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ABSTRACT

Feature extraction is an extremely important pre-processing step to pattern

recognition, and machine learning problems. This thesis highlights how one can

best extract features from the data in an exhaustively online and purely adaptive

manner. The solution to this problem is given for both labeled and unlabeled

datasets, by presenting a number of novel on-line learning approaches.

Specifically, the differential equation method for solving the generalized eigen-

value problem is used to derive a number of novel machine learning and feature

extraction algorithms. The incremental eigen-solution method is used to derive

a novel incremental extension of linear discriminant analysis (LDA). Further the

proposed incremental version is combined with extreme learning machine (ELM)

in which the ELM is used as a preprocessor before learning.

In this first key contribution, the dynamic random expansion characteristic of

ELM is combined with the proposed incremental LDA technique, and shown to

offer a significant improvement in maximizing the discrimination between points

in two different classes, while minimizing the distance within each class, in com-

parison with other standard state-of-the-art incremental and batch techniques.
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In the second contribution, the differential equation method for solving the

generalized eigenvalue problem is used to derive a novel state-of-the-art purely

incremental version of slow feature analysis (SLA) algorithm, termed the gener-

alized eigenvalue based slow feature analysis (GENEIGSFA) technique. Further

the time series expansion of echo state network (ESN) and radial basis functions

(EBF) are used as a pre-processor before learning. In addition, the higher order

derivatives are used as a smoothing constraint in the output signal. Finally, an

online extension of the generalized eigenvalue problem, derived from James Stones

criterion, is tested, evaluated and compared with the standard batch version of

the slow feature analysis technique, to demonstrate its comparative effectiveness.

In the third contribution, light-weight extensions of the statistical technique

known as canonical correlation analysis (CCA) for both twinned and multiple

data streams, are derived by using the same existing method of solving the gen-

eralized eigenvalue problem. Further the proposed method is enhanced by max-

imizing the covariance between data streams while simultaneously maximizing

the rate of change of variances within each data stream. A recurrent set of con-

nections used by ESN are used as a pre-processor between the inputs and the

canonical projections in order to capture shared temporal information in two or

more data streams. A solution to the problem of identifying a low dimensional

manifold on a high dimensional dataspace is then presented in an incremental

and adaptive manner.

Finally, an online locally optimized extension of Laplacian Eigenmaps is de-

rived termed the generalized incremental laplacian eigenmaps technique (GE-
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NILE). Apart from exploiting the benefit of the incremental nature of the pro-

posed manifold based dimensionality reduction technique, most of the time the

projections produced by this method are shown to produce a better classification

accuracy in comparison with standard batch versions of these techniques - on

both artificial and real datasets.
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Chapter 1

Introduction

This chapter Firstly describes the motivation of this research. Secondly, this

chapter presents the brief overview of the primary types of learning and pro-

cessing of feature extraction techniques addressed in this thesis. Thirdly, this

chapter describes the aim and objective of this research. Finally the organiza-

tional structure of this thesis followed by the list of publications is presented in

the end.

1.1 Motivation

Extracting optimal feature sets from online data by transforming it to a reduced

space for both clustering and classification is a fundamental and challenging prob-

lem in the area of machine learning and data mining[3, 4]. The main objective of

this research is to suggest a novel light-weight online feature extraction mechanism

which helps in extracting features from the data in an exhaustively incremental

and adaptive manner.
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Feature extraction is a very useful and popular technique due to the transfor-

mation of existing high dimensional features to a lower dimensional space. The

word “selection” is used when selecting a subset of features from the existing

features without transformation. Features extraction is very commonly used in

audio, video and image processing [5], canonical correlation analysis [6], slow fea-

ture analysis [2], clustering [7] and classification [8] techniques. Feature extraction

works for both supervised [9] and unsupervised methods [2].

In audio and video analysis, feature extraction acts as a foundation for audio

and video key frame extraction [10] and classification [11]. It helps in extracting

features most effective for classification. Key frame extraction is a very important

research area in video information retrieval [12]. The key frames are generally

extracted from each shot which leads to video summarization. A shot can be

considered as a sequence of frames captured from a single camera operation. De-

tecting shot in a video sequence is a process of identifying visual discontinuities

along the time domain. After segmenting the video into shots, the first and last

frames of each shot are chosen as key frames. Further the key frames within each

shot are extracted based on various models with a fixed or variable number of

key frames [13]. Its online versions automatically segments and classifies audio-

visual data from movies or television programs to ensure feasibility of real-time

processing [14].

In real-time visual tracking scenarios, non-stationary image streams continu-

ously change over time [15]. In these scenarios, the multiclass object detectors

[16] and adaptive methods used for face recognition extract most effective fea-
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tures in a purely online and adaptive manner. This strategy leads to complexity

reduction and enhancement of computational efficiency.

Using online feature extraction mechanisms masses of online discussion in the

form of opinion and comments about consumer products are intelligently analyzed

leading to effective decisions [17]. Similarly user-generated reviews of consumer

products in plain text are adaptively mined to extract useful sentiments leading

to analyses of the user’s behaviour [18].

Further feature extraction has also played a very important role in the extrac-

tion of useful information from medical images for diagnostic analysis [19, 20].

Feature extraction helps doctors to diagnose clues and defects in their patients

[21]. Medical imaging, especially X-ray based examination and ultrasonography,

is critical at all levels of health care [22].

For example in public health and in preventive medicine, decisions are de-

pendent on correct diagnosis. The use of diagnostic imaging service leads to the

correct assessment of the underlying disease and suggests the response to the

treatment.

Further feature extraction plays a vital role in speech recognition. It is used

primarily in two different ways: 1) Specifically temporal analysis [23] and 2)

spectral analysis [24]. The speech waveform is used in temporal analysis whereas

spectral representation of speech signal is used in spectral analysis. Digital signal

processing is the core of the speech recognition system. It helps in converting the

speech waveform to some form of parametric information. Further it is used to

find relevant information in the form of a small number of parameters or features.
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Consequently similar segments can be grouped by comparing their features.

Additionally feature extraction is used for object detection in high dimen-

sional images [25]. Feature extraction and object detection is one of the key

research issues addressed by researchers and scientists in the fields of computer

vision and digital photogrammetry [26][25]. Feature extraction helps in efficiently

representing interesting portions of an image as a compact feature vector. Further

it is often used to solve computer vision problems which include object detection

[25] recognition [27], content-based image retrieval [28], face detection [29], face

recognition [30] and texture classification [26].

1.2 Types of Processing

Feature extraction algorithms are fundamentally divided into two major cate-

gories: (1) Batch and (2) Incremental.

1.2.1 Batch

Batch version is used for one time learning of the whole data whereas incremental

version is used for online adaptive learning. Batch version is preferred in scenarios

when there is no change in the dataset expected. Incremental version is preferred

in scenarios where the data is expected to be received in more than one chunk.

In incremental learning, data is combined to the already learned information

overtime facilitating online learning, since both types have there own advantages

and disadvantages the choice of one or the other depends on the nature and type

of problem.

Batch algorithms learn all the data at once but sometimes due to space avail-
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ability are forced to delete learned data in order to make room for new data.

Batch algorithms cannot learn new concepts in an adaptable manner. However

incremental methods learn each chunk of training example adaptively at arrival

without deleting the previously learned data.

1.2.2 Incremental

Incremental learning is applied in situations where input data is expected to

arrive in a sequence in a temporal manner. Further it is capable of diagnos-

ing the deficiency of its current theory and making the best choice in revising

the theory. And finally it is conclusively proven [31] that incremental methods

perform similarly to their equivalent batch-learning implementation while using

fewer computational resources.

1.3 Learning

Learning is primarily divided into three broad categories: (1) supervised learning,

(2) unsupervised learning and (3) re-reinforcement learning. In supervised learn-

ing also known as target-based learning, the target output is already known and

the input data is trained on the basis of target output. Reinforcement learning

or reward-based learning technique rewards every action which needs to be max-

imized to reach the actual destination/target. Unsupervised learning is a target-

free learning. In unsupervised learning the model is trained without any target

output. Supervised and unsupervised learning is the paradigm used throughout

this thesis, and is discussed in detail in the subsections below.
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1.3.1 Unsupervised Learning

Unsupervised learning techniques are self-organizing in nature and are designed

to find optimal solution without any pre-defined target solution. In unsuper-

vised learning, apart from Reinforcement learning, the goal is not to maximize

the utility function. Clustering is one of the most popular examples of unsuper-

vised learning [32]. The novel online learning approaches presented in this thesis

are based on hebbian learning mechanism, a popular unsupervised feedforward

learning technique [33]. Hebbian learning is described as an explanation for the

adaptation of neurons in the brain during the learning process.

This biologically inspired paradigm of Hebbian learning is optimally defined

as: “If any two nodes in the network connected with each other fire simultane-

ously, the weights connecting them will be strengthened. This concept is often

summarized as “Cells that fire together, wire together“ [34][35]. The implementa-

tion of this concept in artificial neural environment sometimes causes the weight

grow out of bound which are then controlled by constraints to achieve stability.

These constraints includes weight decay [36] and negative feedback techniques

[37]. Unsupervised learning is similar to probability density estimation in statis-

tics. The density estimates are used to construct probabilities of occurrence of

certain events on the basis of pre-defined conditions. Unsupervised learning can

also be defined as “learning without a teacher” [38]; is universally associated with

the idea of using a collection of observation (X1, ....,Xn) sampled from a distri-

bution p(X) to describe properties of p(X). It is in practice generically referred

to as clustering [32], principal component analysis [39], association rule discovery
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[40] and multidimensional scaling [41].

1.3.1.1 An Unsupervised Learning paradigm to Extract Invariant Fea-

tures

One of the principle paradigm of unsupervised learning which is considered as

baseline of contribution in this thesis is invariance/slowness. Invariance is one of

the four principles of computation used as candidates to explain self-organization

in the visual cortex on the one hand and to unsupervised analyze and represent

high dimensional data sets in machine learning [42].

1. Invariance/Slowness: Learning invariance is one of the major problems

in neural systems. Invariance means features related to the data of a par-

ticular object change very slowly and have no effect due to the change in

shape, position, orientation, size and rotation of the object. The idea is also

explained in terms of a signal which may change quickly due to changes in

the sensing conditions, such as scale, location, and pose of the object. How-

ever there are certain features of the input signal which change very slowly

or rarely such as the presence of a feature or an object. The objective of

a neural system in learning invariance is therefore the extraction of slowly

varying signals from the input.

In computer vision, this concept is best utilized when trying to extract

some meaningful representation of an object. Extracting meaningful rep-

resentation from the input signal is currently an active area of research

in computational neuroscience [2]. It is concerned with the way the brain

learns to form a representation of these external causes from raw sensory
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input.

Another big challenge is to learn these invariances from the input signal in

a completely unsupervised manner [43].

Learning invariance helps in identifying an object in the visual system even

if the retinal image of an object is transformed considerably by commonly

occurring changes in the environment. Further to use learning invariance

one must learn the overall structure of an object to identify which object

changes the least due to the change in sensing conditions.

1.3.2 Supervised Learning

Supervised learning invokes the idea of a “supervisor” that instructs the learning

system on the labels to associate with training examples. In other words super-

vised learning works on labeled datasets. It entails learning a mapping between

a set of input variables X and an output variable Y by applying this mapping to

predict the outputs for unseen data. In supervised learning, two major tasks are

achieved 1) classification [44] and 2) regression [45].

The classification task is to classify the observations in a set of finite labels.

The accuracy of classifiers is most often based on the percentage of correct pre-

dictions divided by the total number of predictions.

There are at the minimum three popular techniques which are used to evaluate

classification accuracy. Firstly to split the training set by using two-thirds for

training and the other third for estimating performance. Secondly to divide the

training set into mutually exclusive subsets, a form of cross validation technique;
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and for each subset the classifier is trained on the union of all the other subsets.

And thirdly to leave-one-out validation in which all the test subsets consist of a

single instance. The choice among each of the evaluation methods is based on

the amount of data available for training.

Secondly regression analysis is a widely used technique for prediction and fore-

casting, in the case where its use has substantial overlap with the field of machine

learning. The focus of regression analysis is to analyze the relationship between

a dependent variable and one or more independent variables. In other words,

regression analysis helps one understand how the typical value of the dependent

variable changes when any one of the independent variables is varied, while the

other independent variables are held fixed. The assessment of regression analy-

sis is based on the statistical significance of the estimated relationship, between

the closeness of actual relationship to the estimated relationship. The techniques

most commonly used for regression analysis are linear regression [46], ordinary

least squares [47] and logistic regression [48].

1.4 Aim and Contribution of Research

The aim of this research is to derive a novel state of the art online approach

of existing supervised and unsupervised learning techniques. These techniques

include linear discriminant analysis, slow feature analysis, canonical correlation

analysis and laplacian eigenmaps.

The contribution to knowledge includes the following work

1. The online version of Linear Discriminant Analysis is linked with extreme
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learning machine which is used as a pre-processor. This method is derived

by considering the first two layers of ELM for random feature mapping

followed by the incremental version. The novel incremental version with

ELM is derived to maximize the discrimination among points belonging to

two different classes and to minimize the distance between points within

each class.

2. Two incremental versions are derived in the area of slow feature analysis.

The first is based on the original slow feature analysis criteria, and the

second is based on Stone’s criterion. Additionally echo state network is

used as a pre-processor with both versions. Radial basis functions are also

tested as a pre-processor before both the proposed learning approaches.

3. In the area of canonical correlation analysis, the prime objective is to max-

imize the correlation between dual and multi-data streams. Echo state

networks are used for generating time series information, and to derive cor-

relation between temporal data.

4. Incremental laplacian eigenmaps, a locality preserving optimal manifold

based learning technique, is one more contribution in the area of visual-

ization in this thesis. The learning method is again derived by solving the

generalized eigenvalue problem.
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1.5 Structure of Thesis

Chapter 2, provides a review of the existing literature concerning all methods used

as the baseline for contribution to knowledge in this thesis. Further it reviews the

existing method of solving the generalized eigenproblem which is used as a bridge

to derive novel incremental approaches in the area of slow feature analysis, linear

discriminant analysis, canonical correlation analysis and laplacian eigenmaps.

Chapter 3, applies the incremental eigen solution method to derive novel state

of the art linear discriminant analysis approach abbreviated as GENILDA. This

method exploits the random feature expansion characteristic of Extreme Learning

Machine (ELM) as a pre-processor between the input and the proposed algorithm.

The rationale for using random features is to firstly remove the non-linearity in the

data by mapping the input data from low to a high dimensional random feature

space. This expansion before using GENILDA successfully resulted in further

maximizing the discrimination among points between two different classes and

minimizes the distance within each class. The proposed methods are illustrated

on both artificial and real datasets [49].

Chapter 4, generalizes the differential equation to implement the biologically

inspired slow feature analysis technique abbreviated as (GENEIGSFA) the gener-

alized eigenvalue based slow feature analysis technique. The temporal activations

of echo state networks are used as a pre-processor before learning. Radial basis

functions are also used for expansion before learning. The effect of higher order

derivatives are used as a smoothing constraint. By re-using James Stone Cri-
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terion an online generalized eigen value version of invariant feature extraction

mechanism is also presented.

All the proposed methods are tested on artificially created datasets, the real

MNIST digit dataset and the dataset of written character trajectories [43].

Chapter 5, implements the incremental eigen-solution method on twinned

datasets to obtain extensions of the statistical technique known as canonical cor-

relation analysis. A recurrent set of connections of echo state networks are used

between the inputs and the canonical projections to capture shared temporal in-

formation between two datastreams. The proposed method is further exploited

by considering maximizing the covariance between data streams while simultane-

ously maximizing the rate of change of variance within each data stream. Echo

state network is again used as a pre-processor before learning.

Extracting the covariance information from more than two data streams si-

multaneously are also presented.

The comparative effectiveness of the proposed methods are illustrated on both

artificial and real benchmark datasets [50].

Chapter 6, presents the locally optimum solution to the problem of identify-

ing a low dimensional manifold on a high dimensional dataspace. This chapter

presents a novel online version of Laplacian Eigenmaps, termed the Generalized

Incremental Laplacian Eigenmaps (GENILE) algorithm. Its comparative perfor-

mance is evaluated using both artificial and real dataset. Preliminary experimen-

tal results demonstrate consistent improvement in the classification accuracy of

the proposed method compared to the other state-of-the-art techniques.[51]
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1.6 Description of Datasets

This section provides the description of datasets used throughout the thesis:-

1.6.1 UCI Machine Learning Repositories [1]

1. IRIS: The dataset consist of 3 classes each of 50 instances. The total length

of the dataset is 150. Each class refers to a type of iris plant. In all the

three classes, one class is linearly separable from the other 2. The three

classes are labeled as 1) Iris Setosa, 2) Iris Versicolour and 3) Iris Virginica.

2. Liver-Disorder: This dataset consist of 345 instances and 2 classes. Each

class refers to 5 variables 1) mcv mean corpuscular volume, 2) alkphos

alkaline aminotransferase, 3) sgpt alamine aminotransferase, 4) sgot aspar-

tate aminotransferase, 5) gammagt gamma-glutamyl transpeptidase and 6)

drinks number of half-pint equivalent of alcoholic beverages drunk per day.

3. Vehicle: This dataset consist of 946 instances having 18 input variables.

The number of classes are 4 which includes 1) OPEL, 2) SAAB, 3) BUS

and 4) VAN.

4. Glass: This dataset consist of 214 instances having 10 input variables. The

number of classes are 7 which includes 1) building windows float processed,

2) building windows non float processed, 3) vehicle windows float processed,

4) vehicle windows non float processed, 5) containers, 6) tableware and 7)

headlamps.

5. Wine: This dataset consist of 178 instances having 13 input variables. The
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number of classes are 3 which describes the type of alcohol.

6. Image Segmentation: This dataset consist of 2310 instances drawn ran-

domly from a database of 7 outdoor images. The input variables are 19 and

total number of classes are 7.

7. Vowel: This dataset consist of 528 instances having 10 input variables.

The total number of classes are 11 indexed by integers between 0-10.

8. Sonar: This dataset consist of 208 instances having 60 input variables.

The total number of classes are 3 which includes 1) Sonar, 2) Mines and 3)

Rocks.

9. Banknote Authentication: The banknote dataset is taken from genuine

and forged banknote-like specimens. This dataset comprises five attributes:

1) variance of Wavelet transformed image, 2) skewness of Wavelet trans-

formed image, 4) entropy of image, and 5) class information. The dataset

is organized into two classes. The dataset has a total of 1372 instances.

1.6.2 Swiss Roll Dataset

The swiss roll dataset consist of 20,000 points. Each point in the data set is

three dimensional. The three dimensional view of a swiss roll dataset is shown in

Figure 1.1.

1.6.3 S-Curve Dataset

The s-curve dataset consist of 20,000 points. Each point in the data set is three

dimensional. The three dimensional view of a s-curve dataset is shown in Figure
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Figure 1.1: Swiss Roll

Three Dimensional View

Figure 1.2: S-Curve

1.2.

1.6.4 Yale Dataset

The Yale database contains 165 grayscale images in GIF format of 15 individuals

as shown in Figure 3.8. Each subject contains 11 images, one per different facial

expression or configuration: center-light, w/glasses, happy, left-light, w/o glasses,

normal, right-light, sad, sleepy, surprised, and wink.
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Figure 1.3: Yale Dataset

1.6.5 MNIST Digit Dataset

The MNIST handwritten digit dataset consist of a standardized and freely avail-

able set of 70,000 handwritten digits [52]. Each pattern consist of a zero to nine

handwritten digit of size 28 x 28 pixels as shown in Figure 6.3. It has a training

set of 60,000 examples, and a test set of 10,000 examples.

1.6.6 Character Trajectories

The character trajectories dataset [1] consist of 2858 character samples. The

categories of characters are from the letters a to z. Each character can have a

different number of pixels which is always between 174 x 205 in length with the

standard three dimensional data giving x, y and z coordinates.
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Figure 1.4: Digit Dataset

Figure 1.5: Character Trajectories Dataset
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1.6.7 Cardiovascular Disease Dataset

This dataset consist of more than one different type of attributes of the patient

labeled as cardiovascular and non-cardiovascular patients. The dataset consist of

558 records and each patient’s record has 6 attributes.

1.7 Publications

The following journal papers have resulted from the research presented in this

thesis.

1. Malik, Z.K., Hussain, A., and Wu, J., An Online Generalized Eigenvalue

Version of Laplacian Eigenmaps for Visual Big Data, Neurocomputing, El-

sevier (DOI: doi:10.1016/j.neucom.2014.12.119), 2015.

2. Malik, Z.K., Hussain, A., and Wu, J., Extracting online information from

Dual and Multi Data Streams, Neural Computing & Applications, (In Press),

2015.

3. Malik, Z.K., Hussain, A., and Wu, J., Novel Biologically Inspired Ap-

proaches to Extracting Online Information From Temporal Data, Cognitive

Computation, vol. 6, no. 3, pp. 595-607, 2014.

4. Malik, Z.K., Hussain, A., and Wu, J., A neural implementation of Linear

Discriminant Analysis with Extreme Learning Machine, Neural Network

and Learning System, IEEE Transactions on, (Accepted with Major Revi-

sion), 2015.

18



Chapter 2

Literature Review

2.1 Introduction

This chapter presents the theoretical foundations underlying this thesis. Firstly,

it defines some basic concepts used for feature extraction techniques. Secondly, it

presents the differential equation used throughout this thesis. Thirdly, it provides

a brief overview of the generalized basic framework used for intelligent analysis.

The reason for presenting this overview is to highlight the key modules required

to perform an intelligent task. Finally, the evaluation and validation techniques

used in thesis are described.

2.2 Definition of Some Basic Concepts

2.2.1 Pattern

A Pattern is defined as a quantitative or structural description of an object or

some other entity of interest [53]. It is usually arranged in the form of combination
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of feature vector as:
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where {x1,x2, ...,xn} are the features.

2.2.2 Feature

Feature is defined as an individual characteristic of a phenomenon being observed

[53]. Features are most of the time converted to one standard type such as

numeric. Features in a pattern can be either discrete numbers or real continuous

values, depending on the measurements of an object. The only requirement is

that features should reflect the characteristic of desired objects and differ from

the characteristics of other objects.

2.2.3 Class

A Class consists of a set of patterns that share some common properties. The

collection of feature vectors of the same type of objects will naturally form one set.

Due to variation among set of patterns in one class, the patterns extracted from

the same type of class are seldom identical, however they are closely similar to

one another within the same class and dissimilar to the patterns in another class.
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The criteria of grouping same set patterns into one class is called cluster analysis

[54]. Figure 2.1 shows in mathematical form an example of sample distribution

of two classes in a single dimensional space with C classes:

Ωc 6= φ, c = 1, ...., C; Ωc

⋂

Ωl = φ, c 6= lǫ{1, ...., C} (2.1)

0 10 20 30 40 50 60

class 1
class 2

Figure 2.1: Sample demonstration of two classes

2.2.4 Classification Approaches

The most commonly used classification criteria are distance, Bayes decision rule

also called decision rule, and likelihood :

1. Distance approach is the simplest and most commonly used criterion. In

this approach the data is classified according to the class which is clos-

est to it. Euclidean Distance and Mahalanobis distance are the two most

commonly used forms.

Suppose we have C classes. Let (µj,
∑

j) be the known parameters of the set

21



of class j, where µj is the reference vector of class j,
∑

j is the covariance.

The square form of Euclidean distance of an observation vector x from class

j is:

dj(x) = ‖x− µj‖2 (2.2)

The square form of Mahalanobis distance of x from class j is:

dj(x) = (x− µj)
T ∑−1

j (x− µj) (2.3)

In fact, Euclidean distance is a special case of Mahalanobis distance.

2. In Bayes decision rule an observation vector will be assigned to the class

which has the largest a posteriori probability p(Ωl|x). For example suppose

we have C classes, Ω1,Ω2, ...,ΩC and we know the a priori probability

of each class P (Ωi), i = 1, 2, ..., C and the conditional probability density

p(x|Ωi), i = 1, 2, ....C, then a posteriori probability can be calculated by

Bayes rule

p(Ωl|x) =
p(x|Ωl)P (Ωl)

p(x)
=

p(x|Ωl)P (Ωl)
∑J

i=1 p(x|Ωi)P (Ωi)
=

likelihood x prior

evidence
(2.4)

3. Likelihood approach is a special case of Bayes classification approach. In

case the parameters of a class are known, likelihood will be the probability
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density function (PDF). In this case, it is assumed that all of the a priori

probabilities P (Ωi) are equal and the distribution of classes are normal:

x ∼ N(µi,
∑

i), i=1,2,...,K. Then we have

p(Ωj |x) = p(x|Ωi) (2.5)

and

p(x|Ωi) =
1

|2π
∑

i |1/2
e−

1

2
(x−µi)T

∑−1

i (x−µi) (2.6)

Logarithm of likelihood is usually further taken to make the calculation

simpler which is given as follows:

Pi(x) = −1

2
ln|

∑

i

| − n

2
ln2π − 1

2
(x− µi)

T
−1
∑

i

(x− µi) (2.7)

Based on the classification approach used in the input-output (Discriminant)

function, the classifiers can be grouped into Bayesian classifier, Likelihood clas-

sifier and distance classifier. Figure 2.2 shows input-output functions (Discrimi-

nant Function) of these classifiers in a two-class problem.

2.2.5 Correlation

Correlation is a statistical concept of measuring the relationship between two

random variables, or two sets of data. It shows how strongly a pair of variables

are related.
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Figure 2.2: Discriminant function of Likelihood, Bayesian and Distance classifiers

A simple example population correlation coefficient PAB between two variables

A and B with expected values µA and µB and standard deviation γA and γB is

defined as:

PAB = corr(A,B)− cov(A,B)

γAγB
=

E[(A− µA)(B − µB)]

γAγB
(2.8)

where E is the long-run average value (Expected value) operator, cov is a

measure of how much two random variables change together and corr is the

notation used for correlation coefficient.

2.2.6 Covariance

Covariance is another statistical measure which evaluates how much two random

variables changes together. It provides a measure of the strength of the correlation

between two or more sets of random variables. The covariance of two random
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variables A and B, each with sample size N is defined by the expectation value:

cov(A,B) =

N
∑

i=1

(ai − ā)(bi − b̄)

N
(2.9)

The covariance will be zero if the variables are not correlated with each other

and nonzero if they are somewhat correlated with each other.

2.3 Differential Equation

In this thesis a differential equation is used for solving a generalized eigenvalue

problem whose stable points are the eigenvectors corresponding to the maximum

eigenvalue. Zhang and Leung [55] show that one method for finding the maximum

eigenvalue of the generalized eigenproblem is:

Aw = λBw, (2.10)

is to iteratively use

∆w = Aw− f(w)Bw (2.11)

w = w + η∆w,

where η is a learning rate or step size. In (2.11) the first term on the right-hand

side is considered as a standard Hebbian rule term [56], and the second term

acts to bound the length of the vector w. In (2.11) f(w) = wtw becomes the

continuous version of Oja’s algorithm as mentioned by Zhang and Bao in [57].
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The function f(w) : Rn − {0} → R satisfies

1. f(w) is locally Lipschitz continuous

2. ∃M1 > M2 > 0 : f(w) > λ1, ∀ w :‖ w ‖≥ M1 and f(w) < λn, ∀ w : 0 <‖

w ‖≤ M2

3. ∀ w ∈ Rn − {0}, ∃ N1 > N2 > 0 : f(θw) > λ1, ∀ θ : θ ≥ N1 and f(θw) <

λn, ∀ θ : 0 ≤ θ ≤ N2 and f(θw) is a strictly monotonically increasing

function of θ in [N1, N2].

where λ1 is the greatest generalized eigenvalue and λn is the least eigenvalue.

These criteria imply that

1. The function is rather smooth.

2. It is always possible to find values of wi, i = 1, 2 large enough so that the

functions of the weights exceed the greatest eigenvalue.

3. It is always possible to find values of wi, i = 1, 2 small enough so that the

functions of the weights are smaller than the least eigenvalue.

4. For any particular value of wi, i = 1, 2, it is possible to multiply wi, i = 1, 2

by a scalar and apply the function to the result to get a value greater than

the greatest eigenvalue.

5. Similarly, we can find another scalar so that, multiplying the wi, i = 1, 2,

by this scalar and taking the function of the result gives us a value less than

the smallest eigenvalue.
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6. The function of this product is monotonically increasing between the scalars

defined in 4 and 5.

Using the above criteria by solving the generalized eigenvalue problem has

already been proved in [57] given in the appendix of this thesis which can easily

be used for learning the highest principal component and for learning the least

minor component of the input dataset.

2.4 Role of a Feature Extractor in the General-

ized Machine Learning Model

In the following section the broader picture of a machine learning model is de-

scribed. This picture clearly highlights the connections of other stages involved in

completing an intelligent task and shows the prospective stage of feature extractor

in the generalized machine learning model.

Figure 2.3 shows the generalized architecture of a machine learning model.

In Figure 2.4 the same generalized architecture shown in Figure 2.3 is optimized

by representing each layer with a single generalized name which clearly shows

the main steps involved for intelligent data analysis. The following sections of

this chapter presents a brief description of each phase of the generalized machine

learning model including state of the art review of feature extraction techniques

which are considered as a baseline for contribution in this thesis.
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Figure 2.3: Generalized Flowchart of a Machine Learning Model

2.4.1 Data Science

Data science is a set of fundamental principles that support and guide the prin-

cipled extraction of information and knowledge from data [58]. It is applied

by employing techniques based on mathematics, statistics and information tech-

nology. This science is gradually becoming very popular in both industry and

academia [58]. The main reason for its popularity is due to the rapid increase

in the collection of data. Due to this increase, there is a need to mine useful
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Figure 2.4: An optimized flowchart of a machine learning model

information from this data to assist industrial decision making.

2.4.1.1 Scalability of Massive Data

Due to the rapid growth of data science, the first and foremost issue is scalability

or the capacity to scale expanding inputs rapidly. This capacity is referred as Big

Data platform. This platform introduced a new trend of collecting and storing

raw information including ETL (Extract, Transform and Loading) process [59],

designing and developing easy, interpretable and adaptable analytics over Big

Data repositories into order to derive intelligence and extract useful knowledge

from them [60].
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2.4.1.2 Filtering uncorrelated Data

With the enormous increase in size of Big Data repositories, there is a high

possibility dealing with large amount of data that are uncorrelated to the kind

of analytics to be designed. Hence filtering out uncorrelated data by extracting

highly correlated data is another important challenge which significantly affects

the quality of final analytics to be designed [60].

2.4.1.3 Sequentialization of Massive Data

Another aspect of Big Data is the sequentialization of massive data. The

traditionally assumed way is the so-called batch, where all the data needed is

available all at once. There are scenarios in the literature when the data is

produced/delivered in a sequential/incremental manner. In case of processing

massive datasets which follows the same pattern of coming in a sequence chunk

by chunk; and therefore incrementalization of state of the art machine learning

algorithm is useful for both streaming data and massive data that is too large to

be loaded into memory all at once [61].

2.4.1.4 Dimensionality Reduction and Feature Extraction

Learning massive data with high dimensions increases the computational com-

plexity of analytical algorithms. Dimensionality reduction plays a key role in

solving the curse of dimensionality and providing meaningful summaries reveal-

ing the patterns underlying the data. It is useful to employ sequential learning

algorithms for dimensionality reduction and feature extraction of massive dataset

with such procedures one can achieve orthogonality in the input space, eliminate
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redundant and noise variables, perform learning in a lower dimensional and or-

thogonal input space and reduce variance in the estimator [61].

2.4.1.5 Strong Unstructured Nature of Data Sources

To design meaningful analytics, it is mandatory that input data be pre-processed

to a suitable, structured format, and stored in the DFS (Distributed File System).

Transformation from a unstructured to a structured format should be performed,

according to a sort of goal-oriented methodology [61]. Prekopcsak et al [62]

suggest that 80 % of the work consists of preprocessing and only 20 % of the

modeling and evaluation.

2.4.2 Preprocessing Data

Pre-processing data is defined as one of the initial steps before using the data. In

this phase the data is converted to a form qualitatively used for analysis. This

phase includes data cleaning, normalization and transformation known as feature

engineering.

1. Data Cleaning: This phase includes removing or fixing missing data, de-

tecting outliers in the data and recording values such as mean, standard

deviation and range. In order to extract useful features from the data,

it is mandatory to clean the data by following the garbage-in-garbage-out

principle [63]. For example some data do not address the problem or are

incomplete.

2. Normalization: Scaling the features to a common range such as between

0 and 1 increases the level of standardization in the data. It is difficult
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for a learning algorithm to learn data which is continuous in nature and

in which each feature is measured in a different scale and has a different

range of possible values [64]. The two most common methods for data

normalization are

(a) min-max normalization:

w
′

=
w −minA

maxA −minA

(newmaxA − newminA) + newminA (2.12)

(b) z-score normalization:

w
′

=
w −mean

standdevA
(2.13)

where w is the old feature value and w
′
is the new one.

3. Transformation: This final step is to transform the process data. It rep-

resents the decomposition and aggregation of features. Decomposition is

important for features that represent a complex concept which may be

more useful to a learning algorithm when split into its constituent parts.

On the other hand, aggregating features into a single feature could lead to

a more effective analysis. According to S.B. Kotsiantis [65] feature trans-

formation provides a better discriminative ability than the best subset of

given features.

2.4.3 Batch Learning

This procedure is also referred to as batch learning or non-sequential learn-

ing [66]. Suppose a learning system is specified by a parameter vector θ =
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(θ1, ..., θm)T ǫ Rm. Let (x, y) be a discriminant pair, which the system learns,

where x = (x1, ..., xr)
T ǫ Rr and y = (y1, ..., ys)

T ǫ Rs. For each input-output

(discriminant) pair, the loss function is defined as

d(x,y; θ) (2.14)

which evaluate the performance of learning system θ for given input x and

desired output y. A finite number of input-output examples {(xi,yi)} where

i = {1, 2, ..., n} are available and the goal is to obtain optimal learning θ∗.

2.4.4 Concept Drifts

Concept drifts represent scenarios in which the relation between the input data

and the target variable changes over time [67].

Formally concept drift between time stamp t1 and time stamp t2 can be defined

as

∃X : pt1(X,y) 6= pt2(X,y), (2.15)

where pt1 and pt2 denotes the joint distribution at time t1 and t2 between

the set of input variables X and the target variable y. Concept drifts can be

categorized into three types

1. Real Concept Drift: This drift refers to changes in the target variable

without change in the input [68].

2. Virtual Concept Drift: This drift refers to incoming data change without
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change in the target variable [69].

3. Dual Concept Drift: This drift refers to simultaneous change of incoming

data and target variable [68].

These drifts can be learned primarily in one of two ways 1) Domain Indepen-

dent Learning and 2) Domain Dependent Learning.

2.4.4.1 Domain Independent Learning

Domain independent learning algorithms learn every new chunk, or data instance,

independently without depending on the previously processed information. Fig-

ure 2.5 shows a generalized architecture of domain independent learning. It takes

less memory because no previous processed information is required for learning

new adaptive inputs [67]. Further these algorithms calculate the predicted output

from a new class or an existing class, similar to the incremental subspace versions

of PCA and LDA methods [70][71].

Figure 2.5: Generalized Architecture of Domain Independent Learning
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2.4.4.2 Domain Dependent Learning

Domain dependent learning algorithms learn every new incoming chunk, or data

instance, by using the previously processed information. Figure 2.6 shows a

generalized architecture of domain dependent learning. These types of algorithms

calculate the predicted output by using the existing adjacent information of the

previous chunk, for example the most recently proposed incremental version of

Laplacian Eigenmap [72] is very dependent on previously processed information.

Figure 2.6: Generalized Architecture of Domain Dependent Learning

2.4.5 Types of Feature Extractors

The main aim of a feature extractor is to select or combine those features that

preserve most of the information and to remove redundant components thereby

improving the performance of subsequent classifiers. Feature reduction is pri-

marily divided into two main categories: feature selection [73, 74] and feature

extraction [75].
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2.4.5.1 Feature Selection Techniques

Feature selection is defined as a process of detecting relevant features and dis-

carding irrelevant ones [73]. It can also be defined as a process of selecting a

subset of features from the original set of features [74]. A general definition of

feature selection in [76] is:

Definition(Feature Selection): Let J(A
′
) be an evaluated measure to be

optimized (say to maximize) defined as J : A
′ ⊆ A− > ℜ. The selection of a

feature subset can be seen under three considerations:

1. Set |A′| = m < n. Find A
′ ⊂ A, such that J(A

′
) is maximum

2. Set a value Jo this is, the minimum J that is going to be tolerated. Find the

A
′ ⊆ A with smaller |A′ |, such that J(A

′
) ≥ Jo.

3. Find a compromise among minimizing |A′| and maximizing J(A
′
)(general

case).

From classification perspective feature selection techniques are primarily di-

vided into three main categories [73].

1. Filter Feature Selection Techniques

2. Wrappers Feature Selection Techniques

3. Embedded Feature Selection Techniques

2.4.5.1.1 Filter Feature Selection Techniques Filter feature selection tech-

niques calculate each feature’s relevance separately and remove low scoring fea-

tures. It can be considered as a feature scoring technique which ranks each feature
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in accordance with its relevance to the objective while removing low scoring ones.

These methods are computationally very fast, simple and can easily be scaled to

very high dimensional datasets [77]. The only drawback of these approaches is

their independence with the classification algorithm. This means that these fea-

ture selection algorithm filters the subset of features without interacting with the

classifiers leading to increased chances of raising the classification error compared

to other feature selection approaches [78].

2.4.5.1.2 Wrapper Feature Selection Techniques Wrapper based feature

selection techniques optimizes a predictor as a part of the selection process. Using

the induction algorithm [79] the wrapper method uses various search techniques

to select a subset of features. The search techniques popularly used in a wrapper

based feature selection process is 1) Forward Selection and 2) Backward Selection.

1. Forward Selection: It starts with an empty set of features and greedily

add features one at a time. The features at each step is added which

produces the larger increase of the evaluation function with respect to the

value of the current set [80].

2. Backward Selection: It starts with a set of features that contains all

the features and discards features one at a time. The feature at each step

is removed whose removal results in the larger increase in the evaluation

function [80].

2.4.5.1.3 Embedded Feature Selection Techniques Embedded feature

selection techniques perform feature selection in the process of training and are
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usually specific to given learning machines. These methods are similar to wrap-

per method. The only advantage of using embedded methods in comparison to

wrapper methods is their interaction with the classification model during feature

subset selection and thus are far computationally less expensive than wrapper

methods [73]. In other words these methods like wrapper methods are defined

as methods in which feature selection is performed automatically by the learning

algorithms [80].

2.4.5.2 Feature Extraction

In machine learning and statistics, dimensionality reduction is a process of re-

ducing the dimensions of data by mapping a set of high dimensional input points

onto a low dimensional latent space in two different ways: (1) By only keeping the

most relevant variables from the original dataset (this technique is called Feature

Selection) or by exploiting the redundancy of the input data and (2) By finding

a smaller set of new variables, each being a combination of the input variables,

containing basically the same information as the input variables (this technique

is called Feature Extraction). Feature extraction is exploratory and has applica-

tions in dimension reduction [81], automatic exploratory data analysis [82], data

visualization [83] and knowledge discovery [84]. This section presents a complete

theoretical foundation of feature extraction techniques which are considered as a

baseline for contribution in this thesis.

2.4.5.2.1 Linear Discriminant Analysis Fisher’s Linear Discriminant Anal-

ysis is one of the most popular supervised feature extraction technique used pri-

marily for classification problems [85]. The prime objective of linear discriminant

38



analysis is to find a single subspace for two or more sub classes of the data. The

high dimensional data is projected on this subspace and the distance between data

points within each class is reduced whereas the distance between data points in

two or more different classes is maximized. In other words it is a method which

finds a series of projections which maximizes the ratio of between class and within

class variance. The projections of two outcomes and the decision region of Linear

Discriminant Analysis (LDA) is shown in Figure 2.7.

Figure 2.7: Visualization of two outcomes

Suppose K1 = {k1
1, ..., k

1
l1
} and K2 = {k2

1, ..., k
2
l2
} be the samples from two

different classes belonging to the same data K. Linear Discriminant Analysis is

given by the vector w which maximizes

J(w) =
wTSBw

wTSww
(2.16)

where
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SB = (m1 −m2)(m1 −m2)
T (2.17)

and SW =
∑

i=1,2

∑

kǫKi

(k−mi)(k−mi)
T (2.18)

are the between and within class scatter matrices respectively and mi is de-

fined as mi = 1
li

∑li
j=1 k

i
j. The rationale behind maximizing J(w) is to find a

direction which maximizes the projected class means (the numerator) and simul-

taneously minimizes the classes variance in the same direction (the denominator).

Figure 2.8 shows the distribution of iris data by the first single dimension

using standard Fisher’s Linear Discriminant Analysis technique.

LDA1
0 50 100 150

class1

class2

class3

Figure 2.8: Single Dimensional Projection of IRIS Dataset using LDA

2.4.5.2.1.1 Related State of The Art In [86], the authors presented

an incremental least square solution to linear discriminant analysis (LDA) by

proposing its online incremental version. This approach dynamically updates
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the least square solution (minimizes the sum of squares of the errors best for

data fitting) to LDA by calculating the pseudo-inverse of the centered data ma-

trix, and the indicator matrix without eigen-analysis. This strategy makes the

incremental updation mechanism simple. The only drawback of this method is

its high computational complexity, since every new incoming instance requires

updation of least square solution matrix and other intermediate matrices includ-

ing centered matrix, mean matrix, indicator matrix and total scatter matrix. In

[87] the authors have proposed a novel CCA-based incremental linear discrim-

inant analysis method for action recognition. This procedure iteratively learns

the multi-linear discriminant subspace using canonical correlation analysis. It

performs incremental updation of the discriminant transformation matrix and

maximizes the canonical correlations of the intra-class data samples while simul-

taneously minimizes the canonical correlations of the inter-class data samples. In

[88] the authors used the concept of spanning set approximation for each new

incoming data point to approximate all of the between-class, total and within

class scatter matrices. The proposed method is computationally very expensive

as it requires the updation of three matrices for each new point. Another incre-

mental approach to linear discriminant analysis (LDA) [89] proposed incremental

LDA deriving discriminant eigen-space in a streaming environment without up-

dating the eigen-decomposition. By including a new data point, the means and

the scatter matrices need to be recalculated. As a result, this method has also

a computationally expensive criteria but the eigen decomposition has no update

criteria. Infact, update is only required for mean and scatter matrices. The upda-
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tion criteria for mean, within and between class matrices are presented for both

sequential computation (one data point at a time), and for information coming

in more than one chunks.

In [90] the authors have proposed an incremental supervised learning method

called Generalized Singular Value Decomposition-Incremental Linear Discrimi-

nant Analysis (GSVD-ILDA) for adaptively learning face images. The proposed

GSVD-LDA can incrementally learn an adaptive subspace instead of recomputing

the LDA/GSVD again, efficiently reducing the computational cost.

The advantage of the proposed algorithm includes the processing of samples

in chunks or in a sequence desired for large image datasets. Secondly by dynam-

ically adding samples, the algorithm can lesser the computational cost. The only

drawback of this method is that more than one updations are required including

the updation of global mean, rank approximation of the left singular vectors,

the corresponding singular values and projection matrix on each adaptive input.

Similarly in [91] the authors resolved the scalability problem of complete linear

discriminant analysis [92] technique. Which is a PCA plus LDA algorithm, by

first presenting a new implementation of complete linear discriminant analysis

(CLDA) in which two steps of QR decomposition, rather than singular value

decomposition are used; to obtain the orthonormal bases of the range and null

spaces of with-in scatter matrix followed by presenting its incremental version

which efficiently perform QR decomposition adaptively on each new incoming

chunk without recomputing the CLDA again. In [93] the authors proposed a fast

incremental version of linear discriminant analysis including the computing and
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updating the QR factorization of the data matrix coming in both chunk by chunk

and point by point manner. The only problem in this fast ILDA is the lack of

incorporation of regularization approach to avoid over sampled problems.

Most of the incremental versions of linear discriminant analysis proposed in

the past are domain dependent.

2.4.5.3 Invariance

How can we consistently recognize an object if it continuously changes in angle,

eye position, distance, size and orientation? Learning invariance has always been

a very important and interesting area of research. There are many contributions

in this area of research and researchers in the past have derived novel generalized

learning approaches for extracting invariant features from the data.

2.4.5.3.1 Slow Feature Analysis Slow feature analysis (SFA) is a technique

which extracts slowly varying features by responding to input streams based on

the assumptions that these features change slowly over time. In other words

slow feature analysis is a technique which extracts slowly varying features which

changes the least in the input dataset. For example if an object is placed in three

different directions in a way that the first direction is quite different from the

other two, it should still be recognized as the same object. Thus if images related

to three different directions of the object are read by a slow feature technique, it

will extract the least changeable features from all the three images. Slow features

are not affected by the change in shape, size and position of the object. This

means no matter how the object changes in size, shape and position, the slow

feature analysis technique can still identify the object.
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The slow feature analysis technique is proposed by L. Wiskott et al [94]. If

we have a multidimensional input signal which are of non-linear nature Xt =

[X1(t), .......,XN(t)]
T where t indicates time, we have to find a set of J real-

valued instantaneous functions gj(X) such that the output signal (Yj)t := gj(Xt)

minimize

∆(Yj) = 〈Ẏ2
t 〉, (2.19)

under the constraint

〈Yj〉 = 0 (zero mean) (2.20)

〈Y2
j 〉t = 1 (unit variance) (2.21)

∀i < j : 〈YiYj〉t = 0 (decorrelation and order) (2.22)

where 〈.〉t and Ẏ indicates the temporal averaging and the derivative of Y,

respectively. These are not compulsory but if they are met, the resulting features

would definitely be slowly varying. The diagrammatic view of decorrelated slow

features extracted from non-linear input data is shown in Figure 2.9.

1. Description of SFA The extraction of slow features in batch mode is

simplified by eigenvectors. If gj are a linear combination of finite set of

non-linear function F , then

yj(t) = gj(x(t)) = wT
j F(x(t)) = wT

j z(t), (2.23)
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Figure 2.9: Slow Feature Analysis

so SFA will be to find the weight vector w by minimizing the rate of change

of output variable.

∆(yj) = 〈ẏ2
j 〉 = wT

j 〈żżT 〉wj (2.24)

with the constraint as mentioned in equation (2.20), (2.21) and (2.22). The

function F should be calculated in such a way that the covariance matrix

should have zero mean and unit variance. The only condition which can be

left is the orthonormality of the weight vector w.

Wiskott and Sejnowski [94] developed a method of finding filters of the

data which captures the most slowly changing features of the data set.

They argued that these features can be captured by a filter which reduces

the magnitude of the rate of change of data. They proposed the following:

Let x be an image vector. The filter should try to reduce E((dx
dt
)2) where
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E(.) denotes the temporal expectation and the derivatives are with respect

to time.

However this alone is not enough: a filter which outputs a constant value

would have E(dx
dt
) = 0 but be totally uninformative. Thus they argue what

is needed is a filter , w, which minimized this outcome but satisfied the

conditions

E(wTx) = 0

E(wTxxTw) = 1

with subsequent filters, if any, being orthonormal.

This is shown to be equivalent to the minimum of the generalized eigenvalue-

eigenvector pair

E

(

(
dx

dt
)(
dx

dt

T

)

)

w = λE(xxT )w (2.25)

If we have zero mean data, we may consider the equation above as functions

of the covariance matrices. The standard method [94] for solving (2.25) is

to whiten the data so that E(xxT ) = I and then to perform a principal

component analysis on the derivatives which form the left hand side of

(2.25).

Batch Principal Component Analysis [95] techniques are used for Batch

Slow Feature Analysis (BSFA). As in (2.24) the function F is appropriately

selected by a well-known process of whitening (or sphering) in which the

data x is mapped to z with a zero mean and unit variance along each
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principal component (PC) direction and all the principal component (PC)

are totally decorrelated from each other. The principal components with

the smallest eigenvalues which minimize the rate of change of output are

considered to be the slowest feature of the whitened covariance matrix.

Figure 2.10 shows the slowest varying feature extracted by Batch SFA [94]

technique on 20 dimensional input vectors from 100 samples from an artificially

created signal given as:

u(t) = sin(
t

33
) + cos(

t

10
+ µ) (2.26)

where t = 1,.....,2000 and µ = 3 is an arbitrarily chosen phase term. The

top sub figure in Figure 2.10 shows the original shape of the signal whereas the

bottom sub figure shows the output of SFA.
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Figure 2.10: Slow Feature Analysis
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2.4.5.3.2 James Stone’s Criterion In 1996, Stone proposed [96] an un-

supervised model for the extraction of salient visual parameters using spatial

temporal smoothness constraints. The learning rule is based on the linear com-

bination of hebbian and anti-hebbian weight update policy and the criteria is to

learn salient visual parameters which change very slowly by maximizing the long-

term variance of each unit’s output and simultaneously minimizing the short term

variance. The rationale behind considering long-term and short-term variance is

explained by a real-time scenario which considers a sequence of images against an

oriented, planar, textured surface moving relative to a fixed camera. The change

in between frames of these two images is minimal. But simultaneously with this

small change, a relative large change in the intensity of the individual pixel can

occur. In other words there is a difference in the rate of change of the intensity

of individual pixels and the corresponding rate of change of parameters associ-

ated with the imaged surface. Considering these Stone has proposed a model for

extracting salient visual parameters. This model is based on a temporal smooth-

ness constraint whose degree of smoothness can only be measured in terms of the

short term variance associated with the sequence of output values. According to

Stone a curve is considered smooth if the variance of the curve is minimal.

In order to implement this concept Stone proposed a multilayer neural model

consisting of input, hidden and output layers labeled i, j and k. The state of

an output unit uk at each time t is zkt =
∑

j wjkzjt where wjk is the value of

weighted connection from hidden to output unit. The desired behavior in zk is

obtained by altering intra-unit weights by taking into account the long and short
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term variance of zk shown in equation (2.27)

F = log
V

U
= log

1/2
∑T

t=1 (z̄t − zt)
2

1/2
∑T

t=1(z̃t − zt)2
, (2.27)

where the cumulative states z̄ and z̃ are both exponentially weighted sums of

states z given in equation (2.28) and (2.29).

z̃ = λSz̃t + (1− λS)z(t− 1) : 0 ≤ λS ≤ 1, (2.28)

z̄ = λLz̄t + (1− λL)z(t− 1) : 0 ≤ λL ≤ 1, (2.29)

where λL and λS are time decay constant and the half life of λL is much longer

(typically 100 times longer) than the half life of λS.

2.4.5.3.3 Related State of The Art In [97] the authors developed an incre-

mental method for slow feature analysis: This strategy is based on a combination

of candid covariance-free incremental principal component analysis (CCIPCA)

[98] and a covariance-free incremental minor component analysis (CCIMCA) [99].

This algorithm proceeds in two stages: the first whitens the data and removes

any lower order principal components which are assumed to be noisy. The second

stage performs the covariance-free minor component analysis. The first phase of

the CCIPCA method is based on hebbian learning criteria. The second phase

of CCIMCA is based on anti-hebbian learning criteria. The disadvantage of this

technique is its two stages of computation on each new adaptive input which

increases computational cost. Another drawback of this method is the repetitive
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use of CCIPCA in between whitening and derivation of adaptive data matrix.

This problem is resolved by using CCIPCA only before whitening and deriv-

ing the matrix known as Fast Incremental Slow feature Analysis approach [100].

Similarly in [101] the authors proposed an online temporal video segmentation

algorithm for incremental SFA. This method builds on a special kernelized ver-

sion of IPCA [102], and produces a close approximation of SFA after each time

stamp. The only limitation of this algorithm is its domain specificity to online

temporal video segmentation.

The incremental versions of slow feature analysis proposed in the past are

domain dependent, and requires previously processed information to learn a new

adaptable chunk or data instance. The slow features can be extracted for the

incoming adaptable data in a one pass incremental manner without using the

existing adjacent information of the previously processed data [43].

2.4.5.4 Manifold Learning Approaches

Manifold based learning is an emerging and promising approach in non-linear

dimensionality reduction techniques. Unlike other dimensionality reduction tech-

niques such as principal component analysis [103] and multidimensional scaling

[104], manifold-based learning technique find the most succinct low dimensional

structure which is embedded in a higher dimensional space.

The concept of manifold based learning is defined as a topological space which

is locally euclidean (Around every point, there is a neighborhood that is topo-

logically the same as the open unit ball in Rn). Each point of an n-dimensional

manifold is normally isomorphic to each other. The finest example of manifold is
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the shape of the earth where locally at each point on the surface of the earth is

a 3D-coordinate system two for location and one for the altitude embedded in a

2D-sphere. In other words, it is a 2D manifold in a 3D space as shown in Figure

2.11.

Figure 2.11: An example of a manifold

As compared to other dimensionality reduction technique like PCA (Principal

Component Analysis) where the actual goal is to find a set of mutually orthogonal

basis functions which capture the directions of the maximum variance in the data

so that the pairwise euclidean distances can be best preserved. In some datasets

like face images, the data are sampled from a nonlinear low dimensional mani-

fold embedded in a high dimensional space. This is the basis for using manifold

based learning techniques. Manifold-based learning techniques have been used in

many dimensionality reduction methods such as Generative Topographic Map-

ping (GTM) [105], Local Linear Embedding (LLE) [106], Laplacian Eigenmaps

(LE) [107] and ISOMAP [108].
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Local Linear Embedding and Laplacian Eigenmaps are based on preserving

the local geometry of the data whereas ISOMAP is a global method normally

attempts to preserve geometry at all scales.

The following section will focus on Laplacian Eigenmaps previously stated a

manifold-based learning technique.

2.4.5.4.1 Laplacian Eigenmaps Laplacian Eigenmaps [107] is a locally op-

timized manifold-based dimensionality reduction technique which incorporates

neighborhood information of the dataset into the graph. Secondly using the no-

tion of the laplacian of the graph, a low dimensional representation of the dataset

is computed which can optimally preserve local neighborhood information. This

algorithm has a few local computations and one sparse eigenvalue problem.

Given l points x1,x2, ....,xl in Rl, we construct a weighted graph one for

each point connected by the set of edges between neighboring points. The steps

involved in the execution of a Laplacian Eigenmap are:

1. Step 1. [Construct an Adjacency Graph Matrix] Using the K-Nearest Neigh-

bor algorithm on the complete dataset, create an edge between xi and xj if

i is among the n nearest neighbor of j or j is among the n nearest neighbor

of i.

2. Step 2. [Weighting the edges] There are two different variations for weight-

ing the edges.

(a) Heat Kernel. [tǫℜ] if node i is connected with j put

Wij = e
‖xi−xj‖

2

t (2.30)
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(b) Simple Approach. Set Wij = 1 if vertices i and j are connected by an

edge and set Wij = 0 if vertices i and j are not connected by an edge.

3. Step 3. Construct the objective function. Consider the problem of mapping

the weighted graph G to a lower dimensional space so that the connected

points stay as close together as possible. Consider y = (y1, y2, ..., yn) be

such a map. A reasonable criteria of choosing an appropriate map is to

minimize the following objective function:

∑

ij

(yi − yj)
2Wij (2.31)

The minimization of the objective function is an attempt to avoid the heavy

penalty which can occur if the neighboring points xi and xj are mapped

far apart. Let D be a diagonal weight matrix, whose entries are (column

or rows as W is a symmetric matrix) sums of W. Dii =
∑

j Wji and the

laplacian matrix is L = D−W. It turns out that for any y, we can have

1

2

∑

ij

(yi − yj)
2Wij = tr(yTLy) (2.32)

The minimization problem can now be elaborated as arg min tr(yTLy) such

that

yTDy = 1 (2.33)
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and

yTD1 = 0 (2.34)

The bigger the Dii is, the more significant yi will be. There is a constraint

as yTDy = 1 where constraint yTD1 = 0 is to eliminate the trivial solution

which collapses all vertices of G onto the real number 1.

4. Step 4. Compute the eigenvalues and eigenvectors by solving the generalized

eigenvalue problem

Lf = λDf (2.35)

where D is a diagonal weight matrix whose entries are the sum of each

column of W, i.e., Dii =
∑

j Wij, and L = D −W is a laplacian matrix

which is always symmetric and positive semi-definite.

Figure 2.12 shows the two dimensional projections of Laplacian Eigenmaps on

swissroll dataset. Where y1 and y1 are eigenvectors corresponding to the second

smallest and third smallest eigenvalues.

2.4.5.4.1.1 Related State of The Art In [72] the authors have pro-

posed two incremental versions of Laplacian Eigenmaps. Firstly, an algorithm is

presented which incrementally computes low dimensional representation of data

set by optimally preserving local neighborhood information. Secondly, a sub-

manifold analysis algorithm combined with an alternative formulation of linear

incremental method is proposed to learn the new samples incrementally. The
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Figure 2.12: Two dimensional view of SwissRoll dataset using LE

only deficiency in these methods is the calculation of low dimensional embedding

of the new adaptable information using an existing adjacent information of the

previously processed data.

The low dimensional embedding of the incoming data can be calculated in-

crementally in one pass without using the existing adjacent information of the

previously processed data as proposed in chapter 6 [109].

2.4.5.5 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis is a well-known technique since its first formula-

tion ([110]). It is used primarily for finding filters between two streams of data

that maximize the correlation between those two filters. This is now a standard

data analysis technique.

In canonical correlation analysis between dual streams, the subspace vectors

a and b from both the streams are extracted in such a way that the correlation
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will be maximized as shown diagrammatically in Figure (2.13) while projecting

X onto a by X∗ = aTX and projecting Y onto b by Y∗ = bTY between both

the vectors.

Figure 2.13: Canonical Correlation Analysis

Some online incremental versions of CCA in [111, 112, 113, 114] are often based

on artificial neural networks. Some of these techniques involved minimizing the

squared difference between the outputs of two twinned neural networks [115],

each devoted to one of the data streams. The implementation of CCA in [115] is

derived by phrasing the problem as of maximizing the objective function shown

in equation 2.36.

J = E(y1y2) +
1

2
λ1(1− y2

1) +
1

2
λ2(1− y2

2), (2.36)

where y1 and y2 are the outputs and λi is explicitly used as a Lagrange

multiplier to put a constraint on the finite weight values. Similarly in [112] the
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authors have followed the concept of finding canonical correlations in [116] and

derived an incremental version in which a method of finding canonical correlation

is proposed by solving the generalized eigenvalue problem shown in (2.37).
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
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, (2.37)

where Σij is the covariance matrix between xi and xj . This concept is extended

in [114] by applying gradient descent on the Bregman divergences between the

two data streams; reservoirs used to reduce the non-linearity in the data.

Using this formulation they have shown [111] that the canonical correlation

directions w1 and w2 may be found using

dw1

dt
= Σ12w2 − f(w)Σ11w1

dw2

dt
= Σ21w1 − f(w)Σ22w2

Using the fact that Σij = E(xix
T
j ), i, j = 1, 2, where T denotes the transpose, we

derive the instantaneous versions

∆w1 = η(x1y2 − f(w)x1y1)

∆w2 = η(x2y1 − f(w)x2y2)

which was shown to provide a family of networks capable of performing CCA.

2.4.5.5.1 Multi-Set Canonical Correlation Analysis (MCCA) Multi-

set canonical correlation analysis (MCCA) [117, 118] is a technique which can
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analyze linear relationship between 2 or more sets of variables. It can be con-

sidered as a generalized extension of CCA. The MCCA approach is proposed by

Kettenring (1971) to find the co-variation across modalities and subjects. Thus

we can summarize MCCA as a sum of squares cost shown diagrammatically in

Figure 2.14.

Figure 2.14: Multi-set Canonical Correlation Analysis

2.4.5.5.2 Related State of The Art In [119] the authors proposed an adap-

tive formulation of the classical CCA algorithm based on matrix manifolds. They

solved the optimization problem on matrix manifolds using classical gradient al-

gorithm and designed the adaptive CCA algorithm based on rationale to make

the algorithm capable of detecting the exact time stamp when change (designed

for change detection in the correlation of two time series) occurred in the sub-

space. An incremental approach based on the recursive least square algorithm,

has also been proposed in [120] for rank-one CCA problem. This procedure can

cope with multiple orthogonal projections using a deflation scheme. The empha-
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sis in this paper is the extension of CCA to cope with more than two data sets

simultaneously. The authors performed a valuable comparative study of various

algorithms. The strength of the proposed CCA method as a set of coupled least

squares (LS) regression problems is its flexibility of execution, which leads to

the development of both batch and adaptive learning algorithms for CCA. An-

other positive aspect is its faster convergence as it does not require pre-whitening

(SVD) step. Further it is able to find the canonical vector and variates directly

from the datasets. The weakness is that the proposed method can be considered

applicable only for linear datasets compared to non-linear datasets which requires

adoption of kernels for non-linear transformation.

Researchers have maximized the correlations between dual streams by intro-

ducing kernels [113, 121]. Recently a temporal kernel CCA approach has been

proposed [122] in which a novel method based on kernels was introduced. This

approach computes multivariate temporal filters between data sources with dif-

ferent dimensionality and temporal resolutions. The rationale for using kernels

is to perform transformation, and to obtain a representation of the data in an

implicit high-dimensional latent space. The word implicit is said because usually

the actual representation in this space is not used since the kernel trick enables

to manipulate algorithms by using only the dot product of the implicit repre-

sentations. These methods are especially useful for a relatively small number of

high dimensional samples. Further, they have been useful in solving a nonlinear

problem by converting it into to a linear problem.
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2.4.6 Information Expansion

This section primarily presents two techniques used as a pre-processor in the

following chapters for linear transformation namely (1) Randomized Expansion

[123, 124, 125, 126] and (2) Time series Expansion [127]. This section presents

a brief overview of the networks that use randomized and time series expansion.

Additionally this section also provides a brief overview of radial basis function a

well known traditional information expansion technique.

2.4.6.1 Randomized Expansion

Wouter F. Schmidt et al [123] firstly proposed a feed forward neural network

by randomly choosing the weights of the hidden layer, where the output layer

is trained by a single layer learning rule or a pseudo-inverse strategy. The ran-

domization of the hidden layer of the feedforward neural network calculates the

weighted sum by using a squashing function F (x) which maps the values of the

random weights between 0 and 1. The squashing function is the sigmoid function

given as:

F (x) =
1

1 + e−x
(2.38)

To formulate this idea, suppose M = [m1,m2, ....,mn,mn+1]
T and X =

[x1,x2, ....,xn+1]
T are the weight and input vectors respectively. The output at

hidden layer is described as

Ohidden = F (
∑

mixi) = F (MTX) (2.39)
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In mathematical formulation the output layer perform the following function:

Ooutput =
∑

wixi = WtX (2.40)

The total function computed by the network can be formulated as:

Onet(X) =
hidden
∑

1

wiF (MT
i X) +whidden+1 (2.41)

The weight vector W∗ for which this equation is minimal is calculated as

follows:

W∗ = R−1P (2.42)

where R and P are the input correlation matrix and input-target correlation

vector respectively of the output unit.

RVFL

Random Vector Functional Link (RVFL) technique [124] also uses the randomized

hidden nodes without training and training at the output. In this technique, the

inputs are enhanced to xn with elements (xn1,xn2, ...,xnj, ...,xnJ). The target

outputs are tnk and the weights are wkj. In functional-link networks, the outputs

tk can be treated independently of each other. The weights βj is initially assigned

with random values. For each input pattern the change in the weights is taken

as:

∆βnj = η(tn − on)xnj (2.43)
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The weights are updated once the changes are calculated for all the patterns

in the training set as:

βj(k + 1) = βj(k) +
∑

p

∆βnj (2.44)

The learning rate η may be increased as (tp − op) decreases.

The network only adjust the weights βj to minimize the system error

E =
∑

j

En =
∑

n

(netn − penaltyn)
2 (2.45)

where symbol penaltyn is the target output and netn is the actual output of

the functional net.

Extreme Learning Machine

Recently a similar kind of new learning algorithm for single layer feedforward

neural network[128] was proposed by Huang et al [125, 126]. The only difference

between ELM and other algorithms is its high efficiency for auto encoder (Deep

Belief Networks) [129]. Another important characteristic of ELM is its parameters

of the hidden nodes. These parameters are randomly generated independently

from the training samples and they are independent from each other in a wide type

of neural networks and mathematical series/ expansion as well as in biological

learning mechanism [130].

The reason for the evolution of extreme learning machine [131] is that it has

the capacity of extremely fast learning. Since ELM is easy to implement, tends

to achieve the smallest training error and good generalization performance. It is
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true that the learning speed of other feedforward neural networks is in general

far slower than required and it has been a major bottleneck in their applications

[132].

The model of ELM is similar to other standard multiple layer feed forward

neural network models consisting mainly of three layers 1) input layer, 2) hidden

layer and 3) output layer. The basic ELM neural architecture is shown in Figure

2.15.

Figure 2.15: A Schematic Overview of an ELM

For N arbitrary distinct sample (xi, ti), where xi = [xi1,xi2, ...,xin] ǫ R
n and

ti = [ti1, ti2, ..., tim], standard single layer feedforward network (SLFN) with Ñ

hidden nodes and activation function g(x) are mathematically modeled as
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Ñ
∑

i=1

βig(xj) =
Ñ
∑

i=1

βig(wi.xj + bi) = oj , j = 1, 2, ....,N, (2.46)

where wi = [wi1, wi2, ...., win] is the weight vector connecting the ith hidden

node and the input node, βi = [βi1, βi2, ...., βin]
T is the weight vector connecting

the ith hidden node and the output nodes, and bi is the threshold of the ith

hidden node wi.xj denoting the inner product of wi and xj.

The single-hidden layer feed forward neural networks (SLFNs) of extreme

learning machine (ELM) is further enhanced to the generalized single hidden

layer feedforward neural network [133].

The output function of ELM for generalized SLFNs is

fL(x) =

L
∑

i=1

βihi(x) = h(x)β, (2.47)

where β = [β1, β2, ..., βL]
T is the vector of output weights from hidden to

output nodes, and h(x) = [h1(x), h2(x), ..., hL(x)] is the output (row) vector of

the hidden layer with respect to the input x. The output function hi(x) of hidden

nodes may not be unique. In particular, in real applications, hi(x) can be

hi(x) = G(ai, bi,x), ai ǫ R
d, bi ǫ R, (2.48)

where G(ai, bi,x) is a non-linear piecewise continuous function satisfying ELM

universal approximation capability theorem [133, 134].

As the hidden neurons of ELM are totally independent from each other, dif-

ferent output activation functions can be used to compute output of each hidden
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neuron including sigmoid function, fourier function, hardlimit function, Gaussian

function and multiquadrics function.

The equation (2.46) can be written compactly as

Hβ = T (2.49)

where

H(w1, ....,wÑ , b1, ..., bÑ ,x1, ...,xN)

=
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(2.50)

β =

























βT
1

.

.

βT
N

























and T =

























tT1

.

.

tTN

























Nxm

(2.51)

In order to satisfy the learning criteria at the output stage, the standard

ELM implementation uses the minimal norm least square method instead of the

standard optimization method in the solution.

β = H†T (2.52)

65



where H† is the Moore-Penrose generalized inverse of matrix H [135].

Echo State Network

Echo State Network is another most popular type of Recurrent Neural Network

(RNN) proposed by H. Jaeger [127] which is driven by a (single or multidimen-

sional) time signal whose activations are generated using tanh (tan hyperbolic)

function. These activations are used to perform linear classification/ regression.

Echo state networks consist of three layers of ‘neurons’: an input layer which

is connected with random and fixed weights to the next layer which forms the

reservoir. The neurons of the reservoir are connected to other neurons in the

reservoir with a fixed, random, sparse matrix of weights. Typically only about

10 % of the weights in the reservoir are non-zero. The reservoir is connected

to the output neurons using weights which are trained using error descent. In

echo state networks only weights connected to the output neurons needs training

making this network an easy and efficiently trained network. Echo State Networks

are specialized in converting non-linear information into information of temporal

nature.

The idea of reservoir can be stated as: Win denotes the weights from the Nu,

inputs u, to the Nx reservoir units x, W denotes the Nx × Nx reservoir weight

matrix, and Wout denotes the (Nx + 1)×Ny weight matrix linking the reservoir

units to the output units, denoted by y as shown diagrammatically in Figure

2.16.
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The network dynamics are governed by

x(t) = f(Winu(t) +Wx(t− 1)) (2.53)

where typically f(.) = tanh(.) and t is the time index. The feed forward stage is

given by

y = Woutx (2.54)

This is followed by a supervised learning of the output weights, Wout. If we are

using online learning, a simple least mean square rule gives

Wout = Wout + η(ytarget − y)xT (2.55)

where η is a learning rate (step size) and ytarget is the target output corresponding

to the current input.

Figure 2.16: Topology of Echo State Network
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2.4.6.2 Radial Basis Function

Radial Basis functions are simply a class of functions which can be employed in

any sort of model (linear or nonlinear) and any sort of network (single-layer or

multi-layer). According to [136] radial basis functions are traditionally associated

with a single layer network shown in Figure 2.17.

hj (x)

Figure 2.17: Radial Basis Function Network

The characteristic feature of radial basis function is that their response de-

creases (or increases) monotonically with distance from a central point. The pa-

rameters of radial basis function are (1) centre, (2) distance scale and (3) precise

shape of the radial function.

A typical radial function is a Gaussian, in case of scalar input is:

h(x) = exp

(

−(x− c)2

r2

)

(2.56)

where c is its centre and r radius be its parameters.
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2.4.7 Post-Processing

Post-Processing techniques provide a symbolic filter for noisy and imprecise knowl-

edge derived by machine learning algorithm [84]. This phase is used to simplify

visualize or document the knowledge extracted from data. Post-processing is

primarily categorized into following groups below:

2.4.7.1 Knowledge filtering, Rule truncation and postpruning

Post-pruning or Rule truncation is one primary task which is performed in the

post-processing phase. This happens because the machine learning inductive algo-

rithm split subsets of training objects to smaller subsets that would be genuinely

consistent. To overcome this issue a tree or a decision set of rules are optimized

by using postpruning (decision trees) or truncation (decision rules) techniques

[137].

2.4.7.2 Interpretation

This phase includes the listing documentation of results, the transformation of

knowledge to an understandable form and the visualization of the extracted

knowledge [138]. Further this phase includes summary of the rules while combin-

ing them with a domain specific knowledge provided for the given task.

2.4.7.3 Evaluation

This phase includes the evaluation (or testing) of learned model on training data

set. There are several widely used criteria for measuring the performance of

learning including classification accuracy, comprehensibility, computational com-
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plexity and predictive accuracy [139].

2.4.7.4 Knowledge Integration

This phase is primarily used in those scenarios where the decision supporting

systems needs to be combined from several models. Use of knowledge integration

methods increases reliability and likelihood of success [84].

2.4.8 Model Evaluation Techniques

The section reviews some of the tools needed for assessing the quality of regression

and classification models.

2.4.8.1 Evaluating Regression Quality

Following in [140]: Suppose θ̂ be the estimator of the unknown parameter θ from

the random samples {x1,x2, ...,xn}. The deviation from θ̂ to the true value θ

which can be calculated by subtracting θ̂ from θ, |θ̂ − θ| measures the regression

quality.

Definition: The mean square error (MSE) [141] of an observer θ̂ of a param-

eter θ is the function of θ defined by E(θ̂− θ)2, and is denoted as MSEθ̂. Hence

MSE is mathematically calculated as:

MSEθ̂ = E(θ̂ − θ)2 (2.57)

To calculate MSE, firstly calculate the squared difference between the predic-

tions and true values. The sum of the squared errors (SSE) is calculated as
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SSE =
∑

xǫX

(f(x)− f̂(x))2 (2.58)

where (x, f(x)) can be generated by collecting data from experiments even

though the true workings of f(x) are unknown, ˆf(x) is the function of estimation,

m is the size of the data set used to build the model and D = {(X, y)} is the set

of training examples.

The mean squared error (MSE) divides the SSE by the count of data points

used to produce a measure of error variance

MSE =
SSE

m
(2.59)

and the root mean squared error (RMSE) calculates error in the same units

as the output (i.e. a standard deviation)

RMSE =
√
MSE (2.60)

An alternative method in [142] is to calculate Pearson’s correlation coefficient

(p) between the true and estimated output is:

p =

∑

(X− X̄)(Y − Ȳ)
√

∑

(X− X̄)2
√

(Y − Ȳ)2
(2.61)

where the value of p can vary between -1 and 1, but should never be negative

where it is comparing predicted and actual values. Values closer to 1 indicates a

better fit.
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2.4.8.2 Measuring Accuracy, Precision-Recall

The binary classification models often aim to group each entry of a given dataset

into two groups, positive and negative, according to the classification criteria. The

performance of a classification model for each element of the dataset is based on

four possible outcomes with regards to the classification:

1. true positive (TP): when an entry is positively classified

2. true negative (TN): when an entry is negatively classified

3. false positive (FP): when a negative entry is correctly classified as negative

4. false negative (FN): when a negative entry is wrongly classified as positive

Given P = TP + FN the number of real positives in the considered dataset,

and N = TN + FP the number of real negatives, we can define [143]

1. sensitivity ratio = true positive rate (TPR) = recall = TP/P

2. specificity ratio= true negative rate (TNR) = TN/N

3. positive predictive value (PPV)= precision = TP/(TP+FP)

4. negative predictive value (NPV)= TN/(TN+FN)

5. accuracy = (TP+TN)/(P+N)

6. Error (Classification Error) = 1 - accuracy = 1 - (TP+TN)/P+N

A confusion matrix is shown in Table 2.1 [143] which shows the relationship

between actual and predicted values.
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actual positive actual negative
predicted positive TP FP
predicted negative FN TN

Table 2.1: Confusion Matrix

2.4.8.3 Measuring PMF Model Quality

The output P̂ (x) when modeling a probability mass function is an estimate of a

probability P (x) rather than a function output, so other methods of measuring

model quality are used. One such measure is the likelihood of the data.

Given the model: (x|θ) where θ is the set of parameters describing the model.

The likelihood of a model is calculated as:

L(θ|X) =
∑

xǫX

−ln(P̂ (x)) (2.62)

where P̂ (x) is the model’s estimate of the probability of x. The greater the

probability, the better the fit of the model to the data [144]. The likelihood

is maximized for a set of data and a model when the model’s estimates of the

probabilities of each pattern in the data match the distribution of the data.

2.4.8.4 Regularization

The criteria of controlling the complexity of regression and probability models as

a way of managing how well they fit the data is known as regularization [145]. L1

and L2 norms [146] are the most common regularization approaches. A norm is

the distance from the origin to the vector point. By considering the parameters of

a model as a vector, θ, the norm is a reflection of both the number of parameters

in a model and of their size. The norm ||θ|| measures the distance of a model
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from the simplest point, taking the simplest model possible to be at the origin

(all parameters=0). The L1 norm termed as Manhattan Distance is the sum of

absolute values:

||x||1 =
∑

xǫX

|x| (2.63)

and the L2 norm also termed as Euclidean Distance is the sum of square of

absolute values.

||x||2 =
√

∑

xǫX

x2 (2.64)

Regularization is used in the model fitting process by adding the norm to the

cost function of the model so that it becomes Cθ(D) + α||θ||. The parameter α

controls the contribution of the regularization term. L1 norm has the advantage

of leading to simpler models whereas L2 has the advantage of allowing a solution

to be found by gradient descent. This type of regularization is used by regression

models which includes ridge regression [147] and LASSO (least absolute shrinkage

and selection operator) [148].

2.4.8.5 Entropy Based Methods

Entropy is defined in [149] as a measure of variations, or uncertainty of occurrence

of an event. The larger the entropy is, the lesser the chances of occurrence of

an event and vice versa. For example consider a pair of variables, (a, b) with

marginal distributions of p(a) and p(b) and a joint distribution of p(a, b).

The Shannon entropy of either variable (a for example, measured across sam-
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ples in A) is measured as

H(A) =
∑

aǫA

−P (a)logP (a) (2.65)

measures the variation in A. H(A) is maximized when A has a uniform dis-

tribution. The conditional entropy of b given a measures the uncertainty that

remains in b when a is known and calculated as

H(B|A) =
∑

aǫA,bǫB

log
P (a)

P (a, b)
(2.66)

If knowing A leaves the entropy of B unchanged, then a and b are independent

as H(B) = H(B|A). Any reduction in H(B) provided by knowing A is the

information gain:

H(B)−H(B|A) (2.67)

also known as the mutual information, and can be calculated as

I(A;B) =
∑

aǫA

∑

bǫB

log
P (a, b)

P (a)P (b)
(2.68)

This relative entropy is equivalent to the expectation of the Kullback-Leibler

divergence [150] between the marginal distribution p(a) and the joint p(a, b).

2.4.9 Validation Techniques

Validation techniques for assessing how the results of a statistical analysis will

generalize to an independent set or to an appropriate criteria is presented.
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2.4.9.1 Holdout

This methods randomly divides the available dataset into two subsets, the train-

ing set and the testing set (or holdout set). The first subset is used to build the

model, and the second subset is used to assess the predictability of a model. The

holdout set generally underestimates the accuracy of the model, inducing a large

bias, because only a portion of the data is available for the learning process. On

the contrary, using a test subset with fewer data points will greatly increase the

variance of the accuracy estimation [151].

2.4.9.2 Bootstrap

Given a dataset of size n, the bootstrap method creates a number of testing

subsets by sampling n instances uniformly from data with replacements. For

example some of the data instances will appear in the bootstrap sample multiple

times while other data instances will not appear at all.

The probability p of any given data point being chosen after n samples, b the

number of bootstrap samples, αi the accuracy computed on the i-th sample, and

a the accuracy computed on the whole training set, the accuracy estimate can be

expressed as 1
b

∑

i p.αi + (1− p).a.

The variance of accuracy is calculated as the variance of estimate for the

samples. It has been proved that bootstrap has low variance, but, it may present

an extremely large bias to some problems [151].
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2.4.9.3 Cross Validation

K-Fold cross-validation technique is used to achieve an unbiased estimate of the

model performance only when a limited amount of data is available [151]. The

K-fold cross-validation technique divides the available dataset into k partitions of

similar size. A validation model is built k times, using each time k− 1 partitions

as the training set and the remaining partition as the testing set. The estimation

of accuracy of the validation model is the average of the accuracies computed for

the developed k models. If the data distributions is composed of n data points,

the n-fold cross-validation is also known as leave-one-out cross-validation [151].

2.5 Towards Domain independent learning

This chapter gave a thorough description and state of the art review of online

feature extraction techniques. These procedures are considered as a baseline

for contribution to this thesis. Additionally, to highlight the importance and

use of feature extraction in machine learning problems, a broader picture of an

intelligent system and description of its major phases was also presented.

This overview showed the potential of feature extraction techniques. The

criticalities found in the published literature, highlighted the need for an online

domain independent learning mechanism; which could effectively learn each chunk

of adaptive input independently.

In the following chapters, online learning techniques will be proposed in the

area of Linear Discriminant Analysis, Slow Feature Analysis, Canonical Correla-

tion Analysis and Laplacian Eigenmaps. The main objective will be to minimize
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the dependency for learning new adaptable information from previously learned

information.

The next chapter will describe an online version of Linear Discriminant Analy-

sis linked with extreme learning machine as a pre-processor. As previously stated,

the main objectives are Firstly to minimize the dependency on previously learned

information. Secondly, to maximize the discrimination among points belonging

to two different classes and to minimize the distance between points within each

class.
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Chapter 3

Incremental Linear Discriminant

Analysis with Extreme Learning

Machine

This chapter presents an incremental version of linear discriminant analysis, an

algorithm focusing on one data point at a time in a completely adaptive manner.

Further the proposed algorithm doesn’t depend on previously learned informa-

tion.

Additionally this algorithm is combined with a randomized expansion of ex-

treme learning machine, before learning for linear transformation. This procedure

maximizes the discrimination among points belonging to two different classes, and

minimizes the distance among points within each category.

Finally the comparative effectiveness of the proposed algorithm is demon-

strated using both artificial and real data sets.
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3.1 The GENILDA (An Incremental Method For

Generalized Eigenproblems) Method

The differential equation in [55] is applied to find the linear discriminant subspace

by finding the maximum eigenvalue of

E((µ1 − µ2)(µ1 − µ2))
Tw = λ′E((x− µj)(x− µj)

T )w, (3.1)

where j = 1, 2 and µ1 and µ2 are within class means.

This gives us an update of

∆w = SBw − f(w)Sww, (3.2)

where Sw = E((x − µj)(x − µj)
T ) is a within class scatter matrix, j = 1, 2

and SB = E((µ1−µ2)(µ1−µ2)
T ) is a between class scatter matrix. Where µ1 =

∑n1

i=1
xi

n1

, n1 ǫ data points in class 1 and µ2 =
∑n2

i=1
xi

n2

, n2 ǫ data points in class 2.

In fact to make the solution neural by updating the weights in an online mode

is derived by replacing the between and within scatter matrices in equation (3.2)

with the instantaneous values so that

∆w = ((µ1 − µ2)(µ1 − µ2)
T )w − f(w)

2
∑

j=1

(xi − µj)(xi − µj)
Tw, (3.3)

where i = 1, 2, 3, ..., N and j = 1, 2.
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This makes the proposed algorithm incremental as all the data points are

now individually learned point by point by updating the filter on each iteration.

Learning point by point enables the proposed algorithm to calculate the subspace

filter which can maximize the discrimination between data points belonging to

different classes and simultaneously minimizes the distance between points within

each class. Further the lipschitz continuous function f(w) keeps the weight filter

values away from reaching infinity (growing out of bounds) at each iteration and

act more like a regularization function. Further, it helps the algorithm to converge

quickly by reaching the stable equilibrium position in very few iterations.

In the above online algorithm for computing linear discriminant subspace

affecting binomial classes, µ1 and µ2 will be constant throughout the process,

making the algorithm computationally less expensive.

Similarly, for multinomial classes the criteria for updating the weights in an

online mode, by replacing the between and within scatter matrices in equation

(3.2) will be

∆w =
k

∑

j=1

((µj − µ)(µj − µ)T )w− f(w)
k

∑

j=1

((xi − µj)(xi − µj)
T )w, (3.4)

where i = 1, 2, 3, ...., N , k = 1, 2, 3, ..., C and µ =
∑N

i=1
xi

N
is the global mean of

the whole data.

In equation (3.4), N represents the total number of data points and C rep-

resents the total number of classes. The overall mean of the whole data and the
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between class mean will be updated on the addition of new single input or new

chunk as

µ′ = µ+
x

N + 1
(3.5)

and

µ′
c = µc +

x

N + 1
, (3.6)

where c ǫ class label or

µ′ = µ+

r
∑

i=1

xi

N + r
(3.7)

and

µ′
c = µc +

r
∑

i=1

xi

N + r
, (3.8)

where c ǫ class label and r ǫ chunk size.

Thus each new adaptable chunk, or data instance, is learned independently

by using the previously learned filter, and only updating the within class mean,

and global mean once on each new adaptable input. Hence this approach can be

considered as a one-pass incremental learning algorithm which acquires knowledge

with a single presentation of the training data.

In order to find the next filter based on the second highest eigenvalue, the

matrices Sw and SB are deflated and again used incrementally by solving the

generalized eigenvalue problem.
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Table 3.1: Algorithm 1 The GENILDA Algorithm

Input:
The labeled patterns, (XN ,YN) = (xi,yi) where i = 1, 2, 3, ..., N
Output:
The mapping function of GENILDA: f:ℜni− > ℜno

Step 1: Calculate the (updated if any) or new µ1 and µ2 for binomial classes where

µ1 =
∑n1

i=1
xi

n1

, n1 ǫ data points in class 1 and µ2 =
∑n2

i=1
xi

n2

, n2 ǫ data points in class 2.

if multinomial calculate the updated (if any) or new µ1,µ2,µ3, ...,µN and global mean µ

of the whole data.
Step 2:
For i = 1 to N iterations
Step 2.1: Calculate SB where SB = (µ1 − µ2)(µ1 − µ2)

T

for multinomial SB =
∑k

j=1((µj − µ)(µj − µ)T )

Step 2.2: Calculate Sw where Sw =
∑2

j=1(xi − µj)(xi − µj)
T

For multinomial Sw =
∑k

j=1((xi − µj)(xi − µj)
T )

Step 2.3: Calculate the updated (if any) or new eigenspace of w1 belonging to the highest
eigenvalue
∆w1 = SBw1 − f(w)Sww1

End
Step 3: Deflate SB and Sw using
S∗
w = Sw − λwSww

T

S∗
B = SB − λwSBw

T

and then calculate the updated eigenspace for w2 belonging to second highest eigenvalue
up to N eigenvectors repeating the same Step 2

S∗
w = Sw − λwSww

T (3.9)

S∗
B = SB − λwSBw

T (3.10)

In this way N eigenvectors can be calculated corresponding to their eigenval-

ues while attaining maximum to minimum variance of data.

Based on the above discussion, the GENILDA algorithm is summarized as

Algorithm 1 in Table 3.1.

The idea of combining ELM with the newly proposed GENILDA method is

inspired from the contribution of ELM with previous machine learning supervised
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Figure 3.1: Architecture of GENILDA Algorithm

and unsupervised mechanisms [152, 153, 154, 155]. The generic algorithmic archi-

tecture of GENILDA-ELM is shown in Figure 3.1. The first two layers in Figure

3.1 belongs to ELM followed by GENILDA used instead of the output layer of

ELM as a subspace calculator and incremental discriminator.

The purpose of combining the proposed techniques with ELM is to attain

maximum computational advantage from the random feature mapping of ELM.

The random expansion approach is much faster in comparison with the simple

dot product, radial basis function (RBF) mapping or any other kernel-based fea-

ture mapping technique. In [152], an extreme support vector machine (ESVM)

is proposed by combining ELM and proximal SVM. The ESVM algorithm has

proven to be more accurate than the basic ELM model, and much more effi-

cient because as there is no kernel matrix multiplication in ESVM. In [153], the
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traditional RBF kernel is replaced by the ELM kernel, leading to an efficient

algorithm with matched accuracy of SVM. In [154] and [155], the manifold regu-

larization framework is introduced into the ELM model to control both labeled

and unlabeled data, extending ELM for semi-supervised learning. However the

only constraint is that both methods are limited to binary classification problems,

while not exploring the full power of ELM.

Previously researchers from various fields have contributed to ELM theory

and applications. In [156] the authors have used ELM in attempting to solve

complex multi-classification problems. The study of standard versions of SVM

and ELM is conducted in [157] and focusing on their Vapnik-Chervonenkis (VC)

dimension and performance using different training samples. The results show

that ELM can generalize significantly in comparison with the standard SVM for

large samples. ELM has been improved in various contexts to solve for ELM from

online sequential data [158], noisy or missing data [159], imbalanced data [160]

etc.

Finally, the GENILDA-ELM algorithm is summarized as Algorithm 2 in Table

(3.2).
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Table 3.2: Algorithm 2 The GENILDA-ELM Algorithm

Input:
The labeled patterns, (XN ,YN) = (xi,yi) where i = 1, 2, 3, ..., N
Output:
The mapping function of GENILDA: f:ℜni− > ℜno

Step 1: Map the input data X = {x1,x2,x3, ...,xN} to a random feature space
Z = {z1, z2, z3, ..., zN} using

Z =
∑Ñ

i=1 βig(xj) =
∑Ñ

i=1 βig(wi.xj + bi)
Step 2: Calculate the (updated if any) or new µ1 and µ2 for binomial classes where

µ1 =
∑n1

i=1
xi

n1

, n1 ǫ data points in class 1 and µ2 =
∑n2

i=1
xi

n2

, n2 ǫ data points in class 2.

if multinomial calculate the updated (if any) or new µ1,µ2,µ3, ...,µN and global mean µ

of the whole data.
Step 3:
For i = 1 to N iterations
Step 3.1: Calculate SB where SB = (µ1 − µ2)(µ1 − µ2)

T

for multinomial SB =
∑k

j=1((µj − µ)(µj − µ)T )

Step 3.2: Calculate Sw where Sw =
∑2

j=1(zi − µj)(zi − µj)
T

For multinomial Sw =
∑k

j=1((zi − µj)(zi − µj)
T )

Step 3.3: Calculate the updated (if any) or new eigenspace of w1 belonging to the highest
eigenvalue
∆w1 = SBw1 − f(w)Sww1

End
Step 4: Deflate SB and Sw using
S∗
w = Sw − λwSww

T

S∗
B = SB − λwSBw

T

and then calculate the updated eigenspace for w2 belonging to second highest eigenvalue
up to N eigenvectors repeating Step 3
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3.2 Results and Discussion

In this section, the classification accuracy of the proposed methods has been

compared with incremental PCA [98] and batch LDA [161] method. A detailed

experimental study was conducted using datasets with many classes and small-

dimensional features including datasets with many classes and large dimensional

features. The main interest has been the evaluation of the discriminability of the

proposed methods in comparison with standard techniques. In every experiment,

the learning rate α is empirically set between 0.0001 and 0.00001, the total iter-

ations for learning are 10,000 and the best selection of hidden neurons is always

considered for the GENILDA and GENILDA-ELM methods.
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Figure 3.2: The variation of classification accuracy
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Figure 3.3: IPCA projection of Iris data onto the highest eigenvector

3.2.1 Experimental Setup

In all experiments, an initial feature space (eigenspace) is constructed using 15%

of the samples, in order to ensure that at least two data classes are included

according to the definition of equation (3.1).

The remaining training data are enumerated point by point or in the form of

chunks without any consideration about the chunk size and the number of classes

in each chunk. The remaining data is adaptively learned by drawing samples

from the data one by one, or in chunk form by using GENILDA computation, as
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Figure 3.4: the original distribution of Iris data by the first dimension

Figure 3.5: GENILDA projection of the Iris data onto the highest eigenvector

in Section 4.1, and the Incremental PCA computation described in [98].

Finally to test the efficiency of GENILDA and GENILDA-ELM for classifica-

tion accuracy in comparison with the IPCA method, the features were encoded

by projecting data previously presented to the updated discriminant eigenspace

and then classifying the feature data using KNN classifiers (K=1). The classi-

fication accuracy is measured under a leave-one-out cross-validation policy. For

each dataset the eigenvectors are ranked by their energy and by selecting a set of

top energy eigenvectors.

Since the data in the experiment shown in Figures 3.2, 3.3, 3.5 and 3.6 is
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Figure 3.6: GENILDA-ELM projection of the Iris data on the highest eigenvector.

being input in the form of incremental learning, which does not occur in regular

time intervals, the term learning stage is used instead of the usual time scale to

define the percentage of samples presented so far at the current stage to measure

the progress of incremental learning.

3.2.2 UCI Datasets

The class discriminability of the proposed methods is presented by conducting

experiments on the database. This procedure consists of eight standard datasets

selected from the UCI machine learning repository [1], where each dataset has

100% of continuous/integer values and no missing value. Table 3.3 shows that

every dataset has no more than 12 classes and 60 dimension features.

The incremental learning of the proposed methods has been described in

Section 4.1 with the existing standard incremental and batch versions proposed

specifically for discrimination and best representation of classes on a low dimen-

sional space.

To illustrate this procedure, Figures 3.2, 3.3, 3.4, 3.5 and 3.6 show a time

course of the incremental learning over the Iris dataset. Developed by dividing the
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overall learning of the whole dataset into three learning stages. Whose progress

of incremental learning are at 30 %, 60 % and 100 %. In Figure 3.2, shows

the variation of classification accuracy and Figure 3.3, 3.5 and 3.6 are IPCA,

GENILDA and GENILDA-ELM projections whereas Figure 3.4 is the distribution

of iris data by the first single dimension.

As shown in Figure 3.6 the best representation of classes on a low dimensional

space is produced by the proposed GENILDA-ELM method. All the sub figures

in Figure 3.6 from left to right clearly shows the discrimination between points

belonging to red class with other classes, whereas there is a very close discrimi-

nation noticed between blue and green class. This closeness between data points

belonging to the blue and green class is similar to projections produced by other

algorithms shown in Figure 3.2, 3.3 and 3.5. The only reason is the highest non-

separability between data points belonging to both green and blue class in the

high dimensional space. Still the GENILDA-ELM method best separate the data

points belonging to both green and blue classes on a low dimensional space in

comparison to the other state of the art approach shown in Figure 3.2, 3.3 , and

3.5.

GENILDA and GENILDA-ELM are compared with IPCA and feature dis-

tribution using the original data as a reference. Results clearly shows that the

GENILDA-ELM outperformed both GENILDA and IPCA. The superiority of

classification can also be deduced from the discrimination difference between cor-

responding GENILDA-ELM, GENILDA and IPCA projections in Figure 3.3, 3.5

and 3.6.
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Table 3.3: Evaluated UCI Datasets
Name Input dim. Class Train data Test data
Iris 4 3 150 -
Liver-disorder 6 2 345 -
Vehicle 18 4 846 -
Glass 10 7 214 -
Wine 13 3 178 -
Segmentation 19 7 210 21000
Vowel 10 11 528 462
Sonar 60 2 208 -
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20 40 60 80 100 
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Figure 3.7: Projections by two different initialization of subspace filter (GE-
NILDA)

Further Figure 3.2 shows the maximum reduction of within-class distance, as

can be seen clearly with GENILDA-ELM projections in Figure 3.6.

Note that the change in the initial value of the subspace vector changes the

magnitude of the resulting projections but makes no change in the discrimination

of the data instances as shown in Figure 3.7. The magnitude of the left and right

subfigure in Figure 3.6 are different due to the difference of random initializa-

tion of the subspace vector. This shows the stability of the discriminant model

beginning from any random position and ending at a stable equilibrium position.

Table 3.4 presents the comparative results of GENILDA-ELM, ILDA and

IPCA on the classification at the final incremental learning stage for eight UCL

datasets, where the number of eigenvectors (denoted as No. of Eig.) specifies the
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Table 3.4: Comparative Results of GENILDA, GENILDA-ELM, Batch LDA and
IPCA on the classification at the final incremental learning stage for 8 UCL
datasets
Name No. of Eig. GENILDA GENILDA-ELM IPCA Batch LDA
Iris 2 98.0 99.2 93.3 98.0
Liver-disorder 3 63.1 66.4 58.8 62.6
Vehicle 9 73.3 75.3 57.8 75.4
Glass 6 99.0 98.1 87.6 96.6
Wine 7 94.3 96.7 87.6 96.6
Segmentation 6 81.7 92.3 81.4 83.9
Vowel 10 59.7 61.3 57.9 59.8
Sonar 6 88.41 91.2 73.5 81.2

dimension of LDA and IPCA eigenfeatures used in classification.

Table 3.4 above reveals that the proposed GENILDA method produced very

similar results to the existing batch version of LDA. The combination of the

proposed method with ELM outperforms the batch LDA and IPCA methods in

almost every experiment on the selected 8 UCL datasets. The same number of

eigenvectors were used for each approach to ensure stability. There is a very slight

difference of accuracy noticed in vehicle data set in Table 3.4 between GENILDA-

ELM and Batch LDA algorithm. This time Batch LDA came out slightly better

than the proposed approaches. The only reason noted in this case is the unique

characteristics of this dataset and its overall orientation in the high dimensional

space which does not work best for the proposed algorithms compared to the

standard state of the art Batch LDA algorithm. The classification accuracy of

IPCA is lower than that of GENILDA and GENILDA-ELM. This suggests that

the discriminant ability of GENILDA is almost equivalent to that of LDA and

better than IPCA.
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Figure 3.8: Yale Dataset

3.2.3 Face Dataset

The performance of the proposed GENILDA and GENILDA-ELM methods are

compared with the incremental PCA method. A benchmark Yale database [162]

is used consisting of high-dimensional features. The database consists of 165

grayscale each 1024 (32 × 32) dimensional images in GIF format of 15 individuals.

Firstly the proposed algorithms compared with the standard techniques are tested

on 15 different face images by considering a single pair of each person. The total

length of the data are 30(15 × 2) and the dimensions are 1024 each.

The projections produced by GENILDA, GENILDA-ELM and IPCA are

shown in Figure 3.9, 3.10 and 3.11.

The class discriminability on the face dataset is shown by demonstrating the

two dimensional projections produced after training on the first 15 pairs of faces

each 1024 dimensional by running GENILDA, GENILDA-ELM compared with
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Figure 3.9: Two dimensional projections of GENILDA method
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Figure 3.10: Two dimensional projections of GENILDA-ELM method
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Figure 3.11: Two dimensional projections of IPCA method
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Figure 3.12: Variation of classification accuracy by GENILDA-ELM, GENILDA,
LDA, PCA and IPCA with the increase of new data addition.
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Table 3.5: Comparative Results of GENILDA, GENILDA-ELM, Batch LDA and
IPCA on the classification at final incremental learning stage on Yale face dataset

2-Train 3-Train 4-Train 5-Train
Algo Classifier Acc. Dim Acc. Dim Acc. Dim Acc. Dim
PCA KNN 42.8 29 51.1 44 56.6 57 60.2 73
LDA KNN 47.6 10 65.7 14 52.6 58 79.6 14
GENILDA KNN 75.6 10 76.4 14 76.9 58 78.8 14
I-PCA KNN 64.5 10 66.4 14 68.7 58 69.3 14
GENILDA-ELM KNN 87.6 10 90.9 14 89.4 58 82.5 14

the existing IPCA method. Figures 3.9, 3.10 and 3.11 show that the projections

produced by the GENILDA-ELM method have projected similar faces most of the

time very close to each other in the reduced dimensions followed by the GENILDA

method where the projections have some of the pairs projected far but most of

time the pairs are projected very close. The most miserable performance came

out to be of IPCA shown in Figure 3.11 where most of the time different faces

are projected very close to each other and similar faces are projected very far.

Further, it can be noticed from the two dimensional projection produced by

the proposed methods and standard state of the art approach on faces dataset

in Figure 3.9, 3.10 and 3.11; that the projected y1 and y2 values of some of the

faces came out exactly similar in all the methods which resulted in the projection

of those faces on exactly similar position in a lower dimensional space. There-

fore, those images cannot be seen properly in Figure 3.9, 3.10 and 3.11. Still

the improvement in terms of difference in projections produced by the proposed

method compared with the standard state of the art approaches is very clear and

can easily be seen by a naked eye.

To show the improvement and precise calculation of the classification accuracy,

the K-Nearest neighborhood algorithm is again ran by considering k = 1 on the

97



discriminatory subspace produced by all the methods. Further the dimensions

are increased from 2 by ranking the eigenvectors with their energies, and by

selecting the set of top energy eigenvectors. Here too the classification accuracy

is measured by the leave-one out cross validation policy. As it can seen in Table

3.5 the classification accuracy of the proposed methods is higher for GENILDA-

ELM method compared with existing batch and incremental versions. After

changing the number of eigenvectors, there is not a significant improvement of

the classification accuracy. In Table 3.5 2-train refers to 1 pair totaling 30 images

because the total length of unique images is 15. The number of training images

is increased from 2 to 3 similar images as well increasing both the total from

30 to 45 as 3-train in Table 3.5 and the dimensions too but still the proposed

techniques has produced maximum classification accuracy as shown Figure 3.12.

Increasing to 4-train and 5-train improved results and outperformed the standard

existing approaches, both incremental and batch.

Further the proposed method’s classification accuracy is compared with IPCA

by sequentially increasing the number of eigenvectors as shown in Figure 3.13.

It can be clearly seen from Figure 3.13 that GENILDA-ELM has a very slight

variation in its classification accuracy by a gradual increase in the number of

eigenvectors. When the count of eigenvectors reaches between 70 to 80 in Figure

3.13, the classification accuracy of GENILDA and IPCA almost becomes equal

however the accuracy of GENILDA is consistent with slight changes due to the

increase in the number of eigenvectors including a slight variation in the end.

The execution time of the proposed algorithms as shown in Figure 3.14 were
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Figure 3.13: Variation of GENILDA, GENILDA-ELM versus IPCA on the final
classification accuracy under different number of eigenfeature dimensions
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higher each time the whole data samples were considered for learning. Batch LDA

outperformed the proposed GENILDA and GENILDA-ELM algorithm when repet-

itively all the samples were learned. On the contrary, calculating the execution

time in Figure 3.15 by breaking the samples into more than one random chunks

and updating the discriminant eigenspace each time on the addition of each new

chunk resulted the proposed algorithms significantly better compared to the batch

LDA algorithm which is incapable of learning the data in more than one chunks.

Similarly, as shown in Figure 3.16 the memory cost of the proposed GENILDA

algorithm was very low as compared to the batch LDA algorithm. This is due

to the domain independent nature of the proposed algorithm. At each time

stamp the adaptive input is learned independently without updating the scatter

matrices and only updating the mean of each class. GENILDA-ELM memory

consumption came out higher due to the random expansion of adaptive input

for linear transformation at each time stamp. To reduce the memory cost the

optimal number of hidden neurons should be considered at each time stamp.

3.3 Conclusions

This chapter presented an online generalized eigenvalue based LDA with ELM.

This method has produced the most improved projections and classification re-

sults as compared to the standard batch and incremental versions of LDA and

PCA. The conclusive properties of GENILDA and GENILDA-ELM are summa-

rized as follows: 1) GENILDA has an equivalent power to batch LDA in terms of

discriminability whereas GENILDA with ELM is significantly better than LDA;
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2) GENILDA-ELM is remarkably effective for handling bursts of new classes com-

ing in at different times; 3) As compared with IPCA, GENILDA-ELM is usually,

but not guaranteed [163] to be superior to IPCA classification.

The only limitation of the proposed GENILDA-ELM methods is the high com-

putational efficiency required for larger chunks due to their purely incremental

point by point learning behaviour. Increasing the number of hidden neurons for

randomized expansion using ELM algorithmic criteria also increases the compu-

tational complexity of the proposed algorithm. This problem can be resolved by

dividing the larger chunks into smaller pieces and performing incremental learn-

ing using the proposed techniques. Nevertheless, GENILDA-ELM is the most

useful method in situations where data is arriving point by point, or in the form

of adaptive streams. This feature is highlighted especially in scenarios calling for

classification in a fast and lightweight manner.

The next chapter describes the implementation of the biologically inspired

online versions of slow feature analysis technique. The prime objective is to

derive point by point learning mechanisms which can extract invariant features

in an online manner.
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Chapter 4

Novel Online Extensions of

Invariant Feature Extraction

This chapter presents novel learning approaches for extracting invariant features

from time series. Firstly incremental versions are presented which can extract

invariant features by using a one-pass incremental learning criteria without leav-

ing any dependency on the previously learned data. The incremental versions

are derived in two ways 1) By using L. Wiskott criteria [2] and 2) By using

James Stone’s criteria [96]. Secondly echo state network is used as a preproces-

sor with the incremental learner. Thirdly higher-order derivatives are used as a

smoothness constraint while extracting invariant features to see its effect on the

overall output signal. Finally all the proposed methods are compared against

standard state-of-the art, using datasets comprising artificial, MNIST digits and

hand-written character trajectories.
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4.1 The GENEIGSFA Using L. Wiskott Crite-

ria (An Incremental Method For General-

ized Eigenproblems)

The differential equation in [55] is applied to extract invariant feature by finding

the maximum eigenvalue of:

E(xxT )w = λ′E

(

(
dx

dt
)(
dx

dt
)T
)

w, (4.1)

where λ′ is the inverse of eigenvalue λ. This gives us an update of

∆w = Σxw − f(w)Σẋw, (4.2)

where Σx = E(xxT ) and Σẋ = E
(

(dx
dt
)(dx

dt
)T
)

.

In fact for a truly neural-based solution i.e. updating the weights in an online

mode, the covariance matrices are replaced in (4.2) with instantaneous values so

that

∆w = xix
T
i w − f(w)(

dxi

dt
)(
dxi

dt
)Tw. (4.3)

This method is termed as the Generalized Eigenvalue Slow Feature Analysis

method (GENEIGSFA).

Echo state network is also used as preprocessor with this method by foregoing

its output state. Reservoir activations are used as the data values before using

the technique of slow feature analysis to update the reservoir to output weights
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so that the slow features of the time series can be identified.

4.2 The Incremental Invariant Feature Extrac-

tion Method Using J. Stone’s Criterion (An

Incremental Method For Generalized Eigen-

problems)

An early attempt [96] to extract invariances from visual data uses a slightly

different criterion: Stone argued that what is necessary is the extraction from

visual signals of that part of a signal which changed least. Of course an easy

transformation is to map all input signals to a constant value, such as, 0. However

this procedure will present no information about its environment at all. To ensure

that there is some variance in the output Stone suggested that the criterion which

he wished to maximise was the ratio between the long term variance, V and the

short term variance, U :

J = log
V

U
= log

∑T
t=1(z̃t − zt)

2

∑T
t=1(z̄t − zt)2

, (4.4)

where z̃ is an estimate of the long term mean and z̄ is an estimate of the lo-

cal, short term mean. Both estimates are calculated by moving averages with

appropriate smoothing parameters.

Intuitively, Stone suggested that the output signal should contain as much

variance as possible overall, but as little variance as possible over the short term.
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According to Stone [96] if the variance of the curve is minimal that curve can

be considered to be maximally smooth. Another characteristic is the variability

over time, which ensures learning of perceptually salient visual parameters using

spatiotemporal smoothness constraint. The output can be made to reflect both

smoothness and variability by forcing it to have both a small short-term variance,

and a large long-term variance. This leads to the smaller variance of the output

over small periods, relative to its variance over a longer period. To test this the-

ory, Stone developed a learning method for updating a linear filtering parameter

consisting of a mixture of Hebbian and anti-Hebbian learning.

Stone’s criterion is used in here but with exactly the same method as above

i.e. the generalised eigenproblem solver of Section 4.1. The criterion is posed as

one of finding the generalised eigenvector of

ΣLw = λΣSw, (4.5)

where ΣL and ΣS are the long-term and short-term estimates of the covariance

matrices of the data respectively. In practice, ΣL = Σ, the covariance matrix of

the data set and estimate ΣS using a standard update rule such as

ΣS = (1− α)ΣS + αz(t)zT (t), (4.6)

where 0 < α < 1 is smoothing parameter.
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4.3 Incorporating higher order changes

The higher order smoothness constraints is applied by considering the effect of

minimising E((d
nx
dtn

)2), for n = 2, 3, .... Then this changes (4.2) to

E(xxT )w = λ′E

(

(
d2x

dt2
)(
d2x

dt2
)T + (

dx

dt
)(
dx

dt
)T
)

w, (4.7)

which gives us an update of

∆w = Σxw− f(w)[Σẋ + Σẍ]w, (4.8)

where Σx = E(xxT ), Σẋ = E
(

(dx
dt
)(dx

dt
)T
)

and Σẍ = E
(

(d
2x
dt2

)(d
2x
dt2

)T
)

.

As above, for a truly neural based solution i.e. updating the weights in online

mode, the covariance matrices are again replaced in (4.8) with the instantaneous

values so that

∆w = xix
T
i w − f(w)[(

dxi

dt
)(
dxi

dt
)T + (

d2xi

dt2
)(
d2xi

dt2
)T ]w. (4.9)

This makes the proposed algorithm purely incremental in nature as all the

data points are now individually learned point by point and perform learning by

updating the filter on each iteration. Similarly as shown in (4.3) the GENEIGSFA

method is replaced by instantaneous values of the covariance matrix. This ap-

proach can be learned independently point by point as shown in (4.8); while

simultaneously minimizing its rate of change at each iteration.
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Ofcourse, to put more or less emphasis on different terms to obtain

∆w = xix
T
i w− f(w)[λ(

dxi

dt
)(
dxi

dt
)T + (1− λ)(

d2xi

dt2
)(
d2xi

dt2
)T ]w, (4.10)

for some 0 < λ < 1.

In order to maintain biological plausibility, the higher order difference approx-

imation is used to the covariance of the higher order derivatives. Thus

d2xi

dt2
≈ (xi+1 − xi)− (xi − xi−1). (4.11)

4.4 Simulations of GENEIGSFA Using L. Wiskott

Criteria

The first simulation uses

u(t) = sin(t/33) + cos(t/10 + µ), (4.12)

where t = 1, ..., 2000 and µ = 3 is an arbitrarily chosen phase term. µ is taken

as nonzero since without this term, each of the two signals may reinforce the

other. The dataset consists of 100 samples across 20 dimensions. To emulate the

actual perception data and to investigate a method which is biologically feasible

the sliding window is not used. (Although the subjective experience is one of

continuity, with sacades and discrete spikes, the data is perceived in chunks).

(dxi

dt
)(dxi

dt
)T is estimated as (xi−xi−1)(xi−xi−1)

T , a crude but an effective estimate.
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Figure 4.1: Top diagram: the data. Bottom: the filtered data using GENEIGSFA
method.

Thus (4.3) becomes

∆w = xix
T
i w− f(w)(xi − xi−1)(xi − xi−1)

Tw. (4.13)

In the top diagram of Figure 4.1, 2000 samples from (4.12) are shown and the

bottom diagram displays the filtered data using the trained values of w. The low

frequency is clearly identified. A variety of functions were tested for f(w) and

not found to significantly alter the results.

The linear method can only be applied to linear data. Processing (4.12) is a

linear combination of the two signals.

When non-linear data is considered drawn from 2000 samples,

u(t) = sin(t/10) cos(t/33) + cos(t/10) cos(t/33 + µ). (4.14)
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Figure 4.2: Top diagram: the data. Bottom: the filtered data with reservoir as
input to the GENEIGSFA method.

where t = 1, ..., 2000 and µ = 3 is an arbitrarily chosen phase term. The reservoir

activations and their derivatives are used as the input to the SFA method. Results

are shown in the bottom halves Figures 4.2, 4.3 and 4.4. It can be noted from

the top diagram (the data) that there is some beating apparent in these figures

(giving around 3 periods) and it is this that the filtered data identifies. These

results are not always achieved: sometimes one or other of the faster signals is

identified ( cos(t/10) or cos(t/33) ). Although the reservoir was randomly created

each time, the filter found changes with each simulation.

The results above were created with a non-sparse reservoir.

With a sparse reservoir a sensible filter was found but the very slowest signal

is not identified as shown in Figure 4.5. The reason was due to the sparseness of

the weight matrix of the reservoir thus leading to the production of temporally

less sequential time series activations; which, when used for extracting invariant
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Figure 4.3: Top diagram: the data. Bottom: the filtered data with reservoir as
input to the GENEIGSFA method.
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Figure 4.4: Top diagram: the data. Bottom: the filtered data with reservoir as
input to the GENEIGSFA method.

111



0 500 1000 1500 2000

−
1.

5
0.

0
1.

0

Index

da
t

0 20 40 60 80 100

−
1.

0
0.

5

Index

x 
%

*%
 w

Figure 4.5: Top diagram: the data. Bottom: the filtered data with sparse reser-
voir as input to the GENEIGSFA method.

features by the proposed algorithm was able to identify the second or third slowest

signal from the input dataset.

The experiment was also performed with moving windows so that

u1 = (u(1), u(2), · · · , u(20))T , (4.15)

u2 = (u(2), u(3, ), · · · , u(21))T , (4.16)

etc.

but again a smooth filter is found similar to the filter from the sparse reservoir

though sometimes a filter corresponding to a less slowly changing signal is found.

Observation reveals that not just any nonlinearity will do as preprocessing

before the SFA stage: for example, using a radial basis function shown in Figure
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Figure 4.6: Top diagram: the data. Bottom: the filtered data with RBF as input
to the GENEIGSFA method.

4.6, failed to identify the slowest structure, found little structured output at all.

The reason was due to the non-sequential activations produced by the RBF ker-

nels which, when used for extracting invariant features by the proposed algorithm

was unable to identify the slowest signal from the input dataset at all.

4.5 Simulations of Incremental Invariant Fea-

ture Extraction Method Using J. Stone’s

Criteria

The experiment again begins with artificial dataset having linear combination,

u(t) = sin(t/33) + cos(t/10 + µ), (4.17)
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where t = 1, ..., 1000 and µ = 3 is an arbitrarily chosen phase term. We use the

sliding windows method so that

u1 = (u(1), u(2), · · · , u(100))T , (4.18)

u2 = (u(2), u(3, ), · · · , u(101))T . (4.19)

etc.

Typical results are shown in Figure 4.7 for which reservoir is used of size Nx = 120

and 100000 iterations. The long-term covariance matrix is calculated just once,

but the short term covariance matrix is updated using

ΣS = αΣs + (1− α)x(t)(x(t))T , (4.20)

with α set to values between 0.7 and 0.95. The results as shown in Figure 4.7

were achieved with α = 0.85 that a slowly moving signal has been found but very

much more crudely than with the SFA criterion. In general Stone’s criterion was

found to produce less close approximations to the sinusoid signals than the SFA

criterion.

Best results were achieved with a reservoir size approximately equal to the

length of each data sample.

However the Stone-reservoir method failed to find the slowest filter with the

nonlinear combination data:

u(t) = sin(t/10) cos(t/33) + cos(t/10) cos(t/33 + µ), (4.21)
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Figure 4.7: Results from a reservoir with Stone’s Method in which Nx = 120.
Best results occurred when the size of the reservoir approximated the length of
each data sample.

but it did find the second slowest, Figure 4.8.

In the previous sections, artificially generated data sets are used to illustrate

the various methods. In the next sections two real data sets are used 1) MNIST

Digit [52] and 2) Character Trajectories Dataset [1].
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Figure 4.8: Results from a reservoir with Stone’s Method in which Nx = 120.
Best results were when the size of the reservoir approximated the length of each
data sample.

4.6 Real Data

4.6.1 MNIST Dataset

The group of methods proposed in this chapter filter invariant features from in-

put data, and are illustrated on MNIST handwritten digit dataset. The MNIST

handwritten dataset consists of a standardized and freely available set of 70,000

handwritten digits. Each pattern consists of a handwritten digit of size 28 x 28

pixels. In the literature of SFA (Slow Feature Analysis) [164, 165] this handwrit-

ten digit dataset is mostly used for pattern recognition but here this dataset is

used to show the effectiveness of the proposed algorithms in identifying change.

The digits are read, sorted from 0-9 into ascending order and considered 1000

each. The reason for considering 1000 digits of the same type from each class
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is to form a sequential time series comprising similar patterns belonging to the

same class. First 0’s are incrementally learned in the time series, with an equal

time interval assigned to the learning of each digit. The data of all 0’s are then

projected on to the filter obtained from learning 0’s, to find the output. To

identify the change the output of all 1’s are also projected on to the same filter

and the differences in the respective outputs are observed. To ensure that the

slow features of each digit is learned, 1000 samples of each digit is presented 10

times to the network. This is done for all the digits by first calculating output

using their own filter and then using the same filter to calculate the output of

next digit. The learning rate is empirically taken as 0.00001 and the iteration for

learning is 10 epochs of 1000 samples.

In Figures (4.9, 4.10, 4.11, 4.12, 4.13 and 4.14) show the results of digit 1

and 2. The x-axis in the Figures represent the sample number, and the Y-axis

represents the actual output y.

Firstly, Figure 4.9 shows the results by using the standard slow feature analysis

algorithm [2]. The change is identified by showing a difference in amplitude of

the slow features coming from 2’s according to filter of 1’s followed by its own

filter.

Secondly, Figure 4.10 shows the results of digit 1 and 2 using the GENEIGSFA

method. The slow features coming from 2’s according to filter of 1’s is different

in amplitude from the slow features of 1’s on 1’s filter. This change in ampli-

tude shows the change in digit by the proposed incremental algorithm which is

identifying while learning in sequence from 0 to 9.
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Thirdly, the proposed incremental algorithm (GENEIGSFA) is tested on the

activations produced by echo state network. The size of the reservoir is 100 and

the other parameters are the same as above. The input weights and weights of

the reservoir are initialized randomly between 0 to 1. Figure 4.11 shows that

by using reservoir’s activations the difference has become more pronounced, and

the projections of digits on their own filter is quite different from the projec-

tions of digits on another digit’s filter. Clearly, the combination of reservoir and

incremental slow feature analysis (GENEIGSFA) is very powerful.

Fourthly, the higher-order derivatives have also been tested with the proposed

incremental algorithm (GENEIGSFA) and the results are shown in figure 4.12.

The value of λ is taken as 0.5. The increase or decrease in the value of lambda has

minimal effect on the amplitude of the output signal. The role of this smoothness

constraint is adding smoothness in the output feature is inclusive however the

change in moving from one digit to the other is very prominent.

Finally the alternative incremental method was tested based on Stone’s ap-

proach. In Stone’s method the value of α is 0.5. The learning rate and the number

of iterations are unchanged. Results are shown in figure 4.13 and 4.14. The prior

figure shows the results without using reservoir whereas the latter with reservoir.

The change is not really prominent with reservoir in figure 4.14 as compared to

without using reservoir in figure 4.13 where the change in amplitude is clearer.

The reason is due to the sequentially expanded time series activation of reservoir

which did not proved as useful while extracting invariant features.

The minimum and maximum value of the output for digit ‘1’ on its own filter
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Figure 4.9: Standard SFA [2] Left: Slow features of 1’s on its own filter. Middle:
Slow features of 2’s according to 1’s filter. Slow features of 2’s on its own filter.
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Figure 4.10: Incremental SFA Left: Slow features of 1’s on its own filter. Middle:
Slow features of 2’s according to 1’s filter. Slow features of 2’s on its own filter.

and digit ‘2’ on 1’s filter for all the techniques are shown in Table ??. Table ??.

The value shows the dissimilarity between the output of 1 projected on 1’s filter

and the output for 2 projected on 1’s filter by showing their range of output and

calculating the correlation coefficient between the output of both signals. Table

?? shows that the correlation between the output of both the signals using a

GenEigSfa method with Reservoir is less when compared to other methods. This

shows that GenEigSfa method with Reservoir identifies the change more clearly

than other methods.
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Figure 4.11: Incremental SFA with Reservoir Left: Slow features of 1’s on its own
filter. Middle: Slow features of 2’s according to 1’s filter. Slow features of 2’s on
its own filter.
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Figure 4.12: Incremental SFA with Smoothness Constraint: Slow features of 1’s
on its own filter. Middle: Slow features of 2’s according to 1’s filter. Slow features
of 2’s on its own filter.
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Figure 4.13: Stone’s Method: Slow features of 1’s on its own filter. Middle: Slow
features of 2’s according to 1’s filter. Slow features of 2’s on its own filter.
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Figure 4.14: Stone’s Method with Reservoir: Slow features of 1’s on its own filter.
Middle: Slow features of 2’s according to 1’s filter. Slow features of 2’s on its own
filter.

4.6.2 Character Trajectories

Next the character trajectories dataset [1] are used which consists of 2858 charac-

ter samples. The categories of characters range from a to z. Each character can

have a different number of pixels between 174 to 205 in length with the standard

3 dimensional data giving x, y, and z coordinates. 1000 characters are consid-

ered for training and the remaining characters are reserved for testing. Firstly

20 characters are filtered from each category out of 1000 characters. The ratio-

nale for extracting 20 characters of the same type is to create a small sequential

time series consisting of patterns belonging to same class which can be learned

together in a sequential manner. Dedicating equal time interval to each charac-

ter for learning and extracting a cumulative average filter. Out of each group

of 20 characters, the first group of a’s are selected and the average filter for all

the a’s are extracted. The same procedure was done for all remaining groups.

After extracting the average filter from each group the accuracy of the proposed

methods are tested. A random ’a’, ’b’, ’c’,’d’ and ’e’ character were chosen from
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Standard Slow Feature Analysis Algorithm
Min Max CorCoef(y1y2)

Range of output of 1s projected on 1s filter (y1) 0.9411 7.7330 0.9807
Range of output of 2s projected on 1s filter (y2) 2.0555 11.4144
Incremental Learning (GENEIGSFA)
Range of output of 1s projected on 1s filter (y1) 180.1291 820.7507 0.9890
Range of output of 2s projected on 1s filter (y2) 172.282 831.8435
Incremental Learning (GENEIGSFA) with Reservoir
Range of output of 1s projected on 1s filter (y1) 12.3146 53.1756 0.9479
Range of output of 2s projected on 1s filter (y2) -7.8218 45.5810
Incremental Learning (GENEIGSFA) with Higher Order Derivatives
Range of output of 1s projected on 1s filter (y1) 2.0508 16.6154 0.9824
Range of output of 2s projected on 1s filter (y2) 4.3643 21.9050
Incremental Learning (GENEIGSFA) using Stone’s Criterion
Range of output of 1s projected on 1s filter (y1) 0.8779 8.9089 0.9773
Range of output of 2s projected on 1s filter (y2) 2.1950 13.8449

Table 4.1: Comparison of Magnitude of output signals

the testing set and these characters were projected onto the average filter of a’s

only. Meanwhile a single ’a’ is selected randomly from the test dataset, and the

slow features of this character is also extracted. The euclidean distance is calcu-

lated between the single character output and the projected a,b,c,d and e on the

average filter of 20 a’s and the result is found in Table 4.2.

4.6.3 Discussion

As it can be seen from Table 4.2, the proposed GENEIGSFA method has out-

performed to the standard SFA method. Firstly, the euclidean distance between

the output of 20 a’s and the single ‘a’ by the GENEIGSFA method is less than

that of the standard SFA method. Secondly, the distance is also shown graphi-

cally in an exponential way in Figure 4.15 where x-axis represents the exponent

of euclidean distance Y and Y-axis represents the actual euclidean distance Y.

The blue line shows the distance of the GENEIGSFA method which is less in
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Figure 4.15: Comparative Euclidean Distance Graph

comparison to other methods. Hence shows the less distance between the output

produced by the filter of 20 a’s and the output of single ‘a’ projected on the filter

of 20 a’s. GENEIGSFA strength of recognizing character ‘a’ is much higher com-

pared to the other proposed method and standard state of the art slow feature

analysis criteria. All the techniques were found to be successful in recognizing

the ‘a’ character because the distance of output of character ‘a’ is less than other

characters.

Increasing the number of characters ‘a’ from 10 to 20, 30, 40 and 50 further

increases the performance of GENEIGSFA approach; compared to the other pro-

posed method based on stone’s criteria and standard state of the art slow feature

analysis technique. The difference gradually became lesser with the increase in

the count of characters ‘a’. GENEIGSFA always produces minimal distance with

the increase in the count of character ‘a’ compared to other methods where dif-

ference is noted low but not as low as is produced by the proposed GENEIGSFA

approach.
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While comparing the euclidean distance between the single character ‘b’, ‘c’,

‘d’ and ‘e’ with the average filter of 10, 20, 30, 40 and 50 characters of ‘a’. The

euclidean distance is observed very high. The reason is due to the difference in

shape, size and orientation of other characters which is very different from the

single character ‘a’. Therefore, all the technique’s output filter is quite different

from the output filter for a single character ‘a’. This shows that all the techniques

correctly identified the other characters not similar to single character ‘a’. Some

characters like ‘b’ and ‘c’ which look more similar in shape, size and orientation

produce lesser euclidean difference compared to the others whereas the difference

is greater with the single character ‘a’.

Consequently the slow feature of ‘a’ is much closer to the average output of

a’s in comparison to the projection of other characters on the average filter of 20

a’s.
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Table 4.2: Euclidean Distance Matrix between a single ’a’ and the projected
a,b,c,d and e on average filter for 20 a’s
No of a’s Single Character SFA Standard GENEIGSFA Stone’s Method

10 a 9.8011 9.5646 9.6646
10 b 12.7465 12.8941 12.5942
10 c 14.4252 14.5521 14.3502
10 d 27.2787 27.8709 27.0879
10 e 21.7497 21.6603 21.6602
20 a 9.4469 9.4322 9.4422
20 b 12.2026 12.4475 11.4916
20 c 14.0197 14.6512 13.6831
20 d 21.1748 26.1381 26.1505
20 e 21.8839 22.3803 21.3733
30 a 9.5017 9.4221 9.4318
30 b 11.4595 12.0080 10.0089
30 c 13.5355 12.7503 12.7511
30 d 26.7195 27.5374 24.5378
30 e 21.8156 22.7354 20.7354
40 a 9.3095 8.6990 8.6998
40 b 10.4456 11.6419 8.6429
40 c 13.0647 11.7851 11.7863
40 d 24.7328 24.3852 21.3862
40 e 20.7265 21.0699 19.0701
50 a 8.7751 8.6513 8.6537
50 b 9.6769 9.1272 8.1271
50 c 12.6343 12.0943 11.0930
50 d 23.2484 28.6332 18.6352
50 e 19.9421 20.7678 17.6574

4.7 Conclusion

This chapter presented two novel incremental techniques for extraction of infor-

mation from temporal data. Firstly this chapter describe a purely incremental

version of slow feature analysis (GENEIGSFA). Secondly it introduced an incre-

mental version based on Stone’s criterion. Both methods were proposed for the

purpose of incrementally extracting invariant features from the data. Further the

approaches were tested on artificial and real datasets. A new smoothing criterion
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using higher-order derivatives was also proposed and tested. The result showed

that it is often better to pre-process the inputs to the two information extraction

techniques by using the outputs of an echo state network.

Finally this chapter concludes that the SFA criterion is more powerful than

Stone’s criterion. The results of MNIST digit dataset show that the combination

of reservoir and SFA is very effective in significantly identifying classes of digits

in image data.

The next chapter describes the solution to a problem of finding shared in-

formation in multiple data streams simultaneously. The prime objective is to

incrementally extract shared temporal information from dual and multiple data

streams.
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Chapter 5

Extracting online information

from Dual and Multiple Data

Streams

This chapter presents a challenging problem of finding shared information in mul-

tiple data streams simultaneously. Firstly, an existing online version of canonical

correlation analysis (CCA) is presented. Secondly, the incremental version of

CCA is combined with reservoir of an echo state network (ESN) in order to

capture shared temporal information in two data streams. Thirdly, another in-

cremental version of CCA is presented by forcing it to ignore shared information

that is created from static values using derivative information. Finally, a novel

multi-set CCA method is presented which can identify shared information in more

than two data streams simultaneously.

The comparative effectiveness of the proposed methods is demonstrated using
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artificial and real benchmark data sets.

5.1 Dual Data Streams

This chapter considers the problem of extracting common information from two

or more data streams simultaneously. The standard statistical technique for iden-

tifying common structure in two data streams is known as Canonical Correlation

Analysis (CCA). The purpose of this chapter is to derive a novel approach that

can extract canonical information from two streams of time series.

abbabc ∗ ∗ ∗ cdcdcda ∗ cacdcd

Direction of time −→ (5.1)

abb ∗ ∗abccd ∗ ∗cdcdaca ∗ ∗ ∗ ∗ ∗ cdcd

Series (5.1) shows a particular temporal pattern (abbabccdcdcdacacdcd) from

an alphabet of 4 symbols which is to be found in two distinct time series. However,

both series contain stray values which are not part of the pattern (shown by ’*’s

in the figure to indicate these are sections whose value we don’t know, or care

about). There is a clear and direct relationship between the two time series, but

to identify the relevant pattern, we would typically require a technique such as

dynamic time warping [166].

The main interest of the proposed work is the generalization of the problem

in which the relationship between elements of the time series is not as direct
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as the above, but can be characterized by finding the canonical variates of the

two time series. However, as can be seen from the above, a direct method will

fail since the corresponding pairs do not necessarily appear at the same time

instant. Therefore, this chapter uses the technique of reservoir computing to get

a representation of the time series which contains information about the history

of the time series. For example, at position 11 in the time series (5.1), the partial

pattern, abbabccd, will exist in the reservoir’s representation, albeit mixed with a

representation of the don’t care values, ‘*’.

Consider the problem of extracting information from two data streams simul-

taneously when these data streams contain information about each other which

may be used to assist with on-going information gathering. These methods may

be useful in a number of cases: for example the same underlying signal can be seen

through different sensors which will often happen with the various scans of the

human brain and heart. This chapter examines the correlation between different

signals when there is an underlying hidden reason for the different signals.

5.1.1 Online Temporal CCA

However, canonical correlation analysis is a linear method. It is more interesting

to consider methods that can find temporal relationships between pairs of data

sets. This chapter uses the above method, but uses the reservoir activations for

a pair of related time series and W 1
out and W 2

out in place of w1 and w2.

Reservoirs are used to extract information from two data streams simultane-

ously: Two reservoirs are used with fixed weights between inputs and reservoirs

and fixed weights internal to the reservoirs but have two sets of trainable weights
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which are simultaneously adjusted so that they learn to predict each other’s out-

put as shown in figure 5.1.

Figure 5.1: Dual Reservoir Streams

Thus simultaneously for paired inputs u1 and u2 can be given as:

x1(t) = f(W1
inu1(t) +W1x1(t− 1)), (5.2)

x2(t) = f(W2
inu2(t) +W2x2(t− 1)),

y1 = W1
outx1,

y2 = W2
outx2,

∆W1
out = η(x1y2 − f(W1

out)x1y1),

∆W2
out = η(x2y1 − f(W2

out)x2y2).

The resulting technique is termed as online Temporal CCA method, though

clearly it can be used with image data where the relationship between subse-

quent pixels, or lines is spatial rather than temporal.
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5.1.1.1 Artificial Data

Firstly, the proposed method is illustrated on an artificial dataset which has two

related sources but the relation is maximized by discovering a temporal mapping.

Let u1 = {u1(1),u1(2)} and u2 = {u2(1),u2(2)}. Then the artificial data set has

u1(1) = sin(t),

u1(2) = cos(t),

u2(1) = t,

u2(2) = tanh(t), (5.3)

where t increases from −π to π in steps of 0.01. A 2-dimensional input vector is

created having 1000 samples. In the experiment the learning rate was empirically

set at 0.0001 and the number of iterations was set at 10000. A temporal correla-

tion of 0.85 was produced, whereas the standard linear non-temporal value was

0.623 [167].

5.1.1.2 Real Data

In order to compare the proposed method with those reported earlier, a real

dataset is taken from [168]. This dataset consist of 88 students who sat 5 exams,

2 of which were closed book exams while the other 3 were open book exams. Each

student comprises a single exam over the two datasets, resulting two dimensional

u1 (the closed book marks) and a three dimensional u2 (the open book marks).

Since the main interest is to investigate a temporal technique, so it is ensured
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that the students were presented in a specific order: The average marks of the

students over the 5 examinations are used by sampling them in descending order

from highest overall marks to lowest. In the experiment the learning rate was

empirically set at 0.0001, the size of reservoir was 50, and the number of itera-

tions were set at 50000. The temporal correlation on student’s data is 0.7687925

whereas the linear correlation using the standard statistical technique was 0.6630.

Therefore the proposed temporal CCA algorithm produces a higher correlation.

Validating the actual objective of the CCA approach to extract those features in

an unsupervised manner from dual streams; that can maximize the correlation

between them compared to the standard state of the art canonical correlation

techniques which has produced smaller correlation.

5.1.2 Extracting High Variance Features

In chapter 4, an incremental solution of the generalized eigenproblem was pro-

posed on the slow feature analysis criterion. This approach tries to identify

invariances in a data set, and is based on finding the minimal eigenvalue of the

covariance of a (single stream) data set while maximizing the eigenvalue of the

covariance of the derivatives. This suggests a twist to standard CCA in which the

main interest is to maximize the covariance while keeping constant the variance

within each data stream while simultaneously maximizing the rate of change of

variance within each data set. Intuitively, this explains the motivation of this

technique that shows less interest in correlation based on constant values than in

correlations in which the rate of change is greater.

This approach is implemented as
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where Σij is the covariance matrix and Σi̇j is the covariance of derivatives of the

data with respect to time.

The above method can also be written as
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. (5.4)

Therefore, the method of finding canonical correlation directions w1 and w2

would be

dw1

dt
= Σ12w2 − f(w)(Σ11 − Σ1̇1)w1,

dw2

dt
= Σ21w1 − f(w)(Σ22 − Σ2̇2)w2.

Using the fact that Σij = E(xix
T
j ), i, j = 1, 2 and that y1 = w1.x1, the

instantaneous rules can be proposed as:

∆w1 = η(x1y2 − f(w)((x1y1)−
(

(
dx1

dt
)(
dx1

dt

T

)

)

w1)),

∆w2 = η(x2y1 − f(w)((x2y2)−
(

(
dx2

dt
)(
dx2

dt

T

)

)

w2)).
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In practice, to estimate dx
dt
|τ , x(τ+1)−x(τ) is used termed as the time derivative

of the input dataset. It is calculated by taking the difference between x(τ + 1)

and x(τ) where x(τ +1) is the value of x at time (τ +1) and x(τ) is the value of

x at time τ .

Another way of minimizing the rate of change from both the covariance and

cross-covariance between datasets X and Y is made. However better results are

achieved by maximizing the covariance from within the datasets.

This technique is useful to find CCA for moving objects inside two or more

images by extracting only high variance features where the rate of change is

maximum. This technique is termed High Variance CCA, HVCCA.

5.1.2.1 Real Data

In order to validate the proposed HVCCA method with those reported earlier, is

also tested on student exam data [168]. The correlation vectors of the new and

previous methods which includes that standard statistical method and the one

reported in [111] are shown in Table 5.1. The learning rate was empirically set

at 0.0001, and the number of iterations at 50000.

1
Standard Statistics Maximum Correlation 0.6630
w1(0.0260 0.0518)
w2(0.0824 0.00081 0.0035)

2
Existing Neural Network Maximum Correlation 0.6790
w1 (0.0270 0.0518)
w2 (0.0810 0.0090 0.0040)

3
New Neural Network Maximum Correlation 0.68125
w1 (0.026 0.0518)
w2 (0.0609 0.0084 0.0042)

Table 5.1: Correlations and Weights of Real Data Experiment
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Note, reservoir is not used to pre-process the data at this stage. Further the

resulting correlation is not higher as previously when reservoir was used: this is

only High Variance CCA.

5.1.2.2 Real Images

In order to compare the proposed HVCCA method with those reported earlier,

two similar images are used as input. The images are obtained by extracting, the

first 150 pixels from both images. Both the datasets are of equal length consisting

of 150 rows and 150 columns each. The learning rate was empirically set at 0.0001

and the number of iterations were set at 50000. The experiment was conducted

using the previous method reported in [111].

The images are shown below. The first 150 × 150 chunk of pixel data is

read from the images. The results are displayed in Table 5.2 which clearly shows

the greater correlation produced by the proposed High Variance CCA method

compared to the standard state of the art CCA approach. Therefore the proposed

method successfully maximizes the correlation between two image streams in

comparison with the other which produces a slightly lower correlation shown in

Table 5.2.

Existing Neural Network Maximum Correlation 0.7833631
High Variance CCA 0.7935415

Table 5.2: Correlations of Real Image Data Experiment

Note that the reservoirs are not used in this section.
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Figure 5.2: Two Real Images Used in the Experiment

5.1.2.3 Temporal High Variance CCA

The High Variance method can be used with reservoir activations for a pair of

related times series and W1
out and W2

out in place of w1 and w2.

This method is illustrated on an artificial data set having two related sources,

and is maximised by discovering a nonlinear mapping. Let u1 = {u1(1),u1(2)}

and u2 = {u2(1),u2(2)}. Then the artificial data set has

u1(1) = sin(t),

u1(2) = cos(t),

u2(1) = t,

u2(2) = tanh(t), (5.5)

where t increases from −π to π in steps of 0.01. The learning rate was empirically

set to 0.0001 and the number of iterations was 10000. The size of the reservoir

is equal to 50. The correlations of 0.87 are obtained which contrasts with a

correlation of 0.85 determined with the online CCA method of section 5.1.
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5.2 Multi-Set Canonical Correlation Analysis

Multi-set Canonical Correlation Analysis (MCCA)[117, 118] is a technique used

to analyse a linear relationship between more (than 2) sets of variables. It is

considered as a generalized extension of CCA in essence.

For example consider three variables x1,x2 and x3. The method for finding

canonical correlations of these variables can easily be extended for n terms. These

three variables are then passed through a set of weights, w1, w2 and w3 to give

outputs y1 = wT
1 x1, y2 = wT

2 x2 and y3 = wT
3 x3.

The criteria for finding Multi-set Canonical Correlations of three variables will

be to find the greatest eigenvalue of:
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where Σij is the covariance matrix between xi and xj .

The canonical correlation directions w1, w2 and w3 are found using

dw1

dt
= Σ12w2 + Σ13w3 − f(w)Σ11w1,

dw2

dt
= Σ21w1 + Σ23w3 − f(w)Σ22w2,

dw3

dt
= Σ31w1 + Σ32w2 − f(w)Σ33w3.
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As before, the instantaneous versions can be derived as:

∆w1 = ηx1(y2 + y3 − f(w)y1),

∆w2 = ηx2(y1 + y3 − f(w)y2),

∆w3 = ηx3(y1 + y2 − f(w)y3).

The generalized Multi-set CCA criteria for n terms is given as
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(5.7)

from which the obvious generalisation can be given as:

∆wi = ηxi(
∑

j 6=i

yj − f(w)yi). (5.8)

5.2.1 Artificial Data

MCCA is illustrated using an artificial data set which has three related sources.

Further the relation is maximised by discovering a linear relationship among
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the three datasets. Let u1 = {u1(1),u1(2)}, u2 = {u2(1),u2(2)} and u3 =

{u3(1),u3(2)}. The artificial dataset has

u1(1) = Gaussian Noise (Mean = 0, standard deviation = 0.1)

u1(2) = sin(t) + Gaussian Noise (Mean = 0, standard deviation = 0.1)

u2(1) = 1− (2.6− t) ∗ (2.6− t) + Gaussian Noise (Mean = 0, standard deviation = 0.1)

u2(2) = Gaussian Noise (Mean = 0, standard deviation = 0.1)

u3(1) = −(t− 3) ∗ (t− 2) + Gaussian Noise (Mean = 0 and standard deviation = 0.1)

u3(2) = Gaussian Noise (Mean = 0 and standard deviation = 0.1) (5.9)

where t increases from 0 to 3.33 in steps of 1
300

for example, consist of a 3

0 50 100 150 200 250 300 350
−6

−5

−4

−3

−2

−1

0

1
Noise−free signals

sin(t)

1−(2.6−t)(2.6−t) −(t−3)(t−2)

Figure 5.3: Artificial Noise free signals

stream data set of 1000 samples of two dimensional data. The learning rate was

empirically set at 0.0001 and the number of iterations were set at 10000. Noise-

free versions of the underlying signals of this dataset are shown in Figure 5.3.

The multi-set correlation among the three variables is shown in Table 5.3.
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u1 u2 u3

u1 1.0000000 0.3351417 0.4862097
u2 0.3351417 1.0000000 0.8666971
u3 0.4862097 0.8666971 1.0000000

Table 5.3: Multi-Set Correlations Between u1, u2 and u3

w1 0.01548205 0.7630209

w2 1.05575 0.0176861

w3 0.7339293 0.08696326

Table 5.4: Weights w1, w2 and w3 of u1, u2 and u3

It should be noted from Table 5.4 that the parts of each data stream contain

true covariance information are those in which the weights are identifying and is

highlighted in bold: the other dimensions contain only noise, with weight values

two orders of magnitude less. The correlations in Table 5.3 illustrate the very

strong correlation between the first elements in each of the second and third data

streams. The second element of the first data stream contains a signal which is

similar to these two correlated signals. However this signal isn’t as close as they

are to each other. Therefore the correlation found between signal 1 and the other

2 is somewhat less.

5.2.2 Temporal MCCA (Multiset Canonical Correlation

Analysis)

This subsection presents a method which can be used to find non-linear relation-

ships between pairs of data sets. The same MCCA method is used, but with

reservoir activations for a pair of related time series and W1
out, W

2
out and W3

out

in place of w1, w2 and w3. Since there are three data streams, three separate
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reservoirs were used. Further three sets of output weights were updated. Results

are shown in Table 5.5.

u1 u2 u3

u1 1.0000000 0.3543267 0.5176265
u2 0.3543267 1.0000000 0.8899055
u3 0.5176265 0.8899055 1.0000000

Table 5.5: Multi-Set Non-Linear Correlations Between u1, u2 and u3

It can be seen that the use of the reservoirs has produced larger values in the

non-diagonal weights.

5.2.3 High Variance Multi-Set CCA

The idea remains the same as for multi streams of data but aiming to maximize

the changes within each data stream separately.

The criteria for finding High Variance Multi-set Canonical Correlations of

three variables will be given as:
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(5.10)

The method of finding High Variance canonical correlation directions w1, w2

and w3 is then
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dw1

dt
= Σ12w2 + Σ13w3 − f(w)(Σ11 − Σ1̇1)w1,

dw2

dt
= Σ21w1 + Σ23w3 − f(w)(Σ22 − Σ2̇2)w2,

dw3

dt
= Σ31w2 + Σ32w2 − f(w)(Σ33 − Σ3̇3)w3.

Using the fact that Σij = E(xix
T
j ), i, j = 1, 2 and that y1 = w1.x1, the

instantaneous rules can be given as:

∆w1 = η(x1y2 + x1y3 − f(w)

(

x1y1 −
(

(
dx1

dt
)(
dx1

dt

T

)

))

,

∆w2 = η(x2y1 + x2y3 − f(w)

(

x2y2 −
(

(
dx2

dt
)(
dx2

dt

T

)

))

,

∆w3 = η(x3y1 + x3y2 − f(w)

(

x3y3 −
(

(
dx3

dt
)(
dx3

dt

T

)

))

.

The same artificial dataset used in section 5.2.1 is used for the High Variance

approach. Table 5.6 shows that the High Variance method has produced slightly

higher correlations as compared to the generalized approach. It can be seen more

clearly from the values of the weight vectors shown in Table 5.7 that the method

is ignoring the noise parts of each data stream and concentrating on the signal

parts.

u1 u2 u3

u1 1.0000000 0.3357379 0.5029659
u2 0.3357379 1.0000000 0.8704137
u3 0.5029659 0.8704137 1.0000000

Table 5.6: Multi-Set Correlations Between u1, u2 and u3

Again emphasizing that these results are without the use of a reservoir.
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w1 -0.04771852 0.7397458

w2 1.073291 0.006790616

w3 0.7530229 -0.08743803

Table 5.7: Weights w1, w2 and w3 of u1, u2 and u3

5.2.4 Temporal High Variance MCCA

In this subsection the same above criteria is followed by using reservoir activa-

tions to create a new method by which one can compute High Variance canonical

correlations among multi-set data. It can be seen from Table 5.8 that the corre-

lations are a bit higher with reservoirs as compared to the generalized technique,

but not as high as with temporal CCA using the reservoirs.

u1 u2 u3

u1 1.0000000 0.3443723 0.5158995
u2 0.3443723 1.0000000 0.9183531
u3 0.5158995 0.9183531 1.0000000

Table 5.8: Multi-Set Non-Linear Correlations Between u1, u2 and u3

5.3 Comparative Analysis of MCCA approaches

on Real Data

MNIST data set [52] is used as a real dataset consisting of 60000 training patterns

containing 0-9 handwritten digits and 10000 test patterns of the same digits (0-9).

Each digit consists of 784 pixels which are of 28×28 pixels enclosed in a bounding

box. Every digit of the same type is slightly different from every other in terms

of position, size and shape. In order to compute multi-set canonical correlation

using the proposed methods one digit is randomly chosen from every class (0-9),
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and the generalized multi-set canonical correlations between digits belonging to

different classes is calculated. The learning rate of the algorithms is empirically

set and the total number of iterations for learning all set of digits are 100000.

A combined comparative results of all the methods related to MCCA (Multi-set

Canonical Correlation Analysis) proposed in this chapter are shown in Table 5.9

Figure 5.4: Ten Digit Used in the Experiment

5.3.0.1 Discussion

It can be seen in Table 5.9, that some figures have a high correlation with each

other for e.g. 6 and 8 while others have a lower correlation for e.g. 3 and 1.

The reason is the similarity in the shape of digits for example digit 6 looks very

similar to the digit 8. On the other hand digit 1 generally looks very dissimilar to

the digit 3. Another reason is that in the MNIST digit dataset each class of digit

has more than one image of digits that are different in shape, size and orientation

from each other. This difference sometimes makes them more similar to those

digits with whom they generally dont look very similar. This is the reason why

digits like 1, 4 do not come out as highly correlated as other digits. Therefore,

this is the only reason for surprisingly lower correlations produced between some

digits by most of the approaches.

Further, all the proposed MCCA approaches of this chapter are applied on this

dataset. The proposed temporal linear approaches like GMCCA and HVMCCA
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overall produces smaller correlations in comparison with the other non-linear ap-

proaches like GMMCA(R) (with reservoir) and HVMCCA(R) (with reservoir).

GMCCA(R) produces consistent results in comparison with HVMCCA(R). This

is due to ignorance of constant information in HVMCCA(R) which do not prove

really useful in some digits due to their overall orientation and therefore surpris-

ingly produces a smaller correlation for some of the digits. The only reason why

linear approaches like GMCCA and HVMCCA don’t produce higher correlation

is due to the very strong non-linear nature of the MNIST digit dataset. Still, the

latter produces higher correlations compared to the other only due to its criteria

of ignoring constant information.

In Table 5.10, the 2-tailed t-values is used to compare the performance of

the various methods, comparing them in pairs: when written a > b, 99%, which

mean that the improvement in performance of a over b is significant at the

99% confidence interval; similarly a < b, 99% means that b improves a with a

significance value greater than the 99% confidence interval.

According to the performance measurement chart shown in Table 5.10, it can

be seen that the addition of reservoirs to the method always improves the canon-

ical correlations with respect to the identification of individual figures. Note that

HVMCCA is better than GMCCA (99% confidence interval) but the addition

of reservoirs reverses this. The conjecture is that the reservoirs themselves are

adding variance though this is a feature which requires further analysis. The ratio-

nale behind deriving all these new methods is to extract selected features from the

data which can further maximize the correlation between two and more streams
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in comparison with the previously derived techniques in a completely unsuper-

vised manner. All the techniques performed consistently well for different kinds

of data. Temporal CCA is good on numeric time series data. Similarly High Vari-

ance CCA (HVCCA) works well on image data. Temporal High Variance CCA

proves useful in extracting time series information from image data. Specifically,

each technique is designed to work on a particular kind of data stream.

146



Method 0 1 2 3 4 5 6 7 8 9

0 GMCCA 1.000 0.571 0.817 0.749 0.693 0.765 0.882 0.851 0.828 0.826
GMCCA(R) 1.000 0.903 0.979 0.957 0.942 0.966 0.979 0.982 0.965 0.986
HVMCCA 1.000 0.641 0.876 0.842 0.825 0.856 0.855 0.927 0.875 0.925

HVMCCA(R) 1.000 0.759 0.934 0.955 0.974 0.973 0.954 0.961 0.961 0.989

1 GMCCA 0.571 1.000 0.705 0.566 0.135 0.735 0.431 0.792 0.714 0.599
GMCCA(R) 0.903 1.000 0.866 0.816 0.822 0.841 0.896 0.910 0.854 0.906
HVMCCA 0.641 1.000 0.721 0.719 0.292 0.795 0.518 0.743 0.795 0.564

HVMCCA(R) 0.759 1.000 0.697 0.723 0.679 0.742 0.697 0.746 0.747 0.749

2 GMCCA 0.817 0.705 1.000 0.779 0.314 0.632 0.785 0.704 0.876 0.592
GMCCA(R) 0.979 0.866 1.000 0.981 0.935 0.987 0.971 0.973 0.987 0.982
HVMCCA 0.876 0.721 1.000 0.839 0.553 0.767 0.793 0.798 0.886 0.707

HVMCCA(R) 0.934 0.697 1.000 0.903 0.928 0.888 0.917 0.867 0.926 0.939

3 GMCCA 0.749 0.566 0.779 1.000 0.387 0.747 0.736 0.724 0.934 0.601
GMCCA(R) 0.957 0.816 0.981 1.000 0.919 0.978 0.957 0.956 0.989 0.953
HVMCCA 0.955 0.723 0.903 1.000 0.944 0.987 0.935 0.961 0.981 0.954

HVMCCA(R) 0.955 0.723 0.903 1.000 0.944 0.987 0.935 0.961 0.981 0.954

4 GMCCA 0.693 0.135 0.314 0.387 1.000 0.594 0.505 0.636 0.367 0.826
GMCCA(R) 0.942 0.822 0.935 0.919 1.000 0.943 0.957 0.944 0.932 0.941
HVMCCA 0.825 0.292 0.553 0.595 1.000 0.744 0.674 0.748 0.558 0.913

HVMCCA(R) 0.974 0.679 0.928 0.944 1.000 0.958 0.975 0.937 0.947 0.972

5 GMCCA 0.765 0.735 0.632 0.747 0.594 1.000 0.631 0.844 0.733 0.878
GMCCA(R) 0.967 0.841 0.987 0.978 0.943 1.000 0.962 0.963 0.989 0.967
HVMCCA 0.855 0.795 0.767 0.872 0.745 1.000 0.714 0.903 0.846 0.901

HVMCCA(R) 0.973 0.742 0.888 0.987 0.958 1.000 0.951 0.962 0.966 0.969

6 GMCCA 0.882 0.431 0.785 0.736 0.505 0.631 1.000 0.611 0.802 0.576
GMCCA(R) 0.979 0.896 0.971 0.957 0.957 0.962 1.000 0.985 0.967 0.976
HVMCCA 0.855 0.518 0.793 0.722 0.674 0.714 1.000 0.737 0.799 0.723

HVMMCA(R) 0.975 0.697 0.917 0.935 0.975 0.951 1.000 0.951 0.958 0.959

7 GMCCA 0.851 0.792 0.704 0.724 0.636 0.844 0.611 1.000 0.815 0.874
GMCCA(R) 0.982 0.910 0.973 0.956 0.944 0.963 0.985 1.000 0.973 0.987
HVMCCA 0.927 0.743 0.798 0.914 0.748 0.903 0.737 1.000 0.914 0.917

HVMCCA(R) 0.954 0.746 0.867 0.961 0.937 0.962 0.951 1.000 0.965 0.943

8 GMCCA 0.828 0.714 0.876 0.934 0.367 0.733 0.802 0.815 1.000 0.628
GMCCA(R) 0.965 0.854 0.987 0.989 0.932 0.989 0.967 0.973 1.000 0.969
HVMCCA 0.875 0.795 0.886 0.955 0.558 0.846 0.799 0.914 1.000 0.764

HVMCCA(R) 0.961 0.747 0.926 0.981 0.948 0.966 0.958 0.965 1.000 0.945

9 GMCCA 0.826 0.599 0.592 0.601 0.826 0.878 0.576 0.874 0.628 1.000
GMCCA(R) 0.986 0.906 0.983 0.953 0.941 0.967 0.976 0.987 0.969 1.000
HVMCCA 0.925 0.564 0.707 0.787 0.913 0.901 0.723 0.917 0.764 1.000

HVMCCA(R) 0.989 0.749 0.939 0.954 0.973 0.969 0.959 0.943 0.945 1.000

Table 5.9: Multi-Set Correlations Between digit 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9. GMCCA(Generalized Multi-Set Canonical Correlation Analysis), GM-
CCA(R)(Generalized Multi-Set Canonical Correlation Analysis with Reservoir),
HVMCCA(High Variance Multi-Set Canonical Correlation Analysis), HVM-
CCA(R)(High Variance Multi-Set Canonical Correlation Analysis with Reser-
voir).
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GMCCA-GMCCA(R) < 99 %
HVMCCA-GMCCA > 99 %

HVMCCA(R)-GMCCA > 99 %
GMCCA(R)-HVMCCA > 99 %

GMCCA(R)-HVMCCA(R) > 99 %
HVMCCA(R)-HVMCCA > 99 %

Table 5.10: Performance Measurement. Paired-wise Comparison with a confi-
dence interval of 99 %
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5.4 Conclusion

This chapter presented extensions to find the canonical correlation analysis of a

data set. In particular it includes:

1. Used reservoir activations to captured information on temporal, or image

data. The online weight adaptation algorithm were used to create a novel

method known as Temporal CCA.

2. Used a technique suggested by the Slow Feature Analysis method [2][43] to

ensure that the correlations did not come from static signals.

3. Developed online Multi-set CCA methods which are incremental in nature.

4. Combined the above techniques on real and artificial data sets.

It can be concluded that the generalised online method for finding canonical

correlations is more appropriate for numeric data (artificial data as well as student

exam data). The temporal high variance method is more appropriate for image

data sets (MNIST digit data) because in images most of the time the constant

data needs to be ignored.

The next chapter will present a generalized incremental laplacian eigenmaps

(GENILE), a novel online version of the Laplacian Eigenmaps, one of the most

popular manifold-based dimensionality reduction techniques which solves the gen-

eralized eigenvalue problem.
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Chapter 6

An Online Generalized

Eigenvalue Version of Laplacian

Eigenmaps

This chapter presents a novel online version of locally optimized Laplacian Eigen-

maps (LE), using a manifold-based dimensionality reduction techniques, and solv-

ing the generalized eigenvalue problem. Firstly, the comparative performance of

the proposed methods with the standard Laplacian Eigenmaps is evaluated on

two popular artificial datasets, swissroll and s-curve datasets. Secondly, the pro-

posed online methods are benchmarked against a number of standard batch-based

and other manifold-based learning techniques. Finally they are evaluated on the

real MNIST digit, bank-note, and heart disease datasets.

Preliminary experimental results demonstrate consistent improvements in the

classification accuracy of the proposed method in comparison with standard
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batch-based manifold-learning techniques.

6.1 Introduction

Most of the traditional techniques used for feature extraction and dimensionality

reduction come in both batch and incremental versions. Of all the dimensionality

reduction methods proposed in the past, manifold-based learning techniques for

feature extraction and dimensionality reduction have gained great popularity.

Most of these techniques run in batch mode. Very few incremental approaches

based on manifold learning have been proposed. The major difficulty arises in

scenarios involving incoming data arriving in multiple chunks from time to time.

Batch model algorithms repetitively recalculate the previous chunks at each new

input, which becomes computationally very expensive and less efficient.

There are several scenarios for explaining the benefit of incremental learning,

and how it overcomes the problem of the high computational and memory cost.

Instead of considering a single new entry, the most common scenario should be

considered, where the data is coming in more than one chunk and in a sequence.

Then the problem of incremental learning involving incoming data in this way

can be stated as follows:

Assume X = [x1,x2, ...,xt1 ,xt1+1,xt1+2, ...,xt1+t2 ] contains data of two chunks

from the whole dataset. Suppose the low-dimensional coordinates yi of xi repre-

senting the first two chunks at time step t1 and t2 have already been produced.

When the third chunk comes at time step t3, incremental learning should in-

dependently figure out, how to project this chunk of information onto the low
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dimensional space.

In many scenarios, it is uncommon for all the data to be present before learn-

ing. For example social networking site data, online web transaction data, and

data received through sensors could be missing. These kinds of data are mostly

collected, and stored in raw data form in a distributed file structure storage envi-

ronments such as Hadoop or Cassandra. Analytical programming environments

such as java, matlab and revolution R extract data from these storage sites rang-

ing from terabytes to petabytes and perform learning on these big datasets. The

incremental learning technique is best suited to these scenarios because the huge

amount of transactional data cannot be learned at once. Instead, the best choice

is to learn the data in the form of chunks, or more appropriately, one data point

at a time in a completely adaptive manner.

6.2 Manifold-Based Learning

Consider the problem of observing some images. There are factors to be con-

sidered like the view angle, rotation and the lighting angle of the pixel intensi-

ties. And the data in the high-dimensional space attains a complex non-linear

structure. These changes don’t occur abruptly, and the data can be reasonably

assumed to lie approximately on a (Riemannian) manifold. This is one reason for

manifold-based learning technique’s gaining a lot of attention.

In this chapter, an online version of Laplacian Eigenmaps is proposed, which

is a manifold-based learning technique performed by first building a graph by

incorporating the neighborhood information of the dataset. Then, using the
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notion of the laplacian of the graph, computes a low dimensional representation

of the data that optimally preserves local neighborhood information in a certain

sense.

The core idea of Laplacian Eigenmaps [107] is very simple: To calculate locally

one sparse eigenvalue problem with minimal computation. Since the first part

has minimal computation, the idea for creating an incremental version is to solve

the sparse eigenvalue problem incrementally therefore making its memory cost

more efficient and applicable for deep analysis.

In the following section, the state-of-the-art incremental version of Laplacian

Eigenmaps [107] is described.

6.3 Generalized Incremental Laplacian Eigen-

maps

The rationale for deriving new online versions in the presence of an existing

extension of Laplacian Eigenmaps already proposed in [72] is to highlight four

key findings.

1. For Big Data computations, the two positive semi-definite matrices pro-

duced for learning will be quite big in size, and require a large amount

of computations, which can only be solved by incrementally learning each

vector point by point for both matrices.

2. If the data is online in nature, and a light-weight adaptable learning mech-

anism is required, the proposed online version will be a preferable choice
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compared to the standard Laplacian Eigenmaps approach.

3. It is not always important as mentioned in [107, 72] to consider only min-

imum eigenvalues in producing low-dimensional projections for Laplacian

Eigenmaps.

4. The low dimensional embedding can also be calculated incrementally, and

independently in one pass without using the existing adjacent information

of the previous chunk as in [72].

6.3.1 Procedure:

Let L be the laplacian matrix, and D be the diagonal matrix where each value

of D is the sum of each column of W as explained in [107]. As shown in [55],

the optimal weights for a linear projection can be found as the solution of the

generalized eigenproblems

Lw = λDw. (6.1)

Therefore the method can be used described in [55] to obtain

∆w = Lw − f(w)Dw,

w = w + η∆w, (6.2)

where L and D are both symmetric and semi-definite matrices. Both the ma-

trices are calculated prior to the learning process. The matrices L and D are
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computed on the basis of construction of an adjacency graph matrix on the high

dimensional data space followed by creating a weight matrix W. The learning

only requires updating of subspace filter w by using matrices L and D. Then, by

using the generalized eigenvector solution, the filter w in (6.2) finds the eigenvec-

tor corresponding to the maximum eigenvalue. The interesting thing to note here

is the selection of eigenvector corresponding to the maximum eigenvalue instead

of considering the minimum eigenvalue as in [107, 72], which leads to the loss of

a lot of variance of the data and the actual overall orientation of data lying on

the high dimensional space. Considering smaller variance, or smallest eigenvalue

indicates data to be close to the mean but will make no improvement in project-

ing the neighboring points closer to one another. In other words, transforming

the data to a different direction, and attaining the maximum variance of the data

by processing each data point incrementally can produce better results as shown

in this paper. Therefore, due to the incremental nature of the proposed algo-

rithm which learns every chunk of data point by point, by projecting it on the

eigenvector corresponding to the maximum eigenvalue produces better results, as

compared to the standard version of Laplacian Eigenmaps.

It can be seen from (6.1) that the proposed algorithm uses a mixture of batch

and online methods since the whole data is used at any one time and the weights

are updated incrementally. For a truly neural solution, by updating the weights

in an online mode, and using only one sample at a time, the matrix L and D can

be replaced with the instantaneous values so that

155



Liw = Diw, (6.3)

where i = 1, 2, 3, ..., n. Here Li and Di means the laplacian matrix L which is

computed as L = D − W and the diagonal matrix D whose entries are sum of

each column of W, i.e., Dii =
∑

j Wij will be learned point by point in a purely

incremental manner. In order to find the next filter corresponding to the second

largest eigenvalue, the matrices L and D can be deflated, and again incrementally

solve the generalized eigenvector problem to find a second filter:

L∗ = L− λwLwT , (6.4)

D∗ = D− λwDwT , (6.5)

with L and D as positive semi-definite matrices and w being the filter corre-

sponding to the largest eigenvalue. In order to find the next filter corresponding

to the second highest eigenvalue L and D matrices need to be deflated first by

using (6.4) and (6.5).

According to (6.2), the same learning process is conducted using the deflated

L and D, and the next filter corresponding to the second largest eigenvalue is

found. The major steps involved in the execution of the incremental algorithm

for the next chunk at time step t2 are shown in Table 6.1.
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Table 6.1: The Computing Procedure of the generalized incremental Laplacian
Eigenmaps (GENILE) Algorithm

Input: The input patterns X = [x1,x2,x3, .....,xt2 ] where t2 ǫ Next Chunk at time step t2

Output: The mapping function: f : Rt2
i − > Rt1+t2

o

Step 1: [Construct an adjacency Graph Matrix of the new chunk at time step t2]
Using the K-Nearest Neighbor Algorithm on the whole chunk at time step t2 and create an
edge between xi and xj if xi is among the K nearest neighbor of xj or xj is among
the K nearest neighbor of xi of the chunk at time step t2.

Step 2:: [Weighting the edges independently of the chunk at time step t2]

Heat Kernel. [tǫt2] if node i is connected with j put

Wij = e−
‖xi−xj‖

2

t ,

Simple Approach. Set Wij = 1 if vertices i and j are connected
by an edge and set Wij = 0 if vertices i and j are not connected by an edge.

Step 3: Construct an objective function of the new chunk independently. Consider
y = [y1, y2, y3, ...., yt2]. The criteria to minimize would be similar to the existing method but
this time the minimization will be performed independently for each chunk:

∑

ij(yt2i − yt2j )
2Wt2ij

,

and independently calculate L and D of the new chunk at the time step t2
where Dt2ii

=
∑

j Wt2ji
and L = D−W

Step 4: Use the updated eigenspace from the previous chunk belonging to the highest
eigenvalue by incrementally solving the GEV of the new chunk at time step t2
to produce updated w1

new where w1
new = wt1+t2 is the updated eigenspace of the first

dimension Liw1
t1+t2 = λDiw1

t1+t2 .

Step 5: Use the updated eigenspace from the previous chunk belonging to the second
highest eigenvalue by deflating Lnew and Dnew and incrementally solving the GEV of
the new chunk at time step t2 to produce the updated w2

new where w2
new = w2

t1+t2 is the
updated eigenspace of the second dimension .
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Fig. 6.1: Swiss Roll Dataset

6.3.2 Experiment on an Artificial Dataset

Swiss roll is used as an artificial dataset for the initial experiment. It consists of

20,000 datapoints, and each data point has three dimensions. Since the proposed

method is incremental, the data is divided into four different chunks and perform

dimensionality reduction on each chunk separately by using the same learned

filters w1 and w2 of the previous chunk for the next chunk coming ahead. The

learning rate was empirically set to 0.00001, and the number of iterations for

learning each chunk was 10,000. The learning rate and the number of iterations

for learning were initialized with the most appropriate values after checking their

effect on the output. The results of the experiment conducted incrementally are

shown in Figure 6.2. For the experiments on this artificial dataset the weight

matrix W was defined by

Wij =



















e−
‖xi−xj‖

2

t , if vertices i and j are connected

0, otherwise
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First 500 Points First 1000 Points First 1500 Points All Points

Fig. 6.2: Incremental Laplacian Eigenmaps First-left: Projections for first 500
datapoints. Second-left: Projections for first 1000 datapoints. Third-left: Pro-
jections for first 1500 datapoints. Fourth-left: Projections for the first 2000 dat-
apoints

First 500 Points First 1000 Points

Fig. 6.3: Batch Laplacian Eigenmaps First-left: Projections for first 500 data-
points. Second-left: Projections for the first 1000 datapoints.

First 500 Points First 1000 Points First 1500 Points First 2000 Points

Fig. 6.4: Incremental Laplacian Eigenmaps First-left: Projections for first 500
datapoints. Second-left: Projections for first 1000 datapoints. Third-left: Pro-
jections for first 1500 datapoints. Fourth-left: Projections for the first 2000 dat-
apoints
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6.3.2.1 Discussion

It has been commonly remarked that the swiss roll dataset is used to evalu-

ate algorithms for manifold-based learning techniques [169] most of the times.

The projections computed by the proposed method and standard state of the

art Laplacian Eigenmaps technique are coloured on the basis of the low dimen-

sional embedding which can work as an indices for the computed low dimensional

projections already contained in the swiss roll dataset. The low dimensional

projections should be properly clustered where colour of each value of the low

dimensional projection will be determined by its corresponding low dimensional

embedding already contained in the dataset. The size of the low dimensional

embedding should be equivalent to the size of the computed low dimensional pro-

jections. Each value in the vector of low dimensional embedding will be linearly

mapped to the colour in the current colormap of the low dimensional plot. The

different columns help in evaluating the performance of the dimensionality re-

duction technique by its computed low dimensional projections. In Figure 6.2,

the projections calculated by using the novel incremental version of the Lapla-

cian Eigenmaps are shown by splitting the first 2000 datapoints into four chunks

assuming the leftmost to be the first chunk of 500 datapoints whose projections

are first calculated and displayed. The next 500 datapoints together with the

previous chunk are shown in the second sub-figure from the left, followed by the

other two, including the previously processed datapoints, as shown in the third

and fourth sub-figures from the left. It can be easily seen that all the datapoints

of the swiss roll dataset are properly revealed in two dimensions with minimum
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collisions despite the fact that the shape is rather flat than rolled but still all the

points are properly clustered in the reduced dimensions.

In Figure 6.3 the same swiss roll dataset is tested using batch Laplacian Eigen-

maps and tried to learn the manifold of the high dimensional dataset in two sep-

arate chunks where the first chunk consists of the first 500 datapoints and the

second chunk consists of the first 1000 datapoints. As one can see very easily, the

projections produced in both cases are completely different in shape and show no

continuity. Of course the factor of repetitive re-calculation is always fermenting

the computational efficiency in terms of batch processing.

Further, by projecting the data on minimum eigenvectors in case of standard

batch Laplacian Eigenmaps version produces a very sparse kind of shape of a

swiss roll with gaps between projected data points in the form of holes. On the

other hand, projecting the data in a purely adaptive manner on the eigenvec-

tor corresponding to the maximum eigenvalue produces very symmetrical results

with no gap or sparseness between points in the reduced dimensions. This shows

the inconsistency, computational complexity and non adaptable nature of the

batch Laplacian Eigenmaps technique which every time re-calculates the low di-

mensional projection for each chunk independently, thus producing projections

of different shape and size as shown clearly in Figure 6.3. Whereas we learn that

with the proposed incremental learner, the low dimensional projections for each

chunk are computed in a purely adaptable manner leading to embedding for each

chunk which is consistent in shape and size as shown in Figure 6.2.

The simulation results of the proposed incremental algorithm are also demon-

161



strated on the s-curve dataset in Figure 6.4. In the case of the s-curve dataset, the

proposed approach is able to produce the results in two dimensions that almost

represent the shape of a s-curve as compared to the results produced on the swiss

roll dataset. According to the results of real dataset shown in the next section,

the improvement in clustering, classification and its purely incremental nature as

compared to the standard batch laplacian approach are the actual strengths of

the incremental algorithm.

6.3.3 Experiment on MNIST Digit Dataset

In terms of real data, the performance evaluation of the novel purely incremen-

tal approach compared with its standard batch version is demonstrated on the

MNIST digit dataset [52]. The MNIST digit dataset consist of 60,000 training

patterns containing 0-9 handwritten digits and 10,000 test patterns. Each digit

contains 784 pixels. The experiment is conducted by taking 500 datapoints begin-

ning with the first four digits (0, 1, 2 and 3) and trying to learn the manifold of the

high-dimensional data separately using both the standard and the incremental

approach. The results are shown in Figure 6.5 in reduced dimensions.

Table 6.2: The confusion matrices. Left: Batch Laplacian Eigenmaps (LE).
Right: GENILE.

0 1 2 3
0 480 1 15 4
1 1 482 14 3
2 17 38 345 100
3 12 9 218 216

0 1 2 3
0 490 0 7 3
1 0 487 9 4
2 15 27 451 7
3 6 9 28 457
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First 2000 Points (500 each) First 2000 Points (500 each)

Fig. 6.5: Left: Unfolding first 2000 points (500 each of digits 0,1,2 and 3) using
standard LE. Right: Projections of first 2000 points (500 each of digits 0, 1, 2
and 3) using GENILE.
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Fig. 6.6: Comparison Between GENILE and other Dimensionality Reduction
Methods
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Table 6.3: Classification Accuracy of MNIST Digit Dataset

Algorithn Classifier Data Length Dimensions Accuracy %
IPCA KNN 2000 784 (28 x 28) 77.44
LLE KNN 2000 784 (28 x 28) 80.16
Isometric Projection KNN 2000 784 (28 x 28) 82.62
LE KNN 2000 784 (28 x 28) 76.15
GENILE KNN 2000 784(28x28) 94.25

6.3.3.1 Discussion

The projections visualized in Figure 6.5 show the same type of digits placed most

of the times closer to each other using both the standard and incremental al-

gorithms. In order to clarify the classifications and misclassifications of all the

digits, the k-nearest neighbor (kNN) algorithm was executed on the projections

of the data with k = 5. Assumed as the middle value after considering all the val-

ues of k from 1 to 10 in an odd manner. This procedure enables these neighbors

to vote for the class of the particular datapoint: the most frequent digits among

each digit’s five neighbors will be considered as that particular digit’s group. The

results of the kNN algorithm for both the approaches are shown in the form of a

confusion matrix in Table 6.2. According to the confusion matrix, the subtable

on the left side shows the results of batch Laplacian Eigenmaps. The subtable on

the right shows the results of the generalized incremental Laplacian Eigenmaps

(GENILE). Results revealed that both the standard and incremental techniques

that the latter outperformed the other by showing the correct classification 1885

times out of 2000. The standard approach shows the correct classification 1523

times out of 2000, which is much less than the other. For further clarification, the
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number of digits were increased in each class and tested its impact on the classi-

fication accuracy compared with other incremental and manifold-based learning

algorithms. The comparative results are shown in Figure 6.6. There is a clear

sign of improvement by the proposed method compared with the existing batch

version and other dimensionality reduction mechanism. The classification accu-

racy produced by the proposed method is always above 90 % whereas with all

the other method including incremental principal component analysis (IPCA)

[170], local linear embedding (LLE) [106], Isometric projection [171] and Lapla-

cian Eigenmaps [107] the classification accuracy is always below 90 % as shown

in Table 6.3. The reason for the high classification accuracy produced by the pro-

posed method is its point-by-point learning nature which actually made a very

clear difference of improvement in the classification accuracy compared with the

existing batch Laplacian Eigenmaps approach.

6.3.4 Experiment on the Banknote Authentication Data

Set

Next the banknote dataset is taken from genuine and forged banknote-like speci-

mens [167]. This dataset comprises five attributes: 1) variance of Wavelet trans-

formed image, 2) skewness of Wavelet transformed image, 4) entropy of image,

and 5) class information. The dataset is organized into two classes. We have

tried to learn the manifold of this high-dimensional dataset and tried to reduce

the dimensions to properly visualize the dataset in two dimensions. The dataset

has a total of 1372 instances. The manifold of the whole dataset is learned by
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using both the standard and the novel incremental approach and the results in

reduced dimensions are visualized in Figure 6.7.

All Points (1372) All Points (1372)

Fig. 6.7: Left: Unfolding all 1327 points using standard LE. Right: Projections
of all 1327 points using GENILE.

Table 6.4: The confusion matrices. Left: Batch Laplacian Eigenmaps (LE).
Right: GENILE.

0 1
0 757 5
1 26 539

0 1
0 762 0
1 11 554

6.3.4.1 Discussion

Here again the projections visualized in Figure 6.7 show the same category of

notes placed closed to each other in the low dimensional latent space. The clas-

sification of both classes is clearly visible in both projections, however in order

to find out which algorithm has produced a slightly greater degree of accuracy

in terms of classifying the data, the k-nearest neighbor algorithm is again run on

the reduced projections produced by both the algorithms. The value of k is again
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Table 6.5: Classification Accuracy of Banknote Dataset

Algorithn Classifier Data Length Dimensions Accuracy %
IPCA KNN 1372 5 77.23
Isometric Projection KNN 1372 5 94.52
LLE KNN 1372 5 95.21
LE KNN 1372 5 94.46
GENILE KNN 1372 5 95.92

taken as 5. Each datapoint’s five nearest neighbors were checked. The datapoint

was labeled based on the maximum number of datapoints from each class. The

results of both experiments are shown in the form of confusion matrix in Table

6.6. This table clearly shows a slightly higher degree of classification produced by

the novel incremental algorithm. This finding is very rarely found in any other

incremental version of dimensionality reduction methods. Similarly, the compari-

son is performed of the classification accuracy of the proposed method with other

existing approaches including IPCA [170], LLE [106] and Isometric projection

[171] as shown in Table. 6.5. The classification accuracy of the proposed method

is still higher compared with the other methods as shown clearly in Table 6.5.

6.3.5 Experiment on Cardiovascular Disease Dataset

This is a manually collected dataset constructed from gathering more than one

type of patient attribute which helped in designing a framework for labeling the

patients as cardiovascular or non-cardiovascular based on standard supervised

classifiers. This real time dataset is used to check the performance of the novel

incremental version of Laplacian Eigenmaps in comparison with the traditional

approach. The features of the original dataset were reduced to six using a stan-
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dard decision tree algorithm [172]. The reduced features were then clustered and

classified by using the standard k-means algorithm so that patients of the same

type come closer to each other in the higher dimensional space. The total number

of patients is 558 and each patient has six attributes. The projections produced

by both the methods are visualized in Figure 6.8.

All 558 Points All 558 Points

Fig. 6.8: Left: Unfolding all 558 points using standard LE. Right: Projections of
all 558 points using GENILE.

Table 6.6: The confusion matrices. Left: Batch Laplacian Eigenmaps (LE).
Right: GENILE.

0 1
0 391 4
1 7 156

0 1
0 394 1
1 5 158

6.3.5.1 Discussion

In Figure 6.8, the projections produced by both the methods are not clearly ob-

servable. A confusion matrix is created which will enable us to find the difference

in the classification accuracy between the classes produced by the traditional
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Table 6.7: Classification Accuracy of Banknote Dataset

Algorithn Classifier Data Length Dimensions Accuracy %
IPCA KNN 558 6 86.43
LLE KNN 558 6 84.23
Isometric Projection KNN 558 6 85.32
LE KNN 558 6 98.02
GENILE KNN 558 6 98.93

batch and by the newly proposed incremental method. According to Table 6.6,

the batch version has attained a classification accuracy of 98.02 percent, whereas

the new algorithm attained a classification accuracy of 98.93 percent, which is

slightly higher than its batch version. The rationale for using this manually col-

lected dataset is to test the practical significance of the proposed method; further

comparing it with the other methods including IPCA [170], LLE [106], Isometric

projection [171] and LE [107] shown in Table 6.7. The classification accuracy

produced by the proposed method is still higher with very close difference from

standard LE, but very large difference from other manifold-based incremental

learning and batch techniques.

6.4 Conclusion

This chapter has presented a novel online version of the Laplacian Eigenmaps,

termed the Generalized Incremental Laplacian Eigenmaps (GENILE). Experi-

mental results showed that the proposed technique can be viewed as a purely

incremental technique. It is able to consider each datapoint separately while

processing the whole dataset. Traditional incremental methods proposed in the

literature don’t work separately in each instance. Results have also demonstrated
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a consistently higher classification accuracy of the developed method and its

strongly adaptable nature, compared to the standard laplacian technique, which

is considered inapplicable to online data, especially in scenarios involving incom-

ing data in multiple chunks. The tradeoff is the high computational efficiency

required for larger chunks due to the purely incremental point by point nature

of the proposed technique. This problem can be resolved by dividing the larger

chunk into smaller pieces and then performing the incremental learning using the

proposed technique.

Finally next chapter will present conclusion and future directions of this thesis.
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Chapter 7

Conclusion and Future Work

This Thesis presented online novel learning approaches for Slow Feature Analy-

sis, Canonical Correlation Analysis, Linear Discriminant Analysis and Laplacian

Eigenmaps.

As demonstrated throughout this thesis, online domain independent learning

has a huge potential for memory efficient solutions, specifically for Big datasets.

Commercial Big Data distributions are capable of storing unstructured Big datasets

which are then quantified and read using map reducing techniques. The quantified

Big Data information read from Big Data clusters are then stored in non-relational

distributed databases, such as the Apache HBASE non-relational model, and the

Google Big Data model which runs on top of Big data environments like Hadoop

and Cassandra. A number of mechanisms for reading and writing the data onto

such non-relational models are being extensively used nowadays, such as Hiveql

for sql experts, java native HBASE API for java experts, and thrift client HBASE

library for python experts etc [168]. Learning normally follows this stage where
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data is already transformed into a pre-processed, quantified and filtered format.

Further preprocessing can be performed before applying machine learning algo-

rithms. At this stage, to further reduce the computational complexity, incre-

mental and online learning techniques of the type proposed in this thesis, are

currently considered the best choice to carry out chunk by chunk or point by

point sequential and scalable data science [61]. Further, since these online ap-

proaches are highly effective at dealing with Big data incrementally, on a chunk

by chunk or point by point basis, their performance can thus be better analyzed

on small datasets as opposed to Big datasets. Further, as prevalent in real-world

Big Data applications, all Big datasets are normally accessed as chunks, in order

to best utilize the strength of online domain independent and domain dependent

incremental techniques. In conclusion, we therefore hypothesise that the set of

novel light-weight domain-independent online theories and algorithms developed

in this thesis, can be effectively exploited to handle incremental learning, and

associated sequential concept drifts, in both structured and unstructured Big

datasets [173]

The First developed algorithm for Linear Discriminant Analysis was an online

generalized eigenvalue based LDA. The proposed algorithm was further combined

with ELM for linear transformation. Results showed that the proposed online

algorithm termed GENILDA, has an equivalent power in terms of discriminability

compared with batch LDA. Further GENILDA when combined with ELM did

significantly better than LDA.

The proposed algorithm, combined with ELM, was computationally expensive
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due to the inclusion of a preprocessing phase for random feature mapping. How-

ever, this same combination resulted in significantly higher accuracy compared

to standard batch LDA. The time complexity was shown to be totally dependent

on the optimal selection of hidden neurons when random feature mapping was

considered. On the contrary, the proposed online algorithm without ELM, apart

from its incremental nature has experimentally shown similar time complexity

compared to standard batch LDA. However, both proposed online algorithms

proved to be significantly more memory efficient than standard batch LDA, and

other state of the art incremental and batch techniques.

The second developed online algorithms were designed for extracting invari-

ant features from temporal data. Primarily, two algorithms were proposed for

extracting invariant features using i) L. Wiskott [2] criteria and using ii) James

Stone’s [96] criteria. Firstly it was concluded that the proposed online invariant

feature extraction mechanism using L. Wiskott’s criteria was significantly more

powerful than Stone’s criteria. Secondly the proposed online SFA technique us-

ing L. Wiskott’s criteria combined with reservoir was significantly affective in

identifying classes of digits in image data.

The third developed algorithms were derived to find shared information in

multiple data streams simultaneously. An existing online method was combined

with reservoir to capture shared temporal information in two data streams. An-

other incremental version was derived by forcing it to ignore shared information

that was created from static values using derivative information. Additionally, the

proposed solutions for capturing shared information were all given for multi-data
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streams.

Results showed that the online method combined with reservoir were signifi-

cantly better on numeric data whereas temporal high variance method was more

appropriate for image datasets.

The fourth built algorithm was a novel online extension of Laplacian Eigen-

maps termed the generalized incremental Laplacian Eigenmaps. Results showed

that the proposed technique could be viewed as an incremental technique able

to consider each data point individually. Results demonstrated a consistently

higher classification accuracy of the build method and a strong adaptable nature

compared to the standard Laplacian Eigenmaps algorithm.

Further research is required in the following areas:-

Firstly, the proposed novel online feature extraction techniques need to be

analyzed by incorporating other feature mapping techniques serving as a pre-

processor for linear transformation. Specifically the newly derived multiple lay-

ered echo state network, currently being reported by the author in [174], will be

used as a pre-processor to evaluate its effect on the output.

Secondly the randomization of the filter needs more research and new criteria

could be derived to fine tune the filter during initialization for faster convergence.

Techniques like normalization of the randomly initialized weight matrix, and pre-

setting the boundaries of the weight matrix within the range of minimum and

maximum eigenvalues of the symmetrical and positive definite matrices could

most probably improve the speed of convergence of this algorithm.

Thirdly the derived novel incremental techniques could be applied for several
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Big Data applications, particularly those related to 1) Detection, 2) Recognition,

3) Tracking and 4) Forecasting.

Fourthly, customization of the weight decay function, and negative feedback

techniques could be employed to analyze their effect on the convergence of the

proposed algorithms.

Fifthly, different structures of reservoirs and state-of-the-art extreme learn-

ing machines could be researched to extract different information from single or

multiple data streams.

Further, standard deflation techniques [175] will be recursively used to deflate

the maximum eigenvector to its minimum. This minimum eigenvector will then

be used to calculate projections following the same criteria proposed for the novel

incremental Laplacian eigenmaps algorithm.

Finally, whilst the preliminary evaluations and conclusions reported in this

thesis should be treated with care, they do give interesting on the limits of such

methods. What is still needed is further extensive evaluation using a range of

real-world Big Data Sets, benchmarked against other state-of-the-art incremental,

and batch-based learning approaches.
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