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INTRODUCTION 

Let A be a Banach algebra over a field IF that is either 

the real field m or the complex field a:: and let A' be 

its first dual space and A" its second dual space. R. Arens in 

1950 [2), [3], gave a way of defining two Banach algebra products 

on A" , such that each of these products is an extension of the 

original product of A when A is naturally embedded in A" • 

These two products mayor may not coincide. Arens calls the 

rr.ul tiplication in A regular ;"lrs·o'l.c1ec. thesr-! tHO l'rorlu(:"tc; in A" 

coincide. 

Perhaps the first important result on the Arens second dual, 

due essentially to Sherrnann [17] and Takeda [18], is that any 

C*-algebra is Arens regular and the second dual is again a C*-algebra. 

Indeed if A is identified with its universal representation then 

A 
A" may be identified with the \-;eak operator closure of A • 

In a significant paper Civin and Yood [7], obtain a variety of 

results. They shm.,. in particular that for a locally compact Abelian group 

G ,Ll(G) is Arens regular if and only if G is finite. 

(Young [24] showed that this last result holds for arbitrary locally 

compact groups.) Civin and Yood also identify certain quotient 

algebras of [Ll(G)]". 

Pak-Ken Wong [22] proves that 
1\ 
A is an ideal in A" \vhen A 

is a semi-simple annihilator algebra, and this topic has been taken 

up by S. Watanabe [20], [21] to 5hO'.., that [L 1 (G) f' is ideal in 

[L 1 (G) ] II if and only if G is compact and [M (G) f is an ideal in 

[M(G)]" if and only if G is finite. One shoulu also note in 



this context the well known fact that if E is a reflexive Banach 

space \.,i th the approximation property and A is the algebra of 

compact operators on E, (in particular A is semi-simple 

annihilator algebra) then A" may be identified with BL(E) • 

S.J. Pym [The convolution of functionals on spaces of bounded 

functions, Proc. London Math. Soc., (3) 15 (1965)] has proved that 

A is Arens regular if and only if every linear functional on A 

2 

is weakly almost periodic. A general study of those Banach algebras 

which are Arens regular has been done by N.J. Young [23] and Craw 

an.5. Young (8]. 

But in general, results and theorems about the representations 

of A" are rather few. 

In Chapter One we investigate some relationships between the 

Banach algebra A and its second dual space. tve also shm..] that 

if A" is a C*-algebra, then * is invariant on A. 

In Chapter '1'1.-10 we analyse the relations bet\'leen certain \"eakly 

compact and compact linear operators on a Banach algebra A, 

associated with the two Arens products defined on A" • He clarify 

and extend some known results and give various illustrative examples. 

Chapter Three is concerned ,.,ith the second dual of annihilator 

algebras. We prove in particular that the second dual of a 

semi-simple annihilator algebra is an annihilator algebra if and 

only if A is reflexive. We also describe in detail the second 

dual of various classes of semi-simple annihilator algebras. 

In Chapter Four, we particularize some of the problems in 



Chapters Two and Three to the Banach algebra t 1 (s) when S is a 

semigroup. We also investigate some examples of ~l(S) in 

relation to Arens regularity. 

Throughout we shall assume familiarity with standard Banach 

algebra ideas; where no definition is given in the thesis we 

3 

intend the definition to be as in Bonsall and Duncan [6). 

possible we also use their notation. 

~fuenever 
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CHAPTER 1 

Let A be a Banach algebra (over the real or complex field). 

Let A' and A" denote the first and second dual spaces of A. 

Let a, b, ••• denote elements of A; f, g, denote elements 

of A' ; F, G, denote elements of A" • 

For each f E A', a E A we define fa E A' by the rule: 

fa(b) = f (ab) b EA. 

For each F E A", f E A' we define Fi (A' by the rule: 

Ff(a) = F(fa) a € A • 

For each pair of F, G € A" , we define FG E A" by the rule: 

FG(f) = F(Gf) f E A I • 

These definitions \o{ere introduced by Arens [2], [3] who showed 

the definition of FG as a product of F and G yields an 

associative multiplication on ;'." \ ... hich makes A" into a Banach 

algebra. Throughout we call this multiplication in A" the 

first Arens product. 

" 
The natural embedding of A into A" will 

be denoted by A As noted by Arens [2], the natural a~edding 

is an isometric isomorphism when A" is considered as a Banach 

algebra under the first Arens product. 

Arens [3) has considered also the following multiplication in 

A" • 

For each f E A', a E A define af E A' by the rule: 

af (b) = f (ba) b EA. 
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For each F f. A", f E A' define fF E A' by the rule: 

fF (a) = }:' (af) a EA. 

Finally, for F E A", G E A" define F#G by the rule: 

F#G(f) = G(fF) f E A' • 

Again the definition of F#G as product makes A" into a 

Banach algebra. We call this multiplication in A" the second 

Arens product. 

1.1 Definition ~'le call A Arens regular provided FG·- F#G for 

all E', G ::: A" . 

As was noted in [3] the multiplication FG is w*-continuous in 

F for fixed G E A" and F#G is w*-continuous in G for fixed 

F E A" II " Also xG = x#G is w*-continuous in G for fixed x EA. 

The mUltiplication in A is regular if and only if F'G is also 

w*-continuous in G for fixed F I or F#G is w*-continuous in 

F for fixed G. 

Clearly if A is cOIl".Inutative, F-." is con-mutative if and only 

if A is Arens regular. 

1.2 proposition. If A is commutative, then FF = F#F for every 

F E A" . 
Proof. We have 

ab = ba" a, b € A . 
fa(b) = f (ab) = f (ba) = af (b) , f E A'i a, b E A 

fa = af,. f E A '; a E A . 
Fi (a) = F (fa) = F (af) fF (a) , F € A"; f E A' • , a E A . 
Ff = fF, F E Alii f E A' . 
FF (f) = F(Ff) = 1" (fF) = F#F (f) , F E A"; f E A' 

FF = F#F F E A' . f1 



Notation. For a subspace J of a Banach space A, we define , 

J1. = {f E: A' : f(a) = 0, a E J} • 

Let A be a commutative Banach algebra, H the closed linear 

subspace of A' spanned by the mUltiplicative linear functionals 

on A. Then by II - 4-l8-a [10], H' zA"1 1. I 
M 

and by Theorem 

G 

3.7. [7J A"/Ml. is semi-simple and commutative. Also by Lemma 3.16 

[7J the mapping T • A--.+A"I 1. . H defined by: 

T (a) = ~ + M1. a E: A 

is a continuous homomorphism. NO'.'l a € ker (T) if and only if 

1\ 1. 1. 
a € M I i.e. ~(a) = a for every ~ E: M, i.e. a E rad(A) • 

We summarise these remarks in: 

1.3 Proposition. Let A be a co~mutative Banach algebr~ M 

the closed linear subspace of A' spanned by the mUltiplicative 

linear functionals on A, and let M' have the multiplication induced 

by the isomorphism H I ~ A" IH1. • Then there exists a continuous 

homomorphism T: A ~ H' ",ith kernel rad A, and H' is semi-simple 

and commutative. 

1.4 Proposition. Let A be a commutative Banach algebra, H the 

closed linear subspace of A' spanned by the multiplicative linear 

functionals on A. Let B = Alii 1. 
H 

and let N be the closed linear 

subspace of B' spanned by the multiplicative linear functionals on 

B. Then there exists a continuous and 1"1 linear mapping of H 

into N. 

Proof. Let f be a multiplicative linear functional on A. 

Then by Lemma 3.6. [7] ~ is a multiplicative linear functional on I." • 

Since 
1\ .l 
M (1.1 ) = a we may define '1' : H ~ N by: 

/\ 
T~ ([F) = ~ (G) G c [F') • 
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If Then 'fherefore T is 1-1. 

Evidently T is norm decreasing. ~ 

1.5 Examples. (i) Let A = ~1, the algebra of absolutely 

convergent series of complex numbers, with the usual norm, and let 

the multiplication in A be defined co-ordinatewise. Then by 

Theorem 4.2. [7], A" = ~ e Mol • So A z Band M ~ N • 

(ii) Let G 

~\'1~~tt 
be a locally compact~abelian group, and let A 

the group algebra of G. Then by Theorem 3.17 (7], B = A"/Mol is 

isometrically isomorphic to t.h~ ctlgebrn of all regu] ar Borel 

measures on the almost periodic compactification of G, with 

mUltiplication taken as convolution. So B ~ A and we can get 

a continuous embedding of ~-1 into N. 

1.6 Proposition. Let A be commutative and let A" have identity 

E for one of the Arens products. Then E is the identity element 

for the other product. 

Proof. For F c A", FE :;; EF F • Then for every f E A' we 

havel 

F#E(f) = E(fF) = E(Ff) = EF(f) = F(f) • 

Therefore F#E = F Similarly E#F = F Also by similar \'lay we 

can get FE = EF = F if F#E = E#F = F ~ 

In fact, in the above case, left identity for one product is 

the right identity for the other one, and right identity for one 

product is the left identity for the other product. 

1. 7 Definition. A left approximate identity for A is a net 

leA} in A such that: 

e x -). x 
A 

X E A (1 ) 
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A bounded left approximate identity is a left approximate identity 

which is also a bounded net. Right approximate identities are 

similarly defined by replacing eAx in (1) by xe A • A two-sided 

approximate identity is a net which is both a left and a right 

approximate identity. 

By Proposition 28.7 [6], A" with respect to the first Arens 

product has a right identity if and only if A has a bounded 

right approximate identity. By similar proof we have 

1.7 Proposition. The Banach algebra A" with respect to the 

second Arens product has a left identity if and only if A has a 

bounded left approximate identity. 

since 
1\ 
af = af and f~ ;; fa for every a c A and f E A', 

we get AA' C A"A' and A'A C A'A" Next we show that if A 

has a bounded t\','O-sided approximata identity, then l,"A' = A'A" A' 

and ,,'e give an example which has bounded two-sided approxiMate 

identity but A'A ~ A' • 

1.8 Proposition. If A has a bounded ~ight approximate identity, 

then A"A' A' If A has a bounded left approximate identity, 

then A'A" = A' • 

Proof. Let {ef.} be a bounded right approximate identity in A. 

Then by Proposition 28.7 [6], A" has a right identity E. So 

A"A' = A' • If {ef.} is a bounded left approximate identity in 

A, then it has a weak* cluster point E E A II • 

f € A', a E A we have; 

1\ 

Now for every 

e A (af) = af(e A) = f(eha) ~ f(a) • 



Therefore: 

fE (a) E (af) f (a) , fE f 

So A I A" = A'. t:. 

Note that by Corollary 28.8 [6], a weak* cluster point E of a 

bounded left approximate identity {e A} C A is a left identity in 

A", if A is Arens regular. 

1.9 Proposition. There exists a semi-simple commutative annihilator 

algebra A with bounded two-sided approximate identity such that 

A' A t A' • 

Proof. Let A = Ll(G) the group algebra of a compact abelian 

group G. Then by A.3.l [15], A is semi-simple with bounded 

t,'lo-sided approximate identity, and by remark page 182 [G), A is 

a dual algebra. Now suppose that A'A = A' • In Chapter 3 we 

show that if A is a se:ni-simple annihilator algebra with A I A 

dense in A' , then: 

/I. 
A" = A e ran (A") • 

So Alii 
ran (A") 

/I. 
= A • 

But,bx' Theorem 3.17 [6], A"/ran(A") ~ t1{G) the algebra of all 

regular Borel measures on the almost periodic compactification of 

G with multiplication taken as convolution. t:. 

In attempting to obtain some stronger results involving 

approximate identities, one is led to the following definition. 

1.10 Definition. {e
A

} is a bounded uniform left approximate 

identiti' if for every a E A , e).. a -)- a uniformly on the unit 

sphere of A. 

However, as shown by P.G. Dixon, the above defin:i.tion is 

simply equivalent to having a left identity. 



1.11 Proposition. (P.G. Dixon). Let A be a Banach algebra 

and let e € A be such that, for some a o < a < 1 , 

II ex - xii ~ a Ilxll 
Then A has a left identity element. 

Proof. 

Then 

Let T € BL(A) be defined by: 
e 

T x = ex e 

liT - III ~ a < 1 • e 

So T is invertible, and e 

X € A • 

') -1 
T (I - (I - T »-1 

e 
1 + (I - 'r ) + (I - 'I' ) - + ..• 

e e e 

Let U :::: T -1 
e eEll .• Then: 

-1 
(T e) x 

e 
= [{I + (I - T ) + (I - T ) 2 + ... ) e] x 

e e 

= [e + (I - T )e + (I -
2 ••• ] x 'I' ) e + 

e e 

ex + (I - T lex e + (I _ T )2 
e 

ex + ... 
(I + (I - Te) + (I - T )2 + 

e 
•• • ) ex 

-1 
(T ) (ex) 

e 
= (T -1) (T x) = 

e e 
x , -=7UX-x::::O. 

A bounded uniform right approximate identity is similarly 

defined by replacing eXx in 10 by xe X ' Again by similar 

argument, if A has a bounded unifo~~pproximate identity, then 

A has a right identity. 

By 9.13 iv [6J A' is a Banach right A-module under: 

fa(x) = f(ax) f E A', x EA. 

A' is a Banach left A-module under: 

af (x) = f (xa) f€A',XEA. 

10 
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And A' is a Banach A-bimodule under fa and af as module 

multiplications. Also by 9.13 V [6] A' is a Banach left 

A"-module under Ff as a module multiplication, when A" has the 

first Arens product,and A' is a Banach right A'-module under fF 

as a module multiplication, when A" has the second Arens product. 

It is a routine matter to verify that A' is a Banach A"-bimodule 

under fF and Ff as module multiplications if A" is comnutative 

and A has identity element. 

1.12 Proposition. If {e).,} is a bounded right apprmdmate identity 

for ~ 

n. I then: 

{fa: f € A', a € A} {g € A' 

Proof. Let g E A' and g = fa for some f E A' and a € A • 

Then: 

II gc)., - gil = II fa e~. - fall = II f ae" - fall 

= II f (ae >. - a) II ~ II f II II a e " - a II -r a . 

Conversely, since A' is a right A-module under module multiplication 

fa (f € A', a € A) , and A has bounded right approximate identity, 

by Theorem 32.22 (131, A'A is closed in A'. ~ 

1.13 Lem."i1a. Let A be a Banach algebra, and B be a left (right) 

Banach A-module. Let {e>.} be a bounded left (right) approximate 

Then AS = B (BA = B) if and only if {e A} is 

a left (right) approximate identity for B. 

identity in A. 

Proof. Let AB = B, and let b € B Then we have to prove: 



1 ') 
<. 

But we have b = ac for some a E A and c E B • Therefore 

Conversely, by Theorem 11.10 [6], we get AS = B • Similarly we 

can prove BA = B if and only if {eA} is a bounded right 

approximate identity for B. 

NOw, let A' be a Banach right A"-module under Ff. 'I'hen: 

G Ff = FG f F, G E A"; f E A' 

~.-~~ GF f = FG f P, G E A" -, f E A' 

¢= > GF f (a) = FG f (a) F, G E A"-, f € A' -, a € A . 
¢:.==> GF (fa) = FG(fa) F, G E: A"-, f E A' -, a E: A . 

This gives A" comrnutat.ive provided {fa: f E A', a E A} is 

dense in A' • This is certainly true if A has a right unit, 

or by Lemma 13, if A has a bounded right approximate identity 

for the right module A' • Similar result can be obtained when 

A' is a left A"-nodule under fF. 

1.14 Corollary. 

identity for A. 

Let {sA} be a bounded left (right) approximate 

Then AA' = A' (A'A = A') if and only if {eA} 

is a left (right) approxireate identity for A' • 

.Proof. Since A' is a left Banach A-module under module 

multiplication af and a right Banach A-module under module multi-

plication fa, Lemma 13 gives the proof. ~ 

1.15 Proposition. The Banach left A"-module A' is frtithful 

if A has a unit. 



Proof. Let f E A' and Ff ; 0 for every F E A" . Then 

Ff (a) = F(fa) 0 a E A 

Sal fa ; 0, a E A 

fa(l) ; f(a) ; 0 a E A 

So: f = 0 . ~ 

In proposition 15, in fact, it is sufficient to have 
2 

A 

in A. 

Let a € A. Define the map 

3 f "" :=a 
a 

B on A' 
a 

f (: ;~' 

by: 

For F E A" let 'rr (P) be the map on A I defined by: 

Let C = com{B 
a 

1T(P)f = Pf 

a E A} 

f E AI 

{T E BL (A I) TB 
a 

B T} 
a 

13 

dense 

1.16 Theorem. I f A has a unit, then 'IT: A" ~ C is a b icontinuous 

isorno rphism. and if A is unital, then 7T is an isometry. 

Proof. Let F E A", a EA. Then, since Ff a = F fa (f E A'), 

we have: 

B n(F) f = B ('IT (F)f) a a Ff a 

= 'IT (F) B f = n(F)B f. 
a a 

Therefore: 

B n(F) = 'rr(F)B • a a 

Given 9 E C, define P(f) = <Pf(l) • 

a E A, we have: 

F fa F B f 
a 

Then F E A" and for every 

n(F)f (a) = Ff(a) = F(fa) = ¢ fa(l) = ¢ B f(l) a 

Ba<P f (1) = Ba (<Pf) (1) = (¢f) a (1) = ¢f (a) • 
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Therefore: 

71 (F) f = ¢f. i.e. 'IT is onto. 

Clearly n is linear and one-one. Now for every F, G E A" , 

f E AI and a E A, we have: 

1T(FG)f (a) = (FG)f (a) = FG(fa) = F(G fa) 

= F(Gf a) = F(n(G)f a) = F r.(G)f(a) = n(F)1T(G)f (a) • 

Therefore: 

1T(FG) = 1T(F) n(G) • 

Also for F € A", since AI is a Banach right A-module under fa, 

we have: 

II 1T (F) II = sup II Ffll = 
II f 11:5 1 

sup sup 
II fll ~ 1 II all:;; 1 

IF(Ea)1 

sup 
Ilfil $1 

sup KII FII 
II all ~ 1 

II f II II a II KIIFII, 

for sone positive K. Therefore n is continuous, and Banach 

isomorphism Theorem gives that iT is bicontinuous. 

Now let A be unital. Then for every F E A" 

sup 
II f II 

II Ff II = SUD 

1 II ai I :;; 1 
IF(fa) I 

~ 1 

since fl = f and we have: 

111T(F) II ~ SUJ? iF(f) I 
II fll ~ 1 

II F II . 

1.1 7 Corollary. If A is finitely generated, then A" rr.:J.Y be 

identified with the COllUnutant of a finite set of operators. For 

example, if A = t1(Z) . Then A" can be identified by cormnutan t 

00 

of the bilateral shift on 9,. (Z) If A = 9,.1 (FS(2» , whcr~ 



1') 

FS(2) is free semigroup on two symbols, then 1\" is isometric \'lith 

the conunutant of Band B , where u and v are the 
u v 

generators of FS(2) • 

Sherman [17], Takeda [18], Tomita [19) and Civin-Yood [7] by 

representation Theory and Bonsall-Duncan [4] by using the Vidav-

Palmer characterization of B*-algebras have proved that the second 

dual of a B*-algebra with the Arens multiplication is a B*-algebra. 

Bonsall-Duncan have proved even more. They have shown the involution 

in the second dual is the natural one derived from the involution 

of t~e given 3*-alqeb~a. ~" 1\ 

under Arens multiplication, then * is invariant on A, and 

ther~fore A is a B*-algebra. First we need some definitions 

and notations. 

Let A be a co~~lex unital Banach algebra. Define: 

D(l) = {f : f € A', II fll = f(l) =l} , 

V(A, a) = {f(a) : f E: A', II fll = f(l) == 11 

We say that h € A is Hermitian if V(A, R) C IR 

(a E: A) • 

We denote the 

set of all Hermitian elements of A by H(A) • A is called a 

V-algebra if A = H(A) + iH(A) • By Proposition 12.20 [61 an 

ele~ent a of a unital B*-algebra is Hermitian if and only if 

a* = a • Therefore by Lemma 12.3 [6] every unital D*-algebra is 

a V-algebra. We also denote: 

H(A') ;: {af 8g + f, g € A'; a, (3 € IR ; f(l) ;: g(l) 

;: {af - Sg f, g € 0(1); + a, (3 E: IR } • 

1.18 Theorem. Let A be a complex Banach algebra with unit and 

A" a B*-algebra under one of the Arens products. Then * is 

invariant on A. 



Proof. Since 
1\ 
A the natural embedding of A into A" is a 

1\ 
subalgebra of A" it is enough to prove that A is a 

star suba1gebra of A" • 

16 

1\ 
If A is not a star suba1gebra of A" , then by Lemma 31.9 [5], 

there exists a cP E Alii 

1\ 
cP (A) ::: (0) 

such that: 

and ¢*(~) t {a} , 

where ep*(F) = [ep(F*)]* (F E A") • 

Now A" is a B*-algebra with unit. Therefore II ~ II = 1 and so 

i.e. A" is a unital B*-algebra. But for every 

B*-algebra B 

H (B') {f : f (ll) E IR, (h* = h)} • 

Therefore H{(A")') n i H«A")') = {O} • If not, then 
I • II ¢ ::: ltp , 

ep'{F) E IR n iIR = (0) , cp' = 0 • Also, by Corollary 31.4 [5] we 

have: 

Therefore 

A"' = H { (A" ) ') + iH ( (A" ) ') • 

where ¢ 
1 

and 9
2 

are in H«A")') 

By Lemma 2.6.4 (9), 4>1::: \);1 - \1:
2 

for some positive linear: 

and 

functionals ~l and \);2 Since A" has unit, by LCITrna 37.6 [6]: 

Therefore: 

= 

So: 

1J!K = lj! * K 

cj>1 (F) = \);1 (F) - ~2 (F) 

¢l*(F) = (¢l(F*»* 

= cP (F)* 
1 

{ 

cj>l (F *) 

<1>2 (F*) = "2 (F) * 

K 1, 2 . 

F .:: A" 

F E A" • (I) 
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But 9
1 

E H«An
),) gives: 

N N "Tr>+,. 
""1' "'2 <;; .I.L'. 

Clearly: 
!P' I € " t) D(A, K == 1, 2 

K " A 

and so: 

¢llA E 
" H ( (A) , ) 

similarly: 

¢21~ E " H«A)') . 

e 
Now since H«A")') n iH ( (An) , ) {O } , by Hahn-Banach Thco+ 

A A 
H ( (A) ') n iH ( (J..) ') == {o} 

Therefore: 

¢ I + i ~2 \~ o , 
1 " A 

¢11 " 
== ¢21~ = o • 

A 

" " By (I) , ¢Kl(A)" ) == (¢K (A) ) * (0) , K == 1, 2 • 

. " " .. ¢K* (A) == ¢ «A) *) == (0) , 
K 

K == 1, 2 • 

" ¢* (A) == (0) 

contradiction. ~ 

Remarks. 1. Let A be a complex Banach algebra without unit 

element such that A" is a B*-a1gebra. Then by Lemma 12.19 [61, 

A" +C is a unital Banach algebra. By above Theorem * is 

invariant on A + (. Again by Lemma 12.19 (6], tve get * is 

invariant on A. 



1.19 Corollary. 

regular. 

If An is a B*-algebra, then A is l,rcns 

Proof. By Theorem 18 A is a B*-algebra and by Theorem 7.1 [7], 

A is Arens regular. 6 

Let A be a Banach algebra and An a B*-algebra. By 

Theorem 18, A is a B*-algebra, and by Theorem 1.17.2 [16], 

A" is a W*-algebra. Therefore, if the second dual of Banach 

algebra A is a B~algebra, then A" is W*-algebra. 

18 
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CHAPTER 2 

This chapter presents relations between the weakly compact 

and compact linear operators on a Banach algebra A, associated 

with the two Arens products defined on A" • Throughout the 

chapter, the symbols X and Y \·,ill denote Banach spaces. 

2.1 Definition. Let T E BL(X,Y) , and S be the closed unit 

sph2re in X. The operator T is said to be \Ileakly compact if 

2.2 Definition. Let T E BL(X,Y) , and S be the clos(~d unit 

'sphere in X. The operator T is said to be com9act if the 

strong closure of TS is compact in the strong topology of Y • 

For a € A , we denote by I.- and 
a 

the lcft and right. 

regular representations on A defined by: 

I, b ab 
a 

p b = ba 
a 

* Consider I.-
a 

A' -+ A' , 

b E A 

b E A 

the adjoint of 

every f E A I and b E A \'lC have: 

* 

A 
a 

I.- f(b) = f(A b) = f(ab) = fa(b) , a a 

we get: 

* I.- f = fa a 
(f EO A ') 

Similarly, for A' -+ A' , the adjoint of 

* p f == af a 
(f E J\ I ) 

Since for 

\',c have: 
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** Consider A : A" -+ A" , the second adjoint of A 
a 

Since 
a 

for every F E A" and f € A' , we have: 

** A F(f) = 
a 

we get: 

Similarly, for 

* A F(A f) = F(fa) = F(fa) = ~#F(f) 
a 

A = aF (f) , 

** A A A F = aF = a#F 
a 

** p 
a 

A" -7- A" 

** F~ F#~ P a F = 

(F € A") 

, the second adjoint of 

(F € A") . 
Pa 

we have: 

Some parts of Theorem 3 and Corollary 5 have been proved in 

[20 j iind [21J. 

2.3 Theorem. The following statements are equivalent. 

(i) 
A 
A is a left (right) ideal in A" . 

(ii) For each a E A , Pa 0 a) is a ,veJ.kly compact 

operator on A . 
(iii) For each a € h the mapping f -+ af (f -+ fa) is a 

weakly compact operator on A' . 

(iv) 
A A 

For each a € A, the mapping F -~ Fa (F -+ aF) is a 

weakly compact operator on A" . 

Proof. By Theorem VI.4.2 [10], an operator T in BL(X,Y) is 

weakly compact if and only if 
A 

T**X" c Y • 

a E A , Pa is \veakly compact if and only if 

Therefore, for every 

** A A P A" = Alia c: A • 
a 

Thus 
A 
A is a left ideal of A" if and only if, for each a € A 

Pa is weakly compact operator on A. Similar argument can be 

appUec. to dght ideal c:rue Since the oporators 

in (iii) are the adjoint of operators in (ii), and the operators in 

(iv) arc the adjoint of operator" in (iii), Gantmacher's Theorem 

VI. 4.8 [10], gives (ii) ¢-,---:-~ (iii) '7-,----=~ (iv). I::. 
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By Theorem 3.1 [22], the natural embeddinq of every semi-simple 

annihilator algebra A, is a bvo-sided ideal of A" • NmY', let 

X be a reflexive Banach space without approximation propert.y, and 

let A = KL(X) be the algebra of all compact operators on X. 

since it contains all bounded operators of finite rank, A obviously 

operates irreducibly on X, and is therefore semi-simple. By 

Theorem 2.3 [1], for every a € A, Aa and P
a 

are weakly compact 

operators. 
1\ 

Therefore A is a two-sided ideal in A' But 

A = KL(X) is not an annihilator algebra since FL(X) the algebra 

of finite rank operators on X is a closed bvo-sided ideal of A, 

FL(X) 7'- A and 

ran(FL(X» = lan(FL(X» = (0) • 

i.e. there exists a semi-simple Banach algebra A such that for 

every a € A, Aa and Pa are ",eakly compact, but A is not an 

annihilator algebya. 

2.4 Definition. A su~bra. J of A is called a block subalgebra 

if: 

JAJ c J • 

2.5 Corollary. The following statements are equivalent: 

A 
(i) A is a block subalgebra of A" • 

(ii) A 0 p is a weakly cOlnpact operator on A for each a b 

a and b in A. 

(iii) The mapping f -+ bfa is a weakly compact operator on 

A for each a, b in A . 
A A 

(iv) The mapping F -+ aFb is a \~eakly compact opera tor on 

for each a, b in A . 
A" 



Proof. For every a and b in A, we have: 

(A 0 p )**(F) = ~~ 
a b 

A (cb) == 
a 

acb C E A 

f EO A' 

F E A" • 

A similar argument to that of Theorem 3 gives the proof of the 

corollary. /). 

Since ~F = ~#F and A /\ Fa = F#a , for every a E A and 

F EO A", Theorem 3 and Corollary 5 are also valid, when Il'lllt.i-

plication in secl).'1d dual of A is taken to be the second Arens 

product. 

2.6 Proposition Let a E A and let 
" a 

operator on A . If " F = w*-ltm x A in A" 

net {x~J C A . Then II ~~A - ~FII 4- 0 . 

" (0 I' • I 
, 5 , J 

J $ , 

2 

Proof. By Schauder's Theorem Vr.5.2 [10], 

* 

be a compact linear 

for some bounded 

33 ~ 2 Pit I fl') .c 

A is compact if 
a 

22 

and only if A is compact on A' • a 
No'", by Theorem VI.S.6 (10), 

* ** A is compact on A' 
a if and only if its adjoint " sends a 

bounded nets which converge in the A' topology of All, into 

nets which converge in the met!:ic topology of A" . Let F E An 

and F = w*-l~m ~A . Then, for every f E A' . 

Therefore: 

II ~~ - ~F II -> 0 • ), 

Remarks. By similar argument vIe have: if is a compact 
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linear operator on A, then o whenever F E A" 

2_ By Schauder's Theorem, A is compact on A if and only if 
a 

* * I.. is compact on A' , and again A is compact on A' if and 
a a 

** only if A is compact a 

* ** of A a' A and A on 
a a 

when 

on A" . 
A, A' 

Therefore compactness of each 

and A" respectively, gives: 

/I. 
is bounded and F; w*-l~m xI.. • 

Similarly compactness of each of and ** 
P a on A, A I and 

An II ~,~ 
i. 

f" 1 ",\ 

bounded and 

2.7 Definition. A minimal idempotent is a non-zero idempot.ent 

e E A such that eAe is a division algebra. 

2.8 Exaluple. The following bw statements are not equivi1lent 

in general. 

(i) For every a € A , I.. is a compact linear operator 
a 

on A. 

(ii) For every a € A, P is a compact linear operator on A. 
a 

Proof. Let B be a Banach algebra which contains minimal idem-

potents and let e be a minimal idempotent in E such that dim Be 

dim A = 0') • • Then by 31.1 [6], Be is a subalgebra of D. 

Now fix a E E • Then by proposition 31.3 [6], there exists 

fEE' such that: 

I.. be = (ae) (be) = a(ebe) 
ae 

a(e be e) = a(f(be)e) = f(be)Q.e 

(b € D) 



Therefore A = ae 0 f 
ae which is of rank ::; I and therefore 

compact. 

fEB' , 

Now, in case (ii), again fix a E: B • 

p be = be(ae) = b(eae) = bee ae e) ae 

= b(f(ae)e) = be f(ae) b E B • 

Then for some 
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Therefore P
ae 

= f(ae)I . Since KL(Be) the set of all compact 

operators on Be contains FBL(Be) , the set of all finite rank 

operators on Be then for each ae E Be , A is a compact linear 
ae 

operator on Be = A , but in case (ii), they are not. A 

Again by using Schauder's Theorem, each of the statements in 

case I as follows is not equivalent in general to any of the 

statements in case II. 

I For each a € A, b -+ ab is compact operator on A. 

For each a E A, f -+ fa is compact operator on A' 

For each a € A, F -+ -aF is compa.ct operator on A" • 

II For each a € A, b -+ ba is compact operator on A. 

For each a € A, f -+ af is compact operator on A' 

For each a € A, F -+ F~ is compact operator on A" 

2.9 Example. Let S be a countable set with the product of 

two elements defined to be the second element of the pair. 

Then obviously S is a non-commutative semi-group, and for every 

s e s, sS = S, Ss = {s}. With convolution as multiplication, 

consider the Banach algebra £1(5) • If a = [a s ,b = U~ t 
n n 1U 1U 

are in ~l(S) , we have 

a*b = (Ea s ) (ER t ) = LLa 6 s t = "La 8 t 
nn mm nmnrn nmm 
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Now, let P
b 

be the right regular representation on Q, 1 (S) • 

Then: 

Therefore 

a~b = ~a ~e t = ~a b 
n mm n 

where ¢(a) = ~a , 
n 

and so is a 

rank one operator on iI(S) and therefore a compact operator. 

But, for ~ the left regular representation on i 1 (S) we have: 

Therefore 

~ a = ES ~a s = ¢(b)a • 
b m n n 

A = ¢(b)I which is not a compact operator when 
b 

¢ (b) :f 0 • Now, by IV.13.3 [10], in ll(S) , w~alc COm!Hct operators 

and compact operators are the same. Therefore is a weakly 

compact operator, but Ab is not a ,.;eakly corr.pact operator. 

If we define the product of S to be the first element of 

the pair, then Ab in this case is a compact and therefore a 

\-leakly compact operator on 2,1 (S) and is not a compact and 

weakly compact operator on £, 1 (S) • 

Note that each s E: S is a minimal idempotent of 2,1(S) • There-

fore Example 8 would give the "\.,eakly co:npact" analogue as lonq as 

Ae, when A = i 1 (S), is not reflexive, and we do not need, at this 

stage the fact that weak compact operators and compact operators 

on i 1 (S) are the same. 

Let f E AI , denote A -+ AI defined by: 

1T fa = fa , a E A 

and l~f A -+ A' defined by: 

a EA. 
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* Consider TI
f 

: A"-.-A' the adjoint of TI
f 

. Since for every 

F € A" and ClIO A we have: 

* 
1T fF (a) = F (7Tf a) = F (fa) = Ff (a) , 

we get: 

* TIfF Ff F 10 A" . 
* Similarly for 1); f 

A" __ A' 
I the adjoint of \jJf we have: 

F € A" • 

1:1 the next theorem, (i) ";._0_> (ii) h~\:; C:'::20 provod for c.;.~' 

corrmutative case by S.L. Gulick, Theorem 3.4 [11], and for the 

non-corrmutative caae by J. Hennefeld Theorem 2.1 [12]. The 

proof given here is simpler. 

2.10 Theorem. The follO\dng are equivalent. 

(i) A is Arens regular. 

(ii) The mapping TI
f

: a ~ fa is a weakly compact operator 

on A for each f € A' • (Each f € A' is a weakly 

almost periodic functional). 

(iii) The mapping 1jJ : a ->- af 
f 

is a weakly compact operator 

on A for each f € A' • 

(iv) The mapping F ~ Ff is a weakly compact operator on 

A" for each f EO A I • 

(v) The mapping F ~ fF is a weakly compact operator on 

A" for each f EO A I • 

Proof. (i) ~ (ii). Let f € A' • By VI.4.2 [10} it is enough 

to prove ** A 
1T A" C (A ') • 

f Let F E A" • Then for every G E A" ; 

** * 1\ 
7: fF(G) = F(1f

f
G) = F(Gf) = FG(f) = F#G(f) == (n') (G) • 



Thus 

** " 
7T f F E (A ') • 

(ii) ~(i). By VI.4.7 [10], T E BL(X,Y) is weakly compact 

if and only if '1"*: Y' -+ X' is continuous with respect to the 

X", Y topologies in X', yl respectively. Take {F} C A" 
a 

such that 

we have: 

F (f) -+ F (f) , f E A I • 

a 
Then for every G E A" 
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MOil leI!! P, 8 C! A" a.i .............. liiulneb: b
R

) 5 A such that: 

A 

l~Ri ) S (Ii) r i'(f) f 6 D I 

.its f !] usnst 
*11 '* 

J ~. Iii 'Ii !III ~ E 10:'& i') f n £ 
G(~f')~ G(r;f=) ) 

G ~i(~) ~ GofH~) • 

i.e. GF is weak*-continuous in F for fixed G. NO' .. , using 

Theorem 3. 3 [3], we get A is Areros regular. 

(i) ~=> (iii) • By the similar argument mentioned above and 

using Theorem 3. 3 [3], we get (i) ~'-=> (iii) • 

To prove (ii)~~~(iv) and (iii)~==>(v) we see that the mappings 

in (iv) and (v) are the adjoint of the mappings in (ii) and (iii) 

respectively, and Gantmacher's Theorem VI.4.8 [10] gives the 

desired conclusion. A 

* Remark. Consider A : A' -+ A' , the adjoint of the left regular 
a 

* representation on A given by A f = fa and the mapping 
a 

TI f : A -+ A' defined by TIfa = fa . Now, let G be a compact 
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Hausdorff infinite group. Then by Proposition 4.1 [20] [Ll(G)r-

is a two-sided ideal in [Ll(G)]", thus "\ is a weakly compact 

operator on for each a e But, by [24], since 

G is infinite, Ll(G} is not Arens regular. Thus ~f is not 

a weakly compact operator on Ll(G) for every f € [Ll(G)]' • 

Also consider Example 9. By Theorem 2 [23], )1,1(S) , ,."hen 

* st ; t or st = s (~t € S) is Arens regular. But A is not a a 

weakly compact operator on A' for every a E A, when the 

* product of S is defined by at = t (s, t E S), and Pa is not 

a weakly compact operator on A' for every a E: A, when the 

product of S is defined by st == s (s, t E S), i. e. there is no 

relation in general between the operators IT .. 
r: 

on A (f E A') , 

If 

and A on A' (a E: A) as far as weak compactness is concerned. 
a 

2.11 Corollary. Let A be cOI.unutati ve. Then A is Arens 

regular if and only if: 

** ** 1\ I (_~. f) TifF=\)JfF= .. f E A', F € A" • 

~. Let A be Arens regular. Then for every G E A" we 

have 

** TI
f 

F(G) = = F#G (f) = G(fF} 

= (fF)"<G) - (Ff)'\G) f c A' F E A" 

Thus: 
** " Ti f F = (Ff) • 

Conversely, let ** ~ TI f F = (Ff) for every f € A' and F € A" • 

FG (f) F (Gf) * ...... , 1IIJ¥!!IiI'.'--."" 11111.1 = (Gn" (F) 

** - TI
f 

G(F} = G(fF) = F#G(f) • 

Then 

for every F, G in A" and f € A' • Thus A is Arens regular. 
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Note that for commutative algebra A, TI f 

Remark. Let f be a multiplicative linear functional on A. Then 

by argument of lemma 3.6 [7] : 

fF = Ff = F(f)f F E A" 

Therefore, for every F, G E A" we have: 

F#G(f) = G(fF) = G(F(f)f) = G(f)F(f) 

FG(f) = F(Gf) = F(G(f)f) = F(f)G(f) 

i.e. the two Arens products coincide on ~A the set of multiplicative 

linear functionals on A. 

linear functional, then '1'f 

Note that, if f is a mUltiplicative 

21.nd 1)1 
f 

are compact ope~ator3 end 

therefore they are weakly compact operators, and by argument of 

Theorem 10, again we get that the two Arens products coincide on 

~A • 

2.12 Definition. A linear functional f E A' is said to be an 

almost periodic functional if {fa: Iiall ~ l}- is compact in A' • 

The next Theorem essentially has been proved by S.A. McKilligan 

and A.J. White 2.2 [14], but the argument given here is shorter. 

2.13 Theorem. The following are equivalent: 

(i) For every f E A' , Tr f is a compact linear operator on A . 
(Every f E A' is almost periodic functional.) 

(H) For every f E A I, ljif is a compact linear operator on A . 
(iii) For every f E A' , F -+- Ff is a compact linear operator on 

(iv) For every f E A' , F -+- fF is a compact linear operator on 

(v) For every f E A' , if F (9) -+- F(g) (g E A ') where 
a 

{F } C A" is bounded, then II F f - Ff II -+- a . 
a a 

\ 

A" 

A" 



(vi) 

(vii) 

For every f € A', if F (g) -+ F (g) a (g E A '), where 

{Fa} C A" is bounded, then II fFa - fF11 -~ o. 

For every F, G in A", (F, G) -+ FG is jointly bounded 

weak*-continuous. 

(viii) For every F, G in A" , (F , G) -+ F#G is jointly bounded 

weak*-continuous. 

Proof. Since the maps in (iii) are the adjoints of the maps in (i), by 

Schauder's TheoremV.5.2 [10), (i) ~ (iii). 

Similarly (ii) <==~ (iv) • 

(i) <:====> (v) • Let f E A I • Then by VI. 5.6 [10], n f is compact if 

* and only if its adjoint n
f

, sends bounded nets which converge in the 

A' topology of A" into nets which converge in the metric topology of 
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A' Thus TI f is compact if and only if Iln;Fa - TI;FII = II Fc/ - Ffll -~ 0 , 

whenever l ~} is a bounded net in A" , 

Similarly (ii}<;===> (vi) • 

and F (g) -+ F(g) 
a 

\lg E A' • 

(v) -> (vii) • Let . F, G e An , F ex (g) -+ F (g) (\;;jq E A ') , Ge (g) -+ G (g) 

( 'v' 9 € A ') , where {Fa} and {G
e

} are bounded nets in A" and let 

f € A'. Then 

1FaGa(f) - FG(f) I = IFaGa(f) - FG(f) + F G(f) - FG(f) I ex 0: 

~ IFa(Gef) - Fa (Gf) I + IF (Gf) - F (Gf) I 
0: 

~ IIFallllGsf - Gfll + IF (Gf) ex - F(Gf) I 

Now, {Fa} is bounded, II Gef - Gfll -~ 0 by hypothesis, and 

IF (Gf) - F(Gf) I -+ O. ex 



(vii) => (v). Let {p } C A" be a bounded net in A" and 
A 

FA. (g) -+ F(g) \;jg e: A' . t'le have to prove: 

1 tm II FA f - F f II -+ a 

i.e. sup IFAf(a) - Ff (a) I -+ a 
II all s 1 

i.e. sup 
II all 

I " " aF
A 

(f) - aF(f) I -+ 0 • 
S 1 

Suppose otherwise and let 

sup 
II all 

" " laFA(f) - aF(f) I f 0 • 
~ 1 

Then there exists E > 0 and a subnet {FA} such that: 
K 

sup 
II all 

I ~F A (f) - ~F (f) I 2! E: 

S I K 

Therefore we can find {a } C A 
AK 

such that 

" - ~A F (f) I laA FA (f) ~ £/2 . 
K K K 

II a
A 

II s 1 and 
K 

But the closed unit ball of A" is weak*-compact. Let G be a 

weak*-cluster point of Since multiplication in A" is 
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jointly bounded \veak*-continuous, {~. FA } has GF as weak*-cluster 
"K K 

point. Thus 

can be made as small as we please. Contradiction. 

Similarly we can prove (vi) 0-=-=> (vii) • 
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To complete the proof we have to prove (vii)~==~(viii). 

Let (vii) hold, and let F, G E A" Then by (v) for every f E A': 

119>- f - Gfll ~ 0 

when G * . /\ and {Y
A

} is bounded. Therefore: w -lXm Y A 
, c A 

. /\ /\ 
FG(f) = F(Gf) = 1Xm F(yAf) = l~m FY A (f) 

= lxm F#~A (f) = l~m ~A (fF) = G(fF) = F#G(f) 

i.e. A is Arens regular. Therefore for evert F, G in A" 

(F, G) ~ FG = F#G 

is jointly bounded weak*-continuous. 

(viii) ==?- (vii) . Let P, G € A" Again \-le have 

(viii) ~ (vi). Therefore for every f E A I ~'e have: 

/\ 
when F = w*-lirn x and {x} C A is bounded. ex a a Therefore: 

F#G(f) = G(fF) 
1\ 

== lim G(fx ) 
ex ex 

lim G(fx ) 
ex 0. 

1\ ~ " = lim Gf(x ) = lim x (GI) = lim x G(f) = FG(f) 
0. ex ex ex Ct ex 

i.e. A is Arens regular. Therefore for every F, G in A" 

(F, G) ~ F#G = FG 

is jointly bounded weak*-continuous. Consequently all implications 

are proved. t, 

Remark. 1. A is Arens regular, if one of the conditions in 

Theorem 13 is valid. Actually from (i), if 7T 
f 

is a compact 

linear operator on A for every f € A', then it is weakly 

compact and Theorem 10 gives A is Arens regular. 

2. Again we can prove that, there is no relation in general 

* * bebJeen the operators P on A' a defined by p f = af 
a 

and 
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on A defined by ~ a = af as far as compactness is concerned. 
f 

Por, let A be a Banach algebra ",hich contains a minimal idempotent 

e with dimAe = 00 • Similar to Example 8, Ae is a subalgebra 

of A, 
, 

'lT f = f ~ X and 
, .. 

1ff == X ~ f for some .r;(; E A I 1. e. 

for all f E A' and ~f are rank one operators and so 

compact. Now by Example 8, for every a € A , A and therefore 
a 

* * A is compact, but Pa 
and therefore Pa is not compact. a 

Por F € A" , let TF A' -+ At be defined by: 

f E A I , 

A' -+ At defined by 

* Consider Tp : 

every G € 

we get, 

A" and 

* TFG (f) = 

• T G = GF 
F 

* 

f 

f E A' • 

A" -+ A" , the adjoint of Tp . 
E A' we have: 

G (TFf) = G(F~) == GF (f) , 

G € An • 

Since for 

Similarly, for S : AU -+ At! , 
F 

the adjoint of SF we have: 

G € An • 

2.14 Theorem. The following are equivalent: 

(i) For every F E A", TF is a weakly compact operator on A' • 

(ii) The mapping G -+ GF is a weakly compact operator on A" 

for every F E A" • 

(iii) (A" r is a left ideal in the fourth dual of A , 

when A" has the first Arens product. 



Proof. since the maps in (ii) are the adjoint of those in (i), 

Gantmacher's Theorem VI.4.8 [10], gives (i)~~(ii). 

** To prove (i)~(iii), Tp A'" -+ Alii is defined by: 

** T <p (G) 
p 

<p E: Alii , G E: A" • 

Therefore: 

** TF cP = p¢ 

And T;~W ~ W~ 

<p € A"' 
(41 

IN f; A . 

* Now, Theorem VI.4.2 [10], gives that: Tp is weakly compact on 

for e':'32:"<; P E A", if and only if: A (4) ~ C (A" {'. t. 

Note that, for Banach algebra B if h E Band F e: B" , 

then 'bF = ~#F Therefore l A") is a left ideal of l\. (4) 

(with respect to each of the two Arens products in arisen 

from the first Arens produce in A"), if and only if is 

a weakly compact operator on A' for each F E A" • 

Similarly we can prove that the following are equivalent: 

(i) For every F E: A" Sp is a weakly compact operator 

on A' • 

(ii) The mapping G -+ F#G is a weakly compact operator on 

A" for every F e: A" • 

(iii) (A" >" is a right ideal in when A" has the 

second Arens product. 
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A" 

Again (Alit is a right ideal of A(4) with respect to each of 

the two Arens products in A(4) arisen from the second Arens product 

in A" • 

* By Theorem 14, TF 

II 
~r "' V<' 1j i'- f- A 

is a weakly compact operator)if and only 

if .. , __ .S"_j~ __ .J .... ;r (Allf is a left ideal in A (4) • Therefore 
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by Theorem 3 we get Tp for every p (. A" is weakly compact if 

and only if P
F 

I the right regular representation on A" I is weakly 

compact. Similarly SF 

is weakly compact for every F (. A" if and only if AF the left 

(A" with the first Arens product.) 

regular representation on A" is weakly compact. (A" with the 

second Arens product.) Horeover we have: 

2.15 Corollary. 'I'hen AF and 

the left and the right regular representations on A", with respect 

to the first Arens product are ''''eakly compact if and only if they 

are ·.:"~H::=-Y compact ,,·i.th re3pe~t. "':0 t.1:'8 socond AroH:; pro'l~lc':. 

The condition: For every P (. A", Tp is a "1eakly compact 

operator on A' in Theorem 14 is indeed a very strong condition. 

Next we give an example for which TF and SF for every p c A" 

are compact and therefore ''leak compact on A I , and A is Arens 

regular. 

2.16 Example. Let A - Q.l - , the space of absolutely convergent 

series of complex numbers, with its usual norm, and let multiplication 

in A be defined co-ordinatewise. Then by Theorem 4.2 [22], Theorem 

4.2 [7] and Theorem 3.10 [7], 

" "1 " A" = A e rad(A") = A e M = A ED ran (A") , 

co 
where ~l is the closed subspace of £ generated by multiplicative 

linear functionals on A. Since A is commutative and Arens 

regular, then A" is commutative and therefore: 

F E A" 

Let B ran (A") Then 

A(4) = A" ED B" = A ED B ED B" • 

By this construction and considering that B -- ran (A") 
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we get (A") is an ideal of A (4) • i.e. For every F E A" , 

TF and SF are weakly compact operators on AI • Now by IV.l3.3 

[10] compact and weak compact operators on A are the same. 

2.17 Corolla£i. If TF is a weakly compact operator on AI for 

every F ~ A" , then ~ is a left ideal of A" . 

Proof. Let Pa 
be the right regular representation on A . Then 

** -\ 
Pa G = Ga G EO A" 

* A 
But TI\G = Ga ; G to A" , a € A . 

a 

Therefore: a E 1'- • 

Theorem 3 gives the result. b 

Similarly we have: If SF is a weakly compact operator on AI 

for every F E A" " then A is a right ideal of A" 

Remark. Let G be a compact abelian group. Then by Theorem 4.1 [20], 

~ ~ 1 
A = (r.1 (G)] is a b10 sided ideal of A" = [L (G) j II • We prove that 

A" is not an ideal of A(4) • Suppose otherwise and let R be the 

radical of A" • We prove that A"! 
R 

is an ideal of 

But (A"! )"::::; A(4)! J.l. 
R R 

Since for every F E A" and 

we have: 

1\ ll. 11 1 

(A"!R)" • 

<I> E A (4) 

But FR C R 
11 

And for each G E R if P EO R we have 

P (G) = C • Thus: 

a~(p) = ~(PG) = lxm ~\ (PG) = l~m P(Gn A) 
1\ 

where 4> = w*-l~m n>.. for bounded net {ll)..} C A" • But Gn>.. E R , 

P (GT)\) = 0, Gel> € Rl.l. • i.e. (~+ R11) (<jl + Rll) = ~¢ + Rl1 , 

(A"!R)" ::::; A(4~R.L.L· By Theorem 3.17 [7] A"!R is isometricallv 



isomorphic to the measure algebra of G, and by Theorem 5 [21], 

[M (G) f' is a two-sided ideal of [H (G) ] II if and only if G is 

finite. i. e. there exists a Banach algebra A such that A 
a 

and P a are weakly compact for every a € A , but there exists 

F € A" such that TF and SF are not weakly compact on A' • 

2.18 Proposition. Let F, G € A", TF be a compact operator on 

A" and G = w*-l~m 9a , when {Yf3} c A is bounded. Then 

/I. II Y SF - GF II + 0 (51 i., ... U'ia.RW;8lJJliI 5" .... 1 .. 1:111 ,.uh t 
• iii! .h!y 

to hOLm bopell!!). 
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Proof. By Theorem VI.S.6 [10), T is compact on A' 
F 

if and only 

* if its adjoint TF sends bounded nets which converge in the A' 

topology of A" into nets which converge in the metric topology 

of A". Now: 

f € A' 

Therefore: 

Similarly we can get, if SF is compact on A' and 

A 
G = W*-l~m Ya . Thel-1: 

\I F~" - F #G \I + 0 . 
p 

2.19 ,ropoe,,,,",. - If is compact on A' , then the right 

regular representation on A" when A" has the first Arens 

product is compact. 1£ SF is compact on A' then AF the 

left regular representation on A" , when A" has the second Arens 

product, is compact. 
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CHAPTER 3 

In this chapter the second dual of Banach annihilator algebras 

are studied. 

Let E be a subset of a complex Banach algebra A. The 

left and right annihilatoDof E are the sets lanCE) , 

ran (E) given by: 

Ian (E) = {x € A xE = (O)} 

raneE) = {x ~ A Ex ~ (O)~ 

3.1 Definition. A Banach algebra A is said to be an annihilator 

algebra if it satisfies the follo';-;ing axioms: 

For all closed left ideals L and closed right ideals R 

(1) ran (L) = 0 if and only if L = A 

(ii) Ian (R) = 0 if and only if R = A 

3.2 Definition. A Banach algebra A is a dual algebra if for 

each closed left ideal L and each cloeed right ideal R 

lan(ran(L»} = L , ran(lan(R» = R • 

It is obvious that every dual algebra is an annihilator algebra. 

3.3 Proposition. 
s 

Let A be a semi-simple annihilator algebra. 

Then every minimal left (right) ideal of 

(right) ideal of A" • 

1\ 
A is a minimal left 

Proof. Let L(R) be a minimal left (right) ideal of A • 

Proposition 3Q.6 [6], L = Ae (R = eA) where e is a minimal 

idempotent of A. Now, since A is semi-simple annihilator 

A 

By 

algebra, by Theorem 3.1 [22], A is a closed two sided ideal of 
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A" . Therefore: 

/I. /I. Aile ,c A 
/\ ~) (eA" c , 

/I. /1./1. 
c ~~ Aile A"ee (/I. /\11 /\/\ ~) eA = eeA" c , 

/I. /\ /\/\/\ /I. 
e~e c eAe = a:;e 

/\ /\ /\/1./\ /\ 
(eA "e c eAe = {: e) . 

Thus: 
/I. /I. 
eA"e = 

/\/\/1. 
eAe , i.e. 

/I. 
e is a minimal ideITIpotent of A" , 

/\ /\ /I. /I. 
for which L = Aile (R = eA") 

"! L" (RA). .. 1 Now apply~Proposition 3Q.6 [6], we get 1S a m1n1ma 

left (right) ideal if A". t:,. 

3.4 Pro~osition. Let A be ~ semi-simple annihilator aloehra. 

Then with respect to the first Arens product the following are 

equivalent: 

(i) " ranA" (A) = (0) 

(ii) ran (A") = (0) 

(iii) A" is semi-simple. 

Proof. To prove (i) ~ (ii), it is enough to shm>' that, for every 

" Banach algebra A, ranA" (A) = ran (A") • since " A c A" , 

ran (A") c ranA" (A) • Let G EO: ran
A

" (A) , F E A" and 

F = w*-lim ~ where {x} is a bounded net in A. 
C1. Cl' ex Since 

(F, G) + FG is weak*-continuous in F for fixed G, we have: 

" FG = w*-lim x G 0 

Then ran (A) - ran (A") • A" A -

C1. CL 

(ii) ¢==> (iii) • By Theorem 4.1 [22], we have: 

rad(A") = {F € A" : AF = (O)} = ran (A") • t:,. 

Note that in proposition 4 the product for A" was the first 

Arens product. By similar argument when A" has the second 

Arens product, the following are equivalent: 



" lanA"(A) = (0) 

lan(A") = (0) 

A" is semi-simple. 
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By Theorem 4.1 [22], for a semi-simple annihilator algebra A, the 

two radicals of A" coincide. Thus, A" with respect to each of 

the Arens product is semi-simple if and only if one of the following 

holds: 

ran (A") " = ran
A

" (A ) = (0) in first product. 

lan(A") " = lanA"(A) = (0) in second product. 

3.5 Theorem. Let A be a semi-simple annihilator algebra. 

Then A" is an annihilator algebra if and only if A is reflexive. 

Proof. Let A" be an annihilator algebra. Then by Proposition 

4, A" is s~'11i-simple, and since ~y Theorem 3.1 [22], " A is a 

two-sided ideal in A", by Le",.ma 32.4 [6], \.,e get: 

A" = " " -(A 9 ranA" (A) ) 

Considering Proposition 4, we get 

obvious. /). 

" A" = A 

Note that, in Theorem 5 to get A" = 

The converse is 

1\ 1\ -
(A fIl ran

A
" (A) ) , we 

need to have: A" is semi-prime annihilator algebra. By an 

elementary argument, without using Proposition 4, and therefore 

Theorem 4.1 [22], we can get this as follm'ls: 

3 • 6 Letn.'tIa. Let A be a semi-simple annihilator algebra. If 

ran (A") = (0) then A" is semi-prime. 

Proof. Let J be a two-sided ideal in A" such that 

Let L be a minimal left ideal of A" Then JnL = (O),or' 



JnL = L . In both cases we have JL (0) • Thus 

soc (A") c ran(J) , 

" soc (A) c ran (J) . 

By Corollary 32.6 [6], A = (soc(A» Therefore: 

3.7 Theorem. 

Then A" = A • 

" J c ran
A

" (A) 

J (0) • 

ran (A") = (0) , 

Let A" be a semi-simple annihilator algebra. 
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Proof. By Theorem 3.1 [22], A" is a two-sided ideal in 
(4) 

A • 

Therefore by Theorem 2.3, Ap and Pp ' the left and right regular 

representations on A" I are weakly compact for every F E A" • 

Thus A€, and p~ are weakly compact operators on A" for every 

** ** a EO A But /, = A I and P" = pi "There A I and p' 

" a a a a 
a a 

are the left and right regular representations on A, for each 

A 
Therefore A is a t"'io-sided ideal in A" • a EA. But by 

Lemma 32.4 [6], 

A" = " A -(A Ell ranA" (A) ) , 

and since: " ran
A

" (A) = ran (l,,") = (0) 

we get A" 

Since every W*-algebra has identity element, and since every 

semi-simple annihilator algebra is finite dimensional if and only 

if it has identity element, we get that, every annihilator W*-algebra 

is finite dimensional. 

3.8 Corollary. Let A" be an annihilator B*-algebra. Then A" 

is finite dimensional. 



Proof. By Theorem 1.18, A is a B*-algebra. Therefore A" is 

a W*-algebra and is an annihilator algebra. ~ 

Next we give an example of a topologically simple reflexive 

annihilator star algebra which has an unbounded approximate identity, 

and it can not have anyone sided bounded approximate identity. 

3.9 Example. Let H be a separable Hilbert space, and {u } , 
n 

{v} be any pair of complete orthonormal systems of vectors in l!. m 
e 

By par~al's equality, it is easy to show that for every T E BL(H): 

. 12 
i!Tu I 

.n n 

.J 
L I (Tu , '; ) i ~ -n m 

n,m 

* ') 
i: lTv 1-

m 
m 

This common value will be denoted by ITI~2. The Schmidt-class 

F¢ consists of all those operators T € BL{H) , such that 

By A 1. 3 [ 15] , F0 is a topologically simple reflexive annihilator 
I 

Banach star algebra .,.;hich can be identified with an infinite 

matrix algebra MA • Now, since H is separable, the cardinal 

number of index set A is ~o .... ;e shall prove that the 

sequence of all infinite matric~ en defined by: 

e = n 

1 
1 

1 0 

o 1 
o 
o 

is a two-sided approximate identity (not bounded) for this infinite 

matrix algebra. Let 

a = = [-:~, <-] n,m=l 
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such that 

\I a II = loo 21] ~,m=llanml < ro 

Consider r · 0] e = _r:_~ ___ 
n 

o : 0 

Then 

a - aen = [9 __ +-_~] 
O,D 

and 

a - ea = [~ __ :_ - _0] 
n c ! D 

Therefore: II a - ae II -+ 0 as n -;. 0), and II a - ea II -)0 0 n n 

as n -+ co • Thus F¢ has a t\vo-sided approxima t.e identity (not 

bounded) with above properties. 

Now, by Corollary 28.8 16), for Arens regular Banach algebra 

A, A" has unit, if and only if A has bounded two-sided 

approximate identity. Thus every reflexive Banach algebra \.,ith 

bounded two-sided approximate identity has unit. Now, 1 e t { T A } 

be a bounded left approximate identity. Since F¢ is reflexive, 

it has left identity E • But, for every T E F<j> 

o = II (ET _ T)u 12 = 
n n 

E I ~(ET - T)u , v)1 2 
n,m n m 

= E I (u (T*E* - T*) v ) 12 
n,m n' m 

Therefore E is a right identity. Similarly, if E is a right 

identity in F<j>, then it is a left identity. But annihilator 

algebras with identity are finite dimension. 
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Note that, Example 9 can be modified for non-separable Hilbert 

space H. 

3.10 Example. By Proposition 34.4 [6], any semi-simple 

H*-algebra is an annihilator algebra, and we thus get a class of 

reflexive annihilator Banach algebras which have approximate identity, 

but are not finite dimensional. 

3.11 Proposition. Let A be a semi-simple commutative annihilator 

algebra, let MA be its carrier space, and l-1 the closed subspace 

of A ' d b M T ~ spanne y A' ~e~: 

Ml. ::: {F E A"; F(M) = (O)} 

Then rad(A") :::(AI )' 
l-1 

and H is the closed linear subspace of A' 

spanned by Q = {fa: f t AI, a E A} • 

Proof. 
1. 

By Corollary 4.2 [22), rad A" = M and by II.4.18b [10], 

M1. d an (AI 1
M

) I are isometrically isomorphic. Therefore 

rad (A") ::: (A I I ) I • 
M 

1. 
Nm~', rad(A"):;:: ran(A") :;:: M and by 

Theorem 3.10 [7], we have: 

A"t<t::: (0) «====> {fa::1 E A, f E AI} C l-1. 

So Q C H • Let f be a multiplicative linear functional on A. 

Then for every a, b in A : 

f(ab) :;:: f(a)f(b) = fa(b) . 
Let a E A , with f(a) ~ 0 . Then: 

fa :;:: f(a)f , 

1 
f = _fa 

f(a) 

i.e. f is in Q , and completes the proof. 

By Theorem 4.2 [7], A = iI, the space of absolutely convergent_ 

series of complex numbers, \oTith its usual norm, and multiplication 
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defined co-ordinatewise is a commutative semi-simple annihilator 

algebra, such that A" is commutative but not semi-simple and 

" A" = A e rad(A"' • I 

Next 'VIe will prove this for the non commutative case and we give 

a commutative semi-simple annihilator algebra A such that A" 

does not Satist~ L 

{B } "'" Let be a sequence of semi-simple annihilator algebr~, 
n n=l 

such that, for every n ~ IN , B'B is dense in B' • 
n n n 

consider 

A = £1 (B ) 
n 

with pointwise addition, scalar multiplication and 

product. Define the norm II i I on A by: 

II all = II {a } II = 'fl i I a II , n n= n n 

where an ~ Bn ' II \I n is the norm in Bn (n 1, 2, ••• , . 

3.12 Lem!na. A = Q,~B) is a semi-simple annihilator algebra. 
n 

Proof. Consider the projection 

Since each 

TI.c{a}) = a. 
1. n 1. 

B. 
1. 

is semi-simple, 

1T. : Q, t (B ) -)- B. 
~ n ~ 

defined by: 

(i 

1T 0 (] 

i i 

1, 2, ••• ) 

is an irreducible 

representation on A for an irreducible representation 0i on 

B. . Now: 
l. 

ker (n . 0 0' • ) = {a = {a } EO A a. = O} . 
~ l. n l. 

And: 

00 

rad (A) c ,n
l 

ker(n. 0 (] . ) = (0 ) . 
l.= l. l. 

Therefore A is semi-simple. 

To prove that A is annihilator algebra, consider: 

U. = {O, 
~ 

0, ••• ,0, B. , 
~ 

0, ••• } 



Then U. is a closed two-sided ideal of A. 
~ 

since A is the 
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topological sum of the semi-simple annihilator algebra~ U. (i = 1, 2, ••• ), 
~ 

by Theorem 2.8.29 [15], A is an annihilator algebra. A 

3.13 Lemma. Tne closed linear span of A'A is CO(B'n) • 

Q) 

Proof. Consider A' = ~ (B' ) • 
n 

Let f;: {f } E A' , 
n 

a = {a } E A, where, f(a) = L f (a ) • 
n n n n 

For every x = {x } E A , 
n 

\'1e have: 

fa (x) = f (ax) = ~ f (a x ) = L f a (x ) • 
n n n n n n n n 

Therefore: 

But: 

II fa II = sup II f a II n n n 

and since B' is a Banach B -module: 
n n 

for a positive D ... . But n -+ 00 Therefore 

Now, fix b E B , fEB' Then: 

(0, 0 , ••• , 

since for every n E IN, 

n n n n 

0, f b , 
n n 

0, ••• ) E A'A • 

B' B is dense in B' n n n 

span of A'A = {fa f € A', a E A} is 

3.14 Lemma. 
1. 

rad(A") =(A'A) • 

the closed linear 

Proof. By LeIllffia 4.1 [22], for every semi-simple annihilator 

algebra A : 

rad(A") :; ran(A") • 

1\ 
By Proposition 4: ran (A") = ranA,,(A) • 



Therefore: 

rad(A") == 
1\ 

ranA"(A) == {F E A" 
1\ 

(0) } AF = 

{F E A" 
1\ 

(0), } {F (0) } == AF (A') = E A" F(A'A) 

= (A' A).l . ,6. 

3.15 Lemma. Let B for every n E IN be a dual algebra. 
n 

Then A = t I (B) is a dual algebr~. 
n 

Proof. Let a == {b } E A == £1 (B ) . 
n n 

Since each B is a dual 
n 
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algebra, 2.8.3 [IS], b € 11 B , (n E IN) • 
n n n 

:0" for eve!'y n E. IN , 

there exists a sequence {S } C B such that: 
nm n 

b S -+ b as rn -t- co 
n nm n 

Let a 
km U\m' 62m, ••• , Skm' 0, ••• ) • Then obviously a E A , 

km 

aa ---+-
km 

(b
l

, b
2

, · .. , b
k

, 0, ... ) . 

So, (b
l

, b
2

, ... , b
k

, 0, · .. ) E aA for each k to IN . Similarly, 

(b
l

, b
2

, . . . , b
k

, 0, ... ) E Aa for each k E IN . No\..r, consider: 

a
l 

= {b
l

, 0, 0, · .. } 
a

2 
== {bl , b

2
, 0, 0, ... } 

. . . . . 
a

k 
== {bl , b2, ... , b

k
, O} 

Then, since a k E aA and a
k 

-+ a, we have a E aA . Similarly 

a E Aa • Therefore a E aA n Aa . NOW, Theorem 2.8.29 [15] 

gives that A is a dual algebra. 
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3.16 Theorem. Let A = £l(B) , ,,,here {B} is a sequence of 
n n 

semi-simple annihilator algebraa,such that B' B is dense in 
n n 

B' 
n 

for every n E IN • Then: 

A" 
1\ 
A E9 rad(A") 

where P is the closed linear span of A'A. 

Proof. By Len~a 12, A is a semi-simple annihilator algebra, 

and by Lemma 13, P the closed linear span of A'A can be identified 

considered as a subspace of 
CX) 

£ (B' ) • 
n 

The 

topology a(A, P) is then the sane topology on A as its w*-tapology, 

where A is considered as the ~ual of C• (" , '0 .tJ I • n 
Sir.;::.::! p 

total, and since Alaoglu's Theorem asserts that the unit ball of 

A is compact in a(A, P) , Theorem 4.1 [7] gives: 

A" = ~ E9 p.L • 

And by Lernrna 13 and Lemma 14, 'lIe have: 

1\ 1\ .1. 
A" = A ED rad(lI.") = A til CO(B'n) 6. 

Case 1. Let A = t 1 (~~ «(» , (k c IN) , with pointwise 
n 

n 

addition, scalar multiplication and product. Define the norm 

II lion A by: 

II a II .. II {a
k 

} II 
n 

\'lhere ak E Mk ( (. ) I I is operator norm in r-\ ( <C ) , and 
n n n 

k 
<c n has £, I-norm. Note that, in this case Mk (~ ) is a dual 

n 
algebra for each n E IN . Thus by Lemma 15, A = £,1 (~ ( (. ) ) 

n 
is 

a dual algebra. Horeover, the module mUltiplication fa defined 

by: fa (b) = f (ab) (b E A) , can be characterized \"ith the 

multiplication of matrices. Indeed \"e have: Let 

f 



Then: 

fa 

since for every 

we have: 

Then. 
k 

n 
00 

f(ab} = L i~l n=l 

Now, letd.[d:~ 1 be the 

Then' 

dXf 

Now, for every 

k k 
co En In I 

n=l r=l s=l 

and take t = i, r =m, 

k 
n 

a. b. 
1m mJ 

1. k " r. n 

j~l E m=l 

transpose 

}: 
n 

(a. 
1m 

of 

k k 
n n 

b f .. ) = fa(b) . mj 1.J 

b:: J.n 1, 2, ... 

A, consider, 

k k k k 
In n n n 

(a
tr 

~ b rs) t=l ~ts 
, 

and s = j , we get that dxf 

on A as fa . i. e. AlA co~sists of elements: 

fa = dxf f E AI, a E A, d E A , 
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. 

has acted 

where the multiplication in left hand side is the module multipli-

cation defined on A by: fa(b) = f(ab) , and the multiplication 

in right hand side is the point\dse multiplication of the two 

sequences of matrices, and the tenns of d are the transposo of 

the terms of a. Therefore AlA = AI • 

.' 



Case 2. Let A = £.1 (~~ «[.), W
n

) , 
n 

multiplication and product, vlhere 

real numbers with: 

w 5, W W 
m+n m n 

Define the norm II lion A by: 

IIa II = II {ak wn}II 
n 
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with pointwise addition, scalar 

{w} is a sequence of positive 
n 

m, n E IN • 

where a
k 

E ~ ( ~) " "n is operator norm in Mk (a::) and 
n n n 

k 1 <en has e-norm. Again we have: A is a om'll algebra Hi th 

1\ 
A" = A' e rad (A") . 

Case 3. Let B be the Schmidt-class F¢ of operators on 
n n 

separable Hilbert space H (n = l, 2, ••• ), Example 
n 

9 • Then by 

A 1.3 [15] each B 
n 

can be identified with an infinite matrix 

algebra of order }fo . To prove each 

let: 

f = 

Then: 

II f - [

c I 01 
-~-~---JII -+ 0 
o : 0 

as 

B' B 
n n 

is dense in B' 
n 

E B' 
n 

m-+ co • 

Now, since for every finite matrix algebra B, B'B is dense in 

B' , we get B' B n n is dense in B' n Also the same argument 

of case 1 can be applied to characterize the elements of A'A. 

Note that case 3 can be modified for non-separable Hilbert 

spaces H 
n 



Case 4. Let B be a semi-simple H*-algebra. 
n 

since B' ~ B 
n n 

by Theorem 4.10.31 [1~, B' is equal to the topological direct 
n 

Stml of i ts minimal-closed-t~'lo-sided ideals E~ I' A' where each 
n 

I'A is a topologically simple H*-algebra. But by Theorem 

4.10.32 [15], each topologically simple H*-algebra I' 
A 

isomo'1'h,t. with an infinite matrix algebra M' A • 

is dense in M'A • So to prove 

we need to prove that, for every 

Let: 

Then 1 

Therefore: 

B 
n 

B' B 
n n 

By case 3, 

is dense in B' 
n 
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Case 5. Let B = KL(H ) 
n n 

the algebra of compact operators on 

Hilbert space 

operators on 

H 
n 

H 
n 

Then B' = TC(H ) , the trace class of n n 

By A.1.4 [15], FKL(H ) , 
n 

the algebra of 

finite rank operators on H 
n 

is dense in TC(H) • 
n 

Therefore 

to prove B' B 
n n is dense in B' 

n 
since FKL(H) n 

is dense in 

B = KL(H ) 
n n 

it is enough to show that, every f € FKL(H ) 
n 

can 

be written as f = fp, when p is finite rank projection in 

KL(H) • 

Let f = U ~ v be of rank one. Then to prove f fp , 



since 

f (a) = C(au ~ v) = (au, v), a to B 
n 

we have: 

«pa - a)u, v) = 0 

¢:::J (pau, v) = (au, v) 

¢:::l (au, pv) = (au, v) 

.-1-,-,. 
~,v_· 

NOw, take p =J v ~ v then pv 

dense in B' ~ 
n 

a E B 
n 

a E B n 

a E B 
n 

v. Therefore B' B is 
n n 

3.17 Corollary. Under the conditions of Theorem 16, A = 9,1 (B ) 
n 

is Arens regular. 

Proof. LetF,.GEA" Then 1\ 
F .- a + Fl when 

a, b E A and F
l

, G 
1 

E rad(A") . But: 

~+ A 
+ F £ + 

llA 
Fl~ AA A 

FG = aG
l 1G1 = ab + ::: ab + Fl#b 1 

But, by Theorem 4.1 [22] : 

rad(A") = {F E A" A"F = (0) } = {F E A" : F#A'::: (0) } 

1\ ~ F#G = ~ Therefore: Fl # b = 0 FG = . Similarly . t:. 

3.18 Corollary. There exists a commutative semi-simple dual 

1\ 
algebra A such that: A";i A it) rad(A") • 

Proof. Let G be an abelian compact group. 'rhen A = L 
1 

(G) 
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is a semi-simple commutative dual algebra. No", if A" == R ffi rad (A") 

then by above corollary A is Arens regular. But. by [24), A 

is Arens regular if and only if G is finite. 6 

By considering Theorem 4.1 [22], since for r,emi-simple 

** annihilator algebra A, Rl the radical of A" with respect to 
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** the first Arens product coincides with R2 the radical of A" with 

respect to second Arens product , if A = £ 1 (B ) when B is 
n n 

semi-simple annihilator algebra and B B' is dense in B' 
n n n 

(n = l, 2, ••• ) , then A is a semi-simple annihilator algebra 

and A" 
1\ 
A e rad(A") • 

3.19 Definition. A compact Banach algebra is a compact algebra 

A, such that for each tEA, the mapping a ~ tat is a compact 

linear operator on A. 

It follows from Lenma 33.12 (6], that every semi-simple 

annihilator algebra is a compact Banach algeura. By Theore.'11 5, 

al'l 
the second dual of a semi-simple annihilator algebra is arulihilator 

algebra if and only if A is reflexive. This case can not occur 

for compact Banach algebras. Indeed we have: 

3.20 Theorem. There exists a non-reflexive semi-simple compact 

commutative Banach algebra A, sllch that A" is compact and 

not semi-simple. 

Proof. Let A = £1, the algebra of absolutely convergent 

series of complex n~bers, with usual norm, and let multiplication 

in A be defined co-ordinatewise. By Lemma 3~.l2 [6], A is 

compact, and by Theorem 4.2 [7], A" 
1\ = A ED ran (A") • No\'.', let 

G EO A" Then G ~ + ¢, where a € £1 and ~ € ran (A") • 

Define the mapping P
G 

A" ~ A" by: 

= GFG F E A" • 

Then: 

GFG 
1\ 1\ 1\ 1\ = aFa + aF¢ + ¢F¢ + ¢Fa 

Since 
1\ 

¢ e ran (A") , aF¢ = ¢P¢ = 0 • Now by Theorem 3.1 [22J, 



" A A 
A is a two-sided ideal in A" • Therefore Fa - b for some 

b E A and since A is commutative: 

A "" " A ¢Fa = ¢b = b¢ = Fa¢ = aF¢ O. 

Therefore: 

A A 
P F = aFa 

G 

Now, define pi 
a 

A -+ A by: 

Then: 

p' b = aba 
a 

p'*f = afa 
a 

P I Up = -aF~ 
a 

A 
(G = a + <jl) , 

b EA. 

(f E A') 

(F E A") • 

F E A" • 
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Since pi is compact on A, by Schauderls Theorem IV.5.2 [10], 
a 

pl** 
a 

is compact on An , and therefore 

i . e • An is a compact Banach algc!):!::-a. l!. 

= p'** 
a 

is cornpact, 

Note that, by Theorem 5, the second dual of a semi-simple 

annihilator algebra A is annihilator algebra if and only if 

A is reflexive. And every semi-simple annihilator algebra is 

a compact Banach algebra. But, let A = ~L(H) • Then A is 

non-reflexive s3rd-sirnple corr,pact Banach algebra whae A" is 

semi-simple, but not annihilC:l"!:or algebra. 
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CH]l.Y'rER 4 

Let S be a semigroup and consider ~1 (s) the semigroup 

algebra of S. In this chapter we particularize some of the 

problems in Chapters 2 and 3 to the Banach algebra ~1(8) • 

4.1 Theorem. Let 5 be a semi~roup. Then the following statements 

are equivalent: 

(i) s8 is finite for every s E 5 • 

(ii) A , the left regular representation on £1 (8) . is 
a 

t e.,..~t~r for "'~ .. "',,~, 01 (.'~) • a co~~oac o:p . CI,. 'J _ _ e '. 1.. ........ ' ,- ~~ "-' 

(iii ) A I the left regular representation on ~l(S) is a 
a 

weakly compact operator for every a E £1(5) • 

t 1 (S) 
00 

Proof. (i) ~ (ii) • Let a E Then a = E Ct s 
n=l n n 

when Ci = a(s ) . Consider A Since s S is finite 
n n s n n 

A (£1(8» is a finite dimension subspace of £1 (8) Thcrefore 
s 

n 

A is a compact operator on £1 (8) and we have: 
s 

n 

is compact. But: 

N €. IN 

00 

A = L CL A a n=l n s 
n 

No\.;r by Lemma VI. 5.3 [10], the set of compact operators is closed 

in the uniform operator topology of BL(X, y) and we get A a is 

compact operator on £1 (S) • 

(ii) 

ecists 

~ (i). 

U E S 
n 

Let 

such that 

and sOS be infinite. Then there 

is one-one. 'l'herefore 



is isometric on an infinite dimension subspace of £1 (8) , i.e. 

~s is not compact. o Contradiction. 

(ii) < .> (iii). By Corollary IV.8.14 [10], weak and strong 
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convergence of sequences in £1 (8) are the same. Thus (ii) G=4> (iii) . 

Remark. Similarly we can prove that for a semigroup 8 the 

follO\ving are equivalent: 

(i) S5 is finite for every s E 8 . 
(ii) Pa 

is compact 009.. 1 (5) for every a E 9) (5) 

(iii) Pa is weakly compact on £ I (8) for ev~~r:! a F. Q) un . 

And if 5s and s5 are finite for every s E 8 , then for every 

a , b in 9,1 (8) I A 0 Pb a 
is a co:npact operator on £ 1 (5) , and 

1 
therefore .e (S) is a compa~t Banach algebra. 

4.2 Theorem. If £1 (8) is semi-simple, then the follm,ling are 

equivalent: 

(i) (sS) U (Ss) is finite for every S E £ and 

S = {st : s, t E S} • 

(ii) £1 (£) is an annihilator algeb~~. 

Proof. (i) ==:> (ii). Let s E S • Since (t5) u (St) is 

finite for each t E S, SsS is finite and therefore £1 (5) s £1(S) 

is finite dimensional. Since 9.. 1 (8) is semi-simple and 

9.,1 (8) 5 9.,1 (S) is an ideal of Q,1 (5), 9.,1 (8) s £1 (8) is a semi-simple 

finite dimensional ideal of 9.,1(5) • Therefore £1 (8) s £1 (8) is 

isomorphic with the direct sum of full matrix algebras. Now using 

Theorem 2.8.29 [15], \.,e get 9.,1 (8) 5 £1 (5) is an annihilator 

algebra. NOW, let PES . Then 

in 8 , and for sorr,e and 

for some 

in 5 • 

s 
1 

and 

Thus: 



since for every element a E £, 1 (8) \ole have: 

pES where a(p) 
n n 

Ct 
n 
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we get that 9,1(S) is the topological sum of full matrix algebras, 

and again by 2.8.29 [15], £1 (5) is an annihilator algebra. 

(ii) => (i) • Since £1(5) is a semi-simple annihilator algebra, 

by Theorem 3.1 [22], [£.1 (5) r is a two-sided ideal in its second 

dual space. So by Theorem 2.3 Aa and P
a 

are weakly compact 

on J,l (3) for every a, b li' 11 (3) • Thcurem 1 gives sa 

and Ss are finite for every S E S • To prove S = {st : s, t E S} , 

we have 

where 9,1(5
2

) is a closed two-sided ideal of £.1(3) • 

is an annihilator algebra, therefore 

ran (1 1 (S» == (0) 

=:> ran (£1 (5» 2 = (0) 

~ ran(£'5
2

» == (0) 

=;. £1 (52) == £.1 (5) 

2 
::;'5 =S. t:. 

4.3 Theorem. (Young) The follovling are equivalent for any locally 

co~pact Hausdorff semi-topclogical semigroup 5. 

(i) £.1(5) has regular multiplication. 

(ii) There is no pair of sequences 

such that the sets' 

{x y : n > m} n m 

are disjoint. 

and b: y 
n m 

{x } 
n 

m l n} 

{y } in 5 
m 
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Proof. ([23) Theorem 2). 

4.4 Corollary. There exists a countable semigroup S such that 

for every s E 5, s5 is finite and ~l (8) is commutative but not 

Arens regular. 

Proof. Let S = IN , and define 

mn = min{m, n} In, n E IN • 

Obviously S is a commutative semigroup and n 1N and IN n are 
po~\hV'­

finite for every n e IN • No\-! let {x} be the sequence of) odd 
n 

integers and 

and 

Therefore: 

peS:hv( 

{v} the sequence of~ev9n integers. -n 

{x y : n > m} = {y } 
n In ra 

{x y 
n m 

m > n} - {x } 
n 

Then 

{x y 
n m 

In > n} n {x y 
n m 

n > m}:;: ~. 

Using Theorem 3, we get £1(5) is nct Arens regular. Nov.' since 

5 is commutative, ~l(S) is CC8mutative. ~ 

4,5 Corollary. Let 5 be a semigroup containing (i) an infinite 

group or (ii) an infinite chain of idempotents. 

not Arens regular. 

Proof. Let G be an infinite subgroup of S. Then Q, 1 (G) is 

a closed subalgebra of Q, 1(5) • Now, if £1 (S) is Arens regular, 

then by 6,3 [7), Q,l(G) is Arens r~gular, and by [24], we get G 

is finite. 

Let Es = {51' 52' ••• } be an infinite lower chain of idern-

potents in s . Then Corollary 4 gives 
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is not Arens regular. Therefore £1 (8) is not Arens regular. 

A similar argument deals with the case of upper chains, in which 

case we use (IN, v). !J. 

4.6 Definition. A semigroup 8 is an inverse semigroup if for 

any s € 8, there exists a unique s* € S such that 

s s* s = s and s* s s* = s* • 

4.7 Prooosition. 
$ 

There exists an infinite inverse semigroup 8 

t-lith Q,1 (S) Arens regular. 

Proof. 

defined by 

st:: e s, t E 8 , 

Then obviously S is an inverse semigroup, and since for every 

sequence {x} and {y} in S 
n In 

{x y : m > n} n {x y 
n m n" m 

n > m} = {e} , 

Theorem 3 gives Q,l(S) is Arens regular. !J. 

\'le define the Brandt semigroup S over a group G \'Tith index 

set I to be the semigroup consisting of elementary I x 1-

matrices over GU{O} and the zero matrix e. We write 

s = {(g) .. : g € GU{o} , i, j E I} U {e} 
~J 

and we have: 

if j = K 

= 

if j=jK 

Brandt semigroups are inverse semigroups. 



4.8 Theorem. If S is a Brandt semigroup, then ~l (S) is not 

Arens regular. 

Proof. Consider the sequences {x} and {y} defined by: 
n m 

Xn = (g)nl = 

Then: 

o o 

o 

Ym = (g)lm 

o 

o 

l j 

m, n E DJ • 

x v = (g) n-m nm 

{x y 
nm 

n > m} {(g)nrn 

m > n} = {(g) 
nm 

n > m} 

m > n} 

Therefore {(g) . 
nllJ 

n > m} n { (cj 
- nm In > n} 

o o 

o 

o 

o . 

By using Theorem 3, we get £l(S) is not Arens regular. ~ 

o 
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o 

Note that if the group of the Brandt semigroup S is trivial then 

S contains neither an infinite subg~~F nor an infinite chain of 

idempotents. 

4.9. Corollary. If S is a semigroup containing a Brandt semi-

group then ~l(S) is not Arens regular. 

j 
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Problem 1. Characterize the semigroup 5 such that each 

00 

¢ € ~ (8) is almost periodic. 

()O 

Let Ij> E: ~ (5) If Ij> is almost periodic then it is 1I1eakly 

almost periodic and by Theorem 2.10 we get £1 (8) is Arens regular. 

In particular by Corollary 4, the condition that Ss u s8 be 

finite for each s € S is not sufficient. 

Problem 2. Characterize the se~igroup S such that each 

irreducible representation of t 1 (8) is finite dimensional. 

Clearly the corrmutative case is trivial. 
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