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ABSTRACT

Clinical risk assessment of chronic illnesses is a challenging and complex task

which requires the utilisation of standardised clinical practice guidelines and doc-

umentation procedures in order to ensure consistent and efficient patient care.

Conventional cardiovascular decision support systems have significant limitations,

which include the inflexibility to deal with complex clinical processes, hard-wired

rigid architectures based on branching logic and the inability to deal with legacy

patient data without significant software engineering work. In light of these chal-

lenges, we are proposing a novel ontology and machine learning-driven hybrid

clinical decision support framework for cardiovascular preventative care.

An ontology-inspired approach provides a foundation for information collec-

tion, knowledge acquisition and decision support capabilities and aims to develop

context sensitive decision support solutions based on ontology engineering prin-

ciples. The proposed framework incorporates an ontology-driven clinical risk

assessment and recommendation system (ODCRARS) and a Machine Learning

Driven Prognostic System (MLDPS), integrated as a complete system to pro-

vide a cardiovascular preventative care solution. The proposed clinical decision

support framework has been developed under the close supervision of clinical do-

main experts from both UK and US hospitals and is capable of handling multiple

cardiovascular diseases.

The proposed framework comprises of two novel key components: (1) OD-

CRARS (2) MLDPS.

The ODCRARS is developed under the close supervision of consultant car-

diologists Professor Calum MacRae from Harvard Medical School and Professor
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Stephen Leslie from Raigmore Hospital in Inverness, UK. The ODCRARS com-

prises of various components, which include:

(a) Ontology-driven intelligent context-aware information collection for con-

ducting patient interviews which are driven through a novel clinical questionnaire

ontology.

(b) A patient semantic profile, is generated using patient medical records

which are collated during patient interviews (conducted through an ontology-

driven context aware adaptive information collection component). The semantic

transformation of patients medical data is carried out through a novel patient

semantic profile ontology in order to give patient data an intrinsic meaning and

alleviate interoperability issues with third party healthcare systems.

(c) Ontology driven clinical decision support comprises of a recommendation

ontology and a NICE/Expert driven clinical rules engine. The recommendation

ontology is developed using clinical rules provided by the consultant cardiologist

from the US hospital. The recommendation ontology utilises the patient semantic

profile for lab tests and medication recommendation.

A clinical rules engine is developed to implement a cardiac risk assessment

mechanism for various cardiovascular conditions. The clinical rules engine is also

utilised to control the patient flow within the integrated cardiovascular preven-

tative care solution.

The machine learning-driven prognostic system is developed in an iterative

manner using state of the art feature selection and machine learning techniques. A

prognostic model development process is exploited for the development of MLDPS

based on clinical case studies in the cardiovascular domain. An additional clinical

case study in the breast cancer domain is also carried out for the development and

validation purposes. The prognostic model development process is general enough

to handle a variety of healthcare datasets which will enable researchers to develop

cost effective and evidence based clinical decision support systems. The proposed

clinical decision support framework also provides a learning mechanism based on

machine learning techniques. Learning mechanism is provided through exchange

of patient data amongst the MLDPS and the ODCRARS. The machine learning-
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driven prognostic system is validated using Raigmore Hospital’s RACPC, heart

disease and breast cancer clinical case studies.
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Chapter 1

INTRODUCTION

Clinical data is the foundation of health learning, with the aim of creating effective

clinical solutions for healthcare providers all over the world [8]. Issues motivat-

ing discussion include the potential for clinical data as a resource for continuous

learning. A key component of an efficient healthcare system revolves around the

key area of data transformation through interoperable data resources and creates

awareness among clinical domain and informatics experts regarding these issues.

Healthcare organisations have been collecting and storing large amounts of data

for decades. Most of this invaluable legacy patient data resides in distributed hos-

pital repositories, which are often ignored or badly utilised for learning purposes

that aim to improve clinical pathways, and are difficult to access and pre-process

(data interoperability, disparate coding standards like SNOMED CT, HL7 and

missing data issues) for a meaningful purpose by healthcare solution providers.

With the advent of “Big Data”, predictive clinical analytics is now one of the

most researched areas of academic and commercial partners globally and has an

aim to develop cost effective healthcare solutions to promote evidence-based/data

driven preventative care. Clinical predictive analytics has the potential to trans-

form the way healthcare solution providers develop clinical decision support tech-

nologies using synthetic data. Healthcare solution providers can develop more

cost effective and efficient prospective and preventative care solutions by way of

learning from the legacy data stored in clinical data repositories. Thus, they can
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make more informed decisions and improve data-driven/evidence-based patient

care [9]. The onus is on healthcare organisations at a national level to enable

domain experts, clinicians, researchers and healthcare trusts to unlock the true

potential of the legacy data stored within their proprietary healthcare systems.

Big data is transforming the discussion of what is appropriate for a patient

and for the healthcare ecosystem. The release of big data has helped authorities

to develop patient-centric healthcare models by considering a holistic view of

care. New care models have been proposed, which are built on 5 key pathways,

as presented by Groves et al [10]; details of these key pathways are as follows:

1. Right Living: Patients can be made custodians of their well-being by getting

them involved in the decision-making process, the prescription of treatment

plans and decision prevention schemes. The right living pathway focuses on

encouraging patients to make lifestyle choices such as lowering their Body

Mass Index (BMI), dieting and engaging in exercise.

2. Right Care: This pathway entails ensuring that patients get the most timely,

appropriate care when needed. It also specifies a need for a coordinated

approach to be followed across different healthcare providers and aims to

share the same clinical data amongst its stakeholders to avoid duplication

while fostering effort and promoting suboptimal strategies.

3. Right Provider: This pathway proposes that patients should always be

treated by professionals who are best suited to the task and can deliver

the best outcome. This clinical pathway also reiterates that healthcare

providers be selected as per their track record [10].

4. Right Value: This pathway involves multiple measures that can be intro-

duced to ensure the cost effectiveness of care by eliminating redundant

clinical workflows in healthcare systems.

5. Right Innovation: This pathway involves promoting research and devel-

opment activities in the healthcare sector so legacy clinical data could be
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utilised to learn from existing clinical systems and improve clinical trials

and treatment protocols [10].

Big data predictive clinical analytics paves the way for the development of

next generation healthcare learning systems and promote personalised care for

patients. Healthcare learning systems are built on the core principle of learning

from existing clinical practices through legacy clinical data, as well as utilising

existing clinical practice guidelines to facilitate efficient clinical decision-making

operations. A learning activity in these intelligent healthcare systems can be de-

scribed as an activity which focuses on the delivery of the healthcare operations

or uses personalised health information (derived from legacy clinical data repos-

itories) and has a targeted objective of learning from existing clinical work flows

to improve clinical practice guidelines. This with a view to improving the quality,

efficiency of the systems, institutions and modalities through which healthcare

services are provided by healthcare providers. All of the aforementioned activities

are deemed as learning activities which are enshrined in the next generation of

healthcare learning systems. These systems can benefit from conventional clinical

research, comparative effectiveness research, quality improvement research, qual-

ity improvement and patient safety practices, healthcare operations, quality as-

surance or evidence-based personalised care. All of these operations/components

are the building blocks for the next generation of healthcare systems based on

learning activities [11].

Legacy clinical data combined with clinical practice guidelines is a data sci-

ence methodology that can identify patterns in home monitoring physiologic data.

Coupled with interaction with the patient and their caregivers, we can give the

care team early warning of a worsening of the patient’s clinical status. In the UK,

NICE (National Institute of Clinical Excellence) states that all clinical domains

can be used as a means of evidence. These guidelines are defined as systematically

developed rules to assist clinicians in clinical decision-making about appropriate

health care for specific clinical circumstances. These guidelines are based on

the most rigorous research available, and are often referred to as best practice

guidelines. Applied at the individual patient level, these guidelines provide a set
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of corrective actions based on conditional logic for solving problems or accom-

plishing tasks. Appropriately applied, the guidelines can reduce the uncertainties

associated with clinical decisions, diminish the variation around usual practices,

demystify unfamiliar terminology and decrease the need to search for journals

and articles [12]. It is therefore vital to make use of these guidelines combined

with clinical data if we are to build efficient and personalised care models.

Predictive Clinical Analytics based on learning retrospective clinical data focuses

on patients with complex chronic diseases and aims to improve health, reduce

avoidable hospitalisations and acute care events and, as a result of the decreased

need for expense acute care, also reduce costs. Predictive Analytics has the po-

tential to help physicians make better decisions across the board and help to

deliver evidence-based personalised care and treatments as part of a preventative

care solution; hence increasing efficiency, thereby reducing the burden on primary

and secondary care.

The aim of this interdisciplinary research project is to develop a hybrid clinical

decision support framework for cardiovascular preventative care. Our proposed

ontology and machine learning-driven hybrid clinical decision support framework

builds on Bouamrane et al.’s clinical decision support framework [2] by provid-

ing an advanced ontology driven clinical decision support and machine learning

driven prognostic modelling capabilities. The proposed ontology and machine

learning driven hybrid clinical decision support framework comprises of Ontology

Driven Clinical Risk Assessment and Recommendation system (ODCRARS) and

the Machine Learning Driven Prognostic System (MLDPS) to provide a cardio-

vascular preventative solution.

The ODCRARS provides intelligent context aware information collection for

gathering a patient’s medical history. This is then transformed into a semantic

profile (to alleviate interoperability issues) by using answers provided in patient

interviews. The patient semantic profile combined with a recommendation on-

tology is utilised for the recommendation of lab tests and medications for car-

diovascular patients. A clinical rules engine is developed to provide cardiac risk

assessment tools to carry out cardiac risk scores calculation for various cardio-
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vascular diseases.

The proposed clinical decision support framework also incorporates a ma-

chine learning-driven prognostic system. The machine learning-driven prognostic

system is validated in the cardiovascular and breast cancer domains and online

prognostic models have also been developed and deployed online for further clin-

ical trials and validation. The proposed ontology and machine learning-driven

hybrid clinical decision support framework provides a learning mechanism built

using machine learning techniques. The learning facility is provided through the

exchange of patient data amongst the MLDPS and ODCRARS.

The MLDPS and ODCRARS are integrated in order to provide a cardiovascu-

lar preventative care solution for patients and clinicians in primary and secondary

care using dedicated interfaces. The machine learning driven cardiac chest pain

and heart disease risk scores calculation is provided in the integrated system

along with other cardiac risk scores to facilitate clinicians in the clinical decision

making process.

1.1 Organisation of Thesis

This thesis is organised as follows. Chapter 2 provides a literature review of the

existing clinical decision support systems.

Chapter 3 presents the proposed Novel Ontology and Machine Learning Driven

Hybrid Clinical Decision Support Framework for cardiovascular preventative care

and its two key components: (1) ODCRARS and (2) MLDPS. Chapter 4 explains

the development of the ODCRARS for preventative cardiovascular care. Details

of design, the development and validation of ontology-driven intelligent context

aware information collection, patient semantic profiles, a clinical rules engine (for

lab tests and medication prescriptions), the cardiac risk assessment tools and the

integration of a machine learning cardiac chest pain prognostic model including

cardiac chest pain risk score calculation are explained. Chapter 5 introduces a

MLDPS for cardiovascular preventative care. It describes key development stages

(keeping in line with the prognostic model development process as described in

chapter 3), while a clinical case study for RACPC patients is discussed in de-
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tail along with the development and clinical validation of a cardiac chest pain

prognostic model. Utilisation of additional two datasets in the heart disease and

breast cancer domains, for validation purposes, along with development of breast

cancer and heart disease prognostic models are discussed at the end. Chapter 6

presents an analysis of the work and discusses the future directions of research.

1.2 Motivation and aims

Conventional healthcare information management systems suffer from a general

lack of intelligence. They are successful in offering basic patient management

capabilities to their end users but they do not offer substantial decision support

functionalities or automation to lend a helping hand to clinicians. These sys-

tems have been designed using branching logic-based rigid architectures, which

are hard to maintain and upgrade without considerable labour intensive effort.

Retrospective clinical data is often discarded by the machine learning experts

while efficient feedback loops are not built into the decision support mechanism

and do not support continuous learning and refining processes.

Clinical decision support systems in particular have been built with a signifi-

cant amount of design weaknesses, which is why very few decision support oper-

ations have been built into the core fabric of the clinical infrastructure governed

by national and regional healthcare service authorities. Healthcare systems have

a substantial amount of limitations, such as rigidity and nonconformity to com-

plex clinical protocols like electronic healthcare records and effective utilisation

of clinical practice guidelines, which can help to promote clinical standardisation.

Information collection systems provide episodic historic data to clinical de-

cision support systems for inference purposes. Clinical patient assessment is

currently being performed using clinical questionnaires (non-standard question-

naires), which vary from one practice to another within the same healthcare

region. In order for CDSSs to be fully successful in a problem domain like cardio-

vascular disease, efforts are required to develop adaptive clinical questionnaires

using standardised expert knowledge in order to promote better exploitation of

these clinical systems. The success of these clinical decision support systems re-
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lies on its generated outcome, which is normally referred to as Electronic Patient

Records or Electronic Healthcare Records. A clinical decision support system

relies on each patient’s factual data along with clinical risk assessment guidelines

as it aims to construe a clinical conclusion as part of the decision-making process.

This multidisciplinary industrial research project set out to develop a hybrid

clinical decision support mechanism for cardiovascular preventative care, which

could be utilised as a triage mechanism for patients undertaking primary and

secondary care. The primary aim of this thesis is to provide a clinical decision

support mechanism for cardiovascular patients by combining evidence, extrapo-

lated through legacy patient data (based on AI-inspired techniques like ontology

and machine learning-driven techniques) in order to facilitate cardiovascular pre-

ventative care. As part of our research, clinical case studies in the RACPC, heart

disease and breast cancer domains have been considered for the development and

clinical validation of the machine learning prognostic system.

The proposed ontology and machine learning driven integrated system could

be used as a triage system in the cardiovascular preventative care, which could

help clinicians to prioritise patient appointments after reviewing snapshot of their

medical history. This would be collected through ontology-driven intelligent con-

text aware information collection using standardised clinical questionnaires. The

results contain patient demographics information, cardiac risk scores, cardiac

chest pain score, medication and recommended lab test details. We also aim to

validate the proposed novel ontology and machine learning-driven hybrid clinical

decision support framework in other application areas.

1.3 Original Contributions

1. Developed a novel ontology and machine learning driven hybrid clinical

decision support framework for cardiovascular preventative care under the

close supervision of UK (Professor Stephen Leslie from Marmoreal Hospital)

and US (Professor Calum MacRae and Professor Warner Slack from Har-

vard Medical School) clinicians. The developed framework provides cardiac

risk score calculation, lab tests and medication recommendation through
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the ontology driven clinical risk assessment and recommendation system

(ODCRARS).

2. The MLDPS is validated using Raigmore Hospital’s RACPC. Two addi-

tional clinical case studies in the heart disease and breast cancer domains

in collaboration with primary (General Medical Practitioner in the heart

disease clinical case study) and secondary care (breast cancer oncologist

in the breast cancer clinical case study) clinicians were undertaken for the

development and clinical validation of the MLDPS. We highlight the prob-

lem of learning from incomplete real patient from statistical perspective the

likelihood-based approach to deal with imbalanced and missing data issues.

There are multiple benefits of our approach: to complement existing SVM

techniques to deal with missing data within a statistical framework, and

to illustrate a set of challenging statistical machine learning algorithms,

derived from the likelihood-based framework that handles clustering, clas-

sification, and function approximation from missing/incomplete data in an

intelligent and resourceful manner. New benchmark prognostic models have

been developed using RACPC, Heart Disease and Breast Cancer datasets

which have been validated through clinical domain experts in the UK and

US.

3. A novel ODCRARS provides an ontology driven intelligent context aware

information collection built on a standardised questionnaire ontology for

generating patient medical records.

4. The patient medical records are transformed semantically through patient

semantic profile ontology to give patient data an intrinsic meaning and also

to alleviate interoperability issues.

5. A novel decision tree based adaptive questionnaire is proposed and utilised

for the system development purposes.

6. Developed a generic ontology based on clinical questionnaires at the system

level and demonstrated its utilisation in the cardiovascular preventative care
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solution. This ontology is developed based on generic classes which could

be utilised in a variety of different clinical domains and it is particularly

useful for providing metadata and structure of questionnaires elements at

the database level.

1.4 Publications

The following papers have been published or accepted for publication during the

course of this research and included additional work to the material presented in

this thesis.

Refereed International Conference Proceedings

1. Kamran Farooq, Amir Hussain, Warner Slack and Bin Luo: An Ontol-

ogy and Machine Learning Driven Hybrid Cardiovascular Decision Support

Framework. IEEE SSCI, Cape Town, December 2015, In Preparation.

2. Kamran Farooq, Jan Karasek, Hicham Atassi, Amir Hussain, Peipei Yang,

Calum MacRae, Chris Eckl, Warner Slack and Bin Luo: A Novel Cardiovas-

cular Decision Support Framework for Effective Clinical Risk Assessment.

IEEE SSCI, Orlando 2014: 14925.

3. Kamran Farooq, Peipei Yang, Amir Hussain, Kaizhu Huang, Chris Eckl,

Calum MacRae, Warner Slack: Efficient Clinical Decision Making by learn-

ing from missing Clinical Data. IEEE SSCI, Singapore 2013: p1024. (Nom-

inated for the best paper award).

4. Kamran Farooq, Amir Hussain, Stephen Leslie, Chris Eckl, Warner Slack:

Ontology-driven cardiovascular decision support system. Pervasive Health

2011: 283-286.

Peer Reviewed Book Chapters

1. Kamran Farooq, Amir Hussain, Hicham Atassi, Stephen Leslie, Chris Eckl,

Calum MacRae, Warner Slack- A Novel Clinical Expert System for Chest

Pain Risk Assessment. BICS, Beijing, June 2013.
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2. Kamran Farooq, Amir Hussain, Stephen Leslie, Chris Eckl, Calum MacRae,

Warner Slack: An Ontology Driven and Bayesian Network Based Cardio-

vascular Decision Support Framework. BICS 2012: 31-41

3. Kamran Farooq, Amir Hussain, Stephen Leslie, Chris Eckl, Calum MacRae,

Warner Slack: Semantically Inspired Electronic Healthcare Records. BICS

2012: 42-51.

Peer Reviewed Journal Papers

1. Kamran Farooq, Amir Hussain, Warner Slack A Novel Ontology and Ma-

chine Learning Driven Hybrid Clinical Decision Support Framework for

Cardiovascular Preventative Care, BioMed Medical Informatics and Deci-

sion Making journal, impact factor 1.5, Conditionally Accepted April 2015.

2. Kamran Farooq, Amir Hussain, Warner Slack, A Machine Learning Driven

Prognostic System for Holistic Clinical Prognosis for Cardiovascular Pa-

tients: Elsevier Expert Systems with Applications, Under Review 2015.

3. Kamran Farooq, Amir Hussain, Warner Slack, Efficient Cardiovascular

Prognosis by Learning from Missing Clinical Data : Elsevier Artificial In-

telligence in Medicine, Under Review 2015.

4. Kamran Farooq, Amir Hussain, Warner Slack, A Novel Machine Learning

Driven Prognostic System for Breast Cancer Preventative Care: Elsevier

Computers in Biology and Medicine, Under Review 2015.

5. Kamran Farooq, Amir Hussain, Warner Slack, A Novel Ontology and Ma-

chine Learning Driven Hybrid Clinical Decision Support Framework for

Cardiovascular Preventative Care: Elsevier Computer Methods and Pro-

grams in Biomedicine, Under Review 2015.

6. Kamran Farooq, Muaz Niazi, Stephen Leslie, Amir Hussain, Warner Slack,

A Scientometric Review of Clinical Decision Support Systems, Springer

Scientometrics Journal, In Preparation.
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Chapter 2

LITERATURE REVIEW

This chapter covers general background material for the thesis and provides com-

prehensive reviews of related topics that are investigated in the thesis. In the

beginning, an overview of clinical decision support systems and their benefits,

followed by utilisation of different techniques in the cardiovascular clinical deci-

sion support solutions based on different techniques. In the latter part, a concise

review of relevant clinical decision support systems used in this thesis is explained.

2.1 Clinical Decision Support Systems

Since the advent of computers, healthcare professionals have anticipated the time

when machines would assist them in clinical decision making and other restorative

procedures. The very first articles dealing with this provision appeared in the

late 1950s [13] and experimental prototypes were made available within a few

years [13]. Three advisory systems from the 1970s provide a useful overview of

the origin of work on clinical decision-support systems: deDombals system for

diagnosis of abdominal pain [14, 15], Shortliffes MYCIN system for selection of

antibiotic therapy [15] and the HELP system for delivery of inpatient medical

alerts [16, 17].

The adoption of clinical decision support systems (CDSSs) in the diagno-

sis and administration of major chronic diseases e.g. Dementia [18], cancer

[19],diabetes [20], hypertension [21] and heart disease [22] have made significant
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contributions in improving the clinical outcomes at primary and secondary care

healthcare organisations all over the world. CDSS have also made it possible

for system developers and knowledge engineers to collate and construct domain

expert knowledge for the purpose of clinical risk assessment and screening by

clinicians [23, 24].

Many reviews have identified the benefits of CDSS, in particular CPOE (com-

puterised physician order entry) systems [25] [26, 27].CDSS as part of CPOE have

been found to alleviate medication errors and adverse drug events [28, 29, 30].

Clinical decision support systems also have demonstrated to improve clinician

performance, by way of promoting electronic prescription of drugs, adherence to

guidelines and to an extent efficient use of time [30, 29]. CDSSs perform a key

role in providing preventative measures at outpatient clinics and primary care, for

example by alerting care givers of the need for routine blood pressure checking,

to offer influenza vaccination and to recommend cervical screening [26] and [31].

The key benefits of CDSS reported in the studies conducted in [24, 32, 33, 34]

and [1] are as follows:

1. Higher Standards of Patient Safety

Clinical decision support systems have helped healthcare organizations all

over the world acquiring higher standards of patient safety.They adhere

to standardized clinical procedures governed by the clinical workflows thus

reducing diagnostic, prescribing errors and drug doubling issues.

2. Improving quality of direct patient care

Furthermore, authors concluded that with the advent of CDSS, quality

of care has improved considerably levels with this extra support provided

to clinicians (who are already struggling to cope with current healthcare

demands). This has made it possible for clinical experts to allocate more

time to providing direct patient care.

3. Standardization and Conformance of Care using Clinical Practice Guide-

lines

The standardisation of clinical pathways and procedures set precedents and
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evaluation benchmarks for healthcare trusts to achieve higher patient sat-

isfaction levels set out by different healthcare organizations in different re-

gions. CDSSs also promote the utilisation of clinical practice guidelines

(CPGs) for the development of knowledge-aware systems capable of per-

forming effective clinical decision making to promote standardised care.

4. Collaborative Decision Making

CDSSs have helped healthcare stakeholders that include clinicians, health-

care trusts and policy makers to develop safe and efficient care models

using collaborative decision making approach to benefit both patient and

a clinician. CDSS have also helped healthcare trusts to Improve effective-

ness in prescribing facility through cost effective drugs order dispensation

[24]. CDSS are also playing an important role in the integration of EHRs

(Electronic healthcare records) which will help healthcare authorities to

streamline information collection and clinical diagnosis operations in order

to promote efficient data gathering [34]. Audit trail is another important as-

pect of modern healthcare systems which is achieved through the intelligent

exploitation of clinical decision support capabilities.

Clinical decision support systems are being extensively deployed in health-

care settings all over the world. Modern clinical decision support systems are

increasingly dissimilar to each other, despite following the same generic architec-

ture which defines a typical CDSS [35]. These clinical decision support systems

incorporate a variety of innovative techniques to perform various key operations

which include clinical knowledge dissemination and collecting patient’s medical

history for effective clinical decision making. These systems aim to provide clinical

decision support and automatic personalised clinical advice through inference ca-

pabilities [36].They also help to streamline clinical workflows through integration

with electronic healthcare records for patient clinical history collection, diagnosis,

inference and training.

Clinical decision support operations are an integral part of modern healthcare
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management systems. They assist clinicians, patients and healthcare stakehold-

ers by providing expert clinical knowledge and patient-centric information [37].

The information provided by these intelligent clinical systems is used for clinical

decision making in order to improve the effectiveness and quality of healthcare.

Automated cardiovascular decision support systems are now being deployed in

hospitals and primary care organizations in order to meet the ever growing clinical

needs of prognosis in the areas of cardiovascular disease and coronary heart dis-

ease. Computerized decision support strategies have already been implemented

successfully in several areas of cardiovascular care [38]. These applications are

being used as part of the extension of clinical informatics infrastructure in the

UK and US. These systems are also being used in both primary and secondary

care settings for providing efficient healthcare delivery to its patients. In order to

capitalise on the benefits provided by cardiovascular decision support systems, a

strong foundation in evidence-based medicine and well-established clinical prac-

tice guidelines (CPGs) have to be considered to ensure clinical governance in the

next generation clinical systems. An alternate approach to computer-assisted

decision support was provided in the MYCIN development program, a clinical

consultation system that de-emphasized diagnosis to concentrate on appropriate

management of patients who have infections [39]. Knowledge of infectious dis-

eases in MYCIN was represented as production rules, each containing a packet of

knowledge derived from discussions with collaborating experts (2.1). The MYCIN

program determined which rules to use and how to chain them together to make

decisions about a specific case.

In MYCIN, rules are conditional statements that indicate what course of

action to be taken if a specified condition is set to True. A team of clinical

experts evaluated MYCINs performance on therapy selection for patients with

blood-borne bacterial infections [40] and for those with meningitis [40]. MYCIN,

however, is best known as a system based on early exploration of methods for

capturing and applying ill-structured expert knowledge to solve important med-

ical problems. Although the program was never used clinically, it paved the way

for a great deal of research and development in the 1980s [41].
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Figure 2.1: Example of a Rule encoded in MYCIN. [1]
.

2.1.1 Ontology Driven Clinical Decision Support Frame-

works

An ontology is an explicit specification of a conceptualization. The term is bor-

rowed from philosophy, where an ontology is a systematic account of existence.

For AI systems, what “exists” is that which can be represented. When the knowl-

edge of a domain is represented in a declarative formalism, the set of objects that

can be represented is called the universe of discourse. This set of objects, and

the describable relationships among them, are reflected in the representational

vocabulary with which a knowledge-based program represents knowledge. Thus,

in the context of AI, we can describe the ontology of a program by defining a set

of representational terms. In such an ontology, definitions associate the names

of entities in the universe of discourse (e.g., classes, relations, functions, or other

objects) with human-readable text describing what the names mean, and formal

axioms that constrain the interpretation and well-formed use of these terms. For-

mally, an ontology is the statement of a logical theory [42]. Ontologies are often

equated with taxonomic hierarchies of classes, but class definitions, and the sub-

sumption relation, but ontologies need not be limited to these forms. Ontologies

are also not limited to conservative definitions, that is, definitions in the tradi-

tional logic sense that only introduce terminology and do not add any knowledge

about the world [43].
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The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT)

is an onto-logical resource specifically developed some thirty years ago with a

view to standardize healthcare systems. SNOMED CT and with UMLS are

clinical thesauruses, aiming to resolve documentation standardization issues in

clinical systems. These are large scale medical taxonomies which have been ex-

ploited in modern clinical systems showing significant good results in the tar-

geted clinical systems. In [44] it shows that the clinicians using healthcare sys-

tems equipped with SNOMED outperformed clinicians using conventional sys-

tems without SNOMED CT capabilities.

Bouamrane et al implemented an ontology driven approach for the devel-

opment of clinical decision support system in the pre-operative risk assessment

domain. In [45], they reported their work by combining a preventative care soft-

ware system in the pre-operative risk assessment domain with a decision support

ontology developed with a logic based knowledge representation formalism.

Patient medical history was modelled in the Web Ontology Language (OWL),

combined with a reasoning tool to recommend appropriate preoperative tests

based on an implementation of NICE preoperative risk assessment guidelines).

This work was carried out as part of the post doctoral research project to build

semantic technology into their existing pre-operative risk assessment software

called “Synopsis”. The overall architecture of the pre-operative risk assessment

is illustrated in Fig 2.2.
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Figure 2.2: Hybrid architecture of the rule-engine / clinical knowledge-base pre-
operative risk assessment system [2].

20



Authors demonstrated that the use of knowledge representation in OWL-DL

and reasoning helped them overcome a number of limitations in their existing

pre-operative risk assessment system. They also proposed a methodology for

the semi automatic generation of patient medical history through legacy clinical

data. They concluded that prior to the introduction of semantic technology, the

pre-operative system was composed of few static components responsible for data

collection and rules engine, which is why pre-operative risk assessment was almost

entirely based on a set of static rules and numeric risk scores. Domain specific

decision support ontologies were developed which were used to carry out decision

support operations based on patient data gathered in the information collection

stage [45].

The Risk assessment ontology was developed to highlight potential intra-

operative and post-operative complications given a patient medical profile and

the scheduled surgical procedure in the secondary care. As part of decision sup-

port operations, Recommended Test Ontology is developed to suggest certain

pre-operative tests , which may help to decide whether it is safe to go ahead with

the planned surgery. This ontology is based on NICE clinical guidelines, the last

domain of the decision support ontology is the precaution ontology which could

suggest a management or a follow up protocol given a specific medical complica-

tion. In their developed system, decision support is provided in a 2 step process,

in the first stage risk scores or surgical risk grades are calculated using set of rules

given the Goldman and Detsky cardiac risk index, the Physiological and Opera-

tive Severity Score for the enUmeration of Morality and Morbidity (POSSUM),

etc. Once the risk grades and categories are derived from the first risk calcula-

tion sept, the system can then perform decision support through the utilisation

of Java based PELLET reasoner which is provided in the Protege development

editor for OWL. NICE guidelines for the pre-operative risk assessment were im-

plemented as set of rules, whilst going through 1242 rules which were set out for

pre-operative risk assessment procedures, a lot of redundant rules were discarded

during the development phase. These set of rules were introduced as axioms

in OWL,the main advantage of modelling preoperative investigation guidelines
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as OWL axioms is that these rules can be utilised with third party taxonomies

without having to develop executable guidelines from scratch [46].

Bouamrane et al concluded that a small number of inconsistencies in the pre-

operative guidelines, also guidelines don’t cover whole range of combinations of

different surgical procedures and co-morbidities and some of the most serious

complications are not covered by these pre-operative risk assessment guidelines

which is why clinicians will have to use their own clinical judgement to decide

what preoperative tests are to be carried out before any major surgical operation.

Furthermore, they noted that the major obstacle towards effective use of these

clinical guidelines is the format in which they are represented which make them

both intellectually demanding and knowledge intensive. Clinical decision support

systems have to play a key role in bridging this gap among clinicians and com-

puter science experts in solving these real challenges in healthcare specifically in

the guidelines standardisation and automatic execution without reinventing the

wheel. These clinical guidelines need to be comprehensive to cover a wide variety

of complications as well being systematic in the presentation of the results. [2]

demonstrated that the ontology driven decision support systems outweigh other

types of clinical decision support terms in terms of its cost effective maintenance,

easy to reuse the expert’s modelled view in OWL and facilitates development

of scalable applications which can be deployed in healthcare data centres as a

commercial clinical solution.

In [47], Zhang et al, demonstrated an ontology driven approach for the diag-

nosis of mild cognitive impairment (MCI), specialised clinical knowledge is coded

into an ontology for the construction of a rule set utilised by machine learning

algorithms. The reasoning engine is also exploited to automatically distinguish

MCI patients from normal ones. The rule set was trained by MRI data of 187

patients, a support vector machine (SVM), a Bayesian Network (BN) and back

propagation (BP) neural networks were used for the construction of reasoning

rules. Their evaluation results suggested that their approach would be useful to

assist clinicians in effectively diagnose patients with mild cognitive impairment.

Their framework demonstrated that domain ontology combined with machine
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learning techniques are useful in diagnosing complex chronic illnesses.

Ontology driven decision support systems are being used extensively in the

clinical risk assessment of chronic diseases. They are renowned for their flexi-

ble architectures, easy to reuse knowledge modelling structures and inexpensive

maintenance operations. The ontology driven clinical decision support framework

for handling co-morbidities in [48] showed exceptional results in the risk assess-

ment and disease management of breast cancer patients which was deployed as a

clinical decision support system handling co-morbidities in Canada. They utilised

semantic web techniques to model the clinical practice guidelines which were en-

coded in the form of set of rules (through a domain specific ontology) utilised by

clinical decision support system for generating patient specific recommendations.

In Figure 2.3, an ontology inspired decision support system in breast cancer

care is shown; this clinical system was developed as part of NICHE (Knowledge

Intensive Computing for Healthcare Enterprises) project in Halifax, Canada. This

system utilises ontology based approaches for the development of a breast cancer

ontology combined with clinical practice guidelines ontology. The ontological

transformation of the CPGs was carried out using the Guideline Element Model

(GEM) tool.

Figure 2.3: Ontology Driven Breast Cancer Decision Support System [3].
.
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Hybrid Clinical Decision Support Frameworks

In Figure 2.4, authors present a framework that enables medical decision making

in the presence of partial information, leveraging ontological representations and

machine learning techniques to enhance existing patient datasets. The hybrid

decision support systems have been classified into two main categories based on

how they deal with the information challenge. Firstly, Knowledge-based systems

are human-engineered mappings from best medical practises and patient data

to recommendations. secondly, Learning-based or Non knowledge-based systems

derive the mapping using techniques from data mining,statistics, and machine

learning.

Hybrid clinical decision support systems in different clinical domains are play-

ing an important role in assisting medical professionals in making decisions. This

is based on current patient data and best practices encoded in a rule base, in

scenarios where there may be missing data.

Figure 2.4: Hybrid Clinical Decision Support System [4].

In [49], Yuan et al, presented a novel context-aware hybrid reasoning frame-

work through the exploitation of fuzzy rule-based reasoning has been proposed
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to achieve pervasive healthcare in smart home environment. Authors presented

a personalised , flexible and extensible hybrid reasoning framework for context

aware real-time assistant in a smart home environment. This provides context-

sensitive sensor data as well as anomaly detection mechanisms that supports

Activity of Daily Living analysis and alert generation. They deployed a perva-

sive healthcare system in a lab setting comprised of wearable wireless sensors,

smart home sensors, and a remote monitoring system. In the proposed hybrid

framework, fuzzy logic was utilised in the development of pervasive healthcare

system. The fuzzy logic system comprises of three main parts: fuzzy sets, rules

and inference engine. The reasoning engine plays a key role both on the client

and the server side as an intelligent agent. It executes a series of rules which can

be customised as per clinical requirements and rules are processed in real time to

generate immediate alerts in case of emergencies. CARA system collects avail-

able sensor data through wireless communication protocols ( bluetooth etc). The

raw numeric data is interpreted to generate the context for the user under test

and collect information about environmental factors. In their recent study they

focussed on the hybrid reasoning framework which is a combination of case based

reasoning and fuzzy rule-based reasoning. Current limitation in their framework

is the real time processing of case based and fuzzy rule-based reasoning.

In [50, 51], Sessen et al proposed an ontology inspired approach was utilised

to develop a clinical decision support framework for lung cancer patients. They

exploited ontological inference using dynamic logic reasoner to create patient-

specific treatment arguments by automatically grouping patients based on set

of guidelines (British Thoracic Society Guidelines into Lung Cancer Assistant

system) written in the ontology. A novel feature of their proposed lung cancer

assistant was its ability to provide a rule-based and probabilistic decision support

within a single platform. The guideline-based CDS is based on clinical guideline

rules, while the probabilistic CDS is based on a Bayesian network trained on the

English Lung Cancer Audit Database (LUCADA). They assessed rule-based and

probabilistic recommendations based on their consonance with the treatments

recorded in LUCADA. Their key findings were that the guideline rule-based rec-
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ommendations perform well in simulating the recorded treatments with exact and

partial concordance rates of 0.57 and 0.79, respectively. On the other hand, the

exact and partial concordance rates achieved with probabilistic results are rela-

tively poorer with 0.27 and 0.76. However, probabilistic decision support fulfils

a complementary role in providing accurate survival estimations.

2.1.2 Clinical Decision Support Systems in Cardiovascu-

lar Care

Cardiovascular domain is the most demanding area of research all over the world.

World Health organisation publishes mortality statistics every year to increase

awareness about the seriousness of the problem. Almost half (46%) of all deaths

are as a result of cardiovascular disease. Cardiovascular disease Statistics pro-

vided by the British Heart Foundation. Heart disease and circulatory diseases

(Cardiovascular disease or CVD) are the major cause of death all over the world.

In the UK alone, it accounts for approx 200,000 deaths each year- one in three of

all deaths. The main forms of CHD (Coronary heart disease) are heart attack and

Stroke. CHD is the leading cause of sudden and premature deaths in the United

Kingdom. In 2008, approximately 88,000 deaths were because of coronary heart

disease. Stroke caused over 43000 deaths in the UK and there were a further

60,000 deaths from other circulatory diseases. CHD is also the main reason of

premature death in United Kingdom, 28% of premature deaths in men and 20%

of premature deaths in women were caused by CVD in 2008.

(CVD) is the collective term for a group of related conditions affecting the

heart, arteries or blood vessels, including coronary heart disease (accounting for

about 50%) and stroke (accounting for about 25% of these conditions). CVD

represent the single largest cause of mortality in the developed economies and

are rapidly reaching epidemic proportions in the developing world. According to

recent studies [52] and [53], up to 90% of the risk of a first heart attack is due to

lifestyle factors that can be changed.

Coronary heart disease (CHD) also contributes to high mortalities ratio in the

UK, and the death rate in the UK is still higher than many European countries.
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Approximately 2 million people are currently living with angina in the UK. This

condition is associated with an annual mortality between 2.8% to 6.6% per annum

[54]. The incidence of angina and acute coronary syndromes has been shown to

vary according to risk factors such as age, gender and ethnicity.

The AHA (American Heart Association) recently published statistics in [55]

showed some alarming figures. The total number of inpatient cardiovascular op-

erations and procedures increased from 5939000 in 2000 to 588000 in 2010 (Na-

tional Heart, Lung, and Blood Institute computation based on National Centre

for Health Statistics). The total direct and indirect cost of CVD and stroke in

the United States for 2010 is estimated to be $315.4 billion dollars. This figure

includes health expenditures (direct costs, which include the cost of physicians

and other professionals annual data). By comparison, in 2008, the estimated

cost of all cancer and benign neoplasms was $201.5 billion ($77.4 billion in direct

costs, and $124 billion in mortality indirect costs). CVD costs more than any

other diagnostic group in their statistical analysis study which demonstrated its

severity and high mortality ratio in the US.

Automated Cardiovascular decision support systems are now being deployed

in hospitals and primary care organizations in order to meet the ever growing

clinical needs of prognosis in the areas of cardiovascular disease and Coronary

heart disease. Computerized decision support strategies have already been im-

plemented successfully in several areas of cardiovascular care. These applications

are being used as part of the extension of clinical informatics infrastructure in

the UK and US. These systems are being used in both primary and secondary

care settings in pursuit of providing efficient healthcare delivery to its patients.

In order to capitalize on the benefits provided by cardiovascular decision support

systems, a strong foundation in evidence-based medicine and well-established

CPGs have to be considered to ensure clinical governance in the next generation

clinical systems.

In Table 2.1, information has been extracted from European Guidelines on the

avoidance of the CVD in the primary and secondary care setting. If we analyse

statistics given in the Table 2.1, we can make an easy distinction to find out which
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type of the patient is more suited for the prescription of ”statin” keeping in view

their information associated with multiple risk factors.This study has helped all

the authors responsible for writing current clinical guidelines to reinforce the need

to take into account multiple risk factors before clinical judgement (diagnosis,

prescription etc.) is made. The clinical guidelines can be made more vigorous

and easy to reuse by incorporating results achieved as part of the deployment of

these CVD risk estimation systems.

Gender Age (Years)
Total Cholesterol
mmol/l (mg/dl)

SBP (mm Hg) Smoker
Score Risk %-
10 year risk of Fatal CVD

F 60 8 (309) 120 No 2
F 60 7(271) 140 Yes 5
M 60 6((232) 160 No 8
M 60 5(193) 180 Yes 21

Table 2.1: The clinical impact of a combination of risk factors on CVD test.

A novel cardiovascular decision support framework was presented by Farooq

et al.,2011 [56], with a view to provide a triage mechanism for primary and sec-

ondary care clinicians in the UK and US hospitals. The aim of their clinical

decision support framework was to help improve the diagnostic and performance

capabilities of Rapid Access Chest Pain Clinic(RACPC), by reducing delay and

inaccuracies in the cardiovascular risk assessment of patients with chest pain by

helping clinicians effectively distinguish acute angina patients from those with

other causes of chest pain. The key components of the proposed framework were

presented in [56, 57, 58]. Their proposed framework is also capable of learning

from legacy patient data containing missing information and its effective utilisa-

tion in the overall clinical decision making was demonstrated [59]. Their work

was further extended through the exploitation of RACPC (chest pain) patient

dataset in [60, 61]. They demonstrated the clinical effectiveness of the hybrid

clinical decision support mechanism through utilisation of ontology and machine

learning driving techniques. The proposed framework was also validated using

real chest pain patient data provided by Raigmore Hospital in the UK.
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2.1.3 Cardiovascular Risk Estimation Systems for Dis-

ease Prevention

In the last few years, numerous risk scoring systems for coronary heart disease

and cardiovascular disease have been developed for clinicians.Some of the most

commonly used cardiac risk calculators are FRAMINGHAM, HEARTSCORE,

INTERHEART and ASSIGN.

Framingham Cardiac Risk Scoring Systems

The Framingham algorithms are the most widely accepted method for projecting

cardiovascular disease/coronary disease risks, and are used in the British, Euro-

pean and New Zealand guidelines [62, 63].These risk scoring systems are reliable

in ranking individual CHD and CVD risks within populations, based on conven-

tional risk factors, but have been shown to give a variable performance when

predicting actual events within populations [64, 62].

The Framingham group has developed the best known risk-estimation system

serving health communities all over the world. They have been recognized as

pioneers in the domain of cardiovascular risk estimation. The Framingham group

was also successful in developing some of the major statistical methods which

are used in modern risk-estimation systems. The Framingham risk- estimation

system has been adapted and made part of the clinical guidelines all over the

world as part of CVD preventative care.

The Assign Score

The Assign-Score is a risk calculator developed specifically for European pop-

ulations and the risk estimation function can be recalibrated in order for it to

be deployed in other countries outside Europe. ASSIGN includes social depri-

vation for the first time, and family history of cardiovascular disease, with the

classic risk factors. High risk (score 20 or more) implies risk-lowering medication

and/or other medical help. ASSIGN is the cardiovascular risk score chosen for use

by SIGN (Scottish Intercollegiate Guidelines Network) and Scottish Government

Health Directorates.
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HeartScore Cardiovascular Risk Estimation System

HeartScore is aimed at providing clinical decision support to clinicians in opti-

mising individual cardiovascular risk reduction [65].The European Society of Car-

diology, European Society of Hypertension and European Atherosclerosis Society

have made a recommendation to estimate total cardiovascular risk in apparently

healthy individuals [66].The aim of their research study was to find a mechanism

which clinicians could use to better identify patients at high risk of developing

cardiovascular disease [67].

The HeartScore risk assessment is derived from a large dataset of prospective

European studies and predicts fatal atherosclerotic CVD events over a ten year

period.This risk estimation is based on the following risk factors: gender, age,

smoking, systolic blood pressure and total cholesterol. This score model has

been calibrated according to each European country’s mortality statistics. In

other words, if used on the entire population aged 40-65, it will predict the exact

number of fatal CVD-events that eventually will occur after 10 years.

The relative risk chart may be used to show younger people at low total

risk that, relative to others in their age group, their risk may be many times

higher than necessary. This may help to motivate decisions about avoidance of

smoking, healthy nutrition and exercise, as well as flagging those who may become

candidates for medication. This chart refers to relative risk, not percentage risk.

In [68] Heart-Score offers a simple and quick risk assessment tool as a triage

system for patients in Accident and Emergency clinic. Triage of patients with

chest pain after an Emergency Medical System EMS call normally occurs in

the hospital emergency room (ER). It has been shown that the HEART-score

offers a simple and quick risk-stratifying tool in these patients. The European

Heart SCORE model constitutes the basis for national guidelines for primary

prevention and treatment of cardiovascular disease (CVD) in several European

countries. The model estimates individual’s 10-year CVD mortality risks from

age, sex, smoking status, systolic blood pressure, and total cholesterol level. The

SCORE model, however, is not mathematically consistent and does not estimate
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all-cause mortality [66]. Using a competing risk approach, they first re-estimated

the cause-specific risk of dying from cardiovascular disease, and secondly they

incorporated non-CVD mortality. Finally, non-CVD mortality was allowed to

also depend on smoking status, and not only age and sex. From the models, they

estimated CVD-specific and all-cause 10-year mortality risk, and the expected

residual lifetime together with corresponding expected effects of statin treatment.

InterHeart Risk Estimation System

The INTERHEART study focussed on the development of risk estimation system

assessed using the significant risk factors for coronary artery disease worldwide.

Nine measured and potentially modifiable risk factors, accounted for more than

90% of the proportion of the risk for acute myocardial infarction. ”Smoking,

history of hypertension or diabetes, waist hip ratio, dietary pattern, physical ac-

tivity, alcohol consumption, blood apolipoproteins and psychosocial factors were

identified as the key risk factors”. The effect of these risk factors was consis-

tent in men and women across different geographic regions and by ethnic group.

The British Regional Heart Study also found that smoking, blood pressure and

cholesterol accounted for 90% of attributable risk of CHD worldwide, the two

most important modifiable cardiovascular risk factors are smoking and abnormal

lipids. Hypertension, diabetes, psychosocial factors and abdominal obesity are

the next most important but their relative effects vary in different regions of the

world.

2.1.4 Machine Learning Driven Cardiovascular Decision

Support Systems

Machine learning refers to a type of artificial intelligence algorithm designed to

identify patterns in input data, such as patient characteristics, in order to perform

complex classification tasks.Machine Learning based clinical decision support sys-

tems can avoid the bottleneck of knowledge acquisition because knowledge is di-

rectly learned through the clinical data. In addition, ML-based clinical decision

support systems are able to give recommendations that are generated by non-
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linear forms of knowledge, and are easily maintainable by simply adding new

cases [69].

[70], considered a clinical use case of predicting cases of POAF (post atrial

fibrillation) following CABG (coronary artery bypass graft) surgery. Predictive

features such as age, body mass index (BMI), and systolic blood pressure (SBP),

were selected to predict whether patients could develop AF (Atrial Fibrillation)

during the recovery period following CABG. Authors utilised k-NN algorithm in

their experimental setups. The k-NN algorithm was provided with a number of

labelled training samples, which in this case consisted of a set of three features

for a series of patients who have undergone CABG in the past, as well as their

clinical outcome in terms of AF occurrence, or lack thereof, during the recovery

period. As part of their experimental setup, it works on the basis that when a

new patient arrives, their age, BMI and blood pressure are given as inputs to

the k-NN algorithm, creating a new point in three-dimensional feature space. In

order to predict whether or not this new patient will develop POAF following

CABG, their data are compared with the set of labelled training examples pro-

vided. The k-NN algorithm then classifies this new scenario based on the class of

its k-nearest neighbours in feature space, where k is a number pre-defined by the

user. If, for example, a value of k = 3 is selected, the three nearest neighbours in

feature space are identified, and the class most common among these neighbours

are assigned with the values from the new unlabelled example. Any value of k

could be selected, although it is beneficial to choose odd numbers in order to avoid

tied votes, and also to find a balance amongst selecting really large or really small

values of k for experimental design purposes. The advantage of a small value of

k is that it can create good distinction between class boundaries, whereas a large

value for k is less likely to be adversely affected by artefact and outliers. However,

larger value of k is beneficial when there is ample training data and therefore all

k neighbours are nearby in feature space. Additionally, a common modification

to the k-NN algorithm is to weigh the contribution of the k-nearest neighbours by

dividing their vote, essentially a 1, by their distance to the input example. This

facilitates closer neighbours to exert greater influence on the final outcome. Fi-
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nally, if the algorithm’s purpose is to truly simulate a learning process, it may be

beneficial to add new, correct labelled cases to the set of example data in order to

increase the accuracy of future predictions. However, due diligence is required to

select and collect accurate and reliable features in a consistent manner. For exam-

ple, there may be a small difference in risk between a patient born in January and

a patient born in December of the same year; perhaps it would be beneficial to

measure age in days for this reason. In addition, measures such as blood pressure

and body mass index may fluctuate during the course of the day. The authors

hypothesize that the risk for POAF may be significantly independent of these

fluctuations, despite their potential effect on classification of patients. A second

approach which was considered in their experimental setup was the support vec-

tor machine (SVM). This algorithm, which is similar to the k-NN algorithm, uses

a set of labelled training data to prepare a model capable of accurately classifying

new unlabelled examples. The difference, however, is that the SVM attempts to

divide the points in the feature space by finding an optimal separator between

classes, where the gap between the separator and points on either side is as wide

as possible. The algorithm classifies new examples based on which side of the

separator they are placed. Another machine learning based clinical decision sup-

port system was demonstrated in Fig 2.5, through the exploitation of a Bayesian

Belief Network by combining expert’s opinion with multivariate statistical data

analysis. Expert’s knowledge was derived from interviews of 11 members of the

Artificial Heart Program at the University of Pittsburgh Medical Centre. This

was complimented with retrospective clinical data from the 19 VAD (Ventricular

Assist Devices) patients considered for wearing between 1996 and 2004. Artificial

Neural Networks and Natural Language Processing were used to mine these data

and extract sensitive variables.

In [71], a number of computational intelligence techniques were utilised in

the detection of heart disease as a preventative measure. A comparative analysis

of 6 well-known machine learning classifiers was carried out using the Cleveland

heart disease dataset. Authors introduced medical knowledge driven feature se-

lection (MFS)and it was compared against the state of the art feature selection
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Figure 2.5: Hybrid Decision Support Model for Optimal Ventricular Assist Device
Weaning [5].

.

algorithms.Their experimental results showed that machine learning classification

combined with MFS significantly improved the performance of binary classifica-

tion. MFS feature selection technique was combined with computerised feature

selection process to further refine classification accuracies obtained in previous it-

erations. MFS combined with Naive Bayes and Sequential minimal optimisation

(SMO for training of support vector machine) provided the best classification ac-

curacies and TP (true positive) and F-measure resulted in a higher performance

as compare to experimental setups based on state of the art feature selection

techniques combined with machine learning classifiers.
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2.1.5 Role of Feature Selection in Clinical Decision Sup-

port Systems

The main objective of feature selection in machine learning based clinical decision

support systems is to reduce the number of predictive clinical features used in

the model while improving performance of the clinical predictive model without

degrading its performance. A large number of features causes several computation

problems. One of the most significant issue is the cost of computation (in terms

of time and computational resources). If the number of clinical creatures is high,

the computation time and memory space will rise dramatically. The problem

becomes intractable for some simple induction algorithms. Another problem is the

generalization of predictive performance. Complexity increases with the number

of features, and high complexity may result in over-fitting because too many

features may be redundant or misleading. In addition, a large number of features

requires a lot of storage space and may increase the cost of data maintenance.

In [72], authors classified feature selection techniques as either filter or wrapper

models. The filter model is a preprocessing step to induction methods. Feature

ranking is an example of filtering. In feature ranking, we use a function inde-

pendent of the induction method to rank features based on scores. For example,

features can be ranked by the Pearson correlation coefficient,

R(i) =
cov(Xi, Y )√
var(Xi)var(Y )

(2.1)

where X is the variable set, Y is the class label, and i indicates the variable of

interest. We can also build several single-variable classifiers, and rank classifiers

(features) based on error rates.

Feature selection techniques can be categorized according to a number of cri-

teria as shown in Figure 2.6 [73]. One popular categorisation is based on whether

the target classification algorithm will be used during the process of feature eval-

uation. A feature selection method, that makes an independent assessment only

based on general characteristics of the data, is named “filter [74]; while, on the
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other hand, if a method evaluates features based on accuracy estimates provided

by certain learning algorithm which will ultimately be employed for classification,

it will be named as “wrapper [74], [75].

Using wrapper methods, the performance of a feature subset is measured

in terms of the learning algorithm’s classification performance using just those

features. The classification performance is estimated using the normal procedure

of cross validation, or the bootstrap estimator. Thus, the entire feature selection

process is rather computation-intensive. For example, if each evaluation involves

a 10-fold cross validation, the classification procedure will be executed 10 times.

For this reason, wrappers do not scale well to data sets containing many

features [76]. Also, wrappers have to be re-run when switching from one clas-

sification algorithm to another. In contrast to wrapper methods, filters operate

independently of any learning algorithm and the features selected can be applied

to any learning algorithm at the classification stage. Filters have been proven to

be much faster than wrappers, and hence can be applied to data sets with many

features.

Sequential Floating Forward Selection (SFFS) is one of the most efficient

wrapping methods for feature selection proposed in [77]. This method operates

in a similar manner as Forward selection, also works in an iterative manner and

starts with empty set of features. However, the features selected after each itera-

tion are removed one by one [78]. If the removal of a feature results in increasing

the classification accuracy, then the corresponding feature is permanently dis-

carded from the feature set. This approach guarantees that the final set does not

contain correlated features.

Minimal-Redundancy Maximal-Relevance Criterion : In [79], this fea-

ture selection was proposed with a view to identify most discriminant features

according to two criteria :

1. Maximal Relevance

maxR(Z, c), R =
1

|Z|
∑
xiεZ

I(fi : c), (2.2)

36



Figure 2.6: Feature selection process based on wrappers and filtering methods.

2. Minimal Redundancy

minO(Z), O =
1

|Z|2
∑
fi,fiεZ

I(fi : fj), (2.3)

Where Z is the group of clinical variables under examination I(fi : c) is

the mutual information between features fi and class c and I(fi : fj) is the

mutual information between the features . The criterion combining constraints in

Equations 2.2 and 2.3 is called Minimal redundancy maximal-relevance (mRMR).

The advantages of mRMR algorithm are low computational complexity, classifier-

independence and highly effective selection of uncorrelated features. Details of

some of the other commonly used classification techniques are provided in the

Appendix ??.
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Figure 2.7: Block Diagram of SFFS Algorithm as described by Hicham et al.

2.2 Conclusion and Discussion

This chapter describes a number of existing clinical decision support techniques

through which clinical decision support operations may be built. The focus of

our review was to critically review the existing state of the art of a wide range of

clinical decision support systems and techniques exploited in them with a view

to build a clinical decision support framework to meet the key objectives of this

research project. A number of clinical decision support mechanisms were critically

analysed, some of which are based on conventional best design practices like rule

based systems and risk estimation systems, others take into account an array of

AI inspired techniques which included machine learning inspired clinical decision
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support systems, ontology driven clinical decision support systems and hybrid

clinical decision support systems.

An extensive review of some of the most well established techniques in clinical

decision support systems were studied, particularly commercial clinical decision

support systems and pre-operative clinical decision support systems based on

NICE clinical guidelines were reviewed. In ontology driven hybrid clinical deci-

sion support frameworks, we found a lot of similarity among key components of-

fered by these clinical decision support frameworks. Electronic healthcare records

generation is one of the most important aspect of these systems and they encapsu-

late episodic patient’s summary which is often needed at the time of assessment

by the clinicians. These CDSSs prioritise and display recommendations which

are pertinent to the patients’ medical histories and provide a foundation for the

development of biologically inspired clinical decision support systems. Ontology

driven techniques provide scalable and component based approach through which

reusable decisions support components can be developed in an iterative manner.

This scalable and reusable approach facilitates cost effective development and

maintenance of different clinical decision support components which could be

integrated in an intelligent manner to deliver a holistic clinical decision support

mechanism. In the forthcoming chapters, details of the proposed framework along

with its key components will be discussed.
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Chapter 3

A Novel Ontology and Machine Learn-
ing Driven Hybrid Clinical Deci-
sion Support Framework for Car-
diovascular Preventative Care

A background review of the clinical decision support systems and evaluation

of some of the most recent techniques deployed in these clinical systems has been

conducted (demonstrated in chapter 2), its findings were discussed with project’s

clinical domain experts from the UK and US hospitals. Our project’s clinical

domain experts team comprises of Professor Stephen Leslie, (consultant cardiol-

ogist from Raigmore Hospital) in the UK, Professor Calum MacRae (consultant

cardiologist from Brigham and Women’s Hospital, Harvard Medical School) and

Professor Warner Slack (Beth Israel Deaconess Medical centre, Harvard Medical

School) in the US. The multidisciplinary research project’s key aims were anal-

ysed in light of literate review’s findings with a view to propose a novel clinical

decision support framework to suit clinical needs of both primary and secondary

care clinicians in the UK and US.

The primary objective of this research project is to provide a clinical decision

support framework for cardiovascular patients by utilising the legacy RACPC

patient data (held in Raigmore Hospital’s clinical repositories) to facilitate evi-

dence based cardiovascular preventative care. Professor Stephen Leslie, consul-

tant cardiologist from Raigmore Hospital helped identify, a clinical case study for

40



Raigmore Hospital’s RACPC in order to develop a clinical decision support mech-

anism for RACPC clinicians. He also specified a requirement for RACPC specific

cardiac chest pain prognostic models to be developed for RACPC clinicians to

diagnose cardiac chest pain patients efficiently.

Professor Calum MacRae, consultant cardiologist from Brigham and Women’s

Hospital specified a need of a triage mechanism as part of the proposed clini-

cal decision support framework for cardiovascular preventative care. This triage

mechanism is envisaged to act as an initial encounter (before patients are seen by

the consultant cardiologist) for patients to build their patient medical records by

answering a series of questions (ontology driven context sensitive clinical question-

naires) regarding their medical histories. The clinical decision support framework

is expected to utilise information recorded in the patient medical profile to carry

out cardiac risk assessment for various cardiovascular diseases like coronary heart

disease, myocardial infarction and recommendation of lab tests and medication

as per the clinical rules provided by the consultant cardiologist from Harvard

Medical School.

Professor Warner Slack from Beth Israel Deaconess Medical centre, Harvard

medical school is recognised as an authority in the areas of patient interview-

ing systems and developing healthcare systems focussing on improving doctor-

patient interaction through the utilisation of standardised clinical questionnaires,

he wrote some 40 years ago. He has developed clinical questionnaires in multi-

ple clinical domains which are currently in use in the patient healthcare system

at the Beth Israel Deaconess Medical centre.Professor Slack kindly shared his

clinical questionnaires in the cardiovascular and family history domain which are

utilised in the adaptive information collection component for generating patient’s

medical history.

3.1 Proposed Framework

A cornerstone of my literature review was the prior ontology driven and hybrid

clinical decision support framework in the domain of pre-operative clinical risk

assessment by Matt Mouley Bouamrane in [80], [46] [2] and [81] by Matt Mouley

41



et al from the Institute of Health and Wellbeing from University of Glasgow.

They implemented a hybrid system for preoperative risk assessment of patient

undergoing elective surgery. Their developed decision support system was based

on a Rule Engine and Reasoner on a clinic ontology driven framework for the

development of a decision support system in the pre-operative risk assessment of

patients in the secondary care. This preoperative decision support system relies

on information collection component to collate patient’s medical and demograph-

ics data. As this system was developed inspired by semantic web development

techniques, therefore acquired patient medical data was modelled in OWL [46]

to give patient data an intrinsic meaning in order to perform decision support

operations using domain specific ontologies and NICE guidelines [80].

Their clinical decision support framework provides a pre-operative risk as-

sessment mechanism (as per NICE clinical guidelines) for patients and lab tests

recommendation before they are being considered for any major surgical proce-

dures in the secondary care. Bouamrane et al demonstrated through their post

doctoral research work in [2] that the ontology driven decision support systems

outweigh other types of clinical decision support frameworks in terms of its cost

effective maintenance, easy to reuse the expert’s modelled view in OWL and fa-

cilitates development of scalable healthcare applications which can be deployed

in healthcare setting as a commercial preventative care clinical solution [81].

As a result of the detailed review in chapter 2 and keeping in view our project’s

key aims/objectives, an ontology and machine learning driven hybrid clinical de-

cision support framework is proposed to provide clinical decision support mech-

anism for primary and secondary care clinicians. The proposed clinical decision

support framework aims to provide a cardiovascular preventative care solution, it

comprises of two key components - (1) an Ontology Driven Clinical Risk Assess-

ment and Recommendation System (ODCRARS) and (2) the Machine Learning

Driven Prognostic System (MLDPS). The utilisation of ontology driven methods

help system developers build more scalable, cost effective, reusable and modu-

larised clinical decision support components which are integrated as clinical de-

cision support hybrid frameworks. These clinical decision support hybrid frame-
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works could be exploited in other clinical domains to provide clinical decision

support by modifying clinical rules engine and domain specific ontologies with-

out altering the interface, database and framework design.
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Figure 3.1: A Novel Ontology and Machine learning-driven hybrid Clinical Deci-
sion Support Framework for Cardiovascular Preventative Care.
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The proposed clinical decision support framework could be used for automat-

ically conducting patient pre-visit interviews. It will not replace a human doctor,

but would be used before an hospital visit to prepare the patient, deliver edu-

cational materials, cardiac risk assessment scores, cardiac chest pain and heart

disease scores and pre-order appropriate tests, making better use of both clinician

and patient time. The ODCRARS could be used as a triage system in the cardio-

vascular preventative care which could help clinicians prioritise patient appoint-

ments after reviewing snapshot of patient’s medical history (collected through an

ontology driven intelligent context aware information collection using standard-

ised clinical questionnaires) containing patient demographics information, cardiac

risk scores, cardiac chest pain and heart disease risk scores, recommended lab tests

and medication details. We also aim to validate the proposed novel ontology and

machine learning driven hybrid clinical decision support framework in other ap-

plication areas. Further two clinical case studies in the heart disease and breast

cancer domains are considered for the development and clinical validation of the

MLDPS.

One of the key aims of the proposed clinical decision support framework is

to help improve the diagnostic and performance capabilities of Raigmore Hospi-

tal’s RACPC (Rapid Access Chest Pain Clinic) patients, by reducing delay and

inaccuracies in the cardiovascular risk assessment of patients with chest pain by

helping clinicians effectively distinguish acute angina patients from those with

other causes of chest pain. We decided to build a clinical decision support frame-

work in order to develop a novel ontology and machine learning driven hybrid

clinical decision support framework which is reusable, scalable with cost effec-

tive maintenance. The proposed framework could be utilised in other application

areas like diabetes, arthritis, cancer etc.

The key components of the framework are reusable (through mapping of dis-

ease specific questionnaire ontology, recommendation ontology based on clinical

rules and NICE guidelines) in the disease management of other chronic illnesses.

The proposed ontology and machine learning driven hybrid clinical decision

support framework comprises of two key components to provide a cardiovascular
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preventative care solution for primary and secondary care clinicians in UK and

US. The key components are as follows:

1. Ontology Driven Clinical Risk Assessment and Recommendation System

(ODCRARS).

2. Machine Learning Driven Prognostic System (MLDPS).

3.2 ODCRARS for Cardiovascular Preventative

Care

The proposed ODCRARS is developed using a hybrid approach based on on-

tology driven techniques and clinical rules engine. Ontology driven approach is

exploited in the development of Intelligent Context aware Information Collec-

tion Component and recommendation of lab tests and medication is carried out

through the recommendation Ontology. A dedicated clinical rules engine is de-

veloped to carry out the cardiac risk assessment (for calculating global, absolute

and relative cardiac risk scores) and for implementing access control for system

users (patients and clinicians).

3.2.1 Ontology driven intelligent context aware informa-

tion collection component

Healthcare information systems are widely used all over the world to alleviate

diverse healthcare demands and supply gaps [82]. Clinical systems based on

information collection through questionnaires are fundamental to the core func-

tioning of healthcare information management systems. With the recent success

of electronic healthcare records globally, information collection through intelli-

gent means has now become one of the most important components of modern

healthcare systems. In modern patient interviewing/screening systems, one of

the main challenges to date is to get patients involved in the clinical decision

making process by getting them to interact with usable information collection

systems to collect their medical records. Healthcare resources in most parts of
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the world are stretched to the limit which is why healthcare providers’ main focus

is to build preventative care solutions based on patient medical records. Patient

triage systems are more in demand than ever before, demonstrating why they are

an essential component of healthcare information management systems. They

ensure safe record keeping of patient medical records along with clinical risk as-

sessment information, details of recommended lab tests and medication as part

of preventative care measure. Patient triage systems help clinicians optimise the

referral process and enable them to utilise their consultation time more efficiently

by focussing on providing more direct care for their patients.

Information collection systems should make patient interviews relevant for the

majority of patients, and be presented in a very clear, concise and well-organised

way without sacrificing comprehensiveness. This has proved to be very difficult to

achieve using conventional interviewing systems based on static questionnaires. In

order to overcome these, we propose an ontology driven intelligent context aware

information collection component which to conduct patient interviews. Another

purpose of the ontology driven adaptive questionnaire is to mimic the exploratory

behaviour exhibited by the clinicians. Patient answers provided in these inter-

views are used for generating patient medical records. The standardised clinical

questionnaires written by Professor Warner Slack in the cardiovascular and family

history domains are utilised in the development of an ontology driven adaptive

questionnaire which adapts itself as per patient’s medical history thus only ask-

ing relevant information which is pertinent to patient’s circumstances. These

questionnaires have been clinically validated and are currently being deployed

(for patient’s online interviews/screening and to collect their medical histories)

in the healthcare information management system called “PatientSite” at Beth

Israel Deaconess Medical Centre, which is affiliated teaching hospital of Harvard

Medical School. These clinical questionnaires (cardiovascular, chest pain and

family history) were originally developed using branching logic encoded in a non-

procedural MUMPS language 1. Branching logic encoded in questionnaires was

1MUMPS is a general-purpose computer programming language that provides ACID
(Atomic, Consistent, Isolated, and Durable) transaction processing.
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decoded (by following programming constructs in MUMPS language) into simple

text. As it can be seen in Fig 3.2, clinical questionnaires are encoded in a procedu-

ral language with Go To” operators and frame numbers which provide a switching

mechanism in these static questionnaires. After decrypting these questionnaires

we developed a high level questionnaire design using a decision tree based ap-

proach to decrypt clinical work flows encoded in these questionnaire. The high

level questionnaire design was then used for the development of ontology driven

adaptive questionnaire

Figure 3.2: Chest Pain risk assessment questionnaire encoded in MUMPS, devel-
oped by Professor Warner Slack from Harvard Medical School [6].

The proposed ontology driven intelligent context aware information collection

component could be used for automatically conducting patient pre-visit interviews

and for preparing patient medical records before actual appointments with their

relevant clinicians, this will free up resources (in terms of filling paper based

questionnaires, nurses workload) and will enable clinicians to make better use

of their consultation time in providing quality patient care. As cardiovascular
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risk assessment can be time consuming, ontology driven intelligent context aware

information collection provides a robust, scalable and configurable mechanism

which could help free up expensive and limited resources, leaving clinicians with

more time to fulfil their primary goal of administrating medical care for their

patients. The details of development, design and validation stages of the proposed

ontology driven intelligent context aware information collection component will

be provided in chapter 4.

3.2.2 Patient Medical Records

Patient medical records are generated using patient answers collated through the

ontology driven adaptive clinical questionnaire. This information containing pa-

tient demographics and clinical review details is saved in the centralised database

for its utilisation by clinical rules engine for clinical risk assessment purposes.

Patient medical records is generated using patient answers and it provides a

snapshot of patient’s medical history. These medical records are used by clinical

rules engine for the cardiac clinical risk assessment of patients to calculate risk

scores of various cardiovascular diseases which includes, Coronary Heart Disease,

Myocardial Infarction etc. Cardiac global, absolute and relative risk scores are

calculated using a set of clinical rules executed by Java rules engine called jess.

Patient Semantic Profile

The information represented at the patient records level lacks flexibility in its

structure and due to their static nature, patient medical records do not carry

any intrinsic meaning. The information collection based on an ontology driven

approach provides an opportunity to generate patient semantic profile through a

clinical ontology in order to preserve the semantics in the information collected.

The importance of utilising this approach is that patient medical records are be-

ing a single repository of information that could be used to provide a number of

services within the proposed framework. They could be used as an input to a

clinical rules engine for cardiac risk assessment for various cardiovascular diseases,

for generating patient summaries/doctor notes and provide vital clinical data re-

source for the semantic transformation of patient medical records to generate pa-

49



tient semantic profile. This approach provides greater flexibility in comparison to

standard healthcare software implementations. This will help build system com-

ponents using modularised approach of building reusable components. Patient

Semantic profile generated in the proposed framework is a formal representation

of the information collected through the cardiac risk assessment of patient based

on patient interviews which are conducted using ontology driven intelligent con-

text aware information collection component. Modelling of patient information

contained in patient medical records for any of the given patients is an extremely

challenging process, however doing so in a more constrained clinical domain is

somehow more manageable.

The ODCRARS utilises clinical questionnaires to carry out complete clini-

cal review of the patient. For patient modelling work our focus is on the data

transformation of patient medical records extracted through ontology driven car-

diovascular and family history questionnaires. Figure 3.3 presents a patient se-

mantic profile generated using web ontology language in the Protege application

programming interface. As it can be seen in the generated profile, many items of

information of clinical relevance are represented through boolean-type data with

the help of owl data types i.e. absence or presence of a specific clinical condi-

tion. Examples are “has absence of Myocardial Infarction” and “has presence

of high blood pressure”. This information was collated in the patient medi-

cal records as part of patient interviewing processes conducted through context

aware information collection component. The purpose of collating this clinical

information is to highlight existence and absence of certain medical conditions to

the clinicians, so that these clinical risk factors could be taken in account whilst

patients are being considered for various lab tests or prescribing any medications

to treat any specific cardiovascular condition. In the patient semantic profile,

occurrences of past medical conditions are represented through data properties

like “hasPresence” and “hasAbsence” data properties. Qualitative information is

represented as “HasCT-Result” which is shown as normal. Details of myocardial

perfusion scans can be asserted in the questionnaire ontology to make it more

specific and define different levels of tests and their clinical interpretations for
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clarity purposes. Temporal information is provided through the inclusion of data

properties like “FalseinPast-and-True-atPresent” and “True-in-Past-and-True-in-

Present” etc. A patient data record modelled in the semantic profile reads as

a patient who is male of 75 years of age and was assessed by clinician at the

Rapid Access Chest Pain Clinic (RACPC). The patient’s initial assessment was

“New Exertional Angina”, with a condition of hypertension and absence of high

cholesterol levels. Lab results like MPS and CT scans were normal. Patient is a

smoker although patient did not smoke in the past. Patient is diabetic and clin-

ician’s final assessment corroborated with initial findings of RACPC clinicians

which is “Acute Coronary Syndrome”. The patient semantic profile is modelled

using OWL Semantic Modeller, we here provided a short description of the pa-

tient semantic profile, its purpose and utilisation in the cardiovascular domain.

Details of its design and development will be provided in chapter 4.

Figure 3.3: Patient Semantic Profile in OWL, developed using Protege-OWL.
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3.2.3 Ontology Driven Decision Support

The ODCRARS provides clinical decision support mechanism based on a recom-

mendation ontology (for lab tests and medication recommendation) and clinical

rules engine. The proposed ODCRARS shown in Fig 3.1 aims to provide an online

cardiovascular preventative care solution, with a view to enhance the clinician-

patient consultation mechanism effectively by facilitating patients to complete

a standardised clinical review of their current and past medical histories prior

to hospital visits. These reviews are conducted through the ontology driven

intelligent context aware information collection component. The recommenda-

tion system exploits information held in the patient medical records and patient

semantic profile to carry out clinical decision support operations using clinical

rules engine and recommendation ontology for the recommendation of lab tests

and prescription of medication.

The ODCRARS collects structured information ( driven through a web-based

context-sensitive standardised clinical questionnaires) using a systematic medical

extermination technique known as the patient clinical review. It then provides

a suggested list of laboratory tests and medication using domain specific recom-

mendation ontology

In addition to these cardiac risk assessment scores, the ODCRARS also pro-

vides cardiac chest pain and heart disease risk scores. These risk scores are

displayed within the doctor’s risk assessment module in the ODCRARS. It pro-

vides a holistic cardiovascular decision support by providing clinicians an array of

cardiovascular risk assessment scores, recommendation of lab tests and medica-

tion. Implementation details of the recommendation ontology and clinical rules

engine will be provided in chapter 4.
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3.3 Machine Learning Driven Prognostic Mod-

elling for Cardiovascular Preventative Care

Computational Intelligence and healthcare informatics, are transforming health-

care to a proactive P4 medicine that is Predictive, Preventative, Personalised and

Participatory. Computational intelligence - holistic, and integrative approach has

given rise to machine learning driven prognostic modelling. In this chapter, we

propose a MLDPS for cardiovascular preventative care. Legacy patient data resid-

ing in clinical repositories provide the foundation of building a machine learning

driven prognostic system based on clinical case studies for RACPC/cardiac chest

pain and heart disease patient datasets, with a view to develop chest pain and

heart disease specific prognostic models for the clinical risk assessment of car-

diovascular patients. The development of the MLDPS was carried out in close

collaboration with clinical experts, the RACPC (chest pain) clinical case study

was identified by the consultant cardiologist from Raigmore Hospital in Inverness,

UK. The key objective of the RACPC clinical case study was to help improve

the diagnostic and performance capabilities of the RACPC. The other key objec-

tive is to reduce delay and inaccuracies in the cardiovascular risk assessment of

patients with chest pain and help clinicians effectively distinguish acute angina

patients from those with other causes of chest pain.

The heart disease clinical case study was carried out in collaboration with

a general medical practitioner from UK in order to develop a preventative care

mechanism for patients who are at risk of developing heart disease.

An additional clinical case study in the breast cancer domain is also carried out

for the development and validation of the MLDPS to demonstrate its effectiveness

in other clinical application areas. In Fig 3.1, a high level overview of the overall

ontology and machine learning driven hybrid clinical decision support framework

and its two key components i.e. MLDPS and the ODCRARS are represented as

modular components which could be adapted to provide clinical risk assessment
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in other application areas.

The ODCRARS is a knowledge-based system which is based on clinical ex-

pert’s knowledge, encoded in the form of clinical rules (utilised by the clinical

rules engine) to carry out cardiac risk assessment for various cardiovascular dis-

eases. The MLDPS is a non knowledge-based/data driven prognostic system

which is developed by applying machine learning and feature selection techniques

on legacy patient datasets.This approach eliminates the need for writing clini-

cal rules thereby reducing dependency on clinical experts to encode their advice

in the clinical decision making. Non-knowledge based clinical decision support

systems are utilised in providing point-of-care clinical decision making and im-

plementation of such solutions facilitate development of cost effective solutions

with improvement in the quality of care provided.

3.4 Machine Learning Driven Prognostic Model

An iterative development process, based on machine learning and feature selec-

tion, has been utilised in the development of machine learning driven prognostic

models. The prognostic model development process is general enough to handle

a variety of healthcare datasets which will enable researchers to develop effec-

tive evidence based clinical decision support systems. The key stages of the

prognostic model development process are shown in Fig 3.4, we will provide de-

tailed description of each development stage pertinent to each clinical case study

(RACPC, heart disease and breast cancer) in chapter 5. The general description

of each stage is as follows:

1. Data Acquisition

2. Data Pre-Processing

3. Feature Selection

4. Prognostic Model Development

5. Prognostic Model Validation and Evaluation

6. Online Clinical Prognostic Model
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Figure 3.4: Schematic view of the Prognostic Model development process.

3.4.1 Data Acquisition

In the data acquisition stage, details of collating data through proprietary clinical

data repositories are described along with details of data extraction procedures

i.e. manual (running database scripts to export patient data from relational

databases) or through utilisation of electronic data capture (EDC). Electronic

data capture are particularly useful in the extraction of clinical data for clinical

trials or data analysis purposes. These methods increase the data accuracy and

decrease the time to collect data for longitudinal clinical studies.

The MLDPS is developed using machine learning and feature selection tech-

niques based on legacy patient data for RACPC (chest pain) and heart disease

datasets. An additional case study in the breast cancer domain has also been

utilised in the development and validation of the MLDPS. Clinical data in the

RACPC clinic case study were collated using manual procedures, since patient

data resided in multiple clinical repositories in disparate locations at Raigmore

hospital. This is why electronic data capture methods could not have been utilised

for this purpose. The heart disease and breast cancer datasets were extracted

from UCI data repositories. These data were originally shared by researchers

55



from University of Cleveland and University of Wisconsin for machine learning

projects.

3.4.2 Data Pre-Processing

As stated earlier, non-knowledge-based CDSS relies on evidence extrapolated

through a known dataset in order to provide predictions on unseen cases. Clinical

data is composed of a number of patient data records/data points, each of them

as a number of inputs expressed as independent variables and one output as the

dependent variable. Data pre-processing entails a number of sub-processes for the

pre-processing of data, these sub-processes are vital towards developing efficient

and accurate prognostic models.

Clinical Variables Pre-Processing

In the prognostic model development, pre-processing of candidate variables is

done in accordance with data types associated with each clinical variable. Clinical

variables could be categorised as follows:

1. Categorical variables, a type of variable that can take a finite number of

values, thus assigning each individual to a specific group or “category”.

Categorical variables can be further divided into:

� Nominal variables, which have two or more values without an intrinsic

order;

� Ordinal variables, which have two or more values with an intrinsic

order or ranking;

� Binary variables, which can assume only two values.

� Dichotomous variables, which can have only two categories. For exam-

ple, if we were looking at gender, we would most probably categorise

somebody as either ”male” or ”female”. This is an example of a di-

chotomous variable.

2. Continuous variables are also known as quantitative variables , which can

take any real value within given intervals;
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Continuous variables are normally used “as is” or after a normalisation

process. Categorical variables cannot be used “as is. They need to be

encoded into a series of n - 1 binary variables where n is the number of

categories to be represented. It has to be noted that n - 1 binary variables

are able to define exactly n categories, while using n binary variables would

lead to a n-th variable which could be expressed as function of the other n -

1 ones causing problems to learning algorithms (i.e. making impossible the

matrix inversion in the estimation algorithm). This coding is necessary to

avoid the well known dummy variable trap, making the regression problem

unsolvable [83]. Generally speaking, model specifications should always

explain how variables are collected (including units of measure), calculated

and used in order to guarantee that the model will always be applied to

datasets which are consistent with the one used for developing such models,

i.e. variables are of the same kind and measured in the same unit [84].

”Effect Coding Scheme” is often utilised to alleviate collinearity problem

in the categorical clinical variables, it is represented in Table 3.1. More

independent variables are generated using this coding scheme.

Group Dummy Codes Effect Codes Contrast Codes Trend Codes
a1 a2 a3 a1 a2 a3 a1 a2 a3 a1 a2 a3

A1 1 0 0 1 0 0 3 0 0 -3 1 -1
A2 0 1 0 0 1 0 -1 2 0 -1 -1 3
A3 0 0 1 0 0 1 -1 -1 1 1 -1 -3
A4 0 0 0 -1 -1 -1 -1 -1 -1 3 1 1

Table 3.1: Different types of Coding Schemes for Categorical Variables, adapted
from ”Multiple Regression (MR) Using Categorical Variables in MR” tutorial.

Normalisation

Normalisation process involves transforming the data to fall within a common

range such [-1, 1] or [0.0, 1.0]. The term standardise and normalisation are used

interchangeably in data pre-processing. Normalising the data attempts to give all

clinical variables an equal weight. It is often useful for classification algorithms

involving neural networks or distance measurements such as nearest-neighbor
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classification and clustering. The most commonly used normalisation technique

is z-score normalisation (zero mean normalisation) method, which converts all

variables to a common scale with an average of zero and standard deviation of

one.

Collinearity issue among independent variables

Collinearity test is often carried out to find out whether two or more independent

variables have a strong correlation: if there is strong collinearity between inde-

pendent variables it becomes impossible to obtain unique estimates of the model

coefficients [85]. However, also high levels of collinearity also present a problem

for any regression analysis [86], increasing the probability that a good predictor

(i.e. an independent variable which has good explanatory power) is considered

not significant and then rejected by the model. It is estimated that less than 20%

of published literature on medical logistic regression models reported appropriate

tests for detecting collinearity problems [87]. The prognostic model development

process recommends that an appropriate test is carried out to detect collinearity

issues. Various collinearity diagnostics are available; for example, the variance

inflation factor (VIF) or the tolerance statistics (defined as 1/VIF). VIF provides

an estimate of how much the variance of an estimated coefficient is increased

by the effect of collinearity [88]. Common criteria to determine if a collinearity

problem is present are a tolerance value less than 0.1 [89] or, equivalently, a VIF

value greater than 10 [90].

Missing Data Handling

Clinical decision making frequently involves making decisions under uncertainty

because of missing key patient data (e.g. demographics, episodic and clinical

diagnosis details) - this information is essential for modern clinical decision sup-

port systems to perform learning, inference and prediction operations. Machine

learning and clinical informatics experts aim to reduce this clinical uncertainty

by learning from the missing clinical attributes with a view to improve the overall

decision making. These high-dimensional clinical datasets are often complex and

carry multifaceted patterns of key missing clinical attributes.
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The problem of learning from incomplete real patient data acquired from hos-

pital repositories could be handled through a statistical perspective. This could

entail using the likelihood-based approach, one of the most renowned techniques

to deal with this challenging issue. The statistical framework based on a set of

challenging statistical machine learning algorithms, derived from the likelihood-

based framework can handle clustering, classification, and function approxima-

tion from missing/incomplete data in an intelligent and resourceful manner. The

implementation of mixture modelling algorithms as well as utilising Expectation-

Maximization techniques for the estimation of mixture components and for deal-

ing with the missing clinical data can provide useful insights on how best to

approach classification techniques after missing values are estimated. Another

technique which is often used in such cases is handling missing data by substitut-

ing a mean for this missing data. For example if you don’t know cholesterol levels

of a patient, just substitute the mean cholesterol level for the patient and con-

tinue with classifying the datasets. It is to be noted that using mean substitution

techniques introduces only a trivial change in the correlation coefficient and no

change in the regression coefficient, therefore likelihood-based approach is often a

preferred choice due to its efficiency and consistency (maximum likelihood always

produces the same results for the same set of data) when dealing with missing

data in the clinical datasets.

3.4.3 Feature Selection

The main objective of feature selection is to reduce the number of prognostic

clinical variables used in the prognostic model while improving performance of

the clinical prognostic model without degrading its performance. A large num-

ber of clinical variables causes several computation problems. One of the most

significant issue is the cost of computation (in terms of time and computational re-

sources). If the number of clinical features is high, then the computation time and

memory space required will rise dramatically. The problem becomes intractable

for some simple induction algorithms. Another problem is the generalization of

prognostic performance. Complexity increases with the number of features, and

59



high complexity may result in over-fitting because too many features may be re-

dundant or misleading. In addition, a large number of features requires a lot of

storage space and may increase the cost of data maintenance.

3.4.4 Prognostic Model Development

After dataset preparation, a number of clinical variables are extracted through

the legacy patient data for the prognostic model development phase. The vector

of selected candidate independent clinical variables is called X and B which is

a vector of coefficients. Depending on the desired output, in most cases, linear

and logistic regression are able to provide prognostic models with a reasonable

level of accuracy. Logistic regression will be utilised and compared with other

classification techniques such as support vector machines and decision trees in

chapter 5.

Clinical Prognoses problems can be distinguished by the form of the output

space Y. If the predictive class is numeric or continuous (i.e. Y = R, the real line),

then the prognostic problem is a regression problem (e.g. predicting a physical

measurement such as height) [91]. If the predictive class is discrete (i.e.Y = 0, 1,

. . . , K 1) then we have a classification problem (e.g. predicting in the case of

breast cancer study whether a tumour is benign or malignant, more details about

this clinical case study will be provided in chapter 5).

In all of our clinical case studies , classification problems fall into this category

(i.e.y(m)ε 0,1), in this case the model ŷ = f(B,X) is the probability of an input

data value belonging to a certain class. A threshold is generally applied to the

probability calculated from the model in order to predict what class the data

point is expected to belong to. The threshold is often used to quickly evaluate

the accuracy of the model. Besides being needed in practical usage, the threshold

is also commonly used to quickly evaluate the accuracy of the model (i.e. once

a threshold has been selected, the accuracy of the model is worked out using the

receiver operating characteristic (ROC) curves in terms of providing sensitivity,

specificity values for True Positive (TP), True negative (TN), False Positive (FP)

and False Negatives (FN). TP and FP values are utilised in calculating the pre-
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cision of the prognostic model, at the same time recall could be calculated by

utilising TP divided by sum of TP + FN. Details of prognostic model evaluations

will be provided in the forthcoming section on model evaluation in 3.4.5.

3.4.5 Prognostic Model Validation and Evaluation

Prognostic Model Validation

The key aim of a classification task is to map each element of a dataset to its

corresponding class amongst a number of possible ones. Logistic regression al-

gorithm (as well as other supervised machine learning techniques) infer a model

from labelled training data. The generated model is then evaluated on a separate

testing set, which provides an estimate of the accuracy of the model. A correct

estimation of the accuracy of a classifier (in this context, also referred as model

validation) is crucial both to predict its future predictive power and to choose

among a number of possible classifiers.

In the case of classification, if the number of data samples for training and

testing are limited , k-fold cross validation can be utilised to predict the error date

of a learning technique. In the k-fold cross validation, a full dataset is divided

randomly into k disjoint subsets of approximately equal size, in each of which the

class is represented in approximately the sample properties as in the full dataset

[92]. The process of k-fold cross validation works in the manner as follows:

1. Training and testing will be repeated k times on the k data subsets, using

k-1 partitions as the training set and the renaming partition as the testing

set.

2. The classification error of this iteration is calculated by testing the classifi-

cation model on the holdout set. Finally the k number of errors are added

up to generate an overall error estimate. The most commonly used value

of k = 10, which is the number of folds to obtain the best estimate of error,

and e theoretical evidence also backs this value of k=10 [92].

The “leave one out cross validation” (LOOCV) is simply n-fold cross valida-

tion, where n is the number of samples in the full dataset. In LOOCV, each
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sample on its turn is discarded out whilst classifier is trained on the remain-

ing n-1 data samples. Classification error for each iteration is determined

on the class prediction for the holdout sample’s success or failure. LOOCV

utilises greater amount of data samples for training in each iteration and

involves no random shuffling of samples.

Prognostic Model Evaluation

There are several approaches for the evaluation of classification performance. The

most commonly used evaluation measure is the confusion matrix. A confusion

matrix is also referred to as a contingency table or an error matrix This matrix

visualizes the classifier’s output in terms of representing the patterns in the clas-

sified class, while each row contains the patterns in the actual class. The overall

evaluation of classifier performance is usually delivered by two characteristics:

the weighted accuracy and unweighted accuracy. These two characteristics are

identical only when all testing classes have the same number of data patterns.

The unweighted accuracy can be calculated as

Awa =
100Ncor

Np

(3.1)

Where Ncor is the number of correctly classified data patterns of all classes

and Np is the total number of data patterns.

The weighted classification accuracy is denoted by

Auw =
100

C

C∑
c=1

N c
cor (3.2)

Where N c
cor is the number of correctly classified data patterns of class c and

C is the number of classes.

In binary classification scenarios are most commonly used in healthcare prog-

nostic modelling, the subjects are classified into two classes: positive and negative

[60].

The confusion matrix for binary classification is provided in Table 3.2.
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Predicted Class
A B

Actual Class A
TP
True Positive

FN
False Negative

B
FP
False Positive

TN
True Negative

Table 3.2: Confusion matrix for two-class classification problem.

From the confusion matrix in Table 3.2, the true positive (TP) and true

negative (TN) are the correct classifications in samples of each class. A false

positive (FP) is when a class B sample is incorrectly predicted as class A sample;

a false negative (FN) is when a class A sample is predicted as a class B sample.

Each element of a confusion matrix shows the number of test samples for which

the actual class is the row and the predicted class is the column. The error

rate can be calculated as FP+FN
TP+TN+FP+FN

.The error rate is a measurement of the

overall performance of a classifier; however a lower error rate does not necessarily

mean better performance, for example in the case of imbalanced datasets, 10

samples in class A and 90 samples in class B. If TP = 5 and TN = 85, then FP

= 5, FN=5, the error rate in this case is only 10%. However in the case of class

A, only 50 % of the samples are correctly classified. There are a number of other

evaluation metrics which can be utilised to correctly evaluate the classification

results without any bias.

1. Sensitivity or Recall measures the proportions of samples in class A which

are correctly classified as A. It is calculated as

True Positive Rate (TPRate) = TP
(TP+FN)

2. Specificity measures the proportion of samples in class B which are correctly

classified as class B. It is calculated as

True Negative Rate (TNrate) = TN
(FP+TN)

3. False Positive Rate (FPRate) = FP
(FP+TN)

= 1− Specificity

4. False negative rate (FN Rate) = FN
(TP+FN)

= 1− Sensitivity
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Figure 3.5: A sample ROC curve. The dotted line on the 45 degree diagonal is
the expected curve to show that the classifier is making random predictions.

5. Positive Predictive Value(PPV) = TP
(TP+FP )

, also known as precision, which

measures the proportion of the claimed class A samples are indeed class A

samples.

In classification tasks, higher TP rate normally co-exist with higher FP rates

and the same is the case with the TN and FN rate. The receiver operating

characteristic (ROC) curve is used to characterise the trade off between TP rate

and FP rate. The ROC curve shown in 3.5 plots TP rate on the Y axis against

FP rate on the X axis. With an ROC curve of a classifier , the evaluation metric

is the area under the ROC curve. The larger the area under the curve (the more

closely the curve follows the left-hand border and the top border of the ROC

space), hence more accurate the test.The ROC curve for a perfect classifier has

an area of 1.
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3.4.6 Online Clinical Prognostic Model

The next stage in the prognostic model development (as shown in Figure 3.4) is

to get these novel prognostic models incorporated as part of the clinical workflows

for primary and secondary care clinicians in the UK and US. This objective is

reached through the implementation of cardiac chest pain and heart disease prog-

nostic models as online clinical prototypes. These online clinical risk assessment

prototypes are used for the clinical validation and evaluation purposes by consul-

tant cardiologist, Professor Stephen Leslie from Raigmore Hospital and Professor

Warner Slack from Harvard Medical School as well as primary care clinician (GP)

from Edinburgh who utilised heart disease prognostic models for clinical trials us-

ing real patient data. These online prognostic models could be used to collect

new data for further research work and could to be used with an online training

algorithm to improve performance of existing models and to optimise machine

learning inputs. These online prognostic models have been developed using PHP

scripts to acquire patient data and HTML front end was developed to provide

the risk score.

3.5 Conclusion and Discussion

In this chapter, we proposed a novel ontology and machine learning driven hybrid

clinical decision support framework for cardiovascular preventative care. The key

components of the proposed framework are (1) Ontology driven clinical risk as-

sessment and recommendation system (ODCRARS) and (2) The Machine Learn-

ing Prognostic System (MLDPS). The key components are developed in close

collaboration with cardiologists from UK and US hospitals. Clinical question-

naires encoded in the ontology driven cardiovascular risk assessment and recom-

mendation system were written by Professor Warner Slack from Harvard Medical

School in the US. The machine learning driven prognostic models for the cardiac

chest pain and heart disease are developed in collaboration with primary and sec-

ondary care clinicians.These prognostic models could help clinicians reduce load

on overly prescribed angiography treatments in a cost effective manner. Details
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of development, design and validation of the key components will be provided in

chapter 4 and 5.

The proposed framework will also pave the way for the development of cost

effective and patient centric preventative care solutions for chronic diseases with

high mortality rates, such as breast cancer and diabetes. These chronic dis-

eases could be largely preventable through close partnership among healthcare

providers, commercial partners and researchers working in the healthcare infor-

matics domain towards developing innovative doctor-patient based interactive col-

laborative care solutions. The proposed framework will facilitate development of

the next generation commercial clinical decision support systems with a learning

capability based on machine learning (for information exchange among key com-

ponents for risk calculation for cardiac chest pain and heart disease conditions).

This could be utilised by primary and secondary care clinicians in the UK and

US as a cardiovascular preventative care solution. The proposed novel ontology

and machine learning driven hybrid clinical decision support framework exploits

both (ontology and machine learning driven) approaches. Our proposed frame-

work combines both clinical expert’s knowledge (encoded in the knowledge-based

ODCRARS) and evidence-based/data driven MLDPS in an intelligent manner

to deliver an effective, holistic and cost effective cardiovascular preventative care

solution.
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Chapter 4

Ontology Driven Clinical Risk As-
sessment and Recommendation Sys-
tem (ODCRARS) for Cardiovas-
cular Preventative Care

Chapter 3 presented the proposed novel ontology and machine learning driven

hybrid clinical decision support framework for cardiovascular preventative care.

This chapter focuses on the design, development and clinical validation of the

ODCRARS.

The ODCRARS is developed in order to provide a cardiovascular preventative

care solution for primary and secondary care clinicians and patients. It provides

clinicians with a snapshot of a patient’s medical history in the form of patient

medical records, details of recommended lab tests and medication; provides rel-

ative and absolute cardiac risk scores; cardiac chest pain and heart disease risk

scores. This provides a holistic cardiovascular decision support as part of a triage

mechanism for primary and secondary care clinicians. The ODCRARS is de-

veloped under the close supervision of Consultant Cardiologist, Professor Calum

MacRae from Brigham and Women’s Hospital, Harvard Medical School and of

Clinical Informatics expert, Professor Warner Slack from Beth Israel Deaconess

Medical Centre, Harvard Medical School.

The detailed design, development and validation details of various compo-

nents of the ODCRARS which includes ontology driven intelligent context aware
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information collection, patient medical records, patient semantic profile, ontol-

ogy driven clinical decision support including NICE/Expert driven clinical rules

engine components are provided in detail.

In the latter part, ontology driven clinical decision support which is imple-

mented through the recommendation ontology and NICE/Expert driven clinical

rules engine is presented. The development, design and validation of the recom-

mended ontology which utilises the patient’s semantic profile for the recommen-

dation of lab tests and prescription of medication is discussed in detail.

We also discuss development of the NICE/Expert driven clinical rules en-

gine and its utilisation in the cardiovascular risk scores calculation for various

cardiovascular diseases. It also helps to control the patient flow within the car-

diovascular preventative care solution. The outcome general cardiac risk score

calculation using the Framingham risk score calculator is also explained.

The integration of the machine learning driven prognostic models (cardiac

chest pain and heart disease prognostic models) is discussed at the end. These

prognostic models are developed using the machine learning driven prognostic

system, further details of the machine learning drive prognostic system (MLDPS)

will be provided in Chapter 5.

4.1 Implementation of the Ontology Driven Clin-

ical Risk Assessment and Recommendation

System (ODCRARS)

In chapter 3, we introduced a novel ontology and machine learning driven hybrid

clinical decision support framework for cardiovascular preventative care, this sec-

tion focuses on the design and development aspects of different components of

the proposed ontology driven clinician risk assessment and recommendation sys-

tem. The components of the proposed ODCRARS are chronologically numbered

in Figure 3.1 for explanation and clarity purposes.

The proposed ODCRARS aims to provide a cardiovascular preventative care

solution for primary and secondary care clinicians in the UK and US hospitals by
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way of automating patient encounter with the physician where a standard panel

of health information including basic physiological parameters such as weight

or blood pressure and patient demographics information is collected to generate

their medical records. The doctor-patient interaction/interviewing mechanism is

mimicked using the ontology driven context aware information collection com-

ponent. The proposed ODCRARS recommends a number of lab tests (e.g. for

cardiovascular, diabetes, cholesterol and other common risk factors), potentially

additional evaluations such as an ECG or stress test and with the results sees

the consultant again, who, based on the results of the physical exam and the

laboratory tests often prescribe one of several classes of medications, e.g. an

aspirin, a statin, an ACE inhibitor or an Angiotensin receptor blocker. It also

provides cardiac risk scores for various cardiovascular diseases along with cardiac

chest pain and heart disease risk scores which are calculated through the evidence

based MLDPS.

We utilise ontology based approach in the development of ODCRARS. On-

tology driven approach offers several advantages over conventional software engi-

neering techniques, Firstly, our proposed ODCRARS is more convenient to up-

date as modifying the ontology layer can be done without the need for additional

and costly software engineering work. The clean separation between core system

functionalities and the knowledge base utilised by the system means that the lat-

ter can me modified should requirements or clinical expert’s knowledge change.

Secondly, the ontology layer enables the system to perform operations, such as

clinical decision support, which are cumbersome to implement using database

and distributed system technologies on their own.

The proposed clinical decision support framework as shown in Fig 3.1 could

thus be used for automatically conducting patient pre-visit interviews. It will not

replace a human doctor, but could be used as a triage system to prepare a patient’s

summary/doctor’s notes and pre-order appropriate tests by facilitating clinicians

to make better use of their consultation time in providing direct patient-centric

care.

The key components of the ODCRARS are as follows:
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1. Ontology driven intelligent context aware information collection.

2. Patient Medical Records.

3. Patient Semantic Profile.

4. Ontology driven clinical decision support and NICE/Expert driven clinical

rules engine.

4.2 Ontology driven intelligent context aware

information collection: Design and Imple-

mentation

Computer based patient interviewing systems can help free up precious and lim-

ited resources, leaving clinicians with more time to fulfil their primary mission of

administering medical care. In addition, clinical histories collected through these

interviewing systems have proved to be more accurate than traditional nurse led

data entry sessions or face-to-face interviews [45]. A challenge remains however

in designing clinical questionnaires which are general enough to suit a majority of

patients, while at the same time, being able to capture critical individual infor-

mation. We propose a solution to this challenging issue with an ontology driven

context-aware, intelligent information collection system [56].

The proposed method permits to iteratively capture fine-grained information

with each successive step, should this information be relevant according to a

questionnaire ontology. A solution to the challenge of making the information

collection process quick and efficient for the majority of patients without sacrific-

ing completeness, is to develop an adaptive questionnaire. By adaptive we mean

a dynamic modification of the behaviour of the application (i.e. structure of the

questionnaire) in response to user interaction (context-sensitive self-adaptation)

[93]. Previous methods used to implement context sensitive adaptation in med-

ical questionnaire include, conditional branching and finite state machines [94]

[95] [96]. Limitations of these proposed methods include complexity, scalability
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and lack of flexibility for system maintenance. The proposed method intends

to replicate the investigating behaviour exhibited by clinicians when presented

with items of information which may be a cause of concern or require further

clinical investigation. While the system has the potential to reduce the number

of questions and thus save time and costs for healthy patients, the emphasis is

rather on collecting more relevant information so that a well-informed patient

risk assessment can be performed.

4.2.1 Ontology Driven Intelligent Context Aware Ontol-

ogy Model

OWL is a highly expressive ontology language created as part of efforts surround-

ing the development of the semantic web [97]. It represents a domain knowledge

using formal semantics such as subsumption (hierarchical property inheritance),

equivalence, disjointness, union, intersection, etc. OWL comes in several sub-

languages. Using OWL-DL (Description Logic), the formal semantics expressed

in an ontology can be used by a reasoner to perform certain inferences on the on-

tology (classification or reasoning) and uncover relations which were not explicitly

asserted in the ontology. Figure 4.1 shows class hierarchies in a domain specific

ontology for the context aware intelligent information collection component. We

utilised the following notation : words starting with a capital letters refers to the

classes of the targeted ontology (e.g. Questionnaire).

Questionnaire Classes

We identified and extracted structural elements from a number of clinical ques-

tionnaires. The resulting subsumption is illustrated in Figure 4.1. The main

classes in the ontology are as follows:
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Figure 4.1: The Ontology Driven Clinical Risk Assessment and Recommendation
System’s Generic Clinical Questionnaire Ontology.
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The Questionnaire : These classes comprises of various subquestionnaires,

which are a group of thematically related Question classes.Subquestionnaire classes

were identified using the description provided in Table 4.1.

Review Type Clinical symptoms Associated with the review

General Review
Feeling sick, weight loss or gain, general state of health,
sense of well-being, strength, ability to conduct usual activities,
exercise tolerance

Dermatologic Review

Rash, itching, pigmentation, moisture or dryness,
texture, dentures,
mouth sores, hoarseness, changes in hair
growth or loss,
nail changes Breast lumps, tenderness, swelling

Head/ Neck/ Ear
/ Nose /
Throat &
Oral Cavity Review

Headaches , light headedness, injury ,Vision,
double vision, tearing,
blind spots, pain,
Nose bleeding, colds, obstruction,
discharge

Pulmonary Review
Cough, blood cough, breathe pain,
short breath or wheeze

Cardiovascular Review
Chest pain, short breadth, palpitations, swelling of the legs,
calves pain

Abdominal Review

Difficulty in swallowing , pain in swallowing, heart burn ,
abdominal-pain,
appetite loss, nausea, vomiting, diarrhoea, constipation,
bowel-habits, haemorrhoids etc

Gynaecological Review regular menses, pain with menses

Genito urinary review

Urinate frequently, urinate blood , urinate odour, libido ,
swollen glands,
idiosyncrasy, abdominal pain, heartburn, nausea,
vomiting, recent changes in bowel habits

Psychiatric Review
tremor, emotional problems, anxiety, depression,
previous psychiatric care,
unusual perceptions, hallucinations

Table 4.1: Questionnaire Types for the Review of the System

Questions : These classes encapsulate the necessary information to determine

the runtime behaviour of a questionnaire implementation. This information in-

cludes: the set of valid answers to a specific question, information on how to

display the question on the front end and a set of valid actions. As an exam-

ple, the User Interface should only allow system users to select one answer to a

73



“MultipleChoice” Question.

Question Type : These classes specify a list of subclasses which are question

types.The subclasses are Check Boxes, Simple Text, Multiple Choice etc question

types.

Answers :

Answer classes essentially mirrors the Question classes while encapsulating

information subtleties which can be critical in the clinical domain. Examples of

such classes are TrueInPastAndAtPresent (e.g. I am diabetic), FalseInPastAn-

dAtPresent (e.g. “I have never smoked),TrueInPastAndFalseAtPresent (e.g. “I

use to take this aspirin but not any more).Also patient’s answers and clinical facts

are encapsulated.

Questionnaire Completed : Every time a user completes a survey of the

systematic examination the system store a reference to his username and the

questionnaireId in the centralised database. This class was created to keep track

of how far the user has progressed in the systematic review.

4.2.2 Adaptive Clinical Questionnaire: Design and Imple-

mentation

After the development of an ontology driven clinical questionnaire which pro-

vides the metadata and questionnaire structure for the system implementation

of the ontology driven clinical risk assessment and recommendation system, we

utilised a novel decision tree approach for the system implementation of the adap-

tive clinical questionnaire part at the database level. The standardised clinical

questionnaires written by Professor Warner Slack have been utilised for the devel-

opment of an adaptive clinical questionnaire. Cardiovascular and family history

questionnaires were provided by the project’s clinical informatics expert, Profes-

sor Warner Slack from the Harvard Medical School. These questionnaires were

initially encoded in the Beth Israel deaconess medical centre’s patient portal sys-

tem to provide systematic clinical reviews for new patients. These questionnaires

were encoded in a proprietary clinical language called Mumps and then compiled
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using a dedicated converse compiler before they were deployed in the teaching

hospitals affiliated with Harvard Medical School. It took a considerable amount

of time to parse these questionnaires manually by referring mumps and converse

manuals. The fundamental research problem of converting existing questionnaire

system based on static branching logic was addressed using a new intelligent

decision tree and rules-based approach, outlined below:

Minimize c (Questionnaire ) = g1, g2, gn

Where

� C: The number of users who attempt to answer a questionnaire.

� Gi: A group of questions for splitting questionnaire into further segments.

In order to meet usability constraints in the proposed system, a constraint

was set to restrict the maximum number of questions to display per page.

This may be formulated like: Size(G i) <= S Where S is the maximum

number of questions per page. The value of S in the ODCRARS is set to

5 for usability purpose. This can be customised as per the clinical needs of

the hospital.

4.2.3 Proposed Novel Decision Tree based Approach

The adaptive clinical questionnaire is designed by following the key design prin-

ciples/practices:

1. Splitting the clinical questionnaire into groups of equal size S.

2. Utilising >(greater than) operator to select appropriate questions from the

questionnaire tree.

3. Sorting the questions in the group i using the greater than operator.

4. Splitting the questions in the group i into parent and children questions.

5. Using the user’s answers provided through the front end, define the next

course of action/questions to follow.
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Greater than operator between questions

In order to define the order in which clinical questions should appear on

the front end, a greater than operator is used to compare questions in the

questionnaire tree. Every questionnaire is represented like a tree. In Figure

4.2, a tree structure of the adaptive questionnaire is displayed.

Figure 4.2: Context Sensitive Questionnaire Tree Structure.

Some important design constraints in our proposed tree structure:

� Not all the nodes in the questionnaire tree are visited. For example, the

node 1.1.1 is only visited if a user chooses to answer question 1.1.

� A question may be triggered for one or more answers through their cor-

responding parent tree. For example, the question 1.2.1 is triggered by

answers b or c in question 1.2.

The greater than operation is defined as:

Q1 >Q2 if level(Q1) >level(Q2)

For example, question 1.2 .1 is greater than question 1.2 but question 1.3.1

will be equal to question 1.3.2
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Figure 4.3: Tree Structure detail

In a group of questions i, the questions are split into two groups: parent and

children. The parent questions are displayed on page j but children questions

appear on the following page (j +1) at the front end. Using the user’s answers we

define the next questions to follow. Tree traversing part is based on a depth-first

algorithm. However, not all the nodes in the tree are visited, since the path to

follow will depend on the user’s response/ answers.

For example: If the user in question 1.1 chooses b, the node 1.1.1 becomes

unreachable since the flow will be directed to question 1.1.2 as demonstrated in

4.3. Then the node 1.1.1 will be marked as unreachable and their children will

become unreachable as well.

4.2.4 Dynamic Adaptation

The run-time dynamic behaviour of the adaptive questionnaire is shown in Fig

4.4 in which each step corresponds to a complete system iteration (full interaction

loop shown in 4.5). Question 1 (Q1) does not have any adaptive properties and

leads directly to Q2 irrespective of the answer (step 1 -2).Question 2 does have

adaptive properties, however the user input did not trigger a call for further

questions and thus also leads directly to the next question Q3 (step 2-3).In step

3-4, the answer to Q3 triggers the call for a further question. This additional

question (Q3.1) now resides on top of the questionnaire stack (next question to
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appear on the front end). Finally, the answer to Q3.1 triggers the call for three

additional questions (Q3.1.1, Q3.1.2 and Q3.1.3). These additional questions

are now positioned on top of the questionnaire stack, in the order of priority

asserted in the questionnaire ontology.Depending on the adaptive properties of the

remaining questions, the process of adding further questions could be iteratively

repeated until the engine finally reaches the bottom of the questionnaire stack.

Figure 4.4: Stack implementation of the context-sensitive questionnaire.

The proposed method is robust, scalable, highly configurable and could be

utilised in non clinical projects as well. One of the main advantages of our

proposed approach is its relative simplicity: it has less than 50 classes and 30

properties, yet it permits the design of arbitrarily large and complex question-

naires.Figure 4.6 illustrates the architecture of our ontology driven intelligent

context aware questionnaire implementation.It comprises of three components:the

User Interface, the adaptive engine and the questionnaire ontology. The adaptive

engine’s key role is to interpret the structural, composition and adaptive proper-

ties asserted in the ontology and to invoke appropriate user responses to the user

input. The user interaction loop works as follows: the system initially prompts

the first question. Once the user has selected an answer, the adaptive engine

first check whether the current question is adaptive or not. If it is non adaptive

question, the system just prompts the next question in the list. If however the

current question happens to be adaptive, the given answer is then cross checked

against a list of potential answers. If a match is found, the system moves to new
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question state. If no match is found, the next question in the list if displayed on

the front end. The interaction loop is repeated until there are no more questions

to be asked.

Figure 4.5: The Architecture of the Ontology Driven Intelligent Context Aware
Questionnaire.

4.3 Patient Medical Records

In previous sections, we described an ontology driven intelligent context aware

information collection to conduct patient interviews.The patient answers gath-

ered through patient interviews as shown in Figure 4.7 are utilised to generate

medical records containing patient demographics and clinical episodic informa-

tion which is stored in the centralised database. This information is utilised by

NICE/Expert driven clinical rules engine for the cardiovascular risk assessment

for various cardiovascular diseases. Figure 4.6, illustrates utilisation of patient

medical records through clinical rules engine.
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Figure 4.6: The Architecture of the Ontology Driven Intelligent Context Aware
Questionnaire.

80



Figure 4.7: Answers collated during Patient’s System Review.

4.4 Patient Semantic Profile : Design and Im-

plementation

As highlighted by [98], a major challenge faced by healthcare information man-

agement systems is continuously evolving work processes and practices due to

emerging guidelines, advances in healthcare and organisational changes. The pa-

tient medical records stored in the centralised database as shown in Figure 4.6
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have no longer any intrinsic meaning. This data can only be correctly used and

interpreted via surrounding software components used to input data and extract

data from the database. This means that even small structural changes to the

healthcare system will often require significant software engineering work. Up-

dating the system on clinical sites will generally cause delays and disruptions to

the service.

In the proposed ontology driven clinical risk assessment and recommendation,

the information collection based on an ontology creates the opportunity to simul-

taneously generate a patient profile automatically generated from the medical

ontology and thus to preserve the semantics of the information collected. This

information representation is what we describe as the Semantic level. The key

benefit of this approach is that a single information repository, a patient semantic

profile, can now provide a number of services to various sources like, providing an

input to a clinical rules engine, generating doctor notes/electronic patient sum-

mary and storing patient data in the third party patient data repositories like

Health Vault (in the US context) for data sharing purposes etc. This system

design provides greater flexibility in adding or maintaining software components

without affecting the whole structure of the system.

4.4.1 Ontology Development

The patient semantic medical profile is a formal representation of the informa-

tion collected during the system review process through ontology driven context-

sensitive intelligent questionnaire. The Patient Semantic Profile is developed in

OWL Protege through a domain specific ontology. The high level class design

was done with a view to transform patient medical records acquired in section

4.3 in OWL. The main classes in the ontology design are shown in Figure 4.8.
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Figure 4.8: Patient Semantic Profile classes and visualisation in OWLVIZ Inter-
face.
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Object Properties and Data Properties

The object properties in Figure 4.9are defined in order to establish relationship

between individual classes. The properties are also referred as Roles or relations

in UML terms. The purpose of the data properties is to be able to define the

relationship between individual classes and the XML schema data type.Object

properties establish a relationship between specific classes in order to model the

desired behaviour specified in the clinical use cases.

Figure 4.9: Object Properties list in Protg-4.1.

Figure 4.10 illustrates a list of data properties. The patient referral process

is implemented using the object property “has chest pain type which binds the

specific pain type with the patient using “Patient and “Chest Pain Type Classes.

The XML schema data type comes from the data properties which describes

pain type as an enumerated type showing the values as “typical, atypical or non-

typical.“Has diagnosis done text object type describes the relationship between

“Patient and “General Medical Practitioner”, “Cardiologist and “RACPC text

classes. This relationship models the behaviour of diagnosis done at each stage
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by the clinicians involved in the referral process.

Figure 4.10: Data Properties in Patient Semantic Profile ontology.

Ontology Results

Figure 4.11 shows the transformation of patient clinical history in OWL which

is developed using the Protege ontology editor. Many items of information

which could be clinically useful for clinicians are being represented using Boolean

clauses. The critical medical conditions are modelled using “ Has Presence and

Has Absence properties, this sort of clinical information is very useful for clin-

icians involved in primary and secondary care and without spending too much
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Figure 4.11: Patient Semantic Profile developed in Protege OWL.

time they can get a snapshot of patient’s medical history for referrals procedures.

The purpose of providing patient clinical history in a semantic formulation, is to

lend clinicians a helping hand during clinical decision making process and also

to flag clinical complications/issues requiring urgent medical attention or further

examination by the clinical domain experts.

The details of important clinical information encapsulated in the patient se-

mantic profile is as follows:

Medical Condition

In cardiology clinic, the key information which is of critical importance for the

clinical decision making, before any diagnostic procedures could be followed is

to find out whether the patient in question ever had a heart attack or a heart

abnormality of any kind in the past. This information is even more critical,

specially in the pre-operative risk assessment before any surgical operation is

scheduled. This information is modelled in an ontology using has absence and
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has Presence data types in Figure 4.11, examples are item 15 “has absence of

Cholesterol and item 6 “has presence of Acute Coronary Syndrome.

Qualitative Information

. The Qualitative information is also modelled in the OWL semantic profile. Def-

initions of different chest pain types can be asserted in the ontology for clarity

purposes.The purpose of collating this clinical information is to highlight exis-

tence and absence of certain medical conditions so that these clinical risk factors

could be taken into account during recommendation of lab tests or prescription

of medications. Qualitative information marked in item 11 in Figure 4.11 shows

patient’s perfusion scan result which in this case is “Normal”.

Cardinal Information

It is possible to express cardinal information (e.g. numbers and ranges) in an

OWL ontology using cardinal restrictions by expressing it in number and ranges so

that the information in the patient ontology remains self-explanatory. Therefore,

one needs to define unit classes. There are two types of cardinal restrictions you

can apply in OWL; these are referred as Temporal and Quantity units.Temporal

information is provided through the inclusion of data properties like “FalseinPast-

and-True-atPresent” and True-in-Past-and-True-in-Present etc. In Figure 4.11,

in item 8 shows patient’s age which “75” and the unit to interpret this value is

“Year”.

4.5 Ontology Driven Clinical Decision Support:

Design and Implementation

A usual cardiovascular consultation encompasses multiple encounters with the

physician. The patient meets the clinician where a standard panel of health

information is collected along with some basic physiological parameters such as

weight or blood pressure etc. The patient then undergoes a number of laboratory

tests (e.g. for diabetes, cholesterol and other common risk factors). The patient

meets the consultant again who, based on the results of the physical exam and
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the laboratory tests, prescribes one of several classes of medications:

� An aspirin

� A Statin

� An ACE inhibitor

� An Angiotensin receptor blocker

The aforementioned procedure demonstrates that the patient spends a lot of

time and effort in trying to provide clinically relevant information through nurse-

led clinics. This problem stems from the fact that clinicians have to extract

a lot of unstructured information from patients before appropriate diagnostic

procedures can be followed which is why manual history taking is essential for

clinical decision making.

The ontology driven clinical decision support in item 4a, in Figure 3.1 is one

of the vital components of the proposed ODCRARS. It comprises of a recom-

mendation ontology and NICE/Expert driven clinical rules engine. The recom-

mendation ontology is developed using clinical rules written by the consultant

cardiologist. The key objective of the bespoke recommendation ontology is to

utilise relevant clinical information encapsulated in the patient semantic profile

(demonstrated in previous section 4.4), for providing an automated lab tests and

medication recommendation for cardiovascular patients.

4.5.1 Recommendation Ontology

Figure 4.12 shows the classes and subclasses view using the OWLVIZ interface in

Protege.

The main classes of this ontology are as follows:

Lab Tests Recommendation

These classes encapsulate the lab tests recommendation part and different cat-

egories of basic lab tests, HBA1C (to check whether diabetes is under control)

and TSH test (test to check whether the thyroid gland is working properly). The
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Figure 4.12: OWLVIZ classes view of the Recommendation Ontology.

clinical rules encoded in this ontology for lab tests were provided by the clinical

domain experts. Definitions of these clinical rules are shown in Figure 4.13.

The recommendation ontology combined with patient data encapsulated in

the patient semantic profile recommends a series of lab tests as shown in 4.14,

keeping in view user facts which are recorded during the patient interviewing

process and stored in the centralised database.

Medication Recommendation

These classes are created in order to model the medication prescription part

through the utilisation of sub classes as shown in Figure 4.12. Clinical rules

for the automated medication prescription are encoded in the ontology, actual

definitions of these clinical rules are shown in Figure 4.15.
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Figure 4.13: Clinical Rules for Lab Tests Recommendation.

Figure 4.14: List of Suggested Lab Tests.
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Figure 4.15: Clinical Rules for Medication Prescription.
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In the clinical prototype development stage, clinical rules encoded in the rec-

ommendation ontology are utilised by a Java based rules engine called jess. These

rules are asserted in the ontology using JessTab plug-in in Protege.

4.6 Clinical Rules Engine: Design and Imple-

mentation

Clinical rules engine is one of the most fundamental components of the OD-

CRARS.A clinical rule is the execution of a business action or a sequence of

business actions once a pre-condition has been met e.g.

if systolic blood pressure <diastolic blood pressure then alert user of

input error

Although clinical rules are not explicitly defined as an if condition then ac-

tion statement, it is easier to visualise them as such, as the mechanism behind

the condition statement (as shown above) and that of clinical rules is more or

less identical. The mechanism behind clinical rules is to provide an application

run-time sandbox i.e. a safe environment, for rapidly changing clinical require-

ments. This means that when a clinical rule changes, the knock-on effect to the

development of new code should be minimal and the re-deployment of the rule

should cause a minimum amount of disruption to the end user.

The clinical rules engine performs following key functionalities:

1. Controls the flow of patients through the step wise inquiry.

2. Cardiac risk assessment mechanism to calculate risk scores for various car-

diovascular diseases.

As it can be seen in Figure 4.16, there are three main stages to running a

clinical rule. The first stage is the actual invocation of the rule itself from a

specific location within the application. This stage assumes that there is enough

information available, specific to the clinical rule to use in the next stage. This

next stage is required to perform data gathering for the clinical rule. Data gath-

ered at this stage is used for defining rule conditions and possibly used in the rule
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actions themselves. This data is then used in the execution of the clinical rules

and, once this has completed, the process can either return a result by extracting

specific data produced by the rule, as depicted in the Figure 4.16, or stop and

return directly to the invocation stage (where the rule actions have performed all

the required functionality).

Figure 4.16: Clinical Rules Execution Life Cycle.

4.6.1 Clinical Rules Data - Patient Fact Representation

The general mechanism for representing clinical rules data is through the use of

facts. Facts are a simple wrapper object used for any data value. As described

before, Jess rules work by pattern-matching on facts so it was imperative to have

some idea what the facts will look like. Just like a class in Java, to represent an

object and its properties as a fact in Jess, an unordered fact had to be declared

using the deftemplate command. Its properties could be represented by the pres-

ence of multiple slots. The patient fact played a central role for the rules engine

as most of the diagnostic rules would deal with it. The patient fact template

properties included their most important characteristics i.e. their gender, age,
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ethnicity, body mass index, total cholesterol and HDL cholesterol. Most of the

other facts were represented as ordered facts. They were easier to work with as

they get implicitly declared by the Jess engine at runtime without the need for a

deftemplate command to be declared.

4.6.2 Jess: Java based Rules Engine

The expert shells like Jess shell provide an inference engine for a rules based

system and a customisable programming interface in Java to build reusable ap-

plications. It also provides a modular structure for an ever expanding set of rules

and their inference engine supports forward chaining based on a Rete algorithm.

jess is an expert shell which is developed to provide a convenient way for Java

applets and facilitate reasoning ability. The choice of Jess was mainly based on

its support for Java programming language and its extensive library. The expert

shell was found to be ideal for the system development as it provides greater

flexibility through its feature rich programming interface.

The representation of patient’s symptoms as highlighted in Table 4.1 are rep-

resented through a number of facts about a particular patient. These facts are

stored in the working memory of the rules engine. The working memory consists

of following facts:

� Temporary facts specifying information about patient’s health.

� Permanent rules representing clinical knowledge that concerns diagnostics

and lab tests recommendation. Each of the rules consists of premises, spec-

ifying constrains (e.g. Patient’s age or sex or symptoms or risk status) and

recommendations (suggested tests and treatments).

A series of patient facts are introduced into the working memory which char-

acterise the current health condition of a patient. This can be made clear by

seeing the following facts about patient’s symptoms and signs shown in Figure

4.17 and 4.18. We encode the knowledge from the patient review of the system

as shown in Figure 4.19 into a series of facts that contain the attributes related

to signs and symptoms within one particular review.
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Figure 4.17: Patient’s basic details representation as a fact using the patient fact
template.

There are a total of 96 patient facts which are used to represent different

clinical symptoms which are recorded during a patient’s system review. Using

these patient facts, a set of permanent rules could be derived to provide various

types of recommendations within the targeted system.
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Figure 4.18: Patient symptoms and signs representation as facts.
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Figure 4.19: Flow Chart Diagram for Review of the System Procedure.
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4.6.3 Partitioning the Rules

A clinical recommendation system could potentially have hundreds of rules, there-

fore it is essential to partition the knowledge base into modules. The Jess rules

engine provides support for such a partitioning, it also provides a set of constructs

or rules to be grouped together while explicitly controlling the access of one mod-

ule from another. The Jess rules engine is also utilised for the control, execution

and activation of clinical rules.

They are divided into the following modules:

� User Facts Module

� Global Risk assessment Module

� Patient Flow Module

User Facts Module

Module Name in Jess : USER-FACTS

User facts module contains all the general health facts for the patients. It in-

cludes the patient fact and other facts that were collated during patient’s review

of the system. Every new patient in the system gets allocated a memory alloca-

tion for their user-facts to be stored in the centralised database, so that patients’

user facts are not mixed in the working memory. These facts are accessed from

the modules using a syntax like

USER-FACTS:: <Fact-Name >

The user facts module does not contain any rules, it is used to act more like

a repository to store patient facts.

Global Risk Assessment Module

Module Name in Jess : GLOBAL-RISK

The module contains facts and clinical rules for the calculation of the global

risk total points from a set of tables containing a score sheet for different risk
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factors. Each row in tables is represented as simple fact and is initialised au-

tomatically using the deffacts command which allows these facts to be loaded

into the working memory when the rules engine starts. Then a pattern matching

technique was used to match those facts with patient facts from the user facts

module. This is further explained in detail in section 4.6.4.

Patient Flow Module

Module Name in Jess: PATIENT-FLOW

One of the key operations of the clinical rules engine is to implement the

patient flow structure, this is provided through a series of steps shown in Figure

4.20. Instead of using lookup tables for storing the logic to complete these step

wise process, the rules engine was a preferred choice as it offers greater flexibility

and the cost effective maintenance of clinical rules should they change. The

patient flow is split into 5 steps. They are as follows:

1. Complete a basic profile form

2. Complete review of the system (ROS)

3. Complete Medication and Allergy review

4. Complete Medical Details (Optional)

5. View Suggested Lab Tests
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Figure 4.20: Flow chart diagram represents patient flow within the Recommen-
dation system.

100



In this module, rules mainly deal with two facts - enable and complete. It acts

as a state machine by which the current state is determined by past states. Every

time a user completes one step, a fact (complete profile) is added to the working

memory which fires the rule for step 2 to fire enabling system- review. Rules with

higher salience take precedence, this provides a conflict resolution mechanism in

case two or more rules are to be fired at the same time as shown in Figure 4.21.

Figure 4.21: Rules for the first two steps to control Patient Flow.

Figure 4.22: Screenshot showing the first two steps in patient flow.

In the case of emergency situation, system halts are introduced to handle

patients who are diagnosed to have serious conditions and require the immediate

attention of the doctor.Two types of halts are introduced, visit-doctor in Figure

4.23 and complete- halt. Each halt rule contains a (declare (auto-focus true))
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command which allows the activation of this rule even if module is not in focus.

Figure 4.23: Screenshot showing a visit-doctor halt.
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4.6.4 Cardiovascular Risk Assessment

The clinical rules engine is utilised to provide a cardiovascular risk assessment

mechanism. Cardiovascular risk assessment is an essential part of primary care

therapy for cardiovascular patients. It is a simple tool that can enhance clinical

judgement, and improve the ability to educate and motivate patients. There are

several types of risk assessments for cardiovascular patients but the most suc-

cessful to date is based on the study conducted by the Framingham Heart Study

(FHS). Comprehensive risk assessments help General Practitioners to effectively

manage their patient’s cardiovascular disease (CVD) risk by providing a mean-

ingful risk level. There are several known risk factors that can contribute to the

increased risk among the patients. Over the last 40 years FHS has identified

these factors as shown in Table 4.2, presence of any of these clinical risk factors

have a cumulative impact on the build-up of cardiovascular disease (CVD). The

proposed cardiovascular preventative care solution provides a range of cardiac

risk scores calculation as shown in Figure 4.24 for the following cardiovascular

diseases:

1. Myocardial infarction (MI )

2. CVD

3. CHD

4. Death from coronary heard diseases (CHD)

5. Death from CVD

6. Stroke

The major risk factors include age, systolic and diastolic blood pressure, high

density lipoprotein (HDL) cholesterol, total cholesterol levels, smoking and dia-

betes. These details would either be entered by the patient or by an observer.

The expert system includes these risk assessment evaluation in order to provide

an efficient clinical decision support mechanism for primary and secondary care
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Coefficients CHD MI CHD Death Stroke CVD
CVD
Death

0.9145 3.4064 2.9851 -0.4312 0.6536 0.8207
-0.2784 -0.8584 -0.9142 0 -0.2402 -0.4346
15.5305 11.4712 11.2889 26.5116 18.8144 -3.0385

Female 28.4441 10.5109 0.2332 0.2019 -1.2146 0.2243
Log(age) -1.4792 -0.7965 -0.944 -2.3741 -1.844 8.237
(log(age))2 0 0 0 0 0 -1.2109
(log(age)Xfemale 14.4588 -5.4216 0 0 0.3668 0
(log(age))2,X female 1.8515 0.7101 0 0 0 0
Log(SBP) -0.9119 -0.6623 -0.588 -2.4643 -1.4032 -0.8383
Cigarettes,(Y/N) -0.2767 -0.2675 -0.1367 -0.3914 -0.3899 -0.1618
Log(total-C,+ HDL-C) -0.7181 -0.4277 -0.3448 -0.0229 -0.539 -0.3493
Diabetes -0.1759 -0.1534 -0.0474 -0.3087 -0.3036 -0.0833
Diabetes X female -0.1999 -0.1165 -0.2233 -0.6391 -0.3764 -0.2067
ECG-LVH -0.5865 0 -0.1237 -0.8663 -0.3362 -0.2946
ECG-LVH X male 0 -0.1588 0 0 0 0

Table 4.2: Prediction Equation Coefficients.

clinicians. There are two steps in the cardiovascular risk calculation process, in

the first stage, the outcome general risk score is calculated for the cardiac events

mentioned in the Figure 4.24. At the second stage more qualified risk scores

including corresponding relative and absolute risk scores are calculated for the

coronary heart diseases (CHD). The global risk scores can help clinicians find out

the clinical risk factors which are more significant in the outcome risk scores. On

the other hand, the relative risk provides an overall risk status relative to a low-

risk state. This information is useful for both clinicians and patients with view to

agreeing a strategy through introducing changes in the life style (dietary, exercise

etc) in order to lower their cardiovascular risk score for various cardiovascular

diseases.
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Figure 4.24: Cardiac Risk Assessment Mechanism provided by the Clinical Deci-
sion Support Framework.
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Global Risk Score Calculation

To calculate the global risk score, the risk points as shown in Table 4.3 for each risk

factor (age, total cholesterol, HDL cholesterol, systolic blood pressure, diabetes,

and smoker) is matched to the score sheet values relevant to the patient. Then

the sum of the points is then to be matched with another score sheet containing

the relative and absolute risk estimates for both male as well as female patients.

On other hand the global risk score, relative risk and absolute risk are based

on matching inputted values to a range of tabular data. This makes it easier to

be implemented as a set of rules and hence implemented as a module within the

rules engine named GLOBAL-RISK. A row of the data was encoded as facts in

the module. Every row in the score sheet could be represented as facts which are

loaded at the start-up. These score sheets are based on the latest findings from

the FHS regarding CHD risks in men and women.

Clinical Fact Representation

(age-riskfactor (age 40 44) (risk-points 1 0))
(t-chol-riskfactor (t-chol 0 168) (risk-points -3 -2))
(hdl-riskfactor (hdl-chol 0 35 ) (risk-points 2 5))
(systolic-bp-riskfactor (systolic-bp 0 120) (risk-points 0 -3))
(smoker-riskfactor (smoker yes)(risk-points 2 2 )))
Absolute and Relative risk Fact Representation

(absolute-risk (point 17) (gender female) (total-chd 27)
(hard-chd 20))
(relative-risk (gender male)(age 30 34)(low-risk-level 2)(point 7 6.5)
(relative-risk-type red))

Table 4.3: Global Risk Score Calculation

Absolute and Relative Risk

The term relative risk represents the ratio of the incidence in the exposed pop-

ulation divided by the incidence in the unexposed population. The denominator

of the ratio can either be the average risk of the entire population or the risk

of a group devoid of risk factors. Both the absolute and relative risk can be

derived from the recently published risk score sheets . The Relative risk keys are
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as follows:

1. Below average risk

2. Average risk

3. Moderately above average risk

4. High risk

The outcome specific risk calculation is based on a statistical model and is

based on a lot of complex mathematical calculations while the global risk score

calculation is based on a set of look up tables.

4.7 System Implementation: Integration of OD-

CRARS and MLDPS

The Interfaces utilised in the ODCRARS was initially worked on by Farnush et

al as part of an Msc project. The novel proposed framework aims to provide a

cardiovascular preventative care solution with a view to enhancing and speeding

up the clinician- patient consultation mechanism by allowing the patients to com-

plete a standardised clinical review of their current and past medical history prior

to their hospital visits. The proposed cardiovascular preventative care solution

was developed using three-tier architecture comprising of J2EE (middle tier),

JDBC and Mysql (server side) and HTML and CSS (client side) technologies.

Java servlets and JSP are used for the development of dynamic web pages. OWL

is used for the development of ontologies in the Protege ontology development

editor and Netbeans was used for the Java development work.

4.7.1 Patient Module

The proposed cardiovascular preventative care provides a dedicated interface for

patients to log into the system using the credentials provided by their relevant

doctors at the time of registration. It enables them to answer questions about

their past and current medical conditions to generate patient medical records.
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This interface as shown in Figure 4.26, also helps to record their previous med-

ications, allergies and over-the-counter medications.The proposed system could

then prescribe lab tests prior to their consultation appointments. This would

help make the consultation process a well planned activity and would also help

clinicians to utilise their consultation time in an efficient manner.An example of

a clinical use case is provided in Figure 4.25.

Figure 4.25: Use Case for the Patient and Clinicians

4.8 Doctor’s Module

Doctors can log into the preventative care solution using their dedicated interface,

which facilitate them to register a patient and monitor the progress of the patient;
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it would alert the respective clinician once a patient’s medical profile is marked

as completed. This interface facilitates doctors to view patient’s medical records

and carry out cardiac risk assessment operations as explained in the cardiac risk

assessment Section 4.6.4. The system also provides an explanation of the sug-

gested lab tests for each patient and saves the results in the centralised database

provided by the proposed clinical decision support framework. An example of a

doctor clinical use case is provided in Figure 4.27.

Figure 4.26: Patients’ Interface.

For the purpose of validation and testing, various test patients were regis-

tered using the doctor ’s module as shown in Figure 4.27 which provides a pa-

tient registration facility for new patients. The project’s consultant cardiologist

provided a list of clinical rules (for lab tests recommendation etc) which were
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Figure 4.27: Doctor’s interface.

encoded in the clinical rules engine. Patient data using the front end was gener-

ated in order to satisfy the clinical conditions which were specified in the clinical

rules, like patient’s age, gender, cholesterol, weight ,blood pressure levels etc.

Also patient data to test clinical conditions, defined through the clinical rules

for CHD(coronary heart disease) risk calculation for global, relative and absolute

risk scores) was added through the front end for validation purposes. A clinical

risk assessment was carried out after completing the review of the system for

these patients and results were cross-checked with the clinicians to ensure that

risk scores are in line with the expected outcome.
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4.8.1 Integration of the ODCRARS with the machine learn-

ing driven cardiac chest pain and heart disease prog-

nostic models

In this chapter we have described design, development and validation of the

proposed ODCRARS. The proposed ontology and machine learning driven hybrid

clinical decision support framework is developed as a cardiovascular preventative

care solution for primary and secondary care clinicians in UK and US hospitals.

The ODCRARS is developed based on a clinical domain expert’s knowledge

(encoded in the form of clinical rules for lab tests and medication recommenda-

tions) and cardiovascular risk scoring systems (Framingham risk score calculator

again encoded in the form of rules and look up tables).

The MLDPS is developed based on evidence-based approach through utili-

sation of information extrapolated through real patient data repositories. We

utilised chest pain and heart disease clinical case studies for the development and

validation of the proposed MLDPS, and an additional case study in the breast

cancer domain is also utilised for the development and validation purpose. So it

can be noted that the clinical decision making in two key components is performed

based on two different information sources and development techniques.

We decided to combine clinical decision support results from both knowledge

based ODCRARS and non-knowledge based MLDPS with a view to providing a

holistic clinical decision support framework for clinicians.

We will discuss the development stages of the machine learning prognostic

system in chapter 5. In this chapter we provide a brief overview of the integration

process of the two vital components of the proposed framework.

The MLDPS is developed based on evidence based/data driven approach

which is why cardiac chest pain and heart disease prognostic models require

a series of inputs to perform the cardiac risk score calculation. Details of their

development will be discussed in chapter 5. These prognostic models are inte-

grated with a Java based cardiovascular preventative care solution using Java

server page (JSP), clinical variables required for the risk scores calculation are
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passed on to cardiac chest pain and heart disease prognostic model as part of the

risk assessment load up operation.

These machine learning prognostic models have been developed under the

close supervision of clinical domain experts. The cardiac chest pain prognostic

model was developed under the close supervision of consultant cardiologist from

Raigmore hospital, the heart disease prognostic model was developed in collab-

oration with the general medical practitioner from NHS Edinburgh and Lothian

region. The clinical domain experts validated these prognostic models as follows:

Consultant Cardiologist utilised the cardiovascular preventative care solution

to carry out the risk assessment of the patient. He verifies clinical risk factors

information populated at the front end as shown in Figure 4.28. He clicks on

the clinical risk assessment button to see the cardiac risk scores for different

cardiovascular risk scores. He also verifies clinical information which is brought

up at the front end for the machine learning driven cardiac chest pain prognostic

system and clicks on calculate button to calculate the risk score as shown in the

figure. He gets a complete cardiac risk assessment profile for the patient.
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Figure 4.28: Integration of ODCRARS and MLDPS.

4.9 Conclusion and Discussion

In this chapter, the design and development of the key components of the pro-

posed ontology driven clinical risk assessment and recommendation system (OD-

CRARS) is presented. An ontology driven approach (design and development

in Protege OWL) for the development of intelligent context aware information

collection and patient semantic profile components are explained in detail. We

demonstrated using an ontology for context-sensitive adaptation that the infor-

mation collection process can be tailored as per patients’ individual circumstances
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and facilitates fine-grained information collection. Because of the clean-cut sepa-

ration between the questionnaire ontology and the implementation system, modi-

fying the structure and behaviour of the adaptive questionnaire now only requires

modifying the ontology. At the second step, we have argued that using a patient

ontology to model the information collected offers several advantages. Firstly

the semantics of the information collected are preserved and self-contained in the

ontology and thus remain interpretable regardless of surrounding technology and

software implementation. Then, the patient’s semantic medical profile can be

used to provide services to a number of software clients.

Also ontology driven clinical decision support operations based on recommen-

dation ontology (for the recommendation of lab tests and medication prescription)

as well as NICE/Expert driven clinical rules engine and its utilisation is explained

in detail. We demonstrated through the utilisation of a Java-based Jess rules en-

gine that a clinical expert’s rules can be utilised in a number of ways (through

partitioning of a clinical expert’s rules) to provide various types of recommenda-

tions for the clinicians. Cardiac risk assessment mechanism based on the clinical

rules engine was utilised for providing cardiac risk scores calculations for various

cardiovascular diseases. There are two parts for the risk calculations incorporated

into the system, one which calculates the outcome of general cardiac risk scores

for CHD, MI, CVD etc. while the other gives a more qualified risk score by giv-

ing a global risk score, corresponding relative risks and absolute risks of coronary

heart diseases (CHD).
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Chapter 5

Machine Learning Driven Prognos-
tic System (MLDPS) for Cardio-
vascular Preventative Care

This chapter demonstrates the design, development and evaluation of the

MLDPS through clinical case studies in the cardiovascular domain. The Raigmore

Hospital’s RACPC (Rapid Access Chest Pain Clinic) and heart disease clinical

case studies are carried out in close collaboration with primary and secondary

care clinicians in the UK. An additional case study in the breast cancer domain

is also carried out for the development and validation of the proposed MLDPS.

In the RACPC clinical case study, we aim to improve the diagnostic and

performance capabilities of this specialised chest pain clinic, by reducing delay

and inaccuracies in the cardiovascular risk assessment of patients with chest pain,

also help clinicians effectively distinguish cardiac chest pain patients from those

with other causes of chest pain. The heart disease clinical case study concentrates

on attempting to distinguish heart disease patients from others with non-cardiac

symptoms. Additional clinical case study in the breast cancer domain aims to

help clinicians efficiently distinguish malignant breast cancer patients from others

with a benign condition.

In the beginning, the RACPC clinical case study which entails design, de-

velopment and evaluation of a novel machine learning driven cardiac chest pain

prognostic model is explained. Additional two clinical case studies in the heart

disease and breast cancer domains for the development and validation purposes
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are explained. Also, implementation details of online clinical prognostic models

are provided. In the end integration of the cardiac chest pain and the heart

disease prognostic models with the ODCRARS is discussed in detail.

5.1 Case Study 1: Rapid Access Chest Pain

Clinic

In 2001, the National Service Framework for Coronary Heart Disease made a

commitment to have 50 rapid access chest pain clinics (RACPC) in England by

April 2001 [99]. These clinics were designed to allow direct access to cardiology

expertise without the need for accident and emergency assessment or admission

to a medical ward. Rapid access chest pain clinics (RACPCs) would appear to

be reliable and efficient to carry out the assessment of patients who are suspected

of angina and serious chest pain conditions [100].

5.1.1 Background

Rapid access chest pain clinics (RACPC) enable clinical risk assessment, inves-

tigation and arrangement of a treatment plan for chest pain patients without a

long waiting list. RACPC Clinicians often experience difficulties in the diagno-

sis of chest pain due to the inherent complexity of the clinical process and lack

of comprehensive automated diagnostic tools. To date, various risk assessment

models have been proposed, inspired by the National Institute of Health and Care

Excellence (NICE) guidelines to provide clinical decision support mechanism in

chest pain diagnosis.

At Raigmore Hospital’s RACPC, there are several stages being followed in the

management of patients with suspected cardiac chest pain. The initial assessment

should determine if it’s likely that this patient is describing chest pain of a cardiac

origin. This requires knowledge of the clinical history and risk factor profile of the

individual patients. There are several algorithms that can be used to assess the

most significant risk factor responsible for the disease outbreak. The algorithm

used in the recent NICE guideline is based on the age, gender, risk factors and

the typicality of the chest pain.

116



RACPC Clinical Guidelines

Several clinical guidelines exist for the administration of patients in the specialised

chest pain clinic at Raigmore Hospital’s RACPC. NICE recently made available

standardized guidelines to ensure clinical governance for the management of re-

cent onset chest pain [101]. However, producing clinical guidelines is not sufficient

and implementation of guidelines presents a significant challenge. Several barri-

ers to implementation of guidelines exist throughout the patient pathway, from

problems with delayed referral, limited access to specialists and to specialist tests

and rationing of some treatments. It remains difficult to ensure that all health

care professionals are aware of new guidelines and implement them. This results

from ever increasing demands on health care professionals time and increasingly

complex treatment regimes for patients. This is a particular problem for general

and primary care physicians who are required to maintain a breadth of skills and

knowledge base in a number of areas of medicine.

RACPC Diagnostic Tests

A resting ECG should be performed promptly in all patients complaining of

chest pain. In order to further assess the patient further there are a range of

available diagnostic tests including non-invasive functional testing such as exercise

ECG, stress echocardiography, myocardial perfusion scanning, and stress MRI or

anatomical testing such as CT coronary angiography or conventional diagnostic

coronary angiography. Which test used will depend on each individual patient

but also in part the relative availability at a local level.

RACPC Treatment

RACPC treatment usually involves medication but may also involve more invasive

strategies such as coronary artery stenting and coronary artery bypass surgery.

The timing of treatments and the need for invasive treatments such as stenting

or coronary artery bypass grafting requires to be assessed on a case by case basis

and decision making can be complex.
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5.1.2 Aims

Rapid access chest pain clinics have improved diagnosis of incident angina for

those with high risk of cardiovascular disease, but misdiagnosis rates are high and

a recent study showed that a third of all cardiac events in subsequent follow-up

occurred in those diagnosed with non-cardiac chest pain. Three clinical datasets

are utilised in this clinical case study. The first clinical dataset comprises of 632

patients (male: 348, 55 % of male, female: 45%; median age 61 years) attending

rapid chest pain clinics (RACPC) at Raigmore Hospital between July 2009 and

September 2011.

The second clinical dataset comprises of 608 patients evaluating 23 clinical

variables. This data set contained a significant number of missing items which

were estimated using the Expectation- maximisation and mixture modelling tech-

niques.

The third clinical dataset was put together in light of feedback received regard-

ing results achieved with the first two datasets. As per clinical domain expert’s

recommendation, clinical lab results were taken out of the final dataset as a sep-

arate dataset with a view to compare the classification results with and without

clinical variables representing the lab test results.

The RACPC datasets for this clinical CASE study had to be extracted through

five separate clinical databases stored on three separate programs on the NHS

distributed computer systems. Missing data was handled by accessing the clinical

databases and doctor notes were utilised on an individual basis.

The key aims of this clinical case study are to help improve the diagnostic per-

formance of RACPC, specifically from the clinical decision support perspective.

The study cohort (first clinical dataset) comprises of 632 patients suspected of

cardiac chest pain. A retrospective data analysis of the clinical studies evaluating

14 clinical variables (risk factors and patient demographic data) was carried out

to develop cardiac chest pain specific clinical predictive models to help RACPC

clinicians effectively distinguish amongst cardiac and non cardiac chest pain pa-

tients. The second study cohort comprises of 608 patients was utilised for the
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missing data estimation and classification work.

The third study cohort comprises of 632 patients focussed on comparing clas-

sification results with and without lab tests results to see their impact on the

overall clinical decision making.

The prognostic model development process explained in chapter 3 was fol-

lowed in the RACPC clinical study towards developing machine learning cardiac

chest pain prognostic models. The prognostic model development process is also

utilised in the heart disease and breast cancer clinical case studies.

5.2 RACPC Clinical Dataset 1

5.2.1 Data Acquisition

The data acquisition phase was carried out under the close supervision of con-

sultant cardiologist from Raigmore Hospital in Inverness, study cohort included

details of patients who attended the RACPC clinic, details of therapeutic inves-

tigations they underwent along with final diagnoses and treatment they received.

In the data acquisition stage, patient data was manually extracted through var-

ious database servers; excel spreadsheets and where required doctor notes were

taken into consideration to complete the retrospective data analysis of each pa-

tient. The acquired data were then normalized and held in a dedicated Ms Access

database for further data analysis.

Patient information resided on a number of dedicated clinical databases in

Raigmore hospital, as shown in Fig 5.1, which is why RACPC patient data

had to be extracted manually from five separate clinical databases. CT an-

giogram and myocardial perfusion scintigraphy information was stored on sep-

arate databases using the Radiology Information System (RIS). Data for exercise

tests and RACPC appointments was also in separate databases, but on the Tom-

cat (Phillips CVIS R6.1L1-SP1 2010) system. Information on invasive angiograms

and percutanious coronary intervention was stored in a single database on the

Minerva (version 98 Scot 6.2) system. This information was taken from the sepa-

rate sources and pooled into one Excel spreadsheet on the NHS computers within
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the cardiology department in Raigmore for further processing.

Figure 5.1: Data Acquisition Stages - Raigmore Hospital’s RACPC Databases.

5.2.2 Data Preparation

After manual data extraction procedure, many repeat subjects were identified

in the accumulated dataset. This method produced many repeat patients, as

each consecutive attendance at a single service was entered as a new subject.

There was also a significant amount of missing data which had to be entered

individually into the data set. There were also some cardiac investigations which

occurred before or many months after attendance at the RACPC. These tests

which were not related to the RACPC clinic also needed to be removed from the

final dataset.

In the data cleansing stage, redundant patient data was removed without
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losing any clinical relevant information on the subjects and missing data values

were populated by accessing the databases and using doctor notes. Any tests

which were performed before attendance at the RACPC, or more than 6 months

after the clinic were deemed not to be related to the clinic and were removed

from the data. A record was kept of all tests removed, so that no data was

permanently lost. Each patient was allocated a unique study number and all

patient identifiable information was removed from the dataset to ensure patient

confidentiality.

Normalisation

Normalisation process involves transforming the data to fall within a common

range such [-1, 1] or [0.0, 1.0]. The term standardise and normalisation are

used interchangeably in data pre-processing. Normalising the data attempts to

give all clinical variables an equal weight. It is often useful for classification

algorithms involving neural networks or distance measurements such as nearest-

neighbor classification and clustering. In our clinical case study we exploited the

mostly commonly used z-score normalisation (zero mean normalisation) method,

it converts all variables to a common scale with an average of zero and standard

deviation of one.

Candidate Clinical variables

A number of features were preselected through prior and ongoing consultations

with the consultant cardiologist from Raigmore Hospital. We mutually identi-

fied 14 clinical variables as shown in Table 5.1 containing patient demographics

and lab test results information. We also retrospectively completed episodic data

analysis of 632 patients using Microsoft Access database for sanity checking pur-

poses.

Pre-processing

In the preprocessing stage, free text and categorical data values are transformed

into numeric values for further processing. We carefully selected Non cardiac

symptom as one of the major classes which is also set as the target result. As it
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Features/Risk Factors Targets/Final Diagnosis

Acronym
Number of
Patients

1 Smoker SMR Acute Coronary Syndrome 9
2 Number of Cigarettes NOC Angina 274
3 Number of Years Smoked YOS Arrhythmia 11
4 Age AGE Declined Investigation 4
5 Pathway PWY GI Pain 39
6 Sex SEX Heart Failure 2
7 Diabetes Type DAB Syndrome X 5
8 Hypertension HPT Valve disease 3
9 Raised Cholesterol CHL Myocarditis 1
10 Initial Assessment INA Non Cardiac Symptoms 284
11 ETT Result ETT
12 CT Result CT Total patients 632
13 MPS Result MPS
14 Angio Result ANG

Table 5.1: Clinical Variables Selected for the RACPC Clinical Case Study.

can be seen in Table 5.1, there are a number of target values/classes with minimal

amount of patients associated with them such as Myocarditis, Syndrome X, Heart

Failure etc. which is why we decided to work with only two major targets,

namely Non Cardiac Symptoms (with 284 patients, also the control group)) and

Angina (comprises of 274 patients). We considered this as a binary classification

problem focusing on Non Cardiac Symptoms (0) and Cardiac related symptoms

by merging all of the cardiac related classes into 1 class.

5.2.3 Missing Data Handling

Raigmore Hospital’s Rapid Access Chest Pain Clinic (RACPC) is a nurse-led

paper based clinic. Many patients had no information available for patient de-

mographics, smoking and diabetes status. Intranet databases were accessed to

retrieve this missing information and hard copies of their notes were requested to

fill in missing information. A large number of patients still had no information

available for some of the key clinical variables. Patient data in this case was miss-

ing completely at random (MCAR) and missing values were replaced using mean

values. Expectation-Maximization (EM) techniques and mixture modelling algo-
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rithms are also utilised for the estimation of mixture components and for dealing

with the missing clinical data of chest pain patients.

5.2.4 Feature Selection

Forward selection (FS), Backward selection (BS), mRMR (minimum redundancy

and maximum relevance), SFFS (sequential forward floating selection) and P-

Value feature selection methods are utilised in our experimental setups. Expert

driven technique based on pre-selection of variables by the clinical domain expert

is also compared with state of the art feature selection techniques for the data

classification purpose. FS, BS and SFFS algorithms choose the best features in

an iterative manner. Forward selection begins with no variables selected (the

null model). In the first step, it adds the most significant variable. At each

subsequent step, it adds the most significant variable of those not in the model,

until there are no variables that meet the criterion set by the user. Backward

selection begins with all the variables selected, and removes the least significant

one at each step, until none meet the criterion.

mRMR selects clinical variables on the basis of high correlation to the clas-

sification variable. The correlation is this case can be replaced by the statistical

dependency between clinical variables. The mRMR is an approximation to max-

imising the dependency between the joint distribution of the selected features

and the classification variable. SFFS is similar to the forward selection (FS)

technique, it also works in an iterative manner and starts with an empty set of

features. However, features selected after each iteration are removed one by one.

If the removal of any feature results in increasing the classification accuracy, then

the corresponding feature is permanently discarded from the feature set. This

approach guarantees that the final set does not contain correlated features. In

the case of P-value feature selection, clinical variables sorted (p-values obtained

from t-test) in order of their significance are utilised for the data classification

work.
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5.2.5 Prognostic Model Development: Experimental Se-

tups and Results

For the purpose of this clinical case study, Logistic Regression (LR), Decision Tree

(DT) and Support Vector Machine (SVM) classifiers were utilised for prognostic

model development combined with feature selection techniques to identify the

best approach among them.

Clinical Variables Selection and Evaluation

The results for various experimental setups are reported in Table 5.2. The valida-

tion was performed by applying leave-one-out validation technique. The results

in 5.3 suggest that the decision tree based classifier combined with forward se-

lection (DT-FS) gives the best performance in terms of Matthew’s correlation,

recall, weighted accuracy and Unweighted accuracy. The ROC curves for all sug-

gested setups are illustrated in Figure 5.4. As the best performance was achieved

by Decision Tree combined with Forward Selection setup. Evaluation criteria

are taken into account in order to make a fair comparison of methods under ex-

amination. These measurements are standards for assessing pattern recognition

and expert systems. The advantage of the Matthew’s correlation is that it takes

into consideration all elements of the confusion matrix (true, false positives and

negatives).

5.2.6 Final Diagnosis

Fig 5.2 illustrates the weighted classification accuracies in each iteration for dif-

ferent experimental setups. These results are also reported in tabular format

in Table 5.2. The highlighted cells in the mentioned table represent the most

significant features. For example, the highest classification accuracy for BS-LR

was achieved by using features from iteration 4 to 13 (starting with ”NOC” and

ending with ”ANG”). As it can be seen in the case of FS-DT, the highest classi-

fication accuracy was achieved using 6 features, only 4 of them were considered

because the difference in terms of classification accuracy was not statistically sig-

nificant. It can also be seen through statistics given in table 5.2 that the ANG

124



and INA features are common among all experimental setups. It is also evident

that the ”CT Scan Result” appears to be relevant for FS-DT, BS-DT and BS-LR

methods.

Table 5.2 provides a comparative view of different experimental setups and

their results. Decision Tree and Logistic Regression models have been exploited

using Forward Selection and Backward selection techniques to help build optimum

models using the best feature set. As it can be seen clearly that the clinical risk

factors (highlighted in bold) like ANG (Angio Result) and INA (Initial Assess-

ment) are showing as significant among all four experiential setups which suggest

that the initial assessment of chest pain patients along with their Angio results

are the most important clinical risk factors in the risk assessment of RACPC

patients.

As per our comparative analysis of different machine learning techniques,

based on various experimental setups, patient’s ”Angio Result” and ”Initial Re-

sult” outcomes (as shown above) could be deciding factors for patient’s referral

through to the next stage of cardiac assessment. RACPC patients get referred

through different clinical pathways as per findings in each phase, there are exit

points in each stage for patients with non cardiac symptoms, patients with cardiac

related chest pain get referred through the clinical pathway called ” Presentation

Suggests Angina” for further clinical tests like ETT, Perfusion Scan and ETT,

followed by angiography for patients who are unable to do ETT or with abnormal

ECG (suspicious of CAD).

5.2.7 Evaluation of RACPC Results

In different experimental setups, training samples were used to build a learning

model while test samples are used to evaluate the accuracy of the model. During

validation, test samples were supplied to the model having their class labels “hid-

den” and then their predicted class labels assigned by the model are compared

with their corresponding original class labels to calculate classification/prediction

accuracy. If two labels (actual and predicted) of a test sample are found same,

then the prediction of that sample is counted as a “success” otherwise it is marked
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Iteration FS-DT BS-DT FS-LR BS-LR
1 ANG 64.7867 MPS 76.0240 INA 66.0596 ETT 74.3423
2 INA 71.7298 NOC 76.5198 AGE 67.8100 CHL 74.2776
3 CT 77.3454 CHL 76.8395 ANG 71.9423 DAB 74.4212
4 ETT 78.4341 SMR 77.1127 SEX 72.6789 NOC 74.4536
5 DAB 78.4341 ETT 77.1592 MPS 73.3831 MPS 73.8931
6 SEX 78.4604 DAB 76.8719 YOS 74.0550 SMR 73.3042
7 HPT 77.5943 YOS 73.6421 NOC 73.9113 HPT 73.8141
8 CHL 76.9650 AGE 75.0000 HPT 73.9902 YOS 73.6705
9 MPS 74.2492 PWY 77.3069 PWY 74.3099 CT 72.7113
10 NOC 73.9619 SEX 76.6270 ETT 74.3099 PWY 72.6789
11 PWY 76.3761 HPT 77.3454 CT 74.3099 SEX 71.9423
12 SMR 75.3379 CT 71.7298 SMR 74.4212 INA 68.1743
13 AGE 75.1153 INA 64.7867 DAB 74.1339 ANG 62.0690
14 YOS 75.1153 ANG CHL 74.1663

Table 5.2: Weighted classification Accuracies with common clinical variables
(highlighted in bold) in each iteration.

Method Unweighted accuracy
Weighted
Accuracy

Precision Recall F-measure
Matthew’s
Correlation

DT+FS 77.84% 78.46% 72.41% 85.13% 78.26% 0.5674%
DT+BS 77.68% 77.34% 80.74% 79.15% 79.94% 0.5483%
LR+FS 74.68% 74.42% 77.01% 77.01% 77.01% 0.4884%
LR+BS 74.68% 74.45% 76.72% 77.16% 76.94% 0.4888%

Table 5.3: Classification results in terms of several evaluations.

as an “error”.

In Figure 5.3, a confusion matrix for two-class classification problem is pro-

vided. The true positive (TP) and true negative (TN) are correct classifications

in samples of each class, respectively. A false positive (FP) is when a class B

sample is incorrectly predicted as a class A sample; a false negative (FN) is when

a class A sample is predicted as a class B sample. Then each element of a con-

fusion matrix shows the number of test samples for which the actual class is the

row and the predicted class is the column. Thus, the error rate is just the number

of false positives and false negatives divided by the total number of test samples

(i.e. error rate = (FP+FN)/(TP+TN+FP+FN)).

The ROC curves for the initial experimental setups are illustrated in Figure

5.4. The dotted line of the 45 degree diagonal is the expected curve for our clas-
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sifiers making random predictions. The best performance was achieved through

the utilisation of Decision Tree and Forward Selection experimental setup.

5.2.8 Results of Comparative Machine Learning Classifi-

cation

In the previous section, we presented data classification work (using the first

RACPC dataset) based on Logistic Regression (LR) and Decision Tree (DT)

classifiers combined with Forward Selection (FS) and Backward Selection (BS)

wrapping techniques. These classification techniques were selected as a result of

literature review conducted in chapter 2, which showed suitability/relevance of

LR and DT in supervised binary data classification problems, specifically in the

clinical domain. LR is popular among clinical domain experts due to its white

box approach which ensures transparency, so that the source and strength of

evidence could be fully disclosed to clinicians and other stakeholders.

LR is particularly useful in three of our clinical case studies as the target vari-

ables in all of our machine learning development work are binary i.e. dependent

variable can take the value 1 with a probability of success of success p, or the

value 0 with the probability of failure 1-p. The main objective of using LR is to

develop a regression type model relating the binary variable to the independent

variables. LR can also be used to examine the variation in the dependent variable

that can be explained by the independent variables to rank the independent vari-

ables based on their relative importance in predicting the target variable. LR is

also useful in determining the interactions effects among independent variables. It

predicts the value of the dependent variable and estimates the probability that a

dependent variable will have a given value. If the estimated probability is greater

than 0.5 then there is a high probability of the patient having the cardiac chest

pain.

LR is utilised as a base-line model in all of our clinical case studies and com-

pared with the DT and SVM based experimental setups. Decision tree is another

popular classification technique which is heavily used in clinical domain. Decision

trees are reliable and effective decision making technique which could provide a
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simple representation of gathered knowledge with potential high classification ac-

curacy.The decision making process can be easily understood and validated by

clinical domain experts.

As we work with reasonably big datasets which is why SVM is utilised in order

to achieve good generalisation on our clinical datasets. SVM is basically logistic

regression with L2 regularisation and a slightly different loss function (SVM uses

hinge loss while logistic regression uses log loss). SVM maximises margin (Margin

= Distance of closest examples from the decision line/hyperplane) which is why

SVM is useful in building more robust models. Also kernel functions are already

implemented and well documented so they are far easier to use them with SVM.

So for these reasons, we decided to experiment with LR, DT and SVM combined

with various feature selection techniques for data classification purposes.

As part of this comparative machine learning classification analysis, the con-

fusion matrices for various experimental setups are provided in this section. Table

5.4 shows classification experimental setups based on LR combined with FS, BS,

Sequential Forward floating Selection (SFFS) and Minimum Redundancy and

Maximum Relevance (mRMR) feature selection methods. The confusion matri-

ces based on DT and SVM based experimental setups are provided in Tables 5.5

and 5.6.

Lets consider the confusion matrix illustrated in Table 5.4 of a binary classi-

fication problem. As per the statistics provided in this table, LR combined with

forward selection is the best experimental setup in terms of its classification ac-

curacy of 74.68 %. The true positive (268) and True Negative (204) are correct

classifications in samples of each class respectively. A False Positive (80) is when

a class B sample is predicted as a class A sample. A False Negative (80) is when a

class A sample is predicted as a class B sample. Then each element of a confusion

matrix shows the number of test samples for which the actual class is the row

and the predicted class is the column. Thus the error rate is just the number of

False Positive and False Negatives divided by the total number of test samples.

The Error Rate can be calculated as:

(FP+FN)/TP+TN+FP+FN)) 80+80/268+204+80+80 = 0.253
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Predicted Output

Actual

LR+FS LR+BS LR+ED LR+SFFS LR+P LR+mRMR
A 268 80 267 81 265 83 263 85 265 83 265 83
B 80 204 79 205 79 205 78 206 79 205 79 205
Accuracy 74.68 74.68 74.36 74.20 74.36 74.36

Table 5.4: Confusion Matrix of Logistic Regression (LR) based Experimental
Setups.

Error rate is a measurement of overall performance of a classifier. To more

partially evaluate the classification results , other evaluation metrics are also

calculated based on LR+FS experimental setup shown in Table 5.4.

1. True Positive Rate ( TP Rate) = TP/(TP+FN), is also known as sensitivity

or recall which measures the proportion of samples in each class A that are

correctly classified as class A. In the case of LR+FS experimental setup,

sensitivity value = 0.770

2. True Negative Rate (TN Rate)= TN/(FP+TN), also known as specificity,

which measures the proportion of samples in class B that are correctly

classified as class B.

is calculated as 204/80+204 = 0.71

3. False Positive Rate (FP Rate) = FP/(FP+TN) = 1- specificity. is calcu-

lated as 1- 0.71 = 0.29

4. False Negative Rate (FN Rate) = FN/(TP+FN) = 1- sensitivity. This is

calculated as 1-0.71 = 0.23

5. Positive Predictive Value (PPV) = TP/(TP+FP) also known as precision,

which means the proportion of the claimed class A samples which are indeed

class A samples. This calculated as PPV = 268/268+80 = 0.770.

In the case of DT experimental setups as shown in Table 5.5, DT+FS

and DT+SFFS are the best experimental setups with highest classification

accuracies. The confusion matrix provides TP (252 and 280), FN(96 and

68), FP (44 and 67) and TN (240 and 217) rates along with a comparative
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classification accuracies which are acquired through various state of the art

machine learning and feature selection techniques.

SVM+BS is the best experimental setup in terms of classification accuracy

as shown in Table5.6 with a lowest standard error (0.21) among all of three

classification setups. As it can be seen in all of the classification setups com-

bined with FS, BS, SFFS and mRMR feature selection methods, additional

P-value feature selection method is also utilised for the data classification

work. The P-values of the candidate variables are provided in Table 5.7.

The results of various feature selection based classification setups are also

compared with expert driven (ED) variable selection method. In the case

of ED feature selection, clinical variables pre-selected by clinical domain

experts are utilised for comparative machine learning analysis.

Predicted Output

Actual

DT+FS DT+BS DT+ED DT+SFFS DT+P DT+mRMR
A 252 96 281 67 257 91 280 68 250 98 252 96
B 44 240 74 210 64 220 67 217 63 221 62 222
Accuracy 77.848 77.68 75.47 78.63 74.52 75

Table 5.5: Confusion Matrix of Decision Tree (DT) based Experimental Setups.

Predicted Output

Actual

SVM+FS SVM+BS SVM+ED SVM+SFFS SVM+P SVM+mRMR
A 278 70 280 68 277 71 278 70 277 71 277 71
B 68 216 69 215 74 210 73 211 74 210 74 210
Accuracy 78.16 78.32 77.05 77.37 77.05 77.05

Table 5.6: Confusion Matrix of Support Vector Machine (SVM) based Experi-
mental Setups.

Table 5.8 gives an account of the feature selection techniques which are utilised

in the RACPC clinical case study using three experimental setups based on

LR,DT and SVM. It is to be noted that in the case of DT+BS, DT+SFFS

and SVM+SFFS experimental setups, minimal amount of features are selected

to classify the patient data. In all of these experimental setups, clinical vari-

ables such as 14 (Angio Results), 10 ( Initial Assessment) and 12 (CT Result)
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Clinical Variables P-value
1. Smoker 0.0000 <0.0001
2. Number of Cigarettes 0.0000 <0.0001
3. Number of Years Smoked 0.0000 <0.0001
4. Age 0.0003 <0.0001
5. Pathway 0.0009 <0.0001
6. Sex 0.0057 <0.001
7. Diabetes Type 0.0075 <0.001
8. Hypertension 0.0300 <0.05
9. Raised Cholesterol 0.0599 <0.5
10. Initial Assessment 0.2359 <0.5
11. ETT Result 0.4010 <0.5
12. CT Result 0.4857 <0.5
13. MPS Result 0.5366 <0.1
14. Angio Result 0.7658 <0.1

Table 5.7: P-values of the candidate clinical variables.

were found common among some of the DT and SVM based experimental se-

tups. This means that using the initial assessment, CT Scan and Angio results,

clinicians will be able to diagnose cardiac chest pain patients with a classification

accuracy of 77.68 % which has been attained using DT+BS experimental setup.

At the same time, more transparent approaches like LR combined with BS wrap-

ping method requires 10 clinical variables to classify patient data with 74.68 %

classification accuracy. Due to imbalanced and limited RACPC datasets, high

classification accuracies (with low standard errors) could not have been achieved.

In spite of the data sparsity and missing data issues, we were able to achieve good

results through the utilisation of state of the art machine learning and feature

selection techniques. This clinical case study was carried out under the supervi-

sion of RACPC clinical domain expert, machine learning results were analysed

and way forward towards the development of online prognostic models (based on

transparent LR approach) was agreed among the project stakeholders. Details of

online RACPC prognostic models will be provided in the forthcoming sections.

The ROC curves for various experimental setups are shown in Figures 5.5 and

5.6.
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RACPC
Case Study

Experimental Setup Selected Features Accuracy
1 LR+FS 10,4,14,6,13,3,2,8,5,11,12,1 74.68
2 LR+BS 1,3,4,5,6,8,10,12,13,14 74.68
3 LR+ED All 74.36
4 LR+SFFS 10,4,14,6,13,3 74.20
5 LR+P-Value 14,4,10,6,8,13,7,9,5,1,12,1,3,11 74.36
6 LR+mRMR 14,4,10,5,6,8,13,7,12,9,11,1,2,3 74.36

7 DT+FS 14,10,12,11,7,6 77.84
8 DT+BS 10,12,14 77.68
9 DT+ED All 75.47
10 DT+SFFS 14,10,12,11 78.63
11 DT+P-Value 14,4,10,6,8,13,7,9,5,1,12,2,3,11 74.52
12 DT+mRMR 14,4,10,5,6,8,13,7,12,9,11,1,2,3 75.00

13 SVM+FS 14,10,12,6,11,5,4,13,9,3,8 78.16
14 SVM+BS 3,4,5,6,8,9,10,12,13,14 78.32
15 SVM+ED All 77.05
16 SVM+SFFS 14,10,12 77.37
17 SVM+P-Value 14,4,10,6,8,13,7,9,5,1,12,2,3,11 77.05
18 SVM+mRMR 14,4,10,5,6,8,13,7,12,9,11,1,2,3 77.05

Table 5.8: Experimental Setups based on machine learning classifiers and feature
selection techniques.

5.2.9 Analysis of Variance (ANOVA) Test for Performance

Evaluation

Anova is a statistical test which is used to compare three or more means to

ascertain whether there is a significant difference between these means or they

are all the same. ANOVAs are particularly useful in testing three or more groups

for statistical significance by minimising risk of committing a statistical type I

error [102].

In our example we compare classification accuracies, which are attained us-

ing three different classification setups based on Logistic Regression, Decision

Tree and Support Vector Machine (combined with feature selection techniques)

classifiers as shown in Tables 5.4, 5.5 and 5.6.

Table 5.9 is an Anova summary table which shows three groups showing num-
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ber of count which is 6, it personifies number of iterations in each experimental

setup. The summary table shows averages and variances in each of our classifi-

cation setups.

Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance
Logistic Regression 6 446.64 74.44 0.0384
Decision Tree 6 459.14 76.52333333 2.990586667
Support Vector Machine 6 465 77.5 0.34648

Table 5.9: Anova Summary Table - RACPC Classifiers Performance Measure-
ment.

For the single factor Anova test, the Null Hypothesis is defined as follows:

H0 : µ1 = µ2 = µ3 (the means are all equal, hence the difference in means in

all of three experimental setups are all the same)

H1 :At least two of the means are different

α = 0.05

Table 5.10 shows Anova single factor test, it provides valuable information

which includes sums of squares, probability P-value, degrees of freedom (number

of groups -1 =2) and mean squares values. It works out the source of variation

among groups and within groups which in our case, are classification accuracies

within the same group and in comparison with other classifiers as well. The most

useful information in this table is the F statistic value. We now need to establish

whether this F statistic represents a significant value so that we could accept or

reject the null hypothesis. There are two methods to ascertain whether we could

accept or reject the null hypothesis.

In the first method, if the value of F statistic is greater than critical value of

F then we can safely reject the null hypothesis. Secondly, if the probability value

P is <0.05 than we can reject the null hypothesis.

As it can be seen in Table 5.10 the value of F statistic is 13.02 which is greater

than the critical value of F which is 3.682 so on this basis, we can reject the null
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hypothesis. Also the p-value is 0.00005 which is less than 0.05 hence it can be

established that the difference in the means of classification accuracies is not

equal and classification accuracies achieved through three different experimental

setups (within individual groups and between other classifiers) are statistically

significant.

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 29.31551111 2 14.65775556 13.02731474 0.000525374 3.682320344

Within Groups 16.87733333 15 1.125155556

Total 46.19284444 17

Table 5.10: Anova Test Results shows F static value, P-value and F critical value.
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Figure 5.2: Graphical output of weighted classification accuracies using different
setups.
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Figure 5.3: Confusion Matrix for a binary classification problem.
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Figure 5.4: ROC curves for different Experimental Setups.
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Figure 5.5: ROCs using different experimental setups, SFFS feature selection is
also compared.
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Figure 5.6: ROCs using different experimental setups, mRMR feature selection
is added.
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5.3 RACPC Clinical Dataset 2: Demonstrat-

ing Effects of missing Data on Verification

Results

Another clinical dataset collected as part of the RACPC clinical case study was

utilised in the RACPC clinical case study. This dataset contained a large number

of missing data items, patient demographics and lab tests details for majority

of the patients were found missing in this dataset. Doctor notes and patient

summary records were utilised where possible to complete patient records for this

clinical case study. In spite of huge number of missing data items, we decided

to utilise statistical machine learning techniques to estimate the missing data

components in the patient records with a view to learn from this patient data for

clinical decision making purpose.

In this section we highlight the problem of learning from incomplete real pa-

tient data acquired from Raigmore Hospital in Scotland, UK) from a statistical

perspective- the likelihood-based approach to deal with this challenging issue.

There are multiple benefits of our approach: to complement existing SVM (Sup-

port Vector Machine) techniques to deal with missing data within a statistical

framework, and to illustrate a set of challenging statistical machine learning al-

gorithms, derived from the likelihood-based framework that handles clustering,

classification, and function approximation from missing/incomplete data in an in-

telligent and resourceful manner. Our work concentrates on the implementation

of mixture modelling algorithms as well as utilising Expectation-Maximization

techniques for the estimation of mixture components and for dealing with the

missing clinical data of chest pain patients.

5.3.1 Background

In clinical information management systems, specifically patient records man-

agement systems often do not provide complete episodic information (pertinent

to each clinical scenario for individual patients) to the machine learning experts
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RACPC Clinical Risk Factors
1. SEX
2. Diabetes Type
3. HYPERTENSION
4. RAISED CHOLESTEROL
5. Not CAD Desc
6. Ex-Smoker: How Many Cigarettes Per Day?
7. Ex-Smoker: How Many Cigars Per Day?
8. Ex-Smoker: Stopped How Many Weeks Ago?
9. Smoker: How Many Cigarettes Per Day
10. Smoker: How Many Cigars Per Day?
11. Smoker: How Long?
12. Gi Pain Desc
13. Known CAD Desc
14. Musculoskeletal Pain Desc
15. Not Coronary Pain Desc
16. ATTENDED Y/N
17. NON CARDIAC Y/N
18. ETT Y/N
19. ANGINA Y/N
20. FOR ANGIO Y/N
21. PERFUSION SCAN Y/N
22. CT
23. ADMIT

Table 5.11: RACPC Features List after further Pre-Processing of Smoking free
text Description

[103]. For example, a cardiovascular decision support system may encounter many

partially recorded patient attributes, yet have to take into account missing data

for providing decision support utilities. Handling of missing data is still a greater

challenge for the machine learning experts working in different computational

intelligence projects all over the world. In this paper we evaluate the problem

of learning from incomplete data from a statistical machine learning perspective

inspired by work carried out in [104]. The goal of our research is two-fold: to

complement already developed SVM (support vector machine) models for disease

prediction and handling missing patient data using a statistical framework and

to further develop a set of novel algorithms that handle incomplete missing data

in an intelligent manner. For the purpose of review of the existing state of the

art, we also discuss function approximation, data classification and clustering
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problems for large clinical datasets.

The statistical framework we further developed is based on existing work car-

ried out in [104]. Their work makes a clear demarcation among the environment,

which we pre-suppose to generate complete data, and the missing data mecha-

nism which renders some of the output of the environment unobservable to the

learner. The supervised learning problem consists of forming a map from inputs

to targets. The unsupervised learning process generally consists of extracting

some compact statistical description of the inputs. In both of these cases the

learner may benefit from knowledge of constraints both on the data generation

process (e.g., that it falls within a certain parametric family), and on the mecha-

nism which caused the pattern of incompleteness (e.g., that it is independent of

the data generation process). The use of statistical theory allows us to formal-

ize the consequences of these constraints and provides us with a framework for

deriving learning algorithms that make use of these consequences.

5.3.2 Pre-processing of Missing Data using Probability

Estimation

Feature 5, Smoking- Description in Table 5.11 contained free text data (doctor

notes), this feature was pre-processed in order to extract information about pa-

tient’s smoking history. This categorical feature was further broken down into

following features.

SMPNUM=length (smoketext); smokeattr=nan(SMPNUM,6);

IND EX CIGARETTE=1 1-Ex Smoker: How Many Cigarettes Per Day?
IND EX CIGAR=2 2-Ex Smoker: How Many Cigars Per Day?
IND EX TIME=3 3-Ex Smoker: Stopped How Many Weeks?
IND SMK CIGARETTE=4 4-Smoker: How Many Cigarettes Per Day?
IND SMK CIGAR=5 5-Smoker: How Many Cigars Per Day?
IND SMK TIME=6 6-Smoker: How Long?

Patients belonging to each diagnosis category type are represented in Table

5.12. The Patient data utilised in this studies is imbalanced, most of the classes

(final diagnoses) did not have substantial amount of patient cases for data clas-

sification work.
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Final Diagnosis Assessment Type Number of Patients
Acute coronary Syndrome 17
New Exertional Angina 101
Non-cardiac Symptoms 176
Other 20
Possible Exertional Angina 294

Total Number of Patients 608

Table 5.12: Final Diagnoses

5.3.3 Expectation Maximisation (EM) Approach

In order to utilize the missing/incomplete data effectively, we applied and ex-

tended the mixture probabilistic model appropriate for the given RACPC dataset

with missing values. We regarded the class label as a categorical feature of the

sample and estimated the joint distribution of the variables using the training

samples. Using the test sample we worked out its likelihood to estimate the

missing values in the given test sample. We assigned the estimated value to a

particular class keeping in view the maximal likelihood probability in which the

class label to be predicted was simply regarded as a missing data. In our data

classification problem, the features encapsulated in the RACPC dataset are trans-

formed into binary values (during the data analysis phase) which is why we have

implemented a model containing a mixture of several Bernoulli variables and a

categorical variable. We present the description of this mixture model as follows:

The data are assumed to be generated from a mixture of M densities, where

each component is a joint density composed of multiple Bernoulli variables and

a categorical variable. Since there are D = 17 binary features and C = 5

class labels, the model parameters for each (the j-th) component include 17

Bernoulli variables {µjd}17d=1 and a 5-dimensional categorical variable {νjd}5d=1,

where
∑

y νjy = 1,∀j. Denoting the features are x = [x1 x2 . . . xD]> and the

label y, the probability of the occurrence of (x, y) is
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P (x, y | µ, ν) =
M∑
j=1

P (ωj)P (x, y | νj, µj)

=
M∑
j=1

P (ωj)νjy

D∏
d=1

µxdjd(1− µjd)(1−xd),

(5.1)

where ωj represents the j-th component of the mixture.

Then the log likelihood of the parameters given the data X = {(xi, yi)}Ni=1 is

l(µ, ν | X ) =
N∑
i=1

logP (xi, yi | µ, ν) (5.2)

Given any sample x, the likelihood P (x, y) for each class y = 1, 2, . . . , 5 is

calculated, and then the sample is assigned with the label corresponding to the

maximal likelihood.

Solving the EM Algorithm for Mixture Models

The parameters of the log likelihood (5.2) is usually intractable due to the loga-

rithm of the summation. In practice, the model is optimized by the Expectation-

Maximization (EM) algorithm.

To resolve the logarithm of summation, the binary indicator variables Z =

{zi}Ni=1 is introduced defined such that zi = [zi1 . . . ziM ] and zij = 1 iff (xi, yi) is

generated by the j-th density. Then the log likelihood can be written as

lc(µ, ν | X ,Z) =
N∑
i=1

M∑
j=1

zij log[P (xi, yi | zi, µ, ν)P (zi)], (5.3)

which does not involve a logarithm of summation.

Denoting Q(µ, ν | µ(k), ν(k)) as the expectation of lc(µ, ν | X ,Z), then the

likelihood l(µ, ν | X ) can be maximized by iterating the following two steps:

E-step:

Q(µ, ν | µ(k), ν(k)) = E[lc(µ, ν | X ,Z) | X , µ(k), ν(k)]
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M-step:

(µ(k+1), ν(k+1)) = arg minµ,νQ(µ, ν | µ(k), ν(k))

In the case where there exist missing data, the observation xi is divided into

(xoi ,x
m
i ) and the algorithm is rewritten as

E-step:

Q(µ, ν | µ(k), ν(k)) = E[lc(µ, ν | X o,Xm,Z) | X o, µ(k), ν(k)]

M-step:

(µ(k+1), ν(k+1)) = arg minµ,νQ(µ, ν | µ(k), ν(k)).

At the E-step, the expectation of zij is calculated over the observed part of

xi as

hij =
νjyi

∏
d∈Do

i
µxidjd (1− µjd)(1−xid)∑M

l=1 νlyi
∏

d∈Do
i
µxidld (1− µld)(1−xid)

,

where Doi is the indices of the observed part of the i-th sample, xid is the d-th

dimension of the i-th sample, and νjyi is the probability of that the label of a

sample from the j-th component is yi.

At the M-step, the parameters are re-estimated as

µk+1
j =

∑N
i=1 hijxi∑N
i=1 hij

,

where hij is calculated from the E-step, and for the missing part hijx
m
i is replaced

with the expectation E[zijx
m
i | xoi , µ, ν] = hijµ

m
j .

These two steps are repeated until convergence and we obtain the model of

this problem.

Given a test sample, the probability that this sample belongs to each class is

obtained from (5.1) and it is assigned to the class corresponding to the maximal

likelihood.

5.3.4 Experiments

We evaluated the proposed methods using the RACPC dataset (containing demo-

graphic and diagnostic features for 608 chest pain patients) by selecting different
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parameters from the available samples. For the mixture density model, we re-

ported the results on a number of different carefully selected clusters. The SVM

(Support Vector Machine) classification and results were generated using differ-

ent kernel functions. In the experimentation phase, we divided the given RACPC

data into 5 subsets randomly. Then each random subset was selected as a test set

for testing purposes, while the remaining subsets were treated as training sets.

When the mixture model was used, we evaluated this method using a number

of different carefully selected components. The accuracies on each subset and

average accuracies are shown in Figure. 5.7.

5.3.5 Classification for the Incomplete Clinical Data

The objective of the classification task was to predict the final assessment of

the patients using the provided features extracted through the RACPC dataset.

These attributes/parameters were collected using a series of questionnaires used

in the nurse-led RACP clinics. The data for most of these patients (associ-

ated with diagnostic attributes) was found incomplete/missing in the RACPC

dataset provided by the Raigmore Hospital. As part of the data analysis work we

also ascertained (from the outset) that the conventional machine learning meth-

ods/techniques could not have been applied on the given dataset in its current

crude state which is why we had to implement the following two strategies to deal

with this problem.

5.3.6 Filling the Incomplete Data

The simplest and most efficient method to tackle the missing data problem to date

is through the deployment of a predefined strategy to fill the missing values in

the given dataset , followed by using a conventional/traditional machine learning

classifier approach to carry out the prediction of the desired label out of the

each available sample. Since the RACPC dataset utilised in this paper are in

binary state, we decided to make use of 1 to indicate the positive feature and -1

to personify the negative feature in the dataset. We then replaced the missing

features with zero values and exploited the one-vs-one support vector machine
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model for the classification and prediction purposes.

After replacing the missing data values using the approach presented in Sec-

tion 5.3.6, we performed RACPC data classification using support vector machine

by utilising four different types of kernel functions including Linear kernel, Poly-

nomial, Radial basis function(RBF) and Sigmoid functions. For each kernel func-

tion, we selected the hyper-parameters using the cross-validation technique and

reported back our findings regarding the ones (selected for SVM classification)

yielding the optimal results. The results with different types of kernel functions

are shown in Fig. 5.8.
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Figure 5.7: Upper figure: Multi-colour graph represents 5 randomly selected
datasets in which 4 datasets were used for training and 1 for testing (for each
M). Lower figure: Experimental results showing average accuracies of different
number of mixture density models
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Figure 5.8: Upper figure: Multi-colour graph represents accuracies obtained using
5 randomly selected datasets in which 4 datasets were used for training and 1
for testing for each different type of kernel function. Lower figure: Experimental
results showing average accuracies of different types of kernel functions including:
1- Linear, 2- Polynomial, 3- Radial Basis Function and 4- Sigmoid Function
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5.4 RACPC Clinical Case Study: RACPC Clin-

ical Dataset 3

The consultant cardiologist from Raigmore Hospital after the clinical review of

first series of results (provided in the comparative machine learning classification

section 5.2.8) specified a revised clinical requirement to break original patient

dataset down into clinical risk factors and lab test results and create two new

study groups. The key clinical objective of this demarcation amongst clinical risk

factors and lab results was to evaluate the impact of classification results using

these two new datasets. So two new study cohorts were created for this purpose

as shown in Figure 5.13, so that a comparison could be drawn among two study

groups. Another clinical requirement was to compare the clinical effectiveness

of two models separately and to classify chest pain patients (predicting risk of

cardiac or non cardiac chest pain) purely on the basis of the risk factors and test

results information independently.

For the comparative analysis, the original patient dataset was distributed into

two study sets as follows:

Study Group 1
Risk Factors

Study Group 2
Test Results

1 Smoker Pathway
2 No of Cigarettes Initial Assessment
3 Number of Years Smoking ETT Result
4 Age CT Result
5 Sex MPS Result
6 Diabetes Type Angio Result
7 Hypertension
8 Raised Cholesterol

Table 5.13: Clinical Risk Factors and Test Results in two study groups.

A detailed comparative analysis of some of the most sophisticated machine

learning classifiers combined with state of the art feature selection techniques were

utilised for data classification purposes. Experimental setups comprises of the Lo-

gistic Regression (LR), Decision Tree (DT) and Support Vector Machine (SVM)

classifiers combined with Forward Selection (FS), Backward Selection (BS), Se-
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quential Forward Floating Selection (SFFS), P-value feature selection, Minimum

Redundancy and Maximum Relevance Feature Selection (mRMR) techniques

were utilised. The expert driven (ED) feature selection i.e. pre-selected clini-

cal variables by the clinical domain expert is compared with the state of the art

feature selection techniques.

5.4.1 Study Group 1: Clinical Risk Factors

In the study group 1, patient demographics including clinical risk factors are

included for the comparative analysis purpose. In the first stage (in line with the

proposed prognostic development process described in chapter 3), state of the

art machine learning classifiers and feature selection techniques are utilised. The

experimental setups used for this purpose are shown in the Table 5.14. Candidate

clinical variables preselected by the clinical domain expert were classified using

the LR, DT and SVM classifiers and results were compared with the state of the

art feature selection methods as shown in our experimental setups. The purpose

of expert-driven (ED) data classification was to develop a baseline model using

the LR classifier.

As it can be seen in Table 5.14, the LR based classification setups combined

with backward feature selection method (smoker,number of years smoking, age,

diabetes type and Raised Cholesterol) were able to classify the RACPC patient

dataset with a classification accuracy of 68.99% . Also, it is interesting to find

out that the DT combined with BS feature selection method classified the patient

dataset with a classification accuracy of 65.05% using just one feature, which is

patient’s age. The SVM combined with FS, classified the patient dataset with

a classification accuracy of 70.07% using patient’s age, sex and hypertension. In

the case of SVM (Linear Kernel Function), similar clinical variables were picked

up by the BS wrapping technique.

SFFS, is classed as a refined forward selection method, is also utilised in

all of our clinical case studies. Results of SFFS combined with LR, DT and

SVM, were compared with the BS, FS, P-value and mRMR methods to analyse

its effectiveness. The results of SVM+SFFS with a more transparent logistic
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regression based model combined with BS, demonstrate that using three clinical

variables, patient’s cardiac chest pain can be distinguished (whether it’s cardiac

or non-cardiac). So performance complexity trade-offs can be considered if the

clinical support decision function requires higher degree of accuracy by comprising

on transparency of a clinical prognostic model.

Experimental Setup Selected Features Accuracy
1. LR+FS 4,5,6,2,1,3 68.45
2. LR+BS 1, 3, 4, 5, 6, 8 68.99
3. LR+ED ALL 66.12
4. LR+SFFS 4, 5 ,6 67.92
5. LR+P-Value 4,5,7,8,6,3,1,2 66.12
6. LR+mRMR 4,5,7,6,8,3,1,2 66.12

7. DT+FS 4, 7, 8, 6, 2 65.41
8. DT+BS 4 65.05
9. DT+ED All 62.36
10. DT+SFFS 4 65.05
11. DT+P-Value 4,5,7,8,6,3,1,2 62.36
12. DT+mRMR 4,5,7,6,8,3,1,2 62.36

14. SVM+FS 4,5,1 70.07
15. SVM+BS 4,5,7 69.71
16. SVM+ED All 68.45
17. SVM+SFFS 4,5,1 70.07
18. SVM+P-Value 4,5,7,8,6,3,1,2 68.45
19. SVM+mRMR 4,5,7,6,8,3,1,2 68.45

Table 5.14: Study group 1 (Risk Factors)- Feature Selection

5.4.2 Evaluation

After extracting features and identifying those with most discriminative power

for each classifier, k -fold cross validation, leave-one-out validation (LOOCV) is

performed in order to assess the performance of these classifiers. The experimen-

tal results reported in confusion matrices show that the LR+BS, DT+FS and

SVM+SFFS are the best classification setups given the imbalanced nature of the

patient dataset. Because our two classes (cardiac and non cardiac) are not equally

distributed, different evaluation measurements are reported, namely weighted ac-

curacy, unweighted accuracy, precision, recall,F-measure and Matthew’s correla-
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tion are reported in Table 5.16. The confusion matrices for LR, DT and SVM

based classification setups and weighted classification accuracies are reported in

Tables 5.15, 5.17 and 5.18. True Positive (TP), False Negative (FN), False Pos-

itive (FP), True Negative (TN) rates are provided for the actual and predicted

outputs (classification outputs).

Predicted Output

Actual

LR+FS LR+BS LR+ED LR+SFFS LR+P LR+mRMR
A 197 87 193 91 188 96 194 90 188 96 188 96
B 89 185 82 192 93 181 89 185 93 181 93 181
Accuracy 68.45 68.99 66.12 67.92 66.12 66.12

Table 5.15: The confusion matrix of LR and feature selection based classification
setups, study group 1.

LR+BS DT+FS SVM+SFFS
Weighted Accuracy 68.99% 65.41% 70.07%
Unweighted Accuracy 69.01% 65.38% 70.18%
Precision 67.96% 66.90% 63.73%
Recall 70.18% 65.74% 73.88%
Fmeasure 69.05% 66.32% 68.43%
Matthew’s correlation 38.03% 30.78% 40.67%

Table 5.16: Experiment results in terms of different evaluation measurements.

Predicted Output

Actual

DT+FS DT+BS DT+ED DT+SFFS DT+P DT+mRMR
A 190 94 170 114 169 115 170 114 169 115 169 115
B 99 175 81 193 95 179 81 193 95 179 95 179
Accuracy 65.41 65.14 62.3656 65.05 62.36 62.36

Table 5.17: Confusion Matrix of DT and feature selection based classification
setups, study group 1.

In order to quantify performances of the best classification setups, the Re-

ceiver Operating Characteristic (ROC) curves are used as shown in Figure 5.9

(evaluating the underlying area), which compare the specificity and sensitivity of

experimental setups. In clinical domain, ROC curve analysis is used to determine

the cut off value for a clinical test. The ROC curve is a graph of sensitivity (y-

axis) vs. 1- specificity (x-axis). Maximizing sensitivity corresponds to some large

152



Predicted Output

Actual

SVM+FS SVM+BS SVM+ED SVM+SFFS SVM+P SVM+mRMR
A 181 103 183 101 179 105 181 103 179 105 179 105
B 64 210 68 206 71 203 64 210 71 203 71 203
Accuracy 70.07 69.71 68.45 70.07 68.45 64.45

Table 5.18: Confusion Matrix of SVM and feature selection based classification
setups, study group 1.

y value on the ROC curve. Maximizing specificity corresponds to a small x value

on the ROC curve. Thus a good first choice for a test cut-off value is that value

which corresponds to a point on the ROC curve nearest to the upper left corner of

the ROC graph.This is not always true however. For example, in the cardiac risk

assessment it is important not to miss detecting a patient with cardiac chest pain

therefore it is more important to maximize sensitivity (minimize false negatives)

than to maximize specificity. In this case the optimal cut-off point on the ROC

curve will move from the vicinity of the upper left corner over toward the upper

right corner.

5.4.3 Performance evaluation of experimental setups

In addition to the ROC curve analysis which is used to evaluate the performance

of best classification setups. A one way ANOVA (analysis of variance) is also

employed to compare means of classification accuracies obtained in three ex-

perimental setups to establish whether the difference in classification accuracies

within groups and among other classifiers is significant or they are statistically

equal. Table 5.19 shows detailed analysis of the one-way ANOVA test which is

performed using LR, DT and SVM experimental setups.

In the summary section, it shows the average classification accuracies of the

LR,DT and SVM classification groups.

For the single factor Anova test, the Null Hypothesis is defined as follows:

H0 : µ1 = µ2 = µ3 (the means are all equal, hence the difference in means in

all of three experimental setups are all the same)

H1 :At least two of the means are different
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Figure 5.9: ROC curves of various experimental setups utilised in the study group
1 for comparison purpose.

α = 0.05

In the ANOVA section in Table 5.19, sum of squares (SS), degree of freedom

(df) and mean square values are provided. As it can be seen that the F statistic

value (28.34) is greater than the critical value of F (8.02). Also the p-value is

<0.05, so on this basis the null hypothesis is rejected and it is now established

that the difference in the classification accuracies within groups and among other

classifiers is statistically significant.
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Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

Logistic Regression 6 403.72 67.28 1.7478

Decision Tree 6 382.59 63.765 2.38611

Support Vector Machine 6 415.2 69.2 0.69228

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 91.20 2 45.60 28.34 8.02793E-06 3.68

Within Groups 24.13 15 1.6087

Total 115.3354944 17

Table 5.19: One-way ANOVA Test for the performance evaluation of LR, DT
and SVM based classification setups.
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5.4.4 Study Group 2: Test Results

In this study group, clinical variables representing various test results are included

for the comparative analysis purpose. The statistical p-values for the clinical vari-

ables involved in this study group are provided in Table 5.20. It shows that the

“Pathway”, “Initial Assessment”, “ETT” and “CT result” are the most signif-

icant clinical variables in the list. The state of the art feature selection and

machine learning techniques are applied. Details of the LR, DT and SVM based

machine learning setups are provided in the Table 5.21. As it can be seen, that

18 experimental setups are employed to classify the patient data in study group

2. An expert driven ( pre-selection by clinical domain expert) feature selection

and LR based baseline model was developed which was then compared with state

of the art machine learning and feature selection techniques.

As it can be seen in the Table 5.21, “initial assessment” is a common clinical

variable amongst the majority classification groups. It is interesting to notice that

LR+FS and LR+SFFS based experimental setups attained the best classification

accuracy using only one variable (initial assessment). The best classification se-

tups are DT+FS, DT+BS, DT+SFFS. All of these setups handled the data spar-

sity issue with a classification accuracy of 82.97%. “CT scan result” is also found

to be common among the majority classification groups. These findings corrob-

orate the high statistical p-values of “Initial Assessment and CT scan result”

and re-iterate their significance in the clinical decision making. The performance

complexity trade-offs in this case could be considered to limit the amount of tests

(by focussing on the most significant tests picked up in the classification setups),

needed to diagnose a patient with cardiac chest pain.

5.4.5 Evaluation

After the feature extraction stage, a k-fold cross validation based leave-one-out

validation (LOOCV) technique is used for performance evaluation of the classi-

fication methods. The confusion matrices of LR, DT and SVM combined with

state of the art feature selection techniques are shown in Tables 5.23, 5.17 and
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5.18.

Clinical variables
Test Results

P-value

1. Pathway 1.93 e-27 <0.00000
2. Initial Assessment 1.48 e-21 <0.00000
3. ETT Result 0.04 <0.05
4. CT Result 0.05 <0.1
5. MPS Result 0.17
6. Angio Result 0.9

Table 5.20: P-values of the clinical variables (study group 2).

Experimental Setup Selected Features Accuracy
1. LR+FS 2 69.89
2. LR+BS 1 ,4 ,5, 6 72.58
3. LR+ED ALL 67.92
4. LR+SFFS 2 69.89
5. LR+P-Value 6,2,5,1,4,3 67.92
6. LR+mRMR 2,6,1,5,4,3 67.92
7. DT+FS 2, 6, 4, 3 82.97
8. DT+BS 2, 3, 4, 6 82.97
9. DT+ED All 81.89
10. DT+SFFS 2, 6, 4, 3 82.97
11. DT+P-Value 6,2,5,1,4,3 81.89
12. DT+mRMR 2,6,1,5,4,3 81.89
14. SVM+FS 2,3 70.96
15. SVM+BS 2,4,5 70.96
16. SVM+ED ALL 68.63
17. SVM+SFFS 2,3 70.96
18. SVM+P-Value 6,2,5,1,4,3 68.63
19. SVM+mRMR 2,6,1,5,4,3 68.63

Table 5.21: Feature Selection results, Study group 2 (Test Results).

The DT+FS, DT+SFFS, DT+BS and DT+mRMR classification groups are

selected for analysis. In Table 5.22, different evaluation measurements are pro-

vided. As our two classes (cardiac and non cardiac) are not equally distributed

which is why weighted accuracies and other measurements are reported. The

confusion matrices of LR, DT and SVM based classification setups and weighted

classification accuracies are provided in Tables 5.23, 5.24 and 5.25. True Positive

(TP), False Negative (FN), False Positive (FP), True Negative (TN) rates are
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DT+FS DT+SFFS DT+BS DT+mRMR
Weighted Accuracy 82.97 % 81.89% 82.97% 82.97%
Unweighted Accuracy 83.09% 81.98% 83.09% 83.09%
Precision 76.41% 77.46% 76.41% 76.41%
Recall 88.57% 85.60% 88.57% 88.57%
Fmeasure 82.04% 81.33% 82.04% 82.04%
Matthew’s Correlation 66.68% 64.15% 66.68% 66.68%

Table 5.22: Experiment results in terms of different evaluation measurements.

provided for the actual and predicted outputs.

Predicted Output

Actual

LR+FS LR+BS LR+ED LR+SFFS LR+P LR+mRMR
A 142 142 248 36 206 78 142 142 206 78 208 78
B 26 248 117 157 101 173 26 248 101 173 101 173
Accuracy 69.89 72.58 67.92 69.89 67.92 67.92

Table 5.23: Confusion matrix obtained using LR based classification setups.

Predicted

Actual

DT+FS DT+BS DT+ED DT+SFFS DT+P DT+mRMR
A 217 67 217 67 220 64 217 67 220 64 220 64
B 28 246 28 246 37 237 28 246 37 237 37 237
Accuracy 82.97 82.97 81.89 82.97 81.89 81.89

Table 5.24: Confusion matrix obtained using DT based classification setups.

The Receiver Operating Characteristic (ROC)curves are used to quantify per-

formances of the best classification groups. In Figure 5.10, performances of DT

and LR based setups are plotted which compare the specificity and sensitivity in

our experimental setups.

5.4.6 Performance evaluation of experimental setups

In addition to the ROC curve analysis, a one way ANOVA test is also utilised

for the performance evaluation of the best classification groups. The one-way

ANOVA test is used to compare means of classification accuracies obtained in

three experimental setups. This test is used to ascertain whether the differ-

ence/improvement in classification accuracies within different classification groups
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Predicted Output

Actual

SVM+FS SVM+BS SVM+ED SVM+SFFS SVM+PValue SVM+mRMR
A 142 142 142 142 214 70 142 142 214 70 214 70
B 20 254 20 254 105 169 20 254 105 169 105 169
Accuracy 70.96 70.96 68.63 70.96 68.63 68.63

Table 5.25: Confusion matrix obtained using SVM based classification setups.

and other classifiers (across different classification methods) is significant or they

all are equal.

Table 5.26 provides detailed analysis of the one-way ANOVA. In the summary

section, the average classification accuracies are calculated based on LR, DT and

SVM classification setups.

For the single factor ANOVA test, the Null Hypothesis is declared as follows:

H0 : µ1 = µ2 = µ3 (the means are all equal, hence the difference in means in

all of three experimental setups are all the same)

H1 :At least two of the means are different

α = 0.05

In the ANOVA section in Table 5.26, sum of squares (SS), degree of freedom

(df) and mean square values are provided. As it can be seen that the F statistic

value (183.50) is greater than the critical value of F (3.682). Also the p-value is

<0.05, so on this basis the null hypothesis is rejected and it is now established

that the difference in the classification accuracies within groups and among other

classifiers (across LR, DT and SVM classification groups) is statistically signifi-

cant.

5.4.7 Implementation of online Clinical Prognostic Mod-

els

In the RACPC clinical case study, three datasets are utilised for the development

of machine learning prognostic models for Raigmore Hospital’s RACPC clini-

cians. The results obtained through three patient datasets were analysed by the

consultant cardiologist from Raigmore Hospital. It was decided to develop on-
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Figure 5.10: ROCs for various experimental setups utilised in Test Results (study
group 2) for comparison purpose.

line cardiac chest pain prognostic models based on LR based classification setups

which are shown in Table 5.27. The cardiac chest pain prognostic model has been

developed using the first patient dataset containing both patient demographics

and test results information. This was selected by the clinical domain experts for

further development. Two expert driven RACPC cardiac chest pain prognostic

models have also been developed and deployed online for clinical validation.

Logistic regression-based cardiac chest prognostic models have been developed

and deployed online for the initial clinical validation by the consultant cardiologist

from Raigmore hospital. Clinical questionnaires are encoded in HTML; logistic

regression model is programmed in PHP, which generates an HTML page after
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Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

Logistic Regression 6 416.12 69.35 3.4301

Decision Tree 6 494.58 82.43 0.34992

Support Vector Machine 6 418.77 69.795 1.62867

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 661.6750111 2 330.83 183.50 2.8522E-11 3.682

Within Groups 27.04368333 15 1.802912222

Total 688.7186944 17

Table 5.26: One-way ANOVA Test for the performance evaluation of LR, DT
and SVM based classification setups (Study group 2- Test Results).

Best Classification Setups

Risk Factors and Test Results

Experimental
Setups

Selected
Features

Weighted
Classification
Accuracy

LR+FS INA, AGE, ANG, SEX, MPS, YOS, NOC, HPT, PWY, ETT, CT, SMR 74.68%

LR+BS SMR, YOS, AGE, PWY, SEX, HPT, INA, CT, MPS, ANG 74.68%

DT+SFFS ANG, INA, CTT, ETT 78.63%

DT+FS ANG, INA,CT, ETT, DAB, SEX 77.84%

SVM+FS ANG, INA, CT, SEX, ETT, PWY, AGE, MPS, CHL,YOS 78.16%

SVM+BS YOS, AGE, PWY, SEX, HPT, CHL, INA, CT, MPS, ANG 78.32%

Table 5.27: Classification setups considered for the development of machine learn-
ing driven cardiac chest pain prognostic model.

data is collected from an HTML input form. The probability of cardiac chest

pain risk score is calculated when user presses the “Calculate Score” button.

The machine learning cardiac chest pain prognostic model is intended to be

used by RACPC clinicians. The user is asked to provide patient demographics

information and details of CT, ETT and MPS test results. The cardiac chest

pain risk score is calculated using the formula as shown below:

SCORE = 100.(1 + e−M)−1

where

M = co-efficients of each clinical variable used in the model.
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Figure 5.11: Cardiac Chest Pain Prognostic Model’s front end.

The logistic regression model calculates the probability of cardiac chest pain

using series of inputs as shown in Figure 5.12.

The initial cardiac chest pain prognostic model as in Figure 5.11 was validated

by clinical domain expert from Raigmore Hospital. In the developed cardiac

chest pain prognostic model, we first determined the optimal number of variables,

after applying k -fold cross-validation strategy, as recommended in section 3.4.5,

followed by development of prognostic model keeping in view clinical requirements

of RACPC. The developed model calculates probability of cardiac chest pain.

Two additional cardiac chest pain prognostic models have also been developed

as per the clinical needs of Raigmore hospital’s RACPC. In the second cardiac

chest pain prognostic model, it was suggested to include additional two clinical

variables, “Initial Assessment” and “Angio Result”. LR classifier is used in the

development of these expert driven prognostic models shown in Figure 5.13.
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Figure 5.12: Output example of the Cardiac Chest Pain Prognostic Model.

Figure 5.14 shows the third cardiac chest pain prognostic model which is

developed to calculate cardiac chest pain risk score using minimal set of variables.

This cardiac chest pain prognostic model provides a cost effective cardiac chest

pain risk assessment mechanism by using patient demographics and minimal test

results, thereby reducing cost and dependency on CT scan and initial assessment

procedures.
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Figure 5.13: Output example of the Cardiac Chest Pain Prognostic Model.

5.4.8 Machine Learning Driven Cardiac chest pain prog-

nostic model’s integration with the recommendation

system

After the validation of three of the cardiac chest pain prognostic models, the

heart disease prognostic model shown in the Figure 5.11 was selected by the

clinicians for further clinical trials. This prognostic model was integrated with the

ODCRARS for further system level validation by the clinical domain experts. It is

integrated in the “Risk Assessment” section of the ODCRARS which is developed

for clinicians to carry out the cardiac risk assessment. This provides a holistic and

effective cardiac risk assessment based on evidence based risk score calculation

through machine learning driven cardiac chest pain prognostic model along with
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Figure 5.14: Output example of the Cardiac Chest Pain Prognostic Model.

rules based cardiac risk scores provided by the ODCRARS. This holistic view of

patient’s cardiac risk assessment can be utilised in doctor-patient consultations.

The patient data utilised in the testing of the ODCRARS was used for testing of

these cardiac chest pain prognostic models, details of which will be provided in

the validation section.

5.5 Case Study 2: Heart Disease

5.5.1 Background

The heart disease clinical case study is carried out for the development and val-

idation of the proposed MLDPS. The patient dataset in this clinical case study

was manually collected in the European StatLog project. The patient dataset

is shared by data mining experts from the University of Cleveland in US. The

European StatLog project focused on comparing performances of the machine

learning, statistical and neural network algorithms on real patient datasets in the
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heart disease and other clinical domains. This clinical case study was carried out

in close collaboration with primary care clinicians with a view to develop heart

disease specific prognostic models for cardiovascular patients. The heart disease

database contains 76 attributes, but all published experiments refer to using a

subset of 14 of them. Experiments with the Cleveland database (based on 13

clinical features of 270 patients) have concentrated on attempting to distinguish

presence of heart disease (1) from absence (0). This patient dataset was selected

due to its clinical relevance in the cardiac domain, also a number of clinical vari-

ables which are required to carry out cardiac risk assessment using Framingham

Heart Study (FHS) are found common in this dataset.

5.5.2 Aims

The heart disease patient dataset was selected for the development and validation

of the MLDPS which was initially validated in the RACPC clinical case study

through utilisation of three RACPC patient datasets. The other key aim of the

heart disease case study is to develop evidence based/data driven heart disease

prognostic models which could build on cardiac risk assessment mechanism pro-

vided by the ontology driven clinical risk assessment and recommendation system

(ODCRARS). The development details of ODCRARS are provided in chapter 4.

The heart disease clinical case study was carried out under the supervision of clin-

ical domain experts from UK and bespoke heart disease prognostic models are

developed, keeping in view clinical needs of the primary and secondary care clin-

icians. A number of web-based heart disease prognostic models are put through

clinical trial and validation through primary and secondary care clinicians in UK.

The final validated heart disease prognostic model (amongst other heart disease

prognostic models) is integrated with the ODCRARS to provide a cost effective,

efficient cardiac risk assessment mechanism for clinicians in the UK and US. The

heart disease prognostic models are also made available online for its utilisation

by patients who wish to calculate their heart disease risk score as a preventative

care measure.
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5.5.3 Data Preparation

Clinical evidence is extrapolated through the heart disease patient dataset con-

taining 13 clinical variables. Table 5.28 shows a list of variables along with their

respective data types before the pre-processing stage. The categorical variables

are pre-processed using the“Effect Coding Scheme” to alleviate collinearity prob-

lem in the given dataset. Categorical variables are encoded into a series of n - 1

binary variables where n is the number of categories to be represented. As a re-

sult of pre-processing of categorical additional independent variables are created,

the final list of candidate clinical variables are shown in Table 5.29. Also the

z-score normalisation (zero mean normalisation) method is applied, it converts

all variables to a common scale with an average of zero and standard deviation

of one. There are no missing data in the selected dataset which is why missing

data handling is not required in this clinical case study.
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Features Data Value
1 Age Numeric
2 Sex Male/Female

3 Chest Pain Type

Angina
Atypical Angina
Non Anginal Pain
No Chest Pain

4 Exercise induced Angina Yes/No
5 Resting BP in mm Hg Numeric
6 Serum Cholesterol in mmol/L Numeric
7 Fasting Blood Sugar Yes/No

8
Resting Electrocardiographies
Results

0: Normal
1: Having ST-T wave abnormality
(T wave inversions and/or ST elevation
or depression of >0.05 mV)
2: Showing probable or definite left
ventricular hypertrophy by Estes’ criteria

9 STDepression Numeric

10 ST Segment
Up Sloping
Flat
Downsloping

11
Number of Major Vessels
coloured by Fluoroscopy

0,1,2,3

12
Thallium Treadmill
Stress Test: Maximum Heart Rate Achieved

Numeric

13 Thallium Heart Scan
Normal
Fixed Defect
Reversible Defect

Table 5.28: Clinical Variables extracted from the UCI heart disease dataset.
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Features Data Value
1 Age Numeric
2 Sex Male/Female
3 Angina Yes/No
4 Atypical Angina Yes/No
5 Non Anginal Pain Yes/No
6 Asymptomatic Yes/No
7 Exercise induced Angina Yes/No
8 Resting BP in mm Hg Numeric
9 Serum Cholesterol in mmol/L Numeric
10 Fasting Blood Sugar Yes/No

11 Electrocardiographic Result

Results
0: Normal
1: Having ST-T
wave abnormality
(T wave inversions and/or
ST elevation or depression of >0.05 mV)
2: Showing probable or
definite left
ventricular hypertrophy by Estes criteria

12 STDepression Numeric
13 ST Segment- Up-Sloping Yes/No
14 St Segment - Flat Yes/No
15 ST Segment- Downsloping Yes/No
16 Fluoroscopy 0,1,2,3

17
Thallium Treadmill Stress
Test
Maximum Heart Rate

Numeric

18 Thallium Normal Yes/No
19 Thallium Fixed Defect Yes/No
20 Thallium Heart Scan -Reversible Defect Yes/No

Table 5.29: Final list of clinical variables after the effects coding scheme.

169



5.5.4 Feature Selection

The statistical p-values are calculated for each of the clinical variables to find

out the clinical significance of each clinical variable. As it can be seen in the

Table 5.30, most of the variables are statistically significant. The Expert Driven

(ED) (without feature selection, based on original variables) and P-value feature

selection methods are also employed for comparison with state of the art feature

selection techniques. Details of various experimental setups based on machine

learning classification and feature selection methods are shown in 5.31.

Clinical Variables P-value
1 Age 1E-18 <0.0001
2 Sex 1E-13 <0.0001
3 Angina 3E-12 <0.0001
4 Atypical Angina 6E-12 <0.0001
5 Non Anginal Pain 2E-11 <0.0001
6 Asymptomatic 3E-07 <0.0001
7 Exercise induced Angina 3E-07 <0.0001
8 Resting Blood Pressure 3E-05 <0.0001
9 Serum Cholesterol in mg/dl 4E-04 <0.0001
10 Fasting Blood Sugar 3E-03 <0.001
11 Electrocardiographic Result 1E-02 <0.001
12 ST Depression 5E-02 <0.001
13 ST Segment Up-sloping 6E-02 <0.001
14 St Segment Flat 2E-01 <0.05
15 St Segment Downsloping 4E-01 <0.05
16 Fluoroscopy 5E-01 <0.05

17
Thallium Treadmill Stress Test
:Maximum Heart Rate

5E-01 <0.05

18 Thallium Normal 6E-01 <0.05
19 Thallium Fixed Defect 7E-01 <0.05
20 Thallium Reversible Defect 8E-01 <0.05

Table 5.30: P-values of the clinical variables selected in the heart disease clinical
case study.

5.5.5 Prognostic Model Development

After dataset preparation, a number of clinical variables are extracted through

the legacy patient data for the prognostic model development. Table 5.31 shows,

classification accuracies along with selected feature in each of the experimental
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setups utilised in this case study. It can be seen that more transparent models

based on LR combined with FS and BS had a considerable difference in terms of

features utilised in each setup. LR+FS provides more optimum solution in terms

of classification accuracy and less number of features are utilised to classify the

heart disease patient dataset with a classification accuracy of 83.70%.

The best classification accuracy was achieved based on trial and error. The

SVM ( Linear Kernel Function) and FS wrapping technique provided the best

classification accuracy . In comparison to the baseline LR model, the SVM+BS

experimental setup utilised 8 clinical variables to classify the patient dataset with

the lowest standard error. The classification accuracies of various LR, DT and

SVM based experimental setups, along with selected features in each setup are

provided in the Table 5.31.

The confusion matrices for all of the experimental setups in this clinical case

study are provided. The accuracy of these experimental setups (based on the

threshold of 0.5) is evaluated using the Leave one out cross (LOOCV) validation

technique. Also, should the best accuracy be reached in models with different

number of variables, the one with the smallest number of variables will be con-

sidered, assuming that collecting less variables provides a more time and cost

efficient approach.

5.5.6 Prognostic Model Validation and Evaluation

The confusion matrices of various experimental setups for LR, DT and SVM

based experimental setups are shown in Tables 5.32, 5.33 and 5.34 and the best

classification accuracies are highlighted in each classification group. True Positive

(TP), False Negative (FN), False Positive (FP), True Negative (TN) rates are

provided for the actual and predicted outputs (classification outputs). As our two

classes are not equally distributed which is why Weighted accuracies and other

measurements including Unweighted Accuracy, Precision, Recall, Fmeasure and

Matthew’s correlation are reported in Table 5.35.

The ROC curve analysis is also used to quantify the performances of various

classification setups shown in Figure 5.15. The ROC curve is a graphical plot of
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Experimental Setup Selected Features Accuracy
LR+FS 6,16,12,2,11 83.70
LR+BS 2,4,5,6,7,11,12,13,14,15,16,18,19,20 83.33
LR+ED All 81.85
LR+SFFS 6,16,12,2,11 83.70
LR+P-Value 6,16,17,7,12,5,2,4,1,11,8,9,3,20,18,19,14,15,13,10 81.85
LR+mRMR 6,2,16,12,7,1,17,11,5,9,4,3,8,20,14,19,15,18,10,13, 81.85
DT+FS 6,16,7,19 81.85
DT+BS 2,6,8,9,12,15,16,17,18,19,20 80.74
DT+ED All 78.88
DT+SFFS 6,16,7,19 81.85
DT+P-Value 1,2,3,4,5,6,7,8,9,10,11,12 73.70
DT+mRMR 6,2,16,1217,1,17,11,5,9,4,3,8,20,14,19,15,18,10,13 79.62
SVM+FS 6,1,2,12,11,16,3,5,13,14 84.44
SVM+BS 2,5,6,7,9,12,16,17 84.81
SVM+ED All 77.05
SVM+SFFS 14,10,12 77.37
SVM+P-Value 14,4,10,6,8,13,7,9,5,1,12,2,3,,11 77.05
SVM+mRMR 14,4,10,5,6,8,13,7,12,9,,11,,1,2,3 77.05

Table 5.31: Experimental setups based on the machine learning classification and
feature selection methods.

Predicted Output

Actual

LR+FS LR+BS LR+ED LR+SFFS LR+P LR+mRMR
A 128 22 134 16 131 19 128 22 131 19 131 19
B 22 98 29 91 30 90 22 98 30 90 30 90
Accuracy 83.70 83.33 81.85 83.70 81.85 81.85

Table 5.32: The confusion matrix of LR based classification setups.

the True Positive (TP) rate (along the vertical axis) against 1 minus the False

Positive rate (along the horizontal axis). ROC curve comes from the idea that,

given the curve, the receivers of the information, can use (or operate at) any

point on the curve by using the appropriate cut point. The ROC curve can be

used to determine the optimal threshold cut-off value between sensitivity and

specificity. The ROC curve lets users see the trade-off between sensitivity and

specificity for all possible thresholds rather than just the one that was chosen by

the modeling technique. Different classification objectives might make one point

on the curve more suitable for one task and another more suitable for a different

task, so looking at the ROC curve is a way to assess the model independent of
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Predicted Output

Actual

DT+FS DT+BS DT+ED DT+SFFS DT+P DT+mRMR
A 133 17 125 25 125 25 132 17 111 39 126 24
B 32 88 27 93 32 88 32 88 32 88 31 89
Accuracy 81.85 80.74 78.88 81.85 73.70 79.62

Table 5.33: The confusion matrix of DT based classification setups.

Predicted Output

Actual

SVM+FS SVM+BS SVM+ED SVM+SFFS SVM+P SVM+mRMR
A 134 16 137 13 133 17 112 38 133 17 132 17
B 26 94 28 92 32 88 29 91 32 88 32 88
Accuracy 84.44 84.81 81.85 75.18 81.85 81.85

Table 5.34: The confusion matrix of SVM based classification setups.

the choice of a threshold.

5.5.7 Performance evaluation of experimental setups

A one way ANOVA test is also utilised for the performance evaluation of the best

classification groups. The one-way ANOVA test is used to compare means of

classification accuracies obtained in three experimental setups. This test is used to

ascertain whether the difference/improvement in classification accuracies within

different classification groups and other classifiers (across different classification

methods) is significant or they all are equal.

Table 5.36 provides detailed analysis of the one-way ANOVA. In the summary

section, the average classification accuracies are calculated based on LR, DT and

SVM classification setups.

For the single factor ANOVA test, the Null Hypothesis is declared as follows:

H0 : µ1 = µ2 = µ3 (the means are all equal, hence the difference in means in

all of three experimental setups are all the same)

H1 :At least two of the means are different

α = 0.05

In the ANOVA section in Table 5.37, sum of squares (SS), degree of freedom

(df) and mean square values are provided. The F statistic value (1.55) is less
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LR+FS LR+BS SVM+BS SVM+FS

Weighted Accuracy 83.70% 83.33% 84.81% 84.44%

Unweighted 83.50% 82.58% 84.00% 83.83%

Precision 85.33% 89.3% 91.33% 89.3%

Recall 85.33% 82.2 83.03% 83.70%

Fmeasure 85.33% 85.6% 86.98% 86.4%

Matthew’s Correlation 67.00% 66.2% 69.31% 68.4

Table 5.35: Experiment results in terms of different evaluation measurements.

than the critical value of F (3.682). Also the p-value is >0.05, so on this basis the

null hypothesis is accepted. This shows that the difference in the classification

accuracies within groups and among other classifiers (across LR, DT and SVM

classification groups) is statistically not significant.

SUMMARY ANOVA Single Factor Test
Groups Count Sum Average Variance
Logistic Regression 6 496.28 82.71333333 0.912666667
Decision Tree 6 482.94 80.49 1.47016
Support Vector Machine 6 489.982 81.66366667 11.94472067

Table 5.36: Performance Analysis of different classification techniques.

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 14.84500933 2 7.422504667 1.554174869 0.243552667 3.682320344

Within Groups 71.63773667 15 4.775849111

Total 86.482746 17

Table 5.37: ANOVA Test Results.

5.5.8 Implementation of online Clinical Prognostic Mod-

els

In the heart disease clinical case study, a real patient dataset was utilised for

the development of machine learning driven prognostic models for primary and

secondary care clinicians. The results obtained through the patient dataset were

analysed by the consultant cardiologist and a general medical practitioner from

UK. It was decided to develop online heart disease prognostic models based on

LR based classification setups, as shown in the Table 5.35 for clinical validation
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Figure 5.15: ROC curves of the best classification setups for comparison purpose.

through primary and secondary care clinicians. The machine learning driven

heart disease prognostic model was developed for the clinical validation. Two

expert driven heart disease prognostic models were also developed and deployed

online for the clinical validation.

Logistic regression-based heart disease prognostic models have been developed

and deployed online for the initial clinical validation. Clinical questionnaires

are encoded in HTML; logistic regression model is programmed in PHP, which

generates an HTML page after data is collected from an HTML input form. The

probability of cardiac chest pain risk score is calculated when user presses the
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“Calculate Score” button.

The machine learning driven heart disease prognostic models are intended

to be used by the general medical practitioners in primary care and cardiolo-

gists in the secondary care. The user is asked to provide patient demographics

information and details of cardiac tests which are carried out for patients’ risk

assessment at the cardiology clinics. The heart disease risk score is calculated

using the formula as shown below:

SCORE = 100.(1 + e−M)−1

where

M = co-efficients of each clinical variable used in the model.

The logistic regression model calculates the probability of heart disease using

series of inputs as shown in Figure 5.16.

The initial machine learning driven heart disease prognostic model (as in

Figure 5.16) was validated by clinical domain experts from a general practice

in Edinburgh, Scotland. In the developed heart disease prognostic model, we

first determined the optimal number of variables, after applying k -fold cross-

validation strategy, as recommended in section 3.4.5, followed by development of

prognostic model keeping in view clinical requirements of primary and secondary

care clinicians. The developed model, calculates the probability of heart disease

as shown in Figure 5.17. Two additional heart disease prognostic models have also

been developed and deployed online as per the clinical needs of a general medical

practitioner from Scotland, UK. The second heart disease prognostic model was

developed by excluding some of the clinical variables like “Electrocardiography,

Serum Cholesterol and Thallium Scan” results as shown in Figure 5.18. The third

cardiac chest pain model was developed using the expert driven clinical variables

which are “Asymptomatic chest pain”, “Fluoroscopy” and “Thallium reversible

defect”. The purpose of this prognostic model was to calculate the probability

of the heart disease in situations where test results information is not available.

The screen shot of this prognostic model is shown in Figure 5.19. Further clinical

validation and their utilisation is discussed in the section 5.7.

After the validation of three of the heart disease prognostic models, the heart
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Figure 5.16: Machine Learning Driven Heart Disease Prognostic Model’s front
end, is available at http://www.cs.stir.ac.uk/ kfa/HDP/hd3/hd3.html.

disease prognostic model shown in Figure 5.17 was selected by the clinicians for

further clinical trials which is why it was integrated with the ODCRARS for fur-

ther validation. It is integrated as an add on for the primary and secondary care

clinicians so that the heart disease risk score (based on evidence based risk score

calculation) along with rules based cardiac risk scores (provided by ODCRARS)

are calculated at the time of patient risk assessment. The patient data utilised in

the testing of ODCRARS was used for testing of these online prognostic models,

details of which will be provided in the validation section.
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Figure 5.17: Output example of the Machine Learning driven Heart Disease Prog-
nostic Model.

Figure 5.18: Machine Learning Driven Heart Disease Prognostic Model’s front
end, is available at http://www.cs.stir.ac.uk/ kfa/HD1/hd1/hd1.html.
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Figure 5.19: Output example of the Cardiac Chest Pain Prognostic Model, is
available at http://www.cs.stir.ac.uk/ kfa/HDP/hd2/hd2.html.
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5.6 Case Study 3: Breast Cancer Prognostic

Modelling

5.6.1 Background

This section describes the third clinical case study which is exploited in the

development and validation of the machine learning driven prognostic system

(MLDPS). The MLDPS is validated in the cardiovascular domain using the

RACPC and Heart Disease clinical case studies described in previous sections.

The aim of this clinical case study is to validate the MLDPS in another clinical

areas to demonstrate clinical effectiveness of our approach. For the purpose of

this clinical case study, a UCI breast cancer patient dataset is utilised for the

development and validation of the MLDPS. This patient dataset was shared by

the researchers from University of Wisconsin in US. Clinical domain and compu-

tational intelligence experts were involved in the feature extraction work through

the breast cancer images data.

5.6.2 Aims

The key aim is to utilise the breast cancer patient data in the development and

validation of the proposed MLDPS. This clinical case study was carried out in

close collaboration with clinical domain experts. Another key objective is to

develop machine learning driven breast cancer prognostic models which could help

pathologists distinguish malignant patients from those with a benign condition.

5.6.3 Candidate Clinical Variable Selection

Clinical experts finalised 9 clinical variables which are utilised in the development

of prognostic models. The details of these features along with p-values of each of

the variables are provided in Table 5.38. It can be seen that all of the variables

picked up by the clinical domain experts are statistically highly significant due

to their low p-values. It is therefore decided to develop a baseline model using

clinical variables selected by clinical domain experts and then compare its results
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with the state of the art feature selection and machine learning techniques.

Clinical Variables P-value
1. Clump Thickness 9E-89 <0.0001
2. Uniformity of Cell Size 4E-88 <0.0001
3. Uniformity of Cell Shape 2E-84 <0.0001
4. Marginal Adhesion 2E-76 <0.0001
5. Single Epithelial Cell Size 1E-74 <0.0001
6. Bare Nuclei 5E-57 <0.0001
7. Bland Chromatin 1E-54 <0.0001
8. Normal Nucleoli 3E-54 <0.0001
9. Mitoses 2E-17 <0.0001

Table 5.38: P-values of the clinical variables used in the breast cancer clinical
case study.

Table 5.39 provides a detailed overview of various experimental setups along

with feature selection techniques which are employed for data classification. As it

can be seen that state of the art feature selection and machine learning classifica-

tion techniques are exploited to find the best model with the highest classification

accuracy. As stated earlier a LR based model using expert driven feature selec-

tion is developed which is compared with DT and SVM based experimental setups

using FS, BS, SFFS, P-value and mRMR feature selection techniques.

5.6.4 Prognostic Model Development

In table 5.39, a number of experimental setups based on LR, DT and SVM along

with selected features in each classification group are presented. The LR com-

bined with backward feature selection utilised 6 features to classify the patient

data with a classification accuracy of 97.21 %. Another LR experimental setup

based on SFFS feature selection only utilised 5 features to distinguish malignant

patients from others with a benign condition. Sequential Floating Forward Selec-

tion (SFFS) is one of the most effective wrapping methods for feature selection.

This works in an iterative manner and starts with empty set of features. However,

the features selected after each iteration are removed one by one. If the removal

of any feature results in increasing the classification accuracy, then the corre-

sponding feature is permanently discarded from the feature set. This approach

guarantees that the final set doesn’t contain any correlated features.
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Experimental Setup Selected Features Accuracy
LR+FS 3,8,9,6,1,7 96.92
LR+BS 1 3 6 7 8 9 97.21
LR+ED ALL 95.60
LR+SFFS 3,8,6,1,7 97.21
LR+P-Value 6,3,2,1,7,8,4,5,9 96.77
LR+mRMR 2,6,1,7,8,3,9,5,4 96.77
DT+FS 3,6 ,5 96.19
DT+BS 1,2,3,5,6,9 96.63
DT+ED All 94.87
DT+SFFS 3,6,5 96.19
DT+P-Value 6,3,2,1,7,8,4,5,9 95.31
DT+mRMR 2,6,1,7,8,3,9,5,4 95.31
SVM+FS 3,6,5,8,1,2,9,4 97.07
SVM+BS 1,2,3,4,6,7,8,9 97.36
SVM+ED All 96.92
SVM+SFFS 3,6,8,1,2 97.21
SVM+P-Value 6,3,2,1,7,8,4,5,9 96.92
SVM+mRMR 2,6,1,7,8,3,9,5,4 96.92

Table 5.39: Experimental Setups including feature selection results.

Less transparent classification methods like SVM combined with backward

feature selection technique provided the best classification accuracy of 97.36 %

while interestingly SFFS once again when utilised with SVM classified the patient

dataset with a classification accuracy of 97.21 % (similar to LR setup).

Another interesting observation in the results is the DT+FS classification

setup, which only utilised 3 clinical variables to classify the breast cancer data.

So given the information regarding “Uniformity of Cell Size”, “Bare Nuclei” and

“Single Epithelial Cell Size”, the DT model can predict whether the patient is

a breast cancer patient or not with a classification accuracy of 96.19 %. This

model and DT + SFFS are particularly useful if full patient data is not available

at the time of doctor-patient consultation as these model can work out patient

diagnosis by using minimal set of clinical variables.

5.6.5 Prognostic Model Validation and Evaluation

The confusion matrices of LR, DT and SVM experimental setups are provided

in Tables 5.40, 5.41 and 5.42. The accuracy of these experimental setups (based
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on the threshold of 0.5) is evaluated using the Leave one out cross (LOOCV)

validation technique.The best classification accuracies are highlighted in each

classification group. True Positive (TP) or sensitivity, False Negative (FN) or

1- sensitivity, False Positive (FP), True Negative (TN) or specificity rates are

provided for the actual and predicted outputs (classification outputs). As our

two classes are not equally distributed which is why Weighted accuracies and

other measurements including Unweighted Accuracy, Precision (positive predic-

tive value), Recall, Fmeasure and Matthew’s correlation are reported in Table

5.43.

Predicted Output

Actual

LR+FS LR+BS LR+ED LR+SFFS LR+P LR+mRMR
A 435 9 435 9 431 13 435 9 434 10 434 10
B 12 227 10 229 17 222 10 229 12 227 12 227
Accuracy 96.82 97.21 95.60 97.21 96.77 96.77

Table 5.40: The confusion matrix of different experimental setups based on Lo-
gistic Regression and Feature Selection Methods.

Predicted Output

Actual

DT+FS DT+BS DT+ED DT+SFFS DT+P-value DT+MRMR
424 20 428 16 424 20 424 20 425 19 425 19
6 233 7 232 15 22 6 233 13 226 13 226
96.19 96.63 94.87 96.19 95.31 95.31

Table 5.41: The confusion matrix of different experimental setups based on De-
cision Tree and Feature Selection Methods.

Actual

Predicted Output
SVM+FS SVM+BS SVM+ED SVM+SFFS SVM+P-value SVM+MRMR

A 430 14 432 12 430 14 431 13 430 14 430 14
B 6 233 6 233 7 232 6 233 7 232 7 232
Accuracy 97.07 % 97.36% 96.92% 97.21% 96.92% 96.92%

Table 5.42: The confusion matrix of different experimental setups based on Sup-
port Vector Machine and Feature Selection Methods.

The ROC curve analysis is also used to quantify the performances of various

classification setups shown in Figure 5.20. The ROC curve is a graphical plot of

the True Positive (TP) rate (along the vertical axis) against 1 minus the False

Positive rate (along the horizontal axis). Using an ROC curve of a classifier, the
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LR+BS LR+SFFS DT+SFFS SVM+BS SVM+SFFS
Weighted Accuracy 97.21% 97.21% 96.19% 97.36% 97.21%
Unweighted Accuracy 96.89% 96.89% 96.49% 97.39% 97.28%
Precision 97.97% 97.97% 95.50% 97.30% 97.07%
Recall 97.75% 97.75% 98.60% 97.96% 98.63%
Fmeasure 97.86% 97.86% 97.03% 97.96% 97.84%
Matthew’s Correlation 93.88% 93.88% 91.84% 94.26% 93.95%

Table 5.43: Experiment results in terms of different evaluation measurements.

evaluation metric will be the area under the ROC curve. The larger the area

under the curve (the more closely the curve follows the left-hand border and the

top border of the ROC space), the more accurate the test. Thus, the ROC curve

for a perfect classifier has an area of 1. The expected curve for a classifier making

random predictions will be a line on the 45 degree diagonal and its expected area

is 0.5.

5.6.6 Performance Evaluation of Experimental Setups

A one way ANOVA test is also performed for the performance evaluation of the

best classification groups. The one-way ANOVA test is used to compare means of

classification accuracies obtained in three experimental setups. This test is used

to check whether the difference/improvement in classification accuracies within

different classification groups and other classifiers (across different classification

methods) is significant or they all are equal. Table 5.44 shows the summary of

ANOVA test, it provides average classification accuracies of LR, DT and SVM

classification groups.

Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance
Logistic Regression 6 580.48 96.74666667 0.355066667
Decision Tree 6 574.5 95.75 0.46464
Support Vector Machine 6 582.4 97.06666667 0.034226667

Table 5.44: Performance Analysis of different classification techniques using One-
Way ANOVA.
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Figure 5.20: ROC curves of the best classification setups for comparison with the
expert driven LR experimental setup.

Declaration of the Null Hypothesis

For the single factor ANOVA test, the Null Hypothesis is declared as follows:

H0 : µ1 = µ2 = µ3 (the means are all equal, hence the difference in means in

all of three experimental setups are all the same)

H1 :At least two of the means are different

α = 0.05

In the ANOVA section in Table 5.45, sum of squares (SS), degree of freedom

(df) and mean square values are provided. As it can be seen that the F statistic
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value (9.93) is greater than the critical value of F (3.682). Also the p-value is

<0.05, so on this basis the null hypothesis is rejected and it is now established

that the difference in the classification accuracies within groups and among other

classifiers (across LR, DT and SVM classification groups) is statistically signif-

icant. This means that the different classification groups which were deployed

to classify the breast cancer patient data performed well within their own cor-

responding groups. The performance improvements amongst other classification

groups is also found to be statistically significant and in comparison to other

classification groups.

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 5.658711111 2 2.829355556 9.939964088 0.001783888 3.682320344

Within Groups 4.269666667 15 0.284644444

Total 9.928377778 17

Table 5.45: ANOVA Test Results.
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5.6.7 Online Clinical Prognostic Model

The results obtained in LR, DT and SVM experiential setups were analysed

by the clinical domain experts. The best classification setups as shown in 5.43

were critically assessed and presented in e-health workshops and symposiums. A

logistic regression based clinical prognostic model was developed and deployed

online as shown in Figure 5.21 for clinical validation through the oncologist and

pathologist from the West of Scotland. Clinical questionnaires are encoded in

HTML; logistic regression model is programmed in PHP, which generates an

HTML page after data is collected from an HTML input form. The final diagnosis

(whether malignant or benign breast cancer) score is calculated when user presses

the “Calculate Score” button.

Figure 5.21: The machine learning driven Breast Cancer Prognsotic Model’s front
end, is available at http://www.cs.stir.ac.uk/ kfa/bc/bc1.html.

.

The machine learning driven breast cancer prognostic model is intended to

be used by pathologists. The user is asked to provide details about different

parameters which are collated by pathologists through MRI images data. The

breast cancer predication/diagnosis is worked out using the formula as shown
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below:

SCORE = 100.(1 + e−M)−1

where

M = co-efficients of each clinical variable used in the model.

The oncologist from the Beatson cancer centre carried out the initial clini-

cal validation of the breast cancer Prognostic model. The key objective of this

clinical assessment was to validate the breast cancer prognostic model using the

real patient data to assess its utilisation in predicting the breast cancer outcome

through a set of clinical variables collated by pathologists. After the initial as-

sessment, the clinical prognostic model was clinically assessed by the head of

pathology in the West of Scotland. Details of clinical validation will be provided

in the validation section.

5.7 Verification and Validation of the Clinical

Prototypes

This section discusses the verification and validation of the clinical prototypes

which have been developed to provide evidence based (MLDPS) and expert driven

(ODCRARS) cardiac risk scores calculation. The machine learning driven car-

diac chest pain, heart disease and breast cancer prognostic models have been

deployed online for clinical validation purposes. Several clinical experts in the

primary and secondary care took part in the verification and validation of the

proposed prototypes. The cardiac chest pain and heart disease prognostic models

after their initial validation were integrated with the ontology driven clinical risk

assessment and recommendation system (ODCRARS) to provide a cardiovascular

preventative care solution. The integration testing was carried out using clinical

use cases to ensure the end system’s functionality.

The Clinical domain expert from Raigmore Hospital in Inverness, UK carried

out the initial verification and validation of the cardiac chest pain prognostic

models, see feedback of Professor Stephen Leslie in Appendix A.1. The heart

disease prognostic models were validated by primary and secondary care clinicians
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in the UK. Clinical validation was carried out in close collaboration with a general

medical practitioner from UK. Clinical use cases were derived from real patient

scenarios, provided by primary care clinicians. A Clinical trial case study for the

machine learning driven cardiac chest pain and heart disease prognostic models

was conducted through a GP practice.

5.7.1 Validation of the Machine Learning Driven System

(MLDPS) and Ontology Driven Clinical Risk As-

sessment and Recommendation System (ODCRARS)

Clinical validation of the MLDPS involved testing of the web based prognostic

models for cardiac chest pain, heart disease and breast cancer. Breast cancer

prognostic models are not part of the ODCRARS and validation of these clinical

models was carried out by an oncologist from the Beatson cancer centre in Glas-

gow. The cardiac chest pain and heart disease prognostic models were validated

by a consultant cardiologist and a general medical practitioner from UK.

The machine learning driven cardiac chest pain prognostic model was devel-

oped under the supervision of a consultant cardiologist from Raigmore Hospital.

This clinical model is developed using clinical features extracted in the RACPC

clinical case study. The model was tested using clinical use cases for non-cardiac

and known cardiac chest pain patients for clinical validation and sanity checking

purposes.

The patient data was generated using the ODCRARS’s web front end. Pa-

tient demographics and past medical history were collated during patient’s review

of the system which has been conducted using the patient’s interface. The pa-

tient data required for the cardiac chest pain risk score calculation was populated

through the ODCRARS. As it can be seen in Figure 5.22, system calculates car-

diac risk scores for the selected patient for various cardiovascular diseases. The

outcome risk scores over 4 and 10 year period, calculated using Framingham

Heart Study (FHS) are provided in the doctor’s module. The ODCRARS pro-

vides dedicated graphical user interface for the clinicians and patients to record

their interactions with the system. Cardiologist using the doctor’s interface re-
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views patient data which was provided during the patient interview, conducted

through an ontology driven intelligent context-aware information collection com-

ponent. After reviewing patient’s summary data, the clinician carries out clinical

risk assessment by clicking on the “Risk Assessment” button. System brings up

information on the front end as shown in Figure 5.23, which shows details of

cardiovascular risk assessment carried out through ODCRARS. System provides

details of cardiac risk scores for CHD, MI, CHD Death and Stroke conditions

as shown in Figure 5.24. It also brings up patient demographics information

as shown in the Figure 5.22, this information was provided during the patient

registration procedure. The cardiologist also carries out cardiac chest pain risk

assessment by clicking on the “Calculate Score” button. The machine learning

driven cardiac chest pain prognostic model calculates the cardiac chest pain risk

score which is shown in Figure 5.23. The ODCRARS provides a complete car-

diac risk assessment profile for the patient selected by the clinician. In the ”Risk

Assessment” module, cardiologist launches the machine learning driven heart dis-

ease prognostic model by clicking on the ”Heart Disease Prognostic Model” link

to verify information populated on the screen. Clinician then clicks on the “Cal-

culate button to generate the heart disease risk score as shown in Figure 5.25.

The cardiac chest pain and heart disease prognostic models are also evaluated

by a cardiac thoracic surgeon from the Kings College Hospital in London, see the

evaluation statement provided in the Appendix A.3. In light of feedback received

from the cardiologist, a case study for the evaluation of the clinical prototypes

was identified through a GP surgery in Edinburgh, Scotland.

Clinical validation of the machine learning driven cardiac chest pain and heart

disease prognostic models was carried out in a limited case study by a general

medical practitioner from Edinburgh, Scotland. The focus of this clinical case

study was to detect high-risk patients with ischaemic heart disease by carrying out

cardiac risk assessment of patients using the machine learning driven prognostic

models incorporated in the ‘Risk Assessment module of the ODCRARS. Clinical

trials were conducted using the in-house patient data to assess clinical prototypes

suitability for general medical practitioners. At the end of this case study, clinical
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Figure 5.22: Clinical use case for the validation of ontology driven clinical risk
assessment and recommendation system.

assessment feedback was provided, which has been referenced in the Appendix

section A.2.

The ODCRARS, especially machine learning driven cardiac chest pain and

heart disease prognostic models were presented at various e-health workshops and

symposiums, details of these demonstrations are provided in section 1.4. The look

and feel of these clinical prototypes was refined to incorporate users’ feedback,

and adherence to usability guidelines for web browsers and mobile phone users.

Also, clinical prototypes were demonstrated in an invited speaker talk at the

Beth Israel Deaconess Medical Centre of Harvard Medical School, see feedback

in Appendix A.4.

The machine learning driven breast cancer prognostic model was evaluated

by an oncologist from the Beatson, West of Scotland cancer centre in Glasgow

see clinician’s feedback in Appendix A.5. The head of pathology from the West
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Figure 5.23: Clinical use case for the validation of Ontology Driven Clinical Risk
Assessment and Recommendation System.

of Scotland took part in the initial evaluation of the developed prognostic model.

Clinical oncologists and pathologists showed interest in the proposed prognostic

model. They also expressed great interest in the further development and clinical

trials of the proposed prototype with a view to get this rolled out as a clinical

decision support tool for pathologists in the West of Scotland area. The cardiac

risk scores calcification mechanism in ODCRARS is also clinically validated using

known cardiac patient data collated in the RACPC and heart disease clinic case

studies. The cardiac risk scores calculated through ODCRARS is compared with

cardiac risk scores calculation carried out through the MLDPS (cardiac chest pain

and heart disease prognostic models) for clinical validation and sanity checking

purposes.
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Figure 5.24: Clinical validation of the Ontology Driven Clinical Risk Assessment
and Recommendation system (ODCRARS).
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Figure 5.25: Cardiac Chest Pain Risk Score Calculation as part of the Integrated
ODCRARS.
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5.8 Summary and Conclusion

In this chapter, we have demonstrated the design, development and validation of

the machine learning driven prognostic system (MLDPS). We have demonstrated

its clinical effectiveness through clinical use cases in the clinical validation sec-

tion. The proposed ontology and machine learning driven hybrid clinical decision

support framework exploits functionality provided by each of its key components.

Moreover, it brings/integrate them together in an intelligent manner to deliver a

cost effective, holistic and efficient cardiovascular clinical risk assessment mecha-

nism. We have also proved MLDPs’ effectiveness in other application areas like

breast cancer. The proposed clinical decision support framework could also be

utilised in the clinical risk assessment of other chronic illnesses.

We have also explained the functionality of a comparative machine learning

and feature selection techniques, used in the development of the prognostic sys-

tem. The MLDPS is validated by clinical domain experts in the RACPC, heart

disease and breast cancer domains. We have also proposed a mechanism for

learning from missing clinical data and its validation using Raigmore Hospital’s

RACPC dataset containing missing values. The machine learning driven prog-

nostic models have been validated using clinical domain experts from Raigmore

Hospital, primary care practice in Edinburgh and the Beatson cancer care centre

in Scotland, UK.

Our proposed MLDPS provides prognostic models for the RACPC clinicians

to distinguish cardiac chest pain patients from those with non-cardiac symptoms.

The machine learning driven breast cancer prognostic model is developed to help

clinicians efficiently distinguish malignant breast cancer patients from others with

a benign condition. It also provides an evidence-based heart disease prognostic

model for heart disease risk score calculation which compliments the cardiac risk

score calculation mechanism supplied by the ODCRARS.

Our proposed clinical decision support framework provides a foundation for

future clinical decision support systems to follow a multi-layered clinical decision

support framework approach by learning from evidence-based/data driven legacy
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clinical data. Learning from legacy clinical data activity, provides an opportunity

to reverse engineer existing clinical workflows, in order to remove redundant clini-

cal pathways thereby providing clinicians recommendations/suggestions to refine

clinical workflows.

The proposed clinical decision support framework utilises clinical expert’s

knowledge, which is encoded in the form of clinical rules for clinical recommenda-

tion purposes. Also, it makes use of clinical rules (encoded in the form of look-up

tables, statistical equations) provided in the Framingham Heart Study (FHS) for

the cardiac risk score calculation for various cardiovascular diseases.
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Chapter 6

CONCLUSIONS AND FUTURE
WORK

6.1 Conclusions

This thesis presented a novel ontology and machine learning driven hybrid clin-

ical decision support framework for cardiovascular preventative care. The pro-

posed clinical decision support framework provides an efficient clinical risk assess-

ment mechanism by way of combining evidence extrapolated from legacy patient

datasets and clinical experts knowledge encoded in the form of clinical rules.

The proposed framework comprises of a non-knowledge /evidence based machine

learning prognostic system (MLDPS) and a knowledge-based/expert driven on-

tology driven clinical risk assessment and recommendation system (ODCRARS).

The key components are developed and validated in the cardiovascular domain

using clinical case studies in the RACPC and Heart disease domains. An addi-

tional case study in the breast cancer is also utilised for the development and

validation purposes.

We have demonstrated through the clinical case studies (RACPC, Univer-

sity of Cleveland’s Heart Disease and University of Wisconsin’s Breast Cancer

datasets) that more efficient, cost effective clinical decision support systems could

be built by learning from existing clinical workflows (through retrospective data

analysis), utilisation of missing clinical data which is often ignored by clinical in-

formatics experts and efficient prognostic modelling (based on machine learning
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and feature selection techniques).

The design, development and validation stages of the key components of the

proposed ontology driven clinical risk assessment and recommendation system

(ODCRARS) are explained in detail. The key components of the ODCRARS

are: (1) ontology driven intelligent context-aware information collection which is

driven through the adaptive clinical questionnaire. (2) Ontology driven patient

semantic profile which is developed through the answers collated in patient in-

terviews. The conventional patient medical records are then transformed into

patient semantic profile through a domain specific ontology to give this data

intrinsic meaning and alleviate interoperability issues. (3) Ontology driven clini-

cal decision support comprises of a recommendation ontology and NICE/Expert

driven clinical rules engine. The recommendation ontology is developed (based

on clinical expert’s rules for lab tests and medication) to provide a recommen-

dation of lab tests and medications keeping in view patient’s current and past

medical history. The NICE/Expert clinical rules engine is developed based on

clinical expert’s rules and Framingham Heart Study (look up tables, statistical

equations) to calculate cardiac risk scores for various cardiovascular diseases.

6.2 Discussion and Summary of Contributions

1. In chapter 2, a detailed state of the art review of clinical decision support

systems and techniques utilised in modern clinical decision support systems

were considered. We discussed state of the art review of the most recent

techniques which attempted to address these research issues in the past

and their research outcomes. The analysis of different techniques, including

merits and demerits were provided. Also a hybrid approach of combining

an ontology driven and machine learning techniques was also presented in

the end, we later exploited this hybrid approach to propose a novel ontology

and machine learning driving hybrid clinical decision support framework to

meet our research challenges.

2. In chapter 3, we proposed a novel ontology and machine learning driven hy-
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brid clinical decision support framework to address our research challenges.

We described our research methodology; system design and development of

the key components of the proposed clinical decision support framework.

The key components of the proposed framework are ontology driven clinical

risk assessment and recommendation system (ODCRARS) and the machine

learning driven prognostic system (MLDPS) which are developed in close

collaboration with primary and secondary care clinicians.

3. In Chapter 4, we discussed in detail the development stages of various key

components of the ontology driven clinical risk assessment and recommen-

dation system (ODCRARS). We demonstrated that ontology driven ap-

proach is well suited to handle complexities involved in developing cost effec-

tive and efficient clinical decision support solutions. Ontology driven design

methodology facilitate clinical informatics experts to overcome knowledge

representation issues by providing flexible, reusable and cost effective solu-

tions. Ontology driven components are capable of modelling complex clin-

ical knowledge which is often difficult to achieve using conventional knowl-

edge representation tools. The proposed Clinical decision Support frame-

work is capable of handling multiple cardiovascular conditions. We briefly

discussed different interfaces for doctor, patients and clinicians (nurses, lab

assistants) and decision support operations which can be performed de-

pending on their access rights. The decision support operations were also

described with a focus on the cardiac risk score calculation using FHS,

global risk score calculation as well as absolute and relative cardiac risk

scores were presented as part of triage system. The integration of cardiac

chest pain and heart disease prognostic models with the ODCRARS is also

discussed in the end. The proposed novel clinical decision support is built

using modularised ontology driven and machine learning driven components

which makes the proposed clinical decision support framework reusable in

other application areas like breast cancer etc. The ODCRARS is clinically

validated using clinical patient gathered in the RACPC and heart disease
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clinical case studies. The cardiac risk assessment mechanism in ODCRARS

is clinically validated using known cardiac patient data. The cardiac risk

scores calculated through the ODCRARS is compared with cardiac risk

scores calculation carried out through the MLDPS (cardiac chest pain and

heart disease prognostic models) for clinical validation and sanity checking

purposes.

4. In chapter 5, we discussed in detail about the design, development and val-

idation of the machine learning driven prognostic system (MLDPS). Three

clinical case studies in the development and validation of the MLDPS are

discussed in detail. The RACPC and Heart Disease clinical case studies are

carried out in the cardiovascular domain. The breast cancer clinical case

study was carried out to demonstrate utilisation of the MLDPS in other

clinical areas. The MLDPS is developed based on the state of the art ma-

chine learning and feature selection techniques. A comparative analysis of

various experimental setups based on LR, DT and SVM are discussed in de-

tail. A missing data handling mechanism was introduced which exploited

mixture density models and EM (Expectation Maximisation) techniques

based on RACPC legacy dataset containing missing information. We also

carried out data classification work on the estimated missing data using

state of the art statistical machine learning techniques. Various bespoke

novel cardiac chest pain heart disease and breast cancer prognostic models

(based on logistic regression) were developed under the close supervision

of primary and secondary care clinicians. The RACPC, Heart Disease and

Breast Cancer prognostic models are deployed online. These models were

clinically validated through the primary and secondary care clinicians in

UK. Clinical trials and validation statements of the clinicians are provided

in the Appendix section.

5. The proposed framework will pave the way for the development of next-

generation clinical decision support systems through the utilisation of ret-

rospective data analysis strategies based on legacy patient data which is

200



often ignored by clinical domain experts. We discussed prognostic mod-

elling mechanism in detail and provided a comparative view of various ma-

chine learning and feature selection techniques. This approach will enable

clinical informatics experts to deploy optimised clinical workflows by learn-

ing from existing workflows through legacy clinical data and could help

build efficient data-driven prospective clinical systems. The next genera-

tion prospective systems could incorporate evidence-based refined clinical

workflows (by identifying loopholes in the redundant clinical workflows)

and could help suggest improvements to the healthcare governing bodies

like NICE, UK and ACC in the US.

6. In case of ODCRARS, we demonstrated that a holistic cardiovascular risk

assessment mechanism could be built by combining knowledge from two

disparate sources. We can benefit from clinical domain experts knowledge

to build a knowledge base to carry out clinical decision support operations

(risk scores calculation, lab tests, medication recommendations) as we have

demonstrated in this thesis. At the same time, we can make efficient use

of the legacy real patient data to use this as a clinical evidence to build

data driven/evidence based prognostic models as a preventative care so-

lution. We combined expert driven clinical decision making (ODCRARS)

and evidence-based (MLDPS) clinical decision making to provide a holistic

cardiovascular decision support framework for clinicians. Patients can also

benefit from this preventative care solution by utilising patient interface to

build their medical histories as part of the patient interviewing mechanism.

Our novel clinical decision support framework could be utilised as a triage

system in the cardiovascular preventative care.

As part of building a context-sensitive information collection component for

the ODCRARS, we noticed that in the conventional questionnaire based in-

terviewing systems, existing clinical questionnaires are normally encoded in

the database as static/adjacency lists. Clinical informatics experts should

consider/review results of our designed context-sensitive information collec-
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tion component as this has potential to be utilised at a commercial level,

which would also enhance clinical decision support system’s computational

performance by way of reducing frequent access requests, insertions and

updates to its central database/repository.

7. As part of developing MLDPS, we have developed benchmark cardiac chest

pain prognostic models. Also, novel heart disease and breast cancer specific

prognostic models have been developed and validated by clinical domain

experts. These prognostic models have been made available online to be

utilised by clinicians and patients as a preventative care measure. The new

clinical models have been evaluated in clinical practices, resulted in very

good predictive power and demonstrating general performance improve-

ment. In this research, we have demonstrated a novel approach to build a

hybrid clinical decision support framework by combining ontology and ma-

chine learning techniques to provide effective clinical decision making. Our

ultimate goal is to integrate the whole framework using a multi-layered ap-

proach and develop this as a commercial clinical system for further clinical

trials by clinicians in the UK and US. We also aim to utilise the proposed

clinical decision support framework for the risk assessment of other chronic

illnesses through the utilisation of disease-specific clinical risk assessment

questionnaires from Harvard Medical School. The proposed clinical decision

support framework is built using modularised ontology driven and machine

learning driven components which makes the proposed clinical decision sup-

port framework reusable in other application areas like breast cancer etc.

8. In the current system heart disease and cardiac chest pain prognostic models

learn from retrospective data. Patient logs into the system and build their

medical history through context aware information collection system. Data

for cardiac risk assessment is extracted through patient answers for the

cardiac risk assessment. Clinical variables for the heart disease and cardiac

chest pain risk scores calculation are pre-populated on the front end which

clinicians can adjust for the cardiac risk scores calculation.
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6.3 Future Work

In future the proposed framework will be complimented with an online learning

mechanism for machine learning. The machine learning inputs in each of the

prognostic models will be optimised (through online learning) for each patient.

A collaborative care mechanism will be built in which patient and clinician could

interact with the ODCRARS in an interactive manner. The interactive collab-

orative clinical decision making platform in ODCRARS will be driven through

multi-modal interfaces. Patient care could be co-ordinated securely through dig-

ital avatars, smart phones, televisions and computers so that support could be

provided in real time instead of through inconvenient doctor’s office visits. A

lifestyle recommendations mechanism, to lower cardiac risk, BMI, etc. will be

driven by clinical expert rules, which will be encoded in the ODCRARS. The

ODCRARS could be linked with third party applications like “CollaboRhythm”

developed by John Moore from MIT new medicine lab in [105]. The Doctor

and patient interfaces in the ODCRARS will be studied from HCI perspective.

Doctor-patient collaborative platform will be analysed from the usability and

optimisation purposes.

The ontology and machine learning driven hybrid clinical decision support

framework will be integrated with the multi-modal affective conversational agent,

proposed by Cambria et al [106]. The multi-modal conversational agent/affective

avatar will be capable of perceiving and expressing emotions in a doctor-patient

collaborative platform which will be developed as an additional module for the

ODCRARS. The affective analysis is carried out through extraction of emotions

from textual, vocal and video inputs. The Sentic Avatar will be used to infer

patient’s affective state and could be useful for the diagnosis of patients with

psychiatric disorders and learning disabilities. The facial extraction analyser

shown in Figure 6.1 will be used for extracting affective information from video

consultations (doctor-patient interactions). The affective integrator will be used

for integrating information coming from different modalities which will feed into

the proposed clinical decision support framework for the overall clinical decision
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Figure 6.1: The Architecture of Sentic Avatar proposed by Cambria et al.

making. The affective conversational agent will be optimised (clinical question-

naire part will be adjusted) keeping in view results of affective analysis which will

be carried out by studying doctor-patient interactions.

The proposed machine learning driven Prognostic system (MLDPS) will also

be validated in the GHD (growth hormone deficiency) and breast cancer domains.

Two COSIPRA lab PhD researchers are working in close collaboration with clin-

ical domain experts in Scotland, UK to collate real patient data for the GHD

and breast cancer patients (MRI images of breast cancer patients). These real

clinical patient datasets will be utilised for the clinical validation of the machine

learning driven prognostic system (MLDPS).

6.3.1 Utilisation of Fuzzy Cognitive Maps for Collabora-

tive Care

Fuzzy Cognitive Maps (FCM) were developed by R. Kosko [107] as an extension of

cognitive maps, to represent the cognitive relationships between concepts. FCM

represent knowledge in a symbolic manner, encoding the relationships between

the elements of a mental landscape so that the impact of these elements can

be assessed. FCM applies fuzzy logic to cognitive maps, making it possible to

predict changes in the concepts represented in cognitive maps. The graphical

illustration of FCM is a signed, directed graph with feedback, consisting of nodes

and weighted interconnections. Nodes correspond to concepts: variables and

states used to describe the behaviour of the system. Nodes are connected by

weighted arrows representing cognitive relationships between nodes [7].
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Figure 6.2: Representation of an FCM Model as in [7].

Figure 6.2 illustrates an example of FCM model that is used to perform med-

ical diagnosis. Here, the concepts of the FCM and the causal relations among

them that influence concepts and determine the value of diagnosis concepts in-

dicating the final diagnosis are illustrated. In the FCM model each diagnosis

concept represents a single diagnosis, which means that these concepts must be

mutually exclusive so that an accumulative final diagnosis could be worked out.

Future work involves exploiting Fuzzy Cognitive Maps (FCM) based to handle

clinical uncertainties in modelling complex situations. The proposed framework

will be extended using FCM for exploiting and combining knowledge and expe-

riences of clinical domain experts along with patient demographics data. The

knowledge-based ODCRARS is more suited for the FCM implementation pur-

poses. The development and design of an appropriate FCM requires contribution

of clinical experts. A hierarchical architecture will be developed in which FCM

will be used to model the interaction of various stakeholders like clinicians, pa-
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tients careers etc. The FCM will consist of concepts representing each one of the

subsystems of FCM for modeling patient records, laboratory tests etc. The FCM

hierarchical model will be an integrated model which will represent the relation-

ships among the subsystems and their models while inferring the final diagnosis

by evaluating all of the information collated through various sub systems. FCMs

could be a useful tool for capturing physicians’ understanding of the system and

their perceptions of the medical requirements of the infectious disease manage-

ment. The main advantage of the proposed FCM tool in clinical decision support

is the sufficient simplicity and interpretability for clinicians in decision making

process, which makes it a convenient consulting tool in predicting the risk of

chronic diseases.

6.3.2 Active Manifold Learning Strategy in Machine Learn-

ing Driven Prognsotic Modelling based on Big Data

In future, the proposed machine learning driven prognostic system (MLDPS) will

be validated using clinical big datasets comprised of genomics and patient demo-

graphics data. The aim of this amalgamated big data is to provide personalised

holistic care through development of bespoke treatments for individuals. We are

aiming to utilise this approach in the breast cancer domain. The focus of research

would be on DNA of an individual’s cancer cells, rather than the ”germlin” - that

is, the patient’s original, inherited DNA for the stratification. This requires the

genetic sequencing of the three billion components of the cancer’s DNA. Com-

putational techniques have paved the way for researchers to analyse this massive

pile of data. Working with human genomic sequences of three billion items gen-

erates specific challenges, in order to overcome these research challenges various

feature reduction techniques will be exploited in dealing with big data to improve

classification problems.

Reduction in big data usually falls in one of two main categories : (i) reduce

the dimensionality by pruning or reformulating the feature set ; (ii) reduce the

sample size by selecting the most relevant examples. The proposed MLDPS will

be complimented with a manifold learning approach to reduce dimensionality and
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active learning SVM-based strategy to reduce the size of labelled clinical samples.

We will deploy various manifold learning strategies e.g. Isomap (Isometric

Mapping) for the extraction of non-linear structures from high-dimensional data.

The outcome of such a mapping, results in defining a structure that can represent

the data with visualisation capabilities. The manifold methods assume that data

lies on a statistical manifold, or a manifold of probabilistic generative models,

i.e. one uses a supervised learning method. The manifold learning can be used

with both the traditionally associated algorithms, such as K-Nearest Neighbors(

K-NN) and state of the art kernel based machines like SVM [108].

Isomap falls in the pre-processing stages for learning, by performing trans-

formation from a high dimensional input data space into a lower dimensional

feature space [109]. Then, a classifier can be applied to the resulting data. Yet,

Isomap does not explicitly define a mapping function between original data and

prep-processed data. Hence, that mapping has to be learned, namely with a su-

pervised approach, such as generalized regression neural networks [110], which

can then transform the new test data into the reduced feature space before pre-

diction. Besides reducing dimensionality, other possibly is to reduce the size ( or

dimension) of the dataset. Different approaches have been followed, e.g. trans-

ductive learning, co-training and active learning. In most techniques, the training

samples are defined by a random section but, often active learning strategies can

also be employed. In active learning, supervised approach can actively choose

the training data in such a way that it could reduce the learner’s need for large

volumes of labelled data, thus reducing training time.

An active learning algorithm selects from a pool of examples which should be

used (usually after being classified) to create the learning model [111]. Hence,

to actively learn we aim at selecting those examples that, when labelled and

incorporated into training, will minimize classification errors over the distribution

of future examples. Feature space reduction will be achieved by generating a

statistical manifold to suit the data through a supervised version of Isometric

Mapping. This reduction will make it possible to visualize the decision space using

the manifold reduced feature space, giving end users a real sense of confidence in
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the results.

6.4 Limitations

In this thesis, several clinical case studies conducted in the development and

clinical validation of the MLDPS. In the RACPC clinical case study, we have de-

veloped benchmark prognostic models after pre-processing of missing data values.

The RACPC patient data was manually collected during on-site visits using dis-

tributed clinical repositories at the Raigmore Hospital. The majority of RACPC

patient data had missing values, so going ahead, future evaluation with much

larger datasets (less missing data anomalies) is required to confirm the prelimi-

nary experimental findings.

The comparison provided in the review chapter is a non-exhaustive comparison

due to the wide range of technologies used in this PhD. The ultimate goal is to

develop this framework at the enterprise level for its commercial deployment at

hospital sites for the overall clinical validation through clinicians in the UK and

US.
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Appendix A

Clinical Experts Validation Feed-

back
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Chair: Mr Garry Coutts  
NHS Highland, Assynt House, Beechwood Park, INVERNESS  IV2 3BW 

Highland NHS Board is the common name of Highland Health Board 
 

 
 
 
 
 

 

 

  
 
 

Re: Chest Pain Assessment Decision Support 
 
I am writing a statement of support for the work comprising the PhD thesis of Mr Kamran 
Farooq. One aspect of his work investigated the possibility of developing a novel decision support 
for the assessment of patients presenting to hospital with chest pain.  
 
Several prototypes were developed and prototype 3 was of particular relevance. 
 
This was an exciting work and there is significant potential for further development of a clinically 
relevant tool to aid clinicians. 
 
Yours sincerely, 
 

 
 
 
 

 
Prof Stephen Leslie 
Consultant Cardiologist 
Honorary Professor of Cardiology 
 
 
 
 
 

 01/12/2014 
  

 

Professor Stephen Leslie 
Consultant Cardiologist 
Raigmore Hospital 
Old Perth Road 
INVERNESS 
IV2 3UJ 
Tel: 01463 705462 
Fax: 01463 888252 

Figure A.1: Consultant Cardiologist, Professor Stephen Leslie’s Feedback on
RACPC Clinical Prototypes.
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Linda McKay Practice Manager 

 

 

 
 
 
 
 

 
 
 

 

 

 

 

 

26 December 2014, 

 

 

Chest Pain and Heart Disease Risk Clinical Decision Support 

It is to confirm that I was involved in the clinical validation of the cardiovascular and 

chest pain risk assessment prototypes related to primary care at my clinic. We have 

carried out clinical trials (in a limited case study) of the aforementioned prototypes 

using real patient data. These prototypes demonstrated clinical potential to be used 

as a decision support tool for General Practitioners, specifically for detecting high 

risk patients with ischemic heart disease. These risk assessment calculators could 

help GPs to prioritise cardiology referrals and further management of suspected 

cardiac chest pain patients in secondary care. These clinical risk assessment 

prototypes could be made part of the clinical work flows after further clinical trials 

and validation.  

 

 

 

 

 

Dr Wasim Haider 

 

 

 

 

 
Dr. Ian McKay  FRCGP  

GMC No. 2819253 

 

Dr. Elizabeth Morton 

GMC No. 2842752 

 

Dr. Wasim Haider MRCGP 

GMC No.  6055699 

 

Krista Clubb  

Practice Nurse 

 

Leith CTC 

12 Junction Place 

Edinburgh  EH6 5JA 

Tel. 0131 465 2950 

Figure A.2: Clinical validation report issued by General Medical Practitioner
from a GP practice in Edinburgh, Scotland.
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30 December 2014, 

 

 

Clinical Risk Assessment Prototypes for Chest Pain and Cardiovascular Decision Support 

I carried out the initial validation of the clinical prototypes which have been developed as 

decision support tools for the chest pain and heart disease risk assessment. These clinical 

prototypes demonstrated clinical effectiveness to be used as a decision support tool for 

primary and secondary care clinicians and could be made part of the clinical work flows as 

preventative commercial clinical prototypes after further clinical trials and validation. Their 

ideal place would be in GP surgeries and rapid chest pain assessment clinics as a tool, by 

clinicians who are first in line down the clinical care pathway, to detect high risk patients for 

ischemic heart disease and would aid in early cardiology referral and further management of 

these patients. 

  

 

 

 
 

Mr Aneel Zaheer 

Clinical Fellow/SPR Cardiothoracic Surgery 

Kings College Hospital  

Denmarkhill 

London 

 

 

Figure A.3: Clinical validation report issued by a cardiac thoracic surgeon from
Kings College Hospital in London.
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Figure A.4: Clinical assessment by clinical informatics expert, Professor Warner
Slack from Harvard Medical School, US.
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30 December 2014, 

 

 

Breast Cancer Prognostic Model 
 

I am working with the Breast Cancer team at Beatson West of Scotland Cancer Centre in 

Glasgow, involved in the initial assessment, treatment and follow-up of the Breast Cancer 

patients. We use different modules to assess the prognosis and clinical outcome using 

multiple parameters. In my view clinical prognostic model would be a useful tool for the 

pathologists to detect and predict breast cancer at early stages. 

 

I am quite keen to be involved in the future development and clinical trials of this clinical 

decision support tool, with a view to roll this out to cancer care specialists and pathologists in 

the West of Scotland. 

 

 

 
 

Dr Adnan Masood Siddiqui  

 

Speciality Doctor Medical Oncology 

Beatson Oncology Centre 

Gartnavel General Hospital 

1053 Great Western Road 

GLASGOW,  G12 0YN 

Scotland, UK 

 

 

…. 

…. 

 

 

Figure A.5: Clinical validation report issued by the oncologist from The Beatson,
Cancer Centre, West of Scotland, UK.
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Appendix B

RACPC Clinical Case Study: Clin-

ical dataset 3 detailed analysis
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1 FS + DT 65.4122
2 BS+DT 65.0538
3 SFFS+DT 65.0538

4 MRMR+DT
65.0538, 57.7061, 58.9606, 61.6487,
60.5735, 61.1111, 60.3943

5 FQ+DT 65.0538, the best is using 1 feature
6 Pval+DT 65.0538
7 ALL+DT 62.3656
8 FS+LR 68.4588
9 BS+LR 68.9964
10 SFFS+LR 67.9211

11 MRMR+LR
65.233, 67.7419, 66.8459, 67.5627,
66.129, 66.6667, 66.3082

12 FQ+LR
65.233, 67.7419, 66.8459, 66.3082,
66.129, 66.6667, 66.3082

13 Pval+ LR 65.233, 67.7419, 66.8459, 66.8459
14 ALL+LR 66.129
15 FS+GMM 68.8172
16 BS+GMM 68.638
17 SFFS+GMM 68.8172

18 MRMR+GMM
64.5161, 67.3835, 67.2043, 66.129,
66.6667, 66.129,

19 FQ+ GMM
64.5161, 67.3835, 67.2043, 65.0538,
66.6667, 66.129, 66.129

20 Pval+ GMM
64.5161, 67.3835, 67.2043, 65.0538,
66.6667, 66.129, 66.129, 65.7706

21 ALL+ GMM 65.7706
22 FS+SVM RBF 70.153
23 BS+ SVM RBF 69.7133
24 SFFS+ SVM RBF 70.0717

25 MRMR+ SVM RBF
64.8746, 66.8459, 69.7133, 67.3835,
68.4588, 69.5341, 68.8172

26 FQ+ SVM RBF
64.8746, 66.8459, 69.7133, 68.9964,
68.4588, 69.5341, 68.8172

27 Pval+ SVM RBF
64.8746, 66.8459, 69.7133, 68.9964,
68.4588, 69.5341, 68.8172, 68.4588

28 ALL+ SVM RBF 68.4588
29 FS+knn (3) 63.6201
30 BS+ knn (3) 65.233
31 SFFS+ knn (3) 65.233

32 MRMR+ knn (3)
56.6308, 60.2151, 56.4516,
58.9606, 63.9785, 63.9785, 61.6487,

33 FQ+ knn (3)
56.6308, 60.2151, 56.4516, 63.6201,
63.9785, 63.9785, 61.6487, 63.0824

34 Pval+ knn (3)
56.6308, 60.2151, 56.4516, 63.6201,
63.9785, 63.9785, 61.6487, 63.0824
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35 ALL+ knn (3) 63.0824
36 FS+SVM Lin 68.4588
37 BS+ SVM Lin 68.9964
38 SFFS+ SVM Lin 67.9211

39 MRMR+ SVM Lin
65.233, 67.3835, 67.3835,
67.7419, 67.2043, 67.2043, 66.8459

40 FQ+ SVM Lin
65.233, 67.3835, 67.3835,
67.5627, 67.2043, 67.2043, 66.8459

41 Pval+ SVM Lin
65.7706, 67.3835, 67.3835,
67.5627, 67.5627, 67.2043, 66.8459, 66.6667

42 ALL+ SVM Lin 66.6667

Table B.1: Risk Factors and two Classes (Weighted)

1 FS + DT 82.9749
2 BS+DT 82.9749
3 SFFS+DT 82.9749

4 MRMR+DT
70.7885, 77.7778, 80.1075,
79.7491, 80.8244

5 FQ+DT
69.7133, 77.7778, 75.9857,
79.5699, 80.8244

6 Pval+DT
69.7133, 77.7778, 75.9857,
79.5699, 80.8244, 81.8996,

7 ALL+DT 81.8996
8 FS+LR 69.8925
9 BS+LR 72.5806
10 SFFS+LR 69.8925

11 MRMR+LR
69.8925, 64.8746, 68.9964,
62.9032, 68.4588, 67.9211

12 FQ+LR
69.7133, 64.8746, 65.7706,
62.9032, 68.4588, 67.9211

13 Pval+ LR
69.7133, 64.8746, 65.7706,
62.9032, 68.4588, 67.9211

14 ALL+LR 67.9211
15 FS+GMM 72.9391
16 BS+GMM 74.1935
17 SFFS+GMM 69.8925

18 MRMR+GMM
69.8925 , 69.8925, 67.5627,
70.7885, 73.4767, 72.9391

19 FQ+ GMM
69.7133, 69.7133, 70.7885,
70.7885, 73.4767, 72.9391

20 Pval+ GMM
69.8925, 70.7885, 70.7885,
73.4767, 72.9391, :72.9391

21 ALL+ GMM 72.9391

Table B.2: Test Results and Two Classes (Weighted)
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Appendix C

Breast Cancer Clinical Case Study:

Comparative Machine Learning Anal-

ysis

C.1 Kernel Models Implementation with Logis-

tic Regression

C.1.1 Performance Vector
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DOT Kernel Model
Accuracy 94.02%

true M true B class precision
pred. M 197 19 91.20%
pred. B 15 338 95.75%
class recall 92.92% 94.68%

POLYNOMIAL Kernel Model
Accuracy 86.82%

true M true B class precision
pred. M 149 12 92.55%
pred. B 63 345 84.56%
class recall 70.28% 96.64%

ANOVA Kernel Model
Accuracy 98.95%

true M true B class precision
pred. M 206 0 100.00%
pred. B 6 357 98.35%
class recall 97.17% 100.00%

Gaussian Combination Kernel Model
Accuracy 27.07%

true M true B class precision
pred. M 5 208 2.35%
pred. B 207 149 41.85%
class recall 2.36% 41.74%
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RADIAL Kernel Model
Accuracy 97.72%

true M true B class precision
pred. M 201 2 99.01%
pred. B 11 355 96.99%
class recall 84.81% 99.44%

NEURAL Kernel Model
Accuracy 83.30%

true M true B class precision
pred. M 164 47 77.73%
pred. B 48 310 86.59%
class recall 77.36% 86.83%

EPACHNENIKOV Kernel Model
Accuracy 98.24%

true M true B class precision
pred. M 202 0 100.00%
pred. B 10 357 97.28%
class recall 95.28% 100.00%

Multiquadric Kernel Model
Accuracy 26.54%

true M true B class precision
pred. M 3 209 1.42%
pred. B 209 148 41.46%
class recall 1.42% 41.46%

Table C.1: Logistic Regression - Performance Vector

k = 1
Accuracy 100.00%

true M true B Class Precision
pred. M 212 0 100.00%
pred. B 0 357 100.00%
class recall 100.00% 100.00%

Table C.2: Performance Vector kNN.
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Figure C.1: Comparison ROCs.

Figure C.2: Comparative ROCs after applying various classification techniques
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C.2 Random Forest Classification Results

The Random Forest operator generates a set of random trees. The random trees

are generated in exactly the same way as the Random Tree operator generates a

tree. The resulting forest model contains a specified number of random tree mod-

els. The number of trees parameter specifies the required number of trees. The

resulting model is a voting model of all the random trees. For more information

about random trees please study the Random Tree operator.

The representation of the data in form of a tree has the advantage compared

with other approaches of being meaningful and easy to interpret. The goal is to

create a classification model that predicts the value of a target attribute (often

called class or label) based on several input attributes of the Example Set. Each

interior node of the tree corresponds to one of the input attributes. The number

of edges of a nominal interior node is equal to the number of possible values

of the corresponding input attribute. Outgoing edges of numerical attributes

are labelled with disjoint ranges. Each leaf node represents a value of the label

attribute given the values of the input attributes represented by the path from

the root to the leaf. For better understanding of the structure of a tree please

study the Example Process of the Decision Tree operator.

Pruning is a technique in which leaf nodes that do not add to the discrimi-

native power of the tree are removed. This is done to convert an over-specific or

over-fitted tree to a more general form in order to enhance its predictive power on

unseen datasets. Pre-pruning is a type of pruning performed parallel to the tree

creation process. Post-pruning, on the other hand, is done after the tree creation

process is complete.

This parameter specifies the number of random trees to generate. Range:

integer The rest of parameters is same as in Decision Trees.
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Figure C.3: Comparative ROCs Decision Trees
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Settings 1 Number of Trees 10
Criterion information gain
Minimal size for split 4
Minimal leaf size 2
Minimal gain 0.1
Maximal depth 20
Confidence 0.25

Settings 2 Number of Trees 50
Criterion information gain
Minimal size for split 4
Minimal leaf size 2
Minimal gain 0.1
Maximal depth 20
Confidence 0.25

Settings 3 Number of Trees 100
Criterion information gain
Minimal size for split 4
Minimal leaf size 2
Minimal gain 0.1
Maximal depth 20
Confidence 0.25

Settings 4 Number of Trees 500
Criterion information gain
Minimal size for split 4
Minimal leaf size 2
Minimal gain 0.1
Maximal depth 20
Confidence 0.25

Table C.3: Random Forests Decision Trees.
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10 trees
Accuracy 96.13%

true M true B class precision
pred. M 195 5 97.50%
pred. B 17 352 95.39%
class recall 91.98% 98.60%

50 trees
Accuracy 97.72%

true M true B class precision
pred. M 203 4 98.07%
pred. B 9 353 97.51%
class recall 95.75% 98.88%

100 trees
Accuracy 96.66%

true M true B class precision
pred. M 202 9 95.73%
pred. B 10 348 97.21%
class recall 95.28% 97.48%

500 trees
Accuracy 96.84%

true M true B class precision
pred. M 201 7 96.63%
pred. B 11 350 96.95%
class recall 94.81% 98.04%

Table C.4: Performance Vector Random Forest
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