

dissolved organic matter and chlorophyll decreases to zero, (Hudson et a/. J 1994). 

Hence, selecting wavelengths greater than 700mn removes any reflectance due to 

dissolved organic matter and chlorophyll correlations would be expected to improve. 
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Other features of the suspended sediment reflectance relationship on which several 

studies agree is the way in which the spectra increase in the shorter wavelengths first, 

and when these wavelengths become saturated, that is stop increasing as SSC increases, 

the longer wavelengths will continue to increase (Harrington et a/ 1992, Novo et a/., 

1991 and Choubey and Subramanian, 1991). This shift in sensitivity of the relationship 

from the shorter to the longer wavelengths as the SSC range increases is demonstrated 

by a shift in the wavelength at which the maximum reflectance occurs. This is evident 

in studies by Chen et al., (1991), Topliss et al., (1990) and Han and Rundquist (1996). 

Han (1997) demonstrated that this shift occurred for sediment free water but was not 

detected when the experiment was repeated using water containing a quantity of algal 

material. 

Within the concluding paragraphs of many of the papers whose data were obtained in a 

field situation the discrepancies between the predicted SSC and gravimetrically 

determined SSC is attributed to variations in sediment grain size distribution (Choubey 

and Subramanian, 1992) or sediment type (Collins and Pattiaratchi, 1984). This implied 

that the laboratory studies needed to incorporate experimental data to assess the 

magnitude of these effects. 

Grain Size 

Experiments incorporating sediment of different grain size fractions revealed, that for a 

given SSC, the reflectance is inversely proportional to the grain size, (Novo et al., 1989, 

Bhargava and Mariam, 1991a and 1991b). There was found to be a ten-fold increase in 

reflectance when using a range of sediments ranging from coarse to fine (Bale et a/., 

1994). One reason suggested for this increase in reflectance with decrease in grain size 
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(Ferrier, 1995) was that the smaller particles tend to be sheet-like clay minerals which 

align with least resistance to the flow which leaves the largest surface as the reflecting 

surface. One study, (Bhargava and Mariam, 1991a) found the effects due to grain size 

to be equally effective over the entire 500-1000nm range and yet in another paper 

Bhargava and Mariam, (1991b) stated that the effects are most pronounced in the 700-

900nm wavelength range. Topliss (1986) and Bale et al. (1994) both state that it is the 

particle size which is dominant and thus affects the spectral shape to a greater extent 

than SSe. However, only one study (Bhargava and Mariam, 1991 a) actually produces a 

multiple linear regression equation which has both sse and mean grain size as 

independent variables despite the general acknowledgement of the importance of the 

grain size. Bale et al., (1994) attempted to predict the grain size from reflectance using 

the target area calculated assuming a spherical particle, at 804nm. A plot of reflectance 

verses target area put all grain size fractions on the same line with an R2 = 0.89, 

indicating that 804nm could be used to retrieve information on grain size. 

Unfortunately when the equation was used in reverse to predict grain size the results 

were less accurate than expected. Rimmer et al., (1987) also examined mean grain size 

as a parameter in the field but failed to find a correlation with ATM bands 2 and 3. Han 

and Rundquist (1996) highlighted other differences in spectral behaviour between fine 

and coarser sediments, they showed that the correlations were consistently higher for 

finer sediments. From this they concluded that the finer sediments were the primary 

scatterers. 

Sediment Type 

The effect of the sediment type, that is the overall colour of sediment, is more difficult 

to quantify due to the range of possibilities. Although it is known that sediment colour 
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does affect the spectral reflectance (Bhargava and Mariam, 1990, Chen et al., 1991) 

quantifying the effect proved problematic. The conclusions regarding the magnitude of 

these effects may depend on the sediments used during the comparision experiments. 

Bhargava and Mariam (1991b) found that both grain size and sediment type were more 

dominant in controlling the spectra than SSC but they used highly contrasting 

sediments, white kaolinite and black cotton soil. Choubeyand Subramanian (1991) also 

concluded that sediment type was the dominant factor controlling spectral shape. 

However, Bale et al., (1994) found that a red sediment from the river Exe and a 

grey/brown sediment from the river Tamar give very similar spectral shape when similar 

grain size fractions were used and concluded that the spectral shape was controlled by 

grain size and not sediment type. A further study (Hudson et ai., 1994) combined the 

sediments of the Exe and the Tamar with sediment from the river Humber and 

concluded that reflectance in the near infrared was dependent only on SSC and not 

sediment type. 

From the above discussion it can be seen that the reflectance spectra resulting from 

suspended sediment is far more complex than would be initially anticipated and that the 

spectral shape and magnitude is dependent on the suspended sediment concentration, 

grain size distribution and overall sediment colour. To be able to retrieve reliable 

quantitative information on the concentration of suspended sediment, the sediment type 

and grain size distribution must be constant or included as an independent variable. 

Salinity 

One of the most obvious components of the water column that will vary over the length 

of an estuary is the salt concentration or salinity. The standard range which can be 
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expected along a UK estuary is approximately 33 practical salinity units or parts per 

thousand (0/00) (Open University, 1989). A solution of salt water is colourless, however, 

an increase in density with salt concentration may alter the optical property of the water. 

This possibility suggests that the salinity component cannot be ignored. Khorram 

(1982) for example successfully mapped salinity in the San Francisco Bay Delta using 

Landsat MSS. Errors in the relationship were blamed on bathymetry implying that very 

low suspended sediment waters, called CASE 1 waters, were used for this study. At no 

point in this paper are the possible effects of suspended sediment mentioned. In 

addition to this, the paper states that no visual judgement could be made and yet the 

MSS bands used were mainly in the visible part of the spectrum. It is known that 

salinity is often inversely correlated with dissolved organic matter (or Gelbstoff) 

(Rimmer et a/., 1987). Perhaps this was the parameter that was actually being defined? 

The study by Rimmer et a/., (1987) also found high correlations between ATM bands 7 

and 8 and salinity in Swansea Bay but this was over a salinity range of just 0.6 parts per 

thousand. One other study mapped salinity with some success using SAR (Muller­

Karger, 1992) but the ground resolution of the SAR is very low making it more suitable 

for use in the open ocean environment. None of the published studies has produced 

controlled laboratory experiments to validate that the relationships found were actually 

representing salinity, thus further work is required in this area. 

Chlorophyll and Dissolved Organic Matter 

Chlorophyll is the main feature of many studies as primary productivity of a water body 

can be used to assess the overall water quality and lead to the possibility of monitoring 

blooms of algae, of which some species have toxic effects. Chlorophyll concentrations 

have been retrieved using a variety of techniques. Gower et a/., (1984) used eigenvector 
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analysis to improve on previous studies using blue/green ratios. Goodin et al., (1993) 

found that derivative spectra could be used with the value remaining after the second 

derivative of continuous spectra being correlated to chlorophyll concentration. 

Chlorophyll exhibits a solar stimulated fluorescence at 685nrn. This feature of the 

chlorophyll spectra was exploited by Gower and Borstad, (1990), to quantify 

chlorophyll concentration. This technique uses triangulation methods to measure the 

height of the solar stimulated fluorescence peak at 685nrn above a base line interpolated 

from surrounding wavelengths. The height of this peak is then correlated to chlorophyll 

concentration. 

In relation to the retrieval of suspended sediment concentration data, the reflectance of 

chlorophyll must be considered. Chlorophyll absorbs strongly at 450nrn and 67Onrn, 

decreasing reflectance in the blue and red giving a green appearance (Lillesand and 

Kiefer, 1994). If green wavelengths were used to retrieve suspended sediment 

concentrations additional reflectance from chlorophyll would lead to an over-estimation 

of sediment (Bhargava and Mariam, 1991a). The presence of chlorophyll does not alter 

the nature of the suspended sediment reflectance relationship but does affect the 

locations of the wavelengths of best correlation (Han, 1997). Han (1997) found that the 

wavelengths of best correlation for clear and algal-laden waters were around 830nrn and 

770nrn respectively, a shift of 60nrn in wavelength. Studies have shown that to retrieve 

suspended sediment concentration without any interference from chlorophyll, one must 

use wavelengths greater than 700nm and 750nrn (Hudson et al., 1994, Bale et al., 

1994). This is clearly demonstrated by Hudson et al. (1994) as can be seen in Figure 2.5 
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Figure 2.5 The effects of chlorophyll and dissolved organic matter on the reflectance 
spectra ofSSC, a) Varying sse, b) Varying dissolved organic matter with constant SSC 
and c) Varying chlorophyll with constant SSC. (Hudson et at., 1994). 

Dissolved organic matter will also interfere with the reflectance spectra from suspended 

sediment but like chlorophyll, interference can be avoided by selecting wavelengths for 

suspended sediment concentration retrieval above 750nm (Bale et at., 1994, Hudson et 

ai., 1994), see figure 2.5. Dissolved organic matter absorbs strongly at shorter 

wavelengths and is nonnally measured using ultra-violet wavelengths or at higher 

concentrations in a laboratory using fluorescence (Bricaud et al., 1981). 
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2.5.3 External Effects on the Sensor 

In addition to considering all the components of the water column, other possible 

variables within the environment must be considered. These include the geometry of 

the sun and sensor to the target, the atmosphere between the sensor and the target and 

the substrate of the water column. 

Geometry 

Geometry can effect remote sensing data in two ways, firstly due to the alignment of the 

sensor with the light-source or sun and secondly due to the alignment of the sensor to 

the target. 

When analysing large multi-temporal data, sets one of the corrections, which must be 

considered, is a solar zenith correction (MacFarlane and Robinson, 1984) which corrects 

for the variation in solar elevation angle between images. Satellite images are 

normalised to the solar zenith, when the sun is at 90° to the horizontal plane (Lillesand 

and Kiefer, 1994). This is achieved by dividing the radiance value by the cosine of the 

angle of the sun from the solar zenith, or by the sine of the angle above the horizontal 

plane (Lillesand and Kiefer, 1994), both of which give identical results. Laboratory 

results (Novo et al., 1989) showed that in a laboratory experiment water reflectance was 

partly a function of solar zenith and a variation in solar zenith between 0° and 70° 

produced a 9% increase in reflectance. 

The viewer geometry also affects remotely sensed data particularly the sensitivity of the 

suspended sediment reflectance relationship (Novo et al., 1989). The strength of the 
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suspended sediment reflectance relationship decreases as the sensor moves off nadir. 

In-situ studies on the River Tay estuary (Ferrier, 1995) found that for turbid water, as the 

viewing angle moves off the nadir, the reflectance increases. 

The implications of this are that for laboratory and field studies within this project the 

sensor-viewing angle must be kept constant, preferably at nadir in order to achieve the 

strongest suspended sediment reflectance relationship. The solar zenith angle variation 

must be kept to a minimum or corrections must be applied. 

The Atmosphere 

The radiance recorded by a sensor is a function of the incident radiation, the reflectance 

from the target surface and the atmosphere between the sensor and the target. The 

atmosphere affects what the sensor sees in two ways, increasing brightness by scattering 

and reducing brightness by attenuation (Lillesand and Kiefer, 1994). 

There are three types of scatter, Rayleigh, Mie and non-selective. Rayleigh scatter is the 

primary source of haze and is dominant at the shorter wavelengths with the effects being 

proportional to ')..-4, resulting in a blue sky. The incident radiation interacts with the 

atmospheric molecules that have a diameter less than the wavelength of the incident 

radiation. Mie scatter occurs when radiation interacts with particles that have a 

diameter similar to the wavelength of the incident radiation such as dust and water 

vapour. Mie scatter becomes more significant in overcast conditions. There is also a 

non-selective scatter that occurs due to interactions of radiation with particles greater in 

size than the wavelength of the incident radiation. This is non-selective with respect to 

wavelength, which is why fog appears white. All types of scatter add brightness to 
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remotely sensed radiance values. In addition, there are constituents within the 

atmosphere which act as absorbers, thus reducing the brightness of remotely sensed 

radiance. The most efficient absorbers are water vapour, carbon dioxide and ozone. All 

of these occur at very specific wavelengths. 

Atmospheric Correction 

The atmosphere has a considerable effect on remotely sensed data, thus ideally an 

atmospheric correction technique that would produce the actual target surface 

reflectance should be used. As yet there is no universally used atmospheric correction 

technique applied routinely to remote sensing data. There are three main methods of 

atmospheric correction that are frequently used, the histogram minimum method, 

regression and radiative transfer models, (Campbell, 1996). Essentially all techniques 

rely on the fact that the near infrared wavelengths are largely free of atmospheric effects, 

(Jensen, 1986). 

The histogram minimum method is more commonly referred to as dark pixel 

subtraction, in which dark pixels are usually selected from an inland waterbody where 

there is little reflectance in the near infrared. Any reflectance from these pixels is 

assumed to be due to atmospheric effects and the histograms are adjusted to zero 

accordingly. 

Regression is a more complex variation of the dark pixel subtraction method, which 

involves the calculation of a bias by plotting each band against the near infra-red band 

(Jensen, 1986). The intercept is than taken as the bias, this method assess the 

contribution of the atmosphere to each band and takes account of the wavelength 
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dependence of atmospheric effects. A good example of this can be seen in Chavez, 

(1988). Jensen (1986) states that despite being more complex this method is not 

necessarily better than the basic dark pixel subtraction as both methods are only first 

order corrections. 

The most complex atmospheric correction method involves producing models of the 

physical behaviour of radiation as it travels through the atmosphere. These are the 

radiative transfer models. The radiative transfer model is generally more accurate 

(Jensen 1986) but has the disadvantage of being computationally complex and requires 

atmospheric input parameters from other sources such as meteorological radiosondes 

(Richter, 1990). Examples of the models are LOWTRAN, MODTRAN, 5S and 6S. 

Many publications on atmospheric correction are simplifications of the above models 

(Rahman and Dedieu, 1994, Singh, 1994). This nonnally involves the estimation of the 

required input parameters from the imagery itself as in Gilabert et al. (1994). 

It should be noted here that the majority of the papers reviewed on remote sensing of 

suspended sediment concentration use no atmospheric correction as the radiance is 

usually related to ground truth data. This assumes that the atmosphere is spatially 

unifonn and temporally stable. 

Bathymetry 

There are many studies which used remote sensing to map bathymetry in coastal waters, 

(e.g.Lyon et al., 1992, Bierwirth et al., 1993), thus the possibility of a contribution to the 

reflectance signal from the substrate cannot be ignored. However all the papers 

examined are studies in CASE 1 waters, which have low suspended sediment and 
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chlorophyll (Campbell, 1996). The only paper which looked promising in the provision 

of information on contribution of bed reflectance in turbid waters (Bagheri et al., 1998) 

used the phrase "turbid waters" in the paper title and then stated in the text that 

concentrations of suspended sediment and chlorophyll were insignificant and spatially 

uniform. This lack of literature on the subject implies that the reflectance contribution 

from the bed can be considered to be negligible, but this needs to be supported by 

Secchi-disc depth data. 

2.6 SUMMARY 

The extensive literature search has revealed that the Ribble estuary has a· history of 

siltation after the construction of the training walls. It is also known that this silt is of a 

marine origin evident from the mineralogy and the associated Sellafield derived 

radionuclide concentrations. This silt is brought into the estuary via an asymmetrical 

tidal system, which is common in the UK. The estuary is a coastal plain estuary which 

is well mixed on a flood tide but can exhibit some stratification on the ebb tide. There 

is an axial convergence that is known to develop during the flood tide, after tidal 

intrusion. The Sellafield radionuclides bound to the estuarine sediment show an inverse 

grain size association over the whole of the estuary. The Springfields radionuclides 

show this association only in the upper section of the estuary and tend to be temporally 

unstable. Of the remote sensing platforms available, airborne instruments would be 

more suitable due to spatial resolution and temporal flexibility. It is known that there is 

a relationship between suspended sediment and reflectance, however the exact nature of 

the relationship is extremely site specific. Variations are caused by sediment type, 

suspended sediment concentration range, grain size distribution and other constituents 

within the water column such as salinity, chlorophyll and dissolved organic matter. 
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Geometric changes and atmosphere can be corrected for if the sensor viewing angle 

remains constant. All these variables must be either eliminated or included in the final 

algorithm. Also, it is known that the geometry of the sensor with the target and 

illumination source does affect the sensitivity of the suspended sediment reflectance 

relationship. This suggests that errors may be introduced due to a variation in the 

suspended sediment reflectance relationship caused be the roll, pitch and yaw of the 

aircraft. This particular source of error cannot be removed or accounted for by a 

variable in a regression equation. In the absence of complex atmospheric modelling this 

may introduce a source of error into the data. 
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CHAPTER 3: INSTRUMENTATION AND METHODOLOGY 

3.1 INTRODUCTION 

This thesis represents a development in methodology itself, but relies on the 

understanding of a variety of primary techniques and methodologies ranging from 

gamma spectroscopy to in-situ and airborne remote sensing instrumentation. It is 

therefore necessary to present the details of these instruments and methods in such a 

way as not to detract from the main purpose of the study. For this reason, the details of 

each method, in addition to some possible alternatives and the avoidable pitfalls are 

presented together within a single chapter. 

The layout of the chapter describes the following equipment and associated 

methodologfes: 

1. Field equipment used in in-situ spectral data collection and the methods used to 

process these data. 

2. Airborne remote sensing instrumentation and the preliminary processing techniques 

developed by NERC. 

3. Global Positioning System and application to this study. 

4. Electrochemical field and laboratory instrumentation. 

S. Laboratory analysis of samples. 
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3.2 IN-SITU SPECTROMETRY 

3.2.1 In-situ spectrometry Instrumentation 

The in-situ spectrometers were provided on loan from the Natural Environment 

Research Council's Equipment Pool for Spectroscopy (NERC EPFS) based in the 

Department of Geography at the University of Southampton. 

The ASD Fieldspec ® FR portable spectroradiometer 

The Analytical Spectral Devices (ASD) Fieldspec ® FR, as shown in Figure 3.1, is a 16-

bit, single beam radiometer capable of measuring visible to short-wave infrared (SWIR) 

wavelengths, 350 nm-2500 nm using three separate detectors. 

Figure 3.1 The ASD FR Fieldspec spectroradiometer. 
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The visible and near infrared wavelengths (VNIR), 350-1100 nm, are detected using a 

512 element silicon photo-diode array. Two scanning spectrometers are used to 

measure the short-wave infrared wavelengths. These consist of a holographic grating 

and a thermo-electrically-cooled indium-gallium-arsenide detector, (InGAs), spanning 

1100-1800 nm and 1800-2500 nm respectively. Details of the technical specifications 

of the detectors are given in table 3.1. 

Light input to the detectors is via pistol-grip style handle and a single fibre-optic cable, 

which trifurcates inside the detector housing to deliver the light signal to each of the 

three detectors. There are various fore-optics which attach to the pistol-grip, for 

example 80 reduction tube, 10 mirror with integral rifle sight or a cosine receptor. There 

are also fibre-optic cable extensions, however their use can result in up to a 70% loss of 

signal, making them useful only in situations where there is a large reflectance. This is 

not the case with natural waters where even high concentrations of suspended sediment 

produce low reflectances, usually less than 15%. 

The ASD FR Fieldspec® operates in both raw data mode and reflectance/white 

reference mode. Raw data mode measures the raw digital data and is used for 

measurement of radiance/irradiance and for bi-directional reflectance factors. In 

reflectance or white reference mode the spectra are normalised against a reference panel 

spectrum to give units of percentage relative reflectance. The spectroradiometer was 

used in the reflectance mode throughout this project. 
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Detector VNIR SWIRl SWIR2 

A Range 350-1020 run 1020-1800 run 1800-2500 run 

Detector 512 photo-diode Scanning Scanning 

array overlaid with spectrometer, spectrometer, concave 

order separating concave holographic holographic grating, 

filters grating, thermo- thermo-electrically 

electrically cooled cooled InGA detector 

InGA detector 

Sampling 1.5 run 2 run 2 run 

resolution 

Bandwidth 3 run (FWHM) 10-11 run (FWHM) 10-11 run (FWHM) 

Measurement All simultaneously Sequential scanning Sequential scanning 

Dark current ()perator measured Automatically Automatically 

VIa mechanical measured every scan measured every scan 

shutter VIa shutter and VIa shutter and 

reference channels reference channels 

Signal Integration time Gain Gain 

amplification 

Table 3.1 The technical specifications of the three ASD FR detectors, (Wilson 1995). 

Above the detectors, a sub-notebook computer is mounted, used to control the 

instrument. The dark current from the SWIR detectors is automatically measured and 

subtracted from each spectrum, however, the dark current from the visible-near infrared 

needs to be taken manually after approximately 15 minutes once the instrument has 
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stabilised. The spectroradiometer is configured prior to use for integration time and 

scan averaging. The integration times for the SWIR wavelengths are set at 100 

milliseconds but the VNIR wavelengths integration time must be set manually using the 

choice of four settings, 17, 34, 68 and 168 ms depending on the intensity of the 

incoming signal. This is set using the spectrum from the brightest object to be 

measured, which is the barium sulphate reference panel. The spectroradiometer will use 

an average spectrum of multiple scans as a method of reducing random noise effects. 

This is user selected but a scan average often is appropriate for clear UK conditions. 

The whole spectrometer assembly measures 35 x 31 x 18 cm and weighs 5.7 kg, the 

nickel- cadmium rechargeable battery pack used to power the detectors weighs a further 

2.5 kg. The spectrometer is carried in the field within a harness strapped to the front of 

the user with the batteries fitted into the small of the back. The pistol-grip sensor head 

can be pointed at a target by hand or fixed onto a standard photographic tripod. The 

battery life of the external battery pack is approximately 3 hours but the limiting power 

source is the rechargeable batteries for the sub-notebook PC which have a life of 

approximately 2-2.5 hours and have a power failure warning sound to prevent data loss. 

Details of the operation procedure for the ASD FR spectroradiometer can be found in 

Appendix A. 

The GERISOO spectroradiometer 

The Geophysical Environment Research 1500 spectroradiometer, (Figure 3.2) is a 

visible and near infra-red spectrometer. measuring wavelengths of 350-1050 nm on a 

512 silicon photo-diode array. The wavelength range is covered in nominal bandwidths 

of 1.5 nm with automatic dark current correction. Integration time is user selected with 
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options of 5 milliseconds and upwards. The spectrometer head measures 8.3 x 15.2 x 

19.7 em and weighs just 2 kg including the batteries. 

Figure 3.2 The GER 1500 spectroradiometer. 

The field of view (FOV) is 4° x 5° with fore-optic options giving FOV up to 23°. There 

is a built in laser sighting mechanism to allow accurate positioning when the instrument 

is being hand-held. The spectrometer can be operated in stand-alone mode with an 

internal memory of 500 spectra or via a laptop PC with direct data download giving a 

much higher data capacity. As a stand-alone spectrometer, the GER 1500 does not have 

the fibre-optic link of the ASD FR, which is easily damaged, thus making it more robust 

and more suitable for travel and tougher field conditions. The instrument can be either 

hand held or mounted on a standard photographic tripod. The user time is again 

controlled by battery life; in stand-alone mode this is 2 hours using a nickel-metal­

hydride 6-volt battery. The instrument is supplied with two of these batteries giving 4 

hours user time. Operation is by a scrolling menu to allow easy instrument set-up for 

choosing parameters such as integration times and scan averaging. Further details of the 

exact operation procedure ofthe GER 1500 can be found in Appendix A. 
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3.2.2 In-situ spectrometry Data Processing 

For each measurement, the in-situ raw data were collected along with a spectrum from a 

barium sulphate panel of known calibrated reflectance. Using the two spectra together it 

is possible to process the raw data into absolute reflectance. Thus all in-situ data within 

this project consist of one reference spectrum followed by a set of ten target spectra for 

each sample. 

ASDFR 

The raw data from the ASD FR spectrometer are combined with the reference panel data 

using an MS-DOS program supplied by NERC equipment pool for field spectroscopy 

(EPFS) called refspec.exe. The program produces the absolute reflectance file by 

producing a ratio of the target/reference spectral pair and then applying a correction 

using a calibration file containing information specific to the reference panel used. The 

program is driven by a single command line, details of which can be written as an MS­

DOS batch file for semi-automatic processing. The output files are suffixed with .abs 

for absolute reflectance and are formatted as comma-delimited text files. These can 

then be imported into spreadsheet packages for further processing to mimic the airborne 

remote sensing instruments. 

GER1500 

The data produced by the GER1500 are processed as for the ASD FR spectrometer 

using a similar program called refg1500.exe. The program is slightly different, as the 

individual wavelengths measured by each channel are different than for the ASD. The 
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only other difference being that the refg1500.exe program does not have the -r option for 

processing only every other channel otherwise the command line used is as for the ASD 

FR spectroradiometer. 

ATM filter functions 

Figure 3.3 shows that for each ATM band the wavelengths measured are actually spread 

wider than the bandwidths suggest, for example, band seven is given the wavelengths 

760-900 nm, however spectral contributions are received from wavelengths 607-1045 

nm. 

Spectral Response or Daedalus 1268 Visible and NIR channels 

W~(DDl) 

Figure 3.3 The normalised response of the ATM sensor for channels 1-8. 

This can be seen as the extent of the sloping limbs of each band response of Figure 3.3. 

Thus to produce a single figure for a given band from the continuous spectral data of the 

ASD or GER 1500 spectrometers a filter function is used. The filter functions are 

produced by NERC EPFS and are in the format of a comma delimited text file like the 
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absolute reflectance data. A diagrammatic representation of how the filter functions 

work is given in Figure 3.4. The multiplication of the in-situ data by the weighted filter 

function accounts for the variation in spectral contribution across the various 

wavelengths with the ratio of the two summations producing the single value for the 

whole band. 

Filter 
Function 

x 

Data Filter x Data 

= Band Value = Tl / TJ 

Figure 3.4 The filter function matrix for A TM data 

CASI band selection 

J 
I 

0.75 

0".,· 

0.25 

CAS. Dct.uIl VepI8Iian a..-. 

WavelClllJlb <DID> 

Figure 3.S The normalised response of the CASI sensor for the NERC default 
vegetation bandset. 
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It can be seen from Figure 3.5 that the response of the CASI is far more precise 

regarding the range of wavelengths selected compared to those actually measured. It 

should also be noted that the magnitude of response that each individual wavelength 

measures in comparison to its neighbouring wavelength is very similar, thus the shape 

resembles a rectangle far more than the normal distribution shape of the ATM. For this 

reason no filter functions are used just the average response across the wavelengths of 

the proposed waveband. The errors introduced using this method are likely to be 

insignificant, as the response across the narrow bands is much more uniform. 

3.3 AIRBORNE REMOTE SENSING 

The NERC Aircraft 

The NERC aircraft, purchased in 1983, was modified by construction of floor apertures 

to house remote sensing instruments. The plane is a Piper Navajo Chieftain, type PA31-

350, with an internal cabin size of 12.5 by 4.2 by 4.25 feet. The cabin is non-

pressurised and thus the operational altitude is limited to 10000 feet (3000 meters) with 

an on task air speed of between 100 and 170 knots. 

Incident Ugin 

SeMOI (ILS) '" 

Navi,ation ,jeM 

GPS Antennae 

ATM lIDS cabinet. DaedalUlll68 
twin monitOI1 and scan-bcod 

Aahta:l1 OPS display 

RC· IO Aerisl 
lurvey camen 

CAS! lpectrometer 
head and cabinet 

Figure 3.6 The equipment layout within the NERC aircraft, (NERC 1995). 
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The aircraft can carry an operational load of 2050 pounds in mass including a crew of 

four people and has an endurance range of 950 nautical miles, which is equivalent to 

approximately four hours flying time. The instruments are powered by the on board 28 

volt power supply. Within the aircraft the instrumentation is arranged as shown in 

Figure 3.6. The CASI is towards the rear of the plane, the survey camera and ATM at 

the centre and the data collection controls towards the front. Other features such as GPS 

antennae and incident light sensors are mounted on the outside of the fuselage. The 

GPS antennae are used for determining the positioning and also for measuring the roll 

pitch and yaw of the aircraft. This information is then used in the NERC integrated data 

system (IDS) to roll correct and geometrically correct the data (Wilson, 1996) this is 

discussed in more detail in section 3.3.2. 

3.3.1 Airborne Remote Sensing Instrumentation 

Compact Airborne Spectrographic Imager (CASI) 

The CAS I is an across-track scanning or "push-broom" sensor developed, by Itres 

Research Limited in Canada, specifically for use from light aircraft. As mentioned 

briefly in table 2.6, the CASI sensor is based on an array of charge coupled devices, 

(CCD). Figure 3.7 shows how the CCD array is arranged, with a separate array of 288 

CCDs for each of the 512 spatial pixels. The entire CCD array is used only in the full 

frame mode, which collects data for all 512 pixels at all 288 wavelengths. This is used 

only during calibration or ground studies, as the scan time, being approximately two 

seconds, is too long for use from an aircraft. 
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Optics 
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CCD 
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288 spectral ~ \ 
Channels 
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Figure 3.7 The internal set-up of the Compact Airborne Spectrographic Imager. 

For operational use the CAS! has three other modes of operation, spatial, spectral and 

enhanced spectral. Spatial is the mode of operation that is most commonly used. This 

allows complete spatial coverage of the 512 pixels but wavelength coverage is limited to 

up to 18 bands. Despite this apparent limiting factor the CAS! still has an advantage 

over most instruments as the 18 bands can be positioned anywhere along the 400-915 

nm wavelength range, in bands as wide or as narrow as the user chooses. The only 

restriction is the signal to noise ratio, which may be less for narrower bands. In spectral 

mode, or "push-rake configuration" the CAS! collects information for all 288 spectral 

channels but only for 39 pixels. These can be distributed throughout the 512 pixel 

swath at 4, 8, 12 or 16 pixel spacing, giving the image the appearance of a raked pattern. 

To enable the user to visualise an image collected in the spectral mode, a monochrome 

"scene recovery channel" spatial image is provided. The fourth mode, the enhanced 

spectral mode, is a compromise between spatial and spectral modes. This allows the 

user to obtain maximum spectral data at maximum spatial coverage (288 spectral 

channels for up to 101 adjacent pixels). However, the fewer spectral channels chosen, 

the shorter the integration time and the finer the spatial resolution can be. Down-
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welling incident light is measured with a sensor mounted on the outside of the aircraft 

fuselage and light levels to the spectrometer are operator controlled by an automated iris 

with settings 1-5 equivalent to apertures of fil-12.8. This allows maximum use of the 

detector range without saturating the instrument. An iris setting of zero closes the iris to 

allow dark current measurements to be taken during flight. As the CAS! is a push 

broom sensor the spatial resolution is dependent on altitude for pixel width and 

integration time for pixel length. These are calculated using equations 3.1 and 3.2. 

Pixel Width (m) = l.Sxl0-3 * Altitude (m) 

Pixel Length (m) = (lnt. Time (ms) * Ground Speed (m/s)) 

1000 

[3.1] 

[3.2] 

As the pixel width and length are determined by specific parameters it is possible to 

calculate the approximate spatial resolution prior to flight. However, should light levels 

vary greatly throughout the day, a slight adjustment in integration time, speed or altitude 

can be made to maintain a square pixel. In extreme circumstances a pixel with a 2: 1 

length to width ratio may be obtained which can be resampled during processing. 

Daedalus 1268 Airborne Thematic Mapper (ATM) 

The Daedalus 1268 Airborne Thematic Mapper (ATM) is a fixed band along track 

scanning or ''whisk-broom'' sensor whose wavebands are almost identical to those of the 

satellite, Landsat Thematic Mapper. 
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ATM Band No. Wavelengths (JJ.m) Equivalent Landsat TM Band No. 

1 0.42-0.45 (blue) 

2 0.45-0.52 (blue) 1 

3 0.52-0.60 (green) 2 

4 0.605-0.625 (green) 

5 0.63-0.69 (red) 3 

6 0.695-0.750 (red) 

7 0.76-0.90 (n-ir) 4 

8 0.91-1.05 (n-ir) 

9 1.55-1.75 (mid-ir) 5 

10 2.08-2.35 (mid-ir) 7 

11 8.5-13.0 (thermal-ir) -6 

Table 3.2 The ATM Bandset 

This similarity has made the ATM the most frequently used sensor for development of 

algorithms applied to Landsat imagery. The fixed bandset of the ATM is shown in table 

3.2. Figure 3.8 shows the internal mechanism of the ATM. Light is captured and 

directed into the detector by a rotating scan mirror. The visible and near infra-red 

wavelengths, that is channels 1 to 8, are measured on a silicone diode array, which 

receive light split by a prism. Channels 9, 10, and 11 are each measured by individual 

detectors, which are housed in dewers cooled by liquid nitrogen. Channels 1 to 10 are 

calibrated on the ground, however the thermal channel (11) is calibrated in flight using 

two black bodies set above and below the expected temperature range. 
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M2 

Figure 3.8 The internal optics and detectors of the Daedalus ATM. (NERC 1995). 

The ATM swath width is covered by 716 pixels, as opposed to the 512 pixels of the 

CAS I and most other instruments, and has a much wider field of view, up to 90°. There 

are three scan speeds of 50,25 or 12.5 scans per second with a usual overlap of 10% of 

the whiskbroom scan to avoid gaps in the image. The ground spatial resolution is 

dependent on altitude and with an IFOV of 2.5mrad or approximately 0.14°, this gives a 

resolution of 2.3m at 1000m altitude. 
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3.3.2 Airborne Remote Sensing Preliminary Data Processing 

The NERC Integrated Data System 

The Integrated Data System (IDS), illustrated in Figure 3.9, has been developed by 

NERC as a way of automating the pre-processing steps required for airborne data whilst 

maintaining a high accuracy. 
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Differential GPS 
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Figure 3.9 The NERC Integrated Data system, (NERC 1995). 
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The system aims to use a cross formation of four GPS receivers to determine the roll, 

pitch and yaw of the aircraft as an alternative to the standard vertical roll gyro technique 

installed in most other aircraft. With a gyro system the corrections for aircraft roll and 

geometric correction are performed separately, whereas with the integrated data system, 

the GPS derived information is used to roll correct and geometrically correct the data in 
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one step as detailed in the following paragraph. (At the time of receiving the data for 

this study, this system was not yet fully developed.) 

Processing with exhdf and gcorr 

The programs to import the data into image processing systems are supplied by NERC 

airborne remote sensing with the data. There are two command-line driven UNIX 

programs, exhdf and gcorr. The first allows access to the header information and 

conversion between file formats and the latter geometrically corrects the data using the 

integrated GPS data. The commands required and all the possible options are provided 

with the data in the form of a word document. 

3.4 GLOBAL POSITIONING SYSTEM 

3.4.1 The Principle of the Global Positioning System 

The Global Positioning System (GPS) is based on a network of 24 satellites, of which 

21 are used with 3 active spares, operated by the United States Department of Defence. 

Each satellite orbits the Earth twice a day at an altitude of 11000 nautical miles. The 

satellites are distributed throughout six orbital planes therefore between five and eight 

satellites are visible to a receiver from any point on the Earth's surface, however a 

minimum of four satellites is usually required for reliable data. Each satellite broadcasts 

two signals, the precise positioning system (PPS) and the standard positioning system 

(SPS). At the time of data collection, the precise positioning system was available only 

to authorised users such as US and allied military and the standard positioning system is 

available to all civilian users. The reduction in accuracy of the SPS was achieved by 

intentionally degrading the signal using a system called selective availability (SA) which 
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used a changing time bias. This time bias is different for each satellite thus the errors at 

the receiver are a function of the combination of the satellites used and will vary with 

position. The errors due to selective availability were removed in May 2000 improving 

accuracy for non-military users. The satellite signals are also subject to delays caused 

by the distance they travel, which can introduce errors into the final position obtained. 

Tropospheric delays are caused by variation in air temperature and humidity and can 

introduce errors of around 1m, ionospheric delays can introduce errors of up to 10m but 

can be removed by modelling the ionosphere. On reaching Earth, the satellite signal 

may be subject to reflectance from nearby surfaces giving rise to errors of approximately 

O.Sm. 

Differential GPS 

The most common technique for improving the accuracy of the position obtained from 

the global positioning system is to use differential GPS (DGPS). This requires two GPS 

receivers, one stationary and one mobile, to give a comparison of the changing time bias 

from the selective availability. This can be done as a post-processing technique or in 

real time by transmitting the necessary corrections from the base station back to the 

mobile receiver by radio signal. As the selective availability signal is constantly 

changing, these differential corrections must be transmitted to the mobile receiver at a 

faster rate than they are changed in the selective availability signal, that is at least every 

twenty seconds. Although using differential GPS can remove the selective availability 

signal the technique does not remove errors due to receiver noise or reflected signals but 

accuracy is considerably improved from 100m to approximately 15m. Accuracy can be 

improved further still by using carrier phase techniques. Rather than using the 

ephemeris data that are transmitted by the satellite, carrier phase GPS uses the 
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transmitting signal itself to improve the position obtained by utilising the Doppler shift 

effect. The difference in the phase of the signal reaching the base station and the mobile 

receiver can give military users accuracy in the order of millimetres. This higher 

resolution of positioning is obtained because of the short wavelength of the carrier 

signal, approximately 19cm. The only requirement for carrier phase techniques is that 

the base station and the mobile receiver must be close enough to be subject to the same 

ionospheric delays. This limits the distance between them to approximately 30km. 

3.4.2 GPS Data Processing 

Information on the position of the samples taken from the boat were obtained using the 

Magellan Promark X CP differential GPS, with carrier phase capabilities to give sub­

meter accuracy. This was then processed using the Magellan MST AR software and 

converted from latitude and longitude to UK national grid co-ordinates. The GPS data 

were output in an ASCII format, which could be easily imported into Microsoft Excel 

for further processing. 

In Excel the data were plotted as velocity in N-S dimension and velocity in E-W 

dimension verses time as shown in Figure 3.10. This enabled the sampling times to be 

verified against the areas of the plot where both velocities were minimal. During the 

sampling period, which could last approximately 30 seconds, the engine had to cut to 

minimise the effect of foam due to turbulence on the in-situ spectra, thus the boat was 

never totally stationary. To determine a position for the sample site an average position 

was obtained for the 30 second sampling period where the motion was at a minimum. 

This is shown in Figure 3.11. 
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Figure 3.10 The velocity plot taken from GPS data collected on the 6th June 1996 off 
Warton Bank, with the sample sites shown as shaded grey bars corresponding to areas of 
least motion. 

Sample Site 2, 6th June 1996. 
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Figure 3.11 The GPS plot over a typical 30 second sampling period, site 2, showing the 
movement during that period (line) and the mean position (circle). 
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3.5 FIELD METHODOLOGY 

Sampling 

Ideally sample bottles should be open at both ends to allow flushing, with a mechanism 

to trigger closure on command but for surface samples any wide necked bottle will 

suffice. Narrow necked bottles do not exhibit the same flushing characteristics and may 

not give a representative sample with respect to grain size distribution. For this project 

the suspended sediment and grain size samples were sampled using wide necked bottles. 

At each sample site an identical routine was followed. The site was approached from 

east to west, travelling into the flow of water. Samples for suspended sediment, grain 

size and radionuclide analysis were collected from the port side of the boat, facing 

south. Spectra were taken from the starboard side of the boat facing north. The spectra 

were taken arms length from the side of the boat, with the spectrometer head 

approximately 50cm above the surface of the water at nadir. Whilst the spectra were 

collected the boat engine was put into neutral and the boat allowed to drift for the 10 to 

15 second sampling period. This reduced the wake from the boat minimising foam and 

thus interference on the spectra. Samples were then stored in the dark at <4°C to 

minimise algal growth prior to analysis. 

3.6 LABORATORY INSTRUMENTATION AND METHODOLOGY 

The following sections cover the methods and instruments used within the laboratory in 

addition to the smaller field instruments which are laboratory calibrated such as 

turbidity and salinity meters. 
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3.6.1 Suspended Sediment 

Prior to suspended sediment analysis it is necessary to have some knowledge of the 

values to be expected, as this influences both the filter paper size and type and the 

sample size. Most methods require a minimum of 50 mg of sediment making one-litre 

samples sufficient for estuaries such as the Ribble where the suspended sediment 

loading is shown in Environment Agency data to be around 50-200 mgrl. 

The method used for determination of suspended sediment was influenced strongly by 

the necessity to keep the suspended sediment analysis and the radionuclide analysis 

comparable. This is due to the fact that the suspended sediment data for the 6th June 

1996 was taken from the radionuclide analysis. Therefore, any subsequent suspended 

sediment analysis must be performed using the same equipment and conditions. The 

choice of filter papers and drying temperature was restricted to those used for the 

radionuc1ide determination, otherwise the methodology was true to the standard 

methods employed by the recommended suspended sediment analyses. The basic 

procedure entails filtering the known volume of sample through pre-weighed filter 

papers and weighing the residue. This can be carried out using either vacuum or 

positive pressure filtration but vacuum pressure was used in this project due to the 

availability of equipment. Only a gentle vacuum pressure must be applied to prevent 

premature clogging as the sediment is pulled deeper into the pores of the filter paper. 

Sample Preparation 

The most commonly used pore size used to obtain suspended sediment data in marine 

work is 0.4J.tm (McCave 1979) with filter paper sizes ranging from 4.7cm - 29cm 

diameter. There are three basic types of filter paper on the market, cellulose esters, 
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track-etched membranes and glass fibre. The track-etched membranes can only take the 

smallest of suspended sediment loads making them unsuitable for most estuaries. The 

glass fibre filters do not have a defined pore size and are generally considered to be a 

nominal pore size of approximately 1.2J.lm. As the suspended sediments can be 

assumed to consist largely of the finer particle sizes, this makes the glass fibre filters 

unsuitable. Thus it was decided to use the cellulose ester type of filter paper. Cellulose 

ester filters contain some soluble material therefore it is necessary to run blanks. They 

are also hygroscopic, which makes their mass vary with humidity. Cellulose ester can 

also be rendered transparent by a few drops of cedar oil (with refractive index of 1.51) 

allowing a microscopic examination of the residue if this information is required. The 

cellulose ester filter paper is also suited to the suspended sediment loads associated with 

estuarine samples, in addition to being available in both the 9cm diameter for suspended 

sediment analysis and 29cm diameter used for the radionuclide analysis. 

Once the filter paper type has been selected the filters must be numbered and pre­

weighed, and then handled only using tweezers to avoid the papers absorbing oils from 

the hands. The samples were then filtered under a slight vacuum and washed with three 

20 ml aliquots of distilled water to remove any salt in the sediment residue. The papers 

are then allowed to air dry under vacuum for 1 minute to remove excess moisture before 

being removed from the filter cup. The entire sample should be filtered, as 

representative sub-samples are difficult to obtain. The volume must be determined as 

accurately as possible; therefore the sample must be transferred to the filter via a 

measuring cylinder. If the suspended sediment loading is particularly high a glass fibre 

filter paper placed underneath the cellulose ester paper will even out the pressure 
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exerted by the vacuum and prevent clogging. Blanks were treated in exactly the same 

way as the samples. 

Drying is commonly carried out at 105°C followed by cooling in a desiccator to 

eliminate all water but on removal from the desiccator a cellulose ester paper will start 

to absorb atmospheric water making accurate weighing to four decimal places difficult. 

In addition, driving off water at such a high temperature can remove water from the 

internal structure of the clay particles, which makes this unsuitable for the radionuclide 

analysis. For this reason the filter papers were dried for 24 hours at 40-45°C and cooled 

to room temperature in a well ventilated room. The variations in mass caused by 

humidity should be the same for the samples and blanks, therefore eliminating this 

source of error. 

Before weighing the balance was calibrated using the supplied standard mass. The 

balance was allowed to achieve equilibrium before weighing the samples. The best way 

to do this is to perform some pre-weighing for approximately 15 minutes prior to 

weighing the samples. The balance used for this project was a Mettler-Toledo AB204 

capable of weighing 10mg to 210g to 4 decimal places, with an error of plus or minus 

Img. Samples were weighed to four decimal places to allow accurate calculation of 

suspended sediment concentration. 

Suspended sediment concentration is calculated by determining the mass of the 

sediment contained on the filter paper in milligrams after adjustment for the average 

percentage weight loss of the blanks. The mass, in milligrams, is then divided by the 

known volume in litres to give a suspended sediment concentration in mgr) . 
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3.6.2 Particle Size 

To define a single value for a particle size is far more complex than it would first 

appear, particularly for natural sediment suspensions. The reason for this is the irregular 

shape of particles where the length width and thickness may all be different. So which 

value should be used? All particles have some properties that can be given as a single 

value such as mass, volume and surface area. However, the only real particle shape that 

can be expressed using a single value is the sphere. For this reason particle sizing by 

many methods expresses size of a particle as that of the equivalent sphere. For each 

particle there is a choice of possible equivalent spheres, the sphere of the same mass, 

volume, surface area, maximum length, minimum length or sedimentation rate. All of 

these possibilities are correct but each refers to a different property. This highlights the 

need for standardisation within and possibly between studies in the measurement of 

particle size. 

Choice of technique 

The most obvious and simple technique for determining particle size is by examining 

the particles under a microscope. This is however to give an accurate representation of 

grain size distribution a large quantity of the individual grains will need to be examined. 

Thus the technique is not practical. It can however give a useful indication of the grain 

shape if this parameter is required. 

For suspended sediment one of the oldest particle sizing techniques is to use the 

gravitational sedimentation rate. This is particularly useful for the finer sediments and 
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the equipment can be as simple as a measuring cylinder and a pipette. The technique is 

based on Stokes' Law and details of the method can be found in Dyer (1979). The 

potential problems with this method are that the density of the material being analysed is 

required. The final result is not related to the diameter but the settling rate of an 

equivalent sphere, which is not valid for sheet like particles such as clays as it gives a 

smaller value than the reality. For particle sizes greater than 50J.lm the settling tends to 

be turbulent making Stokes' Law invalid and thus giving erroneous results. A further 

problem is introduced for particles less than 2J.lm as resistance to settling by Brownian 

motion becomes significant thus this method has a very limited size range, (Clifton et 

at., 1999). 

The technique of electrozone sensing is more commonly known as the Coulter Counter, 

a technique originally developed for sizing blood cells. The principle involves the 

particles passing through an orifice which has a voltage applied across it. As each 

particle passes there is a voltage peak. The particle size is then determined by 

comparing the peak area with those for spheres of a known size. The particles being 

measured must be kept in suspension whilst flowing slowly through the orifice, which is 

difficult for the larger particles and with a range of particle sizes there is a risk of 

blocking small orifice of the detector. 

Laser Diffraction: The chosen method 

Laser diffraction is a more recent method that is becoming more common as a particle 

sizing technique. The correct name is Low Angle Laser Light Scattering (LALLS) and 

is suitable for particles over a 0.1-2000 J.lm range making it a practical option for many 

applications. The basic principle relies on the fact that the angle of diffraction is 
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inversely proportional to particle size. This instrument consists of a helium-neon laser, 

with a wavelength of 638.2 nm, and between sixteen and thirty-two detectors of 

photosensitive silicon. For the smaller particles, 1 nm to 111m, a photo-multiplier tube 

is needed to amplify the scattered light signal. The sample is introduced into the laser 

beam by circulating the sediment suspension in front of the beam but other applications 

may use air-blowing of powders or aerosol spray depending on the substance being 

measured. The basic assumptions of this technique are: 

1. that the particle is larger than the wavelength ofthe light which is scattered 

2. all particle sizes scatter light at the same efficiency and 

3. the particle is opaque and transmits no light. 

The main advantages of laser diffraction as a particle sizing technique are that the 

method is absolute and does not require daily calibration, and also covers a large particle 

size range, which is necessary for natural suspensions. Samples need no preparation 

other than shaking to attain the suspension although for samples with a sediment load 

below 50 mgll it may be necessary to concentrate the sample by evaporation. In some 

circumstances suspensions may require the addition of a dispersing agent, however none 

were used within this study, as it was necessary to maintain the suspensions in their 

natural state, including the floccs. 

The samples taken for particle size analysis were two litres in volume and collected in 

wide necked plastic bottles. The samples were stored at for 3 days below 4°C in the 

dark to prevent algal growth. These were then analysed using the Malvern Mastersizer 

at Westlakes Scientific Consulting Ltd. The details of the operation procedure can be 

found in appendix A. 
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3.6.3 Gamma spectroscopy 

Gamma spectrometry is a complex subject which is covered in detail in many radiation 

detection publications such as Knoll (1989) but a very brief outline of the principles, 

based on these texts, is presented here. 

The detection of a gamma ray photon relies on the photon interacting within absorbing 

material. During the interaction the gamma ray photon must transfer all or part of its 

energy to an electron within this material. Thus to be a detector of gamma rays the 

detector must provide the absorbing material to yield the fast electrons in addition to 

acting as a detector for secondary fast electrons. There are two principal types of 

gamma detector, the sodium iodide (NaI(Tl)) type which have a high sensitivity and 

poor energy resolution and the hyper-pure germanium (HPGe) or the older lithium 

drifted germanium (Ge(Li)) semi-conductor types which have a high energy resolution. 

Which detector type is chosen depends on the resolving power required. This project 

required high-energy resolution to detect a variety of radionuc1ides that could be present 

in the samples, thus a semi-conductor type was chosen. These detectors work on the 

semi-conductor energy band gap principal, where valence electrons are excited by 

ionisation until they have sufficient energy to cross the forbidden band where they are 

detected using an applied electric field. The pulse signal of the electron in the electric 

field is amplified and processed to produce the data. The detectors must be kept at 

liquid nitrogen temperature to reduce detector noise. Before use the detectors must be 

calibrated with a known traceable standard using the same geometry as the samples. 
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In the course of this project, only caesium was obtained in sufficient quantities to 

produce a complete dataset due to small sample size 

Detector Calibration 

Gamma detection is sensitive to the geometry of the sample, such as size, shape and 

density. Therefore, the detector must be calibrated using a known standard in a sample 

medium identical to the environmental samples to be measured. A blank filter paper 

was spiked with a known quantity of gamma emitting tracers in a liquid medium 

supplied by the National Physical Laboratory. The paper was folded in the same pattern 

as the sample papers and counted until a clear spectrum was obtained, a period of 

approximately four hours. The mixed standard consisted of 241 Am, 109Cd, 57CO, 139Ce, 

203Hg, 1\3Sn, 85Sr, 137 Cs, 60Co and 88y' These gamma emitters cover an energy range of 

59KeV to 1836KeV. 

The detector used throughout this project was an Ortec 30% efficiency HPGe detector at 

Westlakes Scientific Consulting Ltd. The software used to resolve the data was 

Fitzpeaks (version 2.08). For analysis of gamma emitting radionuclides, ten litre 

samples were taken and filtered through pre-weighed 293mm diameter cellulose-nitrate 

membrane filters. The filtering assembly is shown in Figure 3.12. The sample is fed to 

the filter by a diaphragm pump driven by compressed air at 2 bar pressure. The filter 

paper is set into an acrylic block with the base grooved with concentric circles and holes 

for the filtrate to pass through. Cellulose nitrate filter papers of this diameter tend to be 

brittle and must be handled with care when weighing. After filtration the papers were 

dried for twenty-four hours at 4S-S0°C until three consecutive masses were obtained. 
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Figure 3.12 The filter assembly used for radionuclide sample preparation. 

3.6.4 Turbidity 

Turbidity meters use light to measure the clarity of water, as the clarity is reduced by 

suspended sediment. The way in which the turbidity and suspended sediment 

concentrations are related depends on the properties of the sediment and the instrument 

used. A fully comprehensive study of turbidity can be found in Gippel (1989), but 

below is a very brief outline of the main points based on the above publication that are 

relevant to this project. 

Turbidity and suspended sediment concentration 

Turbidity is known to increase in relation to increasing suspended sediment 

concentration. It would be expected that the relationship between turbidity and 

suspended sediment concentration is linear according to the Beer-Lambert law. however 

results shown in Gippel (1989) indicate that this is not the case. Non-linearity effects 

are introduced by high SSC. The turbidity values are wavelength dependent but the rate 

of change of absorbance is not wavelength dependent. This wavelength dependence 

implies that care should be taken when comparing data from different turbidity meters, 
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which although related will not be directly comparable. A possible solution to this has 

been applied by the ISO 7027 standard which uses a monochromatic light source of 860 

run, which has the added advantage of not encouraging algal growth as it is in the near 

infra-red. 

Turbidity and particle size 

As the particle size decreases the surface area to volume ratio of the particle increases, 

thus light is more effectively scattered by the smaller particles. To illustrate this, a basic 

experiment was performed on the measurement of turbidity for known suspended 

sediment concentrations of different grain sizes using dry sieved natural sediment. The 

results given in Figure 3.13 show that it is indeed the smaller grain size fraction that 

gives the higher turbidity reading for the same suspended sediment concentration. 
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Figure 3.13 The variation in the turbidity sse relationship with grain size. 
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Turbidity meters 

There are two types of turbidity meter commercially available, the attenuation turbidity 

meter and the Nephelometric turbidity meter. The attenuation turbidity meter is also 

known as the beam transmissometer. This measures the loss of light intensity of the 

light source over a known path length. This type of turbidity meter can underestimate 

the turbidity as some light scattered by particles will remain in the path indicating a 

higher light reading than there should actually be. The Nephelometric turbidity meters 

measure scattered light by having the detector aligned at an angle to the original light 

source. This angle is generally 90° but may vary between instruments. The turbidity 

values given by each type of meter will be different but directly related. Turbidity is not 

actually measuring suspended sediment but the water clarity in comparison to an 

artificial formazine standard with which the instrument is calibrated. Formazine is an 

aqueous dispersion of an insoluble polymer of 2.5 11m mean diameter particles. Details 

on the formation of the formazine polymer are given in the calibration procedure. The 

main design features important to the measuring of turbidity are the constant light 

source, insensitivity to algal fouling and, for the nephelometric turbidity meters, angle of 

detector to light source. 

To make the formazine standard 

The formazine stock standard solution needs to be prepared a day in advance as the 

polymer takes twenty-four hours to form. 

1. Dissolve 10 grams of hydrazinium sulphate (hydrazine sulphate) in distilled water 

and dilute to 1 litre in a volumetric flask. 
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2. Dissolve 100 grams of hexamine (hexamethylenetetramine) in distilled water and 

dilute to 1 litre in a volumetric flask. 

3. Mix the two solutions in a 2.5 litre glass bottle and allow to stand undisturbed for 

twenty four hours at 25°C. The resulting suspension will have a turbidity of 4000 

FTU (fonnazine turbidity units). 

The stock suspension should be kept in a cool dark place and is stable for up to one 

year. Dilutions of the stock suspension should also be stored in glass bottles in a cool 

dark place. Suspensions of greater than 400 FTU are stable for up to a month and at 

turbidities less than 400 FTU new standards should be made daily. 

The dilutions of the 4000 FTU stock standard used to create the working standards are 

given in table 3.3. 

Turbidity Vol. of 4000 Dilute to % Deflection 

(FfU) FlU stock (ml) Vol. (Iitres) Partech 7000-3RP 

0 0 1 0 

50 12.5 1 10 

100 25 1 21 

200 50 1 42 

400 100 1 78 

500 125 1 95 

Table 3.3 The preparatIon of the fonnazme standards for turbidity calibration of the 
Partech 7000-3RP MKII turbidity meter used for testing experimental apparatus. 
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The Partech 7000-3RP MKII 

The Partech 7000-3RP MKll is a twin gap attenuation transmissometer with a single 

light source and a differing path length either side. The turbidity is measured using a 

ratio of the two path lengths as a compensatory technique. Compensation is provided, 

as both detectors receive the same light intensity, therefore when the lamp ages and light 

output varies, it varies equally for the two detectors. Secondly, algal growth will foul 

each window equally also reducing errors. These features prolong the operational life of 

the instrument up to fourteen times longer than a comparable single gap 

transmissometer. The instrument can be calibrated to three scales of sensitivity using 

the three ranges should large variable ranges of turbidity be expected. For this project 

only one was used as the instrument was used in laboratory conditions. 

Calibration and operation 

Prior to calibration the instrument was checked to ensure that the instrument 

mechanically reads zero with the power off and that the windows of the light source and 

sensors are clean. The sensor is switched on and allowed to stabilise. The instrument is 

then set to zero, after which it is ready for calibration. The sensor head is then placed in 

the maximum standard and the span control is adjusted until the meter shows full or 

maximum deflection. The sensor head is then rinsed and readings for the intermediate 

standards obtained to give a calibration curve of percent deflection and turbidity. 

The meter can be calibrated to known concentrations of suspended sediment but a 

calibration curve of suspended sediment will be more difficult to obtain accurately. 

This is because sediment is more difficult to keep in suspension without introducing a 

stirring mechanism. In addition to suspension difficulties it must be remembered that 
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sediment type and particle size will affect the readings obtained. Therefore it is 

necessary to calibrate the meter using the same sediment that is to be measured in-situ. 

3.6.5 Salinity 

The formal definition of is given in terms of a conductivity ratio, K15, which is the ratio 

of the conductivity of the seawater sample to the conductivity of a standard potassium 

chloride solution at 15°C and I atmosphere pressure, (Open University 1989). The 

concentration of the standard potassium chloride solution should be 32.4356 gkg-I. This 

is then related to salinity using equation 3.3. The units of salinity are given in parts per 

thousand e /00) or grams per kilogram. 

Within this project, the salinity was measured using a Hanna HI 9033 conductivity 

meter with automatic temperature compensation. Conductivity corrected to 15°C was 

then substituted into equation 3.3. 

Calibration of the Hanna HI 9033 

The probe is connected to the meter with the sleeve properly inserted into the probe with 

the holes at the top. The instrument is then calibrated in a beaker filled to a depth of 

greater than 8cm with a 12880JlS/cm. The probe is inserted and stirred to release any 

trapped air bubbles. The appropriate range is selected and the instrument is allowed five 

minutes for the temperature to stabilise. The calibration screw is then turned to give the 

correct reading at 25°C. Measurements are taken by selecting the correct range and 

simply reading off the meter display. 
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3.7 CHAPTER SUMMARY 

This chapter discusses the theory and techniques of the key methodologies used in this 

PhD. It is perhaps interesting to note that the techniques cover a range of scales of 

measurement of environmental phenomena - from atomic level in the detection of 

environmental radioactivity to the measurement of large-scale dynamic systems through 

remote sensing. 

This thesis allies these techniques to develop and validate a methodology for the 

evaluation of the fate of sediments and sediment bound radionuclides throughout a flood 

cycle in the Ribble estuary. This work will result in the ability to identify areas actively 

being eroded, sediment transport processes and net budgets for the estuary. 
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CHAPTER 4: SUSPENDED SEDIMENT CHARACTERISATION. 

4.1 INTRODUCTION 

As discussed in chapter two the spatial variability in suspended sediment properties such 

as mineralogy, grain size and overall sediment colour, in addition to possible 

interferences from other constituents within the water column, are highly site specific. 

These factors have a significant influence on the reflectance characteristics of suspended 

sediments and hence the remote sensing of their properties. Consequently, this has 

resulted in the absence of a universal remote sensing suspended sediment algorithm. A 

given relationship can be assumed to be true only for the area in which it was derived. 

The approach adopted here is to characterise the relationship between reflectance and 

suspended sediment from first principles. The first priority is to gain some knowledge of 

the suspended sediment properties, such as the sediment grain size and the SSC range. 

The chapter also tests a key hypothesis to this research work: A systematic relationship 

exists between SSC and the associated radionuclide concentration adsorbed on to the 

sediment. 

This chapter then determines the relationship between SSC and reflectance and goes on 

to establish the best wavelength settings, so that the CAS I can be optimised for this 

project. This work is undertaken through a series of in-situ (section 4.2) and carefully 

designed laboratory experiments (section 4.3). Each section will present the 

experimental objective, method, results and discussion for each parameter, written as if 

each were a separate experiment. 
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4.2 THE IN-SITU PROPERTIES OF THE SUSPENDED SEDIMENT 

The estuarine environment is both spatially and temporally highly dynamic. The 

movement of radionuclides is governed by the sediment transport mechanisms, which 

are a direct result of the interaction of the estuarine currents, both tidal and wind driven, 

with the deposited sediment. Prior to any remote sensing study it is necessary to have a 

basic understanding of the environment to be observed remotely such as the SSC range, 

grain size and their spatial and temporal variations. Any sampling within an estuarine 

environment must be both spatially and temporally representative to enable meaningful 

interpretations and appropriate conclusions to be drawn. With the advent of 

hyperspectral remote sensing platforms such as the CAS! we can eliminate the need for 

interpolations between spot samples and reduce errors resulting from temporal 

inconsistencies. These systems enable subtle spectral variations in the reflectance 

characteristics of suspended sediment and other water quality parameters to be 

monitored. Careful spectral characterisation from in-situ and laboratory measurements 

is required so that the CASI instrument bandwidths can be optimised for the required 

application. 

Sampling logistics 

The estuary has a limited number of launch sites operational only for the two hours 

either side of high water. This two hour time limit is sufficient for the preliminary work 

investigating sediment properties, it is not be suitable for ground truthing the flight data. 

For the fieldwork needed to ground truth the flight data, the boat was launched on the 

previous high water at around midnight. The fast flowing currents and movements of 

the bed sediments made anchoring impossible. Therefore, the boat was moored to a 

99 



training wall marker-post at a position suitable for data acquisition during the flood tide 

the following morning. 

Plate 4.1 The boat used for fieldwork moored to the training wall, waiting for the flood 
tide. 20-7-97. 

4.2.1 The hypothesis of a relationship between suspended sediment 

concentration and adsorbed radionuclide concentration. 

Experimental objective 

To date, most of the published data on radionucIide concentration in estuarine sediments 

are derived from the deposited sediment and the results vary between estuaries. It is not 

known if there is a relationship between sse and the associated radionucIide 

concentration, or given its existence, whether this is temporally or spatially stable. 
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Therefore, to test the above hypothesis (see section 4.1) and establish the relationship, 

suspended sediment data were analysed for radionuclide concentration as detailed 

below. 

Methodology 

On the 6th June 1996 the high water of 9.0m (Ordnance Datum Newlyn) was predicted 

for 1433 hours GMT (1533hrs BST). The boat, launched off Blackpool beach at 1200 

noon (BST), entered the Ribble estuary with the incoming flood tide. Over the flood 

tide, twelve samples, each 10 litres in volume, were taken in wide necked bottles. The 

sample sites were located using a differential GPS as detailed in sections 3.4.1 and 

3.4.2. The locations of each sample are given in table 4.1 and shown in figure 4.1. 

Site No. Easting Northing Site No. Easting Northing 

1 340558 426491 7 340531 426502 

2 340587 426422 8 340476 426424 

3 340546 426513 9 340531 426548 

4 340575 426451 10 340551 426422 

5 340512 426526 11 340542 426493 

Table 4.1 The Ordnance Survey NatIonal Grid coordmates of the sample sites off 
Warton Bank, collected on the 6th June 1996. 

The samples were stored in a refrigerated room in the dark until processing could be 

carried out, one month later. The samples were processed for analysis by gamma 

spectroscopy as detailed in section 3.5.3. To assess the temporal stability of any 

relationship between suspended sediment and radionuclide content, a further four 10 

litre samples were taken during the acquisition of the remote sensing data, on the 20th 

July 1997. This was a comparable spring tide where high water was at approximately 
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1230 (BST) and at a height of 9.1m (ODN). These were processed using the same 

method as for the 6th June 1996, as detailed in section 3.5.3. 
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Figure 4.1 The location of the 6
th 

June 1996 samples sites relative to the training wall. 

As suspended sediment data are expressed as mass per unit volume, the results of the 

gamma spectroscopy were then converted from Becquerels per kilogram (Bq/kg), (C), to 

Becquerels per litre (Bq/I), (L), using the sample volume and sediment weight as shown 

in equation [4.1]. 

L = CM 
V 

[4.1 ] 
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Where M is the mass of sediment in kilograms and V is the volume of the sample in 

litres. 

Results and discussion 

The SSC obtained from the samples taken for gamma spectroscopy ranged from 30-400 

mg/l, as can be seen in column four of table 4.2. The majority of the SSC fall between 

30 mg/l and 200 mg/I. However, a single day's sampling may not be considered 

representative and values greater than 400 mg/l are quite likely to occur and this must be 

considered in the event of designing representative laboratory experiments. 

Site Weight of Volume SSC \ 37CS \ 37CS 137CS 

No. Sediment Filtered Cone. +/- Error Cone. 

(g) (I) (mg/I) (Bq/kg) (Bq/kg) (Bq/I) 

1 1.67 10.65 156.81 302 26.9 0.047 

2 1.91 10.58 180.53 289 23.4 0.052 

3 1.48 10.12 146.25 292 41.5 0.043 

4 4.35 10.85 400.92 289 19.8 0.116 

5 2.28 10.27 222.01 352 25.0 0.078 

7 2.43 11.11 218.72 344 19.5 0.075 

8 2.98 10.84 274.91 332 27.8 0.091 

9 2.25 11.15 201.79 257 26.4 0.052 

10 1.86 10.58 175.80 314 19.7 0.055 

11 0.70 10.04 69.72 419 42.5 0.029 

13 0.35 11.09 31.56 563 78.3 0.018 
137 . . th Table 4.2 The sse and assocIated Cs actIvItIes, Warton Bank, 6 June 1996 . 
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The radionuclide data from the gamma spectroscopy showed that only 137 Cs was 

abundant enough to produce a complete data set. Other radionuclides were detected, 

such as 214Pb, 40K and 21 4Am but each only in single samples. The concentration of 

JJ7Cs in Bq/l was plotted against the suspended sediment concentration as shown in 

Figure 4.2. It can be seen that there is a linear relationship between suspended sediment 

and radionuclide concentration. To this the 1997 data were added to show the temporal 

stability of the relationship. Thus, the first hypothesis has been shown to be correct. 
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Figure 4.2 The environmentally derived relationship between suspended sediment 
and the associated l37Cs concentration and its temporal stability. 

450 

Table 4.3 shows the relationship to have an intercept on the 137Cs axis of 0.00067 Bq/l, 

this implies that there is a surplus of 0.00067 Bq/l on the filter paper when there is zero 

suspended sediment. This is likely to be introduced as a result of sampling or analytical 

error. In these conditions it is anticipated that where there is no suspended sediment 

there would be no I37Cs activity present. To satisfy this condition the regression line 
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was forced through the origin. Table 4.3 shows that this forcing of the data through the 

origin has an almost inconsequential effect on the linearity of the relationship, as 

indicated by the good R2 value. If the intercept of 0.67mBq/l is not a result of analytical 

error then this suggests that some caesium is coming out of solution and binding to the 

filter paper. This is not unlikely as caesium has a higher solubility than most other 

radionuclides and the value of 0.67mBq/l is considered a value within the range 

expected (McDonald pers comm.). 

Environmental Relationship Intercept forced to Zero 

Equation IJI CS = 0.0003(SSC) + 0.00067 IJI Cs = 0.0003(SSC) 

RZ 0.95 0.94 

137. Table 4.3 The relatlOnship between the SSC and the associated Cs concentratlOn as 
found in the field and with the intercept forced to zero 137 Cs at zero SSCs. 

From chapter two, it is known that for equal masses of sediment, the smaller grain sizes 

have a greater concentration of adsorbed 137 Cs. If progressively increasing current 

velocities over the rising tide were suspending an increasing proportion of the larger 

grain sizes, the relationship would be expected to plateau off at the higher SSC as the 

relative proportion of fine grain sizes, per unit mass of sediment, decreases. As the 

relationship is linear with no apparent change in gradient at the higher SSC it suggests 

that the composition of the sediment with respect to grain size must be relatively 

uniform irrespective of current velocity for the range of velocities measured during this 

sampling period. 

There are a further four points on the graph in Figure 4.1 that were collected in 1997 

approximately twelve months after the main data set, on a comparable spring tide of 
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9.lm height above Ordnance Datum Newlyn (ODN). These were collected to examine 

whether the relationship was temporally stable. It can be seen from Figure 4.2 that the 

1997 data points are in agreement from those of the 1996 data. This indicates that the 

relationship is temporally stable, at least within a time-scale of two years. The four 

points form a single check on temporal stability, whilst not conclusive given the limited 

range of suspended sediment (0-120 mg/l), show that the deviation from the 1996 

derived values is clearly minimal. 

4.2.2 Grain size 

Experimental objective 

The grain size of the suspended sediment is one of the most important controlling 

factors for radionuclide concentration, sediment transport and reflectance as can be seen 

from chapter 2. Thus, the data presented below were collected to investigate the spatial 

and temporal variations that occur in grain size during a flood tide. 

Methodology 

Samples for sediment grain size were collected on three occasions during 1996. The 

first set was collected on the 6th June 1996 off Warton bank over a rising tide to 

examine how the sediment grain size varies temporally for a small area. These were 

collected concurrently with the radionuclide data presented in section 2.2.1 by varying 

the sampling either side of the axial convergence front, which forms during the flood 

tide. The second and third samples sets were collected on the 3rd and 4th of August 1996 

to examine the spatial variation of suspended sediment grain size. The samples were 

collected following a route which ran in an Easterly course from Warton Bank (1) to the 

confluence (2) with the River Douglas and then from Bull Nose Point (3) at Preston 
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Docks in a Westerly direction back towards the confluence of the Ribble and Douglas 

(4). This was done to ensure that the samples were collected from both fresh and saline 

waters giving the maximum possible variations in sediment properties. A simplified 

diagram of the sampling route taken is shown in Figure 4.3. 

Warton 
Bank 

~----~-------~~---~---------
Bull Nose 
Point 

Figure 4.3 The longitudinal sampling regime used on the 3rd and 4th August 1996. 

Results and discussion 

The sediment grain size data for three different days are given in detail in appendix B 

and represented graphically in Figure 4.4. It can be seen that for all four data sets the 

clay and silt fractions, that less than 63flm, dominate the suspended sediment, however 

it is the clay fraction that plays an important role in the transport of radionuclides. 

Therefore the basic descriptive statistics for the %clay fraction of each data set are given 

in table 4.4. 

From these it can be seen that the data collected on the 6th June 1996 has the highest 

variability of percent clay, yet we know that for this data set the relationship between 

suspended sediment and 137 Cs concentrations is very linear. It can then be suggested 

that the data sets for which the variability in percent clay is low are also likely to be 

linear. 
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Sample Date 6/6/96 3/8/96 4/8/96 20/7/97 

No. of samples 11 15 12 23 

Mean (%) 6.44 7.70 7.45 3.13 

Minimum (%) 3.62 5.96 5.47 1.55 

Maximum(%) 13.45 11.68 10.93 4.70 

Standard Deviation 3.S3 1.38 1.754 0.77 

Standard Error 1.15 0.36 0.51 0.16 

CV(%) 59.47 17.91 23.53 24.71 

Table 4.4 The basic descriptive statistics for the %clay fractions «2Ilm) of the four 
grain size distribution data sets. 

To statistically assess whether the four data sets are of similar composition with respect 

to percent clay content, the data were first tested for normality using the Anderson-

Darling normality test. The results showed that the distributions of the percent clay data 

were normal for the data collected on the 4th August 1996 and 20th July 1997 but were 

not normal for the data collected on the 6th June and the 3rd August 1996. Thus, non-

normality was assumed for all the data so that all four sets could be compared using a 

Kruskal-Wallis test, the non-parametric equivalent of the ANOV A. The output of the 

Kruskal-Wallis test showed that the data came from different populations. To 

investigate the differences between each data set a "Multiple Comparison between 

Treatments" test was performed using the outputs from the Kruskal-Wallis test. The 

results showed that it was the fourth data set, collected on the 20th July 1997 during the 

remote sensing flights, which appeared to come from a different popUlation. Despite the 

apparent singularity of the data set from the 20th July 1997 it is interesting to note that in 

Figure 4.2 the four data points collected on this day still lie on the straight line of the 

suspended sediment- 137 Cs concentration relationship derived on the 6th June 1996. 
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Thus, it can be said that the 20th July 1997 data set being from the different sediment 

population has a negligible effect on the relationship between SSC and 137 Cs. 

It is known that the suspended sediment reflectance relationship is also sensitive to grain 

size changes. As the composition of the sediment as a whole is dominated by the 

smaller grain size fractions it is assumed that the reflectance of the sediment will remain 

relatively proportional to the sse. This will be investigated in sections 4.3.3 and 4.3.4. 

There appears to be a noisy trend of decreasing sand content and increasing silt content 

on Figure 4.4c, however, the clay content, the primary cause of light scatter, remains 

more constant. Any variation in grain size of the suspended sediment throughout the 

rising tide will be dependent on factors such as local sediment sources and current 

velocities, which cannot be predicted accurately. Variations such as this could not be 

corrected for in a suspended sediment-reflectance algorithm on a pixel by pixel basis. 

Thus, the suspended sediment grain size is assumed to be spatially and temporally 

constant over the rising tide. 

109 



...... 
o 

W\OW('1)~ 
~ 0'\ ~ Ul _. 
O' o2()"O 
Vl VlPl= 
NO N~ ~ 

u0 '-' uO . 

~""'~Pl f'­
N('1)N,-,~ 
0'\30'\ 
~-o ~ ...., ...., 
OOOOO('1)::r 
~""1 ~ 3 ('1) 

=:.. cr' -0 (JQ 
'-' 0 ~'"i 

< ""1 Pl ~ en =:.. _. 
""1 -0 ::s _ . Pl < 
!=?. :::::-. ~ Ul 
- . M ""1 -. o ::::. P;' N 
~ < :::::-. ('1) 

Pl 0 0-o ::1.::s _ . 
....... PlUl Ul 

....... :::::-. 0 5'". 
~O~ cr' 
<:; ::l Hi s:: 
Pl Ul ...... 

::t 0' ~ o· 
o ""1 Pl ::s 
::l :4 Ul 

...... 0 
to~::lO' 
~ ~ to ""1 
~::r~""" 

u o;:s::r 
_", ('1) 

N ('1) u 

?('1)0'\~ 
-.J Ul I Ul 
I ...... 0'\-0 
\0 s:: I ('1) 
-.J . El \0 ;:s 
u,<O'\o-

u ('1) 
Plcr'PlO­

-0 '-"-0 
~0.-o en 
0'-'""1('1) 
X W ~ ~ 
- I _. a 
::l ~ 3 ('1) 
!=?.\Op;>::s 
('1)0'\;; ...... 

~ ~ ~ g, 
- . 0. -. 
0.cr'0-g. 
""1'-"""1('1) 
('1),.-...('1) 
(p =: (p t'::1 
""""1 '-"" ~ _. 
('1)~('1)cr' 
::l I ::l cr' 
0000 -
('1) 1('1)('1) 

~ 

::l 
; 

9: 19 

9:25 

9:30 

9:38 

9:44 

9:47 

9:55 

10:00 

10:03 

10:09 

10:13 

10:17 

10:23 

10:30 

10:34 

10:42 

10:48 

10:53 

10:56 

11 :02 

11 :06 

12:11 

12:27 

~ ~ o ~ § 
o 

I 
_ ,r_ " _ .. 

• 

• 
" 

,.. 

...... ~:.: .... ~ "",~-;,,~' 

• 
• 

• ~,~ -,j:('1T"";F"1I!I! 

• 

• ,., ."' . 

• ~ .JiIIlv-.$ 

• ~-~~.=:",tI ~,. 

• 

~ r .. __ ' 

j" ", 

,g; 

~ 
:9 ~ 

I 
340824, 4265 18 § 

o 

341008, 426552 

341348, 426620 

341502, 426603 

g; 343208, 427054 

~ 344359, 427486 
Q 348981, 429013 

i 350034, 429292 i 349069, 429024 
347560, 428645 
347636, 428687 

347479, 428630 

346701 , 428356 

345972, 428 11 5 

345208, 427782 

"g: 

:§ 
~ 

339913, 426400 • 
339910, 426462 • 
340530, 426465 • 

I 

I 
i 340519, 426542 

~ 342922, 426915 • 
Q 342887, 426962 • 
Q. 

~ 348993, 428984 

~ 348985, 429021 --
348534, 428892 -
348513, 428927 -
345916, 428073 • 
345038, 427777 • 

~ ~ ~ ~ 

~ 0 ~ 0 ~ ~ 

't.,:"" 

"-

~ 

~ 

~ 
'-' 

'"i 

13:27 

13:34 

13:40 

13:45 

13 :49 

~i" 13:58 
'" 

14 :02 

14:07 

14:12 

14 :18 

15:03 

o 
<f? 

• 
• 
I 

• 

N 
o 
<f? 

..,. 
o 
~ o 

0-o 
<f? 

-- ... - .... 

: r: . • -~ ., 

I 'O~~ 

~ 

• __ ,J.' 

• . 
~ . - - . _l ",- __ ._ I 

I : ~ .•• ,e-., .. ' - I 

• 'L.:. 

• 0 0 
~ ::§? 

0 ~ 
n en en 
t;) '" - ::l 
'< C. --. 
A IV 

Ii IV b-
e: \;.J C\ 

e: w 
E., E., e: 

E., 

00 
o 
~ o 

I 

I 

I 

I 

I 

I 

J 

I 

I 

o 
o 
~ o 



4.2.3 The in-situ reflectance of suspended sediment 

Objective 

Having established the relationship between SSC and 137 Cs, the next step IS to 

investigate whether we can map SSC by remotely sensed reflectance. Then, using the 

relationship established in section 4.2.1 the mapped SSC can be extrapolated to 137 Cs 

concentration. There have been many previous studies carried out on the remote 

sensing of suspended sediment as detailed in chapter two. The only point of agreement 

between all the studies is the relationship between suspended sediment and reflectance 

is of a site specific nature as the controls are dependent on the mineralogy, grain size 

distribution and SSC range. For this reason the assessment of the relationship between 

SSC and reflectance must be approached as if a totally unknown relationship were being 

tested. 

Methodology 

On the 6th June 1996, over a rising tide, reflectance measurements were taken of the 

surface of the water using the ASD FR spectroradiometer, the details of which can be 

found in section 3.2.1. The readings were taken simultaneously with the ten litre 

samples collected for radionuclide analysis detailed in section 4.2.1. When the 

reflectance readings were being collected, the boat engine was put into neutral to 

minimise the amount of surface disturbance produced by the bow wave. The reflectance 

readings were taken from the rear port quarter of the boat, as far out from the boat as the 

ASD FR fibre-optic cable (section 3.2.1) would allow and with the spectrometer head at 

nadir approximately 50cm above the surface of the water. The sample locations were 

the same as those for the radionuclides presented in Figure 4.1 and table 4.1. The 
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reflectance spectra were processed as detailed in section 3.2.2 to obtain continuous 

spectra and then into a selection of possible CASI bandwidths. 

Results and discussion 

Figure 4.5 shows three of the continuous ASD reflectance spectra for wavelengths 

400nrn to 1000nm. The reflectance increases from 400nm to 600nrn where it either 

plateaus off or decreases slightly before the chlorophyll absorbance feature at around 

685nm is observed. The reflectance is increased slightly around 800nm to 840nm, after 

which the reflectance decreases steadily. Above 950nm the spectra become very noisy, 

limiting the useful spectral data to below 920nrn. 

12 
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Figure 4.5 A selection of continuous reflectance spectra of the Ribble estuary, 6th June 
1996. Sites 8,10 and 13 correspond to SSC of 275 mgll, 176 mgll and 32 mgll 
respectively 

It can be seen from Figure 4.5, across the whole wavelength range, reflectance increases 

with SSe. Thus, theoretically, reflectance at all wavelengths may correlate well with 

the SSe. However, as detailed in section 2.5.2, it is known that at wavelengths below 

700nrn there can be interference in the suspended sediment reflectance correlation from 
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the dissolved constituents of the water column such as chlorophyll and Gelbstoff (Bale 

et aI., 1994, Hudson et aI., 1994). 
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Figure 4.6 The variation of the Pearson Product Momentum Correlation Coefficient, R, 
for the in-situ reflectance with a) the SSC or b) the natural logarithm of the SSC, plotted 
against wavelength for the Ribble estuary data set produced on the 6th June 1996. 

Figure 4.6 shows that there is a relationship between the SSC and the in-situ reflectance. 

When the Pearson Product Momentum correlation coefficient, R, between suspended 

sediment and in-situ reflectance is plotted against wavelength for the data collected on 

the 6th June 1996 it can be seen that the relationship is of a log-linear nature as this 

produces the higher correlations at all wavelengths. All log-linear correlations are 

significant (p<0.05) but the correlation increases rapidly after 700nm and is at a 

maximum between 800nm and 900nm. The correlation being higher at the longer 

wavelengths is most likely due to the absence of interference due to chlorophyll and 

Gelbstoff as mentioned above. 
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Figure 4.7 shows the log-linear relationships at two different wavelengths from the 

region of the higher correlations. The graphs illustrate clearly that although the R2 value 

and the amount of scatter within the sample points may vary, the actual rate of increase 

of reflectance with variation in suspended sediment appears to be approximately 

constant over the longer wavelengths. 
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Figure 4.7 The in-situ relationship between the natural logarithm of the SSC and in-situ 
reflectance at two possible 20nm wide CASI bands, for the Ribble estuary 6th June 
1996. 

The data used in Figure 4.7 had been processed into possible CASI bands using an 

averaging method as described in section 3.2.2 and 4.3.7. The correlation coefficient, R, 

of the relationship is comparable with those of other field-based studies. For example, 

two studies in Swansea Bay using A TM wavelengths, by Collins and Pattriachi (1984) 

and Rimmer et at. (1987), achieved correlation coefficient values, R2, of 0.42 and 0.62 

respectively using logarithmic-linear regression techniques. The second study by 

Rimmer et at. (1987) improved the correlation by including salinity in the regression 

equation. This method is unlikely to improve the regression results for the Ribble 

estuary as it is shown in section 4.3 .5 that salinity has no systematic effect on the 
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reflectance of a given sse. Other studies, such as Tassan (1994), comment that eASE 

II waters, that is those containing significant amounts of suspended sediment, are poorly 

correlated. 

The scatter within the in-situ relationship could be introduced from a variety of possible 

sources listed below. 

(i) Suspended sediment heterogeneity. 

(ii) Suspended sediment sampling - non-representative water samples. 

(iii) Suspended sediment analysis - error introduced by laboratory analysis. 

(iv) Off nadir viewing. 

The concentration of the suspended sediment in the surface water is variable as a result 

of localised currents and eddies. The instantaneous field of view of the ASD 

spectroradiometer at O.5m above the surface with an 8° field of view is approximately 

38.4 cm2
• Within that area, the sse may not vary greatly; the variation is likely to be 

greater between subsequent spectra. It can be assumed that this variability in sse 

between subsequent spectra will be randomly distributed around an average value and 

that overall the scatter introduced from this source will be negligible as all data were 

taken from an average of ten replicate spectra. The sampling and analysis of suspended 

sediment is another possible source of scatter. The sampling and analysis methods used 

are recorded in chapter three, section 3.5.1. For the ground truthing data, collected 

simultaneously with the remote sensing data, sample replicates will be used to assess 

this possible source of error. 
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It is likely that the main source of scatter within the sse reflectance relationship is a 

result of off nadir viewing caused by the movement of the water surface due to ripples. 

It is known that the strength of the relationship is reduced by off nadir viewing (Ferrier, 

1995) and that although the spectrometer head is at nadir the surface of the water is 

never exactly horizontal. When the area viewed by the spectrometer is as small as 38.4 

cm2 this movement of the water will have a considerable effect on changing the 

apparent viewing angle. This will introduce a large amount of scatter into the in-situ 

reflectance data and is most likely the main cause of the scatter evident in the data 

presented in Figure 4.7. However, when the relationship between sse and reflectance 

is considered on a scale of a 2.5m by 2.5m pixel, this effect will be reduced, as the effect 

of a ripple measured from a height of 1500m over such a large scale will be minimal. 

4.2.4 Summary and conclusions 

The preliminary in-situ work on the Ribble estuary confirmed the first hypothesis, that 

there was a relationship between the sse and the associated radionuclide concentration. 

Extra data points taken approximately twelve months after the initial data showed the 

temporal stability of the relationship. This suggests that the sse, derived from remotely 

sensed data, can act as a surrogate of the 137 es concentration. The grain size data 

showed that the suspended sediment of the estuary was dominated by the <63Jlm 

fraction and that the spatial and temporal variations are minimal. The relationship 

between in-situ reflectance and sse is of a log-linear nature but is subject to some 

scatter. 

The relationship between in-situ reflectance and sse is not as well defined as initially 

hoped, therefore further laboratory work is needed to achieve a greater confidence in the 
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relationship. It is necessary to understand the dependence of the sse reflectance 

relationship on the possible natural variables such as grain size and salinity. 

4.3 A LABORA TORY ANALYSIS OF THE CONTROLS ON THE SUSPENDED 

SEDIMENT REFLECTANCE RELATIONSHIP 

Introduction 

As a result of the scatter in the in-situ sse reflectance relationship, shown in Figure 4.7, 

laboratory work was performed to determine the exact nature of the relationship and the 

influence of grain size in a controlled environment. Firstly, the equipment was designed 

and the behaviour of sediments in the apparatus tested. Secondly, spectral experiments 

were used to examine each of the possible variables for which previous studies do not 

exist, such as clay content, contribution of the larger grain sizes and salinity. 

4.3.1 Design and testing of the experimental apparatus 

Objective 

A controlled environment must be created that is representative of the natural 

environment in which the in-situ measurements are being taken. The suspended 

sediment in the tank must be evenly distributed to accurately represent sse produced 

by adding a known amount of sediment. Thus, the spatial variability across the surface 

and with depth is examined to see how the sediment is distributed throughout the water 

after stirring. The settling rate of the sediment after stirring stops is determined to 

assess the time limit in which representative spectra can be taken. 
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Methodology 

The laboratory apparatus consisted of a black plastic cistern-expansion tank and a 

paddle for manual stirring. The tank was sanded to give a non-reflective matt finish 

inside and the paddle was coated with matt black paint so that it could be pulled out of 

the field of view of the spectrometer but left in the tank during the experiments. The 

basic laboratory apparatus is shown in Figure 4.8. 

Sensor Head 

Clamp Stand 
Stirring Puddle 

53 em 

~----~5-4'c-m-------' 

Figure 4.8 The arrangement of the laboratory apparatus 

The tank was carefully filled with exactly 110 litres of tap-water and the depth at the 

centre of the tank was noted as 40cm, a depth considered adequate for high SSC in a 

study by Mantovani and Cabral (1992). Therefore, in future the tank could be filled to a 

known depth rather than measuring out water by the litre. The error introduced by 

measuring the depth to ±0.1 cm was calculated at 0.5% and the possible range for each 

proposed SSC is detailed in table 4.5. 
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sse. Mass of Sedimen t Cumulative Mass SSC range at 

(mg/I) Added (g) of Sediment Added (g) ± Imm depth (mg/I) 

0 0 0 0 

50 5.5 5.5 49.88 - 50.13 

100 5.5 11 99.75 - 100.25 

200 11 22 199.50 - 200.50 

300 11 33 299.25 - 300.75 

400 11 44 399.00 - 401.00 

500 11 55 498.75 - 501.25 

600 11 66 598.50 - 601.50 

Table 4.5 The possible errors m sse mtroduced by measunng the water volume to 
40cm depth ± O.lcm. 

The sediment was taken from a composite of several samples of deposited estuarine 

sediment from the Ribble estuary. This was then dried and dry sieved into <63Jlm, 63-

125Jlm and >125Jlm grain size fractions, a sample was taken for particle size analysis by 

laser-granulometer. The Partech 7000-3RP-turbidity meter was calibrated to 500 FTU 

as detailed in section 3.5.4. 

The maximum sse found during the June 1996 fieldwork was 400 mg/l and it was 

estimated that the sse was unlikely to exceed 600 mg/l during ground trothing of the 

flight data. Thus, 66g of <63Jlm sediment was added to the tank to give a concentration 

of 600 mg/I. It was found that the best way to add the sediment to the tank was in the 

form of slurry rather than as a dry powder, which tended to float and form lumps. 

The surface was visually divided up into twelve points using a 3x4 grid. The tank was 

stirred until a constant turbidity was reached and this value noted as approximately 40% 

deflection on the turbidity meter. Immediately after stirring ceased the turbidity meter 
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head was placed at point one, at 5cm depth, and readings taken after 0,5, 10, 15,20,30, 

40, 50, 60, 80 and 100 seconds. This was repeated five times and the turbidity meter 

calibration checked after each set of five readings. This was then repeated for points 

two to twelve. Five sets of readings were also taken for a single point at the centre of 

the tank at depths of 15cm and 35cm. 

Results and discussion 

The results, in percent deflection, were first converted to formazin turbidity units (FTU) 

using the calibration curve, FTU = 5.3875*(% deflection) with an R2 of 0.99. The five 

replicates were then combined to give an average data set. 

Spatial Variability 

The spatial variability was examined using the coefficient of variation of the twelve 

averaged surface points measured at 5cm depth, the results of which are shown in table 

4.6. It can be seen that the variability across the surface is between 4.0 and 5.1 percent, 

increasing with time after stirring ceases. This was considered acceptable and within 

the expected experimental error. 
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Time (s) Mean of 12 StDev of 12 CV(%) 

Points (FTU) Points (FTU) 

0 232.38 9.65 4.15 

5 231.35 9.62 4.16 

10 229.87 9.97 4.34 

15 226.99 9.62 4.24 

20 226.36 9.11 4.02 

30 221.20 10.59 4.79 

40 217.74 9.92 4.55 

50 213.66 9.94 4.65 

60 209.98 8.93 4.25 

80 203.78 10.26 5.04 

100 197.59 10.10 5.11 
.. 

Table 4.6 The surface variability In turbIdIty of the experimental apparatus. 

Depth Variability 

The same analysis techniques used for surface variability were used to assess the 

variability with depth, the results are shown in table 4.7. It can be seen that between the 

three depth measurements the variability is in the range 1.15-4.67 % and this increases 

with time as the sediment starts to settle. If spectra are taken within a specified time 

after stirring stops, for example twenty seconds, the variability in sse with depth can be 

said to be less that 2%. 
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Average values of the five replicate data sets (FTU) 

Time Scm 15cm 35cm Mean StDev CV(%) 

depth depth depth 

0 232.4 227.4 234.9 231.5 3.84 1.66 

5 231.3 228.4 233.8 231.2 2.70 1.17 

10 229.9 226.3 232.2 229.4 2.99 1.30 

15 227.0 226.3 231.1 228.1 2.62 1.15 

20 226.4 223.0 230.0 226.5 3.50 1.55 

30 221.2 21S.2 225.7 221.7 3.S0 1.71 

40 217.7 215.0 221.4 218.0 3.24 1.49 

50 213.7 210.7 222.0 215.4 5.86 2.72 

60 210.0 207.4 216.6 211.3 4.73 2.24 

80 203.S 207.4 215.5 20S.9 6.00 2.S7 

100 197.6 210.7 216.6 20S.3 9.72 4.67 
.. 

Table 4.7 The variability of the turbIdIty wIth depth. 

Settlement with Time 

Time % change % change % change 

Scm depth 15cm depth 35cm depth 

0 0.00 0.00 0.00 

5 -0.44 0.47 -0.46 

10 -1.08 -0.47 -1.15 

15 -2.32 -0.47 -1.61 

20 -2.59 -1.90 -2.06 

30 -4.81 -4.03 -3.90 

40 -6.30 -5.45 -5.73 

50 -8.06 -7.35 -5.50 

60 -9.64 -S.77 -7.S0 

80 -12.31 -8.77 -8.26 

100 -14.97 -7.35 -7.80 

Table 4.8 The settlement of the suspended sediment with time at depths of 5cm, 15cm 
and 35cm expressed as a percentage change of the t=O measurement in FTU. 
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From the above results it can be seen that the sediment does settle as the turbidity 

decreases with time at all depths. The rate at which the sediment settles determines a 

time limit within which representative spectra can be taken. 

From table 4.8 it can be seen that the percent decrease in turbidity is less for the 

measurements taken at 15cm and 35cm depth. This is due to there being a secondary 

source of sediment as it settles from above, in addition to the sediment sink due to 

settling. The surface measurements at Scm depth only represent a sediment sink, thus 

the percentage decrease with time appears greater. To take representative spectral 

measurements the spectra must be collected before the sse decreases due to settling. If 

we set a limit of less than 2% change in turbidity as an acceptable error, which is not 

excessive considering the surface and depth variability discussed above, it can be seen 

that all replicate spectra must be collected within 10 seconds of the stirring ceasing. It is 

well within the capabilities of the ASD spectroradiometer to collect ten spectra during 

ten seconds, however, the GER1500 spectroradiometer will require the spectra to be 

taken as two sets of five spectra with stirring in between. 

4.3.2 The suspended sediment reflectance relationship 

Objective 

The first objective with regard to assessing the laboratory relationship between sse and 

reflectance is to examine the form of the relationship and the sse range over which it is 

sensitive. 
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Methodology 

The sediment was prepared from a composite of samples of deposited estuarine 

sediment from the Ribble estuary. This was then dried, dry sieved and the <63Jlm 

fraction was used. The smaller grain size fraction was used for two reasons, firstly the 

suspended sediment of the Ribble estuary is predominantly <63Jlm and secondly the 

smaller grain sizes are easier to maintain in suspension. A sub-sample of this composite 

sediment was taken for particle size analysis by laser-granulometer. 

The experimental tank was placed on a trolley and filled with 110 litres of water, to a 

depth of 40cm ± 0.1 cm. The spectroradiometer was placed level with the rim of the 

tank and the spectrometer head positioned centrally over the tank at nadir, 40cm above 

the surface of the water. Sediment was weighed out in quantities as detailed in column 

two of table 4.5, to give cumulative sse ofO, 50, 100,200,300,400,500 and 600 mg/I. 

The entire apparatus was then wheeled outside and away from the buildings to utilise 

the natural light. The ASD spectroradiometer is sensitive to the 50Hz cycles of mains 

operated lighting, effectively ruling out the use of an indoor artificial light source. The 

conditions were bright but overcast giving diffuse lighting. Prior to adding any 

suspended sediment, a reference panel spectrum was taken, the tank was then briefly 

stirred and ten spectra collected for ° mg/I. 

The first pre-weighed sediment sample was mixed to slurry with water from the tank. 

The slurry was then added to the tank and stirred vigorously for one minute to ensure 

that all the sediment was in suspension. A reference panel spectrum was taken and the 

tank stirred for a further 30 seconds. Immediately after stirring the ten spectra were 

collected for the 50 mg/l suspended sediment concentration. This process was then 
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repeated for each pre-weighed sediment sample up to the 600mg/1 concentration. The 

raw spectra were then processed, as detailed in section 3.2.2, to continuous absolute 

reflectance spectra. 
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Figure 4.9 The laboratory derived continuous reflectance spectra of a composite Ribble 
sediment, (91 %<63~m), using natural diffuse light. 

Results and discussion 

The laser-granulometer results for the composite sediment show the clay, silt and sand 

composition of 11.99%, 79.05% and 8.96% respectively, which is only slightly finer 

than can be expected in Ribble estuary suspended sediment. The spectral shape, shown 

in Figure 4.9, shows that the overall shape is the same as for the in-situ spectra but 

without the chlorophyll absorbance feature at approximately 685nm. This is to be 

expected, as phytoplankton would not survive the sediment drying, grinding and sieving 

processes. 

125 



Figure 4.9 shows that the percent reflectance increases with SSC for wavelengths 

greater than 700 run. At wavelengths below 700nm the higher SSC are difficult to 

define, this is in agreement with Novo et al. (1991), who shows that the shorter 

wavelengths become insensitive to increases in SSC before the longer wavelengths. If 

we look at the change in the Pearson Product Momentum Correlation Coefficient, R, 

with wavelength as shown in Figure 4.10 we can compare it to the equivalent for the in-

situ data, which is shown in Figure 4.6. It can be seen that for both laboratory and in-

situ data the relationship appears to be of a log-linear nature. However, in the laboratory 

data, the difference in the correlation between the linear and log-linear relationship for 

wavelengths greater than 750nm appears to be minimal. 
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Figure 4.1 0 The Pearson Product Momentum Correlation Coefficient, R, for the 
laboratory derived continuous spectra of a composite Ribble sediment, (91 %<63J.lm), 
using natural diffuse light. 
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The data were then averaged into possible eAST bands, of approximately 20nm width, 

to look at the rate of change of reflectance with sse. An example of the shape of the 

relationship can be seen in Figure 4.11 . It can be seen that the sse reflectance 

relationship is initially linear but the rate of change starts to decrease around 250 mg/I , 

thus for a low sse range it would be valid to use a linear relationship. After 

transfom1ation of the suspended sediment data using natural logarithms the relationship 

is linear over the whole 0-600mg/1 range, thus for higher sse the log-linear relationship 

must be used. 
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Figure 4.11 An example of the linear and log-linear SSe-reflectance relationship for 
two different twenty-nanometer band widths. 

4.3.3 Variation of the suspended sediment reflectance relationship 

with variation in clay content 

Objective 

From chapter two it can be seen that the grain size has an effect on the suspended 

sediment reflectance relationship. It is known that the smaller grain sizes give a higher 

reflectance for a given SSe. The finer particles have a larger surface area to mass ratio 

and the clay particles have sheet like structures, which in dispersed suspensions align 

themselves with the water flow, largest surface uppermost. If variation in composition 
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were likely to have an overall effect on sse reflectance relationship, it would be due to 

a variation within the clay fraction. Therefore, the effect of variation in the clay content 

of the suspended sediment on the relationship with reflectance needs to be investigated. 

Methodology 

Three naturally occurnng sediment samples were compared usmg the ASD 

spectroradiometer in natural diffuse light. In an attempt to increase the contrast in 

percentage clay content between samples, a second experiment was perfonned using a 

bulk sediment which was ground for zero, five and ten minutes respectively on the 

GER1500 spectroradiometer and an artificial light source set at 60° above the 

horizontal. The sediment preparation was as detailed in section 4.3.2 with the exception 

of the second grinding for the bulk sediment used in the second experiment. Sub-

samples of each of the sediment were taken for analysis by laser-granulometry. 

Results and discussion 

Sediment % <2J.Lm (Clay) % 2-63J.Lm (Silt) % >63J.Lm (Sand) 

Composite 12.0 79.1 9.0 

Warton Bank 15.5 75.1 9.3 

Bulk 13.6 78.4 8.0 

Bulk (ground 5 min.) 24.6 74.9 0.6 

Bulk (ground 10 min.) 27.4 70.4 2.2 

Table 4.9 The gram SIze dIstnbutIon of the RIbble sedIments used to assess variation in 
the SSe-reflectance relationship with varying clay content. 

Table 4.9 shows the grain size results of the laser-granulometry. It can be seen that the 

variation in clay content of the naturally occurring sediment is relatively small, the range 

being only 3.5%. For this reason the bulk sediment sample was mechanically ground to 
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increase the finer grain size fract ion. The grinding process increased the <2J.lm content 

up to 24.6% and 27.4% after grinding for five and ten minutes respectively. 

The experiments on the naturally occurring and ground sediments were performed at 

different times; thus the experimental set-up was slightly different. The natural 

sediment was examined under natural light using the ASD FR and the ground sediment 

examined under artificial light using the GER 1500. As both the laboratory and field 

spectra were collected as reflectance, and thus standardised to a panel of known 

reflectance, the results will be comparable. However, any differences likely to be a 

result from the use of two different spectrometers and different lighting conditions are 

considered more fully in section 4.3.6. For the purpose of examining the variation in 

reflectance with changes in content of the <2Jlm fraction, the naturally occurring and 

ground sediments will be treated separately to eliminate any possible effect due to the 

change in spectrometer and illumination. 
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Figure 4.12 The variation in the sse reflectance relationship (720-740nm) with <2J.lm 
content for naturally occurring sediments using natural diffuse light. 

Figure 4.12 shows that the suspended sediment reflectance relationship is not affected 

by a variation in clay content for low SSe. As the sse increases the relationships start 

to diverge. Looking at the linear-linear relationship shown in the left hand graph, it can 
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be seen that it is the sediment with the lowest <2)..lm content (bulk) whose reflectance 

starts to become insensitive to the increasing SSC first. As expected, it is the sediment 

with the highest <2)..lm content that gives the highest reflectance and the best sensitivity 

in the reflectance SSC relationship. 

As stated previously, the range of the variation In <2)..lm content of the naturally 

occumng sediments is very small so the range of <2)..lm contents was artificially 

increased using mechanical grinding. The naturally occurring "bulk" sediment was 

measured again as a different spectrometer was used and the measurements were then 

repeated using the ground sediments. Comparing Figures 4.12 and 4.13 it can be seen 

that the absolute reflectance measurements are not identical, 400 mg/l of the raw bulk 

sediment gives reflectances of7.8% and 4.5% for the ASD and GER1500 spectrometers 

respectively. The possible reasons for this are discussed in section 4.3.6. 
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Figure 4.13 The variation in the SSC reflectance relationship (720-740nm) with <2)..lm 
content for ground sediment using an artificial light at 600 above the horizontal. 

Figure 4.13 shows that, as expected, the mechanically ground sediments with the higher 

<2)..lm content give a much higher reflectance than the naturally occurring sediment. 
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However, this is not a systematic increase in reflectance with increase in <2J.lm content 

as would be expected. The sse reflectance relationships of the two mechanically 

ground sediments start to diverge at concentrations greater than 200 mg/l, however, the 

sediment with the higher <2/lm content gives the slightly lower reflectance, contrary to 

expectation. It suggests that this divergence of the suspended sediment reflectance 

relationships may not be a systematic feature related to the percentage of the sediment 

less than 2J.lm but more an indication of the limitations of the relationship. It may be 

that at higher sse the relationship with reflectance is less reliable and more susceptible 

to analytical errors. This is something that must be considered should the sse sampled 

during ground truthing of the remote sensing data collection exceed 250 mg/I. 

4.3.4 The suspended sediment reflectance relationship of the 63-125J.1m 

size fraction 

Objective 

As detailed in section 4.2.2 the grain size data show that the suspended sediment of the 

Ribble estuary is dominated by the <63/lm fraction, thus the sediment used for the 

laboratory work was sieved to be less than 631lm. However, it is also known that as 

much as 40% of the sediment may be greater than 631lm. Thus, the contribution of the 

sediment fraction greater than 631lm, which was omitted from the other laboratory 

experiments, was investigated to assess whether the experiments using the less than 

63J.lm grain size fraction were truly representative of the reflectance from the in-situ 

estuarine sediments. 
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Methodology 

The composite sediment sample was processed and sieved as for the previous laboratory 

experiments, with the less than 63Jlm and the 63-125Jlm grain size fractions retained for 

use in this experiment. The experiment was performed using the ASD FR spectrometer 

using the experimental set-up as detailed in section 4.3.1 and semi-diffuse natural light. 

Sediment was added to the tank in the form of slurry in increments giving sse of 50, 

100,200, 300, 400, 500 and 600 mg/I. Ten replicate spectra were collected of each sse 

for the two grain size fractions. 

Results and discussion 

Date No. of samples 1: (% >63Jlm) Average % >63Jlm 

6/6/96 11 193.98 17.64 

3/8/96 15 89.92 5.99 

4/8/96 12 85.36 7.11 

2017/97 23 585.35 25.45 

Combined data 61 954.61 15.65 

Table 4.10 The percentage of the sediment composition greater than 63Jlm expressed as 
the daily mean. 

The average percentage of sediment that is greater than 63Jlm is detailed in table 4.10, 

with the average percentage of sediment which is greater than 63Jlm for the four data 

sets combined. It can be seen that the average percent of the suspended sediment that is 

greater than 63Jlm is approximately fifteen percent. 

Figure 4.14a shows that the reflectance of the 63-125 Jlm grain size fraction is markedly 

less than for the <63Jlm grain size fraction. The range of reflectance values between the 

Omg/l and 600mg/1 spectra are approximately 2% and 6% reflectance at 700nm for the 
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63-125flm and <63flm fraction respectively. Figure 4.14b is derived by normalising the 

baselines of Figure 4.14a, achieved by subtracting the Omgll spectra from the 600mgll 

spectra for each grain size fraction. These are displayed as the upper and lower lines on 

Figure 4.14b 
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Figure 4.14 a) The 0 mgll and 600 mgll spectra for the grain size fractions <63flm and 
63-125 flm . b) The normalised 600 mg/I spectra (600mgll-Omg/l) for the grai n size 
fractions <63flm and 63-125J..lm and the spectra which represents the in-situ suspended 
sediment consisting 85% of the <63J..lm plus 15% of the 63-125J..lm. 

The central line displayed on Figure 4.14b is the derived spectrum representing the 

expected in-situ suspended sediment of the Ribble estuary. This is calculated as 85% of 

the reflectance from the <63 flm fraction and 15% of the reflectance from the 63-125 J..lm 

fraction . It can be seen that the spectral shape remains unchanged and the spectral 

reflectance values are only slightly less than for just the <63J..lm grain size fraction. If 

expressed as a percentage of the <63J..lm spectra, the reduction in reflectance due to the 

addition of 15% 63-125J..lm sediment ranges from 9.0% to 12.3%, for wavelengths 

536nrn and 892nm respectively. 

This leads to the conclusion that, despite the larger grain sizes being omitted from the 

laboratory experiments for purely practical reasons, as the smaller grains are easier to 

keep in suspension for longer, the results of these experiments are still representative of 
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the suspended sediments of the Ribble estuary. The 9-12% error introduced in the 

absolute reflectance values as a result of the omission of the larger grain size fraction 

will not be introduced into the calibration of the imagery, as the calibration will be 

achieved using ground truth data and not laboratory derived values. 

4.3.5 The suspended sediment reflectance relationship with variation 

in salinity 

Objective 

There are many scientific publications that show how reflectance spectra are modified 

with variation in grain size, sse, chlorophyll and dissolved organic matter. For salinity 

there are numerous references to a study by Khorram (1982) in which the salinity of the 

San Francisco Bay delta is mapped. However, there are no laboratory-derived 

illustrations of how reflectance varies with a change in salinity. The objective of the 

following experiment is to show how a variation in the density of the water due to 

salinity affects reflectance. 

Methodology 

The bulk sediment sample obtained from the Ribble Estuary was processed as for 

section 4.3.1 and the <631lm grain size fraction used. The GER1500 spectrometer and 

the 1000W -video lamp were used. The artificial light source was orientated at 60° 

above the horizontal plane. For these experiments the sse was kept constant at 0, 100, 

200, 400 and 600mg/1 and for each sediment concentration the salinity was varied 

through the 00/00 to 30%0 range in approximately 5%0 increments. The increments of salt 
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were added to the tank and stirred vigorously until completely dissolved before spectral 

measurements commenced. 

The required salinity was achieved using sodium chloride (NaCl). Seawater contains 

many individual constituents and is difficult to replicate accurately. Artificial seawater 

can be purchased but would be expensive when used in such large quantities. The 

salinity of seawater is most likely to have an effect on the reflectance spectrum due to 

the changing density; this can be achieved using sodium chloride alone. The quantity of 

salt that would need to be added to the tank to give a salinity of 50/00 was crudely 

calculated using the known relationship of salinity being 1.807 times the chlorinity, or 

concentration of the halide ions, (Open University 1989). Thus five parts per thousand 

salinity requires 2.77 parts per thousand of chloride ions. Using the atomic masses of 

the chloride ion and sodium chloride as 35.5 and 58.5 respectively, 2.77 parts per 

thousand chlorinity (five parts per thousand salinity) requires 4.5608 grams of sodium 

chloride. This was then multiplied by the volume of the tank, 110 litres, to give a figure 

of 501.69g of sodium chloride per 50/00 increment of salinity. The actual salinity was 

measured for each increment in each experiment using the method detailed in section 

3.5.5. 

Results and discussion 

The results of the salinity measurements displayed in table 4.11 show that the NaCl 

increments produced salinity increments of slightly less than 5%0, however the 

approximate 50/00 increments in salinity were acceptable. 
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Mass of NaCI added (g) 

SSC mg/l 0.00 501.69 1003.38 1505.07 2006.76 2508.45 3010.14 

0 0.032 4.622 9.422 14.250 18.952 23.395 28.748 

100 0.037 4.653 9.220 14.001 18.999 24.230 28.866 

200 0.041 4.835 9.486 14.581 18.594 24.208 29.305 

400 0.042 4.752 9.483 14.486 19.180 24.149 29.282 

600 0.043 4.625 9.334 14.373 19.426 24.443 29.126 

Mean 0.039 4.697 9.389 14.338 19.030 24.085 29.065 

Std Dev 0.004 0.093 0.113 0.225 0.307 0.402 0.249 

Table 4.11 The measured salinity values In parts per thousand (%0) for each increment 
ofNaCI added to each SSC experiment and the mean salinity across all the SSe. 
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Figure 4.15 The effect of salinity and SSC variation with wavelength. 

Figure 4.15 displays the reflectance spectra for the maximum salinity range of 0%0 to 

30%0 at 0 mg/I and 600 mg/I SSC. It can be seen that for 0 mg/I and 600 mg/I the 

difference in spectral reflectance across the salinity range is minimal. It is also evident 

that there appears to be no systematic relationship between salinity and reflectance, for 0 

mg/I the increase in salinity gives an increase in reflectance whereas at 600 mg/I the 

increase in salinity produces a decrease in refl ectance. 
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Concentrating on a single CAS! waveband as shown in Figure 4.16 can see this lack of a 

systematic relationship more clearly. In this graph, each horizontally parallel data series 

represents a single SSC and the x-axis represents the salinity range. It is clear that there 

is no systematic relationship between reflectance and salinity at any SSe. Any variation 

in reflectance for a given SSC appears to be totally random. This raises important 

questions about the study by Khorram (1982) that claimed to map salinity in the San 

Francisco Bay area. The most likely explanation is that the study was not directly 

mapping salinity but some parameter that correlates with salinity, such as the dissolved 

organic matter content of the water, which is inversely correlated to salinity as a result 

of dilution by mixing. 
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Figure 4.16 The variation of laboratory reflectance with salinity for the various SSe. 

4.3.6 Comparison of spectrometers and illumination conditions 

Figure 4.17 shows that there is a considerable difference in the results of the SSC 

reflectance relationship from the two spectrometers under differing conditions. 
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The main features to note in the above diagram are: 

• The increased scatter around the regression line in the field environment 

• The similarity of the gradients of the three lines. 

• The reflectance detected by the ASD is greater than the GER 1500 

The possible reasons for the increased scatter in the field conditions have been discussed 

in section 4.2.3. It is very interesting to note how the gradient of each of the lines in 

Figure 4.17 is approximately the same. This suggests that irrespective of the 

spectrometer used and the conditions in which the spectra are collected, the rate of 

change of reflectance with change in sse is always constant. The implications of this 

are that if a laboratory derived calibration were to be applied to remotely sensed 

imagery, at least one ground truth data point would be needed to anchor the line of 

known gradient onto the Y-axis. As the method employed for this project will calibrate 

the imagery using a complete set of ground truth data, this is not an important issue. 

However, in the event of a major loss of ground truth data the imagery could still be 

calibrated and used with just one calibration point. 

Figure 4.17 The relationship between reflectance and the natural logarithm of sse at 
766-768nm for the two different spectrometers used in the laboratory and field 
environments. 
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The main difference between the spectrometers is that the ASD gives a consistently 

higher reflectance than the GER1500. The possible reasons for this could be difference 

in field of view (FOV) or illumination. 

ASD (Field) ASD (Lab.) GER1500 (Lab.) 

FOV,S 8° 8° 15° 

S+2 4° 4° 7.5° 

Height (cm) -50 40 40 

Radius (crn) 3.49 2.80 5.27 

IFOV Area (crnz) 38.4 24.6 87.1 

Table 4.12 The difference III the areas vIewed by the spectrometers under the different 
conditions. 

Table 4.12 shows how the field of view (FOY) of the spectrometer in degrees and the 

height of the spectrometer above a surface affect the area of the surface viewed or the 

instantaneous field of view (IFOY). This is calculated in two steps, assuming that the 

IFOY is circular. Firstly, the radius of the theoretical circle is calculated as the height 

above the surface multiplied by the tangent of half the field of view. The calculated 

radius is then squared and multiplied by Pi (1t) to give the area viewed by the 

spectrometer. From table 4.12 it can be seen that the GER1500 views a far larger area 

than the ASD spectrometer as it has a broader field of view. Thus, it would be expected 

that the larger field of view would be able to detect more back-scattered light, thus 

giving a higher reflectance. As the GER1500 actually gives the lowest reflectance, this 

is obviously not the case. This implies that there is some other factor responsible for the 

differing reflectance values. The only other variable in the experimental set-up is the 

illumination. The ASD spectrometer is sensitive to the 50Hz cycles of any mains 
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operated light source; thus natural light was used. For the fieldwork the skies were clear 

and for the ASD laboratory experiments the sky was bright but overcast. For the 

GER1500 laboratory experiments, a 1000W lamp was used in a room with a non­

reflective covering on the walls. The result is three different illumination conditions 

where the brightness of the incident light appears to be related to the magnitude of the 

reflectance values of the SSC reflectance relationship. As the final image data will be 

calibrated using ground truth SSC data, the effect of the incident radiance will not be a 

factor but this needs to be considered if applying a laboratory derived calibration to 

remote sensing imagery. 

4.3.7 Choice of CASI Bandset 

After the initial investigations into the SSC reflectance relationship, it is known that the 

wavelengths of greatest importance to the study are those between 700nm and 900nm, 

as these wavelengths are most sensitive to the changes in reflectance with SSe. One of 

the major advantages of remote sensing of radionuclides using the CASI as opposed to 

an airborne gamma spectrometer is that the CAS I is not specific to one parameter. 

Speed of data collection and improved spatial resolution are two more advantages. The 

optical data collected by the CASI can also be used for quantifying chlorophyll 

pigments, dissolved organic matter and for visual studies such as habitat survey. Hence 

the choice of data set can include bands which may be useful for studies outside the 

current one. For this reason the bandset was chosen by initially selecting the 

wavelengths used for quantifying chlorophyll by solar stimulated fluorescence (Gower 

and Borstad, 1990) and dissolved organic matter (Wilson, 1995). The wavelengths 

which are used by NERC (Wilson, 1995) to detect atmospheric constituents, were also 

selected. This was done to avoid any atmospheric effects overlapping onto the sediment 
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sensitive wavelengths. The remaining wavelengths were filled with 20nm wide bands, 

particularly focusing on the 700nm to 900nm range, to give a total of 17 bands. Details 

of the chosen CASI bands are summarized below in table 4.13. Whilst it may seem 

excessive to collect data which are unlikely to be used in this study it must be 

remembered that data collection by airborne remote sensing is relatively expensive and 

potential uses for the data must be maximised at the collection stage. 

Band No. Wavelengths CASI CCD Centre Parameter 

nm Row Wavelength nm 

1 402.81 - 422.15 286-275 412 DOM 

2 432.72 - 453.87 269-257 443 DOM 

3 480.37 - 499.84 242-231 490 DOM 

4 540.63 - 560.19 208-197 550 

5 579.78 - 599.39 186-175 590 

6 660.19 - 679.92 141-130 670 Chlorophyll (Fluor.) 

7 681.72 - 685.31 129-127 682.5 Chlorophyll (Fluor.) 

8 705.07 - 715.86 116-110 710 Chlorophyll (Fluor.) 

9 719.46 - 739.26 108-97 729 Suspended Sediment 

10 741.06 - 759.10 96-86 750 Suspended Sediment 

11 760.90 - 764.51 85-83 762 Oxygen Absorption 

12 766.31 - 786.18 82-71 776 Suspended Sediment 

13 787.99 - 807.88 70-59 798 Suspended Sediment 

14 815.13 - 824.18 55-50 820 Water Absorption 

15 825.99 - 845.94 49-38 836 Suspended Sediment 

16 849.56 - 869.54 36-25 859 Suspended Sediment 

17 880.44 - 900.45 19-8 890 Suspended Sediment 

Table 4.13 The CASJ handset chosen for the collection of the 1997 flights on the Ribble 
Estuary. DOM = dissolved organic matter. 
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4.3.8 Summary and conclusions 

The laboratory experiments were designed to define the possible environmental controls 

on the sse reflectance relationship. The environmental variables likely to be 

encountered in the Ribble estuary were identified as (i) variation in sse, (ii) the salinity 

gradient and (iii) variation in grain size characteristics. In addition to the actual 

environmental variables, some possible sources of error as a result of the experimental 

set-up were also examined. These were the effect of only using the <63f.1m grain size 

fraction and use of different spectrometers. The infonnation gained from the laboratory 

experiments is summarised below: 

1. The sse reflectance relationship is linear for sse range of approximately 0-250 

mg/l or less. 

2. The sse reflectance relationship IS log-linear for sse ranges greater than 

approximately 0-300 mg/I. 

3. Ifthere is substantial variation in the <2f.1m content of the suspended sediment this is 

only likely to have an effect on the sse reflectance relationship at the higher sse, 

for example sse> 500 mg/I. Thus the error contribution as a result of this is likely 

to be less than the suspended sediment sampling and analytical errors, which are 

discussed in chapter 5. 

4. Using only the smallest grain size fraction in the experimental set-up does not have a 

significant effect on the sse reflectance relationship. 

5. There is no systematic relationship between salinity and reflectance, thus the whole 

estuary can be mapped using a single algorithm. 
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6. Using different spectrometers in different conditions does gIve different SSC 

reflectance relationships but this appears to be a result of the illumination 

conditions. 

4.4 CHAPTER SUMMARY 

This chapter has attempted to prove the initial hypothesis and demonstrated a reliable 

relationship between SSC and 137 Cs concentration. It has also been able to address other 

issues relating to the properties of the water column and the possible effect on 

reflectance. It is now known that the relationship between SSC and the associated 

radionuclide concentration allows the measurement of SSC to act as a surrogate for the 

. d 137C . assocIate s concentratIon. The SSC can be measured using remotely sensed 

reflectance by a single algorithm without interference from changes in salinity, sediment 

composition and chlorophyll over the entire estuary. The next logical progression is to 

examine the acquisition of the remotely sensed imagery and the ground truth calibration 

data. Once the imagery has been collected, it is necessary to assess which pre-

processing steps are needed without introducing further errors into the data and to 

calibrate the imagery to SSC and 137 Cs concentration. This will be covered in the 

following chapter. 
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CHAPTER 5: ACQUISITION AND PROCESSING OF REMOTE 

SENSING DATA 

5.1 INTRODUCTION 

This chapter presents the methodology and results of the pre-processing and calibration 

of the time series of imagery acquired of the Ribble estuary, specifically for this 

investigation, on the 20th July 1997. Ground survey data results are presented and 

integrated with the imagery to produce a series of images of sse, which are presented 

in chapters six and seven. Also included in this chapter are the steps undertaken to 

normalise the image data to account for variations in sun angle during the acquisition of 

the image data. This is perhaps one of the most important of the processing steps to 

minimise errors in image to image comparisons. The images produced represent one of 

the first published time series of images over a flood tide and the data produced from 

this chapter are crucial to the interpretation of sediment and radionuclide entrainment, 

transport and net budgets in the Ribble estuary. 

5.2 DATA ACQmSITION 

For the production of quantitative information, it is fundamental that data acquisition 

through remote sensing is undertaken with a carefully planned ground truthing 

campaign. The spatial resolution and swath width of the imagery acquired is a function 

of speed and altitude and must be selected to cover the area required at a resolution 

suitable for identifying and quantifying features of interest. The alignment of the sensor 

with the sun, flight direction and the time of flight is also of paramount importance and 

will be discussed with specific reference to the Ribble estuary in section 5.2.1. 
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5.2.1 Choice of Flightline 

Theoretically the ideal flightline would lie in a North-South orientation (Wilson 1995). 

The plane flies with the nose slightly raised and the sensor scanning forward of the 

aircraft, consequently the line should be flown heading North. As the day progresses, 

the angle of the sun above the horizon changes, this change is at a minimum when the 

sun is at its highest, between 11 :OOam and 2:00pm. Data collected between these times 

are ideal, as the data are almost directly comparable requiring no correction for the 

change in angle of the sun above the horizon. 
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Figure 5.1 The area of the proposed CAS! flightline 
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Figure 5.1 shows that the Ribble is an ideal shape for airborne remote sensing 

campaigns, the flight altitude being a function of compromise between covering as 

much of the estuary within a single flight line with the highest resolution. At a 2.5m x 

2.5m, spatial resolution the swath width of the CAS! image would be 1.28km, which 

can cover the entire estuary from Penwortham in the east to Lytham St Anne's in the 

west excluding the extreme outer estuary. However, the east-west orientation does not 

enable the effective application of a north-south fli ght line. The single east-west flight 

line will result in the image being illuminated unevenly, being brighter on the South 
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side of the image (Wilson 1995). Ideally, the line would be flown repeatedly during a 

spring flood tide, where the high tide occurred at approximately 2:00pm. This would 

result in the majority of the flights being obtained during the period in which the angle 

of the sun above the horizon varies least. However, to achieve this coincidental with 
I 

cloud free skies in the UK climate would be impractical within the time constraints of 

this investigation. Thus compromises had to be made and whilst the data were obtained 

on a cloud free day (20th July 1997) on a spring tide, the high water occurred earlier 

than planned, at 1107 GMT. This will cause a progressive brightening of the sequential 

images with time as the sun rises. These effects resulting from east to west flights and 

the changing solar elevation angle, will be investigated and corrected for in section 

5.3.3. 

5.3 GROUND TRUTH DATA COLLECTION 

5.3.1 Sampling Strategy 

For the production of absolute quantitative data (e.g. SSC mg/I and 137CS Bq/l) the 

collection of ground truth data forms a fundamental part of the data acquisition 

procedure. The data collected during the June 1996 fieldwork have shown that the 

relationship between SSC and caesium concentration is linear. Chapter four has 

demonstrated that there is no significant difference between the suspended sediment 

characteristics of samples collected off Warton bank and samples collected along the 

length of the estuary (section 4.2.2). Thus, these preliminary results coupled with 

limited resources (i.e. a single boat) and the potential of time lost travelling between 

widely spaced sample sites, resulted in the optimum sampling strategy being to remain 

off Warton Bank. Sequential data were collected at five-minute intervals, on either side 

of the axial convergence front throughout the image acquisition period of the flood tide. 
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Data collected during this ground truthing exercise, presented in section 4.2.1, have 

shown that this 137Cs-SSC relationship is temporally stable. Thus the relationship 

derived in June 1996 can be used to calibrate the images to 137 Cs concentration. It is 

known that the relationship between SSC and reflectance is more susceptible to scatter 

and the reflectance is more dependent on the illumination and conditions at the time of 

data collection. For this reason the images must be calibrated with data collected 

simultaneously to give a valid SSC radiance relationship. 

Having launched the boat on the previous high water, sampling on the incoming tide 

commenced as soon as the water depth allowed, just a few minutes after the passing of 

the tidal bore, and coincided with the acquisition of the first flight line. At each sample 

site the following were taken: 

• 3 replicate 1 litre water samples for SSC analysis 

• 1 litre of water for grain size distribution analysis 

• Ten replicate reflectance spectra measured by ASD FR spectrometer 

• pH and salinity (measured on return to shore from grain size sample bottles) 

• Position by Differential GPS 

In addition to the above, at four random locations a ten litre sample was taken for 137 Cs 

analysis to investigate the temporal stability of the SSC 137 Cs relationship. The results 

from these samples are presented in section 4.2.1. Given the observed variability in the 

SSC estimates (section 4.2.3) three replicate samples were used for the suspended 

sediment analysis in an attempt to quantify the potential variability for each of the 

twenty three sampling points. 
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5.3.2 Processing of the Ground Truth Data 

The DGPS data collected were processed using the techniques discussed in section 3.4.1 

to locate each sampling point. Water samples were processed in order of priority due to 

degradation. To inhibit algal growth, the ten litre samples for radionuc1ide analysis and 

the one litre grain size samples were stored in the refrigerator. The suspended sediment 

samples were stored at room temperature, in the dark for three days before being filtered 

and analysed using the method detailed in section 3.5.1. The grain size samples were 

then analysed, after vigorous shaking to resuspended the sediment in the sample, using 

the Malvern Mastersizer as detailed in section 3.5.2. The ten litre radionuc1ide samples 

were then analysed using gamma spectroscopy, as described in section 3.5.3. 

The ASD spectra were converted to absolute reflectance before the replicate spectra 

were averaged to give a single representative spectrum for each site. These spectra 

were then averaged over the appropriate wavelengths to represent the CASI bandset. 

The details of these techniques can be found in section 3.2.2. 

5.3.3 Ground Truth Results 

The data collected off Warton Bank, shown in table 5.1, were collected within a 326m 

by 209m area, which is bounded by a box with upper left and lower right co-ordinates 

of 340354E, 426591N and 340680E, 426382N. This area covers the main channel and 

the mudflats outside the training wall, which were sampled once the water depth 

allowed access. 
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Site Pos. Time GPS Position Salinity pH In-situ Reflectance 

I.D. Wrt. CASI 9 (720-740nm) 

front Mean Std Dev. ev 
(GMT) (E, N) (%0) (%) 

1 C 0819 --No GPS-- 7.5 8.90 3.76 0.26 6.9 

2 C 0825 --No GPS-- 12.0 8.67 4.15 0.16 3.9 

3 N 0830 340613, 426525 10.3 8.72 3.59 0.17 4.7 

4 N 0838 340655,426485 15.5 8.40 3.12 0.20 6.4 

5 S 0844 340638,426448 18.7 8.25 3.48 0.10 2.9 

6 N 0847 340618,426527 18.6 8.21 3.35 0.16 4.8 

7 S 0855 340658,426429 21.0 8.08 3.72 0.11 3.0 

8 N 0900 340630,426500 18.6 8.23 3.05 0.11 3.6 

9 N 0903 340616,426538 18.7 8.19 3.25 0.13 4.0 

10 S 0909 340354,426409 22.3 8.23 4.23 0.24 5.7 

11 C 0913 340680,426477 23.3 8.18 3.03 0.12 4.0 

12 N 0917 340629,426536 24.1 8.16 4.10 0.25 6.1 

13 S 0923 340590,426401 25.4 8.23 3.90 0.30 7.7 

14 N 0930 340623,426544 24.8 8.25 2.76 0.07 2.5 

15 S 0934 340611,426386 24.6 8.21 3.86 0.20 5.2 

16 N 0942 340593,426533 29.5 8.19 2.75 0.05 1.8 

17 S 0948 340627,426422 29.5 8.25 3.06 0.14 4.6 

18 N 0953 340599,426542 29.6 8.26 2.11 0.07 3.3 

19 N 0956 340609,426591 28.3 8.14 2.46 0.10 4.1 

20 S 1002 340587,426382 30.0 8.26 2.10 0.44 21.0 

21 N 1006 340545,426560 27.8 8.24 1.96 0.23 11.7 

22 N 1111 340576,426535 30.1 8.20 - - -
23 N 1127 340601,426507 30.9 8.18 - - -
Table 5.1 The ground truth results for electromcally measured parameters. Column two 
relates to the position within the channel, centre (C), North (N) or South (S). 
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Throughout the sampling session it can be seen that the salinity generally increased with 

time as the salinity results show a salinity gradient of 7.50/00 to 30.9%0. This is a typical 

range for a macrotidal UK estuary. 

The ground truth data have been separated into parameters measured electronically, 

shown above in table 5.1 and parameters derived from laboratory analysis, given below 

in table 5.2. 

The salinity data show an interesting feature just after the start of the flood tide. At 0855 

to 0910, the samples taken from the South side of the channel show a markedly higher 

salinity than for the north side of the channel. This suggests that the incoming tide may 

hug the South side of the channel. If this is the case we can expect a higher sse on the 

south side of the channel to be evident on the imagery. However, after the initial tidal 

surge, the difference in salinity on either side of the axial convergence front appears to 

be negligible. The pH measurements vary randomly around 8.29 and show no trend in 

the variation of pH with time. The pH of deep-sea water is usually around 8.5, therefore 

the measured value is as expected. An obvious trend would only be expected if there 

was a large difference in the pH of the fresh and saline waters, thus the pH could be 

used to illustrate the extent of mixing but this is not the case for the Ribble estuary. 
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Site Time Clay Silt Sand SSC 

I.D Mean Std. Dev. CV 

(GMT) (%) (%) (%) (mgtl) (%) 

1 0819 1.55 54.87 43.58 96.5 9.3 9.6 

2 0825 2.15 61.62 36.22 141.4 64.0 45.3 

3 0830 2.25 70.26 27.49 69.0 10.0 14.5 

4 0838 1.94 53.11 44.95 65.2 7.8 12.0 

5 0844 3.11 74.47 22.42 95.3 7.8 8.2 

6 0847 2.68 66.18 31.14 84.5 16.6 19.7 

7 0855 3.38 74.01 22.60 112.9 16.6 14.7 

8 0900 2.72 68.67 28.62 76.4 5.1 6.7 

9 0903 2.71 67.51 29.78 91.3 34.6 37.9 

10 0909 4.70 78.25 17.04 205.1 23.7 11.6 

11 0913 4.38 84.00 11.62 98.6 11.5 11.7 

12 0917 2.90 66.91 30.20 119.9 36.0 30.0 

13 0923 4.31 75.57 20.12 148.0 14.0 9.5 

14 0930 3.00 57.78 39.22 91.9 12.8 13.9 

15 0934 3.89 78.09 18.02 121.9 5.3 4.4 

16 0942 3.09 72.95 23.96 63.5 34.1 53.7 

17 0948 3.51 74.79 21.70 81.2 21.2 26.1 

18 0953 3.16 73.60 23.23 53.4 11.5 21.5 

19 0956 3.59 76.81 19.61 54.3 10.1 18.6 

20 1002 3.69 75.57 20.74 73.2 13.3 18.2 

21 1006 3.45 75.75 20.79 18.5 27.5 148.7 

22 1111 2.98 80.03 16.99 36.1 6.6 18.3 

23 1127 2.91 81.78 15.31 18.1 26.7 147.5 

Table 5.2 The ground truth results for laboratory analysed sediment parameters. 

The in-situ reflectance measurements are given as the average of the ten replicates with 

the standard deviation. So that the variation in one set of spectra can be compared with 

another set of spectra with a different mean, the coefficient of variation was calculated. 
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This shows that the variation within a set often replicate spectra can range from 1.8% to 

21 % with an average of 5.6%. However, it can be seen that the majority of the 

coefficients of variation are around three or four percent. This is relatively small and 

can be considered an acceptable error for an environmental measurement. 

Unfortunately the last two sample sites have no in-situ reflectance measurement due to a 

power supply failure. 

The grain size distribution of the suspended sediment is discussed in section 4.2.2 in 

relation to the other data sets; however, table 5.2 shows that for the ground truth data 

set, the percentage clay fraction remains consistently low at less than five percent. 

Although variable, there appears to be an underlying increase in silt content from about 

60% at the start to about 80% at the end of the sampling period. Similarly, sand 

concentration decreases from approximately 35% to 15%. This may have some 

consequence on the accuracy of the calibration, resulting in under estimation of sse at 

the start of the tide and over estimation towards the end of the tide. However, the 

magnitude of the error is likely to be relatively small in relation to the sampling and 

analytical errors resulting from the measurement of in-situ sse. 

The sse range from 18.1 mg/l to 205.1 mg/I. These values lie within the linear portion 

of the laboratory-derived relationship, suggesting that a linear relationship, as opposed 

to a log-linear relationship, may be used to calibrate the images. The majority of the 

sse values lie between 40 and 120 mg/l, with only two values below 30 mg/l and one 

value exceeding 150 mg/I. The replicate sse samples show a large variation, and 

therefore a large standard deviation. This implies that either the suspended sediment 

was patchy on a small local scale or that the laboratory analysis results contained errors. 
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5.4 IMAGE PRE-PROCESSING 

The NERC imagery was delivered in October 1998 and was provided in a hierarchical 

data format (.hdf). The data had been radiometrically corrected prior to delivery to the 

NERC level 1 b (Wilson 1995). In addition to the data, NERC supplied software for 

format conversion (EXHDF) and automated geocorrection (GCORR). The NERC 

software is command line driven; these commands are discussed in greater detail in 

section 3.3.2. Before calibration, using the ground truth data collected simultaneously 

with the imagery, the data must be subjected to various pre-processing stages to correct 

for the movement of the aircraft, geographical location, atmospheric effects and 

illumination variation. These processes are discussed in the following sections. 

5.4.1 NERC Geometric Correction 

The NERC GCORR software was used to correct the imagery for the roll, pitch and 

yaw of the aircraft. The program also simultaneously corrects the image to 

geographical co-ordinates. An example of the output of this program is displayed as a 

red, green and blue colour composite in Figure 5.2. The upper image is an example of 

the raw data and the bottom image shows an example of the NERC GCORR corrected 

data. The difference in brightness of the two images is due to the automatic stretch 

applied by ERDAS being affected by the black void resulting from the re-orientation of 

the image during geometric correction. The stretch of river illustrated is very straight 

due the canalisation carried out during the early 1900s. The area bounded by box 1 

shows a typical distortion resulting from the roll of the aircraft. Distortions due to pitch 

and yaw are less obvious to the naked eye but are equally important. In the lower image 

some small distortions due to aircraft roll are still visible, as in boxes 2 and 3. The most 
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likely cause of the roll distortions not being completely removed is that the auxiliary 

GPS data were not downloaded frequently enough. When a digitised 1: 1 0,000 

Ordnance Survey map was overlaid onto the image or successive images were overlaid 

onto each other, considerable errors were visible in the geographic co-ordinates of the 

imagery, with errors around Preston docks being up to 200m. Data that appear spatially 

correct but contain some errors could be used for many purposes, but for this study it 

was necessary to locate the ground truth sample sites accurately and to have the images 

geo-corrected accurately enough to animate the sse images. To achieve this, some 

additional geo-rectification was necessary. 
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a) 

b) 

Figure 5.2 The Ribble estuary, 20th July 1997. CASI data displayed as a true colour composite. a) The raw CASI data and b) the CASI data 
corrected using the NERC GCORR software. 
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5.4.2 Manual Geometric Correction 

Manual geocorrection was perfonned in the ERDAS image processmg software 

package on the NERC GCORR data. The technique involves selecting a ground control 

point (GCP) on the uncorrected image and linking it to a point on a corrected image or a 

map co-ordinate. This is repeated until a grid covering the whole image is built up. The 

uncorrected image is then transfonned to fit the reference co-ordinates using a transfonn 

order and method that is user selected. All the images were corrected using a third 

order polynomial transfonn resampled using the nearest neighbour method. The larger 

the order of the transfonn, the more intricate the transfonnation. However, this can lead 

to the image being warped into impossible shapes particularly at the edges of the image 

where the ground control points tend to be fewer, thus the order of transfonnation was 

kept down to three. 

Image Mid Flight No. of Control Point Errors (m) 

Time (GMT) GCPs X Direction Y Direction Total (RMS) 

c20l02 08:12:32 76 1.61 1.92 2.51 

c20l03 08:30:05 59 1.63 1.71 2.37 

c20l04 08:45:28 59 1.73 1.78 2.49 

c20105 09:02:17 54 2.05 2.54 3.27 

c20106 09:20:39 59 2.09 2.12 2.98 

c20107 09:37:26 47 1.57 2.34 2.82 

c20108 09:55:45 73 1.72 2.18 2.78 

c20nO 11 :11:23 58 1.46 2.19 2.64 

c20lll 11 :25:43 61 1.68 1.88 2.52 

Table 5.3 The detaIls of the manual geometric correction errors. 
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The nearest neighbour re-sampling was chosen to maintain data integrity. This 

technique takes the value of the nearest pixel, thus keeping the original data values, 

whereas the other techniques take an average or weighted average of the surrounding 

pixels of the uncorrected image to give a value for the corrected image. This averaging 

can make the corrected image appear visually smoother, but the data are not true to the 

original image. As these data are to be used quantitatively it was deemed necessary to 

conserve the original data values. 

Table 5.3 shows the ground control point information for the nine flight lines of the 

Ribble Estuary. Given the original pixel size of 2.5m x 2.5m, the errors of the 

transformation are approximately one pixel. This means that the pixels of the geo­

corrected image are approximately within one pixel of the correct co-ordinate. In 

reality, within an image some pixels will be very accurate, whilst others will carry a 

larger error. The pixels with the larger errors are more likely to occur towards the edges 

of the image or in areas where few ground control points could be found or around the 

localities where the NERC GCORR program had not completely removed the roll 

effects. When overlaid, the manually corrected images fitted the digitised map well and 

were lined up with each other correctly, with the exception of image c20105, which still 

contained considerable distortions due to plane roll effects which were not removed by 

the NERC GCORR program. Unfortunately, this error due to aircraft roll cannot be 

corrected for manually and must remain in the imagery. 

5.4.3 Atmospheric Corrections 

As discussed in chapter two there are various methods of correcting for the amount of 

light reflected back to the sensor from particles in the atmosphere between the sensor 
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and the target. These techniques range for complex radiative transfer models and the 

simplified versions of these models, (Rahman and Dedieu 1994), to simple haze 

corrections, which correct the darkest pixel to zero (Chavez 1988). The simple haze 

corrections require no additional data and are the most suitable choice for a study such 

as this. However, the main assumption with the darkest pixel haze correction is that the 

atmosphere is uniform across the image. In this study the imagery is to be calibrated 

using ground truth data, therefore if the atmosphere is assumed to be uniform across and 

between images then haze correction will not be crucial and the atmospheric component 

will be a constant. There are other atmospheric factors that are likely to have a much 

greater effect on the imagery. These are the increase in path length towards the edge of 

an image and the effect of the variation in illumination between images as the sun rises 

above the horizon. These two factors are investigated in the following paragraphs. 

Path Length Correction 

During data collection the image is collected as successive lines of 512 pixels. As these 

are being collected simultaneously from a single point the light being reflected from the 

edges of the image must travel through a greater length of atmosphere than the light 

reflected from the centre. This is called the path length effect and is often visible as a 

blue haze along the edges of the image. Using simple right-angle triangle trigonometry 

it can be calculated that for a lens with a 42° FOY, as used on the CASI, flown at an 

altitude of 1500m the path length at the edge is 1605m. This gives an excess of 105m 

of atmosphere for the outer pixels. The magnitUde of the effect on the imagery was 

investigated on non geo-corrected CASI imagery of the Ribble estuary collected during 

1995. 
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To investigate how the radiance varies with pixel number, it is necessary to find a 

uniform surface across the width of the image. As this is not possible the image was 

treated as two separate halves and fields that covered approximately half the image were 

used to assess variance in radiance with pixel number. Treating the image as two 

separate halves has the added advantage of accounting for the image being brighter on 

one side of the image than the other due to uneven illumination. 

a) b) 

~ I~I 
o 2S5 

Figure 5.3 A diagrammatic representation of the equation generation method for path 
length correction. a) Pixel sampling, b) the variation of radiance with pixel number, c) 
the calculation of the variation of radiance as a mUltiplication factor of the centre pixel 
and d) the combining of the two halves of the image to give a single equation. The raw 
data is then divided by the final best-fit equation. 

Figure 5.3 shows the basic steps of the investigation into the effects of increased path 

length at the edges of the image. Firstly, the average of ten pixels were sampled from a 

given position on the image, this was repeated at approximately twenty pixel intervals 

for pixels 0 to 255 or 51 2 to 256. When the average pixel value is plotted against the 

pixel number it can be seen that the average pixel value decreases towards the centre of 

the image for a uniform surface (Figure 5.4). This can then be either extrapolated to 
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pixel 255, or if the best fit line starts to increase before reaching pixel 255, the line can 

be forced using a suitable value. This is then repeated for all bands. The effect 

observed in Figure 5.4 is a good example, but with increasing wavelength, the R2 of the 

best-fit line generally decreases and the error bars increase. Thus in an attempt to 

quantify this variation with wavelength, the significance was calculated by dividing the 

range of radiance values by the maximum radiance and mUltiplying by 100%. These 

values are presented in table 5.4. 
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Figure 5.4 An example of the mean radiance plotted against the pixel value as 
illustrated diagrammatically in Figure S.3b. The data represents the southern side of the 
estuary from a field on Longton Marsh for CASI band 1, 402-422nm, image 
c213011b.img. 

The significance of the decrease in radiance across the image (column 5, table 5.4) is 

obtained by dividing the range of values by the maximum radiance and multiplying by 

100%. The value obtained will be small if the variation in radiance across the image is 

due solely to random noise but will be larger if there is a definite systematic change in 

radiance with pixel number. From table 5.4 it can be seen that this significance is 

greatest for the first two wavebands, after which it decreases. 
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For the longer wavelengths, the significance does increase but so does the scatter around 

the best-fit line, that is R2 decreases. This suggests an increase in the random noise 

effect. It is possible to conclude that it is only the blue wavelengths that need correcting 

for the increase in path length as they show a high significance in the change in radiance 

with pixel number and a high R2. This is to be expected as it is the blue wavelengths 

that are affected by Mie scattering (Jerlov, 1986). These are the wavelengths used for 

remote Gelbstoff analysis. 

Band Wavelengths Maximum Minimum Significance R:Z of best-

No. (nm) Radiance Radiance (%) fit equation 

I 402-422 3553.8 2087.7 41.25 0.998 

2 433-454 3620.4 2744.1 24.20 0.995 

3 480-500 3281.2 2981.0 9.15 0.978 

4 502-519 3129.6 2989.8 4.47 0.909 

5 546-566 3871.3 3803.7 1.75 0.10 

6 610-630 2661.8 2455.3 7.76 0.67 

7 660-680 2143.6 1896.2 11.54 0.65 

8 682-685 2067.0 1802.6 12.79 0.66 

9 705-716 4229.8 3795.9 10.26 0.94 

10 745-759 12917.1 10330.0 20.03 0.58 

11 761-765 6463.0 5412.5 16.25 0.18 

12 766-784 12981.6 10668.5 17.82 0.87 

13 815-824 9333.0 7515.9 19.47 0.44 

14 846-884 12080.1 9324.8 22.81 0.97 

Table 5.4 The SIgnIficance of the relatIOnshIp of radIance WIth pIxel number for a 
unifonn surface of the southern side of image c213011b.img and the variation at 
different wavelengths. 
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From table 5.4 it can also be said that band 14 requires path length correction. This is 

because the data were flown using the NERC default Sea WiFS bandset and band 14 is 

known to be sensitive to atmospheric aerosols (Wilson 1995). 

No path length correction is required to produce sse images, as the wavelengths used 

are not affected by the systematic increased scatter towards the edges of the image. 

However, the proposed path length correction method for the blue wavelengths is 

briefly outlined below. As surfaces vary over an image the increase in radiance with 

path length cannot be expressed as radiance as each surface will have a different 

radiance. However, the increase in radiance with path length can be expressed as a 

factor of the central pixel if the central pixel is made equal to one. To do this, the best­

fit line must be derived from data forced or extrapolated to the central pixel. The 

multiplication factor is then calculated by dividing the value at a given pixel position by 

the value of the central pixel. This is then plotted against pixel number as shown in 

Figure 5.3c. The multiplication factors from the two halves of the image are then 

combined to give a single best-fit quadratic equation as illustrated in Figure 5.3d. If the 

illumination of the image is directly from the South and the image was flown south to 

North this plot will be symmetrical, however in most cases it will be asymmetrical. 

Once the single quadratic equation has been derived the image can be corrected in any 

standard image-processing package. 

An example of the result of this correction technique is shown in Figure 5.5. In this 

example the image has bands one, two and three (blue, blue and green) displayed as a 

red green and blue image, thus the colours may appear unnatural. This exaggerates the 

haze effect making it more visible. It can be seen that the raw image shows 
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considerable blue haze on the left side of the image and an overall variation of 

brightness across the image. The corrected image shows no blue haze on the left of the 

image and a much more consistent brightness across the image. Visually, it is apparent 

that the correction technique works very well. 
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Figure 5.5 An example of a path length correction of bands 1,2 and 3 (blue, blue and 
green) of image c2130 11 b.img, the Ribble estuary, 1 st August 1995. a) The raw data, b) 
the corrected data. 
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Sun Angle Correction 

The data were collected over a period of approximately four hours. During this time the 

sun was continually rising, substantially altering the illumination conditions between 

images. From section 4.3.6 it is known that this change in illumination will have an 

effect on the relationship between the sse and the reflectance. Satellite imagery taken 

with different solar elevation is often normalised using a simple cosine correction 

technique. However, that technique requires knowledge of the exact solar elevation 

angle above the horizon and yields no information on the way in which this variation in 

sun angle affects the imagery. Therefore, this study will investigate the changes 

between the images and suggest an empirical method of correction, which requires no 

information on the exact solar elevation angle. 

Firstly, four different surface types were selected for investigation. These were Preston 

dock, a tarmac road surface, a field and a sewage works filter-bed. These represent most 

of the surface types throughout the images and were selected for easy identification and 

location on each image. The location details of the four surfaces are given below in 

table 5.5. By using a range of surface types it can be established whether any change in 

radiance between images is a function of the surface type or change in solar elevation. 

If all surfaces vary in the same manner over time the variation must be due to the 

change in solar elevation angle. At each location the same 3 by 3 grid of pixels was 

sampled to give an average value and an indication of the variation within the sample 

grid at one standard deviation. These values were then plotted against time and are 

displayed in Figure 5.6. It can be seen that generally the 3 by 3 grid of pixels show little 
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variation in radiance with the exception of three points where the error bars at one 

standard deviation are evident. 

Surface Easting (BNG) Northing (BNG) 

Docks 351700 429600 

Filter-bed 345545 428115 

Field 343025 427250 

Tarmac 336760 426960 

Table 5.5 The approximate locations of the four surface types used for derivation of the 
sun angle correction. 

Each surface type shows some increase in radiance with time, however, the higher the 

initial radiance value the larger the rate of increase appears to be. There are three points 

that appear to be in disagreement with the general trends and decrease towards the final 

image: the final point in the filter-bed series and the last two points in the dock series. 

On these three points, the error bars are small enough to indicate that the average 

radiance value is representative of the real radiance. The reflectance of the filter bed at 

the sewage works would decrease suddenly if the filter bed were switched on, as the 

water running over the pebbles would attenuate the reflectance of the pebbles. As this is 

an operational sewage works this possibility cannot be ruled out, thus this point was 

removed from further analysis of the data. At the time of data collection the inner dock 

was subject to a bloom of blue-green algae, this is a natural phenomenon that occurs in 

standing water under warm sunny conditions, usually around July or August. One of 

the features of phytoplankton is that it is subject to distinct diurnal cycles and as the sun 

rises so the algae rise to the surface of the water column. The algae may substantially 

affect the reflectance of the water in the dock basin. Although the wavelengths used in 

Figure 5.6 are greater than 700nm and therefore considered to be outside the range 
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affected by chlorophyll, the algae are present in such large quantities it is possible that 

there will be some general particulate scattering effects. The dock data appear linear for 

the first two hours and it is only the last two images that appear to be subject to this 

effect. Thus these two data points have been omitted from the data in Figure 5.7. 
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Figure 5.6 The variation in radiance of a 3x3 grid of pixels with time for four different 
surface types. CASI band 9, nO-740nm. Error bars represent ± one standard deviation. 
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Figure 5.7 The percentage change in radiance, relative to the first image, plotted against 
time for four different surface types. CAS! band 9, nO-740nm. R2 values for the docks, 
tarmac, filter-bed and field are 0.98, 0.97, 0.79 and 0.94 respectively. 
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By expressing the change in radiance relative to the first image, a percentage correction 

factor can easily be calculated for each surface type. This percentage correction factor 

is plotted against time in Figure 5.7 and shows that once the change in radiance across 

the series of images has been converted to a percentage, the rate of change of radiance is 

almost constant for all surfaces. The exception to this is the docks. For this surface, the 

rate of increase is greater than for the other surfaces. This would be expected if the rise 

of the algae in the water column was increasing the scattering of light back to the 

sensor. From Figure 5.7 we can conclude that the water in the docks experiences some 

change other than just a change in radiance due to change in solar elevation. Thus it is 

not suitable to be used to establish a relationship with which to correct the series of 

images. The three other surfaces are diverse in surface type and yet all behave in the 

same fashion as the sun rises, thus the relationship derived from these surfaces could be 

used to correct the image series 
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Figure 5.8 The percentage change in radiance, relative to the last image, plotted against 
time for the combined data from three different surface types, with the origin forced to 
zero. CAS! band 9, nO-740nm. 
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The images can be normalised to either the first image by reducing the radiance of the 

subsequent images or to the last image by increasing the radiance of the previous 

images. A study by Novo et at. (1989) has shown that the sse reflectance relationship 

is strongest for a high solar elevation, when the radiance is at a maximum. This 

suggests that the data should be normalised to the final image, when the sun is higher in 

the sky. For the three surface types, the change in radiance of each surface was 

calculated as a percentage ofthe final image, and these data were then combined to give 

a single data set. This was then plotted against time to give a linear relationship as 

shown in Figure 5.8. It can be seen that by correcting the images to the final image the 

percent change in radiance becomes negative, but the relationship is still linear. As the 

data have been normalised to the final image, the linear trend line was forced through 

the origin to eliminate the necessity for any minor correction to the final image. This 

linear relationship was calculated for each band and the equations used are tabulated 

below in table 5.6. 

The equations for the actual relationship and the forced origin relationship are presented 

to show how little the R2 of the relationship is affected by forcing the linear trend line 

trough the origin. This correction was applied to the imagery in ERDAS Spatial 

Modeller. Each band was corrected individually using values calculated for the time 

before the final image, in seconds, and then combined to give a multi-band image, 

which is a solar elevation corrected version of the original. Evaluation of this technique 

is discussed in the image calibration section below. 
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CAS I Equation of Linear Trend RZ Equation of Linear Trend RZ 

Band Forced to origin 

1 Y = 0.0031x + 1.4053 0.866 Y = 0.0029x 0.863 

2 Y = 0.0032x + 2.3007 0.852 Y = 0.0029x 0.844 

3 Y = 0.0033x + 1.5889 0.863 Y = 0.0031x 0.860 

4 Y = 0.0034x + 1.9185 0.837 Y=0.0032x 0.833 

5 Y = 0.0035x + 2.3208 0.799 Y = 0.0032x 0.793 

6 Y = 0.0033x + 3.7167 0.678 Y = 0.0029x 0.664 

7 Y = 0.0032x + 4.6758 0.538 Y = 0.0027x 0.519 

8 Y = 0.0034x + 1.9246 0.788 Y = 0.0031x 0.784 

9 Y = 0.0035x + 1.8342 0.846 Y = 0.0033x 0.842 

10 Y = 0.0034x + 0.7858 0.872 Y = 0.0033x 0.871 

11 Y = 0.0037x + 1.5778 0.865 Y = 0.0036x 0.862 

12 Y = 0.0034x + 1.0236 0.876 Y = 0.0033x 0.875 

13 Y = 0.0034x + 1.5199 0.865 Y = 0.0033x 0.862 

14 Y = 0.0035x + 1.5178 0.861 Y = 0.0034x 0.859 

15 Y = 0.0034x + 1.2792 0.860 Y = 0.0033x 0.858 

16 Y = 0.0033x + 0.6632 0.861 Y = 0.0033x 0.861 

17 Y = 0.0034x + 1.0133 0.854 Y = 0.0033x 0.853 
.. 

Table 5.6 The empmcal solar elevatIOn correctIOn equatIOns as denved from the Image 
data and with the origin forced to zero. 

5.4.4 Summary and Conclusions 

The image pre-processing detailed in the above paragraphs are some of the most 

important stages of this study. The purpose of these pre-processing steps is to correct 

for any variation in radiance that results from sources other than the light reflected from 

the suspended sediment, such as the atmosphere. This must be achieved without 

introducing errors, which may bias the results obtained from the data. 
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The NERC automated geo-correction system was found to be inadequate for the 

purposes of this project as the images did not lie directly on one another when overlaid 

using the NERC GCORR generated co-ordinates. These errors appear to be introduced 

by the inability of the NERC GCORR program to remove the most severe distortions 

caused by the roll of the aircraft as the image most seriously effected by these sharper 

roll distortions showed the greatest variation from the overlaid 1: 1 0,000 digitised map. 

For this reason each image was then stretched to fit the map more accurately using a 

manual geometric correction technique. This resulted in a much more accurate fit of the 

images to the digitised map with errors of approximately one pixel or 2.7m. 

The investigation into atmospheric effects on the imagery showed that, as this study 

utilises the longer wavelengths, the data did not need to be corrected for the longer path 

length towards the edge of the image. The technique suggested to correct for this 

increased path length appears to visually improve the images but is only required for the 

shorter wavelengths, for example less than 500nm. The increase in the angle of solar 

elevation was found to have a much greater effect on the series of images than path 

length, the effect increasing the radiance. This increase in radiance was found to vary 

systematically with time and could therefore be corrected for. 

5.5 IMAGE CALIBRATION 

To investigate whether the calibration of the imagery is improved by the solar elevation 

correction technique it is necessary to assess the relationship between SSC and image 

radiance before and after solar elevation correction. To do this, radiance values were 

obtained for the 3x3 grid of pixels that were sampled for SSC. In recording the pixels 

values care was taken to ensure that the mixed pixels, where radiance was increased due 
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to the white hull of the boat, were avoided thus giving a more accurate value for the 

SSe. From these values, a mean and standard deviation were obtained. The 

relationship between the sse and the raw or corrected radiance were plotted and the 

best fit linear trend line detennined. These are shown in Figures 5.9a and 5.9b. 

From Figure 5.9 it can be seen that the solar elevation correction technique significantly 

improves the linear relationship between sse and radiance. This confinns that if 

imagery is to be calibrated for sse it must first be corrected for any variation in solar 

elevation angle during the data collection period. It is also apparent from the size of the 

error bars that the largest error is in the sampling and analysis of the sse and not the 

variation in pixel values obtained from the image data. The relationship derived from 

Figure 5.9b is the relationship that has been used to calibrate the image data to sse. 
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Figure 5.9 The SSC radiance relationship for CASI band 9 at 720-740nm derived from 
image data 5.9a) before and 5.9b) after empirical sun angle correction. Error bars 
represent ± 1 standard deviation. 

Having corrected the images for the various external effects on the sensor such as the 

motion of the aircraft, position and variation in solar elevation, the images are then 

calibrated to represent the SSC. The relationship used to do this is illustrated in Figure 

5.9b and is given in equation 5.1 below, where S is the SSC and R is the image 

radiance, corrected for change in solar elevation angle. 
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S = 0.1433R -124.41 [5.1J 

This equation was applied to the imagery in ERDAS spatial modeller to produce single 

band images where the pixel value represents the SSC as predicted from equation 5.1. 

The SSC images can then calibrated to show the 137 Cs concentration associated with the 

suspended sediment. The equation derived in section 4.2.1 was applied using the same 

method in ERDAS spatial modeller producing a single band 137Cs image. 

5.5.1 Validation of the Radiance SSC Relationship 

The image calibration relationship was derived using the ground truth data that 

coincided directly with image acquisition. To fully validate this relationship it is 

necessary to use a second data set taken coincidentally with the image data. 

Unfortunately limited project resources meant that this was not possible and therefore 

the calibration relationship remains as a non-validated calibration. However, the 

extensive in-situ field and laboratory work carried out prior to the collection of the 

image data all show that the relationship between SSC and reflectance is consistently of 

a linear nature. The relationship derived to calibrate the images to SSC is also linear in 

nature with an R2 of 0.76. This high R2 value shows that the calibration relationship is 

very strong for an environmentally derived relationship and thus likely to be 

representative of the sse. 

5.6 CHAPTER SUMMARY 

This chapter has presented the methodology developed to process and calibrate the time 

series of airborne imagery for a flood tide sequence. The data were collected using east-
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west flight lines despite a theoretical preference for North-South orientated lines. 

Simultaneous ground truth data were collected with the imagery and were found to be in 

agreement with previously sampled in-situ data. Replicate suspended sediment samples 

showed that there are significant errors produced in the standard sampling and analysis 

procedures used and these are generally far greater than those for the spectral analysis. 

The SSC was in the range 0-200 mg/l, a concentration range known to have a linear 

correlation to reflectance. The pre-processing showed that the NERC GCORR 

geometric rectification software did not remove all the image distortions due to the roll 

of the aircraft, especially those resulting from high frequency movements, and this led 

to geographic co-ordinate errors. Thus the imagery had to undergo an additional 

geocorrection using manual ground control point techniques. This resulted in a root 

mean square positional error of approximately one pixel for the CAS I imagery. 

Investigations into atmospheric effects showed that correction for path length effects 

was not necessary at wavelengths used to measure SSC. The variation in radiance with 

time caused by the rising of the sun was a significant effect. As this increase in radiance 

with increased solar elevation was a systematic effect, it could be empirically corrected 

for without knowledge of the exact angle of solar elevation. Applying this correction 

for the change in solar elevation angle significantly improved the sse calibration of the 

images. (R2 = 0.54 to R2 = 0.76). 
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CHAPTER 6: AIRBORNE REMOTE SENSING OF SEDIMENT 

TRANSPORT OVER A FLOOD TIDE IN THE RIBBLE ESTUARY 

6.1 INTRODUCTION 

This chapter presents the sse results derived from a series of nine images taken over a 

rising spring tide characterising sse, enabling the remobilisation and transport to be 

studied at high spatial resolution, probably for the first time. The data have been 

divided into four geographical areas: The outer estuary at Warton Bank, the confluence 

of the rivers Ribble and Douglas, the narrow canalised stretch of the Springfields 

discharge area of Savick Brook and the upper estuary from Preston Dock to 

Penwortham. The precise details of the four areas are given in table 6.1. The chapter 

has been divided into these four geographical areas providing detailed image 

descriptions and interpretations. The key findings are summarised at the end of each 

section 

Area Name Upper Left (OS BNG) Lower Right (OS BNG) 

Warton Bank 337100E,427700N 341600E,425850N 

The Confluence 341300E,428000N 344850E, 4261 OON 

Savick Brook 345000E, 429500N 349500E,427400N 

The Docks 349500E, 429650N 352500E, 428800N 

Table 6.1 The locatIon detaIls of the four geographIcal areas of chapter SIX. 

6.2 AREA 1: THE OUTER ESTUARY: WARTON BANK 

6.2.1 Introduction 

Size (km) 

4.5 x 1.85 

3.55 x 1.9 

4.5 x 2.1 

3.0 x 0.85 

Area 1 contains the reach of the estuary that is least constrained by the training walls 

and thus the behaviour is likely to be similar to that of a non-engineered estuary. This 
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area contains large intertidal areas, which have been shown to be accreting BNFL 

Sellafield derived radionuclides (Rainey, 1999). 

6.2.2 08:11 GMT, Figure 6.1a 

Figure 6.1.a of the eASI and associated ATM thennal band shows that the water is 

confined within the training walls and sse range is approximately 0-180 mg/l, with 

little thennal structure. The tidal bore is just visible on the north bank at 341640E, 

labelled as A. The higher sse is in the turbulent water that follows the tidal bore. A 

tongue of low sse, less than 20 mg/l, enters the estuary at Lytham, with higher 

sediment concentrations at the edges. The sse then increases steadily within the 

estuary exhibiting a V -shaped intrusion pattern. This pattern is disturbed at about 

340000E where more sediment appears to be suspended from the south bank of the 

estuary. This sediment source appears to be producing a maximum sse of 180 mg/l at 

around 341200E. 

Along the centre of the outer estuary, higher suspended sediment values reflect foam 

and debris from the convergence of two water masses, indicative of the fonnation of an 

axial convergence front (Nunes and Simpson, 1985) (also seen in Figure 7.1). This 

feature stretches from the outer estuary extremes of the imagery as far as 338750E. In 

the outer estuary at B, sse greater than 220 mg/l is evident, although aerial 

photographic evidence indicates that these values may be the result of foam and debris 

washing off a sandbank. There appears to be no thennal heating of the water. 

The thermal data from the A TM shows an increase in temperature towards the upper 

estuary side of Warton Bank. There is also a high temperature feature along the edge of 

177 



the sandbank at 341700E, (C), which may be due to a combination of warm sediment 

on the sand bank producing a slight heating effect on the water, or the pushing back of 

warmer fresh water by the bore. 

6.2.3 08:30 GMT, Figure 6.th 

Figure 6.I.b shows an overall increase in sse, approximately 30-190 mg/I. The image 

is affected by aircraft roll resulting in a bright feature (D). This is a function of the 

sensor is tilting towards the sun, altering the viewing geometry and resulting in false 

sse for the calibration used in the project. Thus the values are erroneously high by as 

much as 100%. However, sse patterns can be traced through the feature. 

Taking this source of error into account, it can be seen that the concentrations of 

suspended sediment are generally lower around the Lytham area and increase towards 

Warton aerodrome. The water is now inundating the intertidal areas on the northern 

bank and on the southern bank as far as 338500E. There are higher sse values at the 

edges of the water where erosion is taking place, especially around 337500-337800E on 

the north bank and 341600E on the south bank. The sandbank at 337830E, on the north 

bank, is protecting the creek outflow, at 338060E, from the flow of the incoming tide. 

A build-up of low sse water, (E) can be seen inside the higher sse resulting from the 

erosion of the sandbank, also evident as elevated temperatures in the thermal image. 

There is an axial convergence front running the whole length of this image, although 

this appears as two parallel foam lines in the outer estuary (339000E-339500E). This 

indicates a more complex inflow of water than the expected V -shape intrusion of 

seawater. 
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6.2.4 08:45 GMT, Figure 6.1c 

The sse range for this image has increased to approximately 20-210 mg/1. The lowest 

sse is in a V -shaped intrusion at the mouth of the estuary, off Lytham; the 

concentrations generally increase towards Warton aerodrome. Generally, there is also 

evidence of erosion of the mud banks on either side of the estuary. The influence of 

aircraft roll is also seen, though the impact is less than in the previous image. The errors 

introduced are estimated to be ± 20 mg/l, approximately 20% on the mean sse estimate 

of 100 mg/I. 

The water has inundated the southern intertidal area highlighting two island sandbanks. 

The narrow channels on the south side of these islands show increased sse; most likely 

due to increased current velocity in the constricted channel. The northern bank 

(337750E and 341240E-341980E) still shows elevated sse levels, suggesting that these 

are areas of erosion. The two foam lines in the outer estuary converge at (F), becoming 

a single very well defined axial convergence front running the length of this image. 

6.2.5 09:02 GMT, Figure 6.1d 

The sse has increased to approximately 20-250 mg/1. There is an indication of aircraft 

roll around 341445E, which coincides with a spatial distortion and an associated 

decrease in sse. 

Water with low sse is entering the estuary, approximated by a V -shaped intrusion. The 

sse generally increases towards Warton aerodrome. Along the north bank of the 

estuary an interesting sediment pattern is developing where tongues of sediment 
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suspended from the banks are pulled in towards the centre of the estuary, illustrating the 

direction and relative magnitude of the currents created by the axial convergence. This 

is confirmed by the coincidental thermal image showing plumes of warmer eroded 

sediment (e.g. G). The axial convergence front is well established at the southern side 

of the estuary. The intrusion of lower sse water is being confined to the North of this 

front and thus mixing is being inhibited by the axial convergence front. The highest 

sse is now located along the southern bank of the estuary, trapped behind the axial 

convergence front (340175E and 341500E). The thermal image from the ATM shows 

that the cooler seawater penetrates well into the estuary to 339500E. 

6.2.6 09:20 GMT, Figure 6.1e 

There is no apparent change in range of sse, at 10-220 mg/I. The dark area at 338300E 

may be due to aircraft roll as the feature has roughly parallel sides. The other alternate 

dark and light patches are lens shaped and are therefore unlikely to be due to aircraft roll 

and may be a feature of the flood tide. The lowest sse remain in the mouth of the 

estuary. 

The highest sse appear along the edges of the water, suggesting erosion by turbulent 

wave action as this occurs along the length of the image. The only area where very little 

sediment appears to be resuspended at the edges is (H), which coincides with large mats 

of algal material. 

The axial convergence front is still visible but not as linear. Large sinusoidal patterns 

are beginning to appear in the foam lines and these coincide with the lenses of low sse 

water trapped to the North of the front. These lens shaped low sse features are perhaps 
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the result of some lateral instability in the axial convergence front, the beginning of its 

eventual break up. The thermal image again reveals little structure in the outer estuary, 

but some warmer water is being pulled in to the centre of the channel from the North 

bank, indicating some erosion (338000E and 341500E). 

6.2.7 09:37 GMT, Figure 6.1f 

The sse has now declined to between 10-190 mg/I, and intertidal inundation is almost 

complete. There is little evidence of errors caused by the roll of the aircraft in this 

image, probably a result of the increasing solar elevation angle. 

The sse steadily increase from less than 20 mg/l at Lytham to about 160 mg/l off 

Warton aerodrome. The highest sse values are confined to the edges of the water, 

suggesting resuspension of the sediments by the encroaching tide. This occurs in all 

areas except the western half of the south bank. The mat of algae on the north bank at I, 

(338200E to 338550E) still appears to be inhibiting the resuspension of sediment, as the 

band of higher suspended sediment at the edge of the water is much narrower. The 

warmer features in the south-west corner of the thermal image are due to the suspension 

of warm sand washed off the extensive sandbanks in that area. 

The foam of the axial convergence front is still very evident, as are the sinusoidal 

patterns and mixing is still being inhibited, e.g. lower sse water is trapped to the north 

(340100E and 341100E). The sediment suspended off the northern bank is pulled 

towards the centre of the estuary by the convergence current (K). (The short distinct 

white feature at J, (340720E, 426450N) is the wake left by a water skier.) 
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6.2.8 09:55 GMT, Figure 6.1g 

The sse range for this image is also between 10-190 mg/l. Water of low sse now 

penetrates further into the estuary, with values of approaching 0 mg/l and is again 

trapped to the north of the axial convergence front. Lenses of low sse can again be 

seen (e.g. L), north of the front within the curve of a sinusoidal feature in the foam line, 

as also seen in Figure 6.1 e. Despite apparent breaking up of the foam lines, the front 

still inhibits the mixing of the low and higher SSe. Sediment is still being picked up 

from the edges of the water on the intertidal areas. There is no evidence of the strong 

convergent currents pulling these suspended sediments into the centre of the channel. 

The thermal image shows warm water being introduced into the estuary along the north 

shore at Lytham and the western end of Warton Bank. There is no evidence of sediment 

suspension at this location in the coincidental eASI image, indicating the possible input 

of warmer water from a creek or heating of the water as it passes over warmer mud 

banks that are not eroding. This can also be seen on the western banks of the south 

shore. 

6.2.9 11:11 GMT, Figure 6.1h 

The sse range has now decreased to approximately 0-160 mg/I. There is a large 

intrusion of water with very low sse «40 mg/l) penetrating along the centre of the 

estuary as far as 340300E. The sediment being resuspended at the edges of the water is 

now much lower than in the previous images. This is possibly due to the much-reduced 

turbulent currents as the water is approaching the slack period around high water. The 

area of highest sse is confined to a small area of the southern bank (M). The foam 

lines are more fragmented. There are just two defined sections, one in the outer estuary 
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and one developing around 339700E on the south bank and running towards the centre 

of the main channel to form the axial convergence front for the upstream section of the 

rIver. 

The thermal Image shows considerable structural detail and an overall nse in 

temperature. This may partly be due to the slowing of the currents creating less 

turbulence, which reduces mixing and allows the surface of the water to be warmed by 

the sun. In addition, the underlying sediment is heating areas of shallow water. It can be 

seen that the direction of flow is still inward and that time of slack water has not yet 

been reached. The two parallel fronts at the creek entrance on the south bank at N 

(339800E) are strong enough to inhibit mixing of the water bodies as the warmer water 

to the north of the main front is not mixing with that to the south. The second front is 

preventing warmer water from the creek flowing back into the river. 

6.2.10 11:25 GMT, Figure 6.li 

A further decrease in sse is observed and the range is approximately 0-100 mg/I. 

Water with very low sse penetrates into the estuary as far as 340500E. The highest 

sse are associated with the backwash from the creeks in the southeastern part of the 

image, suggesting the water is being prevented from mixing with the main estuary 

channel. Foam lines at 0 (339800E) and P (340450E) confirm that the convergence has 

moved to the far south of the main channel. The thermal imagery shows that warmer 

water is still being swept upstream and to the south of the channel. 
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6.2.11 Warton Bank Summary 

1. The overall sse of this image series show that there is an initial increase in sse in 

the images after the passing of the tidal bore (08:45GMT and 09:02GMT). After 

09:02GMT, the sse starts to decrease as the water being swept into the estuary is of 

a low SSe. 

2. The sse start to decrease in Figure 6.1 h (11: 11) and again in Figure 6.li (11 :25), 

confinning that the sediments start to settle as soon as the maximum current velocity 

decreases. 

3. The recurring sediment patterns for this outer estuary imagery consistently shows a 

lower sse in the outer estuary, to the west of the image. This is due to lower 

suspended sediment seawater being swept into the estuary giving the V -shaped 

intrusion patterns that are repeatedly seen. 

4. There are consistent areas of higher sse indicating areas of erosion, these are: 

(a) the north shore, west end of Warton Bank at approximately 337600E, 426600N 

(b) the north shore, east end of Warton Bank at approximately 340500E, 426650N 

(c) the south shore, opposite (b), at approximately 340250E, 426400N 

(d) the north shore below Warton aerodrome at approximately 341250E, 426600N 

(e) the south shore, opposite (d), at approximately 341250E, 426300N. 

5. When the sediment is eroded from the intertidal zone convergent currents carry the 

high sse into the centre of the main river channel. This is particularly evident in 

the later thennal images and is confirmed by the development of foam lines almost 

immediately after the passing of the tidal bore. 

6. The foam lines start to break up into sinusoidal patterns later in the flood (Figure 

6.1 f). Despite this break up there is still enough strength in the convergence to pull 
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sediment in to the centre of the river and also to prevent mixing of the waters to the 

north and south of this front. 

7. The axial convergence migrates to the south of the main channel as current flow 

decreases, inhibiting drainage of the southern salt marsh creeks until the full ebb 

tide. 
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Figure 6.1a(i) CASI image calibrated to suspended sediment concentration, (mg/I), of Lytham to Warton Aerodrome, 08: 1 1,20-7-97 
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Figure 6.1a(ii) ATM thennal data of Lytham to Warton Aerodrome, 08: 11 , 20-7-97. 
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Figure 6.1b(i) CAS! image calibrated to suspended sediment concentration, (mg/I), of Lytham to Warton Aerodrome, 08:30, 20-7-97. 
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Figure 6.1b(ii) ATM thennal data of Lytham to Warton Aerodrome, 08:30, 20-7-97. 
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Figure 6.1c(i) CAS! image calibrated to suspended sediment concentration, (mg/l), of Lytham to Warton Aerodrome, 08:44, 20-7-97. 
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Figure 6.1d(i) CASI image calibrated to suspended sediment concentration, (mg/I), of Lytham to Warton Aerodrome, 09:02, 20-7-97. 
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Figure 6.1d(ii) ATM thermal data of Lytham to Warton Aerodrome, 09:02, 20-7-97. 
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Figure 6.1e(i) CASI image calibrated to suspended sediment concentration, (rug/I), of Lytharn to Warton Aerodrome, 09:20, 20-7-97. 
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Figure 6.1e(ii) ATM thermal data of Lytham to Warton Aerodrome, 09:20, 20-7-97. 
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Figure 6.lf(i) CASI image calibrated to suspended sediment concentration, (mg/l), of Lytham to Warton Aerodrome, 09:37, 20-7-97. 
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Figure 6 .. lf(ii) ATM thermal data of Lytham to Warton Aerodrome, 09:37, 20-7-97. 
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Figure 6.1g(i) CASI image calibrated to suspended sediment concentration, (mg/I), of Lytham to Warton Aerodrome, 09:55, 20-7-97. 
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Figure 6.1g(ii) A TM thermal data of Lytham to Warton Aerodrome, 09:55, 20-7-97. 
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Figure 6.1h(i) CASI image calibrated to suspended sediment concentration, (mg/l), of Lytham to Warton Aerodrome, 11: 11 , 20-7-97. 
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Figure 6.1h(ii) ATM thermal data of Lytharn to Warton Aerodrome, 11: 11 , 20-7-97. 
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Figure 6.li(i) CASI image calibrated to suspended sediment concentration, (mg/I), of Lytham to Warton Aerodrome, 11 :25, 20-7-97. 
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Figure 6.1i(ii) ATM thermal data of Lytham to Warton Aerodrome, 11 :25, 20-7-97. 
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6.3 THE RIBBLEIDOUGLAS CONFLUENCE 

6.3.1 Introduction 

This is the most complex area of the whole estuary, as it is the where the river Douglas 

flows into the river Ribble. An investigation of this part of the Ribble estuary is 

particularly important, as the influence of the confluence has previously been ignored in 

models of sediment transport (Burton et al., 1995). This section will assess the 

influence of the confluence on the sediment transport dynamics. In addition, major 

sandbanks are found within the walls that constrain this part of the estuary. These 

sandbanks, a function of the rapid accretion rate and confluence position, will also have 

an effect on the flow patterns. 

6.3.2 08:11 GMT, Figure 6.2a 

The range of sse in this image is approximately 60-220 mg/I and is significantly higher 

than the corresponding range seen in the outer estuary. The sandbanks within the main 

channel, as detailed in table 6.2, will play an important role in the flood tide features of 

this section. During ebb tides, sediment has been washed out from the intertidal areas 

through breaches in the training wall where it accumulates as sandbanks in the main 

channel. There are some effects of aircraft roll, evident as the alternate highs and lows 

of sse above the confluence accompanied by a small spatial distortion of the image at 

the same point. 
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Western Eastern North or Approximate 

Limit Limit South Shape 

A 341641E,426650N 341933E,426711N North Semi-circle skewed East 

B 341970E,426559N 342067E, 426595N South Semi-circle 

C 342371E,426808N 342585E, 426869N North Semicircle skewed West 

D 342700E, 426765N 343004E, 426790N South Triangle: Pt 342852E,426863N 

E 342931 E, 426893N 343223E, 426905N Central Central wall into R. Douglas 

F 343004E, 426972N 343607E,427l43N North Semi-circle 

G 343649E, 427063N 343820E,427136N South Semi-circle skewed East 

H 343893E, 427283N 344l30E,427362N North Semi-circle skewed East 
. . 

Table 6.2 The posItIons of the sandbanks In the RIver RIbble-Douglas confluence area . 

All areas east of the tidal bore, I, (34 1 640E, 426645N), are not yet subject to the 

momentum of the flood tide. The SSC is highest where the River Douglas joins the 

Ribble estuary, (342890E, 426875N), probably a localised effect of the sandbank at D. 

The thermal image shows no thermal structure, confirming that this section of the 

estuary has yet to be subject to an intrusion of seawater. 

6.3.3 08:30 GMT, Figure 6.2h 

The SSC ranges from 100-200 mg/I. There is some evidence of aircraft roll effects, 

indicated by the SSC decrease of 20mg/1 at J, (342330E). The tidal bore is located at 

K, (343966E, 427275N). There is an overall increase in the SSC behind the bore in 

comparison to the previous image, a result of increased turbulence. 

The highest SSC is where the tide washes over sandbank D (Table 6.2). Upstream of 

the bore, the estuary still shows higher SSC in the centre of the main channel. Once the 
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bore has passed here this is no longer apparent. There is also high sse to the west of 

the island sandbank, L, (343400E). Foam lines indicating water body boundaries or 

convergent currents are not evident here. 

6.3.4 08:45 GMT, Figure 6.2c 

The range of sse for this image is 60 mg/l to 220 mg/I. There is evidence of aircraft 

roll at N, showing an increase of 20 mg/l over a large area with a corresponding spatial 

distortion resulting from problems with the NERe geo-correction software. 

A lens of lower sse lies in the main channel, M. This is trapped within the training 

walls. Water has begun to inundate the northern intertidal areas. There is a line of 

increased sse above the training wall, hence the wall must be creating turbulent flow, 

which increases SSe. Over the mud flats the sse increases by 20-40 mg/l, increasing 

towards the edge of the water. sse is also increased around and upstream of the 

sandbank at 342400E indicating erosion of the bank and a net upstream movement of 

sediment. At the confluence (343100E, 426900N) there is lower sse in the main 

channel. Sediment suspended from the sandbank on the southern training wall (6.2a E) 

is being swept into the river Douglas. Above the confluence the water is well mixed 

with sse of 120-160 mg/I. Foam lines of the axial convergence front have formed in 

the centre of the main channel to the west of the confluence and stretches as far as the 

entrance to Freckleton Brook, 0 (343600E, 4271 OON). 

6.3.5 09:02 GMT, Figure 6.2d 

The range of sse for this image is approximately 40-180 mg/I. There are spatial 

distortions over the length of the image due to the inability of the NERe GeORR 

205 



software to correct for aircraft roll. The three areas where sse is affected by these roll 

distortions are P, (341480E to 341950E) reducing sse by 20 mg/l, Q, (342950E to 

343220E), reducing sse by up to 40 mg/l and R, (344600E to 344830E), increasing 

sse by 20 mg/1. The sse is generally lower in the centre of the channel increasing 

towards the edge of the water. 

A well-defined foam line along the length of the image indicates the presence of a 

strong axial convergence front that shows no disruption at the confluence, implying that 

the sandbanks within the main channel have little effect on the convergence. There are 

higher sse values above the north training wall to the west of the confluence that is not 

seen east of the confluence. The coincidental thermal imagery shows that there is 

evidence of a wann input at S, (342350E, 426990N). As there is no flow from the 

creeks on the south shore it is likely that the wanner feature is a result of sediment 

erosion. There is also a warming of the water where inundation has occurred over the 

sandbank in the central V -shape of the training walls at the confluence, possibly due to 

heat transfer from the wanner sediments. 

6.3.6 09:20 GMT, Figure 6.2e 

The sse range for this image is approximately 60-220 mg/l, an overall increase from 

the previous image. The sse image shows some spatial distortions, particularly at T, 

(342400E to 343050E), where the sse is reduced by as much as 40 mg/l or 40%. A 

distortion of similar magnitude is seen at U, (344500E to 344600E). 

The lowest sse values are seen in the centre of the main channel. The concentrations 

increase over the intertidal areas reaching a maximum at the water's edge. The line of 
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higher sse values directly above the training wall is still visible for the western side of 

the image (342000E to 342800E) but not seen east of the Ribble-Douglas confluence. 

The highest sse values are found at V, (343700E, 426950N), where sediment is 

eroding off Longton Marsh as confirmed by the thermal image. Further evidence of 

erosion is seen on both the eASI and ATM thermal images for both sides of the channel 

east of the confluence and the thermal image also suggests that sediment appears to be 

eroding from Warton Banle 

The foam line patterns are now more complex around the confluence area. A wel1-

defined foam line hugs the southern side of the main Ribble channel, extending as far as 

the confluence, entering the channel of the river Douglas and diminishing quickly. 

Another foam line begins at 342820E, 426930N running parallel to the other foam line 

up to the confluence and on into the Ribble channel. After the confluence the foam line 

starts to show large sinusoidal patterns, suggesting more turbulent flow, possibly as a 

result of the sandbanks detailed in table 6.1. After the sandbanks, the foam line 

becomes more linear and evidence of suspended sediment being pulled into the centre 

of the channel can be seen. The thermal data show that the convergence front inhibits 

warmer water from Warton Bank from mixing with water in the southern part of the 

channel up as far as Freckleton Brook, (343650E, 427150N). 

6.3.7 09:37 GMT, Figure 6.2f 

The range of sse for this image is 40-200 mg/1. There is only one area that is affected 

by aircraft roll, where the sse is increased by approximately 30-40% at W, (341900E 

to 342500E). 

207 



The lower sse values are found in the main channel, particularly off Freckleton Brook. 

Laterally, the concentrations generally increase towards the shore and longitudinally, 

the sse tends to increase towards the east. The area of highest sse is off Longton 

Marsh on the south bank of the river at X, (344000E), evident in both eASI and ATM 

thermal imagery. There is also evidence of further sediment erosion along the north 

bank ofthe river at Y, (344130E). 

Well-defined foam lines are visible along the entire Image. To the west of the 

confluence the foam lines show large sinusoidal patterns with the crests approximately 

400m apart, suggesting that there is convergent flow but that this must be subject to 

some form of sheer stress. The strong foam line starts to break up on approach to the 

confluence, where the foam is washed over the point of the training wall and onto 

Longton Marsh rather than into river Douglas. Aerial photographic evidence shows that 

there is a foam line running down the centre of the river Douglas, but it does not form 

until 343840E, 426540N. In the Ribble the foam line is not re-established until 

approximately 1500m past the confluence (344500E, 427390N). After the confluence 

the foam line is more linear and dense than before, suggesting stronger convergent flow. 

6.3.8 09:55 GMT, Figure 6.2g 

The sse range for this image is approximately 40-200 mgll. The lower sse values are 

found in the centre of the main channel, these increase rapidly outside the constraints of 

the training wall. There is also a general trend of the sse increasing towards the east. 

The area of highest sse is the same as the previous image. Aerial photographic 

evidence suggests that the water is now up to the edge of the saltmarsh at the western 

extreme of Longton Marsh, where vegetation is probably resisting erosion. Therefore, 
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the main area of erosion is occurring a short distance to the east of the previous image. 

There is also significant erosion occurring along the northern bank in this same area. 

Foam lines are still visible in this image but are becoming more fragmented. The foam 

line disappears completely around the confluence and there is no line visible around 

Freckleton Brook. East of the confluence the foam line starts to develop in the area 

where the SSCs are highest, but does not remain intact for more then 600m. It runs 

parallel to the riverbanks but is located above the southern training wall rather than the 

centre of the channel. 

6.3.9 11: 11 GMT, Figure 6.2h 

The SSC range for this image is 20-120 mg/l, an overall decrease in SSC since the 

previous image and also an overall increase in temperature. The time difference 

between the two images is the largest for the series of images due to the refuelling of the 

aircraft. 

The lowest SSC values are found within the main channel, increasing slightly towards 

the east. On the intertidal areas outside the training walls the SSC does not increase as 

rapidly towards the shore as previously. This may be due to decreased current velocity. 

In this location the sediments consist of medium-coarse sand (Rainey, 1999). If there 

has been a significant decrease in the current velocity this sediment would not be so 

easily suspended. This decrease in current velocity is supported by the thermal 

imagery, which shows the outflow from Freckleton Brook beginning to ebb. 
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The foam lines indicating the presence of the axial convergence front are still visible 

along the length of this image. At the western end of the image the foam line is 

relatively linear, however, on approaching the confluence the line starts to distort into 

the large sinusoidal patterns seen in previous images. Nearer the confluence this breaks 

up into a series of individual elongated S-shapes. As the confluence is approached the 

distance between the crests of the sinusoidal line decrease, being 310m, 300m, 245m 

and 235m respectively. East of the confluence the amplitude of these sinusoidal 

patterns gradually decreases and again approximate a linear feature, suggesting that this 

sinusoidal pattern is created by the presence of the confluence. This could be a result of 

either the split into two river channels or the presence of the submerged sandbanks. 

6.3.1011:25 GMT, Figure 6.2i 

The sse range for this image is 0-100 mg/l, a further overall decrease. The lowest sse 

values are in the main channel and around the area of the confluence. The water 

overlying the intertidal areas outside the training wall shows a slightly higher sse of 

20-40 mg/l but there is no increased concentration along the very edges of the image 

suggesting that erosion has ceased. The only area of high sse west of the confluence is 

where a complex creek enters the estuary, implying that sediment is now being 

introduced into the estuary not by erosion but by the draining of the saltmarsh creeks. 

The ebbing of creek outflow on the thermal image supports this. However, at Longton 

Marsh just 500m east, warmer water/sediment is being pulled from the shoreline 

towards the centre of the main channel but with a distinct easterly flow pattern 

suggesting there is still some convergent flow. The large areas of white along the edges 

of the thermal image, representing the warmest areas, are likely to be areas where 
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shallow water is warmed by the underlying mud banks as there is no corresponding high 

SSC in the CAS! image. 

The foam lines are less visible on this image but they are very similar to that of the 

previous image. The large elongated S-shapes can be seen to the west of the confluence 

where the foam dissipates and becomes very fragmentary. The linear convergence is 

not reformed until approximately 1300m east of the confluence at Z, (344400E, 

427380N). 

6.3.11 Confluence summary 

1. The confluence area shows a continuation in the general pattern of higher sse 

towards the upstream of the image, also observed in the outer estuary. 

2. The overall sse rises through Figures 6.2a to 6.2c (08: 11 to 08:44 GMT) after 

which the concentrations remain approximately constant until settling of the 

suspended sediment occurs in Figures 6.2h (11: 11 GMT) and 6.2i (11 :25 GMT). 

3. There are significant quantities of sediment being resuspended as the tide floods the 

sandbanks contained within the training walls of the main river channel that are 

visible in the first low water image. 

4. As the tide starts to wash over the sandbank in the point of the confluence there is a 

large increase in SSC as sediment is eroded (Figures 6.2c to 6.2f, 08:44 to 09:55 

GMT). As this supply of sediment is eroded off the initial point of the sandbank the 

sse shows evidence of the erosion zone progressing along Longton Marsh in an 

easterly direction. 
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5. Another area of erosion introducing sediment into the estuary is that of the creek at 

the eastern end of Warton aerodrome, this is particularly evident in Figure 6.2f 

(09:55 GMT). 

6. The foam lines marking the axial convergence front appear to be subject to greater 

lateral stresses here than other sections of the river, as sinusoidal patterns that 

develop later in the flood tide, are larger for this area. 

7. The thennal data of Figures 6.2h and 6.2i show that the water flowing into the 

Ribble from Freckleton Brook has started to ebb, therefore the current velocity of 

the flood tide must by greatly reduced by II :OOam. 

This image series has shown the confluence area to be more complex than the Warton 

Bank section as the basic estuarine V -shape intrusions are not evident. The confluence 

itself produces a turbulence that results in the main area of resuspension of sediment 

being from Longton Marsh. The fonnation of the axial convergence front is not 

affected, however the instabilities giving sinusoidal patterns during the collapse of the 

front are greater in this area. 

212 



341500 342000 342500 343000 343500 344000 344500 345000 345500 

429000 11.-":"_£0000 

427500 500 

427000 

426500 

426000 000 

425500 500 

341500 342000 342500 343000 343500 344000 344500 345000 345500 

Figure 6.2a(i) CASI image calibrated to suspended sediment concentration, (mg/l), of the confluence area, 08:11, 20-7-97. 
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Figure 6.2a(ii) ATM thermal data of the confluence area, 08:11 , 20-7-97. 

214 



341500 
! 

429000 I ~ (;0') ,/./ /: "~:iiiiii ..m =: ~_~-428000 

1 - 19 
20·39 

_40- 59 
_ SO - 79 

427500 -fl _ 80 - 99 
_100 - 119 
_ 120- 139 
0140- 159 o 1S0- 179 

427000 -. _ 180 - 199 E~- .IIL~ a.;p"'~ ~ -427000 

426500 500 

426000 000 

425500 500 

341500 342000 342500 343000 343500 344000 344500 346000 346500 

Figure 6.2b(i) CASI image calibrated to suspended sediment concentration, (mgll), of the confluence area, 08:30, 20-7-97. 
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Figure 6.2c(i) CASI image calibrated to suspended sediment concentration, (mg/l), of the confluence area, 08:44, 20-7-97. 
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Figure 6.2d(i) CASI image calibrated to suspended sediment concentration, (mg/I), of the confluence area, 09:02, 20-7-97. 

217 



428000 

427500 

427000 

426500 

426000 

425500 

341500 342000 

ATM Thermal (DN) 
_ a -799 
_ 800 -809 
_ 810 -814 
_ 815 - 819 
_ 820 -824 

D 825 -829 
D 830 -834 

835 - 839 
840 - 849 
850 -1009 

341500 342000 

342500 343000 343500 

342500 343000 343500 

Figure 6.2d(ii) ATM thermal data of the confluence area, 09:02, 20-7-97. 
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Figure 6.2e(i) CASI image calibrated to suspended sediment concentration, (mg/I), of the confluence area, 09:20, 20-7-97. 
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Figure 6.2e(ii) ATM thermal data of the confluence area, 09:20, 20-7-97. 
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Figure 6.2f(i) CASI image calibrated to suspended sediment concentration, (mgll), of the confluence area, 09:37, 20-7-97. 
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Figure 6.2f(ii) ATM thermal data of the confluence area, 09:37, 20-7-97. 
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Figure 6.2g(i) CASI image calibrated to suspended sediment concentration, (mg/l), of the confluence area, 09:55, 20-7-97. 
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Figure 6.2g(ii) ATM thennal data of the confluence area, 09:55 , 20-7-97. 
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Figure 6.2h(i) CASI image calibrated to suspended sediment concentration, (mg/l), of the confluence area, 11: 11 , 20-7-97. 
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Figure 6.2h(ii) ATM thermal data of the confluence area, 11:11 , 20-7-97. 
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Figure 6.2iCii) ATM thermal data of the confluence area, 11 :25, 20-7-97. 
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6.4 THE SPRINGFIELDS DISCHARGE AREA: SA VICK BROOK 

6.4.1 Introduction 

This stretch of the river is spatially the most simple, as it is very straight and the 

intertidal areas outside the training walls on either side of the river are much narrower 

than for the previous two areas. However, chemically this area is also one of the most 

important as there are two effluent discharge points in this stretch of the river. There is 

the discharge from the sewage treatment works (345710E, 427925N) and also the 

discharge from the BNFL Springfields plant (347180E, 428450N). In addition, Savick 

Brook has been reported to be a point that accumulates higher levels of 234Th, which is 

routinely discharged from BNFL Springfields (Mudge et al., 1997). This section will 

try to identify why these elevated levels of 234Th occur in this region of the estuary. 

6.4.2 08:11 GMT, Figure 6.3a 

The sse range for this image is 120-200 mg/I. There are two areas showing some 

geometric distortion due to aircraft roll, these are located at A (345850E to 346100E) 

and B (347250E to 347400E), where sse is increased by approximately 15% and 20% 

respectively. The tidal bore is situated off Warton Bank, thus this section of the river is 

not yet subject to the flow of the incoming tide, hence the small range of sse in 

comparison to the outer estuary images. This is supported by the thermal data, which 

also show very little contrast over the image. However, sse is still greater than would 

be expected for such low flow conditions. This suggests the possibility that some 

spectral signal contributions come from the riverbed, as low water on a spring tide the 

river is very shallow, typically less than O.Sm. In most locations the sse is higher on 

the northern side of the channel, which may be the outflow from Preston docks. 
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6.4.3 08:30 GMT, Figure 6.3b 

The sse range for this image is similar to the last and ranges from 100 to 240 mg/I. 

However, the upper values are affected by aircraft roll thus the real sse range is closer 

to 100 to 180 mg/I. There are three areas of aircraft roll, C, (347050E to 347180E), D, 

(347750E to 347900E) and E, (348280E to 348400E) giving errors of +9%. +5% and 

+20% respectively. The bore has yet to pass and the sse values are higher than would 

normally be expected for low tide. As with Figure 6.3a, the suspended sediments are 

distributed relatively evenly over the image with no distinctive patterns. 

6.4.4 08:45 GMT, Figure 6.3c 

The sse range of this image is difficult to determine as large areas of the image are 

badly affected by aircraft roll. The true range is likely to be similar to the previous two 

images (Figures 6.3a and 6.3b), but the upper value of the range cannot be accurately 

determined. The value was estimated by looking at the sediment patterns for the 

previous two images, which showed little variation in sse where the tide had not yet 

reached. However, on this image the tidal bore can be found stretching across the 

whole width of the river at F, (346295E). The highest values caused by roll are to the 

east of this and it would be expected that the highest sse would be in the turbulent 

water following the tidal bore, which is approximately 190 mg/I. 

The sse rises from 145 mg/I to 190 mg/l in the turbulent waters that follow the tidal 

bore, however there is no thermal boundary marking the location of the bore. The low 

sse feature at the eastern end of the image is a continuation of the feature seen in the 

previous two images. 
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6.4.5 09:02 GMT, Figure 6.3d 

The sse range for this image is probably 100 mg/l to 200 mg/I. Again, the upper limit 

is subject to roll effects and estimated from other areas of the image. The area of the 

image seriously affected by aircraft roll is at G (347530E to 348275E) increasing sse 

by up to 30%. There is also a 10% increase in sse at H, (346300E to 346530E). 

Three-quarters of this section of the channel is now being influenced by the flood tide. 

The tidal bore is not visible on the imagery but aerial photographs show that the bore is 

now at I, (348555E). 

The lowest sse values are east of the bore with the higher sse values found in the 

turbulent water following the bore. The exact magnitude of the increase in sse due to 

the bore cannot be determined due to roll problems. However, the ATM image data still 

show that there is no thermal structure in the river. 

6.4.6 09:20 GMT, Figure 6.3e 

The sse range for this image is 100 mg/l to 240 mg/I. The highest values are found in 

a large stretch of the river around the Spring fields discharge point. There are also high 

sse values of over 190 mg/l around the creek entering the river channel at J, (346030E, 

427900N). In the west of the image, there is an intrusion of lower sse penetrating as 

far as the sewage works. The thermal data show that there is a slight decrease in 

temperature related to this intrusion of lower sse water at the western edge of the 

image. There appears to be a pattern of lower sse in the main channel with higher sse 

along the edges as seen in previous images. There is also an increase in temperature at 
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the very edges of the channel, which corresponds to the increased SSC values in the 

CAS! image. 

There is a well-defined linear foam line running along the centre of the channel 

indicating the presence of an axial convergence front. Aerial photographic evidence 

suggests that the foam line becomes progressively more faint and finally fades away at 

K, (347400E). This shows that the convergence forms approximately 2 krn behind the 

tidal bore, beginning weakly and getting progressively stronger. 

6.4.7 09:37 GMT, Figure 6.3f 

The SSC range for this image is 95 mgll to 210 mgll. The image shows some spatial 

distortion where the river image is not aligned with the map, but there are no coincident 

changes in SSC. Thus, whilst the NERC GCORR program gives poor geo-correction, 

the increasing solar elevation angle has kept errors in SSC to a minimum. The water 

has reached the top of the training walls and begun to inundate the narrow intertidal 

areas. The lower SSC water has penetrated as far as 346900E. The coincidental thermal 

image shows that the intruding water is slightly cooler and penetrates to approximately 

the same point where the foam line disintegrates. The two trends in SSC are increasing 

SSC upstream and lower SSC in the centre of the main channel. Both suggest that 

sediment is being resuspended from the intertidal areas within the estuary and negligible 

amounts are brought in from the Irish Sea. This is further supported by the fact that the 

maximum SSC for each image series has increased as the area examined progressively 

moves west to east. The thermal image shows some small areas of warmth along the 

edges of the river that suggest localised sediment suspension at M, (345950E, 
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427890N) and N, (346260E, 428115N) and a larger area of possible erosion along the 

southern shore at the eastern end of the image. 

The well-developed foam lines again indicate the presence of a strong axial 

convergence front showing the same trend as the previous image. In the west the foam 

line is dense and well defined and this gradually decreases towards the east fading out at 

L (348540E). The line fades approximately 1100m east of the point at which it 

diminished in the previous image. 

6.4.8 09:55 GMT, Figure 6.3g 

The sse range for this image is 60 mg/l to 220 mg/l, the lower limit of the range is less 

than for previous images indicating that some settling has occurred. The lower sse 

values that are found at the west of the image increase towards the east, the same trend 

seen in temperature in the thermal image. The sse are always lower in the centre ofthe 

channel and then increase towards the edges. There is evidence that the sediment 

suspended at the water's edge is being pulled towards the centre of the channel by the 

convergent currents at 0, (346240E, 428020N). The highest sse are found, along both 

the north and south banks, to the east of Savick Brook. Aerial photographic evidence 

identifies these features as foam along the shore, thus the maximum sse in this area 

may be less than 200 mg/I. 

The foam lines are dense and linear running down the centre of the main channel and 

become more complex at the area of higher sse where a second foam line develops 

joining the main foam line at P, (349035E, 428940N). This suggests further evidence 

233 



of sediment and foam being pulled from the shore to the centre of the main channel by 

the circulatory pattern of the axial convergence front. 

6.4.9 11:11 GMT, Figure 6.3h 

The SSC range for this image is 70 mg/l to 100 mg/I. There are two sections of the 

CAS! image missing; these were removed due to there being cloud across the image at 

these points. The CAS! and ATM sensors are not directly adjacent and the thermal 

ATM data were unaffected. The necessity of re-fuelling the aircraft resulted in a long 

time gap between images. Current velocity appears to have decreased during this time. 

This is supported by the disappearance of the patterns associated with sediment erosion, 

where higher SSC values are found at the water's edge. The decrease in SSC IS 

accompanied by an increase in temperature as seen for other sections of the river. 

The foam lines are still present along the length of the image implying that the 

convergence is still strong enough to prevent the foam dispersing. The sinusoidal 

pattern that developed in the previous sections of the river is now seen in this section. 

The aerial photographs provide evidence that this pattern is apparent in the foam lines of 

the western half of the image but the foam lines in the eastern image are fully intact and 

more linear. The change between the western sinusoidal and eastern linear foam lines is 

a gradual process. 

The warmer water lies at the edge of the water and suggests a more rapid warming of 

the water in the shallower areas. The mixing patterns of this warmer water at Q, 

(345780E, 427800N) show that the direction of flow is to the east, therefore the tide has 

not yet turned. There is a discrete patch of cooler water in the location of the sewage 
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works (R) that does not appear to originate from a creek. This must be the beginning 

of the discharge of the sewage effluent on the ebb tide, however, the flow is currently 

from west to east. 

6.4.10 Savick Brook Summary 

1. The overall sse increases for the first seven images of the series but there is a 

dramatic decrease in the sse at 11: 11 GMT (Figure 6.3h) suggesting the occurrence 

of sediment settling. 

2. The incoming tide starts to affect this area of the river at 08:44 GMT (Figure 6.3c). 

3. Prior to the effects of the incoming tide there is a north south segregation of waters 

in the eastern extremes of the image nearer the docks, but this is not seen after 09:20 

GMT, (Figure 6.3e). 

4. For the image series as a whole there is a general trend showing a longitudinal 

increase in sse from west to east suggesting that sediment is not brought into the 

estuary but resuspended from within the estuary. 

5. The water level reaches the top of the training wall in Figure 6.3f, after which 

greater sse is found over the intertidal areas than in the main river channel. This 

suggests that the intertidal areas are the main source of suspended sediment. 

6. The highest sse is found along the north and south shores to the west of Savick 

Brook. 

7. The foam lines indicating the presence of an axial convergence start to be seen at 

09:20 GMT (Figure 6.3e). The line starts to appear approximately 2km behind the 

tidal bore. The presence of these foam lines coincides with the location of cooler 

water entering the estuary. The thermal data at 09:55 GMT (Figure 6.3g) show 
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evidence for the convergence as sediment is pulled from the shores to the centre of 

the river channel. 

8. At 09:55 GMT (Figure 6.3g) the foam line runs along the length of the image, but is 

starting to show the sinusoidal patterns associated with the break up of the 

convergence in the western end of the image. 

This section of the estuary is subject to a very short flood tide. Also, at the time 

sediment settling starts to occur at slack water, this region has higher sse than the 

lower reaches of the estuary prior to sediment settling. It is these factors that could be 

responsible for the elevated 234Th levels sometimes found in this area as mentioned in 

Mudge et al., (1997). However, there is another aspect of the tidal cycle that is likely to 

playa more important role in the occurrence of this phenomenon. This is the variation 

of maximum tidal heights over the spring-neap cycle. As the maximum tidal elevation 

diminishes from spring tides to neap tides the sediment deposited during the settling 

period of the previous high tide will not be fully resuspended and redistributed by the 

following tide. This will result in a periodic build-up of the locally discharged 

radionuclides such as 234Th. However, from this single image series it is difficult to 

determine an exact mechanism for these occurrences of higher 243Th concentrations in 

this area. 
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Figure 6.3a(i) CASI image calibrated to suspended sediment concentration, (mgl1 ), of the Savick Brook area, 08 : 11, 20-7-97 . 
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Figure 6.3a(ii) ATM thennal data of the Savick Brook area, 08: 11 , 20-7-97. 
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Figure 6.3b(i) CASI image calibrated to suspended sediment concentration, (mg/l), of the Savick Brook area, 08 :30, 20-7-97. 
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Figure 6.3c(i) CAS! image calibrated to suspended sediment concentration, (mgll), of the Savick Brook area, 08:44, 20-7-97. 
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Figure 6.3c(ii) ATM thermal data of the Savick Brook area, 08:44, 20-7-97. 
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Figure 6.3d(i) CASI image calibrated to suspended sediment concentration, (mg/l), of the Savick Brook area, 09:02, 20-7-97 
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Figure 6.3d(iiO ATM thermal data of the Savick Brook area, 09:02,20-7-97. 
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Figure 6.3e(i) CAS! image calibrated to suspended sediment concentration, Cmg/l), of the Savick Brook area, 09:20, 20-7-97. 
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Figure 6.3e(iiO ATM thermal data of the Savick Brook area, 09:20, 20-7-97. 
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Figure 6.3f(i) CASI image calibrated to suspended sediment concentration, (mg!l), of the Savick Brook area, 09:37, 20-7-97. 
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Figure 6.3f(ii) ATM thermal data of the Savick Brook area, 09:37, 20-7-97. 
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Figure 6.3g(i) CAS! image calibrated to suspended sediment concentration, (mg/l), of the Savick Brook area, 09:55, 20-7-97. 
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Figure 6.3g(ii) ATM thermal data of the Savick Brook area, 09:55 , 20-7-97. 
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Figure 6.3h(i) CASI image calibrated to suspended sediment concentration, (mgll), of the Savick Brook area, 11:11 , 20-7-97. 
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6.5 THE DOCKS 

6.5.1 Introduction 

This area represents the upstream limit of the imagery for this study. The upper estuary 

is very important as the very fine sediment is known to settle out in this region and it is 

known that the finer sediments have the higher associated radionuclide concentrations, 

as discussed in chapter two. 

6.5.2 08:11 GMT, Figure 6.4a 

The sse range for this image is 0 mg/I to 190 mg/I in the river channel but sse of up to 

240 mg/I are found in the outer dock basin. This is due to the presence of a bloom of 

blue-green algae. There are two sandbanks exposed in this low water image that may 

affect the flow patterns later in the flood tide, at A, (349725E, 42911 ON) on the north 

bank and at B, (350440E, 429250N). It is known that the tidal bore is off Warton bank, 

therefore the water along this stretch of the river is still at low water, probably with 

some ebb flow. 

The sse differs greatly at the dock entrance. West of the dock entrance the sse 

exhibit similar patterns to those seen in the east of the previous low water image, which 

become more pronounced on approach to the dock entrance. Aerial photographic 

evidence shows that the dock gates have been opened to enable the toxic algae to be 

drained from the dock basin. The apparent high sse of the water flowing out of the 

dock gate is produced by the light scattering effects of the individual algae cells rather 

than sediment grains. This is producing the higher sse seen along the north of the 

channel as far down stream as Savick Brook, 2500m away. This is supported by the 
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thermal data showing the cooler water from the docks hugging the north bank. 

Immediately east of the dock entrance the sse fall dramatically. As the channel is not 

known to gain in depth at this point it suggests that the bathymetric contributions to the 

spectral signature can be considered to be minimal. 

6.5.3 08:30 GMT, Figure 6.4b 

The sse range for this image is 0 mg/I to 180 mg/l in the river channel but sse values 

of up to 240 mg/I are found in the outer dock basin. The image shows some spatial 

geographic distortions that are not accompanied by sudden variations in sse of roll 

effects. This image is not yet subject to the flow of the flood tide as the dock basin is 

still draining into the river. The water level in the outer dock basin has dropped 

substantially revealing a sandbank in the northwest corner of the outer basin. The sse 

around the dock entrance has dropped since the previous image and there is no obvious 

water body hugging the northern training wall, probably a result of reduced water flow 

from the dock basin. Further west, the north-south channel divide of sse is still 

evident. 

6.5.4 08:45 GMT, Figure 6.4c 

The sse range for this image is 10 mg/l to 200 mg/I in the river channel but sse values 

of up to 300 mg/l are found in the outer dock basin. The tidal bore image has not 

reached this section of the river, therefore the sse patterns are the same as the two 

previous images. The water level in the dock basin has further decreased resulting in 

greater exposure of the dock basin sandbank. 
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The highest sse of the river is found on the northern shore along the edge of a 

sandbank, however, these concentrations are greater than those being discharged from 

the dock basin. This suggests two possibilities: 

1. the flow from the dock is causing some erosion of the sandbank at this location, or 

2. there is some spectral contribution from the sandbank where the water is very 

shallow at the edge. 

The area along the edge of the sandbank that is showing higher sse in the eAS! image 

can be seen to be having a warming effect on the water in the thermal image. This 

suggests some heat transfer to the water by suspension of warmer deposited sediment 

from the sandbank, which supports the latter possibility of erosion resulting from the 

flow of water from the dock basin. 

6.5.5 09:02 GMT, Figure 6.4d 

The sse range for this image is 15mgll to 200mgll in the river channel with sse values 

of up to 290mgll found in the outer dock basin. There are some severe geometric 

distortions, particularly in the 500m stretch west of to the dock entrance, but these are 

not accompanied by the changes in sse associated with aircraft roll, indicating reliable 

sse data. 

The area is not yet subject to the flood tide as the bore is currently 1 km downstream of 

the western edge of this image. The outer dock basin is still emptying as the sandbank 

in the corner has again increased in size. The area of erosion associated with the 

sandbank around 349800E is still showing elevated levels of sse, however, this time 

there is no coincidental warming in the thermal image. The thermal image shows cooler 
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water in this area, which has come from the dock basin, and does not rule out the 

possibility that flow from the dock basin is causing erosion of the sandbank. 

6.5.6 09:20 GMT, Figure 6.4e 

The sse range for this image is 20 mg/I to 250 mg/l in the river channel with sse of up 

to 270 mg/I found in the outer dock basin. This image does suffer some geometric 

distortion but this is not due to aircraft roll. The ATM imagery is also subject to some 

geocorrection problems, as the outer dock basin does not fit the overlaid map. 

At the eastern end of this image there is a large increase in sse, this is due to the 

approach of the flood tide. The tongue of lower sse from the dock, shown as pale 

blue, no longer reaches as far downstream as in the previous image. The tidal front has 

not yet reached the dock entrance and high sse water is still leaving the outer dock 

basin and hugging the northern shore. The ATM thermal imagery shows a significant 

warming of the low sse water in the eastern half of the image. 

6.5.7 09:37 GMT, Figure 6.4f 

The sse range for this image is 20 mg/l to 230 mg/l in the river channel with sse of up 

to 280 mg/I found in the outer dock basin. This image is subject to some large spatial 

distortions. The two areas where the sse is increased by aircraft roll are at C, 

(350195E to 350515E) and D (35141OE to 351555E), other distortions are not subject to 

sse errors. 

The flood tide has now reached the upper estuary as a well-defined V -shaped tidal 

boundary can be seen at E (351580E). Unusually, the apex of the V is inverted. The 
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ATM thermal image shows that this intruding water is cooler than the river water. In a 

nonnal tidal intrusion the apex of the V is first to intrude as the flow along the 

riverbanks tends to be slowed by friction. Here the opposite appears to be happening 

with the water travelling faster along the banks of the river. This is a feature associated 

with a high inertia flood tide, which can be expected in such a narrow constricted river 

channel (Largier, 1992). Immediately in front of the tidal intrusion the SSC is increased 

to 40-60 mg/I for approximately 80m, after which the values are in the usual 20-40 mg/I 

range. The outer dock basin is starting to refill with water with a lower SSC and algae 

content. There is a second area of high SSC between the two bridges at the eastern 

extremes of the image suggesting some flow induced by the incoming tide long before 

the defined tidal boundary. 

6.5.8 09:55 GMT, Figure 6.4g 

The SSC range for this image is 60 mg/I to 240 mg/I. There are errors in the geo­

correction of this image as the river does not lie exactly within the training walls on the 

overlaid map, but there are few errors associated in sse. There is only one area where 

the SSC is affected at F, (349570E to 350290E). In this 800m stretch of the river the 

SSCs are reduced by approximately 5%. 

The highest SSC values are found along the stretch of river running parallel to the dock 

basins. The tidal boundary, now beginning to round the comer of the river near the 

bridges, is changed from a V-shape to a diagonal line across the river. The highest SSC 

or turbidity maximum, lies between 300m and 1600m west of this tidal boundary. The 

SSC gradient across the tidal boundary has decreased from the previous image, which 

indicates mixing processes are occurring. The SSCs at the lower end of the range have 
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also increased since the previous image, supporting the suggestion of the occurrence of 

turbulence and mixing processes before the passing of the tidal front. 

Foam lines, indicating the presence of an axial convergence front, are now seen in these 

upper reaches of the river and a well-defined foam line running as far east as the dock 

entrance. Aerial photographic evidence shows very faint foam lines east of the lock 

gate, indicating that the convergent currents are starting to form a faint foam line at 

351400E and this continues for the length of the river as far as the weir at 

approximately 352860E, 428400N. 

6.5.9 11:11 GMT, Figure 6.4h 

The SSC range of this image is 60 mg/l to 240 mg/l, however the higher values are from 

a large area of foam and the highest real SSC is probably 140 mg/l, a substantial 

decrease from the previous image. At least half of the CASI image had to be removed 

due to cloud obscuring the true SSC. 

The foam line that previously ended just west of the dock entrance now passes this point 

and touches the northern training wall at G, (350750E). Using the aerial photographs to 

interpret the missing CASI data, the foam line then runs along the northern training wall 

for approximately 270m before moving into the main channel again, where the foam 

picked up from the northern training wall is unlike that seen previously. It appears to be 

a fine dust lying on top of the water. This is clearly illustrated at H, (351480E, 

429330N), showing an erroneously high sse. The thermal image shows this area as 

being warmer than the surrounding water; this would suggest the foam was a fine dry 

dust picked up from the crevices in the training wall. 
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6.5.10 11:25 GMT, Figure 6.4i 

The sse range for this image is 25 mg/l to 100 mg/l, another overall decrease in SSe. 

The sse is spatially very well mixed in the main channel, supported by the thermal 

data. There are concentrations of up to 200 mg/l in the outer dock basin as the inner 

dock gates are now open, allowing the algae into the outer basin. There are some spatial 

distortions but only one stretch shows sse reduced by 15-20%, at I, (349960E to 

350180E). 

The foam line indicating the presence of the axial convergence front runs up the main 

channel as far east as the dock entrance, falling short of the position found in the 

previous image. There are also signs that the convergence is starting to weaken as the 

sinusoidal patterns found in the previous sections of the river are just starting to form in 

this section, J, (349980E). The large patches of foam that appeared in the previous 

image also appear in the same location in this image. 

6.5.11 Docks Summary 

1. Prior to the influence of the flood tide the sse in the river ranges from 0 to 200 

mg/I. 

2. The higher sse values are largely due to the release of water from the outer dock 

basin, which contain large quantities of blue-green algae. The algae were in such 

high concentrations that light was scattered by individual phytoplankton cells giving 

the impression of a high sse. 

3. The water released from the dock flows west down the river, hugging the northern 

shore of the main channel. 
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4. The incoming tide is not seen to have any effect on the sse patterns until 09:20am 

(Figure 6.4e) when an increase in sse is seen in the western end of the image. 

5. A defined V -shaped boundary marking the tidal intrusion front was visible on the 

09:37am image (Figure 6.4f). West of the front the sse was approximately 160 

mg/l. To the east of the tidal intrusion front the sse were significantly lower at 

approximately 50 mg/\. 

6. In Figure 6.4g, the front has progressed as far east as the first bridge and now takes 

the form of a diagonal line across the river. The sse gradient across the front, 

though still visible is now more gradual than for Figure 6.4f. 

7. The first appearance of a foam line, indicating the axial convergence, is seen in 

Figure 6.4g, at 09:55am. This line reaches as far east as the dock entrance and does 

not differ greatly in location for the rest of the image series. 

8. The axial convergence foam line starts to show signs of breaking down in the last 

image of the series, as small sinusoidal patterns start to appear. 

9. East of the dock entrance, patches of very bright foam or dust are being picked up 

off the northern training wall, giving areas of erroneously high sse. 

10. In areas not masked by this foam the sse starts to decrease, showing signs of 

sediment settling over the last two images. 

The most likely reason for the accumulation of fine sediment in this region of the 

estuary can be seen in the 09:55GMT image (Figure 6.4g). This is the last image taken 

prior to the start of the sediment settling process. At this time, this upper section of the 

estuary is subject to the highest sse seen in any area of the estuary. This is to be 

expected because the water entering the outer estuary is known to be low in sse; 

therefore the source of suspended sediment is from within the estuary. This suggests 
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that as the tide progresses further up the estuary the greater the amount of sediment that 

will have been resuspended. As the flood tide is relatively short for the upper estuary 

settling will occur soon after the maximum sse values are reached. The sediment 

accumulating around the upper estuary is particularly fine and thus carries a relatively 

high load of radionuclides. The fact that this area is a sink for the very fine sediment 

may also be linked to the long slow ebb tide that is a feature of this area, as this would 

not be powerful enough to erode cohesive sediments. 
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Figure 6.4a(i) CASI image calibrated to suspended sediment concentration, (mg/l), of the Preston Dock area, 08:11 , 20-7-97. 

261 



349500 350000 
4305001 ... ' ••••• _. 

430000 

429500 

429000 

428500 

ATM Thermal (DN) 
0·799 

349500 

800 - 809 
810 ·814 

350000 

350500 351000 

350500 351000 

Figure 6.4a(ii) ATM thennal data of the Preston Dock area, 08:11, 20-7-97. 
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Figure 6.4b(i) CASI image calibrated to suspended sediment concentration, (mg/l), of the Preston Dock area, 08:30, 20-7-97. 
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Figure 6.4c(i) CAS! image calibrated to suspended sediment concentration, (mg/l), of the Preston Dock area, 08:44, 20-7-97. 
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Figure 6.4c(ii) ATM thennal data of the Preston Dock area, 08:44, 20-7-97. 
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Figure 6.4d(i) CASI image calibrated to suspended sediment concentration, (mg/I), of the Preston Dock area, 09:02, 20-7-97. 
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Figure 6.4d(ii) A TM thermal data of the Preston Dock area, 09:02, 20-7-97. 
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Figure 6.4e(i) CASI image calibrated to suspended sediment concentration, (mg/I), of the Preston Dock area, 09:20, 20-7-97. 
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Figure 6.4e(ii) ATM thermal data of the Preston Dock area, 09:20, 20-7-97. 

269 



430 000 

429 500 

428500 

sse (mgA) _0 
_1 - 19 
_20 - 39 
_dO - 59 
_ 60 - 79 
_ 00- 99 
_ 100 - 119 

120 - 139 

349500 350000 350500 351000 351500 352000 352500 

Figure 6.4f(i) CASI image calibrated to suspended sediment concentration, (mg/I), of the Preston Dock area, 09:37, 20-7-97. 
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Figure 6.4f(ii) ATM thermal data of the Preston Dock area, 09:37, 20-7-97. 
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Figure 6.4g(i) CAS! image calibrated to suspended sediment concentration, (mg/I), of the Preston Dock area, 09:55, 20-7-97. 
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Figure 6.4g(ii) A TM thermal data of the Preston Dock area, 09:55, 20-7-97. 
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Figure 6.4b(i) CASI image calibrated to suspended sediment concentration, (mg!l), of the Preston Dock area, 11: 11 , 20-7-97. 
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Figure 6.4h(ii) ATM thermal data of the Preston Dock area, 11:11 , 20-7-97. 
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Figure 6.4i(i) CASI image calibrated to suspended sediment concentration, (mg/l), of the Preston Dock area, 011:25 , 20-7-97. 
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Figure 6.4i(ii) ATM thennal data of the Preston Dock area, 011 :25, 20-7-97. 
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6.6 CHAPTER SUMMARY 

The description of the suspended sediment patterns through the image senes has 

revealed trends that occur throughout all sections of the estuary in addition to trends that 

are characteristic of a specific location within the estuary. One of the most important 

features of the estuary, as a whole, is that the images show that the water entering the 

estuary is low in suspended sediment. This confirms that the SSCs found within the 

estuary are almost entirely due to sediment being resuspended from within the estuary. 

This is further supported by the fact that all the images show a trend of higher SSC from 

west to east in each image section. This could only occur if sediment was being 

suspended from within the confines of the estuary. For the length of the estuary, the 

images show that the SSC are lower in the main channel than over the mud flats, as the 

intertidal areas are the source of the suspended sediment. As the water inundates the 

mud flats the sediment is suspended by the advancing water, evidence for this is 

provided by the fact that the sse is always higher towards the edge of the water. This 

is most likely a result of the action of small wind generated waves, which are known to 

have a large erosive power in shallow tidal areas (Black, 1998). 

Each of the four sections of the estuary detailed in chapter six also displays some 

features that are characteristic to that particular geographical section. For example, the 

outer estuary is characterised by V-shaped intrusions of low sse water, which are often 

defined by lines of foam marking the boundary between water bodies. The confluence 

is the most complex area, with the foam lines of the axial convergence disintegrating 

into large sinusoidal patterns. These sinusoidal patters are seen in other parts of the 

estuary but not as clearly as just west of the confluence. Areas of sediment suspension 
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vary with the flood tide as one source is exhausted so another becomes more dominant. 

This is particularly apparent in the confluence section, as erosion progresses along 

Longton Marsh. The very straight canalised section of the estuary from the sewage 

treatment works to east of Savick Brook is the stretch that shows the highest SSC and a 

very well defined axial convergence front. The upper estuary, around the docks, shows 

very low SSC but on arrival of the flood tide there is a V -shape intrusion with a very 

steep SSC gradient that is not seen elsewhere is the estuary. 

The description of the trends and mechanisms within the estuary highlights some of the 

areas that require further investigation. In the following chapter areas will be studied in 

closer detail, assessing changes over time for a given location with the passing of the 

tidal bore. The data extracted from the images will then be compared to data from other 

sources to assess similarities and differences between the data sets. The image data will 

be used to try to answer some of the questions raised in this chapter. For example: 

• Does the presence of microphytobenthos inhibit erosion in all the areas where the 

algae is present? This possible effect needs to be investigated by locating algal 

material on the aerial photography and reviewing the imagery for areas where 

erosion would be expected but is not occurring. 

• How does the strength of the convergence vary throughout the flood tide? Can this 

be estimated from the imagery and used to help interpret sediment erosion 

mechanisms? 

Finally the imagery will be used to calculate approximate suspended sediment and 

suspended \37Cs budgets at the various stages of the flood tide. 
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CHAPTER 7: SEDIMENT MOVEMENT IN THE RIBBLE ESTUARY 

7.1 INTRODUCTION 

Chapter six has introduced the calibrated suspended sediment images and qualitative 

analysis has revealed several questions that this chapter will examine in more detail. 

The questions have been divided into two main subject areas: 

1. Erosion of the intertidal sediments. The information acquired on erosion aims to 

identify the main sources of suspended sediment in the estuary and relate these 

sources to the intertidal sediment distribution based on image data collected two 

months prior to the flood tide image acquisition used here and mapped by Rainey, 

(1999). The possible effects of microphytobenthos as an erosion inhibitor will also 

be investigated. 

2. Sediment transport and hydrodynamics of the estuary. This will include the 

importance of the tidal bore in sediment resuspension and the effects of estuarine 

fronts, in particular axial convergence, on the subsequent sediment transport. 

The image data will then be compared to the results of the most recent model of the 

Ribble estuary, using identical flood tide conditions, to assess the similarities, contrasts 

and the compatibility between the two data sets. A combination of data from the two 

sources will then be used to calculate the total loads for suspended sediment and \37CS 

over the flood tide and estimate net sediment and l37Cs budgets for the whole estuary. 
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7.2 EROSION OF INTERTIDAL AREAS 

Introduction 

The image data set comprises nine images collected during a single spring flood tide. 

The first seven images are almost evenly spaced at approximately fifteen minutes 

intervals. There is then an interruption of an hour and twenty minutes as a result of 

aircraft refuelling. This data set provides a series of snap-shots of the suspended 

sediment distribution within the estuary, providing a data set far superior to any current 

spatial data set available for the Ribble estuary. The data should enable mechanistic 

interpretations of the important regions of sediment supply and controls on the 

transportation of suspended sediment. 

7.2.1 Identification of sources of sediment supply 

Prior to examining the images for areas of sediment supply it is necessary to consider 

the possible mechanisms of sediment contribution to the estuary. Sediment sources can 

therefore be grouped into two categories: 

1. External sediment supply: where sediment is brought into the estuary from the Irish 

Sea. 

2. Within estuary supply, which can be further divided into: 

(i) Continuous sediment supply: where sediment is input to the water column 

throughout the entire flood tide. 

(ii) Longitudinally transitional sediment supply: where areas of sediment supply 

become exhausted and are replaced by an adjacent supply. 

(iii) Minimal sediment supply: where very little sediment IS resuspended 

throughout the flood tide. 
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External sediment supply 

The extent of sediment input into the estuary from the Irish Sea is difficult to estimate 

from this series of images, primarily due to the restricted image area. To assess input 

from the Irish Sea images would be required covering the far outer reaches of the 

estuary to differentiate SSC derived from sources in the outer estuary to sources derived 

from the Irish Sea itself. However, the imagery reveals that in this instance the water 

entering the estuary contains low SSC indicating that, for this particular flood tide, little 

sediment is derived directly from the Irish Sea, typically <40mgll. This situation must 

clearly vary according to weather and tidal conditions as mineralogical data shows that 

sediment entering the estuary is of a marine origin. This section will therefore focus on 

examples of within estuary supply ofSSC. 

Areas of continuous sediment supply throughout the flood tide 

Figures 7.la to 7.lh show the first eight images for the outer estuary. These images 

focus on the extreme west of Warton Bank, where Lytham Creek flows into the main 

estuary channel. On the north shore, the area identified by the yellow box, exhibits 

consistently higher SSC than the immediate surrounding area throughout the majority of 

the flood tide. The initial increase in SSC (Figure 7.1a) occurs immediately behind a 

line of foam created as the water washes over a sandbank. In Figure 7.1 b the SSC has 

significantly increased and appears to be generated by the flow of water around the 

sandbank. The sandbank is no longer visible in Figure 7.1 c, however the SSCs on the 

north shore are still much higher than for the surrounding areas. In Figures 7.1d to 7.1g 

the higher concentrations of suspended sediment of that area, in comparison to that of 

the surrounding areas, are not so distinct. However, the concentrations are still 
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consistently greater than for the eastern extreme of this image. Figure 7.1 h shows that 

sediment has stopped eroding from this area by 11: 11 GMT, at slack water. 
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Figure 7.1a Lytham Creek, 0811 GMT, 20-7-97. 

Figure 7.1h Lytham Creek, 0830 GMT, 20-7-97. 
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Lytham Creek, 0844 GMT, 20-7-97. 

Figure 7.1d Lytham Creek, 0902 GMT, 20-7-97. 
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Figure 7.1e Lytham Creek, 0920 GMT, 20-7-97. 

Figure 7.lf Lytham Creek, 0937 GMT, 20-7-97. 
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Figure 7.1g Lytham Creek, 0955 GMT, 20-7-97. 

Figure 7.1h Lytham Creek, 1111 GMT, 20-7-97. 
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Areas of longitudinally transitional sediment supply 

Figures 7.2a to 7.2e show a series of five consecutive images of Longton Bank, just east 

of the confluence. The area of interest is outlined by the yellow box. These images 

illustrate very clearly the progressive nature of a transitional sediment source. Figure 

7.2a shows that just after inundation of the Longton Bank mudflats there is some 

increase in sse along the western stretch of the mudflat. As the water flow increases, 

Figure 7.2b shows that this western end of Longton Bank is providing a large quantity 

of suspended sediment to the water column. As such a large amount of sediment is 

being eroded. This sediment source is soon exhausted and a new source of sediment 

becomes dominant. This is shown in Figure 7.2c and 7.2d, here Longton Bank is still 

the source of the suspended sediment, but the area of maximum sediment concentration 

is migrating eastwards. Figure 7.2e shows that despite a significant drop in overall 

sse, Longton bank is still providing some suspended sediment. The position of this 

source has again migrated further eastwards. 
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Figure 7.2a Longton Bank, 0902 GMT, 20-7-97. 

Figure 7.2b Longton Bank, 0920 GMT, 20-7-97. 
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Figure 7.2e Longton Bank, 0937 GMT, 20-7-97. 

Figure 7.2d Longton Bank, 0955 GMT, 20-7-97. 
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Figure 7.2e Longton Bank, 1111 GMT, 20-7-97. 
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Areas of Minimal Sediment Supply 

An area of minimal sediment erosion can be seen in Figure 7.1 a to 7.1 h. The area of 

interest is on the south shore of the outer estuary and is contained within the red box. 

The water entering the estuary from the Irish Sea can be seen to be low in SSC. This 

SSC does not increase on contact with the southern intertidal area as observed 

elsewhere. Sediment does not begin to be resuspended until the mouth of the large 

creek located at the eastern end of this image. There is a further possible reason for 

reduced sediment supply in this location. The image descriptions of chapter six 

revealed that the axial convergence front in the outer estuary moves to the south edge of 

the channel during the flood tide. For this to occur, the currents must be dominant in 

the northern half of the estuary. This implies that the current velocity on the south side 

of the estuary may be less than for the north side, which would result in reduced 

sediment erosion. 

Summary 

From the above examples we can conclude that the imagery can clearly identify areas of 

sediment erosion within the outer estuary by locating areas of sudden increase in SSC. 

Conversely, a lack of suspended sediment at the waters edge, where there is water flow 

over a intertidal area and sediment would be expected to be resuspended, can suggest an 

area with reduced erosion potential. 

Clearly current velocity and strength of the axial convergence is important in sediment 

erosion and entrainment. The following section aims to focus on areas with similar tidal 

flow conditions but differences in SSC and sediment properties, as mapped by Rainey, 

(1999), to interpret which enable or inhibit sediment erosion and entrainment. 
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7.2.2 Controls on sediment supply 

Figure 7 .3 shows the abundance imagery for clay content of the intertidal sediment 

produced from imagery collected approximately two months before the flood tide image 

set used here. To expose the maximum amount of intertidal mud, the image was taken 

at low water for a spring tide. Given the absence of ex treme weather conditions, an 

assumption is made here that little variation in the suspended sediment di stribution has 

occurred in the intervening two months period 

Figure 7.3 A map of the percentage clay abundance produced from 31 -5- 1997 taken 
from Rainey, (1999). The white and dashed boxes correspond with the ye llow and red 

boxes of Figure 7. 1. 

It can be seen that the area of intertidal mudflats producing a constant source of hi gh 

sse, bounded by the white box, corresponds to an area of sediment that i lower in c lay 

and therefore less cohesive than that near the main channel furth er as t along the 

estuary. The initial high sse (Figures 7.1 a and 7 .1 b) are from an area where the and 

next to the main channel grades to the cl ay rich sediment bordering the sa ltmar h. Th 

sediment between the two extremes of large grain size and strongly cohe ive mud is 
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probably predominantly silt. This is possibly the type of sediment that is most easily 

eroded and therefore an important sediment source. 

However, the area that corresponds to the minimal erosion of Figure 7.1, bounded by 

the dashed box, is an area that has only slightly higher clay content. On examination of 

Figure 7.4, it is this area that is relatively high in microphytobenthos cover compared to 

the areas that are eroding more and it is known that large communities of algae on 

mudflats do inhibit erosion. 

There are two factors that may be responsible for this reduced sediment supply: 

1. The presence of microphytobenthos 

2. A less dominant flow, suggested by the southwards migration of the axial 

convergence. 

In reality it is likely to be a combination of these two factors. 

The microphytobenthos abundance of the area immediately east of the large creek on 

the north shore is very high, (A in Figure 7.4), this also corresponds to an area of low 

sediment supply in Figure 7.1. 
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Figure 7.4 Uncalibrated microphytobenthos relative abundance image produced by the 
linear unmixing of 31 -5-97 imagery, taken from Rainey, (1999). The box es correspond 
with the boxes of Figure 7.1. 

The transitional areas of erosion, found mainly in the constricted main channel with 

narrow intertidal areas, may not be related to the underlying sediment in quite the same 

way as the large intertidal areas of the outer estuary. The area of Figure 7.2 is within 

the canalised reaches of the outer estuary. Therefore, the reason for the longitudinal 

migration of the sediment source must be related to the limited quantity of sediment 

available for erosion. The process that contributes to this knock-on e ffect of sediment 

supply is not clear. 

Figure 7.5 corresponds to the area shown in Figure 7.2. it is assumed that the sediment 

that is eroded is the silt dominated sediment as for the outer estuary. ]11 Figure 7.5 there 

is a sharp transition between the sands and clay rich sediment. This impli es that there is 

a limited source of the interm ediate silt dominated sediment. This is perhaps the reason 

for the initial sediment source being completely eroded and thus progress ing along th 

shore over the course of the flood tide. 
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Figure 7.5 A map of the percentage clay abundance produced from 31-5- 1997, taken 
from Rainey, (1999), corresponding with the area of Figure 7.2. 

7.3 TRANSPORT OF SUSPENDED SEDIMENT 

Having established that the images can be llsed to identi fy sources of sed iment thi s 

section investigates the movement ofthat sll spended sediment within the es tuary. To do 

this the following sections will show some examples of the information that can be 

obtained on the hydrodynamics ofthe estuary from the image data. 

7.3.1 The importance of the tidal bore in sediment suspension 

The flood tide enters the estuary in the form of a tidal bore, an indi vidual wave, 

approximately 20cm to 30cm hi gh, generated by the decrease in depth of the estuary. 

The role that the tidal bore plays in the resuspension of sediment is investi gated in thi s 

section. 
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Figure 7.6 The locations of the tidal bore in the first four images. 

The tidal bore was visible on the first four images, and the location of the bore along the 

north training wall obtained. These locations are given in table 7.1 and shown in Figure 

7.6. 

Position of the tidal bore (OS BNG) Position 100m to the west (OS BNG) 

Figs. Easting Northing Easting Northing 

7.7a 341640 426633 341550 426560 

7.7b 343969 427270 343865 427215 

7.7c 346285 428120 346190 428040 

7.7d 348555 428857 348455 428820 

Table 7.1 The locatIOns of the tidal bore and the pomt 100m to the west m the centre of 
the main channel, used to investigate the effect of the passing of the bore on sse for the 
first four images. 

Using the time taken between subsequent image and the distance between each location 

of the tidal bore, the speed at which the bore is travelling up the estuary can be 

calculated. This information is given in table 7.2. It can be seen that over successive 

sections of the estuary the speed of the tidal bore remains almost constant, and therefore 

297 



the speed obtained using the total distance over total time gives a similar value to each 

individual section. 

Image Time (GMT) Time interval (s) Distance (m) Speed (m/s) 

C20102 08:11 - - -
C20103 08:30 1140 2470 2.17 

C20104 08:44 840 2480 2.95 

C20105 09:02 1080 2380 2.20 

Total - 3060 7330 2.40 

Table 7.2 The times and dIstances used to calculate the speed the tIdal bore progresses 
up the estuary. 

To investigate the effect the passing of the tidal bore has on the sse a point was located 

in the centre of the main channel 100m behind the bore to represent the sse in the area 

that the bore has been observed in the time series. These points have also been 

identified as not having been influenced by aircraft roll. The sse were obtained using a 

3x3 grid of pixels to give an average concentration and a standard deviation for each 

point in each image. The variations in sse over the flood tide at these locations are 

shown in Figure 7.7a to 7.7d. 

Figure 7.7 shows that the variation in sse with time is markedly different for each 

location. Figure 7.7a starts at the time at which the bore has just passed and thus starts 

with a maximum sse value. Prior to this time the sse would almost certainly have 

been much lower. The time distribution reveals that settling occurs within about 30 

minutes of the passage of the bore through the channel. After this point, the sse 

increases to a second peak, which coincides with the increasing flood tide velocity and 

the erosion of the intertidal sediments. The sse then decreases again and a minor third 
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phase of increase in sse is seen. This may be associated with a sediment increase 

related to the inhibition of mixing due to the axial convergence. 
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Figure 7.7 The variation in sse with time related to the passing of the tidal bore. The 
sample points, a) to d) are located approximately 100m behind the known bore positions 
in each image, see table 7.1. On each graph, the point 100m behind the bore is 
represented as a black diamond. The error bars represent ±one standard deviation of a 
3x3 grid of pixels. 

Figure 7.7b shows a less complex time profile as just two phases of high sse are 

observed. The highest sse occurs some 15 minutes after the passing of the bore, which 

from the mean speed of the bore, given in table 7.2, approximates to a distance of2km. 

This time lag before the high sse may be due to the inundation of the intertidal areas or 

the formation of the convergent currents. As the convergent currents carry the higher 

sse from the intertidal area to the centre of the channel it is likely to be a result of a 

combination of both factors. There is then a decline in sse, but the decrease is less 
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rapid than in Figure 7.7a. Levels of sse are then maintained for approximately one 

hour before the current flow reduces resulting in a corresponding fall in sse. 

Figure 7.7c shows a less marked variation in sse with time, although a complex pattern 

is still observed. There is a slight increase in sse prior to the passage of the bore. 

Evidence in section 6.5 suggests that the backing up of freshwater as the bore 

progresses can induce some flow in the confined channel before the arrival of the bore. 

After the bore passes there is again a time lag of fifteen minutes before the sse reaches 

a maximum, some time shortly before 09:30. Once the sse starts to decrease, current 

flow declines and a gradual decrease in sse is observed. 

Figure 7.7d is an incomplete data set due to the loss of some eASI data due to wisps of 

cloud. However, it can be seen that the pattern in variation of sse with time is a more 

exaggerated version of that seen in Figure 7.7c. Prior to the arrival of the tidal bore 

there is a slight increase in sse, possibly resulting from sediment being suspended by 

an induced flow. There is then a small decrease as the bore passes followed by a 

significant increase after a fifteen-minute time lag, after which the sse declines. As the 

data set in incomplete, the rate of decline is not known after 10:00. 

7.3.2 Formation and strength of the axial convergence 

In section 6.4 it was estimated that the foam lines indicating the presence of the axial 

convergence front appeared approximately 2 kilometres after the passing of the tidal 

bore. When this distance is measured accurately using ArcView, it can be seen that it 

varies between approximately two and three kilometres. The exact distances are given 

in table 2.3. 
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Image Distance of foam line from bore 

C20102 2133m 

C20103 2025m 

C20104 2731m 

C2010S 2921m 

Table 7.3 DIstance 10 meters of the first SIgnS of the axial convergence foam line 
behind the tidal bore. 

From table 7.3 it can be seen that there is a general increase in the distance from the 

bore to the formation of the foam lines. As the bore progresses along the main channel 

the area of the intertidal sediment that it has passed over decreases, reducing the amount 

of debris available for foam line formation. Hence the lack of a foam line may not 

indicate a lack of convergent current. 

Throughout this study no water velocity measurements have been made due to the lack 

of a stable platform from which they could be made. However, from the images it is 

possible to deduce some information on the strength of the convergence current in 

relation to the longitudinal velocity. This information can be inferred from the angle at 

which the sediments are pulled from the edge of the water to the centre of the main 

channel. By using the simple geometry of the right-angled triangle we can obtain a 

ratio of the distance travelled from the shore laterally compared to the distance travelled 

longitudinally. An example of this is shown in Figure 7.8. As both distances are 

travelled within the same time it can be used to infer relative velocities. 
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Figure 7.8 How the angle at which sediment is transported to the centre channel can be 
used to infer the relative longitudinal and convergence velocities. 

Image Start Point End Point Lateral Longitudinal Ratio 

(BNG) (BNG) Distance (m) Distance (m) 

C20104 338668,426343 338825,426314 40 154 3.85 

C20104 339009,426391 339198,426327 86 186 2.16 

C2010S 343663,427216 343803,427215 44 130 2.96 

C20106 341257,426660 341390,426638 36 125 3.47 

C20106 344832,427610 344891,427604 25 53 2.12 

C20106 344951,427654 344990,427647 19 33 1.74 

C20106 345018,427672 345061,427668 16 28 1.75 

C20106 345086,427095 345118,427690 15 24 1.60 

Table 7.4 The comparatIve velocIty of the convergence current relatIve to the 

longitudinal current velocity. 

Table 7.4 contains the locations and ratio results of the areas where there is the most 

marked transport of sediment from the edges of the water to the centre of the main 

channel north of the axial convergence front. The relative velocity ratios range from 

1.60 to 3.85. Whilst the data set is very limited, the data show that the ratio decreases 

from west to east, signifying that the relative strength of the convergence current 
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increases up river. It may be that as the river becomes progressively more constrained 

there are larger distortions in the isohalines, thus creating a stronger convergence 

current. However, much more data are required before this could be said to be a feature 

of the estuarine flood tide in the Ribble. Ideally, a comparison between the north and 

south sides of the convergence would be made. Evidence of the convergent current is 

difficult to find in the southern half of the channel. This possibly indicates a weaker 

convergence current south of the front, also indicated by the convergence front being 

pushed to the south of the channel. 

7.3.3 Variation in sse across the convergence front 

The formation of the axial convergence front over the flood tide is the dominating 

feature of the Ribble estuary; thus the role of this convergence in the transportation of 

the sediment is particularly important. The convergence forms a boundary that could 

inhibit the movement of suspended sediment. To investigate if the convergence has any 

effect on the suspended sediment mixing, transects across the estuary were taken from 

the images at lkm intervals. The locations of two transects are shown in Figure 7.9. 

These were chosen to represent transects of similar channel width and intertidal area. 

Figures 7.10 and 7.11 demonstrate the typical mixed results, even though the transects 

are geographically similar. 
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Figure 7.9 The location of transects used In Figures 7.10 (344000E) and 7.11 
(347000E). 

Figures 7.1 0 and 7.11 show the SSC across the width of the estuary at 344000E and 

347000E. The series consist of eight of the nine images, the last image has the very low 

SSCs of slack water and provides no additional information. On each of the graphs the 

fine grey lines show the position of the main channel. 
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Figure 7.10 The SSCs for the first eight images of a transect across the estuary at 
344000E. The vertical grey lines mark the position of the main channel. 
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Figure 7.11 The SSCs for the first eight Images of a transect across the estuary at 
347000E. The vertical grey lines mark the position of the main channel. 
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Figure 7.10 shows an example of the presence of a variation in sse across the axial 

convergence. The spikes in the graphs, caused by the foam lines, represent the location 

of the front. The foam line begins to fonn in Figure 7.1 Od, at 0902 GMT located in the 

southern half of the main channel. By 0920 GMT, Figure 7.lOe, there is a difference in 

sse of approximately 30 mg/l across the front. In Figure 7.lOf, 0937 GMT, the spike 

of the foam line has diminished but there is still a marked sse gradient of 20 mg/1. 

This sse gradient then starts to decreases as sediment begins to settle. 

Figure 7.11 shows very similar characteristics regarding the time of fonnation and 

position of the axial convergence front, however, there is no obvious variation in sse 

across this front as in Figure 7.10. The convergence front can inhibit transport of 

suspended sediment across the width of the estuary, but this does not occur at all 

locations. The data of Figure 7.10 clearly shows that during the fonnation and 

presence of the axial convergence, there is a marked difference between the sse 

observed on either side. This suggests that little or no mixing occurs from either side of 

the frontal system. It is only when the axial convergence has broken down that the 

possibility of mixing is seen to occur. 

7.3.4 The controls of axial convergence and sediment availability on 

sse 

Section 7.3.3 showed that the occurrence of a sse gradient across the axial 

convergence front is not related to the size of the intertidal area or width of the main 

channel. This suggests that it must be related to an inequality of sediment availability 

between the north and south banks. To investigate this it is necessary to compare the 

example of the presence of a sse gradient, Figure 7.10, with the intertidal sediment 
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distribution map produced by Rainey (1999) for the equivalent area. Assuming the 

source of suspended sediment is just to the west of the area exhibiting the sse gradient, 

the area used in Figure 7.5, it can be seen that there is a major difference between the 

north and south intertidal banks. On the north shore there is an abundance of generally 

finer sediments in addition to an extra potential source of sediment from the large creek, 

Freckleton Brook. On the south shore there is a large area of sand that is unlikely to 

contribute greatly to the suspended sediment load, which is dominated by particles less 

than 63f.lm, as shown in Figure 4.2. However, when a marked sse gradient is seen 

across the axial convergence front, it occurs most frequently on the northern side of the 

channel. From the image series in Figure 6.1 it is seen that the incoming seawater is 

trapped on the northern side of the front and gradually the front moves from the centre 

to the south of the channel, implying weaker currents on the southern side of the front. 

If this is the case then the sse gradients across the axial convergence front are linked 

not only to sediment availability but also to the ability of the flow to suspend that 

sediment. 

7 .4 COMPARISON OF REMOTE SENSING DATA WITH A SEDIMENT 

TRANSPORT MODEL 

One of the favoured techniques for studying the behaviour of estuaries is by modelling, 

calibrated using in-situ data and validated with a second set of in-situ data. However, 

there are some drawbacks to using this technique. Models are often over simplified to 

prevent them becoming too computationally complex, for example by restricting a 

model to two dimensions or by simplifying the channel shape. Secondly, models are 

calibrated and validated using spot sample data and these types of data can be spatially 
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unrepresentative. For this reason it would be useful to assess the use of spatially 

representative remote sensing data as an aid to model calibration and validation. 

7.4.1 The model 

Westlakes Scientific Consulting Ltd is currently in the process of developing a two 

dimensional model of the Ribble estuary, which includes the river Douglas. (Gleizon 

1999). As the haline stratification shows varying patterns throughout the flood-ebb and 

spring-neap cycles, the model chosen was non-depth-averaged to demonstrate these 

variations. Therefore, the model is laterally averaged and the estuary assumed to be 

well mixed across the channel as a result of it being narrow and constrained by training 

walls. The model operates within a fixed grid of co-ordinates with a scale of 250m 

longitudinally and O.2m in depth. The models contains modules for: 

1. Hydrodynamics (vertical and longitudinal) including velocity, salinity. temperature 

and density. 

2. Non-cohesive sediment erosion, transport and deposition. 

3. Cohesive sediment erosion, transport and deposition. 

4. Stokes' Drift for long term sediment movement by residual currents. 

Data used to calibrate the model were collected from stable platforms specially built for 

this purpose. Continuous measurements were collected for water levels, velocity, 

salinity, and temperature and SSC via turbidity. The VERSE model has not yet been 

fully calibrated and validated to date but, for the purposes of this investigation, 

predicted SSC data were produced to enable a limited comparison to be made with the 

SSC data derived through the remote sensing technique. The output of the model for the 

same tide used within this study is illustrated graphically in appendix C. 
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7.4.2 Comparability of remote sensing and model data 

Both the image and model data sets are two-dimensional, the model illustrating 

longitudinal variations with depth and the image data showing lateral variations of the 

surface. This incongruity means that the data cannot be compared directly. In addition 

to differences in the perspective taken of the estuary, there are also large differences in 

scale. The model has a very coarse longitudinal resolution, 250m, one hundred times 

larger than the 2.5m scale of the imagery. However, the depth information provided by 

the model has a resolution of O.2m. To allow a direct comparison of the surface sse of 

both data sets, the image data had to be considerably degraded to give a laterally 

averaged value over a distance of 250m to provide a one dimensional data set. 

The image data were cut into 250m cells and mean and standard deviation sse values 

calculated. For each image, the mean sse from the imagery and the surface sse value 

from the model were plotted against model cell number. Figure 7.12 shows the 

comparison between these one and two-dimensional data sets. 

It can be seen that the model consistently underestimates the sse derived from the 

imagery. This underestimation of sse by the model may be a result of the inability of 

the model to account for lateral variation in sse. For example, most of the images 

shown in chapter six show that the sse in the centre of the channel is lower than the 

sse over the intertidal area, which is subsequently lower than the sse at the edge of 

the water. If the model is predicting the sse for the centre of the channel only, this 

could explain why the model shows a consistent underestimation of sse. It is also 

evident that the real variations in sse are much more irregular than suggested by the 
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model. It is possible that the alternate high and low values seen in the image data could 

be a result of the effects of aircraft roll discussed in the initial image descriptions in 

chapter 6, however, this may also result from the large lateral variations in sse. 

The error bars of plus or minus one standard deviation indicate the even when taking the 

lower values of the image sse into account, the model is still generally underestimating 

the sse. 

If the image data are visually smoothed, the shapes of the two data sets are similar. In 

most cases the actual and predicted maximum sse occur in approximately the same 

location. This is particularly evident in the 08:44 image. As time progresses the 

position of the actual maximum sse appears to be positioned further west than the 

predicted maximum. 

In reality the data sources are not directly comparable, as it is not practical to have to 

substantially degrade the image data, but the data sets are complementary, as the eASI 

imagery data do not provide any information regarding depth distribution of sse. 

However, using the suspended sediment depth profiles from the model with the real 

surface data from the imagery could result in errors. If the information on the sediment 

of the substrate is not accurate, then the variation in sediment concentration with depth 

will be flawed. 
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Figure 7.12 A comparison of CASI data with surface sse data from the latest two­
dimensional model of the Ribble estuary run for the identical tidal and freshwater flow 
conditions. Error bars represent ± I standard deviation indicating lateral vari ation in 

SSe. 
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7.5 CALCULATION OF TOTAL SEDIMENT AND 137CS LOADING AND NET 

BUDGETS 

7.5.1 Assumptions 

The data for the volume of water in the estuary during each flight line were obtained 

from the model described in section 7.2.1 and 7.4.1. The assumptions made to derive 

this volume data are listed below: 

• The shape of each section is uniform over the 250m distance of the model cell. 

• Profiles of the bathymetry are smoothed to reduce calculation time. 

• Sharp variations in water level produced by the tidal bore are not accounted for. 

It is known that in most cases these assumptions are not true, for example the channel 

shape is not rectangular; in the outer estuary it is a rectangular central channel bordered 

by extensive intertidal mud flats. There are also localised variations in water depth 

within the main channel. However, these data do provide the best approximation for 

water volume available. 

The variability of sse with depth will be assumed to be constant. From the numerical 

model data it is evident that there are occasions where the sse does increase with 

depth, however, there are also occasions where the concentration decreases with depth. 

As a result, by assuming constant sse with depth, these extremes may, to some degree, 

cancel each other out in the total suspended sediment budget. 
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7.5.2 Budget of suspended sediment and 137 Cs in suspension 

The information required to calculate the total concentration of sediment in suspension 

for each flight line, using cells 1 to 59 of the model, corresponding to the area covered 

by the imagery, is given in table 7.5. 

The data for the SSC of cells 1 to 59 were obtained from the images using ERDAS, 

comer co-ordinates of upper left 338325E, 429617N and lower right 352520E, 

425885N. The 137CS data were calculated from the image SSC using the equation given 

in table 4.3, where J37Cs in becquerels per litre is equal to 0.0003 times the SSC in 

milligrams per litre. 

Time Water Vol. Vol. of top 1m SSC in top 1m I",'CS in top 1m 

(GMT) (m3
) = [Y] (m3

) = [X] (mg) = [Assc] (Bq) = [Acs] 

0811 4528208 1575444000 5445466788000 1633640000 

0830 7182383 2661478000 6356173894000 1906852500 

0844 9254535 2475006000 6919910688000 2075973125 

0902 11859330 2672753000 6109251781000 1832775625 

0920 15093153 3094228000 6206414069000 1861924375 

0937 18471116 3450662000 6140081219000 1842024375 

0955 20150853 3488600000 5538477256000 1661543125 

1111 20108531 3755572000 3408471563000 1022541250 

1125 18300018 3783522000 1981509944000 594453125 

Table 7.S The mformatlOn used to calculate the quantIty of sedIment and associated 
137CS in suspension for each flight line and over the course of the flood tide. 

The total suspended sediment loading for one flight line was calculated using the ratio 

of the top one-meter depth to the total. This assumes a rectangular channel but 

eliminates the need to use an averaged SSC. The stages of the calculation are presented 

below: 
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1. The area of one pixel of a 2.5m resolution is 6.25m2 

2. The volume of that pixel to 1m depth is 6.25m3 or 6250 litres 

3. The volume of the top 1m of the image is the number of pixels multiplied by 6250 

litres, denoted as X in equation 7.1. 

4. From the model we know the total volume for each flight line, denoted as Y in 

equation 7.1. 

5. The quantity of sediment, in milligrams, contained within the top 1m of the estuary 

is calculated from the sum of the pixels for each image (mgll or Bq/l) multiplied by 

the volume of that pixel to one meter depth, 6250 litres, denoted as A in equation 

7.1. 

XN=A/B 

Therefore B gives the total SSC in the Ribble estuary for each flight line: 

8=(Y/X)xA [7.1 ] 

The results for both total suspended sediment load and associated \37CS in suspension 

during each flight line are given in table 7.6. 
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Image Time Bssc =SSC (kg) Bcs = 137 Cs(kBq) 

C20102 08:11 15652 4696 

C20103 08:30 17153 5146 

C20104 08:44 25875 7762 

C20105 09:02 27108 8132 

C20106 09:20 30274 9082 

C20107 09:37 32867 9860 

C20108 09:55 31991 9597 

C20110 11:11 18250 5475 

C20111 11:25 9584 2875 
137 

Table 7.6 The total suspended sedIment load and assocIated Cs load for each fhght 

line 

7.5.3 Interpretation and validity 

By plotting the total sediment load and the quantity of associated 137 Cs against time, as 

in Figure 7.13, it can be seen that the increase in sediment and 137CS load is not a 

smooth curve. There appears to be a pulse of sediment in the 08:44GMT image. This 

may be associated with the beginning of the inundation of the major intertidal areas of 

the estuary, increasing the rate at which sediment is supplied to the water column. The 

total suspended sediment load of the estuary increases until 09:37 indicating erosion, 

after which it starts to decrease indicating deposition through settling. 
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Figure 7.13 The variation in total suspended sediment and associated I37Cs loading for 
each flight line with time. 

To quantify erosIOn and deposition the area under the graph of Figure 7.13 was 

calculated using the trapezium rule to calculate the sum of the trapeziums fonning the 

curve. (The sum of the first five trapeziums represent the erosion phase and the sum of 

the remaining three trapeziums represent the deposition phase.) The average rate of 

erosion and deposition was also calculated. The results are presented in table 7.7. 

ssc J.ncs 

Area representing erosion 7076389 kg 2120217 kBq 

Average rate of erosion, E. 82179 kg/min 24654 kBq/min 

Area representing deposition 10594292 kg 3178287 kBq 

Average rate of deposition, D. 98095 kg/min 29429 kBq/min 

«D-E) / D) x 100% 19% 19% 
.. 

Table 7.7 InformatIOn denved from the Images on the eroSIon and deposItIon of the 
flood tide for model cells 1 to 59. 
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Figure 7.14 A schematic representation of the trapeziums, areas and gradients used in 
the calculation of net deposition from the image data. 

To determine whether there is net erosion or deposition it is necessary to compare the 

areas representing erosion and deposition. However, the time spent sampling in the 

erosion phase was less than that for the deposition phase, thus a direct comparison of 

areas will result in a bias towards deposition as this phase was sampled for a longer 

period of time. Dividing the difference between the deposition and erosion rates by the 

erosion rate provides us with a comparison between the amount of erosion and 

deposition corrected for this time bias, (Figure 7.14). This tells us that there is 19% 

more deposition than erosion in the section of the estuary for cells 1 to 59 during this 

flood tide, representing 2.01xl06kg of sediment and 604MBq of associated 137CS for the 

whole estuary from Lytham to Preston. The result is also consistent with the fact that 

the estuary is known to be accumulating silt. These values are only valid for this 

individual tide and will vary considerably between spring-neap and seasonal cycles. 
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Discussion 

The assumption of a rectangular channel, which is clearly not the case, may over 

estimate the total suspended sediment load as the depth over the intertidal areas is 

considerably less than for the main channel. A constant SSC with depth has also been 

assumed, but it is likely that in most areas the SSC actually increases with depth. The 

model shows that there are areas where the SSC increases with depth and conversely 

there are also areas where the SSC decreases with depth. In the areas where there is an 

increase in SSC with depth the bed load is likely to consist of larger sand grains, which 

roll and bounce along the bed. This type of sediment is not as important in the 

accumulation of 137CS, as sand is known to carry a lower concentration of 137CS. This 

increase in SSC with depth would result in the calculation underestimating the total 

sediment load. Therefore it is likely that the two assumptions will produce errors, but to 

some degree these may cancel each other out. There is also a possibility of some errors 

being introduced through the elevated SSC produced by the foam lines of the axial 

convergence. The question is whether a flood tide sediment load calculated using these 

assumptions is valid. In the absence of any other data of this type calculated using 

suspended sediment and I37Cs concentrations of such spatial integrity, the answer must 

be that these results represent a very good first estimate. 

7.6 SUMMARY 

This chapter has presented the advantages of using remote sensing for gaining rea) 

information on estuarine behaviour. The image data calibrated for sse can be used to 

located sources of erosion and with the aid of a map of intertidal sediment type (Rainey, 

1999) this can be related to sediment grain size and stability. The tidal bore has been 

shown to play an important role as a source of sediment suspension before the 
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inundation of the intertidal mud flats. The development of the axial convergence front 

has been shown to follow the tidal bore. This forms approximately 2 to 3 km behind the 

bore and there is some evidence to suggest that this may vary systematically with 

estuarine location, but needs further investigation. Once the axial convergence has 

formed the image data show that it plays an important role in inhibiting sediment 

transport, particularly where the sources of sediment are unequally distributed between 

the north and south banks. This can result in SSC gradients of 30 mg/I in just 5m. The 

data are difficult to compare directly to the data produced by modelling the estuary as 

the dimensions and resolutions of the data sets differ. To compare the laterally 

averaged surface concentrations directly, the image data had to be significantly 

degraded. Degrading the image data showed that the model consistently underestimated 

SSCs, probably a result of the assumptions that had to be made to simplify the 

calculations. However, the image and model data sets are complementary as the model 

provides depth profile information but contains no information on lateral suspended 

sediment patterns. Using the water volume provided by the model data, it has been 

possible to calculate total sediment and associated J37 Cs loading for each flight line. 

This allows the identification of the times and relative magnitudes of the erosion and 

deposition phases of the tide. 
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CHAPTER 8 DISCUSSION & CONCLUSIONS 

8.1 THE NEED FOR A SPATIAL AND TEMPORAL APPROACH TO MONITORING 

RADIONUCLIDES IN THE RIBBLE ESTUARY 

The extensive saltmarsh formation and land reclamation shows that the Ribble estuary 

is accumulating sediment, and associated sediment bound radionuclides, derived from 

authorised BNFL Sellafield discharges over the past forty years. In addition to the 

radionuclides from BNFL Sellafield, the Ribble is relatively unique in that it is subject 

to a second discharge of isotopically different radionuclides directly into the estuary 

from BNFL Springfields. These sediments and associated radionuclides represent the 

main radioactive source to the houseboat dwellers in the Douglas, identified as the 

critical group for the Ribble, (Hunt and Smith 1999). Hence monitoring of the estuary 

is of primary importance to BNFL who need to understand the mechanism controlling 

the long-term fate of the radionuclides. This is especially important given the current 

reduced discharges from BNFL. The reduced radionuclide concentrations in the water 

column trigger the release of radionuclides from the sediments in an attempt to maintain 

a chemical equilibrium; thus the sediment sinks could represent future sources of 

radionuclides. 

Spot sampling has been the standard method for estuarine monitoring. This approach 

tends to be labour intensive, time consuming and more importantly, spatially 

unrepresentative. As estuaries are subject to tidal flows, the time taken to perform 

sampling often means that the data are averaged over time and are therefore temporally 

unrepresentative, especially when the hydrodynamic mechanisms of the estuary are 

considered. To overcome some of these shortcomings in the sampling methodologies, 
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modelling approaches have been developed to predict the behaviour of sediments in 

estuaries. However, this predictive approach tends to be built, calibrated and validated 

using spot sample data from a few isolated locations. 

It is therefore clear that the improvement in the understanding of the behaviour of 

estuaries is hindered by the lack of spatially and temporally representative data. The 

use of airborne remote sensing therefore offers the potential solution to the dilemma of 

obtaining spatially and temporally accurate data. 

8.2 DEVELOPMENT OF A TIME SERIES APPROACH TO FLOOD TIDE 

MONITORING 

This project was designed to develop a method for gaining spatially representative data 

of the distribution of SSC within the Ribble estuary. A time series of multiple images 

was used to assess the mechanisms controlling the movement and fate of sediment over 

a spring flood tide and more specifically: 

1. Mapping the concentrations of suspended sediment and identifying sediment and 

hence radionuclide sources. 

2. Evaluating the hydrodynamic controls on sediment entrainment and transport. 

3. Quantifying sediment and radionuclide budgets for the estuary. 

The proposed method was based on the outcome of previous studies on remote sensing 

of suspended sediment, which repeatedly showed that there was a systematic increase in 

reflectance with an increase in SSC. However, the form of this relationship tended to be 

highly site and method specific. Studies on the Ribble estuary have focused on the 

accumulation of radionuclides. Thus a hypothesis was introduced to illustrate a 
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systematic relationship between sse and the adsorbed radionuclide concentration. 

From this, sse could act as a surrogate for the concentration of a given radionuclide. 

This hypothesis was proven by this research and is discussed in more detail in section 

8.2.1. 

8.2.1 Characterisation of SSC 

Fundamental to most quantitative remote sensing applications is the understanding of 

the physical and optical properties of the target to be investigated. However this 

becomes a logistical problem when working with a system which is highly dynamic. 

Initial investigations of the sse and reflectance characteristics were limited to a period 

two hours either side of high water. However, sampling trips were designed to establish 

the possible variation in sse properties with time and location. The results showed that 

there was not a statistically significant difference in sediment grain size properties 

between the stationary data and the estuary wide data. However, sampling performed 

over the complete flood tide, used to calibrate the imagery, showed that the sediment 

was from a different population. The data show a noisy trend of the percentage of sand 

decreasing and silt increasing throughout the flood tide. This suggests that some 

settling of the larger particles occurs very soon after the initial suspension by the tidal 

bore, which is characterised by high turbulence and accelerated velocities, and before 

the period two hours before high water. 

Spectral characterisation of the suspended sediments in the field was also problematic 

given traditional sampling techniques, resulting in a relationship exhibiting scatter. For 

this reason, laboratory experiments were perfonned to investigate: 

1. The relationship between sse and reflectance. 
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2. The effect of varying clay and sand content on the SSC reflectance relationship. 

3. The effect of salinity on the SSC reflectance relationship. 

4. The optimal CASI bands for quantitatively mapping SSC. 

The laboratory equipment was designed to minimise internal reflectance and settling. 

The set-up was tested by using a turbidity meter to assess the behaviour of the 

suspended sediments, and was proven to be suitable for the reflectance experiments. 

The laboratory experiments were successful in demonstrating a well-defined In-linear 

relationship between SSC and reflectance, with R2 > 0.9 for all wavelengths above 

650nm, correlations similar to most other controlled laboratory studies. The necessity 

to transform the data to a natural logarithm was in agreement with a study by Chen et 

at., (1991). The nature of the relationship appears to depend on sediment type and 

range of SSC used and has varied between previous studies. 

From this it was necessary to investigate the effect of a variation in clay content on the 

SSC reflectance relationship, as it is the clay particles that carry the majority of the 

137CS. An increase in <2 ~ particles did result in a reduction in the sensitivity of the 

relationship at very high SSC, seen in the graph as higher clay content sediment 

approaching an asymptote. Had the SSC values in the imagery been greater than 500 

mg/l this would need to be considered, however at less than 300 mg/l the sse was not 

high enough for the effect to be significant. Laboratory experiments assessing the effect 

of the increased sand content, in the early stages of the tide, on the reflectance show that 

15% of particles greater than 631lm reduces the reflectance by around ten percent. As 

all the laboratory data were recorded on particles mainly <63 Ilm, laboratory reflectance 

would be slightly higher than in-situ reflectance. depending on illumination conditions. 
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Thus, for the imagery, the reflectance of the earlier samples, with a higher percentage 

greater than 63Jlm, would be underestimating the SSC and the later samples would be 

more accurate. This may be the cause of some of the scatter in the calibration 

relationship. If, in the event of ground truth data loss, the images were to be calibrated 

using a laboratory relationship, defined using <63Jlm sediment, the reflectance would 

have to be corrected prior to image calibration. 

In the estuary salinity varies considerably over a flood tide. There are two much 

referenced papers that have mapped salinity in estuaries using spectral properties 

(Khorram 1982 and Rimmer et al., 1987). However, no laboratory data have been 

published to show the existence or absence of a systematic variation in the reflectance 

of a given SSC with a variation in salinity. Results from the laboratory experiments 

described here show that there is clearly no systematic relationship between reflectance 

and salinity for clear or sediment laden waters. This questions the validity of the above 

two studies. The study by Rimmer et ai., (1987), used a salinity range of less than 1 %0, 

between 330/00 and 340/00, representing the upper limit of UK saline waters. The salinity 

gradient used in the experiments was 0%0 to 30%0, over which no systematic 

relationship was found. It is hard to accept that the multiple regression of A TM data. 

used in the study by Rimmer et al., (1987), could be sensitive enough to determine 

salinity to 0.10/00 in environmental conditions when no systematic relationship is seen in 

controlled laboratory conditions. The study by Khorram, (1982), was carried out in low 

SSC waters, (CASE I), over a more realistic salinity gradient. In this environment it is 

possible that the results are valid, however the data may actually represent 

measurements of dissolved organic matter, which is inversely correlated to salinity. 
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The choice of wavebands used to collect the CAS! data was strongly influence by the 

results obtained from the laboratory studies described here, in addition to those from 

previous studies. The wavebands, given in table 4.13, were chosen to allow the data to 

yield the maximum quantity of water quality information. The first three bands were 

chosen to allow the quantification of dissolved organic matter and bands six to eight 

allow the quantification of chlorophyll by solar stimulated fluorescence (Gower and 

Borstad, 1990). Some bands were included to enable atmospheric effects to be studied, 

band 11 for oxygen absorption and band 14 for water vapour absorption. The remaining 

bands, up to the maximum 17 bands, were fitted into the region of 700nm to 900nm, 

which is most suitable for quantification of SSC. 

The main variables within the Ribble estuary, such as grain size, sediment composition 

and salinity are seen to have little effect on the reflectance properties of the suspended 

sediment and the necessary relationships do exist. This demonstrates that airborne 

remote sensing is an appropriate method for the quantification of SSC and 137 Cs, and 

allows a spatial investigation of the mobilisation of sediment over a flood tide. 

8.2.2 Processing of time series image data 

Geo-correction 

The rationale behind the processing of the image data was to eliminate all sources of 

error prior to image calibration using the ground truth data. The first correction applied 

was the automated NERC GCORR program to apply the GPS corrections for aircraft 

roll, pitch, yaw and position. This resulted in three types of error being visible in the 

CAS I images: 

1. Spatial distortion. 
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2. Roll distortion introducing sudden changes in sse. 

3. Small distortions without sudden changes in sse. 

Where spatial distortions result in the image not fitting the digitised map, this is most 

likely to be a result of the basic errors of the civilian GPS system and was corrected for 

by fixing the image to the digitised map using ground control points. The roll 

accompanied by changes in sse is a result of the change in geometry of the sensor, 

target and light source. This is difficult to correct for without additional ground truth 

information and data on aircraft attitude. It has become evident that this is one of the 

main sources of error in the use of airborne remote sensing platforms. 

The very small distortions in the image that are not accompanied by changes in sse 

cannot be due to aircraft roll as the geometry remains constant and these are too small to 

be smoothed using the manual geo-correction techniques used to eliminate other spatial 

distortions. As the errors are purely spatial not effecting SSC, this implies that this type 

of error results from problems in the GPS data. As it is the small sudden aircraft 

motions that are being missed, it suggests that the positional update frequency of the 

GPS is too low for the correction of the CASI imagery. As the ATM is a whiskbroom 

sensor it is not susceptible to this problem. It is interesting to note here that the 

published data on the accuracy of the NERC integrated data system (Wilson 1995) uses 

the ATM sensor. The Environment Agency produces CAS! data but does not use 

multiple GPS systems. They use a separate gyro system to monitor the motion of the 

aircraft around its centre of gravity, which is later combined with GPS data. This is an 

older, well-established technique not subject to the teething problems of the NERC IDS 

system used in this study. 
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Atmospheric correction and image normalisation 

Correction to the image to remove atmospheric effects must also take place prior to 

image calibration. As the data were to be calibrated using ground truth data, a haze 

correction was not necessary. Pathlength effects were investigated but were found to be 

insignificant at the longer wavelengths that were selected to quantify SSC; hence 

application of the proposed correction was not required. The main problem resulting 

from using multiple images is normalisation of illumination conditions. The importance 

of the correction for solar elevation angle was clearly illustrated when the effect of 

variations in the solar elevation angle were investigated. As the images were taken over 

a single flood tide the atmosphere was assumed to be consistent over the three-hour 

period thus any resulting variation in reflectance must be a result of change in solar 

elevation angle. Once the variations were quantified, corrections could be applied. The 

correction for solar elevation angle made a significant improvement of the goodness of 

fit for the regression between radiance and SSe. The R2 improved from 0.54, before 

correction, to 0.76, indicating a successful correction technique. The remaining scatter 

could result from a variety of sources. Errors due to grain size variations, as discussed 

earlier, are one possibility. Another possible source of scatter could result from spatial 

variations in SSC, which is generally patchy, resulting in unrepresentative SSC samples. 

A mean of three replicate SSC samples was used to compensate to some extent for this 

possibility. Another possibility of scatter results from the difference in sampling scales. 

The SSC samples represent just a very small volume at one point in time, whereas the 

CASI radiance was obtained using a mean value of a 3 x 3 grid of pixels. Using a grid 

of multiple pixels is a technique commonly used in remote sensing to gain information 

on variability, but the radiance value obtained represents an area of approximately 
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56m2
• The solar elevation correction technique used here would not be valid to 

normalise images taken on different days, as the assumption that the atmosphere 

remains unchanged between images would be invalid. After correction the images were 

then calibrated using the coincidental ground truth data producing what is possibly the 

first time series data set of this kind and certainly the first for the Ribble estuary. 

8.3 APPLICATION OF IMAGE DATA TO THE RIBBLE ESTUARY 

There were three main areas for which the image data were required to collect 

information. The following section will discuss the results derived from the imagery. 

8.3.1 Identification of sediment sources 

The time series data were animated to aid interpretation over the temporal scale. The 

animations were then used to visually identify particular sediment supply characteristics 

over the flood tide. These were then grouped into the categories, used in section 7.2.1. 

1. External sediment supply 

2. In estuary: Continuous sediment supply 

3. In estuary: Longitudinally transitional sediment supply 

4. In estuary: Minimal sediment supply 

From the images it was evident that the concentration of suspended sediment entering 

the estuary from the Irish Sea was very low. However, Brown (1996) used 

mineralogical data to show that the sediment of the intertidal areas is almost totally of 

marine origin and not fluvial origin. The SSC range for the ground truth data was much 

lower than previously sampled, despite being a spring tide. This suggests that the SSC 

entering the estuary can be much higher than is observed in these images. However, 
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this would be expected to be strongly dependent on the seasonal cycle. Winter images, 

or perhaps images collected after a summer storm, may show much higher quantities of 

sediment entering the estuary from the Irish Sea. 

The area used to illustrate a continuous sediment supply to the estuary over the flood 

tide is in the outer estuary, Figures 7.1a to 7.1h. The initial supply of SSC appears to be 

generated by turbulent flow around a sandbank. However, after inundation of the bank, 

there is still a larger amount of sediment being supplied than for similar areas to the 

immediate south and east. The difference in behaviour was linked to two possible 

causes: 

1. Intertidal sediment properties. 

2. Microphytobenthos cover. 

Comparing the properties of the intertidal sediment using the map recently produced by 

Rainey (1999) it could be seen that the area to the south had a higher clay content and 

would be more cohesive. This cohesiveness, coupled with the possibility of a lower 

flow velocity implied by the convergence being pushed south by the dominant northern 

flow, would result in less sediment being suspended from the southern shore compared 

to the northern shore. The area directly to the east of the high SSC supply showed a 

higher clay content, increasing the cohesive properties of the sediment but also, and 

perhaps more importantly, a much higher level of microphytobenthos (A, Figure 7.4). 

As microphytobenthos is known to inhibit erosion this will further reduce the potential 

supply of sediment from the area adjacent to the continuous sediment supply. The fact 

that living organisms play such an important role in the inhibition of sediment erosion 
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emphasises the potential seasonal variability of the sedimentation in the Ribble estuary 

as different species dominate at different times ofthe year. 

The longitudinally transitional sediment erosIOn appears to occur on the narrow 

intertidal areas where sediment supplies are more limited and is potentially a more 

interesting puzzle. The question that must be asked is why the sediment does not erode 

simultaneously along the length of the intertidal area, giving a lateral migration as seen 

in the outer estuary, as opposed to the longitudinal migration seen here. The process for 

this is not known, but there is the possibility that again it is the microphytobenthos that 

play an important role in the mechanism of the erosion. It is possible that a covering of 

microphytobenthos is inhibiting the overall erosion. The weakest points of the algal 

mat will be at the edges and the flow will be strongest at the leading edge rather than 

edge parallel to the main channel. This could result in the erosion mechanism being 

analogous to the peeling off of a label, that is the erosion must start at the edge and 

work along the bank as erosion cannot start in the middle. There are no published data 

on the relative microphytobenthos abundance for Longton Marsh therefore the actual 

mechanism would require further in-situ investigation. 

8.3.2 Hydrodynamic controls on sediment transport 

In chapters six and seven the imagery showed that there are two main features of the 

flood tide hydrodynamics. These are the initial influx of the tide creating the tidal bore 

and the axial convergence flow that forms after the passing of the tidal bore. The 

sandbanks within the main channel and the confluence area further complicate these 

hydrodynamic features. The imagery can be used to infer the mechanisms of sediment 

transport from the surface sse patters but it must be remembered that the imagery will 
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only be truly representative of the surface of the water. However, as the estuary is 

known to be vertically well mixed on a flood tide (Burton et al., 1995), assumptions 

relating to a relatively constant sse with depth can be made. 

The tidal bore 

The tidal bore enters the estuary and progresses at an approximately constant speed of 

2.4 mls. As the speed of a wave is related to the depth (Open University, 1991) this 

implies that the water depth within the estuary channel is approximately constant over 

the distance that the bore was observed. The imagery has shown that there is an initial 

increase in sse in the turbulent water following the tidal bore, however the pattern of 

the variation in sse with time following the bore varies over the length of the estuary. 

Off Warton Bank, (Figure 7. 7a), after the initial increase in sse, there is a decrease of 

40 mg/l, followed by a second increase in sse. This may be related to the lager grain 

sizes found early in the flood tide settling quickly before the sediments suspended off 

the intertidal areas reach the main channel via convergent flows. Further up the estuary, 

this pattern changes to one of an initial increase following the passing of the bore after 

which the sse decreases more steadily. However, the image sse values used to 

establish these patterns were sampled from the centre of the main channel, where the 

sse is generally lower and some of the more complex suspension patterns related to the 

intertidal mudflats are not seen. 

The axial convergence 

The axial convergence is seen to form approximately 2km west of the point at which the 

bore passes and this distance appears to increase as the bore progresses up the estuary. 

This may be a result of a change of the velocity of the water flow relating to the 
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narrowing of the channel and the intertidal areas. However, it may also be a result of 

using the visibility of foam lines to identify the presence of an axial convergence. As 

the area of the intertidal mud decreases eastwards along the estuary, the delay in the 

visibility of the foam line may be due to the reduced amount of debris available. So, the 

convergence may always form exactly the same distance behind the bore but it is the 

production of the foam line that is taking longer. To accurately determine the presence 

of a convergence would require another more complex in-situ technique, such as the 

salinity probe bridge used by Nunes and Simpson, (1985) or the Acoustic Doppler 

Current Profiler (ADCP) used by Robinson-Swift et al., (1996). 

Once the axial convergence is established the images were used to try to gain some 

information on the strength of the convergence. As no velocity data were collected, the 

relative velocity of the lateral flow could be estimated only as a ratio with the 

longitudinal flow. This information could be obtained using the simple geometry of the 

right-angled triangle and the sediment patterns. The limited data available showed that 

the strength of the lateral flow appeared to increase along the channel, west to east. 

This may be related to the decreasing width of the channel or increasing flow velocity. 

To establish if this trend is a constant feature of the flood tide would require more data 

to confirm the trend followed by further investigation using in-situ velocity data. 

Over the flood tide it was evident that the position of the axial convergence front was 

moving south, implying the flow in the north of the channel is dominating over the flow 

in the south of the channel. Towards the end of the flood tide this asymmetry of the 

convergence produced the interesting situation of promoting a simultaneous trapping 

and supplying of sediment from the creeks. The creeks draining into the north of the 
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channel were still backed up by the dominant flow, whereas the creek draining into the 

south of the main channel were supplying sediment to the main channel as the flow in 

the south was too weak to prevent drainage of the creeks. This illustrates that in the 

latter stages of the flood tide it is not only the sediment properties or microphytobenthos 

that are influencing the supply of sediment to the main channel. 

A steep SSC gradient was frequently seen across the convergence front as the presence 

of the front inhibited mixing between the northern and southern water bodies. 

Examples of transects are shown in section 7.3.3, deliberately choosing areas of similar 

channel width and intertidal area just 3 km apart. This illustrated that factors other than 

the geographical location were responsible for the gradients in SSC, therefore the 

obvious factor was inequality in sediment supply or current velocity. The previous 

paragraph details the possibility of a weaker flow in the south of the channel and Rainey 

(1999) details the characteristics of the intertidal sediment. On the narrower intertidal 

areas around the sewage works the patterns of intertidal sediment distribution are 

relatively uniform for the north and south shores and the trends for each shore are 

similar with an increase in percentage clay content with distance from the main channel. 

This provides further evidence to the concept of higher flow to the north of the 

convergence front. 

8.3.3 Model Validation 

The latest two-dimensional model of the Ribble estuary is VERSE, produced by 

Westlakes Scientific Consulting Ltd and is described in sections 2.2.3 and 7.4.1. The 

model covers the length and depth of the estuary, but not lateral information. One of 

the main limitations of this model is that it cannot predict cross channel values for 
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suspended sediment concentration. A uniform suspended sediment concentration across 

the width of the channel is unrealistic, as there is known to be a strong axial 

convergence effectively splitting the channel in two. Also, on inundation of the 

mudflats the availability of sediment for resuspension will vary across the channel, as 

the intertidal areas on each side of the main channel are rarely equal. 

The most useful information this study can provide for modellers is whether the two 

data sets can be combined in a more useful format than the one-dimensional results 

shown in Figure 7.12. The model relies on being told where the cohesive and non­

cohesive sediments are located and at the time the equivalent flood tide results were 

produced for this study, the intertidal mapping (Rainey 1999) was not complete. If this 

new intertidal mapping can provide accurate substrate data that can be incorporated into 

the model, this removes one of the potential limitations of the model. The images 

produced for this study could introduce information on the lateral surface pattern that 

the model lacks. The combination of the three data sets effectively provides a complete 

three-dimensional picture of the Ribble estuary. However, to provide enough lateral 

information to provide a true picture of the Ribble would require flights to assess 

variations within all three temporal cycles of the estuary: 

1. The flood-ebb cycle 

2. The spring-neap cycle 

3. The seasonal cycle. 

Thus, although the information gained through direct comparison of the data sets is 

limited the three data sets are not mutually exclusive. None of the three data sets can 

replace another. However, together they have the potential to combine to produce a 

complete three-dimensional assessment of the Ribble estuary. 
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8.3.4 Sediment and radio nuclide budgets 

The images were used to calculate sediment and 137 Cs budgets for the flood tide. This 

was achieved by calculating the total SSC or 137 Cs for each flight line, which was then 

plotted against time (Figure 7.13). The area under this graph represented the total 

sediment (137es) suspended over the flood tide. The shape of the graph showed when 

the erosion and deposition phases occurred. The validity of the method used is 

discussed in section 7.5.3. 

The main revelation was that the deposition phase started much earlier than expected, 

1.5 hours before high water (11 :07 GMT). This represents a large proportion of the 

flood tide, which is already reduced in time due to the effects of tidal asymmetry. This 

settling is almost certainly a result of a reduction in the velocity of the flood tide, but 

there is also the long period of slack water after high water where more deposition will 

occur. The ebb tide is known to be longer and slower than the flood tide, again an 

effect of the tidal asymmetry. This will result in the flow having less erosive power and 

therefore being unable to resuspend all the sediment deposited at high water. The 

consequence of this is that the figures of 2.0Ix106 kg containing 604MBq of 137CS, as 

calculated from Figure 7.13, probably represent a reasonable estimate. 

Brown (1996) calculated the inventory of 137 Cs for the Ribble estuary (including 

saltmarsh and intertidal sediments) to be IOTBq. A supply rate of 604MBq per flood 

tide would achieve this inventory in 20 to 25 years. This figure is substantially less than 

the 45 years for which BNFL Sellafield has been discharging, however, there are 

several reasons for this. The discharges of 137 Cs have decreased with time, thus the 
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concentrations of 137 Cs adsorbed onto the sediment will have varied over the 45 years. 

Also, this result assumes all flood tides will deposit 604MBq of 137Cs, which is clearly 

not likely to be true. Neap tides will deposit less 137Cs and this will increase the time 

required to accumulate lOTBq of 137 Cs. Finally, the 604MBq does not account for a 

complete tidal cycle, just the flood tide. If we assume the ebb tide removes some of the 

137 Cs back out past Lytham, the figure of 604MBq is an overestimation, resulting in an 

increase in the time required to accumulate 10TBq of 137 Cs. 

8.4 MAIN CONTRIBUTIONS OF TmS THESIS 

Although the systematic relationship between SSC and the concentration of adsorbed 

I37Cs was assumed to exist, this study represents the first conclusive evidence of the 

relationship. As it is known that a systematic relationship between other radionuclides 

and sediments exist, it can be assumed that relationships between other radionuclides 

and SSC also exist. The fact that they were not established within this study was a 

result of limited sample size. A technique such as in-situ centrifugation would be 

required to harvest enough suspended sediment to establish the evidence for the other 

radionuclides known to be present in the estuary. 

The laboratory experiments investigating the effect of a NaCl salinity gradient on the 

reflectance of SSC in a controlled environment are the first published data of this kind. 

The results have shown that variation in salinity has no systematic effect on reflectance 

of SSC, which then brings into question the validity of previous papers on salinity 

mapping using remote sensing. 
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The pre-processing correction techniques used on the imagery are standard techniques 

that can be repeated using any image processing software. The exception is the 

empirical solar elevation angle correction method developed within this study. This is a 

logical, post processing correction technique that can be applied to any time series data 

set without prior knowledge of the exact solar elevation. 

The linear regression used to calibrate the imagery is valid for the Ribble estuary 

sediment. However, as this sediment is known to be almost totally of marine origin this 

calibration may represent a single SSC algorithm that is valid for the Irish Sea and all 

the Irish Sea estuaries, particularly as this is a relatively enclosed sea. This results in an 

algorithm that is potentially valid for an area that is much greater than most other 

airborne remote sensing SSC algorithms, which are known to be very site specific. 

This project demonstrates how image data have been applied to various aspects of the 

estuarine flood tide to gain useful quantitative information on sediment supply and 

transport. This has resulted in data providing useful estimates of sediment and, more 

importantly, 137CS budgets for the spring flood tide. This is the first time this kind of 

information has been derived using image data. 

8.5 REFINEMENTS IN METHODOLOGY 

Despite the success of this study there are several areas where improvements in the 

methodology could be made. One of the major limitations was the small data set used to 

calibrate the images. Ideally, two data sets should be collected using two boats, one 

used for relationship definition and the second for relationship validation. This would 

have enabled an estimation of the magnitude of the errors, however, this would have 
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been prohibitively expensive for this study. The ground truth data for SSC and 137 Cs 

would be improved with more replicates. This would allow a better understanding of 

variability in SSC and temporal stability of the 137Cs concentrations. However, despite 

the need for replicate samples being lim~ted by the capacity of the boat, the reduced data 
I 

sets still showed good relationships, part~cularly between SSC and 137 Cs . . 

The in-situ and laboratory spectral work was performed using whichever spectrometers 

were available from the NERC EPFS. Ideally, all spectral work should have been 

performed with the same spectrometer and under the same lighting conditions, with the 

best combination being either spectrometer used in direct natural light (sunshine). The 

need for this was clearly demonstrated by the comparison of the various spectrometers 

and illumination conditions in section 4.3.6. 

The time of remote sensing data acquisition was earlier than originally desired. Had the 

high tide fallen two to three hours later the flights would all have been performed 

between 1100 and 1400 GMT. If this had been the case, the solar elevation angle 

correction would not have been necessary. In the event of the earlier flights the 

correction obviously worked well, however it is always preferable to alter the raw data 

as little as possible to avoid the possibility of adding any further errors into the data. 

The earlier flights were used as the possibility of perfect weather and ideally timed high 

tides occurring simultaneously could not be relied upon and opportunities must be 

seized as and when they arise, even if some compromise has to be made. 

A further possibility of an improvement to the image calibration would be to develop a 

correction technique for adjusting the radiance for variations in grain size. As there is a 
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possible trend of the percentage >63J.lm decreasing with time this may be able to be 

applied on a temporal basis, as was the solar elevation angle correction. However, more 

data collection over the complete flood tide would be required to confinn the 

relationship is real before this could be attempted. 

The budget calculations are derived using the water volume from the VERSE model, 

but this model makes assumptions regarding the shape of the channel that reduce the 

accuracy of the volume data. A second remote sensing technique, light detection and 

ranging (LIDAR) could be used to produce a digital terrain model (DTM) to O.Olm 

accuracy. Using GIS software to 'virtually' flood the estuary to the required depth 

above ODN a more precise volume would be obtained. This would greatly improve the 

d 137 b d . sediment an Cs u get estImates. 

8.6 FINAL CONCLUSIONS OF THE REASEARCH 

This project has successfully met the need for a spatially representative investigation of 

the Ribble estuary using a combination of in-situ and laboratory data to develop a 

method of remote sensing SSe. The SSC was then used as a surrogate for 137 Cs using a 

well-defined relationship established in-situ. The images were used to provide useful 

quantitative data on the behaviour of the estuary. 

The major conclusions of this research are: 

1. An understanding of the influence of suspended sediment particle size and 

concentration on the spectral properties of the waters of the Ribble estuary. 

Particularly the importance of SSC range and clay content in defining the 

relationship and demonstrating the necessity for ground truth data. 
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2. The establishment of a well-defined linear relationship between the SSC and the 

associated 137CS concentration for the Ribble estuary, which is shown to be 

relatively temporally stable. 

3. The development of a protocol for the processing of airborne CAS! data to reflect 

SSC and 137CS concentrations, correcting for the spatial and temporal effects of 

image collection. This could also be combined with field experiments including 

sediment traps and erosion pegs. This would provide more quantitative information 

on the effects of sediment stabilisation by microphytobenthos. 

4. The production of SSC and 137CS maps, which can be used to identify sediment 

sources and the hydrodynamic controls on sediment transportation processes. The 

data can also be used to aid the interpretation of VERSE model data. 

5. The calculation of erosion and deposition phases of the flood tide allowing the 

computation of sediment and 137 Cs budgets for the estuarine flood tide. This 

demonstrates a net deposition of 2.01x106kg of sediment, with an associated 137CS 

concentration of 604MBq. 

Overall it has been clearly shown that the technique of remote sensing is able to 

overcome such difficulties as placing spot samples in a spatial and temporal context, 

thus reducing errors due to interpolation. The method developed within this study has 

shown that remote sensing does have the capability to be used to gain spatially and 

temporally representative data of the Ribble estuary and has produced an unrivalled data 

set with which to assess the Ribble estuary. 
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8.7 FURTHER WORK 

This method of estuarine monitoring has been shown to work well and provide useful 

quantitative information. However, there are several logical progressions for future 

applications of this technique or data. 

1. To extend the investigation to the temporal cycles of the Ribble estuary, such as, the 

ebb tide, the spring-neap tidal cycle and seasonal cycles. 

2. To apply the method without modification to other Irish Sea estuaries undergoing 

the same siltation problems as the Ribble estuary. Using high-resolution satellite 

data, available from the new generation of satellites currently nearing launch. the 

method could also be applied to the Irish Sea as a whole. This would be particularly 

useful to estimate quantities of sediment transported out of the Irish Sea to the 

northeast Atlantic. 

3. To obtain quantitative sediment and l37es budget data from the image series on a 

smaller spatial scale, providing information on which areas of the estuary that are 

more active in erosion and deposition. 

4. To utilise the full potential of the band set to provide additional water quality 

information. For example, the water flowing out of the docks could also be studied 

using chlorophyll analysis by solar stimulated fluorescence (Gower and Borstad. 

1990) to provide information on the processes involved in the downstream mixing 

of the released water. 
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5. Finally, to establish the relationship between sse and other particle reactive 

pollutants for distribution mapping and budget calculation. 

This research has fulfilled the original aim and answered many questions, however, our 

understanding of the estuarine environment is still far from complete. It is therefore 

essential to continue scientific research into the estuarine environment to enable 

management plans to be established for our resource-rich estuaries. 
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ApPENDIX A 

OPERATION OF THE ASD FR® SPECTRORADIOMETER 

1. Change directory to C:\FR\ and type FR 632 2 to start software 

2. Select Spectrum Save menu and define data directory (e.g. c:\Ribble). base 

filename (e.g. test) and starting spectrum number (default is .000) to give files 

c:\Ribble\test.OOO to c:\Ribble\test.nnn. 

3. Select Adjust Configuration menu and define the number of scan to average for 

spectrum, dark current (DC) and white reference. It is recommended that the same 

number is used for all three, usually 10. 

4. Define the fore-optic used via the offered options on the toolbar. 

5. Position sensor over the barium sulphate reference panel and optimise using (Ctrl-

0) or the optimise button on the toolbar, this optimises the gain settings and 

integration times. 

6. Perform a dark current measurement if necessary using the toolbar or the shortcut 

key F3. This is done approximately every 15 minutes throughout the sampling 

period and requires the user to press any key twice, once to initiate the measurement 

and once to confirm completion. 

7. To take a spectrum of the reference panel, position the sensor over the panel and 

press the Spacebar. Make a note on the log-sheet of the spectrum number and that 

this is a reference panel spectrum. 

8. To take a spectrum of the target, position the sensor over the target and press the 

Spacebar once for each replicate spectrum that is required. Make a note on the log­

sheet of the spectrum numbers and the target name. 

9. At each sample site repeat steps 7 and 8. 

At the end of each day the files are downloaded using an external floppy disk drive for 
transfer to a PC for processing. 
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OPERATION OF THE GER 1500 SPECTRORADIOMETER 

Stand Alone Mode: 

In the scrolling menu, parameters are selected using the up and down arrows on the 

control panel, then altered using the edit key. The selected parameter will flash and is 

then toggled to the correct option, the edit button sets the selected parameter. 

1. Select the next scan number to be displayed using the memo parameter. 

2. Select average to set the number of scans to be averaged for a collected spectrum. 

This is obtained using the formula 2(X-I), thus a averaging value of 5 gives us 24 = 16, 

this is the recommended value. 

3. Select Intsp to set the integration speed. The up and down arrows are used to set 

fixed values or A can be selected to give an automated integration speed which 

selects the optimum value. The automated integration speed is the recommended 

setting. 

4. Select trg to choose the trigger options from the choice of Isr = laser only, scan = 

scan only or both = laser on when trigger is pressed and scan on trigger release. 

Scan only is the recommended option. 

5. Select optic to choose optic settings from the choice of five. 

(i) Std = - 4° x 5° 

(ii) Fibre optic = not available for NERC EPFS GER 1500 

(iii) 15° FOY 

(iv) Cosine diffuser 

(v) Unity = raw 16-bit digital number 

Unity is the recommended option. 

1. Collect spectra using the red trigger by facing the sun while standing behind the 

sensor head - DO NOT POINT SENSOR AT YOUR FEET. The first scan defaults 

to a reference panel scan the user must remember to toggle between REFERENCE 

and TARGET scans. 

2. Download the data via the comm2, to the serial port of the PC. 

Alternatively data can be collected via the PC using the PC software to select the set-up 

options described above. Data is the processed as detailed in paragraph 3.3.1. 
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OPERATION OF THE MAL VERN MASTERSIZER: PARTICLE SIZING By 
LASER DIFFRACTION 

1. Enter notes on the sample in the box provided and make a written record. This needs 

to be done as the sample information is not exported when the data is transferred to 

an Excel spreadsheet. 

2. Select a background reading, which once done will go directly to sample 

measurement. 

3. When prompted add the sample until lens obscuration reaches between 8% and 15%. 

4. To collect the data press the spacebar and then the disk icon to save. 

5. Open the drain and rinse with one litre of distilled water. 

6. Close the drain and fill the sample well with distilled water until the level is above 

the inlet to the instrument. 

7. Set the stirrer and pump speeds at two levels down from the maximum and cover the 

sensor with your finger tips so that the distilled water is passing through the machine 

for a minimum often seconds. 

8. Open the drain and wait for the "ready" light to come on. 

9. Close the drain and fill with distilled water until the level just covers the sensor, the 

instrument is now ready for the next sample. 

Repeat steps one to nine for each sample. The data is then exported to Microsoft Excel 

for further analysis. 
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APPENDIXB 

The grain size distributions and mean Grain Size (MGS) for sediment samples taken on 
the 6th June, 3rd and 4th of August 1996 and 20th July 1997. 

Site I.D. Date % clay % Silt % Sand MGS 

«2J1m) (2-64J1m) (>64J1m) (J.1m) 

1 6-6-96 10.156 67.54 22.30 78.98 

2 6-6-96 4.31 85.66 10.03 30.67 

3 6-6-96 3.98 77.45 18.57 40.00 

4 6-6-96 4.71 85.56 9.73 28.83 

5 6-6-96 5.12 87.30 7.57 26.65 

7 6-6-96 3.62 74.50 21.88 43.33 

8 6-6-96 4.90 80.11 14.99 35.31 

9 6-6-96 13.45 60.14 26.41 80.78 

10 6-6-96 3.78 84.55 11.67 33.17 

11 6-6-96 13.05 51.00 35.95 124.76 

13 6-6-96 3.76 81.37 14.88 43.63 

1 3-8-96 7.44 85.65 6.92 22.59 

2 3-8-96 7.39 85.98 6.63 22.08 

3 3-8-96 7.86 88.14 4.01 18.69 

4 3-8-96 7.34 86.57 6.08 21.59 

5 3-8-96 7.99 85.10 6.91 21.71 

6 3-8-96 7.71 86.21 6.09 21.94 

9 3-8-96 11.68 80.73 7.59 20.18 

10 3-8-96 7.45 86.S3 6.02 21.70 

11 3-8-96 9.56 85.76 4.68 18.09 

12 3-8-96 6.95 85.55 7.50 23.32 

13 3-8-96 6.56 85.90 7.54 24.17 

14 3-8-96 7.80 88.49 3.71 17.8 

15 3-8-96 7.39 89.51 3.1 17.57 

16 3-8-96 5.96 86.92 7.11 24.88 

17 3-8-96 6.35 87.62 6.03 22.92 
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Site I.D. Date % clay % Silt % Sand MGS 

«2J.1m) (2-64J.1m) (>64J.1m) (J.1m) 

IS 4-8-96 6.51 86.91 6.58 24.04 

IN 4-8-96 6.97 89.46 3.57 19.64 

2S 4-8-96 5.49 84.71 9.80 29.21 

2N 4-8-96 6.25 86.89 6.86 24.73 

4S 4-8-96 6.80 84.26 8.93 26.22 

4N 4-8-96 6.44 86.37 7.19 24.33 

6S 4-8-96 9.35 85.20 5.45 19.25 

6N 4-8-96 10.93 79.13 9.94 24.02 

7S 4-8-96 8.79 85.51 5.70 19.11 

7N 4-8-96 9.52 84.49 5.99 20.20 

UN 4-8-96 5.47 85.55 8.98 28.07 

12N 4-8-96 6.93 86.70 6.37 22.86 

1 20-7-97 1.55 54.87 43.58 69.87 

2 20-7-97 2.15 61.62 36.22 60.79 

3 20-7-97 2.25 70.26 27.49 51.98 

4 20-7-97 1.94 53.11 44.95 74.00 

5 20-7-97 3.11 74.47 22.42 46.45 

6 20-7-97 2.68 66.18 31.14 54.30 

7 20-7-97 3.38 74.01 22.6 44.52 

8 20-7-97 2.72 68.67 28.62 51.62 

9 20-7-97 2.71 67.51 29.78 54.81 

10 20-7-97 4.70 78.25 17.04 41.74 

11 20-7-97 4.38 84.00 11.62 33.53 

12 20-7-97 2.90 66.91 30.20 53.56 

13 20-7-97 4.31 75.57 20.12 43.24 

14 20-7-97 3.00 57.78 39.22 71.52 

15 20-7-97 3.98 78.09 18.02 39.37 

16 20-7-97 3.09 72.95 23.96 46.55 

17 20-7-97 3.51 74.79 21.70 45.49 

18 20-7-97 3.16 73.60 23.23 49.34 
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Site 1.0. Date % clay % Silt % Sand MGS 

«2JJm) (2-64JJm) (>64JJm) (JJm) 

19 20-7-97 3.59 76.81 19.61 43.61 

20 20-7-97 3.69 75.57 20.74 43.76 

21 20-7-97 3.45 75.75 20.79 46.08 

22 20-7-97 2.98 80.03 16.99 41.01 

23 20-7-97 2.91 81.78 15.31 41.17 
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APPENDIXC 
VERSE Model Output For sse, 20th July 1997. 
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