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“The last word in ignorance is the man who says of an animal or plant, "What good is 

it?" If the land mechanism as a whole is good, then every part is good, whether we 

understand it or not. If the biota, in the course of aeons, has built something we like but 

do not understand, then who but a fool would discard seemingly useless parts? To keep 

every cog and wheel is the first precaution of intelligent tinkering.”  

 Aldo Leopold, Round River: From the Journals of Aldo Leopold 

 

  



ii 
 

General Abstract 

Over 80% of wild angiosperms are reliant upon animal pollination for fruit and seed set 

and bees and other insects provide a vital pollination service to around a third of the 

crops we produce.  Habitat loss, climate change and disease spread all threaten 

pollinator populations, with local declines and range contractions in honeybees and 

bumblebees leading to concerns that crop production may suffer as a result of pollinator 

shortages.   

Whilst agriculture and wildlife are often presented as being at odds with one another, 

the relationship between farmers growing pollination dependent crops, and the bees and 

insects that service them could be mutualistic.  Flowering crops planted by farmers can 

provide an important source of forage to wild bees, whilst in return wild bees can 

contribute to ensuring farmers achieve adequate yields of marketable crops.  The 

potential of this mutualistic relationship can be maximised by farmers by adopting 

management practices that reduce harm to, and enhance the wellbeing of, the wild bees 

around their farm.  

A group of common pesticides (neonicotinoids) used by farmers have recently been 

linked to pollinator ill health.  Sub-lethal effects resulting from exposure to the 

neonicotinoid imidacloprid have been reported in honeybees and bumblebees, with 

bumblebee reproductive success found to diminish as a result of exposure to field 

realistic doses of this agrochemical. Here, the mechanism behind the reduced queen 

production in bumblebee colonies is suggested, with bees exposed to imidacloprid 

showing reduced efficiency in foraging for pollen.  Farmers dependent upon pollinating 

insects for crop production can opt to avoid the use of pesticides known to harm these 
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insects, however future studies are needed to identify safer alternatives that can be use 

in their place. 

Farmers can choose to increase the number of bees at their farms by utilising 

domesticated honeybees and purchasing commercially reared bumblebees. The use of 

these pollinators can ensure a minimum number of bees in the vicinity of a crop, and 

facilitate the production of crops at times when wild bee numbers are low.  Concerns 

have been raised, however, regarding the use of commercially reared bees, mostly in 

regard to pathogen and parasite transmission, but also in respect to the possibility of 

outcompeting native species. Here the frequency and severity of attacks on commercial 

Bombus terrestris colonies, by the wax moth, an understudied bumblebee pest, are 

examined.  Wax moths were found to infest almost half of the bumblebee nests 

deployed at fruit farms, with around a third of infestations resulting in nest destruction.  

Farmers investing in commercial bees will want to reduce the impact of harmful pests 

that may result in a reduced pollination service being delivered.  Wax moth infestation 

rates at the study farms using commercial bees were high and the potential of a ‘spill- 

back’ effect on wild bees was examined.  No evidence was found to suggest that nests 

in close proximity to these farms were any more or less likely to suffer from an attack 

than nests situated further away. Nest size was found to be the most significant 

predictor of an infestation, with larger nests more prone to wax moth attacks.   

 Whilst farmers can utilise domesticated and commercially reared bees, relying on one 

source of pollination is inherently risky, and the most robust service will likely be 

provided by a range of pollinators.  As well as reducing the use of chemicals known to 

harm beneficial insects, farmers can improve the habitat around their farms to help 

encourage and sustain wild pollinator populations.  Sowing flower strips has been found 

to increase the abundance and diversity of pollinating insects, however, studies linking 
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the use of these strips to crop production are lacking.  Here we demonstrate for the first 

time that sowing small flower strips, adjacent to strawberry crops serviced by both wild 

and managed bees, can increase the overall number of pollinators foraging on the crop.   

This thesis contributes to our understanding of the implications of farm management 

decisions on pollinator health.  It provides experimentally based evidence to guide 

farmers in making informed decisions regarding the future of crop pollination services 

and highlights the need for an integrated approach to managing pollination services for 

sustainability.    
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General Introduction 
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“Natural selection cannot possibly produce any modification in a species exclusively 

for the good of another species; though throughout nature one species incessantly takes 

advantage of, and profits by, the structures of others. If it could be proved that any part 

of the structure of any one species had been formed for the exclusive good of another 

species, it would annihilate my theory, for such could not have been produced through 

natural selection.” 

Charles Darwin, Origin of the Species 

 

1.1 Mutualisms  

Mutualisms can be defined as reciprocally beneficial or reciprocally exploitative 

relationships between organisms where each partner receives an overall net benefit 

(Herre et al., 1999). They are fundamentally important in all ecosystems (Chapin et al., 

2011; Kiers et al., 2010; Power, 2010; Doebeli & Knowlton, 1998) and often involve 

the direct exchange of goods and services. Most mutualisms revolve around one species 

gaining a much needed service such as pollination or protection from predators, whilst 

the other species gains a reward, like food or somewhere to live. 

Many evolutionary opportunities have been made possible by the development of 

mutualistic relationships (Boucher et al., 1982) however, interdependent mutualisms 

carry a risk: the fate of one species is often tied to that of another, with the loss of one 

potentially resulting in the loss of both. The mutualism between reef building corals and 

the photosynthetic dinoflagellates that help power them are threatened by warming 

oceans and other local stresses, resulting in ‘coral bleaching’, a visible symptom of the 

disruption in the partnership between the two (Hoegh-Guldberg et al., 2007).  
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Mutualisms occur at all levels of biological organisation from the oxpeckers that 

remove parasites on rhinos, receiving for themselves a food source, to countless 

nutritional symbionts that fix nitrogen and aid digestion (Herre et al., 1999). A diversity 

of mutualisms exists between insects and plants alone, with insects providing a range of 

services from pollination to protection to seed dispersal (Whittaker, 1975; Kearns et al., 

1998; Bronstein et al., 2006), in return gaining a food source. Habitat loss and 

fragmentation have led to disruptions in plant pollinator interactions (Kearns et al., 

1998; Winfree et al., 2009; Potts et al., 2010) and there are fears that the breakdown of 

mutualisms could accelerate the effects of global change on biodiversity loss (Kiers et 

al., 2010).  

1.2 Ecosystem services 

Ecosystem services can broadly be defined as “the benefits people obtain from 

ecosystems” (Millennium Ecosystem Assessment, 2005). Mutualists provide essential 

ecosystem services such as pollination and seed dispersal (Potts et al., 2010; Terborgh 

et al., 2008) and contribute critically to global carbon and nutrient cycling (Wilson et 

al., 2009).  

Natural systems provide climate regulation, water purification, soil production, pest 

control and crop pollination, which are crucial to human survival (Daily, 1997). Whilst 

humans frequently manage natural systems to produce ecosystem goods such as wood 

and fish, few ecological systems are managed in recognition of the services, rather than 

the products, that they provide.  

Estimating the monetary value of ecosystem goods and services can help provide a 

rationale for assigning more resources towards conserving natural ‘capital’, however 
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there are risks involved in placing a value on one or a few component parts of 

interwoven and complex systems.  

1.3 Food security 

The overarching challenge facing humankind is to reconcile the growing demands of 

the human population with sustainable management of ecosystems. The global 

population is likely to plateau at around 9.6 billion people by 2050 (United Nations, 

2013). Currently around 925 million people suffer from hunger (a lack of access to 

sufficient protein and energy in their diets), with a further billion believed to suffer 

from what has been called ‘hidden hunger’; a lack of access to important macro and 

micro nutrients (e.g. vitamins and minerals) that facilitate good heath (Foresight, 2011). 

Food preferences are shifting with more affluent populations increasing the demand for 

processed food, meat, dairy and fish (Godfray et al., 2010). Food producers face 

mounting competition for water, land and energy with the effects of climate change 

offering a further challenge to food security (Parry et al., 2007; Schmidhuber & 

Tubiello, 2007). It is becoming increasingly clear that we need to curb the plethora of 

negative effects that our food production systems are having on the natural environment 

(Godfray et al., 2010; Bommarco et al., 2013), with some arguing that sustainable 

intensification (producing more food from the same area of land whilst reducing our 

environmental footprint) will be necessary to avoid bringing more land into production 

(Royal Society of London, 2009). 

1.4 Agriculture and environmental degradation 

The activities of humanity are driving global environmental degradation at an alarming 

and unprecedented speed (Brook et al., 2008). The loss of natural habitats and 
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increasing habitat fragmentation have, for some time now, been regarded as key threats 

to biodiversity (Wilcox & Murphy, 1998; Tilman et al., 1994; Laurance et al., 2002).
 
 

Declines in biodiversity within agricultural landscapes have been well documented, 

with the ongoing intensification of farming practices leading to natural habitat loss and 

the increased use of agrochemicals (Green, 1990; Kremen et al., 2002; Tilman et al., 

2008). Approximately half of the global area of land that is suitable for agricultural 

production is currently used for this purpose (Tilman et al., 2001). Specialisation, which 

has allowed farmers to increase their yields by tailoring their practices to the production 

of one or a few commodities, has led to large expanses of land being stripped of 

‘wildlife friendly’ habitat, and replaced with more homogenous landscapes of crop 

monocultures (Stoate et al., 2001). Agricultural practices can reduce the ability of 

ecosystems to provide both goods and services and the area intensive nature of this 

sector often results in consequences being widely felt. Large quantities of pesticides and 

fertilizers applied to increase yields can result in unintended consequences as nutrients 

and toxins effect non-target organisms and systems (Krebs et al., 1999; Sparling et al., 

2001; Goulson, 2014). Agriculture can reduce the ability of ecosystems to provide 

goods and services yet its success and sustainability remains ubiquitously tied to 

functionally intact systems and the services they provide (Godfray et al., 2001).   

1.5 The importance of pollinators for crop production 

Approximately 84% of European crops are reliant upon animal pollination to some 

extent (Williams 1994) and diets would be greatly impoverished, both nutritionally and 

culturally, without the services of pollinating insects (Steffan-Dewenter et al., 2005; 

Klein et al., 2007). The proportion of land cultivated with pollinator dependent crops is 

growing (Aizen et al., 2008) and there are concerns over whether increasingly intensive 
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agricultural systems have the ecological capacity to sustain reliable pollination services 

(Aizen & Harder, 2009). Limitations in pollination can result in the full reproductive 

potential of crops not being realised, either in terms of fruit produced or seeds set 

(Aizen et al., 2008). The degree to which a crop is pollinated not only affects the 

quantity of production but also the quality; influencing size, shape and the classification 

of fruit for marketing purposes (Garratt et al., 2014) and shelf life (Klatt et al., 2014).  

Whilst an array of animals (birds, bats, rodents) can be vectors of pollen, insects are 

especially suited to this role (Goulson, 2010). Social and solitary bees, wasps, beetles, 

flies, butterflies and moths constitute the vast majority of the world’s pollinators 

(Vanbergen 2013), with bees in particular being of primary importance to the 

pollination of many agricultural crops (Klein et al., 2007).  

1.5.1 Honeybees 

The honeybee, Apis mellifera, is the insect most commonly managed for the purpose of 

crop pollination, and is the most well studied of all insect pollinators. They are excellent 

generalists and that have been introduced to almost every country on the planet 

(Goulson, 2003b). 

Whilst honeybees are renowned crop pollinators they are not native to many of the 

areas they now occupy, and are known to compete with native insects, deterring them 

from utilising the richest sources of forage (Gross, 2001). And while honeybees are 

often credited with sustaining many pollination dependent crops, wild bees including 

bumblebees, offer an equally important, often superior, service (Garibaldi et al., 2013; 

Javorek et al., 2002; Wilmer et al., 1994). 
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1.5.2 Bumblebees 

There are approximately 250 species of bumblebee (Bombus spp.) across the globe 

(Goulson, 2010). The majority of species have an annual lifecycle with queens 

emerging in the spring to found colonies. These queens produce workers who take over 

the role of foraging, brood care and the maintenance of the nest. Reproductive offspring 

in the form of males and new queens are generally produced towards the end of the 

colony cycle. Once mated, new queens forage and find a hibernation site whilst the old 

colony founding queen perishes along with the workers and males (Alford 1975).  

Bumblebees are hardy and efficient pollinators and compared with honeybees forage 

over substantially longer periods of the day, in poorer weather conditions, carry more 

pollen on their bodies and visit more flowers per minute (Wilmer et al., 1994). 

Bumblebee body size varies greatly both within and between species (Sladen, 1912), 

and different species exhibit different foraging ranges, e.g. Bombus terrestris (Linnaeus 

1758), are known to travel distances of up to 1750m on a regular basis (Walther-

Hellwig & Frankl, 2000) and less frequently further (Goulson & Stout 2001), whilst B. 

pascuorum (Scopoli, 1763) are believed to remain closer to their nesting site (Knight et 

al., 2005). Bumblebees can exploit an array of different flowers due to varying inter 

species tongue lengths. Their ability to buzz pollinate (by rapidly vibrating their flight 

muscles to shake the anthers of a plant to release pollen) makes them vital for crops 

such as tomatoes (Van dan Eijende et al., 1991).  

Advancements in techniques for rearing bumblebee colonies have resulted in five 

species of bumblebee being commercially bred for the purposes of crop pollination 

(Velthuis & van Doorn, 2006). An international market has developed for these bees 

and they are transported around the globe for use on an increasing number of crops. 
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Whilst honeybees and bumblebees are key crop pollinators a myriad of other pollinating 

insects are known to contribute to successful crop yields (Garibaldi et al., 2013). Whilst 

the relative merits of different pollinating species can be debated, it is likely that in 

most systems the most resilient pollination service in the long term will be one provided 

by a range of insects (Garibaldi et al., 2014).  

1.6 Pollinator declines 

There is evidence that both wild and domesticated pollinator populations are declining 

(Biesmeijer et al., 2006; vanEngelsdorp et al., 2008). These declines are considered to 

be caused by a range of interacting effects which include: habitat loss; climate change; 

an increased use of agrochemicals and the accidental introduction of non-native pests 

and diseases (Williams & Osborne, 2009; Decourtye et al., 2010; Neumann & Carreck, 

2010). Globally over 80% of wild angiosperm species are reliant upon animal 

pollination for fruit and seed set (Ashman et al., 2004) with a greater proportion of 

animal pollinated flowering plant species in tropical communities (94%) compared with 

temperate-zone communities (78%) (Ollerton et al., 2011). Whilst the scope of this 

thesis does not allow a detailed discussion on the importance of pollinating insects to 

wild flowers it would be remiss not to mention the implications of declines in this 

regard. Whilst some farmers are able to increase the number of pollinators servicing 

their crops by utilising domesticated/commercially reared bees, pollination dependent 

wild flowers must rely solely on the availability of wild insects. Pollinator losses will 

likely, therefore endanger many of the plant-pollinator mutualisms that currently exist 

(Kearns et al., 1998).  

Concerns over declining pollinator populations have stimulated debates regarding 

whether or not we are facing a pollination crisis (Aizen & Harder, 2009; Ghazoul, 2005; 
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Westerkamp & Gottsberger, 2002) and have led to worries over how diminishing bee 

numbers could impact food production (Aizen et al., 2009).  

Whilst global honeybee stocks have increased (Aizen & Harder 2009) marked declines 

in wild and domesticated honeybees have been reported in certain regions 

(vanEngelsdorp et al., 2008; Potts et al., 2010) and recent research has suggested that 

parasites, diseases and pesticides can interact to have strong negative effects on 

managed colony health (vanEngelsdorp et al., 2008; Cornman et al., 2012). Regional 

declines in managed honeybees, coupled with the increased production of pollinator 

dependent crops have led to mounting concerns that local requirements for pollination 

services may exceed the supply of honeybees available (Breeze et al., 2014).  

Bumblebee range contractions have been reported since the 1950’s (Free & Butler 

1959) with declines in distribution now widely reported (Colla & Packer, 2008; Grixti 

et al., 2009; Williams & Osborne, 2009). In the UK, two species have gone extinct, 

with only 6 of the 19 true bumblebees (in the UK there are also 6 cuckoo species) 

remaining common and widespread (Goulson, 2010). Bees feed exclusively on flowers 

and are dependent on pollen and nectar for survival, however floral resources in the UK 

and Europe have declined as a result of agricultural intensification (Biesmeijer et al., 

2006). Hedgerows, woodlands and tussock grasslands are often casualties of 

agricultural expansion. These are areas that tend to attract small mammals and birds, 

whose deserted holes and hollows provide suitable bumblebee nesting sites (Sladen, 

1912; Fussell & Corbet, 1992; Rasmont et al., 2008). The loss of such natural and semi-

natural habitats are likely to have contributed reductions in available forage and nesting 

sites within agricultural landscapes (Kells & Goulson, 2003).  
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1.7 Anthropogenic causes of pollinator decline  

1.7.1 Habitat loss and fragmentation 

Concerns over pollinator declines have led to numerous studies which attempt to 

quantify how natural habitat availability, landscape heterogeneity and organic farming 

methods can impact on pollinator abundance and diversity. Some studies have found a 

positive correlation between the extent and diversity of natural habitat surrounding a 

farm and the pollination service provided to crops (Ricketts et al., 2008; Rundlof et al., 

2008), whilst others have shown a link between organic farming methods and an 

increased abundance and diversity of bees (Holzschuh et al., 2008).  

Brosi et al. (2008) determined that optimal farm configuration for the management of 

crop pollination services comprises small ‘parcels’ of service-providing habitat 

interspersed throughout working landscapes. Remnants of semi-natural habitats within 

an otherwise intensive landscape can act as corridors, along which pollinators can 

colonise, re-colonise and maintain small fluctuating populations within safe parcels of 

favourable habitat (Kearns et al., 1998). The importance of some level of habitat 

heterogeneity is unsurprising given that many pollinating insects rely on a continuity of 

forage through the spring and summer (Rundlof et al., 2008), and some on the 

availability of suitable nesting sites (Richards, 2001); these resources are more likely to 

be provided in a more diverse mosaic landscape than a homogenous one. However, the 

minimum area requirements needed to sustain functioning pollinator communities is 

little studied and an area where future research could be directed. 
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1.7.2 Pesticide use 

Pesticides make a significant contribution to maintain world crop production today 

(Pimentel et al., 1992), yet the spill-over effects they can have on non-target and even 

beneficial organisms has long been known (Ware, 1980; Flexner et al., 1986, Desneux 

et al., 2007). When looking at 13 components of agricultural intensification, Geiger et 

al. (2010) found that the use of insecticides and fungicides had consistent negative 

effects on biodiversity as well as reducing the potential of agricultural lands to support 

biological control. 

There has been a recent surge of research examining the effects of systemic pesticides 

on pollinating insects, in particular bumblebees and honeybees (summarised in van der 

Sluijs et al., 2014). Concerns are growing over the use of some pesticides with 

mounting evidence that neonicotinoids in particular are having sub-lethal effects on 

honeybees (Bortolotti et al., 2003; Aliouane et al., 2009; Decourtye et al., 2004; Henry 

et al., 2012)
 
and bumblebees (Gill et al., 2012; Whitehorn et al., 2012; Elston et al., 

2013).  

When investigating how crop pollination exposes bees to pesticides, Pettis et al. (2013) 

found that the majority of the bees in their experiment fed primarily on weeds and 

wildflowers around the crops. Despite largely feeding on wildflowers the pollen loads 

of bees monitored during the study contained high levels of pesticides and fungicides. 

This highlights that the sub-lethal and unintentional effects of agrochemicals are 

unlikely to be limited to pollinators and other insects foraging predominantly on the 

crop (i.e. managed pollinators placed within the crop vicinity), and may well spill-over 

to insects living in field margins and semi-natural areas nearby that occasionally utilise 

the crop as a resource.  
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Calls for more biodegradable and less persistent pesticides that better target specific 

pests are not new (Kevan, 1975) and it is important to properly understand and 

thoroughly test the chemicals that we use in our food production. Whilst recent 

concerns over the widespread use of neonicotioinds has led to a temporary moratorium 

on the use of some of these chemicals on mass flowering crops, their use in general 

remains wide spread and more studies are required in order to further clarify their 

effects and inform future decisions on their use. 

1.8 Maximising a mutualism? Managing pollinators for crop production 

Whilst modern agriculture as a whole may represent a hostile environment for some 

pollinators, the number and extent of crops requiring their service has increased (Aizen 

et al., 2008). Although agriculture and biodiversity conservation are often regarded as 

being incompatible (Tscharntke et al., 2005), in the case of crop pollination, a 

mutualistic relationship between the two can exist. In an often otherwise inhospitable 

landscape pollinators such as bumblebees can benefit from the floral resource provided 

by crops sown by farmers whilst farmers benefit economically from selling the fruits or 

vegetables that arise from well pollinated flowers. 

In 2005 Shuler et al. reported how farming practices influence pollinator populations on 

squash and pumpkin crops. They found that all of the farmers that they made contact 

with were aware of the need for insect pollinators in the production of their crop, with 

most believing that honeybees played the most important role in pollination success. 

Shuler et al. (2005) however found that the squash bee (Peponapis pruinosa) was in 

fact the most abundant pollinator observed on the crop in this study system, 

demonstrating that farmers, whilst often aware of the importance of pollinators do not 

necessarily realise the relative contribution of managed and wild species. Whilst 
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commercially reared bumblebees and domesticated honeybees are relatively cheap, 

convenient and controllable, they can be less efficient than a combination of wild 

pollinating species that can provide a diverse pollination service to crops (Javorek et al., 

2002; Bosch et al., 2006).  

Regardless of whether a bee is wild or managed, it requires adequate supply of food and 

a safe and suitable habitat in which to spend its non-foraging time (i.e. a safe 

dwelling/nesting site). For a farmer it perhaps does not matter if a bee is wild or 

commercially reared, so long as the pollination service to their crop is sufficient to 

ensure high yields that are sustainable through time. If the potentially mutualistic 

relationships between farmers that grow pollinator dependent crops and the bees that 

feed on them is to flourish then pollinator management initiatives will help maximise 

this relationship.  

A recent study looking into the types of pollinators visiting two widespread crops 

(oilseed rape and field beans) revealed that crop specific conservation strategies were 

beneficial in boosting pollination as the composition of pollinators visiting each crop 

were found to differ (Garratt et al., 2014b). Field beans would benefit from targeted 

conservation strategies that boost several key taxa, whilst oilseed rape would benefit 

from strategies designed to augment overall pollinator abundance and diversity within 

the crop vicinity. 

On farm practices are known to influence pollinator populations (Shuler et al., 2005) 

and management of farm systems rather than of pollinators themselves will likely, 

given time, allow farmers to develop a more resilient service for their crops. There are 

currently sizeable gaps in our understanding of pollination service supply and demand 

and more research is needed to help determine crop specific requirements and how they 
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vary in space and time. To maximise the pollination of their crops farmers may have to 

encourage and exploit more than one ‘type’ of pollinator, investing in a range of 

management strategies to ensure high crop yields throughout the season. 

1.8.1 Commercial and domesticated bees 

The production of pollinator dependent crops at a commercial scale is increasingly 

reliant upon managed pollinators (Richards, 2001). For a long time the only widely 

managed pollinator was the honeybee, A. mellifera. However, honeybees are a 

generalist species that cannot successfully pollinate all crops (e.g. field beans require 

long tongued bees and tomatoes require buzz pollination). Techniques for mass rearing 

bumblebees were perfected in the 1980s and since then a multi-million pound industry 

has grown that supplies commercially reared bees for the production of around 30 

different crops (Velthuis & van Doorn, 2006). Whilst the predictability and reliability of 

commercially reared bumblebees has endeared them to farmers, concerns have been 

expressed about the ecological risks that surround their use (Meuss et al., 2011; 

Goulson, 2010b). In Europe there are currently no established standards for screening 

imported bees in order to detect diseases or parasites. This means that there is potential 

for the accidental introduction and spread of parasites and diseases to native populations 

(Greystock et al., 2013). In North America circumstantial evidence suggests links 

between the decline of three once common bumblebee species and the transportation of 

bees between Europe and America (Thorp, 2005; Thorp & Shepherd 2005), however 

empirical evidence is needed to determine if pathogen spill-over could be the cause 

(Meuss et al., 2011). There is also the potential for commercially reared bees to escape 

and establish populations in the wild, which may displace or interbreed with wild 

populations (Ings et al., 2006). Commercially reared bees have escaped and become 

naturalised in Japan, Tasmania, Chile, Argentina and Mexico (Goulson, 2003). 
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The contribution commercially reared bumblebees make to crop pollination is 

understudied and the extent to which they are required to ensure high levels of 

pollination has not been fully quantified.  

1.8.2 Wild bees 

Whilst some research has found that commercial pollinators substantially increase yield 

i.e. blueberries (Desjardins & De Oliveira, 2006), Raspberries (Lye et al., 2011), others 

have shown that crop pollination is predominately carried out by wild bee species i.e. 

tomatoes (Greenleaf & Kremen, 2006). Whilst not empirically verified, in many cases 

the relative contribution of wild and managed pollinators will likely change throughout 

the season, for example, in the UK commercial bumblebees play a greater role in the 

pollination of early (pre) season fruit, when wild species have not yet emerged. The 

contributions of commercial and wild bees may also vary in response to farm 

characteristics. Lower intensity agricultural systems can support larger populations of 

wild bees, as less intensive land use can result in a greater range of floral resources and 

suitable nesting sites about the farm (Aizen & Harder, 2009). 

A study by Allsopp et al. (2008) estimated the total value of wild insect pollination 

services and managed pollination services for the deciduous fruit industry of the 

Western Cape region of South Africa. They estimated the value of wild and managed 

pollination for this sector to be $358.4 and $312.1 million respectively. At the time of 

the study only $1.8 million was being paid for the service provided by managed bees 

and there was no direct payment from producers for the service provided by wild 

pollinators (Allsopp et al., 2008). This study suggests that there should perhaps be an 

emphasis on integrated management of wild and managed pollinators and whilst this 
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approach is increasing in popularity in North America, it has not been widely adopted 

in Europe.  

1.8.2.1 Enhancing provisions for wild bees 

Flowering crops can provide an important resource for bees and can support an 

abundance of pollinating insects (Westphal et al., 2003) and can have a positive effect 

on size (Westerphal et al., 2009) and density (Knight et al., 2009) of bumblebee 

colonies nearby. However, evidence suggests that increases in abundance and diversity 

correlates only with crop flowering periods (Hanley et al., 2011) and do not represent 

an overall increase in sexual reproduction within nests (Westphal et al., 2009).  

Pollinators will benefit from a diversity of forage and from the provision of a stable 

supply of flowering plants throughout the season (Bluthgen & Klein, 2011; Mandelik et 

al., 2012) this is not always provided by crops that flower en masse. For mango and 

sunflower crops, enhancing the richness of non-crop floral resources within fields can 

benefit levels of pollination (Nicholls & Altieri, 2013), suggesting that providing 

additional floral resources may not lead to competition with the crop. A number of 

studies have shown that flower strips are effective at providing forage for a range of 

bumblebee species throughout the season (Carvell et al., 2007; Carreck & Williams, 

2002; Pywell et al., 2005). Schemes found to be most successful in attracting a diversity 

and abundance of foraging workers are the sowing of either annual or perennial 

wildflowers or a pollen and nectar mix consisting of agricultural cultivars of legume 

species (Carreck & Williams, 2002, Meek et al., 2002, Carvell et al., 2004 and 2007; 

Pywell et al., 2005 and 2006). Habitat improvements targeted at pollinators are likely to 

increase species richness and abundance (Garibaldi et al., 2014). However, it is likely 

that investing in environmental services will be most common when farmers can set 
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aside the smallest area required to realise the ecosystem service benefits (Brosi et al., 

2008). On-farm management of environmental service provision will prioritise 

strategies that require minimum effort for maximum gain, for example the widespread 

implementation of small scale measures within working agricultural areas (Brosi et al., 

2008, Bodin et al., 2006). 

Little information exists on the ways in which local pollinator management influences 

agricultural production (Richards, 2001). Whilst studies measuring the impact of wild 

pollinator enhancement strategies are uncommon, those relating their effects to the 

success of pollinator dependent crops are rarer still (Garibaldi et al., 2014). It is 

therefore important to determine to what extent wildflower plantings can increase the 

pollinator carrying capacity of agricultural landscapes. A diversity of wild pollinators 

cannot just be added to the agricultural systems the way that domestic honeybee hives 

and commercial bumblebee nests can. If farmers want a stable and reliable wild 

pollination service they must in turn ensure a stable and reliable continuity of forage for 

bees and other insects throughout their active period (Shuler et al., 2005).  

In a recent study, Blaauw and Isaacs (2014) created wildflower plantings adjacent to 

blueberry fields in order to determine their effect on the crop, and found that the use of 

medium to large flower strips increased the number of pollinators observed on highbush 

blueberries. In order to maintain and restore wild pollinator communities, farmers are 

often advised to boost floral abundance within agricultural landscapes, however this 

management choice is often poorly implemented (Carvalheiro et al., 2011) possibly due 

to the costs involved, e.g. loss of agricultural land, cost of seed and management 

(Ghazoul, 2007) or fears that alternative forage may provide competition for crop 

pollination (Weiss, 1983).  
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1.8.3 Managing pests and diseases 

Predators, parasites, parasitoids and diseases can impact bees at any stage of their life 

cycle. The effect of parasites and predators is perhaps best demonstrated by looking at 

the success of pollinators when these threats are absent. For example, bumblebee 

species close to, or extinct, within the UK (B. subterraneous and B. ruderatus) are 

thriving in New Zealand where they were introduced in the 1880s and have since been 

living in the relative absence of the parasites that usually play a role in stemming 

population growth (Goulson, 2010).  

Emerging infectious diseases (EID) threaten pollinator populations and honeybee 

keepers have to actively manage hives to reduce the risk of them contracting exotic and 

high impact pathogens (e.g. the Varroa mite, Varroa destructor) (Furst et al., 2014). 

There are concerns that wild bee declines may be linked to the use of managed 

pollinators (Evison et al., 2012; Genersch et al., 2006; Meeus et al., 2011), with a 

recent study showing that domestic honeybees are the likely source of at least one EID 

in other wild bee species (Furst et al., 2014).  

An increased susceptibility to harmful parasites has been linked with the use of agro-

chemicals and exposure to sub-lethal doses of pesticides may alter the susceptibility of 

bees to parasites and pathogens (Pettis et al., 2013; Di Prisco et al., 2013). Whilst most 

species have natural enemies, an increase in their prevalence is particularly concerning 

when it is brought about as a consequence of human activities and management 

decisions. 

The threat of parasite spread between commercial bumblebees and wild bumblebees 

arises when both share a common resource, e.g. the wildflowers surrounding a crop, 

where diseases can be transmitted (Morandin et al., 2001; Whittington et al., 2004). 
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In the UK, Whitehorn et al. (2012) found that the use of commercial bees did not lead 

to pathogen spill-over into wild bumblebee populations nearby, however circumstantial 

evidence from North American suggests that disease and parasite transmission may 

occur between commercial colonies and wild bees (Thorp, 2005; Thorp & Shepherd 

2005; Winter et al., 2006). Recent work by Greystock et al. (2013) has revealed the 

high parasite loads within some commercial bumblebee nests upon arrival from 

suppliers. This highlights the need for increased pathogen control in managed bees and 

for more research to facilitate a better understanding of how the use of commercial 

bumblebees may be impacting the health of wild populations.  

1.9 Current pollinator management options 

Farmers who grow pollination dependent crops have three broad choices in regards to 

pollinator management. One, they can do nothing and rely on whatever service they 

receive from the pollinators that are naturally resident within the vicinity of their crops. 

Two, farmers can increase the number of domesticated/commercially reared bees at 

their farm by renting or purchasing hives or colonies. Three, farmers could invest in 

strategies which will increase the number of wild pollinators around the farm in the 

hope that these pollinating insects will then service their crops.  

There are known links between ecosystem stability and local species richness (Hooper 

et al., 2005; Loreau et al., 2001). The long term management of pollination dependent 

crops needs to focus on creating a resilient pollination service as fluctuating populations 

can result in poor or unpredictable yields.  
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1.10 Thesis overview 

This thesis seeks to explore how the mutual relationship between farmers and the 

insects that pollinate their crops can be maximised, to ensure healthy and sustainable 

pollinator populations and crop yields. Throughout these chapters the results of research 

conducted at raspberry and strawberry farms in Scotland is presented and discussed.  

Whilst this thesis focuses on the pollination service provided to two particular soft fruit 

crops, some of the findings may transfer to other flowering crop systems that rely up 

insect pollinators.  Work presented also comments on how the intensification of 

farming practices i.e. the increased use of pesticides and commercially reared 

pollinators maybe impacting the health and sustainability of wild bee populations more 

generally.  

Chapter 2 begins with an investigation designed to determine the pollinator 

requirements of raspberry and strawberry crops, by detailing the contribution of various 

pollinating insects throughout the season and relating these to yields of marketable fruit 

produced. Leading on from this, Chapter 3 provides experimental evidence on the 

benefit to farmers of sowing wildflower strips adjacent to their crops, and discusses 

how such plantings may also contribute to the creation of sustainable pollination 

services. Chapter 4 details how novel technology was used to examine the impact of a 

common agricultural pesticide on the foraging ability of B. terrestris, in an attempt to 

reveal the mechanism behind reduced queen production in bumblebee nests exposed to 

the neonicotinoid: imidacloprid. Chapters 5 and 6 present research that seeks to shed 

light on the impact of an understudied bumblebee pest, the wax moth. The frequency 

and severity of attacks on commercial nests used by farmers within the study system are 

reported along with an exploration of how the use of factory reared bees might be 
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impacting upon the prevalence of wax moths in wild bumblebee nests within 

agricultural settings.  

1.11 Aims and objectives 

This thesis aims to provide insight into how bees are managed for the purposes of crop 

pollination and to examine how farmer action and management can shape the health, 

diversity and resilience of the pollinator assemblages that service their crops. The 

following chapters hope to provide useful management advice to farmers who wish to 

maximise the benefits they gain from pollinating insects by providing evidence upon 

which they can base farm level decisions.  

The specific aims of each chapter are: 

1. To determine the relative pollination contribution of different species to 

strawberry and raspberry production; and examine if complementarity exists 

between different pollinator groups to facilitate the pollination of crops across 

the season.  

2. To test the prediction that the presence of wild flower strips can increase the 

number of pollinators visiting adjacent strawberry crops, whilst accounting for 

potential confounding effects. 

3. To examine the effect of a field realistic dose of imidacloprid on the foraging 

ability of B. terrestris workers.  

4. To investigate the frequency and severity of wax moth attacks on commercial B. 

terrestris colonies.  
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5. To assess experimentally if nests close to fruit farms where commercially reared 

bumblebees are in use, are at a greater risk of wax moth attacks as a result of 

their proximity to these farms.  

Each chapter is presented as a stand-alone paper so that reference to this general 

introduction should not be required for interpretation of the work. 
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Chapter 2- Functional diversity matters: Seasonal 

complementary of pollinators ensures fruit 

production through the growing season 

 

The work presented in this chapter is taken from the paper Ellis, C., Feltham., H., Park, 

K., Hanley, N. & Goulson, D. Functional diversity matters: Seasonal complementary of 

pollinators ensures fruit production through the growing season. Submitted for 

publication in Ecology and Evolution.  

 

The remit of this section of my project required additional help from another researcher 

therefore Ciaran Ellis and I undertook the research as a joint study. Work was 

conducted by us jointly and in equal measure, with C.Ellis leading on the modelling 

analysis and H.Feltham leading on the spatial analysis. This chapter will also be found 

in the PhD thesis of C. Ellis entitled: ‘Valuing wild pollinators for sustainable 

pollination services’.  

K.Park, N. Hanley and D.Goulson supervised the project and all authors commented on 

draft versions of the manuscript. 
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2.1 Abstract 

Understanding the relative contributions of wild and managed pollinators, and the 

functional contributions made by a diverse pollinator community, is essential to the 

maintenance of yields in the 75% of our crops that benefit from insect pollination. 

Through a field study and pollinator exclusion experiments on two soft-fruit crops in a 

system with both wild and managed pollinators we have linked seasonal differences in 

the abundance of pollinator groups to yields across the growing season. The seasonal 

complementarity provides evidence for the need to manage multiple species groups and 

highlights the risks of replacing all pollinators with managed alternatives. Pollinators 

responded differently to weather and habitat variables suggesting that diversity can 

reduce the risk of pollination service shortfalls. The functional approach taken here 

shows that low efficiency pollinators such as flies may be more important to pollination 

than expected. Understanding how differences between pollinator groups can enhance 

pollination services to crops strengthens the case for multiple species management and 

provides evidence for the link between increased diversity and function in a real crop 

system.  
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2.2 Introduction 

Insect-mediated pollination increases yield in around 75% of world food crops, which 

represent ~35% by volume of primary food production (Klein et al., 2007). The 

importance of insect pollination has led to the commercialisation of not only the 

honeybee, but also several species of bumblebee and various solitary bees (Pitts-Singer 

& Cane, 2011). Nonetheless the role of wild pollinators is likely to be greater than was 

previously assumed: a meta-analysis of pollination data from 41 crop systems suggests 

that honeybees supplement wild pollinator numbers, rather than the other way around 

(Garibaldi et al., 2013) and wild pollinators play a significant role in varied crop 

systems (e.g. Winfree et al., 2008; Breeze et al., 2011; Rader et al., 2012).  

Wild species are also important for their contribution to pollinator diversity, which has 

been shown to positively influence crop success (Klein et al., 2003). Increased diversity 

increases ecosystem service provision when species contribute slightly different 

functions (Cadotte et al., 2011). Particularly, functional diversity is increased when 

species (or species groups) are complementary in the services they provide so the 

overall scope of service provision is increased when more species are present. For 

example, pollinator species may be complementary in the heights at which they forage; 

honeybees and wild bees are complementary in their use of space on almond trees, so 

having both groups present increases yield overall (Brittain et al., 2013). Likewise seed 

set in pumpkins grown at different heights was increased when more pollinator groups 

with different preferred pollinating heights were available (Hoehn et al., 2008). For 

crops with long growing seasons, one species or group of species may not be active for 

the entire growing season, and so complementarity in abundance or activity across time 

(seasonal complementarity) will be important (Bluethgen & Klein, 2011).  
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Species or species groups that overlap in functional contribution may respond slightly 

differently to changing conditions, thus buffering the overall service over multiple years 

(Winfree & Kremen, 2009; Brittain et al., 2013). Differential responses to landscape 

context or management practices could ensure the service provision continues after 

land-use alterations (Steffan-Dewenter et al., 2002; Jha & Vandermeer, 2009; Tuell & 

Isaacs, 2010). Maintaining both complementarity functions and response diversity will 

ensure that future pollination needs are met under a range of circumstances (Elmqvist et 

al., 2003).  

The soft fruit industry in Scotland produces 216,000 tonnes of strawberries (5% of the 

global total) and 3,000 tonnes of raspberries per year (FAOSTAT). Both crops are 

highly reliant on insect pollination for marketable fruit. The pollinator requirements of 

raspberries and strawberries differ: raspberries are highly attractive to bees and the peak 

of flowering coincides with the seasonal peak in bee numbers. Strawberries, on the 

other hand, have a long growing season which may require multiple pollinator groups to 

ensure pollination across the season. This study examines the importance of diversity in 

the pollination of these two soft-fruit by asking the following questions:  

1. What are the relative levels of pollination contributed by different species?  

2. Is there seasonal/temporal complementarity between different pollinator groups 

enabling strawberry pollination across the season?  

3. Are there differences in the response of different pollinator groups to weather 

and habitat variables which could be important for the continued pollination of 

these crops?  
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Figure 2.1 Location of study sites within east and central Scotland  
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2.3 Materials and Methods 

2.3.1 Sites and survey 

The main domesticated pollinators on soft-fruit farms are commercially-reared 

bumblebees. Honeybees are also sometimes present though they are not ubiquitous in 

UK crop systems (Breeze et al. 2011). Seven species of wild bumblebees are common 

in the study area as well as other pollinators including solitary bees, hoverflies and 

other flies (Lye et al. 2011). Contact was made with soft-fruit farms in Autumn 2010 

and 29 farms were visited in early 2011. Farm managers were asked about commercial 

pollinator management; how many bumblebee colonies were used and whether, to their 

knowledge, honeybees were kept within flight distance of the farm. They were also 

asked about wild pollinator management e.g. whether wild flower strips were grown. 

Twenty-five farms spread through Angus, Perthshire and Fife (Fig. 2.1) were then 

chosen for inclusion in the field study. Of these nine grew only strawberries, four only 

raspberries and twelve grew both. Most soft-fruits were grown undercover in polythene 

tunnels (polytunnels), all of which were open-ended, some were open-sided while 

others had closed sides.  

2.3.2 Pollinator Activity Transects 

For each transect, a tunnel was picked at random from those with flowering crops and 

walked along at a slow walking pace, recording all pollinator visits to flowers. 

Transects on each farm ran for a total of 300m and included between two and four 

adjacent tunnels. Bombus species were classified to species level where possible; 

workers of domesticated Bombus terrestris, wild B. terrestris and wild B. lucorum 
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cannot be reliably distinguished by eye. To split the counts of these species into wild 

and domesticated classifications, we used the average number of B.terrestris/B.  

lucorum observed at farms not using commercial bees divided by the average number 

of B. terrestris/B. lucorum seen at farms using commercial bees to estimate the 

proportion of B. terrestris/B. lucorum observed, that could be attributed to wild sources. 

These proportions (for each fruit and time period) were then applied to the overall 

counts on farms using commercial bees, to obtain an estimate of the number of B. 

terrestris/B. lucorum from wild populations, and B. terrestris/B. lucorum from 

commercial sources.  

Other pollinators were assigned to broad grouping, i.e. solitary bees were all grouped 

together, as were flies (including hoverflies). Three replicate flowers counts were taken 

in 1m
2
 areas within each tunnel to estimate floral resources provided by the crop. Cloud 

cover was estimated as a percentage. Wind speed was measured on a three point scale 

(0 = still, 1 = light breeze, 2 = strong breeze), as was rain (0 = no rain, 1 = light rain, 2 = 

heavy rain). Days with heavy rain were avoided where possible, but if rain began during 

a visit the transect was completed. Weather stations closest to each farm were used for 

daily temperature and humidity data. Transects were all walked between 10 am and 5 

pm. The time and type of polythene tunnel (closed-sided or open-sided) were also 

recorded. Farms were visited six times throughout the season, with approximately three 

weeks between each visit.  

2.3.3 Exclusion experiment 

The effect of pollinator visits on fruit quality and weight was evaluated at a subset of 

the farms (9 raspberry-growing farms and 11 strawberry-growing farms). Pollinators 

were kept away from flowers using polythene mesh netting (holes 1.35mm
2
, Harrod 



30 
 

Horticultural Ltd, Lowestoft, UK). The net was chosen to exclude insects without 

allowing moisture to build up within the net, and to allow wind-blown pollen through.  

For raspberries, 6 plants were used in each of 3 different polytunnels per farm; on each 

plant a bunch of approximately 9 unopened flowers were covered with the netting 

which was secured to the branch with covered wire. The bunches were marked with 

coloured tape along with a control bunch from the same plant. Strawberry plants were 

entirely covered with the exclusion mesh which was supported by arches of flexible 

garden wire and fixed to the bed with metal staples and duct tape. The plants were 

covered in groups of four (two groups of four were covered in each of two polytunnels). 

Each group was matched with a group of control plants which were marked with tape 

and signposted. Excluded and control fruits were picked when ripe. The picked berries 

were categorised into class I and class II fruit based on European marketing criteria and 

weighed (European Commission, 2011).  

2.3.4 Habitat data  

Landscape data were obtained from the OS MasterMap Topography Layer (EDINA 

Digimap Ordinance Survey Service) and ArcGIS 9.2 was used to create circles 1km 

around each study site. The feature classes from the topography layers were reclassified 

into five categories; (i) urban areas (buildings and structures), (ii) farmland, (iii) water 

(inland and tidal), (iv) linear man-made structures (roads, tracks and paths); and (v) 

semi natural habitat (rough grassland, scrub and woodland). The proportions of land 

cover for each of the five categories within each 1km buffer were calculated and used in 

subsequent analysis.  
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2.4 Statistical Analyses 

2.4.1 Exclusion experiment 

Statistical analyses were conducted using the statistical software R version 2.15.1 using 

packages lme4 and MASS (R Development Core Team, 2011). Models were fitted to 

the strawberry and raspberry data sets with fruit quality (with binomial errors) or fruit 

weight (with Gaussian errors) as response variables. Strawberries had high inter-farm 

variation and so farm identity was fitted as a random factor within a generalised linear 

mixed model (GLMM). For the raspberry data the residual deviance after fitting a GLM 

was approximately equal to the remaining degrees of freedom; there was little 

remaining variation to explain through random effects and so a GLMM was not used 

(Crawley, 2002). For all models, treatment (insects excluded vs. not excluded) and the 

average number of pollinators in the transects walked during the ripening period were 

included as factors, the ripening period was taken as the five weeks prior to picking 

(Lye et al., 2011). To take into account the differences in ability to transfer pollen and 

the speed at which pollinators work, the abundance counts were multiplied by 

efficiency factors to provide efficiency-adjusted counts (Isaacs & Kirk, 2010). 

Honeybee numbers was reduced by a factor of 0.5 relative to bumblebees (Willmer et 

al., 1994) and fly numbers were reduced by a factor of 0.2 (Albano et al., 2009; Jauker 

et al., 2012)  

2.4.2 Pollinator activity 

Counts of each pollinator group were summed along transects for each time period. 

With abundance of each pollinator group as the response, GLMM models with Poisson 

errors were fitted to the data with farm identity as a random factor. Data were 

overdispersed and so observation-level random effects were included in addition to the 
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farm level random effects (Maindonald & Braun, 2010). Potential explanatory variables 

were split into three sets; observation variables (those variables available for each 

observation including weather variables, date etc), management variables and habitat 

level variables (Table 2.1). The analysis therefore took a hierarchical approach, with 

observation level variables and farm level variables (habitat and management variables) 

(Gelman & Hill, 2007). A full observation level model was fitted to each pollinator 

group on each soft-fruit. This model was reduced by removing non-significant terms 

(p>0.10) and comparing the Akaike Information Criterion (AIC) between models until 

the model with the lowest AIC was achieved. The management variables and habitat 

variables were then fitted separately to the most informative observational level model 

and the two-level models were reduced as before. 

2.4.3 Complementarity 

Species groups show seasonal complementarity if the peaks of their distributions across 

the season tend to occur separately. This can be tested for using a variance ratio test (1) 

(Schluter, 1984; Stevens & Carson, 2001; Winfree & Kremen, 2009), which is based on 

the relationship between total variance of M elements and the covariances between 

them (2). In this case the elements (X) are the abundances of the four pollinator groups 

through time. 
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Table 2.1 List of variables used in GLMMs to explain pollinator visitation to strawberries and raspberries  

 

 

 

 

 

 

 

  

 

Observation level Farm Level  Farm Level 

  Management variables Habitat variables 

Day Honeybees within 1km of farm (Yes or No) % Woodland and scrub within 1km 

Day squared Number of bumblebee colonies used on crop per year % Urban area within 1km 

Time of day Wild flower strips planted (Yes or No) % Roads within 1km 

Polytunnel type Field margins left unmowed (Yes or No)  

Wind speed (0, 1, 2)   

Cloud cover (%)   

Humidity (%)   

Temperature (⁰C)   
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If the species groups do not tend to covary positively or negatively, the total variance 

will be equal to the sum of the variance of each element, and hence the test statistic (C) 

will be close to 1. Test statistics less than 1 implies negative covariance and thus that 

the pollinator groups have different peaks throughout the season. A test statistic (C) 

across all the farms was calculated from the raw data. Per farm test statistics were not 

calculated as only one visit per farm was made per time period and weather impacted 

abundance. We generated farm level complementarity figures by simulating pollinator 

abundances by group for 6 time periods throughout the season. To control for effects of 

weather we took the average weather variables for each of 6 time periods and used 

these to generate 1000 random weather scenarios. These scenarios were used as inputs 

to the best fitting two-level GLMM model for each pollinator group. The 

complementary figures for each simulated set of pollinator abundances were then 

calculated. As in Winfree & Kremen (2009) we then compared the complementarity 

results for the simulated data using the full model, versus the results from the same 

models but with the day and day squared terms eliminated (the null model) using 

Wilcoxon signed rank test.  

2.4.4 Impact of complementarity on yield 

To assess the importance of different pollinator groups to fruit yield across the season, 

the GLMM models for wild bumblebees, honeybees and flies were used to simulate 

pollinator numbers across the season under average conditions. The outputs were 
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totalled and adjusted for pollinator efficiency and the total adjusted pollinator numbers 

at each time point were then used as an input for the fruit quality GLMM. On the basis 

of discussions with farmers, the threshold for profitability was taken to be an average of 

80% first class fruit. Pollinator groups were then deleted one by one from the total set, 

and fruit quality across the season re-evaluated. 

2.5 Results 

2.5.1 Pollinator Activity Transects 

From 15 April to 19 August 2011, we observed 2,478 pollinators visiting strawberries 

in 129 transects at 21 farms and 4,464 pollinators visiting raspberries in 80 transects at 

16 farms. Transects took on average 43 minutes to walk. Pollinators were observed on 

raspberry transects from mid-May to late July, and on strawberries from mid-April to 

mid-August. On average four (three to five) raspberry transects were walked on each 

farm with raspberries, and six (four to six) strawberry transects were walked on each 

farm with strawberries. Strawberry plants were considerably less attractive to 

pollinators than raspberry plants, with an average density of 6.4 pollinators per 100m
2
 

(mean ± s.d. = 3,556 ± 24 flowers), compared to an average of 18.6 pollinators per 

100m
2
 (mean ± s.d. = 1,934 ± 23 flowers) on raspberries. These figures are the 

equivalent of 0.91 pollinators per 500 flowers for strawberries, and 4.89 per 500 flowers 

for raspberries. Of 21 farms growing strawberries, 18 (86%) used commercial 

bumblebees on this fruit. While the majority purchased bumblebees for pollination early 

in the season (late April to June), 3 out of 18 farms restocked with additional colonies 

mid-way through the season. In contrast, nine of the 16 farms (56%) growing 

raspberries used commercial bumblebees on raspberries and these farms only bought 

bees once at the beginning of the season. 
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B. terrestris/B. lucorum, including commercial bumblebees, provided around half the 

pollinator visits for both crops averaged across all farms (57% of visits to raspberries 

and 46% of visits to strawberries, see Appendix 2.1). We estimated that around 16% of 

visits to raspberries and 29% of visits to strawberries were by commercial B. terrestris, 

and honeybees contributed approximately a quarter of visits to both crops (Appendix 

2.1). Other bumblebee species together comprised 20% of pollinator visits for 

raspberries and 10% for strawberries; these included B. lapidarius, B. pascuorum and B. 

pratorum. B. hortorum was seen on raspberries but not strawberries. Hoverflies and 

other flies made up around 1% of visits to raspberries and 23% of visits to strawberries. 

Other pollinators included solitary bees which made 68 visits to strawberries and 23 

visits to raspberries, and butterflies which were only observed visiting strawberries (5 

visits); these were not analysed further. The pollinator counts were subsequently 

grouped into wild bumblebees (including our estimate of the number of B. terrestris/B. 

lucorum attributable to wild pollinators), commercial bumblebees (the remainder of B. 

terrestris/B. lucorum visits), honeybees and flies (including hoverflies). 

A total of 17 of the 25 farms had wild flower strips on the farm with 11 leaving field 

margins unmowed to assist pollinators. Neither of these variables predicted the number 

of wild bumblebees on either raspberries or strawberries (Tables 2.2 and 2.3). Farmer 

management of commercial pollinators did, however, have an effect; commercial 

bumblebee numbers significantly increased with the number of colonies used on 

strawberries. Where farmers indicated that there were honeybees within flying distance 

of the farm, higher numbers of honeybees were seen on both raspberries and 

strawberries. 
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Table 2.2 Coefficients and standard errors for variables in the most informative observational model (lowest AIC) explaining number of visits by pollinator 

groups to strawberry flowers  

† Number of colonies bought. ‡ Honeybees known to be deployed nearby (yes or no). ¶ Proportion of urban area within 1km. § Proportion of natural 

habitat within 1km. 

 

Strawberries Observation level variables in best fit model             

Pollinator group Day Day squared Polytunnel Flowers 
Cloud cover 
(%) Wind (0,1,2) Rain (0,1,2) Temp (⁰C) 

Humidity 
(%) 

Wild bumblebees 0.42±0.17* -1.31 ± 0.15*** -0.20 ± 0.21 
0.27 ± 
0.11** -0.22 ± 0.10* 

-0.42 ± 
0.13** 

-0.84 ± 
0.35* 0.20 ± 0.12 . ns 

Commercial bumblebees -0.98±0.15*** Ns 0.11 ± 0.23 Ns Ns -0.28 ± 0.13* 
-1.34 ± 
0.41** 

0.46 ± 
0.12*** 0.22 ± 0.12 .  

Flies and hoverflies 1.69±0.17*** Ns 0.39 ± 0.30 Ns Ns 
0.61 ± 
0.17*** 0.41 ± 0.26 -0.34 ± 0.14* 

-0.40 ± 
0.14** 

Honeybees (presence) Ns -1.34 ± 0.36*** 1.28 ± 0.61* Ns -0.69 ± 0.28* Ns Ns ns ns 

Honeybees (when present) 0.61±0.18*** Ns 1.10 ± 0.47* Ns -0.41 ± 0.14** Ns Ns ns ns 

Strawberries 
Farm level variables in best fit 
model 

Pollinator group Management Habitat 

Wild bumblebees Ns Ns 

Commercial bumblebees 
0.0018 ± 
0.000826*† Ns 

Flies and hoverflies Ns 0.60 ± 0.21**¶ 

Honeybees (presence) Ns  -0.16 ± 0.06**§ 

Honeybees (when present) 1.20 ± 0.56*‡ Ns 
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Table 2.3 Coefficients and standard errors for variables in the most informative observational model (lowest AIC) explaining number of visits by pollinator 

groups to raspberry flowers  

 

 

 

 

 

 

† Honeybees known to be deployed nearby (yes or no), § Proportion of natural habitat within 1km. 

 

Raspberries Observation level variables in best fit model             

Pollinator group Day Day squared Polytunnel Flowers 
Cloud cover 
(%) Wind (0,1,2) Rain (0,1,2) Temp (⁰C) 

Humidity 
(%) 

Wild bumblebees 1.48 ± 0.22***  -1.88 ± 0.32*** -0.02 ± 0.20 
0.75 ± 
0.11***  

-0.36 ± 
0.11*** Ns Ns ns ns 

Commercial bumblebees Ns Ns -4.52 ± 1.26*** 1.29 ± 0.59* Ns Ns Ns ns ns 

Honeybees (presence) Ns Ns 1.54 ± 0.71* 0.69 ± 0.44 Ns Ns Ns ns ns 

Honeybees (when present) 1.55 ± 0.54*** Ns 0.19 ± 0.42 
1.06 ± 
0.26*** -0.52 ± 0.26*  

1.15 ± 
0.30*** Ns 

0.76 ± 
0.26** ns 

Raspberries 
Farm level variables in best fit 
model 

Pollinator group Management Habitat 

Wild bumblebees Ns Ns 

Commercial bumblebees Ns Ns 

Honeybees (presence) Ns  -0.19 ± 0.08*§ 

Honeybees (when present) 1.18 ± 0.58*†  Ns 
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Honeybees were less likely to be found in polytunnels with closed sides than open 

sides. Commercial bumblebees, on the other hand, were more abundant in closed sided 

tunnels, likely reflecting the fact that commercial bees (when used) are more likely to 

remain within a tunnel with closed sides.   

The factors influencing the abundance of pollinators differed between pollinator groups 

(Table 2.2 and 2.3). Wild bumblebees, commercial bumblebees and honeybees had 

similar responses to weather variables, reducing numbers with increasing cloud, wind 

and rain, and increasing with temperature. Flies, on the other hand, seemed to respond 

in the opposite way, increasing in number with increasing wind, rain and decreasing 

temperature. Numbers of flies visiting strawberries increased with the proportion of 

urban area within 1km of the farm. The probability of presence of honeybees on a farm 

declined with an increased proportion of natural habitat within 1km of the farm. 

2.5.2 Exclusion Experiment 

When pollinators were able to access flowers, a higher proportion of raspberries were 

first class (Appendix 2.2: mean = 91% first class, s.d. = 0.09), than when pollinators 

were excluded (Appendix 2.2: 28% first class, s.d. = 0.09) (Fig. 2.2a (i), Z = 10.28, p < 

0.001). Raspberries were also heavier when pollinators were allowed to forage 

(Appendix 2.2: mean of 3.39g ±0.68 v 4.70g ±1.13 ) (Fig. 2.2b (i), t = 2.11, p=0.051). 

There was no relationship between raspberry quality and the number of pollinators in 

the transects during the ripening period (Fig. 2.2c (i), Z = -1.21, p>0.05).  

Excluding pollinators from strawberries caused a decline in fruit quality by 

approximately 50% (0.4 vs 0.8 fruits reaching 1
st
 class) (Fig. 2.2a (ii), Z = 10.28, p < 

0.001). There was no significant difference in the weight of the strawberries grown with 

or without pollinators (Appendix 2.2: mean = 11.2g ±1.70 v 10.2g ±1.57) (Fig. 2.2a, Z 
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= -0.29, p>0.05). Total efficiency adjusted pollinator number was a significant predictor 

of the proportion of first class fruit when pollinators were allowed to forage (Fig. 2.2c 

(ii), Z = 2.55, p = 0.011).  

2.5.3 Seasonal Complementarity 

The variance of the abundance over time for all species at all farms (Var (T)) was 45.3 

whereas the sum of the individual variances (∑   (  )) was 80.3, giving a variance 

ratio of 0.56 (see Appendix 2.3). A test statistic of below 1 supports the hypothesis that 

pollinator groups peak at different times across the season. The same conclusion was 

reached when the simulated values for each farm were analysed: comparing the 

simulated values with and without individual time components, the simulated values 

from the full model were 0.77 on average for the closed-sided tunnels (compared to 

0.96 for the null model; W= 232183, p<0.001) and 0.76 on average for the open sided 

tunnels (compared to 0.93 for the null model; W = 282753, p<0.001). The results were 

consistent whether the abundance figures were adjusted for efficiency or not (Appendix 

2.4).  

2.5.4 Impact of Complementarity on Strawberry Yields 

In both closed and open-sided tunnels there were insufficient pollinators for a high 

proportion of first class fruit early in the season, which coincides with commercial 

bumblebee use (Fig. 3.3).  

The proportion of first class fruit in the mid-season is predicted to be low in closed 

sided tunnels if wild bumblebees are not present as honeybees (the other pollinator 

group present in abundance in mid-summer) are not abundant in this type of tunnel.  
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Figure 2.2 Effect of pollinator exposure and numbers of pollinators (adjusted for efficiency) on 

fruit quality and weight. (a) Proportion of class I fruit was higher when insects could visit 

flowers of (i) raspberries (t = 10.28, p < 0.0001) and (ii) strawberries (t = 10.43, p < 0.0001), 

weight of fruit was marginally significantly higher when insects could visit (iii) raspberries (Z = 

2.11, p = 0.0513), but insects did not increase weight of (iv) strawberries (Z = 1.60, p > 0.05). 

(b) Fruit quality increased with the number of pollinators adjusted for efficiency in (ii) 

strawberries (treatment x adjusted pollinator number, t = 2.55, p = 0.011) but not (i) 

raspberries were no relationship was observed (t = -1.21, p > 0.05). 



42 
 

Figure 2.3 Simulated proportions of class I strawberries across the growing season with 

pollinator groups deleted. (a) closed-sided tunnels (i) Honeybees kept in the vicinity and (ii) 

honeybees are not kept within the vicinity. (b) Open-sided tunnels (i) honeybees kept in the 

vicinity (ii) honeybees not kept in the vicinity.  

 

In open-sided tunnels, both honeybees and wild bumblebees pollinate during the middle 

of the season. Correspondingly the proportion of first class fruit does not drop as 

severely if wild pollinators are not present.  

Flies were important for pollination at the end of the season for both tunnel types, and 

predicted aggregate yield fell on the removal of this pollinator group. In neither tunnel 

type are pollination visits sufficient for 80% pollination across the whole season, but 

with all pollinator groups present this target was more likely to be hit. Simulations were 

not run for raspberries as the quality and weight of raspberries was consistently high at 
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all farms sampled, suggesting that pollination services are not limiting raspberry 

production. 

2.6 Discussion 

The pollination of strawberries throughout the year is facilitated by seasonal 

complementarity among both wild and commercial pollinators. Honeybees and wild 

bumblebees can provide pollination through the peak of the season, June and July, after 

which flies provide the bulk of pollination services. The potential for complementarity 

in seasonal abundance between different pollinator groups was suggested by Bluethgen 

and Klein (2011), but to our knowledge this is the first experimental evidence for such 

an effect. Our data supports the suggestion that species diversity can improve 

ecosystem services by increasing the functional range of the service provided.  

Wild bee numbers were sufficient to provide adequate pollination for raspberries. 

Raspberries are more attractive to pollinators than strawberries and they have a shorter 

growing season, which coincides with the peak of wild bee activity. Despite this, 

commercially-reared bumblebees were used on half of the sites which grew raspberries. 

While commercially-reared bumblebees may not be necessary every year, there can be 

high variation in pollinator services between years; Lye et al. found that raspberry 

pollination was limited by lack of wild pollinators in an experiment in the same area in 

2009 (Lye et al. 2011). The relative abundance of different species can change 

dramatically between years as observed on watermelon and oil-seed rape (Kremen, et 

al., 2002). Smoothing out interannual variability in pollination services might be a 

justification for using domesticated bees on the farms studied.  

There is no reliable way to distinguish commercial B. terrestris and wild 

B.terrestris/lucorum in the field. The proportions of B. terrestris/lucorum observed that 
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were wild bees were estimated based on data from farms which do not use commercial 

bumblebees. This assumes that commercial bumblebee use itself does not reduce the 

number of wild bumblebees seen at a farm, and that there are not fundamental 

differences between farms that do and do not deploy commercial bumblebees that might 

affect wild bee abundance. We would expect commercial bumblebees to have an impact 

on wild bumblebees if densities of bees were high enough for competition to occur. 

This is unlikely on strawberries as the overall pollinator density was low. Densities 

were far higher on raspberries, so it is possible that the use of commercial bees could 

have affected the numbers of wild bees observed here. However any competition would 

presumably also affect B. pascuorum and B. pratorum; there were no differences in 

densities of these species between raspberry farms which used commercial bees and 

those that did not. It is reasonable to conclude that significant competition did not occur 

on the farms observed and that there are not major differences in wild bee fauna 

between farms that do and do not deploy commercial bees.  

There were differences in the responses of the pollinator groups to weather experienced 

during the field study. Information on response diversity could be critical to managing 

pollination services over time; if a species of pollinator were to decline in abundance or 

reduce activity due to poor weather conditions, pollination may fall below the threshold 

required for a profitable harvest. In our system, this is particularly important for 

strawberries; even during May and June, the threshold for a profitable strawberry 

harvest was only just met by wild pollinators on the average farm. If different pollinator 

groups respond differently to weather conditions, the risk of pollination falling too low 

could be reduced by ensuring the presence of a diversity of species (Elmqvist et al., 

2003). However the bees in our study responded in the same way to weather variables; 

both bumblebee and honeybee activity was reduced with higher wind, rain and cloud 
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cover. The ability of these bee groups to buffer the activity of the other in varying 

weather conditions is therefore limited. Conversely, flies seemed to respond in the 

opposite way to both Bombus and Apis bees, and were more likely to be seen on 

transects in wet weather and higher winds. Both Bombus and Apis species are sensitive 

to weather conditions experienced while leaving the nest, and may not forage in 

unfavourable conditions. B. terrestris were observed to cease foraging within tunnels 

when rain began, despite the polythene covering. In contrast, flies may seek shelter 

within the tunnels in poor weather (since they have no nest to retreat to), increased 

numbers of flies on the crop.  

Different pollinator groups also responded differently to habitat surrounding the farms. 

Similar to Steffan-Dewenter and Tscharntke (1999), we found that honeybees were less 

likely to be observed on a transect with increasing natural habitat in the 1km 

surrounding the farm. This relationship might be because natural habitat provides floral 

resources that are more attractive to honeybees. No habitat variable tested influenced 

the numbers of bumblebees in our study. While some studies have found a declining 

relationship between social bee abundance and habitat isolation (reviewed by Ricketts 

et al., 2008), other studies found no relationship between bumblebees and semi-natural 

habitat at any scale (Westphal et al., 2006). Another study in the same region of 

Germany found a trend of increasing bumblebee numbers with more natural habitat at 

large scales, though this was not significant (Steffan-Dewenter et al., 2002). There was 

also no relationship between wild bee visitation and proportion of natural habitat around 

watermelon crops across Pennsylvania and California, with the suggestion that other 

features in the farming landscape can provide bee habitat which can mitigate loss of 

semi-natural areas (Winfree et al., 2007). Bumblebees also have relatively large home 

ranges (Knight et al., 2005; Osborne et al., 2008) which could account for their 
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insensitivity to natural habitat within 1km in this study and others (Greenleaf et al., 

2007).  

Fly abundance was positively related to the proportion of urban areas in the surrounding 

environment, and whilst come fly species are associated with human activity e.g. 

breeding in organic waste and refuse heaps (Goulson et al., 2005), the mechanism 

behind the correlation observed in this study requires further investigation. Gardens 

within urban areas may also provide floral resources that support pollinators (Goulson 

et al., 2010), though it was notable that only flies showed a relationship with urban 

areas in this study.  

While farmers could increase the number of commercial pollinators by buying more 

bumblebee boxes, or keeping honeybees near to the farm, the wild pollinator 

management prescriptions (wild flower strips and unmowed field margins) did not 

increase the visitation rate of any of the pollinator groups. Increasing floral resources 

has been seen to boost queen numbers in some bumblebees (Lye et al., 2009), and is 

well known to attract large numbers of worker bumblebees (Kells et al., 2001; Carvell 

et al., 2007), but the link to increased pollination of nearby crops is less clear (Klein et 

al., 2012). The pollinator management parameters we used were self-reported from the 

farm managers. Many of the farms that had wild flower strips were part of supermarket 

schemes to boost pollinators. However, the area requirement was generally very small 

(~0.2 ha) and it could be far away from the crop, with farmers reporting poor 

germination of some seed mixes. While such actions, if successful, may contribute to 

the abundance of pollinators on the farm (Haaland & Bersier, 2011), they are unlikely 

to significantly boost the number of bees on a crop unless they encompass a sizeable 

area, establish to provide a flower-rich sward, and are near to the crop plant requiring 

pollination.  
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Our data suggest that flies are important pollinators of strawberries in late season. 

Methods to increase fly populations or those of other non-bee pollinators have rarely 

been studied (although see Hickman & Wratten, 1996), but there is anecdotal evidence 

of mango farmers positioning animal carcasses near to crops to encourage flies, 

suggesting they are important in other fruit systems (Barbara Gemmill-Herren pers 

comm). It would be useful to investigate in more detail the particular species involved 

in strawberry pollination. For example, provision of breeding habitat for flies (which 

might include dung heaps for many calyptrate flies or butts of stagnant water for 

hoverflies such as Eristalis sp.) would require little space and minimal maintenance.  

Despite not being efficient pollinators of strawberries, flies increase overall pollination 

services through their unique contribution to functional diversity; they increase the 

seasonal spread of pollinators and widen the range of weather conditions in which 

pollination can occur. Developing methods of evaluating the benefit of increasing 

number of species, which take into account the increase in function diversity will be 

important if the true contribution of species groups is to be appreciated. 
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2.7 Chapter 2- Appendix 

Table 2.1. Overall number and percentage of total visits observed by different species of 

pollinator, and different pollinator groups, bold entries are pollinator groups used in analysis 

 

 
Raspberries Strawberries 

  
Visits to 
flowers 

Percent of total 
visits (%) 

Visits to 
flowers 

Percent of total 
visits (%) 

B. terrestris/B. lucorum 2502 57% 1141 46% 

Of which commercial  697 16% 706 29% 

Of which wild  1805 41% 441 18% 

B. pascuorum 160 4% 21 1% 

B. pratorum 487 11% 65 3% 

B. lapidarius 131 3% 134 5% 

B. hortorum 24 1% 0 0% 

All wild bumblebees 2607 59% 661 19% 

A. mellifera 1029 23% 477 27% 

Solitary bees 15 0% 68 3% 

Flies 55 1% 561 23% 

Total 4403   2473   
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 Table 2.2. GLM (raspberries) and GLMM (strawberries) for the effect of efficiency adjusted pollinator numbers on percentage of first class fruit and fruit 

weight. A significant interaction between the treatment (pollinators present or excluded) and the adjusted number of pollinators signifies that increasing 

pollinator abundance increases the fruit set. This was the case in strawberries, percentage of class I fruit increased with adjusted number of pollinators, but 

not for raspberries where pollinators did improve fruit set, but sufficient pollination was achieved at all farms. 

 

 

 

 

 
Raspberries Coefficient ± S.E. Z/t P=value  Mean ± S.E 

% Class I 
With pollinators 1.35 ± 0.13 10.28 <0.0001 With pollinators 0.91 ± 0.03 

x adj. pollinator no 0.00 ± 0.00 -1.21 Ns Pollinators excluded 0.27 ± 0.03 

Weight 
 

With pollinators 1.46 ± 0.69 2.11 0.0512 With pollinators (g) 4.70 ± 0.36 

x adj. pollinator no 0.00 ± 0.00 -0.29 Ns Pollinators excluded (g) 3.39 ± 0.22 

    

  

 Strawberries Coefficient ± S.E. Z/t P=value  Mean ± S.E 

% Class I 
With pollinators 1.78 ± 0.17 10.43 <0.0001 With pollinators 0.77 ± 0.04 

x adj. pollinator no 0.04 ± 0.02 2.55 0.0109 Pollinators excluded 0.35 ± 0.05 

Weight 
With pollinators 0.46 ± 0.66 0.69 Ns With pollinators (g) 11.5 ± 0.49 

x adj. pollinator no 0.09 ± 0.06 1.60 Ns Pollinators excluded (g) 10.2 ± 0.45 
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Table 2.3. Average number of each pollinator group per transect of strawberries, data used to 

calculate complementarity statistic.  

 

 

Average number of pollinators per transect 
 

 Time Period C bumblebees W bumblebees Honeybees Flies Sum 

1 12.6 0.8 1.6 0.0 15.0 

2 5.5 1.9 1.0 1.5 9.9 

3 5.5 10.8 6.4 1.0 23.6 

4 6.6 10.6 9.1 3.0 29.3 

5 3.1 5.2 3.1 3.9 15.3 

6 1.9 1.8 1.9 19.2 24.8 

Variance 11.5 17.1 8.6 43.1   

    
V of the sums 45.3 

    
S of the variances 80.3 

    
Complementarity 0.56 

 

 

Table 2.4. Summary statistics for complementary values from 1,000 simulations of pollinators 

using the full GLMM model, and the null model with day and day squared terms removed. For 

each tunnel type the mean complementary statistic was lower when pollinators were 

generated from the full model (implying that pollinator groups did peak at different times). 

This difference was observable whether or not the abundances were adjusted by efficiency. 

 

  Tunnel 
type 

Model Mean Variance 
Wilcox 
statistic 

P-value 
  

Pollinator 
abundance 

Closed-
sided 

Full model 0.77 0.059 
232183 <0.0001 

Null model 0.96 0.037 

Open-sided 
Full model 0.76 0.059 

282753 <0.0001 
Null model 0.93 0.056 

Pollinator 
abundance 

adjusted 
by 

efficiency 

Closed-
sided 

Full model 0.83 0.044 
227422 <0.0001 

Null model 0.99 0.028 

Open-sided 
Full model 0.84 0.038 

245408 <0.0001 
Null model 0.98 0.027 
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Chapter 3- Experimental evidence that wild flower 

strips increase pollinator visits to crops 

 

 

 

 

 

 

A version of this chapter has been submitted to Ecology and Evolution: 

Feltham, H., Minderman, J., Park, K. & Goulson, D. Experimental evidence that wild 

flower strips increase pollinator visits to crops. 

K. Park and D.Goulson supervised the project and J.Minderman provided advice on the 

statistical method used.  All authors commented on draft versions of this manuscript. 

 

  



52 
 

3.1 Abstract 

Wild bees provide a free and potentially diverse ecosystem service to farmers growing 

pollination dependent crops.  Whilst many crops benefit from insect pollination, soft 

fruit crops, including strawberries are highly dependent on this ecosystem service to 

produce viable fruit.  However, as a result of intensive farming practices and declining 

pollinator populations, farmers are increasingly turning to commercially reared bees to 

ensure that crops are adequately pollinated throughout the season.  Wildflower strips 

are a commonly used measure aimed at the conservation of wild pollinators.  It has been 

suggested that commercial crops may also benefit from the presence of non-crop 

flowers however, the efficacy and economic benefits of sowing flower strips for crops 

remains relatively unstudied.  In a study system that utilises both wild and commercial 

pollinators we test whether wildflower strips increase the number of visits to adjacent 

commercial strawberry crops by -pollinating insects. We quantified this by 

experimentally sowing wildflower strips approximately 20 meters away from the crop 

and recording the number of pollinator visits to crops with, and without, flower strips.  

Between June and August 2013 we walked 292 crop transects at six farms in Scotland, 

recording a total of 2,826 pollinators.  On average, the frequency of pollinator visits 

was 25% higher for crops with adjacent flower strips compared to those without, with a 

combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of 

all pollinators observed.  This effect was independent of other confounding effects, such 

as the number of flowers on the crop, date and temperature.  This study provides 

evidence that soft fruit farmers can increase the number of pollinators that visit their 

crops by sowing inexpensive flower seed mixes nearby.  By investing in this 

management option farmers have the potential to increase and sustain pollinator 

populations over time.   
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3.2 Introduction 

In the past few decades populations of both domestic and wild honey bees have fallen 

dramatically in some countries such as the UK and USA (Kremen et al. 2004; Potts et 

al. 2010). Concurrently, some bumblebee species have experienced substantial range 

contractions across both Europe and North America (Sárospataki et al. 2005; Carvell et 

al. 2006; Colla & Packer, 2008).  Agricultural intensification is believed to be one of 

the key drivers of these declines (Goulson et al. 2008), but while modern agriculture 

may represent a hostile environment for pollinators, the number and extent of crops 

requiring pollination has increased.  Approximately one third of global crops by volume 

and 84% of European crops benefit from animal pollination of some kind (Klein et al. 

2007), with limitations in pollinator number likely to result in reduced reproductive 

potential of crops (Aizen et al. 2008).  Insect pollination has been conservatively 

calculated to be worth around $3.07 billion per annum in the United States alone (Losey 

& Vaughn, 2006) making pollinator declines particularly concerning when considering 

the sustainability of our food production systems (Biesmeijer et al. 2006; Aizen et al. 

2008; Aizen & Harder 2009; Goulson 2010; Potts et al. 2010; Ollerton, Winfree & 

Tarrant, 2011).  

The soft fruit industry is growing rapidly worldwide, with production quantities of 

strawberries alone increasing by almost 40% between 2002 and 2012 (FAOSTAT).  In 

Scotland the output value of soft fruit increased from £20 million to £74 million 

between 2001 and 2011, which coincides with a large scale   move towards protected 

cultivation, e.g. using polytunnels.  Strawberries are particularly dependent on insect 

pollinators to ensure a successful crop and the production of marketable fruit, and bee 

pollination has been found to improve shape, weight and shelf life of berries, increasing 
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the commercial value of the fruit by 39% relative to wind pollination alone (Klatt et al. 

2014).   

In Scotland, farmers who produce strawberry crops on a medium to large scale rarely 

do so without the aid of polytunnels and commercial bees, the latter of which are 

usually purchased once or twice a season to help ensure adequate levels of pollination.  

Whilst the purchase of commercial bees represents a significant annual cost to many 

soft fruit farmers, wild bees provide a free pollination service. However there are 

concerns over the sustainability of wild pollinator populations due to recent declines.  

Although the relative contribution of wild and managed bees has been found to vary 

(Greenleaf & Kremen, 2006, Desjardins & De Oliveira, 2006; Lye et al. 2011), previous 

work has emphasized the importance of taking an integrated approach to pollinator 

management (Allsop et al. 2008; Garibaldi et al. 2013). 

Financial support by way of agri-environment schemes can encourage farmers to 

manage their land for the benefit of wildlife, by creating or maintaining habitats 

favourable for pollinating insects, e.g. sowing wild flower seed mixes in dedicated 

areas, or strips within cropland. Such wild flower strips can provide forage for a range 

of pollinating species (Williams 2002; Carreck & Pywell et al. 2005; Carvell et al. 

2007) and are thus likely to provide an effective method for increasing the abundance of 

these pollinators (Marshall et al. 2006).  Research has also found that the abundance 

and diversity of pollinating species visiting crops is positively correlated with the 

availability of semi-natural habitat nearby (Ricketts et al. 2008), which is unsurprising 

given the requirements that many species have for suitable nest sites  and a continuity 

of forage through the spring and summer (Richards, 2001).  In order to maintain and 

restore wild pollinator communities farmers are often advised to create areas rich in 
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plant diversity within agricultural landscapes, however this management choice is often 

poorly implemented (Carvalheiro et al. 2011).   

In a recent study Blaauw and Isaacs (2014) created wildflower plantings adjacent to 

blueberry fields in order to determine their effect on the crop, and found that the use of 

medium to large flower strips increased the number of pollinators observed on highbush 

blueberries.    Here we aim to test the prediction that the presence of wild flower strips 

can increase the number of pollinators visiting adjacent strawberry crops, whilst 

accounting for the potential confounding effects of date, temperature and the abundance 

of flowers on the crop.  The flower strips used here were smaller than those sown in 

Blaauw and Issacs and will reveal if fairly small areas of land planted with wildflowers 

can be sufficient to increase the number of pollinators observed on nearby crops.  

Determining the minimum amount of land required to boost pollination services is 

likely to be important to farmers who have to pay the opportunity cost associated with 

not using the land for something else e.g. crop production.  Whilst blueberry crops 

flower for a relatively short period of time the strawberry crop studied here can flower 

for many months and we seek to add insight into whether planted flower strips can 

increase crop pollination throughout a longer growing season.    

3.3 Methods  

3.3.1 Site selection and experimental protocol 

We selected six farms in the central Scotland area that were owned by farmers who had 

previously expressed an interest in sustainable pollinator management, and who 

produced strawberries in a minimum of 10 polytunnels using a double cropping system.  

Double cropping involves growing two crops in the same space within the same 

growing season.  In the case of strawberries this means that one seasons’ crop comes 
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from two sets of plants. Crops that are planted and flower in the summer of one season 

also produce flowers the following spring, before being replaced by new plants. This 

creates a cycle allowing for continual fruit production from May to September.   

We provided farms with 600g of wildflower seed (purchased from Scotia Seed Ltd., 

Angus, Scotland, UK) which contained a mixture of annual and biennial flowering 

species known to offer high pollen and nectar rewards (See Table 3.1 in Chapter 3 

Appendix). This quantity of seed was sufficient to sow one 6m x 50m flower strip (at a 

recommended sowing rate of 2g seed/m
2
); long enough to span the entrances of the 5 

polytunnels containing strawberry plants.  Flower strips were situated approximately 20 

meters from the crop in order to prevent damage caused by regular vehicle access into 

the tunnels.  One strip per farm was sown in spring of 2012 but three failed to establish 

sufficiently well due to particularly wet weather conditions and were re-sown in the 

spring of 2013.  At each farm an area containing 5 polytunnels situated at least 500m 

away from the flower strip was selected to use as a control.  An area of the same size 

and shape as the wildflower strips was marked out adjacent to these tunnels, with both 

treatment and control strips being located at field edges rather than between tunnel 

blocks. Treatment and control areas were selected to ensure that the tunnels surveyed at 

each farm contained the same strawberry variety. All of the farms surveyed stocked 

commercial bumblebee nest at a density of one nest per 100m tunnel.  Nests used at 

treatment and control tunnels were purchased at the same time from the same company 

(either Koppert or Syngenta, farm depending) and therefore were at even stages of 

development upon arrival.  Nests were positioned near to the centre of the tunnel and 

mounted on top of a small crate or suspended from the raised beds containing the crop, 

in order to prevent contact with the ground.  
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3.3.2 Pollinator counts 

Each farm was visited throughout the growing season between June 12, 2013 and  

August 7, 2013, with visits commencing when the first flowers on the strip began to 

open.  Three farms were visited six times and two were visited five times depending on 

the availability of flowers on the crop.  One farm was only visited twice during the 

study because the farmer decided not to double crop and strawberry plants ceased 

flowering before six visits could be made, data from this farm was still included in all 

analyses.  Farms were visited approximately once every seven days with surveys being 

carried out during dry weather conditions and when temperature exceeded 15°C.  The 

treatment and control crops and strips at each farm were visited on the same day to try 

to ensure both were monitored during similar weather conditions and the order of visit 

randomised to avoid time of day bias.   

At each farm, pollinators on the crop were counted using a modified version of the 

standard line transect method developed for butterfly surveys (Pollard 1977), with each 

of the 5 tunnels adjacent to the flower/control strip walked once per visit.  Where 

polytunnels were longer than 100m, (20 out of 60 tunnels), only the 100m of crop 

closest to the strip was monitored.  Counts were made by walking slowly through the 

centre of the tunnel, recording pollinators seen along a 2m wide transect.  All 

bumblebees were visually identified to species and where possible recorded as workers, 

males or queens.  Honeybees, solitary bees and hoverflies were also recorded as a range 

of insects have previously been found to pollinate strawberry plants(Nye & Anderson 

1974; Oliveira et al., 1991 Kakutani et al., 1993).  It is not possible to distinguish 

commercial B.terrestris and wild B.terrestris in the field and we were therefore unable 

to differentiate between wild and commercial bees of this species during the transect 

counts.  Due to the difficulties in distinguishing the workers of B. terrestris and B. 
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lucorum in the field these species were pooled..  In order to account for variations in 

crop bloom we also counted the number of open strawberry flowers on each transect. 

During each visit the number of bees found foraging on the treatment or control strip 

adjacent to the polytunnels were also recorded by slowly walking the length of the strip 

and recording all bees present.  In addition to recording the species of pollinator 

observed, a record was made of the flower species that each individual was foraging on 

in order to examine the relative attractiveness to pollinators of the different species 

included in the seed mix.  Due to high pollinator abundance on the strips, we were 

unable to count hoverflies during this survey, however all bumblebees, honeybees and 

solitary bees were recorded.   

In order to monitor forage resources availability at the wildflower and control strips, a 

simple floristic index defined previously in Carvell et al. (2004) was used.  During each 

visit all flowering species were identified and their abundance scored as (1) rare 

(approximately 1-25 flowers); (2) occasional (approximately 26-200 flowers); (3) 

frequent (approximately 201-1000 flowers); (4) abundant (approximately 1001+ 

flowers) or (5) super-abundant (more than 5000 flowers).  A flower ‘unit’ was classed 

as a single flower or spike, or in the case of multi-flowered stems, one umbel or head 

(See Table 3.1 in Chapter 3 Appendix).   

3.4 Statistical Analysis 

Flowering plant abundance scores for the wildflower treatment and control strips were 

expressed as the median value for each range, to provide an estimate of the number of 

flowering units present on each visit.  The estimated number of flowers available during 

each visit was then summed to give an overall floral abundance score for each strip per 
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visit.  All flowering species present contributed to this score, regardless of the number 

of pollinators recorded foraging on them during the course of this study.    

We separately analysed the total number of pollinators on the crop and the number of 

bees on treatment and control strips using two Generalised Linear Mixed Effects 

Models (GLMMs) fitted using the glmmADMB package version 0.8.0 (Fournier et al. 

2012) in R version 2.15.2.   

First, the number of pollinators counted per visit per tunnel was analysed using a 

GLMM with a negative binomial error distribution.  In addition to “treatment” (tunnel 

with or without flower strip) as the key fixed factor of interest, we included the year in 

which the strip was sown (as a fixed factor) and date, temperature (°C), and the number 

of open strawberry flowers (covariates) to account for potential confounding effects.  

To test whether the effect of treatment depends on the number of open flowers, date, or 

sowing year, we tested whether these three interactions were significant by adding each 

individually to the model.  As the aim of the study was to look at the effect of the wild 

flower treatment accounting for random variation between farms (rather than to 

estimate farm specific effects) farm was included as a random factor and tunnel was 

nested within farm to account for the clustering and repeated measures of our design. 

The second GLMM modelled the number of bees counted on the treatment and control 

strips during each visit as a function of the key fixed effect of treatment.  This was 

included as a fixed factor while accounting for the confounding effects of date, 

temperature, year in which strip was sown, the mean number of open strawberry 

flowers across the adjacent five polytunnels, and the floral abundance score (included 

as covariates). Farm was included as a random factor.  The potential significance of 

interactions between treatment and year of sowing, treatment and date, and treatment 

and the mean number of open strawberry flowers was also tested as described above. 
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We present the results of full models including all main effects and provide a pairwise 

comparison of the full model and the full model minus each parameter using Likelihood 

Ratio Tests.  Interactions are only included in the full model if significant. Unless 

otherwise stated all averages are means +/- standard error.   

3.5 Results 

3.5.1 Pollinators on the strawberry crop  

During the course of the study 2,826 individual insects were observed foraging on the 

strawberry crop; 1,228 on control transects and 1,598 on treatment transects, equivalent 

to an average of 8.27 +/-0.55 pollinators per 100m transect in controls and 11.10 +/- 

0.61 on treatment transects.  Sixty seven percent of the pollinators observed across all 

transects belonged to the genus Bombus (58% B. terrestris/lucorum, 4% B. lapidarius, 

3% B. pratorum and 2% B. pascuorum).  

Table 1.  Parameter estimates and likelihood ratio tests of the GLMM for the abundance of all 

pollinators found foraging on the strawberry crop   

Fixed Effects Estimate Standard 
Error 

Δ Log 
Likelihood 

χ2 χ2 

df 
P 

       
Intercept -332.402 119.201     
Treatment 0.221 0.079 -3.86 7.726 1 0.005 
Flowers on crop 0.025 0.003 -31.63 63.272 1 <0.001 
Temperature -0.041 0.016 -3.32 6.638 1 0.009 
Date 0.008 0.004 -1.51 3.031 1 0.082 
Year of sowing1 0.291 0.235 -0.53 1.064 1 0.302 
       
Random effect 
variance 

      

Farm 0.039      
Tunnel/Farm <0.001      
1
Strips established in second year 

Hoverflies were slightly more abundant in treated crop polytunnels (2.84+/-0.46 per 

100m transect) than in controls (2.31+/-0.44), with the inverse being true of honeybees, 
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which were more likely to be observed on control transects than treated transects 

(0.61+/-0.13 and 0.21+/-0.07 per 100m transect, respectively), however, both 

honeybees and solitary bees were poorly represented on crop transects relative to 

Bombus spp. and Syrphidae spp.  

On average there were 25% (22-33%) more pollinators on crops with experimentally 

sown wildflower strips nearby, compared to those without such strips (Fig. 1; Table 1). 

This effect was independent of date, year of sowing or the number of open flowers 

(p>0.1 for all interactions and they were therefore removed from the full model), and 

was found whilst accounting for the effects of a range of potentially confounding 

variables.  

 

Figure 3.1.  The abundance of pollinators on strawberry crops with and without a flower strip 

treatment. The box plots depict the median and interquartile range, with circles representing 

outliers. Whiskers represent the highest and lowest values excluding outliers. 
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Unsurprisingly, the number of pollinators found visiting the crop increased significantly 

with the number of strawberry flowers available on the transect, with temperature  

being the only variable to have a significantly negative effect on pollinator numbers. 

3.5.2 Pollinators on the wildflower strips 

Overall during the course of the study, 22 flowering plant species were recorded at 

wildflower treatment and control strips, including both sown and unsown species. They 

were visited by 1,757 pollinators, with 412 bees visiting 14 flowering species on control 

strips and 1,345 bees visiting 11 flowering species on treatment strips.  Across all 

farms, 96% of bees recorded were Bombus spp. (56% B. terrestris/lucorum; 18% B. 

pascorum; 10% B. lapidarius; 11% B. hortorum; 1% B. pratorum) and 4% were A. 

mellifera, with 85% of pollinator visits to flowers of just four species: Trifolium 

pratense, T. hybridum, T. repens (Linnaeus) and Phacelia tanacetefolia (Benth).  The 

most frequently visited species on control strips was T. repens, with 85% of all visits to 

this flower, whilst P. tanacetefolia when in flower attracted the most bees at treated 

strips (36%).  There were more pollinators on treatment versus control strips (χ
2
=22.55, 

df=1, p<0.001), however the floral abundance score was not a significant predictor of 

the number of pollinators observed (χ
2
=0.002, df=1, p=0.96).  Date significantly 

improved the model fit (χ
2
=6.37, df=1, p=0.01) with a general increase in the number of 

pollinators being seen on strips as the season progressed.  The number of pollinators on 

the strip was not significantly influenced by temperature (χ
2
=0.44, df=1, p=0.506) or 

the number of open strawberry flowers on the nearby crop (χ
2
=2.10, df=1, p=0.147).  

The only significant interaction was between treatment and the number of flowers on 

the crop, with significantly fewer bees observed on flower strips when the number of 

flowers on the crop was high (χ
2
=9.214, df=1, p=0.002). 
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3.6 Discussion 

The aim of this study was to test the prediction that the presence of wild flower strips 

can increase the number of pollinators visiting adjacent strawberry crops whilst taking 

into account other potentially confounding variables. The results presented here suggest 

that the abundance of pollinators, in particular bumblebees, found foraging on the crop 

can be significantly increased by the use of planted strips; with the model predicting an 

increase of pollinator abundance on crops of approximately 25% (22-33%) when flower 

strips were sown nearby. This effect was independent of date, the number of open crop 

flowers and year of sowing; suggesting that the presence of flower strips may increase 

pollination throughout much of the season.   The most abundant species observed on 

both the crop and neighbouring strip was B.terrestris which is unsurprising given that 

B.terrestris is the most common bumblebee throughout most of the UK and is also the 

species used in commercial bumblebee nests stocked at farms.  The inability to 

distinguish between wild and commercial individuals of this species means that we are 

unable to determine fully to what extent the flower strips sown in this study increased 

visitation of wild bees to the crop. The increased visitation could reflect more visits by 

wild insects, increased retention of the commercial bees in the crop area, or increased 

growth of the commercial bee nests. From a farmer’s perspective these distinctions are 

not important; what matters is that the flower strips resulted in more pollinators on the 

crop.Highly attractive plants (‘magnet-species’, Thomson 1978) have been shown to 

increase the pollinator service to other neighbouring species (Johnson et al. 2003; 

Molina-Montenegro, Badano & Cavieres 2008; Cussans et al. 2010; Seifan et al. 2014) 

and it is likely that the flower strips used in this study function in a similar way.   

It is likely that to attract bees to the crop area the flower strips used in this study need 

not have contained all of the species included in the mix.  The majority (85%) of bees 
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visiting the flower strips foraged on four species, three species of clover (T. pratense, T. 

repens, T. hybridum) and P. tanacetefolia. Whilst the three species of clover included in 

the mix are native, P.tanacetefolia is not and would preferably be replaced by another 

annual flowering species of native origin.    Unsown white clover present within some 

control strips was effective at attracting bees, which may have reduced the contrast 

between pollinator counts on treatment and control crops.  It is possible, therefore, that 

had white clover not been present at control strips then an increased effect of the 

treatment might have been seen.     

In large fields, insect pollination of field beans has been found to be inadequate, with 

seed yields in plants at the edge of the field greater than those at the centre (Free & 

Williams 1976).  Whilst the current study shows that flower strips can indeed boost the 

pollination service to nearby crops, further studies would be needed to examine how far 

into fields the effect of the flower strip extends.  At large soft fruit farms fields can be 

sizeable, housing blocks of over 100 polytunnels, and in cases like these it is unlikely 

that effects of strips sown at the edge of the field will reach the centremost tunnels.  

However, it is worth noting that at all farms used in this study there were areas of 

unused land between and around tunnels where flower seed could be used to increase 

the abundance and diversity of forage around the crop, which may provide similar 

benefits to the flower strips created here.   

Bees that feed on both wildflowers and the crop are likely to be carrying a range of 

pollen types and it is possible that this could affect quality of pollination they provide 

(Lopezaraiza-Mikel et al. 2007).  Further studies are needed to test if the presence of 

wildflower strips increases heterospecific pollen transfer to the crop, and to quantify 

more explicitly how an increased pollinator abundance resulting from the use of flower 

strips translates into changes in crop yield throughout the season.  The flower strips 
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sown in this study did not start flowering until June and as such earlier flowering crops 

may remain heavily dependent on the service provided by commercial bumblebees to 

ensure sufficient pollination.   

3.6.1 Economic analysis of pollinator management strategies 

Over 80% of 29 soft fruit farms surveyed in Scotland purchased commercial 

bumblebees, with some farms using as few as 6 nests per season and others as many as 

500 (Ellis & Feltham, unpublished data).  Many farmers’ stock bees at a rate of one nest 

per tunnel and individual nests cost approximately £32.  There are additional labour 

costs involved in deploying the bees and also in the opening and closing of the doors to 

the nests before and after the application of certain pesticides, as well as disposal of 

nests after use.   

The cost of seeds for sowing a flower strip of the dimensions used in this study is 

£62.64, and the strips provided an increased pollination service to five tunnels, making 

the cost per tunnel £12.53.  The plant species most favoured by bees at treated strips 

were also some of the cheapest components of the mix, suggesting that the cost of the 

flower strips could be reduced with the inclusion of fewer species.    This figure refers 

only to the cost of purchasing the seed for the strip and not to other costs associated 

with its management and establishment, for example the time and labour needed to 

prepare the land for planting and the cost of the diesel required to power the machinery 

needed to sow in the seed.   

Whilst commercial bumblebee nests need to be replaced every year, flower strips can 

last multiple seasons (Carvell et al., 2004) and in this experiment were found to require 

minimal management (topping once in the autumn).  The strips planted in this study 

were smaller than those used previously by Blaauw and Issacs (2014) and still 



66 
 

successfully encouraged an increased number of pollinators onto the crop. In trying to 

establish the cost effectiveness of the different management strategies available to 

farmers it is worth noting that in some cases there may be an opportunity cost 

associated with the land that farmers use for the flower strip; that is the money that the 

farmers may forfeit by not using the land for something else, e.g. crop production 

(Morandin and Winston, 2006).  Whilst it was possible to find ‘spare’ areas of land not 

otherwise being used at all of the farms in this study  further research could focus on 

exploring the costs and benefits of different sized flower strips in relation to the 

additional crop pollination service they provide. 

Bee visitation to strawberry flowers increases the proportion of fertilized ovules 

(Albano et al. 2009) and thus reduces the proportion of malformed fruit which is less 

economically valuable (Andersson, Rundlöf & Smith, 2012).  Klatt et al. (2014) found 

that bee pollination increased the commercial value (shape, size, weight, shelf life) of 

strawberry fruits by 54% compared with self-pollination and 39% compared with wind 

pollination.  Wind pollination of crops housed within polytunnels is likely to be less 

than those grown in open field situation which could results in a higher dependence on 

insect pollinators.  Ellis et al. (unpublished data) found that without pollinators the yield 

of first class fruit in strawberry plants housed in polytunnels within the current study 

system is reduced by 50%.  If increased pollinator visits resulting from sowing flower 

strips boosted the proportion of first class fruit achieved even by just 1% then farmers 

would be gaining an extra £1080 per hectare or £77.14 per tunnel per annum (based on 

the £3000/tonne output price for strawberries reported in the Economic Report on 

Scottish Agriculture, 2012).  If the additional pollination increased the proportion of 

first class fruit by 5% these figures would go up to £5400 and £385.71 respectively.  

Whilst further work should focus on empirically testing what increase in strawberry 
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yield occurs as a result of planting wildflower strips the inference of such calculations 

are supported by the work of Blaauw and Isaacs (2014) who found that the increase in 

revenue achieved as a result of higher yields more than offset the cost of establishing 

and maintaining the larger wildflower areas used in their study.    

The results of our work suggest that sowing flower strips adjacent to crops which 

require pollination can significantly increase the number of pollinators found visiting 

the crop.  A large number of pollinators were found foraging on the flower strips that 

were planted in this study suggesting that by investing in relatively cheap flower strips 

farmers are likely contributing to the creation of a more sustainable pollination service. 

Whilst the per tunnel cost of planting flower strips is considerably lower than the per 

tunnel cost of purchasing commercial bees, the economic gain resulting from both 

management choices needs further assessment, particularly given the difficulties within 

the current study system in accurately determining the relative abundance of wild and 

commercial B.terrestris.   

This study emphasise the importance of considering integrated pollinator management 

strategies at soft fruit farms, whereby cheap seed mixes comprising clovers and P. 

tanacetifolia can be used to boost pollinator visitation to crops. Investing in flower 

strips provides a potential way to reduce reliance on commercial pollinators and provide 

insurance against future supply failure in the commercial bumblebee market. Given that 

agri-environment funding is often available to support the provision of pollinator 

friendly habitats this would appear to be a win-win situation for farmers. 
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Chapter 3 Appendix 

Table 3.1.  Flowering plant species included in flower mix 

Species Common 
name 

Annual/Perenial Defined flower unit (Umble or head) % of seed mix 

Centaurea cyanus Cornflower annual head 10 

Centaurea nigra Common 
knapweed 

perennial head 10 

Echium vulgare Vipers bugloss perennial spike 4 

Knautia arvensis Field scabious perennial head 2 

Lamium purpureum Red 
Deadnettle 

annual spike 5 

Papaver rheoas Corn poppy annual head 10 

Phaelia tanacetefolia Phacelia annual umble 15 

Prunella vulgaris Selfheal perennial spike 10 

Trifolium hybridum Alsike Clover perennial head 10 

Trifolium pratense Red Clover perennial head 12 

Trifolium repens White Clover perennial head 12 

 

Table 3.2. Species counts on treatment and control transects 

 B. terrestris B. pascourum B. lapidarius B.pratorum Syrphidae spp A. mellifera A. haemorrhoa C. daviesanus Other flies Total 

Treatment 968 33 78 44 409 31 10 6 19 1598 

Control 656 32 44 47 336 89 2 1 21 1228 

Total 1624 65 122 91 745 120 12 7 40 2826 
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Chapter 4- Field Realistic Doses of Pesticide 

Imidacloprid Reduce Bumblebee Pollen Foraging 

Efficiency 

 

 

 

 

This chapter has been published as: 

Feltham, H., Park, K. & Goulson, D. (2014) Field Realistic Doses of Pesticide 

Imidacloprid Reduce Bumblebee Pollen Foraging Efficiency. Ecotoxicology 23, 317-

323. 
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4.1 Abstract 

 

Bumblebees and other pollinators provide a vital ecosystem service for the agricultural 

sector. Recent studies however have suggested that exposure to systemic neonicotinoid 

insecticides in flowering crops has sub-lethal effects on the bumblebee workforce, and 

hence in reducing queen production. The mechanism behind reduced nest performance, 

however, remains unclear. Here we use Radio Frequency Identification (RFID) 

technology to test whether exposure to a low, field realistic dose (0.7ppb in sugar water 

and 6ppb in pollen) of the neonicotinoid imidacloprid, reduces worker foraging 

efficiency. Whilst the nectar foraging efficiency of bees treated with imidacloprid was 

not significantly different than that of control bees, treated bees brought back pollen 

less often than control bees (40% of trips versus 63% trips, respectively) and, where 

pollen was collected, treated bees brought back 31% less pollen per hour than controls. 

This study demonstrates that field-realistic doses of these pesticides substantially 

impacts on foraging ability of bumblebee workers when collecting pollen, and we 

suggest that this provides a causal mechanism behind reduced queen production in 

imidacloprid exposed colonies.  

 



71 
 

4.2 Introduction 

Around a third of all human food is thought to depend on insect pollination (McGregor, 

1976) and many crops benefit from this service, with adequate pollination increasing 

yields and improving crop quality (Klein et al., 2007). Recently, however, there has 

been growing concern over the use of neonicotinoid pesticides in agriculture and the 

sub-lethal effects they can have on pollinators (Decourtye et al., 2004; Desneux et al., 

2007; Yang et al., 2008; Aliouane et al., 2009; Henry et al., 2012; Whitehorn et al., 

2012; Gill et al., 2012; Williamson & Wright, 2013; Di Prisco et al., 2013; Matsumoto, 

2013), which has culminated in an EU-wide restriction on the use of three neonicotinoid 

pesticides. The ban comes into place in December 2013 and is a temporary, two year 

measure preventing the use of imidacloprid, clothianidin and thiametoxam until further 

research can clarify the impact these pesticides are having on bees (European 

Commission, 2013). Sub-lethal effects do not bring about direct mortality but impair an 

organism’s ability to function in some other way, for example by impacting on activity, 

fecundity, neurophysiology, learning performance or other aspects of behaviour 

(Desneux et al., 2007; Laycock et al., 2012). There is mounting evidence that 

neonicotinoid pesticides, formulated to target neurotransmitter receptors in insects, are 

negatively impacting the foraging behaviour of bees by inducing memory and learning 

dysfunctions, and impairing navigational skills (Henry et al., 2012; Aliouane et al., 

2009; Yang et al., 2008; Decourtye et al., 2004). The continuing decline of pollinators 

such as bumblebees and honeybees, coupled with an increased focus on sustainable 

food production means that a greater understanding of the wider impacts of pesticides 

on pollinators is required. 

Imidacloprid is the second most widely used agrochemical in the world (Pollak, 2011), 

and is commonly used as a seed dressing to protect crops from insect pests. The 
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pesticides used in these seed dressings are transported throughout the plant via the sap, 

ending up in both pollen and nectar at concentrations typically ranging from <1 to 10 

ppb (parts per billion) (Cresswell, 2011; EFSA, 2012). Oil seed rape is the second most 

abundant arable crop grown in the UK in terms of area (Garthwaite et al., 2010) and its 

flowers are known to attract bumblebees, honeybees and other pollinating insects 

(Hayter & Cresswell, 2006). The majority of growers that produce oilseed rape do so 

using dressed seeds, with recent figures suggesting that only around 4% of seed sown in 

the UK remain untreated (Garthwaite et al., 2010). Fields of rape offer a mass flowering 

crop that blooms for several weeks and bees that forage on these plants are thus 

exposed over large scales to trace dietary insecticides such as imidacloprid.  

A recent study by Whitehorn et al. (2012) found that B. terrestris colonies exposed to 

field realistic doses of imidacloprid (0.7ppb in sugar water and 6ppb in pollen), 

produced 85% fewer queens than control colonies. Bumblebees have an annual cycle, 

with new queens single-handedly founding the next generation of nests (Goulson, 

2010). There is evidence that only the most successful nests produce new queens 

(Müller & Schmid-Hempel, 1992) and reductions in the number of queens produced 

one year will likely have knock on effects for the number of colonies founded the next. 

However, Whitehorn et al. (2012) did not attempt to elucidate the mechanisms 

underlying reduced performance of treated colonies, which might include reduced 

fecundity of the queen, or reduced foraging efficiency of the workers. Gill et al. (2012) 

provide a possible explanation; they found that exposure to imidacloprid at 10 ppb in 

sugar water reduced the foraging success of worker bumblebees. However, the highest 

concentration of imidacloprid found in the nectar of seed-treated oilseed rape to date is 

0.8ppb (EFSA, 2012). In this study we examined the effect of a lower, more field 
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realistic dose of imidacloprid to determine what effects it may have on the foraging 

ability of B. terrestris workers. 

4.3 Methods 

Six commercial B. terrestris colonies (Biobest N.V., standard hives) were used to 

examine the effect of field realistic doses of the pesticide imidacloprid on foraging 

activity over a four week period. Upon arrival, nests were small, evenly aged and 

consisted of the queen and up to 65 workers. They contained two internal tanks which 

supplied the bees with sugar solution during transportation, and these tanks were sealed 

prior to controlled feeding to ensure that bees only had access to the ‘nectar’ provided 

as part of the experiment. Colonies of approximately equal weights were randomly 

allocated to either a treatment or control group (three in each). Control colonies were 

fed ad libitum (ad lib) with pollen and a sugar water solution for a period of 14 days in 

the laboratory. Over the same period colonies assigned to the treated group were fed 

pollen and sugar water containing 6ug kg
-1

 and 0.7ug kg
-1

 imidacloprid respectively, 

thus mimicking levels of imidacloprid found in oil seed rape (Bonmatin et al., 2003). 

During the 14 day period bees were provided with no alternative forage. 

After two weeks of controlled feeding in the lab, all colonies were placed out in the 

field and the foraging behaviour of bees was monitored over a four week period 

(07.08.2012 – 04.09.12). The study was carried out in domestic gardens in an urban 

area of Stirling in the Central-belt region of Scotland. The nearest farmed area was over 

1km away. Bees were allowed to acclimatise to their surrounding for 24 hours. After 

this time the first 12 bees exiting each nest that had undamaged wings were collected. 

In treated nests this first batch of bees would have been individuals that consumed 

contaminated pollen and nectar during their adult life, however given the 9 day 
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pupation phase they are not likely to have been larvae reared on food contaminated with 

imidacloprid (Van Der Steen, 2008). We used Radio Frequency Identification (RFID) 

technology to monitor the foraging duration of individual bumblebees, and an 

automated system to record the weight of bees entering and exiting the nest. RFID 

technology is increasingly being used to study the behaviour of insects (Robinson et al., 

2009: ants; Streit et al., 2003; Molet et al., 2008: bumblebees; Sumner et al., 2007: 

paper wasps), and allows an accurate and automated way of monitoring their activity 

(Ohashi, et al., 2010). A small RFID tag (mic3®-AG64 bit RO, iID2000, 13.56MHz 

system, 1.0x1.6x0.5mm; Microsensys GmbH, Erfurt, Germany) weighing 3mg (<3% of 

the weight of the smallest bee tagged) was glued to the dorsal surface of each bee’s 

thorax. The weight of these tags was small relative to the average weight of nectar and 

pollen carried by bees; bumblebees are known to carry up to 90% of their own body 

weight (Goulson et al., 2002). The tags were carefully positioned so that they would not 

hamper wing movement and bees were then released and left to forage independently 

for a period of four weeks. Treated and control colonies were randomly paired and each 

pair were monitored for a 24h period every third day (approximately). A fully 

automated system was set up to record the time and weight of bees departing from and 

returning to the nest: in a set-up similar to that used by Stelzer et al. (2010) a system of 

2cm tubes were used to connect the entrance of each colony to a clear plastic box 

mounted on top of a balance (weighing to 3 decimal places). A small clearance gap was 

left between the tube system and the weighing box to ensure that only the weight of 

bees in the box was recorded. In most cases the time it took for bees to traverse the box 

was sufficient to get a stable reading. However on about a third of occasions there were 

multiple bees in the box at one time which meant it was not possible to obtain an 

accurate weight of any one individual bee. If this occurred when a bee was returning to 
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the nest, the trip was excluded from the analysis of weight data. However if it occurred 

when a bee was leaving the nest then an average weight of that bee was obtained from 

other departures made during the monitoring period, and this was used as proxy in the 

analysis. After traversing the box, bees then entered another length of tube leading them 

to the outside. RFID readers were mounted between the nest entrance and the first 

length of tube, which recorded the exact time bees entered and exited the nest. A 

motion detecting camera was set up to record the weight of bees as they passed over the 

balance, and to determine if bees returned carrying pollen. As in Stelzer et al. (2010) 

any trips that lasted for five minutes or less as well as those flights where bees lost mass 

were excluded from analysis as the majority of these were likely to have been 

orientation or defecation flights. These trips only accounted for a small number of the 

total trips recorded and numbers were similar in treated and control colonies (only 15 

trips in total, nine for treated and 8 for control bees). Additionally any trips over four 

hours in duration (seven in total, three for treated and four for control bees) were 

excluded from the analysis as these often occurred on rainy days where bees may have 

been prevented from returning to the nest due to adverse weather. 

Fourteen days into the four week data capture period a further 12 bees from each nest 

were tagged. The development of B.terrestris workers in laboratory conditions includes 

~14 day of larval development during which larvae are frequency fed, followed by ~9 

days as a pupa. Thus in treated colonies, bees tagged at this point were likely to have 

been those reared on the pollen and nectar dosed with imidacloprid. At the mid-way 

stage of the experiment one control nest and one treated nest had to be removed from 

the experiment due to wax moth infestations; therefore no further bees were tagged in 

each of these colonies. 
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All statistical analyses were conducted using R version 2.15 (R Development Team, 

2012). Generalised Linear Mixed Effects models (GLMM; fitted by maximum 

likelihood using the lme4 package) with Gaussian errors were used to test the effect of 

imidacloprid treatment on, trip duration, weight of forage collected and the foraging 

efficiency (mg of forage collected per hour) of individual bees. The time of day for each 

trip and the number of days since each bee was tagged were included as covariates 

along with treatment as a fixed factor. Individual and colony I.D. were included as 

random factors to account for pseudo-replication between and within colonies. ‘Batch’ 

(whether the bees were tagged at the start of week one, or the start of week three) was 

also included as a fixed factor. All two way interactions were included in the starting 

model. Factors that did not contribute significantly to the model were removed in a 

stepwise manner, using p=0.05 as a threshold for factor retention or removal. After each 

simplification step models were assessed using the Akaike’s information criterion (AIC; 

Akaike, 1974). When modelling both pollen and nectar foraging efficiency the most 

parsimonious model determined using the stepwise approach matched the model with 

the lowest AIC value.  

 

A GLM, with quasibinomial errors to allow for over dispersion, was used to determine 

if there was a significant difference in the proportion of trips in which treated and 

control bees returned with pollen. The number of trips in which bees returned with 

pollen over the number of returns without pollen was modelled as the response variable 

and treatment and batch were included as fixed effects. Nest was included as a fixed 

effect in this analysis as, due to the relatively small sample size, models including nest 

as a random effect were unable to correctly separate out nest effects that were not due to 

treatment.  
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A Pearson’s correlation was used to examine the relationship between time spent 

foraging and the weight of the load collected during each bout. Unless otherwise stated 

all averages are means ± standard deviation.  

 

4.4 Results 

Between 07 August 2012 and 04 September 2012 data were gathered from 256 foraging 

bouts; 21 foragers from control colonies were recorded making 113 foraging trips (5.4 ± 

1.4 trips per bee), and 24 foragers from treated colonies made a total of 142 trips (5.96 

± 1.9 trips per bee). During the course of the study two bees from the treated group and 

one bee from the control group failed to return to the nest. There was no difference in 

the lifespan of bees from treatment and control groups, with all tagged bees (with the 

exception of the three that failed to return to the nest) surviving until the end of the 

study.  

Control bees spent on average 25.44 ± 6.1 minutes foraging for nectar, with a mean 

weight of 42.6 ± 9.86 mg collected per bout, resulting in a nectar foraging rate of 101 ± 

10.68 mg/hr
-1

. This was not significantly different from the nectar foraging rate of 

treated bees (GLMM: χ
2
=0.534, d.f=1, p=0.464; Fig. 4.1a) who spent on average 27.26 

± 8.4 minutes foraging for nectar, bringing back 44.7 ± 12.49 mg of nectar per bout 

resulting in a foraging rate of 99.24 ± 9.67 mg/hr
-1

. Neither treatment nor any of the 

other proposed explanatory variables; time of day, batch and number of days since the 

bee was tagged, were significant in explaining trip duration, weight of nectar collected 

or nectar foraging efficiency. 
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The average length of time spent on pollen foraging trips (trips in which the returning 

bee had visible pollen loads) was 73.8 ± 14.38 minutes for control bees with a mean 

weight of 57.32 ± 11.22 mg being collected per bout, resulting in a pollen foraging rate 

of 47.71 ± 7.62 mg/hr
-1

. The mean length of time spent on pollen foraging trips in 

treated bees was 77.85 ± 24.96 minutes, with the minimal model for trip duration 

including treatment, the number of days since the bee was tagged and the interaction 

between the two (GLMM: χ
2
=9.99, d.f=1, p<0.01). Trip duration in control bees 

remained approximately constant throughout the experiment, however in treated bees 

the duration of trips increased with time from tagging. The mean weight of pollen 

collected per bout by treated bees was 41.07 ± 12.72mg, with treated bees bringing 

back significantly less pollen than control bees (GLMM: χ
2
=4.76, d.f=1, p <0.01), with 

no other factors remaining in the minimal model. This resulted in a mean foraging rate 

for pollen of 32.97 ± 9.43 mg/hr
-1

, a 31% reduction compared to control bees (GLMM: 

χ
2
=18.06, d.f=1, p <0.001; Fig. 4.1b). 

There was no significant effect of time of day, batch and number of days since 

individual bees were tagged in explaining pollen foraging efficiency. Treated bees were 

also significantly less likely than control bees to return to the nest carrying pollen (41% 

vs 65% of foraging bouts respectively; t= -2.135, n=42, p<0.05). 

The positive correlation between time spent foraging for pollen and the amount of 

forage collected was significant in both treated bees (r=0.576, n=57, p<0.001) and 

control bees (r=0.729, n=71, p<0.001). 
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Figure 4.1 The efficiency of foraging on pollen gathering trips was significantly lower for 

treated bees than untreated bees, whilst no significant difference was found in foraging 

efficiency on nectar gathering trips.  The box plots depict median and interquartile range, with 

the bars representing the means of treated and untreated bees and their 95% confidence 

interval. 

 

In accordance with Whitehorn et al. (2012) treated nests gained less weight than control 

nests and also produced fewer workers and queens, but the number of nests used in our 

experiment was too few to permit meaningful statistical analysis of these differences. 

4.5 Discussion 

This study strongly corroborates the findings of previous studies, and shows that the 

neonicotinoid imidacloprid can have sub-lethal effects on free-flying worker 

bumblebees, and thus is likely to reduce colony success. Here we were able to quantify 

for the first time the change in bumblebee foraging efficiency as a result of field-
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realistic measures of imidacloprid exposure showing that, on pollen gathering trips, 

treated bees brought back 31% less forage per hour than controls, representing a 

significant reduction in efficiency. This is in accordance with the findings of Gill et al. 

(2012) who ranked the pollen loads of bumblebees returning to the nest as small, 

medium or large and found that imidacloprid exposed bees brought back proportionally 

more small loads than unexposed bees. Gill et al. (2012) also found that imidaclopid 

exposed bees collected pollen on 59% of their foraging bouts, versus control bees that 

collected pollen on 82% of occasions (a 28% decrease). Using a lower, field realistic 

dose we found that bees exposed to imidacloprid showed a 23% reduction in the 

frequency of pollen-collecting trips, compared to controls.  

Pollen is the main protein source for bumblebees and is particularly important for the 

rearing of young to replace older workers (Harder, 1990). It has been suggested that 

foraging for pollen is more challenging than foraging for nectar (Raine & Chittka, 

2007), and it is usually restricted to dry, sunny weather, whereas nectar can be collected 

in most conditions except heavy rain (Peat & Goulson, 2005), so that pollen rather than 

nectar shortages are more likely to limit colony success (Goulson, 2010). This is 

reflected in the lower foraging efficiency of bees when gathering pollen versus nectar 

(Peat & Goulson, 2005). Using the same concentrations of imidacloprid as the current 

study (6ppb pollen and 0.7ppb nectar), and the same two-week exposure period, 

Whitehorn et al. (2012) found an 85% reduction in queen production in colonies 

exposed to imidacloprid. Developing queens are known to require more food during 

their developmental period and thus queen production is likely to suffer as a result of 

lower provisions of pollen. Whitehorn et al. (2012) also found that colonies exposed to 

imidacloprid gained significantly less weight over time than control colonies. In 

previous work studying B. lucorum, a species closely related to B. terrestris, a positive 
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correlation was found between nest size and queen production (Müller & Schmid-

Hempel, 1992). Hence our data provide a simple mechanism for the dramatic declines 

in queen production described by Whitehorn et al. (2012); a substantially reduced 

pollen supply to the colony.  

In this experiment we made the assumption that if a bee returned with a visible pollen 

load then any increase in weight recorded was due to the pollen it had collected whilst 

foraging. In some cases however it is likely that bees foraged for a mixture of pollen 

and nectar. It is thus possible that the lower weight of forage brought back by bees 

exposed to pesticide was due to reduced nectar collection, or a combination of reduced 

pollen collection and reduced nectar collection. The former seems less likely since bees 

which returned only with nectar showed no significant impact of pesticide treatment.  

It is worth noting that in the present study bumblebees were kept in the lab for two 

weeks and treated colonies were given no alternative but to feed upon pollen and nectar 

dosed with imidacloprid. This is perhaps unrealistic of field conditions as bees would 

normally be free to forage on a range of contaminated and uncontaminated resources. 

However, oil seed rape is the third most abundant arable crop grown in the UK (after 

wheat and barley) with the production area for this crop having increased by 17.75% 

between 2010 and 2012, representing an increase of 114,000 hectares (Garthwaite 

2010; DEFRA 2012). Rape is known to flower for around 3-4 weeks providing an 

abundant, if short-lived floral resource (Goulson et al. 2010). Both bumblebees and 

honeybees feed on oil seed rape (Hayter & Cresswell 2006) and given the general 

decline in floral resources in the countryside (Carvell et al. 2006) it is likely that, whilst 

in flower, oil seed rape constitutes a large component of many bees’ diets. A recent 

study by Thompson et al. (2013) that examined the effects of three neonicotinoids on 
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bumblebee colonies in field conditions failed to establish a negative control, 

demonstrating that these substances are widespread in agricultural environments. 

Furthermore, substantial concentrations of neonicotinoids (up to 9ppb) have been found 

in wildflowers growing near to treated crops (Krupke et al., 2012), suggesting that 

exposure to these types of pesticide might not be restricted to bees foraging on the crops 

themselves. Hence we suggest that the level of exposure used here is likely to 

approximate that experienced by some wild bumblebee nests under field conditions.  

Interestingly, we found no significant difference in foraging efficiency between the first 

batch of foragers tagged and the second. This suggests that impaired foraging continued 

to be seen in bees from treated colonies for at least four weeks after exposure. However, 

it is not clear whether this occurred because bees continued to be exposed to 

imidacloprid in honey stored within the nests, or whether the reduced performance of 

the second batch of foragers was due to exposure as larvae. Yang et al. (2012) describe 

impaired learning in honeybees following exposure to imidacloprid as larvae. Further 

studies could clarify the persistence of imidacloprid within the nest and the effects it 

may have on subsequent generations of workers. Whatever the mechanism, our data 

suggest that exposure to imidacloprid may reduce worker performance for at least four 

weeks after the source of exposure is removed. 

Whilst this study has put forward a mechanism for reduced queen production in 

imidacloprid exposed colonies (Whitehorn et al., 2012) it is not able to fully explain the 

mechanism behind the reduced pollen foraging efficiency found in treated bees. In both 

treated and control bees a positive correlation was found between time spent foraging 

and the weight of pollen collected and no significant difference was found in the 

number of bees failing to return to the nest between treatments, which, coupled with the 

fact that there were no differences found in nectar foraging efficiency, suggests that 
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navigation is not likely to have been the issue. Further studies are needed to clarify how 

imidacloprid impairs bumblebee’s ability to forage for pollen, with the evidence 

gathered in this study suggesting that the pesticide may either reduce motivation to 

collect pollen, or impair the bees’ ability to collect pollen from flowers, rather than 

affecting their trips to and from their foraging sites. 

Agricultural intensification has been proposed as a primary driver behind the decline of 

bumblebees, with habitat loss as well as increased pesticide use believed to be two 

important causal factors (Goulson et al., 2008). Whilst this study has focused on the 

effects of imidacloprid, the uses of other neonicotionoids have also been called into 

question, since the three most commonly used compounds, imidacloprid, thiamethoxam 

and clothianidin all have similar modes of action (Nauen et al., 2003). A recent study 

has reported harmful effects of thiamethoxam on honeybee homing abilities (Henry et 

al., 2012), whilst another found no significant impact of thiamethoxam on colony 

initiation in bumblebees (Elston et al., 2013).  

If ecologically and economically important pollinator populations are to be maintained 

then the advisability of any future use of neonicotinoids on flowering crops must be 

questioned and further work is needed to clarify their impact.
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5.1 Abstract 

Increasing numbers of farmers are purchasing colonies of commercially reared bees in 

order to supplement wild pollinators. To date no study has assessed the impact of one 

potentially important parasite of bumblebee nests: the wax moth. Here we investigate 

the frequency with which wax moths infest commercial B. terrestris colonies, and 

examine the likelihood that a nest, once infested, will go on to be destroyed by the wax 

moth larvae. We examine if a biological Lepidopteran larvicide (Certan™) can reduce 

the likelihood of harmful infestations and investigate the relationship between density 

of commercial nest use and frequency and severity of wax moth attacks. Almost half 

(44%) of all nests used in the study were infested with wax moth larvae and 34% of 

infestations led to nest destruction. The use of Certan™ did not significantly reduce the 

likelihood of an attack but did reduce the probability that an infested nest would go on 

to be destroyed. We found that the relative frequency of wax moth infestations 

increased with the density of commercial nest use and therefore suggest that 

management be put in place, in order to reduce infestations and maximise the 

pollination service provided by commercial bees.  
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5.2 Introduction 

Approximately one third of global crop production is believed to depend on insect 

pollination (Klein et al., 2007) with an adequate pollination service often increasing 

both the yield and quality of crops (Dimou et al., 2008). The health of pollinators has 

caused much concern in recent years with declines being reported in both wild and 

domesticated bee populations across the globe (Biesmeijer et al., 2006; Grixti et al., 

2009; Potts et al., 2010). Bumblebees are particularly efficient pollinators due to their 

tolerance of low temperatures (Corbet et al., 1993), and their ability to buzz-pollinate 

(de Luca & Vallejo-Marin, 2013) and thus provide an important ecosystem service for 

both wild and managed systems (Kevan et al., 1991; Memmott et al., 2004).  

Land-use change, habitat loss and the resulting decreases in the availability of suitable 

forage and nesting sites are often blamed for reduced wild bumblebee numbers 

(Goulson et al., 2008; Potts et al., 2010) and although many studies have focused on the 

causes of bumblebee declines, relatively little attention has been paid to the impact of 

predators and macro-parasites on bumblebee health. Birds and spiders are thought to be 

the main predators of bumblebees in temperate regions, but there have also been reports 

of badger, fox, mole, weasel, shrew and vole attacks on nests (Goulson, 2010). Social 

insects are prime targets for parasites due to their abundance, family structure and 

persistent colonies (Schmid-Hempel, 1998). Bumblebees play host to a number of 

bacterial, viral and protozoan diseases, and individuals can be parasitised by mites, 

nematodes and parasitoids (Liersch & Schmid-Hempel, 1998).   

The wax moth (Aphomia sociella Linnaeus, 1758), is a specialist parasite of bumblebee 

colonies (Cumber, 1949; Goulson, 2010), and was regarded by Hoffer (1882-1883) as 

being one of their most serious enemies (note that honeybees are attacked by two 
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unrelated ‘wax moths’, Galleria mellonella and Achroia grisella Linnaeus, 1758). 

Despite being known to cause substantial damage to bumblebee nests, A. sociella have, 

however, received only a relatively brief mention in a handful of publications (Goulson 

et al., 2002; Pelletier & McNeil, 2003; Spiewok & Neumann, 2006). Almost nothing is 

known of the frequency with which nests are infested, and there are no data quantifying 

the damage that they inflict.  

Adult A. sociella are believed to emerge in June (Alford, 1975), although individuals 

have been found in Scotland as early as May (P. Lintott pers. comm). Mated A. sociella 

females lay their eggs inside the nests of bumblebees and the larvae that hatch develop 

within the host nest, consuming nest materials and food stores as well as waste products 

(Gambino, 1995; Goulson, 2010). They create silken tunnels to move through the nest 

and the webbing they spin is dense and difficult to penetrate, presumably protecting the 

larvae from adult bees. Larger larvae can consume bee pupae (pers. obs) and heavy wax 

moth infestations have been known to completely destroy healthy bee colonies, with the 

bumblebees appearing to have little defence. When fully grown, the larvae then 

overwinter in tight clumps of pupae close to the nest they inhabited, emerging as adults 

the following spring when the cycle begins again.  Wax moths do not kill their host as a 

pre-requisite for successful development (this distinguishes them from parasitoids), 

however their presence within a nest has the potential to substantially reduce colony 

fitness and will likely lead to an increased rate of nest mortality. 

In a study examining floral resource availability and growth rates of bumblebee 

colonies, Goulson et al. (2002) found that the nests in urban areas were significantly 

more prone to wax moth attacks than those in agricultural settings (80% and 17%, 

respectively). They speculate that this is likely to reflect the comparatively high density 

of bumblebee nests found in urban areas (Osborne et al., 2007), enabling wax moths to 
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persist at elevated densities. Bumblebee nest density may be artificially increased in 

certain agricultural areas due to the use of commercially reared bumblebees. Such 

commercial colonies have been used since the 1980s to supplement pollination of crops 

such as strawberries, raspberries, tomatoes, melons and cucumbers (Velthuis & van 

Doorn, 2006) and more than 1 million nests are produced each year globally (Greystock 

et al., 2013).  Classical models by Anderson and May (1978) predict a positive 

correlation between host density and parasite prevalence, which has been supported by 

a number of empirical studies (Lloyd & Debas 1966; Arneberg et al., 1998; Krasnov et 

al., 2002). 

If wax moths are indeed more common where their hosts are at higher densities 

(Goulson et al., 2002) then the use of commercial bumblebee colonies over the years 

may have led to a local increases in wax moth populations. This could result in a higher 

frequency of wax moth attacks in areas where commercial nests are used at high 

densities, with knock-on effects to pollination services leading to a reduction in crop 

yields or the need to buy more colonies. Farmers may therefore wish to manage their 

colonies to reduce the likelihood of wax moth infestations. The wax moths of 

honeybees (G. mellonella and A. grisella) can be controlled with Certan™, a product 

containing the microorganism Bacillus thuringiensis (Burges & Bailey, 1968; Ahmad et 

al., 1994). To date no study has examined if this Lepidopteran larvicide could be used 

to manage infestations in commercial bumblebee colonies, and whilst Ings et al. (2006) 

did use Certan™ to treat the commercial nests that were being used in their research, 

they did not report on its efficacy. As well as potentially resulting in a diminished 

pollinator supply to crops, an increase in wax moth attacks could lead to spill-back 

effects on wild bumblebee populations. It is therefore important to get a better 
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understanding of the impact that these predators have on bumblebee nests and colony 

survival. 

The aims of this study were: 

1. Determine the frequency with which bumblebee nests at soft fruit farms 

become infested with wax moth larvae; 

2. Determine if the intensity of an infestation impacts the probability of 

premature nest destruction or reduced reproductive success; 

3. Investigate the relationship between the density of commercial nests and 

frequency and severity of wax moth attacks and, 

4. Examine whether using Certan™, a biological control agent, can reduce the 

frequency or severity of wax moth attacks. 

5.3 Methods 

Seven soft fruit farms that import commercial bumblebee colonies in East and Central 

Scotland were selected for this study, selected farms were at least 5km from each other.  

Twenty colonies were randomly selected at each farm upon delivery and weighed. 

Colonies used in the experiment came from one of two suppliers; Koppert (Natupol 

Beehive, Koppert Biological Systems) and Syngenta (Beeline, Syngenta) and on arrival 

each nest included a queen and between 50 and 100 workers. Nests of similar weights 

were paired and one of each pair was randomly assigned to a treatment or control 

group. Nests allocated to the treatment group were sprayed with B401®/CERTAN
TM

 

and spraying took place between 10 April and 10 May 2013, with the date varying in 

accordance with when nests arrived at farms. 
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As recommended by the supplier, the B401® solution was diluted to 5% with water and 

each nest was sprayed twice on top of the nest and twice underneath (a total volume of 

5ml per nest). Control nests were sprayed with an equivalent quantity of water. 

Treatment and control nests were then randomly assigned throughout a block of 

polytunnels containing the first flowering strawberry crop and allowed to forage 

naturally for the duration of their lifespan. Nests were checked every two weeks and 

collected in when they had five or fewer workers remaining (between 15 July and 17 

August 2013).  

  

Figure 5.1 a) Bumblebee nest showing the silk webbing typically present as a result of a wax 

moth infestation. This nest was not classified as destroyed as worker cells and pupae are 

clearly distinguishable. b) Section of a severely infested nest with wax moth larvae and faeces 

clearly visible. Here most nest parts were damaged to the point that they were no longer 

identifiable and the nest was thus classified as destroyed.  

After collection, each nest was placed in a -80ᵒC freezer to humanely kill any remaining 

bees and then moved to a -40ᵒC freezer for storage. Each nest was then dissected and 

the following information recorded: final weight of nest, number of empty worker cells, 

number of empty queen cells, number of worker pupae, number of queen pupae, 



91 
 

number of wax moth larvae present and weight of wax moth larvae present. A nest was 

classified as destroyed if the damage inflicted was so severe that it prevented the 

elements of the nest from being counted (in heavily damaged nests there are few entire 

cells or pupae, and the wax structure is highly fragmented, see Fig. 5.1). 

Farmers were asked to supply information on the number of nests in use at a farm, 

whilst knowledge of the local area and ArcGIS (version 10) were used to determine the 

number of farms using commercial bumblebees for pollination within a 5km radius of 

each farm. As little is known about the dispersal of wax moths a conservative radius of 

5km was used to assess the effect of commercial nest density on infestation. 

Of the 140 nests at the start of the experiment, 45 were damaged by farm machinery or 

accidentally disposed of before collection by farm workers, reducing the overall number 

of nests that could be included in the analysis to 95.  

5.3 Statistical analysis 

The likelihood of a nest becoming infested was analysed using a GLMM with binomial 

errors, with treatment included as a fixed factor and initial nest weight, date of 

deployment, the amount of time a nest spent in the field, the number of nests in use at 

the farm and the number of farms within 5km using commercial bees, included as 

covariates. Prior to inclusion in the model all variables were tested for colinearity. In all 

models farm was included as a random factor.  

The likelihood of an infested nest then going on to be destroyed (or not) was examined 

using a GLMM with binomial errors and the same variables previously listed, with the 

number of wax moth larvae within each nest included as an additional covariate.  
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The number of queens, pupae and worker bees within each nest were each, in turn, 

modelled as the response variable to examine the effect of wax moth abundance on 

reproduction. The glmmADMB package was used to account for over dispersion and 

zero-inflation, and in each case treatment was included as a fixed effect, with start 

weight and the date that a nest was deployed included as covariates.  

Finally the number of wax moth larvae within nests was modelled as the response 

variable to examine potential effects of nest density: the number of nests used at each 

farm and the number of soft fruit farms within a 5km radius using commercial bees 

were included as fixed effects. The initial weight of each nest and the number of days it 

spent in the field were included as covariates and farm as a random effect. The 

glmmADMB package was again used to address over dispersion and zero-inflation 

within the data.  

The MuMIn package (Barton, 2014) was used to generate pseudo-R
2
 values (hereafter 

R
2
 values); to enable the assessment of model fit (Nakagawa & Schielzeth, 2013). We 

present the results of full models including all main effects and provide a comparison of 

models excluding each parameter in turn using Likelihood Ratio Tests. Unless 

otherwise stated all averages are means ± standard error.  

5.4 Results 

5.4.1 Frequency of infestation 

Of the 95 nests that were collected in at the end of the study, 42 had been attacked by 

wax moths, with 44% of nests treated with Certan™ and 45% of untreated nests 

suffering from infestations. The mean number of wax moth larvae found within infested 

nests was 102.98±3.15 and there was a significant increase in the likelihood of a nest 
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being infested when higher numbers of commercial bees were in use at a farm (P 

=0.005, Table 5.1, Fig. 5.3b). The number of farms stocking commercial bees within a 

5km radius was also significant (P=0.047, Table 5.1) with the model predicting that the 

likelihood of an infestation occurring doubles as the number of farms nearby increases 

from 0 to 1 (Fig. 5.3a). The initial weight of a nest was marginally significant in 

explaining infestation, with heavier nests being more likely to become infested 

(P=0.055, Table 5.1) and nests deployed later in the season were significantly more 

likely to suffer from an attack (P=0.041, Table 5.1).  

Table 5.1 Parameter estimates and likelihood ratio tests of the GLMM for nest infestation. 

Fixed Effect Estimate Standard 
Error 

Δ Log 
Likelihood 

χ2 df P 

Intercept -0.203 0.418     

Treatment1 -0.872 0.620 -1.049 2.097 1 0.148 

Days in field 0.015 0.565 -0.001 <0.001 1 0.979 

Date deployed 0.826 0.441 -4.196 4.196 1 0.041 

Initial weight -0.757 0.397 -1.843 3.686 1 0.055 

Number of farms 5km 0.787 0.383 -1.973 3.945 1 0.047 

Number of nest at farm 1.082 0.323 -4.014 8.027 1 0.005 

Random effect variance       

 Farm <0.001      

Maximal model R2 value 0.58      

1
 treated nests  

 

5.4.2 Nest destruction and reproductive success 

Of the 42 nests that were infested, 15 nests (36%) went on to be destroyed by the wax 

moth larvae. The number of pupal cells (GLMM: χ
2
=9.134, d.f=1, p=0.003) and worker 

cells (GLMM: χ
2
=5.272, d.f=1, p=0.022) were significantly higher in nests with large 

wax moth infestations, indicating that larger nests have heavier infestations. The only 
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significant predictor of queen production was date of nest deployment, with nests put 

out later in the season ultimately producing more queens (GLMM: χ
2
=5.346, d.f=1, 

p=0.021), however it is worth noting that the number of queens, worker cells and pupae 

could not be counted in the most heavily damaged nests. 

Table 5.2 Parameter estimates and likelihood ratio tests of the GLMM for the abundance of 

wax moths within nests.  

Fixed Effect Estimate Standard 
Error 

Δ Log 
Likelihood 

χ2 df P 

Intercept 5.114 5.134     

Treatment1 -0.205 0.432 -0.12 0.226 1 0.635 

Days in field -0.576 0.321 -1.31 2.604 1 0.021 

Initial weight -0.003 0.013 -0.03 0.070 1 0.791 

Number of farms 5km 2.012 0.256 -8.48 16.944 1 <0.001 

Number of nest at farm 0.026 0.004 -5.9 11.792 1 <0.001 

       

Random effect variance       

 Farm <0.001      

1
 treated nests 

 

5.4.3 Commercial nest use and the severity of wax moth attacks  

Both the number of nests in use at a farm and the number of other farms using 

commercial bees within 5km were highly significant in predicting wax moth abundance 

(Table 5.2), with increased densities of nests or farms resulting in increased wax moth 

numbers in nests.  

5.4.4 Effectiveness of Certan™
 
treatment 

The mean number of wax moth larvae in nests treated with Certan™ was 29.72±11.17 

compared with 56.54±15.765 in control nests, however due to high variability in the 
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data (Figure 3a) the effect of treatment on the likelihood of infestation (Table 5.1) and 

wax moth abundance (Table 5.2) was not significant. Treatment was marginally 

significant in reducing the likelihood of destruction (P =0.064, Table 5.3), with 21% of 

control nests being destroyed compared to only 10% of treated nests.  

 

Figure 4.1 The number of wax moth larvae found in infested colonies was not significantly 

different in nests that had been treated with CERTAN™ from those that had not (a); nests that 

were classified as destroyed contained a significantly higher number of wax moth larvae than 

those that survived (b). The box plot depicts the median and interquartile range, with the bars 

representing the mean number of wax moths found, with circles representing outliers. 
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Table 5.3. Parameter estimates and likelihood ratio tests of the GLMM for nest destruction. 

Fixed Effect Estimate Standard 
Error 

Δ Log 
Likelihood 

χ2 df P 

Intercept 3.190 10.713     

Treatment1 -1.754 0.999 -1.713 3.428 1 0.064 

Days in field -0.627 1.229 -0.137 0.276 1 0.599 

Date deployed 1.074 8.443 -0.022 0.045 1 0.832 

Initial weight 0.685 0.828 -0.339 0.673 1 0.412 

Number of farms 5km 1.667 7.530 -0.199 0.399 1 0.527 

Number of nest at farm 1.941 5.806 -1.054 2.109 1 0.146 

Number of wax moths 1.340 0.554 -4.589 9.178 1 0.002 

Random effect variance       

 Farm <0.001      

Maximal model R2 value 0.73      

1
 treated nests 

 

Figure 5.3. The predicted probability of infestation as a result of number of farms using 

commercial pollinators within 5km of a nest (a). The predicted probability of infestation as a 

result of number of commercial nests in use at a farm (b). Circles represent the raw data 

jittered for clarity with the solid line showing the predicted effect and the dot-dash line 

showing the upper and lower 95% confidence intervals. Predictions are based on model 1 

(Table 2) and are made from the median observed values for other parameters in the model. 
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5.5 Discussion 

As dependence on pollinators for our food production increases (Aizen et al. 2006), it is 

important to determine factors contributing to pollinator declines and reduced 

pollination efficiency. It is particularly important to understand how our management of 

pollinators, both wild and commercial, can influence the sustainability of the service 

that they provide. In this study we found that a high proportion of commercial nests 

used to increase crop pollination at soft fruit farms suffer from wax moth larvae 

infestations. In total, 44±9.98% of nests became infested, a higher proportion than the 

17±7.88% previously found in agricultural settings in the south of the UK (Goulson et 

al., 2002). Theory predicts wax moths will be more common in areas where their host 

are also more common (Anderson & May, 1978, Arneberg 2001), so it is therefore 

possible that farms which utilise commercial bumblebee colonies are creating wax moth 

‘hot spots’ by providing an abundant and predictable host supply. Previous work has 

linked the prevalence of bumblebee nests parasites (e.g. the cuckoo bumblebee B.  

vestalis) to host density, with parasite free zones occurring when host numbers were 

low (Antonovics & Edwards 2001) and a high infestation rate recorded when 

bumblebee colonies were proximate to abundant foraging resources (Carvell et al., 

2008).  

Wax moth infestations can lead to nest destruction, and in this study 36% of infested 

nests were entirely destroyed by wax moths. The number of wax moth larvae present in 

nests was positively associated with the number of other farms using commercial 

colonies within a 5km radius of the site, as well as the number of nests in use at a farm. 

Commercially produced bumblebee colonies have been used in agriculture for 

approximately 25 years, creating an artificially high number of nests in some areas. 

Parasites such as wax moths can contribute significantly to host mortality (May, 1983) 
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and in some cases parasites provide the ultimate determinant of population densities 

(Lloyd & Dybas, 1966). In the case of commercial bumblebee colonies, elevated wax 

moth populations may have knock-on effects for pollination services, reducing yields or 

resulting in the need to purchase replacement commercial nests.  

In this experiment the effectiveness of Certan™, a biological control, was examined to 

see if it could potentially be used to reduce the frequency or severity of attacks on 

bumblebee nests. Our results were equivocal; the number of wax moth larvae found in 

treated nests was 48% lower than control nests, but numbers were highly variable and 

the difference not significant. Twice as many control nests were destroyed by wax 

moths as treated nests, but the difference was only marginally significant. We 

tentatively suggest that treatment may be having some effect, but clearly this requires 

further investigation. It is likely that the effectiveness of this product was limited by our 

lack of ability to treat the entire nest, as in this study we were only able to spray the 

outer parts with the Certan™. If the whole of the nest area could be treated, it is 

possible that greater effects would be seen. It may be feasible to treat the nests more 

effectively in the factories where the bees are reared, perhaps by spraying them on 

multiple occasions as the nest grows, or by lacing the insulation material provided to 

keep the nests warm.  

Our results highlight the potential danger of a spill-back effect from commercial to wild 

bee nests, which may reduce the number and fitness of wild colonies close to soft fruit 

farms. Parasite spill-back can occur when a nonindigenous species is a competent host 

for a native parasite, with the presence of the additional host increasing the parasite 

burden in native species (Kelly et al., 2009).  Whilst parasite spill-over is well studied 

within the sphere of invasion ecology, the concept of parasite spill-back has been 

relatively neglected.  Despite this numerous empirical studies have recently emerged 



99 
 

demonstrating the harmful impact of parasite and pathogen spill-back on native fauna 

(Mastitsky & Veres 2010; Poulin et al., 2011; Patterson et al., 2013). 

Further research is needed to determine if wax moth spill-back could be negatively 

impacting upon native bumblebee heath or if in fact a ready supply of commercial bees 

could be reducing the parasite burden in wild nests.  Commercial colonies are 

potentially easier for the wax moths to locate, due to their large size and prominent 

location and they may in fact act as a decoy for wax moths, thus reducing the number of 

attacks on wild nests. It is possible that the design of commercial colonies make them 

particularly vulnerable to wax moth attacks, as the plastic casing containing the colony 

offers many places where the relatively small moth can enter the nest. Future studies 

could help to determine if wild nests are negatively impacted by high commercial nest 

density, or if indeed, a ‘decoy’ effect occurs. If wax moth are disproportionately 

attracted to commercial bumblebee nest and nests are properly disposed of, as per 

supplier guidance (i.e. nests that are frozen at the end of the season) then commercial 

bumblebee colonies could provide a reproductive ‘dead end’ for wax moth, thus 

potentially reducing local populations of A. sociella. However personal 

communications with soft fruit farmers suggests that nests are not always destructively 

disposed of at the end of the season and are often found discarded within, or close to 

polytunnels containing the crop. 

Commercial colonies have access to internal nectar tanks and are often positioned 

within a flowering crop and thus grow quickly. In this study we found that larger nests 

were more likely to suffer from wax moth infestations than smaller nests, and that there 

was a positive relationship between the number of worker and pupae and the number of 

wax moth larvae (when excluding the nests that were destroyed). The largest nest in this 

study produced 2,012 worker bees and 311 queens, considerably more than recorded 



100 
 

previously (for nests without supplemented food, Goulson 2010). It is likely that larger 

colonies will be more attractive to female wax moths because they will offer more 

resources upon which developing larvae can feed.  

The impact that wax moth larvae can have on bumblebee colonies not only depends on 

the size of an infestation but also on the point at which the bumblebee nest becomes 

infested. If an infestation occurs when a nest is large and has already produced new 

queens and males then it is less likely that the wax moth larvae will have a large impact 

on overall nest success. Co-existence within the nest might be possible if the infestation 

is light or if it occurs late in the colony cycle (Gambino, 1995). However, if nests are 

attacked before they reach the point where they produce queens and males, then an 

infestation might have a significant impact on nest success and survival. Wax moth 

attacks may place selective pressure on bumblebees to emerge early from hibernation 

and also to produce new reproductives early in the year. Further studies would be useful 

to see how often wax moth attacks prevent or reduce queen production and to measure 

how an infestation impacts the pollination activity of worker bees. If the use of 

commercial colonies is increasing the number of nest attacks in certain areas, it is 

important to understand the impact infestations have on reproductive health particularly 

in regards to wild bumblebees. From a farmer’s perspective wax moths are only a 

problem if they are reducing the pollination efficiency of the nests and thus impacting 

crop yields; this seems likely, given that some nests were destroyed, however more 

experiments would be beneficial to quantify the impact of infestations on pollination.  

This is the first study that has investigated wax moth predation of bumblebee nests and 

is unique in examining the relationship between infestation levels and nest destruction. 

In addition, key links have been drawn between the density of commercial nest use and 

the levels of infestations occurring. Nests had significantly more wax moth larvae when 
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densities of commercial nest use at farms and within a 5km radius were high, and nests 

with large wax moth infestations were significantly more likely to be destroyed. Further 

research should be targeted at understanding the relationship between commercial nest 

use and wax moth infestation rates in wild nests, as well as how to effectively manage 

this economically important pest in commercial bumblebee colonies.  

In light of concerns about pollinator declines (Biesmeijer et al., 2006; Pywell et al., 

2006; Goulson et al., 2008; Grixti et al., 2009; Winfree et al., 2009; Potts et al., 2010), 

and an increase in our dependency on the service they provide (Aizen et al., 2008), it is 

important that we learn more about how one of bumblebees’ greatest enemies is 

impacting their survival.  
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Chapter 6- Use of commercial bumblebees for crop 

pollination does not lead to wax moth spill-back 
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6.1 Abstract 

The wax moth (Aphomia sociella) is common throughout the UK and is an 

economically important pest of commercial bumblebee nests used in crop pollination. 

Wax moths lay their eggs in bumblebee nests and the larvae that hatch consume wax, 

food stores and waste products, reducing the fitness of the colony and sometimes even 

destroying it. A reliance on bumblebee nests for the completion of their lifecycle means 

wax moth populations are likely to be highest where bumblebee nests are common. The 

use of commercially reared bumblebees for crop pollination has led to artificially high 

numbers of nests in certain agricultural areas and these nests are particularly at risk of 

wax moth attacks. However, it is not known whether the high infestation rates recorded 

in commercial nest ‘hotspots’ could be affecting the likelihood of wild nests nearby 

suffering infestations. In this study we placed 50 bumblebee nests at increasing 

distances away from fruit farms stocking commercial bees, in order to determine if 

‘spill-back’ was occurring. We found no evidence that nests located close to farms 

using commercial bees were any more likely to suffer from a wax moth infestation than 

those located further away from such areas. Nest size was the only variable that was 

found to have any significance in predicting infestations, with larger nests being more 

prone to attacks. This study suggests that whilst wax moths remain an economically 

important pest for farmers who rely on commercial bees for pollination, their 

prevalence in nearby agricultural areas remains low.  
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6.2 Introduction  

There are concerns over declining pollinator populations (Biesmeijer et al., 2006; Grixti 

et al., 2009; Potts et al., 2010), not least because of our dependence upon insect 

pollinators for the production of almost a third of the food that we eat (Klein et al., 

2007). The area cultivated with pollinator dependent crops has been increasing more 

rapidly than the area cultivated for non-dependent crops (Aizen et al., 2008). Farmers 

that are highly reliant on pollinators often choose to actively manage this service by 

utilising domesticated and commercially reared bees (Garibaldi et al., 2009).  

Bumblebees have been reared commercially for over two decades (Velthuis & van 

Doorn, 2006) and are particularly efficient pollinators due to their large size, their 

hardiness to cooler weather (Corbet et al., 1993) and their ability to buzz pollinate (de 

Luca & Vallejo-Marin, 2013). Over 1 million factory reared B. terrestris colonies are 

produced per year globally (Velthuis & van Doorn, 2006) and are used to pollinate 

crops in countries where B.terrestris is native, but also where this species is not 

indigenous (Matsumura et al., 2004). They are used in the production of many crops 

from strawberries and tomatoes, to cucumbers, melons and almonds (Velthuis & van 

Doorn, 2006). Whilst commercial bumblebees helps to ensure a reliable pollination 

service for crops, their use could have unanticipated ecological consequences. For 

example, commercially reared bees have the potential to outcompete their native 

conspecifics (Ings et al., 2006) and the introduction of commercially reared bumblebees 

in North and South America as well as in Japan have been correlated with declines in 

indigenous bumblebee species (Goka et al., 2001; Colla et al., 2006; Otterstatter & 

Thomson, 2008; Meeus et al., 2011).  
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Another risk associated with the use of commercial bees is the spill-over of pathogens 

to wild populations (Colla et al., 2006). A recent study by Greystock et al. (2013) found 

that 77% of commercially reared bumblebee colonies carried microbial parasites which 

had the potential to be harmful to wild bumblebees and honeybees. Whilst in use at 

farms, commercially produced bumblebees interact with wild pollinators, sharing floral 

resources on the crop or on nearby margins (Whittington et al., 2004; Murray et al., 

2013). Greystock et al. (2013) found five different parasites within the sample of 

bumblebees that were studied and a further three within the pollen that was supplied as 

a food source for the bees. ‘Pathogen spill-over’ can occur as a result of a heavily 

infested host population coming into contact with a non-reservoir host population 

(Daszak et al., 2000). The potential consequences of pathogen spill-over are particularly 

alarming given the widespread use of commercial nests and already threatened wild 

pollinator populations. 

To manage any adverse impacts commercially reared bees may have, it is important to 

first understand how their use affects wild pollinators. Whilst the potential for disease 

transmission between managed and wild bees has been examined, no work has been 

carried out to assess whether the use of commercial pollinators can lead to artificially 

high populations of one bumblebee pest: the wax moth (Aphomia sociella). Non-

indigenous species tend to acquire parasites from the local fauna (Poulin & Mouillot 

2003) and ‘spill-back’ can occur when introduced species provide a competent host for 

native parasites (Kelly et al., 2009).  

Wax moth can be regarded as a parasite and are an important pest of bumblebee nests 

(Hoffer, 1882-1883; Goulson, 2010), with severe infestations resulting in the 

destruction of even large and otherwise healthy colonies.  
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The wax moth life cycle begins in early summer when wax moth females mate and then 

lay their eggs inside the nests of bumblebees. The larvae develop within the host nest, 

consuming nest materials and food stores as well as waste products (Gambino, 1995; 

Goulson, 2010), creating silken tunnels of dense webbing that protect the larvae as they 

move through the nest. When fully grown, the larvae overwinter in tight clumps of 

pupae close to the nest they inhabited, emerging as adults the following spring when the 

cycle begins again. 

Wax moths have been little studied and, whilst they are a known pest of bumblebee 

nests, the frequency and impact of their attacks is poorly understood. In a study 

examining bumblebee colony growth Goulson et al. (2002) found that 80% of nests 

located in urban areas suffered from wax moth infestations, compared with only 17% of 

nests in agricultural settings. In the UK gardens provide an important nesting habitat for 

bumblebees (Osborne et al., 2008) and it stands to reason that wax moths will be more 

common where their prey is more readily available. Chapter 5 examined the frequency 

with which commercial nests became infested with wax moth larvae and found that 

almost half of the nests in use at farms suffered from an infestation, and that in 34% of 

cases this led to nest destruction. The frequency of attacks was considerably higher than 

would otherwise have been predicted within an agricultural landscape (Goulson et al., 

2002), and there was a positive correlation between the density of commercial nest use 

in an area and the frequency and severity of an infestation. It is therefore important to 

determine if the use of these bees creates wax moth ‘hotspots’ that could increase the 

likelihood of nearby wild nests suffering from attacks. Wild bees play an important role 

in the pollination of soft fruit crops (Lye et al., 2011) and it is thus key to determine if 

commercial bumblebee use is negatively impacting their fitness. It is possible that the 

commercial nests used by farmers serve as ‘decoys’, attracting wax moths and thus 
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reducing attacks on wild nests. Conversely the use of commercial nests could 

artificially increase numbers of wax moths and subsequently result in more attacks on 

wild nests. This study seeks to determine if nests close to fruit farms where 

commercially reared bumblebees are in use are at a greater risk of wax moth attacks as 

a result of their proximity to these farms.  

6.3 Methods 

Fifty commercially reared B.terrestris audax nests (Biobest, Standard Hives) were used 

in the experiment and contained one queen and between 5 and 15 workers when 

delivered on the 1
st
 May 2013. Each nest contained two internal tanks to supply the bees 

with nectar during transportation and these were drained before each nest was weighed 

and labelled. Whilst in the laboratory all colonies were allowed access to the large 

nectar tank that was stored below the nest and were fed pollen as and when required. 

All nests were placed out in the field between the 7
th

 and the 16
th

 May 2013, and prior 

to deployment the nectar tank below each nest was sealed so that bees were required to 

forage. Ten soft fruit farms stocking commercial bees were selected from three of the 

largest soft fruit growing regions in Scotland; Angus, Tayside and Fife. One nest was 

positioned at each of the ten farms (Fig 6.1), either within or next to an open ended 

polytunnel containing raspberry crops and three were placed along a transect leading 

away from each farm. Nests were housed in a plastic box with the lid propped open to 

allow bees to enter and exit the nest, whilst preventing damage from rain. Nests were 

placed approximately 500m, 1000m and 1500m away from the focal farm stocking 

bees, however the exact distances varied according to the availability of suitable 

locations for the nests (which need to be placed in sheltered locations, out of the way of 

farm machinery). Where possible, nests were hidden in woodlands, hedgerows or 
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scrubby areas and were placed away from footpaths to prevent disturbance. The final 10 

nests were located in agricultural areas at least 2km away from the nearest farm 

stocking commercial bees (Fig 6.1). 

 

Figure 6.1 Locations of farm nests and control nests  

Nests were weighed once every two weeks for a 10 week period and any signs of wax 

moths recorded. Dead nests or nests that showed signs of heavy wax moth infestations 

were collected before the end of the 10 weeks of monitoring.  

After collection, each nest was placed in a -80ᵒC freezer to humanely kill any remaining 

bees and then moved to a -40ᵒC freezer for storage. Each nest was then dissected and 

the following information recorded: final weight of nest, number of empty worker cells, 

number of empty queen cells, number of worker pupae, number of queen pupae, 

number of wax moth larvae present and weight of wax moth larvae present. A nest was 

classified as destroyed if the damage inflicted was so severe that it prevented the 

elements of the nest from being counted (in heavily damaged nests there are few entire 

cells or pupae, and the wax structure is highly fragmented).  
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6.4 Landscape Analysis 

The co-ordinates of each nest and all farms using commercial bees within 5km of any 

nest were recorded using a GPS data logger and imported into ArcGIS 10 (ESRI Inc 

2013) as a point layer. The Proximity tool was used to determine the distance from each 

nest location to the nearest urban village or town and to the nearest fruit farm stocking 

commercial bees. Buffer and clip tools was used to select the area within a 1km radius 

of each colony, and data from OS Mastermap topography layer was used to determine 

the proportion of urban features (buildings, structures and roads) within these radii.  

6.5 Statistical Analysis 

All statistical analyses were conducted in R version 3.1.0 (R Development Core Team). 

A General Linear Model (GLM) with binomial errors was used to determine the effect of 

potential explanatory variables on the likelihood of wax moth infestations in bumblebee 

nests. Whether or not a nest became infested with wax moth larvae was modelled as a 

response variable with the distance between a nests and the nearest farm using 

commercial bees, and the number of farms using commercial nests within a 5km radius 

of a nest modelled as covariates of interest. As it has previously been identified that 

urban areas support high numbers of bumblebee nests the distance to the nearest urban 

area, as well as the proportion of urban features within 1km were also included in the 

model as covariates, along with the peak weight of each nest. Peak weight rather than 

final weight was used in our analysis because some infested nests were destroyed or 

partially destroyed as a result of wax moth attacks and thus lost considerable weight 

towards the end of the experimental period.  

The number of queens, pupae and worker bees within nests were each, in turn, modelled 

as the response variable to examine the effect of wax moth infestations on reproduction. 
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Nests that were heavily damaged by wax moth predation were excluded from this 

analysis as it was not possible within these nests to differentiate between different nest 

components. The glmmADMB package was used to account for over dispersion and 

zero-inflation (where appropriate i.e. queens), and the weight of wax moths within a nest, 

peak nest weight and the date that nests were deployed were included as covariates along 

with the distance to nearest urban area and the proportion of urban feature within 1km.  

Pseudo R
2
 values (hereafter R

2
 values) for each model were calculated by correlating the 

fitted values from the model with the observed data (using the MuMIn package in R, 

Barton, 2014). All results are means ± standard errors unless otherwise stated. 

6.6 Results 

Of the 50 nests deployed in this study, four were attacked by badgers, three were 

displaced or vandalised (and so were discounted from further analysis) and 15 were 

infested by wax moths; five of which were destroyed by the larvae.  

The mean peak weight of infested nests was 835.8 ± 68.7g compared with 609.6 ± 

34.0g for uninfested nests (Fig 6.2). Nests reached peak weight between weeks 6 and 8 

of the study, after which, irrespective of whether a nest became infested, weight tended 

to fall. The mean difference between peak weight and final weight for infested nests 

was 247.7 ± 50.1g (a 30% reduction) and for uninfested nests was 83.8 ± 20.5g (a 14% 

reduction). The mean number of wax moth larvae found in infested nests was 99.9 ± 

20.3 and the mean weight of wax moth larvae per nest was 11.2 ± 4.1g. 
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Table 6.1 Parameter estimates and likelihood ratio tests of the GLM for the probability of a 

bumblebee nest becoming infested with wax moth larvae.  

 Estimate Standard 
Error 

Δ AIC χ2 χ2

df 
P 

Intercept -0.928 0.455     

Distance to nearest urban area -0.832 0.533 0.69 2.69 1 0.119 

Urban area within 1km 0.133 0.517 -1.934 0.067 1 0.797 

Distance to nearest fruit farm -0.649 0.768 -1.161 0.839 1 0.398 

Peak weight 2.013 0.612 15.477 17.477 1 <0.001 

Date deployed -0.779 0.779 -0.936 1.064 1 0.317 

Number of farms using commercial 
bees within 5km 

0.102 0.577 -1.969 0.031 1 0.86 

       

Maximal Model R2 0.496      

 

Nest weight was the only variable included in the model that had a significant impact 

on whether or not a nest became infested. Larger nests were more prone to wax moth 

attacks (Table 6.1), with an increase in nest weight from 600g to 800g more than 

doubling the liklihood of an infestation occuring within a nest (Fig. 6.3a). Neither 

proximity to fruit farms stocking commercial bees (Fig. 6.3b) or the number of fruit 

farms within a 5km radius of a nest were significant in explaining infestation (Table 

6.1).  
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Table 6.2 Parameter estimates and likelihood ratio tests of the GLMM examining the number 

of queens produced by a nest. 

Fixed Effect Estimate Standard 
Error 

Δ Log 
Likelihood 

χ2 χ2df P 

Intercept 0.160 0.326     

Weight of wax moths (g) -0.638 0.233 -4.087 8.175 1 0.006 

Distance to nearest urban area -0.469 0.297 -1.215 2.431 1 0.115 

Urban area within 1km  0.268 0.339 -0.34 0.681 1 0.431 

Distance to nearest fruit farm -0.173 0.396 -0.1 0.201 1 0.661 

Date deployed -0.538 0.337 -1.171 2.344 1 0.11 

Peak weight  1.526 0.292 -9.963 19.927 1 <0.001 

       

Negative binomial dispersion 
parameter 

403.43 2.075     

Zero-inflation 0.58219 0.112     
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Figure 6.2. Mean observed nest weight for infested and un-infested nests across the ten week 

monitoring period. Points represent mean nest weight (and their standard errors) and weight 

includes all accumulated biological material within the nest, including any wax moth larvae 

present.  

The weight of wax moths within a nest along with the peak weight of the nest had a 

significant influence on queen production (Table 6.2). Unsurprisingly heavier nests 

produced more queens with the model predicting an 85% increase in queen production 

with a doubling of nest weight from 600g to 1200g (Table 6.2). Conversely nests 

containing larger infestations produced fewer queens.  
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Figure 6.3 The effect of peak weight (a) and distance to the nearest fruit farm (b) on the 

probability of a wax moth infestation occurring within a nest. Dots are observed data, black 

lines are the predicted probabilities based on the model shown in Table 6.1, with the dot-dash 

lines representing the 95% upper and lower confidence intervals. The predictions are made at 

the median observed values for other parameters in the model.  

Whilst the relationship between the weight of a larvae infestation and queen production 

was significant, the biological effect was small, with the model predicting nests without 

infestations would produce only 1-2 more queens than those with heavy infestations 

(Table 6.2). Whilst there was a trend towards more workers and pupae being produced 

by heavier nests, the weight of a wax moth infestation was not significant in either 

model (Appendix 6.1 & 6.2). 

6.7 Discussion 

In order to effectively conserve pollinators such as bumblebees we need to understand 

both the intentional and unintentional consequences of agricultural management 

decisions relating to these ecosystem service providers. The use of commercial bees has 

raised a number of ecological concerns including fears that they might compete with 
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native species, disease transmission and potential interbreeding with wild population 

(Goulson, 2010b), The previous chapter discussed how commercial bumblebee nests 

used at fruit farms suffer from high frequencies of wax moth infestations, and 

demonstrated that severe infestations led to high incidences of nest destruction.  The 

results of chapter 5 raised questions pertaining to how commercial nest infestation rates 

may impact upon  wild bumblebee health. Whilst parasite density can be determined by 

biotic and abiotic factors not associated with hosts (Antonovics & Edwards 2011), host 

population density and parasite abundance have been found to be positively connected 

(Arneberg et al., 1998).   

This study set out to determine if the use of commercially reared bumblebee colonies 

could be increasing the frequency of attacks on nests in nearby areas, or whether they 

could in fact be acting as  ‘decoys’, thus reducing the number of attacks on wild nests 

close by. 

The link between host density and prevalence of infestation has been supported by 

empirical studies (Arneberg et al., 1998; Antonovics & Edwards 2011) and correlations 

have been found between the number of parasites per host and the percentage of hosts 

infested in a given area (Kraznov et al., 2002). Despite this here we found no evidence 

to suggest that proximity to fruit farms where commercial bees are used increases the 

probability or severity of a wax moth attack. Nest weight was the only variable that 

significantly impacted upon the likelihood on an infestation occurring as wax moths 

were more likely to infest larger nests, with infestations having a small, but 

significantly negative impact upon queen production.  

Nests with higher peak weights produced significantly more queens, however these 

were also the nests that were most at risk of becoming infested with wax moth larvae. 
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Large nests are likely to be particularly appealing to female wax moths as they will 

contain more resources upon which hatched larvae can feed. In an infested nest the wax 

moth larvae will consume some of the nest stores and this may result in less food being 

available for the worker bees to feed new queens. This could explain why infested nests 

produced significantly fewer queens. Whilst an infestation only reduced queen 

production by a small amount (1-2 bees), it is possible that if nests were left in the field 

for longer the difference would be more marked. The effect of an infestation on queen 

production is likely to be impacted by the timing of an attack and the point at which a 

nest starts to produce new queens.  

It has previously been suggested that if a wax moth attack occurs late on in bumblebee 

colony development it may have little effect on the success of the nest (Gambino, 

1995). In this study we monitored nests every two weeks, which allowed us to examine 

more closely the impact of an infestation on a nests development. Nests tended to reach 

peak weight between weeks 6 and 8 of the study period, however subsequent weight 

loss was greater in infested nests with a 30% reduction in nest weight relative to a 14% 

reduction in uninfested nests; a difference presumably caused by the larvae consuming 

the nest stores and material. Whilst too few nests were destroyed to allow meaningful 

statistical analysis, one of the largest nests used in the study was completely destroyed 

between one fortnightly visit and the next as a result of a wax moth attack. This 

demonstrates that large infestations have the ability to inflict fatal damage on otherwise 

seemingly healthy colonies.  

Overall the nests used in this study were in much smaller than the nests being used by 

farms for the purpose of crop pollination.  This could have contributed to the fact that 

no relationship was found between proximity to these farms and infestation rates, as 
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wax moths seem particularly attracted to larger nests.  It could be therefore, that spill-

back is occurring, but that any effect of nest density on infestation rate was not 

detectable here as a result in discrepancies between the size nests in use at farms and 

size of the nests deployed as part of the experiment.  The use of commercially reared 

bumblebees could provide a useful study system to empirically examine the impact of 

host density on parasitic infestation, particularly given the likely increase in their use 

over time.    

The desire to produce crops outside of their traditional growing seasons, coupled with 

concerns over wild bee declines, has increased the demand for commercially reared 

bees, which can be ordered and delivered to provide a pollination service whenever 

crops are in flower. Concerns have been raised regarding the ecological consequences 

of using commercial bumblebees (Goulson, 2010b), however until now no study had 

examined whether or not high density use has the potential to create a wax moth spill-

back effect, leading to an increased frequency of attacks on wild nests. Wax moths are 

an understudied predator of bumblebees that can destroy or reduce the reproductive 

success of nests. For farmers reliant on pollinators for successful crop production any 

pest that reduces the fitness of wild and/or commercial bees is likely to be of economic 

importance and worthy of management. Whilst we found no evidence that high density 

commercial bee use is increasing wax moth predation of nearby nests, it is important 

that commercial bees are managed to prevent wax moth hotspots from forming. Used 

nests should be disposed of properly at the end of the season in order to prevent any 

wax moth larvae within them from surviving to hatch the following year. When 

deployed in polytunnels, commercial nests are often mounted on top of a small crate to 

prevent dampness caused by being in contact with the ground. These crates should also 

be checked to ensure they do not harbour hibernating larvae.  
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Further research is needed to determine the costs and benefits associated with 

commercially reared bees. Whilst they provide farmers with a predictable and on 

demand pollination service it is important that we fully understand how their use might 

impact upon nearby wild populations; particularly since their use looks set to continue 

and most likely increase. It is key that management methods designed to increase yields 

do not have negative and unforeseen consequences on natural ecosystems and the 

services that they provide.  
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Chapter 6- Appendix 

 

Appendix 6.1 Parameter estimates and likelihood ratio tests of the GLMM examining the 

number of workers produced by a nest. 

Fixed Effect Estimate Standard 
Error 

Δ Log 
Likelihood 

χ2 χ2df P 

Intercept 4.751 0.226     

Weight of wax moths (g) 0.559 0.624 -0.44 0.876 1 0.349 

Distance to nearest urban area -0.192 0.137 -0.97 1.938 1 0.164 

Urban area within 1km -0.018 0.145 -0.01 0.014 1 0.906 

Distance to nearest fruit farm 0.074 0.184 -0.08 0.162 1 0.687 

Date deployed -0.094 0.176 -0.14 0.282 1 0.596 

Peak weight 1.336 0.1637 -23.08 46.156 1 <0.001 

       

Negative binomial dispersion 
parameter 

2.85 0.692     

 

Appendix 6.2 Parameter estimates and likelihood ratio tests of the GLMM examining the 

number of pupae produced by a nest. 

Fixed Effect Estimate Standard 
Error 

Δ Log 
Likelihood 

χ2 χ2df P 

Intercept 3.147 0.133     

Weight of wax moths (g) -0.29 0.204 -0.91 1.814 1 0.178 

Distance to nearest urban area -0.414 0.155 -3.28 6.552 1 0.01 

Urban area within 1km -0.125 0.177 -0.25 0.49 1 0.484 

Distance to nearest fruit farm -0.229 0.217 -0.55 1.084 1 0.298 

Date deployed 0.046 0.214 -0.03 0.046 1 0.830 

Peak weight 0.612 0.198 4.88 9.752 1 0.002 

       

Negative binomial dispersion 
parameter 

2.107 0.587     
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Chapter 7 

General Discussion 

A combination of globalised food markets and innovative approaches to farming mean 

we can grow strawberries in December and eat bananas in Scotland. Contemporary 

farming techniques have adapted to lessen the environmental constraints on food 

production allowing crops, particularly those with a high value, to be produced outside 

of their traditional growing seasons. 

In the case of soft fruit production in Scotland, agricultural innovations were needed to 

overcome two main barriers that previously restricted the times when crops would 

grow: climate and potential pollination limitations. The traditional season for field-

grown strawberries in the UK spans June and July, with production tailing off in 

August. Delicate fruits such as strawberries and raspberries are easily damaged by 

exposure to wind and rain with plants growing best in warm conditions. Growing 

strawberries under protection in polytunnels reduces exposure to adverse weather and 

increases ambient temperatures in the crop vicinity. Consequently the growing season 

extends to span May and into September. 

Farmers that produce pollinator dependent crops such as strawberries cannot depend on 

manipulation of local climatic variables alone to extend the growing season. Sufficient 

bees and other insects are required for adequate crop pollination and these insects 

simultaneously benefit from the crop as a food source. In order to maximise this 

mutualistic relationship, careful management of the farm environment is needed. 

Bumblebees and honeybees are two important crop pollinators whose numbers in 

certain locals are reducing as a result of human activities. Diminishing habitat quality 

and availability, disease prevalence and the widespread use of agrochemicals have led 
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to severe regional declines of honeybees as well as bumblebee range contractions 

throughout Europe and North America (Potts et al., 2010; Williams & Osborne 2009; 

Steffan-Dewenter et al., 2005). Agricultural expansion and intensification has played a 

key detrimental role in pollinator health (Goulson et al., 2008; Pywell et al., 2005), yet 

over a third of the crops that we grow cannot be produced without the help of bees and 

other insects (Klein et al., 2007).  

Insufficient compatible pollen transfer to flower stigmas, otherwise known as 

pollination limitation, reduces seed set and can result in diminished crop quality and 

quantity (Szklanowska & Wienlarska, 1993). Pollination limitation can occur in early 

season flowers, if native bees are not yet on the wing (Baker et al., 2000; McCall & 

Primack, 1992), and is a likely consequence of decoupling crops and their natural 

growing seasons. In order to tackle the issue of pollination limitation, farmers are 

increasingly relying on the use of commercial bumblebee colonies, which can be placed 

conveniently within early flowering crops before wild pollinators emerge. Whilst 

honeybees have been domesticated for at least 4000 years (Crane 1990), the 

domestication of bumblebees is relatively new (Velthuis & van Doorn, 2006). 

Commercial bumblebees are used in the production of a range of crops from cucumber 

(Stanghellini et al., 2002) to blueberry (Stubbs & Drummond 2001) to kiwifruit 

(Pomeroy & Fisher 2002) and are able to provide services that honeybee colonies 

cannot, for example buzz pollination; making them popular for the production of crops 

like tomatoes (Velthuis & Van Dorne, 2006).  

In the Scottish soft fruit context, personal communications with farmers suggests that 

purchases of bees are made based on the advice of an agronomist or because of a 

perceived risk in relying solely on the availability of wild pollinators. Most farmers 

were aware of pollinator declines, often because of media coverage of honeybee losses, 
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and the majority were also acutely aware of the importance of wild pollinators but 

lacked confidence in the reliability of the service they can provide. Research has shown 

that wild bees provide a sufficient pollination service to crops in agricultural areas 

where their bio-physical needs are met (i.e. sufficient foraging resources and suitable 

nesting sites are available) however in more intensive agricultural landscapes where a 

large crop area can flower over a relatively short period of time, pollinator to flower 

ratios can prove insufficient (Kremen et al., 2004; Winfree et al., 2007).  

The benefits of using commercial bees will therefore likely be highest where mass 

flowering crops are produced intensively and wild bee numbers are insufficient to 

pollinate all plants (Free and Williams 1976) and lowest in areas where organic 

cropping is practiced (Andersson et al., 2012) and high levels of habitat heterogeneity 

within the landscape support a diverse assemblage of wild pollinators (Rundlof et al., 

2007).  

In light of growing concerns over the ecological consequences of using commercial and 

domesticated bees e.g. disease spread (Greystock et al., 2013; Furst et al., 2014); 

competition with native species for resources (Goulson 2003; Ings et al., 2006) it is 

particularly important to quantify their contribution to crop production and thus 

determine the necessity of their use. The results of research presented here (Chapter 2) 

suggest that commercial bumblebees are currently important for strawberry production 

in Scotland, however findings do not support their use on raspberry crops. These results 

somewhat contradict those of a previous study by Lye et al. (2011) who found that the 

use of commercial bees significantly increased pollination of raspberry crops in 

Scotland. Whilst it is possible that differing landscape factors between the two studies 

could account for this (e.g. the landscape surrounding the study farms in Chapter 2 may 

have offered bees fewer foraging alternatives than in Lye et al. (2011) and thus made 
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the raspberry crop more attractive, it is also possible that pollination services may vary 

over time. If pollination services vary over time, any research that tries to quantify the 

benefit of commercial bees to crop pollination needs to take into account cross-year 

differences in wild pollinator availability.  

Inter-annual variability in pollinator numbers in some EU countries could be amplified 

by the recent two-year moratorium which prevents the use of three common 

neonicotinoids on flowering crops. This moratorium was passed by the EU in 2013 after 

a number of studies emerged linking the use of these agrichemicals to bee declines 

(Yang et al., 2008; Henry et al., 2012; Gill et al., 2012; Whitehorn 2012).  

Investigating the impact of one widely use neonicotinoid, Whitehorn et al. (2012) found 

that queen production in B. terrestris colonies was significantly diminished as a result 

of exposure to field realistic doses of the pesticide imidacloprid, however the 

mechanism behind the reduction was not clear from their study. In Chapter 4 evidence 

is provided that reveals this mechanism: bumblebees exposed to the same dosage of 

imidacloprid used by Whitehorn et al. (2012) showed a reduced ability to forage for 

pollen, with treated bees bringing back 31% less pollen per hour than control bees. This 

finding was supported by Gill et al. (2012) who also determined that imidacloprid 

resulted in bumblebees returning to the nest with smaller pollen loads. Pollen is the 

main source of protein for bumblebees and is used to rear workers and queens (Harder 

1990), if bumblebees are unable to gather this resource effectively then a nests will 

suffer a diminished ability to reproduce.  

If the widespread use of agrochemicals, such as imidacloprid, is partly responsible for 

wild pollinator declines then it is possible that negative impacts could be reduced as a 

result of constraints imposed upon pesticide use. Whether bumblebee and honeybee 



125 
 

numbers benefit from the temporary restriction depends on many factors, including the 

length of time that the moratorium remains in place and whether the chemicals that are 

inevitably used in place of neonicoitinoids have impacts on pollinating species. Recent 

work has shown neonicotinoids are not just impacting upon bumblebee and honeybee 

health they might also be linked to declines in bird populations, suggesting the 

implications of the use of this group of agrochemicals may be broader than previously 

thought (Hallmann et al., 2014). Further research is needed to ensure that any effects of 

pesticides on non-target organisms are better understood; failure to do so could result in 

humanity ‘tinkering’ unwisely with the many cogs and wheels that make up the 

ecosystem services upon which we depend.  

Farmers in England wishing to use B. t.terrestris colonies now have to apply to Natural 

England for a licence in order to do so. This licence stipulates that these non-native bees 

can only be used in greenhouses or polytunnels and not in open field situations, a limit 

imposed to help prevent their escape and spread. The study in Chapter 2 was conducted 

in 2011, at the time farmers were mostly utilising commercial hives that contained non-

native B. t.terrestris, reared in factories outside the UK. By 2013 most farmers had 

switched to using nests containing the native B. t.audax, a more expensive alternative, 

but one encouraged by recent restrictions on the use of non-native hives. Whilst farmers 

in Scotland are not - at present - required to apply for a licence in order to use non-B. 

t.terrestris the new regulation in England signals an increased recognition by policy 

makers of potential issues concerning the use of commercially reared bees. 

For the purposes of strawberry production in Scotland, commercial bees were highly 

important for pollinating early season fruit, when the abundance of wild pollinators was 

low (Chapter 2). With commercial bumblebee use becoming a more restricted and more 

costly practice, farmers may seek alternative management strategies. Future research 
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could examine if farmers could actively promote wild pollinators that emerge earlier in 

the season in order to determine if a viable alternative to commercial bees exists. The 

provision of suitable nesting sites has been previously found to augment local bee 

populations e.g. the alkali bee, Nomia melanderi (Parker et al., 1987) and the leafcutter 

bee, Megachile rotunda (Stephan 1961; Peck and Bolton, 1946) and it is possible that 

the use of artificial domiciles could allow farmers to encourage wild bees to nest close 

to their crops. It is unknown whether this strategy, coupled with the provision of 

additional foraging resources early in the season, could increase pollinators in the crop 

vicinity to a sufficient degree to reduce reliance on commercial bees.  

 In Chapter 2 the importance of seasonal complementarity was discussed, with findings 

suggesting that a range of pollinating species, each with a different seasonal niche, 

provided the most robust pollination service. A body of research has previously detailed 

the importance of a diversity of complimentary pollinators for the creation of resilient 

plant pollination services (Bluthgen & Klein 2011; Albrecht et al., 2012) however, 

experiments showing the importance of seasonal functional diversity in real life crop 

systems were lacking.  

Becoming heavily reliant on a single pollinator species is inherently risky, whether wild 

or commercially reared. An outbreak of disease could decimate the population of a 

single wild species, or the supply of commercial species, leaving farmers vulnerable. 

Commercial bumblebees imported to the UK are reared in one of two factories in 

mainland Europe, so there is a risk of supply failure to the multitude of farms dependent 

on commercial bees. An accident (e.g. a destructive fire) at a single facility could have a 

disastrous impact on yield for farms with no alternative pollinator management 

strategies in place. There is some irony in the fact that many farmers are motivated to 

buy in commercial bumblebees in order to mitigate risk associated with relying upon 
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wild pollinators, but in doing so are perhaps introducing a new risk: becoming too 

reliant on the use of commercial bees.  

If farmers are to mitigate the risks of pollinator scarcity then an integrated approach to 

pollinator management is necessary. Chapter 3 showed how the use of relatively cheap 

wildflower mixes can be used to increase the number of pollinators visiting a nearby 

crop. Results demonstrated that planting wildflowers adjacent to crops increases 

pollinator visits, even for crops that are relatively unattractive to bees (Chapter 2). 

However, given the wide scale use of commercial bees within the study area, we were 

unable to determine what proportion of the increase visitation was due to increases in 

the number of wild bees visiting the crop in comparison to commercial bees. Recent 

work by Scriven et al. (2013) has developed non-invasive DNA sampling methods that 

allow genetic differentiation of Bombus species using faecal samples. In the future this 

method could be adapted to help determine the relative proportion of wild and 

commercial B. terrestris at farms where both are present, helping to reveal further the 

contribution that both make to crop pollination. In a study system where commercial 

bumblebee colonies were not in use Blaau and Issacs (2014) also found that wildflower 

plantings are a successful mechanism for improving the pollination of nearby crops, 

however the area planted with seed in their study was greater than the 6m by 50m strips 

detailed in Chapter 3. Farmers are more likely to invest in flower strips if they require 

smaller areas of land and less seed, it is thus important to determine the minimum 

investment required to achieve enhanced crop pollination. 

Little is known about the long term impact of using wild flower strips to boost 

pollinator numbers in nearby crops, particularly how these strips might influence the 

longer term health and diversity of wild bee populations around farms. Does providing 
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an increased abundance and diversity of forage increase pollinator population sizes over 

time, and could this lead to a more reliable and sustainable crop pollination service?  

Sowing wildflower strips close to crops at farms using commercial bees could lead to 

more interaction between wild and commercial pollinators, both of which will likely 

feed on flowers provided by the strip. Parasites can be transmitted as a result of shared 

flower use (Durrer & Schmid-Hempel, 1994) and commercially reared bees are known 

to interact with other pollinators after importation through the communal use of floral 

resources (Whittington et al., 2004; Murray et al., 2013). Recent work by Greystock et 

al., (2013) has shown that commercial colonies often contain various parasites and 

disease associations have been found between domesticated honeybees and wild 

bumblebees (Furst et al., 2014). This suggests that creating an attractive floral resource 

frequently utilised by wild and commercial bees alike could increase disease 

transmission between factory reared and wild bees.  

More work is needed to thoroughly asses the ways in which commercially reared bees 

may impact upon wild pollinator populations, particularly given the likelihood that their 

use will continue to increase if demands for pollinator dependent foods rise. In Chapters 

5 and 6 some of the first studies on the relationship between commercial bumblebee 

colonies, wax moths and wild bees were reported. The impact of wax moths on 

bumblebee nest health had not been previously quantified and, whilst they are 

mentioned in a small number of studies, until now there had been no experimental work 

to quantify their prevalence and impact on bees.  

Chapter 5 presented research detailing the frequency of wax moth predation of 

commercial bumblebee nests and provided insight into the proportion of these infested 

nests that go on to be destroyed as a result of attacks. Results demonstrated that almost 
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half (44%) of nests became infested with wax moth larvae, with 34% of infestations 

resulting in nest destruction. More needs to be understood about the impact that both 

lethal and sub-lethal infestations have on pollinator activity and reproductive success. If 

foraging activity of commercial bees is diminished crop pollination might be negatively 

impacted. The use of Certan™, a lepidopteran larvicide was investigated as a tool to 

reduce wax moth infestations within commercial nests. Whilst Certan™ did not 

significantly reduce the likelihood of nest infestation in our study, results did suggest it 

was having some effect on reducing wax moth prevalence (albeit a non-significant one). 

It is possible that a lack of clear impact was caused by limitations in treating the nest 

successfully (see Chapter 5 discussion) and the effectiveness of this product at 

protecting nests could easily be tested in a laboratory based experiment. Wax moths are 

an understudied, economically important pest and further work could focus on 

determining an effective mechanism to reduce their impact on commercial nests.  

Due to the high density use of commercial bees in certain agricultural areas, and 

personal observations of farmers failing to destroy nests at the end of the crop season 

(as stipulated by the manufacturers), we set up an experiment to determine if proximity 

to farms where commercial nest use is high could increase the likelihood of nearby 

nests becoming infested. The impact of potential negative effects of using commercial 

bees on nearby populations of wild bees is an area of growing concern (Greystock et 

al., 2013); however, here we found no evidence that nests located in close proximity to 

commercial nest ‘hot spots’ were any more at risk of an attack than control nests that 

were located far away from such sites. Whilst Chapters 5 and 6 shed light on the 

relationship between wax moths and bumblebees (e.g. larger nests were found to be 

significantly more likely to suffer from an attack), there is much scope for further 

research in this area.  
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Relatively little is known about the factors influencing the susceptibility of nests to wax 

moth infestation. It is plausible that disease load or exposure to pesticides could have an 

impact on a nests susceptibility to a wax moth attack and future work could examine if 

this is so by testing nest resources for the presence of harmful pesticides and measuring 

the disease burden of bees from nests with, and without infestations. The nests used in 

the studies conducted in Chapters 5 and 6 were not screened for wax moth larvae before 

experiments commenced. The feasibility of detecting wax moth eggs or larvae within 

these nests without destructive sampling is questionable, however it would nonetheless 

be beneficial to rule out the possibility that nests arrive already infested with these 

predators.  

This thesis has examined how farm management decisions, such as the use of 

commercial bumblebee nests, the sowing of wildflowers and the application of 

pesticides, can impact upon pollinator health and crop pollination; and provides the first 

experimental evidence of the frequency and severity of wax moth infestations in 

commercial bumblebee nests. It has highlighted that the relationship between farmers 

and the insects pollinating their crops can be mutualistic as both can benefit from each 

other. However, it has also sought to demonstrate that, if this mutualism is to be 

maximised, farmers need to consider the health and sustainability of beneficial 

pollinators when making certain management decisions e.g. which pesticides to apply 

and whether or not to establish wildflower plantings. Whilst pesticides can be a 

valuable tool in tackling insect crop damage the negative impacts they can have on 

beneficial, non-target organisms can no longer be ignored. For farmers growing 

pollinator dependent crops the use of neonicotinoids on their farms, or in neighbouring 

areas, will likely reduce the abundance and resilience of wild pollinator populations. 

Conversely, investing in wildflower strips that provide a diversity of year round forage 



131 
 

is likely to increase bee numbers around the farm; a benefit that may then spill-over 

onto the crop. Whilst the use of commercially reared pollinators may be a necessary 

consequence of decoupling crops from traditional growing seasons, the potential risks 

involved in their use seem to be gaining attention. If future restrictions are placed on the 

application of these bees, farmers will benefit from having invested in an integrated 

approach to pollinator management, whereby they foster and rely on a range of 

pollinating species, not just one.  
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