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INTRODUCTION

Let A be a Banach algebra over a field IF that is either
the real field IR or the complex field , and let A' be
its first dual space and A" its second dual space. R, Arens in
1950 {2}, [3], gave a way of defining two Banach algebra products
on A" , such that each of these products is an extension of the
original product of A when A 1is naturally embedded in A" ,
These two products may or may not coincide, Arens calls the

multiplication in A regular »nrovided these two products in A"

coincide.

Perhaps the first important result on the Arens second dual,
due essentially to Shermann [17] and Takeda [18], is that any
C*-algebra is Arens regular and the second dual is again a C*-algebra.
Indeed if A is identified with its universal representation then

A
A" may be identified with the weak operator closure of A .

In a significant paper Civin and Yood [7), obtain a variety of
results. They show in particular that for a locally compact Abelian group
G, Ll(G) is Arens regular if and only if G is finite.

(Young [24) showed that this last result holds for arbitrary locally
compact groups.} Civin and Yood also identify certain gquotient

algebras of [Ll(G)]" .

Pak~Ken Wong {22] proves that £ is an ideal in A" when A
is a semi-simple annihilator algebra, and this topic has been taken
up by S. Watanabe [20], ([21] to show that [Ll(G)f is ideal in
[Ll(G)]" if and only if G 1is compact and [M(G)f\ is an ideal in

[M(G)]" if and only if G 1is finite. One should also note in



this context the well known fact that if E is a reflexive Banach
space with the approximation property and A 1is the algebra of
compact operators on E , (in particular A is semi-simple

annihilator algebra) then A" may be identified with BL(E) .

S.J. Pym [The convolution of functionals on spaces of bounded
functions, Proc. London Math. Soc., (3) 15 (1965)] has proved that
A 1is Arens regular if and only if every linear functional on A
is weakly almost periodic, A general study of those Banach algebras
which are Argns regular has been done by N.J. Young [23] and Craw

and Young [8].

But in general, results and theorems about the representations

of A" are rather few.

In Chapter One we investigate some relationships between the
Banach algebra A and its second dual space. We also show that

if A" is a C*-algebra, then * is invariant on A .

In Chapter Two we analyse the relations between certain weakly
compact and compact linear operators on a Banach algebra A ,
associated with the two Arens products defined on A" ., We clarity

and extend some known results and give various illustrative examples.

Chapter Three is concerned with the second dual of annihilator
algebras. We prove in particular that the second dual of a
semi~simple annihilator algebra is an annihilator algebra if and
only if A 1is reflexive. We also describe in detail the second

dual of various classes of semi-simple annihilator algebras.

In Chapter Four, we particularize some of the problems in
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Chapters Two and Three to the Banach algebra $1(s) when S is a

semigroup.. We also investigate some examples of 2l(s) in

relation to Arens regularity.

Throughout we shall assume familiarity with standard Banach
algebra ideas; where no definition is given in the thesis we
intend the definition to be as in Bonsall and Duncan [6]. Whenever

possible we also use their notation,



CHAPTER 1

Let A Dbe a Banach algebra (over the real or complex field).
Let A' and A" denote the first and second dual spaces of A ,
Let a, b, ... denote elements of A ; f, g, ... denote elements

Id

of A' ; F, G, ... denote elements of A" ,

For each f € A', a ¢ A we define fa € A' by the rule:

fa(b) = £(ab) bea,

For each F € A", £ ¢ A' we define Ff ¢ A' by the rule:

FPf(a) = F(fa) a € a.

For each pair of F, G ¢ A" , wa define FG € A" by the rule:

FG(f) = F(Gf) £ en" .,

These definitions were introduced by Brens [2], [3] who showed
the definition of FG as a product of F and G yields an
associative multiplication on A" which makes A" into a Banach
algebra, Throughout we call this multiplication in A" , the
first Arens product. The natural embedding of A into A" will
be denoted by g . As noted by Arens [2], the natural embedding
is an isometric isomorphism when A" is considered as a Banach

algebra under the first Arens product.

Arens [3] has considered also the following multiplication in

All .

For each f ¢ A', a ¢ A define af ¢ A' by the rule:

af (b) = f(ba) b €A,



(2]

For each F € A", f ¢ A' define fF € A' by the rule:

fr(a) = r(af) a € A,

Pinally, for F e A", G ¢ A" define F#G by the rule:

F#G(f) = G(fF) fea .

Again the definition of F#G as product makes A" into a
Banach algebra. We call this multiplication in A" the second

Arens product.

1.1 pefinition We call A Arens regular provided FG = F#G for

all r, G = A" .,

As was noted in {3] the multiplication FG is w*-continuous in
F for fixed G € A" and F#G is w*-continuous in G for fixed
A A ) , . .
F e a" . Also xG = x#G 1is w*-continuous in G for fixed x € A .
The multiplicaticn in A is regular if and only if PG is also
w¥-continuous in G for fixed F , or F#G 1is w*-continuous in

F for fixed G .

Clearly if A 1is commutative, A" 1is commutative if and only

if A 1is Arens regular.

1.2 Proposition. If A is commutative, then FF = F#F for every

F € A" .

Proof., We have

ab = ba, a, b e .
fa(b) = f(ab) = f(ba) = af(b), feA'; a, b e A,

fa = af’ fedA';y aed,

Fi(a) = F(fa) = F(af) = fF(a), FehA"; £fe€A'; aed,
rf = £F, F e A'; £ € A' .

FF(f) = F(Ff) = F(fF) = F#r(f), FeaA"; fed .

FF = F#F Feda . A



Notation. For a subspace J of a Banach space A , we define:

L
J ={fen : f(a) =0, a € J} .

Let A be a commutative Banach algebra, M the closed linear
subspace of A' spanned by the multiplicative linear functionals

on A . Then by II - 4-18-@ [10], M'::A"/ML , and by Theorem

3.7.[7] A"/ML is semi-simple and commutative. Also by Lemma 3.16

[7] the mapping T : A—a—A"/ML defined by:

A
T(a) = a + M‘L ae€aA

is a continuous homomorphism, Now a € ker(T) if and only if
A L ) L .
aeM, il.e. ¢(a) =0 for every ¢ € M, i.e., a € rad(d) .

We summarise these remarks in:

1.3 Proposition. Let A be a cormmutative Banach algebrgy M

the closed linear subspace of A' spanned by the multiplicative
linear functionals on A, and let M' have the multiplication induced
by the isomorphism M'< A“/Ml . Then there exists a continuous

homomorphism T : A > M' with kernel rad A, and M' is semi-simple

and commutative.

1.4 Proposition. Let A be a commutative Banach algebra, M the

closed linear subspace of A' spamned by the multiplicative linear
functionals on & . Let B = A"/ML and let N be the closed linear
subspace of B' spanned by the multiplicative linear functionals on

B . Then there exists a continuous and 1+l linear mapping of M

into N ,

Proof, Let f be a multiplicative linear functional on A .,
A
Then by Lemma 3.6.[7] f is a multiplicative linear functional on a" .
. AL .
Since M(M) = 0 we may define T : M+ N by:

6 ([F]) = 6(G) G e [F] .



= A — A — £ 1 -
If T¢, = T, . Then ¢l =%, 0, =0 Therefore T is 1-1.

Evidently T 1is norm decreasing. A

1.5 Examples. (i) Let A = £1, the algebra of absolutely

convergent series of complex numbers, with the usual norm, and let
the multiplication in A be defined co-ordinatewise. Then by

A
Theorem 4.2.(7], A" =A®M . So AxB and M=N .

e
(ii) Let G be a locally compaczjggelian group, and let A = IhG)
the group algebra of G . Then by Theorem 3.17 [7], B = A"/ML is
isometrically iscomorphic to the algebra of all regular Borel
measures on the almost periodic compactification of G , with
multiplication taken as convolution, So B & A and we can get

a continuous embedding of M into N .

1.6 Proposition, Let A be commutative and let A" have identity

E for one of the Arens products. Then E is the identity element

for the other product.

Proof. For F ¢ A", FE = EF = F , Then for evexry £ € A' we
have:

F#E(f) = E(fF) = E(Ff) = EF(f) = F(f) .
Therefore F#E = F . Similarly E#F = F . Also by similar way we

carn get FE = EF = F if F#E = E#F = F ., A

In fact, in the above case, left identity for one product is
the right identity for the other one, and right identity for one

product is the left identity for the other product.

1.7 Definition. A left approximate identity for A is a net

{ex} in A such that:

e, > x x € A (1)



A bounded left approximate identity is a left approximate identity
which is also a bounded net. Right approximate identities are

similarly defined by replacing e.,x in (1) by xe, . A two-sided

A
approximate identity is a net which is both a left and a right

approximate identity.

By Proposition 28.7 [6], A" with respect to the first Arens
product has a right identity if and only if A has a bounded

right approximate identity. By similar proof we have

1.7 Proposition. The Banach algebra A" with respect to the

second Arens product has a left identity if and only if A has a

bounded left approximate identity.

since af = af and fA = fa for every a ¢ A and f € A',
we get AA' < A"A' and A'A < A'A" lNext we show that if A
has a bounded two-sided approximate identity, then A"A' = A'A" = A’
and we give an example which has bounded two-sided approximate

identity but A'A # aA' .

l.8 Proposition. If A has a bounded right approximate identity,

then A"A' = a' ., If A has a bounded left approximate identity,

then A'A" = A' ,

Proof. Let {eA} be a bounded right approximate identity in A .,
Then by Proposition 28.7 [6}, A" has a right identity E , So
A"A' = A' , If {ek} ig a bounded left approximate identity in
A , then it has a weak* cluster point E ¢ A" . Now for every
feA', a € A we have;

gk(af) = af(eA) = f(gka) + f(a) .



Therefore:

fE(a) = E(af) = £(a), fE = £ .,

So A'A" = A' , A

Note that by Corollary 28.8 [6], a weak* cluster point E of a
bounded left approximate identity {ex} c A ig a left identity in

A" , if A is Arens regular.

1.9 Proposition. There exists a semi-simple commutative annihilator

algebra A with bounded two-sided approximate identity such that

A'A # A,

Proof. Let A = Ll(G) the group algebra of a compact abalian
group G . Then by 2A.3.1 [15], A is semi~simple with bounded
two-sided approximate identity, and by remark page 182 [6], A is
a dual algebra, Now suppose that A'A = A' , In Chapter 3 we
show that if A is a semi~simple annihilator algebra with A'A
dense in A' , then:

A
A" = A ® ran (A") .

>

So A"/ran(A“) = .

But, by Theorem 3.17 [6], A"/ ~ M(G) the algebra of all

ran (A")
regular Borel measures on the almost periodic compactification of

G with multiplication taken as convolution. A

In attempting to obtain some stronger results involving

approximate identities, one is led to the following definition,

1.10 Definition. {eA} is a bounded uniform left approximate

identity if for every a ¢ A, e,a > a uniformly on the unit

sphere of A .,

However, as shown by P.G. Dixon, the above definition is

simply equivalent to having a left identity.



1.11 Proposition. (P.G. Dixon). Let A be a Banach algebra

and let e € A Dbe such that, for some o , 0 < a <1,

Ilex - xII S a l|x|l X € A .
Then A has a left identity element.
Proof. Let Te € BL(A) be defined by:
T x = ex X € A .
e
Then [[Te - IlI fa <1l,
So Te is invertible, and
eSS S R  P I I N6 S N R
e e e e
-1
Let u = 'I‘e e € A, Then:

-1 _ _ _ 2
(Te e)x = [(T + (I 'I‘e) + (I Te) + ...0elx

[e+ (T-T)e+ (T-1)%+ ...1x

ex + (I - Te)ex + (I - Te)2 ex + oo

2
(I + (T - Te) + (I - Te) + ...)ex

-1 -1
(T, lex) = (T, (T x) =x, = uw-x=0. A

A bounded uniform right approximate identity is similarly

defined by replacing e, X in 10 by xe, . Again by similar

LAt

argument, if A has a bounded uniformjlapproximate identity, then

A has a right identity.

By 9.13 iv [6] A' is a Banach right A-module under:

fa(x) = f(ax) f e A', x € A,

A' is a Banach left A-module under:

af (x) = f(xa) fen', xen,

10
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And A' is a Banach A~bimodule under fa and af as module
multiplications. Also by 9.13 VvV [6] A' is a Banach left
A'"~-module under Ff as a module multiplication, when A' has the
first Arens product,and A' is a Banach right A'-module under f£F
as a module multiplication, when A" has the second Arens product.
It is a routine matter to verify that A' is a Banach A"-bimodule
under fF and Ff as module multiplications if A" is comnutative

and A has identity element.

1.12 Proposition. If {ek} is a bounded right approximate identity

for &, then:

{fa : £ e ', ae A} = {g A : Ilgek - g|| ~ o} .

Proof, Let ge A' and g fa for some f € A' and a € A .

it

Then:

llge - gil = I{fa e, - fal‘ = Ilf ae, - fa”
X A

A

- lltcae, = &l < llgl llae, - all > 0.

A

Conversely, since A' 1is a right A-module under module multiplication
fa (fE ¢ A', a e A) , and A has bounded right approximate identity,

by Theorem 32,22 [13], A'A is closed in A' . A

1.13 Lemna. Let A Dbe a Banach algebra, and B be a left (right)
Banach A-module. Let {el} be a bounded left (right) approximate
identity in A ., Then AB =B (BA = B) if and only if {ex} is

a left (right) approximate identity for B .

Proof, et AB =B, and let b e B, Then we have to prove:

exb -b->0 .
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But we have b = ac for some a € A and c € B . Therefore

ey - bl = [le, o) -acll = || e ,a)c - ac]

= Il(eka - a)c]| < K]Ieka - a|| -0 .

Conversely, by Theorem 11.10 [6], we get AB =B . Similarly we
can prove BA = B if and only if {eA} is a bounded right

approximate identity for B .

Now, let A' be a Banach right A"-module under Ff ., Then:

G Ff =FG £ F, Ge A"; £ € A' ,
¢==> GF £ = FG £ F, Ge A"; £ € A' ,
<= GF f(a) = FG f(a) F, Ge A"; f e A'; a€h.
<==> GF{(fa) = FG(fa) F, Ge A"; £f ¢ A'; a € A .

This gives A" commutative provided {fa : f ¢ A', a € A} is
denge in A' . This is certainly true if A has a right unit,
or by Lemma 13, if A has a bounded right approximate identity
for the right module A' . Similar result can be obtained when

A' 1is a left A"-module under fF .

1,14 Corollary, Let {el} be a bounded left (right) approximate

identity fox A . Then AA' = A' (A'A = A') if and only if {ex}

is a left (right) approximate identity for A' .

Proof. Since A' is a left Banach A-module under module
multiplication af and a right Banach A-module under module multi-

plication fa , Lemma 13 gives the proof. A

1.15 Proposition. The Banach left A"-module A' is faitnful

if A has a unit.
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Proof. Let f € A' and Ff = 0 for every F ¢ A" . Then

Ff(a) = F(fa) = 0 a € A
So: fa = 0, a el
fa(l) = f(a) = O a €A

So: £f=0. A

s . P s _ 2
In proposition 15, in fact, it is sufficient to have A dense

in A,

Let a € A, Define the map Ba on A' by:

t
L]
4
bt
U
rh
o
3]

For F € A" let a(F) be the map on A' defined by:

w(F)E = FE f e At

Let C = com{Ba : ae€nl = {TeBL(A') : TB = BaT} .

1.16 Theorem. If A has a unit, then 7: A" » C is a bicontinuous

isomcrphism, and if A is unital, then 7 1is an isometry.

Proof, Let F € A", a € A ., Then, since Ff a = F fa (£ € A'),

we have:

I
]
)
=
5
i
"y
™
P
i
&
rh
i}
f
a2
w
h

Ban(F) £

= m(F) Baf n(F)Ba f .

Therefore:

BaW(F) = H(F)Ba .

Given ¢ € C , define F(f) = ¢£f(1) . Then F ¢ A" and for every

a € A, we have:
T(F)f (a) = Ff(a) = F(fa) = ¢ fa(l) = ¢ Baf(l)

= B¢ £(1) = B_(¢f) (1) = (¢f)a (1) = ¢f(a) .
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Therefore:

w(F)f = ¢f. i.e. 7 is onto.

Clearly 1w is linear and one-one. Now for every F, G ¢ A" ,

felA' and a € A, we have:

T(FG)f (a) = (FG)f (a)

FG(fa) = F(G fa)
= F(Gf a) = F(n(G)f a) = F n(G)f(a) = n(F)m(G)f (a)
Therefore:
T(FG) = w(F) T(G)

Also for F € A" , since A' is a Banach right A-module under fa ,

we have:
vl = sw ||eel| - s lrceo]
) TIPS PR
< s s xllell el lall = xllEl],
PR ey PRy MR

for some positive K ., Therefore 7T is continucus, and Banach

isomerphism Theorem gives that 7 is bicontinuous.

\
Mow let A be unital. Then for every F € A" ;

fm |l = sup sup |F(fa) |
TS PRI
Since fl1 =f and ||1]/=1, we have:
Hrm® |l 2 su ire)| = ||F|l. &
| £]] s1

1,17 Corollary. If A is finitely generated, then A" may be

identified with the commutant of a finite set of operators. For

example, if A= 21(Z) . Then A" can be identified by commutant

of the bilateral shift on lm( 7)) . If A = 21(FS(2)) , where



FS(2) 1is free semigroup on two symbols, then A" dis isometric with
the commutant of Bu and Bv , where u and v are the

generators of FS(2)

Sherman [17)], Takeda [18], Tomita [19] and Civin-Yood (7] by
representation Theory and Bonsall-Duncan [4] by using the vidav-
Palmer characterization of B*-algebras have proved that the second
dual of a B*-algebra with the Arens multiplication is a B*-algebra.
Bonsall-Duncan have proved even more. They have shown the involution

in the second dual is the natural one derived from the involution

of tha given B*-algabra. We show that 1f A" is a BY-algobra
under Arens multiplication, then * is invariant on A , and
therefore A is a B*—-algebra. First we need some definitions
and notations.

Let A Dbe a complex unital Banach algebra. Define:

D(1) = {£ : £ e A, ||£]] = £@) =1},

V(a, a) = {£(a) : £ ¢ &', || £]]= £(0) = 1} (a € A) .

We say that h € A 1is Hermitian if V(A, R) < IR . We denote the

set of all Hermitian elements of A by H(A) . A is called a
V-algebra if A = H(A) + iH(A) . By Proposition 12.20 [6] an
element a of a unital B*-algebra is Hermitian if and only if
a* = a , Therefore by Lemma 12.3 [6] every unital B*-algebra is

a V-algebra,. We also denote:

H(a')

"

{af -8 : £, gen'; o, Bem; £ =g = |[£]] =llgll = 1,

{af - Bg : £, g e D(L); o, B € =¥y .

1.18 Theorem. Let A be a complex Banach algebra with unit and

A" a B*-algebra under one of the Arens products. Then * is

invariant on A .
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3 A I .
EEEEE; Since A the natural embedding of A into A" is a
A
subalgebra of A" , it is enough to prove that A is a

star subalgebra of A" ,

A
If A is not a star subalgebra of A" , then by Lemma 31.9 [5],

there exists a ¢ € A™ guch that:

6(A) = (0) and ¢*(A) # {0} ,

where ¢*(F) = [(F*)]* (F € A") .
Now A" 1is a B*-algebra with unit, Therefore IIQ]I = 1 and so
||l[] =1. i.e. A" is a unital B*-alcebra. But for every

H(B') = {f : £(h) ¢ IR, (h* = h)} .
Therefore H((A")') n i H((A")') = {0} . If not, then ¢'= i¢ , and
$(F) € R n iR = (0) , ¢' = 0 . Also, by Corollary 31.4 [5] we

have: X
a" = H((A")') + iH((A™)') .

Therefore ¢ = ¢1 + i¢2 , Wwhere ¢l and ¢2 are in H(((A")') .

By Lemma 2.6.4 (9], ¢; = U, -

for some positive linear

functionals ¥ Since A" has unit, by Lemma 37.6 [6]:

Therefore:
¢1(F) = ¢1(F) - w2<F) = wl*(F) - wz*(F)

= 0 *(E) = (b (FEN) Fea,
So:

4 (F*) = ¢, (F)*
F e A" ., (1)
¢, (F%) = qg(F)*
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But ¢l € H((A")') gives:
¢, = a, ; vy e n(d
1= 4V - azwz 0y Gy € IR ;o Yy ¥, € D(1) .

Clearly:

' A
wK]AeD(A, £ K=1, 2
A
and so:
A 1
4], € BB
A
similarly:

Al
¢2‘£ € H((A)') .

¢
Now since H({(A")') n iH((a")') = {0} , by Hahn-Banach Thco;h

H(A)Y") n iH(R)") = {0}

Therefore:
1 A 2
01a=¢a|a=0 -
A
L A 2 A
A A
By (I), ¢K“A)*) = (¢K(A))* = (0) , K=1, 2.
A A »
¢K*(A) = ¢K((A)*) = (0) , K=1, 2,
A
$* () = (0)
contradiction. A
Remarks. 1. Let A be a complex Banach algebra without unit

element such that A" is a B*-algebra, Then by Lemma 12.19 [6],

A" +¢C is a unital Banach algebra, By above Theorem * is
invariant on A +¢ . Again by Lemma 12.19 [6], we get * ig

invariant on A .,
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1l.19 Corollary. If A" is a B*-algebra, then A 1is Arens

regular.,

Proof. By Theorem 18 A is a B*-algebra and by Theorem 7.1 [7],

A is Arens regular, A

Let A be a Banach algebra and A" a B*-algebra. By
Theorem 18, A 1is a B*-algebra, and by Theorem 1,17.,2 [16],
A" is a W*-algebra. Therefore, if the second dual of Banach

algebra A is a B*algebra, then A" 1is W¥*-algebra.
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CHAPTER 2

This chapter presents relations between the weakly compact
and compact linear operators on a Banach algebra A , associated
with the two Arens products defined on A" , Throughout the

chapter, the symbols X and Y will denote Banach spaces.

2.1 Definition. Let T € BL(X,Y) , and S be the closed unit

sphare in X . The operator T 1is said to be weakly compact if

the w2ak closure of TS is compant in the weal topologr or ¥

2.2 Deiinition. Let T € BL(X,Y) , and S be the closed unit

‘sphere in X . The operator T is said to e compact if the

strong closure of TS 1is compact in the strong topology of Y .

For a € A , we denote by Aa and 3N the left and xright
regular representations on A defined by:
4

> b = ab beaA
a

p b = ba ben.
a

*
Considerxr Xa : A' = A' , the adjoint of Aa . Since for
every £ € A' and b ¢ A we have:
*
Xaf(b) = f(Xab) = f(ab) = fa(b) ,

we get:

*

A f = fa (f ¢ AY)
a

*
Similarly, for oy ¢ A' > A' , the adjoint of p, ue have:

p £ = af (f € M)
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* %
Consider A a A" » A" , the second adjoint of ka . Since

for every F € A" and f € A' , we have:

F(fa) = F(fa) = AYF(f) = AF(f) ,

It

*% *
A aF(f) = F(Aaf)

we get :
*k A A
A aF = aF = afiF (F ¢ A")

. . * %
Similarly, for o : A" -> A" the second adjoint of o we have:
a r a

* %
paF=F3=F#§ (F € A") .

Some parts of Theorem 3 and Corollary 5 have been proved in

[20] and [21]. For these parits the prooi given here is shoxler.
2.3 Theorem, The following statements are equivalent.
A

(1) A is a left (right) ideal in A" .
(ii) For each a € A , fa (la) is a weakly compact
cperator on A .

(iii) For each a € A , the mapping f + af (£ »~ fa) is a
weakly compact operator on A’

A A
(iv) For each a ¢ A, the mapping F - Fa (F = aF) 1is a

weakly compact operator on A"

Proof. By Theorem VI.4.2 [10], an operator T in BL(X,Y) 1is
weakly compact if and only if T**X" c Q . Therefore, for every
*k A A
aeA, P is weakly compact if and only if p aA" = A"a ¢ A,
Thus A is a left ideal of A" if and only if, for each acld,
Py is weakly compact operator on A . Similar argument can be
applied to The rignt ideal case . Since the opecrators
in (iii) are the adjoint of operators in (ii), and the operators in
(iv) ere the adjoint of operators in (iii), Gantmacher's Theorem

VI. 4.8 [10], gives (ii)<=== (iii)s=== (iv). A



By Theorem 3.1 [22], the natural embedding of every semi-simple
annihilator algebra A , is a two-sided ideal of A" . Now, let
X be a reflexive Banach space without approximation property, and
let A = KL(X) be the algebra of all compact operators on X .
Since it contains all bounded operators of finite rank, A obviously
operates irreducibly on X , and is therefore semi-simple. By
Theorem 2.3 [1]1, for every a € A , Aa and p, are weakly compact

A
operators. Therefore A is a two-sided ideal in A' . But

A = KL(X) 1is not an annihilator algebra since FL(X) the algebra
of finite rank operators on X is a closed two-sided ideal of A ,
FL(X) # A and

ran(FL(X)) = lan(FL(X)) = (0) .
i.e. there exists a semi-simple Banach algebra A such that for

every a € A, xa and pa are weakly compact, but A is not an

annihilator algebra.

2.4 Definition, A subageba g of A is called a block subalgebra

if:

JAJ < J .

2.5 Corollary. The following statements are equivalent:

A
(i) A is a block subalgebra of A" .
(ii) Aa ° Py is a weakly compact operator on A for each
a and b in A .
(iii) The mapping f -+ bfa 1is a weakly compact operator on
A for each a, b in A .
. . AN "
(iv) The mapping F - aFb is a weakly compact operator on A

for each a, b in A .



Proof. For every a and b in A , we have:
Aa ° pb(c) = Aa(pbc) = Aa(cb) = acb c € A
(Aa ° pb)*(f) = bfa f en!
(A, © p)**(F) = &FB F e A"

A similar argument to that of Theorem 3 gives the proof of the

corollary. A

Since AF = A%F and FA = P#A , for every a € A and
F € A" , Theorem 3 and Corcllary 5 are also valid, when multi-

plication in secund dual of A is taken to be the second Arens

product.

2,6 Proposition Let a e¢ A and let la be a compact linear

A
operator on A . If F = w*—l%m X,y in A" , for some bounded
AA A
net {xl} © A . Then llaxx - arf|| » 0.

WA : N " -

Proot. By Schauder's Theorem VI, 5.2 [10], Aa is compact if

and only if A; is compact on A' . Now, by Theorem VI.5.6 [10],
Aa is compact cn A' if and only if its adjoint lt: sends
bounded nets which converge in the A' topology of A" , into
nets which converge in the metric topology of A"

. Let Fen",

A
and F = w*—l}m Xy . Then, for every f € A'

LA
lim xx(f) F(f) .

Therefore:

AA A
ax, - aF|[ > 0. A

1) z

Aox
a

A" X::F ” =|

Remarks. le. By similar argument we have: if e, is a compact
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: A A A
linear operator on A , then ||an - Fa|| - 0 whenever F € A"

{«')t \ W peanded.

A
and F = w*—l%m xx -

’

2~ By Schauder's Theoren, Aa is compact on A if and only if

* *
Aa is compact on A' , and again Aa is compact on A' if and

* %
only if A a is compact on A" . Therefore compactness of each
*

* *
of Aa’ Aa and A a on A, A' and A" respectively, gives:

AA A A
l[axl - aFIl -+ 0 , when {xx} is bounded and F = w*—l}m Xy e

* % Y%
Similarly compactness of each of Par Py and op a on A, A' and
" . . A A Ay v
A respactively, gives: l‘x.a - Fa!, ~ 0 , whenevar {x‘ i3

A

A
bounded and F = w*-lim xx .

2.7 Definition. A minimal idempotent is a non-zero idempotent

e € A such that elde is a division algebra.

2.8 Example, The following two statements are not equivalent

in general,
(i) For every a € A , Xa is a compact linear operator

on A,

(ii) For every a € A, o is a compact linear operator on A .,

EEEEH} Let B be a Banach algebra which contains minimal idem-—
potents and let e be a minimal idempotent in B such that dim Be =
dim A = o , | Then by 31.1 [6], Be is a subalgebra of B,

Now fix a € B, Then by proposition 31,3 [6], there exists

f € B' such that:

Aaebe = (a2) (be) = alebe) = ale be e) = a(f(be)e) = f(be)al

(b € B)
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Therefore Aae = ae @ £ , which is of rank < 1 and therefore

compact. Now, in case (ii), again fix aeB, Then for some
feB' ,
Pae be = be(ae) = b(eae) = b(e ae e)
= b(f(ae)e) = be f(ae) beB.

Therefore pae = f(ae)l . Since KL(Be) the set of all compact

operators on Be contains FBL(Be) , the set of all finite rank

operators on Be , then for each ae € Be , Aae is a compact linear

operator on Be = A , but in case (ii), they are not. 4

Again by using Schauder's Theorem, each of the statements in
case I as follows is not equivalent in general to any of the

statements in case 11,

I : For each a € A, b = ab 1s compact operator on A
For each a ¢ A, f » fa is compact operator on A' .

For each a € A, F - AF is compact operator on A" .
’ s

II + For each a ¢ A, b -+ ba 1is compact operator on A
For each a ¢ 2, f » af is compact operator on A'

For each a € A, F - Fa is compact operator on A" .

2,9 Example. Let S be a countable set with the product of

two elements defined to be the second element of the pair,
Then obviously S is a non-commutative semi-group, and for every
s €S, sS=§, Ss = {s} . With convolution as multiplication,
consider the Banach algebra &1(s) . If a= Zansn +b = Xﬁmtm

are in 21(s) , we have

* = = = 5] -
a*b (Eansn)(ZBmtm) ZZuansntm XZaantm



Now, let pb be the right regular representation on 21(s) .

Then:

pba = awb = Zan ZBmtm = Zanb .

Therefore Py = b® ¢ , where ¢(a) = Zan , and so is a

’b
rank one cperator on 11(3) and therefore a compact operator.

But, for Ab the left regular representation on 21(5) we have:
Xba = EBm Zansn = ¢(bla .

Therefore kb = ¢(b)I which is not a compact operator when
o(b) # 0 . Now, by IV,13.3 [10}, in 21(5) , weak compact operators

and compact operators are the same, Therefore is a weakly

°b
compact operator, but Ab is not a weakly compact operator.

If we define the product of S to be the first element of
the pair, then Ab in this case is a compact and therefore a

weakly compact operator on 21(s) and °n is not a compact and

weakly compact operator on l(s) .

Note that each s € S is a minimal idempotent of ll(S) . There-
fore Example 8 would give the "weakly compact" analogue as long as
Ae, when A = 21(8), is not reflexive, and we do not need, at this

stage the fact that weak compact operators and compact oparators

on ll(s) are the same.

Let f € A' , denote Te A + A' defined by:

m a= fa, a € A

and Y. : A > A' defined by:

P
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*

Consider w_. : A"—, A

£ ' the adjoint of w_. . Since for every

f

Fe A" and a€¢ A we have:

n;F(a) = F(Wfa) = F(fa) = Ff(a) ,

we get:

T F = Ff F e A" ,
*
Similarly for wf : A"—A' , the adjoint of wf we have:

Y F = fF F e A" .

In the next theorem, (i) < -=» {ii) has bzen proved Ior the
commutative case by S.L. Gulick, Theorem 3.4 [11], and for the
non~-cormutative case by J. Hennefeld Theorem 2.1 [12]. The

procf given here is simpler.

)

2.10 Theorem. The following arxe eguivalent.

(i) A 1is Arens regular,

(i1) The mapping Tetoa> fa is a weakly compact operator
on A for each £ € A' . (Each £ € A' is a weakly
almost periodic functional).

(1iii) The mapping wf : a > af is a weakly compact operator
on A for each f € A' .

(iv) The mapping F -+ Ff is a weakly compact operator on
A" for each f € A' .

(v) The mapping F -+ fF is a weakly compact operator on

A" for each f € A' ,

Proof. (L) = (i1). Let f € A' . By VI.4.2 [10] it is enough

% & A
to prove T fA“ < (A') . Let F ¢ A" . Then for every G € A" ;

* %

T fF(G) = F(ﬂ;G) = F(Gf) = FG(f) = F#G(f) = (fvf(G) .
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Thus

%% A
[ ]
m fF e (A') .

(ii) ==(1). By VI.4.7 [10], T e BL(X,Y) is weakly compact
if and only if T* : Y' - X' is continuous with respect to the
X", Y topologies in X', Y' respectively. Take {Fa} c A"
such that Fa(f) >~ F(f) , £ e A" . Then for every G € A"

we have:

* *
Gmgd-*cmg).
m%i,e} doefpepererty—ttrert. ;
. hY £ ol
ﬁ B
Swermmma———sl GGy

. *A *
A inana
Gl F)— G(FE) ,
GRAD — GR(D) .

i.e. GF is weak*-continuous in F for fixed G . Now using

Theorem 3. 3 [3], we get A 1is Arens regular.

(1) <= (iii). By the similary argument mentioned above and

using Theorem 3. 3 [3], we get (i) <=>(iii).

To prove (ii)<¢—==>(iv) and (iii)<=>(v) we see that the mappings
in (iv) and (v) are the adjoint of the mappings in (ii) and (iii)
respectively, and Gantmacher's Theorem VI,4.8 [10] gives the

desired conclusion, A

*
Remark. Consider Aa : A' >~ A' , the adjoint of the left reqular
*
representation on A , given by Aaf = fa and the mapping

Te A > A' defined by Tea = fa . Now, let G be a compact
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Hausdorff infinite group. Then by Proposition 4.1 [20] [Ll(G)rk
is a two-sided ideal in [Ll(G)]" , thus }; is a weakly compact
operator on [Ll(G)]' for each a ¢ Ll(G) . But, by [24], since
G is infinite, Ll(G) is not Arens regular. Thus 7% is not

a weakly compact operator on Ll(G) for every £ € [Ll(G)]' .
Also consider Example 9, By Theorem 2 [23], 21(8) ;, Wwhen

st =t or st=3s (st e S} is Arens regular. But A; is not a
weakly compact operator on A' for every a € A , when the
product of S is defined by st = t (s, t ¢ S}, and p; is not

a weakly compact operator on A' for every a € A, when the
product of § is defined by st =g {s, t € 8}, i.e. there is no
relation in general between the cperators . on A (f e n) ,

w*
and ka on A' (a € B) as far as weak compactness is concerned.

2.11 Corollary. Let A be commutative. Then A 1is Arens

regular if and only if:

*
. _FP = wf F = (Fff fenr', FeA" .

Proof, Let A be Arens regular, Then for every G € A" we

have
* % *
Te F(G) = F(ﬂfG) = FG(f) = F#G(f) = G(fF)
= (gFY(@) = @£\ @) £c¢A' FeR"
Thus: ’x R
nf F = (Ff) .

**
Conversely, let Te F = (Fff for every £ ¢ A' and F € A" . Then

FG(f)

F(GE) wmtmpab———_t = (GEf (F)

* J *
Te G(F) = G(wa) = G(fF) = F#G(f) .

for evexry F, G in A" and f € A' . Thus A is Arens regular.
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Note that for commutative algebra A , A

£= Ve o

Remark. Let £ be a multiplicative linear functional on A , Then

by argument of lemma 3.6 [7] :

L]

fFr = Pf F(f) £ F ¢ A"
Therefore, for every F, G € A" we have:

F#G(f) = G(fF)

G(F(£)£f) = G(f)F (£)

FG(f) = F(Gf) = F(G(f)f) = F(f)G(f)
i.e., the two Arens products coincide on QA the set of multiplicative
linear functionals on A . Note that, if f is a multiplicative
linear functional, then Te and wf are compact operators and

therefore they are weakly compact operators, and by argument of

Theorem 10, again we get that the two Arens products coincide on

¢A .

2.12 Definition. A linear functional f € A' is said to be an

almost periodic functional if {fa : ||a|| s 1} 4is compact in A’

The next Theorem essentially has been proved by S.A, Mckilligan

and A.J. White 2,2 [14], but the argument given here is shorter,

2.13 Theorem. The following are equivalent:

(1) For every f ¢ A', Te is a compact linear operator on A .

(Every f € A' 1is almost periodic functional.)

(ii) For every f ¢ A', wf is a compact linear operator on A ,
(iii) For every f ¢ A', F » Ff 1is a compact linear operator on A"
(iv) For every f ¢ A', F » fF is a compact linear operator on A"
(v) For every £ € A', if Fa(g) + F(g) (g € A') where

{r } © A" is bounded, then llr £ - FEl| + 0 .



(vi) For every f € A', if Fa(g) + F(g) (g € A'), where

{F } < A" is bounded, then IlfFa - fr]] » 0.

(vii) For every F, G in A", (F, G) > FG is jointly bounded

weak*-continuous.

(viii) For every F, G in A" , (F, G) - F#G is jointly bounded

weak*-continuous.

Proof, Since the maps in (iii) are the adjoints of the maps in (i), by

Schauder's Theorem V.5.,2 [10], (i) & (iii).
Similarly (ii)<==>(iv).

(i)e=~=>(v). Let f e A' , Then by VI.5.6 [10], me 1is compact if

* q
£ sends bounded nets which converge in the

A' topology of A" into nets which converge in the metric topology of

and only if its adjoint

A' Thus 7m_. is compact if and only if I!WZFQ - ﬂ;Fll = [!Faf - Ffll >0,

-

whenever {g;} is a bounded net in A" , and F_(g) - F(q) Yg € &' .
Similarly (id)<e=—=>(vi).

(v) ==>(vii). Let .F, G € A", F (@) ~F(g) (¥genr"), GB(q) + G(q)
(Yg € A') , where {Fa} and {GB} are bounded nets in A" and let
f e AY , Then

IFGGB(f) - FG(£) | = [P Gp () - FG(e) + F G(£) - FG(£) |

< |F (Gg£) - F (GE) ] + |F, (c£) - Flcf) |

B
s |Ir I egf - ctll + |p (68) - F(GE) |

Now, {Fa} is bounded, IIGBf - Gf|| »> 0 by hypothesis, and

|F (Gf) - FGE)| + o .
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(vii) = (v). Let {FA} ¢ A" be a bounded net in A" and
ﬁk(g) -+ F(qg) \Yg € A' . We have to prove:

l%mllFlf - FE|| + 0

i.e. sup IFlf(a) - Ff(a)l +~ 0
llall =1

i,e. sup IQFA(f) - QF(f)I +0 .
llall <1

Suppose otherwise and let

A A
sup IaFA(f) - aF(f)] # 0,
lHall <1

Then there exists € > 0 and a subnet {FA } such that:

K

A A
sup laFA (£) - aF(f)]| 2z ¢
|a]] <1 K

Therefore we can find {a; } <A such that Il a
X K

|, ®, (0 -& F(O] 2e2.
K K X

But the closed unit ball of A" is weak*-compact. Let G be a

A .
weak*-cluster point of {aA }. Since multiplication in A" is
K

jointly bounded weak*-continuous, {QR PA } has GF as weak*-cluster

K X
point. Thus
A A
la, 7, (£) - a, F(6)]
K K K
can be made as small as we please, Contradiction,

Similarly we can prove (vi)<==>(vii).
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To complete the proof we have to prove (vii)<====>(viii).
Let (vii) hold, and let F, G € A" . Then by (v) for every f € A':
A
”yXf - Gf” >0

A
when G = w*-lim v, v and {yk} c A is bounded. Therefore:

FG(£) = F(GE) = 1jn F(§,£) = ljm FY (£)

]

. A = 14m D - =
lim F#yx(f) = lim y, (fF) = G(fF) = F#G(f)
i.e. A 1is Arens regular. Therefore for every F, G in A"
(F, G) >~ FG = F#G

is jointly bounded weak*-continucus.

(viii) —= (vii). et F, G € A" . Again we have
(viii) &> (vi). Therefore for every £ € A' we have:
P A
llex - £Fl] » 0
a

when F

A
w*—l&m X, and {xa} c A is bounded., Therefore:

A
FH#G(f) = G(fF) = 1lim G(fx ) = lim G(fx )
o o o o

A A
i £ = i GE) = i = .
1&m G-(xa) 1ém xa(b ) l&m xaG(f) FPG(f)

i,e. A is Arens regular. Therefore for every F, G in A"

(F, G) ~ F4G = FG

is jointly bounded weak*-continuous. Consequently all implications
are proved. A
Remark. 1. A 1is Arens regqular, if one of the conditions in

Theorem 13 is valid. Actually from (i), if ﬂf is a compact
linear operator on A for every £ € A', then it is weakly

compact and Theorem 10 gives A is Arens regular.

2. Again we can prove that, there is no relation in general

* *
between the operators P, on A' defined by Daf = af and ¢f



on A defined by %fa = af as far as compactness ls concerned.
For, let A be a Banach algebra which contains a minimal idempotent
e with dimAe = o , Similar to Example 8, BAe 1is a subalgebra

’ ’ ’ .
of A, Trf=fox and wf=xcf for some e A' . i.e.
for all f € A' , Te and y% are rank one operators and so

compact. Now by Example 8, for every a € A , Aa and therefore

* *
Aa is compact, but Pa and therefore Pa is not compact,

For F € A" , 1let TF : A' - A' be defined by:

TFf = Ff , f e A'

and SF : A' > A' defined by

s _f = fF fen'.
F A

* 0
Consider TF : A" > A" , the adjoint of TF . Since for

every G € A" and f € A' we have:
*
TFG(f) = G(TFf) = G(FF) = GF(f)

we get:
*

HG:F "
LF G G € A

*
Similarly, for sF : A" > A" , the adjoint of S_ we have:

*
SFG = F#G G e A",

2.14 Thesorem. The following are equivalent:

(i) For every F € A", TF is a weakly compact operator on A'

(ii) The mapping G * GF is a weakly compact operator on A"

for every F € A" |

(iii) ("] is a left ideal in A‘® , the fourth dual of A ,

when A" has the first Arens product.
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Proof. Since the maps in (ii) are the adjoint of those in (i),
Gantmacher's Theorem VI, 4.8 [10], gives (i) <===>(ii).

* %
To prove (i)<==>(iii), T_ : A"™ > a™ is defined by:

* % *
TF $(G) = ¢(TFG) = ¢ (GF) = F¢ (G) $ € A" , G e A" .,
Therefore:
* %
TF $ = F¢ ¢ € A"
X A 4)
And Tiw = Wh wea .
Now, Theorem VI.4.2 [10], gives that: T is weakly compact on A"
for every F € A" , if and only if: A(4)§ c (A"f . A

Note that, for Banach algebra B if b € B and F € B"

’

4 N . (4)
then br = B#r . Therefore (A"} is a left ideal of A
(with respect to each of the two Arens products in A(4) arisen

from the first Arens produce in A"), if and only if T is

a weakly compact operator on A' for each P ¢ A"

.

Similarly we can prove that the following are equivalent:

(1) For every F € A" , SF is a weakly compact operator

on A' .

(ii) The mapping G > F#G is a weakly compact operator on
A" for every F ¢ A"

(1ii)  (a")" is a right ideal in A‘® , when A" has the

second Arens product.

. wl . . (4) .
Again (A" is a right ideal of A with respect to each of

the two Arens products in A(4) arisen from the second Arens product

in A" .

]
?or eUL’(td VFE—A
*
By Theorem 14, 'I‘F is a weakly compact operatorAif and only

i f A=y (A")A is a left ideal in A(4). Therefore
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by Theorem 3 we get TF for evexry F € A" 1ig weakly compact if

and only if Pp ; the right reqular representation on A", is weakly

compact. (A" with the first Arens product.) Similarly SF
is weakly compact for every F € A" if and only if AF the left

regular representation on A" is weakly compact, (A" with the

second Arens product.) Moreover we have:

2.15 Corollary. Let A be Commautahve . Then AF and Pp !

the left and the right regular representations on A", with respect
to the first Arens product are wsakly compact if and only if they
are wzakly compact with respect to the second Arans product,

The condition: For every F € A" , TF is a weakly compact
operator on A' in Theorem 14 is indeed a very strong condition,
Next we give an example for which TF and SF for every F ¢ A"

are compact and therefore weak compact on A' , and A is Arens

regular.

2.16 Example. Let A= 2! . the space of absolutely convergent

series of complex numbers, with its usual norm, and let multiplication

in A be defined co-ordinatewise. Then by Theorem 4.2 [22], Theorem
4,2 [7] and Theorem 3,10 [7],

woo . A L_2
A" = A 6 radiA") =A@ M =A8 ran(a") ,

where M is the closed subspace of " generated by multiplicative
linear functionals on A . Since A is commutative and Arens
regular, then A" is commutative and therefore:

T, =S8 F € A"
Let B = ran(a") . Then

(4)

A =aA" ®B" =A®&B®B" .

By this construction and considering that B = ran(A") = ransﬁ)
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A
we get (A") 1is an ideal of A(4) . i,e, For every F € A" ,

TF and SF are weakly compact operators on A' . Now by IV.13,3

[10] compact and weak compact operators on A are the same.

2.17 Corollary. If TF is a weakly compact operator on A' for

A
every F € A" , then A 1is a left ideal of A"

Proof. Let pa be the right regular representation on A . Then

* %k A
p. G = Ga G € A"
a
* A
But T G=Ga ; G ¢ A", a € & .
A
a
* * %
Therefore: T =9 a € a .
2 a

Theorem 3 gives the result. A

Similarly we have: If SF is a weakly compact operator on A'

A
for evexry F € A" , then A is a right ideal of A" .,

Remark. Let G be a compact abelian group. Then by Theorem 4.1 [20],

A A
A =[L1(Gﬂ is a two sided ideal of A" = [Ll(G)]" . We prove that

A" is not an ideal of A(4) . Suppose otherwise and let R be the

radical of A" ., We prove that A"/

(4)

R is an ideal of (A"/R) .

4
But (A"/Rf'z A /R+l . Since for every F ¢ A" and ¢ € A( )

we have:

A A A
(F + RM) (6 + =YY = Fo o+ PR 4+ RM o+ M

1L

ALl 1L . 1
But FR © R . And for each G € R , if P € R we have

P(G) =0 . Thus:
8o(P) = ¢(PG) = 1im A, (PG) = 1im P
= $(20) = Lim §,(°0) = Lm P (Gn))
A
where ¢ = w*-lim Y for bounded net {nk} < A" . But an € R,
P(Gn,) =0, G e R . ice. P+ r*M (s + rMY = fo 4+ Y,

4
(A"/R)“ ] A( }Rll . By Theorem 3.17 [7] A"/R is isometrically
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isomorphic to the measure algebra of G , and by Theorem 5 [21],
M@ " is a two-sided ideal of [M(G)]" if and only if G is
finite, i.e. there exists a Banach algebra A such that Aa
and pa areweakly compact for every a ¢ A , but there exists

F € A" such that TF and SF are not weakly compact on A'

2,18 Proposition. Let F, G € A", TF be a compact operator on

A" and G = w*—lém 98 , when {yB} c A is bounded. Then
A
HyBF - GFH O = S T e e e s e o o

TSRO

Proof. By Theorem VI,5.6 [10], TP is compact on A' if and only

*
if its adjoint TF sends bounded nets which converge in the A’

topology of A" into nets which converge in the metric topology
of A" . Now:
G(£) = lim ¥, (£) £ e A
= m h €
g Ya

Therefore:

*A * A
l7g¥g - Tp6ll = llygp - crll » 0. &
Similarly we can get, if SF is compact on A' and
. A
G = w*-lém y8 . Ther:

HF_{;S - récll » o .

2-193"9?03.“"31- if TF is compact on A' , then Pp the right

regular representation on A" when A" has the first Arens
g '

product is compact. If S is compact on A’

F , then X the

F

left reqular representation on A" , when A" has the second Arens

roduct, is compact.
p
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CHAPTER 3

In this chapter the second dual of Banach annihilator algebras

are studied.

Let E be a subset of a complex Banach algebra A . The

left and right annihilatorsof E are the sets lan(g) ,

ran{E) given by:

lan (E) {x ern : xE= (0)}

ran (B)

{xca:ex= (0.

i

3.1 Definition. A Banach algebra A 1is said to be an annihilator

algebra if it satisfies the following axioms:

For all closed left ideals L and closed right ideals R :

(i) ran(L)

!
i

0 if and only if L = 1R ,

{ii) lan(R)

0 if and only if R=2a,

3.2 Definition. A Banach algebra A is a dual algebra if for

each closed left ideal L and each closed right ideal R :
lan{ran(L}))) = L , ran(lan(rR)) = R

It is obvious that every dual algebra is an annihilator algebra.

3.3 Proposition, Let A be a semi-simple annihilator algebra.

A
Then every minimal left (right) ideal of A is a minimal left

(right) ideal of &a" .

Proof. Let L(R) be a minimal left (right) ideal of A , By
Proposition 3Q.6 [6], L = Re (R = eA) where e is a minimal
idempotent of A , Now, since A 1is semi~simple annihilator

A
algebra, by Theorem 3.1 [22], A is a closed two sided ideal of



A", Therefore:

A A A A
A'"e € A (eA" < Aa) ,
A AA A AA AA AA
A"e = A'ee C Ae {eA" = eeA" c eA) ,
ALA AAA A A A AAA A
ele c efe = C e (eA"e cehe = C e) .
A A AAA . A, - . "
Thus: eA"e = ehe , i.e. e 1is a minimal idempotent of &a" ,
. A A A A
for which L = A"e (R = eA") .
ny A A .
Now applyAProposition 3Q.6 [6], we get L{(R) is a minimal
left (right) ideal if A" ., A
3.4 Proposition. Let A be a semi-simple annihilator alaebra,

Then with respect to the first Arens product the following are

equivalent:

. A
(i) ranA"(A) = {0}

(ii) ran(a"™) = (0)

(1ii) A" is semi-simple,

Proof., To prove (i)<—=>(ii), it is enough to show that, for every
A , A
Banach algebra A, ranA"(A) = ran(A") . Since A < A" ,
ran(A") < ranA"(A) . Let G ¢ ranA"(A) , F e A" and
A . . \
F = w*-lém X, where {xa} is a bounded net in A . Since
(F, G) » FG is weak*-continuous in F for fixed G , we have:

. A
FG = w*-1lim X G = 0
o o

Then ranA"(ﬁ) = ran(A")

(ii) ==>(ii1). By Theorem 4.1 {22], we have:

rad(a") = {F ¢ A" : AF = (0)} = ran(aA"™) . A

Note that in proposition 4 the product for A" was the first
Arens product. By similar argument when A" has the second

Arens product, the following are equivalent:
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1 D = (0 ;
anA..( = (0) ;

lan(A") = (0) ;

A" is semi-simple.

By Theorem 4,1 [22], for a semi-simple annihilator algebra A , the
two radicals of A" coincide. Thus, A" with respect to each of

the Arens product is semi~simple if and only if one of the following

holds:
A
ran(A") = ranA"(A y = (0) in first product,
A
lan(a") = 1anA"(A) = (0) in second product.

3.5 Theorem. Let A be a semi-simple annihilator algebra.

Then A" 1is an annihilator algebra if and only if A is reflexive,.

Proof. Let A" be an annihilator algebra. Then by Proposition
4, A" is semi-simble, and since by Theorem 3.1 [22], Q is a
two-sided ideal in A" , by Lemma 32.4 [6], we get:

A7

A
A" = (A8 ran,,

C o s A .
Considering Proposition 4, we get A" = A , The converse is
P

obvious, A

A A =
Note that, in Theorem 5 to get A" (A ® ran_,(n)) , we

]

A"

need to have: A" is semi-prime annihilator algebra. By an
elementary argument, without using Proposition 4, and therefore

Theorem 4.1 [22], we can get this as follows:

3.6 Lemma. Let A be a semi-simple annihilator algebra, If

ran(A") = (0) , then A" is semi-prime,

Proof. et J be a two-sidad ideal in A" such that

J2 = (0) . Iet I be a minimal left ideal of A" , Thaen JnL = (0),or
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JOL = L . In both cases we have JL = (0) . Thus
soc (A") < ran(J) ,
A
soc(A) < ran(Jd) .
By Corollary 32.6 [6], A = (soc(n)) . Therefore:

A
J c ran,, (A) = ran(A")

(o) ,

J = (0) . A

3.7 Theorem. Let A" Dbe a semi-simple annihilator algebra.

Then A" = A .

4
Proof. By Theorem 3.1 [22], A" 1is a two-sided ideal in A( )

Therefore by Theorem 2.3, AF andé DF , the left and right regular

representations on A", are weakly compact for every F € A" .

Thus Aa and pa are weakly compact operators on A" for every

* & ( *x%
= ' = ' ’ '
aean. But A A a and pé Py , Wwhere Aa and Pa

a

>

are the left and richt regular representations on A , for each

A . . .
a€a, Therefore A 1is a two-sided ideal in A" ., But by

Lemma 32.4 [6],

A A -
A" = (A @ ranA"(A)) ’
A
and since: ranA"(A) = ran(A") = (0)
A
we get A" = A, A

Since every W*-algebra has identity element, and since every
semi-simple annihilator algebra is finite dimensional if and only

if it has identity element, we get that, every annihilator W*-algebra

is finite dimensional.

3.8 Corollary. Let A" be an annihilator B*-algebra. Then A"

is finite dimensional.



Proof. By Theorem 1.18, A 1is a B*-algebra. Therefore A" 1is

a W*-algebra and is an annihilator algebra. A

Next we give an example of a topologically simple reflexive
annihilator star algebra which has an unbounded approximate identity,

and it can not have any one sided bounded approximate identity.

3.9 Example. Let H be a separable Hilbert space, and {un} '

{vm} be any pair of complete orthonormal systemsof vectors in H ,

e
By Par#yal's equality, it is easy to show that for every T € BL(H):

2
<

, . p)
L Tu = L Tu A T S
‘ nI i( n’ m)

* x:
Tv .
m

Z , P
n n,m ) m

This common value will be denoted by |T|¢2 . The Schmidt~class
F¢$ consists of all those operators T € BL(H)

, such that

fTle < = .

By A 1.3 [15], Fé is a topologically simple reflexive annihilator
Banach star algebra which can be identified with an infinite
matrix algebra MA . Now, since H 1s separable, the cardinal
number of index set A is }ﬂo . We shall prove that the
sequence of all infinite matrices e, defined by:

(1 A

is a two-sided approximate identity (not bounded) for this infinite

matrix algebra. Let
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such that
1
© 22
a = T < oo
lall< | £ ilal
Consider
I 0
e = oL .
n f
o . ©
Then
_ _ 10 ! B
a-ae = |- '
!
o) ! D
and
0 : 0
a-e = |---p--
c ! D .
Therefore: l‘a - aeJ‘ -0 as n + =, and |\a - %Fll » 0
as n > ® | Thus F¢ has a two-sided approximate identity (not

bounded) with above properties,

Now, by Corollary 28.8 [6], for Arens regular Banach algebra
A , A" has unit, if and only if A has bounded two-sided
approximate identity. Thus every reflexive Banach algebra with
bounded two-sided approximate identity has unit., Now, let {Tx}

be a bounded left approxirate identity. Since F¢ 1is reflexive,

it has left identity E .  But, for every T € F :

o
[}

T 2 _ ’ - - 2
Her-mol®= P loer - mu, vl

"

2
z Xpx . TR
n'ml (w, (m%e* - m)v)|° .

Therefore E 1is a right identity. Similarly, if E is a right

identity in F¢ , then it is a left identity. But annihilator

algebras with identity are finite dimension.
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Note that, Example 9 can be modified for non-separable Hilbert

space H .

3.10 Example, By Proposition 34.4 [6], any semi-simple
H*-algebra is an annihilator algebra, and we thus get a class of

reflexive annihilator Banach algebraswhich have approximate identity,

but are not finite dimensional,

3.11 Proposition. Let A be a semi-simple commutative annihilator

algebra, let MA be its carrier space, and M the closed subspace
of A' spanned by MA . Let:

mt o= {F ¢ A"; F(M) = (0)} .

Then rad(a") =(K/M)' and M is the closed linear subspace of A'

spanned by Q = {fa : f € A', a € A} .

i
Proof. By Corollary 4.2 [22)}, rad A" = M , and by IT.4,18b [10],

M'L and (A'/M)' are isometrically isomorphic. Therefore
rad{(a") = (A'/M)' . Now, rad(A") = ran(a") = Ml , and by
Theorem 3,10 {7], we have:

AN = (0) e—= {fa :aen, fFen'lem,
So Q<€ M, Let f be a multiplicative linear functional on A .
Then for every a, b in A :

f(ab) = f£(a)f(b) = fa(b) .

Let a € A, with f(a) # 0 . Then:

fa = £(a)f ’
f=-—l—-—fa »
f (a)
i.e. f®win ©Q , and completes the proof. A

By Theorem 4,2 {71, A = !, the space of absolutely convergent

series of complex numbers, with its usual norm, and multiplication



defined co-ordinatewise is a commutative semi-simple annihilator
algebra, such that A" is commutative but not semi-simple and
A
A" = A ® rad(A") . I

Next we will prove this for the non commutative case and we give
a commutative semi-simple annihilator algebra A such that A"
does not satis{y I.

[= <]

Let {Bn} be a sequence of semi-simple annihilator algebras,

n=1

such that, for every n ¢ IN , Br'IBn is dense in Bé . Consider

A= ll(Bn) , with pointwise addition, scalar multiplication and

product. Define the norm ii i[ on A Dby:
L]
Hall = 1t = %11
where a € B , I lln is the norm in B (n=1, 2, ...) .
3.12 Lemma., A= lan) is a semi-simple annihilator algebra.

Proof. Ccnsider the projection vi : Qi(Bn) - Bi defined by:

‘ﬁi({an}) = a, (1=1, 2, «va)

Since each B, is semi-simple, T, ° Ui is an irreducible

i
representation on A for an irreducible representation Ui on
B, . Now:
i
ker(nm, c0.,) ={a=1{a }ten:a, =0},
i i n i
And:
r o =
rad(A) < 10 ker(ﬂi ci) 0y .

Therefore A 1is semi-simple.

To prove that A is annihilator algebra, consider:

u, = {o, 0o, ..., 0O, B,y 0, R
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Then Ui is a closed two-sided ideal of A . Since A 1is the
topological sum of the semi-simple annihilator algebras Ui (i =1, 2,

by Theorem 2.8.29 [15)], A is an annihilator algebra. A
3.13 Lemma. The closed linear span of A'A is CO(B'n) .

Proof. Consider A' = lm(B'n) . Let f = {fn} € A',

a = {an} € A, where, f(a) = g fn(an) .

For every x {xn} € A, we have:

fa(x) = f(ax) =1L f (a x ) = rfa (x) .
Therefore: fa = {fnan‘ :
But:
Il £all = swlltall

and since B'n is a Banach Bq-module:

}

ezl ellell, layll, s ellell Hall,

for a positive £ , But I'anl]n +0 as n = ® Therefore

fa ¢ C.(B' ) . Now, fix b_e B , £ e B' . Then:
o] n n n n n

(O; 0, es ey Op fnbn’ O' ‘-.) € A'A
Since for every n € IN, B'an is dense in B'n , the closed linear

span of A'A = {fa : £ ¢ A', a ¢ A} is CO(B'n) . A

3.14 Lemma. rad(A") ={A'A)" .

Proof. By Lemma 4.1 [22]), for every semi-simple annihilator
algebra A :
rad(aA") = ran(a") .,
. . A
By Proposition 4: ran(A") = ran_,(A) .
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Therefore:

A A
ran_, (A) = {F € A" : AF

rad (a") An

(0)}

{F e A" : AF(a") = (0)}

{F ¢ A" : F(A'A) = (0)}

1l

@amnt. A

3.15 Lemna, Let Bn for every n € N be a dual algebra.

Then A = Zl(Bn) is a dual algebra.

Proof. let a = {bn} € A= li(Bn) . Since each Bn is a dual
algebra, 2.8.3 [15], bn < ann , (n e IN) . 5n for every n € W ,

there exists a sequence {Bn } « B, such that:

b B + b as m -
n nm n

Let G = (Blm, B, , ey B , 0, .v0) Then obviously « €A,

2m km km

R

al =

km (blslm' b262m, “ sy Ak O, .-l) ’

km’

a(!kfn—-» (b., b ""bk' 0, ...} .

ll 2!

so, (bl, b2, ceny bk' 0, «..) € aA for each k ¢ I . Similarly,

(bl, b2, ceey bk’ 0, «..,) € Aa for each k ¢ I . Now, consider:

a, = {bl, 0, 0, ...}

1
a, = {bl, b, 0, 0, eenl}
a = {bl, by eees bys o} .
Then, since a3, € aA and ay +a, we have a € aA . Similarly
a € Aa . Therefore a € ah N Ra . Now, Theorem 2,8.29 [15]

gives that A 1is a dual algebra.
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3,16 Theorem. Let A = Ql(Bn) , Wwhere {Bn} is a sequence of

seni-simple annihilator algebras,such that B'an is dense in B'

for every n € W ., Then:

1] A 1t p 1 A 1
A" = A & rad(A") = A ® [CO(B':)] =A®8P .,
where P is the closed linear span of A'A .
Proof. By Lerma 12, A 1is a semi-simple annihilator algebra,

and by Lemma 13, P the closed linear span of A'A can be identified
with CO(B'n) , considered as a subspace of lw(B'n) . The
topology o (A, P) is then the same topology on A as its w*-topology,
where A is considered as tha dual of C_(B ) Since P i
total, and since ARlaoglu's Theorem asserts that the unit ball of
A 1is compact in o(a, P) , Thecrem 4.1 [7] gives:
A" = ﬁ B P'L .
And by Lemma 13 and Lemma 14, we have:

All

]
]

A A i
A 8 rad{(a") A8 CO(B'n) . A

Case 1. Let A

ll(Mk (cy)y ., (kn ¢ IN}) , with pointwise
n

addition, scalar multiplication and product. Define the noxrm

I Il on a by:
lalt=ll ta 31 = £la |,
n n
where a ¢ Mk (€) , | I is operator norm in Mk (€) , and
n n n

k
C" nas 2 l-norm. Note that, in this case M () is a dual

k
n

algebra for each n e N . Thus by Lemma 15, A = ll(Mk (€)) is
n

a dual algebra. Moreover, the module multiplication fa defined

by: fa(b) = £{ab) (b € A) , can be characterized with the

multiplication of matrices. Indeed we have: Let
k )% x vy )%
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Then:

since for every

we have:

Then : .
¥ k k e k IN
n n n n n n

Bab) = L) ik 5k ol Byp Py Fyy) = fa )

k k
Now, letd-[d n.‘ be the transpose of F.n ].n =1, 2, «oe
rs rs
Then: k " \
n n ]
-t - z = .
axe t=1 drt ItsJ n=1

xs =

kn o
Now, for every b = b 1 € A, consider,

w ko ok ok ok ko ok
r o o a " by
=] r=1 s=1 t=1 tr “ts "rs’ !

and take t =i, r=wm, and s = j , we get that dxf has acted
on A as fa . 1i.e. A'A consists of elements:

fa = dxf fedA', aehA, den,
where the multiplication in left hand side is the module multipli-
cation defined on A by: fa(b) = f(ab) , and the multiplication
in right hand side is the pointwise multiplication of the two
sequences of matrices, and the terms of d are the transpose of

the terms of a . Therefore A'A = A"
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Case 2. Let A = R,l(Mk (€), wn) , Wwith pointwise addition, scalar
n
multiplication and product, where {wn} is a sequence of positive

real numbers with:

wm+n < wmwn m’ n € m N
Define the norm || || on A by:
lall = Il wll = £ lla wll
n n n
where a ¢ Mk () , || ||n is operator norm in Mk (€) , and
n n n
k 1
€" nas e—norm. Again we have: A 1s a dual algebra with

A
A" = A @ rad(a") .

Case 3. Let Bn be the Schmidt-class F¢n of operators on
separable Hilbert space Hn(n =1, 2, «v+), Example 9 ., Then by
A 1.3 [15] each Bn can be identified with an infinite matrix

algebra of order Y, . To prove each B' B is dense in B' ,

let:
‘ c i D )
mo
£ = |TTTol---l e B,
{G b n
Then:
Cu |
Ne- | Bbeofll >0 as  mo e,
o

Now, since for every finite matrix algebra B , B'B 1is dense in
B' , we get B'an is dense in B'n . Also the same argument

of case 1 can be applied to characterize the elements of A'A ,

Note that case 3 can be modified for non-separable Hilbert

spaces H_ .
P n
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Case 4. Let Bn be a semi-simple H*-algebra. Since B'n = Bn ’

by Theorem 4.10.31 [15), B'n is equal to the topological direct

sum of its minimal-closed-two-sided ideals Zi I'A '

n

where each
I'A is a topologically simple H*-algebra. But by Theorem

4,10.32 [15), each topologically simple H*-algebra I'A is mhmmeug

isomerpht with an infinite matrix algebra M' By case 3,

A .
M'AMX is dense in M'A . So to prove B'an is dense in B'

we need to prove that, for every

fa = {anA}XEA .
n
Let:
b= {b}y & By -
n
Then:

. = 1y =
fa (b) f (ab) f({akbk,) % fk(axbx)

=% f.a, (b

3 By) = {f,a, ) .

Therefore :

e hhen,, -

Case 5, Let Bn = KL(Hn) , the algebra of compact operators on
Hilbert space Hn . Then B'n = TC(Hn) , the trace class of
operators on Hn . By A,l.4 [15], FKL(Hn) , the algebra of
finite rank operators on Hn is dense in TC(Hn) . Therefore
to prove B'an is dense in B'n , since FKL(Hn) is dense in

Bn= KL(Hn) , 1t is enough to show that, every £ € FKL(Hn) can

be written as £ fp , when p 1is finite rank projection in

KL(H) .

Let f =u® Vv be of rank one. Then to prove £ = fp ,
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since
f(a) = Clau ® v) = (au, v), acB
we have:
((pa - a)u, V) =0 a € Bn
= (pau, v) =(au, v) aeB
S (au, pv) = (au, v) ae Bn
L
(UL
Now, take p=lv® v , then pv =v , Therefore B' B is

dense in B' . A
n

3.17 Corollary. Under the conditions of Theorem 16, A = Rl(Bn)

is Arens regular.

A
Proof. LetF, G € A" . Then F =2 + F , G =Db + Gl when

a, b e A and Fl, G, € rad(d") . But:

1
A A A AN AN A
FG = aﬁ + aGl + Flﬁ + &%-— ab + Flg = ab + F_#b

But, by Theorem 4.1 {22]:

rad(A") = {F € A" : A"F = (0); = {F € A" : F#A' = (O)} .

L]

A A
Therefore: Fl# b=0, FG= a.Q . Similarly F#G = QQ . A

3.18 Corollary. There exists a commutative semi-simple dual

A
algebra A such that: A" # A ® rad(a") .

Proof. Let G be an abelian compact group. Then A = Ll(G)
is a semi-simple commutative dual algebra. Now if A" = Re rad (a") ,
then by above corollary A is Arens regular. But by {24], A

is Arens regular if and only if G is finite. A

By considering Theorem 4.1 [22], since for semi-simple

* %
annihilator algebra a, R1 , the radical of A" with respect to
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* %
the first Arens product coincides with R the radical of A" with

2
respect to second Arens product , if A = ll(Bn) , When Bn is

semi-simple annihilator algebra and BnB'n is dense in B'n

(n=1, 2, ...}, then A 1is a semi-~simple annihilator algebra

A
and A" = A ® rad(aA")

3.19 Definition, A compact Banach algebra is a compact algebra

A , such that for each t ¢ A , the mapping a - tat is a compact

linear operator on A .

It follows from Lerma 33.12 (6], that every semi-~-simple
annihilator algebra is a compact Banach algebra. By Theorem 5,
the second dual of a semi-simple annihilator algebra isagnnihilator
algebra if and only if A 1is reflexive. This case can not occur

for compact Banach algebras. Indced we have:

3.20 Theoren, There exists a non-reflexive semi~simple compact

commutative Banach algebra A , such that A" 1is compact and

not semi-simple,

Proof. Let A = g! , the algebra of absolutely convergent
series of complex numbers, with usual norm, and let multiplication
in A be defined co-ordinatewise. By Lemma 33.12 [6}, A is
compact, and by Thecrem 4.2 {7], A" = ﬁ ® ran(a") . Now, let

G e A" . Then G = Q + ¢ , where a € 21 and ¢ € ran(a")

Define the mapping Pg ¢ A" > A" bhy:
p F = GFG F € A" .
Then:

A_A A
pGF = GFG = aFa + aF¢ + ¢F¢ + ¢FQ .

. , A
Since ¢ € ran(A") , aF¢ = ¢F¢ = 0 . Now by Theorem 3,1 [2

o]

o
—
~



A . . . ., A A
A 1is a two-sided ideal in A" . Therefore Fa = b for some

b eaA , and since A is commutative:

A A A A A
¢Fa = ¢b = b¢ = Fap = aFd = 0 .,
Therefore:
A A A
pGF = aFa (G=a+ ¢) , F ea” .,

Now, define p'a : A > A Dby:

p'ab = aba b e n.
Then:
p';f = afa (f e p'Y .
p'E¥F = ara (F e AY) .

54

Since p'a is compact on A , by Schauder's Theorem IV.5.2 [10},

p';* is compact on A" , and therefore Pe = p‘;* is compact,
i.,e., A" is a compact Banach algehra, A

Note that, by Theorem 5, the second dual of a semi-simple
annihilator algebra A is annihilator algebra if and only if
A is reflexive. And every semi~simple annihilator algebra is
a compact Banach algebra. But, let A = XL(H) . Then A 1is
non-reflexive sami-simple compact Banach algebra while A" is

semi-simple, but not annihilator algebra.



CHAPTER 4

Let S be a semigroup and consider QI(S) the semigroup

algebra of S . In this chapter we particularize some of the

problems in Chapters 2 and 3 to the Banach algebra Ll(sy .

4.1 Theorem, Let S be a semiqroup. Then the following statements

are equivalent:

(i) sS 1is finite for every s € S

(ii) Aa, the left regular representation on 21(8), is

a compact operator for evervy a2 € ey .
(iii) Aa‘ the left regular representation on 21(8), is a

weakly compact operator for every a € 2l(sy .

(e

Proof. (1) =>(ii). Let a ¢ 2!(s) . Then a= I o s

—— n=l nn

when o = a(s ) . Consider A . Since s S 1is finite
n n Sn n

ks (21(8)) is a finite dimension subspace of QI(S) .
n

Theretore

ks is a compact operator on £1(s) and we have:
n
v A
L, a € IN
nél ns N

is compact, But:

a n=l n s .
n

Now by Lemma VI.5.3 {10}, the set of compact operators is closed

in the uniform operator topology of BL(X, ¥Y) and we get Aa is

compact operator on R} (S) .

(ii) = (i). Let Sy € S and sOS be infinite, Then there

ecists u € S such that n - S is one-one. Therefore AS

0
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is isometric on an infinite dimension subspace of tl(sy , i.e.

A

g is not compact. Contradiction,

(ii) <= (iii). By Corollary IV.g8.14 [10], weak and strong

convergence of sequences in 21 (s) are the same. Thus (ii) <= (iii).

Remark. Similarly we can prove that for a semigroup S the
following are equivalent:
(1) ss is finite for every s € S .
(ii) pa is compactonll(S) for every a ¢ 2l(s) .

(iii) Pl is weakly compact on 21(s) for every a « 01 (s)

And if Ss and sS are finite for every s € $ , then for every

el

Q

a, b in 21 (sy, a Py is a ceompact operator on 2l(s) , ana

1
therefore X (S) is a compact Banach algebra.

4,2 Theorem, If 21(s) is semi-simple, then the following are
equivalent:
(i) (sS) U (8s) 1is finite for every s € S and
s={st :s, tes}.

(1i) 81(s) 1is an annihilator algebia.

Proof. (i) = (ii). et s ¢ S, Since (tS) v (8t) is

finite for each t € § , S8sS is finite and therefore Zl(S) s ll(S)
is finite dimensional. Since ll(S) is semi-simple and

21(s) s 21(S) is an ideal of 2!1(S), 21(S) s2!(S) is a semi-simple
finite dimensional ideal of 2l (s) . Therefore &!1(S) s 21 (S) is
isomorphic with the direct sum of full matrix algebras. Now using
Theoren 2,8,29 [15], we get Ll(s) s Ql(S) is an annihilator

and s

%1 2

in s, and s, = tlt2 for some tl and t2 in s . Thus:

algebra, Now, let p e S . Then p = S,8, for some



p = sltlt2 € Stls for some tl €S .

Since for every element a € £1(S) we have:

©
a = El ap p, € S where a(pn) =

we get that Rl(s) is the topological sum of full matrix algebras,

and again by 2.8.29 [15]}, Ql(s) is an annihilator algebra.

(ii) =>(i). Since 2!(S) 1is a semi-simple annihilator algebra,
by Theorem 3.1 [22], [Ql(s)f\ is a two-sided ideal in its second
dual space. So by Theorem 2.3 ka and p, are weakly compact
on 2l(8) for every a, b in 21(3) . Theorem 1 gives s3
and Ss are finite for every s € S . To prove S = {st : s, t € S}
we have
2l(s) 2l(s) < 2ls?)
where 21(52) is a closed two-sided ideal of 21(s) . Now &!(s)
is an annihilator algebra, therefore
ran (21 (s)) =1(0)
1 2
= ran(2'(S))" = (0)
Y 2
= ran{f157)) = (0)
= gl(s?) = 219

%52":5- A

4.3 Theorem, (Young) The following are equivalent for any locally
corpact Hausdorff semi-topclogical semigroup S .
(i) 2!(s) has regular multiplication.
(ii) There is no pair of sequences {xn} , {ym} in S
such that the sets:

{xnym :n>m} and {xnym :m Y n}

are disjoint,



Proof. ([23] Theorem 2).

4.4 Corollary. There exists a countable semigroup S such that

for every s € S, sS 1is finite and ll(s) is commutative but not

Arens regqular.

Proof. Let 8 = IN , and define
mn = min{m, n} m, nem .

Obviously S is a commutative semigroup and n WN and IN n are

pPosithive
finite for evexy n € IN . Now let {x_} be the sequence of)odd
pPesitive
integers and {ym} the sequence ofjeven integers. Then
2] > m} = {y
{xnym n>n ljm}
and
{xnym :m> ntl = {x‘} .
Therefore:
4 T m > n ix : > mr = .
{ynym nt n { AN } o

Using Theorem 3, we get 21(s) is nct Arens regular. Now since

S is commutative, 21(8) is commutative, A

4,5 Corollary. Let S be a semigroup containing (i) an infinite

group or (ii) an infinite chain of idempotents. Then £!(s) is

not Arens reqular,

Proof. Let G be an infinite subgroup of S . Then 21(G) is
a closed subalgebra of R%S) . Now, if 21(8) is Arens regular,

then by 6.3 [7}, ¢!(G) is Arens regular, and by [24], we get G
is finite.
Let Eg = {s

1’ Sor .+.! be an infinite lower chain of idem-

potents in S . Then Es X~ (IN, A) , Corollarv 4 gives QI(ES)



is not Arens regular. Therefore £!(S) 1is not Arens regular.
A similar argument deals with the case of upper chains, in which

case we use (IN, V) . A

4,6 Definition. A semigroup S is an inverse semigroup if for

any s € S, there exists a unique s* € S such that

s s* g =g and s* g s* = g* ,

4.7 Proposition. There exists an infinite inverse semigroup S

with 21(s) Arens reqular.

Proof, Lat S be an infinita sanigroup of idompotents with product
defined by

st = © s, t €85, s%t
Then obviously S is an inverse semigroup, and since for every

secuence f{x } and {y_ } in s
n m

{xnym :m > n} N {xnym tn>m}= {6},

Theorem 3 gives 21(s) is Arens regular. A

We define the Brandt semigroup S over a group G with index
set I to be the semigroup consisting of elementary I X I-
matrices over GuU{0} and the zero matrix 6 . We write

s = {(g)ij :ge GUO}, i, j e 1} u {6}

and we have:
(g h)il if 4 =K
(g) i3 (h), , =
) if 3§ #K

Brandt semigroups are inverse semigroups.
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4.8 Theorem, If S 1is a Brandt semigroup, then 2!(S) is not

Arens regular.

Proof, Consider the segquences {xn} and {ym} defined by:
r 3 [
0 0 ... 0 0 ... e o ..
Im
0 0
. 0
¥n = (g)nl = : v Yp T (g)lm B : 0
enl 0 .
C

with enl #0,e #0; m ne N ,

Im

Then:
X V. = (g)nm
{xnym :n>m} = {(q)nm s n > mt
. V= .
{xnym :m > nl @) o :m> n}
Therefore ﬂggﬁ.: n>mn!n {(g)nm tm>nt = @,

By using Theorem 3, we get 21(s) 1is not Arens regular.zﬁ

Note that if the group of the Brandt semigroup S is trivial then

§ contains neither an infinite subgreug - nor an infinite chain of

idempotents.

49. Corollary, If S is a semigroup containing a Brandt semi-

group then 21(s) is not Arens regular.
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Problem 1. Characterize the semigroup S such that each

¢ € £ (S) 1is almost periodic.

Let ¢ € Ew(s) . If ¢ is almost periodic then it is weakly
almost periodic and by Theorem 2,10 we get QI(S) is Arens regular.
In particular by Corollary 4, the condition that Ss U sS be

finite for each s € S 4is not sufficient.

Problem 2. Characterize the semigroup S such that each

irreducible representation of 21 (s) is finite dimensional,

Clearly the commutative case is trivial,
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